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NUMERICAL SIMULATION OF TURBULENT SPOTS

IN CHANNEL AND BOUNDARY LAYER FLOS

By

Edward T. Bullister

Department of Mechanical Engineering,

Massachusetts Institute of Technology,

Cambridge, Mass. 02139 i

AND .-

Steven A. Orazag

Department of Applied and Computational Mathematics,

Princeton University, Princeton, New Jersey 08544 ..

.X

The initiation and early growth of spots in channel and

boundary layer flows is simulated using a three dimensional

spectral code. The simulated spots show significant

agreement with available experimental data for such

quantities as growth rates and spreading angles.

Disturbances are introduced into the center and edge of the

developing channel spots to investigate the relative

sensitivity of spots.
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1. I NTROIDUC- I ON
I

Enmons was the first to observe turbulent spots in a

laminar flow undergoing transition to a turbulent flow.

Since then a large number of investigators have recognized

the importance of spots in the study of both transition and

turbulence. Naturally occurring spots are initiated by flow

disturbances like noise. In the laboratory, spots may be

artificially initiated with electric sparks or by injecting

a jet of fluid. In a numerical simulation of spots,

controlled disturbances may be imposed on a solution of the

Navier-Stokes equations.

Soon after Enons' discovery, Elder noted that spots

tend to grow independently of one another, even when they

overlap. Gaster 3'4  studied the linear growth of small I.

amplitude disturbances into a wave packet using both

laboratory experiments and theoretical analysis. His

theoretical predictions have been confirmed by laboratory

observations so long as nonlinear effects are not important. ,

5 {
Wygnanski. Sokolov, and Friedman conducted an experimental '*'',,

study of spots in a boundary layer. Using conditional

sampling techniques, they mapped out the geometry and growth-

rates of a spot as it develops in a boundary layer. Gad-el-[

6Hak, et al. conducted flow visualization experiments on

boundary layer spots by injecting dye upstream of the spot

initiation. They divided the spot into five regions(see --,

Figure 1). Region I within the spot overhangs region It, t '.



the laminar boundary layer below the head of the spot.

Region III appears similar to a turbulent boundary layer.

In regions IV and V the flow returns to a "calm" state. The -

photograph in Figure 2 illustrates the characteristic

arrowhead shape of a boundary layer spot in streamwise-

spanwise projection. This photograph was obtained by

illuminating dye lines with a sheet of light very close to

the wall.

The first detailed research directed toward

investigating the characteristics of spots in a channel was

conducted by Carlson, et al. Using mica flakes to

visualize the flow (Figure 3), they observed that a channel

spot also has the characteristic arrowhead shape. They

identified (see Figure 4) several features present in

channel spots. The spreading half-angle (1) was about 8

degrees. The leading edges met at a sharp point and were

preceded by oblique waves(7). The center of the spot (4)

contained small scale turbulence. Streaks(3) trailed from

region 4.

The purpose of the present study is to use direct

numerical solution of the Navier-Stokes equation to identify

details of the internal structure of spots, as well as to

map out spot dimensions and growth rates. Comparison of our

results for growth rates of the large-scale spot dimensions

with those seen experimentally verifies that the essential

growth mechanisms of spots is captured by our numerical

experiment..
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One previous study of numerical spots should be

mentioned. Leonard used discrete vortex methods to

simulate numerically the early growth of a spot in a

boundary layer. As with the present computations, the spots

computed by Leonard are typically less mature than

experimentally observed spots.
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2. COMPUTATIONAL GEOMETRIES AND NUMERICAL METHODS

The computational domain that we use to simulate

channel flow spots is as follows. In our simulations of

channel flow spots, the flow is represented by 128x64x33

Fourier and Chebyshev modes in the x (streamwise), y

(spanwise), and z (normal) directions, respectively (see

Figure 5). The flow satisfies periodic boundary conditions
I

in x and y and no-slip (rigid) boundary conditions at the

walls (z-±l). The computational box is nondimensionalized

by the channel half-width; in the runs presented below, the

physical box size is 20x5x2. With 128x64 resolution in x

and y, the resultant node spacing (in physical space) of the

spectral collocation points is Ax-0.16 and Ay-O.08.

For our boundary layer spot calculations, the flow is

represented using 64 Fourier modes in x and y, with Ax-2 and

AY-l (see Figure 6). In the z direction, the 33 collocation

points are obtained by an algebraic mapping of the interval

[-1.1] to [0,oo] with half the collocation points located in

the region O<z<5. The computational box is

nondimensionalized by the boundary layer thickness V7-V1Xo/Uo:

at some representative x-location xo. The periodic boundary

conditions used in the streamwise direction are only

approximate. They are justified because the increase in F

boundary layer thickness through the computational domain is

9only 6% (see also Balasubramanian. et al ). While inflow-

outflow boundary conditions are, in principle, more

realistic than periodic boundary conditions, they are more

Ii
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wasteful of spatial resolution, which is the limiting factor

in the present calculations.

The Navier-Stokes equations are solved in rotational

form,

dv2

d- v X w - V(H) + 1/Re V 2v)

V. (v)-O

where w-VXv is the vorticity and I-P+v2 /2. The velocities

are normalized with respect to the centerline velocity in

the channel and the free stream velocity in the boundary

layer.

