
Ln0

(nJ

TrvTi-TJmeCnenso h OJIC.FIL O,

I.TI

andUIO Cotrl SmeStucurs

Fprvdfrpbinarl RenotFr otat 46036C-q

3/1/Sb-lU/31/3 Con'-ni 4



9

Final Report of Research on

Travelling Wave Concepts for the
Modelling and Control of Space Structures

performed at the

Massachusetts Institute of Technology,
Department of Aeronautics and Astronautics

Massachusetts Tnstitu Ic of Technology EY"11C
• ,=;GETED

for thle for tl~eMAR 2 9 1988

Air Force Office of Scientific Research
(Contract F4 9620-86-C-0039)

1 March 1986 - 31 October 1987

-3

.1 10. .

*. *., I,- . . .

b--TRIB•.5N -STAýýLVN A 2 2 ra
Approved for pgabllc rM10=6

Dist'ibution U cIt'ttifi .



Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

,__Approved for public release,
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFOSR TR- 8 8 -- 0 2 8

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
Aeronautics and Astronautics (If applicable) Air Force Office of Scientific Research
Mass. Institute; of Technology_

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

77 Massachusetts Avenue AFOSR / L \\ 0
Cambridge, MA 02139 Bolling Air Force Base, DC 20332-6448

8a. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION Air Force (If applicable) F49620-86-C-0039 and
Office of Scientific Research AFOSR FQ8671-88-00398

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

Building 410 PROGRAM PROJECT tASK WORK UNIT

Bolling Air Force Base, DC 20332-6448 ELEMENT NO. NO. NO. ACCESSION NO

11. TITLE (Include Security Classification) Vo"

Travelling 'Wave Concepts for the Modeling and Control of Space Structures.

12. PERSONAL AUTHOR(S) A.H. von Flotow, S.R. Hall

13a. TYPE OF REPORT Final 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT
Fn FROM 3/1/86 TO1__31_8 January 31, 1988 approx. 300

16. SUPPLEMENTARY NOTAON

17. COSATI CODES 18. SUBJECT TERMS (Continue on rev#.rse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Wave Propagation, Flexible Structures,

Active Control, localisation

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report draws together several publications, sunmmarizing research performed into
wave propagation in, and control of, large flexible spacecraft structures. The topics
of individual papers range from wave propagation modeling in periodic and disordered
periodic structures, through active control of reflection and transmission at discrete
points, and distributed hierarchic control architectures for flexible structures.

20. DISTRIBUTION//AVAILAEBILITY OF[,TRACT 21. ABSTRACT SIJLRITi' CLASSIFICATION
IUNCASSIHIED/UNLIMITED SAME AS RPT. DTIC USERS Uncl ied

2a. NME OF . .ESPONSIBLE INDIVIDUAL 22b. TELEP ONE Include Area Code) 122c. OFFICE SY Bch
L__.WC\j C- q _H,~

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF A,;', At

All other editions are obsolete.
Unclassified



SFOSR-I'K. -ZS 0 2 8
Summary

Tlhis report summarizes 20 months of research into Travelling Wave

Concepts for the Modelling and Control of Space Structures6 performed at the

Massachusetts Institute of Technology under the supervision'of Professors

von Flotow, Hall and Crawley. Major contributors to the work were graduate

research assistants Miller, Signorelli, O'Donnel, and Kissel. Many

undergraduate assistants also contributed.

The research has led to seven research papers which were published in

the open literature or presented at conferences, and to two graduate theses

and two undergraduate theses in MIT's Department of Aeronautics and

Astronautics. These publications are presented in full in the Appendix.

in addition to these published papers, the past few months have

witnessed other forms of dissemination of research results. Professor von

Flotow nas given invited lectures derived in part from this AFOSR sponsored

research at the Office of Naval Research in September 1986, Yale University in

May 1987, the Naval Underwater Systems Center in June 1987, Lockheed Palo

Alto in August 1987, the University of Buffalo in October "1987, and at the

meeting of the American Acoustical Society in Miami in November 1987. In

addition, we have influenced research into the dynamics and control of space

robotics at Martin Marietta Aerospace in Denver, by sending them requested

computer software, and work in active control of structural acoustics at the

Naval Underwater Systems Center in Newport, R.I.

This report consists of a brief executive sumary highlighting the main n For

results of the research publications collected in the Appendix. A&I
D)*k: TA4i3
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Modelling of Disturbance Propagation in Elastic Structures

~ _A good portion of the research has focused upon the development of

techniques for the modelling of structural response in terms of disturbance

propa~gation. Such models are of interest for several reasons:

1. Understanding the mechanisms that govern the propagation of
disturbances through an elastic structure is useful for building
intuition, for structural design and for design of active control,

W2. Disturbance propagation models have the potential for
providing high-fidelity analysis capabilities in response regimes
where other techniques are inapplicable. Of considerable interest
to the researchers at MIT is the response of elastic spacecraft to
disturbances with significant spectral content at frequencies.
including many (even hundreds) of the spacecraft natural modes
of structural vibration,~

3. Elastic disturbance propagation is a classic area of research in
applied mechanics, having applica,'Lon in acoustics, seismology,
microwave electronics, transducer design, biological fluid
mechanics, design of mechanisms and machines, and many
other areas,

The MIT research effort has made good progress in development of

models for elastic disturbance propagation. This progress is summarized here

with reference to specific papers written during the period of the contract and

with its, financial support.

Wave Prop~agation and Power Flow in Truss cStructures

The MS thesis research of Joel Signorelli took a computational

approach to investigating the wave propagation behaviour of simple beam-

like truss structures. Although Joel began the worlK with the intention of

investigating the behaviour of a very complex spacecraft truss beam, he found

enough interesting effects in a simple situation, originally intended to serve

only as a preliminary warm-up.
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Joel introduced a modelling technique which takes explicit advantage

of the spatial periodicity of the structure. This is similar to an approach

developed by M.S. And- -on at NASA Langley Research Center in recent

years, but unlike Anderson's approach, has no difficulty with the application

of boundary conditions. Joel's approach begins with the spatial state

transition matrix (also known as the transfer matrix) of a single bay. This

transition matrix is formulated in the frequency domain, by any of a host of

techniques, including exact solutions of the partial differential equations

governing motion of the truss members internal to the bay. For purpose of

comparison with a prior finite element solution of a segment of the truss,

Joel chose to derive the transition matrix with the identical finite element

discretization.

One approach to modelling the dynamics of a finite portion of a one-

dimensional spatially periodic structure involves multiplication of a series of

segment transition matrices. This is numerically not stable, since the

transition matrix can, in general, have an extremely large range in the

magnitudes of its eigenvalues. An alternative, transforming to the transition

matrix eigenspace, is numerically superior, and has interpretation in terms of

wave modes.

M~Th of Joel's work focused upon the frequency-dependence of wave

propagation in a beam-like truss. From a numerical viewpoint, this is just a

study of the eigenvalues and eigenvectors of the bay transition matrix, and of

their dependence on frequency. Joel discovered a host of interesting effects:

1. The model exhibits as many wave modes in each direction as
one chooses coupling coordinates between neighboring bays.
The wave modes come in identical pairs, of each pair one wave
travels in each direction.
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2. Each wave mode travels independently of the others.

