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ABSTRACT

THE EFFECT OF INTERNAL RELAXATION ON
OPTOACOUSTIC CONVERSION IN LIQUIDS

THOMPSON, CHARLES HOWELL. B.S., University of Central
Arkansas, 1985. M.S., University of Mississippi, 1987.
Thesis directed by Professor Henry E. Bass

In the optoacoustic effect, optical energy is absorbed by

a medium and converted to translational energy, creating an

acoustic signal. In most liquids, the conversion process

takes place very rapidly (ps or fs) and the nonradiative

decay time is much shorter than the resulting acoustic

signal. Theories have been developed, based purely on

geometrical considerations, which accurately predict the

optoacoustic signal in such cases. The results show that for

a short pulse of optical energy the time dependance of the

acoustic pressure is determined by the size and shape of the

excitation zone.

This research was concerned with the actual energy

transfer process and how variations in the process which

exist from one liquid to another will affect the optoacoustic

signal. The purpose of this study was to observe the

optoacoustic signal in a situation where nonradiative decay

is slow enough to compete with the geometry of the excitation For

zone in determining the time dependance of the acoustic

pressure, and to develop a model to predict the signal in d C .

such a situation.
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I. Introduction

The generation of acoustical energy by an optical energy

source was observed by Alexander Graham Bell over one hundred

years ago. 1 Since that time the optoacoustic effect has been

used in investigations of optical spectroscopy2 , acoustic

07 spectroscopy3 , and molecular energy transfer.4  One advantage

of optoacoustic generation is the lack of physical presence

of a transducer in the medium. This property can be combined

with optical sensing techniques such as monitoring probe beam

deflection to produce a noncontact system for producing and

r observing acoustic signals. 5

The explanation of the optoacoustic effect in liquids on

a molecular level begins with the absorption of photons by

* "the molecules of a fluid. Photon absorption leaves a

molecule in an electronically excited state. Dissipation of

this excitation energy can be accomplished by several ',

mechanisms including nonradiative decay, radiative decay and

photochemical processes. In nonradiative decay, interactions

between molecules transfer the excitation energy to

rotational, vibrational, or translational modes of the

molecules at a finite rate. Energy in rotational or

d vibrational modes can in turn decay to translation. The net

increase in translational energy produces a temperature rise

in the fluid. If the radiation source is pulsed, the fluid

W-
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will cool following each pulse. The pressure variation which

accompanies these heating and cooling cycles is observed as a

series of acoustic pulses.

A finite decay time arises from relaxation effects in

wthe energy transfer process. At equilibrium, the total

energy of the fluid molecules is distributed among their

external (translational) degrees of freedom and their

internal degrees of freedom: electronic, vibrational and

I.2 rotational modes. When optical energy is absorbed by

electronic states some of the energy must flow to the other

degrees of freedom in order to restore equilibrium. The

structure of the molecules determines the energy levels

present and how efficiently molecular interactions transfer

, energy. The time to reestablish equilibrium therefore varies

from one substance to another.

Each energy exchange process between two molecular

degrees of freedom is described by a relaxation equation of

the form:

dE I (E - E)
".. dt

where E is the value of the energy in one degree of freedom,

E is the value E would have at equilibrium, and T is the

relaxation time (defined as the time required for E to reach

the value Eo(exp -1)) which characterizes the process. This

Id
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equation also describes the temperature associated with each

degree of freedom.

We can write the specific heat of the fluid as

Cp Cint + Cext Cint = YCi (2)

where Ci is the contribution to the specific heat from a

particular internal degree of freedom. If we assume small

temperature variation we can write

-~,-

EEO=Cext (T - (3)

where T is the temperature associated with translation and To

is the equilibrium temperature. For the external

temperature, then, we have

.,i dT _ I (T - T4J

Depending on the time scale on which observations are

made, not all of the relaxation processes will be important.

For example, studies of excess ultrasonic absorption have

shown that vibrational relaxation times are generally greater

than rotational by a factor of about 100.6 This means that

over the period of time in which rotational relaxation

* .occurs, little energy is exchanged by the vibrational modes

-. and their contribution to the specific heat can be ignored.

On a longer time scale, where vibrational relaxation is

important, rotational modes establish equilibrium quickly

%5 I
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enough to be considered instantaneous so that they can be

grouped with translation as an external degree of freedom.7

Existing treatments 8' 9 of the optoacoustic effect in

liquids have assumed time scales long enough that none of the

relaxation processes in nonradiative decay will be observed;

the transition from optical to translational energy is

instantaneous. In this case the temporal profile of the

observed pressure pulse is determined by factors related to

the pulsed laser used as the energy source. In the theory of

Lai and Young8 , the important time scales are the laser pulse

length Tp and the acoustical transit time across the beam

radius Ta = R/c where c is the acoustic velocity, and R is a

measure of the laser beam radius.

The purpose of this study is to examine the optoacoustic

effect on a time scale short enough to allow observation of

internal relaxation effects. This requires that the

relaxation effects take place over times greater than both Za

and Tp. The two liquids used are propanol and carbon

disulfide (CS2 ). They were chosen because of the large

difference in vibrational relaxation times. Ultrasonic

absorption measurements have shown that CS2 has a vibrational

relaxation time much longer than most liquids.1 0 This makes

it possible to observe both optoacoustic signals where

[ p." relaxation affects the profile and those where it does not

with the same experimental apparatus. Instead of changing

4.

