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The Two-Dimensional One-Component Plasma

in a Doubly Periodic Background : Exact Results

Frangoise Cornu', Bernard Jancovici', ond Lesser Blum2

Abstract

Using o new method, we find thet the two-dimensional one-component
plasma in an inhomogeneous background is 8 solvable model, in equilibrium
classicel statistical mechanics, for the special veiue I' = 2 of the coupling
constant, for a larger class of background shepes : the n-body densities can
be explicitly computed. In particuler, we can deel with a doubly periodic
background; this is & classical model for a crystal made of fixed ions and
mobile electrons. At I = 2, this system is conductor : the correlations hove

a fast decey, and the Stillinger-Lovett screening sum rule is obeyed.
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1. INTRODUCTION

In statistical mechanics, it is obviously of interest to have exactly
sclvable models for Coulomb systems (plasmas, electralytes, metais etc..).
The simplest model of a Coulomb system is the one-component plasma
(jellium) : identical charged particles move in & rigid charged background
which ensures overall neutrality. In two dimensions, the Coulomb poiential
between two particlies of charge e at a distance r from one another is -¢?
In(r/A), where A is an arbitrary length scale, and the dimensionless
coupling constant isT = ge’, where @ is the inverse temperature; for the
special volue I' = 2, it has been previously found thet the equilibrum
Classical statistical mechanics of the two-dimensions! one-component
plasme can be worked out exactly for several kinds of background charge
distributions : one is able to obtain the n-particle densities. Besides the

simplest case of & uniform bockground‘ "2), essentially one could deal with

8 background charge density depending on one space coorginate’>; this

covers a variety of cherged interfaces (electrical double layers) of interest
to electrochemists.
This previous work left unsolved the important case of & doubly

periodic background. In the present paper, we solve this case, using a8 more

genersl new method; 8 preliminary account has been given by two of us(4).

Thus we have an explicit solution for a model which cen be understood as
made of mobile (classical) “slectrons” interacting between themselves and
with 8 lattice of extended fixed “ions”; this one-component plasma in a
periodic background cen a8lso be regarded as a two-component plasma in
which the particies of one species have been fixed on s lattice. Like the
symmetric two-component plasma, the present model is expected to
undergo a Kosterlitz-Thouless phase transition between a low-temperature
dielectric phase ond a high-temperaturs conducting phase, and this

(5,6)

transition is ectuelly seen in computer simulotions . Here, we show
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" that, in our system, criteria which characterize a conductor are satisfied -
TS the correlations have & fast decay at large separations, and the
xl
W,
j-i: Stillinger-Lovett sum rulem is obeyed. According to these criterio, at ' =
’I 2, the system is in its conducting phase.
The paper is organized as follows. In Section 2, the general method is
_',
'.‘_j reviewed. In Section 3, it is shown that this method provides a8 simpler
'..;: approach to the known case where the background density 1s inhomogeneous
' in one direction only. The doubly periodic background is discussed in Section
‘ 4 : we compute the n-particie densities and discuss sum rules.
e 2. HETHOD
(]
2
'55' _n-parti it
EZ( we stert with N perticles of cherge -e in some background. The
: . position of the ith perticle is r= (x‘, g'); we shall also use the complex
‘e
/ number z, = x, + iy,. The Hamiltonien is
R
J 2 Y 2
. H=e" 3 Virp-¢¢ 2 Mz - Zj/N) (2.1)
\::‘ jm IQ()Q
N
:-,'
‘:l: where e’v is the background-particie interaction, and therefore, for an
-" inverse temperature p such that I' = Qez = 2, the Boltzmann factor is
’-:

N @ po

x'.v‘]

-1
exp(-fH) = C |det {exp [-V(rj)] Zg }1’ j=1, NF (2.2)

ey
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where C is 8 constant.

in the simple case of a background potential of circuler symmetry, V(r)
= V(r), the functions exp{-v(r)] 2~ ore mutuelly orthogonel, end (2.2) has
the same form as the squered wavefunction of 8 system of independ§nt

—

fermions; to deal with the Slater determinent which eppears in (2.2) is o
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standard problem, anz itis easy to compute the n-particle densities. All the
previously solved cases could be obtained by starting with a circular
geometry and taking a8 suitable limit.

In the present paper, we want to consider more general forms of the

\

background potential, and the functions exd-v(r)] zj'l are not necessarily

mutually orthogonal. However, we cen choose an orthogonel basis yj(r) for

the space of these functions, and rewrite (2.2) ss

exp(-BH) = C ldet (¥ () P (23)

ij=1,.N

since the new determinent is proportional to the former one. It is then eesy

to show that the n-particle truncated densities cen be expressed in terms

of the projector
t J
Wilr )Wi(r,)
<rPlr,>= il (2.4)
2 ]Z [arv(nF
0s
o) =<riPir>
e%Xr,, rp) = -l<r, P r, >F (2.5)
Q(n)(f', Fo s )= - 2 <rPlry >._.<ry IPlry >
Gy iptp 2 no

where the summation runs over all cycles (i, '2""n) bullt with {1, 2, ..n}. In

the thermodynemic Timit, the functions exp{-V(r)}2)~ ' span the subspece of +\.2
Hilbert space defined by the entire functions of 2 = x + iy times exp{-V(r)]
and P becomes the projector on that subspace (of course, this is an intrinsic
definition of P, independent of the choice of the orthogonal basis Wj). Thus,

