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ABSTRACT

Spectral estimation for multiple 2-D signals by model-based methods is developed.
The procedures compute the entire spectral matrix of autospectra and cross spectra for
the set of 2-D signals. Spectral analysis by autoregressive (AR) modeling is studied
extensively. Specific differences between AR models for this problem and those for
lower dimensional problems are highlighted. An extension of the Jackson-Chien method
for combining estimates with single quadrant support is proposed and a method is
developed for estimating the model parameters directly from the data (i.e. without prior
estimation of a correlation matrix). A measure of the similarity of two spectral estimates
based on the statistical divergence is proposed and used to compare various spectral esti-
mates. A comprehensive set of experimental studies are presented showing the perfor-
mance of the methods in estimating the autospectra and magnitude and phase of the cross
spectra. The Maximum Likelihood Method (MLM) of spectral estimation is extended to
the multichannel 2-D case. The properties are compared experimentally with the autore-
gressive methods. The Improved Maximum Likelihood Method (IMLM) is aiso
developed for the multichannel case. Finally applications of multichannel 2-D spectral
analysis models to image coding are presented.
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L INTRODUCTION

Model-based methods of spectrum estimation have received considerable attention
over the last fifteen or twenty years because of their ability to provide high resolution
with limited data and potentially more accurate estimates. A lot of work has been done
for model-based methods of spectrum estimation of one dimensional (1-D) random
processes with the development of methods such as maximum entropy, autoregressive
(AR), and maximum likelihood. A review of the model-based methods of spectral
analysis in the 1-D case can be found in the references (Childers,1978; Kesler,1986; Kay
and Marple,1981; Nuttal,1976; Proc. of RADC Spectrum Estimation Workshop,1978;
Robinson,1982; Dudgeon and Mersereau,1977; Marple,1987). Unfortunately much of
the work done in 1-D spectral estimation does not extend easily to the two-dimensional
(2-D) case. This is true in particular for the maximum entropy and AR spectral estimates
which are identical in the 1-D case but may be significantly different in the 2-D case.
Indeed, while a 2-D AR spectral estimate can be combuted from any estimated correla-
tion function, the corresponding maximum entropy spectral estimate may not even exist.
McClellan (1982) gives a review of methods of multidimensional power spectrum esti-
mation. Lang and McClellan (1982, 1983) focus attention on 2-D maximum entropy
power spectrum estimation and show the specific differences between the 2-D and the
1-D case.

This thesis addresses the problem of spectrum estimation for multiple 2-D signals.
We refer to the set of signals as a multichannel 2-D signal. Multichannel 2-D signals
can be viewed as several planes of correlated 2-D data (see Fig. 1.1). For instance, a
digital color image may be considered as a sample function of a discrete three-channel
2-D random signal consisting of three registered components representing red, green, and
blue intensities. Other examples of multichannel 2-D signals can be found in array pro-
cessing, in certain radar applications, and in the set of images received from a satellite
multispectral scanner.

The spectrum estimation methods that will be applied to these signals compute the
entire spectral matrix. That is, estimates for the 2-D autospectra and magnitude and
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phase of the cross spectra are produced all at once. This thesis describes some methods
of spectrum estimation that are model-based and can provide better resolution than con- v

ventonal Fourier transform methods. It will be seen that the methods we describe have

characteristics of both 1-D multichannel problems and 2-D single channel problems and 2
) so are considerably different from 3-D spectrum estimation procedures. The latter are i
; almost identical to 2-D single channel problems. i:.
In this chapter we define the problem of spectral analysis for multiple 2-D random
signals and outline our approach to this problem. We give a brief description of linear .
prediction as it relates to spectral estimation, and an outline of some previous work in :
spectral estimation for single 2-D signals. We also indicate how the models we .:'l
develop can be applied to other applications such as coding. n
: The main contributions of the thesis are as follows: First, the multichannel 2-D AR ';
0 model and specific differences from single channel models are described. Models with N
quadrant plane and nonsymmetric half plane support and their forward and backward P: .
forms are defined. It is shown that unlike lower-dimensional cases the forward and back- 3

ward models produce different spectral estimates. Secondly, an estimate for the spectral ;
matrix based on a combination of models with first and second quadrant support is g’
]
presented and a method for estimating the model parameters directly from the data (i.e. f::
without prior estimation of a correlation function) is given. Third, a measure for compar- ,,.
ing spectral estimates based on the statistical divergence is proposed and used to compare E,".‘
various spectral estimates. Fourth, a comprehensive set of experimental studies of the '-.
spectral estimation procedures is presented. Fifth, the Maximum Likelihood Method and -
, Improved Maximum Likelihood Method of spectral estimation are extended to the mul- o
' tichannel 2-D case and results are compared experimentally to power spectral estimation j:: :
¢
results based on AR modeling. ’:
Finally, although the main goal of this thesis was multichannel 2-D spectral analysis "
\
a large part of the work had to deal with modeling of multichannel 2-D random ~J
a-
processes. These models have applications to signal processing problems other than '
spectral analysis. To illustrate this versatility we have applied the models and devoted :':;
one chapter of the thesis to the problem of image coding. The results show that efficient E
:
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coding of color images can be obtained using general models that have been derived
from analysis of several different types of color images.

A. SIGNAL MODELING AND LINEAR PREDICTION
A large class of methods for spectral analysis deals with modeling the signal as a

WA A A AR ARl WY PP XX

linear filter driven by a known noise source (usually white noise). One class of modeling

LA

for which a considerable amount of work has been done is the AR or "all-pole” model.

%y
o,

In this case the random signal is considered as the output of a 2-D purely recursive and

stable linear filter which is driven by white noise. Sometimes this model is called the .r
synthesis model since it may be thought of as a random signal generator. The inverse of .
the filter used in the AR model, which is also causal, is a 2-D FIR filter that whitens the ~
random process. This filter is thus known as the whitening filter. » |
Another class of models is defined by applying linear prediction techniques. The y
random signal sample is predicted from a linear combination of the previous N samples ’
weighted by a set of filter coefficients. The difference between the actual data sample
and the predicted one is known as the prediction error and is minimized in the mean »
square sense. This linear predictive model is also called a minimum mean square error ;
(MMSE) model. (Jain,1981) :
The distinction between the AR model and linear predictive model lies in the fact
that linear prediction does not always produce white noise. The AR and linear predictive o

models are identical only when the process is truly described by an AR model with the
support region used for linear prediction. In this case a white noise prediction error is
obtained. Fortunately a close AR representation for most 2-D random processes can be

obtained by choosing a linear predictive model with sufficiently large nonsymmetric half

A .".'.'-'\
y vt

plane support. Theoretical results (Ekstrom and Woods,1976; Marzetta, 1978) show that

g

NG

NSHP support is sufficient to represent any 2-D random process but in general the sup- N
“~

port will be infinite. .
The idea of linear prediction is therefore to determine a causal filter that (approxi- ':
mately) whitens a given random process. There are two classes of linear prediction prob- :::
~

lems. In one case we are given a finite set of samples from the random process, and NS
“~
we want to estimate the causal linear predictive whitening filter. We refer to this N
:
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problem as the AR model fitting problem. In this case the whitening filter is modeled as
an FIR filter.

In the second class of linear prediction problems we are given the actual power den-
sity spectrum of the process, and the idea is to derive from it the causal whitening filter.
This problem is called spectral factorization (Marzetta, 1978). We concentrate in this
thesis on problems in the first class.

The two most popular methods of AR model fitting are the autocorrelation method,
and the Burg algorithm. In the first method estimation of the model parameters is based
on prior estimation of the correlation function. In the second method the model parame-
ters are estimated directly from the data.

In 1-D an important representation of the linear predictive filter is the lattice struc-
ture. In this case the system is represented by so-called reflection coefficients. Various
attempts have been made to extend the lattice to 2-D. One approach was suggested by
Marzetta (1979). He defined a set of 2-D reflection coefficients and a corresponding 2-D
lattice implementation of the linear predictive filter. The polynomial representation of
the 2-D minimum phase filter corresponding to the given finite set of reflection
coefficients will have a finite region of support. Unfortunately the converse of this state-
ment is not true. If the polynomial representation is defined on a finite region of support,
the corresponding lattice structure representation will be in general finite in one direction
and infinite in the other direction. In either case the stability of the corresponding IIR
filter is guaranteed if the magnitude of the reflection coefficients is less than one.

In another approach Parker and Kayran (1984) suggested a different extension of 1-
D lattice AR modeling to the 2-D case. Although the resulting 2-D filter has some
interesting characteristics, it is neither a whitening filter nor a minimum mean square

error prediction filter.

B. SPECTRAL ESTIMATION METHODS

Power spectrum estimation has progressed through several stages since the turn of
the century. The first estimation methods used extensively were based on the Fourier
transform. They are known as classical or conventional methods (Kay and Marple,1981;

Oppenheim and Schafer,1975; Priestley,1981) and can be classified into correlelogram
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and periodogram methods. The correlelogram method developed by Blackman and
Tukey involves estimating the autocorrelation function from the observed data, window-
ing the autocorrelation estimate in an appropriate manner, and then Fourier transforming
the windowed autocorrelation function to obtain the estimated power spectrum. In the
periodogram method the spectral estimate can be obtained by taking the Fourier
transform of the observed data and squaring its magnitude. Modified periodogram
methods were also developed that use window functions. A main disadvantage of these
methods is the relatively poor resolution when the data length is short.

More recently, model-based methods have become available to estimate spectra with
increased resolution. Examples of model-based methods are the maximum likelihood
me.od (MLM), autoregressive or AR method, maximum entropy method (MEM), and
the Pisarenko method. (Burg,1975; Cadzow and Ogino,1981; Capon,1969; Child-
ers,1978; Dowla and Lim,1983,1984,1985; Dudgeon and Mersereau,1984; Efron and
Tufts,1986; Ekstrom,1984; Jackson and Chien,1979; Jain,1981; Kay and Marple,1981;
Kesler,1986; Lang and McClellan,1980,1982,1983; Lim and Malik,1981,1982; Mar-
ple,1987; Marzetta,1978; McClellan,1982; Nuttal,1976; Papoulis,1981; Parker and Kay-
ran,1984; Robinson,1982; Strand,1977; Woods,1976)

Among the various model-based methods cited, MEM is particularly interesting. In
1-D the method is theoretically equivalent to the AR method for Gaussian random
processes. In conventional methods the power spectrum estimate obtained from a given
autocorrelation sequence assumes no values of the sequence outside the given range;
actually the values outside this range are considered to be zero. The effect of this trunca-
tion is overcome by using a window function. MEM retains all the estimated values of
the correlation sequence without modification, and at the same time extends the values of
the autocorrelation function outside the given range. The spectral estimate in this case is
the most random or has the maximum entropy of any power spectrum whose correlation
function matches that of the given data. (Burg,1967,1968,1975)

In 1-D linear prediction the minimum phase property of the prediction error filter
(PEF) insures the stability of its inverse. This guarantees, among other things, that a
stable AR model exists for the data. In addition, an AR model of order N matches the

N+1 given values of the correlation function and extends it in the maximum entropy

19

XY

-’

o

S \:'-\‘n‘-\'u

L

Lt %
XN

-".I LR .

W ot

P A P
5 %
hy £

"‘ l‘&

. ,.
YA

Ll

e J

- ('.t'.l Y '.- < .‘.:
I

A N
’ o L "

.t e, et a s
L P
-('f\'\'\\" N

A




9.0%0 2 V8" 4% 0y

<

sense. The computation of the prediction error filter involves solution of a Toeplitz sys-

tem of Normal equations. The equations can be solved by the Levinson algorithm which
leads to a prediction error variance and a set of reflection coefficients to represent the

filter. In 1-D therefore, there is a one-to-one correspondence between the given values of

{’.{‘I" 1 "» -'. . -‘ ‘{‘.'. : -.l .: \- \- . '. \/\l\"\. 3

the correlation function, the parameters of the linear predictive filter that appear in the

-

Normal equations, and the set of reflection coefficients and prediction error variance. c; !
In the 2-D case the linear prediction problem is more complicated than in the 1-D 8-
case. Further in 2-D the autocorrelation matching property does not always hold and a j‘
positive definite extension may not exist (Ekstrom and Woods,1976; Lang and McClel-
lan,1980,1982,1983; Marzetta,1978). In contrast to the 1-D case the 2-D AR filter is not %
always stable and the ME spectral estimate and the AR spectral estimate are not neces- o
sarily the same. Finally there is no assurance that a 2-D ME spectral estimate exists 2
(Dickinson,1980; Jain,1981; McClellan,1982). Woods (1976) proved that the maximum ';"
entropy spectral estimate exists and is unique provided that the known autocorrelation !
coefficients are actually part of a valid autocorrelation function, but Dickinson (1980) :.'_E
pointed out that 2-D spectrum estimates based on a finite segment of the autocorrelation ‘A
function or on estimated autocorrelation data do not always exist. E‘"
Spectral factorization in 1-D is obtained by dividing the spectral density function N
(SDF) of the random process into two factors. One factor contains all its poles and zeros I: )
inside the unit circle and is called the causal or minimum phase factor. The other factor E“
contains all its poles and zeros outside the unit circle and is called the anticausal or max- ‘
imum phase factor. The causal factor can be written in the form of a difference equation ’*~
such that the random process generated by driving this difference equation with white j\
noise has the given SDF. The AR model is obtained when the difference equation is ;
purely recursive i.e. the system function has only poles. Also the difference equation can i{:‘
be interpreted as a linear predictor, where a sample of the random process is predicted E:
from the linear combination of previous samples, such that the mean square of a predic- :E
tion error is minimized. P_}
In 2-D the spectral factorization problem is more complicated. Marzetta (1978) \:
tried to approach the spectral factorization problem by extending the results of 1-D ;:i'
prediction theory to 2-D. He proved that the exact solution can be obtained by solving an ;
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infinite set of linear equations. Using a finite set of linear equations gives an approximate
solution. Ekstrom and Woods (1976) and subsequently others looked at the 2-D spectral
factorization problem directly. Their results show that while 2-D spectral factorization is

indeed possible, the resulting white noise-driven filter required to model the process may
have infinite NSHP support in general.

MIM was originally developed by Capon (1969) for seismic array frequency
wavenumber analysis. The MLM spectral estimate may be derived by solving a classical
optimal filtering problem. The filter is designed to pass the power in a narrow band about
the signal frequency of interest and minimize the power due to interfering spectral com-
ponents such as noise. From a computational view point, MLM is straightforward. It has
a closed form solution and requires only the inversion of a non-singular covariance
matrix. However a major disadvantage is that it has poorer resolution than other methods
(such as AR method and MEM). Burg (1972) showed that there exists a simple, exact
relationship between maximum entropy spectra and maximum likelihood spectra when
the correlation function is known at uniform intervals of lag for the 1-D case. He proved
that the reciprocal of the maximum likelihood spectrum is equal to the average of the
reciprocals of the maximum entropy spectra obtained from predictors of order one to P,
where P represents the order of the MLLM filter. Lim and Dowla (1984) showed a similar
relationship between MLLM and AR spectral estimates for m-D signals sampled nonuni-
formly or uniformly. They proposed a new method for 2-D spectral estimation called
improved MLM (IMLM) (1985). This method is based on the relationship between the
MLM and AR model. The IMLM has a computational requirement similar to that of the
MLM, but has a resolution property which is considerably better than that of MLM.
Lagunas et al (1985), and Baggeroer (1975) reported separately on how to include gen-
eral concepts of the 1-D MLM procedure in a two-channel problem of cross spectrum
estimation. Their algorithms treat cross spectral estimation separately from autospectral
estimation and do not consider the full multichannel spectral estimation problem. Up to
this point no counterpart to IMLM appears to have been developed for cross spectral

estimation.
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While spectral estimation for single channel 2-D signals leads to a number of
interesting and surprising results, spectral estimation for multichannel 2-D signals leads
to still more interesting phenomena. The spectrum estimation methods that will be
applied to these signals in this thesis compute the entire spectral matrix. That is, esti-
mates for the 2-D autospectra and magnitude and phase of the cross spectra are produced
all at once. As mentioned earlier, the methods have characteristics of both 1-D mul-
tichannel methods and 2-D single channel methods. However properties sometimes exist
that are found in neither the 1-D multichannel or the 2-D single channel case. For exam-
ple, it will be shown that unlike either of the other two cases, the forward and backward
forms of the 2-D AR models produce theoretically different spectral estimates.

C. APPLICATION OF SPECTRAL ANALYSIS MODELS TO

IMAGE CODING

Data compression is the conversion of a train of data into a train of low rate data for
purposes of storage or communication over a digital communication channel. Theory

and application of data compression for images and speech has become very important

due to increased demand for availability of these data in data bases and in integrated net-

work environments. Images and speech are probably the currently most important appli-
cations of data compression. (Gibson,1980; Goodman and Gersho,1974; Jain,1981; Jay-
ant,1974,1976,1984; Margos,Schafer and Mersereau,1984; Netravali,1980)

Due to the conversion of high rate data to low rate data there is a loss of fidelity or
an increase in the distortion. The aim of data compression is to obtain the best possible
fidelity for the given data rate or to minimize the rate required for a given fidelity.

Waveform coding techniques have become popular because of their simplicity and
generally good performance. Waveform coding can be classified into the following
major categories: pulse code modulation (PCM), predictive coding, transform coding,
interpolative, and extrapolative coding. Each of these classes can be further divided into
fixed and adaptive methods.

In PCM the signal sampling generally occurs at the Nyquist rate, and the sampling
amplitude is represented by some number of quantization levels. In linear predictive or
differential PCM (DPCM) the sample to be encoded is predicted from the encoded values

of the previously transmitted samples and only the prediction error is quantized for
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transmission. Such an approach can be made adaptive either by changing the prediction
or quantization or by not transmitting the prediction error whenever it is below a certain
threshold. In transform coding, an alternative representation of the signal is made first by
taking linear combinations of samples (called coefficients) in a block of data and then
quantizing the coefficients. Transform coders can be made adaptive by changing the type
of transformation of the coefficients. Interpolative and extrapolative coders attempt to
send certain samples to the receiver and either interpolate or extrapolate all the rest.
Adaptation can be incorporated by changing the criterion for selection of the samples to
be sent and/or the procedure for interpolating or extrapolating the remaining samples.
Predictive and transform coding can also be combined resulting in hybrid coding. All of
these techniques share a fundamental property: the actual quantization or coding is done
on scalars. (Jayant,1974,1976,1984; Zetterberg, Ericsson and Brusewitz,1982)

Recently vector quantization (VQ) has evolved as a new and powerful speech and
image coding technique. The data to be encoded is divided into small blocks and then
encoded block by block. The idea is to identify a list of reconstruction levels of possible
blocks of data which represent the encoded information. We refer to the reconstruction
levels in VQ as the codebook. The algorithm most often used for generating this code-
book is named as the Linde-Buzo-Graj (LBG) algorithm and seeks to develop centers or
clusters of the data in a multidimensional metric space which can serve as reconstruction
levels. (Cuperman and Gersho,1985; Goldberg, Boucher and Shilien,1986; Gray and
Linde,1982; Gray,1984; Hang and Woods,1985; Linde, Buzo and Gray,1980; Makhoul,
Roucos and Gish,1985)

In our work we concentrate on linear predictive coding for color images. The coder
is based on the multichannel linear predictive models developed in the thesis and the
error residual is coded at two or three levels for each channel. Methods involving
specific linear predictive models for each image to be transmitted are compared to
methods involving use of an "average" (non-optimal) set of coefficients for the prediction

error filter.
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D. AN OUTLINE OF THE DISSERTATION

The purpose of this dissertation is to introduce and analyze some new algorithms for
multichannel 2-D linear prediction and power spectrum estimation (the linear predictive
models used in the spectrum estimation are also applied to the coding of color images).
The thesis is organized as follows:

In Chapter II we briefly review some of the existing results on single channel 2-D
spectral estimation. The 2-D AR model and its specific differences from 1-D models are
described. Two specific 2-D AR models are considered here namely the nonsymmetric
half plane (NSHP) model and quadrant plane (QP) model. Spectral estimation experi-
mental results are compared with results of the Fourier transform techniques. We also
review in this chapter the lattice structure and a proposed 2-D Burg algorithm.

In addition, some original results are presented in Chapter II that are later extended
to the 2-D multichannel case. We develop a method of parameter estimation that allows
the model parameters to be estimated directly from the data without prior estimation of a
correlation function. This method is based on the close relation between the single chan-
nel 2-D linear prediction problem and the multichannel 1-D linear prediction problem.
We refer to the method as a direct method. Secondly we propose a quantitative measure
for comparing the similarity of two single channel 2-D spectral estimates based on the
statistical divergence and use it to compare the spectral estimates generated by various
2-D models.

Chapter III deals with the representation and statistical characterization of mul-
tichannel 2-D signals. We discuss multichannel 2-D linear prediction theory using both
NSHP and QP models. The multichannel 2-D AR model and specific differences from
single channel models are described. The concept of forward and backward forms of
linear prediction and their related AR models are introduced. It is shown that unlike the
single channel 2-D case, the forward and backward models are not identical. We also
define the four possible QP models and discuss their differences. Relations between 2-D
multichannel problems and higher order 1-D multichannel problems are then discussed.
These results are used to formulate a direct method for estimation of the 2-D multichan-

nel model parameters (i.e. without explicit prior estimation of the correlation function).
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The divergence measure used for comparing spectral estimates of single channel 2-D ran-
dom processes in Chapter II is then developed for the multichannel case.

Chapter IV is concerned with multichannel 2-D spectral estimation based on AR

models. Here the problem is to obtain accurate spectral estimates given a finite number
of data samples. We begin by summarizing the spectral estimation models, and show
that since the NSHP forward and backward models have distinctly different model

parameters, in general this leads to different spectral estimates. Similarly it is shown that

VIIIIP P W S

in general none of the four possible multichannel 2-D QP models give the same estimate

for the spectral matrix. This suggests a generalization of the procedure used by Jackson

SRR

and Chien for combining multiple quadrant based spectral estimates into a single com-

N

. bined spectral estimate. We call this procedure the combined quadrant (CQ)
! method, and it can be used effectively with the direct method of parameter estima-

tion developed in Chapter III

R CCN

A comprehensive set of experimental studies for estimating the spectral matrix for
2-channel 2-D random processes is presented. The estimate includes the 2-D autospec-
trum for each channel and magnitude and phase of the cross spectra. The estimates com- o
pared correspond to NSHP, CQ, and direct CQ models. .

In Chapter V we review the 2-D single channel Maximum Likelihood Method

(MLM) of spectral estimation and describe extensions of the MLM method to cross spec-

LI
,

Ny

trum estimation. We then develop the MLM method specifically for the 2-D multichan-
nel case, and compare our results to the earlier results where the components of the spec-

tral matrix are computed individually. We discuss the differences in the methods and

DRI I
\

show experimentally that our algorithm gives results very close to those for the single

channel MLM algorithm and the extended cross spectrum MLM estimation technique.
Since MLLM estimates generally have significantly poorer resolution than those based
on AR models, we consider the so-called Improved MLM (IMLM) of Lim and Dowla
and develop it for the multichannel case. This method retains the computational simpli-
city of the MLM, but gives better resolution. We carry out an experiment to compare the 9
amplitude and phase of cross spectra of AR, MLLM and IMLM techniques. Finally, in
this chapter we measure and compare the resolution properties of the estimate experi- :
N

mentally as a function of signal-to-noise ratio and as a function of the model order.

25

N e e e LI R A S I O I P O T T TR LA DAL U UL SR S Y
A R LA L F ..:- L \I,'pl‘_u ~ . __. e



= LA

"

<

Faky a e a s

LY

'J;,’-

e e s
e e

S N WP g eVt s "M AT IR T R W O AV 8 T T NN Y n VY AN ST AT AN N NN

Chapter VI applies the 2-D spectral analysis models developed earlier to the problem
of image coding. We are concerned here with predictive coding i.e. linear prediction
followed by quantization of the prediction error. We begin by summarizing the two
types of quantization namely scalar quantization and vector quantization.

In our experimental procedure in this chapter we compare two methods initially, in
the first, the whole frame of the image is divided into subframes; the predictor
coefficients are then computed separately for each subframe. In the second, the predictor
coefficients are obtained for the whole frame of the image. Both of these methods have
the disadvantage that the linear prediction coefficients matrices must be computed in real
time, and transmitted to the receiver as side information. This greatly increases complex-
ity of the coding system. As an alternative we consider using a fixed set of prediction
matrices, i.e. one that does not depend on the specific image being coded. In this way
both receiver and transmitter have the linear prediction matrices and no side information
has to be transmitted. Such prediction matrices can be generated by various averaging
methods discussed in the chapter. We compare the results of this coding to that resulting
from the previous two methods.

The last chapter, VII, concludes the thesis. It briefly summarizes our most important

results and cites areas for further research.
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IL SINGLE CHANNEL 2-D SPECTRAL ESTIMATION

A. INTRODUCTION

Two-dimensional (2-D) digital signal processing is concerned with the processing of
discrete signals which can be represented on 2-D lattice. For instance, a digital image is
a 2-D array of real numbers representing intensity as a function of spatial position. Geo-
logical data and other sampled waveforms received from an array of sensors can also be
considered as 2-D or higher dimensional discrete signals. Since 2-D signals can be
deterministic or stochastic the mathematical characterization of 2-D signals can be deter-
ministic or statistical. In the deterministic representation, each value of the 2-D sequence
is uniquely determined by a mathematical expression. In statistical representation a sig-
nal is specified by the average properties such as the mean, correlation, and power spec-
trum. Many 2-D signals can be considered as a sample function of a 2-D discrete, wide
sense stationary (or homogeneous) random field, which is described in terms of its mean
and covariance function.

An important topic in stationary 2-D random process analysis is power spectrum
estimation. The problem of spectral estimation is considerably more complex in the 2-D
case than in the 1-D case (Cadzow and Ogino,1981; Dudgeon,1984; Ekstrom,1984;
Ekstrom and Woods,1976; Jain,1977,1978,1981; Lang and McClellan,1980,1982,1983;
Lim and Malik,1981; Marzetta,1978,1979,1980; McClellan,1982; Nikias and
Raghuveer,1983; Woods,1976). The spectral estimation problem may be stated briefly in
the following way. Given samples of a stationary and homogeneous random field
x(ny,n,), specified by its second order statistics, estimate its power spectrum.

There are many different techniques that can be used to estimate the 2-D power
spectrum (McClellan,1982). Conventional methods based on the discrete Fourier
transform (DFT) generalize from 1-D time series analysis in a straightforward manner
when the sampling is uniform. However the more recent high resolution model-based
methods such as MEM (Lang and McClellan,1982; Lim and Malik,1981,1982; Roucos
and Childers,1979,1980; Wemecke and D’Addario,1977), and AR-modeling (Dudgeon

27

.....

S

AR

..-.. ,...
o c"fl'.'".-_.' 2

o
P24

{ & & _1_+t+v_®
RO
AN

R
VAR ‘-v.

A
o &

e
N % %

G % 4% %L Y Y [ . v
-, 2O,
N n,’-.'-.’\"-.'s- ‘ LR

a"'/ ‘:.

A A

R 7



’,'-"s*"-’-.f-.l-b

and Mersereau,1984; Ekstrom,1984; Jackson and Chien,1979; Lacoume,1983; Sharma
and Chellappa,1986), take on a different and more complicated form.

In this chapter we briefly review some of the existing results on single channel 2-D
spectral estimation. The 2-D AR model and its specific differences from 1-D models are
described. Two specific 2-D AR models are considered here namely the nonsymmetric
half plane (NSHP) model and quadrant plane (QP) model. Some AR model-based spec-
tral estimation experimental results are given and compared with results of classical
Fourier transform techniques. We also review in this chapter the lattice structure for the
2-D AR model developed by Marzetta and a proposed 2-D Burg algorithm.

Some original results are also presented in this chapter that are later extended to the
2-D multichannel case. We develop a method of parameter estimation that allows the
model parameters to be estimated directly from the data without prior estimation of a
correlation function. This method is based on the close relation between the single chan-
nel 2-D linear prediction problem and the multichannel 1-D linear prediction problem.
We refer to the method as a direct method. In addition we propose a quantitative meas-
ure for comparing the similarity of two single channel 2-D spectral estimates based on
the divergence and use it to compare the spectral estimates generated by various 2-D
models.

