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Summary

B

Tkis report summarizes 20 months of research into Travelling Wave
Concepts for the Modelling and Control of Space Structuresé performed at the
Massachusetts Institute of Technology under the supervisi&r'\wa Professors
von Flotow, Hall and Crawley. Major contributors to the work were grafduate
research assistants Miller, Signorelli, O'Donnel, and Kissel. Many
undergraduate assistants also contributed.

The research has led to seven research papers which were published in
the open literature or presented at conferences, and to two graduate theses
and two undergraduate theses in MIT's Department of Aeronautics: and
Astronautics. These publications are presented in full in the Appendix.

In addition to these published papers, the past few months have
witnessed other forms of dissemination of research results. Professor von
Flotow nas given invited lectures derived in part from this AFOSR sponsored
research at the Office of Naval Research in September 1986, Yale University in
May 1987, the Naval Underwater Systems Center in June 1987, Lockheed Palo
Alto in August 1987, the University of Buffalo in Cctober 1987, and at the
meeting of the American Acoustical Society in Miami in November 1987. In
addition, we have influenced research into the dynamics and control of space
robotics at Martin Marietta Aerospace in Denver, by sending them requested
computer software, and work in active control of structural acoustics at the

Naval Underwater Systems Center in Newport, R.I

This report consists of a brief executive sumary highlighting the main -

results of the research publications collected in the Apfaendix.
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Modelling of Disturbance Propagation in Elastic Structures

“«____ A good portion of the research has focused upon the development of

techniques for the modelling of structural response in terms of disturbance

propagation. Such models are of interest for several reasons: .

S Understanding the mechanisms that govern the propagation of
disturbances through an elastic structure is useful for building
intuition, for structural design and for design of active control}. -

A

y

- 2 Disturbance propagation models have the potential for
providing high-tidelity analysis capabilities in response regimes
where other techniques are inapplicabie. Of considerable interest
to the researchers at MIT is the response of elastic spacecrait to
disturbances with significant spectral content at frequencies
including many (even hundreds) of the spacecraft natural modes
of structural vibration, ..

3. Elastic disturbance propagation is a classic area of research in

applied mechanics, having appliciiion in acoustics, seismology,
microwave electronics, transducer design, biological fluid
mechanics, design of mechanisms and machines, and many
other areasy _,

The MIT research effort has made good progress in development of
models for elastic disturbance propagation. This progress is summarized here
with reference to specific papers written during the period of the contract and

with its financial support.

Wave Propagation and Power Flow in Truss Structures

The MS thesis research of Joel Signorelli took a computational
approach to investigating the wave propagation behaviour of simple beam-
like truss structures. Although Joel began the work with the intention of
investigating the behaviour of a very complex spacecraft truss beam, he found

enough interesting effects in a simple situa‘ion, originally intended to serve

only as a preliminary warm-up.
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Joel introduced a modelling technique which takes explicit advantage
of the spatial periodicity of the structure. This is similar to an approach
developed by M.S. And--son at NASA Langley Research Center in recent
years, but unlike Anderson's approach, has no difficulty with the application
of boundary conditions. Joel's approach begins with the spatial‘ state
transition matrix (also known as the transfer matrix) of a single bay. This
transition matrix is formulated in the frequency domain, by any of a host of
techniques, including exact solutions of the partial differential equations
governing motion of the truss members internal to the bay. For purpose of
comparison with a prior finite element solution of a segment of the truss,
Joel chose to derive the transition matrix with the identical finite element
discretization.

One approach to modelling the dynamics of a finite portion of a one-
dimensional spatially periodic structure involves multiplication of a series of
segment transition matrices. This is numerically not stable, since the
transition matrix can, in general, have an extremely large range in the
magnitudes of its eigenvalues. An alternative, transformir.g to the transition
matrix eigenspace, is numerically superior, and has interpretation in terms of
wave modes.

Much of Joel's work focused upon the frequency-dependence of wave
propagation in a beam-like truss. From a numerical viewpoint, this is just a
study of the eigenvalues and eigenvectors of the bay transition matrix, and of

their dependence on frequency. Joel discovered a host of interesting effects:

’

1. The model exhibits as many wave modes in each direction as
one chooses coupling coordinates between neighboring bays.
The wave modes come in identical pairs, of each pair one wave
travels in each direction.
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Each wave mode travels independently of the others.

Each wave mode can be described by its dispersion behaviour
(the frequency dependence of the propagation velocity), and by
the corresponding deflection shape. Joel's thesis is full of plots
of the deflection shape of a truss beam supporting a single
travelling wave.

The dispersion characteristics of a truss beam are astoundingly
complex. Each wave mode may be either:

a) propagating without attenuation (a traveling wave),

b) propagating with attenuation (a complex wave), or

c) not propagating (an evanescent wave). Joel found that
each of the wave modes he studied exhibited all three
types of behaviour, different behaviour in different
frequency ranges. Such complex behaviour is
unprecedented in the study of wave propagation in
periodic structures.

Joel is among the first few analysts (perhaps the first) to clearly
describe the complex traveling wave, a wave which both
propagates and is attenuated. He demonstrates that simple,
mono-coupled structures cannot support such behaviour, but
that at least two coupling coordinates are required. Furthrmore,
he demonstrates that such wave motion does not propagate
energy in isolation, but may in conjunction with other wave
modes.

Joel investigates povier flow in the truss beam due to these wave
modes in isolation. He neglected to consider power flow due to
wave-mode interaction, since at that time we did not yet know
that such a thing could happen. Dave Miller's work discovered
this a few months later.

Joel applied two types of boundary conditions to the truss beam
and transformed these boundary conditions into a wave-mode
description involving the boundary scattering matrix. This is a
unique approach, which permits investigation of the causal
behaviour at the boundary, the mechanism of reflection of
incident disturbances.

Having transformed the analysis to wave mode coordinates, Joel
was able tc derive exact (to numerical precision) structural
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transfer functions of the structure. The nunerical difficulty of
multiplication of a sequence of transfer matriccs is thus avoided.

Full details of Joel's work are recorded in the appendix in the thesis,
"Wave Propagation in Periodic Truss Structures,” and the paper "Wave
Propagation, Power Flow, and Resonance in a Truss Beam." This paper has

been accepted for publication in the Journal of Sound and Vibration.

Power Flow in Structural Networks

In the fall of 1986 and winter of 1987 PhD candidate David Miller was
grappling with control formalisms for structures whose dynamics are
described in terms of wave propagation. One concept that surfaced was the
desirability of influencing the power flow in such structures by active means,
rather than to monitor and actively control the direct response. This
consideration led to the development of a theory and computational
procedure for calculating such power flow. This procedure is briefly
mentioned in the paper, "Active Modification of Reflection Coefficients in
Elastic Structures,” presented by David Miller as an invited paper at the
American Control Conference in Minneapolis, in June 1987, and included in
the appendix of this report. De.id Miller and Prof. von Flctow are
continuing to develop these concepts of power flow, and are preparing

further papers for publication.

Waves in Spacecraft Tethers

Tethered spacecraft are envisioned which covisist of two (or more)

relatively compact bodies ronnected to one another by long, slender wires

under very slight tension. The dynamics and contro! of such configurations

is beginning to receive serious attention of analysts around the world. In the
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summer of 1986, Prof. von Flotow considered the problem and proposed an
engineering model which explicitly separates the motion into slow dynamics

(comparable to orbital rate) and fast dynamics.

The fast dynamics, confined primarily to the tether, are governecf by a
system of partial differential equations. In the linear approximation, these
equations are related to the well-known wave equations, differing
significantly because the e :ilibrium shape of the tether is slightly curved.
The analysis then investigates the dynamics of such a curved, elastic wire in
terms of both travelling waves and in terms of exact frequency-domain
solutions of the governing equations. The analyses are summarized in a
paper, "Some Approximations for the Dynamics of Spacecrafi Tethers," which
is included in the appendix of this report, and which is to be published in the
AIAA Journal of Guidarce, Control and Dynamics.

In the winter and fall of 1987, two undergraduate students in MIT's
Department of Aeronautics and Astronautics, Todd Barber and Earl Gregory,
accepted the challenge to experimentally investigate the dynamics of an
elastic catenary, and to verify (or disprove) the analysis proposed by Prof. von
Flotow. Wave propagation speeds, transfer functions, and mode shapes were
measured, and compared favourably with the analytically predicted values.
The transition from the behaviour of an inelastic hanging chain to that of a
taut elastic string was investigated. These results are summarized in Todd

Barber's report, "Dynamic Cable Response: TheEffect of Cable Sag," included
in the appendix. '




Wave Propagation and Localisation in Disordered Periodic Structures

Wave propagation in periodic structures has received the attention of
dozens of investigators over the past century, beginning with Lord Rayleigh,
who was interested in light transmission through crystals. Recent work has
been motivated by interest in seismology, structure-borne sound, solid state
physics, microwave electronics, and other applications. Our interest
originates in the realization that many future large spacecraft structures will
also be spatially periodic; i.e., truss structures.

Recent work at MIT and elsewhere has investigated the dynamics of
structures which are slightly perturbed from perfect periodicity. Under the
partial sponsorship of this contract, doctoral student Glen Kissel has in the
past two years achieved a fundamental analysis of these effects in structural

systems. He drew heavily on a large literature, primarily in solid state

physics. Glen's writings on this subject (a paper "Localization in Disordered
Periodic Structures," presented at the 28th AIAA Siructures, Struciural L
Dynamics and Materials Conference in Monterey in April 1986, and a PhD
thesis at MIT in September 1987 with the same title, represent an elegant ‘

theoretical summary of a broad disjointed literature, and make significant

new contributions to that literature. Glen also provides a computational
procedure for evaluating the strength of the localization effect in structural
systems. Glen Kissel now works at the Jet Propulsion Laboratories, and is

writing two further papers for journal publication based on his PhD

e —————
e

dissertation.
In the winter of 1987 two undergraduate students, Cathy Sybert and
Tupper Hyde attempted an experimental verification of localization in a

relatively complex structure, intentionally disordered. Their experiment was
8




not a glorious success, as is documented in the report by Tupper Hyde,

"Mode/Wave Localization in Disordered Periodic Structures."

Active Control of Elastic Structures
The preceding section describes the research into structural dynamic
modelling performed under the terms of this contract. We have also been
active in research into active control of such structures as is summarized by

the following paragraphs and by the four relevant papers in the appendix.

Hierarchic Control

An important consideration in the control of flexible structures is the
computational architecture which is used to implement the control. Because
of the large number of modes, sensors, and actuators in a typical flexible space
structure, traditional control system architectures (such as a full state feedback
controller cascaded with a full state estimator) are infeasible.

The approach that has been taken in this investigation is to develop a
hierarchic control system architecture which can greatly reduce the amount of
computation required, while at the same time allowing the procesing to be
distributed. This allows much of the control to be performed locally, so that
the approach also reduces the need for transferring large amounts of data to
and from a central processor.

In February 1987 the paper, "A Hierarchic Control Architecture for
Intelligent Structures,” was presented at the AIAA Rocky Mountain Guidance
and Control Conference (see appendix). The general approzch is to divide the
structure into coarse and fine finite element models. The coarse FEM is used
to control thie lower modes of the structure through a central (or "global")

processor. The local controllers then operate on the residual, which is the
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difference between the global (or coarse) FEM and the fine FEM. Results
presented in the paper demonstrate that the approach may be easily applied to

test cases, and that under some circumstances, stability can be guaranteed.

Control-Motivated Tailoring of Structural Dynamics

The extensive research literature on control of structura! dynamics has
almost invariably taken the approach that the structural dynamics are
difficult to control, and may not be modified to ease the task of the control
engineer. Thus one often reads, for example, that the dynamics of large
flexible spacecraft are characterised by many (even hundreds) of lightly
damped modes (damping ratio less than one percent) spectrally closely spacéd.
Moreover, these modes are poorly known, both with respect to frequency and
mode shapes.

An exception to this approach is the growing literature on
simultaneous design of the control system and the structure. Unfortunatly
most of this literature attempts an "optimal" approach to this design problem,
and the research quickly bogs down to research into computational
techniques of minimizing a complex non-linear function of many
parameters. The examples that have been thus treated are extremely simple,
and it appears that the techniques are computationally limited to such simple
examples. Furthermore, since one can only optimize over parameters which
are modelled, and since inodelling of passive damping is extremely difficult,
this literature tends to have ignored this extremely important design freedom
by assuming some given level of passive damping,.

In August 1986 Prof. von Flotow presented the paper, "Control-

Motivated Tailoring of Spacecraft Truss Structures,” at the AIAA Guidance,

10
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Dynamics and Control Conference in Williamsburg, VA. This paper (full text

in the appendix) takes a very informal approach to:

1.

Quartitatively estimating the benefits of passive damping to the
problem of active control of structural dynamics.

Quantitatively estin.aling the mass penalties associated with
various passive damping treatments.

Computationaliy demonstrating the possitilities for tailoring the
dynamics of a truss beam for active control.

The Accustic Limit of Active Control of Structural Dynamics

In the winter of 1987 Prof. von Flotow was invited to write a chapter

for the Monograph, "i .arge Space Structures: Dynamics and Control," ed. S.N.
giap ge -p y

Atluri, A K. Amos, Springer Verlag, to appear, 1988. The invitation was

accepted, and the result, entitled, "The Acoustic Limit of Active Control of

Structural Dynamics," is included in the appendix. This paper is based on the

relevant work done by Prof. von Flotow and partners over the past few years.

The main points of the paper are:

1.

Modal analysis (or any global model of structural dynamics)
becomes fatally unreliable in the acoustic limit, defined to be the
fr:quencies above the natural frequency of perhaps the tenth
mode.

Passive damping is an important vibration remedy to be used in
this limit.

If active control must be used, then it must be based upon (local)
acoustic models of the struciural response.

Examples of such a control design procedure are given.

11
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A collection of papers, theses, ard reports written under the terms of
this research contract.
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WAVE PROPAGATION IN PERIODIC TRUSS STRUCTURES
by
JOEL SIGNORELLI

ABSTRACT

Wave propsgation in periodic truss-work beams was
analytically investigated. Transfer matrix methods were applied
to the analys!s of two truss beams. The results of a truss with
members modelled as pinned rods agree well with results obtained
from equivalent continuum models of the same structure. Use of
beam models for the truss members shows that the pinned rod truss
model loses fidelity at the {irst resonant frequency of the
lateral motion of the truss members.

The pinned beam truss exhibits complicated mechanical
filtering properites. Each travelling wave mode experiences
alternating stop, pass, and complex mode bands as a function of
frequency. It was shown that complex modes cannot exist alone and
must form {n groups of four. Net power flow in right/left-going
complex mode pairs is found to be zero.

Scattering matricies were deteiwined for fixed and free
boundary conditions. The phase closure principle was then used to
determine natural frequencies of the truss. It was found that
closely spaced resonant frequencies were not identified by this
method. Computed results show subtle erroneous characteristics

which are attributed to numerical effects.

Thesis Supervisor: Andreas H. von Flotow

Title: Assistant Professor of Aeronautics and Astronautics
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1.0 Bacikground

Nany future space structures will have physical
characteristica radically different from those flying today.
Among these will be large direct broadcast satellites, the space
station, and numerious scientific and commercial satellites.
Critical to the success of the Strategic Defense Initiative will
be large space based radar and surveillance platforms. Since the
size and weight of these systems greatly impact launch costs,
these so-called large space structures (LSS) will be built largely
of light and flexible aerospace materials. Because of their size
and distributed flexiblity. the structural vibration modes of
these structures may well be within the bandwidth of the control
system. It is therefore of great importance to be able to
characterize the dynamics of these LSS through analysis and
simulation. One method of analysis involves examining these
structures in terms of wave propagation.

Many of these planned large space structures will be
constructed, in part, by truss-work structures. Truss structures
are favored because of their ease of packaging. transportation,
fabrication. and space assembly. A current example of a large
space structure that will be assembled in part by truss members is
NASA's space station (Fig 1.1). Truss structures generally

consist u. an assemblage of identical elements and are thus

-8 -

/




e v - —p—

ME A

.....

e e

¥

F

Vo -

»

¥/
f
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spatially periodic. Periodic structures have long been known to
act as mechanical filters for travelling waves [B-1]. In order
to gain more insight and understanding as to how wave propagation
properties can be exploited in the dynamics and control of LSS
this thesis examines wave propagation in two-dimensional, periodic

truss~-work structures.

1.2 Wave Propagation in the Literature

The study of wave propegation in periodic structures began
long ago in the field of solid state physics. Noteworthy among
the early investigators is Brillioun who made a significant
contribution to the study of wave propagation in crystals,
transmission lines and atoms [B-1]. Cremer and Leilich studied
flexural motion in periodic beams and showed that waves can
propagate in certain frequency bands but not in others [C-1].
The notion of propagation coefficients was defined by Heckl in
1964 [(H-1]. He investigated wave propegation in periodically
supported, undamped grillages. Mead included damping effects in
the wave propagation theory for periodic beams [M-1]. Mead and
Eatwell theoretically described the so-called complex modes which
have characteristics of propagating and attenuating waves [M-2]
[E-1]. von Flotow introduced thz use of scattering matricies to
describe junctions in structural junctions. He also modelled
members by transfer matricies and demonstrated the superiority of

this approach over equivalent continumm models [V-1].

1.3 The Pressemt Vork

in this thesis, the methods of von Flocow and Mead will be
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employed in the analysis of a two-dimensional periodic truss
structure. Chapter 2 will introduce and develop the concept of
the transfer matrix. Advantage i3 taken of the fact that truss
structures are periodic by examining their dynamics in terms of
the transfer matrix of a single bay of the truss. In Chapter 3
the eigenvalues and eigenvectors of the transfer matrix will be
used to identif{y and characterize the wave modes present 1in the
truss structure. By use of dispersion plots, the mechanical
filtering properties of the truss will be demonstrated. Power
flow in wave modes will be investigated in Chapter 4. And
finally, by through the use of scattering matricies, Chapter 5
describes the interactions of the wave modes with truss
boundaries. Natural resonant frequencies of an example truas will

also be determined.

- 11 -
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Chapter 2 - The Transfer Matrix Method

2.1 The State Vector

A periodic truss structure consists of several identical
substructures called bays. At any station along the truss, a
cross-sectional state vector, Y, which describes the force and
displacement at that station, can be examined. Figure 2.1 shows
one bay of a two-dimensional truss structure and the state vector

associated with each side of the bay.

U : * U
L 3
T = [&] Y= [F.]
1 3
y
L.
z

Figure 2.1 - State Vectors Associated with
One Bay of a Periodic Truss

Each bay consists of four structural members. The state vector is
chosen such that {t describes the forces and displacements of the

endpoints of the members. U, and Us describe the displacements of
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the joints on the left and right sides of the bay respectively,
while the forces on the joints are represented by F. and F.. If
only joint translation in the X and Y directions, and rotation
about the Z axis are modelled, the state vector on the left side

Of th‘ W| Yl.' '111 ch

U, F,
U = Uz F. = Fa (2.1)

Ut" ng
where U, = [U,v F, = |Fyv (2.2)
H’:j T‘z

The state vector on the right hand side of the bay, Ya. is similar

and involves the state of joints 3 and 4.

2.2 The Transfer Metrix
The state at any two stations can be related by means of a

transfer matrix, T.

Yl.x = [ T ] Yx (2.3)

where Y, 1is the state vector for the i-th station. The transfer
matrix may be thought of as a spatial state transition matrix
between two stations on the truss. The elements of the transfer
matrix depend on the bay properties and, on frequency. Without
damping the transfer matrix will be purely real.

Once the transfer martix for a single bay has been
determined, the transfer matrix for the entire structure can be

assembled. For a seven bay truss {Fig. 2.2), we have,
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BAY 1 2 3 4 S [ 7

Y Y. Y2 Y5 Y. Y5 Y. Yo
Figure 2.2 - State Vectors for a Seven Bay Truss

The states at the left and right sides of a bay are related by the

bay transfer matrix,
Yy=[T, 1Y

Ya=[Ta] Yy (2.4)

Yieg = [ ‘i‘.., 1Y
By multiplication of transfer mtricie; we obtain,
Ya=[Ts JUTe U Te I Ta [T JIT2 [T, 1Y, (2.5)
But since the bays are considered to be identical, we have,

(T ]1=(Ta]=(T3}=....=[T ]
so that, Ya=[T) Y. (2.6)

which relates the states at the right and left hand sides of a
seven bay truss. T is refered to as the rearward transfer matrix
of the structure [R-1]. The transfer matrix can also be expressed

in terms of its eigenvalues and eigenvectors,
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T. = l’t-l A v, (27)

where p = the matrix of right eigenvectors of T

- g
"

the diagonal matrix of eigenvalues of T

so that by Eqn 2.5, the states at opposing ends of the truss can

be related by,

Yw=[o'A"Dp]Y (2.8)

2.3 Derivation of ths Transfer Natrix

There are several methods to determine the transfer matrix of
a structure. Among these are deriving the matrix from an n-th
order differential equation, and deriving it from the system's
mass and stiffness matricies [P-1]. Tﬁe second method will be
used throughout this work.

The mass matrix, M, and the stiffness matrix, K, for a bay
can be determined by means of a finite element analysis of the
bay. But first, care must be taken to ensure that differences in
displacement and force coordinate definitions between the finite
element analysis and those of the transfer matrix method are taken
into account. For the transfer matrix method, the positive face
of a cross-section of the truss is defined as the face whose
outward normal points in the positive x direction. Positive
displacements coincide with positive du:ections of the coordinate
system, and forces are positive if, when acting on the positive
face, their vectors are in the positive direction [P-1]. Fig 2.3
illustrates the force/displacement coordinate definitions for the

two analyses. Note that in the transfer matrix method forces and
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moments of adjacent elements are of opposite sign so that all

internal forces in the structure are balanced.