LS R R R I N L P T
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the problem of obtaining the n-particle densities 1s reduced to computing
the projector P.
In the simplest case of & uniform background density g,, the {

background potential V(r) can be chesen as 1/2 ngorz (ptus some irrelevant

constant), ‘4»‘]. - exp(-v)zj-' and

n *
< r,IPlr, > = g, exp(- —Z‘l (Iz,t2 + I22|2 - 22,2,))
p(r) = g, (2.6)
g[:l(r,, ry) = -5 exp(-ngyir, - r,F)

In the general case, the background density gB(r) can be considered os

being the sum of a uniform contribution Go plus 8 non uniform modulation
E(r). Correspondingly, the background potential V(r) can be chosen of the
form V(r) + &(r), where Vy(r) = (1/2) upor’ and AZ(r) = 2ng(r). As a first
step towerds the computation of the projector P on the space of the

functions exp{-2(r) - Vo(r)]zj, j € N, it will turm out to be convenient to

replace the zj by enother basis for the entire functions ok(z) -

exp{-(l/2)ngo[z—(k/noo)f}. k € R. The ¢, ore indeec such e besis, since

- "”2-"] 0t Ho(V) expi-(z - 1] 27

where the Hn(t) ore Hermite polynomials, and (2.7) becomes a superposition

of O functions through a rescaling of z and t. The basis exd-vo(r)]z] is then

replaced by

ex:(-vo(r)}ok(z) = exp(-ingyxy) exp(-k2/4no°) exp{-npo[x-(klzngo)f + tky}
(2.8)
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Actually, since (2.8) will be used for defining the projector P and thereafter
computing the densities (2.5), we can omit in (2.8) the normalization factor
exp(-k2/4ngn) (this leaves the projector unchanged) and the phase factor
exp(-inpyxy) (this lesves the densities unchanged because of their cyclic
structure).

Therefore, an alternative definition of P is to take it as the projector

on the space of the functions

k .
(r) = -&(r) ~Kpg{x - — ) + ik 29
¥i(r) = exp[-2(r)] exp[-npy(x e, ¥ +iky) (2.9)

For the potentials &(r) which will be considered here, strictly
speaking the functions (2.9) do not belong to Hilbert's space, beceuse
lexp(iky)l does not decrease at infinity. However, these functions do form a
basis in the sense of distributions, just like the plane waves in quantum
mechanics.

2.2, Arbitrariness in the choice of V(r)
Let us remark that the background potential V(r) is not uniquely

determined by the background density ga(r). In the thermodynamic limit,

v(r) keeps a memory of the boundary conditions even after these boundaries
have receded to infinity. The n-particle densities however should depend
only on pe(r) for a system with screening properties which prevent the bulk

from being affected by infinitely remote cherged bounderies. It fis
satisfactory to check explicitly this independence upon the choice of V(r),
to which it should be always possible to add an arbitrary hermonic function.
Actually, since the confinement of the perticles must be preserved, the
total background potential must increase fast enough at infinity, and we

shall only constder the addition to V(r) of & harmonic function of the ferm
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f(r) = a(x*-y%) + bxy + 8,x + by + ¢, with coefficients 8, and b, of
sufficiently small absolute value; furthermore, the term b,xy can be
removed by a rotation of the axes. The potentisl f(r) can be interpreted as
determined by suitable external electrodes.

It is then easy to see that ok(z) can be chosen again of the form

exp{-oafz - (200 "' (k + Y+ iﬁ)f}, where «, ¥, 6 are real constants, and by 8
suitable choice of these constants, f(r) can be cancelled, except for
irrelevant normalization and phase factors. Therefore, the projector P can
be left unchanged.

Incidentally, the basis (2.9) can be directly obtained by choosing the
potential contribution from the uniform background as v, = ngoxz and taking
exp(k2) as the basis for the entire functions. Such a Vv will be obtaineg tf
we reach the infinite system 1imit starting from 8 strip geometry rather
than from a circuler one.

2.3 Magnetic analogy
The arbitrariness in the choice of our background potential V(r) has o

quantum-mechanical analog : a gauge transformation in 8 megnetic probiem.