The spectral method of Orszag and Patera 10 is used in

both the channel and boundary layer calculations. For the

boundary layer, the scheme is modified by mapping the

Chebyshev collocation points of the channel to the desired

locations in the boundary layer. A mapping function

Z* - f(z)

.

is chosen. When taking derivatives in the z-direction

(e.g., in calculating the vorticity) the Chebyshev

differentiation in z* is followed by multiplication by

. d df d
-z dz dz*

4, , - . .... .. .. , . . . . ., _. ., . .,-



The boundary condition at infinity (v - ) is implemented -5%

by recalculating the (f .0) Fourier mode (the mean flow in x

and y) in the viscous step. Symmetry is not imposed, but

the spots develop symmnetrically when synnetric initial

conditions are used.

The disturbance is initiated by applying a body force

to a packet of fluid, producing a small jet normal to and

away from the wall. The form of the disturbance is Gaussian

in x and y and continuous in time.

F - G(t) e-r 
2 

where G(t) is a ramp function. The size of the jets are

indicated in Table I.

Channel B.L.

%.

o 0.16 0.7

Location 0.1 < z < 0.2 0.05 < z < 1.5

Peak normal

Velocity 0.09 0.035

We impose the following boundary conditions on the flow

through the channel: the velocity at the walls is zero. and

the flow is periodic at the inflow/outflow and cross-stream

N, N N
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boundaries. The Reynolds number for the channel runs is

6000 based on the channel half-width. The Reynolds number .

for the boundary layer simulations is 1000 based on the

boundary layer thickness corresponding to f7-1.0.

3. SPOTS IN CHANNEL FLOWS

In Figure 7, we plot contours of the maximum (in y) of

the absolute value of the normal velocity, Max yv zI for a

channel spot at Re-6000. The contour plots we present for

channel spots encompass the entire 20x5x2 computational

domain; their dimensions are not to scale. Except where

noted, the contours are at 1% intervals of Maxq 1v , where q

is the coordinate normal to the plotting plane. With this

projection of the spot onto a plane we view the data from

the experimentalist's perspective (with the line of sight

extending all the way through the channel). At time t-l,

the initial disturbance has convected downstream and has

become slightly distorted. The initial peak velocity of

0.09 has decreased to 0.038 due to viscous diffusion. By a

time of t-3, the velocity has increased to 0.05 due to

instability in the flow. The disturbance is elongated in x

as well as convected downstream. In Figure 8 we see the

disturbance develop most of the features characteristic of a

spot. The front of the disturbance moves away from the

wall. The disturbance grows in all directions and the

"arrowhead" shape becomes apparent. The peak normal

velocity increases from 6% at t-12 to 9% at t-18.

F r 0



In Figure 9 we show the development of the boundaries

with an isometric view. Enclosed within the surface is I

fluid whose x velocity differs from the Poiseuille profile

by more than 2%.

The results plotted in Figure 10 are Max yv zI and
y z

channel with a peak normal velocity of 13%. The initial

disturbance on the bottom wall has induced a new disturbance I

at the top wall. This second, smaller spot has a peak

velocity that occurs at a distance of approximately 0.25

(1/8 channel width) away from the top wall. By t-30, the

two spo's have joined to produce a disturbance that fills

the span of the channel.

In Figure 11 we show the distortion of the Poiaeuille p

profile at the spot center. The velocity at the edge is

essentially unchanged from that of the original Poiseuille

flow, while at the spot center there is a velocity defect of

0.1-0.2. At the bottom wall, the shear has increased by a

factor of 3.

In Table II and Figure 12, we show how the spot

geometry changes in time. Although there are significant

differences between conditions generating our numerical spot

and those generating the spots studied experimentally, a

comparison of numerical and laboratory features is

instructive. Carlson et al8 generated spots in a laboratory

channel flow at Re-1000, while we used Re-6000 in our

calculations. Most of the experimental data were taken more

S~."
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than 50-100 channel widths downstream of the initial

disturbance, while we have been able to follow the spot for

only 10 channel widths. Further development of the channel

spot would require a larger computational domain. The

growth rate of the width and length of the numerical spot

becomes constant at t-15 and remains so until the spot fills

the domain at t-32. This steady growth rate is slightly

higher than that observed experimentally in both the lateral

and longitudinal directions. This discrepancy can be due to

the difference in Reynolds numbers or to the lack of

maturity of our computed spots compared to those studied

experimentally. We have not observed in our data any
.4 significant evidence of the leading Tollmien-Schlicting

waves that were observed experimentally. Again, we believe

that the absence of these waves is due to the lack of

maturity of our computed spots.

Table 11 Channel Spots

Experimentr'l I Computational

Velocity of Front 0.6 I 0.85

Rear 0.34 I 0.25
Vl

Spreading Half-Angle 8 1 100



A further numerical calculation wasn done to compare the

stability characteristics of the spot at its edge and

center. The velocity field of a spot at t-20 is used as the

initial condition for three runs. The first run consists of

the restarting the original spot calculation and allowing

the spot to continue development undisturbed to a time of

24. For the second run, a disturbance is applied at t-20 to

the original spot at its center. This disturbance is of the

same spatial and temporal extent as the original disturbance

that initiated the spot, but the magnitude is 1/10 that of

the original. The difference between the resulting velocity

fields, C(x,t) - I v zl -v z2 1, is a measure of the effect of

the disturbance. By t-24, Cx,t) has exceeded 1% in the

central 2/3 of the spot (Figure 13). The third run is

identical to the second. but with the disturbance applied at

the spot edge, rather than at the center. At t-24 the

disturbance had propagated through most of the spot (see

Figure 14), and had a peak magnitude of about 4%, as opposed

to the 1.596 peak from the second run.