UYLQ FYL ) UYI. FYR
6., To F —J On., Tllg—‘
Uxi, Fxu Uca, Fxa

Finite Element Force/Displacement Coordinate Definitions

Uve Ura
e; (b—' L _l e. ’#‘
Uxe Uxa
Fru "‘q Fen
[ J "b_g
Tr Fxa

FYL

Transfer Matrix Method Force/Displacement
Coordinate Definitions

Figure 2.3 - Force/Displacement Definitions for the Finite
Elerment and Transfer Matrix Methods

For the finite element analysis the bay was modelled with eight

elements (Fig 2.4).

Figure 2.4 - Node Assignment for the Finite
Element Analyvsis of a Bay

The nodes located at the member midpoints were included so as to
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better model the bay's higher order modes. The ‘'left' coupling
dof's between adjacent bays are identified by the subscript L, the
‘internal' dof's by I. and the 'right’' coupling dof's between bays

'by R. The finite element analysis produces matricies M and K

such that,
U U, F.
[N] | W + [K]|W = F. (2.9)
UI UI FI

For a truss with only nodal displacemenits as coupling dof's this

Ut UQ U-'
becomes, UL = U, Ui = Us Un = Ue (2.10)
Us
F, Fq Fq
FL = Fa Fl = F; FR = F. (2-11)
| Fe
with U, and Fi given as in Eqn 2.2. After Fourier
transformation, Eqn 2.9 becomes,
U. F.
[K-w*M]|U | =]|F (2.12)
Un Fa

If structural damping is modelled. the leading matrix becomes,
2
[K(1l=-1in)-uw" M] (2.13)

where n is the structural damping coefficient (loss factor). Eqn

2.13 forms the dynamic stiffness matrix of the bay.
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2.4 Coondensation of the Dynamic Stiffness Matrix

'n order to derive the transfer matrix between the the left
and right hand sides of a bay. it is necessary to condense the
{nternal nodes into the dynamic stiffness matrix. We reject the
option of static condensation because we wish to model the

internal dynamics of the bay. The dynamic stiffness matrix may be
partitioned as,

Diu| Duc| Din [UL F.
Dic| Dit| Dia U | = | Fx (2.14)
DIL Dll Dll I. Ul F.

Since the internal forces., F:, must be zero, the second row of the

matrix gives,

Ur = =Dii™! (Die Ul + Din Ua ) (2.15)

Eqn 2.15 1is substituted into rows 1 and 3 of Eqn 2.14, and after

some rearrangement we get,
Die = Du: Dii™! Diu [ -Die Dii ™! Dia UL Fo
—] = |—| (2.16)
<Da: Dit ™! Din I -Da: Di:”! Din + Dan n A
For simplification. this can now be written ac,
[ U, -F.
_A_.t.f“. —_— s | — (2.17)
Ci{D Ua Fa

where negative values of F. have been taken to ensure

compatability of the transfer matrix and finite element analyses
force coordinate definitions. And finally. the transfer matrix is
determined by,
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|‘u. A | B u. ] 2.18)
I/ | lc-oetal -me ] |R =

or equivalently,

YZ=[T]Y (2.19)

2.5 Truss Closure

Before the global or complete transfer matrix of the truss
can be assembled, the transfer matrix for the wmember closing off
the right end of the truss must be determined.

Consider the end member as shown below. Once again, the
wember is modeled as two elements.

-]
© SRERRRK ™ = f -
L ]
) 1

3

Figure 2.5 - Truss with Closing End Member

The displacements for the end members are,

Ual = UaL an = UQL Usn = Ugn. (220)

while the forces acting on the nodes are,
Fa = Fal = Fg; F‘ =0 F5 = an ‘FQL (2.21)
The end member's mass and stiffness matricies are obtained
from 2 finite element analysis of the member. Following the same
procedure as in section 2.4, we eliminate the internal degrees of

freedon at node 4.
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with A.B.C, and D as defined in Eqns 2.16 and 2.17.

of Eqn 2.21 into Eqn 2.22 leads to,

GEGHIGHE

Combining this with Eqn 2.20 we get,

Uga (1] o 0 0
Usn | 0 [1] 0O o
Fan [ A B ] [1] o
Feaa C D o [I]

Use
Use

FauL
Fast

(2.22)

Substitution

(2.3)

(2.24)

which defines the point transfer matrix across the end member as,

Yean = [ Te ] Yoo
or,

YW =[T]Ya
Sc that for the whole truss we get,

Yo = [T [T Y.

or, Yn=[Tq]YL

(2.24)

(2.25)

(2.26)

(2.27)

where T. 1is the global transfer matrix for the entire truss.
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2.6 Natural Frequencies of the Truss

Once the global transfer metrix for the structure has been
determined, the system's natural frequencies can be determined.
First, boundary conditions are applied to the truss. The boundary
conditions will depend on how the truss is suspended in space.

For example, a future on-orbit experiment will have a truss

cantilevered to the shuttle orbiter as shown below.

Figure 2.6 - A Truss Cantilevered to
the Shuttle Orbiter

If the truss attach points are pinned, and the orbiter is assumed
to be very stiff and massive., no displacements or torques can

exist at those points. This leads to the boundary conditions,

[ Uyy ] [0 ] [ Fie ] -Fuw
gu g Fiy o (2.28)
1 1 - Ta - .
Uo=tu, | = |o Fo = | Fau | ® | Fau
Uay 0 Fa, Fay
Lea Je _ea_L L Ta o L0 v

The free end of the truss has the boundary condition Fa = 0. With

this we obtain from Eqn 2.18,
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U. TA Uag
[ ] i [ ] r (2.29)
0 Ty Fiy

where T. and T, are appropriately selected submatricies of the

global transfor matrix T,. The bottom row of submatricies gives,

O=[Ts] | Fpn (2.30)

The only non-trivial way this can be true is if

det [Th ] =0 (2.31)

A plot of | det [ To («) ]| as a functior of frequency will
indicate the system sigenvalues.

The determination of natural frequencies by thiz-‘;;nuf:{_"xod may
not always work. Some of the eigenvaluc:-s f.he transfer matrix ase
quite large. The result of this is i!_;;;\:‘ when one atteapts to
determine the transfer matrix for n bays, Atl.xe)valuQ of [T]" very
quickly reaches the computational limit of thé computer. A method
will, however, be presented in Sections 5.3 vhich will enable the

natural frequencies of the truss structure to be determined.
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Chapter 3 - Wave Propegation Apslysis

3.1 Eigmvaluss of the Transfer Natrix
A wave propagating along a periodic structure can be
characterized by,
Yiey - E Y, (3.1)

indicating that the state at station i+l is the state at station i
multiplied by a factor . This, together with the basic transfer
matrix relation

Yiey = [ T ] *l (3.2)

forms an eigenvalue problem for §. The eigenvalues are generally
complex and occur in § and 1/f pairs. corresponding to identical
waves propagating in opposite directions [eigenvalues of a
symplectic matrix occur in inverse pairs].

For each wave mode there are frequency regions in which the
wave will propagate unattenuated (pass bands) and regions in
which the wave is attenuated (stop bands). Complex modes (modes
for which the eigenvalue is complex) are also considered to be in
stop bands. The magnitude of an eigenvalue at a given frequency
will indicate whether the wave is in a pass or stop band at that
frequency. If the magnitude of the eigenvalue differs from unity,

the frequency 1is in a stop band. For magnitudes equal to unity,




T

- - — 4 -

Y

the frequency is in a pass band [R-2]. In a stop band, since |f| .
< 1, the crnss-sectional state vector will eventually be

Rl

diminished to zero.

| g <1 stop band
lE | >1 stop band (3.3)
| ) =1 pass band

Eigenvalue magnitudes greater than unity correspond to
negative-going waves and those less than unity correspond to
positive-going waves.

The relation between § and 1/§f can be sesn by constructing a
piot of the § plane (Fig 3.1). For a given frequency, values of
|€] which lie on the unit circle are in a pass band. Those inside
the unit circle are positive-going waves in a stop band while
those reflected outside the circle are negative-going waves in a
stop band. Values of |f| which lie in the interior (exterior) of
the circle, but not on the real axes, are complex modes. As a
function of frequency. the eigenvalues move about the plane,
continually changing magnitude and phase.

In the absence of damping., the transfer matrix, T, 1is real,
thus its eigenvalues will be real or members of a complex

conjugate pair. Complex modes thus occur only in groups of

four--wave mode interaction is necessary. Mono-ccupled systems

(with 2 x 2 transfer matricies) cannot support complex wave modes.
.t is perhaps for this reason that complex wave modes have
received scant attention in the literature, being mentioned in

only two papers [E-1] [M-2].
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Pass Bands Stop Bands Complex Modes
Figure 3.1 - The § Plane
3.2 Propasgation Coefficient
The eigenvalues § are related to the propagation coefficient
L by
g=ett (3.4)
where L is the bay length. pu is generally complex so that
M= pe o+ (3.5)
£=c b o (3.6)
or § =e Lur o 1(kL + 20m) (3.7)
1Y
where kL is the nondimensional wave number. The wave number is
related to wavelength A by
k=2r /A (3.8)
pe (the attenuatton constant) describes the exponential rate of
decay of a wave as it passes through a bay, while u, (the phase
- 95 «
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constant) describes the phase change a wave undergoes as it passes
through a bay [M-2]. The propagation coefficients occur in +/-
pairs, corresponding to negative and positive-going waves
respectively.

Without damping, a wave is non-propegating whenever u, # O,
The classic stop band behavior then has u, = O impling no phase
difference between motion in adjacent bays, and spatial
exponential decay of amplitude. If u, # 0, there is phase
difference between the motion in adjacent bays and the wave now
propagates, but transfers no energy along the length of the beam
[M-2]. The spatial amplitude behavior of such a complex wave
mode is an exponential decay of a sinusoidal envelope. These
relations, including the effects of structural damping, are

illustrated in Fig 3.2 [M-1].

1}
H
0
0
K

4 = no damping
= 0.01
= 0.10

Figure 3.2 - Example Propagatioﬁ Coefficient Values
as a Function of Damping and Frequency

4+ has alternating bands of positive andi zero values. Positive

values {mply that the cross-sectional state variables decrease

from bay to bay.




If structural damping is modelled, all the propagation
coefficients are compiex. This is necessary if energy is to flow
from the source of vibration to the energy dissipating sinks in
-the truss. The presence of damping causes the wave to decay as it
passes from bay to bay. If the damping is light, pass bands can
rstill be seen in the plot of ur. u. is no longer zero in these
bands but {t is much smaller than in the adjacent attenuating
bands.

3.3 VYave Propsgation in a Uniform Two-Dimensional Pimned-Joint
Truss with Rod Nembers

Wave propagation was studied in two different truss
structures. The first truss to be analysed was a two-dimensional
truss coﬁlstim of rod elements. Rod elements do not have
bending stiffness and are only capable of carrying loads in
tension and compression. The rod elements were joined by pinned
Joints, and the members were free to rotate about these joints.
The cross-sectional state vector at each end of the bey consists

of four joint translations and {our joint forces (Fig 3.3).

[ Uay ] - [ Uer ]
UUl UU'I
Ussg Ure
Y. = g::: 2 s Y = g::
F‘Ji Fg-,
3 Fle
L Fya . - . [ Fys ]

Figure 3.3 - State Vectors for One Bay of the
Pinned Rod Truss



Each bay consisted of four members. Each of the members was
modelled as two rod elements. There were a total of 16 degrees of
freedom for each bay. Only four translational DOF and four forces
ccuple adjacent bays. This leads to an [8 x 8] transfer matrix.
The mass and stiffness matricies for the bay were obtained from a
finite element analysis as described in Section 2.3. The physical
properties of this truss were adapted from the Structural Assembly
Demonstration Experiment (SADE) truss of [M~-3]. In this model, it
was assumed that there was no structural damping present, that the
bay longerons were 55 inches long, and that the bay diagonals were
55v2 inches long. The dynamic stiffness and transfer matricies
were assembled as outlined in section 2.4.

The eigenvalues and eigenvectors of the transfer matrix were
then determined as a function of f r@ency by a MATRIXx user
defined command file [M-4]. Eight wave modes are present in the
truss due to the four degrees of freedom present at each side of
the bay. Four of these wave modes are positive-going and four
are negative-goirg. Fig 3.4 and Fig 3.5 present values of the
magnitude, |f|. and phase.¢, of the eigenvalues of the four

positive-going wave modes.

Disporsion Curves for the Four Right-Going Waves

The magnitude and phase of the first mode over the frequency
range O to 100 Hz are approximately zero (Fig 3.4). Because the
magnitude of the eigenvalue is essentially zero, the
cross~-sectional state variables at the right side of the bay are
also essentially zero (Y. = £ Y.). This indicates that the wave

dies out 8o quickly that it can be considered to be confined to a
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single bay. This type of localized, quickly decaying near-field
wave is also known as an evanescent wave. An evanescent wave will
form only at the truss boundaries or at some discontinuity along
the length of the beam. The zero phase of this wave also
indicates that it does not propegate to the adjacent bay and that
its wnwolohgth approaches infinity. So throughout the given
frequency range, this wave is in a stop band.

The megnitude of the eigenvalue of the second wave mode is
approximately unity throughout the bandwidth (Fig 3.4), indicating
that the wave does not attenuate throughout the frequency range.
The non-zero phase indicates that the wave does propagate to the
adjacent bays. For eximple. at 20 Hz the wave has a phase of -15°
which indicates that the response of two adjacent bays in this
mode at this frequency will be 15° out.of phase. With this phase,
Eqn 3.8 indicates that one wavelength of this wave mode will be 24
bays. As a function of frequency, the increasing phase value
leads to decreasing wavelength.

The third mode is shown in Fig 3.5. Like the evanescent
mode, this mode also has zero phase (non-propagating) and does
have attenuation. However, the attenuation is not as pronounced
as with the evanescent mode. In the frequency range shown, the
lowest value of |§| is about 0.8. After traversing many bays,
this attenuation factor will eventually ‘amortize’ the wave, and
as such, the wave is considered to be in a stop band.

As indicated by the |§| value of unity, the fourth wave mode
is in a pass band throughout the frequency range. Its small but
increasing phase value implies the wavelength of this mode

decreases with frequency.



€l

Phase
(Deg)

€]

Phase
(Deg)

1.0e=6

6.0&"7

2.0e-7

"0001

-0.02

-0.03

1.0

0.9999

G.9998

0.9997

0.9996

0

-10.0

-20.0

-30t0

-40.0

-v"vvlvvvlu

'vvlvv-lv

Evan Mode

L ] L L

10 20 30 40 50 60 70 80 90 100
Frequency (Hz)

S Mode

/z-high-frequency
~ ! Timoshenko asymptote

~ ¥ —_—
- kl=-wvpA/GA

b i ik A i

- 'Bernoulli-Euler
bean theory

kl=-/wvYpA/EL

kbt M b

A A i R 1 I A

0 10 20 30 40 50 60 70 80 90 100

Frequency (Hz)

Figure 3.4 - Dispersion Curves for the Evanescent and
S Modes (Pinned Rod Truss)

-30 -




0.9

0.8
1£l

0.7

0-6
8-00"9

Phase
4 . 0e-9
(Deg)

1.0
0.9998
0.9996

€|
0.9994
U.e5992

0.999

-2.0

Phase -6.0

(Deg)

—1010

_14.0 s

"'IT"'IIT"‘I’ﬂlI‘U‘IY"iW

Trerey
G |

This wave mode is equivalent to the shear
mode of Timoshenko beam theory.

b enbmak A

H
:
?
[
10 20 30 40 50 60 70 80 90 100
Frequency (Hz)
3 tlal compression
1 wave from continuum
[~ model ~ ~
- . ~
E. kl=-w/pA/EA ™~ \‘\\\\‘*\\
[ ~
F N - A A 1 1 i L \j_;_‘
0 W20 30 40 50 60 70 80 90 100

Frequency (Hz)

Figure 3.5 - Dispersion Curves for the PE and CE Modes
(Pinned Rod Truss)

-31 -

PE Mode

CE Mode




It should be noted that for any given frequency, the response
of the truss is a superposition of all eight wave modes at that

frequency.

Eigenvectors of the Four Right-Going Wave Nodes

The eigenvectors, v, of the transfer matrix can be used to
generate plots of the wave modes. For the [8 x 8] pinned rod
truss, the éigunvector for a mode at a given frequency isa [1 x
8] matrix. This matrix contains values of deflection from the

original node locations as well as the forces on these nodes.

v = ["] (3.8)
F

U1- Fgl

where U= U F=|Fu (3.9)
Uz- le
Uay Fay

The response at the right side of any bay can be obtained by

ve =§ v (3.10)

where n is the bay number and i is the number of the desired mode.
Once the response of the right and left sides of the bay are
known, the response of the internal nodes can be obtained by Egn
(2.17)

U, =-Diiv"' ( Div UL + Din Un ) (3.11)

The respcnse of the right. left, and internal nodes of each bay
were then ‘propegated rightward' (by rultiplication by §i) and
were obtained for as many bays as was needed to show one

wavelength of a wave mode.

- 32 -~




While plotting the wave modes, only the real component of the
omplex eigenvector was used. This corresponds to taking a
‘snapshot’ of the response.

Because only translational degrees of freedom were included
in the finite element analysis, the deformed truss was plotted as
simply linear connection of the deformed nodes. A scaling factor
multiplied the eigenvectors in order to accentuate the
displacement from the undeformed truss. Unless otherwise noted,
the maximum displacement plotted was equivalent to 80X of the
length of a longeron.

The response of the evanescent mode is effectively confined
to only one bay. The motion consists primarily of extension and
compression of the vertical member, and changes little with
frequency (Fig 3.6).

Fig 3.7 displays one wavelength of the second mode for 10,
30, 40, 50, 70, and 90 Hz. At 10 Hz, one wavelength is 33 bays
long. while at 90 Hz, this drops to 10. For all these
frequencies, the global sinusoidal displacement dominates the
mode. Thus it is labeled the 'S’ mode. At 10 Hz the members

exhibit very little extension or compression. But at 90 Hz, there

S KBS

30 Hz 70 Hz 90 Hz

Figure 3.6 - First Bay of the Evanescent Mode as a
Function of Frequency (Pinned Beam Truss)
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is obvious extension and compressidn in the members do to the fact
that the 's' shape must cycle in only 10 bays, while at 10 Hz,
there are 33 bays in which to do so.

Node ‘three will be labeled the ‘pseudo-evanescent' (PE mode)
mode because, like the evanescent mode, mode three is attenuated
and requires an almost infinite number of bays to exhibit one
wavelength. The difference in these two modes., however, is that
the PE mode exhibits far less attenuation than does the evanescent
mode. In fact, the state vector is not completely diminished for
several bays (Fig 3.8).

The most outstanding feature of the fourth mode 1is the
compression/extension along the longitudinal direction of the
truss at low frequencies. For this reason it has been dubbed the
'CE' mode. At 10 Hz, one wavelength réqulres 297 bays to obseer.
Fig 3.9 shows the first few bays of this mode as a function of

frequency. Also shown is one complete wavelength of the CE mode
at 90 Hz.

Comparison to Contimnm Nodels

The eigenvectors of the S and CE modes exhibit displacements
similar to a beam in bending and & rod in axial compression,
respectively. These modes can thus be compared to results
obtained from continuum models of the same truss. Mills in [M-3]
has developed continuum models for th} same truss as analysed in
this work. Bending is modeled by Timoshenko beam theory,
compression-extension by simple rod theory. Mills' equivalent
values are: axial stiffness EA = 8.7220x10° 1b, bending

atiffness EI a 6.5960x10° 1b-in?. shear stiffness GA =

-3 -
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Figure 3.7 - One Wavelength of the S Mode as a Function
of Frequency (Pinned Rod Truss)
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Figure 3.8 - First Twenty-Four Bays of the PE Mode as
a Function of Frequency (Pinned Rod Truss)

ONINDNENNIN

10 Hz, 24 of 297 Bays

40 Hz, 24 of 60 Bays
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SEINN
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90 Hz. 34 of 34 Bays

Figure 3.9 - The CE Mode as a Function of
Frequency (Pinned Beam Truss)
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1.0693x10° lb, mass per length pA = 4.8627x10"* 1b-s?/in?., and
inertia per length pl = 0.19438 1b-s®. Figure 3.4 shows a
comparison of the computed results with the predictions of
Bernoulli-Euler beam theory (valid for low frequencies), and the
high-frequency asywmptotic behavior of the bending model of
Timoshenko beam theory. The CE mode of Fig 3.5 is compared to an
axial compression wave from the continuum model. It can be seen
that the results obtained from the transfer matrix method are in
close agreemsnt with those of continuum models of the same truss.

The PE mode (Fig 3.5) can be viewed as a Timoshenko shear
mode. This wave mode will not propagate at frequencies below the
cut-off frequency w = VGA/pY . in this case 365 Hz. The
behavior of the PE wmode is thus consistant with the Timoshenko
shear mode. |

The evanescent mode has no equivalent analogue in the

continuum model, and appears to be entirely an artifact of the

truss modeling approach.
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3.4 Wave Propagation in a Unifors Two-Dimensional Pinned-Joint
Truss with Beam Nembers

A wmore realistic representation of the high frequency
dynamics of a truss structure can be made if the elements which
comprise the structure are given bending stiffness. As such, the
second truss structure studied was the same two-dimensional
uniform beam truss as in Section 3.3, but with members modelled as
beams. The beam elements were connected by pinned joints. A
finite element program was developed to determine the mass and
stiffness matricies of the bay. Each member of the truss now has
two translational and one rotational DOF at each end. Care must
be taken to ensure that differences in displacement and force
coordinate definitions between the’ 'finite element analysis and
those of the transfer matrix method are taken into account (Sect
2.3).

For the pinned beam truss, there are 16 translational DOF and
12 rotational DOF in each bay. This produces a [28 x 28] dynamic
stiffness matrix for the bay. The transfer matrix is still [8 x
8]. since there are still only four coupling coordinates between
bays. Internal node displacements and beam rotations have been
condensed into the transfer matrix (Section 2.4). Fig 3.10
defines the member rotations.