Let us consider 8 particle of mass m and charge q moving tn the xy plsne and

submitted to a uniform magnetic field B parailel to the 2 oxis(a)

. The ground
stete is infinitely degenersate. in the gauge where the vector potentisl is A

= (1/2)B X r , s basis for the ground-state wsvefunctions is

exd-(qﬂ/«t)rz]z’, j € N; in the gauge where the vector potential is A = j Bx
(} is the unit vector along the y-axis), a basis for the ground-state wave
functions is exp{-(qB/2) [x - (k/qB)f + iky}, k € R. Obviously, our change

from the basis exd-(l/2)n%12]zj to the basis exp{-ng,[x - (kl2ng°)f + iky}
is exactly of the same form. If a Slater determinant is built with the
ground-state wave functions, the corresponding n-body densities must be
gauge-independent, just as our n-body densities ere independent of our
choice of besis.
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3. BACKGROUND INHOMOGENEOUS IN ONE DIRECTION.

we now revisil the case of 8 background density depending on one

(3

coordinate only ) pg(x). The potential & cen be chosen as &(x), end we

have at hend the orthogonsl basis : (29) is orthogonal becsuse of the
plane-wave factor exp(iky). Adapting (2.4) to the case of a continuous index
k, with the usual prescription that the summeation becomes (L/21) | dk as

the length L of the system in the y direction becomes infinite, we find

<r,IPlr,> = exp[-&(x,) - #(x,)]

x I" & exp{ik(y,-y,)] exp{-ng [(x, .- Hzo—)z + (%, - 51!&00_)2]]
-0 21 [ dx exp[-28(x) - 2ngy(x - X ¥
-00 2np, (3.1)

r‘wd*)

Using (3.1) in (2.5), we retrieve 8t once the deastt?es of Ref.3.
Some special cere must be exercised for desling with the case where
the particies are confined to the half space x > 0 by an impenetrable wall at

x = 0. Then, in (3.1), the range of x must be restricted to x > O, and the

range of k must be restricted to k > 0. This is shown as follows. Since we 1

3) with o

have already taken the 1imit of an infinite system, we shall stert
system in which sn impenetrable barrier occupying the region - £ < x <0
separates the plasma into two regions x < - £ ond x > 0. The impenetrable

wall system will be obtained by taking the limit 2 - oo in such 8 way that

. the remote regions x > 0 and x < - £ no longer see each other. The resson for

’ which the values k < 0 are suppressed in (3.1) wit-be-seontobe that the ——
tl' norm in the denominator has a contribution from the remote region x < - 2

i which becomes infinite for k <0, in the limit ¢ —» oo;gn the contrary, this
‘ contribution venishes for k > O, in the limit 2 - oco. The independence of

the regions x > 0and x < -4 Gom achieved by requiring thet each of them
(U
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* be globally neutral, amé=thts ‘will be the case if wecthoose—e background

potentlal:'s/gmmetricﬂ with respect ta the barmer, V(x) = g, x + B(x) for

x> 0, V(x) = + oo for -2 < x < 0, V(x) = V(-x -2) for x < -2; Then,
2

remembering that &(x) is defined in every region as V(x) - ng, x°, and
changing -x -2 into x, we can rearrange the denominator of (3.1) as
* 2
() = exp(-2k8) | dx expl-28(x) - 2ngg(x + —K__)?]
0 21190
+ J dx exp{-22(x) - 2np,(x - —) ] (3.2)
0 2ng,

in the limit 2 - oo, the first term of f(k) (which is the contribution from
the region x < -2) diverges if k < 0, vanishes if k > 0. As & consequence,

(3.1) becomes

<r IPIr, > = exp[-2(x,) - ()]

exp{ik(y,-y,)] exp{-ng,f(x, - )2+(x2—"—)2]}
X I (11 ' ‘ i i X, %,>0
0 2n ]°° dx exp[-28(x) - 2rpy(x - —L-)T] o
2ng, (3.3)

(3.3) is in agreement with the results(z)

surface charge density eg, in which case &(x) = 2ngx, x> 0; #(x) = 0,x < 0.

about a hard wall carrying o

4. DOUBLY PERIODIC BACKGROUND

In this Section, which is the core of the present paper, we study the
case where the background density is doubly periodic. Thus, we consider 8
doubly periodic background potential modulation &(r) :

girena+mb)=2a(r), nmelZ (4.1)

.......
.....

.'




¥

A, A e AT A,
RN ARA . ',:' .-. ¥

The unit cell is a parallelogram built with the vectors a and b, of area ab
sin ¢, where ¢ is the angle between 8 and b. The sysiem is neutral, with a
particle density g, equal to the average of the total background density g, +
(210" 'AS(r). In order to mimic a simple crystal of extended fixed ions snd
maobile electrons, of opposite charges, we take 8y = (ab sin @) ', which

means there is one particle per unit cell.

41.n- icle dengiti

Although the functions (2.9) now are not orthogonal, they are a good
starting point for computing the projector P. Choosing the y axis along the
period vector b, and defining { € [0, 1] and n integer by k = 2n(C + n)/b, we

can rewrite ‘I‘k as

Wi n(r) = exp{-2(r)] exp[-ngy(x- :;: P + 21T + n) —Dg— } (4.2)

