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y NUMERICAL SIMULATION OF TURBULENT SPOTS b
‘ IN CHANNEL AND BOUNDARY LAYER FLOWS A
t
By :
>
4
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! Department of Mechanical Engineering, Y
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Cambridge, Mass. 02139 Y
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The initiation and early growth of spots in channel and .
boundary layer flows is simulated using a three dimensional :
o>,
spectral code. The simulated spots show significant o

agreement with available experimental deata for such
quantities as growth rates and spreading angles. :
y Disturbances are introduced into the <center and edge of the l::
developing channel spots to investigate the relative <
: sensitivity of spots. o
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1.  INTRODUCTION o
'
"
b ‘L.
: Emonnl was the first to observe turbulent spots in a . 2y
4 o
t
i laminar flow undergoing tramsition to a turbulent flow. \‘
] Since then a large number of investigators have recognized G
b :\
4 the importance of spots in the study of both transition and ::
{ 3
Y turbulence. Naturally occurring spots are initiated by flow :”'
disturbances like noise. In the 1laboratory, spots may be ;:u
i
artificially initiated with electric sparks or by injecting e
e
2 jet of fluid. In a numerical simulation of spots, $
controlled disturbances may be imposed on a solution of the l
Navier-Stokes equations.
Soon after Emmons’ discovery, Elder2 noted that spots :jf
»
tend to grow independently of one another, even when they ‘ i
t
: overlap. Gasters4 studied the 1linear growth of small Y
b (I

amplitude disturbances into a wave packet wusing both

',?"ﬁ‘”

laboratory experiments and theoretical analysis. His :

theoretical predictions have been confirmed by lnbor'atory E

' observations so long as nonlinear effects are not importanmt. ,,-"/’;,L. ’
Wygnanski, Sokolov, and Fx’ieclxnmn5 conducted an experimental l fa-lp,’m E

study of spots in a ©boundary layer. Using conditional ’

sampling techniques, they mapped out the geometry and growth:rw___{_

rates of a spot as it develops in a boundary layer. Gad-el-:&t“\v—’l

o Hak, et al.6 conducted flow visualization experiments on .. _'
boundary layer spots by injecting dye upstream of the spot :

initiation. Tl_xey divided the spot into five regions(see Cory N —‘r’

Figure 1). Region I within the spot overhangs region II, 1”;" o8 ::E
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. the laminar boundary layer below the head of the spot. ""
. Region III appears similar to 2 turbulent boundary layer. ol
In regions IV and V the flow returns to a “calm” state. The
‘ photograph in Figure 2 illustrates the <characteristic
_ arrowhead shape of a ©boundary layer spot in streamwise- Y
‘ spanwise projection. This photograph was obtained by ,.
i illuminating dye lines with a sheet of light very close to E
) the wall. 0
- \
: The first detajled research directed toward )
: investigating the characteristics of spots in a channel was a
conducted by Carlson, et al.7 Using mica flakes to 5
; visualize the flow (Figure 3), they observed that a channel s
. spot also has the characteristic arrowhead shape. They :..::
» identified (see Figure 4) several features present in 1)
‘-_ channel spots. The spreading half-angle (1) was about 8
: degrees. The leading edges met at a sharp point and were E
preceded by oblique waves(7). The center of the spot (4)
i
. contained small scale turbulence. Streaks(3) trailed from :
E region 4. ;
' The purpose of the present study is to use direct \
.E numerical solution of the Navier-Stokes equation to identify "::
J details of the internal structure of spots, as well asg to .;“:-
) map out spot dimensions and growth rates. Comparison of our -
results for growth rates of the large-scale spot dimensions )
with those seen experimentally verifies that the essential s
growth mechanisms of spots is <captured by our numerical N
y experiment.. :‘
. ’
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One previous study of numerical spots should be
mentioned. Leonu’d8 used discrete vortex methods to
simulate numerically the early growth of a spot in a )
boundary layer. As with the present computations, the spots
computed by Leonard are typically less mature than
experimentally observed spots.
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2. OCOMPUTATIONAL GEOMETRIES AND NUMERICAL METHODS

The computational domain that we wuse to simulate
channel flow spots is as follows. In our simulations of
channel flow spots, the flow 1is represented by 128x64x33
Fourier and Chebyshev modes in the x (streamwise), ¥y
(spanwise), and z (pormal) directions, respectively (see
Figure 5). The flow satisfies periodic boundary conditions
in x and y and no-slip (rigid) boundary conditions at the
walls (z=%1). The computational box is nondimensionalized
by the channel half-width; in the runs presented below, the
physical box size is 20x5x2. With 1283164 resolution in x
and y, the resultant node spacing (in physical space) of the
spectral collocation points is Ax=0.16 and Ay=0.08.

For our boundary layer spot calculations, the flow is
represented using 64 Fourier modes in x and y, with Ax=2 and
Ay=1 (see Figure 6). In the z direction, the 33 collocation
points are obtained by an algebraic mapping.of the interval
[-1,1) to [0,00] with half the collocation points located in
the region 0<z<5. The computational box is
nondimensionalized by the boundary layer thickness n-vg;:7q;
at some representative x-location X, The periodic boundary
conditions wused in the streamwise direction are only
approximate. They are justified because the increase in
boundary layer thickness through the computational domain is
only 6% (sece also Balasubramanian, et 119). While inflow-

outflow boundary conditions are, in principle, more

realistic than periodic boundary conditions, they are more
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wasteful of spatial resolution, which is the limiting factor
in the present calculations.
The Navier-Stokes equations are solved in rotational

form,

o
<

= v Xw - VU + 1/Re V2(v)