Because the members have bending stifrness, it 1is important
to note the members’ resonant bending frequencies. Fig 3.11 lists
the first several nrarural freguencies of the longerons and

diagonal truss members.
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Figure 3.10 - Member Slopes, Pinned Beam Case

A MATRIXx user defined command file was used to produce the
transfer matrix from the dynamic stiffness matrix and to extract
its eigenvalues and eigenvectors. Fig 3.12-16 present dispersion
curves for the four positive-going modes over a O - 170 Hz
bandwidth. These figures can be directly compared to Fig 3-4 and
3-5 which are based upon a model which ignores member bending.

Appendix A contains the propegation coefficient plots for these

modes.

Longerons: w,

70.42 Hz lst pinned-pinned freq.

£
]

159.6 Hz lst clamped-clamped freq.

Diagonals: w, = 35.2 Hz 1st pinned-pinned freq
wy; = 79.8 Hz lst clamped-clamped freq.
w,y = 140.8 Hz 2nd pinned-pinned freq.
with EI = 2.0263E6 lb in®* Liows » 55.0 in
m = 1.016E-4 slug/in Loiac =55.0 Vv 2 in

Figure 3.11 - Pinned-Pinned and Clamped-Clamped Bending Resonances
for Truss Longerons and Diagonals
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" The wave modes were then plotted using a cubic spline
rcutine, A scale factor was used to accentuate the displacements
and rotations of the members in order to make the deformations
visible. Unless otherwise noted, the scale factur was chosen such
that the largest displacement was S0X of a longeron length or the

largest slope (relative to the undeformed members) was 45°, which

ever occurred first.

Eigenvalues and Eimt_ou of the Evanescent Wave Node

The first mode examined was very similar to the evanescent
mode of Section 3.3. The wave is in a stop band throughout almost
all of the frequency range (Fig 3.12).

The difference between the :rod truss and beam truss
evanescent modes occurs in a sharp spike in |E| and ¢ at
approximately 70 Hz. At this frequency, the attenuation constant
becomes non-zero, and there is a non-zero phase, indicating that
the evanescent mode actually propegates. As noted in Fig 3.11, 70
Hz corresponds to the lst pinned-pinned frequency of the longeron
members. Fig 3.13 shows the first bay (of approximately infinite
bays for a wavelength) of the evanescent wave mode as a function
of frequency.

The difference between the beam truss and the rod truss
eigenvector plots (Fig 3.6) is that in the beam truss case, the
wave mode consists not only of extens}on and compression of the
members but also bending of the internal members. Starting at 30
Hz, the diagonal member begins to show pinned-pinned motion. At
35 Hz, the lower longeron also starts to exhibit this motion,

while the diagonal dies out. At 70 Hz, the propagating wave mode
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Figure 3.12 - Dispersion Curves for the Evanescent Mode
(Pinned Beam Truss)

involves pinned-pinned motion of the horizontal longerons. The
evanescent mode starts to exhibit the second pinned-pinned motion
together with lower longeron motion. )

It is important to note that this internal motion was not
present when the truss was modelled with rod members. Therefore,

by using beam elements, the fidelity of the model has been

increased.
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10 Hz 35 Hz 50 Hz
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Figure 3.13 - One Bay of the Evanescent Mode as a Function
of Frequency (Pinned Beam Truss)

Eigenivalues and Eigenvectors of the S Wave Mode

The magnitude and phase of the eigenvalues of the second wave
mode are presented in Fig 3.14. This should be compared to Fig
3.4, which represents the same wave mode, but for the pinned rod
truss.

The general trends in |f| and ¢ are the same for both the rod
and beam truss cases until 35 Hz. Because of this initial
similarity, this mode will be refered to as the 'S’ mode. Both
waves are unattenuated and propagating.

The eigenvectors of the transfer matrix were determined as
described in preceeding sections. Fig 3.15 depicts one wavelength
of the S mode while it is in its initial pass band.

Like the S mode of the rod truss, the initial mode shape is
that of a global 'S’'. But whereas in the rod truss the global 'S’
persisted as the frequency increased, in the beam truss the global

‘S’ dies out as the frequency is increased. At 10 Hz, one
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Figure 3.14 - Dispersion Curves for the S Mode as a Function
of Frequency (Pinned Beam Truss)

wavelength simultaneously occupies 33 bays, and the members are
essentially straight. But by 20 Hz, the diagonals start to
exhibit their first pinned-pinned resonance, their deflection
becoming meximum at 35 Hz. The direction of diagonal bending
alternates every quarter wavelength et 20 Hz, while at 30 Hz, it
alternates every half wavelength. By 35 Hz the global 'S' has
essentially disappeared.

After 35 Hz, the rod and beam truss 'S' modes are not

similar. At 35 Hz, the diagonal members of the truss are in their
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Figure 3.15 - One Wavelength of the S Mode
in the First Pass Band
(Pinned Beam Truss)

lst pinned-pinned resonance, after which the wave enters a stop
band at 40 Hz. Apparently when the diagonals resonate, energy
becomes localized {n this motion and does not propagate along the
beam.

At 35 Hz the wave enters a region where it exhibits
properties of a complex mode. In this region the wave both
propagates and attenuates. The complex mode region ends at 39 Hz.

From 40 - 70 Hz the wave enters a classic stop band. Here
the phase is near zero. implying that all ;he elements of adjacent
bays move in phase causing the wavelength of the wave to approach
infinity. The wave exists simulaneously in a near infinite number

of bays and does not propagate. The state vector from one bay to
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the next is however decreased. The first ten bavs of the truss
for 40, 50, 60. and 70 Hz are shown in Fig 3.16. As before. the
diagonals dominate the dynamics for frequencies about 35 Hz, and
give way to longeron movement about 70 Hz. Such modes, as with
the evanescent modes, can only originate at the boundary of the

structure or at some discontinuity along the length of the

BEDNNNNNNNN,

40 Hz

structure.

NSRRI

SNAN AN

70 Hz

Figure 3.16 - First Ten Bays of the S Mode in the
First Stop Band (Pinned Beam Truss)

As the 1st pinned-pinned frequené& of the longerons is
reached, the wave enters a spike-like pass band (70 Hz). From 75
- 90 Hz the mode is complex and is in a stop band. The mode
shapes in this frequency range appear similar to those in the

preceeding stop band. However, because of the non-zero phase
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difference between bays in this region. a wavelength now ocrupies
a finite number of bays. As can be seen in Fig 3.17 (the scaling
has been increased to excentuate displacements), although the
wavelength is finite, the mode does not appear to repeat after
undergoing 360° of phase change. The mode does repeat--the state
vector is attenuated to such an extent after one wavelength that

the wave does not appear to repeat.

SNNNONNNNNNNNNNEREN

75 Hz, 18 Bays

S ENNNS NN NNNR

80 Hz, 18 Bays

SEENNNNNNNSNNSNNNNNNNNNRK

90 Hz, 24 Bays

Figure 3.17 - One Wavelength of the Complex
S Mode (Pinned Beam Truss)

The next pass band begins at 95 Hz and continues until the
end of the bandwidth examined. One wavelength of the S mode for
100, 150, 155, and 165 Hz is shown in Fig 3.18. Global motion is
not present. The second pinned-pinned resonance of the diagonal
members starts to appear around 140 Hz. The wavelength drops off
sharply near the first clamped-clamped resonance of the longerons
(160 Hz). Although the first clamped-clamped frequency occurrs at

160 Hz, the second diagonal pinned-pinned motion still dominates.
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For the O - 165 Hz bandwidth, the S wave mode was in
alternating pass and stop bands. Note that each of the pass and
stop bands were separated by a complex mode region (complex modes

are considered to be in stop bends).

ATRI IR AT AT AT AN A S o N N N N !

150 Hz, 22 Bays J

155 Hz, 19 Bays

ONERNRAN

165 Hz, 8 Bays

Figure 3.18 - One Wavelength of the S Mode in the Second
Pass Band (Pinned Beam Truss)
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Eigenvalues and Eigenvectors of the PE Wave Node
Unlike the S mode which begins in a pass band, the third mode
begins in a stop baud (Fig 3.19). It has the same basic
attenuation and phase as for the pinned rod truss PE mode (Fig
3.5) up to 35 Hz, the diagonals’ first pinned-pinned resonance.
Because of this tnittal similarity, this mode has been dubbed the
PE mode. Like the S mode, the PE mode goes through alternating
stop and pass bands, separated by stop bands in which the mode is

complex. Until 35 Hz, the wavelength is approximately infinite.

&1 *

StOP —=b i ¢=P2SS —a %= 5t0p band ———o <+pass -~
band band -complex. band
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Figure 3.19 - Dispersion Curves for the PE Mode
(Pinned Beam Truss)
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This mode, unlike the first atop band of the S mode, exhibits
mostly global bending instead of local member bending (fig 3.20).
This should be expected being that global motion, not local member
motion, domi'nntu the dynamics of all modes at low frequencies.

The wave enters its first pass band at 40 Hz after becoming a
complex mode for a range of 5 Hz. The first fex bays of the PE
mode are shown in Fig 3.21.

The complex mode shapes (range 75-96 Hz) are identical to
those of the S mode, with the exception of phase angle sign.
Cowplex modes are discussed more fully in Section 3.5.

At 95 Hz, the second stop band begins. As can be seen in Fig
3.22, the PE mode does not exhibit much global motion. Near 130
Hz the second pinned-pinned resonance of the diagonals aprsars in
the truss plots.

The =econd pass band for the PE mode begins at 155 Hz. The
PE mode of the second pass band is like that of the first except
that now there is more movement in the horizontal longerons and
the diagonals are 1in their second pinned-pinned resonance (Fig

3.23).

Eigemvalues and Eigenvectors of the CE Wave Mode

Once again. the || and ¢ values for the rod truss and beam
truss follow the same trend from 0-35 Hz (Fig 3.24). As with the
CE mode in the pinned rod truss, the f;)urth mode in the pinned
beam case also starts out with at low frequencies with the same
compressioi/extension shape (Fig 3.25). It is therefore called
the CE mode. But by 20 Hz. bending of the diagonals and vertical

longerons can be seen. At 35 Hz, bending seems to be confined to
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Figure 3.20 - First Ten Bays of the PE Mode in the
First Stop Band (Pinned Beam Truss)

Figure 3.21 - PE Mode {n the First Pass Band
(Pinned Beam Truss)
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Figure 3.22 - The PE Node in the Second Stop Band
(Pinned Beam Truss)
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Figure 3.23 - One Wavelength of the PE Mode in the
Second Pass Band (Pinned Beam Truss)
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the diagonals. By 50 Hz, a global 's' shape appears as the
horizonial longerons and diagonals are in bending. Only the

horizontal longerons remain in bending by 65 Hz.
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Figure 3.24 - Dispersion Curves for the CE Mode
(Pinned Beam Truss)

The CE mode is complex :n a 1 Hz band starting at 70.8 Hz.
and continues for O.6Hz.

The first pass band is a small region between 72 and 80 Hz.
Wavelengths in this region are of near infinite wavelength and

their wave modes involve only motion of the vertical longerons.

- 52 -



TN NS

20 Hz, 15 of 119 Bays

\\\\\
\\\\\\\
\\\\\

35 Hz. 15 of 50 Bays

65 Hz, 8 of 8 Bays

Figure 3.25 - The CE Mode in the First Pass Band
(Pinned Beam Truss)
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150 Hz, 7 of 7 Bays

~ Figure 3.26 - The CE Mode in the Secornd Pass Band
(Pinned Beam Truss)
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The second pass band begins at 80 Hz and continues until 155 Hz.
"Initially the motvion consists of longeron bending, but becomes
second pinned-pinned diagonal bending by the end of the band (Fig
3.26).

And finally, the CE mode enters its second stop band at 155
Hz. The wavelengths in this band are near infinite and the motion

consists of second pinned-pinned diagonal bending.

3.5 Complex Nodes

For the pinned beam truss there were two frequency bands in
which wave modes were complex--from 35 to 40 Hz and from 72 to 95
Hz. If the dispersion curves of the S and PE modes are plotted
together, some interesting observations can be made (Fig 3.27).

Both modes are complex throughout -the same bandwidths (35-40
Hz and 75-95 Hz). In addition, the magnitude of the eigenvalues
are exactly the same. The two wave modes couple throughout these
regions, producing the complex modes. The complex modes begin at
the first pinned-pinned frequencies of the diagonals and longerons
at a jolning point. At the break-away points the modes once again
take on seperate character.

The frequency range between 70 and 85 Hz is full of complex
modes (Fig 3.28). Within this range, there are three pairs of
right-going complex modes. The S and CE modes couple for a very
short band centered at 71.2 Hz. At 71 Hz even the evanescent mode
forms a complex mode with the PE mode. But the longest coupling
is between the S and PE modes. These two wave modes are complex
from 72.5 to 95 Hz. Note that the coupling is triggered near the

first pinned-pinned frequency of the longerons.
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Figure 3.27 - Complex Mode Coupling Between the S and PE Modes
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Figure 3.28 - Complex Mode Coupling About 70 Hz
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It would appear then that a complex mode cannot exist alone.
Complex modes are formed in pairs. In fact, when two wave modes
couple to form complex modes. there also exist their left-going
"brother’ modes, which are also complex. So when both right and
left-going waves are considered, four (eight, twelve, etc.)
complex modes must exist simultaneously in the truss. This can bhe
visualizﬁd in the f-plane (Fig 3.29). For example, between 75 and
95 Hz the S and PE modes couple to form complex modes. The
eigenvalues of the right-going complex modes (labeled with an 'r’
subscript) are complex conjugate pairs as are their eigenvectors.
The eigenvalues of the left-going complex modes ('l' subscript)
lie outside the unit circle and also have complex conjugate
eigenvalues and eigenvectors.

Discussion of power flow in cémplex modes as well as
properties of their eigenvectors are presented in Sections 4.2 and

4.3.

4r1m 3

» Re §

Figure 5.29 - Eigenvalues of Fousr Complex Wave Mode
in the § Plane



Chapter 4 - Wave Node Power Flow

4.1 Determimmtion of Aversge Power Flow in a Wave Node

In Chapter 3 it was shown that each wave mode has frequency
bands in which there is propagation, bands in which there is no
propagation, and bands in which there is both attenuation and
propagation (the complex modes). Intuition might tell us that
when a wave propegates, it transmits energy along the structure
and when it does not propagate. it does not carry energy along the
structure. But what about complex modes which share aspects of
both propagating and attenuating waves? Do complex modes transmit
energy along the structure? And if so, how is this possible {f
there is no damping in the system? Mead addressed this point in
1973 and found theoretically that there is no net power flow in
these modes [M-2]. In order to gain some insight into this
question, this chapter examines power flow in the wave modes of a
pinned beam truss.

Instantaneous power {s the product of the instantaneous
velocity and force. While noting that these are vector

quantities, this becomes,

P(t) = v(t) « f£(t) (4.1)
where v(t) = Vu cos(wt + ¢v) = Re (Vewt) (4.2)
V=V ¥ Ve = |V| (4.3)
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and. £(t) = Fa cos(ut + ¢r) = Re (Fe'“") (4.4)
F = Fu & Fu = |F| (4.5)

The instantaneous power flow can now be written as,
P(t) = Re (Ve'®t) « Re (Fe'“%) (4.6)
= Re (ue'®%) « Re (Fe'“%) (4.7)
= Re (lw uet”t) * Re (Fetut) (4.8)

which can be expanded to,

P(t) = Re [tw (us + tu;) (cos wt + tsin wt)]e (4.9)

Re [(Fa + iF:) (cos wt + isin wt)]

After multiplying and taking the dot product this becowes,

P(t) = w [ -ua*Fa sin ot cos wt + ua*F: sin? wt + (4.10)
- u;*Fa cos? ot + u;*F; sin ot cos wt ]

The average power flow over one period, T=2% /w. is dei.ued as,
Pave = I/T J; P(t) dt (4.11)
After integruting Eqn 4.10 over one period we get,
Pave = 172 w (un * Fi = u; * Fa) (4.12)

This then gives us the average power flow for each wave mode. u

and F are entries of the wave mode eigenvectors.
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4.2 Wave Node Power Flow

Power flow was calculated for the eight wave modes present in
a pinned beam truss. The eigenvectors used in Eqa 4-!2 were
normalized so that the x-displacement of node one was unity.

Figs 4.1 and 4.2 show plots of the power flow in the four
right and left-going wave modes. The outstanding features of
these curves are sharp spikes in power flow at member resonant
frequencies. Notice that power flow in left and right-going
‘brother’ waves (i.e., PE left-going and PE right-going) is equal
and oppostite.

Nore detail can be seen when the magnitude of the power |is
pPlotted on a log scale (Figs 4.3 and 4.4). As expected, the S,
PE, and CE modes show power flow in pass bands--power flow in each
left and right-going brother wave pair ﬁeing equal and opposite.
No pover flow occurs in stop bands. Complex mode regiona of the S
and PE modes show up as 'noisy’ data on the plots. But as can be
seen by data from the right-going complex mode pair in the 73-96
Hz bandwidth (Fig 4.5). the megnitude of the power flow in these
complex modes is equal and opposite. Thus it would appear that
the net power flow in a right-going (left—going) complex mode pair
is zero. Mead. however, claims that the net power flow in a
single complex mode is zero [M-2]. It is, therefore. uncertain
whether the equal and opposite power flow shown in Fig 4.5 is
actual or the result of numerical round-off.

Power flow in the evanescent modes, however, is contrary tc
what one would expect. With the exception of a small pass band
about 70 Hz, the evanescent modes are in a stop band throughout

all of the bandwidth investigated. Because of this, one would

- 69 -




- —

Figure 4.1 ~ Power Flow in the Right-Going Wave Modes
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Figure 4.2 ~ Power Flow in the Left-Going Wave Modes
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expect there to be no net power flow in the right/left-going pair.

By

changing the eigenvector normalization, a check can be made on the

But Figs 4.1-4.4 clearly show that there is power flow.

validity of this result.

4.3 Eigeavector Normlization

The truss structure should 'appear the same’ to a right-going

wave as it does to a left-going wave. This can be seen by

considering Fig 4.6.

A right-going wave mode 'sees’ the truss as

in Fig 4.6(a). The eigenvector normalization used in the

preceeding analysis was to set the x-displacement of node one (u,)
to unity. To a left guing wave, the truss would appear as in Fig
4.6(b).
(a).

Bay (b) can be obtained from (a) by a simple rotation of

In order for the eigenvector normalizations to remain the

the normalization for the left going wave should be made by

setting u, to negative unity.
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Figure 4.6 - Invariability of Wave Propsgation
Under a Coordinate Transform

With the original normalization. the eigenvectors of the 1
left/right going brother waves in pass bands occurred in complex ‘
conjugate pairs. With the new normalization (left-going wodes _
normalized to u; = -1), the eigenvectors had equal but reordered
values (to correspond to the bay rotation). They were now ‘ 1
‘'physically’ similar. The left and right-going waves both 'saw
the same structure.’ !

A sample set of eigenvectors for 80 Hz. is shown in Fig 4.7.
At 80 Hz there are four complex modes present (between the S and
PE modes). Notice that the right-going complex modes (the PE and
S) have complex conjugate eigenvectors (as do the left PE and S).
Also notice that the eigenvectors of the left/right-going brothers
have physically similar displacements and forces with the
exception of the shear forces. The PE and Evan modes clearly show
differences in the shear force terms. What this implies is that 1
the results of the analysis depend on the frame of reference. A
right-going wave sees a different truss than a left-going wave.
This. however, cannot be true. It violates the principal of
invariance under a coordinate transformmtion. This then leads to
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Figure 4.7 - Wave Mode Eigenvectors at 80 Hz

the conclusion that the power flcy observed in the evanescent
modes is a numerical effect, and cannot be believed.

One normalization that would prove useful in the next chapter
is to normalize all the wave mode eigenvectors to imply unit power
flow. If this were done, the scattering matrix (to be discussed
in Chapter 5) will be nnitary -- all columns and rows have unit
magni tude [v-1]. But beczuse power flow in some of the wave
modes is zero, this type of normalization could not be used. If

dampiny, were added to tl.e system, this normalization would be

viable.



ter 5 — ¥ave Mode Condi tions

5.1 Scattering Natricies

All of the analysis of Chapters 3 and 4 was performed without
regard to truss boundary conditions. In order to consider wave
mode propagation in a finite length truss, boundary conditions
must be taken into account. The concept of a scattering matrix
will be used to give the infinite truss closure.

The cross—-sectional state vector, Y, may be transformed into

wave mode coordinates by the transformation [V-1],

Y=0w) VW (5.1)
where W is the cross-sectional state vector in wave mode
coordinates, and o are the eigenvectors of the transfer matrix T.

The cross-sectional state vector W can be partitioned into

components which represent right-going waves., w', and left-going

'0
Y= [——-] (5.2)
w

One can also consider wave modes which arrive at a member

waves, w .

boundary, a, and those which depart a boundary, d. The
relationship between the arriving and departing wave modes at beam

boundaries is depicted in Fig 5.1.
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Figure 5.1 - Representation of Arriving and Departing
Wave Modes at Beam Boundaries

a and d are related by the wave mode eigenvalues, §,
an = §" do (5.3)
a, = §" da

where n is the number of bays

The boundary conditions at the ends of the truss may be

written as,

[ B(w) 1Y = Fexe(w) (5.4)

where the boundary conditions, B, and external forces, F, may be

functions of frequency. In wave mode coordinates this becomes

[ B(w) 1L v(w) ] [:;l = Fexr(w) (5.5)

Partitioning the boundary conditions gives,

[ Ba (U)

After some manipulation, the departing wave modes may be expressed

BO(U) ] [_] = Fexr (U) (5.6)
d

as,

d = -By '(w) Ba(w)a + Ba™' Fexr (5.7)



or, d = S(v)a + By™' Fexr (5.8)

wvhere S(w) is defined as the scattering matrix at the boundary.

With no external forcing this becomes,
d=[ S(w) ] a (5.9)

Components of the scattering matrix are complex, frequency
dependent reflection coeffictents for the boundary. The second
term of Egn 5.8 is the wave mode generating matrix which indicates
how external forces at the boundary generate outgoing wave modes
[V-1]. The reflection coefficients indicate how an incoming wave

mode contributes to generating outgoing wave modes.