From these results, we conclude that channel spots are

less stable at their edges than at their centers. This

observation suggests that spots grow by destabilization of

neighboring fluid, rather than simply engulfing laminar

fluid.

4. SPOTS IN BOUN'DARY LAYER FLOWVS
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In Figures 15 through 17 we show the development of a

boundary layer spot at Re-1000 up to t-90. The contour plots

we present for boundary layer spots encompass the entire

128x64 computational domain in x and y and are truncated at

z-22. Again, except where noted, the contours are at 1%

intervals of Max Iv I, where q is the direction normal to
q z

the plotting plane. Figure 15 shows the streamwise and

spanwise development of the spot from the initial

disturbance. At t-90, the spot has begun to develop the

characteristic arrowhead shape, which is more apparent in

the second (2%) velocity contour. Figure 16 shows the

development of the triangular shape and the overhang in the

spanwise direction. Figure 17 shows the overhang develop in

the leading edge.

TaL.J_I Boundary Layer Spots

Experimental I Computational

Velocity of Front 0.9 I 0.85

Rear 0.5 I 0.3

Spreading Half-Angle 100 I 120

The growth and development of the spot in a boundary

layer is compared with the experimental findings of

Wygnanski, et al in Table III. The growth rate of the spot
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in the streamwise and spanwise directions is in relatively

close agreement with the experimental data. This suggests

that the growth mechanisms in a boundary layer spot have

been accurately captured in this simulation.

Figure 18 shows cross sections of the spot at t-90.

Here we plot contours of the local values of vz at y-

ycenter0.5. 2.5, and 4.5, in Figures 18a, 18b, and 18c,

respectively. Intervals are at 1% and dashed contour lines

represent negative z velocities. The velocities are highest

in the plane closest to the center of the spot (see Figure

18a). Away from the spot centerline the velocities and the

spot height decrease. The front of the spot has an overhang

of a distance of 10-20 in m, as has been observed a

experimentally. The flow is dominated by eddies with length

scales of approximately 10 in x and 5 in y. These length

scales differ from those of unstable modes of the Orr-

Sommerfeld equations, which predicts linear instability for

much longer wavelengths, 30<A <85.

In order to explore the later time evolution of

boundary layer spots, it will be necessary to use higher

resolution simulations, which we hope to perform in the

future.

CONCLUSIONS

It has been shown that spots can be generated by

numerical solution of the Navier-Stokes equations. The fact

ag
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that our results for the growth rates of the large-scale

spot dimensions are relatively close to those seen r

experimentally suggests that the essential growth mechanisms

of spots have been captured by our numerical experiments.

These simulated spots are less mature than typical

experimental spots, but their behavior appears to

approximate that in a fully developed spot.

The spots generated were not dominated by two

dimensional Tollmien-Schlicting waves. This suggests that

the growth in spots is not linear growth of two dimensional

Tollmien-Schlicting waves. Moreover, the perturbation

velocities seen were about 0.1; perturbations this large

would make the results of linear theory inapplicable and 4-

suggest domination of nonlinear effects. This does not rule

out the importance of Tollmien-Schlicting waves in the

amplification of small disturbances which may develop into
L

spots or as a driving mechanism for some secondary

instability In spots.
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FIG. 1 Schematic of an experimental boundary layer spot cut

through the center (from Gad-el-Hak et al. 6 ).

FIG. 2 Visualization of an experimental boundary layer spot

using fluorescent dye and a sheet of laser light at the

wall; Re -Sx105 (from Gad-el-Hak et al. 6

FIG. 3 Visualization of an experimental channel spot using

mica platelets (from Carlson et al. 8). -

FIG. 4 Channel spot schematic: (1) spreading half angle; (2)

trailing streaks; (3) region of small-scale turbulence (4)

oblique Tollmien-Schlicting waves (from Carlson et al.$).

FIG. 5 Channel geometry and nomenclature. Channel is 20x5x2

in the x,y, and z directions, with 128x64 Fourier modes in x

and y and 33 Chebyshev modes in z.

FIG. 6 Boundary layer geometry and nomenclature. Boundary

layer computational domain is 128x64 in the x and y

directions, with 64x64 Fourier modes in x and y and 33

Chebyshev modes mapped in the normal(z) direction.

FIG. 7 Early-time evolution of channel spot. Max IV I
y z

contours are plotted at 1% intervals.

FIG. 8 Channel spot at intermediate times. Max IV I
z z

contours in a) and b); Maxy IVz contours in c) and d).

FIG. 9 Surfaces of 2% x-velocity perturbations in developing

channel spot.

FIG. 10 Channel spot at t-30. Max Iv I contours in a);z

Max Iv I contours in b).y z

FIG. 11 Mean velocity profiles at center (solid) and edge

(broken) of spot.
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FIG. 12 Location in x of front, center, and rear of channel

spot vs. time, where spot is defined as region where

IV I12%. For t larger than 30, the spot length reaches the

periodicity length of the computational domain, so the spot

ceases to grow in the streamwise direction.

FIG. 13 Perturbation velocity, C(x,t), contours at t-22 and

t-24 for channel spot perturbed at its center at t-20.