B. REVIEW OF CLASSICAL METHODS

Historically, methods based on the Fourier transform have been widely used for
spectral estimation (Jenkins and Watts,1968; Oppenheim and Schafer,1975; Priest-
ley,1981; Robinson,1982). The advent of the Fast Fourier Transform (FFT) algorithm
helped to make these techniques very attractive. Although many variations exist, there
are fundamentally only two distinct estimators of the Fourier type. One is the correlelo-
gram method which is based on the fact that the power spectrum and the autocorrelation
function form a Fourier transform pair. The other is the periodogram estimate and its
various smoothed versions. The use of these estimators in the multidimensional case is

virtually identical to the use in the 1-D case.
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1. Correlelogram Method of Spectral Estimation

We define the power spectrum of a random process x(n,n,) as the Fourier

transform of the autocorrelation function R, (k,k,)

Sx (0)1,0)2) = i f: Rx (kl'k2) . e—jm!k‘e-jwz (2-1)
kl=-°'° kF—eo
where:
Rx (k l’kZ) = E[X (nl,n7)x(n 1—k1,’l2—k2)] (22)

and E [ . ] denotes the expectation over the ensemble of the random process. Hence,

given a finite number of data samples on a rectangular lattice

{x (n1,ny), (1,1)S(n,n)sS(N I,NQ)} the estimate for the autocorrelation can be made

only on a finite range {If (k1,k9), —(Pl,Pz)S(kl,kz)S(Pl,Py)}, and the power spectrum

estimate can be formed as :

P. Py o
S(@pa)= Y T R(kiky.e? Mgk 2.3)
k=P, k=P,

Since with most methods for estimating the correlation function fewer data samples enter
into estimation of covariances at larger lags, the reliability of the estimates decreases
with increasing lag. This necessitates application of a window to the estimated correla-
tions to reduce the contribution of correlations at larger lags to the power spectral estima-

tion. A typical windowed correlelogram estimate is of the form

P, P, ” —jonk;  —jank
S@,w)= T Y Ckyky) Rkyky) e D™/ 2.4)
k1=—P1k2=-P2

where C (k,k,) is the window function. This multiplication of the estimated autocorrela-

tion sequence by a window function is equal to the convolution of the true power spec-
trum with the transform of the window function. In the 1-D case, the triangular window

or other windows such as, the raised cosine may be used. Harris (1978) provides a
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summary of various windows applied for spectral analysis computation. In the 2-D case,
windows are most often generated either by taking the outer product of two 1-D windows
to generate a 2-D window with rectangular region of support or by sampling a circularly
rotated 1-D window function to generate a 2-D window with circular region of support
(Dudgeon and Mersereau,1984).

2. Power Spectrum Estimation Using Periodogram Methods

As mentioned earlier, several different estimates of the 2-D autocc: relation are
possible. If the estimated autocorrelation function R (k;k,) of the random process

x(ny,n,) given on a finite range 0<n <N ; 0<n,<N, is taken as

1 Ni=lky1-1 Np-lk;1-1

NN > 2 x(nynx(ny—ky,ny—k,) 2.5)
Y2 n,=0 n=0

|k1|_<_N1-1 N IkzlSNz-l

R (kyky) =

then the estimated power spectrum of the random process can be given by the Fourier

transform of the estimated autocorrelation function

N1 Nr1 ke i
S(,o)= 3 T Rkpky) . e Ohgi®k 2.6)
ki=—(N1-1) kr=—N71)
Since the Fourier transform of the finite data segment x (n,n,), (0<n <N ; 0<n,<N ) is
. Ni-1 N1 . ,
X(el(“)l-“)z)) = Z Z x(nl’nz)e‘johnle‘lmz’lz (27)
n=0 n=0

it is easy to show that

1 Ni-1 N1

S (01,09) = v X Y x(ny,np) . e Mg/ N2 2
1'Y2 =0 ny=0
2.8)

1 .

= | X (el (“’h")))) |2
NN
V2
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: This is called the periodogram. Thus in the periodogram method the estimated power 3'_:
spectrum S (®;,,) can be obtained by taking the 2-D Fourier transform of the given data "‘
set x (n 1,n,) and squaring its magnitude. We can generalize the periodogram estimate by [_
slightly to form the modified periodogram S (w;,®,) by multiplying the data by a 2-D -:i.

window function C'(n ,n5). ’1::

] NNzl iom

S (@y,0) = [S 3 Clnpng x(nyny) e Mgz |2 2.9) -

NiN2 5 Z0n=0 =

The window C appearing in Eqn. (2.4) is then the 2-D convolution of the window C’

with itself. | ey
The periodogram is known to be a poor estimate of the power spectrum of the s '
process. Bartlett suggested a modification of the periodogram to obtain a statistically ?
more reliable spectral estimate. In this case the signal is divided into L-blocks, and the .:. :
periodogram of each block is computed. The individual periodograms are then averaged ZI
to obtain the spectral estimate. -
S(w),0y = A %, Si(wy,0) (2.10) \

1=0 -

Where S, (w,,w,) represents the periodogram power spectral estimate of the block /. In ::
this case the variance is reduced, but at the expense of a reduction in the frequency reso- :
lution. Welch (1967) proposed dividing the data record into either overlapping or nono- !\-

verlapping segments. Each data segment is windowed before computing its periodo- j('.\

gram. The resulting periodograms are then averaged as above (see Eqn. (2.10)). The : '.
resulting estimate is asymptotically unbiased and has lower variance than the Bartlett ‘:.

method. (Oppenheim and Schafer,1975; Priestley,1981) \ )
The disadvantage of both Fourier methods, is the resolution limit. Longer data

sets provide better resolution but result in increased variance. For this reason the Fourier ;:f
methods have met with limited success and much recent research has been directed at ’\

deriving high resolution estimators. The remainder of this chapter will be devoted to f;:t.
some of these other techniques. ‘

'
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C. AUTOREGRESSIVE (AR) SPECTRAL ESTIMATION

3 . . -

Power spectral estimation methods based on the Fourier transform are known also as -~
Y

“~

"conventional” or classical methods. The computational efficiency of FFT algorithms
makes these methods simple and easy to implement. On the other hand the low resolu-
tion afforded by these methods is due in part to the fact that, the data is given on a finite
range and is assumed to be zero outside this range Modern spectrum estimation tech-
niques give higher resolution than the conventional methods. These methods have also
been called data adaptive methods or high resolution spectral estimation techniques. The
various modern spectral estimation techniques that exist in the literature may be based on
different principles, but all strive towards a common goal: to improve the resolution of
the power spectral estimate beyond the Fourier limit by explicitly or implicitly providing
an extrapolation of the data outside it’s known extent. Since most of the modern spectral
estimation techniques are model-based, they are usually parameteric in nature.

Since the theory for 1-D parametric spectral estimation techniques is well under-
stood, a natural intermediate step in the development of 2-D spectral estimators was the
extension of 1-D spectral estimators to the 2-D problem. A method of spectral estima-
tion which has attracted much attention in 1-D signal analysis is the technique of Max-
imum Entropy (ME) proposed by Burg (1967,1968,1975). This method was shown to be

equivalent to AR modeling (Childers,1978; Nuttall,1976) in 1-D. The success of the ME
method in 1-D has led researchers to explore this problem in 2-D. Unfortunately, the
simplicity and elegance of this method is lost in two and higher dimensions. 3 .
The ME spectrum parameters for the 2-D case are in general different from the those ;,:
for spectral estimation by the AR technique. Maximum entropy requires the solution of a {:‘
nonlinear optimization problem (McClellan,1982), and there is no known closed form $
solution. The method requires one to maximize the entropy subject to a correlation g—‘:_
matching constraint. Malik and Lim (1981) suggested an iterative algorithm for solving ‘
the 2-D ME problem. -
A more fundamental problem for the ME method is that the ME spectral estimate .
may not exist. Woods (1972,1976) has shown the existence and uniqueness of a 2-D .-.
discrete Markov random field which agrees with given correlation values on an array of
nearest neighbors. The resulting power spectrum estimate is the 2-D ME spectrum. He -\,
)
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suggested an iterative algorithm to evaluate the Markov spectral estimation for a regu-
larly spaced array. However Dickinson (1980) pointed out that the 2-D Markov spec-
trum estimates based on estimated autocorrelation data may not always exist. Thus
Woods results apply only when existence of the estimate is known.

A power spectrum estimate of a 2-D random process can also be developed using an
AR model. In this case the random process x(n,n,) is represented by an AR model
defined over some region c.

x(mynp=- Y g x(n—ipng—iz) + wingny

(i1 e @.11)
(i1 D%0.0)

Where q; ;, are the filter coefficients and w(n,,ny) is 2-D white noise. Although the
parameters of this model are most often generated by considering the 2-D linear predic-
tion problem with region of support & and formulating and solving a set of Normal equa-
tions, this method is strictly valid only when an AR representation of the 2-D random
process is known to exist. That is, the linear prediction model is the same as the AR
model only when the process is truly described by a model with the postulated form of
support. In this case the error produced by the linear prediction is white and the original
random process can be generated by inverse filtering.

The linear prediction model is sometimes refered to as the minimum mean-square
error model (Jain,1981). It differs in general from the AR or white noise driven model in
that the error residuals are not guaranteed to be white.

In practice, when a NSHP model of sufficiently large size is used, the error residuals
are found to be nearly uncorrelated so that the distinction between the two types of
models is not so important. In general, this will not be true for models with quadrant
support and so single quadrant AR models (as will be seen) tend to produce poor spectral
esumates. Nevertheless, combinations of the quadrant-based models, while lacking a
theoretical justification, tend to produce reasonably well behaved spectral estimates.

In the NSHP model the linear prediction model and the AR model become identical
when we have an infinite region of support (Ekstrom and Woods,1976; Jain,1981; Mar-
zetta,1978,1979,1980). In this case the spectrum of the process is given by
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S (0,,®,) 052 (2.12)
W,,0) = .
! |H (0,0,) 12
where
H(O)l,())z) = Z anlnze‘jmx"le‘jw: , am:l (213)

(nyn)ea

and 052 is the prediction error variance. Since infinite NSHP support can not be used in
practical applicatons formula (2.12) is used with a finite region o.. Experimental results
show that NSHP support of modest size is adequate to obtain a good spectral estimate.

Although models with support in only a single quadrant are seldom adequate to
represent a general 2-D random process, it has been mentioned that quadrant support is
useful for spectrum estimation if two or more quadrant models are combined. The two
types of AR models, QP and NSHP, are discussed in more detail below.

1. Quadrant Plane {QP) Model
Generally the region o of an AR model can take many different forms. Let a be

the rectangular region shown in Fig. 2.1. In this case the region a consists of P xP,
points and L, and L, are chosen to be within the range —P ;<L <0, ~P ,<L,<0.

First quadrant support can be considered as a special case of rectangular support
where L =L,=0. In this case the region of support & for the first quadrant plane will be
[O,P 1—1] x[O,P 2-1] . In this thesis we define an N order first quadrant plane model to

be one with P|—1=P,—1=N. When P and P, are not equal we can refer to the order as
(P=1,Po~1).
Now let x (n,n,) represent a zero-mean stationary 2-D random signal. Then the

estimated value X(ny,n,) using first quadrant linear prediction model can be written in

the following form :
Pi-1 Pr1
X(mna==3% ¥ a;,x(m~ipny—iz) , (i,i#(0,0) (2.19)
(=0 i=0

If we define the matri:. 2-D correlation function as
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R (k 1,k2) =R (—k l,—kz) = E[x (n l,nz)x (n l—k 1:7 z—k?)] (2.15)
then the Normal equations of the first quadrant plane model have the form
R.A=S (2.16)

where R represents the correlation matrix, A is the filter coefficient vector and S is the

error variance vector. The Normal equations (2.16) in this case have the specific form :

"R(0) R(-1) ... R(-P#+D] [A©® ] [ gO]
R(I) RO ...REP#)| [a® 0

=1 2.17)
R(®,-1) RP;-2) . . . R(O) AP 0

where

"R (k,0) Rk,-1) ... Rk, ~Py+D)]
R(k,1) R (k,0) .. . R(k,=Py+2)

R(k)=R(~k) = ' (2.18a)

LR(k,Pz—l) R(k,Py-2) .. . R(k)0)

a0

a1

A | (2.18b)

Ay p1
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and where
agp=1 (2.18d)

ol= E[(x (n1.n)=%(n 1,nz))z] (2.18¢)

Note that 0’12 is the prediction error variance. The spectral estimate yielded by the first
QP model is given by:

of

S (@,0) = ——————
11 LH (0,0,) 12

P-1 Pr1 i, —iom
Hy@,0)= 3 X .7 ™M™ ag=l (2.20)

n,=0 ll2=0

b ]
i
-
N
]
~
‘
Ly

Naturally, it is possible to develop a model assuming other regions of support for the
filter coefficients. If we set up the problem assuming that the second quadrant is our
region of support, we will get a different answer. Specifically, in terms of Fig. 2.1, let
L,=~P;and L, =0. Then the second quadrant prediction equation can be written as

P-1P,1

X(npny)==-3% b Uft(n1+j1rn2—j2) » U1.72)#20,0) 2.2
i1=0 j=0

VAL SYASS

and the Normal equations take the form :

R.B=Sb
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BadP A

[B®
B
B= ' (2.23a)

i
s
]
i .
B(Pl-l)
-bi-Prlq
bip2
. . (2.23b)
B(‘) = ) b0.0 =1

TN

s
a N

i

\.’-'(. _l"l{’ -

P

Cr L AW,
o) e

A
k=)
<Py
N P

'S L('O)T

t

ORI LY

(2.23¢)

and

SO (2.23d)

2
o]
Lz_

and where 0'22 is the prediction error variance of the second quadrant model.

The resulting spectral estimate of the second quadrant is 2,

SH(wy,m,) = ————-22 (2.24) %
W, .
a2 le(O.)l,O)q) | 2 ‘
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P-1Pg1

Hy@p,0)= 3 3 by el ™Me™ ™ | o=l (2.25)
- n1=0 n2=0

and is not equal to the spectral estimate of the first quadrant S;(w;,®,). Jackson and
Chien (1979) observed that, in typical cases of estimating sinusoids in noise the spectral

estimates of each quadrant were skewed. This is not surprising since the prediction

geometry of quadrant plane causal models is too restrictive. To remove the skewness,

they suggested designing two quadrant plane models with support on different quadrants

N and combining them. Their combined estimate can be written as : , A
} :
“ SOre)= Jlr 1 (2.26) ‘
: S1@p0) | Sy(0,0) ]
-3: and tends to produce a more symmetric spectral estimate. The specific form (2.26) is ‘
H important, since Jackson and Chien showed that other symmetric combinations of S, and E
: S, did not have desirable properties. We will call this model a combined quadrant (CQ) )
_\ model. :
' 2. Nonsymmetric Half Plane (NSHP) Model

. The NSHP model is a very important form, since it is always possible to factor E
: an arbitrary 2-D spectral density into factors with infinite extent NSHP support. While it N
; is not practical in spectral modeling to use very large support regions, NSHP support of N
. modest size has been found to give reasonable results. The infinite region of support & .
_) for the general NSHP linear prediction model (also called a causal model) is shown in
) Fig. 2.2a.

J We define an N** order NSHP model to be one with N points above, below, and

- to the right of the refrence point (i,j) = (0,0). Thatis, P;—1=P,-1 =N as shown in Fig- 1
*- ure 2.2b. When P, # P, we may also refer to the order of the filter as (P,—1,P ~1) ‘
order. ;
- Now we consider the problem of finding a NSHP linear prediction model of -
‘ finite order. Let x(n,n,) represent a stationary zero-mean random process. The linear 5
\ prediction equation takes the form :
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Prl Pi-1 Prl
ix=1 h=li=—(P 1)
The corresponding Normal equation is :

R.A=S

'R'(0) R(-1) ...R(-P+1)] [AO®
R(1) RO ...R-P+2)| |a®

R'(P;-1) R(P-2) . . . R(0) AP
) J
where

R (k,0) R (k,~1)
R (k,1) R (k,0)

Rk)=R(-k) =

R (k,2Py-1) R(k2P,-2) . . .

ra‘:.—f’z-v'l

Qi P42

Ak =
a0

Ay p,1

41
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x’(nl,n2)= -.Z ao,-z.x (’ll,nz—iz)— 2 E a;,i,X (n l-ilvn2_i2) 2.27)

where R represents the correlation matrix, A is the filter coefficient vector and S is the

error variance vector. In this case the Normal equation has the specific form:

.
o ot
P

n.;,. 'ﬁl\-"f‘ 'y ....- ..,

I PR SO F L I e PECE .o
RO VAR g A O

(2.28)

[ §7O)]
0

(2.29)

]

) 0

]

—

r

—_
XX bad

. R (k,=2P p+1)] ]
. R(k,=2P ;+2) ~

(2.30a)

R (k,0)

(2.30b)



[R(k,Py-1) R(Kk,LPy-2) ... Rk, ~Py+I1)]
Rk.Pjy) R (k,0) .« . R(k,~P4+2)

R'(k)=R'(-k)=

LR(k,ZPz—l) R(k2P,-2) ... R(k,)0)

[R(00)  R@O-1) ...RO~-Py1)]
R©O1) R©0) ...R@O~Pp#2)

R@0.,P,-1) R(OLP,-2) . . . R(0,0)

-

(30,0

Rou e
)

0

)
.

and where

VLR ASS Y

(2.30g)

(2.30h)

LR
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Note that R (k .k ) is the 2-D autocorrelation function for the data defined by Eqn. (2.15)

and o2 is the prediction error variance. The spectral estimate resulting from the NSHP

model is given by:
Sz = —F @31)
21,29 = —————— .
! l1~1(zl,27)l2
where
Pr1 P-1 Pr1 . .
Hzpzp=1+3 89,237+ X X @, 20" 23" (2.32)
ir=1 i=liz=—Pr1)

It is of interest to study the behaviour of the AR spectral estimation algorithms,
and compare the results with those of Fourier transform techniques. A sinusoidal signal
plus white noise w (n,n,) has been investigated as a test example. Assume our process
is:

L
x(ny,nq) = Y cos(n ;+n,0;0) + w(n,ng (2.33)
i=1
where w(ny,n;), is a zero mean independent white noise signal, and L represents the

number of sinusoids. Estimates were computed for a dataset size of 16x16 with L=2,
(O 1—(1)12—-;2£ and cozl—(on— 3 Figure 2.3 shows the NSHP and CQ spectral estimates.

The location of the peaks are in the correct place and there is good resolution. Fig. 2.4
shows the result of power spectral estimation on the same data applying both correlelo-
gram and periodogram techniques. Comparison of Figs. 2.3 and 2.4, shows that the
NSHP and CQ models have significantly higher resolution than the Fourier transform
techniques.

D. LATTICE STRUCTURE

The key step in parametric spectral estimation is the computation of the parameters
of the model. Least square estimation of model parameters (in the AR case) is one
approach and requires the solution of a set of linear equations involving the sample

covariance matrix. Another approach that has many advantages in 1-D is to represent the
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model in terms of a finite number of reflection coefficients which are chosen to obtain a
good fit between the whitening filter model and the data. Thie realization of the filter is
then in the form of a lattice structure.

In 2-D there has been no direct counterpart to the lattice structure of the prediction
filter that exists in 1-D. Marzetta (1978), however developed a set of 2-D reflection
coefficients. In his approach the available data is used to esimate the 2-D autocorrela-
tion function to a finite lag, and then the estimated autocorrelation function is used
to compute the reflection coefficients which determine the whitening filter ii(zl,z 2.
This is similar to what is done in 1-D.

Given a lattice structure in 2-D, another approach for choosing the reflection
coefficients is analogous to the Burg algorithm. Estimates of the filter parameters as
obtained directly from the data, and the lattice structure can be formed from the forward
and backward predictions. Fig. 2.5 depicts L lattice sections connected in cascade. The
input to the system is x (n,n,) and the two outputs equal forward and backward predic-
tion errors at step L. The initial values of the forward and backward prediction errors of

model order (0,0) are given by:

x(ny,n)=e 00 p L) =e 0.0)p 112) (2.39)

Parker and Kayran (1984) developed a different kind of lattice representation in 2-D.
Their initial development was done for quadrant-based models but since their representa-
tion is neither a true whitening filter nor an optimal least squares prediction filter, we will

not pur .ue it further here. Marzetta’s method is outlined briefly below.

1. 2-D Levinson Algorithm (Marzetta)

Marzetta proposed a 2-D Levinson algorithm for the 2-D case which has the

same structure as 1-D Levinson recursion. Suppose that we have a positive definite auto-

correlation sequence :{ Rk D), 0,0k SN M )} and assume that we know the solu

tion to the Normal egquations for : H (n ""'”(zl,zz) and the optimum mean square error
P "= for the order (n,m-1). Then the solution for H"")(z,,z,) and P are given

by (Marzetta,1978,1979,1980):
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H(""")(z pZ2) = H(n.m-l)(zl’z?) —K(""").z l—n‘zz—m_H(n.m—l)(zl—] ’zz—l ) (2.35)
and :

P(n.m) = plnm-1) [1 - [K("J’l)] ?J (2.36)

where K™ (n=0, 1Sm<M), (1Sn <N, -M<m<M) is the 2-D reflection coefficient
sequence, and where N and M are positive integers that represent the order of the filter. o,
The 2-D reflection coefficients are defined by

Ko = Tl.m—'ﬁ E [" (n1np) = T X a7 Dk k) x(n 1‘k1’”2‘k2)}
P (krka)
[x (ny=n,ny~m) — Zza(n.m-l)(kl,k;,) x(ny=n+k | ,ny—m+ky) i '
(k1 k) ] 3
1 [ (nm-1) T
= — R(nm)=33a""™ Uk k) R(n—km—ky 237
plnm-1) kD ] ( )

The idea of a 2-D Levinson algorithm is to get the prediction error filter H N.M Nz1,22)

from these reflection coefficients by recursively computing a sequence of 2-D finite order

prediction error filters, H®™)(z,,z,).

Marzetta (1978) defined a 2-D stable, linear, shift-invariant filter to be one
whose unit sample response is absolutely summable and defined a 2-D minimum phase g
filter to be a 2-D, causal, stable, linear shift-invariant filter which has a causal, stable ’
inverse. In this case he proved that if H®™1(z,,z,) is analytic minimum phase, then .~

H®™)(z,,2,) as defined by Eqn. (2.35) is also analytic minimum phase. He defined a
2-D filter to be analytic minimum phase if the filter is minimum phase and also analytic

in some neighborhood of the unit bicircle.

2. Marzetta Approach and Burg Algorithm

Marzetta’s (1979) approach to designing the 2-D all pole recursive filter, is to
represent the denominator polynomial of the filter in terms of a finite set of 2-D reflection

coefficients which are chosen to provide a good estimate of the desired power spectrum.

48
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His algorithm is simply the 2-D Levinson algorithm, used under the assumption that the

true reflection coefficient sequence K/, vanishes for : {OSn SN-1, Imi>M } and

{n=N ,m<-M } He showed that to preserve the minimum phase property required an
infinite set of reflection coefficients defined on the " continuous support ” region shown
in Figure 2.6. Let {a(nl,nz), 0<n <N, 0sn,sM, (nl,nz);é(0,0)} be a set of 2-D FIR
filter coefficients, for a NSHP filter with finite support. Then

N M N M _
H¥MYz, 2)=1-F I apnyzi™z3™ , (n1.82)#(0,0) (2.38)
n1=0n2=0

Marzetta showed that although a finite-extent sequence {a (ny,n 2)} results in an infinite

scc‘quence of reflection coefficients, fortunately the converse of this result is not true. If a
polynomial is defined by a finite sequence of reflection coefficients K (n.m), that polyno-
mial will still have finite degree. Furthermore, if |K ()| <1 for all (n,m), that polyno-
mial will have minimum phase. The polynomial can be found from the reflection

coefficients K*”*) by means of the following recursion: Starting with the n=0 column,
and with the initial condition:

H®z, 2 )=1 (2.39)

then H"™)(z,,2,) for (1<m <M ) can be written as

HO®™(z,,2) =H®™ D(z,,29) - K™ 27" 27mHO D 251 (2.40)

Then shifting to the next column i.e. (n >0, -M <m <M) and starting with the boundary
condition:

H(n'-(M+l))(Zl,27)=H("_1M)(21,22) (2.41)
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this recursion is repeated for all values of (n,m) for which K ("/)%0. It can be shown

(Marzetta,1978) that the value of K*”*) which minimizes the new prediction error,
| AR

gomo_1 _ [R(n m)= % Th XD k) R (n —klm-kﬁ} (2.42)

pom=l) (kD
where :
- am-1) - -,
H¥0m D29 = 1= TTA T ke 234 (2.43)
(k1k2)
The new prediction error is then :
2
pam) _ plnm-1) [1 - [Ko-m)J ] (2.44)

It can further be shown that the magnitude of K ®*™) is always less than one.

Burg developed an algorithm for estimating 1-D prediction coefficients directly
from the data (Burg,1967,1968,1975). Burg makes no assumption about the univariate
data except that the signal is treated as a stationary random process. No estimation of the
autocorrelation function is required in this algorithm.

Marzetta made the suggestion to extend the 1-D Burg algorithm to 2-D (details
are given in Appendix A ) but so far no one in the literature has tried to test the 2-D Burg
algorithm. We have done this however and we will illustrate here an example to study
the behaviour of the estimating algorithm. In this example the estimated power spectrum
is computed by combining forward and backward estimates in a manner similar to the
combined quadrant technique. Consider a signal consisting of sinusoids in additive noise
as given in Equation (2.33). The results are shown for the cases of one sinusoid and two
sinusoids. In case of one sinusoid (L=1) the estimated power spectrum is given for a
dataset size of 64x64 and frequency values of W, = ®;, = /2. A third order model is
used. Figure 2.7a shows the results of the forward NSHP model, while the backward
NSHP model results are shown in Figure 2.7b. It is clear that using either the forward or

the backward NSHP models alone results in a spreading of the peak in one direction.
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The combined estimate using both forward and backward models gives a more accurate
result as shown in Fig. 2.7c.

In the second example the results are shown for the case of two-sinusoids (L=2),
with ®;; = Wy, = Wy =12 and W, =1/5. This results are compared with the results of
the AR (NSHP) model for the same test case. Figure 2.8a shows the results of the com-
bined forward and backward NSHP Burg technique, while Fig. 2.8b shows the results of
the AR model. A third order model is used in both cases. This example shows the high
resolution properties of the AR relative to Burg technique. We have examined many dif-
ferent examples, with different choices of the peak positions, we observed that AR model

has consistently better resolution properties than Burg algorithm.

E. 2-D DIRECT METHOD OF SPECTRAL ESTIMATION

Therrien (1981) pointed out that, there exists a close relation between 2-D linear
prediction problems and multichannel 1-D linear prediction problems. He suggested a
procedure for solving 2-D normal equation by relating the 2-D linear prediction problem
to a multichannel linear prediction problem and applying the multichannel Levinson
recursion. These results can be used to formulate a method for estimating the 2-D model
parameters without explicit prior estimation of the correlation function and we will refer
to it as a direct method. The procedure can be summarized briefly as follows: Consider a
2-D stationary zero-mean random process x (n,n,) defined over a rectangular support

region. The linear prediction equation is of the form:

’

P\~1P 1

E(npnd==3, ¥ a;; x(ny=iy,ny=iy) , (i1,i)#(0,0) (2.45)
$120 ip=0

The corresponding Normal equation is given by Eqn. (2.17) but repeated here for

convenience
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... R(=P +1)]
... R(-P +2)

R(P,-1) R(P;-2) . . . R(O)

(2.47b)

0

- -

S )

where o2 represents the variance of the error resulting from optimal linear
prediction.

If the data is represented as a vector

L T A

SRR

e




then the vector x, can be considered as consisting of the components of a 1-D multichan-

nel random process evolving in the n direction. A corresponding 1-D P ,- channel linear

prediction problem can be written as

P,-1 AT
A i
Xp =~ Z [a} LR

=1

where o’} are a set of matrix coefficients.

o) =

i o) afh ]
off off cafp oy
(‘,)-1.0 0‘,5',)-1.1 c e alg‘z)—l.}’z—l

The values of the a) are found by solving a set of Normal equations

'R(0)
R(1)

.

R(-1)
R(0)

R(P~1) R(P-2) . . . R(0)

... R=P+2)

-

- -

I
o

L a(P\-l)

where Ep is the error covariance of the optimal estimate.