" ~ I~P ~ 4 ~ * ~ ' ~ ~ *~ ~ .' ....... '



5
* J.

the time scale of the experiment, we change the time scale of

the relaxation by using two liquids.

Section II describes the theory behind the experimental

S'measurements and the development of a theoretical expression

for the optoacoustic effect in CS2 .

Section III describes the experimental apparatus and the

results of the measurements.

Section IV is involved with a numerical evaluation of

the expression obtained in Section II.

Section V compares the results of the experiment to the

numerical calculations.

S.W

,,



II. Theory

A. Phenomenological approach

Prediction of the optoacoustic signal in CS2 can be

approached from a phenomenological point of view by comparing

the energy transfer process to that of a liquid such as

-\ propanol where relaxation takes place very quickly. The

observed signal in propanol is very similar to the signal

predicted by Lai and Young.8 This indicates that optical

energy is converted to translational quickly, so that the

pressure gradients observed are due primarily to the shape of

the source. This is supported by an estimated value of the

vibrational relaxation time for propanol (0.02 ps)1 1 which is

much shorter than Ta or T for the present experiment. For a

similarly shaped source, we can expect the initial part of

the signal to be the same in CS2 because the relaxation

process begins immediately upon absorption. It is during the

early part of the process, when the excited states are highly

populated, that the greatest amount of energy is transferred.

At some point, however, the signals will begin to differ as

- translational energy continues to be produced in CS2 after

the populations of excited states in propanol have

essentially reached equilibrium.

Consider Eq. (4) for the external temperature T.

Suppose that the internal temperature T' is raised suddenly

from T. to T1. The equilibrium value for T is also raised;

therefore, energy must flow into the external degrees of

6



freedom to restore equilibrium. The energy can only come

from the internal degrees of freedom, however, which means

they do not remain at TI . When equilibrium is restored it

will be at a temperature T2 between To and T1 .

Conservation of energy allows us to write
12

(Cint T 1-T4 = Cint T-Tj + Cext (T-T4

or

ciot (T-TC') = Ce. (T-T4  (5)

At equilibrium,

c (T1 -T 2) = C.., (T2-T) ,

5:/ or

T_C, - . + To Cext
S2 = T1 tit+text tint + Cext)

which gives

PCit C extT=T + To-
T2 T2 T P Cp Cp (6)

The differential equation for T is

.dT ,.- ,. - (T-T ',
- "dt (7)

Adding CintT to both sides of Eq. (5) we have

C..T + C.T: - C...T'= CnT - Cex.T-

or

J1
9

I I .



9Ci ' Cex CinP
pT-T' = T To T1)

Gi Cp Cp

Substituting this in Eq. (7) we have (

"dT i 1 C 0 1 T
dt -- Ci-- T-T2 .

a(9)

pThe observed relaxation time, thus, is not T but

I lo. Cint
CP

With the use of Eq. (3) we have

I k (E-E2)dt

which has the solution
4' f -tl,')

E = 2 l-e (10)

or

dE E 2e

d(t

This means that the translational energy which appears per
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unit time decays exponentially with relaxation time T'.

Experimentally then, we should expect to see an exponential

decay superimposed on a signal due to the shape of the

source.

The above assumes that all of the internal degrees of

freedom have the same relaxation time. In real systems,

there are multiple processes taking place simultaneously.

The next section discusses a method to treat multilevel

systems.

B. Relaxation Equation

In 1972 Bauer 1 3 introduced a theory accounting for

energy transfer processes which affect the optoacoustic

signal in multilevel systems. The matrix notation involved

is well suited to numerical calculations and can be used to

p, describe the effect of an arbitrary number of optical and

collisional transitions. His formulation assumes gas phase

interactions but is applicable to liquid with minor changes.

The collisional transitions which result in energy transfer

A are of the form

Mi + Mj <-- Mk M1  (12)

where i...1 include any energy level of the fluid, and k and

*k ' are the forward and backward rates of reaction X. Bauer

introduces a set of progress variables 4. so that

n -.'k nj ka'XkX) (13)
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where n is the total number of molecules and xi.. .x are the

mole fractions. This equation has been modified to eliminate

the pressure p which is applicable only for gases.

Assuming small perturbations, ia is expanded about

equilibrium. A matrix notation is then introduced which

allows summation of all the coupled reaction equations into a

f. . single equation for the collisional change in population

number, ncoll. Since the change in population is a measure of

how much energy is exchanged between the internal and

external degrees of freedom, ncoll can be related to the

temperature variation. The matrix equation is then solved

for the temperature variation as a sum of terms, each with a

particular relaxation time, T, and amplitude, A.

S' CS2 has been modeled as a three level system, as shown

' .. ,. in Figure 1. The highest level is the electronic state which

is excited optically. It is given an energy of 2.96 X

104 cm-1 above the ground state to correspond to the frequency

of the nitrogen laser radiation. Between this level and the

ground state is included a vibrational mode which is doubly

degenerate. Its energy is 397 cm71 .1 4 Although there are

other vibrational modes present in CS2 , Andreae et. al.10

have shown that relaxation of the vibrational specific heat

* of CS2 can be adequately described by a single relaxation

time which they measured to be 2.04 ns. The rate kl0 has

. ** therefore been given the value that they measured and the

other modes have been neglected. The other two rates, k20 and

N "
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electronic state 2.96-7 x 10 4 cm

k 21 k k20
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k21 , will be varied later to give the best fit to experimental

data.