Q.
-

o~ V.(v)=0

2

e where w=Vxv is the vorticity and IT=P+v“/2. The velocities

are normalized with respect to the centerline velocity in

Pars
PR
e

the channel and the free stream velocity in the boundary

&
g layer.
) The spectra]l method of Orszag and Ptteralo is used in
"
fﬁ both the channel and boundary layer calculations. For the
e
jS boundary layer, the scheme is modified by mapping the
: Chebyshev collocation points of the <channel to the desired
; ,:.' .
;-{ locations in the boundary layer. A mapping function
e
Ko
o
o
oo z* = f(z2)
“I
\ o
o
,3; is chosen. When taking derivatives in the z-direction
.o
" (e.g., in calculating the vorticity) the Chebyshev
vy
;:G differentiation in z* is followed by multiplication by
-
Iv
S £'(2):
0
“p
e 4 _ 4 4
- dz dz dz*
L ( " .
o
I::f'-f.-f,.-’\f\..f.--: “.,-__.r,'-'\/_ )\J‘\..f o .-.‘ -._-'.._" ._-',\ '7'."\\"-.'-\'\' ,.;‘-'-'_‘J-_'."- ._.-\‘...r,;.-s"..: s _\.:\,‘\;.\‘.'\.’.‘-\.\"_- .;q\‘-r\.-\‘.,;. \
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The boundary condition at infinity (vx = 1) is implemented

by recalculating the (¢ ,0) Fourier mode (the mean flow in x

and y).in the viscous step. Symmetry is not imposed, but

the spots develop symmetrically when symmetric initial
conditions are used.

The disturbance is initiated by applying a body force
to a packet of fiuid, producing a small jet normal to and
away from the wall. The form of the disturbance is Gaussian

in x and y and continuous in time.

2,2
F = G(t) l77/297]

oAy Sy ww

where G(t) is a ramp function. The size of the jets are

w5 s

indicated in Table I.

Channpel

o 0.16 0.7
Location 0.1 <z < 0.2 0.05 < z < 1.5
Peak normal

Velocity

We impose the following boundary conditions on the flow
through the channel: the velocity at the walls is zero, and

the flow is periodic at the inflow/outflow and cross-stream

3G \}N}'V\}%'\.\‘\ ) '.‘)'- - '\"-.b'.\v‘.'b‘_\.'.‘-f'-"\'.\ vf:-( - -I'*."‘f‘-" ] -* ‘)"-’_“" NG AT -‘.'v_.:.. o '.f"‘- AR
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boundaries. The Reynolds number for the channel runs is
6000 based on the <channel half-width. The Reynolds number
for the boundary layer simulations is 1000 based on the

boundary layer thickness corresponding to 7=1.0.

3. SPOTS IN CHANNEL FLOWS

In Figure 7, we plot contours of the maximum (in y) of
the absolute value of the normal velocity, Maxylvzl for a
channel spot at Re=6000. The contour plots we present for
channe]l spots encompass the entire 20x5x2 computational
domain; their dimensions are not to scale. Except where
noted, the contours are at 1% intervals of thqlvzl, where g
is the coordinate normal to the plotting plane. With this
projection of the spot onto a plape we view the data from
the experimentalist’s perspective (with the lime of sight
extending all the way through ¢the channel). At time t=1,
the initial disturbance has convected downstream and has
become slightly distorted. The initial peak velocity of
0.09 has decreased to 0.038 due to viscous diffusion. By a
time of t=3, the velocity has increased to ©0.05 due to
instability in tke flow. The disturbance is elongated in x
as well as convected downstream. In Figure 8 we see the
disturbance develop most of the features characteristic of a
spot. The front of the disturbance moves away from the
wall. The disturbance grows in all directions and the
"arrowhead” shape becomes apparent. The peak normal

velocity increases from 6% at t=12 to 9% at t=18.
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In Figure 9 we show the development of the boundaries
with an isometric view. Enclosed within the surface is
fluid whose x velocity differs from the Poiseuille profile
by more than 2%.

The results plotted in Figure 10 are thylvzl and
Malevzl. At t=30, the spot has fully extended through the
channel with a peak normal velocity of 13%. The initial
disturbance on the bottom wall has induced a new disturbance
at the top wall. This second, smaller spot has a peak
velocity that occurs at a distance of approximately 0.25
(1/8 channel width) away from the top wall. By t=30, the
two spo°s have joined to produce a disturbance that fills
the span of the channel.

In Figure 11 we show the distortion of the Poiseuille
profile at the spot center. The velocity at the edge is
essentially unchanged from that of the original Poiseuille
flow, while at the spot center there is a velocity defect of
0.1-0.2. At the bottom wall, the shear has increased by a
factor of 3.

In Table II and Figure 12, we show how the spot
geometry changes in time. Although there are significant
differences between conditions generating our numerical spot
and those generating the spots studied experimentally, a
comparison of numerical and laboratory features is
instructive. Carlson et a18 generated spots in a laboratory
channel flow at Re=1000, while we wused Re=6000 in our

calculations. Most of the experimental data were taken more
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Wy than 50-100 channel widths downstream of the initial ]
" J
" disturbance, while we have been able to follow the spot for

by :
! only 10 channel widths,. Further development of the channel ]
N

" spot would require a2 larger <computational domain. The

[ %

' growth rate of the width and length of the numerical spot

_-I

- becomes constant at t=15 and remains so until the spot fills

™

S; the domain at t=32. This steady growth rate is slightly

. higher than that observed experimentally in both the lateral

b_'. and longitudinal directions. This discrepancy can be due to

N

"

:’: the difference in Reynolds numbers or to the lack of

¥

maeturity of our computed spots compared to those studied

'.j:: experimentally. We bave not observed in our data any
~4

"': significant evidence of the leading Tollmien-Schlicting

N ,

, waves that were observed experimentally. Again, we believe

~

'™

n that the absence of these waves is due to the lack of

< maturity of our computed spots.