Ep, = E[(x,. —R,)(Xy =, )T]

CEp )
0

(2.49)

(2.50)

(2.51)

(2.52)

By comparing Equation (2.46) and Equation (2.51) we note that if we define S@ such

that

“w

S®=E, A®
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2
'_E ther. the 2-D coefficients can be computed from
o
s AV =@ AO® | =12, --- P -1 (2.53b)
oS
l:-_'; The multichannel Levinson recursion ( see Appendix B ) can be used to solve for the a®)
:E and Ep . Then Eqn. (2.53) can be used to solve for A% and o2, That is, one first solves
: _‘ Eqn. (2.53a) for A©® and SO, then applies Eqn. (2.53b) to compute the remaining A®,
The multichannel Levinson recursion computes both the calculation of the forward and
E backward multichannel linear prediction parameters simultaneously. The backward
L parameters relate to the second quadrant 2-D filter parameters in a similar manner and
',;_:, thus can be computed from equations analogous to Eqn. (2.53). The parameters of the
-;: first and third quadrant filters are identical. The second and fourth filter parameters are
:,E: also identical.
;.~ Now instead of using the covariance matrix in the multichannel Levinson recursion
! :\ to solve for the &) and Ep , we apply the multichannel form of the Burg technique to
_E:: calculate the parameters directly from the given data. Explicit forms of the Burg method
-y for the 1-D multichannel case were developed separately by Nuttall (1976) and Strand
‘_::; (1977) and the procedure is sometimes called the Nuttal-Strand algorithm (Appendix C).
:\: Then application of Eqn. (2.53) gives a method for estimating the 2-D parameters
‘.Ij:-'. directly from the data.
’_ . The power spectral estimation results of this technique are compared with the results
: of estimation by first estimating the correlation function. Our method for estimating the

model parameters is as follows. Suppose we are given an array of 2-D data of size N, -

AN
I. I’ l.

columns and N, - rows as shown in Fig. 2.9a. Suppose this array is divided into L-

]

sectors, each sector is a subarray of size M by N| (M =P,), as shown in Fig. 2.9b. The

el
PACIE N UL S AN

2-D data set x (n ,n,) is mapped into a 1-D M-channel data vector x(k ) by concatenating

the sectors as shown in Fig. 2.9c.
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Fig. 2.9 Sectioning 2-D data for the direct method.
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! Discontinuities of course exist at the points of concatenation but in practice these are not l
E troublesome. By applying the multichannel Burg algorithm (Appendix C) to this 1-D
' multichannel data set we compute the estimated values of the filter coefficients a’ and

also the error covariance matrix Epl. Then the 2-D parameters ( A% and o® ) can be [
~
obtained from Equations (2.53a) and (2.53b). E

Since the method estimates both the forward and backward multichannel parameters

we have the 2-D filter coefficients for first and second quadrant model and we can finally :
estimate these power spectra as ]
ot 3

S ((©y,0,) = THW (2.55a) ;\

and _-:
2 o

S y(@y,@y) = L? (2.55b) oy

| H y(0,w9) 1 .

where the parameters are defined as in section C. Then the CQ power spectrum estimate '.
can be obtained by using Equation (2.26). We called this method the direct CQ method. f
It is of interest to study the behaviour of the CQ algorithm when the model parame-

ters are obtained by estimating the correlation function and solving the Normal equa- .

tions, and compare the results with the case where the parameters are obtained directly

e

Ft .

from the given data by using the new algorithm. The performance of the two algorithms
for two sinusoids in white noise has been investigated. Suppose a 2-D random process

x(ny,n,) is defined by

o

r

SANANT
St .
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2
x(nyng) =3 C; cos (n0; +ny0;)+w(nygny (2.56)
i=1
A dataset of (64x64) data points is considered here, with the parameters @;; = @5 = %

Wy =Wy = %, and C; = C, =4. Two methods are used to compute the power spectral

MW VEVREAL G LR NIRRT NN

estimation. In the first case the 1-D multichannel filter parameters are computed from the

s
»

prior estimated autocorrelation function, while in the second case the parameters are

computed directly from the data ‘CQ direct method). .‘_.‘
The effect of model order is also illustrated here, by considering three different filter :
orders. First order model results are shown in Fig. 2.10. In both techniques the resolu- :
tion of the first order model is poor and only one peak appears. Fig. 2.11 shows the -
results of computed spectra for the second order model; the resolution in this case
increases and the two peaks appear. Finally Fig. 2.12 shows the results of power spectral :‘
estimation using third order models. It is clear that the resolution is high and the peaks \_
are very close to the correct peak locations. Comparing the results of the two techniques, T.\\.'.:
we find that somewhat better resolution results are obtained for direct CQ technique. It :
will be seen later that this is consistently true for the direct method. Also we observe ’
that, generally for both techniques, the resolution increases with increasing order of the EZ:?_‘
filter.
',
F. DISTANCE MEASURES BETWEEN RANDOM PROCESSES o
In problems of communication and radar, the optimum signals (for purposes of \"
detection) are those that minimize the probability of error. However in many cases, direct ’
minimization of the probability of error to determine an optimum signal set is impossi- L
ble. Since an explicit analytical expression for the error probability may be too difficult r
to find it is useful to search for signal selection criteria that although weaker than the
error probability are easier to evaluate and manipulate. In the search for suitable criteria, ,
the notion of a distance between two probability distributions is quite useful. One such
.
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measure is the statistical divergence. (Grettenberg,1963; Hartwig,1972; Hingorani and
Hancock,1965; Kailath,1967; Kazakos and Papantoni-Kazakos,1980; Marill and R
Green,1963; Schweppe,1967) 2
! Let f1(x) and f,(x) represent the probability density functions of two random

LN _"_ <

processes that we wish to discriminate by means of a statistical hypothesis test. By

defining the logarithm of the likelihood ratio A, ; as N
f10) ¥
A,=lo (2.57)
12 & fax) :f
then the mean information I(1,2) is defined as: 4
~
1(1,2)=E1[Au] (2.58) N
I
where E [ . ] represents the expectation under the distribution f ;. The divergence was .'S
first introduced by Jeffreys (1946). It is defined as the difference in the mean values of :
the log likelihood ratio under the two hypotheses H, and H,. That is -
J1,2)=1(1,)+IQ21) (2.59) -
where: -
12,1)=- Ez[Am] (2.60) h
”
and E [ . ] denotes the expectation under f ,. 2
, Since spectral estimation involves building a model for the random process under 5
” consideration, it is reasonable to use the divergence measurement to compare the spectral -.
: estimates. The divergence in this case measures the ability to discriminate between the N
random processes produced by two alternative models. Therefore it measures the close-
ness of the distributions of the random processes and the closeness of two corresponding
spectral estimates.
Since J increases with each additional sample of the random process one needs to
specify the number of observations of the random process to compute the divergence. B
™
Alternatively one can consider the change in divergence that occurs with each new N
observation. For a homogeneous process with AR model this increase in divergence is : :_
constant and is called the "incremental divergence” AJ . ’
64 :
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In the 1-D multichannel case, the incremental divergence AJ(1,2), for a stationary o
Gaussain random AR processes with zero mean can be expressed (Fishman, Jones, and E
Therrien, 1981,1983) either in terms of the filter parameters, or in terms of the estimated f
power spectra. The results for 1-D random processes can be straightforwardly extended ::;
to the 2-D case. The results can be summarized as follows: E::
1. In terms of filter parameters: ot
AT (1,2)= -;—[tr AR AT (6% +r ARy AT (of)‘l] -1 (2.61) ::
5
where: A, are the set of filter coefficients of the process k, (k=1,2). R, represents the -
entire covariance matrix of the process k, and okz is the corresponding error covariance of "
the process k (equations for A;, Ry, and (5,52 are given in section C and are defined by ‘
Eqns. (2.16-2.18)). "4
l\.
KN
2. In terms of spectral estimates: N
.
n x -l
S S,(w) -
ara2= 2| (252 g h (229 ) -1 262 3
81‘!: -n SZ((D) e S l(m) :"-
!.
where S; (w) denotes the power spectral of the process k. e
In this section, we illustrate two different examples to measure the incremental ::Ej
divergence between two random processes. In the first example the incremental diver- :::
gence was measured by estimating the filter parameters while in the second example the \
measurement was computed from the estimated power spectra. J' ‘
Example (1): ,
In this example we measure the incremental divergence between the first and second !
quadrant models as a function of model order, calculated from the filter parameters.
Consider a signal consisting of two-sinusoids in additive noise, as given in Equation
(2.56), with the same parameters, except C,=C,=1. The incremental divergence in this \
65 =
)
A e e N i o e o, e e A T TN -:--~'~.-;six':1:’



: . " G bk Sap el ‘e man - WA gagtecpte o gt St e S
WaW ¥, a7 LA S8 A 0.8 Nl O & LA R s A AR AT N VN RN AN MR R i I T R At R -‘.-'.4‘,-’.-’."-';‘:

o
examplq is calculated from Eqn. (2.61). Fig. 2.13 shows the incremental divergence :’-
between the first and second quadrant for different values of the model order. The value j
of incremental divergence at first decreases with increasing model order. This implies r
that the first and second quadrants spectral estimates tend to get closer to each other as f?’:
the model order increases. Beyond order 4 the divergence increases then decreases :
again. Since the quadrant models are not sufficient for modeling the random process, this ,"
increase in divergence with order is not necessarily unexpected.
Example (2):

In this example we make a comparison between the nonsymmetric half plane and the
quadrant-based models. Also we measure the incremental divergence between quadrant ':;-
plane AR models and CQ model. E’

Consider the previous example with the same parameters. The comparisons are Ny
made for these models by numerically integrating the computed power spectral estimates | l
to obtain the incremental divergence for different model orders. Table 2.1a shows the ‘.:'-h
results of comparing NSHP spectral estimate with the quadrant-based model estimates, \
while Table 2.1b shows the results of comparisons between the CQ model and first and :
second quadrant plane models. The tables shows closeness between NSHP model and :
the CQ model, as we expect, while the difference between the NSHP and the individual (_
quadrant plane models is high. Also the tables indicates that in general the spectral esti- "
mates tend to be closer as the model order increases. l{
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3 TABLE 2.1 INCREMENTAL DIVERGENCE MEASUREMENT :
(a) Quadrant vs NSHP models :

Incremental Divergence (A/) "
' Method Model Order 9
: 1 2 3

1* QP | 0.6827 | 0.4054 | 0.4004
2 QP | 0.7171 | 0.5332 | 0.5287

CcQ 0.1248 | 0.0373 | 0.0348 -

:
\ "
[} \
(b) Quadrant vs CQ models Iy

Incremental Divergence (A7) "
Method Model Order x

- 1 2 3 :
1 QP | 1.1574 | 0.5188 | 0.4964 N
24 QP | 1.1474 | 05099 | 0.5043 .
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' O1. MULTICHANNEL 2-D SIGNAL MODELS ”
- 2z
FOR SPECTRAL ANALYSIS )
g
: ;
K
A. FORM OF THE DATA i
»
- . . . ’
I‘ Muldchannel 2-D signals will be represented by a vector valued quantity such as -
y x(n,ny) where ny and n, are integer-valued time or space indices and the dimension M
4
A of x is equal to the number of channels. The notation x(n,n,) used to represent mul- -
1 . . : .
. tichannel 2-D signals may refer either to the funcrion x or to the value of the function x at .
a specific point (n,n,) for all the given channels. The meaning will normally be clear
o
from the context. An example of x(n,n,) 1s sketched in Fig. 3.1, which shows that mul-
tchannel 2-D signals can be viewed as M-planes of correlated 2-D data o
-
'
Irtl(nl'n",}‘ :-
LXsin,ny
P - 8
! |1 ] ) :
xn 112 ) =
. - ’
X“ tn :.ﬂ N '..
Each plane x,tn.ny tk = 1. 20 0 M 1ot the vector represents 4 2 D vignai existing n .
'
one of the channels
Suppose that the multichannel 2 D signas o~ represented over 4 Mnite moiargadr
region of support - O<a <N ooand e N It the vector vaiued vpnass a4 oser i
fnoon. are organized ot Dootoea chen v FEPEA S RN FE N L SLSE SR Ot ST SRR STUNIE R '
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x=1 (3.2a)

XN -1
where

-X(nl,O) ]
x(ny,1)

(3.2b)

x(n.No-1)

This idea is illustrated in Fig. 3.2 for the case M=2.

B. ESTIMATION OF THE CORRELATION FUNCTION
Let x(ny,n,) be a multichannel 2-D stationary random signal. Thus the mean is a

vector quantity independent of n; and n, and defined by

m, =E[x(n1,n7)] (3.3)

and the correlation and covanance are M xM matrix functions defined (respectively) by

R(k 1,k2) = E[ (X(fl 1,’1 2) xT (n 1‘—k l,n 2—k 2)] (3.43)
and
T
C(k 1,k2) = E[ [X(ﬂ 17t 2)—mx] [X(ﬂ l—k 1,7 Z—k?)—me ] (34b)

From their definidons it is clear that the correlation and covariance functions have the

following symmetry properties
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s tannNy

Rk ky) =RT (=k |,k ) (3.52)

Ck ko) = CT (—k y,—k,) (3.5b)

Spectral estimation techniques are based on the assumption that the correlation
sequence is available. Therefore, to apply these techniques it is necessary to estimate the
correlation from the available data. The spectral estimate can differ significantly,
depending on the method by which the correlation sequence is estimated.

Suppose we are given (N {,N,) multichannel 2-D data points and our main interest is
in estimating the autocorrelation function. As a preliminary step, we must first estimate

the mean m, . The usual estimate, namely the sample mean,

N, N
. 1 1 2
mx = NlNz Z Z x(nl’nZ)

ni=lny=1

provides an unbiased and consistent estimate of m;.

Now assume we have a stationary multichannel 2-D random process with zero mean;

ie.,
3.7

then the autocovariance sequence is

C(kl,k2)=E[x(nl,n2) xr(nl—kl.nz—kz)] (3.8)

which is also equal to the correlation sequence R(k ;,k,). One estimate for the autocorre-

lation sequence is

1 Nl—lkll~1erk1|—l

Rek,.ky) =
vk (N =1k DN y= Tk, 1) ml;) Eﬂ

x(nyn)x! (ny=lk, lona=tko )

(3.9
where (k<N and lk;1<N,. It can easily be shown that Rik 1k 2) 18 an unbiased est-

mate of R(k ,k;). An alternate estimate for the autocorrelation sequence 1s




! ‘N d
o
L , 1 Nirlki=INE k-l r
)’ R(kpk?)— Z Z X(’ll,nz)x (nl-lkll,nz—lkz') (3,10)
y NN, n=0 n=0
‘ which differs from Eq. (3.9) only in the multiplying factor in the front of the sum. Com- L
) s
i~ paring Eqns. (3.9) and (3.10) we find that 0
- 3
] -
& . Ni-tky 1) [ No-tkgl) :
Rk k) = R(k,k,) (3.11) -
K- Ny J Na J :
: Consequently, ﬁ’(kl,kz) is a biased estimate of the autocorrelation sequence, although it i
b -
: is asymptotically unbiased. The Fourier ransform of the biased estimate is guaranteed to d
¥ be non-negative definite but that of the unbiased estimate is not; for this reason the biased \
estimator is used more often. M
M)
y In our work, we are dealing with statistical properties of multichannel 2-D random
' signals. The signal vectors defined in Eqn. (3.2) can be characterized by mean vectors
o
" and correlation matrices. These quantities are defined by
o
¥ m=E[x] (3.12a)
U
R =£[xxT] (3.12b)
Note that for stationary random processes the vector m will consist of N\N, M- -
dimensional subvectors all equal to the signal mean m_ . The elements of m, however :
A
are not in general all equal. N
g The correlation matrix for stationary multichannel 2-D random processes has a
:;' specific structure and symmetry at its various levels of partitioning (Therrien,1986).
. These properties are shown in Figure 3.3. Figure 3.4 shows the detailed structure of the s
. correlation matrix R for N = 3,N, =4, and M = 2. The scalar elements r"j‘ are given by -
r‘7=E[t‘(nl,nz)X/(nl—k.nz—I)] (313) ".
' which represent the element in the i™ row and the ;™ column of the correlation function .
N Rk /). (Recall that Rtk /) 1s an MxM matrix). ;'.‘
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Y

.,\ ‘.,l{l

Signal Vector

Xo (x(n,,O)

X x(nlﬁl)

X = where X, =

'.-"-.“-"v "-“-.- .{5-‘:‘&-‘-{‘

H

XN, -1 | x(ny,N,—1)]

T o
L3

P
P T 1

Correlation Matrix

v
L]

=
L2
=
=
&
=
|
=
“u

"

SR K,

RzE[xxT] = . '

R(-N,~1) R(-¥,~2) . . . R(0)
(BLOCK TOEPLITZ WITH N,MxN,M BLOCKS)

where

O TN .“." .

l"-‘a‘\\ )

[R(k.0) R(k.,1) . . . R(k,N,-1)]
R(k.-1) R(k.0) .. . R(k.N,-2)

. ”

N

R(k):E[xnx"T_k] -

’
P e}
LR N

o . F o 8
e'a"e
Y

|R(k.~N;-1) R(k-N,-2) . . . R(k0)

(BLOCK TOEPLITZ WITH M <M BLOCKS)

e v'..,."

NN

where

Rikyk,) RT( k,. ki) Elx(n,.ny)xT(n, k,.n,-k,)] (NOT TOEPLITZ)

B
-

Fig. 3.3 The correlation matrix (figure taken from Therrien.1986).
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C. ESTIMATION IN THE FREQUENCY DOMAIN
Stationary random signals are characterized in the frequency domain by their power
spectral density. The power spectral density (or simply the power spectrum) matrix for a

multichannel 2-D random process is defined by:

S(w,,0,) = ", T Rlkpkp) e/ g™ Ok (3.14)
1G4 aanadnad

where R(k ,k,) is the true autocorrelation function. In case of a two-channel (M=2) ran-

dom process the spectral matrix is given by

S 110,09 S 12(01,0;)
S(w,,w)) = (3.15)
S21(01,0) S p(wy,07)

where §,(®,,®,) and S,,(w;,0,) represent the autospectrum components corresponding
to the two channels while S 5(w;,0,) and §;;(w,,0,) represent the cross spectrum com-
ponents (between channels). The autospectrum components are always real and nonne-
gative, while the cross spectrum components are generally complex. For the case of a
real random process the cross spectrum components are equal in magnitude and opposite
in phase. Sometimes the 2-D magnitude squared coherency (MSC) is used instead of the
magnitude of the cross spectrum. This quantity (<2 is defined by

1S 15(0p,09) 12

(3.16)
S 11(@1,0)S 29(0y,009)

K(0,007) =

D. MULTICHANNEL 2-D RANDOM PROCESS AND

LINEAR PREDICTION

The methods of 2-D AR spectrum estimation discussed in Chapter II can be
extended to the multichannel case. Consider a stationary multichannel 2-D signal
x(n,n,). The linear prediction problem is to predict the current value of the vector

X(n1,n,) on the basis of all "past” values of the signal in a region a. The estimated value
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takes the form

X(nynp)=- Y AL x(ny=iny=is)
Gigea (3.17)
(‘.1"1)#(0'0)

. are MxM matrix coefficients. Let us define

where the parameters A; ;,

Agp=I (3.18)

where I is the identity matrix. Then the remaining values of the predictive filter

¥
LR

coefficients A;;, (i,,i,€) are chosen such that the mean square values of the com-

-
v('

ponents of the prediction error

IL N
S
-
e(n,ny) =x(n,nq) —X(n,n,) ::.‘
T . . M
= Z Ailizx(n 11 l,nz—lz) (319) »
(inidea -

are minimized. Fig. 3.5 depicts the interrelationships. The correlation function of the

error evaluated at lag (0,0) is the MxM prediction error covariance matrix Z.

z = E[e(n e (ny,n 2)] =R,(0,0) (3.20)

The mean-squared error is given by

b

E[ |e(n1,n,)|2] =E[£T(n1,n2)e(n1,n7)] =g, (3.21)

by

Py

It is known from the orthogonality principle (Papoulis,1981) that the prediction error

«
&
o
g
v
"o
-

~ 7

of the signal must be orthogonal to all the past values of the signal used to estimate the

present value.

E[x(nl—il,nz—iz)eT(nl,nz)] =[0] (e, (i1dp)=(0.0) (3.22)

It further follows from Equations (3.19), (3.20) and (3.22) that
2= E[x(nl,nger(n 1,n2)] (3.23)
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These last two equations can thus be written as

E[X(n l—i 1:1 2—1 2)ET (n 11 2)] = 258(1 l’i 2) (il.iz)ﬁ(l

Equation (3.19) can be put in a matrix form as follows

e(nny=AT x, . (3.25)
where x,, ,, is an vector of the ordered values x(n,—i;,n,—i,) appearing in Eqn. (3.19)

and A is a correspondingly ordered matrix with blocks equal to the A; ;. for (i,,i))ea.

Substituting into Equation (3.24) we have

E[xmnz : eT(”lvnl)] = E[xmnz . X};m : A:I

=E[x"1n2.x,,rl,,z] LA=S (3.26)

R.A=S (3.27)

where R is the correlation matrix of x, ,, and S is matrix of size corresponding to the

matrix A with blocks defined as follows:

i S(O)‘
0

g0 0t 0
* .,

R
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SO | (3.28b)

0

- -

'r N—s. -'.' -s—is l.. '\J" - [‘.’ 'l' .l. ¢ "

We will refer to Eqn. (3.27) as the Normal equations for 2-D multichannel linear predic-
tion. The error covariance matrix and the filter coefficients are obtained from the solu-
ton of these Normal equations. Specific examples of these equations are considered in

the next secuaon.

E. LINEAR PREDICTION MODELS %;\
Let x(n,.n,) be an arbitrary zero-mean random process and let X(n,,n,) denote a :\-:'
prediction estimate of the random variable x(n,,n,). Two different linear prediction !.
hY
models are considered here, namely the quadrant plane model (QP) and non-symmetric Q
half plane (NSHP) model. N
N
1. Analysis of Quadrant Plane Models '
The estimated prediction error filter coefficients, and the prediction error covari-
ance can be evaluated for the quadrant plane model as follows, assuming the size of the Ny
region of support a is P ;<P , points. Eqn. (3.19) can be written in the form ’
Pi-1Pr1
Enyny)=% 3 Axrlxz-“(" 1=iny—iy) (3.29) ‘e
01=0 1,=0 :-:
This model 15 called a first quadrant model since the impulse response of this filter has |:
support 1n only the first quadrant of the 2-D plane. The signal data needed in Eqn. (3.19)
is in the range n,-P +1 to n; and n,—P-+1 to n_ as shown in Fig. 3.6, where the solid iy
dots denote prediction error samples which have been computed, and the crosses .
)
represent samples that remain t0 be computed. For this particular case of a quadrant -~
plane mode! the vector x,, ,. 1s defined by
’
by
)
81 =
v
v
v
\
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Fig. 3.6 Predictor of first quadrant support.
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The prediction error is given by Eqn. (3 25)
where A now has the specific form
(A0 ]
A‘])
A=| (3324,
A(P;-—l)
- B
and
’Ax.U T“
Al.l }
A = 1 (3 h,
|
|
Al,Prlf

The Normal equations for this region of support can be viewed as toliows We have 4 «!
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of P <P . points as shown i Fig. 3 7a and a correlanon mamx R is formed for the

P <P .points The terms of the correlation function appeanng in the matrix are shown in

Fig ' h  The Normal equations have the general form of Egn. (3.27). The specific

structure nothis case s as follows

"R Ri-1) Ri-P +1)] [ oAO
Rii R0 R(-P,+2)) Al
RiP. 1 RiP. -2 R) tAlP
~here
TRk 1)) Rik -1
"Rk .1y Rk .0)
Rk =R -k, =
Rtk P,-1) Rtk .P;-2)
X
0
!
S'IF: '
0
and where
"4

A

i S(O)q

. R(k =P ;+1)
Rk —P ,+2)

R(k ,0)

(3.33a)

(3.33b)
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R(k.ky) =RT (=k k) = E[x(n L)X (n—k 1,n2—k2)]

(3.33d)
[rukpka) ripkpky) o rg(kko)]
rzl(kl,kz) rn(kl,kz) e rw(kl,ky)
1k ko) ryak ko) . rMM(klka)J
Ago=1 (3.33¢)
z = E[ (x—i)(x—f()T]
(3.33)
(0'121 0'122 ... (}'12,,{T
6% o% ... o
Ok, Oky . . . Ohy
o J

As mentioned before R is an MP P ,xMP P, matrix and A and S are each MP |P .xM
matrices. Note that the matrix R defined in Eqn. (3.33) differs from that in Fig. 3.3 in
that the first level partitions are block transposed. This results from the particular order-
ing of the vector x, ,. (Eqn. (3.30)) which is used to define the 2-D multichannel lincar
prediction problem.

The previous analysis was denved for the case where the filter coethcients A
had first quadrant support. If we set up the problem assuming second quadrant suppon

In this case the prediction error tilter 1s given by

Ré

AR LS LN W g E AR ARARS

AR .' A



P-1P 1 .
Emny=3 3 B/, Xln+iny=iy) (3.34)
l|=-'00,=0
where B, ; represent the backward predictive filter coefficients. The filter 1s actually

similar to that of Fig. 3.6 except it predicts the point in the upper left corner and we get a
different set of filter coefficients. We can set up a matrix equation similar to Egn. (3.27),

but now the matrix B reflects the second quadrant support
RB=S, (3.35)

where R is the same matrix as (3.27) and B 1s defined by

(B(O) 1
B(l)
B = 13 36a)
B(P,~l)
Blfr“‘
| B p,:|
|
. ‘ i RERYY W
B = | | B, -1
B
N,
0
N, .
(1]
"
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S = (3.36d)

L 2“J

The third and fourth quadrant filters for predicting the bottomn left and bottom
nght points are also distinct. Their Normal equatons differ from the Normal equations
of the first and second quadrant t ters in that the innermost blocks Rk | & 2) of the matnix
R are replaced by their transposes. This 1s a difference from the single channel 2-D case

where the first and third and the second and fourth quadrant tilters are dentcal

2. Analysis of Non-Symmetric Halfl Plane Model

As we discussed in Chapter 1. the NSHP model 1s an imporntant torm ot predu
tor because ot the abuity o tactor arbitrary spectra into terms with torward and back ward
NSHP support Also we menuoned that models with NSHP support ot maodest sizes
have been tound to give reasonable results in spectral  estimation

Now we consuder the problem of inding o imite order NSHEP madel ay sketched
in kg 3 Ka, given covariances on . tinite window as shown in Frg 2 Xb 0 The predicnon

equation tor a o7/ order NSHEP model s
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L4

a s

ny
’ll—l

(3.39)

nny =

xﬂ =P+l

-

where

(x(nl,nz—l)

X(n 1. 2—2)

(3.40a)

n

X(n 17 2-P 2+1)

. -

[ x(n 1=, y+P 2~1)-

Xo o, = | X(n=i.n3) 1=12...,P -1 (3.40b)

n-t

L‘(ﬂ T .’l:—P:‘l :J!

Note that the size of the subvector x, s smaller than that ot x| for s <P It v o

‘
be o mumimum vanance prediction extimate ¢ one tha! TUuminmize s mean sGuare ermonee

then the orthogonality onncple st hoad and leads 1o the toliowaing Normmal egudations
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'"II \‘. LI

L

e

R(0)  RED .. REPHD] [0 ] [ gO)
R(1) RO ...REPH2)| |a® 0

(3.41)

R'(P,-1) R(P;-2) . . . R©O) APD 0
L

VLN NYA

where

"R ,0) R(k,~1) ... Rk=2P+1)]
R(k.1) R(k,0) ... Rk, ~P,+2)

19 e v 3 sy

Rk)=R7T(-k)=| (3.42a)

R(k 2P,~1) Rtk ,2P2=2) . . . R(k.0)
L

R . T P

Ak ~P +1

Ak,-P +2

LT

A(’k)= ’ k20 (3.42b)
Ago

Agpi

.

Rik.P,-1) RkP-2) R(k.—P2+1)}
| Rk P ) Rk . Rk .—P+2D)

. '.:'. s /./ -'-'I"I P A

(3420 ~

Ria 2P0 RZpP. 2 Rk .y




R(0,0) R@©O,-1) ... R(O,-P,+1)
R(0,1) R(0,0) .. . R(0,-P+2)

RO)=| - (3.42d)

ROPZD ROP22) . . . ROD)

‘Moo ]
Ag.

ztzs[(x—iux-i)’] (3429

and Rk k) s detined by Eqn. (3.33d). We refer 1o this as the forward prediction
model.