With a three level system and one conservation law

(conservation of total number of molecules) a double

P relaxation process is expected. Solution of the coupled

reaction equations results in two relaxation times, T1 and t2 ,

and two relaxation strengths, A1 and A2. Calculation of these

values was accomplished with the use of a program written by

Manaf Ali in 1985 for his dissertation. 15 The program was

originally compiled to calculate pulsed spectrophone response

in sulfur he-xafluoride using the Bauer matrix notation. It

was therefore easily modified to the present application.

C. Wave Equation

According to Hutchins and Tam 5 , we can write the

inhomogeneous wave equation for the optoacoustic pressure as

2 22
. 7 p2) = KA + K- ) (

,-l (14) '

where p is the acoustic pressure, I the laser intensity, and

c the acoustic velocity. The first term on the right hand

side of Eq. (14) is due to thermal expansion where

* _ C(15)

a is the optical absorption coefficient, is the volume

'5 . . . . . . . . . . . . . . . . _ . . . . .. % % % % . . % % . '% ' .



'NN 13

expansivity and Cp is the specific heat at constant pressure.

The second term is due to electrostriction where

2'

2nc c (16)
m .,

.D.S

SOy is the electrostrictive coefficient, n is the index of

refraction, and c is the speed of light in a vacuum.

If we introduce a potential function, (r,t), that

satisfies

. 2 2 }
t)= I -,t)

Cdt (17)

then we can write the acoustic pressure as a sum of thermal

expansion and electrostrictive terms given by

p..

PA KA(

and

2

~KFpE = 2 KA t
(19)

In the present case the ratio of KE to KA is small so that we

will ignore the electrostrictive pressure component. lo

Using the laser intensity as the source function in the

wave equation ignores the effects of internal relaxation in
'.

r

%%% *.% ',-% % % ' 5 , '% % , 5 '-'% 
' %  

" aa , .

.5~~ %S~ 1
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optoacoustic conversion. It is instructional, however, to

R note results obtained with this procedure. Lai and Young 8

have investigated cases of weak absorption where the spatial

length of the source is much longer than the perpendicular

OR distance to the observation point so that the problem is

essentially two dimensional. The laser pulse intensity can

be considered as a product of radial and spatial profilesA.z

characterized by Ta and Tp respectively as defined in the

introduction. If both profiles are given Gaussian forms and

P<< T., as in the present case, then the resulting pressure

profile is relatively insensitive to T . The rise and decay

of the potential function and therefore the peaks in pressure

(/t) are governed primarily by the spatial profile of the

absorbing region.

We have modeled the source term for the present

experiment by replacing the time dependence of the laser

pulse with the term

's. A, - - A,- -/, 2
-- e + -e

2  (20)

where A,, A2 are the relaxation strengths and TT2 are the

' relaxation times discussed in the previous section. With a

Gaussian radial profile of radius a, and the pulse

propagating along the z-axis, we now write the source term as

I (r, t) = e + - e e
lT t. .S(21)

P4.



15

which accounts for internal relaxation as well as a finite

absorption coefficient. In effect, this gives the laser

pulse a flat temporal profile (an instantaneous rise time at

t=O). The rise in the potential will be governed by the

spatial profile as it would in the absence of relaxation,

since Tp << Ta" The decay, however, will depend on the
relationship of Ta to t1 and t2 " With the Gaussian radial

t

distribution defined this way, the R defined by Lai and

Young 8 is equal to a/F2. Ta is therefore equal to a/FTc. In

this form (aI is the translational energy per unit time per

unit volume which appears in the liquid. Combining Eq. (17)

and (21) we have

2 _2 A 2/a 2 - z
_t_- = e + 2- e e e (22

- 1T2

The general form of this equation is

21•2-= 4nq (r,t)

where q(r,t) is the source strength.

The solution, using Green's function, is1 6

t) f 1 q (r0,t - R/C)
..'4x R-i tR(24)

where I rol= (r 0
2 +zo 2 ) 1 / 2 is the position of the source point,

R = Ir-rol, and the integrated volume includes the spatial

extent of the source as well as any image sources necessary
% 

.,

".5., %

P.5
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to meet boundary conditions.

In this experiment, the test cell containing the liquid

is large enough that no reflections from the walls are

observed until well after the original signal. We therefore

1P ignore boundary effects except for the surface through which

the laser pulse enters the fluid. Boundary conditions at

this surface are met by including a mirror image of the real 01

source at negative values of zo .

Comparing Eq. (17) and (23)

43 (25)

Inserting this and Eq. (21) into Eq. (24), we have

* 2 2

r f4t- d e/c/TR,/ + A2 e- R/C)/T

T,2(26) 4

rt) f E2 f tRC)

n2 R (27)
where 4) r() =2 8 )Jf (-./C

U'..

2 2
g~j= exp krla X (28)

is the spatial profile function, and

A, -tIt, A 2  -tlT, %
f(t) - e + - e

t 2(29) i
is the temporal profile function.

U'*.