FIG. 14 Perturbation velocity, e(x,t), contours at t-22 and

t-24 for channel spot perturbed at its edge at t-20.

FIG. 15 Development of boundary layer spot. Max zIVz I

contours are plotted at 1% intervals. a)t-30; b)t-60; c)t-90

FIG. 16 Development of boundary layer spot. Max Iv Iy z .

contours are plotted at 1% intervals. a)t-30; b)t-60; c)t-90

FIG. 17 Development of boundary layer spot. Max• IVz I

contours are plotted at 1% intervals. a)t-30; b)t-60; c)t-90

FIG. 18 Slices of spot at t-90. Contours of v at y-32, 30,

zr
and 28. The plane of symetry of the spot is at y-32.5.

Dotted lines represent negative v .
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Early-Time Spot Evolution at R -6000
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MEAN VELOCITY PROFILES

AT CENTER AND EDGE-OF SPOT
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W Numerical Solution of Incompressible Flows
by a Marching Multigrid Nonlinear Method

Moshe Rosenfeld" and Moshe Israelit
Technwon-Israel Institue of Technology., Haifa, Israel

A downstream marching iterative scheme for the solution of the steady, incompressible, and two-dimensional
paraboli.'cd or thin liver Naiiler-Stokes equations is described for A general curvilinear orthogonal coordinate
ss ',ter. M*odifications of the primitive equation global relaxation sweep procedure result in an efficient marching
scheme. This scheme takes full account of the reduced order of the approximate equations as it behaves like the
SLOR methrod for a single elliptic equation. The proposed algorithm is essentially Reynolds number-indtependent
and therefore can be applied to the solution of dhe incompressible Euler equations, A judicious choice of a
staggered mesh enables second-order accuracy even in the marching direction. T'he improied smoothing properties
permit the introduction of multigrid acceleration. TIbe convergence rates are similar to those obtained by the
muttignd solution of a single elliptic equation; the storage is also comparable as only the pressure has to be stored
on all levels. Numericall res.ults are presented foe several boundarv-layer-tipe Hlow problems. including the Hlow
oser a spheroid at zero inrcdence.

1. Introduction The present study is a continuation of the work presented

C ONSIDERABLE evidcnce has accumulated recently in Ref. 9. where the scheme of Israeli and Lin3' was modified
about the applicability of the parabolized Navier-Stokes into a second-order, staggered, marching multigrid form. The

PNS) equations for high Reynolds number flows with a principal aim here is to test the convergence properties of the
principal flow direction (see Rubin'). The PNS equations are methods in the case of viscous nonlinear problems and to
obtained by neglecting the streamwise viscous terms in the apply the algorithm to several flow problems. The good

e, Navier-Stokes equations. When the viscous terms in the cir- smoothing properties of the Israeli and Lin scheme are used in
c' umferential direction are also neglected, one gets the thin a multigrid framework in order to accelerate the convergence

.1 laver (TL) approximation. of the solution of the PNS equations. The steady, incom-
.4 T'he steady PNS or TL equations still have an elliptic nature piressible, viscous, and two-dimensional equations are consid-

(hut of reduced order-see See. 11 ) and therefore the initial ered in a general curvilinear coordinate system. The marching
V alue problem in the downstream marching direction is not scheme is implemented Using A stable algorithm whicb is

well posed A %ell-posed ini ti al-boundary value problem can second-order accurate also in the marching direction. The
he formulated by specifying, for example, upstream and side same method can be used without modification for the incomn-

sf condition,. for the velocities and one downstreamn condition pressible Euler cquations, as the effect of the Reynolds num-
for the pressure. Therefore the PNS equations must be solved ber on the convergence rate is insignificant. In two dimen-
globally and cannot be solved by a single-sweep marching. sions. the PNS and the TL equations are identical, and

The reduced order of the PNS equations can be exploited therefore the same analysis applies to both.
h% constructing an iterative marching method for updating the

- . pressure field otnly Such a multiple-sweep iteration method 1.Frmlto
has the ads antage that the velocity field is generated during I Fonlain
the marching process and only the pressure field has to be The nondiniensional steady, incompressible, and two-

* tored from sweep to swveep-a considerable saving in storage dimensional PNS (or TL) equations in a general curvilinear
rsult. flowever, simple-minded marching does not result in orthogonal coordinate system (. Ill are as follows:

good consergence properties and sometimes diverges. For the Continuity
two-dcimensional case. Israeli and Lin"' devised a stable d(h(V) d(h,u)
marching sc:hemie that behases like the successive line over -~- + - - 0(3

-elaxition ISLORI method fo-r the solution of a single elliptic (a
cujtiiti Mfomenrtum, Tj

Rubin and Reddy' analy-zed certain aspects of the solution
(of the PNS equations and used their procedure to solve 1 1 av RIV ' 1 , U2 aht j ap
cscr~i low,% problems in Caitesian and axisymmetric body A Ri1 dj 7 di 7f , -h -d

fitted conformal coordinates They used in most cases a first'-
order s hcrne and aisku applied a simplified one-dimensionald(I

mnfid algorithm Stcral more recent works are cited in )(b

t'recrcid as Paper fi5t 5,%) at the .AIAA Scsecnih (omnputational Momentum.,
5. I hd Dt i rn ics ( onferen~e. Juts 15 - 17. 149 5. received Jlo 19. 1985,.