3. Each wave mode can be described by its dispersion behaviour
(the frequency dependence of the propagation velocity), and by
the corresponding deflection shape. Joel's thesis is full of plots
of the deflection shape of a truss beam supporting a single
travelling wave.

4. The dispersion characteristics of a truss beam are astoundingly

complex. Each wave mode may be either:

a) propagating without attenuation (a traveling wave),

b) propagating with attenuation (a complex wave), or

C) not propagating (an evanescent wave). Joel found that
each of the wave modes he studied exhibited all three
types of behaviour, different behaviou~r in different
frequency ranges. Such complex behaviour is
unprecedented in the study of wave propagation in
periodic structures.

5. Joel is among the first few analysts (perhaps thý.. first) to clearly
describe the complex traveling wave, a wave which both
propagates and is attenuated. He demonstrates that simple,
mono-coupled structures cannot support such behaviour, but
that at least two coupling coordinates are required. Furthrmore,
he demonstrates that such wave motion does not propagate
energy in isolation, but may in conjunction with other wave
modes.

6. Joel investigates powepr flow in the truss beam due to these wave
modes in isolation. He neglected to consider power flow due to
wave-mode interaction, since at that time we did not yet know
that such a thing could happen. Dave Miller's work discovered
this a few months later.

7. Joel applied two types of boundary conditions to the truss beam
and transformed these boundary conditions into a wave-mode
description involving the boundary scattering matrix. This is a
unique approach, which permits investigation of the causal
behaviour at the boundary, the mechanism of reflection of
incident disturbances.

8. Having transformed the analysis to wave mode coordinates, Joel
was able to derive exact (to numerical precision) structural
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transfer functions of the structure. The numerical difficulty of
multiplication of a sequence of transfer matriccs is thus avoided.

Full details of Joel's work are recorded in the appendix in the thesis,

"Wave Propagation in Periodic Truss Structures," and the paper "Wave

Propagation, Power Flow, and Resonance in a Truss Beam." This paper has

been accepted for publication in the Tournal of Sound and Vibration.

Power Flow in Structural Networks

In the fall of 1986 and winter of 1987 PhD candidate David Miller was

grappling with control formalisms for structures whose dynamics are

described in terms of wave propagation. One concept that surfaced was the

desirability of influencing the power flow in such structures by active means,

rather than to monitor and actively control the direct response. This

consideration led to the development of a theory and computational

procedure for calculating such power flow. This procedure is briefly

mentioned in the paper, "Active Modification of Reflection Coefficients in

Elastic Structures," presented by David Miller as an invited paper at the

American Control Conference in Minneapolis, in June 1987, and included in

the appendix of this report. D,ý .id Miller and Prof. von Fictow are

continuing to develop these concepts of power flow, and are preparing

further papers for publication.

Waves in Sp2acecraft Tethers

Tethered spacecraft are envisioned which coyisist of two (or more)

relatively compact bodies connected to one another by long, slender wires

under very slight tension. The dynamics and control. of such configurations

is beginning to receive serious attention of analysts around the world. In the
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summer of 1986, Prof. von Flotow considered the problem and proposed an

engineering model which explicitly separates the motion into slow dynamics

(comparable to orbital rate) and fast dynamics.

The fast dynamics, confined primarily to the tether, are governed by a

system of partial differential equations. In the linear approximation, these

equations are related to the well-known wave equations, differing

significantly because the e ilibrium shape of the tether is slightly curved.

The analysis then investigates the dynamics of such a curved, elastic wire in

terms of both travelling waves and in terms of exact frequency-domain

solutions of the governing equations. The analyses are summarized in a

paper, "Some Approximations for the Dynamics of Spacecraf. Tethers," which

is included in the appendix of this report, and which is to be published in the

AIAA Tournal of Guidarce, Control and Dynamics.

In the winter and fall of 1987, two undergraduate students in MIT's

Department of Aeronautics and Astronautics, Todd Barber and Earl Gregory,

accepted the challenge to experimentally investigate the dynamics of an

elastic catenary, and to verify (or disprove) the analysis proposed by Prof. von

Flotow. Wave propagation speeds, transfer functions, and mode shapes were

measured, and compared favourably with the analytically predicted values.

The transition from the behaviour of an inelastic hanging chain to that of a

taut elastic string was investigated. These results are summarized in Todd

Barber's report, "Dynamic Cable Response: TheEffect of Cable Sag," included

in the appendix.
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Wave Propagation and Localisation in Disordered Periodlic Structures

Wave propagation in periodic structures has received the attention of

dozens of investigators over the past century, beginning with Lord Rayleigh,

who was interested in light transmission through crystals. Recent work has

been motivated by interest in seismology, structure-borne sound, solid state

physics, microwave electronics, and other applications. Our interest

originates in the realization that many future large spacecraft structures will

also be spatially periodic; i.e., truss structures.

Recent work at MIT and elsewhere has investigated the dynamics of

structures which are slightly perturbed from perfect periodicity. Under the

partial sponsorship of this contract, doctoral student Glen Kissel has in the

past two years achieved a fundamental analysis of these effects in structural

systems. He drew heavily on a large literature, primarily in solid state

physics. Glen's writings on this subject (a paper "Localization in Disordered

Periodic Structures," presented at the 28th AIAA Structures, Structural

Dynamics and Materials Conference in Monterey in April 1986, and a PhD

thesis at MIT in September 1987 with the same title, represent an elegant

theoretical summary of a broad disjointed literature, and make significant

new contributions to that literature. Glen also provides a computational

procedure for evaluating the strength of the localization effect in structural

systems. Glen Kissel now works at the Jet Propulsion Laboratories, and is

writing two further papers for journal publication based on his PhD

dissertation.

In the winter of 1987 two undergraduate students, Cathy Sybert and

Tupper Hyde attempted an experimental verification of localization in a

relatively complex structure, intentionally disordered. Their experiment was
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not a glorious success, as is documented in the report by Tupper Hyde,

"Mode/Wave Localization in Disordered Periodic Structures."T

Active Control of Elastic Structures

The preceding section describes the research into structural dyhiamic

modelling performed under the terms of this contract. We have also been

active in research into active control of such structures as is summarized by

the following paragraphs and by the four relevant papers in the appendix.

Hiierarchic Control

An important consideration in the control of flexible structures is the

computational architecture which is used to implement the control. Because

of the large number of modes, sensors, and actuators in a typical flexible space

structure, traditional control system architectures (such as a full state feedback

controller cascaded with a full state estimator) are infeasible.

The approach that has been taken in this investigation is to develop a

hierarchic control system architecture which can greatly reduce the amount of

computation required, while at the same time allowing the procesing to be

distributed. This allows much of the control to be performed locally, so that

the approach also reduces the need for transferring large amounts of data to

and from a central processor.

In February 1987 the paper, "A Hierarchic Control Architecture for

Intelligent Structures," was presented at the AIAA Rocky Mountain Guidance

and Control Conference (see appendix). The general approach is to divide the

structure into coarse and fine finite element models. The coarse FEM is used

to control the lower modes of the structure through a central (or "global")

processor. The local controllers then operate on the residual, which is the

9



difference between the global (or coarse) FEM and the fine FEM. Results

presented in the paper demonstrate that the approach may be easily applied to

test cases, and that under some circumstances, stability can be guaranteed.