5.2 Derivation of the Scattering Matricies for a Pinned Beam
Truss Attached to the Shattle Orbiter

Scattering matricies will now be determined for the case of a
pinned beam truss attached to the shuttle orbiter. Consider the
orbicter attached truss shown in Fig 2.6. The mass of the orbiter
is assumed to be much greater than that of the truss, thus
enabling the left side of the beam to be treated as being attached
to a 'brick wall’'. Therefore, the cruss left boundary condition
is zero displacement. This leads to writing the boundary

conditions of Egn 5.5 as,

1 0 a,
1 0 Yeor| Yea||—]=0 (510
1 0 d.
1 0
where Yf <1 and Yf » 1 Trepresent the eigenvectors of the
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right-going and left-going wave modes, respectively.

As discussed in Section 2.5, the last bay on the free end of
the truss must be closed by the addition of an end member. The
dynamic stiffness matrix of this member is frequency dependent and
so, - therefore, is the boundary condition. This then leads to the

frequency dependent free end boundary condition,

A B A
[ I ] [YE al Yo ] [i-] =0 (5.11)
C D ds

where A, B, C, D are elements of the dynamic stiffness matrix of

the end member (Eqns 2.16,17).

In this example, the eigenvectors were normalized so that
x-displacement of node one of each bay was unity (the same
normalization used to determine the power flows of Chapter 4).
The left and right scattering matricies were calculated from O to
170 Hz. in steps of 0.2 Hz. Figs. 5.2 and 5.3 depict the real and
imaginary components of the scattering matricies as a function of
frequency. More detailed plots of the elements of the scattering
matricies are contained in Appendix B.

Each entry of the scattering matricies, S;,, represents how
much departing wave mode j is created by incoming wave mode 1I.
For example, the first column ot Ss and S. indicates how the
outgoing evanescent, S, PE, and CE wave’modes ares produced by the
ircoming evanescent wave mode.

Checks can be made on the validity of these reflection
coeffieients by examining limiting cases of these values. As

noted in Chapter 3. at low frequencties the S mode resembles a beam
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in bending, while the CE mode resembles a rod in
tension/compression. Since the wave mode eigenvectors have been
normalized with the x-deflection of the first node equal to unity,
checks can be made on the reflection coefficients of the CE mode
at both ends. Fig 5.4 shows selected terms of the left and right
scattering matricies at low frequency. The S.(4.4) plot indicates

that the reflection coefficient for the CE mode at the left

boundary should be -1.0 + i0. while 1 + i0 at the right.

The incoming CE wave mode must satisfy the zero displacement
boundary condition on the left end of the truss. The reflection i
coefficient for this wave mode can be easily determined. Consider
the arriving wave mode at the left boundary (Fig 5.5).

The zero displacement boundary condition can be met by
visualizing a phantom wave, wy,n, being created oehind the boundary
and travelling to the right. The phantom wave has equai but
opposite magnitude at the boundary as compared to the CE wave.
This wave then, exactly cancels the displacement of the incoming
CE wave, thereby insuring zero displacement at the boundary. The
boundary amplitude of the phantom wave is 7w out of phase with the
incoming CE wave. The reflection coefficient is then -1 + i0.

A check can be made of the S:(4.4) term by a similar process.
The incoming CE wave mode must satisfy the zero slope boundary
condition at the right end of the truss. In this case, the
phantom wave will have the same magni tude'as the incoming CE wave,
and will be in phase. This leads to a refiection coefficient of 1
+ 10.

$.(2.2) and Sa(2.2) can be verified by thinking of the S mode

as a Bernoulli-Euler beam in bending. For :his case, however,
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Figure 5.5 - Enforcing the Zero Displacement Boundary
Condition by Means of a Phantom Wave

consideration must also be given to near-field effects. The
reflection coefficients (at low frequency) for the pinned and free
ends were found to be consistant with those determined in [C-1]

(H~1].

5.3 Natural Frequencies by Phawe Closure

Recall that in Section 2.6 a method was presented for
determining the natural frequencies of a truss by using the global
transfer matrix of the structure. It was pointed out that even
for trusses consisting of a small number of bays, it may not be
possible to determine the natural frequencies due to large
eigenvalues of the transfer matrix (generally associated with the
evanescent modes). By transforming the problem to wave mode
coordinates and employing the phase closure principle this
difficulty can be eliminated. The phase closure principle states
that natural resonances occur at frequencies at which all wave
modes complete a circumavigation of the b»am with a total phase
change of 2nw.

For the case of a seven bay truss Eqn 5.3 becomes,

an = £ do (5.12)
a. = £ da
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where £ is a diagonal matrix of eigenvalues associated with the
right-going wave modes. Eqn 5.9 can be written for both
boundaries as,

d. = [ S. ]a; (513)
da =[Sn ]a..

By repeated substitutions of Eqns 5.12 and 5.13, we obtain with

ax, after one circumnavigation of the beam,
ar € §7 S, E7 Sa an (5.14)
Resonance occurs when this relation is an equality;
[E" S E"Se-1]an=0 (5.13)

The only non-trivial way this can be true is if the determinant of

Eqn 5.15 is zero. Therefore,
det [ 'S § S -1]=0 (5.16)

is a satisfied at a truss resonance.

Notice that, by replacing only one value in the formulation
(the number of bays). the natural frequencies for a truss with an
arbt trary number of bays can be determieed "quick as a bunny."
The order of the problem does not increase with increasing number
of bays because the dimension of the transfer matrix |is
independent of the number of bays in the structure.

Fig 5.6 is a plot of the determinant of Eqn 5.16 for a seven
bay, pinned beam truss with one free and one pinned end. The
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natural frequencies of the truss can be identified whenever Egn
5.16 tends to zero. Resonant frequencies determined by this phase
closure method are listed in Fig 5.6. These frequencies reproduce
those determined by a finite element analysis of the same truss
except whenever the modes are closely spaced. The finite element
analysis obtains five modes within the 35.13 - 35.31 Hz bandwidth
wvhile the phase closure method locates only two. This remains
true even when frequency steps of 0.001 Hz are used in Eqn 5.16
(Fig 5.7). The same results also occur about 70 and 154 Hz.
Because the isolated modes are so accurately determined, one may
be tempted to attribute the phase closure method's failure on
numerical round-off rather than the physics of the problem. This,

however, remains to be shown.
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Figure 5.6 -~ Natural Frequencies Obtained by Phase Closure

- 78 -

vy e — T

<

- e - e i A . i, et g

- n~ ——

— —

L ———

-
-

eamy = ety

i g




“w - L

|Det |

0.1

LEILLRRRL

e l

A

A

1

Y

! A L_l

A

Y

35.10 35.13

Figure 5.7 - Natural Frequencies Near 35 Hz From Phase Closure

35.16

35.19 3s.22
Frequancy (Rz)

- 79 -

35.25

3s.28

5.1

- = g

P Y S



‘Chapter 6 — Conclusions and Recosmendations

s Syermr—eny il

L This thesis computationally investigated wave mode
propagation in two-dimensional, periodic truss structures. Some

} conclusions based on this research follow.

1) The transfer matrix technique proved useful in that the
dyramics of a complete truss beam were determined by
anaiysing only one of the periodic elements. Conventionel

1 analysis tools such as the finite element analysis become

computationally cumbersome as the number of degrees of

freedom needed to mudel the structure increases. In the
t transfer matrix method the order of the problem depends soley

on the order of one of the periodic elements.

i 2) The method of obtaining natural frequencies of the truss by
} sequential mulctiplication of the transfer matrix and
subsequent application of boundary conditions is only

practical for cases in which the eigenvalues of the transfer

o

matrix are not large.

ety -

+ 3) The results obtained by examining a pinned rod truss by

. transfer matricies closely match the results obtained by

continuum models of the same structure.




4)

5)

6)

7)

8)

9)

As with continuum models of the truss structure, the pinned
rod truss loses its fidelity at the first resonant frequency
of the truss members. The rod modeliing masks all local
member dynamics that would be present if member bending were

modeled.

The pinned beam truss exhibits complicated mechanical
filtering properties. As a function of frequency, there are
bands in which certain wave modes will propegate and bands in

which wave modes will not propegate.

At low frequencies, non-evanescent modes are characterized by
predominantly global displacements whereas at higher
frequencies this displacement becomes localized in the truss

members.

Complex modes must form in pairs and cannot exist alone.
Thus in a pinned beam truss, there must be at least four
(eight, tweive etc.) or more complex mudes present in order
for any to exist at all. Mono-coupled systems cannot support

complex wave modes.

Complex mode formation is initiated at member resonant
frequencies. No explaination could be found for termination

of complex mode coupiing.

Net power flow in a right-going (lefr-going) complex mode

pair is zero.
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10) Several results were obtained that indicate there may be

11)

1)

2)

numerical round-off errors in this formulation.

a. Power flow was evident in the evanescent modes
throughout much of the of the bandwidth examined.

b. Shear force terms in the eigenvectors of modes in
stop bands are not invariant under a coordinate
transformation.

c. Closely spaced natural frequencies of the truss are

not detected when analysed by phase closure.

By using the phase closure principle and the eigenvectors of
the transfer matrix 'n wave mode coordinates, the restriction
imposed in 2) can be circumvented.‘ In fact, by changing just
one variable in the formulation, the natural frequencies for
a truss consisting of an arbitrary number of bays can be
deterinined. As stated i 10), however, this method will only

locate isolated resonances.
Following are some suggestions for follow-on research.

Investigate wave propagation in a three dimensional periodic

truss structure.

Identify and characterize wave modes experimentally.
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3)

4)

5)

6)

7)

8)

Develop vibration isolation and suppression schemes which

exploit the filtering behavior of truss beams.

Investigate localization effects in random periodic

structures.

Determine if issues of (10) are due to numerical round-off

error or are inherent in the transfer matrix formulation.
Investigate when and why complex modes decouple.

Resolve the questions involved with power flow in complex
modes. Is the net power flow in a single complex mode zero

or equal and opposite to that of iis coupled ‘'brother?’

And on a more practical and mundane level, determine a quick

and reliable automated method to sort eigenvalues!
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- tion Coefficients for a Pinned
Beam Truss

The next two pages contain the propagation coefficients, u.
and u,. of the four right-going wave modes for the pinned beam

truss. An explanation of these plots can be found in Section 3.2.
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This appendix contains the left and right scattering
matricies for a pinned-free truss. The elements of the scattering
matricies are presented in more detail than possible in Figs 5.2
and 5.3. Each page represents a column of the given scattering
matrix. For example, the first page presents the first column of
the left scs <+ring matrix -- how the arriving evanescent mode
produces outgoing Evan, S, PE, and CE waves. The solid lines
correspond to the real component of the reflection coefficient
vhile the dotted lines correspond to the imaginary part of the

ref lection coefficient.
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WAVE PROPAGATION IN PERIODIC TRUSS STRUCTUR.S (4’9 +
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Abstract

Wave propagation in periodic truss-work
structures is analytically investigated. Transfer
matrix methods are applied to the analysis of a
truss beam, The results, with members modeled as
rods with pinned joints, agree well with results
obtained from an eguivalent continuum model of the
same structure, Use of beam models for the members,
including bending, shows thar the pinned rod model
loses fidelity above the first resonant frequency of
latecal motion of the members. The truss, modeled
with beam members exhibits complicated mechanical
filtering properties, Fixed and free boundary
conditions are converted to reflection matcicies.
The phase closure principle is invoked to predict
natural frequencies of a fixed=-free portion of the
truss, It is found that closcly spaced resonant
frequencies are not identified by this mathod.
Computed results show subtle erroneocus
characteristics which are attributed to numerical
effects.

1. Background

Many large space structures will be
constructed, in part, of truss-work camponents. A
current example is MNASA's space station. Truss
structures generally consist of an assemblage of
identical bays and are thus spatially periodic.
Periodic structures have long been known to act as
mechanical filters. In order to gain more insight
and understanding as to how such filtering
properties can be exploited in the dynamics and
conttol of large space structures, this paper
examines wave propagation in several mathematical
models of a truss beam.

Any survey of the 1litaratute of wave
propagation in periodic structures must mention the
book by Brillouinl, Since Brillouin's book, many
papers have treated wave propajation in periodic
structures, primarily mono-coupled systems (systems
with one coupling coordinate linking neighborimg
bays) . els used include spring-massz, strings
and " rods’, and periodically constrained beams®.
Thesa works have all verified Brillouin's dictum
paraphrased here: "A one-dimensional periodic
waveguide supports as many travelling wave modes in
each direction as the (minimum) number of ccupling
coordinates between bays, Each wave-mode exhibits
alternating (possibly overlapping) frequency ranges
of pass-band and stop-band behavior. The number of
pass bands is equal to the number of degrees of
freedam within each bay." Few works have dealt with
multi-coupled periodic wave guides, Mead has
approached the problem mathematically, both for
general situations’?, amd for a specific model
(Timoshenko beams with periodically attached
inertias)®, Hodges, Powers and Woudhouse have
teported theoretical anmd confirming experimental
work on wave propagation in psziodic, tib-stiffened
cylindrical shells’., Eatwell® has considered wave

#Graduate Student

+Assistant Professor,
Aeronautics and Astronautics
Members AIAA

propagation in periodit fluid loaded plates. 1In
each study, the introduction of multiple coupling
coordinates between bays has permitted a new type of
travelling wave mode; the ‘conplex mode' which both
travels and is spatially attenuated, Such modas
were also discovered in this woek, in which four
coupling coordinates between adjacent truss bays
were used.

A structural analysis is incomplete without
consideration of boundary conditions. In this
paper, conventional boundary conditions for truss
beams (equations relating forces and deflections of
boundory points) asre converted to  wave-mode
coordinations, The result is a matcix of fregquency
dependent reflection coefficicnts at wach boundary.

This paper then invokes the phase-closure
principle to define and calculate natucal
frequencies: "Resonance occurs at those frequencies
at which each propagation path closes on itself with
total chamge of 2k n  (k=1,2,..) after one
circumnavigation,” The truss is thus modeled as a
multi-mode waveguide, terminated by reflection
matricies, rather than an assemblage of lumpad
parameter member models.

2. Wave Modes; Definition and Decivation

A wave mode, on a one-dimensional waveguide is
described by both a wave-mode eigen-shap2, and by an
associated propagation coefficient, The eigen-shape
is that unique mix of cross-sectional variables
which propagates with constant relative value anrd
phase along the member. The associated propajation
coefficient specifies the wavelemgth (or,
equivalently, phase speed) with which propagation
occurs. A tensioned cable, for example, can support
(in the classic approximation) three wave modes in
each direction; one axial with a velocity of JEA/U ,
the other two are lateral with velocity of VI7w.
(BA is axial stiffness, T is tension, u is linear
mass density).

Note that, in agreement with Boillouin's quote
given in the introduction, these three wave modes
correspord to the three modeled deflection
coordinates.

Wave modes in periodic structures can be
analagously defined. We select any reference
cross-section in each bay, introduce kinematic
assumptions, aml assign a numbet of deflection
variables to define the deformation state of that
cross-section, (Mead has shown that a wise choice
for the reference cross-section is the one that
minimizes the number of deflectinn variables
required), A wave mode is then defined as that mix
of cross-secticnal variables which repeat with fixed
relative amplijude and phase in each subssquent bay
alorg the structure, A corresponding propajation
coefficient per bay defines wavelength and
propagation speed,
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Wave Modes in a Truss Beam

This paper investigates the travelling wae
modes supported by two models of a truss beam
constiained to move in a plane, Fig 1 is a sketch
of the beam and of the chosen repeating element.
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Fig 1 State Vectors Associated with
One Bay of a Periodic Truss

The members are modeled as being pinned at the
junctions, thus four deflections are required to
define the deformation of the coupling
cross-section. 1If one introduces the corresponding
four coupling forces, and groups the coupling
deflections and forces into a "cross-sectional state
vector”, then the dynamics of the bay can be
described by a transfer matrix relation;

Y = [1] Y, Q)
This bay transfer matrix is square, with dimension

This transfer matrix can be obtained in many
ways, In tnis analysis, for purposes of direct
comparison with a conventional finite element
analysis, we derive T(v) by exact numerical dynamic
cordensation of a finite element model of the bay.

Two bay models are used, each based upon a

particular finite element discretization. Each
model yields a mass ard stiffness matrix:
%l |f
(k-uw2my o =lr, )
Yr Fr
which is then partitioned into 1left, cight amd

internal degrees of freedom and manipalated to yield
the transfar matrix:

Wi Oy e U] R
o o to | vl R &)
w ! i P ! 1
o +ooe to | ol |F
LoRL ! PRt e R R

- 1
PP P Ot P Vg O W1
------ S ROy il AR R B A I L Y
Ort P1r O oOpp Oy PyptPpe | {YR] [Pk
-
A B u -F
Ll = LJ 5)
¢ 0 UR I‘R
(Negative values of F, have besen taken for
campatability of the trﬁnsfe: matrix and finite
element analysis force coordinate definitiona.)
) -7l a - I
o T s e (6)
Fe C-D8" A -DB Fy,
YYo= LTI Y M

The first bay model uses 4 pinned-rod elemants
and yields 8 by 8 mass and stiffness matrices,
Thus, no internal degrees ~f freedom need be
eliminated. The second bay model includes member
berding effects, Eight beam elements are used, as
sketched in Figure 2.

6

3 8

2 5

1 7
4

Fig 2 Finite Element Model of Bay used to Include

Member Bending Effects

Nodes 2,4,5 and 6 are clamped, nodes 1,3,7 and 8 are
pinned., The resulting 28-degree-of-freedom finite
element model thus includes 20 internal degrees of
fr-edom. Note that only the lincar deflections of
modes 1,3,7 and 8 are external degrees of freedam;
the resulting transfer matrix is again 8 by 8,

Wave Modes Properties Inferred from
The Transfer Matrix

A wave propagating along a periodic structure
can be characterized by,

Yi+1 = Yi (8)

indicating that the state at station i+l is the
State at station i multiplied by a factor ¢ .
This, together with the trangfer matrix relation

yi‘). = [ T ] Yi (9)

forms an eigenvalue problem for £ . The eigenvalues
are generally complex and occur in £ and 1/ ¢ pairs,
corresponding to identical waves propagatitg in
opposite directions (Eigenvalues of a symplectic
matrix occur’in inverse pairs].

For each wave mode there are Frequency tejions
in which the wave will propagate without attenuation
| £ | =1 (pass bands) and regions in which the wave
is attenuated |£ | < 1 (stop bands).
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The relation betwean ¢ and 1/ can e seen by
constructing a plot of the [ plane (Fig 3).

im g Im ¢ Im&,‘

’

) Re & Re ¢ Re ¢
k3

Pass Bands Stop Bands Complex Modes
Fig 3 The Plane

For a given frequency, values of | € | which lie on
the unit circle are in a pass baxd, Those inside
the unit circle are positive-going waves in a stop
band while those rellected outside the circle are
negative~going waves in a stop bamd. Values of |5}
which lis in the intecior (exterior) of the circle,
but not -on the ceal ares, are termed canplex wave
modes. As a function of frequency, tha eigenvalues
move about the plane, continually chamying magnitude
and phase.

In the absence of damping, the transfer
matrix, T, is real, thus its eigernvalues will be
real or members of a complex conjugate pair.
Camplex modes thus occur only in groups of four;
wave moue interaction is necessary., Mono-coupled
‘systems (with 2 by 2 transfer matricies) cannot
support complex wave modes.

Particular results were, cl‘\culated for a truss
beam used in prior studies™’*", The bay members
werc assuned to have no structural _damping, a
bending stiffness EI = 2.0263e§ 1b-in“, mass per
length m =),10163-4 slug/in, an axial stiffness of
EA = 4,36le6 1@ and longeron an] batten length of
55.0 in. Mills” developad continuum models for this
tcuss, a Timoskenko beam model for bending, and a
rod model for extension. Mills' equivalent values
for the truss are: axial stiffness EA = 8, ]22E6 lb,
bending stiffness FEI = 6,5568.9 b~ in®, shear
stiffness GA = 1,0693e6 lb, mass per length m =
4.252e4 1b-:s‘/in‘.nd inertia per length 1 =
?.19438 1lb-s®,

Figures 4-8 present dispersion curves and wave
mode shapes for the four right-going wave modes.
Comparison with predictions of the continuum model
is provided. Wave mode shapes were derived fram the
transfer matrix eigenvectors, One wavelength of a
wave mode is shown at a given frequency.

At low frequencies the first wave mode shape
exhibits a global sinusoidal r+sponse ard is thus
labeled as the bending mode, The dispersion curves
for the bending mode indicate complicated mechanical
filtering of this mode as a function of frequency.
At low frequencies the mode is in a pass bard
(propagation with no attenuation). The mode shape
shows mostly global response. As the ficst rescnant
frequency of the bay diagonals approaches, the
rtesponse now becawes more localized in the bay
diagonals. At 35 Hz (the diagonal members' first
pinned-pinned resonant bending frequency) the mode
becomes complex for a narrow bandwidth, both
propagating and attenuating, At 48 Hz the mode
enters a stop band, a region in which the vave mode
will not propagate. The sharp spike at 79 Hz
correspords to the first pinned-pinned resonance of
the bay longerons. ‘The mode once again becomes
camplex after this resonant frequency. For higher
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Fig 4 Dispersion Curves and Wave
Mode Shapes for the Berding Mode

frequencies, the truss response is no longer global,
but becames localized in the truss members.