For backward prediction of the process © we suppose  that samples
xn,-P.+ln.-P. .+l wa.as=lare avadable as shown an Fig 3100 and we

attempt a Linear predicion ot v according to
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The backward prediction error is defined as

eb(npnz) = X(nl.nz) - ib(n 1,’12)

(3.44)
Pril Pi-1 Pr1
Z BO, X(nnti)+ Y Y B; ‘zx(n1+zl,n2+12)

(1=li==-P 1

If the backward prediction error filter coefficients B, ; are chosen to minimize the mean

square error [ l€p(nn)l 2] then the corresponding Normal equations are given by

[RO) R(-1) .. RT(=P+1)] rg®r
R(1) R(0) .. RTE=P )| | BEP] |0

= (3.45)

R'T(Pl_l) R:T(Pl_z) o R/T(O) B,(o) S'b(o)

where

[—Bk.—Pﬁ-l

Bk.—P 7t

B®) = k 20 (3.46a)

BO=| Boo=1 (3.46b)

Bor, 1
J
and
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and the other terms are as defined earlier. It is clear from the previous analysis that, the
p ( b
{ forward and backward models have distinctly different Normal equations. More f-:
specifically, if we reorder the Equations (3.45) so that they have the same partitioning as E:'_
(3.41) we find that the difference between the two sets of equations is that the innermost f‘
correlation block R(k,k,) is transposed. The solution of forward and backward Normal C
equations leads to different model parameters (filter coefficients and error covariances). N
Since the model parameters are not identical, different spectral estimates for the forward :::
and backward models are obtained. The forward and backward models are very impor- i..
tant and will be used in later sections. ;EZ:;'
F. AUTOREGRESSIVE MODEL FITTING ~!'"
If x(n ,n,) is a zero mean stationary multichannel 2-D random process, then a causal ::::-
representation of the type »‘j.
e
X(ninp=— Y Al x(n—inyi)) + winy,ny 2
(iniea e (3.47) f,, ,
(11.11)39(0.0) - Y
is called an autoregressive (AR) representation. The sequence w(n,,n,) is a zero mean
white noise random process independent of the past outputs with covariance
L, = E[w(nl,nz) w! (ny.n 2)] (3.48) 7
If x(n{,n,) is an AR process defined by (3.47) then the quantity =
(nyn)) Y AlXx(mmigng-ia) 2
X(nyny)=- D X(ny=inqp=iy ,
. e T (3.49) b
(i1 2%(0,0) .
~d
is the best mean-square predictor of x(n,n5) based on all of its past. Thus equation )
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(3.47) becomes
X(n,ny) =%X(ny,n9) +wW(ny,ng) (3.50)

which says the sample at (n,,n,) is the sum of its minimum variance causal prediction
estimate plus the prediction error which is white noise. This is also called the innova-
tions representation.
Now define the polynomial
Hepzp= T Al 3™ (3.51)

R0
Then it can be seen from Eqn. (3.47) that the transfer function of an AR representation is
-1
[H(zl,zz)] which is an all pole model. Figure 3.11 illustrates the relation between

linear prediction and autoregressive modeling. While linear prediction uses an FIR filter,
AR modeling employs a recursive or IIR filter.

In general when linear prediction is applied to arbitrary 2-D random process, a white
noise error signal does not result. Nevertheless, for sufficiently large regions & the resi-
dual may be found to be close to a white noise process in practice. This is true especially
when the model has NSHP support. For a model with NSHP support the AR model
becomes a close approximation to any given random process if the order becomes
sufficiently large. This argument follows from results in Refs. (Ekstrom and
Woods,1976) and (Marzetta, 1978) that show that arbitrary 2-D power spectra can be fac-
tored into forward and backward models with (generally infinite) NSHP support. Thus it
is reasonable to seek to represent 2-D random processes by suitable AR models and to

derive the parameters by formulating and solving Normal equations.

G. MULTICHANNEL 2-D BURG TECHNIQUE

There has been in the past decade strong interest and much activity in developing
high resolution power spectrum estimation techniques, particularly for short data records.
The Burg maximum entropy method (MEM) and the associated algorithms for estimating
the AR model parameters directly from the data have especially received much attention

in this regard.
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A 2-D multichannel Burg algorithm can be developed as a straightforward combina-
tion of a 2-D Burg algorithm (see Chapter II ), and a 1-D multichannel Burg algorithm
(details are given in Appendix D).

As in the case of the single channel 2-D Burg algorithm, this method does not result
in spectral estimates (perhaps because procedure does not in fact solve the Normal equa-
tions and the low order terms in the recursion do not result in reasonable approximations
to whitening filters). Fortunately, it is possible to generate another procedure that esti-
mates the filter parameters directly from the data and does result in good spectral esti-

mates. This procedure is discussed in the next section.

H. DIRECT PARAMETER ESTIMATION TECHNIQUE

1. Multidimensional and Multichannel Relations

As we mentioned in Chapter II there is an exact relation between single channel
2-D linear prediction and multichannel 1-D linear prediction (Therrien,1981). These
kinds of relations also exist for multidimensional linear prediction problems of higher
orders.

In this thesis we will specifically take advantage of the relations between mul-
tichannel 2-D linear prediction problems and higher order 1-D multichannel linear pred-
iction problems. The results will be used to estimate the model parameters of a mul-
tichannel 2-D random process directly from the data without prior estimation of the auto-
correlation function.

A multichannel linear prediction problem with first quadrant support of order
(P1xP,) and with three channels is shown in Fig. 3.12a. In this case the points sur-
rounded by the cylinder are predicted from all the other points appearing in the three
planes. The Normal equations are given generally by Eqn. (3.27) and specifically for this
case by Eqns. (3.32) and (3.33). The corresponding multichannel 1-D linear prediction
problem is shown in Fig. (3.12b). In this figure the same data of Fig. 3.12a are used but
these data are now considered to be a collection of discrete 1-D signals evolving along
the n, direction. The total number of these signals is MP, and they form an

MP ,—dimensional multichannel random process. In Fig. 3.12b the single value of n, at
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which the MP ,—channels of the process are to be predicted (from the signals at earlier
values of n,) is represented by all the points that appear in the solid-line box. Assume x,,
is a vector of the data points to be predicted

-x(n ,0)
x(n,1)

: x,=| (3.52)

x(n,P-1)

In this case the P,M -channel 1-D linear prediction problem takes the form:

P-1 Ry
%,=—3 [a“)] > (3.53)

where %, is the estimated value of the P,M-dimensional data vector x,, and a() is the

f linear predictive filter coefficients. The corresponding Normal equations can be written
as follows:

& RO) RG-D . ..REP#DI [T ] [Ep
R(1) RO ...REP#2)| | g0 0

=] (3.54)

R(P,-1) R(P,-2) . . . R(0) P |0
L

where

PR
R ) "-' % % e
ALAALD St o

MU AT ATES L
PV YY

Y
.
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a® = = (3.55)
"75‘111.0 “152)-1.1 <. alg‘z)-ll’z-l

and where each block a$) is of size MxM and Ep is the P,MxP,M prediction error
covariance.
Now note that since the correlation matrix appearing on the left side of (3.54) is

the same as that in (3.33a) we can multiply both sides of (3.54) by the term A©® and
compare the result to (3.33a). Then (3.54) will be identical to (3.33a) if we require

Ep, AO =850 (3.56)
and

AD = g AO@ i=0,1,..,P -1 (3.57)

The foregoing analysis shows that the multichannel 2-D Normal equations can

be solved by the following steps:
(1) Solve the P,M-dimensional 1-D multichannel problem (3.54) using the 1-D mul-
tichannel form of the Levinson recursion. This finds the coefficient matrices a®’

and the prediction error covariance matrix Ep .

(2) Solve (3.56) for A, Since Ep is not in general Block Toeplitz, no particularly

fast algorithm is possible.

(3) Find the multichannel 2-D coefficients from (3.57).

This approach to solving the multichannel 2-D Normal equations has a special
advantage for spectral estimation using the combined quadrant method. Specifically, the
multichanne] form of the Levinson recursion leads to find both the forward and back-
ward 1-D filter parameters. The backward parameters relate to the second quadrant mul-

tichannel 2-D filter parameters in the same way that the forward parameters relate to the
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first quadrant multichannel 2-D filter parameters. If B%) and E}l represent the backward

parameters and B®) and S{® represent the second quadrant parameters, the relations
analogous to Egns. (3.56) and (3.57) are

E,Pl B(O) - Sb(O) (358)
and
BO=pOB®; =0,1,..,P -1 (3.59)

Both the A®) and the B¢ parameters are used in the CQ spectral estimation procedure
and both are found in a single estimation algorithm.

2. Application to Quadrant Plane Models

The algorithm for solving the 2-D Normal equation discussed above can be
further enhanced by replacing step (1) involving solution of the Normal equations by a
procedure that estimates the 1-D filter parameters directly from the data. This method
will be called a direct method since it does not require prior estimation of the correlation
function.

This method capitalizes on the existence of a direct method for solving the 1-D
multichannel linear prediction problem known as the multichannel Burg algorithm or the
Nuttall-Strand algorithm. The method is based on ideas originally suggested by Burg
(1975) but developed separately by Nuttall (1976) and Strand (1977).

In applying the multichannel Burg algorithm to 2-D data, the data are first parti-
tioned into strips along the n, direction as shown in Fig. 3.13(a). The strips of width P,
for an P xP, quadrant filter are catenated along the n, direction as shown in Fig.
3.13(b). As in the previous section this data is considered to be a 1-D process (in the n,
direction) with P,M channels. Discontinuities where the strips are catenated together
can be ignored since they represent only a small portion of the data. The multichannel

Burg algorithm is then used to estimate forward and backward linear prediction parame-

ters o, a@ ..., oV and Ep and B, P ..., PV ang E’p.. The error
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covariance matrices are used to form (3.56) and (3.58). These equations are solved by

E conventional methods and the multichannel 2-D first and second quadrant filter :
coefficients are computed from (3.57) and (3.59). "
2 L A MEASURE FOR COMPARING RANDOM PROCESSES :
: In the next chapter it will be important to have a quantitative measure for comparing ‘
~ the similarity of two spectral estimates. Such a measure was cited in Chapter II and is .
based on the information-theoretic divergence. The divergence measures the closeness of :
. the distributions for two random processes. Since we model the spectrum as that of a
linear filter driven by white noise, it is reasonable to measure the closeness of two spec- ‘
D tral estimates as the divergence between random processes produced by the models. As .
\ discussed earlier, the divergence relates to the ability to discriminate between the two |
random processes in a classical hypothesis test. When the white noise which drives the
E linear filters is Gaussian one can derive an explicit closed-form expression for the diver-
; gence. This can be expressed in terms of the model parameters or in terms of the associ- “
) ated spectral estimates. N
~.' The divergence is a non-decreasing function of the number of samples of the random
process used in the hypothesis test. For linear white noise-driven models each new sam-
ple contributes a fixed additive amount to the divergence. This quantity has been called
N the incremental divergence and represents the information available for discrimination
“ . of two random processes with each new sample that is observed. 1
- The representation of incremental divergence AJ(1,2) between two multichannel 2- o
‘, D ra~dom processes can be written in terms of filter parameters or in terms of spectral h
' estimates as follows. "
R
. 3
X ;
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1. In Terms of Filter Parameters

AJ(12)=-M + %{n ARATE 417 A,RZAITZ{I} (3.60)

where M represents the number of channels, A, (k=1,2) represents the set of filter
coefficients of the process k, R, is the entire covariance matrix of the process k, and

finally X, is the error covariance matrix of process k.

2. In Terms of Spectral Estimates

nir
AJ(i2)=-M + E:?[I [ $1(01,0)87 (0,0)d wd o,

~R-~T

i
+ f I tr Sy(@,07)S7 (@,0,)d 0,d ;) (3.61)

-n-%

where S, and S, are the MxM spectral matrices of the modeled random processes. The
above expressions for the incremental divergence for multichannel 2-D random processes
are derived in Appendix E. The expression given in terms of spectral estimates (3.61) is
our main interest in the present research.

Although the form (3 61) for the incremental divergence is based on the
existence of linear models for the spectra S, and S, the expression (3.61) can be simply
defined as a measure for comparing any two spectral estimates. When one of the spectra
(say S,) is defined by the CQ method, the term in Eqn. (3.61) involving the inverse is
additive. Unfortunately the other term is not, so the incremental divergence appears to

defy any further interpretation.
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IV. MULTICHANNEL 2-D AR SPECTRUM ANALYSIS I
ol
73
This chapter is concerned with multichannel 2-D spectral estimation based on AR f:‘_‘-_
models. Here the problem is 10 obtain accurate spectral estimates given a finite number o

! of data samples. We begin by summarizing the spectral estimation models, and show .
that since the NSHP forward and backward models have distinctly different model Y
parameters, in general this leads to different spectral estimates. Similarly it is shown that

in general none of the four possible multichannel 2-D QP models gives the same estimate

[N

"2} Wy
a

for the spectral matrix. The latter suggests a generalization of the procedure used by ,:.
! . Jackson and Chien for combining multiple quadrant-based spectral estimates into a single ' ‘
combined spectral estimate. We call this procedure the combined quadrant (CQ) E '
method, and it can be used effectively with the direct method of parameter estimation ?:
developed in Chapter III. A comprehensive set of experimental studies for estimating the '.::
entire spectral matrix is presented. The estimate includes the 2-D autospectrum for each f:
channel and magnitude and phase of the cross spectra. The estimates compared p
correspond to NSHP, CQ, and direct CQ models. )
A. SPECTRUM ESTIMATION MODELS o0
Parametric approaches to spectral estimation are based on an a priori model for the .
spectrum in terms of a finite and relatively small number of unknown parameters. The
spectral density estimate can then be obtained by evaluating a formula in terms of the _j::
estmated parameters. When a good parametric model for the spectrum is available, esti- .x
mates of the model parameters can be obtained using a number of different approaches. :)
Autoregressive modeling is the form of spectrum estimation that will be examined 2
here. Filter parameters and the white noise covariance are estimated by the techniques 3
described in Chapter III. Let the linear predictive filter transfer function be given by !:;
H(zy,z)= Y Alrllzzl'“z{h @.1) E
(. 0)ea '_::.

Then the spectrum of the random process can be expressed as
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E S(w,,0y) = H (0,0, I, [HH (col,coz)J 4.2) '..;
; ..J
i where X, represents the white noise spectral matrix. For the specific case when the 4
t
/ number of channels (M) is equal to 2 the filter has the form Ny
¢ -}
A
Hyj(opw)  Hypp(wy,0) A
o,
H(o,0p) = 4.3) v
- Hy (0,00  Hopp(wy,m) :
) ‘I
E and the spectral matrix has the form given by Eqn. (3.15). Thus Eqn. (4.2) produces esti- .
K
\ mates of the autospectra and the cross spectra all at once. e
'
For purposes of developing a spectral estimate, different regions of support of the X
AR model can be used. We are interested here in the NSHP and QP regions of support. ;:
\ r'\
N

1. Non-Symmetric Half Plane Models

e )

J;.

As we mentioned in Chapter III, NSHP models of moderate size have proven to

give reasonable results for spectrum estimation. The spectrum can be expressed by E"\?
Equation (4.2) where H(z,,z,) is the filter transfer function for the given region of :"
support : ‘

P, P, P, =

Hizuzp=1+ 3 Af,z37+ T 2 Al,z1" 23 4.4) -.

i=1 i1=1i=>-P, 0
and where A, ;. represents the filter coefficient matrices of the forward predictor. As we E'.
will see in section B, the forward and backward predictors discussed in Chapter III give E
different spectral estimates. In subsequent sections of this chapter we examine results of E_ 7
NSHP spectral models of various orders. Fig. 4.1 shows the definition of order used for : ‘
NSHP models. ‘:j:'

2. Quadrant Models
Quadrant support regions are also considered for the AR model. These are of
interest because of their convenience of computation and estimation of the model param-

eters. As discussed in Chapter II there exist four different quadrant plane support

models. However we will find in the multichannel 2-D case that none of the models is
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the same. The first quadrant filter transfer function of order (P ,P ) is

P, P,

Hy@,0)= Y T AT, e”/®Me”™ | Ayl 4.5)
n=0 n=0

where A, . represents the first quadrant filter coefficients. The corresponding power

spectral estimate evaluated from H, (®,,w,) is:

Sy (@1.09) = H7 (1,09 B, | Hff01,09)] @6

where I, is the error covariance matrix of the first quadrant model. Similarly the spec-

tral estimate of the second quadrant model is given as

1 (@109 =H7'@,09) T, [ Hii@,09)

P, P,

Hy(@p,0)= Y 3 BT, /e | Byl (4.8)
n1=0 n=0

and where B, ,, are the second quadrant filter coefficients and Z,, represents the error

covariance matrix of the second quadrant model. The third and fourth quadrant filters are
given by similar expressions and are also distinct as we will see in the next section.

It will be seen that first, second, third, and fourth quadrant AR models when
used individually give poor estimates of the spectrum of many random processes. For
the analysis of sinusoids in noise the use of any quadrant filter alone results in a spread-
ing of the peak in one direction. However a certain combination of the models has pro-
ven to give good results for estimation of spectra in 2-D single channel problems (Jack-
son & Chien, 1979). In section B we propose a generalization of this method to 2-D mul-
tichannel spectrum estimation. The definition of order used for QP models is shown in
Fig. 4.2
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B. FORWARD AND BACKWARD SPECTRAL ESTIMATION

The forward and backward AR models for 1-D or 2-D single channel signals have
the same power spectra. That is, the estimates produced by these models are always
identical. The reason for this is as follows: The correlation functions in the single chan-
nel case have the symmetry properties R (k) =R (~k) for 1-D and R (k1 ,k,) = R (=k,~k,)
for 2-D. Because of this the correlation matrices appearing in the Normal equations for
the forward and backward models are identical and thus lead to identical model parame-
ters (i.e. filter coefficients and error covariance). This in turn leads to identical spectral
estimates.

In the 1-D multichannel case the correlation matrices appearing in the Normal equa-
tions for the forward and backward models are not identical because the (matrix) correla-
tion function satisfies only the symmetry condition R(k)=RT (k). Specifically the
matrices in the Normal equations differ in that the innermost blocks are wansposed.
Likewise for the 2-D multichannel case the correlaton function satisfies only
Rk, ko) = R (-k1,—k,) and the Normal equations have innermost blocks transposed.
The solution of these Normal equations gives different forward and backward model
parameters. However Nuttall (1976) shows that the forward and backward 1-D mul-
tichannel power spectral estimates are identical. The proof is based on the existence of
an underlying maximum entropy random process that matches the given correlation func-
tion and extends it. The common spectral estimate computed by both the forward and the
backward models is the true spectrum of the underlying maximum entropy process (see
(Nuttall,1976) for details).

In the multichannel 2-D case it is not in general possible to match and extend the
correlation function. Thus, except in the asymptotic case (i.e. as the support tends to
infinity) there is no underlying process that the two models have in common. In general
this leads to different spectral estimates for the forward and backward models (see Fig.
4.3) and these estimates may not even be positive definite. This is a significant differ-
ence between multichannel 2-D AR models and lower-dimensional models. Thus the
difference between forward and backward 2-D multichannel spectral estimates is seen to

be due to the fact that the correlation function in 2-D may not be extendible
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(Dickinson,1980). In essence there may be no underlying random process that would be
whitened by the given linear predictive filter.
To see specifically where the system breaks down let us for the moment assume that
the linear predictive filter truly whitens the random process and thus corresponds to the
, AR model of the form

winpny)= Y Al x(n=ing-iy) 4.9)
(niea

It follows that

E[w(nl,nz)wr(nl—kl,nz—kzi= Y X ALRG i+ -ipkotiiDA;

(inigealjlea
y = 2,0k kp) (4.10)
Taking the z transform of (4.10) and making the substitution of variables I, =k, +j,—i,
results in
b T ALz T RUue2® B A =T, @
(inigea lj=—e,l =0 UijJea

Finally letting z,,=ej ® and using the definition (4.1) leads to (4.2) where S(w;,®,) is
seen to be the Fourier transform of the correlation function:

(“'“ _.
S(w,0)= ¥ R Ipe” o 4.12)
(Ihll)=(_“-_“)
It is clear from this analysis that if x(n |,n,) also satisfies a backward form of AR
model then (4.9)-(4.12) is also be obtained except that the A, and X, are replaced by

the backward model parameters and R(/,,/,) is replaced by RT ({1,{9). Further, since
RT (1,015 =R(-l -1 (4.13)

and the sum in (4.12) is over all values of /, and /,, the spectral matrix defined by (4.12)
: for the backward problem is identical to that for the forward problem. Thus we see that
when an AR model in the form of Eqn. (4.9) truly exists for the random process, then

both forward and backward spectral estimates will be identical. The procedure breaks
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down if we must use a colored noise to obtain a model in the form of Eqn. (4.9). In this
case we cannot write Eqn. (4.11) and the spectral estimates are not identical.
The spectral matrix corresponding to the forward linear prediction S(w;,»,) and

backward linear prediction S’(®,,0,) can be written in the following forms, respectively

S(w,0,) = H (0,0, %, (H (0;,0,))} (4.14)

S’ (w,,0,) = H 1 (w,,0,) ', H (0;,0)))7] (4.15)

where H, H’ represent the forward and backward matrix frequency response

o i@+
He o)= ¥ AL, e7@or? 4.16)
(m1,nEQ

Houo)= T Bl e/ O™ @.17)
(ninea
and £, ', are the forward and backward covariance error matrices, respectively.

In the limit, as o approaches a NSHP with infinite support, the linear predictive
model and the AR model become identical. This is implicit in the work of Ekstrom and
Woods (1976), Marzetta (1978), and Jain (1981). In this case the spectrum of the process
is truly given by (4.14) and the spectral matrix can be represented in terms of either the
forward or the backward model parameters. While one cannot use infinite NSHP sup-
port in practical applications, larger orders can approximate the limiting case and the two
spectral estimates have been found to give very close results.

It is of interest to consider a numerical example to study the behaviour of forward
and backward spectral estimation. This example is concerned with the power spectral

estimation of a two-channel 2-D single sinusoid in additive noise. The signals generated
in channels 1 and 2 were

X 1(" 1,"2) = COS(n 101 +n 2(1)2) +w 1(" 1 2) (4.183)

Iz(n 1N 2) =cos(n 10x+n 2(D4+¢) + w2(n L 2) 4. 18b)

where w,(ny,n) and wy(n,n,) are zero-mean independent white noise signals.
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Spectrum estimation results are given for a dataset size of 64x64. The forward and back-
ward matrix parameters of the AR models are shown in Figs. 4.4 and 4.5 respectively. It
is clear that they are not the same. Table 4.1 shows the values of the spectral estimates at
®;=w,=0. Observe that as the model order increases the value of the individual terms in
the forward and backward spectral matrices become closer. The last column in Table 4.1
gives the value of the incremental divergence for the two spectral estimates. This quan-
tity, which is defined in Chapter III, measures the closeness of the spectral matrices over
all frequencies. Since lower numbers represent closer spectra, the results indicate that
the forward and backward spectral estimates tend to converge as the model order
increases. A summary of forward and backward prediction model characteristics for dif-

ferent random processes is given in Table 4.2.

1. Combined Quadrant Models

From considerz:ions similar to those above, it can be seen that in general none

of the four possible multichannel 2-D models with quadrant support (see Fig. 4.6) give
the same estimate for the spectral matrix. This again is different from the single channel
case where for example the first and third quadrant models, being degenerate cases of
forward and backward NSHP support, produce identical spectral estimates. This suggests
a generalization of the procedure used by Jackson and Chien (1979) for single channel
2-D spectrum estimation. In particular, a combined estimate for the spectral matrix can
be formed as

S(wy,0,) = (S (0;,0;) + S} (@y,0,) + S (@, + S, (4.19)

where S;, S;;, Sy, and Sy, are the spectral matrices computed from (4.14) using the four
possible quadrant models. This procedure will be called the combined quadrant (CQ)
method. Although it appears that four quadrant models would be required in general, it
was found experimentally that the combination of only first and second quadrants is

sufficient to obtain good results.

S(w),0,) = (7 1(w;,my) + Sj7'(w,09)) ™! (4.20)

This form is analogous to the form proposed by Jackson and Chien for the single channel
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(a) Forward error covariance matrix
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N

RO ALY 4

0.013  -0.307 0.176 -0.013
0.308 -0.005 0.016  0.147
o .
1.000 0.000 0.006 -0.279

; T PN
1‘.’J~I\( O %

A

0.000 1.000 0.278 0.013

-0.202 0.002

v _3

0.003 -0.228
®
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(b) Forward filter coefficients

Fig. 4.4 Forward model parameters of first order NSHP model.
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(a) Backward error covariance matrix
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(b) Backward filter coefficients

Fig. 4.5 Backward NSHP model parameters of first order.
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TABLE 4.1 COMPARISON BETWEEN FORWARD AND BACKWARD

SPECTRAL ESTIMATES
Order Forward Spectral Estimate Backward Spectral Estimate  Incrememal Divergence
S¢(0,0) S5(0,0) AJ
0.1754 0.0325 0.1241 0.025
1 0.3739
0.0325 0.1575 0.0257 0.451
0.1400 0.035 0.1069 0.003
2 0.0914
0.0359 0.1721 0.0030 0.206
0.0812 0.019 0.0893 0.012
3 0.0769
0.0192 0.083 0.0128 0.073
0.0711 0.019 0.0744 0.020
4 0.0703
0.0199 0.0635_] 0.0203 0.061
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case. From Eqns. (4.20) and (4.2) one can therefore write

-1
(.09 = [ B(@,0) 2! Hy(@y,0) + Hff@0pZiHy @y0p) ™ @21

When we are interested only in the detection of sharp peaks in the spectrum and not in

the true power level the following simpler form can be used

-1
S(w,,m,) = [H,”(ml,m7)H1 (0,09 + Hi (w,,0)H), (col,mz)] (4.22)

(where we have set Z,, =X, =1) and appears to produce satisfactory results.

In order to check the performance of the four quadrant plane power spectral esti-
mate, a numerical example is considered. This example is concerned with the analysis of
spectra for two-channel 2-D sinusoidal signals in additive noise. The signals generated

in channels 1 and 2 were:

L
X l(n 17 2)-'-'- Z COS(YI 1(.0" 1+n 20)" 2)+W l(n 1N 2) (423a)
i=1
L
xa(n1.n2)= 3, cos(n10;3+n200; 4+ §; Hwolnyno) (4.23b)

i=1
where w(n,n,) and wy(n,n,) are zero mean independent white noise signals, and L

represents the number of sinusoids. We assume L=2, with m11=0)12=£- 0)21=m22=%,

2 3
(013'=0)14=%, 0)23=0)24=%, ¢,=1.5 radian, and ¢,=0.5 radian. Spectrum estimates are

given for a dataset size of (64x64) and second order filter. The cross spectrum amplitude
for first, second, third, and fourth quadrants is shown in Fig. 4.7, while the amplitude and
phase of the cross spectrum of the combined quadrant estimate (Eqn. (4.20)) is shown in
Fig. 4.8. The cross spectrum amplitude and phase of the total 4-combined quadrant esti-
mate (Eqn. (4.19)) is shown in Figure 4.9. Table 4.3 shows values of the incremental
divergence between the different quadrant plane spectral estimates. Here CQ 4 represents
the four-quadrant CQ estimate (Eqn. {4.19)), and CQ, represents the simple two-
quadrant CQ estimate (Eqn. (4.20)). The results indicate a closeness between the first

and third quadrant estimates, second and fourth quadrant estimates, and the

122

------ ~p~p - i S Y .o . . - N T
o, ANty TN L P T e T T T T SROCR S
‘\;-ﬁ.p.ﬂ'.ﬂ.ﬂu?i?‘ S e A N e S S




o
A

C Wy
+

. TaT WY

-

LS

"(10{d 1nojU0D) BSIOU U} SPlOSTLUIS OM) JO UOITRWI)S? [R1303ds sso1a jo spnydiiy 2y “Big

]
f.
{
r\
b,
b,
m.

(L4 ™
[+ ) 80 90 0 z0 1] ot 0 920 o Zo 4]
T T T Lo T T -7 T T ° T T T T T T Y T °
- -4 n - - N
s a \
- g qe = q°
» »
i d e i Aﬂ 1
Iy N
- Jo - B 4
o» >
L 1e - 49
[ ] [ )
- - -~
1 I | I ) 1 1 1 1 mu. A 1 1 L 1 1 1 1 1 N B
dd yunoy (p) d0 piuL (9) -
(1 |m
o't 20 90 o to /] [*A} 80 90 yo zo 0o
T T T T T T Y —]° T 1 T T T T T T i
. . - i .
-- vnA
- N n ﬁ IS 1 N ..f.u
NN
- . - - —4 . F.A
N < o R Je o
> e .
I o 1 e | j 1 Y
5 e . o
> L3 ‘e g
| i 5 J m
" do s Jo Ty
o o N
- N - .
[] [ (] 1 1 L 1 1 L b 1 1 1 j . 1 1 i 1 ] -
° °
dd puo»s (q) dd g (e)

o o RS K 0 8 = lhiﬂbﬂbu\; |.