_ t L : " : -o _ 9 . .. . I II



III. Experiment

The experimental apparatus used in this study consists

basically of a pulsed nitrogen (N2 ) laser used as the energy

source to create optoacoustic pulses, a continuous wave

Helium-Neon laser which probes the refractive index gradient

produced by the acoustic pulse, and a photodetector to

monitor the probe beam. These optical components are mounted

on a Newport Research Corporation table top and vibration

isolation system as shown in Figure 2. The N2 laser is a

model LN1000 atmospheric pressure laser manufactured by PRA,

Inc. It produces pulses of 1 mJ energy and 800 ps duration

for a peak power of 1.25 MW at 337 nm wavelength. The pulse

is collimated and then focused into a quartz fluorimeter

cell, which contains the liquid sample, mounted on a

translation stage. The lenses used in the laser path are

fused silica, and the mirror is a silver coated front surface

reflector. The laser pulse's original cross section is

rectangular, 3 mm X 6 mm. Its size as it enters the test

cell is controlled by the focal length of the focusing lens.

The maximum energy entering the test cell per pulse is about

0.36 mJ. The pulse energy can be varied by placing glass

microslides in the laser path. Each glass slide absorbs a

small percentage of the energy in the pulse. Most of the .

data taken in CS2 is at a pulse energy of about 26.3 gJ.

17
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These values were measured with a Molectron J3-09 Joule meter

and JDI000 Joule meter display. "

The laser pulse is absorbed by the liquid in accordance

with Beer's law and produces an outgoing acoustic pulse. The

acoustic signal is observed with a probe beam deflection

technique as described by Sullivan and Tam. 1 7 The probe

laser is a Spectra Physics model 106-1 He-Ne laser of

10.0 mW output power at 632.8 nm. The beam is spatially

filtered and then collimated at a diameter of approximately

15 mm. It is then focused into the test cell by a lens of
350 m.m focal length producing a beam waist of about 18 jLm. A

silver coated prism reflects the converging beam into the

test cell so that it propagates above and parallel to the

ultraviolet pulse as they enter the cell.

The pressure gradient in the acoustic pulse is

accompanied by a gradient in the index of refraction. As the
.".

acoustic pulse crosses the probe beam, the changing index of

refraction causes a deflection of the beam which is

proportional to the gradient of the acoustic pressure

.(r,t) = 1 an(rt) a P(r,t)
n ar arn"r(30)

where r(r,t) is the angular deflection, no is the normal

index of refraction, n(r,t) is the changing index of

refraction which is proporticnal to P(r,t), the acoustic

I/
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pressure. Over a length of the probe beam d, the cumulative

angular deflection is

rcum(r,t) O - P(r,t) dz

0 Dr

C P(r, t) dz
T f , (31)

The probe beam continues through the test cell and through a

lens which is used to control the diameter of the beam at the '

* '-position of the photodiode. An interference filter is used

to block any scattered light from the pulsed laser. The

photodiode is placed so that any beam deflection changes its

position in the beam's radial intensity distribution, which

is assumed to be Gaussian. Positioning the photodiode on the

steepest part of the Gaussian distribution assures that the

intensity change is approximately linear with beam deflection

and produces a maximum change in intensity for a given

% angular deflection.

The output from the photodiode, S(t), can be related to

the angular deflection of the probe beam by

S(r,t) = GI 0 (rd) L F• c ,- (32)

where G is a constant which depends on the sensitivity of the

photodiode, Ip (rd ) is the lateral spatial derivative of the

intensity at rd, the photodiode position, and L is the

% % -r,
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distance from the test cell to the photodiode. From

equations (31) and (32) we have

S(r,t) a P(rt) dz.

Uf

r (3 3 )

Therefore, when the signal is displayed on an oscilloscope,p.|

we observe the gradient of the acoustic pressure. In terms

of the potential function defined in section II

S(r,t) O(r,t) dz.
~r (34)

The signal is digitized with a Tektronix 7854 storage

oscilloscope which is triggered by a signal from a second

photodiode upon which a small portion of the laser pulse is

directed. The oscilloscope is interfaced with a Digital

Equipment Corporation Minc-23 mini computer where the data is

stored and analyzed.

To observe internal relaxation effects it is important

that the pulse cross-section be as small as possible as it

enters the test cell so that Ta is smaller than T, and T. A

' " short focal lenath lens is therefore desirable to focus the

laser pulse into the cell. The shcrtest that could be used

S"with this arrangement was 15 .7. because of the prism

S.- necessary to reflect the probe bean 
into the cell.

-'pp F ". ' ' 4 ,p •. .p .A : ' = . . .. - . N. N. % * - - . .-.'p,.: , %- ... . ' , P -* . --p '- , . O



'.~~ ~~W~ -IL~ - AY- N' MX-P

22

Since propanol is transparent to the nitrogen laser

pulse, it was necessary to add a dye which would absorb the

ultraviolet and still permit passage of the Helium-Neon probe

beam. Enough dye was added to make the penetration depth

similar to that of CS2 which absorbs strongly at 337 nm.

J. ~ -.. With similar penetration depths the only difference between

the signals observed in the two liquids should be due to the

difference in sound speed and internal relaxations.

Typical waveforms in both liquids are shown in Fig. 3.

To account for the differences in sound speed we compare the

two signals on a scale of ct. In Fig. 3 ct = 0.0 is the time

at which the oscilloscope was triggered. As expected, the

early portion of the signals are similar. Following this

* initial rise, however, the CS2 signal decays more slowly and

reaches its minimum at a slightly later time. The pressure

gradient in CS2 is smaller in magnitude than in propanol,

, . most of the time

.7

I, V[,

-.