As 8 consequence of the perioducity of & along the y axis,

|7 g v (D W R < 8(C - 1) (43)
00

Furtherinore, if the unit cell is & rectangle (¢ = n/2), (pob)" = 8, and the
periodicity of & slong the x axis ensures thet \V(n depends on x only

through x - na; this suggests to introduce the Bloch functions

Vg, q(r) = Zn exp(-2ninn) ¥y n(r) , L, 1 €[0, 1] (4.9)

which do have the desired orthogonality property




b

P

) o0 =
& dx Wy (1) Wy ) o« 8(7 - 1) (45)
: J_m X ¥ g/ xoln-1q
» The argument can be easily extended to the more general case where the
" unit cell is a parallelogram, by introducing (dimensionless) oblique
N coordinates (X, Y) defined by r = Xa + Yb. Multiplying W( n by an 1rrelevant
[ »
N
= phase factor exp{-in(a/b) cos 4;[)(2 + (T + n)2]}, we obtain
_ Wi alr) = expl-8(r)] exp{- L (X - ¢ - 0 + 211(C + Y] (46)
N
k.. where T = (b/a) exp{i{¢ -(/2)]}; with these \v( p functions, which have the
[, ’
\ same form as (4.2), we can proceed as above, in oblique coordinates in the
': general cese.
:| Thus, the W('n are orthogonal :
i
gl
¥ .
y J dr W 0 W o(r) = 8@ - ) 8(n - M) 1T, ) (47
: where
. - -]
(=LY exp2nin) | dxexpl- L (x- 0P - (X-T-N?)
G N . - t t‘
X 1
) X L dY exp{-28(X,Y)] exp(-21iNY) (48)
q
; ¢
. These orthogonal \F( 1 can be used for building the projector (2.4), with the
Y ’
)
y resuit
,' .
o <r, Plr,> = exp[-2(r,) - #(r,)) | 6 | an —L— T exp{2nin(m - n)]
‘ , IPI 1y > = expl-#(r, ,chfon“( % exsi2nin

’
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- x exp{- L0, - =)’ - tl (- - m)? « 2T + MY, - (L + MV} (49)
K

A more compact form can be obtained by using the Poisson identity

. > e:n:p[-—“-‘N2 + 21ti2N] = Yt 3 exp{-nt*(z - NY] (4.10)
N T N
in (4.8), and also in (4.9) where we set m = n + N. The result is

(@, m=Lver " ax | av expf-200 )]
%

-00 -~ 00

200 Ak s A s

x expl- X (=P - neY - P-2mi(% - LXY - )] (d11)

. - e
- a s

and

-
S

<r, IPlry> = exp{-2(r ) - &(r,)]

3 x vl [T an L el B 0 -0P-RTNY, =P -2m 0 TXY, - )
-00 -0O 17(t,n T

» 2000Y, - )] (4.12)

4 Thus, we heve obtained an integral representation of the projector P; when

used in (2.5) it gives the n-body densities. Some symmetries of (4.12) are

. . hidden; for instence <rIPir,> = <r, [Pl r,>* Other ones are epparent; for
instence, the function f(T, 1)) is doubly periodical with period 1, end this
ensures thet the densities have the same periodicity properties as the
background.

As an illustration, we consider the case of 8 square unit cell (a=b, ¢
= 11/2, T = 1) with the simplest choice

e R R i
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K
‘-..:
K
P '
O
R exp[-28(r)] = 1 + Alcos 2nX + cos 2nY) | Al < 1/2 {4.13)
; t:
:S: The total background density is
N~
i 4
D 05"} = 8 + (210" '28 (4.14)
o and from (4.11) and (4.12), we find for the particle density ;
. |
o plr) =<rPir>
>
- o oo expl~1 (-0 -x (Y-1)?) cos{ 2(X-L)(Y-))
e = gpv2exl-28(0) | ot | oy =73
o =% -oo 1+xe " “(cos 21T + cos 2ny)

(4.15)

TRLALY
. [ O -

y..
LA

The potential modulation &(X, Y), the background density gB(x, Y) and the

perticle density p(X, Y) are displayed in Fig.1, for A = .49. With this choice
of a lerge amplitude A, the background density is o rather tormented
lanscape; the particle density tries to follow, but it does not quite succeed
and 1t exhibits much smoother osciliations.

Another representation of g(r) might be of interest. The normalization

- - et

: e\ _ .
Y ‘-"."\ '-Plﬂ_,l — "'.:.'_:'J,'.k 3

factor (4.8) can be written as

=@ »

-
¥ T X w

R
(@, m = L [ax]ayivw, o(x VP (4.16)
L . L Jo Ln

S > o -
@ LU

e

and therefore

W o, W
I, 0%, Jo oY, wg ot YR

N =g | ot [ (4.17)
R SN '

I I we restrict ourselves to the case of a rectanguler unit cell, t is real, and

) '
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|w(,n(x,vf = exp[-28(X,Y))] % nexp(- %()g-(-n)z-%(x-(-m)2 + 2mi(n-m)ey-n)]
' (4.18)

The sum on n and m con be replaced byasumony=m-nond v =m + n,

with p and v of the same parity. The contributions from (p, v) even and (y, v)