*

Predictions based on Timoshenko beam theory,
and results of the analysis with pinned rod mambers
canpare almost exactly, but diverge fram those of
the more complete model at higher frequencizs,
Internal resonances campletely daminate the motion
at these frequencies,
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Fig 5 Dispersion Curves and Wave M -
Shapes for the Shear Mode

Unlike the bending mode which begins in a pass
bard, the second mode examined begina in a stop
band. This mode initially has zero phase
(non-propagati ng) and does attenuate, These
properties are similar to thogse of the Timoshenke
beaw shear mode, which is a near field below w e
VGA/ P T ' = 368 Ha. Because of this initial
similacity, this mode is labelled the shear mode.
Like the berding mode, the shear mode goes through
alternating stop and pass bands, separated by bands
in which the mode is complex., Below 35 Hz, the
vavelemgth is infinite. The complex mode shapes
{range 75-95 Ha) are identical to those of the
vending mode, since these modes Couple to create the
carplex modes in this frequency range. Near 138 Hz,
the second pinned-pinned resonance of the diagonals
appears in the mode shape plots.
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Fig 6 Dispersion Curves and Wave
Mode Shapes for the Compression Mode

The low-frequency behavior of this wave mode
is essentially just crmpression-extension amd all
models predict similar response. This mode is
characterized by quite large pass bands separated hy
nacrrow Stop hands. Complex mode formation for this
mode only occurrs between 7¢.8 and 71.3 H2. N:ar
5S¢ Hz, the compression/extension response s
suppressed by quite active longeron amd diagonal
response, Only the horizontal longerons remain in
bending by 65 Hz. Near 158 Hz, the response is
confined to the second pinned-pinned resonance of
the diagonals.
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Fig 7 Disperison Cutves and Wave hode
Shapes for the Evanescent Mode

The megnitude and phase of the fourth mode over
the frequency range investigated is essentially
zexo, This indicates that the mode ‘dies out
Quickly' so “hat the response can be considered to
ba confined t. a single bay. With the exception of a
very harrow pasa band at 72 Hz (the first
pinneu~pinned diagonal resonanc: of the diagonals),
this mde is always in a stop band, The response
of the first bay as a function of frequency is shown
abcve. Detween 71 and 72 Hx, the evanescent mode is
canplax, There {3 no analcgous wave mude in the
continuum model .

Complex Mode.

Cmrlex wve modes have .ot received much
attentior in the struct.ral dynamics literature, and
appear to uwo(‘ br-m sentioned in only trree
published papers®: The pinned-beam truss model
reveals two tuqum:y bands in which wave modes are
co plex--from 35 to 40 Hz and from 72 to 95 Hz. If
the dispersion cutves of the bending and shear modes
ate plotted together, some interesting ocbservations
can be sade (Fig 8).
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Fig 8 A Complex Made Coupling
Between the Bendirg ard Shear Modes

Both modes are crmplex throughout the same
bandwidthg (35-48 Hz ana 75-9% Hz). In addition,
the mgnitude of the eigenvalues are sxactly the
same. The two wave modes couple througiout these
regions, producing the complex modes, The complex
modes begin at the first pinned-pinned frequencies
of the diagonals and lorgerons at a joining point,
At the braak-away pointa the modes once aain take
on sspscate chactacter.

The frequency tange between 78 and 85 Hi is
full of complex modes (Fig 9). Within this rame,
there are three pairs of vight-going complex modes,
The bending and compcession modes couple for a very
short band centered at 71,2 He, At 71 Hz even the
evanescent mode forms a complex mode with the sheac
mode. But the lorgest coupling is between the
berding amd shear modes between 72.5 and 95 Hz.
Note that the coupling is triggered near the first
pinned-pinned frequency of the longerons.
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Have Mude Powet tlow

The precedim figures show that each wave mode H
has fraquency bands in which there is propmation, Vons
bards in which there is ro propsjation, amd bands in :
vhich there is Both attenuation and propagation (the Lo
camplex modes) . Intuition might tell us that when a
Wave propagates, it tranmeits enetgy along the
structure and when it does not propajate, energy 3 e

N T LY [ e PN N
Rand

cannot move. But what about complex modes which :
shate aspects of both propmiting and attenuating Brooly
waves? 0O complex modos transmit energy alom the i b
structure? And if 80, how is this possible if there £

is no damping in the system? Mead addrested this @
point in 1973 and foumd thiontgnny that thetre is :
no net power flow in these modes”, v

semple

Instantaneous power is the product of the n1
irstantaneous velocity and force. While noting that no
these ate vector quantities, this becuwes,

o.0m P | " ) )
P(Y) = he (velvh) < pe (reVY AR AT S
e Re m.lut) ‘ Ra ‘»hiut) ae Bending Mode
= Re (iw \lh") * Re (hh)t) 1.oen

VAR Aol

which can be expanded to

1.0cY

P(t) = Re liw (up + luy) (coswt + lsinwt)ls AL roef
1.0w?
Re ((Fy + IF)) (cosut + isinu t)) < e / “
The average powetr flow over one period, T=2 * /w, = weeB L0 e pis o ofoiiotiam amm et tant ceama o pors
is defined a8, é . vand St
P ' § h
wg = V1 o) a na  §
After integra‘ing over one pericd we get, ' '
Pm L] 1/2 ﬂ(uk . rx - u! . PR) (13) (NN | I
This then gives us the average power flow for each B o
wave made, were it alone presant in the structure, .o i
Interaction between wave modes, creating other forms 1 Al l el L H
of power flow, is also possible. ¢ ” w a "o 0n e e

Vroso nev fns) 1
Power flow was calcilated for the eijht wave

modes present in 2 pinned beam truss, The Shear Mode
eigenvectors used in Bqn 1) were normalized so that !

the axial-displacement of node one wis unity (see

Figure 1). '
e 13 B e B ROP A e Py D e @ AL k
Figs 1 shows plots of the log of the ot
magnitude of power flow in the four left-going wave b
modes.

As expected, the bending, shear, and canpression
modes show power flow in pass bands—power flow in
each left and right-going brother wave pair being
equal and opposite. No power flow occurs in stop
bands, Complex mode regions of the bending and
shear modes show up as 'noisy' data on the plots.
But the magnitude of the power flow in these camplex
modes is equal and opposite. Thus it would appear
that the net power flow in a right-going
{left-going) complex mode pair is zero. Mexd,
howaver, claims that net power flow in a simgle
complex mode is aero”. It is as yet, uncertain
whether the equal and opposite puwer flow is actual N : R K :

or the result of numerical round-off. oot b 3

Compression Mode
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Fig 18 Magnitude of Power Flow in the
Left-Going Modes

Power flow in the evescent mode is also
contrac)y to expectation. With the exception of a
small pass band about 70 Hz, the evanescent modes
are in a stop band throughout all of th: bandwidth
irnvestigated, Because of this, one would axpect
there to be no net power flow. Since Figure 18
suggests that power is flowing, numerical effects
ace suspected, and are presently being investigated.

3. MNave Mude Bourdary Qonditions

All of the analysis of Chapters 3 and 4 was
performed without regard o truss Dboundary
conditions. In ordet to consider wave rode
pcopagation in a finite length truss, boundary
conditions must be taken into account. The concept
of a scattering matriz will be used to give the
infinite truss closure.

The cross-sectional state vector, ¥, may be
transformed into wave mode coordinates by the
transformation

Y= vy W {14)
where W is tha cross-sectional state vector in wave

mode coordinates, and u are the eigenvectors of the
transfer matrix T.

The cross-sactional state vector W can be
pactiiioned into components which crepresent

right-going waves, w+, and left-going waves, w .

(15)

We also label

wave modes which arcive at a
member boundaty, a,

and those which depart a
bourdary, d. The relationship between the arriving
and departing wave modes at beam bnundacies is
depicted in rig 11.

d, = A =~
{ ]
— — oy

Fig 11 « Reptesentat.on of Artiving and
Depatting Wave Modes at Beam Bounvlariws

a ard d ate related by the wave mode eijenvalues,

n
agan ¢ 4
L (1e)

W b dy

whete n is the number of bays

The boundary conditions at the ends of the
truss may be weitten as,

L) ) Y= rF  to)

thete the boundary comditions,

an

8, and external

totces, F, may be functions of frequency. In wave
mode coordinates this becomes
2
(a1 1oy @) ) = Fgele)  UR)

o

A partial inversiun yields the boundary comdition in
casual form,

d= 'Bt.-;1 W) Bytu)a + B!:v.1 Faxt
a=Swa+ sl Font (20)

whete S({w) is termed the scattering matrix at the
boundary, With no external forcing this becames,

(19)

or,

d=[Sw ] a (21)

Components of the scattering matrix are
complex, frequency deperdent reflection
coefficients. The secord term of Eqn 20 is the wave
mode generating matrix which indicates how external
:‘:;ceg at the boundary genetate outgoing wave

es”,

Decivation of the Scattering Matcices for a
Pinned-Free Trus3 Beam

The boundary conditions for the pinned eid of
our truss (taken to be the left end) are

!
i
Y, = 0
: L (22)
1
i
\

Followirng the preceeding derivation, we obtain the
scattering matrix given in Figure 12, More detailed
plots of the Individual entries are available in
teference 11,

Application of the free boundary corditions at
the right end requires a bit more care, These
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boundary conditions must include the effect of the compcession wave is well know to be 1 for a free-end

member which campletes that end, end -1 for a fixed end. The S(4,4) plot of Figure
up fy 12 indicates that the reflection coefficient for the
— L_ Uy f3 compression mode at the fixed boundary tends to
-1.0, while S(4,4) at the fee ard terds to 1.8. The b
: Yy fz low-frequency limiting behavior of these two terms
ue £y is thus correct.
This member has a force-deflection relation 4. Natural Frequencies by Phase Closure
| The phase closure principla states that lL
A 8Bj! ul.. natural frequencies occur when all wave modes
B =0 {23) complete a circumnavigation of the structure with a
¢ D ! [ 3 total phase change of K= . For the cass of an
[}

nbay truss, the wave modes arriving and departing ‘
the two ends are related by (Fig 11)

where [A B; C D} can be obtainel from dynamic -
cordensation of a finite element model of that a = ;“dL Y
number . n (24)

a, = £ d

In this analysis, the member was modeled by 2 L R
beam elements, thus the 9 dimensional finite element where £ is a diagonal matrix of eigenvalues
model must be reduced to the form equation by associated with the right-going wave modes. Egn 21
dynamic condensation of five internal degrees of can be written for both boundaries as,

freedom,
d =Syl ay
Chacks can be wade on the validity ol these {25) |
reflection coefielents by examining limiting cases dR = [5g) 2 J
of theze values. At low frequencies the bending \

mode resembles a bewms in bendim, while the py repeated substitutions of Egns 24 and 25, we
compression  mode resenbles a rod in  obtain ay after one circunnavigation of tre beam,

tension/compression, Since the wave mode

sigenvectors have been normalized with the axial apet"s "spa (26)

deflection of the first node equal to unity, checks R

can be made on the reflection coefficients of the Resonance occurs when this relation is an equality; 4
compression  mode at  both erds, The {
deflection-normalised reflection coefficient of a te” S, T Sg-11=0 t27)




The only non-teival way this can be true is Lf the
deterninant of Bgn 27 is gecto, Therefore,

det { ¢ "8, £"s ot 0 @)
is a satisfied at a ttuss resonance.
Notice that, by replacing only one value in

the formulation (the number of bays), the natural
frequencies for a truss with an acbitracy nuaber of

bays can be determined "Quick as & bunny.® ihw’

ordet of the problem does not increase with

increasing number of bays, but resaing that of the
transfer matceix,

Fig 13 is a plot of the detecminant of Bqn 28
for a seven hay, pinnad beam truss with one free and
one pinned end,” e natutal freguencies of the
truss can be identified whenever Eqn 28 terds to
teto. Mesonant frequancies deternined by this ghase
closuze method are listed in Mg 13, These
frequencies rqxﬁuu those detetmined by a finite
elament snalysis’® Of the Same truss except whanever
the modes are closaly spaced. The finite element
analysis obtaing tive modes within the 35.13 - 35,
Hz bandwidth while the phase closure method locates
only two. This remaing true even when f{requency
steps of 0.001 Mz are used in Bgn 29, The same
results alw occur about 70 and 154 Hz. BecCause the
isolated modes are a0 accurately determined, one may
be tempted to attribute the phase closure method's
failure on numetical round-off, This, howevet,
tesaing to be shown.

5. Umodeled EBffects

Linear behavior has been assuwed, AR actual
spacecraft truss may  exhibic significant
ron-linearities, pscticularly if it is deployadble
and thus has relatively loose joints. The effects
of suwch Jjoint non-linearities upon the cesults
presented here ate not known, It seems plausible
that the situation would becase even more camplex,
arnd that the pattern of stop and pass bands, at an
given response asplitude, would suffer sawe sort ©
blureing.

Even were an actugl ttuss linear, it would not
be perfectly periodic. Small, unintentional
variations from pecfect periodicity would be
present. The statistical effect on wave propagation
of such random variat*om in bay properties is the
subject of referencell, This reference shows that
the firat-order effect i3 that all wave modes at all
frequencies will be spatially attenuated. The
degree Of attenuation is  proportional to
"randomness® and inversely proportional to the
"coupling strength" batween bays. (Suitable
mon~dimensional measures of randomness and coupli
strerngth nust be inttoduced). ™he phy:lcra
exploration for such localization 1is that the
coherent wave is scattered into incoherence; the
vibtationsl energy is transferred into a spatially
localized rcesponse., We thus anticipacz that an
actual truss (as crapared 0 its  {lvalized
mathematical model) wili exhibit the characteristics
described by this papsr only approximately.
Real-world effects (non-linearity, disorder, and
othery) will tnd to modify this response
(especially at higher frequencies) to be more of an
ill-defined local rattle that slowly appears and
disappears in local portions of the structure.

Present finite
Analysis Eluments
12.18 12.18 wi 78.51
33,97 33,97 wi .52
35,13 38.13 wi 0.54
%S k1911 wi 7.5
i 35.29 wi n.5%
? 35.3¢ wi n.57
i 35.31 i 70.%9
AYA U] Sm.'f Mi ;o.:s
51.84 51, 9.59
64.51 64.51 13‘:3 n.o
§7.08 §7.08 103,83 103,89
-7 5.5 121,14 121.12
/i 70.84 147,91 147,91
70.22 .22 153.45  153.45
i 70.39 - N
i 70.49 /i 154,57
/i 7¢.43 n/i 154.69
i 70.47 155.38 )
n/i 70.47 157.87 157,07
/i 70.49

/i = not identified
? = possible identification

Figure 13 - Natural requencies Obtained
by Phase Closure

6. OConclusions

This research camputationally investigated
wave mode pcopagation in two-dimensional, rceriodic
truss structures, Same conclusions based on this
research follow,

1) The transfer matrix technique proved useful in
that the dynamics of a complete truss beam were
determined by analysing only one of the periodic
elawents, Conventional analysiy tools such as the
finits element analysis became computationally
cunbersane as the number of degrees of freedom

. P - 5



needed to model the structure increases. In the
transter matrix mathod the order of the nroblem
depends only - on the ordet of one of the
crosg-sectional state vector.

2) The method of obtaining natural frequencies of
tie truss by sequential multiplication of the
transfer matrix and subsequent application of
boundary corditions is only practical for cases in
which the eigenvaluss of the transfer matrix are not
large,

3) The results obtaired by axamining a pinned rod
truss by transfer maxricies closely match the
results obtained by continuum models of the same
structure.

4) As with continuun models of the truss structure,
the pinned rod truss loses its fidelity at the first
resonant frequency of the truss members. The rod
modelling masks all local member dynamics that would
be present if member bending were modeled.

S) The pinned bean truas exhibits complicated
mechanical filtering properties,

6) Coanplex modes must form in pairs and cannot
exist alone. Thus in a pinned beam truss, there
must be at least four (eight, twelve etc,) or more
camplex modea present in order for any to exist at
all, Mono-coupled systems cannot support complex
wave modes,

7) Complex mode formation i3 initiated at member
reonant frequencies. No explaination could be
found for termination of complex mode coupling.

8) Net power flow in a right-going (left-going)
complex mode pair is zero.

9) Several results were obtained that indicate
there may be numerical round-off errors in this
formulation,

a, Power flow was evident in the evanescent
modes throughout much of the bamdwidth
examined,

b. Shear force terms in the eigenvectors of
modes in stop bamds are not invariant
under a coordinate transformation,

c. Closely spaced natural frequencies of the
tru3s are not detected when analysed by
phase closure.

18) By using trhz phases closure principle =¥ the
eigenvectors of the transfer matrix in wave mode
coordinates, the restriction imposed in 2) cen be
circumvented. In fact, by charging just one
variable in the formulation, the natural treuicncics
for a truss consisting of an arbitrary number oIl
bays can be determined, As statad in 18), however,
this method may only locate isolated rasonances.
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ACTIVE MODIFICATION OF WAVE REFLECTION AND TRANSMISSION
IN FLEXIBLE STRUCTURES
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ABSTRACT

A theory for active contrel of elastic vave
propagation in structures is developed. Attention
is focused on active modification of the scattering
behavicr of discrete locations in a stiuctural
network. The wave mode input/output relation at a
structural junction containing control actuators
can be altered in two ways. First, the closed loop
reflection and transmission coefficients can be
specified, and the necessary [eedback to achieve
these coefficients determined. Second, an optimal
wave controller can be formulated which maximizes
the average power dissipation at a junction. If
the opeti loop structure is stable, then the opcimal
control guarantees stability. since energy is
sctively dissipated at the junction. Seample
controllers are derived and simulated for a
free-free beam to descnstrate the techniques and
indicate the achievable perforsance.

INTRODUCT 10N

Modal analysis of structural dynamics is a
poverful and widely applied technique. The
technique, however, is limited to systems with a
relatively sparse spectrum, since the mndal
paramsters. purticularly eigenshapes, are atherwise
known to be extremely sensitive to small parameter
perturbations of the structure (l1). Since modal
density increases with mode number, this
sensitivity has prompted one analyst to suggest (2)
that it is possible to make the wmodal model too
complex (of too large a dimension). Analyses (3,4)
for some future space missions show that hundreds
of modes of an elastic spacecraft can contribute
significantly to performance degradation. Many of
these modes are considerably beyond the range where
they may be confidently modelled. Thus, one faces
the problem of controlling structural dynamics
which are weil beyond the frequency range in which
modal analysis is applicable.

One alternative is the achievement of
significant levels of damping by passive or by
active means. Direct velocity feedback between
duc] (colocated and of like type) sensors and
actua:nrs has been shown (5) to be unconditionally
stapi lizing {f the matrix of feedback gains is
positive definite. This concept has been
formalized in a two level control architecture,
kuown as HAC/LAC (6). Although the feedback gain
matrix may, in principle, be full, experience hes

* Research Asaistant, Member AIAA
Assistant Professor

shown (7) that a restriction to local velocity
feedback (a disgomal gain matrix) results in
negligible degradation in performance.

This paper develops an altertative to direct
velocity feedback for active demping. Feedback
compensators., bused on spatially local wmodels,
actively modify wave transsission and reflection -
characteristice of the structure. Such reflection
and transmission coefficients are relatively
insensitive to modelling errors. depending only to
first order upon jocal pursmster perturbations.

Prior work (8.9) has shown that, in special
cases, compensators designed for active absorption
of travelling waves can be very similar to direct
velocity feedback. In general they can be quite
different.

TRAVELLING WAVE DYNAMIWJ

Modelling wave propagation through structuress
of arbitrary complexity can become impractical.
However it is invarfably poasible to find many
components in any sctructure for which a wave
propagation viewpoint is feasible.

This paper considers one such component; a
Junction of an arbitrary number of slender
onu~dimensional elastic members (Fig. 1). The
wmembers are viewed as waveguides along which a set
of discrete decoupled travelling wave modes may
propagate. Thess travelling wave mudes are coupled
to one another at the junction, the dynamics of
which are described by (requency dependent
reflection and transmission coefficients. Since
the remainder of this paper builds upon the
travelling wave description of junction dynamics,
wve provide a brief summary (10).

r .

This section makes reference to Fig. 1 which
shows an arbitrary junction of several members. and
may include a flexible body. The brundary
conditions, which may be a function of frequency w,
describe how boundary motions interact with member
forces and externally exerted influences. Such a
relation has, the general form

B(o) ¥() » [ Buo) Bo() 1 [} ] =@

wvhere the vector u contains the boundary motions
and f contains the member forces at the boundary.
The square matrices B, and B, contain the

homogeneous dynamics of the boundary while Q is a
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Figure 1 The generic junction. The Jjunction can
include a flexible body and can be connected to
many menbers. Each member supports incoming w, and
outgoing vo wave modes. External influences Q way
also be applied.

vector of external influences (forces and relative
deflections) acting on the boundary.

This boundary relation can be transformed into
a relation governing the local wave behavior. A
full rank transformmtion is made from physical
variables u and f to wave mode coordinates w, as
follows:

v [f]=[i] [n] @@

where the transforsation Y has been partitioned
into square submatrices and the vector of wave mode
amplitudes has been partitioned into tncoming and
outgoing wave mode amplitudes w, and w,. This
transformation i{s a characteristic of the members
attached to the junction. Each wave mode
propagates along one of the members, independently
of the remsinder of the member response.

Associated with each wave mode is a frequency
dependent mix of member deflections and forces
(each column of Y(w) in Eq. 2). Substituting Eq. 2
into the boundary relation (Eq. 1) gives

te 1 [in]{n]ee

which is an expression of the boundary conditions
in wave mode coordinates.

Equation 3 can be rearranged to give the
input/output relation governing a junction with
outgoing waves resulting from the scattering of
incoming waves and generation by external forcing:

WemSw +¥Q (4)
where
S = ~[ Bu¥us + BeYeo ] [ BuYui + BeYy, ] (5)

¢a [ B +BiYeo ] (6)

In this junction description, the matrices S and ¥
represent homogeneous and ncihumogeneous wave
behavior and are called the srattering and
generation mtrices, respectively, Both may be
complex and frequency dependent. This description
contains only looal junction and atructural
dynsmics and does not contain infersmtion about
other portions of the structure.

The scattering behavior of this junction
description can be altered actively through
exertion of extermal influences. such as comsanded
wmotions or applied generalized forces. which depend
upon incoming wave wmotion at the junction. Before
doing so, methods are required to help determine
the pcll'form and stability of such active
control.