0 r %i,;,n rce'd~t Aug 27. 1-*6 (,.psoght PAmerican Instiute of aL t, t f d tV iih 1. Rh j
4 Aciroisui.,s ai-I Astr' njutv.. Inc, P06 All tights rcserved I -- - A h

*(,rujdujsie sotud~nt. tDcparimet of Acronjutical Enineering, di At 1ie h( di1 h( if jft dj
;f nils Nito nal Research C-inol kcscarch A,i-aic at NASAId

* Aric, Re-cji,h Center Mcmher AlA.'+111\
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Sis approximately aligned with the mainstream direction. UJ U,,,, V_,, together with the pressure P'. ., (or j - 1.
and I' are the contravariant velocity components in the J and 2, J). Thus, the velocities are indeed solved using values
q directions respectively. P is the pressure and Re is the from the upstream while the pressure uses information from
Reynolds number. h, and h, are the Lamme coefficients in the downstream. This approach was subsequently used in
the t and q directions. J is the Jacobian of the coordinate Refs. 3 and 8.
transformation. In addition, one may stagger the velocity V with respect 1 .

The two-dimensional Navier-Stokes equations are elliptic of the other variables as shown in Fig. 2, where the centenng
order four.' It can be shown that the PNS or TL equations points of the difference equations are also plotted. The dif-
are elliptic of order two only-like a single Poisson equation. ferential equations are approximated by central second-order
This ellipticity is caused by the pressure gradient terms via the approximations. Whenever needed, averaging vkas used, as is
continuity equation. A well-posed problem can be formulated usually done for staggered grids.
by defining the boundary conditions as described in Fig. I for The nonlinear algebraic equations are linearized by either a
a rectangular control volume. The following conditions may full Newton-Raphson (NR) method or by perfornmung only
be specified: one NR iteration. The results are very similar, so usually a

Upstream boundary (AB) single NR iteration is used.

U U,. V ,. (2a) IV. The Multigrid Algorithm
The multigrid technique is a numerical procedure for sub-

Solid wall (AD) stantially improving the convergence rate of iterative methods.

U -0 ~ - 2b) In order to facilitate comparison with theory, the accommo-dative C-cycle MG algorithm was chosen." Each MG process 1

consists of three basic parts: relaxation, restriction, and inter- .Outer boundary (130olton
polation.

U- Ug, P - P,,,., (2c) Some of the elements of the present approach were usedindependently in Ref. S. Detailed comparisons cannot be?
Downstream boundary (CD) made because convergence rates were not presented there. In ;

the present study the MG refinement is applied in both the J k:
P PL and 17 directions, whereas in Ref. 5 the computational mesh

t~P - (2d) was refined only in the strearnwisc direction (one-dimensional ,

~ MG procedure).

Other boundary conditions can be used, but the same number III* Relaxation Sbeme
of conditions on each boundary must be kept. Subscripts "in" The overall convergence rate of any MG process is strongly
and "out" refer to the inner and outer boundaries, respec- influenced by the smoothing properties of the relaxation
tivelv, scheme. It can be shown analytically and experimentally that

the usual multiple-sweep marching does not have good con-

Ill. Discretization
Numerical solutions of Eqs. (1) are obtained by spreading a -

mesh over the computational domain. Let us assume that the any two of (u,v,p)
grid points are distributed evenly along the t and -q coordi- B C M .
nates with the spacing 4 and A7 respectively. When discretiz- UPSTREAM DOWNSTRE AM
ing these equations it should be remembered that their nature
should be reflected in the finite-difference approxmao n ny two of ony (P)
order to be consistent with the boundary-layer (parabolic) only (p-
nature of the flow, the axial gradients of the velocities should (UIV.p)
be computed using only upstream values, while the elliptic A D L .
nature is preserved by forward differencing the axial pressure any two of (u,v, p)
gradient.' 1 ' Consequently, it was assumed that a stable
marching scheme must be of the first order in the marching Fig. t Example of permissible boundary conditions.
direction. But a second-order accuracy can be achieved by a
judicious choice of the placement of the variables to be solved
at each station. The choice can be explained most easily by '--
considering a Cartesian coordinate system and taking V- 0 m- V m v m.'
and 1/Re-O in Eq. (lc), yielding v .,

Ut--P (3) p u P p u

A first-order difference scheme then becomes (see Fig. 2) V V *i

u.; ' -U , ,-P. .,-. (4)
P U Plu P U 41

with the unknowns U,,. and P,,,.,. An alternative scheme, V -

first suggested by Israeli9 "1 is written -e .Irs.

U' -U ' -i - p (5) Centering Of Eqs.:
with the unknowns U.. and P,,,-- 1.. The scheme is centered 0 - Continuity & X Momentum

The se i

about m + 1/2 and is of second order. 0 - Y Momentum
The same applies to the full viscous PNS or TL equations.