0dd, respectively, can be expressed in terms of Jacobi theta functions. The

result is

hwg q%, W = exl-200x, 1)) (§)'[85(2n - 24, Digy(x - T Jra,(2n-2Y, 2
8,06-C, 3] (4.19)

where the 8 functions are defined by

By(x, ) = T oxp[-ntn® + 20ink) = t° V2 S axpl-(t/O(x - n)]
n n

(%, ) = 3 exp[-Kt(n + %)24 2)i( n + -&,)x] - 72T (- 1)Nexp-(n/1)(x - n)?]
n n

8,(x, 1) = % exp{-ntn® y 21in (% + %)] -2 % exp{-(n/t)x - n - 1})2]

\A_lo:f\'f"‘x
The porticle density is obtained by veing (4.19) mﬁ

4.2 Decay of the correlations
The decoy of the trunceted densities (2.5) at large separstions tis
faster then any inverse power law. This can be seen as follows. The decay of

the densities 1s governed by the decay of P' tnunonssmﬁmmr
e crwrm %v\(q 12) wnedTew o the S,av\«,\

<r,IPir,> = exp[-#(r,) - (r,)] exp[20iX (Y,-Y,)]




s
!‘L -
o 15
b
‘.. oo oo 2 2
S x JT* [ dg J dn — L expl- M2 netnt - 2min « 2mi(y,-Y,)
; -0 —o0 (X, N+Y,) T
pd - 21X, - X)) (4.21)
o
.‘v
»-"
-, Let us study the behavior of (4.21), for a fixed velue of r,, as r, recedes to
.rt: infinity. Since f is penodicﬂm N+ Y,, we candefine Y2 by Y2 = Yz + N, Y €
-r\,
‘":f (0, 11 n integer, and replace Y, by Y mf If we Mmelves to keep a8
N fixed value for Y ,1.e. if r, recedes to infinity by mteg&esteps af Y,, the
-2 integral in (4.21) is the Fourier transform of & well-behaved function of {
-
oy and 1, and it decays faster than any inverse power law.
e The resulting fast decay of the correlations is one of the criteria
,\ . which is believed to characterize the conducting phase.
o
>
b 43 Sumrules
>
¢ The one- and two-particle densities can be shown Lo obey several sum
~$ rules which characterize a conductor.
i &j
o
o Neutrality
,, The averages, on 8 unit cell, of the particle density and of the background
N4
N density are equal :
Ly
e
o ' |
28 Lax 000, 1) = g (4.22)
A,
b |
' This sum rule is sstisfied by (4.17). ‘
o0
s
,\,.; 2creening of a particle of the system
P This screening rule means that a psrticle of the system induces a
;' polarization cloud of exactly opposite charge :
N
=
o0
X
;:;.
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N
» 16
N
o
e (2)
) Jar, 0@, r)) = ~p(r)) (4.23)
A% T
-2
B,
',’.: The structure of (2.5) ensures thet this rule is obeyed, because of the
| ' closure property
o
1.;: Jar, <rPir,> <rlPir,> = <r P r,> (4.24)
*-:
Y The rule con also be checked explicitly on the representation (4.9), after
N~
e some algebra.
N
&N
~
2creening of an infinitesimel test charge (Stillinger-Lovett rule)
& This screening rule meens that an external Infinitesimal test charge
induces in the system a polarization cloud of exactly opposite cherge.
; Through lineer response theory, this statement becomes & sum rule for the
: truncated two-body density, the Carnie and Chan genersiization''®) of the
- Stillinger-Lovett rule?? 1o an inhomogeneous system, written here for two
:_ dimensions
“I
\I
& Jor Jor, e, ste, r) =1 (4.25)
N -pjar,Jar, anr, S(r, 1)) = :
)
'\ where S 18 the totel charge structure factor
0..
4
::c
;;: S(r,, r,) = o p‘:’ (r,.r)spr)8(r,-r)) . (4.26)
2
o) in the present case of a periodic system, (4.25) cen be written in other
; . forms. Beceuse of its perfodicity properties, Sr,, ) I8 compleﬁ
F described by its double Fourier transform ol t
: S - 1 f ory Jor, exlt 6, « t(r-r Istr,, 1) (427)
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where U means that the integration domain of r,1: theumt cell, of areg A =
8b sing, 6 1s o vector of the reciprocal lettice From (423), one derrves P RRPARAD)

SG(B) = 0. Then, (4.25) can be reexpressed in terms of 55“‘) and of the

Fourier transform 2n/k of -#n r as

So(k)

2ng lim — =1 (4 28)
k-0 k

In other words

! [ K
KL dr, Jar, exp{ik(r,-r,))S(r,,r,) o Py (429)

Expanding the exponential in (4.29), we find the generalization to a periodic
system of the Stillinger-Lovett second moment rule

5
lLdr ar, (r-r )y (F,- 1) m(r-r)-- xy (4.30)
A 112211121:9[21 :;p—er
-
“e Ny
where o, y = 1, 2 are cartesian componentsctqs(4.29) and (4.30) are of the

w02 Tabctra
seme form as in 8 homogeneous system, except for the average of AT‘U'VT—/

the unit cell.