, .,.'p ' .. , -.-..- ,. .. " " .. " - ,., -"- - -'% -i' ' , % " - -,- " . . ''% % % 
% % %  

% % % %
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IV. Numerical Calculations

A. Optoacoustic Signal

From equation (34) the expression we compare to the

experimental signal is

fr t d (r,t) dz
.. (35)

If we define

(D (r,t)= Jdr, t) dz
0i (36)

! and use equation (27), then

"O r, t fd 1 f dJ7 q (ro) f (t - R/c)

(4 TC)(37)

If we define a function u(r,t) by

u(r, t) - i d g(r t - R/cj

N(4 
n) (30)

and define the Dirac response of the probe beamibw

U (r,t) = fdu(r,t) dz

then

O( r,t) = 0tUir,t-t') f(t') dt'.
: (40)

A" 24
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Writing (D in terms of U saves time in the numerical

evaluation of (D because the spatial integration need only be

done once rather than at each point in time. u(r,t)

represents the potential due to a source with spatial

dependance g(r o ) , which exists only at tO. The integral of

u(r,t) over z represents the effect upon a length d of the

probe beam. The convolution of the resulting function with

the actual time dependence of the source produces the

potential at any later point in time.

Evaluation of u(r,t) is accomplished by integrating over

all space in a spherical coordinate system with its origin at

the observation point. Defining dV o by

2 2
dVo R sine dR dOdo= R dR dQ (41)

we have

.v u(r, t) R ~ dR dQ2~ 0 6(t - /c)
S2 fJ

(4 70(42)

0"

It is possible to show that

t P/c) -c(ct - RI (43)

therefore,

2

u(r t) =C t R( d R dQ g(r4 8cz R)

(4Ti ( 44) %

1

The integrand is zero except when R = ct, therefore

Nv.
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u(r,t) - t 2 fg(r d.Q,

(4 7E) (45)

o r
2 'm x

u(rt) = t f f g(r.) sin 0 dO do

(4~t) (46)

Defining X = cosO, dX = -sinOdO,

~2
u(r, t) = c jffg(rj dX do.

(4 n)(47)

A point in time t defines a sphere of radius R=ct about the

observation point Irl = (r2+z2) /2 . u(r,t) is the sum of the

contributions from all source points which lie on the surface a

of this sphere. In the numerical calculations, knowledge of

S "the source has been used to modify the limits of integration.

By defining g(ro) to be zero for ro > 4a and z. > 20/0X,

d = definite limits for X and 0 are calculated for each value of

r and t. The length of the probe beam considered was

determined by calculating the farthest point along its length

that would be affected by the source at the final time of

interest. The programs which calculate U(r,t) and CL(r,t) are

located in the appendices. The pressure and its

gradient ( (r,t)) are also calculated numerically by

," programs in the appendices.

Dr
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B. Curve Fitting Procedure

The procedure for producing the theoretical curves was

to begin with very short relaxation times so that the signal

is dominated by the spatial characteristics of the excitation

beam. These characteristics were varied until the result

matched the observed signal in propanol which is known to

have a very short relaxation time. Relaxation times and

strengths were then calculated using the known rate for the

vibration to translation transition, k10 , and assumed rates of

transition from the electronic state. Varying the values of

k20 and k 21 changed the relaxation times and strengths. These

two rates were varied until the resulting relaxation

strengths and times gave an optoacoustic signal which most

closely resembled the observed signal in CS2.

Md

.. 1*

S .
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V. Discussion and Conclusion

The results of this study show that internal relaxation

can indeed be important in determining the time dependence of '

the optoacoustic signal in liquids.

%I. A good representation of the signal observed in propanol

was obtained by assigning a rate of 490.2 X 106 s-1 to each of

the three transitions. The resulting relaxation times were

1.02 ns and 1.47 ns. The pressure gradient obtained with

these relaxation times is shown in Fig. 4 along with the

: experimental curve. Here the time scale is for the

theoretical curve. The experiemntal curve is overlaid so

" that the peaks occur at the same point in time. Performing

the calculation with even shorter relaxation times results in

the same theoretical curve, indicating that with these

relaxation times the signal is determined entirely by the

spatial characteristics of the excitation pulse. The value je

of "a" in this calculation was 50 Jm giving the radius a

value of approximately 71 jim at the exp(-2) value of the

intensity. The tbeory of Heritier 9 predicts that the time

separation of the positive and negative pressure peaks, which

is approximately the time separation of the points where the

'" gradient goes through zero, will be 17

At = 1.66

2c
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where w% is the radius at which the intensity is down by

exp(-2). For the present case with T = 0.8 ns, (00 = 71pim and

c = 1223 m/s for propanol, At should be 68.3 ns. The actual

0 time separation in the experimental waveform is 72.3 ns. The

discrepancy in the initial rise of the curves in Fig. 4,

v. which begins earlier in the experimental curve and shows a

_.. ~ more gradual change, is probably due to the fact that the

laser pulse is not Gaussian as modeled. The roughness of the

computed waveform can be traced to edge effects in the source

function caused by truncating the Gaussian distribution at

ro = 4a and zo = 20/a. These effects are magnified in the

: ,. process of taking two numerical derivatives of the calculated

function, (D. Both of these problems can probably be

corrected by modifying the spatial profile function, Eq.

(28). However, the overall time dependence of the pulse is

well represented by the theory. It should be noted that to

avoid noise during the experimental signal digitization, the
-p band width of the oscilloscope was reduced to 20 M11z. Had a

similar filter been used in the numerical calculations, the

agreement might be different.