Rt Sy oA it e AN e gty L g'S 0 g b e ted AN R - Al S phetai gl gty R A

] : I
| x
' a
' e
' X
] .\
] -\
’ »
| — 3
~ )
| 2
= ;
' : >
l - %
] . ;
' ey >
| 2 i
\ o R
] n- p_‘ [-3) _‘ ¢ d
. o b o
‘ - o - 1 o
3 e =]  § = 2 t.‘: .
' ] = =
: S = R
’ v S v =*
@ = &
THIN] A o
‘ = i = i =
R ~ £
3 "
' =
5}
& 3
£
‘w
o)
3
e
[ 5oy
c
(=]
=
= )
<
‘ g
3 .ﬁ
) ~
— n
3 W
Q- : .‘-_
-5 o < §
o ~ e -
- R .
= = g 7
— L J“
S .
= 2 S -
S ]
=
g
<
t~
v
80
Foxa

o’
L]

124

v 5 ¥

5 %




s LAl .\\\-0

. i...«us

XX \ ¢ - il i - ,r-\.-.n-.\,x.- d
0, PRI PPt e Gt oA .;z..f.. v @ S e X Iv....., VNN art ..a!..;f..ne...Iﬁ..;...........-r.....\.
‘J\
hI.
n-x

NV W,

A N

(D) spiosnuis omy jo uonpewysa wndads sso1) g'p 81

LXY 90 Yo z0 0

90

o
125

115 |




~

.
*
alia

rd

r~

Al Al

_N~.m‘_ .

b e D A S e e e SN, I« ANS WS gl  RASS IS



TABLE 4.3 INCREMENTAL DIVERGENCE OF QUADRANT-BASED MODELS

(a) Comparison between CQ , (Eqn. 4.19) and quadrant-based models.

e
AN

2 WIS

LA
Y

.y

Comparison between CQ, & | Incremental divergence (AJ)
Q. 0.02
1" QP 0.2
2% QP 0.2
3™ QP 0.2
4" QP 0.26

(b) Comparison between CQ , (Eqn. 4.20) and quadrant-based models.

Comparison between CQ, & | Incremental divergence (AJ)
1* QP 0.07
2% QP 0.07
3™ QP 0.07
4* QP 0.1

(c) Comarison between quadrant-based models.

Comparison between | Incremental divergence (AJ)
1* and 2™ QP 0.09
17 and 3™ QP 0.01
1* and 4* QP 0.12
2™ and 3™ QP 0.09
2™ and 4* QP 0.004
3 and 4* QP 0.12
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CQ, and CQ, estimates. Although Sy; is not identical to S; and S;y is not identical to

S;; it has been found experimentally in several cases that the simpler CQ , estimate (Eqn.
(4.20)) gives results very close to the total CQ 4 estimate (Eqn. (4.19)). It will be seen
also that the CQ, estimate produces results that are very similar to the NSHP results and
usually requires less computation. Further when the model parameters are computed
directly from the data as described in section III H the estimate was found to have

improved resolution.

C. EXPERIMENTAL RESULTS USING NSHP MODELS

A comprehensive set of experimental studies for simulating the entire spectral matrix
is presented. The estimate includes the 2-D autospectrum for each channel and magni-
tude and phase of the cross spectra. Estimates using NSHP models are first computed for
sinusoids in white noise backgrounds. A set of experiments were performed to determine
the performance of the spectrum estimation procedures as a function of model order,
dataset size, and signal-to-noise ratio. Shift estimation experiments are then carried out
to test for linearity and accuracy of the phase estimate of the cross spectra. Finally an
example of system identification is given to further test the cross spectral estimate when

used to identify an unknown 2-D system on the basis of input/output measurements.

1. Sinusoids in Noise Background Experiments

In this section the NSHP model is used to obtain the estimated spectra of

sinusoidal signals buried in white noise. The estimated spectra are computed and plotted.

a. Tone Estimation
Here we discuss the estimation of a sinusoid in a white noise background.

Three numerical examples are presented which illustrate the results.

(1) Example 1
This example is concerned with the analysis of spectra for a two-
channel 2-D single sinusoid signal with different phase in additive noise. The signals
generated in channels 1 and 2 are given by Eqn. (4.18). Spectrum esumation results are

given for a third order NSHP filter. Two cases are considered in this example. In the first
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case we suppose that the two channels have the same frequency but different phase ::_-:
NS
[col =0, =13, W03=ws=7/3,and ¢ =1 radiari o
while in the second case, we assume the two channels have different frequencies and Eﬁ '
different phase: S: |
,_.
[m1=mz=1t/2.m3=m4=n/3. and o =1 radiar} :
R
Fig. 4.10 shows the results for the components of the spectral matrix in ths first case. ey
Only the cross term S,(w;,0,) is shown (magnitude and phase) since the term ’-E
S ,;(wy,,) is theoretically and numerically identical. The results show a distinct peak in '
each of the three components Sy,, 5, and Sy, corresponding to the location of the :\
sinusoid. The center of the peak is accurately located near (/3,m/3). Although the phase -.
of the cross spectrum shows various artifacts around the edge of the region (where the v
magnitude is small and the phase is that of the noise) the phase at the location of the e
sinusoid is accurately estimated to be 1.01 radians. :E
Fig. 4.11 shows S(w,,w,) for the second case (different frequencies). ﬁ_
The power spectrum estimates of the first and second channels S, and S,, have a ’-___
single-peak at the location of the sinusoid. Although the cross spectra should theoreti- :E
cally show no presense of sinusoids some small amount of energy is detectable at those Sﬁ
frequencies in the cross spectrum. Similar effects have been observed in 1-D multichan- ~)
nel spectrum estimation and have been attributed to non-exact pole-zero cancellations in !, ,
the estimate for the cross spectrum (Marple and Nuttall,1986). :
(2) Example 2 T
Two-channel 2-D signals with two sinusoids in additive noise are con- ’1
sidered in this example. The signals in the channels are defined by Eqn. (4.23) with the -j
parameters given above. h
The power spectrum estimation results for a second order NSHP model !,
are given in Fig. 4.12. The results are close to the theoretical results. §,,(®,,w,) and é
S 22(®,0;) show that the two sinusoids are easily resolved. The estimated amplitudes :
are unequal, but this characteristic has been observed in even 1-D AR spectrum .;
B
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Fig. 4 11 Estimate of spectra for sinusoids at different frequency.
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Fig. 4.12 Estimate of two sinusoids in white noise.
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estimates. The cross-spectrum S 5(®;,0,) shows the sinusoids resolved and the phase
estimate is ¢, = 1.495 radians and ¢, = 0.511 radians which is close to the true phase of
¢, = 1.5 radians and ¢, = 0.5 radians.

(3) Example 3

In this example we considered three sinuosids in each channel. The
location of the sinusoids is shown in Fig. 4.13. The sinusoids are impeded in white noise
as in the previous examples. Again a dataset of size 64x64 was used. The phase of the
sinusoids in channel 2 differ from those in channel 1 by 1 radian.

Figure 4.14 shows 3-D and contour plots for the components of the
spectral matrix estimated using a fourth order NSHP model. The cross-lines (+) in the
contour plots show the true location of the sinusoids. The results show a very slight bias
in estimation of the position of the sinusoids in the autospectra and the cross spectra and
good resolution. There is almost no evidence of energy from sinusoids wp and wp
appearing in the spectrum of the opposite channel or in the cross spectrum. The phase of
the cross spectrum shows various artifacts but since these correspond to the noise back-
ground, they are of no particular interest. However in the region where the peaks are
located, the phase is slowly varying and estimated with values of ¢, = 0.92 radians, and
¢, = 0.95 radians (at the peaks). The slow variation of the phase in the region near the
sinusoids makes its estimation relatively insensitive to any inaccuracies in location of the

spectral peaks.

b. Effects of Model order and Dataset size

A comprehensive set of experiments was carried out to determine perfor-
mance of the spectrum estimation procedures as a function of model order and dataset
size.

The results showed that to some extent the lack of resolution resulting from
a small dataset size could be compensated for by choosing a larger model order. There is
a limit to this trade-off however since a larger model has more parameters and thus
should require more data to estimate parameters that are statistically reliable. The exper-
imental observation may be restated in the following way. When the dataset is large a

lower order model can produce results that are comparable to a higher order model.
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As a specific example, two-channel 2-D sinusoidal signals in additive noise
were again considered. The signals used are defined by (4.23) with the number of

. . L 2 i1
sinusoids L=2, and other parameters (011=0)12=?, (021=6022=-5—-, (013=0)14=3,

0323=a)z4=2?n, ¢,=1 radian, and ¢,=1 radian. The simulation was performed for different

values of the model order and also for different values of the dataset size. Figure 4.15
shows the effect of model order on the cross spectral estimation §;,(®;,0>,) amplitude
and phase when the dataset size is 64x64. For a first order model we have poor resolu-
tion and the two peaks appear as only one peak. The resolution increases with increasing
order and the phase gets very close to the actual value.

For a dataset size of 32x32 (not shown) we get approximately the same
power spectral estimation results as for a dataset size of 64x64, although in the 64x64
dataset we get more sharpness in the peaks.

The cross spectral estimate for a dataset size of 16x16 is shown in Fig. 4.16
using three different model orders. Autospectra are not shown. The second peak starts to
be seen for the second order and the two peaks are found in their correct location for the
third order. Figure 4.17 shows the cross spectrum estimate for a dataset size of 8x8.
Only one peak appears for first and second order estimates. Two peaks appear when the
order of the model is increased to third order, but the peaks are not sharp at all.

The results of these experiments can be summarized as follows. For a
second order filter the results of spectrum estimation using a 32x32 point dataset were
essentially the same as those using the 64x64 point dataset. For smaller datasets the
results degraded considerably. However the resolution obtained using a second order
NSHP filter on a 16x16 point dataset was similar to that obtained with a third order filter
on a 8x8 point dataset. For the 8x8 point dataset the resolution is greatly improved by
going from a second to a third order filter. However there is a noticeable bias along the
w; direction in the location of the peaks. Phase estimates remain quite stable. Table 4.4
shows some selected values of the peak locations and the corresponding estimated phase

values at those peaks.
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c. Signal to Noise Ratio Experiment

The signal/noise ratio for two sinusoids in noise was defined by :
2
SNR =10 loglo[ % , where C is the amplitude of each sinusoidal component and &2 is

the white noise variance. The results of the cross spectrum estimation for a 64x64 point
o . . T T
data set for each channel with sinusoids of frequencies O =0=7, and 0312=(022=? are

shown here. The model used for these experiments was second order. Estimated values
for the frequencies and phase are listed in Table 4.5. At a SNR value of 12 dB the
sinusoids are completely resolved with sharp peaks as shown in Fig. 4.18. At a SNR
value of 3.5 dB the peaks begin to merge ( see Fig. 4.19) and at 0 dB (Fig. 4.20) the
peaks become a single ridge making it difficult to predict that there are two sinusoids
present. The phase obtained by this method however remains nearly constant over a
wide region near the true peaks for all of the signal-to-noise values. The phase plots

show a rather slowly varying character in the region around the two sinusoids.

2, Shift Estimation

This section contains examples of multichannel 2-D spectrum analysis involv-
ing narrowband and broadband data. These cases were designed to test the accuracy of

estimating a linear phase term in the cross spectrum and the ability to estimate

TABLE 4.4 EFFECT OF DATA SET SIZE ON
THE ESTIMATED PARAMETERS

Estimated Parameters (rad. ] True Parameters [rad)
16x16 2™ order | 8x82™ order | 8x8 3" order
9 1.02 undefined 0.96 1
®, 0.97 1.06 1.04 1
Wy 1.51 undefined 1.52 1.57
Wy, 1.57 undefined 1.64 1.57
w,, 1.25 1.24 1.16 1.05
Wy, 1.20 1.28 1.25 1.05
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parameters of a known 2-D random process from data. Three different numerical experi-

ments are considered.

a. Experiment (1)

For this experiment two channels of data were defined by:

Xl(nl,nz) = Wl(n 1,712) (4243)

X2(nl,n2) =C xl(n l—dl,nz—d2)+w2(n1,n2) (424b)

where w(n,n,) and w,(n,n,) are white noise terms with unit variance and the other
parameters are C=0.5, d| = d, = 1. Spectral estimates were generated and the slope of the
phase of the cross spectrum was measured to estimate the delays d, and d,. Fig. 4.21-a,b
shows the autospectra and Fig. 4.21-c,d shows the cross spectrum estimate that was
obtained using a second order filter. The magnitude of the cross spectrum is constant and

the phase shows a linear dependence with slope corresponding tod; =d, = 1.

b. Experiment (2)

For this experiment two-channels of real data were defined by:

xy(ny,ny)=f(ny,ny) (4.25a)

TABLE 4.5 EFFECT OF SNR ON THE ESTIMATED

PARAMETERS
Estimated Parameters [rad.] True Parameters [rad)
124dB 35dB 0dB
o, | 1.01 | 1.03 1.04 1.00
0, 0.99 0.98 0.98 1.00

Wy, 1.53 1.50 | undefined n2
Wy | 1.57 1.50 | undefined n2
20y, 1.00 1.04 | undefined n/3
W,y 1.00 1.00 | undefined /3

T T R )
P A
R

E IF PRI

I AR L

-" ', r/ ..‘ H I‘ R

YA EN N Y

PR

lala




AL e L N L o e T N e S N R N e S Y A S POAPROA T e At A I ooy g Lol B g RN A NS A it

Fa Ty I -‘
»
o
,
! L
-
E
\ “
. A
o
hY
{ v
-
{ -
’ -
3 -
E .l )
h &
\ = w
, wn faca
— p—
—_ = '
[3) e A
e
N =' V.
Bt v
ot .
<
g .
-5 .
L 1 1 m
= « &
v
&aNn
» ~ ‘.
. _E
) [, )
' g
' =
—
: —
N
3 L5
; s
=
3 - 3 2
— ’v
19)) ']
p——
p—
= £
{r—t— i [
_O_ [ - o © -~

148




x3(nynp) =C f(ny=dy,n—dy) +w(nyny) (4.25b) -

where f(n,,n,) is a 64x64 portion of the image shown in Fig. 4.22 (an aerial photo-
graph of fields) and w(n,n9) is a zero mean white noise process. Spectral estimates
were generated and the slope of the phase of the cross spectrum was measured to esti-
mate the shifts d, and d,. Figure 4.23 shows the phase and magnitude of the spectral
estimate that was obtained using a third order NSHP model for signal data that had
parameter values of C = 0.5, d,=3,d,=5 and white noise with unit variance. The
estimated phase shows a linear dependence with slope corresponding to d,=3.0, d,=4.5

which rounds to integer values of d =3, d,=5.

c. Experiment (3)

For this experiment two channels of sinusoidal signals are considered e
A L v
X l(n 1 2) = 2 COS(R 19; 1n 20)‘-2) +w 1(” 0L 2) (4.26a)
i=1
Xonyny) = C x(ny=dyng—dy) + walnny) (4.26b) 3

where w(ny,n,) and wy(n,,n,) are zero mean independent white noise signals, and L

‘- represents the number of sinusoids. The parameters of the first channel are given in sec- ',;3
N tion 1a Example (3) and the peak locations are as shown in Fig. 4.13b. Spectrum estima- j:
tion results are given for with C = 1 and d| =d, = 1. Fig. 4.24 shows the autospectrum %

of the two channels, while Fig. 4.25 shows the magnitude and phase of the cross spec- 'i

- trum. The peaks are shown in the correct location and the phase is approximately linear ’1.
but not so linear as in the other previous two cases. This is probably because the magni- _i

" tude of the spectrum is small except around the peaks and the phase in this case is more ¥
y influenced by the noise except at the peaks location. Nevertheless the phase at the loca- ;:;j
:_l tion of the sinusoid peaks is quite accurately estimated. \{
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Fig. 4.23 Estiiated cross spectrum for shift estimation.
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3. System Identification

a. Experiment (1)

The purpose of this experiment is to generate data from a given two-
channel 2-D difference equation, and estimate the difference equation parameter from
these data by using linear prediction with a NSHP model. The estimated parameter
coefficients are then compared with the true parameters. Our investigated process is the
first order two-channel 2-D difference equation given by:

X(ny,n) = A X(n,n—1)+A_; _ X(ny+1,n5+1)+A,0x(n~1,n )

(4.27a)
+ A x(n=Lny-1)+ W(ny,ny)
A data array 2x(64x64) is generated from the following numerical values:
[xl(" 1,"2)] [0.6 0] [11(" 1»"2"1)]
xy(ny,na)| T 0.5 Of [ xq(ny,nqy-1)
(4.27b)

0 -0.7] [x1(n1—1.n2)
*10 04 ||xyn,-1np

wi(nyny
* [w:(n o 7)]
where: w; (n,n,), (i=1,2) are two independent white noise signals. This process actually
has support only in the first quadrant but a first order NSHP model was used to test the
estimation procedure.

Table 4.6 shows the result of estimating the parameters with a (64x64)
point data set. The estimates for the non-zero parameters of the model are close to the
given values, and all of the remaining parameters but one are at least one order of magni-
tude smaller. The estimated spectral components for this process are shown in Fig. 4.26.
Energy is spread over a wide range of frequencies with concentration near higher values
of ; and lower values of ®,. This is consistent with the signs of the terms in the defining

equations for the process.
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TABLE 4.6 MODEL PARAMETERS ESTIMATION OF

A FIRST ORDER NSHP MODEL
Estimated Parameters True Parameters
1.00 O. 1.00 O.
Agp
0.00 1. 0.00 1.
0.564 -0.02 0.60 O.
Ag
0.604 -0.03 0.50 O.
0.014 0.14 0.00 O.
A
0.000 0.02 0.00 O.
—0.051 -0.585 0.00 0.7
Ao
0.012 0.352 0.00 0.40
[-0.017 -0.01 0.00 O.
A
0.034 -0.005 0.00 O.
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Fig 4.26 Estimated power spectra for a multichannel 2-D linear process.
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b. Experiment (2)

LW e
AR

The goal of this experiment was to identify an unknown system H (®{,0,)
on the basis of input/output measurements. Two-dimensional white noise w(n,n5)
which is considered as a first channel x(n,n,) is sent through the unknown system

whose output x,(n,n,) is considered to be the second channel. The cross spectrum

between the channels is proportional to the frequency response of the unknown system.

":Al"l "y Yy '-{'a - p"\"“.

The example considered here corresponds to the system:

xz(n 1,n7_)=x l(n 1,"2)—0.38X l(n 1,11 2—1)—038X l(n 1—l,n2)—0.24x l(n l-l,nz"l)
(4.28)

8, .
PAs

y w \‘l?

CNCLT LN

Fig. 4.27(a) shows the actual frequency response of the system, while Fig. 4.27(b) shows

o

the estimated frequency response (amplitude and phase of the cross spectrum). The

estimated system parameters are given in Table 4.7. Since NSHP support was assumed

in the spectral estimate the parameter @, _; comes out to be very near zero. The other

parameters in Table 4.7 are close to the system parameters in (4.28).

2 4 * 4Py
.

D. ESTIMATES USING CQ MODELS

This section discusses the results of the CQ method on the examples used for the
NSHP experiments above. The results are found to be quite comparable. Spectrum esti-
mates for Examples 1, 2, and 3 were also computed using quadrant plane models. The

estimates for Examples 1 and 2 were based on 2x2 regions of support (first order model)

TABLE 4.7 COMPARISON BETWEEN THE ACTUAL AND ESTIMATED
PARAMETERS OF THE SYSTEM IDENTIFICATION PROBLEM

Estimated Parameters | True Parameters
1.00 1.00
-0.4002 -0.38
-0.00001 0.00
-0.3844 -0.38
-0.1928 -0.24
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ig. 4.27 Comparison of results for system identification experiment.

(a) Actual frequency response
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for the first and second quadrant filters. Figure 4.28(a) shows the component S, of the

spectral matrix. Results for S,, are similar. The use of either the first or second quadrant
filter alone results in a spreading of the peak in one direction. The combined estimate
(Eqn. (4.20)) gives a more accurate result similar to that of the NSHP model. Figure
4.28(b) shows the magnitude and phase estimates for the cross spectrum S;,. A similar
spreading phenomenon is observed in the magnitude estimate but the estimation of phase
is correct for both the individual and the combined spectrum estimates. Figure 4.29
shows the spectrum estimate for two sinusoids in white noise corresponding to Example
2. The results of this quadrant based model can be qualitatively compared to the results
for the NSHP model of Figure 4.12. The placement of the sinusoid along a diagonal
shows some characteristics of the quadrant models. The first quadrant results show a
very significant spreading of the peaks along a direction orthogonal to the line connecting
their centers. This is observed in both the autospectral components and the cross spectra.
The second quadrant estimates show good resolution with little spreading of the peak.
However the combined estimate gives the best results with sharp peaks and with magni-
tudes more nearly equal than those observed with the NSHP model. The phase in Fig.
4.29(b) is slowly varying in the region of the sinusoids for all of the estimates with a
correct values of approximately 1.5 and 0.5 radians at the locations of the sinusoids.
(Exact values produced by the combined estimate are 1.42 and 0.57 radians respectively.)

Fig. 4.30 shows the results for estimation of the three sinusoids given in Fig. 4.13
using combined sixth order first and second quadrant filters. These results can be com-
pared to those of Figure 4.14. Although the sinusoids are resolved and estimated in
approximately the correct position, the peaks are less sharp than for the NSHP estimate.
Computational requirements for the sixth order CQ estimate and the fourth order NSHP
estimate are approximately the same,

Figure 4.31 shows the amplitude of S, estimated by using the first and second qua-
drant filters, separately. We have seen that use of the individual quadrant filters can
result in a significant bias and spreading of the peaks. In the particular case of Fig. 4.31,
we notice that in addition to the bias the first quadrant estimate for the cross spectrum has

a false peak near the frequency wg of Figure 4.13. The second quadrant estimate almost

misses the frequency @y .
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Fig. 4.28 Estimation of single sinusoid using quadrant models.
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Fig. 4.31 Cross spectrum estimation of first and second quadrant models.
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These experiments indicate that the result of spectrum estimation using a single qua-
drant model is not generally reliable but the estimate resulting from combining the two
models according to Eqn. (4.20) is quite accurate.

E. ESTIMATES USING THE 2-D BURG TECHNIQUE

The results described in the previous sections were based on algorithms that first
estimate the 2-D matrix correlation function and then solve Normal equations to deter-
mine the AR model parameters. These methods will be called indirect since they require
estimation of the correlation function as a prerequisite to determining the model parame-
ters. Here the 2-D multichannel Burg algorithm cited in Chapter III is used to form the
spectral estimate.

Two test cases are presented; both involve sinusoids buried in white noise. In the
first test case, we use the data of section C, Example (1). Fig. 4.32 shows the autospectra
(S11, S22) and the amplitude and phase of cross spectrum (S ,). In the second case, we
use the data of section C, Example (2). Fig. 4.33 shows the autospectra and the ampli-
tude and phase of the cross spectrum. It is clear that we have a good estimate for single
sinusoid while we get a poor estimate when the number of sinusoids increases. This is

similar to what happens in the single channel 2-D Burg algorithm.

F. ESTIMATES USING THE DIRECT CQ METHOD

A direct method for estimating the model parameters, i.e., a method that estimates
the parameters directly from the data was described in Chapter IIl. This method is
very well suited to spectrum estimation using combined first and second quadrant
models since it estimates both sets of filter parameters simultaneously.

The results of the direct CQ method on the examples used for NSHP and CQ experi-
ments above are found to be quite comparable. Figure 4.34 shows the results of estimat-
ing a single sinusoid in white noise using the same data considered in section C (compare
this to Fig. 4.28). The direct method yields a sharper peak with somewhat lower
sidelobes. Estimates of the one radian phase shift between the channels are 1.05 rad. for
the indirect method and 1.03 rad. for the direct method.
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Fig. 4.32 Estimate of spectra for one sinusoid in white noise (Burg).
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Figure 4.35 shows the results for estimating two sinusoids in white noise using com-
bined second order quadrant filters with parameters estimated by the indirect method.
These results are nearly equivalent to those shown earlier in Figure 4.29. A few minor
peaks appear in both cases. For the indirect method these peaks appear closer to the
main peak while for the direct method they appear further out. Phase estimates at the
peak locations are 1.48 and 0.50 radians for the direct CQ method while they are 1.47
and 0.55 radians for the indirect method. The values produced by the direct method are
slightly closer to the true values of 1.5 and 0.5 radians.

Figure 4.36 shows the results for estimating three sinusoids in white noise using two
combined sixth order quadrant filters with parameters estimated by the direct method.
The results are typical of those obtained in other examples. The sinusoids are resolved
more sharply than in Fig. 4.30 and are quite similar to the NSHP results of Fig. 4.14.

The results for the shift estimation and the linear model examples are not shown here
but were found to be comparable to the NSHP and CQ results.

An important advantage of the CQ method over the NSHP is its reduced computa-
tion. This is discussed further in the next section where a quantitative comparison of the

estimates is given.

G. COMPARISON RESULTS

1. Effect of Model Order on Resolution

In order to compare the resolution characteristics of the NSHP and the CQ

method quantitatively, the signal-to-noise ratio was kept constant at 12 dB and the model
order was changed. The results are given for two-channel 2-D signals, each channel hav-
ing two sinusoids buried in white noise with the data of section C, Example (2). The cri-
terion of resolution was defined as the minimum frequency separation, below which two
sinusoids are not resolved. Figure 4.37 summarizes the cross spectrum resolution perfor-
mance of the methods as a function of the order of the model. As shown in the figure, as
the model order increases, the resolution increases. Table 4.8a shows the phase of the
NSHP estimate as a function of the model order while Table 4.8b shows the same results
for the CQ method. As shown in the table, the phase estimate is good even when the

resolution is poor. The results shows an estimate which is consistently close to the actual
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TABLE 4.8 PHASE ESTIMATION COMPARISON OF
DIFFERENT AR MODELS

(a) The estimated phase of NSHP method as a

function of the model order.

Model Order o %,
2 1.48 0.509
3 1.489 | 0.514
4 1.487 | 0.506
5* 1.493 | 0.540

(b) Phase esumaton of CQ method as a

function of model order.

Model order Y &
2~ 1.481 | 0.550
34 1.488 | 0.498
4% 1.502 | 0.489
5% 1.510 | 0.493
1713
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: values (¢,=1.5 radians, ¢,=0.5 radians ) and varies only slowly with changes in the order "
of the model.
The NSHP estimate has a somewhat higher resolution than the CQ estimate for
a fixed order N but the number of computations required is considerably higher. In par-
ticular if we assume that the solution of the Normal equations requires a number of com-
’ putations related to the size of the matrix cubed then the ratio of the computations
(NSHP/CQ) is approximately

- [[zzv N+1) + 1] / (N+1)2] ’

which has a minimum value of about 2 and a maximum value of 8 for large N. If the :
computations required for solution of the Normal equations is proportional only to the

square of the size of the matrix, then the ratio varies between 1.5:1 and 4:1. If we con-

22PPL7,
<

sider an order where both methods have approximately the same resolution we can com- \

pare the computation. For example if we compare the 3" order NSHP to a 4™ order CQ
estimate, we find that the number of computations is about the same. However for higher
values of N the CQ method has a definite computational advantage.

The CQ method exhibits a slightly but consistently better resolution when the _
parameters are estimated by the direct method. In addition since the computational ;
requirements are proportional to the square of the order of the matrix in Eqn. (3.54), the

method has a computational advantage as well.

2. Divergence Measurement

In this final section we apply the incremental divergence measure (3.61) to the

LN
L T 0 T i

comparison of the NSHP and CQ spectral estimates for three examples. The results are
similar to those in Chapter II for a single channel 2-D estimate. The data show quantita-
\ tively that the CQ method gives a spectral esimate that compares closely to the NSHP
estimate but that use of a single quadrant model alone produces an estimate that com- .
pares poorly with the NSHP estimate.

In the first example, two-channel 2-D signals consisting of two sinusoids in each
channel in additive noise (tone estimation ) are considered. In the second example, we

assume a two-channel 2-D signal with linear phase difference. Finally in the third

180
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example, we consider a more general discrete two-channel 2-D AR random process with

NSHP support. The parameters of this more general process are given in Table 4.6. In
all cases, equal orders were used for the NSHP and quadrant models.

Table 4.9a shows the results of incremental divergence of NSHP and quadrant
models while Table 4.9b shows the results of incremental divergence of the NSHP and
quadrant models with parameters estimated by the direct method. The tables show that
the incremental divergence between the NSHP model and the individual ( first or second
) quadrant models is relatively high and that the incremental divergence for the NSHP

and CQ models is considerably lower indicating a closeness of the spectral estimates.