‘.-

.'( )

:’:, Table 11 Channel Spots

>3

l.'.

s

Experiment=sl 1 Computational

Velocity of Front 0.6 0.85

Rear 0.34 | 0.25

[}
" »
Py LI
—
— e A A A AR L N 8 P A Ry

X Spreading Half-Angle 8° ! 10°
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A further numerical calculation was done to compare the

stability characteristics of the spot at its edge and %?
E center. The velocity field of & spot at t=20 is used as the g:
b initial condition for three runs. The first run consists of b
the restarting the original spot <calculation and allowing 7
: the spot to continue development undisturbed to a time of EE
: 24. For the second run, a2 disturbance is applied at t=20 to S;
the original spot at its center. This disturbance is of the ;
same spatial and temporal extent as the original disturbance ;E:
that initiated the spot, but the magnitude is 1/10 that of g:
the original. The difference between the resulting velocity g}
fields, e(x,t) = | Vo1 “Vao !, is a measure of the effect of ?h
; the disturbance. By t=24, ¢€(x,t) has exceeded 1% in the ;;
central 2/3 of the spot (Figure 13). The third runm is !.
identical to the second, but with the disturbance applied at .
the spot edge, rather than at the «center. At t=24 the t
disturbance had propagated through most of the spot (see %,
Figure 14), and had a peak magnitude of about 4%, as opposed g;
to the 1.5% peak from the second run. 5:
From these results, we conclude that channe] spots are g:
! less stable at their edges than at their centers. This i?
q observation suggests that spots grow by destabilization of ﬁ
neighboring fluid, rather than simply engulfing laminar &
fluid.
4. SPOTS IN BOUNDARY LAYER FLOWS s
"
"
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In Figures 15 through 17 we show the development of a
boundary layer spot at Re=1000 up to t=90. The contour plots
we present for boundary layer spots encompass the entire
128264 computational domain in ¥ and y and are truncated at
z=22. Again, except where noted, the <contours are at 1%
intervals of Maquvzl, where q is the direction normal to
the plotting plane. Figure 15 shows the streamwise and
spanwise development of the spot from the initial
disturbance. At t=90, the spot has begun to develop the
characteristic arrowhead shape, which is more apptrent in
the second (2%) velocity contour. Figure 16 shows the
development of the triangular shape and the overhang in the
spanwise direction. Figure 17 shows the overhang develop in

the leading edge.
Table III Boundary Layer Spots

Experimental Computational

Velocity of Front

Rear

Spreading Half-Angle 12°

The growth and development of the spot in a boundary

layer is compared with the experimental findings of

Wygnanski, et uls in Table III. The growth rate of the spot
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in the streamwise and spanwise directions is in relatively

close agreement with the experimental data. This suggests
that the growth mechanisms in a boundary layer spot have
been accurately captured in this simulation.

Figure 18 shows «cross sections of the spot at t=90.
Here we plot contours of the Jlocal values of v _at y-

A
center=0:5+ 2.5, and 4.5, in Figures 18a, 18b, and 18c,

y
respectively. Intervals are at 1% and dashed contour lines
represent negative z velocities. The velocities are highest
in the plane closest to the center of the spot (see Figure
18a). Away from the spot centerline the velocities and the
spot height decrease. The front of the spot has an overhang
of a distance of 10-20 in X, as has been observed
experimentally. The flow is dominated by eddies with length
scales of approximately 10 in x and 5§ in y. These length
scales differ from those of wunstable modes of the Orr-
Sommerfeld equations, which predicts linear instability for
much longer wavelengths, 30<Ax<85.

In order to explore the later time evolution of
boundary layer spots, it will be mnecessary to use higher
resolution simulations, which we hope to perform in the

future.

CONCLUSIONS

It has been shown that spots can be generated by

numerical solution of the Navier-Stokes equations. The fact

: - . R R A U UL A
R TG L A G L L A AN A LR O LR AR A SR ON R RN RO RN

LAl

i
- 'g' oo

» ¥

2 TN

IR
«

RN

-

b

X

-,

L e T

- )

KA

"\.‘;'l.'l-\ “ ¢

et

. 2
. b



that our results for the growth rates of the large-scale
spot dimensions are relatively close to those seen
experimentally suggests that the essential growth mechanisms
of spots have been captured by our numerical experiments.
These simulated spots are less mature than typical
experimental spots, but their behavior appears to
approximate that in a fully developed spot.

The spots generated were not dominated by two
dimensional Tollmien-Schlicting waves. This suggests that
the growth in spots is =not linear growth of two dimensional
Tollmien-Schlicting waves. Moreover, the operturbation

velocities seen were about O0.1; perturbations this large

PR o

would make the results of linear theory inapplicable and

.
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suggest domination of nonlinear effects. This does not rule

out the importance of Tollmien-Schlicting waves in the
amplification of small disturbances which may develop into

spots or as a driving mechanism for some secondary

instability in spots.
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. FIG. 1 Schematic of an experimental boundary layer spot cut 2
) through the center (from Gad-el-Hak et 11.6). ‘
: FIG. 2 Visualization of an experimental boundary layer spot (
! using fluorescent dye and a sheet of laser light at the '
wall; Rex-leo5 (from Gad-el-Hak et al1.5). .