‘In terms of the dimensioniess oblique coordinates X, Y,

(4.30) becomes | w1 < “e %(’-7' = 2)

2

1 00 900
y=| ax [ar [ ¢ av,00-X )2 0% r r)e- 2 (4318)
X I:) '[o 'I-:le.oo 2N e Ar 2nasing
r 1 l-c«o 0o 020
=[x, [av. [ ¢ a0~ P oK ) - =2 (4320) .
" ‘Io '-oox7].oo 202707 B A0 T2 2nbsing s
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(4.3tc)

a0 7o, |

- Q0 -

2
>+ cosS
2) Bg COSY
gy, (X, -X XY,-Y ) p“Nr,, r,) =
= %X 0T, aPT I e

1 i
Ixy = Jodxt j

in Appendix A, we show thet these sum rules (4.31) are indeed obeyed. For
this purpose, it is conventent {ao express g(f;’ in terms of the projector P in

its form (4.9).

The sbove mentioned proof applies to any pen‘odic)t. beckground,
including the special case of & iattice of fixed charges of negligibie size.
For this limiting case, however, we cen also give on alternative proof,
which is described in Appendix B.

v fo WA C‘\'
P ithe-ubove, we heve assumed the value | for g A, the average number

of mobile perticles per unit cell. If QA = p/q {p, q integers), choosing a unit
cell q times larger reduces the problem to g,A = p, and it is eesy to see thet 5 ¢
thefattsr is solved by diagonelizing & g x g metrix.

Whet about irrational values of %A 7 in terms of o model of a crystei,
it would be 8 rather acedemic situation, since -g,A is the ratio between the
charge of on ion end the cherge of an slectron. Nevertheless, this is o

mathematically interesting situation. Furthermore, our problem is closely

relsted to o magnetic analog'' ' of importance for the theory of the

quantum Hatl eﬂect( 12) and also to problems which arise in the theories of

incommensurete structures' '),

We have not been sble to compute the densities for irrational velues of
GoA. We only went to point out that, in the simplest case, the problem
reduces to studying the solutions of an simost- Mathieu equetion.

We start agein with the functions (4.2), for & squere unit cell of side e,
and a potential moduletion of the form (4.13):

Lo o A AN AR ALY
hY L AN -,f VW

CAF L T Y Wl



Wy plr) = [1 + +{cos 2nX + cos2n ,‘]'/2 exp{-np(X - (**n)z s 2mi(L+n)Y)

‘ (432)

where y = gOA gba Computing the projector P on the space of these

functions amounts to diagonalize the matrix formed by the scalar products

Jar W o0 W () = 8(2 - 1) Agm (433)

A simple calculation gives

Anm = (20)° "2{[|+Ae‘“/2l‘ cos ZIIL(*U) Brn + %Ae'"ml’(sn m-1*8nme1)}
(4.34)
The problem of diagonalizing A, leads to
2‘-(un,| + Up_y) +[cos 2"((’")]1 = SUp, (4.35)

If p=1, the solution is exp(-2minn), and we retrieve (4.4). If p is irrationel,
(4.35) is the almost-Mathieu equetion in its full glory, and we leave the

computation of the projector P as an open problem.

S. CONCLUSION.
At T = 2, we have obtained an exact solution for the equilibrium
slotistical mechanics of the model of fixed ions and mobile electrons

introduced by Hansen et a1>-8)

. We have shown thet, at [ = 2, the model
exhibits the features of & conducting phase : the correlations at large
separations decay faster then any inverse power law, and the system has
good screening properties (the Stiilinger-Lovett rule is obeyed).

On the basts of computer simulation results, it has been cleimed by

AR O "._ \‘EEEE'\&]
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Hansen and his collaborators thst the coupling I‘I, at which the

) i — e -'-'\\/\’("\ ; .
conductor-dielectric phase transition occurs, goes to%g uﬁde‘?‘vé\ﬁés 8s ¥ .
the radius of the i1ons goes to zero. Qur exact results at ' = 2 are not in

contradiction with this claim.
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APPENDIX A : STILLINGER-LOVETT SUM RULE

™ We check the sum rules (4.31), where

(2}
. pT r,r))=-<r, Pir,><r,Plr, > (A1)

using for <r, 1P r,> the representation (4.9).

we first consider

xy=-I‘ax I‘av expl-22(r )] [‘d( J'anrd(' ]I dn' (1, n) 1@, T
o 'o ' "m0 0 0 0
nm

0
<
“, ot

N % exp{-2ni[n(n-m)-n'(n'-m’)} % (X,-(-n)z- L (X,-(‘-n’)z + 2ni(n-n)Y }
- r*

:‘.:":

LA As ‘2
GG

b

oo
] ot expl- L 0G-2-m)? - 1 0G-C-m?)
- oo T

'-‘.'.;-':."‘.I

x 7 d000-1, 2 expl-20(r,)- 210 (L-UNY,-Y )-20i(m-m)Y,]  (A2)

A

Using the periodicity of &, we find for the integral over Y, in (A2)

LN
v.)v

Ps
®

i 61167 %:;— 8L - 1) % B mat Jo‘ oY, exp(-28(r,) + 2iHY, ]