181

, - . : SN
R P R s A u 0y 0y D n re S N A A T R g e S A ARt A S A T G L (K

b
'
w e Tl

R
Wy

l- ’, 'l‘ .l' -l- ‘:
A

“r % w N

Py ey

PXrx

AN

AL ',- l" l. 1.
PR AR

LA

A4

D Y

o
.',"l"( (o ®

TS "l“‘ R, &

B A AL AL

e .
1y 0,

I |
vieses
0 0y s N te

Ay o [

(RS AR RALS L MTIFANS
.

LM

1



\ hae e,
AR AT T AT AT A A Y u e

TABLE 4.9 INCREMENTAL DIVERGENCE MEASUREMENT
FOR DIFFERENT AR MODELS

(a) Comparison between NSHP and CQ models.

Incremental Divergence

Comparison between

Ex.(1)

Ex.(2)

NSHP & 1" quadrant

0.1735

0.0628

NSHP & 2* quadrant

0.2576

0.0943

NSHP & CQ

0.0657

0.0262

(b) Comparison between NSHP and direct CQ models.

Incremental Divergence

Comparison between

Ex.(1)

Ex.(2)

NSHP & 1* quadrant

0.1922

0.0361

NSHP & 2* quadrant

0.2584

0.0965

NSH & direct CQ

0.1046

0.0157
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V. MULTICHANNEL 2-D MLM SPECTRAL ANALYSIS

A. INTRODUCTION

The maximum likelihood method (MLM) of spectrum estimation was originally pro-
posed by Capon (1969) in a multidimensional case as an array processing technique and
designed to accommodate non-uniformly spaced data. One estimates the power spectral
density by effectively measuring the power output of a narrowband filter as this filter is
swept across the frequency band of interest (Lacoss,1971).

It was seen that MLLM has the ability to resolve closely spaced features in the spec-
trum using only a relatively small data set. Further, although the MLM has resolution
not as good as the AR spectral estimation method, it is widely used in practice, especially
in array processing. In addition the method is quite simple to apply.

In this chapter we review the 2-D single channel Maximum Likelihood Method
(MLM) of spectral estimation and describe extensions by Baggeroer and Lagunas et al to
cross spectrum estimation for 1-D random processes. We then develop the MLM method
specifically for the 2-D multichannel case and compare our results to a 2-D version of the
earlier results where the components of the spectral matrix are computed individually.
We discuss the differences in the methods and compare results experimentally.

Since MLM estimates generally have significantly poorer resolution than AR
model-based estimates, we also consider the so-called Improved MLM (IMLM) of Lim
and Dowla and develop it for the multichannel case. This method retains the simplicity of
the MLM, but gives better resolution. We carry out an experiment to compare the ampli-
tude and phase of cross spectra of AR, MLM and IMLM techniques. Finally, in this
chapter we measure and compare the resolution properties of the estimate experimentally

as a function of SNR and as a function of model order.

B. SURVEY OF SINGLE CHANNEL 2-D MLM
In the 1-D case, the MLM spectral estimate at frequency wy, is determined by design-

ing an FIR filter which passes the power in a very narrow band around wy and rejects the
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power due to other frequency components. The same interpretation can be applied to 2-
D spectral analysis.
Suppose the output of a linear 2-D FIR filter is:

)‘("1"‘2)='Zzantﬁ("r"lﬂz"'z) (5.1)

iniz0
where a is the region of support, x is the sampled input, and g, ; are the filter
coefficients. Suppose further that we wish to estimate the power spectrum Sy (0,0,;@)
at the specific frequency (0{®,w{”). The filter weights g, ;, arc determined by minimiz-
ing E[ Iy(nl,ng)lﬂ subject to the constraint that the filter passes the frequency com-

ponent of x (n,n,) at (mfo),uéo’) with unit gain and zero phase shift. The formulation is

as follows
mininuze E[ Iy(nl,nz)lz] (5.2)
subject to the constraint
T Tag,e e M= (5.3)
(,d)ea

The spectral estimate Sy (0]”.wi:

s

a) in this case is taken to be the average power
E[ Iy(nl.nz)l‘i of the output of the filter with the calculated filter coefficients g, ;.
Then we can say that the MM estimates the power spectrum Sy, (w,.w.;a) by design-

ing at each frequency (w{”.w{”) a different FIR filter such that the filter passes the fre-

quency component (m{o‘.wém) without modification and minimizes the power due to
other interfering spectral components. When the optimal filter is determined and subsu-

tuted into the expression for the output power (Lacoss,1971), the resulting estimate takes

the simple form

. 1
SML(O)l.(Dz;a) = T (5.4)

where R, is the correlation matrix corresponding to the data x (n,,n5) in & in Eqn. 15.1)
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and e, is the correspondingly ordered vector of complex sinusoids.

eq = Col [ef“”"“ *"’*"’1 - (5.5)

The resolution performance of the MLM spectral estimate actually lies somewhere
between that of the Fourier transform technique and that of the AR method. The reason
is clear from a relation that exists between the MLM and AR methods which is cited
below.

~— -

L e o 3

1. Relationship Between MLLM and AR Spectral Estimation

Burg (1972) showed that there exists a simple, exact relationship between max-
imum entropy spectra and maximum likelthood spectra in the 1-D case, when the correla-
b don function is known at uniform intervals of lag for =K <k<K'. The relationship is

given by:

Syp(w:K)=
b K n=|

SWE(m nj

where Sy (w:K ) represents the MLM spectral estimate of order K.! and S, (win)
1 represents the MEM spectral estimate of order n. Eqgn. (5.6) shows that the reciprocal of
the MLM spectrum 1s equal to the average of the reciprocals of the maximum entopy
spectra obtained using from one point up to K-point prediction error filters.

For the 2-D case Dowla and Lim (1984) have shown that there is an exact rela-
uonship between the MLM spectra and the spectra obtained by AR signal modeling using
a known autocorrelation sequence R (i, ) of a 2-D random signal in the region a. This

relation 1s

S‘WL ((L)l.u):‘_;a) =

1 (5.7)
*Ex Sar (W}, 07)

WEDw FFIPE TV Ty v vy v

where if all samples in the region are ordered in some arbitrary fashion then

! That 1s, the support of the 1-D filter 1s a set of K adjacent points.
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Sar (0,,05,;Y) represents the spectrum of the linear predictive filter that estimates sample

number ¥ from "previous" samples in the ordering. The sum is over all such spectra.

2. Improved MLM
Recently the improved MLM (IMLM) was proposed by Lim and Dowla
(1983,1985) for multidimensional spectral analysis as an alternative to the MLM. The
method is based on the relation that exists between MLM and AR spectral estimates

(Eqn. (5.7)). The IMLM algorithm to compute the spectral estimate Sy, is a combina-
tion of two MLM estimates and has the form (Lim and Dowla,1985):
1

1 _ 1 (5.8)
Sup (@3,0;00)  Spy (@7,0:)

Simr (@), 0;0,B) =

where at frequency (®;,w,), Sy (@,,w,;0) represents the MLM spectral estimate based
on all the known correlation points for the region a (Eqn. (5.4)). And Sy (@;,0;B)

represents the MLM spectral estimate given on the region B where B is a subset of a.

1
Sup (@1,0:B) = —5——— (5.9)
eg Ry’ eg

Lim and Dowla proved that the resulting S;y (wy,0,;0,B) is always non-negative when-
ever B3 is a subset of a.

To illustrate the performance of the IMLM discussed above, we present one
example. Consider a single channel 2-D random process x (n,n;) consisting of two-
sinusoids in white noise w (n,n3) as given in Eqn. (2.56) with the same parameters. The
correlation matrix is developed from these rew. Jata. Region a is taken to be the rec-
tangular region (=P ,,—P,)< (i) S(P,P,) where P, and P, are chosen to be
P,=P,=3. Region B is a subset of & and formed from region & by removing the point
(P|.P,) from the filter support. Figure 5.1a shows the result of MLM and Fig. 5.1b
shows the result of IMLM. It is clear, and in fact not surprising, that the IMLM has

significantly better resolution properties than the MLM.
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C. CROSS SPECTRUM ML ESTIMATION TECHNIQUE

The MLM as originally developed applies to multidimensional signals but computes
only the autospectrum of a single m-D data set. Subsequent efforts were made by Bag-
geroer (1975), and Lagunas er al (1985) separately, to estimate the cross spectrum
between two data sets. In their methods each channel is treated separately. We refer to
this method as the cross spectrum procedure. Our goal is to apply these methods to the
2-D case and compare the experimental results with the general solution given in the next
section.

In this section, we review the cross spectrum procedure as it would apply to two 2-D
random processes before describing our more general extension of the ML spectrum esti-
mation technique to the multichannel case.

The problem of obtaining a cross spectral estimate for two stationary random
processes x 1(n1,n7) and x,(nq,n5) with zero means as developed in Baggeroer (1975)
and Lagunas et al (1985) is based on the design of two narrow-band FIR filters
H (w;,%,) and H,(w,,0,) centered at the same frequency (o{®,w{?).

If the input to H,(w;,0,) and H ,(w,,0,) are x;(n,,n,) and x,(n,n,) respectively,
then the outputs y(n,n;) and y,(n,,n,) should contain the spectral components at
(0)1(0),(050)) and minimize the effects of spectral components at other frequencies. Let the

filter outputs be given by

o

P

Yz(npnz)=[ao‘3’ (5.11)

o
where x; and x, are vectors of the signal values x,(n ;=i ,n,—i;) and x5(n =i ,,n,—i5) for
(iy,ip)ea and all and a$? represent the filter coefficient vectors in the region of support
o for the filters H | and H ,.

Capon (1969) has shown that the resulting filter coefficients for the x, and x, random

processes can be written in the following form:
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Rﬁle]
ald = [ o (5.12)

and

R???.l €a
al? = —[—-]— (5.13)

ec:T R7:-21 ea.]

where R;; and Ry, represent the correlation matrices of the two random processes

x, and x,, respectively, and e, is defined by Eqn. (5.5). Then the cross power estimate is
taken to be

Qrwe o, s
RS (I

-

L

o

S 12(0y,09;00) = E [)’1(’11,’!2) yaln 1,"2)] =

!

(5.14) 3

T

1 2

= [ac(x )] Rppay” o

where g.
Ry, =E|x, x] 5.15 ]
12=E[X1 X (5.15)
:
If Eqns. (5.12) and (5.13) are substituted in Eqn. (5.14), the cross spectrum power esti- 7
. . L.
mate can finally be written in the form 3
T -l -1 :":'I
e Rij R;;R;; e ]
S 12(0y o) = +— - (5.16) 8
[eur R{il ea} {ear RZ_Z‘ eu} ‘. i

This is the cross spectrum procedure. ‘._'-:
14
A

D. DEVELOPMENT OF MULTICHANNEL 2-D MLM '
In this section we descnbe a more general extension of the ML M spectral estimanon \?
procedure to the M-channel case. In this case the all components of the spectral matnix 3
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A A :

[S11(@y,03,0) §12(®,09;0) . . . Sy (©,050)]
S21(0,05;0) Spp(wy,mya) . . . So(w),wya)

SML ((‘)1’0)2;(1) = (5.17;
Sp1(01,02,0) Spr2(0y,05a) . . . Spyp (0),05,0)

are computed at once.
Suppose we are given samples of a 2-D multichannel random process x(n ;,n) over
some region of the plane. This signal is to be processed by a multichannel FIR nar-

rowband filter to obtain an estimate of the power matrix at frequency (w{m.wém). The

u . . .
output y(n,n,) of this filter is given by :
LY
- _ T
= Y(nl.nz)— Z ZAk‘kIX(nl—kl,nz—k:) (518\
(ki ke a
"
" where a represents the region of support and Ay ;, are M xM matrix coefficients. Assume
- that the input to the filter is a complex sinusoid given by
s
. (O )
E X(n,.nq) =ce @M el (519
- where ¢ is constant. We want to choose the filter weights. A, , . such that the tlter
i passes the signal in each channel with zero phase and unit gain and there 18 no cross cou-
. pling. Thatis. we require
g & 0 - Ch 4 -
R vinpn=ce T T RINIE

. - n ! .
or equivalentiy that the frequency response Hiw, .. ) satisties

(AN N oo »u)i"t~
. N = ¥ P - - 3y
Hw o= TV A e =1 S h
L orya
4
- where Tis the oMM Gdentuny matne Thisconstraint sbgn S 200 can be expressed as A
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PPN S,

P

1=E,"TA, (5.22)

where E is the block matrix of complex sinusoids defined by the direct product

Eq=e4 X1 (5.23)
where
= Col [ e}(m”ll * 0‘)2"2)} (n.nEQ (524)

and A, represents the correspondingly-ordered block matrix of filter coefficients. The
filter output power matrix is given by
P=E{y(n1.n2)yr(n1,n2)] = Au.TRu AG (525)
where
Ry = E[xa xaT] (5.26)

and x4 1s the ordered vector of the given samples. The MLM spectral estimate is defined
as the power matrix of the filter that minimizes (5.25) subject to the constraint (5.22).

The general solution to this problem which yields the optimal set of filter coefficients

. -1
Ag = [R;lsc} [Ea T Ra'lEa] (5.27)

If this 1s substituted in Eqn. (5.25) the spectral estimate can be written as
T ' -1
SHL ((Dl.(l):;a) = [EG RG_IEG] (5 28)

To show the specitic form of this result for a particular case, suppose the filter has

rectangiar support of order (P (.P,). Then the matrix A is defined by:
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Ag=| (5.29)

A sss X

Lo

Ap,

e -

where

.

Aoy
Ag.yy
A =] (5.30)

AR oY)

NOCHE b

LA(i-Pz)

C s
Sl

-

and each submatrix A; ;) is given by

PN g
At S5

Taoo(ig) aglig) . . . agy@.j))
aij) ap(Jg) ... apn.j)

Sr Ay

1L

DR

"
o

_ 5.31
Aij= >-31)

7
RN
o

aMo(i,j) aMl(i,j) N aMM(l,])

- -

The matrix of complex exponentials E, is now defined by the Kronecker product

N3 4

PRSI

o aa

.
)
0"

Eg=(e;®e) X1 (5.32)

» "l"\‘

where e; and e, are given by

P 4

Al

4
R Il hd
W o

DI
AR
¥ &

b
-

<
e
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e=| . (5.33)

XX LR

ﬁ
“\
3
8
o

s
Y

and

VAL

&
A

. E.
1

~
(]
&
-
v 4

©
ot

(5.34)

P
-~

€=

l&!'.

-

-
A
-

iP
e’ 20)2J

Also the ordered vector X, given by Eqn. (5.26) can be written as

»
[ )
PN S

xXg=| - (5.35)

o .
L
[

LAgA

-

"
?-
o

Y

with

Pl
%

o~

x(ny~p.ny) |
x(ny-p,ny-1)
¥ = . (5.36)

. I

- .
e
Y

B |

4

x(" 1=P.n Z—P 2)

T L

The matrix Ry in this case has the specific form

P s
5y

4
LY

s

L5719y
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'RO) RC1  ...REPy 7
R(1) RO ...R(P+l)

. Ry=| - (5.37)

{ LR(P‘) R(P,-1) ... RO

where

R(*,0) Rk-1) ...RGEk<~-Pp ]
Rk,) R(*0) ...Rk~Pgl)

Rty =| (5.38)

.‘ LR(k’PZ) RkPy-1) ... R(k)0)

-

and each submatrix R(k /) is the 2-D (MxM) matrix correlation function.

In order to check the performance of this technique, two different examples are con-
sidered here and the results are compared with the cross spectrum ML estimate given in
the previous section.

In the first example, we compare the results of autospectrum estimation using the
single channel MLLM and the results of cross spectrum estimation between two 2-D data
sets obtained by applying the cross spectrum procedure to the results of the multichannel
MLM developed here. Two data records representing the two channels are given by

Channel (1):
L
x1(nyng) = F cos(n ;1+nyW0;0) + wy(ny,ny) (5.392)
i=1
Channel (2) :
L
Xo(nyng) = 3 cos(n ;3+n 04+ ¢; ) + wo(ny,ny) (5.39b)

i=l

where w;(n,n,) and wy(n,n,) are zero mean independent white noise signals and L
represents the number of sinusoids. Spectrum estimation results are given for a dataset

size of 64x64 and rectangular support with P, =P,=5. We assume L=2, with
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“’11=0)12='§. 0)21=0>12=§-, w13=0)14=3-, 0)23=(024=-3—, ¢,=1.5 radians, and ¢,=0.5 radi-

ans. Fig. 5.2 shows the autospectrum estimate of the first and second channels using the
single channel MLLM and Fig. 5.3 shows the autospectrum (S;,,5,;) components of the
spectral matrix from the multichannel MLM. Fig. 5.4 shows the cross spectrum estima-
tion results, amplitude and phase, using the cross spectrum procedure while Fig. 5.5
shows the results of the cross spectrum component for the multichannel MLM. The
estimated phase at the corresponding peaks for the cross spectrum method are ¢; = 1.480
radians, and ¢, = 0.530 radians while they are 1.481 and 0.529 radians in case of mul-
tichannel MLM respectively. The actual values are ¢; = 1.5 radians and ¢, = 0.5 radians.
The results for this example as in others where the noise in the two channels is uncorre-
lated, were found to be very close.

In the second example we make two changes to the data. First the location of the

. . T 2r T
sinusoids are move closer to each other (cou=(012=—2-, Wy 1=Wpy=——, W13=Wy4=—, and

5 2’

0)23=(024=25—n). Secondly the noise in the two channels was made highly correlated with

1 0.
L.=109 1

and zero mean.? Fig. 5.6 shows the cross spectrum estimation results using the cross

covariance

spectrum procedure while Fig. 5.7 shows the S, component using multichannel MLM.

The peaks are resolved more sharply in Fig. 5.7 than in Fig. 5.6.

E. IMPROVED MLM POWER SPECTRAL ESTIMATION

The MLM has significantly poorer resolution than the AR method, but it is widely
used in practice due to its relative simplicity. As stated earlier Lim and Dowla (1983)
have proposed an improvement to the MLM method based on the relation that exists

between the MLM and AR spectrum estimation methods (Dowla and Lim,1984). Their

Observe that the noise is still "white” noise since it is spatially uncorrelated.
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Fig. 5.2 Autospectrum estimation (cross spectrum procedure).
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tion (cross spectrum procedure).
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idea can be applied to our procedure for estimation of the multichannel 2-D spectral
matrix.
Let the points in the region a be divided into two subsets f and a—f. Then the

"improved" maximum likelihood method (IMLM) for spectral matrix estimation is
defined by

-1
S ©1,050.8) = [ Sk (01,050) - Sigk @,,0:P) (5.40)

where S, (0,,0,;a) represents the 2-D multichannel MLM spectral estimate based on
all the known correlation points in the region & (see Eqn. (5.28)), and S,z (@;,05;B) is

the ML spectral matrix estimates using support region B

-1
SML (0)1,0)2;B) = [EB‘T.RB_I.EB] (5.41)

The IMLM of Lim and Dowla has demonstrated higher resolution properties than the
MLM for single channel 2-D data. This property will be seen to carry over to the estima-

tion of the entire spectral matrix using (5.40). Three different examples are considered
here.

1. Example 1

In this example we carried out an experiment to compare the autospectra and the
amplitude and phase of cross spectra of the MLM and IMLM techniques. In the two
methods we considered a 2-D two-channel real process x(n ,n,) consisting of sinusoids
buried in white noise. The two data records which represent the two channels are given
by Eqn. (5.39) with the same parameters cited following that equation. The results are
given for P =P ,=4. Fig. 5.8 shows the auto- and cross spectra results of the MLM
method. Fig. 5.9 shows the results of IMLM. This example shows the higher resolution
properties of the IMLM relative to the MLM. The values of the phase of the cross spec-
tra, at the peak locations for each of the two techniques, are close to each other and very
close to the actual values.

We have considered many similar examples with different choices of the model

order and the peak positions. In all cases, we observed that IMLM provides significantly
better resolution than MLLM.
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Fig. 5.8 Estimation of two sinusoids (MLM). (cont'd)
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\' 2. Example2 ;
N The main purpose of this experiment is to identify an unknown system o
" H (®,,0,) by applying multichannel 2-D MLM and IMLM techniques. In this example

; the first channel is a zero mean white noise, while the second channel is the output of the ‘
" unknown 2-D system which is driven by the noise in the first channel. We consider here

w the specific example given by Eqn. (4.28) with the same parameters. 3

Fig. 5.10a shows the amplitude and phase of the estimated frequency response ]
¢ applying the IMLM technique while Fig. 5.10b shows the results using the MLM tech- 3
! nique. The two results are similar to each other in this specific example. However com-

paring these results with the true frequency response given in Fig. 4.27a we find that the

IMLM results are closer to the true results than the MLM.

3. Example 3
The third test example is concerned with estimation of a 2-D linear phase. The

VALY S Y

signal in the first channel consists of white noise, and the signal in the second channel is
a delayed version of the first channel. The specific example shown here is given by Eqn.
55 (4.24) with the same parameters.

' In this experiment the delay between the two channels was measured by

estimating the phase of the cross spectrum. The results of the spectral matrix com-

‘_: ponents of the MLLM and the IMLM are shown in Figs. 5.11 and 5.12 respectively. The
results were found to be very close to each other. The autospectra and magnitude of
cross spectra are constants. The phase of the cross spectrum is linear with slope
.~: corresponding to d,=d =1 as we expect.

PR AR

F. NUMERICAL EXAMPLE AND COMPARISON RESULTS

In order to compare the resolution and phase estimation characteristics of the AR,

PO

MLM and IMLM, we carried out additional experiments to compare the autospectra and .‘
< the amplitude and phase of cross spectra of the three techniques. In all three methods, we -
% assumed a 2-D two channel random process with the data for each channel consisting of 3
, sinusoids buried in white noise. We assumed three sinusoids with the position of the

9 peaks as shown in Fig. 4.13 and with the same parameters.
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Fig. 5.11 Linear phase estimation using MLM.
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Fig. 5.12 Linear phase estimation using IMLM.
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Fig. 5.13 shows the auto and cross spectra results of the MLM method. Fig. 5.14
shows the results of IMLM. The dataset size is (64x64) for each channel and the order of
the model is four. The results can be compared to those obtained in Chapter IV, (see Fig.

4.14). Such a comparison results shows the high resolution properties of the AR relative
to the MLM. It also shows that IMLLM has resolution superior to the MLM, and that it is
very close to that of the AR. The values of the phase estimate of the cross spectra, for
each of the three techniques, are close to each other and very close to the actual values.

We have considered many different variations of this example with different choices
of the model order, number of sinusoids and peak positions. The results show a con-
sistently higher reso.ation for AR and IMLM than for MLM.

In the remaining part of this section we measure and compare the resolution proper-
tes of the three methods quantitatively. The resolution properties are studied both as a
function of the signal to noise ratio (SNR) and as a function of the order of the model.

For the following studies, a two channel 2-D random process is again used. Each
channel has two sinusoids buried in white noise in the form of Eqn. (5.39). The criterion
for resolution, as defined before in Chapter IV, is the minimum frequency separation
above which two sinusvids are not resolved. Sinusoids are considered to be resolved if
there are two peaks in the spectrum with a valley between them. The smaller the value
of the separation, the better the resolution.

The experimental procedure is as follows. The location of one sinusoid is kept con-
stant, then the position of the peak of second sinusoid is changed slightly. Starting with
the frequency of the second sinusoid very close to the first, we find the spectrum of the
two sinusoids. If the two peaks appear as one peak we move the second sinusoid slightly
away from the first one and recomput the spectrum. We repeat this procedure until we

obtain a valley between the two peaks.

1. Effect of Model Order on Resolution
In order to compare the resolution characteristics of the NSHP, MLM, and
IMLM quantitatively, the SNR is kept constant, SNR = 0 dB, and the model order is

changed. Fig. 5.15 summarizes the cross spectrum resolution performance of the three

methods as a function of the order of the model. As shown in the figure, the resolution
increases with increasing model order. The NSHP AR model method has the highest
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Fig. 5.14 Estimation of three sinusoids (IMLM). (cont’d)
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: resolution, while the MLM has the poorest resolution. The resolution of the IMLM is
A close to that of the NSHP.

° Table 5.1 shows the phase estimate of the cross spectrum. It is clear from the
b table that, all three methods produce good phase estimates that are close to the true
-

- values.

3
‘ 2. Effect of SNR on Resolution

r .

- The experiment just described was carried out again except that this time the
’ model order was kept constant (equal to 3) and the SNR was changed. Fig. 5.16 sum-
. marizes the cross spectrum resolution performance of the NSHP, IMLM, and MLM esti-
c mates as a function of the SNR. The results show clearly that IMLM has a resolution
o

! which is much better than the MLLM and quite close to but not as good as the NSHP AR
. method.

v The phase estimation results for the cross spectrum are shown in Table 5.2 . We
' have a good phase estimate for SNRs greater than -6 dB, and a poor estimate for SNRs
‘ less than -6 dB.
1Y
.

N

':.

. 217

o4 g
$ :\
;‘ N 4 -r,ha".r__-r‘ _"J'_"f J' S -.'.r‘-' a‘\. o ( - 4' R TR S N ARSI St Syt gt S Ot S T T P Rt T Sl Lt T

R A Y e A e S T S A, Ry ~. \ \ NN \



TABLE 5.1 CROSS SPECTRUM PHASE ESTIMATION AS A

FUNCTION OF MODEL ORDER

(a) The estimated values of ¢,
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TABLE 5.2 SNR EFFECT ON THE ESTIMATED PHASE

(a) ¢, Estimation

Phase Estimation (¢;)
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VI. APPLICATIONS OF SPECTRAL ANALYSIS

MODELS TO IMAGE CODING

A. INTRODUCTION

Image coding is a fairly new subject which has been practiced over the last 15 years.
Many efforts have been made towards the implementation of digital image coding.
Image coding applications can be found in television and facsimile transmission of
printed materials and in the continuous source of weather photographs and earth resource
pictures sent to earth by satellites. In addition applications can be found in the military
field in areas such as the control of remotely piloted vehicles.

Efficient coding for these application can provide a substantial decrease in the
transmission costs. As an example, broadcast digitized television signals need about 100
Mb/s which is a very high data rate. Efficient coding can bring this requirement down to
a few hundred kb/s. The main purpose of coding therefore, is to decrease the transmitted
bit rate, but to maintain a certain acceptable level of fidelity (Pratt,1978; Gibson,1980;
Goodman and Gersho,1974; Jain,1981; Maragos et al,1984; Netravali and Limb,1980;
Jayant,1974,1976; Jayant and Noll, 1984; Zetterberg,1982; Makhoul,1975; Linde et
al,1980; Gray,1982; Gray and Linde,1984; Cuperman,1985; Hang and Woods,1985;
Goldberg,1986). The required image quality and intelligibility vary widely depending on
the application. For example, in remotely piloted vehicle applications, the image intelli-
gibility is more important than the quality, while in applications such as digital televi-
sion, high quality is essential.

An overall image coding and transmission scheme is shown in Fig. 6.1. The digital
image is encoded by an image coder. The output of the image coder is a sequence of bits
which represents the source image. The channel coder transforms this sequence of bits to
a form suitable for transmission over a communication channel by using the modulator
which maps the code outputs 1 and O into analog signals. The demodulator at the
receiving side uses an appropriate decision threshold to interpret received signals as
corresponding to either 1 or 0. The image decoder reconstructs the image from this

sequence of bits.
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The image coder can be thought of as having three stages. The initial stage of image

coding provides a good representation of the signal. This operation is generally reversi-
ble. The type of coding used in this stage can be classified into three categories, namely,
waveform coders, transform coders, and image model coders. In the second stage the
accuracy of representation is reduced, but, in a way that maintains the required image
quality. This stage is called quantization. The quantization levels and the corresponding
receiver decision levels are system parameters that must be determined. Two types of
quantizers are used, namely scalar and vector quantizers. Both types of quantization are
irreversible. The last stage in which any redundancy in the signal is removed is called
codeword assignment. Two types of codewords can be used, namely equal-length code-
words and variable-length codewords. In the case of equal-length codewords, the bit rate
of individual signal values and the average bit rate are the same, while, in the case of
variable-length codewords they are not. In the latter case, different bit rates result for
different signal values. As an example, the shortest codeword may correspond to the
most probable signal value, i.e. that which occurs most frequently. The longest code-
word may correspond to the least probable signal value. The average bit rate may
increase in this case. The codeword assignment operation is reversible.