Control-Motivated Tailoring of Structural Dynamics

The extensive research literature on control of structural dynamics has

almost invariably taken the approach that the structural dynamics are

difficult to control, and may not be modified to ease the task of the control

engineer. Thus one often reads, for example, that the dynamics of large

flexible spacecraft are characterised by many (even hundreds) of lightly

damped modes (damping ratio less than one percent) spectrally closely spaced.

Moreover, these modes are poorly known, both with respect to frequency and

mode shapes.

An exception to this approach is the growing literature on

simultaneous design of the control system and the structure. Unfortunatly

most of this literature attempts an "optimal" approach to this design problem,

and the research quickly bogs down to research into computational

techniques of minimizing a complex non-linear function of many

parameters. The examples that have been thus treated are extremely simple,

and it appears that the techniques are computationally limited to such simple

examples. Furthermore, since one can only optimize over parameters which

are modelled, and since modelling of passive damping is extremely difficult,

this literature tends to have ignored this extremely important design freedom

by assuming some given level of passive damping.

In August 1986 Prof. von Flotow presented the paper, "Control-

Motivated Tailoring of Spacecraft Truss Structures," at the AIAA Guidance,
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Dynamics and Control Conference in Williamsburg, VA. This paper (full text

in the appendix) takes a very informal approach to:

1. Quantitatively estimating the benefits of passive damping to the
problem of active control of structural dynamics.

2. Quantitatively estinra!'ng the mass penalties associated with
various passive damping treatments.

3. Computationahiy demonstrating the possibilities for tailoring the
dynamics of a truss beam for active control.

The Acoustic Limit of Active Control of Structural Dynamics

In the winter of 1987 Prof. von Flotow was invited to write a chapter

foPr the Monograph, "'i arge £c'pace Structures: Dynamics and Control," ed. S.N.

Atluri, A.K. Amos, Springer Verlag, to appear, 1988. The invitation was

accepted, and the result, entitled, "The Acoustic Limit of Active Control of

Structural Dynamics," is included in the appendix. This paper is based on the

relevant work done by Prof. von Flotow and partners over the past few years.

The main points of the paper are:

1. Modal analysis (or any global model of structural dynamics)
becomes fatally unreliable in the acoustic limit, defined to be the
fr.!quencies above the natural frequency of perhaps the tenth
mode.

2. Passive damping is an important vibration remedy to be used in
this limit.

3. If active control must be used, then it must be based upon (local)
acoustic models of the structural response.

4. Examples of such a control design procedure are given.
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Contents
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WAVE PROPAGATION IN PERIODIC TRUSS STRUCTURES

by

JOEL SIGNORELLI

ADM

Wave propagation in periodic truss-rork beams was

analytically investigated. Transfer mtrix methods were applied

to the analys;s of two truss beams. The results of a truss with

mmbers modelled as pinned rods agree well with results obtained

from equivalent continuum models of the same structure. Use of

beem models for the truss umebers shows that the pinned rod truss

model loses fidelity at the first resonant frequency of the

lateral motion of the truss members.

The pinned beam truss exhibits complicated mechanical

filtering properites. Each travelling wave mode experiences

alternating stop. pass, and complex mode bands as a function of

frequency. It was shown that complex modes cannot exist alone and

must form in groups of four. Net power flow in right/left-going

complex mode pairs is found to be zero.

Scattering matricies were determined for fixed and free

boundary conditions. The phase closure principle was then used to

determine natural frequencies of the truss. It was found that

closely spaced resonant frequencies were not identified by this

method. Computed results show subtle erroneous characteristics

which are attributed to numerical effects.

Thesis Supervisor: Andreas H. von Flotow

Title: Assistant Professor of Aeronautics and Astronautics
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bmDter I- Introductig.

1.0 askmved

1ny future space structures will have physical

characteristics radically different from those flying today.

Among these will be large direct broadcast satellites, the space

station, and numerious scientific and coomercial satellites.

Critical to the success of the Strategic Defense Initiative will

be large space based radar and surveillance platforms. Since the

size and weight of these systems greatly impact launch costs.

these so-called large space structures (LSS) will be built largely

of light and flexible aerospace materials. Because of their size

and distributed flexiblity. the structural vibration modes of

these structures may well be within the bandwidth of the control

system. It is therefore of great importance to be able to

characterize the dynamics of these LSS through analysis and

simulation. One method of analysis involves examining these

structures in terms of maue propxagtiton.

Many of these planned large space structures will be

constructed, in part. by truss-work structures. Truss structures

are favored because of their ease of packaging. transportation.

fabrication, and space assembly. A current example of a large

space structure that will be assembled in part by truss members is

NASA's space station (Fig 1.1). Truss structures generally

consist o. in assemblage of identical elements and are thus
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Figure 1.1 - NASA's Space Station
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spatially periodic. Periodic structures have long been known to

act as mechanical filters for travelling waves [B-l]. In order

to gain more insight and understarding as to how wave propagation

properties can be exploited in the dynamics and control of LSS,

this thesis examines wave propagation in two-dimensional, periodic

truss-work structures.

1.2 bW. Pi ties in the Literature

The study of wave propagation in periodic structures began

long ago in the field of solid state physics. Noteworthy among

the early investigators is Brillioun who made a significant

contribution to the study of wave propagation in crystals.

transmission lines and atoms [B-l]. Cremer and Leilich studied

flexural motion in periodic beams and showed that waves can

propagate in certain frequency bands but not in others [C-l].

The notion of propagation coefficients was defined by Heckl in

1964 [H-1]. He Investigated wave propagation in periodically

supported, undamped grillages. Mead included damping effects in

the wave propagation theory for periodic beams [M-1]. Mead and

Eatwell theoretically described the so-called complex modes which

have chaý-acteristics of propagating and attenuating waves [M-2)

[E-1]. von Flotow introduced tha use of scattering matricies to

describe junctions in structural junctions. He also modelled

members by transfer matricies and demonstrated the superiority of

this approach over equivalent continumm models [V-i].

1.3 The Premmst Work

in this thesis, the methods of von Flo.ow and Mead will be
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employed in the analysis of a two-dimensional periodic truss

structure. Chapter 2 will introduce and develop the concept of

the transfer matrix. Advantage 13 taken of the fact that truss

structures are periodik: by examining their dynamics in terms of

the transfer matrix of a single bay of the truss. In Chapter 3

the eigenvalues and eigenvectors of the transfer matrix will be

used to identify and characterize the wave modes present in the

truss structure. By use of dispersion plots, the mechanical

filtering properties of the truss will be demonstrated. Power

flow in wave modes will be investigated in Chapter 4. And

finally, by through the use of scattering matricies. Chapter 5

describes the interactions of the wave modes with truss

boundaries. Naturatl resonant frequencies of an example truss will

also be determined.
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Chapter 2 - The Transfer Iktrix Meth•d

2.1 The State Vector

A periodic truss structure consists of several identical

substructures called bays. At any station along the truss, a

cross-secttonal state vector, Y, which describes the force and

displacement at that station, can be examined. Figure 2.1 shows

one bay of a two-dimensional truss structure and the state vector

associated with each side of the bay.