Table 1 shows combinations of values assigned to the

rates k-l, k10 , and k20 and the resulting amplitudes and

relaxation times. Theoretical wave forms calculated using

these parameters are shown in Figs. 5 through 8.
N

-., ,,
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Table 1

Figure Rates A1  A2  Ti T2

in 106 s- 1 ns ns

k 2 1  kl0  k2 0

5 490.2 490.2 490.2 -1.26x10- 5 2.03xi0 - 4 1.47 1.02

6 26.86 490.2 16.86 -1.26x10 - 5  2.03x10- 4  1.47 22.8 a.

7 26.86 490.2 .5686 -1.26x10 - 5 2.03x10 - 4 1.47 3C.5

8 .2686 490.2 10.67 -1.26x10- 5 2.03x10- 4 1.47 91.4

With the value of kl0 held constant to correspond to the

accepted value of the vibrational relaxation time of CS2, the

amplitudes and T, also remain constant. Table 1 is arranged

to show rate combinations which give increasing values of T2 "

-. "These results are not unique, however. For instance, the

last value of T2 1 91.4 ns, also results from setting k 21 =

10.37 X 106 s-1 and k2 = .5686 X 106 -1.

,p. 
,a.:

-T,-

a.o 20,

'a,.
"V

V0

uvvxJ. 
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Figure 9 compares the pressure gradients from Figures 6,

7, and 8 and clearly shows the effect of increasing T2. With

the first positive peak in each curve normalized to the same

magnitude, the negative peak and the second positive peak

p decrease in amplitude as T2 increases while all three peaks

broaden in time. A.

The best fit of the experimental CS2 waveform was r

obtained with the rates which produced the curves in Fig. 8.

A comparison of the theoretical and experimental curves is

A- shown in Fig. 10. As in Fig. 4, the time scale is fox the

theoretical curve. The experimental curve is positioned so

that the peaks occur at the same point in time. The value of

*T2 for this curve is 91.4 ns. Increasing the value of T2

0 beyond this point continues to decrease the relative

magnitude of the negative peak, which the comparison shows to

be larger than experimentally observed. However, as ,

becomes larger, the initial pressure gradient becomes

negative. From equation 29 we can see that, although A2 is

..5. positive and larger in magnitude than A,, when T2 >> 1, the

first term becomes dominant and f(t) is negative for small t.

Therefore, with the three level system considered here, we

are limited in how large the difference in and can be

and still produce the same general shape of the CS2 signal.



37

aal

=22.8 ns

= i36.5 ns

i i 91.4 ns

00

E
0 < ---- ~ .. _ _ _

H / C

0/

6/

% 06



38

.4O

U)*M
fw ors

C-'

cz.

Kc

I;D

(DN
4-L

ci -i

CD.

e(iNJw GA- JI

u ve (Ni



39 S

A better prediction of the optoacoustic signal should be ,

obtainable by considering a more comprehensive reaction

scheme than the three level system presented here.

1% The agreement is better for the early part of the pulse.

The same discrepancy in the initial rise that appeared in the

propanol signal occurs here, and again could be corrected by

modifying the spatial profile function.
I

From these results we conclude that the optoacoustic

effect can be used to investigate relaxation effects in

liquids. Obviously, to observe relaxation in most liquids,

which have much shorter relaxation times than CS2 , it will be

necessary to produce much shorter acoustic pulses than the

apparatus used here produces. However, the theoretical

calculations show that the effects of relaxation become

apparent even for relaxation times less than Ta for the-5

experiment. Figure 6 shows a distinct difference from Fig. 5 ,5.

in the latter part of the signal. The longest relaxation .5

time (lowest transition rate) involved in the Fig. 6

calculation was 1/k2 0 = 59.3 ns; and T2 for this curve was

22.8 ns, which is less than Ta (-31 ns). An experimental
i--

arrangement that allows better focusing of the excitation

laser should therefore increase the number of liquids in

which it is possible to observe internal relaxation.

'.
'5,
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APPENDIX A .5'

ROUTINE FOR CALCULATION OF "

DIRAC RESPONSE OF THE PROBE BEAMN
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* 'dirac' calculates the dirac response of the
* probe beam as an integral over z.

source is a delta function in time, cylindrically 'AP.

* shaped with a gaussian radial profile, exponential
* decay wi th depth
.

* r - radial distance from z axis of source to field
* point
* z - depth of field point into medium

* a - characteristic radius o-f source
* c - soundspeed 0

* alpha _ absorption coefficient of medium
* 1 1/alpha = penetration depth )
* ml - number of a's for which we'll allow contributions
* nl - number of penetration depths for allowed contri-
* bu t i on s
* ( ml*a and nl/alpha determine the cutoff pts.
* of source

* intensity is zero ffor r>rmla and z>nl/alpha ) -

* ro,zo - source pt. coordinates crnae
* rho,fee,xi - spherical coordinates with origin at
* field pt. --

* ( xi=cos(theta)) -,

* g(ro,zo) - spatial profile function for source ,
* U<i) - ampl i tude of response at t(i) '-Vp

* U is double subscripted, calculated at two I.-
* distant values of r in order to do gradient
* cal cul ation.
* point - indicates the value of r at which the

* calculation is tioe~r

to - starting time
Stf - ending tite r."

rea IU(2,0:300),t(8:380 )
rea. r.,z,a,c,alpha,ro,zo,rho,xi ,fee,g

real pi ,e
integer i ,j,k,s,poi -nt
integer ml ,rl ,pds

parameter (a=50.e-6, alpha=3.?e+4, c=1140.0 )
parameter (pi=3.1416, e=2.7183) -

data. Ut/9 C3* O .0/
open(unit=l1,file='U1')
op en K. un i t= 1 2 , f i 1 e= / U2' )
,,per,(uni t=13,fi le't'

AL

AL,

4
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ml=4 .1*

n 1=20 C

r=2.5e-3
* print*,' input r value in meters'
• read*,r

* this section determines the first point in time that
* there is a contribution to U ( the shortest distance to

. * a source point ) and how big the time increment must be 'a

* to include all of the response.