C g |
:
N

a

Ve o N

i

»

v

<Y

in (A2), we can replace m' by m + M and n" by n + N. Using the periodicity of

RE

&, we can replace X, - m by X, and perform the sum over m which gives a

A

;;yl'l

1 oo
6(n - m'); we cen also replace X, - nby X, and 3, iodx,... by | dX,... We obtain
n -00

L v [
DENINDIS

2
Iy = (2;"’)7 J;dcfdn—'—

5 R, Ky
'}L"-_"C'-.’c’-."xl-'
=2
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7

l,: ? = e 7
o
Vet

[NESTAT NS

91_2 xp(anN)[ o, exel - (Xt N)]] oY, exp-28(r )- 2NNY ]
N

ry oy vy
R

B
4
A A

‘_Z exp(-2ninM) Icodx.‘, exp( - ’t‘ (Xz-(—H)z] £0Y2 exp(-2¢(r2)+ 2mny, ]
% M

% —a'%;‘«(n)”“ X, -0 - _(x,-ozn (A3)

Eo
b..
.,
| .
.

in (A3), as & function of X, the derivetive (62/6(2)... is a combination of
terms of the form exd-(n/t)()(,—()z] or (x,-()exd-(n/t)(x,-()zl or (x,—()2

exd—(n/t)(x,-()zl These terms enter the integral over X, and generate

Q%% exp(21inN) I_ 021, exp(- g (x,-2)- —tﬂ‘- (X,-C-NP) rodY, axp{-28(r )
- 2miNY )

multiplied on the right by 1 or X, - L or (x, - ()2, i.e. either (L, ) as given
by (4.8), or combinations of af/af, af/an, and a’f/a(an. The same

identifications can be made with exd-—(n/t')(xz—()z] ond its derivatives.
The result of thess identifications is

2

fo 1
Iy =- an (4K 3 11(..21.(!_’_)52131 (AQ)
! (_2;7]0 ] ﬂ{tot‘ a‘l'l (xet fan (xet f a(]}

<4
]
' @ Since f is periodic in { end 1 with periods 1, the contribution from the
“ derivetive (3/87)... vanishes, and we obtain (4.31b).
' The computation of Iyy follows the same lines. Instead of (A3) we
b

obtain
E .%
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4 <00 Lol

n ¢ — S exp(2minN) J ax, exp( - ”_(x‘—L—N)‘]} ay, exo{—QG(r]) - 2 NY, ]

_1-: EJO N - 0O t. 0

':- s -0 i 2 1

r‘ x ™ 2 exp(-2ninM) }_;1))(2 exp - - (X,-T-M) ]Jode exp-28(r,)+ 21MY, ]
™

- x(, -Xx, - L 8)8 (L expy- ﬂ(x‘-o ——( O (AS)

- 2o b 2m dn 3t f(( n ch

:

- Again, we manage to recognize derivatives of f({, 1), with the result

(431c).

o Exchanging the X and Y axes in (4.3 1b) proves (4.318).
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APPENDIX B : LATTICE OF POINT PARTICLES

We take as the periodic background a lattice of fixed charged particles and
consider the limiting case of point particles. We give a direct proof that the
Stillinger-Lovett rule is obeyed.

Let 2, = x' + ig’ be the complex number which defines the position of

1
the ith mobile particle; similarly let Z] define the positton of the j th fixed

particle. At T = 2, the Boltzmann factor of & system of N mobile and N fixed
point particles is

M Q- 2) T )

(-pH) = L2 | X <t P« L2N|get
exp(-0 lﬂj(z' - Z]) ot Z|—ZJ

H,j=1 ,...,NF
(8.1)

where the second form is obtained by using an algebraic identity of Cauchy.
In order to avoid short distance divergences, we introduce a cutoff at some
small distance o, and replace (B.1) by

1 - exp-l2)-2 2/ 207
exp(~0H) = L2M get { m: Iz'z f h,j-l,...,NF 62)
1=

'_’;5 The limit 0 - 0 will be taken st the end of the calculation. (B.2) is again o
K
o squered determinant, and therefore the n-body trunceted densities are agsin
|. - }
; of the form (2.5), where now P is the projector on the space spsnned by the |
oy functions (2-2.)'{1-exp{-Iz-2 I2/202]} An orthogona! basis for this space f
, bovn |
e is obtained by buHding Bloch functions. Assuming for simplicity that the
o fixed particles are on the square lattice Z =m + in, m,n € &, we define the
o Blach functions
- |
M |
$ |
A 1
)
"
Y s

’ﬁ 5! P P, > LY ¥
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NN NP

?Q»ﬁaﬂ

F v

1-exp (x-m)? + (y-n)?Y 20
wm(x,g) = 3 exp{2m(Im+nn)] H ’ yar) 8 32)
mn x + 1y =(m +1n)

T

AR

Using the Founer transform

PR —/ ol SN

VR Yy

oo 1-exp(-(x2+y?)/20)
dy exp[2ni{{x+ny)] J
o0

ot =] ox]
- 00

L
20 g

X+1y

- e

exd-ancrz(tzmz)]
= _ (BA)
{+in

'f{"’f{l )