N FIG. 3 Visualization of an experimental channel spot using 2
- mica platelets (from Carlson et a1.%). ¢
‘ FIG. 4 Channel spot schematic: (1) spreading half angle; (2)
:‘ trailing streaks; (3) region of small-scale turbulence (4)
< oblique Tollmien-Schlicting waves (from Carlson et a1.%). :
\ FIG. S Channel geometry and nomenclature. Channel is 20x5x2 \_
: in the x,y, and z directions, with 128x64 Fourier modes in x ~4
: and y and 33 Chebyshev modes in z. ;
! FIG. 6 Boundary layer geometry and nomenclature. Boundary N
? layer <computational domain is 128x64 in the x and y ,E
, directions, with 64x64 Fourier modes in x and y and 33 :
Chebyshev modes mapped in the normal(z) direction. .:

2 FIG. 7 Early-time evolution of <channel spot. Maxylvzl .
E contours are plotted at 1% intervals. :‘
2 FIG. 8 Channel spot at intermediate times. Max v | E
._ contours in a) and b); Maxylvzl contours in c) and d). :
- FIG. 9 Surfaces of 2% x-velocity perturbations in developing ::
: channel spot. :
. FIG. 10 Channel spot at t=30. Max Iv_| contours in a); :-\,
Maxylvzl contours in b), :.\

FIG. 11 Mean velocity profiles at «center (solid) and edge )

(broken) of spot. E
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FIG. 12 Location in x of front, center, and rear of channel
spot vs. time, where spot is defined as region where
lv_122%. For t larger than 30, the spot length reaches the
periodicity length of the computational domain, so the spot
ceases to grow in the streamwise direction.

FIG. 13 Perturbation velocity, e€(x,t), contours at t=22 and
t=24 for channel spot perturbed at its center at t=20.

FIG. 14 Perturbation velocity, €(x,t), contours at t=22 and
t=24 for channel spot perturbed at its edge at t=20.

FIG. 15 Development of boundary layer spot. thzlvzl
contours are plotted at 1% intervals. a)t=30; b)t=60; c)t=90
FIG. 16 Development of boundary layer spot. Max Ivzl

y
contours are plotted at 1% intervals. a)t=30; b)t=60; c)t=90

FIG. 17 Development of boundary layer spot. thxlvzl

contours are plotted at 1% intervals. a)t=30; b)t=60; c)t=90
FIG. 18 Slices of spot at t=90. Contours of v, et y=32, 30,
and 28. The plane of symmetry of the spot is at y=32.5.

Dotted lines represent negative v,
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Early-Time Spot Evolution at R = 6000
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Numerical Solution of Incompressible Flows
by a Marching Multigrid Nonlinear Method

Moshe Rosenfeld® and Moshe Israelit
Technion-israel Institute of Technology, Haifa, Israel

A downstream marching iterative scheme for the solution of the steady, incompressible, and two-dimensional
parabolized or thin layer Navier-Stokes equations is described for a general curvilinear orthogonal coordinate
system. Modifications of the primitive equation global relaxation sweep procedure result in an efficient marching
scheme. This scheme takes full account of the reduced order of the approximate equations as it behaves like the
SLOR method for a single elliptic equation. The proposed algorithm is essentially Reynolds number-independent
and therefore can be applied to the solution of the incompressible Euler equations. A judicious choice of a
staggered mesh enables second-order accuracy even in the marching direction. The improved smoathing properties
permit the introduction of multigrid acceleration. The convergence rates are similar (o those obtained by the
multigrid solution of a single elliptic equation; the storage is aiso comparable as only the pressure has to be stored
on all levels. Numerical results are presented for several boundary-layec-type flow problems, inchiding the flow

over a spheroid at zero incidence.

I. Introduction

ONSIDERABLE evidence has accumulated recently

about the applicability of the parabolized Navier-Stokes
{PNS) equations for high Reynolds number flows with a
principal flow direction (see Rubin'). The PNS equations are
obtained bv neglecting the streamwise viscous terms in the
Navier-Stokes equations. When the viscous terms in the cir-
cumferential direction are also neglected, one gets the thin
taver (TL) approximation.

The steady PNS or TL equations still have an elliptic nature
tbut of reduced order —see Sec. 11 ) and therefore the imitial
value problem in the downstream marching direction is not
well posed © A well-posed initial-boundary value problem can
be formulated by specifving, for example, upstream and side
conditions for the velocities and one downstream condition
for the pressure. Therefore the PNS equations must be solved
globally and cannot be solved by a single-sweep marching.

The reduced order of the PNS equations can be exploited
by constructing an iterative marching method for updating the
pressure field only ' Such a multiple-sweep iteration method
has the advantage that the velocity field is generated during
the marching process and only the pressure field has to be
stored from sweep 1o sweep —a considerable saving in storage
results However, simple-minded marching does not result in
good consvergence properties and sometimes diverges. For the
two-dimensional case, Israeli and Lin'* devised a stable
marching scheme that behaves like the successive line over
refaxation (SLOR) method for the solution of a single elliptic
cquation.