7 'a

to= (r-ml*a)/c
for now let total=150rs to corespond to D-scope

* pictures (5ns/div)

total= 1500.0e-9
dt= total/300
t(O)=to-dt

* tk'A) is. the first point in the file 't'
* it is placed 1 dt before the first contr, ibuting
* t ime c criSequen t 1' U( 0) i s always 8.18

w r. ite 1 1 ,)UI1 ,0)

,.r i te (12 '-"5
wr te ( 13,*) t(O)

here we cal cul ate how far. al ong the probe beam we
* must integrate untill the propagation time is greater
* than tf=to+500ns.

z=(nl/alpha) + c*sqrt((5O.Ge-9)**2+2.9*tn,*588.Be-9)
print*,' zmax',z

* there are z*alpha peretraticr depths in this distance
* and we'll have 5 points per penetration denth

pds = nint(z*alpha)
- I " dz = 0.2/alpha
* print*, ' , pds, penetrat irn depths ' ,5*pds, z-poirits'

* as Me step through time, each pOirt I i associated wi th the
"a*

t U
9- " ' -"-." ". " " """",.'4y4 ..- -- [A v % - .- . v' . :: - . - . .- ... ' .
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* surface of a sphere of radius r-o=ct(i).
* we have contributions to phi from source points which lie
* on this surface. (wherever the sphere intersects the
* source distribution.)

* at each point in time we will determine the range of
* fee and xi which are in the source and sum the contributions
* from source pts. in this range.

do 1100 point=l,2
r=r-+(point-l)*c*dt

do 1010 s=0,5*pds
z-s*dz

• print*,' input z'
* r ead*,z

do 1060 i=1,300
t(i)=t(O)+i*dt
rho=c*t(i)

. given rho, we can deter-mine the I imi ts of xi

if (rho.lt.(r-a*ml)) go to 1000
a" " case I'4

if (r-ho.lt.(r.+a*ml)) then
ximax=l .0
xi r i n=(r-a*ml )/rho

else
* case 2

ximax=(r+a*ml)/rho
~~x i mi=( r-a*ml )!rho
' endi f

dxi =(ximax-ximin)/20
• in order to do the calculation at the center

of each dxi , move the first xi to xi+ dxi/2.0

ximin= ximin + dxi/2.0

do 900 .j= ,19
xi= ximin + j*dxi

given rho and xi we can determine the limits on 4ee

m" aximum value of fee is. pi/2

this section determines the minimum value

testl=(a*ml)**2 - (rho*xi)**2 - r**2 +

2*r*rho*x i

'5
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test2=rhc,**2*K 1-x i**2)

if (testl.ge.test2) then
* mlnfee6 .0

4m ml nfee~acos(sqrt( testi/test2))
end if

P~ * imi ts on fee are mTinfee to pi/2 arid -minfee to
-pi/2 contributions from negative angles will be
paired with posi tives when calculating U.

dfee = (pi/2 - minfee)/20.8 '4

minfee = minfee + dfee/2

ge do 800 k=0,19 C

fee = mi nfee + k*dfee 9

t * now we have rho,xi ,fee values p
* cal cul ate ro, zo, and g(ro, zo)I.
* ro is independant of the sign of fee. I^

zt * o has di ffererit values -for fc-e and -fee .

ro = sqrtK (rho*xi - r)**2 + (rho*sqrt(1-xi**2)

zo z + rho*sqrt 1l-x i**2) *s inrfee)

i if z o i s o ut of+ r an ge don.r,'t al low.. contribut ion to LI
S~oo instead to check zo(-fee) 2

If +Kabsz o) .gt . (nl,'/alI p ha) ) go, t o 100

g *KKr/)* alpha*(abs(zo))

LIK poi In t ,i) = UK pci nt , i) + t ( i)*( c/( 4*p i) ) *2 *

I Q*dxi*dfee*dz

I 10 z o= z - rho*sqr t (lI-x i**-) *sEinrf ee)

* if zo is out of range don't al low contr ibution to LI
* * go instead to get new,, fee .'

if (a-bs(zo).gt.(nl/alpha) ) go to 800

i Q~dxi*dfee*dz

'a
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aim.

800 continue
(800 is the end of a fee loop)

900 continue
* ('0 is the end of a xi loop)

v 1800 continue
* (1000 completes a pair of U(i),t(i) for ore value of z)
1018 continue
* (1010 completes U(i),t(i)

1108 continue
110* 0 ends calculation of U for one r va)ue

*Ctwr i te arrays to f iles)
do 1002 i=1,38
write (11,*)UI , i)
write (12,*)U(2,i )
write (13,*)t(i

1002 cont in ue
end

ty.
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* duharrel" calculates the potential using duhamel's* principle and the dirac response from "dirac"

*phi(i) is the integral over tp -from 0 to t(i) of
J".w * U(t( i -tp)f(tp)dtp

V I.