.A.
g
4%

and the Poisson summation formuls, we can rewrite ¥ as

.
i
bR
1

LR I N

W (% ¥) = -3, exp{20{(T + m)x +(nen)y]} g(Tem, nen) (8S)
IT] mn

i > o
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4

ond we find for the projector

oy P

Ve /2 W plxy4,) Yo n(x,,4,) e (/2
[ Pa [ Can peoedC T2t (1R [ :
-1z -z [T dx) T dyivg ﬂ(x,g)l7 -1/2 2172

-1/2 -2 '

<r, IP|r2>=

i
|
!
!
i
\

2z exp{2X{(L+m )x +(nen Dy, - (Com, )0y~ (Nen )y, JG(Tem, nen ) g(Lemy, en,)
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Sl S]]

+m, N+n)q(Lem, N+n)
%ng(( nen)g(lem, ©6)
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The structure of (B.6) allows us at once to check the average density sum ruie

o
b 3
Lof'hy

o

11/2

1/2 172 (172
dx[ dy p(r)-] dxl dy<riPlr>a=t (8.7)
172 2 172
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ond the neutrality sum rule

A%
2 T

I35
’

i
U
~ A %y P o CC O A o, A o o T o Cf T oty W Wy QW Wy P o &y 2y O Ve O
LAY " LA SAS N > Y o q)
'I:‘.‘:} t'.:: l“.::“l...l" 'vh‘:“ '» WV A% §%, A% ‘ 6‘{ ¢, '.‘I.o H‘u l.' "0 '4 [} .“| V¥ ' » .‘0' W, !

........... DS A .,

X




26

[“ g, [ ay, 0? S e
dx, dy,p (r,, r))==-] dx, ] dy,<r IPlr,><r,Plr >
T 00 < -0

-G -

=-<r, Plr,>=-p(r) (B.8)

we turn to the Stillinger-Lovett second moment
60 172 1/2
I=2I dx,[ dgzl I dy, m(r,. ry)(x,- "2)

-00 -1/2 -1/

0o 172 (172
=-2] dx, ] dgzj f dy, <r, Plr,><r, IPlr, > (x- xz)
-0 ° -00 -1/2 -1/2 8.9)

Using the representation (B.6) of the projector, we perform the space integrals with
verisblesr and r, - r,; we find

2 1/2 |/2 (R WA D L { (AR B @R}
dn « d 8'( ) 8( )
]juz -1/2 -uz I—I/ WS-t sn -, 1,00, ,0,Tn)
(B.10)
where
f((,m(‘,q')-%g((om,non)§(t'om,n'on) ' (B.11)
Replacing 8°(L - {) by 8(Z - UXE/a7), we obtain
12 1 1L nL.m 1 (R RAR )]
te-— | & ant AL
W Lz iz (alm e (@, nLn a
(g, n.\',m)
B
(8.12)
The function 1(L, n; T, ) defined by (B.4) and (B.11) is
-4 mP + (n + n)?
@t m =3 - AL ELY) (8.13)
mn T m)y + (ne n’

N T

el 20 1A% s"o"o D R R O R SR

'-\\'\\ A

B2 50 ;
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it ys convement to display the singulanty at { = n = 0, coming from the term
m =n =0, and to represent f, in the integration domain I, Inl < 1/2, by 1ts

Laurent expansion

i, ni,n= L cA+.
o’

in the point particle limit, @ -+ O, the sum in (B.13) diverges for large (m, n)
and A becomes infinite; however the terms of higher order in ({, n)
represented by dots in (B.14) remain finite and can be neglected. If 8 similar
analysis is performed for the derivatives of f appearing in (B.12), it is easily
seen that only the term m = n = O plays 8 role as ¢ -+ O, becsuse the sums on
(m, n) which define these derivatives do ngt diverge for large (m, n);

therefore

1L ne.n) | ag(t,n) (. !

GO O S 4 @on)?

and

ar(g,n,t',m) af((.ﬂ;('.ﬂ)l Ig( ) 39T, m) |,
a aT U=l aT

~ —a——0 (B.16)
T+

Using (B.14), (B.15), and (B.16) in (B.12), we find
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As A goes to infinity, the integration domain in (B.17) can be extended to

infimty and the integral evelusated in poler coordinates. Thus

Icirm01=-nl ' (B.18)
-

This proves that the Stillinger-Lovett rule holds in the point-particle limit o

-+ 0.

',’.:-‘ We have not been able to computel for a finite velue of 0. It should be
?.3;:; remerked that the Boltzmenn factor (B.2) corresponds, when ¢ is non zero, to
‘Z‘ o complicated meny-body interaction which would become the Coulomb law
. only if all perticles were for apert from one another. There is no obvious
s reason for believing thet such a system obeys or does nol obey the

Z;'-:_ Stillinger-Lovett rule. This is in contrast with the cese of e bone fide
'\ system with extended fixed perticies, which does obey the rule, as shown in
7 Appendix A.
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FIGURE CAPTION

- Fig.1. Potenti&l’modulation (a), background density (b), and particle density (c).
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