Rubin and Reddy" analvzed certain aspects of the solution
of the PNS cquations and used their procedure to solve
severai Jow problems in Cartesian and axisymmetric bodyv
fitted conformal coordinates. They used in most cases a first-
order scheme and also applied a simplified one-dimensional
mulngnd algenthm  Several more recent works are cited in
Refs. 6 %

Presented as Paper 851900 at the AIAA Seventh Computational
lud Dyvoamicy Conference, July 1517, 1985, received July 18, 1985,
rovivion recened Aug 27, 1986 Copynght T Amencan Institute of
Actonautics ant Astronautios. Inc, 1986 Al nights reserved

*Graduate Student. Department of  Acronautical  bngincenng,
prosenthv, Natonal Research Counal Research Asvsociate at NASA
Ames Rescarch Center Member ATAA

TProfeaor Depattment of Computer Scence

The present study is a continuation of the work presented
in Ref. 9, where the scheme of Israeli and Lin'* was modified
into a second-order, staggered, marching multigrid form. The
principal aim here is to test the convergence properties of the
methods in the case of viscous nonlinear problems and to
apply the algorithm to several flow problems. The good
smoothing properties of the Israeli and Lin scheme are used in
a multigrid framework in order to accelerate the convergence
of the solution of the PNS equations. The steady, incom-
pressible, viscous, and two-dimensional equations are consid-
ered in a general curvilinear coordinate system. The marching
scheme is implemented using a stable algorithm which is
second-order accurate also in the marching direction. The
same method can be used without modification for the incom-
pressible Euler equations, as the effect of the Reynolds num-
ber on the convergence rate is insignificant. In two dimen-
sions, the PNS and the TL equations are identical, and
therefore the same analysis applies to both.

11.  Formulation
The nondimensional steady, incompressible, and two-
dimensional PNS (or TL) cquations in a general curvilinear
orthogonal coordinate system (£, 1) are as follows:
Continuity
0 (1a)

a(hy)  a(hU)
gt e T

Momentum, ¢

vy ey Ly ok, dk J ar

Mehyan P VoE T R, E TR @ T T o
1 a1 4 ) N
' Re J},{,,“; g (k) '-hnt'as(hi)) (1b)
Momentum, £
AW, ot Ly gk yE ok, g ar
' an ' "he df he dn hy dé PR T
a1 a , a1 ‘
" Re ‘),,[j '—a"(h‘l,)+h"l :‘f(;/)] (10
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¢ 1> approximately aligned with the mainstream direction. U

L and V" are the contravariant velocity components in the £ and

B n directions respectively. P is the pressure and Re is the

b Reynolds number. h, and h, are the Lamme coefficients in

\ the ¢ and n directions. J is the Jacobian of the coordinate
transformation.

The two-dimensional Navier-Stokes equations are elliptic of
L order four.!” It can be shown that the PNS or TL equations

K are clliptic of order two only—like a single Poisson equation.
) This ellipticity is caused by the pressure gradient terms via the
) continuity cquation, A well-posed problem can be formulated

by defining the boundary conditions as described in Fig. 1 for
) a rectangular control volume. The following conditions may
be specified:
Upstream boundary (AB)

U=u, VeV, (2a)
:‘ Solid wail (AD)
A U=0 V=0 (2b)
Quter boundary (BC)
U=U,, P=P (2¢)

Downstream boundary (CD)
(%)

j 9\ 9 o

Other boundary conditions can be used, but the same number

of conditions on each boundary must be kept. Subscripts “in”

and “out” refer to the inner and outer boundaries, respec-
uvely.

PR Tl T A

(2d)

LI

IIL. Discretization

Numerical solutions of Eqs. (1) are obtained by spreading a
mesh over the computational domain. Let us assume that the
grid points are distributed evenly along the £ and % coordi-
. nates with the spacing A and A7 respectively. When discretiz-
- ing these equations it should be remembered that their nature
. should be reflected in the finite-difference approximation.!* In
order to be consistent with the boundary-layer (parabolic)
nature of the flow, the axial gradients of the velocities should
be computed using only upstream values, while the elliptic
nature is preserved by forward differencing the axial pressure
gradient!** Consequently, it was assumed that a stable
marching scheme must be of the first order in the marching
. direction. But a second-order accuracy can be achieved by a
. judicious choice of the placement of the variables to be solved

! at each station. The choice can be explained most easily by
considering a Cartesian coordinate system and taking V=0

. and 1/Re =0 in Eq. (l¢), yielding
. U=-h (3
A first-order difference scheme then becomes (see Fig. 2)
Un = Unor = Py = Pasy, (4)

with the unknowns U, ; and P. ;. An alternative scheme,
first suggested by Israeli®!! is written

(5

with the unknowns U, , and P, . The scheme is centered
about m + 1/2 and is of second order.
" The same applies to the full viscous PNS or TL equations.
p At each marching step one solves for all the velocities

b:.,_uj-l.;-Pm—l./—Pm./

¥
1
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U, .V, , together with the pressure P, , (for ;=1
2,...,J). Thus, the velocities are indeed solved using values
from the upstream while the pressure uses information [rom
the downstream. This approach was subsequently used in
Refs. 3 and 8.

In addition, one may stagger the velocity ¥ with respect 1o
the other vanables as shown in Fig. 2, where the centenng
points of the difference equations are also plott¢d. The dif-
ferential equations are approximated by central second-order
approximations. Whenever needed, averaging was used, as is
usually done for staggered grids.

The nonlinear algebraic equations are lincarized by either a
full Newton-Raphson (NR) method or by performing only
one NR iteration. The results are very similar, so usually a
single NR iteration is used.

IV. The Multigrid Algorithm

The multigrid technique is a numerical procedure for sub-
stantially improving the convergence rate of iterative methods.
In order to facilitate comparison with theory, the accommo-
dative C-cycle MG aigorithm was chosen.'® Each MG process
consists of three basic parts: relaxation, restriction, and inter-
polation.

Some of the elements of the present approach were used
independently in Ref. 5. Detailed comparisons cannot be
made because convergence rates were not presented there. In
the present study the MG refinement is applied in both the §
and 7 directions, whereas in Ref. 5 the computational mesh
was refined only in the streamwise direction (one-dimensional
MG procedure).