At each marching step one solves for all the velocities Fig. 2 The %taggered grid.
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1 ergence and smoothing properties because short wave errors convergence analysis of ine relaxation procedures for Poisson
arc not efiicientlv smoothed. Israeli and Lin" showed that solvers. Although the source term Sq, leads to the conven-
certain modifications in the streamwise momentum equation tional relaxation form of the Laplace operator for the pres.
which vanish upon convergence give rise to an iterative scheme sure, the coupling with the velocities alters the structure of the
that is equivalent in the linear case to the SLOR method for a inversion matrix and associated spectral radius."
single Poisson equation. In the general nonlinear case, the It turns out, however, that the spectral radius A. can be
modified iterative process is essentially equivalent to the re- determined analytically for the coupled PNS system and is
laxation of a single nonlinear Poisson-like equation for the independent, in the linear case, of the coupling by the veloci-
pressure The velocities can be viewed as auxiliary variables ties. A stability analysis of the discretized version of Eq. (1)
needed during the marching since they have no "memory" by using the modified form Eq. (6) reveals that the amplitude of
themselves, the errors in the velocities can be related to the error in the

Furthermore, the good smoothing properties of the ine pressure field. On the other hand, it was sbown' that in the
relaxation scheme of a single Poisson equation were automati- linearized case the global iteration scheme is reducible to the
call, gained The problems associated with the loss of elliptic- SLOR method for a single Poisson equation. It follows that all
it, of the difference approximation for the Navier-Stokes the known results from the theory of the SLOR scheme should
equations at high Reynolds numberi" are thus avoided, and be applicable to the present version of the global iterative
no upstream weighting or artificial viscosity is required. There scheme for the PNS equations. In particular, we find that the
results a considerable saving in storage as well as a simpler maximum eigenvalue X.,, which determines the convergence
relaxation scheme where the convergence rate is essentially rate, is given in the present case by2

independent of the Reynolds number. The same marching
algorithm can thus be used for the Euler equation with the (X + ,i- 1)2- A 2 $ (7a)
same favorable convergence rate.

The extension of the marching scheme of Ref. 4 to a general where
curvilinear orthogonal coordinate system yields a modified I/[r Z2(_ "4ymainstream momentum difference equation (the other dif- c -(7)
ference equations remaining unchanged): 2Y, o

-G,,P _ - R,,+S (6a) for the boundary conditions of Eqs. (2) and with the ap-
propriate scaling. Y'. and A Y are the outer boundary and the

P. -P.- (1 - ).P1-1 (6b) interval in the Y direction respectively. For w- 1 the maximal
eigenvalue is given by

R, includes the velocity terms of the finite-difference ap-
proximation. m is the marching step number, k is the global I,,, - - (#r1Z/ Y,) (7c)
iteration index, and w is the over-relaxation parameter. G,,,
and S, are given in Table 1. When the MG procedure is
applied, the over-relaxation parameter is w - 1.

In each marching step, a block tridiagonal system is solved
for the vectors U,., V,, and P,-; each component of the V V
vectors corresponds to a point along the il coordinate. Thus, p
the continuity and the si-momentum difference equations are
solved exactly in each step. The streamwise (t) momentum
equation is not solved exactly since the pressure P,, taken P U POU P U
from the last global iteration, appears in it. V v

A linear von Neumann stability analysis of the marching @ - a©
iterative scheme for the primitive coupled system of difference U
equations of Eq. (1) in Cartesian coordinates (ZY) was 0
performed by Rubin and Reddy.' They numerically de- p u p u p u
termined the eigenvalues of the matrix of the relaxation pro- V v
cess and found the estimate X,, - I - C2 (AZ/Y,) 2 for
(A Z,, ) -. Y,, is the outer boundary in the normal Y
direction: * Z is the interval in the marching direction Z. The
rate of consergence is determined by the ratio S Z/Y,,. They Fig. 3 Relatf plaemmnt of the varlesg on two aweegssve MG
claim that this conclusion "...differs from that found for the levels.

Table I Definition of G. and S.
m, G,,,,,

. ( .
- ip-

+ /2 + 3 /21~- -

P. - P.
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Fig 4 Co.rerrnce hislor) on the finet grid for different relaxation -0.14
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Numerical experiments %erified the validity of Eq. (7c). For

large cnrough AZ/I,. the convergence is very rapid and no -0.t6
cor,ening of the grid is necessary in the MG procedure. For
,maller ,alues of AZ/Y,, the MG procedure is invoked in -0. 7- 7 __.__.,_.......

order to accelerate convergence. For very small values of 0 4 a 12 16
.1 Z,, Y_ the MG scheme does not seem to be effective, and

, this ind;cates that the underlying relaxation scheme breaks H*H
doun Since the linear analysis assures convergence for all Fig. S Accuracy test of the presme and the normalized skin friction
%alues of 7 I/Y.,, it is possible that nonlinear effects, which coefficient at Z-4 (semi-infinite i plate).

- Aere neglected in the analysis, adversely affect the conver-
gence rate and the smoothing properties of the relaxation. Two consequences should be emphasized: 1) only two correc-

.'-"' Retriction and Storage Requirements tions [F2*-(i), F - '(iJ)] have to be computed and stored
Let the finite-difference approximation of Eqs. (1) on the in the coarse grids, and 2) all the dependent variables must

tinct grid V4 be represented as in Ref. 10: be transferred in order to compute the corrections
.L - r t ,(R)], j -2,3). Since only the pressure is stored,

L- L&'4( i)- F"( ) (8) these corrections must be computed during the marching
process.