Travelling waves can move elastic and kinetic
energy through a structure. The net power flow out
of the junction is a quantity of interest and can
be used for control design. The power [low out of
a junction is given by

Power = %'.f(t) (7)

It is necessary that care be taken to ensure that
the entriss in u and f are ordered such that their
dot product represents power flow out of the
Junction with positive net power flow indicating
that more power flows out of the junction than into
the junction (an exsmple of this is given later).
Note that power flow is a time dependent quantity,
which {s a bilinear function of the boundary forces
and velocities. Hapce, the aversge power flow is
not simply the sum of the pover flow of the
individual wave modes. However, the total average
pover flow is equal to the sum of the average power
flow at each frequency. due to the orthogonality of
sines and cosines at different frequencies.
Therefore we consider the average power flow at
each frequency o independently.

The time average power flow over one cycle is

Pavo(w) = i-.(u)" P(0) w(w) (8)

where w is the vector of wave mode amplitudes, and
the superscript H denotes the complex conjugate
transpose. The matrix P is given by

i Yair"You Yui"Yee _rYn"Yul Yei"Yee
P 'i"’[[\r.."h. Y..."v..] LYee" Y Yc."Y.n]] (9)
Pave is real for any mix of wave modes in w since P

is hermitian. A passive, nendiasipative junction
will have zero net power flov (P.ave = 0).

’

CUNTROL DESIGN

Two methods for wave control derivation are
presented in this section. In the first method,

- the closed loop mcuttering mtrix ts fully or

partially specified, and the control which achieves
this behavior is derived. In the second method,
the control is derived such that it minimizes a



cost based upon ths sum of junction power flow plu-‘

the control effort expended. Finally, the
performance achieved by both methods is discussed.

!t the utoml!y applied influence Q ia given

by a linear combinmtion of the incoming wave mode
anplitudes

Q=Fwm (10)
then the junction relation will have the form
Weu[S+?F]lwieS.wm (11)

1f the control designer specifies the entries
needed in the closed loup scattering matrix Sc..
then the frequency depeudent gains can be found
(10). For example, all cutgoing waves can be
eliminated by setting the closed loop scattering
mtrix equel to the mull satrix using the gain

Fe-9's (12)

Since wave modes may be difficult to meesure, Eqs.
1 and 2 can be used to derive equivalent feedback
using physical defluctions u.

Optimal control is defined by the minimization
of some cost, typically based upon the response of
the system and the effort expended in control. For
the wvave control problems, with a goal of sctive
darping, net power flow out of a junction is an
obvious quantity to ainimize since that increases
the energy dissipation at that junction.

Using Eq. 8. a possible cost functional has
the form

-

J-%I(v"?' « RQ)d (13)
-

where R penalizes control effort. Since the wave

mode amplitudes are affected by the contrecl action,

the w vector is a function of the incoming vave
modes and the control, so that .

"[s-. :‘00] (14)

Then the integrand of Eq. 13 is given by

w,"Puiwy + W "Pio(Sw, + )
+ (Swi + ¥Q)"Parmy
+ (Sw, ¢+ N)“’oo(s'l + %) (15)

where the P watrix has been partitioned as
PII PI.
e [R he] te)

This cost functional can be minimized by
wminimizing the integrand at every frequency. The
integrand is minimized with respect to the control
Q when

Qu ~[¥P? ¢ R} ¥ [Po) ¢ Poe8) ws ~ F w, (17)

This gives control exertion which is proportiomal
to the incoming wave wode amplitudes. Again. these
wave mde amplitudes oan be transformed to give
proportional feedbmck of physical deflections at
the Junution using Eqs. 1 and 2.

The second derivative of the integrand of Eq.
13 (Eq. 15) with respect to Q is

¥ P ¥+ R (ll)

Poo is hermitian and positive semidefinite, since
outgoing waves propagate energy away from the
Junction. (In fact, this condition defines ocutgoing
wave modes.) If R is chosen to be positive
definite, then Eq. 18 is positive definite and the
;:nn;ol in Eq. 17 minimizes the cost functiomal in
. ‘J'

Several properties of Eq. 17 can be readily
sesn. For conservative systems that support only
propagating waves, energy is carried independently
by cach wave. This causes Pss to be of full rank
and Py, to be the zero matrix. This allows a
control to be derived using Eq. 17 with R equal to
the zero matrix. In other words, {f ¥V is square
(all actuator types used) then there exists a
minimum achievable cost and it corresponds to the
control derived using Eq. 12. :

For systeme with evanescent waves, P.o vil/
not be of full rank and R sust not be nonzero in
order to prevent inversion of a singular matrix.
In this case, actuator cestrictions such as
saturation limit the achievable performance. If
only a subset of posaible controls is availabla,
there are situations in which the product ¥ P..¥
will result in a merix of full rank and R can be
set equal to the zero matrix to obtain minimum cost
with the available sctuators. Note that with
R = 0, the resulting closed loop scattering matrix
will be nonzero. This is because the outgoing
svanescent wave can combine with the incoming
evanescent wave to dissipate energy ar the
Junction.

Since P.ve ia never positive for an
uncontrolled junction and the control in Eq. 17 is
chosen to minimize the quadratic in Eq. 13, the
optimal feedback gunrantees dissipation in the
sctive junction independent of the incoming wave
mode: mix.

FREE-FREE BEAN EXAMPLE

The derivation and properties of wave control
can be best demonstrated using an example. A
free~free beam i3 chosen for the example structure
because such u beam exists in our laboratory (Table
1} allowing designs to be experimentally
demonstrated. The Bernoulli-Euler beam model
supports one evanescent and one propagating wave
mode in each direction.

#
d '} .
The first step i3 to derive the boundary
conditions for each beam end. The free-free beam
and externally applied {nfluences are shown in Fig.

2. The boundary condition relations for the left
and right ends are



Teble 1 Free-Free beam and sctuator apecifications

Beam Properties!
Material
Length 1 = 7.3152 "
Barding Stifiness El = 31.1 Nt/m
Mass per Unit Length pA = 2,8533 kg/m

Actuator Properties!

0.061 ©.0039] _s
B = [1.573 -0.1108) ¥

. B, = [‘1) o.c‘m]

sa] v <[] oo

L.R L.R

where the primss denote spatial partial derivatives
of the transverse beam displacement v.

The four wave solutions to the Bernoulli-Euler
beam equation are

-ikx+ivt .

Ve Wepl "..m‘ﬂt *

1lxrivt . '-".-hﬂut

Wipl (w)

where the wave number

k= (Mx)lai “l/l (21)

1s a positive, real quantity and the subscripta and
constants are defined as

rp: rightward propagating

re: right end svanescent

1p: leftward propagating

le: left end evansscent:

: mass density

: cross—-secticmal area

: modulus of elasticity

: cross—-sectional moment of inertia

~in>v

Lt YL
HL('FLli

YRt YR
- tFR Wy

Figure 2 Schematic of free~free beam. Orientation -

of external influences Q and beam deflections, v
ard v', are showmn.

For the left end of the beam in Fig. 2, where
the active junction control will be performed, the
incoming and outgoing wave mode amplitudes are
defined as

w Yo
" e =

For the remainder of this eample, only the left
Junction will be deamlt with explicitly.

Evaluating the entries {n the transformation
matrix of Eq. 2, using Eq. 30, gives

v : : 1 1 LI

v' H -tk =k liw
<EI v'''| ® [161k® -EIK® ~1E1k® E1k®|[wes | (33)
El v ~E1k* EIk* -EIx® EIk*}lwi.

with x = 0 at the boundary position. Substituting
Eqs. 28 and 23 into Eq. 19 and solving for the
scattering and wave generation satrices as defined
by Eqs. 5 and 8, respectively, gives

s- [ ) (3)

1+4 [ 1 -k ]
¥ A et 3 L3
L Elka * "lk ( ’

The transfer function irom an external force
applied to the right end of the beam to the
transverse displacsment at the same end can be
expressad as

vpel(1000]Y [gR](I-stESR}"ESLﬂR [“,] F (28)

where

E- [3-'" 2...] (an

and 1 is the length of the beam. This i3 an exact
solution of the governing equation and boundary
conditions.

The next step is to derive the net power
matrix P at any beam cross section. This is done
by subatituting the square wubmatrices of Eq. 23
into Eq. 9. The resulting matrix, using the
definition of wave number in Eq. 2:, 1s

(o NN
Oo=~0Q0
DO-O

P = 2 &k (pAEI)'’? (28)

CQOC -~
§
3

Since the wvave mode amplitude vector is
defined by Eq. 22, the (1,1) and (3,3) entries in
Eq. 28 represent the power flow associated with
propagating waves. The imaginary (4.2) and (2.4)
entries represent pover propagated by the
fnteraction between the two evanescent modes. Note
that the evanescent modes do not propagate power by
themselves. '’

).{ b

Now chat the junction dynamics and power
relations have been derived, junction control
compensation con be formulated. First, the closed
loop (1.1) scattering matrix entry will be set to
zero assuming that only one physical deflection



weasurewent is available., Thie remults in no
outgoing propagating wave b.;l" cruh:ul by an
incoming propagating wave, nce t
characteristic attenuation length of the svanescent
modes i3 invera;ly prepertienal to the square root
of Irequency (Ei. 18), the inpertance of this (1,1)
sntry becomsa more obvieus at higher [requencies.
Second. optimal feedback of phyatoal deflection
wessuremtnts will be derived. Perforsance of the
two designs will then be evaluated. In the
following discussion, the F and C satricea denote
incoming wave mode and physioal deflection [eedd ok
ins, respectively.
" Feedback of a physical deflection can be
achieved by setting Q = G u in Eq. 41 and
substituting for u from the top half of Eq. 23.
The gain for vhich the closed loop (1.1) scattering
mAtrix entry is zerc can be extracted in closed
form or numerically at various values of frequency.
If & transverse displacessnt measurement is
chosen in conjunction with torque actuation. giving
feedback of the form

N(w) = G(v) u(v) = g(v) v(w) (29)
then the closed loop scattering matrix has the form

1 “f{-r{1-1 l1¢1-2v
Sev = T (T+1) [ l-lsalf) u-r(l-t)] (30)
vwhere
rafltlx (31)
2E1x"

Setting the (1.,1) term to zero and using the
definition from Eq. 21 gives

T e or &(v) = -t (pAEI)'“%  (32)

This corresponds to feedback of transverse velocity
to torque through & gain equal to -(pAEI)’®. The
resulting closed loop scattering matrix i

sn-[_? },] (33)

The power flowing out of the closed loop junctiom,
at each frequency, can be found by substituting
Eqs. 313 and 11 into Eq. 8 to.get .

Pave = %'l'[-: i ]'u = %'t"?e;'l {34)

This quadratic yislds a real value for average
pover. The eigenvaluse of the closed loop power
matrix are 1.414 and -1.414. This means that Pc,
fa ar indefinite matrix and may amplify certain
incoming wave mode mixes. Therefore, junction
dissipation depends on the mix of incoming wave
modes, and therefore on the dynamics of the
remainder of the beam.

Optimal feedback can bde derived using Eq. 17
with R equal to the zero matrix since only torque
actuation is being used. This results in incoming

174

wave mode feedback of

F Bl [ (=1-1) (144) ] (38)

or. equivalently, feedback of deflection and
rotation with

G205 (EN)™*(M)I L0 (-141) &' ] (38)
This only calls for rotation feedback and does so
through what can be termed a half differentiator
since it provides a frequency dependence of ¢'’?
and a forty=five degree plase lead. This results
in a closed loop scattering matrix of

see [ ] (1)

The remulting net power is
Pave = i'u" [ -: _: ]'I - i'n"e;'l (3)

This closed loop power mmtrix hes eigenvalues equal
to 0 and -2. Therefore. the matrix is negative
senideflnite and enargy is oever ganerated at the
Jurction.

Fig. 3 compuares the closed loup responses with
the open loop response, found using Eq. 38, using
the feedbacks given in Eqs. 32 and 38. The opem
loop system 18 provided with about 0.5% demping
through the addition of a linear dashpot at the
right junction. Note that the feedback in both
cases result in 135 degrees phase lag and a
logarithaic magnitude rolloff slope of -3/3 above 1
red/sec. This matches the receptance from force to
displacemsnt at the right end of a semi-infinite
beam. In other words, at high frequencies (above 1
rad/sec v Fig. 3). where evanescent modes become
insignificant, the bemm behaves as {f it were
swmi-infinite. Fig. 4 1llustrates that the
corresponding power flow out of the left juncticn
is negative for all frequencies. Noting Fig. 3,
the performance is slightly better at low
frequencies for the optimml feedback, since
evanescent wvaves are being explojited to increase
Junction pover dissipation.

Fig. S cowpares the clossd loop transier
functions to the open loop tramsfer functicon with
the dynemics of a torque wheel actumtor included
(Table 1). The actuator dynamics were igncred
during control design, but need not be. Note that
the controller derived by setting Sc.(1.1) « 0
results in an instability at 72 rad/sec. This
instability was verified using a [inite element
mocdel and is seen tn Fig. 6 where the power flow
out of the junction becomes a positive quantity
near 67 rad/sec. An interesiing feature can be
sden by comparing Fig. 3 with 5 and Fig. 4 with 6,
Kote that wizn the compensator is derived based
upon the correct model, resonant behavior appears
to vanish. Whan not based upon the exact model,
resonant behavior still exists, because wave
cancelling is not exact, and instability occurs for
the compensator i{n Eq. 32.
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Figure 3 Nagnitude (a) and phase (b) of beam
transfer function from unit forcing at the right
end to colocated transverse displacement for a)
Sc.(1.1)~0 control. b) optimal control, and c) open
loop. Actuator dymamics qre not included.
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Figure 4 Net power flowing out of the left
Junction for unit amplitude forcing at the right
end and for a) S:.(1.1)=0 control and b) optimal
control. Actuator dynamics §re not included.
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Figure 5 Mognitude (a) and phase (b) of beom
transfer function from unit forcing at the right
end to colocated tranaverse displacemsnt for a)
Sc.(1.1)=0 control, b) optisal control, and c) open
loop. Actustor dynamics grq included.
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Figure 6 Net powar [lowing out of the left
Junction for unit amplitude forcing at the right
end and for a) Sc.(1.1)#0 control and b) optimal
control. Actuator dynamics garg included.



CoNCLUSIONS

Wave junction contrel takes advantoge of
combining iht rebuatasas of culocmted feedback with
the high performace of feedback gains optimized at
every frequency. The performance and dissipation
of the junction control can be determined without
knowledge of global atructural behavior. Since the
design depends only upon local dyramics, 1t cannot
be sensitive to wodelling errors in distant
portions of the structure. By maximizing junction
dissipation at all frequencies, high performance
vibrastion suppression is achieved, perhaps even to
the ex . ent of elimimating rescrant behavior {n the
structure. It was shown that deaigning
coapensators without regard to actuator dynamics
causes a degradation in performance. But, the
actuator dyramics may be included in the boundary
cohditions to prevent this, :

Several disadvantages wust also be faced in
using this schems. The cowpensators are typically
complex functions of frequency. These can be
difficult to implement, and may become mere
difficult wvhen actuator dynamica are modelled.

Nany extensions to this theory of active
control of wave propagation are possible. One
might, for exasple. attespt to adapt such
controllers by observation of their performance.
One might attempt dynamic estimation of incoming
wave modes, using purtial seasurements and theory
yet to be developed. One aight make these
wofsutements some distance “upstresa” from the
actuator to provide for actuation and sensing
dynemics., and thus smake the theoretical
compensators easier to implement. This promises to
be an interesting area for research.
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SOME APPROXIMATIONS FOR THR DYNAMICS OF SPACECRAPT TETHERS

) A. H. voa Flotew

INTRODUCTION

Past analyses of the dynamics of spacecralt tethors have geaenully
besn of twe types; sither quite simple models were wond, typically witd
the tether amsumed to be sirnight and inextensible, or comprehensive
simalations|1,2,3] were prepared for computer implementation. General
agresment oa the importance of various physical effects does not seem
o have besa reached. Each analyst has individually made the choice
of which offecte to model, semetimen quite arbitrerily. Refervace 2is &
broad summary of werk published t0 date, and includes S7 cloations.

The work roported ia this paper was motiveted by the philsophy
thai the appropriate spproach 1o developiag aa eaginesring model of &
physical system ia to include no more thaa the bare minimum of effects
required (o reproduce the behavicur of interest. Since this is neces-
sazily an iterative procedure, this paper builde upon insights gleaned
from the results of previows analysss. Speciral separation i invoked to
reduce the dynamics to a relatively fast vibrational motion, decoupled
from and superimposed upoa the slow roll/yaw librations of the sys-
tom. It is suggested (with experisnental evidencs) that, becanae of the
Jow tensions experieaced by spacecral tethers, aca-linear exteasional
strem-straia behaviour will be importaat.

Infnitesimal parturbations of the tether from its slowly varyiag
quasi-squilibrium are described by o system of linear partial differen.
tial equations, in which loagitudinal and lateral motion are coupled
by slight curvature of the equilibrium shape. These equations are
noa-dimeasionalised and investigated with respect to waw propage-
tion, revealiag that for wave leagthe much smaller than equilibrium
radiws of curvature, lateral and loagitedinal motions effectively decow-
plo. Assumptioa of point-mass dynamics for the ead bodies leads 4o sa
of which can be quite different from those of the classic cable approxd-
matioa. Effects of tether stiffases, curvature, tension, leagth, retrieval
rate, sic. are illuminsted in torms of non-dimensions) parameters.

The intens of this paper is 4o provide simple conceptual models of
the motion of sethervd sasellites, both to guide development of fature
simulstions, aad 4o provide a basis against which to compare simulatioa
resulie,

APPROPRIATE MODELS OF TETHER ELASTICITY

To date, models of tether elasticity have ruaged from that of aa
inextensible chain, to that of & beam with acn-symmetric croms-sectioa
and with torsional straia energy. It is eady to show that the *bendiag
leagth,” lg, beyoad which the effects of bendiag stiffaess, K7, are neg-
ligible compared to those of tension, 7', is given by iy » /FT/T. With
tsther diameter oa the order of one millimeter, and tether tension on
the order of & faw Newtous, this beadiag characteriatic length is on the
order of a faw cantimeters. Thus, for such tethers, with lengths of many
meters or kilometers, bending stilfness does not contribute significantly
to global restoring forces, and & beam modael is inappropriate.

Beading stiffaess does, howswer, coatribute non-linearly to the ex-
tensicasl siress-etrain behaviowr of such tethers. The natural form of
a real wire is Rot strmight. Reiidual stresses of unapecified origia, and
a spiral shape dus to deployment from a reel will both be preseas. The
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charecteristic leagth of thess imperfections may vary well be comparss
bie 10 the beading leagth. Figure 1, adapied from reforence ¢, presents
relevaat experitiontal revulte.
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FIGURE 1 A wire ezhibita a aca-lasar strem-ctraln relation duwe
o streightening. This gure compares the results of one exper-
lmemt with an amalysis based upes the sssumption that the ua-
srased wire shape Is @ by wound on & spos!l of radius r.

Nea:Linesr Extensional Stiffae of 2 Wire

Spacecralt tethers will ofven operaie under very low tensics, even
nhunhwumhﬁnmdnmhuﬂnbdm
We are thus interested in the sxtensional stress/strain bebaviour as tea-
sion approaches swro. The most common assumption has been bilinear;
linear elasiic for extensional struin, aad sero temsion for compressive
strain. The experimental results of Figure 1 show the behaviour 4o be
more complex.

Two approximate analyses of the force/deflection bedaviowr of a
wire with initial curviness can be offered. Both predict a similar aca-
linear stress/straia behaviour:

== 5 (1)
{valid for small strain, approximately —0.08 < ¢ < 0.01). The strain, ¢,
is thus seea to bi:the sum of two contributioas, a linear elastic exteasion
proportional to the tension, T, and inversaly proporticaal to the axial
stifase KA, and a non-linear shortening dwe to the wires's tendency
to returs 1o its unstreseed shape as T — 0. The value of x depends
on the assumptiona made in the derivations.

If an inexiensible wire's unstressed shape is aasumed to be a helix
drdiur.pinlmhcuo.udmhmhb(th'inhthhdy
wouad on a reel of radina r), thea the tension, T, required to extend
the wire t0 3 leagth A (while preveating untwisting) is given byls|




T-F -y @
whers £l ia the beading and GJ the tomicsal stiffaem. It we deline
the rain with respect 10 the wice's archagih, ¢ = (A~ L)/ L, aad imh
Jo] € 1, thom exprassion (3) redwen ¥

oJ K1
ik e e ®
which, siacs GJ w B, bacsmes

¢= -(;)' i amBIVAR )

Aa alterastive derivation stiempie o madel & olightly wrinkied wa-
srossnd shape by iak rduerion of a sinwseidal planer wriakie with am-
plitade & and wavalengih A. 1 is et difiiculs W show that under this
asumption, the wasisa/struin bebavieur of the axially inextemsible
wire besomes

e=-(@? i a=anvAEAN® )

aa A — L. Equation {1) is then the sam of tha nen-linear shortening
of squation (4) or (8), aad the Linear slastic sxtensica T/BA.

The experimental curve of Figure 1 was wessured for a leagth of
telion-insulased siranded copper wire sold oa a small plastic real. This
wire was uader considerstion for wee as a spacecraft tether{d]. Plansible
values have beon inserted into expressiens (1) and (4) o cakeulats the
theorwtical curve in Figure 1.

It would be interesting 1o spacalate about (or %0 measure) the low-
tension strwms/etrsia behaviowr of other candidate tethers. Effecha of
braiding, siranding, twist and other tether details would podestially
»dd %0 the non-linesrity introduced by resideal stresses. The remine
summarised by Figure 1 suggest that such son-linear behavioar will
be mach more important than many of the other non-linear olfects
included in past analysws. For \be mission studied ia referencs 4, the
noa-tinear Sexibility, 54(s), can be greaser than the linear Senibily
by a fester of up %0 one thousaad!