In this chapter the 2-D spectral analysis models developed earlier are applied to the
coding of color images. We are concerned here with predictive coding, i.e. linear pred-
iction followed by quantization of the prediction error. Two algorithms are compared
initially. In the first, the whole frame of the image is divided into subframes and the
predictor coefficients are computed separately for each. In the second, predictor
coefficients are obtained for the whole frame of the image. Both of these methods have
the disadvantage that the linear prediction coefficient matrices must be computed in real
time and transmitted to the receiver as side information. This significantly increases com-
plexity of the coding system. As an alternative we consider using a fixed set of predic-
tion matrices, i.c. ones that do not depend on the specific image being coded. In this way
both receiver and transmitter have the linear prediction matrices and no side information
has to be transmitted. Such prediction matrices can be generated by various averaging
methods discussed in the chapter. We compare the results of this coding to that resulting

from the previous two methods.
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B. PREDICTIVE CODING

Predictive coding, (also known as differential pulse code modulation (DPCM))
involves 2-D linear prediction applied to the image and transmission of the quantzed
error residuals. The prediction of the sample to be encoded in predictive coding is gen-
erated from the previously coded samples (Jayant,1974; Netravali et al,1980). For our
case we will be dealing with the three (red, green, and blue) components of a color image
so the prediction process is multichannel 2-D linear prediction. The vector-valued error
e(n,,n,) that is the difference between the predicted value and the actual value of the
color element x(n,n,) is quantized into one of a number of given discrete levels. These
levels are assigned to codewords which may be fixed or variable depending on the type
of coding used. The encoded information is then transmitted through the channel to the
receiver.

The signal-to-noise ratio (SNR) for a given bit rate is actually increased by
representing the coded input signal in terms of the prediction error samples. In this case
the predictive gain can be written as:

-1

G=E [x(n,,n,) x (n l,nzi {E[e(nhn?) eT(nl,n;i} (6.1)

Note that G is an MxM matrix where M represents the number of 2-D channels (M=3 for
the color images).

Fig. 6.2 shows the general predictive coding system. Fig. 6.2(a) shows the
transmitter part of the system while Fig. 6.2(b) shows the receiver part. Since our con-
cern here is with the image encoding and decoding problem, we have omitted the modu-
lator and the demodulator from Fig. 6.2. It is clear from the figure that the predictive
coder has three main components, namely the linear predictor, the quantizer, and the
channel encoder. In fact the linear predictor is the main part of predictive coding system
and the complexity of this system depends on the type of prediction algorithm used.

The basic predictive coding equations can be written as follows

e(ny,ny =x(nyny) ~x(ny,ny) (6 2a)

e (nyny) =e(ny,ny) —qlnyny) (6.2b)
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X(nynp) =X(n,ng) +e,(ny,ny) (6.2c)
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where e, (n,,n9) represents the quantized prediction error of the color image, q(n,n;)

represents the quantization error, X(n 1,n,) is the predictive coding approximation of the
original color input signal, and X(n ,n,) is the predicted value of X(n,,n,). This notation

is different from that used in Chapters II to IV where X not x represented the predicted

value. We use the present notation to be more consistent with what is conventional in the

literature for image coding. Note that here X is an approximation to x and X is the linear
predicted value based on .

A predictive coding system, which is easier to construct than the predictive coding
system just described, is shown in Fig. 6.3. Gibson (1980) called it the prediction error
coder to differentiate it from the previous system. The disadvantage of the prediction

L 4

error coder is the accumulation of quantization noise at the receiver. The reason for that ‘;
. . . . . . .
can be explained as follows. The same linear predictor is used in the transmitter and |
receiver but the input signal to each linear predictor is not the same. In the transmitter :f:
the input signal is the actual signal to be transmitted while in the receiver the input signal o
to the linear predictor is the quantized version. Because of this difference and the positive v
feedback in the receiver (as shown in Fig. 6.3), quantization noise tends to accumulate. F
In the usual DPCM system shown in Fig. 6.2, both transmitter and receiver use the same v
» 3 . 3 3 . 3 (
quantized values as input to the linear predictor. Thus quantization noise does not <
accumulate. C
“~
~
1. Linear Prediction of Color Images N
-
The most important part of the prediction coding system is the linear predictor. N
. - I3 . . . '\
Linear prediction for multichannel 2-D random processes was developed and studied in X
Chapter III. Color images, as we mentioned before, can be considered as 3-channel 2-D .
random processes. If x(n,n,) are a set of color picture elements, a linear prediction for
the (n,n 2)"' color element using previous elements can be written as
)
)’('(n L’l 2)= - Z “‘ 2X(n 1 —i 121 2) :-."
(i ent (6.3) -
(i1 (0.0) -
g o)
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where o is the region of support for the prediction filter and X" represents the prediction '.::
-~
based on the true image values. The filter coefficients A; ;, can be obtained by minimiz- ::.-
ing the mean-square prediction error and solving a set of Normal equations in the form of b
RA=S (6.4) o
as described in detail in Chapter III. In the above analysis we neglect the effect of quanti- ‘ ..
zation in the predictive coding system at the transmitter. Since the quantization error is ' -
small, so that "-:..':
x(ny.ny) = k(ny,np) (6.5) -
the resulting filter coefficients are still approximately optimal. In the usual DPCM :v .
Ld
encoder of Fig. 6.2 the linear prediction of the present sample X(n,n,) is done by using 1:
\ -
the past encoded estimated sample values. N
- T = . . N
X(nyny)=- Y A k(- La—ia) oy
(i )ect (6.6) e
(i1.i2(0,0) §:’.
¥
Then the prediction error of the color image i X
e(ny,ny) =x(ny,ny) —X(ny,ny) 6.7) ’x
N
is quantized and transmitted. N
J In a practical situation the intensity image possesses a nonzero mean value ;
which is referred to as a bias. Maragos et al (1984) state three different ways to handle \
this bias. The first way is by estimating the bias and representing it in the difference '.::l'
equation. This method is called true bias linear prediction. A second method is to esti- '.:::
mate the local mean of the signal, subtract it from the original signal, then use the ordi- !
nary Normal equations to get the filter coefficients. This approach is called local mean :_'_"'
linear prediction. Finally one can decide not to subtract any estimate of the bias and sim- -_'..:‘
ply solve the Normal equations. We refer to this technique as straight linear prediction. '-\

We use the second method in our experiments.




.‘*
"
f:’é 2. Image Quantization
~ The signal values to be transmitted, (i.e. the prediction error values), are origi-
L nally developed as continuous-amplitude analog quantities. To deal with these analog
y quantities through a digital system we have to represent each signal value by an integer
0 E number proportional to the amplitude of the analog signal. Hence the analog signal is
"‘ sampled and a discrete representation of the samples is produced. This conversion pro-
_ _. cess is called quantization. As mentioned earlier, there are two types of quantization,
E:'. namely scalar quantization and vector quantization. Our concern here with scalar quanti-
.‘ zation. Vector quantization is addressed briefly in Appendix G. .
For the development of the scalar quantization technique, let x represent the \
;" amplitude of the scalar signal sample which may represent a value for the prediction
y : error (pixel intensity). Then scalar quantization can be interpreted as a method of
‘-, representing x with a finite number of bits corresponding to one of the J given levels of
~ the signal. The quantized value X can be expressed as
3 =0 () (6.8) t
\ where Q represents the quantization operation. The quantization problem is to specify a
N set of decision levels d; and a set of reconstruction levels 7; such that if x falls between |
i::: dj_yand d;, itis mapped to the reconstruction level r;. If the reconstruction levels and ;
f: decision levels are uniformly spaced we refer to this method as uniform quantization. )
v In general the decision and reconstruction levels are chosen to minimize the
‘ ., average distortion D defined by
- X
‘ : D= E[d(x ,x‘)] (6.9)
:’; where d is a measure of the local distortion at each pixel. For example in the case of a
3_.: mean-square error quantization criteria, the error eg can be expressed as
- eg =% -x (6.10)
- and 4 is defined as
= 2
5 d=eQ2=[x~-x] (6.11)
_ The average distortion can then be written in the form (Pratt,1978)
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J-1 2

D=Y | [x-rj] p(x)dx (6.12)
j=0 4,

where J represents the number of quantization levels and p (x) is the probability density

function of the signal x. The optimum values of the reconstruction levels and the deci-

sion levels can be determined by minimizing D with respect to r; and d;. If in the case
of Eqn. (6.12) we require

aD _
ark =0

oD _
2d, =0 (6.13b)

for all values of k. Then we can obtain the following results

dkd

pr(x)dx
d;

dkﬂ

[px)ax
a4

Ty =

ry+r
d, = _"T"i (6.15)

We see from the above two equations that the reconstruction level r; is the centroid of
p (x) over the range d, <x<d,,; and the decision level d; is the mid-point between two
adjacent reconstruction levels.

Solving the two equations (6.14) and (6.15) is a non-linear problem. Max
(1960) solved the problem for the cases of uniform, Gaussian, Laplacian, and Rayleigh
densities. The results are put in tables (Pratt,1978; Jayant and Noll,1984) and we refer to
this quantizer as the Max quantizer.

Fig. 6.4 represents a specific example of the uniform quantizer for two and three
levels. Fig. 6.4(a) represents a two-level quantizer with step size A while :1g. 6.4(b)
represents the three-level quantizer with threshold levels d =d (1),d (2) and reconstruction
levels r=r(1),r (2),r (3).
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(a) Characteristics of two-level quantizer
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(b) Characteristics of three-level quantizer
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Fig. 6.4 Characteristics of uniform quantizer.
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Nonuniform quantization has been considered as another type of quantization,
(Jayant,1974). In this case, as we go further from the center of the quantizer, the step
size increases. The advantage of this quantizer is that a reduction in bit rate for a given
quality of encoding can usually be obtained.

A more recent type of scalar quantizer is the adaptive quantizer. Here the step
size is modified according to the status of the quantizer memory. In particular the present
step size is multiplied by a factor depending on previous knowledge about the step size
used for the past samples. (Jayant,1974)

Poor design of the quantizer used in predictive coding can cause different types
of degradation, such as granular noise, edge busyness, and slope overload. These effects
are illustrated in Fig. 6.5 (Netravali et al,1980). Granular noise is caused by the coarse-
ness of the minimum quantizer step in the coding of a signal which has a very slow
change in the shape of its waveform. Slope overload distortion appears when the max-
imum value of the quantizer step is not enough to follow a suddenly and rapidly chang-
ing input. Edge busyness is a distortion specific to image coding that occurs when there
is a gradual change in the contrast of the edges. In this case the output of the quantizer
oscillates between two levels around the actual value of the signal. This oscillation may
cause a change from one line to the other which gives the appearance of a "busy edge".
(Netravali and Limb,1980)

The characteristics and the requirements on a given quantizer depend on the
type of application. As an example, the requirements on the quantizer in a moving area
of an image is completely different from the requirements for the background areas. In
case of background a low granular noise effect is required and this can be achieved by
designing a fine quantizer (small step size). In the case of moving areas, slope overload
distortion must be avoided. To satisfy this we have to choose a coarse quantizer with
high dynamic range.

In general a tradeoff between coarse and fine quantizers must be determined. A
fine quantizer will generate the slope overload distortion which can be seen as an unclear

sharp edge; while a coarse quantizer may produce the granular noise and edge busyness
discussed above.
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Fig. 6.5 Illustration of waveform coding by predictive coding
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(Netravali and Limb.1980).
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Various measures have been developed to measure the overall performance of a
predictive coder. The most widely used measures are the normalized mean square error
(NMSE) and the signal-to-noise ratio (SNR). These can be defined in case of multichan-

nel 2-D random processes as follows:

-1
NMSE = Covar [x(n ) —X(ny,n 2)] {Covar [x(n 1N 2)] } (6.16)

SNR (dB) =10 log [NMSE) -1 6.17)

where Covar [ . ] represents the covariance matrix for the quantity. Note that the NMSE
and the SNR are in the form of matrices with dimension MxM. It is known that the SNR
is not a perfect measurement of image quality. There are cases, as we will see in the next
section, where the coder that has the highest value of the SNR generates a reconstructed
signal which is subjectively lower in quality than one generated by a lower SNR coder
(Gibson,1980). The reason for that lies in the dependence of the quality on the amplitude
of the quantization noise and not on its power (see Eqn. (6.16)). However the SNR
defined by Eqn. (6.17) is still the measure most widely used because of its computational

simplicity and ease of interpretation.

3. Side Information

In addition to quantizing and transmitting the residual of the color image, we
have to also quantize and transmit the predictor filter coefficients. We refer to this as
side information. The size of the predictor coefficient matrix of the color image depends
on the model order used. As an example a first order NSHP model has 12 (matrix)
parameters, while an eighth order NSHP model has 381 such parameters. These numbers
of parameters are very large compared to the corresponding number of parameters for the
single channel 2-D case.

The size of the predictive filter is of concern not only because of the amount of
side information that needs to be transmitted but also because of the real time computa-
tion requirement. For predictive coding systems a set of Normal equations needs to be
solved to get the predictor parameters. This operation uses the image data itself and is
done in real time. This significantly slows the predictive coding process and increases

the complexity of the coding system.
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In this research we considered a possible way to overcome the disadvantage of
the real time computation and transmission of side information. The idea is to select a
fixed set of predictor parameters and apply it directly to the data. In this case no real
time computations are required, and there is no need to transmit the side information.
The criteria for selecting the fixed predictor parameters will be explained in detail in the

next section.

C. CODING EXPERIMENTS WITH COLOR IMAGES

In this work a color image is represented by its red, green, and blue (RGB) com-
ponents. An alternative representation that may have some advantages is in terms of
luminance-chrominance (YIQ) components. However this is not explored here.

The original pictures used in this thesis are 256x256 pixels in size but in order to stay
within our computational budget we selected portions of the original pictures with sizes
of 128x128 pixels as shown in Fig. 6.6. A variety of pictures used in the experiments are
shown in the figure.

The linear predictive models developed in this thesis were applied to the coding of
these color images. Two different procedures were used initially. In the first procedure
the total frame of the image is divided into four subframes with 64x64 pixels each. The

predictor coefficients and the error covariance matrix are obtained separately for each

subframe by solving a set of Normal equations. The different linear predictive filters
derived are then applied to the different subframes. The residual error covariance matrix
and the set of filter coefficients for each subframe are coded and transmitted. Since there
is a specific filter for each subframe, a discontinuity appears at the subframe edges. To
overcome this effect we overlap the subframes by four pixels and average the results in
the overlapped regions.

In the second procedure, the whole frame of the image is taken, and the Normal
equations are solved to get only one set of predictor matrices. This single error covari-
ance matrix and the set of filter coefficients for the whole frame are coded and transmit-
ted along with the residuals as in the first procedure.

Note that in both of these procedures the predictor matrices must be calculated in

real time. In the first case the real time calculation is done for each subframe and in the
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second case it is done for the whole frame. These real time computations and the need to N
send results as side information, greatly increase the complexity of the coding system. E -
As an alternative we considered two new procedures which overcome the disadvan- )
tages of the previous ones. In the first of these new procedures a fixed set of predictor :
matrices is used. We refer to this in the experiments as the third procedure. The fixed "E
set of predictor matrices is chosen on the basis of the following criteria. The filter ;:Z"
parameters for multichannel 2-D linear prediction are determined for each of the dif- o
ferent images separately. We use all the original pictures shown in Fig. 6.6 except the
jelly bean picture of Fig. 6.6c. A new fixed set of parameters is obtained by averaging
the parameters corresponding to the different images. Then this new set is applied in our . ‘
process. i’
In the second new procedure a fixed autocorrelation matrix is generated by averaging ::
a group of autocorrelation matrices estimated from the same data, i.e. all images except \:,'
the jelly beans. The predictor parameters are developed by solving a set of Normal equa- o,
tions involving the fixed average autocorrelation matrix. As in the previous case the resi- A f
dual is quantized and sent to the receiver and there is no need to send any side informa- ﬁ
. tion. We refer to this in the experiments as the fourth procedure. i 7
For purposes of the coding experiments two images are used. The first is the lady’s :2;;-
face of Fig. 6.6(a) which is one of the images used to derive the fixed set of prediction :,
parameters. The second is the jelly bean picture of Fig. 6.6(c) which was not included in '_\:
the set of images used to derive the fixed parameters. For each of these images the resi- '
dual is quantized and transmitted. No side information needs to be transmitted and \
this procedure requires no real time computation.
Different experiments are given to show the performance of the third and fourth .
(new) procedures by comparing their results with the results of the first and second (ori- :"
ginal) procedures. Although our experiments here used scalar quantization, the ideas can :
also be applied to the case of vector quantization (see Appendix G). For the scalar quan- '.E
tizer two and three levels of quantization are used. Linear prediction is performed using !
second and third order medels. The SNR measurement defined by Eqn. (6.17) is used as
a measure of the performance of the different predictive coders used in this section. \
3
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1. Predictive Coding With Two-Level Quantizer

In this experiment we used a uniform two-level quantizer with step size A
defined by

where v is a factor controlling the dynamic range of the quantizer (this also has an effect

i on the granular noise and the sharpness of the edges) and o represents the prediction

) error variance. The input output characteristic of this uniform 2-level quantizer is given

in Fig. 6.4a. The behaviour of the quantizer is varied by varying the step size A. A
second order linear predictive filter and a 2-level quantizer with different values of step
sizes is used in this experiment.

Four different step size quantization levels are considered here
(y=1.5,0.7979, 0.7071, and 0.5) starting with a 2-level quantizer with large step size
(y=1.5). Fig. 6.7 shows the results of the four procedures where (a) is the result of using
the first procedure (dividing total frame into four subframes i.e. L=4), (b) is the result of
using the second procedure (using the whole frame i.e. L=1), (c) shows the simulation
results using the third procedure (applying the averaged set of filter coefﬁcientsj, and (d)
is the result of the fourth procedure (averaging the autocorrelation function).

When the reconstructed coded pictures are compared with the original picture
shown in Fig. 6.6a it seems that sharp edges are very clear for all the procedures but
granular noise is apparent in the reconstructed pictures. Note that the alternative pro-
cedures (three and four) produce good coded results which are quite similar to the results
of the first and second procedures.

Error pictures of the four procedures are shown in Fig. 6.8. These are generated
by taking the difference between the original picture and the reconstructed one. Fig. 6.9
shows the error picture for the same procedures but after quantization. Most of the
essential information is retained in the quantized error picture.

Table 6.1 shows the SNR values obtained by applying the four different pro-
cedures, for the red, green, and blue components of the color picture. The SNR of the
_. second procedure is given as the average of the values obtained for the four different sub-

frames. It is clear from the table that the SNR values for the various procedures are close
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to each other. The highest SNR values are obtained for the first procedure but there is
only about a 0.5 dB improvement.

As a second simulation for this example, the step size is given a smaller value
(y=0.7979). This value is taken from the Max table for the Gaussian distribution. Fig.
6.10 shows the corresponding results using the same four procedures. Good results are
obtained for non-edge regions and good sharp edges are also obtained. The SNR
results, which measure the performance of the reconstructed pictures, are given in
Table 6.2. The first procedure gave an improvement of 0.5 dB while the third and
fourth procedures lost 0.5 dB with respect to the second procedure.

Fig. 6.11 and Table 6.3 show the results of choosing ¥ corresponding to a Lapla-
cian distribution (y=0.7071). Qualitatively we get the same results as in the recon-
structed pictures as for Gaussian distribution. However there is a 1 dB improvement in
the SNR.

Finally the results of the last simulation for this experiment are given in Fig.
6.12 and Table 6.4. In this case a smallc. step size is used (y=0.5). In this case the
predictive coding system provides good results in the non-edge regions but the edges are
blurred out as we expect. At the same time there is an improvement of approximately 3
dB in the SNR over the Laplacian case.

To complete this experiment and to check the performance of the new pro-
cedures on a picture that was not in the set used to derive average parameters, the jelly
bean picture (Fig. 6.6c) was tested. For this case a two-level quantizer with y=0.7071
was used. Fig. 6.13 shows the quality of the picture obtained by applying the four dif-
ferent procedures. It is clear that the quality of the reconstructed picture for procedures
three and four is similar to that for the first and second procedures. Table 6.5 shows the
SNR results. The highest SNR appeared for the picture coded by applying the first pro-
cedure. The second, third, and fourth procedures vielded SNR results that are very close.

The foregoing results show that using a “*xed set of prediction parameters yields
good image reconstructions which are close to the results of using real-time computed
filter parameters. Also the variation of the SNR from one procedure to the other is small.

The new procedures cun be applied to anv image outside the training set.
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Fig. 6.10 Coded images (7 = 0.7979).
(a) First procedure (b) Second procedure
(c) Third procedure  (d) Fourth procedure
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TABLE 6.1 SNR FOR CODED IMAGES USING 2-LEVEL

QUANTIZER WITHYy=1.5

Procedure Red Green Blue

First Procedure 16.37 13.44 11.28
Second Procedure | 15.78 13.40 10.61
Third Procedure 15.39 13.20 9.86
Fourth Procedure 15.38 13.20 9.86

TABLE 6.2 SNR FOR CODED IMAGES USING 2-LEVEL
. QUANTIZER WITH y=0.7979

Procedure Red Green Blue

First Procedure 21.85 18.93 16.77
Second Procedure | 21.26 18.88 16.09

Third Procedure 20.87 18.68 15.35
Fourth Procedure 20.87 18.68 15.35
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TABLE 6.3 SNR FOR CODED IMAGES USING 2-LEVEL

'L‘ s‘ .'. ..- .l'

QUANTIZER WITH y=0.7071
Procedure Red | Green | Blue
First Procedure 2290 | 1998 { 17.82
Second Procedure | 22.30 | 19.93 | 17.14
Third Procedure | 21.92 | 19.73 | 16.45
Fourth Procedure | 21.90 | 19.73 | 16.44

TABLE 6.4 SNR FOR CODED IMAGES USING 2-LEVEL

QUANTIZER WITH y=0.5
Procedure Red | Green | Blue
) First Procedure 2591 | 22.99 | 20.83
Second Procedure | 25.32 | 22.94 | 20.15
Third Procedure 2493 | 22.74 | 1941
Fourth Procedure | 24.93 | 22.74 | 19.41

TABLE 6.5 SNR FOR BEAN CODED PICTURE USING 2-LEVEL

QUANTIZER WITH y=0.7071

Procedure Red Green Blue

First Procedure 22.87 | 21.98 | 20.00

Second Procedure | 22.48 | 21.90 19.86
Third Procedure 21.35 | 21.76 | 19.05
Fourth Procedure | 21.35 | 21.76 | 19.05
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In addition a 2-level quantizer is sufficient for these pictures. The bit rate in this case is
reduced from 8 bits to 1 bit per pixel for each color component.

The step size of the quantizer is very important as we mentioned before. A
small step size gave good non-edge results with poor edge sharpness. A large step size
provided sharp edges but granular noise in the non-edge areas. Practically the step size
should depend on the application. Small step sizes can be used when sharp edges are not
important. For sharp edge requirements a large step size should be used.

2. Predictive Coding with a Three-Level Quantizer

The dynamic range of the residual signal may sometimes be too large to be well
handled by a 2-level quantizer. This can lead to excessively large distortion in the recon-
structed pictures. Also in the case of a two-level quantizer it is difficult to control the
granular noise and at the same time keep sharp detail in the edges. Three-level quantiz-
ers attempt to overcome this problem by providing a zero level for small amplitudes of
the residual signal and two other side levels for large amplitudes.

The performance of the color image coding algorithms described earlier has
been studied using a three-level quantizer with input-output characteristics given in Fig.
6.4b. In this figure, let 7 (1)=A, r (3)=—A, d(1)=—d, and d(2)=d. In this case the quan-
tized residual signal can be written in the form

A e(nny)2d
e,(nny))=3 0 —d<e(n,ny)<d (6.19)
-A e(n,ny))s—d

where the reconstruction and decision levels control the dynamic range of the residual

signal.

Two different examples are considered here. In the first example we assume
that A is constant and d = % Fig. 6.14 shows the results of the simulated reconstructed

images using a linear predictive model of the second order and a uniform fixed three-
level quantizer with A=6 and d=3. As in the previous section the four different pro-
cedures for determining linear prediction parameters are applied in this example. The

SNR results are shown in Table 6.6. In the second example we assume a uniform three-
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(a) First procedure
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Fig. 6.15 Coded images using 3-level quantizer and second order
linear predictive model (7 = 3. p = 1.3).
(a) First procedure (b} Second procedure

(c) Third procedure  (d) Fourth procedure
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Fig. 6.16 Coded images using 3-level quantizer and third order
lincar predictive model (4 = 2. p = 1.3).
(a) First procedure (b) Second procedure
(c) Third procedure  (d) Fourth procedure
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TABLE 6.6 SNR FOR CODED IMAGES USING 3-LEVEL
QUANTIZER WITH A=6,d=3

Procedure Red Green | Blue

First Procedure 2297 | 22.23 | 18.32

Second Procedure | 22.64 | 21.16 17.92

Third Procedure 2254 | 2125 | 17.74

Fourth Procedure 22.50 | 21.15 17.68

TABLE 6.7 SNR FOR CODED IMAGES USING 3-LEVEL QUANTIZER
AND SECOND ORDER PREDICTIVE MODEL WITH y=2,p=1.3

Procedure Red Green Blue

First Procedure 19.73 | 18.07 | 16.02

Second Procedure | 19.72 17.16 15.40

Third Procedure 19.45 | 1743 | 15.02

Fourth Procedure 19.38 17.35 14.64

TABLE 6.8 SNR FCR CODED IMAGE USING 3-LEVEL QUANTIZER AND
THIRD ORDER PREDICTIVE MODEL WITH y=2,p=1.3

Procedure Red Green Blue

First Procedure 19.79 18.16 16.39

Second Procedure | 19.76 | 17.11 | 15.33

Third Procedure 19.51 17.43 14.98

Fourth Procedure 19.35 17.39 14.38
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V. CONCLUSIONS

This thesis described model-based methods for spectral estimation of multiple 2-D
signals. Multichannel 2-D power spectral estimation based on AR modeling was studied
extensively. We presented the multichannel models and gave an extension of the
Jackson-Chien procedure for combining two quadrant-based estimates into a single com-
bined estimate for the spectral matrix. The latter was called the combined quadrant(CQ)
method. We further presented a method for estimation of the model parameters directly
from the data. We also proposed a measure for comparing the closeness of two spectral
estimates based on the divergence. Forward and backward NSHP models were shown to
produce different estimates for the spectral matrix but the estimates were observed to get
close to each other as the order of the model increased. Both the maximum likelihood
method (MLM) of spectral estimation and the Improved MLLM were extended to estimate
the spectral matrix of auto- and cross-spectra for multiple 2-D random processes. Finally
the multichannel 2-D spectral analysis models were applied to the problem of
image coding.

Several examples were given of computed spectra and extensive experimental stu-
dies of performance were carried out. Phase estimates of the cross spectra for all of the
methods were consistently accurate and were relatively insensitive to noise. Peak loca-
tion for narrowband cases of sinusoids in noise was however noise sensitive and showed
more bias with increased noise level.

In comparing the methods presented, the CQ spectral estimate compared favorably
with the NSHP estimates and typically required less computation. Comparisons between
the NSHP and CQ methods were made both qualitatively and quantitatively using a
variety of test cases. The multichannel MLM was found experimentally to give better
results than those obtained when the auto- and cross-spectra are estimated separately by
MLM. Experimental results show that MLM has generally poorer resolution than AR
based methods. However the IMLM appears to have almost comparable resolution to the

AR. Finally, the application of spectral analysis models to color image coding shows
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: that we can overcome the real time computational problem involved in computing the :_:
predictive coefficients by using fixed coefficient matrices derived from a representative ,fi
set of training images. This reduces complexity of the coding and eliminates the need to ‘f
} transmit side information.
I C.-
S This thesis can be considered as a first attempt at spectral analysis of multichannel :::
I two-dimensional random processes. More experience needs to be gathered in application >
of these methods to practical problems involving measured data. Further, other methods =
of spectral analysis such as the signal and noise subspace methods were not studied in .
f this work and could be explored. In addition further application of multichannel models
to image coding should be looked at. The latter topic was dealt with only as a brief i
[ excursion here but the results obtained are quite encouraging. p i
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APPENDIX (A) ”
2-D BURG ALGORITHM -
\:'.E.
As mentioned in Chapter II, Burg developed an algorithm for estimating 1-D linear i:" ,
prediction parameters directly from the data. No estimation of the autocorrelation func- x
tion is required in this algorithm. Given the 2-D reflection coefficient representation N
developed by Marzetta, the 1-D Burg algorithm can be straightforwardly extended to the
2-D case as follows. Given a wide sense stationary 2-D random process with zero mean .
x(nq,n,), the idea of forward linear prediction is to estimate the "present” sample \
from a weighted sum of the "past” samples. ,:
P
o
Xmpn) == X x(n=ing=iy) )
(inideo izt (A.1) 2
(i1 2%(0,0) o
N
-"
where o represents the filter region of support and g; ; , represent the filter coefficients. )
Similarly, the estimated value of the sample using backward linear prediction can be l__\
written as ;::
."\
nynd== Y @ ;x(n+ingtiy) R
Guigea (A2) 9
where we have taken account of the fact that the single channel forward and backward
linear predictive filters parameters are the same. Then the forward and the backward N
error signals €(n,n,) and €’(n,n,) can be expressed by l
E(nl.nz) = Z a‘.lizx (n l—i 121 z'iz) (A3) _-\:.
(i1 )ea
!‘n
E€(nyiny)= Y a;;x(ny+inytis) :-_.‘jﬂ
0 B inid (A.4) :':31
where ago=1. These values of the error signals for order (p,,p,) can be written =
recursively as :',.
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PPy L) = P, L) - K@D gPiprl), =P 1M 2=D2) (A.5)

8,(P"p2)(n1,n2) - El(PuPz-l)(nl,n?) _ K(Pl-Pz) E(Pxpz-l)(n 4P 14D D) (A.6)

where K772 and k¥ represent the forward and backward reflection coefficients
respectively. Then the corresponding forward and backward filter of order (p ,,p,) can be

recursively estimated as
H(Pxpz)(zl’zz) - H(Pl-Prl)(zl’zz)_z P 7 5P KPP H'(Dx-Prl)(zl—l ’22—1) (A7)

H'(Phpz)(zl’zz) =H’(Pl-P2‘1)(zl’zz)_zzln zsz K(Pl-Pz) H(Pl\oz‘l)(z 1—1 ’22-1) (A8)

Defining the total estimated error power P as the average of all possible computed for-

ward and backward squared error signals for the data results in

P= E{ [e(n 11 7)] 2 + [8'(n LN 2)] 2} (A.9)

By substituting Eqns. (A.5) and (A.6) into Eqn. (A.9), the power P®"d can be expressed

as

2
pewd _p [S(Pl-Prl)(nl’nz)_K(PuPz)er(PbPrl)(n 1—P1’”2“P?)]