YL =Y¥ =[]/2 4

y

z

Figure 2.1 - State Vectors Associated with

One Bay of a Periodic Truss

.

Each bay consists of four structural members. The state vector is

chosen such that it describes the forces and displacements of the

endpoints of the members. UL and UR describe the displacements of
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the joints on the left and right sides of the bay respectively,

while the forces on the joints are represented by FL and F.. If

only Joint translation in the X and Y directions, and rotation

about the Z axis are modelled, the state vector on the left side

of the bay, YL, will be,

UUL =U2. F, = [F (2.1)

rui 11rix

The state vector on the right hand side of the bay, Ya, is similar

and involves the state of Joints 3 and 4.

2.2 TMw Transfer lhtrix

The state at any two stations can be related by means of a

transfer matrtx, T.

Y.,= [ T ] Y, (2.3)

where Y, is the state vector for the i-th station. The transfer

matrix nay be thought of as a spatial state transition matrix

between two stations on the truss. The elements of the transfer

matrix depend on the bay properties and, on frequency. Without

damping the transfer matrix will be purely real.

Once the transfer martix for a single bay has been

determined, the transfer matrix for the entire structure can be

assembled. For a seven bay truss (Fig. 2.2), we have,
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SAY 1 2 3 4 5 6 7

N\NN-NNý
YL YT Y2  Y3  Y4  Y6 Y6  YL

Figure 2.2 - State Vectors for a Seven Bay Truss

The states at the left and right sides of a bay are related by the

bay transfer matrix.

Yj = [ T, J YL

Y2 = T2 ] Y1  (2.4)

Y,-I = Ti.. ] Y,

By multiplication of transfer matricies we obtain,

Y.=[ T7  [ T ][ Tg ][ T4 ][T3 ][ T2 ]E T, ] YL (2.5)

But since the bays are considered to be identical, we have,

I T, ]: T2 ] = CT3 ] = .... = [T, ]

so that, Y, = [ T 37 YL (2.6)

which relates the states at the right and left hand sides of a

seven bay truss. T is refered to as the rearward transfer matrix

of the structure [R-i1. The transfer matrix can also be expressed

in terms of its eigenvalues and eigenvectors,
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'= D- A, v, (2.7)

where v = the matrix of right elgenvectors of T

A a the diagonal matrix of eigenvalues of T

so that by Eqn 2.5. the states at opposing ends of the truss can

be related by.

YN[ w A7 J ] YL (2.6)

2.3 iDrivatim of the Transfer Nhtrix

There are several methods to determine the transfer matrix of

a structure. Among these are deriving the matrix from an n-th

order differential equation, and deriving it from the system's

mass and stiffness matricies EP-1]. The second method will be

used throughout this work.

The mass matrix, M. and the stiffness matrix. K. for a bay

can be determined by means of a finite element analysis of the

bay. But first, care must be taken to ensure that differences in

displacement and force coordinate definitions between the finite

element analysis and those of the transfer matrix method are taken

into account. For the transfer matrix method, the positive face

of a cross-section of the truss is defined as the face whose

outward normal points in the positive x direction. Positive

displacements coincide with positive directions of the coordinate

system, and forces are positive if. when acting on the positive

face. their vectors are in the positive direction (P-1]. Fig 2.3

illustrates the force/displacement coordinate definitions for the

two analyses. Note that in the transfer matrix method forces and
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moments of adjacent elements are of opposite sign so that all

internal forces in the structure are balanced.

UY FYL UYR, FY

eL., TLr O ,I e), T *

Ut,.. FXL Ui., Fxi

Finite Element Force/Displacement Coordinate Definitions

UL ~UK.

Fi Fx N

Transfer Matrix Method Force/Displacement
Coordinate Definitions

Figure 2.3 - Force/Displacement Definitions for the Finite
Element and Transfer Matrix Methods

For the finite element analysis the bay was modelled with eight

elements (Fig 2.4).

&

2 5

4 7'

Figure 2.4 - Node Assignment for the Finite
Element Analysis of a Bay

The nodes located at the member midpoints were included so as to
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better model the bay's higher order modes. The 'left' coupling

dof's between adjacent bays are identified by the subscript L, the

'internal' dof's by I, and the 'right' coupling dof's between bays

1y R. The finite element analysis produces matricies M and K

such that,

N [1] + K ]U, . F, (2.9)
UR UR FR

For a truss with only nodal displacements as coupling dof's this

•U2

becomes, U1 = U' U, = U' Ult = Us (2.10)

U3 ~ ~ UJIU'

[F2 I

FL= F] F, = F4 FR = F 1 (2.11)

F6

with U, and F, given as in Eqn 2.2. After Fourier

transformation. Eqn 2.9 becomes.

SK - W N ) U, -- F, (2.12)
Upt Fn

If structural damping is modelled, the leading mtrix becomes,

2

£ K (I - i r 2 ) - 2 M] (2.13)

where 1q is the structural damping coefficient (loss factor). Eqn

2.13 forms the dynamic stiffness matrix of the bay.
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2.4 uoation of the Dymmic Stiffness Natrix

_n order to derive the transfer matrix between the the left

and right hand sides of a bay, it is necessary to condeiise the

internal nodes into the dynamic stiffness nmtrix. We reject the

option of static condensation because we wish to model the

internal dynmaics of the bay. The dynamic stiffness matrix may be

par titioned am. [DLL DLIJ DLA [UL...
DIL Ditl Dta ji F (2.14)
D.L D., D.1  ]

Since the internal forces. Ft. must be zero, the second row of the

matrix gives,

Ut = -D1C1 (DPi UL + D1t U. ) (2.15)

Eqn 2.15 is substituted into rows I and 3 of Eqn 2.14. and after

some rearrangement we get.

DLL - DL: D::' DIL -DLL D2 1s Dt. UL F (

-DRt D1 1 ' DIL -DR, D1J
1 D1R + D.RlP.J

For simplification, this can now be written az.

[A ] [UL -FL (2.17)

where negative values of FL have been taken to ensure

coupatability of the transfer matrix and finite element analyses

force coordinate definitions. And finally, the transfer matrix is

determined by.
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to -,-8". A -B" UL
L,] C - D-' A -DJ- [ (218)

or equivalently.

Y,. [ T ] YL (2.19)

2.5 True@ Clume

Before the global or complete transfer mtrix of the truss

can be assembled, the transfer mtrix for the member closing off

the right end of the truss must be determined.

Consider the end member as shown below. Once agin. the

member is modeled as two elements.

Y1. N'LXI [\C~ f411  Yt

Figure 2.5 - Truss with Closing End Member

The displacements for the end members are.

U3 R = U3L U4R = U4 L U =f = USL (2.20)

while the forces acting on the nodes are.

F3 = F3 . - F3L F 4 = 0 F6  = F5. -F5L (2.21)

The end member's mass and stiffness matricies are obtained

from a finite element analysis of the member. Following the same

procedure as in section 2.4. we eliminate the internal degrees of

freedom at node 4.

- 19-



A B (2.22)

with A,B,C, and D as defined in Eqns 2.16 and 2.17. Substitution

of Eqn 2.21 into Eqn 2.22 leads to.