FIGURE 2 It is proposed to forgo detailed modeling of the tether
“wrinkies” ia favour of modeling only the approximate position and
using & moa-linear streas-strain relation. The tether position would
then be modeled with a resolutioa of approximately is = VEI/T.

Ln principle it is pomibie to model this vabtle offect of tether bond-
ing sillness by waing & beam model for the Wther and resslving the
detalls of the tether shape. The reseintion demanded wenld be o the
order of & Aw contimotans (he bending Joagedh); hwe would loat e
a hopolemaly large somputer simelation for vthers of mverl kilome-
tors loagth. The approash intreduced in the presseding paregraphe
would be %o nee b olastis cable model, with & ned-linenr siress-atnuin
bedavieur & in equation (1). Figure 3 indicases that the Wther posi-
tioa weald thea be modeled 10 a precision oa the order of the beading
lengeh, adoquate for mast purposes.

RAFERRNCER FRAMES AND BQUATIONS OF MOTION
Tha equations of metion of aa slastis cabl: {ne bending or torsionnl

i have loag besn kaownl], sad are soucisaly expressed in vecstor
wotarion;

W5 =TT +? ®
where 4 is the mass por whid struined length of the dather, R{s,t) is
the vector position of the tether as a fanctisn of time, ¢, snd strained
arcleagth, s. The arclongth is conveniontly mesrrred from cne ond of
the tether, say within ead body 4 Extersal forees per wait kagth
are indicated by vecior B. The seasien, T, is given a8 a fanctica of
s, whore & = |GR/3s) ~ 1, by equatien (1), If \be tether is %o be
modeled as constant hagth, eqeation (1) in replaced by the constraina™
HOR/3s) = 1. (The isens of whea an in-elastic model of the tether is
appropriase is discussed ia a subsequent section.)

The boundary conditions required to complete equations (0) will
depend o the dynamics of the sad bodies of the tethered sateliite
system. The force enerted by the tather on the sad body A (st o = o)
i just )

Pa =T - o) Frlemea m
Note the appearancs of the (normally negligible) thrustiag term duwe b0
sether deployment.

Refereacs 3 reports the development of & simulation based upoun a
fialte difference discresisation of equatica (8), and boundary conditions
built wpoa equatioa (7) and the ussumption of suitable models for the
end bodies. The refereace frame chosea is earth-contered inertiai, thea
relative moticn must be resolved s the small difference of two large
aumbers. In this refivence frame, oquations (8) and (7) are highly
aoa-linear in the thres components of R

A more common approach has beea to introduce a tether reforence
frame{1,3], aad to express tsther motioa with respect to this frame.
This tethor frame has historically been chossn with oae axis defined
by she tether attachment points ca the two bodies and the other ammi
deliaed via their orientasion with respect to the orbital plane (we Fig-
wre 3). If tether deflections are expressed with respect to this frame,
then the rotational motions of the reference frame add coriolis, cea-
tripetal sad angular acceleration terms o the sime derivatives of equa-
tica {6) and (7), and the equations describing tether deflection are
coupled to those describing system attitude. Since the angular velocity
of the tether reforencs frame is defined by end body motion, which de-
peads (in part) upoa tether forces, the equations of motion governing
system attitude are aleo coupled to the partial differential equasions
governiag tether deflections.

o
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e approseh of refersace (1] hes been to aumerically simuinte
\his syviem of oquations. The tether shape ia discresioed by the iaire-
duetion of shape fuactions of by & lumped mass medel The resulting
srdiaary difforsatial equations ¢aa then be invegroved forwand ia time.
wmwmnmmmnu “wniff*;
some motions sccar much faster thon ethers, aad the iategration time
mmhmnhc'ﬂ“mdm.ﬂdnﬂ

THR APPROXIMATION OF SPACTRAL SEPARATION

As altersative appresch 1o eatrecting infermativa from & niff sye
e of ordinary diffarential equations is e intreducs the appreximation
of spectral separatiea. This approximation is bused wpen the realise
tioa that the offect of coupling between fust aad slow dynamics of &
aystem o well apprenisaated by the intreduction of twe ssumphions;

1 The slow dynamies deline & quasi-equilibciam from the poist of
view of Whe Dust dynamies.

2 The Ant dynamion modify the the slow dynamies quasi-statically,
that is, they participate in the slow dynamies at their instamte-
acons equilibrinm levels.

The best reforenca for the theory and practiss of speciral separetion,
with application te many enamples, is perhape an unpublished beok
drel.[9}

Table 1 is & suammary of estimates of the sigen-froquencinn of 2
tethered system, both in symbolic and numerical form. The numbere
wed are represeatasive of the hallan/American shuttle tsthored satel-
Lte system. Note thas the numerical astimates for this specidie system
indicate shat most internal metions will be much faster than pitch and
roll of the entire systam. The one exceptien 0 this speciral ssparation
is the peadnlar attitnde escillation of the erbiter due 20 Wother easion
acting ot the end of the tether deployment boom.

TABLE 1 Estimates of Purieds of Vibratien

of » Tuthered Satellite Syvtem

Deacriptioa Symbolic Numerical!
System Pitch *: 3100 seconds
System Roll - 2700 seconds
Elastic Bouncs 2:\/ v 61 sesonds?
Tuther Modes:

First Lateral 1 1AV/ 3 0 seconds

First Loagitadinal 13V 9 seconds?
Ead Body Attitede 2!\/& . orbiter: 1000 seconds

sub-satellite: 13 scconds

1

Numerical values nsed are: orbital rate we = 1.16 x 10™% per second,
(low earth orbia), axial wifaess KA = 10°N, orbiter mass m, = 10°kg,
sub-satellite mass mg = 500Ag, tether length L = 20km, tensica T =
4ON, tether mam demsity 4 = § x 10~%kg/m, arbiter inertia [, =
107kg ~ m?, orbiter astach point offset d = 10m, sub-sasellite inertia
I, = 125kg ~ m?, sub-satallite attach poins offset d = 0.75m.

2

Thia period is based oa a linear elastic model for tether axial stiffness.
The nou-lnsar stress-etraia bebaviour of the tather to be used for the
Italian/American mission is a0t available.

THR QUASIRQULLIBRIUM TRETHERR SEAPR

The attitude motion of & general rigid bedy in orbis, respeadiag v
eavironmental vorques, is well understoed.[13] The mation of & geaernl
fexibls buady i orbis, and its internstion with the gravitstional feld
s Joms woll understood. Initial studies have chown thaad the rigd bedy
motion is wesemtiaily unperturbed by Gexible dolormations as ag
these deformations resain small relarive be cystam dimensions,{10] aad
their satarel froquenciss remaia porhage o facter of ton11] larger thaa
thaa the erbital rete w,. Review of Tuble 1 reweals shat, with the
ameption of ochiter sttitude matisn, the naturel Nrequencios of the
intorual motioa of the tethored system are indend much faster thaa
orbital rete. If slow end-body attitude metion can be igaored or b
attively costrelled, the attitede librutions of the dethered spvtem will
occur mueh tihe thess of & rigid body, u leng = iadernal dellestions
remala small compored o Wther loagth.

Roforenees 13 and 14 hawe considered the eqailibrinm loagitedinal
siraia aad venslon disribations in & tether, subject be the assumptions
of Unear slasticity and a constant gravitatisnal gredisst astiag aleag
the axis of a straight tether. These stadies have mathematically ese-
firmed the validisy of » simple appresimation, saaet for inSaitesimal
sAbar strain; Wadee esnion is offectively constash if bath end mames
are much greater than tother mass, aad spatially parabolic if wether
mass s sigaificans.

The quasi-equilibrinm shape of & ether in act necossarily straight.
Lateral forces due %0 awrodynamic drag, gravity gradiemt, slectrody-"
asmie interaction with the sarth's magaetic field and coriolis offects
due te retrieval or depleyment of the Wther frem s massive cud body
will all deflect the tether laderally ageinst tensile testering foress. Bach
of thase foress will vary with time and spaes, both ia magaitede and
direction, with much of the variation occuriag at freqencies compare-
bls o orbital rete. Orderof-magnitede wtimates of thess laterul forems
e
Awedynamic Drog
(mmospheric deasity 10™1¢ 10 10™1%g/em?)

10* 10 10°*N/m

Bectrodyssmic
(earth's maguetic feld in Jow sarth orbit)

2 % 10" N/m/Ampere

Gravity Gr-dieat
(v in lazeral deflection in meters)

vXx 10~'N/m

Coriolia L x10~*N/m
(L ia retrieval or deployment rate, in m/s)

Numaerical values givea ia Table 1 have bova wsed where noeded.

The approximation of spectral separetion permits caleulation of
aa instantanevus tether shape by insisting upoa static equilibrinm with
these lateral forees. If one ansumes that the tether experionces o linear
foree deasity., P, waiform ia direction and maguitude aloag the wire,
thea the equilibrium curve is planar, and is givea by the solution of

TR +P=0 ®

together with an appropriate stress/strain relation. Since this curve
will ba very shallow, we will assume it (o be & portioa of a circular are
of radivs, B, & » L, and will sssume tension, T, to be indepeadent
of o. Basic equilibrium analysis then yields B = T/R,, (P, is the
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polate) and mid poist sng of § = L/3R. Using & venslen of T = &N,
-a.mummdum-'nln.w.mam
of R = 2000 km and & mid poinh sag of § = 35 metems for & Wother
loagth of 30 hm. Thest valuss boouse R = WO m, and § = 30
Mlm&hﬂldlhn‘tuﬁldtﬂ.mm
squilibrium radies of curvatars, £ = R/L, is \hes s0ea 10 be very large
(vppvenimately 100), sad independons of hagh.

RNeforsnes 10 sad 11 define the Nbration of & Senible qyosem la
vorms of the sttitnde of & reforeace frame whish erigin romains 8 the
dolurmed syvom mass sonter, 8ad which artitnde in delaed by ortheg-
caality of the system Baxible and rigid bedy metion. The tether frume
satishes this delaitisn of stitnds suly spprenimately, even when the
end bedies are medeled a8 poist mamsss. Sines (he oquilibriam slope
of the sether with reapest o the line ssaneeting the twe aMtach peiaie
is very amall {appresimately 1/20), the curved tother will couple the
twe ead bodies mash 00 & tiraight tether would, and eyetem Kbraticn s
esssatially the same as the Nbrutioa of the tether frame. Roborenee 11
comes Ve & similar conciusien.

The slewly varying equilibeiam shape we will coasider ¢an thws be
summarised as follows: A global piteh and roll Kbration of the syutem
creades & Wpadially near uaiferm \eusion in the tether, which verim
slowly ia time. The equilibrium tether shape is meurly straight, with o
sdallew plansr sag whish slowly changw amplitede and swings abomt
the line connecting the twe tether attachment poimte. This equikibriem
ia statiz when obearved oa the time scales of isternal Wther modes.

FAST TRTHEER MOTIONS
Tast ther metions are of interest for severnl resssas;

1 Shmeletions have showa(s] shat such tether motions may gru w dur
ing retrioval.

2 For mancuvem invelving intermitent thrusting of the ead bed-
108,(2,18) such fast tsther metions will be encited directiy.

3 The performance of kinetic isclation and sub-gatellite atiitude con-
trol aystems based upen remete tethering of & swmsitive paylead te
a nolay space stasion,| 16} depends streagly eu these tetber dynam~
s,

Prisr studin(?] of the dynamise of slightly curved alastic eablaa
have concinded that even very slight squilibrium curvature can have
s great influeice upea perturbational metisn. The fendamental sym-
metric mode of a planed-pinned wire was shewn %0 change chaructor
whea a noa-dimensional pareumeter, 2! = (L/R)*EA/T, wcesded o
critical value. The valus of this parameter defaes whether the tother
behaves extensibly (A < 27) or incatensibly (A > 3v) us ia is perturbed
from the equilibrinm shape. The values of Table 1, together with the
estimate of R/L = 100, yield & valus of A = 3, very near the critical
valus. Simce these values are culy estimates, aad sinee the boundary
conditions en spacecralt tethers are wery difflerent from thoss treated
in reforenss 7, an analysis is apprepriste.

‘This section derives the equations of motien governing infnitesimal
porswrbations of a slightly carved tether. The equilibriam curws is
taken 40 be planar, and the perturbations are delned within this tother
oquilibrium plane, and sormal te it. The offects of small coupling due
to the slow (order w,) angular velecition of the reference frame are
ignoted, consistent with the appreximation of spectral sspantion.

Figure 3 defaes the small parturbations w{s, 1), v{s,1), wis,t),
£(0,%) and p{s,¢) of the tether with recpect to its oquilibrium shape,
defined by (s} and y(s) whare o in the equilibrium arcleagth. This
squilibrium arclagth differs slightly from the natural arclagth, 2,

{see Figure 3) depondiag upen the equilibeium sension. The teasien s
‘aben 1o be the sum of the squilibrinm valws, T(s), aad & parsurbasing
r{s,t). Under the ssamprions justiled ia Ve precosding pasagroaphe,
and wing the equilibriam dofacd by cquation (3), eqnstions (8) san
be axpanded v}

la alate of Atder sanilibeinm:
Aniak
Ao "
Lateral:
LR (R (10)
Nocmal b the nlase of iethee sonilibeinane
T = ()

whete terme of sscend and higher erder ia perturbational quantitin
Aave boen dropped. The perturbational teasion is givea by
- T o

where 57 ia the olfective epensional tiffaam of the cother as the squi
tibriam strela {see Mgare 1).

FIGURE 3 T oquatioas of motion goveraing infinitesimal tather
defiections from the equilibtium curve taa be expressed in several
different coordiaate systemas. Curvilinear coordinates are uselul for
oxposing the high frequency wave-propag..ica limitiag behaviour,
und can be weed for an eigua-analyis.

Refareace 7 mahes farther approximasions, valid for very shallow
pianed-pianed catemaries, %0 manipulase squations (9), (10) aad (13)
iato a single second order partial differeutial for w{o, t). We prefor the
approach oreference 17, in which cabls deflections are expressed ia
\orms of compoasnis tangeatial and perpeadicular to the equilibrinm
curve (sen Figure 3). Equations (9), (10) and (12) caa ba transformed,
using the transformation

weeg-ag ()
9-(%'0'”% ()

into an equivalent system;



Pursliel s equilibriam \shen

() o5t 5 @-)-5 (5

Perpeadicalar to oquilibviam vethern

2 ()R- TG erd) e (F) w

where R = (dy/ded®a/de? - da/ded®y/ds®) =" is the equilibeiam radive

of curvature of the tether. Byurtion (11) romaine anchanged.

Bguations (11}, (18) and (16) aew desuribe the pertarbeticnsl me-
& % of an dlastis eabls Srom o platar oquiluitriom corve. The curm
aond 20t b shallow, aee 2eed the radiue of curvature, R, be constand
with o. N is cloar that curvature csapie the twe compencats of the
planar metion; equations (185) and (1C) are coupled by torms iavelving
L/R. As R — @, the conpling disappean, aad the oynaticns redwes
' e fumilier dosonpled wave squations for amial and lasersl metion
of aa dastin cabls. Matisn nesrmal o the oquilibriem plase remalas
waaliwted by curvetane.
Waes Presasation Alsag the Thiher

Byuatiens (185) aad (16) are cuitable for investigetion of the ia-
lnhh&dlhllm“nﬂhhmww
propagation of desoupled laternl and tangential waves. We aspume o

solution of the form
Q=@

where 7{w, 8) = a{w, s) + 1k{w, o) is known 28 the propagation cosll-
ciemt. Substitution of squaticas {17) iade {18) and (18) yields & pair of
coupled second order pelynomiale in 7 and w. Thess polynomiale are
satisled along the lines shutched in Pigure d. Wo 0ee that wave propage-
h“ﬂ%h“)l,hhwht&nﬂh
becemen small relative 4o the redins of curvasun. Since the frequeney
has boea coa-dimensienalived with respect lateral wave spend, /175,
three values of T/ 57 (both sasamed constant with o) give three difhn
ot vilues of noa~dimensionsl tangential wave speed. Investigation of
the correaponding weve-mede sigen-vecter, (&, 9,)T, reveals that the
Tespotne consiste of pure emtensional (&, , w,) = {1, 0), or pure lateral
(€. %) = (0, 1) motion for AR > 1. Aa orderol-maguitede analysia
of the terma of equations (185) and (16), as [TR| — oo will yield &
similer insight.

brvine aad Canghey{?| repert w2 approvimate cigen-analyvis of
oyuations (9), (10) and (12) for pianed-pianed boundary conditicns
and shallow pareboliz catenaries. They conclude that the caly mode
MM”&&M&nM«Mh&.Mn
metrie laderal mods. Por analysis of & vthered spacecrsl system, w
are isterested in difierent boundary conditions. A greral aad body
dldndhdmenwﬂn.a-pbxhudwm
including offects of end bedy Sexibility and attitude motion. We for
IMNMhMWmMMMM
Mﬁuh&uhthdnphﬂ.moﬂd«dﬂypuudby
m».mmmmmmmmm
mass only severnl tizmmes move mansive than the tether.

Introduction of the non-dimenslesal cross-sectional vector

Fetee, BATgE i, §y (a0

pormits writiag (Fourier transformed) equations (18) and (10) =

.0 " [ ] oh
0 -
r.(“ e o : Y )r (s
] YR -*+18% o

e, m'i)

L
o /e, r/ﬂ)-u Y
(. 10°Y)
o ne. a-') /
/

= fl, r‘) (9, 9% o, 1Y)

| ([[‘

1 [}
Nea-dimsnaional hegesney, wBV3IT
PIGURB ¢ Dapuweion curves of lntoral and wuageatial waves prop-
agering tlong & wther with wniform squilibriem wasise and tedle .
of curvature.

whers ¢ = T/BA, R= R/L, 6 = win/u]T, and the spatial derivarive
is talen with respont o & nep-dimessional distance, ¥ = LIT/de.

Bowadary conditiens oa cither sud of the tether are convenionsly
expressed 20 & madrix vquation;

B@)'=t | (20)

whore £ ia ihe vector of applisd forces or eaforeed displacements, s
appropriste. To define a pinned ead At 2 = 0 oquation (20) would

smploy
Be(aote) ¢ oe=(¥D).

and £, is aa eaforced displacement. A point mass, m, at ¢ = L s
described by

(0 ae ) o wm(ME)L,

The geaeral form of the wolution of squation (19) is

o)
T(0,0) m (Tye*/ Tpeme/t [yqnevit r..w/'-)(g:) (a1)
Cy

where ['; is the ¢*» sigenvector of the matriz in equatioa (19), and ()
is the correspoading sigeavalue. Application of bouadary coaditionn st
the two ends, sach in the form of aquation (20) permits evaluation
of the constaats C;, i = 1,2, 3,4 in terma of the force vector (&, £1)°.
The response aaywhere aloag the tether can then be expressed in terma
of & matrix of tranafer functions;

I{e,0) = H{s,5) (::) (32)
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Thawe 10 \ransler fazctions caa be be evalusted for say vales of
8,0 < ¢ < L, sad say vl of @, aad relase the respoane aleng e
sother 40 the oncitation st the twe rnds.

Dranalee Punadines

The transier fanetions of oquation (23) will vary slowly with time,
sinee hay depend wpen the current oquilibrinm sondition. This equi-
Kbriam eneblishe salees of susien, T, redime of curvetans, R, aad
dufinee the dicostions of ¢, § and u. (Note that deliestions normal bo
the plane of vether oquilibriam, 4, decouphs from ¢ sad 5. The nie-
vast \reashr functions can be dorived from oquation (11) and suitable
bouadery ssaditions.)

Figure § gives & plot of N, o( L, 5), parametarioed with thres noa-
disvnciensl grougs; R = R/L, ¢ = T/FX sad m/pl. Thls trenshe
fuaction shows the tangential ascalorstion of the far cad of the tther
(e = 1) belag entited by » uait latersl soncleretion a4 the near sad
(e = 0). If ke equilibrinm tether shape Were straight, this respease
would be . Pigure Sa shown, for a Rnsd oquiliveiom ¢/F4 aad o
fined snboatellite mase ratio, m/ul, the retie of £{s = L) sad gfe = 0)
a8 & fanction of frequency. As expacted, \he Jow frequency respeass
tends towards swre s the tether besomes uirnight, R/L — w R is

cloar that ewa olight tether curvature will couple these twe metions, |

particularly o) ressnante.

Figare 55 chows the same curves for sa incronsed valne of T/FL
The low frequency imiting behavisur tvmains sachanged, however the
soa-dimensisnal frequencies of the iret e ressncnses are shengly of-

| Magnitude, | N, 5|, macoes/metre

. ll-—_i-b. (M) 3], etous/smeton

1
Frequency & = Wl \/WTT
FIGURE & Tranek¢ Nuactioas of the ¢

g } resp at one
end of the tether 16 & lyteral excitation At the other end

Figures Sa aad S0 yield Listle insight isee e charecter of the 2
derlying vidbration. Figures ¢ show the evelution of the S few aatunnl
froquencios snd mods shapes as & fuaetion of twe son-dimensionsl po
rameters, R/L sad T/FA R/L is held bund ot A wlnes, R/L =
10, 100 while T/5Z is varied. S:reag medal conpling is prodicted be-
cweun the 1we lowest laverel modes whenever AY 5 10. At A? w30 (very
<Jooe 10 the value predicted by rehrence 7) these mode shapes betome
ideatical, and their coatribution disappeare from all trasaler Noactions,
Parther mudy is required 4o saderstand this behaviewr. The lateral and
loagitudiaal medes can alse souple streagly. Figur 64 chows such con-
pliag betwesa the At fow laternl modes and the lengitudiaal bounse
mede.

EFFECT OF DEPLOYMENT OR RETRIRVAL

The procesdiag analysis has ignered offecte of deployment and re-
wrieval ea the fast bether dynamies, both the corislls ceapliag due 40 &
seageatial velocity of the tether, and the gradual length chaage.