* however U i s zer-o for t less than, t(O)
r *t(i)-tp less than t(0)

* 'drc oor- tp greater thar ( i )-t()

* we set an upper limit for the integral of
* tpdtp = (t(i)-t(O)Idtp = i

S*phi (i pote tial

* otitls a)dirac response

i ., *+ - t ime dependant prof ile functior,* ctaut , tau2 - relaxation time

* At ,A2 - r.el axat i or strength-sn* tp - i stegration r variable

* i*

real phi (2,0:300),U(2,0:otn)tti(0:30)

"." re al dt,dtp,tp,f e
* * real tau2 ,tr2,Ai,A2

integer i I,ul ,q,point

'-5 ~o1pe n (uri t=14,f i 1e='phl-,i1")"-

open (un it=15,f il1e='ph i2") -

ta

data phi,0)2* ,U t/ 3

rea tut,,tu2AlA

open (unit=ll,file'h 'status='old'

open (un i t=12 , f i I e=' 12 , stt u s=' ol d' )
open (unit=13,file='t',status='old')

". read( 13,*) 0S)

* ". print*, ' input values for taul tau2'

read*, taut ,tau2
print*, input values= for AlA2"

* read*,A1 ,A2
: .. ; Ai=-Il.26e-5

A2= 2.031e-4

do I i=0,300

ISS
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read( II,*)UK I , i )

read(12,*)U(2,i)

* " 1continue

dt=5. e-9
* note that setting dt=5ns is specialized to form of
* 'dirac' where dt=5ns

do 100 point=i,2
do 50 i=0,300

t(i)=t(0)+i*dt
ul=i

do 30 q=1 ,2
if (q.eq.l) then

" "-' tau=taul1.

-a " ~ A=A 1
e 1 se

tau=tau2
A=A2

end if

* two loops are included, one for fast relaxat ions
* one for slow relaxations

if (tau.le.2*dt) go to 20

I ~C18 continue

d tp=d t
tp=O .0

* the in tegrat ion is done by the trapezoid rule
P' f=(A/tau)
-" .'.' phi (point, i)=ph i (point,i)+U(point,i )*f
t *dtp/2.0

- * this is the first term when using the trapezoid rule
,* last term (tp=ul*dtp) will be zero because U(step,0)

* i s zero

- do 15 1=1,ul
tp= *d

f= (A/t au ) *e xp -tp/ tau

if (tp/tau.gt.20.0) go to 19
. -', * because f w ii11 be smal l for remaining I 's
* phi (step, i )=phi (step,i) + U(=step,ul-l )*f*dtp

15 continue
19 go to 30
20 continue

• 2.



7-a

- 51

* start here for- fast relaxations, linear
* interpolation is done between UMi and U(i+I)

dtp~dt/25

do 30 1=1 ,ulI

slope(<U(step,ul-l+1)-U(step,ul-l ))/25 J
tq=(1-1 )*dtX

tp=tq
f=(A,/tau) *exp (-tp/tau) C

phi (step, i)=ph i(step, i )+U(step ,ul -1+1 )*f*dtp/2.0 S
tp t q+25* dtp-
f=(A/tau)*exp( -tp/tau)
phi(step,i)=phi(step,i )+U(step,ul-l)*f*dtp/2.0

do 25 n=1,24 S

tp= tq + n*dt P
f=(A/tau )*exp (-tp/tau)

if (tp/tau.gt.20) go to 30

& ~~phi (step, i)=ph i(step, i)+(LI(step ,ul -1+1)-si ope*:)
*f*dtp %'

25 con t inue

S30, continue
50 continue
1 4 continue

do 101 i=0,300
wr Ite( 14,*)phi (1,1)

wr ite( l5,*)ph i(2,i )
101 continue

eno

I. am.
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nume ica ly df~eentites the ote tia

togt h resr

realumeily difrnitsthaoeta
itege th prssr

rea phi n=0,100) pi(:0)8010
real presl(0:9?n),pe20?>t(:

realdel,*t V
i0 cntege

open ( un it= 13.,f+iIe=' t'status=ne-'.
open (unit=14,file='phil',status='ld')
open (unit=15,f iie='phi 2',statjs='1d' )

do 1000 n=,10j

red 4*phe s- 2(ri)=(p 2(n)-hi2nI)/ eIt
wrad( 15,*)pi 2(n1

rdt( 13,*) t(n1

1000 continue 4

in-end

opn(ni=6fie'p'sauV'e'
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nmerically differentiates the pressure
to get it's gradient

real presi (0 :??) ,pres2(O :99?) tp(0 :?9)
SAW real dpres(0:99),delta

inrte ger:n

open (ui t=16,f ii e=' tp' ,status-'c'l d')
open (un i t=1?1,f iie='presl ',status='ol d')
open, (un it=13,'Eile='pres2--',s-tatu-s='old')

3- do 900 n=0,99
r, rea d( 16 ,*)tp n) %S

read(17,*)pres ( n.

rad-'3,pr e s2( n)
906( c on.t inu A-

open (un it=19,file='dpres' ,status'nrew.' ) .

do 1000 n = 0,? 5 -

-ldpreskr)=(pres1(n)-pres2-(i))./delitaL

1000 continue it(l9)drsn

e r, d

Jb.

P l e o r I r I" 
'r,

5 2 ,Ie ;6k
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