%here i. i,). W " - U"', V'. pk]T is the exact solution Special attention must be paid to the restriction of the
* of the difference equations and j is the number of the staggerd flow variables at the boundaries in order to specify

* . differential equation (I - 1.2,3). zero corrections as boundary conditions for the coarse grids.
The problem is transferred in the full approximation stor- In the present study, all the boundary conditions were given at

age (FAS) mode from the current level k to a coarser level the physical boundaries. The values at the actual staggered
k - I by correcting the right-hand side of Eq. (8) (see Fig. 3): placement of each variable at the boundaries were computed

by averaging with inner points.
It follows that in addition to the pressure on all grids, one

F (i) - ) ., has to save one correction term for each momentum equation1. on the coarser grids. Assuming N computational points on the
(9) finest grid, a simple-minded estimate gives 14N/3 storage

locations for the two-dimensional NS multigrid solution and
' 'l is an approximation to "'(. x ). I -, and 1k', are 2N for the PNS marching MG solution.
proper restriction operators for the th equation and for the interpolation

• '" dependent variables, respectively.d e a e s vSince the present marching scheme generates the velocity
The term within the braces in Eq. (9) is the residual of the field from the pressure field, only the correction to the pres-

. th equation. For the present marching scheme there is no sure must be interpolated back to the fine grid:
residual in the continuity and in the 7-momentum equations
since they are solved exactly in each step. The residual of the ,ph I + JAI(pA _ 1. 1p,.) (1)
--momentum equation results only from the streamwise pres-

sure gradient term. and its computation needs only one sub- Ik .1 is the interpolation operator. In the present case it is a
traction. i was chosen to be a linear interpolation, which linear operator.
"" yields L- [- 1 (.)-0 for the continuity equation. !1k, The MG scheme described above is general. But so far only

is computed by averaging in both the j and 71 directions, cases in Cartesian coordinate systems with equally spaced grid
I 1s a simple injection. In summary, Eq. (9) takes the points were tested with the MG procedure.

following form:

V. Results
F, 1 ( i 0 (10a) Ue~a

A linearized version of the PNS equations, expressed in a

-F' '(ii- 1. j jA/. '.*( L)' (10b) Cartesian coordinate system, has been tested in Ref. 9. Some
of the results are presented here for reference and for com-

P,' (I )-jA i'.' , '(. )j + g '. F7' - 1'.'( ) parison with the nonlinear solutions.
Figure 4 compares the convergence history of different

(10c) relaxation schemes with and without MG acceleration for a

A

P%
%A J

1*1, -* ¢ e ,, ,,•,. , . .. *,'. -,,.',.,,,,-,4-., ".., -.- ,-.-. - ,..,..-
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Fig. 6 Consemence history on the finest grid (seia-infnite Iat plate).

Fig. 7 The Premw profile at Z - 3 (semi-infinite flat plate).

finest grid consisting of 17 x 17 mesh points. The horizontal
axs gves the number of work units (WU)." o A work unit is I,-(1,
equivalent to one global iteration on the finest grid. The 2' ' 1. TD (13). uL
vertical axis gives the dynamic residual. The MG procedure TD-rIPt E 0003 , BL (3)

with three levels (M - 3) shows a much better convergence IRL-WrERACTINC BOVNIAYLAytRs 00 4 IBL (13) UC

rate than the single grid solution for the same problem. The -'5 PRESENT
convergence factor per relaxation iteration (see Ref. 10 for 7. 6 PRESENI. c

definition) for M - 3 is i - 0.60, whereas for the single grid
case (M-1) A -0.97. The linearized PNS equations were C, Uc d,
also solved without the streamwise correction of Refs. 3 and 4. 1.0- 1.0
The MG convergence factor is much worse ( -0.79). Upon a -

increasing the number of grid points, the unmodified equa- 0.8 a08
tion's convergence deteriorates. As one can expect, the cor- 66

rected equations and the solution of the equivalent single 0.6 -0.6
Poisson equation for the pressure exhibit very similar conver- a,"
gence properties. 0.4 aV 0.4

Nonlinear Cases 0.2 - 0.2

A series of flow problems were solved with the nonlinear 0 1
PNS equations. Several test cases were run in a Cartesian 0.01 I i I 0.0
coordinate system with possible clustering of mesh points by 0.6 08 1O 1.2 1.4
one-dimensional stretching functions in each direction. Among Z
them we shall mention the flow over an infinite, a semi-infinite, Fig. 3 NormalIzed skin frkiion coefldet and wake centerlne vdoe-

and a finite fiat plate, trailing edge flow and an entrance flow ity d em (trilg edge flow).
between two flat plates. Two cases were run with curvilinear
orthogonal coordinate systems: the qow along an axisymmet-
ric cslinder and the flow over a prolate spheroid at zero angle shown in Fig. 7. The distance from the leading edge is large
of attack. In the following sections some of the cases will be enough to stisy the Blasius assumptions; the skin friction
detailed coefficient deviates no more than 3% from the theoretical

value. The computed pressure is compared with the "Blasius
* Senwhfiit Flag Plate.nnite tPepressure" that can be obtained from the normal momentum

In this case the flow is computed starting from the leading equation
edge, where a uniform velocity U-1, V-0 is given. The -.

downstream boundary was set at Z - C - 4 and zero pressure 4ReZ( P - P.) -f( f' -f) + 2tf" (12)
gradient was specified there as aPIaZ- 0. On the outer
boundary, U - I and P - 0. The no-slip and no-injection P. is the pressure on the plate. f is the solution of the Blasius
conditions were used at the plate. boundary-layer equation for a flat plate with zero pressure