The Relaxation Scheme

The overall convergence rate of any MG process is strongly
influenced by the smoothing properties of the relaxation
scheme. It can be shown analytically and experimentally that
the usual multiple-sweep marclung does not have good con-

any two of (u,v,p)
B8 c

DOWNSTREAM
only (p)

UPSTREAM

any two of
(ulvlp)

ony two of (u,v, p)

Fig. 1 Example of permissible boundary conditions.

Centering Of Eqs.:
O - Continuity 8 X Momentum
O-Y Momentum

Fig. 2 The staggered grid.
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vergence and smoothing properties because short wave errors
are not efticiently smoothed. Isracli and Lin’* showed that
certain modifications in the streamwise momentum equation
which vanish upon convergence give rise to an iterative scheme
that is equivalent in the linear case to the SLOR method for a
single Poisson equation. In the general nonlinear case, the
modified iterative process is essentially equivalent te the re-
laxation of a single nonlinear Poisson-like equation for the
pressure. The velocities can be viewed as auxiliary variables
nceded dunng the marching since they have no “memory” by
themselves.

Furthermore, the good smoothing properties of the line
relaxation scheme of a single Poisson equation were automati-
cally gained. The problems associated with the loss of elliptic-
ity of the difference approximation for the Navier-Stokes
cquations at high Reynolds number'® are thus avoided, and
no upstream weighting or artificial viscosity is required. There
results a considerable saving in storage as well as a simpler
relaxation scheme where the convergence rate is essentially
independent of the Reynolds number. The same marching
algorithm can thus be used for the Euler equation with the
same favorable convergence rate.

The extension of the marching scheme of Ref. 4 to0 a general
curvilinear orthogonal coordinate system yields a modified
mainstream momentum difference equation (the other dif-
ference equations remaining unchanged):

-G P! =R, +8$, (6a)
P, |'”P:-1*(1_“)P»‘::Al (6b)

R, includes the velocity terms of the finite-difference ap-
proximation. m is the marching step number, & is the global
iteration index, and w is the over-relaxation parameter. G,
and S, are given in Table 1. When the MG procedure is
applied, the over-relaxation parameter is w = 1.

In each marching step, a block tridiagonal system is solved
for the vectors U,,, V,,, and P, _,; cach component of the
vectors corresponds 10 a point along the n coordinate. Thus,
the continuity and the n-momentum difference equations are
solved exactly in each step. The streamwise (£) momentum
equation is not solved exactly since the pressure F_, taken
from the last global iteration, appears in it.

A linear von Neumann stability analysis of the marching
iterative scheme for the primitive coupled system of difference
equations of Eq. (1) in Cartesian coordinates (Z,Y) was
performed by Rubin and Reddy.’ They numerically de-
termined the eigenvalues of the matrix of the relaxation pro-
cess and found the estimate A, =1~ C(AZ/Y,)? for
(AZ/Y,)y» 1. Y, is the outer boundary in the normal Y
direction; A Z is the interval in the marching direction Z. The
rate of convergence is determined by the ratio 8Z/Y,,. They
claim that this conclusion ... differs from that found for the
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convergence analysis of line relaxation procedures for Poisson
solvers. Although the source term S,, leads to the conven-
tional relaxation form of the Laplace operator for the pres-
sure, the coupling with the velocities alters the structure of the
inversion matrix and associated spectral radius.”

It turns out, however, that the spectral radius A, can be
determined analytically for the coupled PNS system and is
independent, in the linear case, of the coupling by the veloci-
ties. A stability analysis of the discretized version of Eq. (1)
using the modified form Eq. (6) reveals that the amplitude of
the errors in the velocities can be related to the error in the
pressure field. On the other hand, it was shown* that in the
linearized case the global iteration scheme is reducible to the
SLOR method for a single Poisson equation. It follows that all
the known results from the theory of the SLOR scheme should
be applicable to the present version of the global iterative
scheme for the PNS equations. In particular, we find that the
maximum eigenvalue A ., which determines the convergence
rate, is given in the present case by'?

(Amu tw-— 1)2 - Ama.vx“’z“zluu (73)
where
AZ\y? Ay
Boax ™1 [1—(3—),) (l—cosv—zT,;)l ()

for the boundary conditions of Eqs. (2) and with the ap-
propriate scaling. Y, and AY are the outer boundary and the
interval in the Y direction respectively. For w = 1 the maximal
cigenvalue is given by

A ~1-3(na2Z/Y) (70

v
o -o—
POu pPu PPu
v v
® 23 o—y®
@<> o $©
plu plu pju
< 5

Fig. 3 Relative placement of the varisbles on two successive MG
levels.

Table 1 Definition of G, and S,
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Numencal experiments verified the validity of Eq. (7¢). For
large enough AZ/Y,, . the convergence is very rapid and no
voarsemng of the gnd is necessary in the MG procedure. For
smaller values of 82/7, . the MG procedure is invoked in
order to accelerate convergence. For very small values of
AZ /Y, the MG scheme does not seem to be effective, and
this indicates that the underlying relaxation scheme breaks
down. Since the lincar analysis assures convergence for all
values of AZ/Y,, it is possible that nonlinear effects, which
were neglected in the analysis, adversely affect the conver-
gence rate and the smoothing properties of the relaxation.

Restriction and Storage Requirementy

Let the finite-difference approximation of Egs. (1) on the
finest grid M be represented as in Ref. 10:

LYWY(%) = E¥(x) 8)

where @ = (£, n), WY = UY V™ PM|T is the exact solution
of the difference equations and j is the number of the
differennal equation (7 =1,2,3).