F6. A [ Bj~ .~ + , (2.23)

Combining this with Eqn 2.20 we get,

URu5  [1] 0 0 0 U31]
Us, 0 [I] 0 0 UGL (2.24)F3, [A B] [1] 0 F42L

FaFlk] C D 0 MI] F6L

which defines the point transfer matrix across the end member as,

Yea = [ Te ) YC (2.24)

or,

Yx, = T, )Y. (2.25)

So that for the whole truss we get.

Y, = Tx ][ T YL (2.26)

or, Y. To ] YL (2.27)

where To is the global transfer matrix for the entire truss.
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2.6 Natural Frequencies of the Truss

Once the global transfer ma.trix for the structure has been

determined, the system's natural frequencies can be determined.

First. boundary conditions are applied to the truss. The boundary

conditions will depend on how the truss is suspended in space.

For exmqple. a future on-orbit experiment will have a truss

cantilevered to the shuttle orbiter as shown below.

Fr

Figure 2.6 - A Truss Cantilevered to
the Shuttle Orbiter

If the truss attach points are pinned, and the orbiter is assumed

to be very stiff and massive. no displacements or torques can

exist at those points. This leads to the boundary conditions,

Ulu 0 Fla Fla
Ors 0 IFlv Fly

Ter I9 [ 3 FL Tj 0 (2.28)O=- U3,. 0 IF3. Fa,
OU,,.4 0 :F3,#, F34
03 JL 9e3. .'L T3 0

The free end of the truss has the boundary condition FR = 0. With

this we obtain from Eqn 2.18.
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1W 1

= F1, (2.29)
F1
F3 .
F3• O L

where T^ and T. are appropriately selected submtricies of the

global transfer matrix T.. The bottom row of submatricies gives.

U12
Usa

0 T. [Ft. (2.30)
Fiv

L F3V j

The only non-trivial wy this can be true is if

dot [ T. o - 0 (2.31)

A plot of I det [ To (w) ] as a functtor of frequency will

indicate the system elgenvalues.

The determination of natural frequencies by thi,,-. ,P.u. ;od may

not always work. Some of the eigenvalues the transtir matrix are

quite large. The result of this is tamit when one attenpts to

determine the transfer matrix for n bays. the value of [T]" very

quickly reaches the computational limit of the computer. A method

will, however, be presented in Sections 5.3 ,,hich will enable theu

natural frequencies of the truss structure to be determined.
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Q--ater 3 - fv. Prm--tima AmlIsis

3.1 Eigmms of the Trumfer lktrix

A wave propagating along a periodic structure can be

characterized by,

Y1. 1  T , (3.1)

indicating that the state at station 1+1 is the state at station I

multiplied by a factor f. This. together with the basic transfer

matrix relation

Y1 T ] Y, (3.2)

forms an elgenvalue problem for f, The elgenvalues are generally

complex and occur in f and 1/f pairs. corresponding to identical

waves propagating in opposite directions (elgenvalues of a

symplectic matrix occur in inverse pairs].

For each wave mode there are frequency regions in which the

wave will propagate unattenuated (pass bands) and regions in

which the wave is attenuated (stop bands). Complex modes (modes

for which the eigenvalue is complex) are also considered to be in

stop bands. The magnitude of an eigenvalue at a given frequency

will indicate whether the wave is in a pass or stop band at that

frequency. If the magnitude of the eigenvalue differs from unity,

the frequency is in a stop band. For magnitudes equal to unity, )
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the frequency is in a pass band [R-2]. In a stoa. band, since IWI

< 1. the cross-sectional state vector will euentually be

diminished to zero.

< I l stop hand

I El> 1 stop band (3.3)

IE 1=1pass bad

Elgenvalue magnitudes greater than unity correspond to

negative-going waves and those less than unity correspond to

positive-going waves.

The relation between f and 1/f can be seen by constructing a

plot of the f plane (Fig 3.1). For a given frequency, values of

j(1 which lie on the unit circle are in a pass band. Those inside

the unit circle are positive-going waves in a stop band while

those reflected outside the circle are negative-going waves in a

stop band. Values of jf which lie in the interior (exterior) of

the circle, but not on the real axes, are complex modes. As a

function of frequency. the eigenvalues move about the plane.

continually changing magnitude and phase.

In the absence of damping, the transfer matrix, T. is real,

thus Its eigenvalues will be real or members of a complex

conjugato pair. Complex modes thus occur only in groups of

four--wave mode interaction is necessary. Mono-coupled systems

(with 2 x 2 transfer matricics) cannot support complex wave modes.

".t is perhaps for this reason that complex wave modes have

received scant attention in the literature, being mentioned in

only two papers [E-1] [M-2].

- 24 -



IM4 M IME

*ReE Re,

Pass Bands Stop Bands Complex Modes

Figure 3.1 - The • Plane

3.2 Px tion Coefficient

The eigenvalues f are related to the propagotton coefftctent

A by

f = e L (3.4)

where L is the bay length. A is generally complex so that

S= 4, + A 1 (3.5)

e= 14- L e L411 (3.6)

or ie LI e i(kL + 2nr) (3.7)

where kL is the nondimensional uxaue ru~mber. The wave number is

related to wavelength N by

k = 27r/ (3.8)

g., (the attenuatton constant) describes the exponential rate of

decay of a wave as it passes through a bay, while IAI (the phase
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constant) describes the phase change a wave undergoes as it passes

through a bay [M-2]. The propagation coefficients occur in +/-

pairs, corresponding to negative and positive-going waves

respectively.

Without damping, a wave is non-propagating whenfver g, it 0.

The classic stop band behavior then has p, = 0 impling no phase

difference between motion in adjacent bays, and spatial

exponential decay of amplitude. If p, 0 0. there is phase

difference between the motion in adjacent bays and the wave now

propagates, but transfers no energy along the length of the beam

[M-2]. The spatial amplitude behavior of such a complex wave

mode is an exponential decay of a sinusoidal envelope. These

relations, including the effects of structural damping, are

illustrated in Fig 3.2 [M-1].

•Lr .. , .

0 W

L.......

w .- - = no dampingI-~---n = O.O1
7 =0.10

Figure 3.2 - Example Propagation Coefficient Values
as a Function of Deamping and Frequency

M, has alternating bands of positive anA zero values. Positive

values imply that the cross-sectionaL state variables decrease

from bay to bay.
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If structural damping is modelled, all the propagation

coefficients are compiex. This is necessary if energy is to flow

from the source of vibration to the energy dissipating sinks in

the truss. The presence of damping causes the wave to decay as it

passes from bay to bay. If the damping is light, pass bands can

still be seen in the plot of lz,. pr is no longer zero in these

bands but it is much smaller than in the adjacent attenuating

bands.

3.3 Wav Pt titm in a Uniform T•-Dimeioml Plumd-Joint

Trus with Rod Mmrs

Wave propmgation was studied in two different truss

structures. The first truss to be analysed was a two-dimensional

truss consisting of rod elements. Rod elements do not have

bending stiffness and are only capable of carrying loads in

tension and compression. The rod elements were joined by pinned

joints. and the members were free to rotate about these joints.