(A.10)

2
+ [g"p“prl)(n 1 2)_K(px.pz)e(p1.}7r1)(n 1P 1n2tp 2)]

To find the best least square estimate, the total power is minimized with respect to the

reflection coefficient parameter i.e.

O, :.'._' R
Catata e oo

aP(Pth)

W= (A.11)

L]

L

The solution of Eqn. (A.11) is found to be
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P )

J

s .
L T, SN Y

259

< 0




2 ¥ [E(Phl’z-l)(nl’n»eﬂlprl)(nl_pl,nz_p?)]

e P (A.12)
@rprD) ‘[ AprorD) ‘
3 [[8 wer (nl,nz)] +[€ ! (nrppﬂz‘l’z)] ]
(nllnl)sa
Then the average power can take the form (Marzetta,1978)
2
pEved _ P(Puvrl)[l - [ K(pm)} ] (A.13)
Now, to begin the computation, the order (p;,p,) issetto (0,0) with the initial con-
ditions:
HOOz, 2y =1 (A.14a)
e%0n ,n) =x(ny,ny) (A.14b)
09 ,n) =x(ny,ny) (A.14c)
and
©.0) 0.0) 2 A00) 2
PEY=EL e (n,ny| +€ (n1,n9) (A.144d)

For p,=0 and (1<p,<P,) or for (1<p <P ;) and (—P,<p,<P,), H(p"p”(zl,zz) is com-
puted recursively from Eqn. (A.7). Also the forward and backward error signals are
computed recursively from Eqns. (A.5) and (A.6). Between adjacent columns the fol-

lowing relations are used for the transition of the recursion:

HOv P, vz =HP P 7y (A.152)

p@1prl) _ poi-1o2 (A.15b)
e8P ny) = €7 1y (A.15¢)
eP P (n 1,0y =e® 70 (n 1y (A.15d)

The latter equations also appear in Marzetta’s 2-D Levinson recursion and give a true

minimum phase filter when the order parameter P, is infinity.
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APPENDIX (B)
LEVINSON WIGGINS ROBINSON (LWR) ALGORITHM

In this appendix the computational procedure of 1-D multichannel Levinson recur-
sion known as the LWR algorithm is described. Let x(n) be a wide sense stationary M-

channel 1-D random process.
x1(n) ]
xy(n )

x(n) = (B.1)

| xu )|

Then the forward linear predictive filter of order P applied to the data can be expressed

as
Pl—l . T
en)= Y [a(')] x(n~i) (B.2)
i=0
or
en)=a x, (B.3)

where o represents the block matrix of the filter coefficients.

1]
o
a=| (B.4)
where - i
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l".
E of) of) ..ol ] 4
: o) o ... ol

ol = (B.5)

b 2o o gn 4

ST,

(‘_?1'0 0.}.(,‘.21'1 e aﬂll'p_l

L J

and x,, is an vector of the ordered values x(n—i) ~
(x(n) ] \.

x(n-1) ;
b . F !

Xo=| (B.6) 2

»,
. iy,

Y

X(n—P) o

L i} ]

The corresponding Normal equations are !

Ra=E B.7)
or )
RO R ...RP+)| (I | [E®]

R(1) RO ...RP+2)| |a® 0 :

= | (B.8) L
. :;:
R(P-1) R(P-2) . . . RO) b |0 %

where b,

Rk) = E[x(n yxT (n—k )] (B.9)

and E®) is the error covariance of the optimal estimate. ) )
EP) = E[(x,‘--!'c,l )X, =X, )T] (B.10) ZE:
e
L
262 -
o
N

)

I~
N

N e e e A e Y N N N e N e N N YN N DT



y o x ’ 1
SRS

afele
‘..’l

5y

" Similarly the backward linear predictive filter can be written in the following form

\_":

. P-1¢ 5T

£€nr-P+)= Y [13(‘)] X(n—=P+1+i) (B.11)

o i=0

\ " where B(i) are the backward multichannel 1-D filter coefficient matrices. The
R corresponding Normal equations are

~

0 ‘N. ’

i RPp=E (B.12)
:’i or

N RO) R ...RE-D|[I ] [E®]

S R(-1) R() ... RP-2)| | gV 0

o

< = (B.13)
\‘ . . - - .

. RE-P+D) RCP42) ... RO) | [P |0

e L 4 L J J

T

A where E?) represents the backward error covariance matrix.

s E®)=£[e/n) e (n)] (B.14)
o
f::: Note that since from Eqn. (B.9) we have

R(k)=R"(-k) (B.15)
J"'-

::_'l and the blocks of the correlation matrix in (B.13) are the transposes of the blocks of the
a
;‘,-. matrix in (B.8). The solution of Equations (B.8) and (B.13) for forward and backward
L filter coefficients can be done recursively by relating the order (p) to the order (p-1) as
= follows

oV 1o

o aPl=| .. - . K®) (B.162)
L Rp-1)
L 0 B
2

.r:"

.
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B(P-l) 0
BP =] .. -] K'®) (B.16b)
0 a@-b

where a®~V and ﬂ(‘”l) are the block reverses of a1 and B(”'l) respectively, and
K®) and K®) represent the forward and backward reflection coefficient (or partial corre-

lation) matrices of order (p) respectively. These can also be computed recursively

as follows
-1
K®) = [E«p-n] A®) (B.17a)
-1 T
K«m:[E(n—l)] [ A(p)] (B.17b)
where
A‘P’=[RT(1) RTQ2) ... RT(p)] a?-b (B.18)
E®) = E@-D [I_K«p) K(p)] (B.19a)
and

EP) = gD [1 _K® K@ )] (B.19b)

Details of the derivation of these results can be found in (Strand,1977).
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APPENDIX (C)

MULTICHANNEL 1-D BURG ALGORITHM

A multichannel 1-D Burg algorithm was first developed by Nuttall (1976) and Strand
(1977) independently. The idea is to compute the reflection coefficients matrices directly
from the data instead of estimating the autocorrelation function and from these compute
the filter parameters. Thus the multichannel 1-D Burg algorithm uses the LWR algo-
rithm (Appendix B), except that the reflection coefficient matrices are computed from the
available data.

Assume we have M-channels with N samples and define the following terms

F=L Yo [e<P>(n)] ’ (C.1a)
NP n=1

B=-1 %s’(”)(n) [e"?’(n )] ' (C.1b)
NP n=1

6 =L Feon) [e“’)(n)J ' (C.1c)
NP n=1

where Np=N—-P (P represents the order of the filter), and e? )(n) and " )(n) represents

the forward and backward error signals respectively. Then the matrix A®) defined in

Appendix B is obtained as the solution of the bilinear equation

C,AP) + AP Cy=C, (C.2)
where
-1
C1=[E'(P‘l)] B (C.3a)
-1
cz=[E0’-1>] F (C.3b)
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C3=-2G (C.3¢)

and where E?~D and E@~D represent the error covariance matrices of the forward and
backward linear predictive filters respectively.

There are several approaches that can be used to obtain explicit solutions to Equation
(C2). One form of the solution is given by Pease (1965) (Kucera,1974;
Hartwig,1972,1975). The basic idea of this method is to transform Eqn. (C.2) into an
equivalent vector form

e [o) =[oc)

where [c, A® )] represents the column string of A®)

CSA(P)=[Al(q)... A} Af"z’) A&(f

and [ ¢, C 3] represents the column string of C 5 and where

Q0 =C @Iy +Iy®C] (C.6)

where 1), is an (M xM) identity matrix. Thus having solved Eqn. (C.4) for A®), the

reflection coefficient matrices K’ and K®) can be found from (B.17) and the forward

and backward error can be written recussively in the form
T
eP)(n)=e?V(n) - [K“’ >] e?V(n) (C.72)

T
eP)n)=e®V(n+1)- [K'(” >] e?D(n+1) (C.7b)

Now, assuming x(») is a an M-channel random process, the recursive algorithm can start
with the following initial conditions:
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eO@m) =x(n) :‘.;"-
;
eOn) =x(n) 2
N T 3
EO_pO= L § 0 [e'«» ] N
N ’El (n) (n) N
©) ©0) . . oy
where &’ and B'” are the forward and backward filter coefficients respectively, of order i
zero. Using Eqn. (C.1) the values F, B, and G can be computed which are used for solv- :Z:}
ing Eqn. (C.4) to obtain A? ). The reflection coefficient matrices are then computed from ,.
(B.17), and (B.16) and (B.19) of the LWR algorithm are used for computing the next iy
»
order filter coefficients and error covariances. =
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APPENDIX (D)
MULTICHANNEL 2-D BURG ALGORITHM

As we mentioned in Chapter III section G a 2-D multichannel Burg algorithm can be
developed as a straightforward combination of the 2-D Burg algorithm (Appendix A),
and the 1-D multichannel Burg algorithm (Appendix C). Assume that the multichannel
2-D random process X(n,n,) generating the (NV,,N,) M-channel data points is zero mean
and wide sense stationary. The present value x(n,n,) can be predicted approximately

from a linear weighted sum of the past values.

X(nynp=- % A,'T;,',X(n 1= n2=io)
(iniea (D.1a)
(ihil)#(ooo)

This is called a forward prediction, because x(n,n,) is predicted ahead, in terms of "pre-
vious" values. Similarly we consider the backward prediction

K(nynp=- Y BT x(n+ijngtiy)
Guiea (D.1b)
(i1 %(0.0)

where the B; ; represent the backward filter coefficients. (Note that the region & is the

13

same although the prediction matrices are not). Thus the forward and backward predic-

tion errors can be written as

enin)= Y Al x(n=ipnyiy) (D.2a)
(iLipea

€nin)= Y BT x(n +ijnytiy (D.2b)
(iivea

where Ay = Byg =7. The forward and backward filter of the order (p,p,) can be recur-

sively estimated from
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T
H(plm)(zllﬁ - H(Pl.vz-l)(zl,zz)_zl-pl z25P? KPP? Hf@xprl)(zl—l z71)

(D.3a)

H'(Plva)(z Lz = Hf(PuPrl)(zl,zz) — 28" 282 K'(P\J’z)r H(Pxprl)(z i—l ,Zfl)
(D.3b)
where K@?? and K"?'?? are the forward and backward reflection coefficient matrices

of order (p {,p4) with dimension (M xM ). The forward prediction error e(p"p’)(n 1.112) and

the backward prediction error i 1:112) of order (p,p) can be written recursively

in the following forms

e?¥2(n,n) =e®*7V(n  n,) - KO o), 1P 12 P2)

(D.4a)

el(Pth)(n 1 2) = e'(Pl.Pz‘l)(n l,nz) - Kf(Pth)r e(phprl)(ﬂ 1+p 1,n2+P 2)
(D.4b)

The reflection coefficients are estimated by straightforward extension of the pro-
cedures for 1-D multichannel Burg algorithm ( see Appendix C Eqns. (C.2)-(C.5)) and
will not be detailed here.
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APPENDIX (E)
MULTICHANNEL 2-D INCREMENTAL
DIVERGENCE MEASUREMENT

The incremental divergence AJ(1,2) between two multichannel random processes
used in Chapter III can be expressed in terms of filter parameters or in terms of spectral

estimates as follows.

1. In Terms of Filter Parameters

AJ(12)=-M + %{tr ARATE 47 AleAlTZfl} (E.1)

where M represents the number of channels, A, (k=1,2) represents the set of filter
coefficients of the process k, R, is the entire covariance matrix of the process k, and

finally £, is the error covariance matrix of process k.

2. In Terms of Spectral Estimates

1 b 34

AT(12)=-M + o [ [ Si(@,085 (0,0)d 0 dw,
-

R
+ "‘ J'tr Sz(ml,mz)sfl(ml’%)dmldmz

--R

where S; and S, are the M xM spectral matrices of the modeled random processes.
Proof

For this proof it is important to note that we regard the two linear predictive
filters as fixed and that €, (n,n,) k=1,2 represents the output of the corresponding filter

regardless of the input. Therefore when the input to the first linear predictive filter is the
270
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process to which it is matched the output €,(n;,n,) will be the minimum mean-square
prediction error process. Where the input is the other random process will still call the
output €(n,n) but in this case it will not be a minimum mean-square prediction error

process.

1. In Terms of Filter Parameters

When the input to a linear predictive filter matched to a random process & is
x(n ,n,) the output €, (n,n,) is given by

e.k(nl,n2)=x(n l,nz)—i(ﬂl,ﬂz) (E.3)
where
Rand=— Y A (i) x(ni=ipna—iy)
(nivea (E.4)
(i1,i2%(0,0)

and where « represents the filter region of support.
When the input is the random process k to which the filter is matched, the out-
put is the minimum mean-square prediction error for random process k. In this case the

error covariance matrix of the output can be defined by

Zk =Ek[ek (n l,nﬁ e{(n 1,’12)] (E.5)

where E; denotes expectation under the hypothesis that the input x(n,,n,) is random pro-

cess k. If the input is Gaussian then the density function for the prediction error process
is

- 1 -1 -1

3 n = —_—

3 fi [Ek("l W T SXP) 5| (1) i € (nyng) (E.6)
= Qm)? 1z, 12

ad

o~ . . . . .

The direct divergence or the mean information /¢(1,2) corresponding to the error process

j,‘:' €, and &, is defined as

, I1.(1,2)= EI[AI.Z] (E.7)
"

o
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*E where A 7 is the logarithm of the likelihood ratio
2
i fl[el(nl’"z)J
] Az =log (E.8)
.‘; 72l eann)
o .
::.- Note that since €, (n,n,) is uncorrelated with observations of the random process that
ke appear on the right side of (E.4), I(1,2) represents the change in mean information that
- occurs when a new observation x(n,n,) of the original random process is taken. If we
.
| '};-. substitute (E.6) and (E.8) in (E.7) then after some algebraic manipulation the direct
i 2 divergence can be written in the form
& 1%l
1,2)=+E |ef gl e,—ef Tl e, - log — (E.9)
. 2 12,1
- Now observe that
::'_Z:
'v’.
N
0% El[e;f ! 81] =tr ;! [e{ el] =M (E.10)
o
] Thus Eqn. (E.9) takes the form
- M1, I [T_l ]
I1(1,2)=-— - —1 +=—E E.11
% (1.2)=-= 2198 73 ] S Elg L g (E.11)
. If we rewrite Eqn. (E.3) as
- g (nyny=Alx (E.12)
‘.‘.
: - where A, is a matrix of the filter coefficients (as defined in Chapter III section D) and x
L
‘;_3_', is a vector of the corresponding samples of the random process, then the final expression
?.'_:' for the direct divergence can be obtained by substituting Eqn. (E.12) in the last term of
Eqn. (E.11)
2 2
N M 1 1 l 1 T «-1
E:. 15(1,2)=——2——‘510g 12"2‘ +§—tr[A2R] Azzz ] (El?)) )
e
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where

Pl id

R, =E1[x xT] (E.14)

ERE & B i Pl

Similarly the mean information /¢(2,1) can be expressed by

15(2,1)=-—E2[A1’2] (E.15) -

where E,[ . ] represents the expectation under f ; and this leads to

SR S SN AN

{

M 1 121 [ T _1]
I.21NHY=-—-— +—w|A;R,A{ Z E.16

The incremental divergence as we mentioned in Chapter II can be defined as

AJ(1,2) =1(1,2) +1(2,1) (E.17)

Using Eqns. (E.13), (E.16) and (E.17) the incremental divergence measurement in terms
of the filter parameters can finally be expressed in the form of (E.1).

2. In Terms of Spectral Estimates

The estimated power spectrum for a random process k using an autoregressive

model can be expressed as (see Chapter IV):

S¢(00y,007) = -4;—2 [H;‘(wl,wﬁ x, Hff "(wl,wz)] (E.18) f
and L ] L]
H (0,0,) = . EMAZ (ry.np)e I (Onrrennd (E.19)

where o is some chosen region of support and A, (0,0) is the identity matrix. Now sup-
pose x(n,n,) represent either process 1 or 2 with zero mean and spectrum S, (;,0,),

and let €, (n1,n,) be defined by
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L

e(mnd= T ALGLiX(n=iyngiy) (E.20)
(iniea
Then
Se, (01,0) = H (0,,0) 5, (01,6 Hf (01,0) (E21)

By applying Parseval’s theorem and using Eqn. (E.17) and the commutative properties of

the trace we can take the expectation with respect to the random process x and write

E[ekT(nl,nz) Z[l ek(nl,nz)] =t Z,;l E[ek(nl,nz) 8{(n1,n2)]

F L
=r [ [Z1S, (0,0)dwdo,

it 14

nr
= J J‘ zk—l Hk(ml’m?) Sx (0)1,(1)2) Hlfl(ml,ﬂb) dmlda)z

--R

nTr
= [ ][50 B0 8,00 B0 [ 5, (0009 57'0,0,] dondoy

-

k(B
1 -
= _J;:_J; [Sx (@,,,) S; l(col,ud dw,dw, (E.22)

Now suppose that our input random process X is the random process 1. Then from Equa-

tion (E.22) we can say that

R
El[elT(nl,'lz) z! 81("1,'17)] = [] [51(0)1»0)2) Sfl(mlvmz)] dadw,

L
47t2 -n-T

=M (E.23)
and

TR
B[ ednun) 25 e = < | [ [Suonon siionen] doda

r ~n-%

(E.24)
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Substituting (E.23) and (E.24) into the expression for the direct divergence given by Eqn.
(E.9) we have

M 1 IZy0 1 %
1.(12)=—2 2 jog —— + —
) § 1%l 8x? _J;

x
2 2 I r [Sl(wl'(o?) Sz_l(wlou’l)] dﬂ)ldﬁ)z

-7
(E.25)
Similarly we can show that

M 1. 1Lt BF [ _1 ]
I.2l)=-—-— —_— Sa(wy, (W, d
e2,1) ==~ - log T t o _L_J;rr 2(007,0,) ST Hw,w,) | dwdw,

(E.26)
Substituting (E.25) and (E.26) into (E.17), we get the final expression of the incremental

divergence given by (E.2).
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APPENDIX (F)

APPLICATIONS TO IMAGE SPECTRAL ANALYSIS

In this appendix we developed an experiment to study the spectra of data
corresponding to a color image shown in Figure F.1la. The figure represents an aerial
photograph of a ground area, (data courtesy of Rome Air Development Center, Griffiss
AFB, N.Y.), with size 128x128-pixel. Figures F.1b, c, and d represent the red, green, and
blue components of the color image.

Two portions of this image of size 64x64-pixels are taken. The first part corresponds
to the lower-left comer which represents the field, while the second portion lies in the
upper-right corner and represents the trees.

Fig. F.2a shows a 2-D plot of the intensity variation of the green component in the
field image. The index n, is taken as the horizontal direction, and index 7, as the verti-
cal directon. Figure F.2b represents the one dimensional plot of Fig. F.2a. Different
slices of the green component of the color image in the horizontal and vertical directions
are shown. It is clear that the variation of the intensity in the horizontal direction is very
high while in the vertical direction the intensity variaton is very low. This implies that
the spectral energy is concentrated around ®, = 0.

In a similar manner Fig. F.3 shows a two-dimensional plot of intensity variation of
the green component of the trees portion of the color image, in the horizontal and vertical
directuons. Rapid variatons of intensity appear in the n,- direction and very slow varia-
tons appear in the n,-direction. Fig. F.2 and Fig. F.3 are taken here only as an example
showing the intensity variation. We could also show the intensity variation of the other
color image components, but the plots are quite similar.

The color image is considered here as a 3-channel 2-D random process, where each
color component (red, green, and blue) represents a separate channel. In this example
only red and green components are analyzed, where the red component is designated as

channel 1 and the green component as channel 2.
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Fig. F.2 Spatial variation of green component intensity in the field image.
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The blue component for this image was very dark showing very low signal strength in
this channel. A sixth order NSHP model was used to estimate the spectral matrix.

Fig. F.4 shows the components of the estimated spectral matrix for the field portion.
The spectrum of the red component is shown in Fig. F.4a, while the spectrum of the
green component is shown in Fig. F.4b. Figure F.4c shows the cross spectrum amplitude
and phase. The red, green and magnitude of the cross spectrum appear to be very simi-
lar. The power distribution is concentrated around ®, =0 and the middle and higher fre-
quencies of the w, direction. This distribution of power is due to the appearance of regu-
larly spaced lines in the image corresponding to the rows of plants occurring in the field
image. The estimated phase of the cross spectrum component varies between +10°
and —40°.

Fig. F.5 shows the spectral estimate of the trees portion of the color image. Again
we considered the red component as channel 1 and the green component as channel 2.
The spectra of red and green components are shown in Fig. F.5a and b respectively. Fig-
ure F.5c shows the amplitude and phase of the cross spectrum component. As in the tield
portion, the autospectra (red and green) components and the magnitude of the cross spec-
tra are similar. The power is also distributed around zero frequency in w, direction, but
occur at lower frequencies in the w, direction than in case of the field portion. This
results agrees with the intensity variation plot shown in Fig. F.3, which indicates that the
intensity vanations are not the same in horizontal and vertical directions. The phase of

the cross spectrum for the trees image is also between 10% and —40°.
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APPENDIX (G)
. VECTOR QUANTIZATION

I,.

% W

oy

In Chapter VI we discussed scalar quantization and showed that a two or three level

LT
}"”l'..

oy
.l

uniform quantizer is sufficient to achieve good quality in the reconstructed coded images
using multichannel predictive coding techniques.

Vector quantization is another approach to quantization which is used for coding a
vector source. The data required to be coded are divided into blocks which are then
sequentially encoded block by block. It is the vector generalization of the usual PCM
system. (Linde et al,1980; Gray and Linde,1982; Gray,1984; Cuperman,1985; Hang and
Woods, 1985; Makhoul,1985; Goldberg,1986)

Let the image be divided into N blocks of pixels and let these pixels be formed into a

k-dimensional vector x;. Then the total image can be represented by the larger vector

[%1 ]
X2
x=| (G.1)
XN
L
where
rxil‘
X2
Al .
X; = (G.2)
’tlk “1
In vector quantization the vector x; 1» mapped into another k-dimensional vector x X
K
. . . . .
which 1s close to 1t in k-dimensional space The vector X which s transmutted 18 then g
Ny
- . . , . T
composed of the individual x, value. We call this the quannzed value of x L
»
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T

=q (%) (G.3)

F )
]

XN

The vectors X; are drawn from a reproduction alphabet (or codebook) y.

A major issue for vector quantization is codebook design. The VQ algorithm most
frequently used is called Linde-Buzo-Gray (LBG) vector quantizer algorithm (Linde et
al,1980) and involves a clustering of the data in k-dimensional space. A codebook y with

iength (i.e. number of quantization levels) J can be written in the following form

3 VY 3 W
RN 4

‘I-{" X

."’~.(.'. -" -{ -, .

v
ks

r'yl'
Y2
_ (G4
y =

7 ' y
where T '::'.:
ryt lq :'."j
.._'1
Y2 )
AR
5
y, = (G.5) -
-
=
v Vo
L o oo
N -':1
In this case the it rate can be detined by N
<
R =log.J ity per aector (G f'_'.-:
or ...‘
R . . N
r= — hits ner oaampie O
k

’
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Note that the number of quantization levels is usually restricted to be a binary number for
digital coding applications.

Observe that VQ can allow fractional rates in bits per sample while this is not the
case in scalar quantization. The minimum bit rate of a scalar quantizer is 1 bit per sam-
ple while a k-dimensional VQ can theoretically achieve a bit rate of 1/k bits per sample.

The distortion caused by replacing the original input vector X by the new vector X is
given by the distortion measurement d(x,X). The most widely used type of distortion

measurement is the squared-error-distortion (Gray,1984; Makhoul,1985).

dixg)=1ix=x:1°

(G.8)

Ix;, - X, B

k
=1

To quanutauvely measure the performance of the coding system we could use the aver-

age distortion E{d(x.i)] . In pracuce however, normalized average distortion is used

instead of the actual value of the average distortion. We refer to this normalized average

distortion as the SNR measurement and it can be defined by

E( Pixile
SNR =10 log,y — (G.9)
E[d(x.i)J

The performance of the color image predicuve coding technique using VQ and
applying the mulnchannel linear predictive models descnbed in Chapter VI has been stu-
died through the following simulation experiment. The onginal pictures used in this
expenment are shown in Fig. 6.6. The simulauons were run on 128x128 pixel images
with § bits per color component (1.e. 24 bits per color pixel).

We started the simulanon with the ladyv's face given in Fig. 6.6a. The predictive
filter coetficients of the second order mode! for the whole image were obtained by solv-
ing a set of Normal equatons. The corresponding codebook of the residual signal was
obtained using the LBG codebook design algonithm with the following parameters. The

codebook size 15 J=64. The vectors of dimension & (k=3xP | xP,) where 3 represents the
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number of the color components were then obtained by vectoring a block of dimension
(P %P ,) of the picture. Specifically in this experiment we assumed that P ;=P ,=2.

The reconstructed coded lady’s face image using this designed codebook is shown in
Fig. G.1a and the corresponding residual is shown in Fig. G.1b. Note that we are using
here the prediction error coder system described in Chapter VI (see Fig. 6.3), which is
not as good in quality as the predictive coding system (Fig. 6.2) but it is easier to con-
struct. The bit rate in this specific example is 0.5 bit per sample and the corresponding
SNR measurement values are 20.198 dB for the red component, 17.506 dB for the green
component, and 14.879 dB for the blue component.

Now, several filter coefficient matrices were designed for different images by solv-
ing a set of Normal equations corresponding to each image. Specifically we used the all
images given in Fig. 6.6 except Fig. 6.6h. Applying the third procedure described in
Chapter VI, we obtained a fixed filter coefficient matrix. Using the same codebook
designed before, the corresponding reconstructed image of the lady’s face is shown in
Fig. G.1c. The corresponding SNR for the red component is 20.026 dB, for the green
component is 17.406 dB, and for the blue component is 14.688 dB.

Comparing Fig. G.1a with Fig. G.1c we see that approximately the same quality of
pictures are obtained. In addition, the SNR values are very close to each other. Note that
the reconstructed pictures are not of the same quality as in case of scalar quantization
because we used here the prediction error coder system which accumulates noise at the
receiver. Also the block size used is very small ((2x2) for each color component) and the
size of the training data was not very large.

To check the efficiency of the third procedure using the VQ technique the fixed set
of filter coefficients and the designed codebook were used to reconstruct an image that
was not part of the training data. (The house picture shown in Fig. 6.6h). The recon-
structed house picture is shown in Fig. G.1d and the corresponding SNR in dB are
16.730, 18.647, and 19.604 for the red, green, and blue components, respectively.
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Fig. G.1

"‘1 "J'\

Reconstructed images using VQ.
(2) Reconstructed lady’s face image (using second procedure)
(b) Error image

(c) Reconstructed lady’s face image (using third procedure)
(d) Reconstructed house image
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