The problem is transferred in the full approximation stor-
age (FAS) mode from the current level k to a coarser level
& — 1 by correcting the right-hand side of Eq. (8) (see Fig. 3):

Frozy =0 A + 2 BN - Lkt (%))
9

%70%) 15 an approximation to W*(%). /*;' and Ji' are
proper restriction operators for the jth equation and for the
dependent vanables, respectively.

The term within the braces in Eq. (9) is the residual of the
/th equation. For the present marching scheme there is no
residual in the continuity and in the n-momentum equations
since they are solved exactly in each step. The residual of the
§-momentum cquation results only from the streamwise pres-
sure gradient term, and its computation needs only one sub-
traction. I} ! was chosen to be a linear interpolation, which
yields Lt 1[J} ~1%*(Z)] = O for the continuity equation. /¥;!
is computed by averaging in both the ¢ and n directions.
It ' 1s a simple injection. In summary, Eq. (9) takes the
following form:

Ff Y(3)=0 (10a)
E Ny = LA (D) (10b)

Foy=a R s ] e (B - et 0]
(10c)

0o 4 8 12 16
H*H

Fig. 5 Accuracy test of the pressure and the normalized skin friction
coefficieat at Z = 4 (semi-infinite fat plate).

Two consequences should be emphasized: 1) only two correc-
tions {F} ~!(%), Ff~}(%)] have to be computed and stored
in the coarse grids, and 2) all the dependent variables must
be transferred in order to compute the corrections
{ L} Y[ iF 'k (%)), j=2,3). Since only the pressure is stored,
these corrections must be computed during the marching
process.

Special attention must be paid to the restriction of the
staggered flow variables at the boundaries in order to specify
zero corrections as boundary conditions for the coarse grids.
In the present study, all the boundary conditions were given at
the physical boundaries. The values at the actual staggered
placement of each variable at the boundaries were computed
by averaging with inner points.

It follows that in addition to the pressure on all grids, one
has to save one correction term for each momentum equation
on the coarser grids. Assuming N computational points on the
finest grid, a simple-minded estimate gives 14N/3 storage
locations for the two-dimensional NS multigrid solution and
2N for the PNS marching MG solution.

Interpolation

Since the present marching scheme generates the velocity
field from the pressure ficld, only the correction to the pres-
sure must be interpolated back to the fine grid:

Plnl_Pul,,_,:ol(PA_,i‘kﬂPkn) (“)

I8+ is the interpolation operator, In the present case it is a
linear operator.

The MG scheme described above is general. But so far only
cases in Cartesian coordinate systems with equally spaced grid
points were tested with the MG procedure.

V. Results

Linear Case

A lincarized version of the PNS equations, expressed in a
Cartesian coordinate system, has been tested in Ref. 9. Some
of the results are presented here for reference and for com.
parison with the nonlinear solutions.

Figure 4 compares the convergence history of different
relaxation schemes with and without MG acceleration for a
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Fig. 6 Convergence history on the finest grid (semi-infinite flat plate). {
Fig. 7 The pressure profile at Z = 3 (semi-infinite fAat plate).

finest grid consisting of 17 X 17 mesh points, The horizontal
axis gives the number of work units (WU).!® A work unit is
equivalent 10 one global iteration on the finest grid. The
vertical axis gives the dynamic residual. The MG procedure
with three levels (M = 3) shows a much better convergence
rate than the single grid solution for the same problem. The
convergence factor per relaxation iteration (sec Ref. 10 for
definition) for M = 3 is j = 0.60, whereas for the single gnd
case (M =1) =097 The lincarized PNS equations were

also solved without the streamwise correction of Refs. 3 and 4. -

The MG convergence factor is much worse (= 0.79). Upon
increasing the number of grid points, the unmodified equa-
tion's convergence deteriorates. As one can expect, the cor-
rected equations and the solution of the equivalent single
Poisson equation for the pressure exhibit very similar conver-
gence properties.

Nonlinear Cases

A series of flow problems were solved with the nonlinear
PNS equations. Several test cases were run in a Cartesian
coordinate system with possible clustering of mesh points by
one-dimensional stretching functions in cach direction. Among
them we shall mention the flow over an infinite, a semi-infinite,
and a finite flat plate, trailing edge flow and an entrance flow
between two flat plates. Two cases were run with curvilinear
orthogonal coordinate systems: the low along an axisymmet-
ric cylinder and the flow over a prolate spheroid at zero angle
of attack. In the following sections some of the cases will be
detailed.

Senu-Infinite Flat Plate

In this case the flow is computed starting from the leading
edge, where a uniform velocity U=1, V=0 is given. The
downstream boundary was set at Z = { = 4 and 2¢ro pressure
gradient was specified there as dP/3dZ =0. On the outer
boundary, U=1 and P=0. The no-slip and no-injection
conditions were used at the plate.

The second-order accuracy convergence of the finite-
difference equations is demonstrated in Fig. 5. The pressure at
a fixed point and the normalized skin friction G = Cp/Re- Z
(which is proportional to the main velocity gradient) at
7 = 4 are plotted against H%; H is proportional to the mesh
wnterval.