The cross-sectional state vector at each end of the bay consists

of four joint translations and four joint forces (Fig 3.3).

a 6

U211 1use
UF2 1  F.71
U, 4 U .7

Y F,1  2 6 Y F51

F, 3 F.9

Figure 3.3 - State Vectors for One Bay of the
Pinned Rod Truss
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Each bay consisted of four members. Each of the members was

modelled as two rod elements. There were a total of 16 degrees of

freedom for each bay. Only four translational DOF and four forces

ccuple adjacent bays. This leads to an [8 x 8] transfer matrix.

The mass and stiffness matricies for the bay were obtained from a

finite element analysis as described in Section 2.3. The physical

properties of this truss were adapted from the Structural Assembly

Demonstration Experiment (SADE) truss of [31-3]. In this model, it

was assumed that there was no structural damping present, that the

bay longerons were 55 inches long, and that the bay diagonals were

554 inches long. The dynamic stiffness and transfer matricies

were assembled as outlined in section 2.4.

The eigenvalues and eigenvectors of the transfer matrix were

then determined as a function of frequency by a NATRIXx user

defined comand file [N-4]. Eight wave modes are present in the

truss due to the four degrees of freedom present at each side of

the bay. Four of these wave modes are positive-going and four

are negative-goirg. Fig 3.4 and Fig 3.5 present values of the

magnitude. fl, and phase,*, of the eigenvalues of the four

positive-going wave modes.

Dispersiom Qarvem for the Four Right-Going Waves

The magnitude and phase of the first mode over the frequency

range 0 to 100 Hz are approximately ze.-o (Fig 3.4). Because the

magnitude of the eigenvalue is essentially zero. the

cross-sectional state variables at the right side of the bay are

also essentially zero (Y, = f Y,). This indicates that the wave

dies out so quickly that it can be considered to be confined to a
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single bay. This type of localized, quickly decaying near-field

wave is also kn~own as an euanescent wave. An evanescent wave will

form only at the truss boundaries or at some discontinuity along

the length of the beam. The zero phase of this wave also

indicates that it does not propagate to the adjacent bay and that

its wavelength approaches infinity. So throughout the given

frequency range, this wave is In a stop band.

The .gnitude of the eigenvalue of the second wave mode is

approximtely unity throughout the bandwidth (Fig 3.4). Indicating

that the wave does not attenuate throughout the frequency range.

The non-zero phase indicates that the wave does propagate to the

adjacent bays. For example, at 20 Hz the wave has a phase of -150

which indicates that the response of two adjacent bays in this

mode at this frequency will be 15e out of phase. With this phase,

Eqn 3.8 Indicates that one wavelength of this wave moode will be 24

bays. As a function of frequency, the increasing phase value

leads to decreasing wavelength.

The third mode is shown in Fig 3.5. Like the evanescent

mode, this mode also has zero phase (non-propagating) and does

have attenuation. However, the attenuation is not as pronounced

as with the evanescent mode. In the frequency range shown, the

lowest value of Ifi is about 0.8. After traversing mnuxy bays,

this attenuation factor will eventually 'amortize' the wave, and

as such, the wave is considered to be in a stop band.

As indicated by the 10 value of unity. the fourth wave mode

is in a pass band throughout the frequency range. Its small but

increasing phase value implies the wavelength of this mode

decreases with frequency.
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Figure 3.4 - Dispersion Curves for the Evanescent and
S Modes (Pinned Rod Truss)
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0.9 This wave mode is equivalent to the shear
mode of Timoshenko beam theory.
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(Pinned Rod Truss)
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It should be noted that for any given frequency, the response

of the truss is a superposition of all eight wave modes at that

frequency.

Eilgavuotors of the Four Rijit-CGolg hay Nodes

The eigenvectors, v, of the transfer matrix can be used to

generate plots of the wave modes. For the C8 x 8] pinned rod

truss, the eligenvector for a mode at a given frequency is a [I x

8] matrix. This matrix contains values of deflection from the

original node locations as well as the forces on these nodes.

u'. = .. (3.8)

where U Uly F Fiv (3.9)
U2L F2-
LU29j F2Y

The response at the right side of any bay can be obtained by

Vot3 fV (3.10)
n I n- I

where n is the bay number and I is the number of the desired mode.

Once the response of the right and left sides of the bay are

known, the response of the internal nodes can be obtained by Egn

(2.17)

U, =-D,," ( DI UL + DI UR ) (3.11)

The respcnse of the right, left. and internal nodes of each baynI
were then 'propagated rightward' (by rimItiplication by 1) and

were obtained for as many bays as was needed to show one

wavelength of a wave mode.
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While plotting the wave modes, only the real component of the

:omplex eigepnvector was ubed. This corresponds to taking a

snapshot' of the response.

Because only translational degrees of freedom were included

in the finite element analysis, the deformed truss was plotted as

simply linear connection of the deformed nodes. A scaling factor

multiplied the eigenvectors in order to accentuate the

displacement from the undeformed truss. Unless otherwise noted,

the maximum displacement plotted was equivalent to 80X of the

length of a longeron.

The response of the evanescent mode is effectively confined

to only one bay. The motion consists primarily of extension and

compression of the vertical member, and changes little with

frequency (Fig 3.6).

Fig 3.7 displays one wavelength of the second mode for 10.

30, 40. 50. 70. and 90 Hz. At 10 Hz. one wavelength is 33 bays

long, while at 90 Hz, this drops to 10. For all these

frequencies, the global sinusoidal displacement dominates the

mode. Thus it is labeled the 'S' mode. At 10 Hz the members

exhibit very little extension or compression. But at 90 Hz, there

10 Hz 30 Hz 70 Hz 90 Hz

Figure 3.6 - First Bay of the Evanescent Mode as a

Function of Frequency (Pinned Beam Truss)
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is obvious extension and compression in the members do to the fact

that the 's' shape must cycle in only 10 bays, while at 10 Hz,

there are 33 bays in which to do so.

Mode *three will be labeled the 'pseudo-evanescent' (PE mode)

mode because, like the evanescent mode, mode three is attenuated

and requires an almost infinite number of bays to exhibit one

wavelength. The difference in these two modes, however, is that

the PE mode exhibits far less attenuation than does the evanescent

mode. In fact. the state vector is not completely diminished for

several bays (Fig 3.8).

The moat outstanding feature of the fourth mode is the

compression/extension along the longitudinal direction of the

truss at low frequencies. For this reason it has been dubbed the

'CE' mode. At 10 Hz. one wavelength requires 297 bays to observe.