Bibet of Tuther Transiadional Velasity

Rotrieval of the tother o a massive ond bady will regult in 2
oquilibrium tramslational velocity of the tether alomg ita equilibrinm
curve. This trussiational velecity will sdd cerielis coupling tarms Vo
oquations (15) and (16). Refwrense 8 has shown that such trunsiasiosal
veloeity will have a negligible offoct upen the perturbational metion
of an clastit casenary w leag as thin welecisy is much lasg than the
classie lateral wave spend T, Retrieval apend of spasecral vt
is Lmited by sititnde wtabilisy considerstions o L/L <€ w,, which,
on \he basis of the spectral mparsiion asumed implies L < /T70
lgacring the offest of this corvielis coupling ia thus consistent with the
assumption of spectzal separution upea which the precesding analysls
in based.

Rlisct of Gredual Lensth Chanses

The prececdiag paregraph argues that relative tather leagth changes
will be small over the perisd of even the Nundamental tether mode.
Whea this is sasislied, tether mode shapes will be offectivaly thoee of
the constant length system, but their amplitude will very slowly with
the lougth. An approximate expression for this dependence can be
derived by sssumiag & given mede shape, of ampliteds & and geomer-
rically independent of boagth, and inalsting upou conservation of straia
energy. mb&hmmdﬁouuuﬁc‘/bmmmif
the mode is primarily tangential, and that T'a®/L remain constans if
the mode is primarily lateral. Since T is approximately proportional
to leagth, lateral deflection amplitudes should be approximataly inde-
pendent of Jougth. This agress with the simulation results reported in
reforence 2. The dependence of 574 on leagih is more difcult to ap-
proximate. If the non-linear effects can be neglected, thea EA = E4 s
independeas of leagth, and tangeatial tether vibrations should decrease
during retrisval according 40 & ~ VL. If the tether mode is coupled lat.
oral and axial, then ita depondence oa leagth should be some weighted
average of the individual dependencies.

MODELING LIMGTATIONS

The insights gained in these analysws were achieved caly at the
cost of rather savere assumplions. [aterest wes resiricied o tethered
systems involving one tether and twe end bodiss, with a Specirem pen
mitting the approximation of spectral separntica. The resalss of Fig-
ures § and & show that for some cholcen of parameters, the asumplion
of spectral mparstion will be violated. The coaclusions reached will
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not be applicable to very different systems such as tathers with neg-
ligible end masses, massive tapered tethers, multiple tethers, rapidly
spianing vethere, and maay others.

The sigen-analysis preseated is based upoa the assumj.:ion of small
deflections. References 18 aad 19 have coasidered larger amplitude
motion of cables. Refersuce 18 shows that the quadratic terms ia the
straln energy expression of a shallow cateaary remaia dominant oaly
8 loag as deflections remain small compared to the equilibrium sag.

‘h
.E R/L = 100
< F -
X 8k
3 sk
]
E, Ik \_,,,\’%_/—-«~\‘
3 ?
z - em. N - .
"N‘““g'p-—.--.-,'.'r..—..--.-‘.-'n:;.-—.- el et
extenaible — '-\'L/R)'ﬁ/r [ AT

who/uiT

Frequeary, &

1] -]
inextensible

[}
A= (L/RPIEA/T

PFIGURE @ Trends of the Arst fow aatura) frequencies and mode
shapes of 4 tethered aystem wish slight equilibrium curvature. One
end mase is cffectively infinite, the other has five times the tether
mase, m/ul = §,

Equations (15) and (16) are thus only valid for very small deflactions,
lese tham § = L/SR m 0.091L. Referemce 19 derives the equations
of motioa of & sequencs of assumed deflection modes of a spacecraft
tether, where the reference state is taken to be straight, and axially
unstrained. This work shows that non-linear effects will couple axial
aad both lateral deflection modes, and by integration of the equations
of motiok, shows this coupling to be aignificant when deflections become
a8 Jarge as 0.1L.

Unmodeled effects which threaten to be important are end body
attitude r10tiom and fexibility. Vary slow end body attitude motion
would still permis speciral separation, simply redefining the reference
equilibrium. Fast end body attitade motion, and end body flexibility
will potentially couple strongly to the tether modes. Table 1 estimates
the sub-satellite pendular motion o have a period of 13 seconds. One
should expect stroag coupling of this motion with the bounce mode, and
with several (perhaps the 40**) lateral tether modes. The introduction

of fast end body astitude dynamics would require the wee of atleam two
more aca-dimensional parameters, perhaps d/L and d\/m/T;, where
d ia the offset between the tether attach point and the end body mas
canter, m its mass, and [, its inertia. A study of the effects of this
coupling is lef as a topic of future research.

SUMMARY

This paper has investigased the dynamics of typical tethered apace-
craft systems ia an expository approximase way. The motion is shown
to occur at two time scales, one comparable to orbital rate, the other
much faster. Spectral saparation is invoked to approximately decouple
this moticn,

Fast tether vibrations occnr with reapacs to a slowly varying quasic
equilibrium. The equilibrium shape of the tether is estimated to be
slightly sagged from a straight line, and the small perturbations from
this equilibrium are deecribed by a system of linear partial differen-
tial equations. Non-dimensional parameter groups are identified which
govera the character of the fast tether vibrations.
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Abstract

A cable pinned on both ends was excited by a variable frequency shaker and various aspects of
its dynamic response were measured, including cable wave propagation speeds, resonant frequencies,
and resonant mode shapes. Cable tangential velocity at a point was determined by using
electromagnets to create a magnetic field that the cable oscillated in, thus giving rise to an induced
voliage in a small filament wrapped around the cable at that point. This voltage produced made it
possible to experimentally determine cable wave propagation speeds and resonant frequencies.
Resonant mode shapes were determined photographically. Results were compared to a new
theoretical model that used the midspan deflectioii of the cable as a running parameter. All
experiments were performed at three different sag levels to test the validity of the model. The results
of the experiment presented a limited proof that the model proposed accurately describes actual
behavior. It was concluded that certain non-modeled effects, particularly three dimensional cable
oscillations, were significant in the actual experiments and recommendation has been made to

incorporate these effects into the theoretical model.
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1. Introduction

A curved cable sustaining driving oscillations exhibits a complex dynamic response that is
largely a function of how much the cable is sagged. A cable with a small degree of sag (with the
term “small” defined more quantitatively later) behaves in a well known manner. This behuvior
is predicted analytically by the so-called "string equation”, which is the linear differential
equation that predicts the completely familiar nommal string vibration modes. A cable with a
large degree of sag behaves in a somewhat different way; however, its analytical solution is
completely determined by solvixig a different linear differential equation. This classic "hanging
chain™ equation, as well as the string equation, have been known for centuries.

As one might expect, the dynamic response of a sagged cable with an intermediate sag
should exhibit a dynamic response intermediate between the results obtained for the string and
the hanging chain. However, an analytical model of the behavior was not formulated until

recently. In a paper! entitled Some Approximations for the Dynamics of Spacecraft Tethers,

Prof. A.H. von Flotow proposed a model to explain the intermediate behavior for the
intermediate sag case. His model predicts that there are two coupled differential equations which
are functions of sag describing the tangential anci lateral motion of a driven cable . My parmer
and I have attempted to verify the validity of Prof. Flotow’s model by driving a pinned-pinned
cable with a variable frequency shaker and measuring its dynamic response. We have chosen
three figures of merit to determine experimentally: wave propagation speed along the cable,
resonant frequencies, and resonant mode shapes. We performed our experiment at three different
sag levels: a shallow sag representing string behavior, a large sag representing hanging chain
behavior , and an intermediate sag representing the interesting intermediate behavior. By using
an eigenvalue solution technique, solutions to Prof. von Flotow's equations of motion can be
§olved and theoretical results for wave propagation speeds, resonant frequencies, and resonant
:mode shapes can be ascertained for all three experimental sag levels. Clearly, then, the results
from theory and the results from the experiment can be directly compared and the validity of
Prof von Flotow’s model (barring large experimental errors) can be established.

" In addition to possibly verifying a previously untested hypothesis, a further motivation for
our experimental study is the real-world application to spacecraft tethers. In a situation when the
bnly link between an astronaut and the mother ship is a spacecraft tether, the very safety of the
;astmnaut depends on the dynamic response of the spacecraft tether. Unfortunately, my partner
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and [ were unable to simulate the pinned-free boundary conditions of a zero gravity environment.
However, a reworking of Prof. von Flotow's analysis with our pinned-pinned boundary
conditions was done and thus good experimental verification of the pinned-pinned case with our
pinned-pinned analysis will represent a verification of Prof. von Flotow’s general model.

The methods used to experimentally determine wave propagation speed, resonant
frequencies, and resonant mode shapes are quite complicated and I will explain the basic
principles here. Basically, a way was needed to measure the tangential cable velocity at a point
along the cable. After much brainstorming, a reasonable solution was proposed.. If the tangential
velocity of the cable at a point could be converted into a voltage, we would have a quantitative
measure of the cable’s tangential velocity at that point. However, this can be accomplished
relatively simply by remembering simple electromagnetic theory. A wire moving through a
magnetic field develops a voltage proportional to its velocity through the magnetic fieid.
Therefore, by wrapping a small copper filament around the cable at a point and allowing this
point of the cable to shake through a magnetic field, a voltage could be generated in the filament
which could be sent to an amplifier and then to a signal recorder. Indeed, this was done in order
to measure wave propagation speed and a cable velocity (tangential) vs driving frequency,
'resulting in a transfer function plot, which exhibits peaks at the resonant frequencies. The
experimental determination of mode shapes has a much simpler solution. After experimentally
varying the frequency until a normal mode occurs, a time exposure photograph could be made at
that frequency. A "washed-out" picture of this mode shape could thus be obtained. All of these
prerimental results can be compared graphically to theoretical results, which is a much clearer
hethod to compare experimental and hypothetical results than comparing numerical data.
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| 2. Theoretical Background

An attempt will be made in this section to point out the main points in Prof. von Flotow's
theoretical model derivation and to explain how our theoretical results (to which our
experimental results were compared) were obtained. To begin, we must review the dynamics of
a hanging cable (refer to Figure 1). An equation can be derived for the radius of curvature R in
terms of the length of the cable L and the midspan deflection, or sag, & by considering simple
geometry. We obtain the following result:

R= LY/ss ()

By considering force equilibrium on the cable, an equation relating the tension in the cable T to
the sag 3 can be formulated:

T-mgR= ML (2)

where m is the mass per unit length of the cable and g is the acceleration to due to gravity.
From Prof. von Flotow’s paper (Ref. 1), the following non-dimensional parameter may be a

convenient way to reduce data and make it more general. This non-dimensional parameter A is

defined as follows:
N (R) SF (3)

where E is the Young’s modulus of the cable and A is the cable cross-sectional area. In this
paper, it was discovered that for 1"-‘2 | . 5 was small enough for the cable to be treated as a
string. Similarly, for 1‘&15 ,0 was large enough for the cable to be treated as a hanging chain.
However, for A230. ° asatthe interesting intermediate case described in the introduction
section. Kucwing th <, 1t only remained for my partner and I to dztermine the value of sag
needed to give us the desired value for 1 . )

However, this can be done simply by substituting in . quations 1 and 2 into equation 3 for R
and T, respectively. The - .. : of this substitution:

.' 11 = me LT (‘{)
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FIGURE 1. GEOMETRY OF A HANGING (ABLE

R= Radws of cvevature of cable |
S‘: V\‘\)SPM\ ACQ\CC\‘\OA UF cble |
L= Leng‘*\\- o cable | *

= Angle subtended ab coee of radius oF corvature ¢
From m‘\&‘?m Yo one cable eng |

T= Tension :ugpof\: UL bl
A= Cm;-_xec\:\m\ area of c,&‘o\c i
E= Yw\g‘r Modolis 4 cable |
M= mars pec m\.t‘* \w{“\ O'F cable
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‘Therefore, since all quantities except for § and A can be experimentally measured (and indeed
were measured), for a given value of x‘ , the value needed for 8 is completely determined.
Plugging in the numbers, we arrived at the following settings for 8: for the low sag case ( A 8 |
), 50,0350 meters: for the high sag case (12 18 ), 5=0.200 meters; and for the intermediate sag
case( A2 30 ), 5=0.140 meters.

I won't attempt to rigorously develop the analytical model used in Prof. von Flotow's
paper, as the mathematics are quite abstract and complicated. Basically, linear partial coupled
differential equations were formulated and solved by vsing an eigen-analysis solution technique.
The resulting solutions were similar to a set of solutions prepared by a UROP student of Prof von
Flotow’s a year ago, with one modification. Our analysis used pinned-pinned boundary
conditions while the boundary conditions discussed in Prof. von Flotow'’s paper were pinned-free
boundary conditions. Because of the large amount of matrix algebra involved in this solution
technique, the problem was solved on a computer using the programming language MATRIXX, 1
which has fantastic matrix manipulation techniques. The code wes written to predict theoretical
mode shapes and transfer function plots of cable tangential deflection at a point vs. driving ‘
frequency. Refer to Appendix A for a copy of the program used to predict the transfer function [
plots and a page explaining the variables and constants used in the program. The output of this
program was three plots of cable tangential deflection vs. driving frequency for the three J
different sag cases mentioned above. These graphs can be seen in the results section of this }
report. Appendix B contains the programs used to generate mode shape data at the given L
resonant frequencies. These resonances were determined by locating the peaks of the transfer A
function plots. Again, a sheet is included to define the variables used in the computer program.
Appendix C contains the data obtained from executing this program. This data, which represents

cable tangential deflection vs. non-dimensional cable length, can be plotted on top of given plots

of the cable in the equilibrium position to obtain the deflected shape of the cable at the resonant ’
;ftequencies. Hence, these plots can be directly compared to plots made by taking data from \
actual time exposure photographs. Again, these plots will appear in the results section next to !
their theoretical counterparts.

f The analytical model for determining the wave propagation speed down the cable is to use b |
the classic formula known for centuries:

. ¢t {Vm (s) 1'
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¢/ where T is the tension supporting the cable at the ends and m is the mass per unit length of the
~ cable. The value for T can be obtained from equation 2 and a numerical value can be obtained
for the wave propagation speed for each of the three sag levels. Again, these numbers will be
presented in the results section in a table comparing theoretical and experimental wave
propagation speeds. \

One important result that should stated at this point is that theory predicts mode coupling
for the intermediate sag case. Mode coupling occurs when two different resonances mode
_Shapes are excited at closer and closer frequencies. In fact, as the resonant frequencies merge
into the same frequency, 8 mode shape with mixed characteristics of the two parent modes is |
seen. This mode shape coupling, as predicted by Prof. von Flotow's model, actually was ( '
observed when the theoretical plots of the first four mode shapes were printed out for the
intermediate sag case. If nothing else, this helps to confirm that our number-crunching truly \
represents the solution (for our boundary conditions) of Prof. von Flotow's previously untested :
theory.
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3. Experimental Apparatus
3.1 General Setup

A section of the strong back in lab was procured and our apparatus was sctup.
Subsequently we attached a twelve foot long nylon cable to the strong back with one vertical and
one horizontal cable clamp. The horizontal cable clamp was found in lab and simply bolted
rigidly into the vertical strong back wall. We found the base of the vertical cable clamp in the lab
as well. Using a lathe , we machined threads into the vertical aluminum rod that the cable
attaches to and screwed it into the rigid bolted-down base. With this design. it would appear that
our assumption of pinned-pinned boundary conditions is a valid one. This base could be moved
horizontally and bolted again -- thus, this offered us a way to vary the midspan deflection.

A variable frequency shaker was mounted near one end of the cable. Either a wave-tech
generator or a frequency spectrum analyzer was used to drive the shaker (after passing through
an amplifier) at a fixed frequency or as a white noise, respectively. The choice of the driving
mechanism depended on which of the experimental variables we were trying to measure (mode
shapes or resonant frequencies, respectively).

As mentioned in the introduction, a magnetic field is necded to measure tangential velocity.
This quantity was needed for the resonant frequency and wave propagation speed phases of the
experiment. From theoretical considerations, a practical minimum for the required magnetic field
Strength was found to be about 10,000 Gauss. It is difficult to obtain magnetic field strengths of
this magnitude in the lab; therefore, my partner and I decided to construct electromagnets that
would give us the required magnetic ficld strength. This proved to be a demanding task. Indeed,
the construction of these magnets took up the majority of our macliining time. Please refer to
:Em 2 for a diagram showing our magnet construction scheme. The cable, when driven, moves
;renicaﬂy in the air gap of the electromagnet. A small copper filament wrapped around the cable
at this point will achieve a voltage when passing through this magnetic field. The necessary
number of tums of wire around the magnet core was determined to be approximately 2500. The
wire was wrapped around the core by using a lathe.
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3.2 Wave Speed Propagation
" In this phase of our exp~riment, both magnets were used. The small copper filaments
wrapped around the cable were connected to leads that lead to a two-channel oscilloscope with

memory. In the experimental procedures section, the method of obtaining the wave propagation . 1
speed will be explained. Please see Figure 3 for the experimental setup for the wave speed +L
propagation phase of the experiment.
]
{
3.3 Resonant Frequencics -
For this part of our experiment only one magnet was needed. A frequency spectrum r

indyzer drove our variable frequency shaker( via an amplifier) with white noise, The induced L
voltage in the coil was then sampled by the input channel to the frequency spectrum analyzer. 1
Please see Figure 4 for the experimental setup for this phase of the experiment.

3.4 Mode Shapes

In the final phase of our experiment, all magnets were removed. A manually controlled
wavetech generator was used to drive the shaker at a fixed frequency. A construction paper {
background was painted black and used as a backdrop for our photographs. We used a 750W
spotlight to illuminate the cable so it would register on a time exposure photograph. A 35mm A
camera with a wide angle lens was used to photographically record black and white pictures of
the mode shapes. Please refer to Figure 5 for the experimental setup for the resonant mode
shapes of the experiment.
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4., Experimental Procedures

4.1 Wave Speed Propagation

The experimental procedure in this case was particularly simple. We tweaked the cable at a
point to the right of the right magnet. This tweaking motion was accomplished by applying a
sharp pulse to the cable with one finger. When the transverse wave had propagated along the
cable to the point where the right magnet was located, the sudden displacement of the cable at
this point triggered our two-channel oscilloscope to begin a time sweep on both channels. It took
a small but measurable time for the transverse wave to propagate down the cable to the second
magnet. When the wave reached this point the first non-zero signal was generated on the left
magnet channel. By comparing the two channels on the oscilloscope, it was observed that the
channels registered a very similar signal separated by a time delay. By knowing the distance
between the two magnets, we then calculated the wave propagation speed along the cable by
simply dividing the distance by the time delay. This experiment was performed five times at
each of the three sag levels. The average of the five trials was calculated and is displayed in the
subsequent results section, compared with the theoretical value of the wave speed for each case.

One source of error in this experiment is certainly the setting of cable sag. Especially for
the case of small sag, a small error in setting the midspan deflection can cause a large change in
the experimentally measured wave speed. Therefore, we would expect a better correlation

between theory and experiment for the case of higher sag.

4.2 Resonant Frequencies

Performing this experiment was the most difficult in terms of the actual implementation. A
position was selected for the magnet near the right end of the cable. For each of the three
midspan deflection levels, a total of ten trials werg used and an average s taken. For each trial,
the frequency spectrum analyzer outputted a white noise signal. This was fed through the shaker
amplifier to the shaker. The measured cable response at the magnet location due to this white
noise was amplified and fed back to the frequency spectrum anaiyzer. The frequency spectrum
analyzer then Fourier analyzed the incoming data to obtain a transfer function of voltage in the
coil vs. the driving frequency. Since the voltage in the coil is proportional to the tangential
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velocity at this point, the frequency spectrum analyzer actually had data for the cable velocity vs.
frequency transfer function. This transfer function data was plotted by the spectrum analyzer and
saved on floppy diskette. Later, hardcopies of these transfer function plots were printed out.
Sinoe. at a paint, the tangential cable velocity is maximized at the resonant frequencies of the
;ribrating cable, the graphs of the (plotted) transfer function should have maximums st the
resonant frequencies. Therefore, the resonant frequencies can be read directly from the transfer
function plots.

The sources of experimental error in this phase of our experiment are numerous due to the
complexity of the data taking process. Circuit noise appears to be the primary source of error,

especially in the low frequency range.

4.3 Mode Shapes .

In this phase of our experiment, the lab was darkened as much as possible and the data was
taken at night. A spotlight was shined down the length of the cable in order to create a white
washed-out picture of the desired mode shapes against the black background. We varied the
frequency on the wavetech generator until we had visual confirmation that we had indeed excited
a pure mode of the system. Once this frequency was set, three one-second time exposures were
made: one at the optimal f-stop (read from a lightmeter installed in the camera) , and one at the
next higher and next lower f-stops. We obtained these three pictures for the first four measurable
mode shapes for each of the three sag settings.

Sources of error were numerous here too. The most pronounced effect was the existence of
three-dimensional whirling modes, which were neglected in the analytical model provided by
Prof. von Flotow. Therefore, a washed-out photographic mode shape might appear two-

dimensional even if in actuality it was a whirling three-dimensional mode.
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(8. Results and Discussion

5.1 Wave Propagation Speed

The results of the experimental wave propagation speed are compared directly to the
theoretical results for each of the three different sag levels of .035 meters, .14 meters, and .20
meters in Table 1. As mentioned before, we expect a better correlation between theory and
experiment in the higher sag cases. Clearly, this is exhibited in the data, with experimental
results from the two higher sag cases actually quite consistent with the theoretical results.

There are many possible sources of error in this experiment, and below I mention ones 1

feel to be the most significant.
1. Ervor in setting midspan deflection

2. Error in generating a consistent impulse by hand for different data trials.

3. Error in the value for the Young’s modulus of the cable. (This changes the
theoretical value of the wave propagation speed)

Even with these errors, I feel the results are significant and offer reasonable proof that the
theoretical model actually predicts the experimental behavior in the two higher sag cases. The
lowest sag case will probably need to be confirmed with a more elaborate experimental setup to
minimize the errors mentioned above. Overall, I would say that experiment and theory match

reasonably and our results show some degree of validity.

5.2 Resonant Frequencies

As mentioned above, we will compare data graphically in this phase of the experiment. 