The second-order accuracy convergence of the finite- gradient. f' and f" are the first and second derivatives with
difference equations is demonstrated in Fig. 5. The pressure at respect to . The agreement between the present computations
a fixed point and the normalized skin friction C- Cv -eTZ and Eq. (12) is good.
(which is proportional to the main velocity gradient) at
Z - 4 are plotted against M2; H is proportional to the mesh Trailing Edge Flow

interval. The Reynolds number was fixed at Re- 105 and a grid of
The con\ ergence history on a finest grid consisting of 65 x 73 points was used. The fiat plate with zero thickness

65 X 65 points is shown in Fig. 6 for Re - 101. The outer occupies the interval [0,1) along the Z(- ) axis. We assumed
boundar) is placed at gma - 1 where Y is the normal coordi- that the interaction is limited to the interval 0.5 < Z < 1.5.
nate (Y - ii). Increasing the number of levels M increases the The Blasius solution was specified at the upstream boundary
convergence rate until M - 4. The convergence factor per (Z - 0.5) and symmetry boundary conditions were given be-
rclaxation (As - 0.562) is close to the theoretical value obtained hind the plate. The Blasius solution was approximated by the
for the solution of a single Poisson equation with the SLOR fourth-order Karman-Pohihausen velocity profile.
method (A -0547). Figure 8 shows the normalized skin friction coefficient

For Re - 10' and Z - 3, the pressure distribution as a (CI - C,-R-) on the plate (Z < 1) and the wake centerline
, function of the Blasius similarity coordinate f -. YwRe/Z is velocity (U. Z > 1). The agreement with the interacting

.4

.t I
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houndar,, layers (IBL) sdution and with the triple deck (TD)13  stream boundary the two velocity components are specified.
rc'uh is satisfactory. Usually they can be computed from a boundary-layer code. In

the present work, the approximate main velocity was com-
puted from a Karman-Pohlhausen profile with a specified skin

Intn,,e Fl,. fl,. een Two Flat Plaese friction coefficient or displacement thickness. The specified
Uniform inlet conditions were specified at the entrance quantity was taken from existing boundary-layer solutions of

t t 1. - 0) while the usual no-shp and no-injection condi- the same case. The normal component of the velocity V was
tions were given at the plates. At the downstream boundary determined from the potential solution. Numerical experi- "
the pressure gradient was calculated by assuming a fully ments show that for reasonable upstream conditions the solu-
dev.eloped flow tion is independent of the upstream conditions, apart from the

first few marching steps.
3P 1261 (13) The downstream boundary was set before the separated

zone, although the PNS equations are valid there. The compu-
tation of flowfields with reversed main flow needs modifica-

rh is the rate of mass flow. tions in the approximation of the convection terms.
Figure 9 shows the development of the centerline velocity Two thickness ratios of the axes were considered -4 1 and

for t% o Reynolds numbers, Re - 20 and 200, and for a grid of 6: 1. In each case the Reynolds number was Re - 106 and a
41 X 101 points. The results are compared with the full single grid consisting of 17 X 65 points was used (in the i? and
Navier-Stokes computations of Ref. 14. Again the agreement J directions respectively).
is satisfactory, even at the entrance where the omission of the
streamwise diffusion terms may be questionable. Thickness Ratio 4:1

The dependence of the normalized skin friction coefficient
Prolate Spheroid at Zero Angle of Attack (C - CVRR-) on the axial distance (Z - cos ) is shown in -f•

This test case is more stringent because a curvilinear or- Fig. 10. It compares well with the boundary-layer solution of ,

thogonal prolate spheroid coordinate system is used and the Ref. 16 but disagrees with Wang's solution.' v e
flowfield is more complex than in the previous cases. A The point of separation is determined where Cvanishes. In .

nonzero pressure gradient exists at the outer boundary: the present case, the separation point was found to be at -

favorable at the front half and adverse in the rear half. The
flowfield eventually separates, with reversed flow near the ,.- •,
spheroid. Several numerical solutions of the present problem -

exist," - " but all of them use the boundary-layer approx-
imation.

The flowfield was computed for a region between the nose
and the rear part of the spheroid. The analytically known
potential flow is specified at the outer boundary (U and P)
and at the downstream boundary (aP/U). At the spheroid .
the no-slip and no-injection conditions is given. At the up- P. N - -.

* viscous

( 3 0 10 .(4

12* -. REz0,. PRESENT
,,RE200 . (14)

-" - E: , PRESENT -a. 34

0 2 4 6 8 "
"  

-0 .
2Z/ RE*10 0 z ,

9 devlo eenterle velocity (entranc flow). Fig. I I The pessure distribution dong the spheroid of thickness 6: 1.
F. Thdemelopament thoe)

Cf
C1  2 0
-)2 0 PRESENT
_ -PRESENT .++ REF (f7)
1 -~REF ( 15) 1.5
S+4REF (16) ."

05~ - o5 5. : ,
1,0

0-' . . .," 0 . .J . . '- 0 5 -1.0 -0.5 0.0 0.5 10 .,"-0,.'

-t0 -0.5 00 0.5' -. ,10 0S 00 0

Z Z .

Fis. 10 Th* dil~ribution of the %kin friction coefficient along the Fig. 12 1he distributio of the skin friction coefficient along the
,pheroid of thickness : I4 1. hoid of thickness 6:|. 1.

S"

- - " W "S-- -
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* () , in Cartesian grids. The convergence rates were not adversely

4 affected by the nonlinearity.
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