Fig 3.9 shows the first few bays of this mode as a function of

frequency. Also shown is one complete wavelength of the CE mode

at 90 Hz.

tiuun to atmatMMA Noels

The elgenvectors of the S and CE modes exhibit displacements

similar to a beam in bending and & rod in axial compression.

respectively. These modes can thus be compared to results

obtained from continuum models of the same truss. Mills in [M-3]

has developed continuum nodels for the same truss as analysed in

this work. Bending is modeled by Timoshenko beam theory,

compression-extension by simple rod theory. Mills' equivalent

values are: axial stiffness EA = 8.7220x10' lb, bending

stiffness ElI - 6.5960x10' lb-in2, shear stiffness GA a
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30Hz. is3mBys

40 Hz. 14 Bays

70 Hz. 12 Bays

Figure 3.7 - One Wavelength of the S Node as a Function
of Frequency (Pinned Rod Truss)
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10 Hz (24 of aDBy$)

40 Hz (24 of a Bays)

90 Hz (24 of a Bays)

Figure 3.8 - First Twenty-Four Bays of the FE Mode ax
a Function of Frequency (Pinned Rod Truss)

10 Hz. 24 of 297 Bays

40 Hz. 24 of 60 Bays

90 Hz. 34 of 34 Bays

Figure 3.9 -The CE Mode as a Function of
Frequency (Pinned Beam Truss)
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1.0693xlO lb. mass per length pA = 4.8627x10" 4  lb-sa/ina. and

inertia per length p1 a 0.19438 lb-sa. Figure 3.4 shows a

comparison of the computed results with the predictions of

Bernoulli-Euler beam theory (valid for low frequencies). and the

high-frequency asymptotic behavior of the bending model of

Timoshenko beam theory. The CE mode of Fig 3.5 is compared to an

axial compression wave from the continuum model. It can be seen

that the results obtained from the transfer matrix method are in

close agreement with those of continuum models of the same truss.

The PE mode (Fig 3.5) can be viewed an a Timoshenko shear

mode. This wve mode will not propagate at frequencies below the

cut-off frequency w = M , in this case 366 Rz. The

behavior of the PE mode is thus consistant with the Timoshenko

shear mode.

The evanescent mode has no equivalent analogue in the

continuum model, and appears to be entirely an artifact of the

truss modeling approach.
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3.4 Lve Propegtion in a Uniform Two-Dimensional Pinned-joint

L.Trh with 3emm Members

A more realistic representation of the high frequency

dynamics of a truss structure can be made if the elements which

comrise the structure are given bending stiffness. As such, the

second truss structure studied was the same two-dimensional

uniform beam truss as In Section 3.3. but with members modelled as

beams. The bems elements were connected by pinned Joints. A

finite element program was developed to determine the mass and

stiffness matricies of the bay. Each member of the truss now has

two translational and one rotational DOF at each end. Care must

be taken to ensure that differences in displacement and force

coordinate definitions between the finite element analysis and

those of the transfer matrix method are taken into account (Sect

2.3).

For the pinned beam truss, there are 16 translational DOF and

12 rotational DOF in each bay. This produces a [28 x 28] dynamic

stiffrnss matrix for the bay. The transfer matrix is still [8 x

8]. since there are still only four coupling coordinates between

bays. Internal node displacements and beam rotations have been

condensed into the transfer matrix (Section 2.4). Fig 3.10

V defines the member rotations.

Because the members have bending stifiness, it is important

to note the members' resonant bending frequencies. Fig 3.11 lists

the first several nraural frequencies of the longerons and

diagonal truss members.
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Figure 3.10 - Member Slopes, Pinned Beam Case

A XATRIXx user defined command file was used to produce the

transfer ,,trix from the dynamic stiffness natrix and to extract

its elgenvalues and elgenvectors. Fig 3.12-16 present dispersion

curves for the four positive-going modes over a 0 - 170 Hz

bandwidth. These figures can be directly compared to Fig 3-4 and

3-5 which are based upon a model which ignores member bending.

Appendix A contains the propagation coefficient plots for these

modes.

Longerons: w, = 70.42 Hz 1st pinned-pinned freq.

w, = 159.6 Hz 1st clamped-clamped freq.

Diagonals: w, = 35.2 Hz 1st pinned-pinned freq

W2 = 79.8 Hz 1st clamped-clamped freq.

w3 = 140.8 Hz 2nd pinned-pinned freq.

with El = 2.0263E6 lb in2 LLoMG 5.5.0 in
m = 1.016E-4 slug/in LuLAO = 55.0 V 2 in

Figure 3.11 - Pinned-Pinned and Clamped-Clamped Bending Resonances
for Truss Longerons and Diagonals
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The wave modes were then plotted using a cubic spline

'cutine. A scale factor was used to accentuate the displacements

and rotations of the members in order to make the deformations

visible. Unless otherwise noted, the scale factor was chosen such

that the largest displacement was SOX of a longeron length or the

largest slope (relative to the undeformed members) was 45,. which

ever occurred first.

Eiginzaluse and Elgi -c-torn of the Evamns t Ware Node

The first mode examined was very similar to the evanescent

mode of Section 3.3. The wave is in a stop band throughout almost

all of the frequency range (Fig 3.12).

The difference between the rod truss and beam truss

evanescent modes occurs in a sharp spike in Ijf and p at

approximately 70 Hz. At this frequency, the attenuation constant

becomes non-zero, and there is a non-zero phase, indicating that

the evanescent mode actually propegates. As noted in Fig 3.11. 70

Hz corresponds to the 1st pinned-pinned frequency of the longeron

members. Fig 3.13 shows the first bay (of approximately infinite

bays for a wavelength) of the evanescent wave mode as a function

of frequency.

The difference between the beam truss and the rod truss

eigenvector plots (Fig 3.6) is that in the beam truss case, the

wave mode consists not only of extension and compression of the

members but also bending of the internal members. Starting at 30

Hz, the diagonal member begins to show pinned-pinned motion. At

35 Hz, the lower longeron also starts to exhibit this motion.

while the diagonal dies out. At 70 Hz, the propagating wave mode
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Figure 3.12 - Dispersion Curves for the Evanescent Mode
(Pinned Beam Truss)

involves pinned-pinned motion of the horizontal longerons. The

evanescent mode starts to exhibit the second pinned-pinned motion

together with lower longeron motion.

It is important to note that this internal motion was not

present when the truss was modelled with rod members. Therefore,

by using beam elements, the fidelity of the model has been

increased.
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10Hz 35Hz 50Hz

70 Hz 120 Hz 155 Hz

Figure 3.13 - One Bay of the Evanescent Mode as a Function
of Frequency (Pinned Beam Truss)

Eilgnalumh and Eignmectors of the S Wave Mode

The rmgnitude and phase of the eigenvalues of the second wave

mode are presented in Fig 3.14. This should be compared to Fig

3.4, which represents the same wave mode, but for the pinned rod

truss.

The general trends in IfI and P are the same for both the rod

and beam truss cases until 35 Hz. Because of this tntttal

similarity, this mode will be refered to as the 'S' mode. Both

waves are unattenuated and propagating.

The eigenvectors of the transfer matrix were determined as

described in preceeding sections. Fig 3.15 depicts one wavelength

of the S mode while it is in its initial pass band.

Like the S mode of the rod truss, ýhe initial mode shape is

that of a global 'S'. But whereas in the rod truss the global 'S'

persisted as the frequency increased, in the beam truss the global

'S' dies out as the frequency is increased. At 10 Hz. one
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Figure 3.14 - Dispersion Curves for the S Mode as a Function
of Frequency (Pinned Beam Truss)

wavelength simultaneously occupies 33 bays, and the members are

essentially straight. But by 20 Hz, the diagonals start to

exhibit their first pinned-pinned resonance, their deflection

becoming maximum at 35 Hz. The direction of diagonal bending

alternates every quarter wavelength e,t 20 Hz, while at 30 Hz, it

alternates every half wavelength. By 35 Hz the global 'S' has

essentially disappeared.