The comvergence history on a finest grid consisting of
65 x 6% points is shown in Fig. 6 for Re=10. The outer
boundary is placed at Y,,,, ~1 where Y is the normal coordi-
nate (Y = 7). Increasing the number of levels M increases the
convergence rate until M =4. The convergence factor per
relaxation (4 = 0.562) is close 1o the theoretical value obtained
for the solution of a single Poisson equation with the SLOR
method (g = 0.547),

For Re=10* and Z =3, the pressure distribution as a
function of the Blasius similarity coordinate { = yy/Re/Z is

Soof TD(13)
2922 TD(13) UC
TD-TRIPLE DECK 0903 8L (13)
IBL-INTERACTING BOUNDARY LAYERS 000 4 JBL (13) .UC
vv+5 PRESENT
*vv 6 PRESENT, Uc
s487 BLASIUS

C/ UC
1.0 1.0
[+] -
]
081" Ps5,a¥ 08
AAMA
0.6 " 0.6
[ ]
0.4 o’ 0.4
o
0.21 f 0.2
00 T T T T T T 171920
06 08 10 12 14
z
Fig. 8 Normalized skin friction coefficient and wake centerline veloc-
ity development (trailing edge flow).

shown in Fig. 7. The distance from the leading edge is large
enough to satisfy the Blasius assumptions; the skin friction
coefficient deviates no more than 3% from the theoretical
value. The computed pressure is compared with the “Blasius
pressure” that can be obtained from the normal momentum
equation

4ReZ(P~P,) =f(§f'—f) + 24" (12

P, is the pressure on the plate. / is the solution of the Blasius
boundary-layer equation for a flat plate with zero pressure
gradient. f’ and f” are the first and second derivatives with
respect to {. The agreement between the present computations
and Eq. (12) is good.

Trailing Edge Flow

The Reynolds number was fixed at Re= 10° and a grid of
65X 73 points was used. The flat plate with zero thickness
occupies the interval [0,1] along the Z(= ) axis. We assumed
that the interaction is limited to the interval 0.5 <Z<135.
The Blasius solution was specified at the upstream boundary
(Z = 0.5) and symmetry boundary conditions were given be-
hind the plate. The Blasius solution was approximated by the
fourth-order Karman-Pohlhausen velocity profile.

Figure 8 shows the normalized skin [riction coefficient
(C;= C/Re) on the plate (Z<1) and the wake centerline
velocity (U; . Z>1). The agreement with the interacting
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boundary layers (IBL) solution and with the triple deck (TD)'?
result s satisfactory.

EUntrance Flow Between Two Flat Plates

Uniform inlet conditions were specified at the entrance
tL = 1.} = 0) while the usual no-slip and no-injection condi-
tions were given at the plates. At the downstream boundary
the pressure gradient was calculated by assuming a fully
developed flow

aP 12/
32~ " Re (13)

1 1s the rate of mass flow.

Figure 9 shows the development of the centerline velocity
for two Reynolds numbers, Re = 20 and 200, and for a grid of
41 X 101 points. The results are compared with the full
Navier-Stokes computations of Ref. 14. Again the agreement
1s satisfactory, even at the entrance where the omission of the
streamwise diffusion terms may be questionable.

Prolate Spheroid ut Zero Angle of Attack

This test case is more stringent because a curvilinear or-
thogonal prolate spheroid coordinate system is used and the
flowfield is more complex than in the previous cases.!* A
nonzero pressure gradient exists at the outer boundary:
favorable at the front half and adverse in the rear half. The
flowfield eventually separates, with reversed flow near the
spheroid. Several numerical solutions of the present problem
exist,’*"!7 but all of them use the boundasy-layer approx-
imation.

The flowfield was computed for a region between the nose
and the rear part of the spheroid. The analytically known
potential flow is specified at the outer boundary (U and P)
and at the downstream boundary (dP/3§). At the spheroid
the no-slip and no-injection conditions is given. At the up-

[
130 »
. -
‘ T V‘Vﬁ
- T
,/' ‘:' +++ RE=20,(14)
125 . i --- RE=20, PRESENT
‘)' A svvRE=200.(14)
. M —— RE=200, PRESENT
+ ',"
100 e T
0 2 4 6 8
2Z/RE*100

Fig. 9 The development of the centerline velocity (entrance flow).
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Fig. 10 The distribution of the skin friction coefficient along the
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stream boundary the two velocity components are specified.
Usually they can be computed from a boundary-layer code. In
the present work, the approximate main velocity was com-
puted from a Karman-Pohlhausen profile with a specified skin
friction coefficient or displacement thickness. The specified
quantity was taken from existing boundary-layer solutions of
the same case. The normal component of the velocity ¥ was
determined from the potential solution. Numerical experi-
ments show that for reasonable upstream conditions the solu-
tion is independent of the upstream conditions, apart from the
first few marching steps.

The downstream boundary was set before the separated
zone, although the PNS equations are valid there. The compu-  »
tation of flowfields with reversed main flow needs modifica- gg
tions in the approximation of the convection terms. Y

Two thickness ratios of the axes were considered —4:1 and
6:1. In each case the Reynolds number was Re = 10° and a
single grid consisting of 17 X 65 points was used (in the 1 and
¢ directions respectively).

Thickness Ratio 4: 1

The dependence of the normalized skin friction coefficient
(G, = C/Re) on the axial distance (Z = cos§) is shown in
Fig. 10. It compares well with the boundarg-layer solution of
Ref. 16 but disagrees with Wang's solution.!

The point of separation is determined where C, vanishes. In
the present case, the separation point was found to be at

0-92-1

POTENTIAL

« v + V{SCOYS

-0.234

-2.244]

L] -9.5 9.3 9.¢ 1.9

Fig. 11 The pressure distribution along the spheroid of thickness 6: 1.
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Fig. 12 The distribution of the skin friction coefficient along the
spheroid of thickness 6: 1.
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. Ay in Cartesian grids. The convergence rates were not adversely

) P affected by the nonlinearity.
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