After 35 Hz. the rod and beam truss 'S' modes are not

similar. At 35 Hz, the diagonal members of the truss are in their
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10 Hz, 28 Bays

20 Hz, 19 Bays

30 Hz. 14 Bays

35 Hz. 8 Bays

Figure 3.15 - One Wavelength of the S Mode
in the First Pass Band
(Pinned Beam Truss)

1st pinned-pinned resonance, after which the wave enters a stop

band at 40 Hz. Apparently when the diagonals resonate, energy

becomes localized in this motion and does not propagate along the

beam.

At 35 Hz the wave enters a region where it exhibits

properties of a complex mode. In this region the wave both

pcopagates and attenuates. The complex mode region ends at 39 Hz.

From 40 - 70 Hz the wave enters a classic stop band. Here

the phase is near zero. implying that all the elements of adjacent

bays move in phase causing the wavelength of the wave to approach

Infinity. The wave exists simulaneously in a near infinite number

of bays and does not propagate. The state vector from one bay to

- 44 -



the next is however decreased. The first ten bays of the truss

for 40, 50, 60, and 70 Hz are shown in Fig 3.16. As before, the

diagonals dominate the dynamics for frequencies about 35 Hz, and

give way to longeron movement about 70 Hz. Such modes, as with

the evanescent modes, can only originate at the boundary of the

structure or at some discontinuity along the length of the

structure.

40 Hz

50Hz

60 Hz

70 Hz

Figure 3.16 - First Ten Bays of the S Mode in the
First Stop Band (Pinned Beam Truss)f!

As the Ist pinned-pinned frequency of the longerons is

reached, the wave enters a spike-like pass band (70 Hz). From 75

- 90 Hz the mode is complex and is in a stop band. The mode

shapes in this frequency range appear similar to those in the

preceeding stop band. However. because of the non-zero phase
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difference between bays in this region, a wavelength now occupies

a finite number of bays. As can be seen in Fig 3.17 (the scaling

has been increased to excentuate displacements), although the

wavelength is finite, the mode does not appear to repeat after

undergoing 360* of phase change. The mode does repeat--the state

vector is attenuated to such an extent after one wavelength that

the wave does not appear to repeat.

75 Hz, 18 Bays

80 Hz. 18 Bays

90 Hz, 24 Bays

Figure 3.17 - One Wavelength of the Complex
S Mode (Pinned Beam Truss)

The next pass band begins at 95 Hz and continues until the

end of the bandwidth examined. One wavelength of the S mode for

100, 150, 155, and 165 Hz is shown in Fig 3.18. Global motion is

not present. The second pinned-pinned rýsonance of the diagonal

members starts to appear around 140 Hz. The wavelength drops off

sharply near the first clamped-clamped resonance of the longerons

(160 Hz). Although the first clamped-clamped frequency occurrs at

160 Hz, the second diagonal pinned-pinned motion still dominates.
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For the 0 -165 Hz bandwidth, the S wave mode was in

alternating pass and stop bands. Note that each of the Pass and

stop bands were separated by a complex mode region (complex modes

are considered to be In stop bends).

150 Hz, 22 Bays

155 Hz. 19 Bays

165 Hz. 8 Bays

Figure 3.18 -One Wavelength of the S Mode in the Second
Pass Band (Pinned Beam Truss)
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Eigenvalues and Eigsnvectors of the PE Wve Node

Unlike the S mode which begins in a pass band. the third mode

begins ina stop bcuid (Fig 3.19). It has the same basic

attenuation and phase as for the pinned rod truss PE mode (Fig

3.5) up to 35 Hz. the diagonals' first pinned-pinned resonance.

Because of this tntttalt similarity, this mode has been dubbed the

PE mode. Like the S mode. the PE mode goes through alternating

stop and pass bands, separated by stop bands in which the mode is

complex. Until 35 Hz, the wavelength is approximiately infinite.

a,.

,4 31-so - - 4.pass ,---- s top, baund---- *,pass-
.[ ba~nd band -complex. band

.2

.62 20O 40 u5 mu 10 1Ot20 1 40 160, 160g P

40

20

Pbase a
(Dog) _012 40 10 3

-40

-100

-60 -

- to o 0 2 0O 4 0 & a s o to o t1 2 0 14 0 t o o0 tlo10

Frequency (Hz)

Figure 3.19 - Dispersion Curves for the PE Mode
(Pinned Beam Truss)
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This mode. unlike the first stop band of the S mode. exhibits

mostly global bending instead of local member bending (Fig 3.20).

This should be expected being that global motion, not local member

motion, dominates the dynamics of all modes at low frequencies.

The wave enters its first pass band at 40 Hz after becoming a

complex mode for a range of 5 Hz. The first few bays of the PE

mode are shown in Fig 3.21.

The complex mode shapes (range 75-96 Hz) are tdenttccaI to

those of the S mode, with the exception of phase arigle sign.

Complex modes are discussed more fully in Section 3.5.

At 96 Hz. the second stop band begins. As can be seen in Fig

3.22. the PE mode does not exhibit much global motion. Near 130

Hz the second pinned-pinned resonance of the diagonals appaars in

the truss plots.

The second pass band for the PE mode begins at 155 Hz. The

PE mode of the second pass band is like that of the first except

that now there is more movement in the horizontal longerons and

the diagonals are in their second pinned-pinned resonance (Fig

3.23).

Eigmva/luea and Eigenvectors of the (C Wave Mode

Once again, the Jfj and * values for the rod truss and beam

truss follow the same trend from 0-35 Hz (Fig 3.24). As with the

CE mode in the pinned rod truss, the fourth mode in the pinned

beoa case also starts out with at low frequencies with the same

compression/extension shape (Fig 3.25). It is therefore called

the CE mode. But by 20 Hz. bending of the diagonals and vertical

longerons can be seen. At 35 Hz, bending seems to be confined to
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-- -w•

10Hz. l0of mBys

20Hz. l~ofe•ay

30 Hz. 1oofflBays

40 Hz. 10 of Bays

Figure 3.20 - First Ten Bays of the FE Mode in the
First Stop Band (Pinned Beam Truss)

50 Hz. 15 of 53 Bays

65 Hz. 15 of 29 Bays

Figure 3.21 - PE Mode in the First Pass Band
(Pinned Bean Truss)
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100 Hza. 0 of Bays

130 Hz. 10 of 1bkys

150 Hz. 10 of *Boys

Figure 3.22 - The PE Node in the Second Stop Band
(Pinned Bas Truss)

155 Hz. 24 Bays

165 Hz. 20 Bays

Figure 3.23 - One Wavelength of the PE Mode in the
Second Pass Band (Pinned Beam Truss)
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the diagonals. By 50 Hz, a global 's' shape appears as the

horizontal longerons and diagonals are in bending. Only the

horizontal longerons remain in bending by 65 Hz.

. *.- pass band -* - pass band -*stop -w

.4

.2 -stop
• t band

0 I .
0 20 40 60 so too 120 &40 IGO too

400

so
Go-

40

20

Phase a -

(Deg) -20

-40

-e0

0 20 40 60 90 oo 0 tao 140 160 tao

Frequency (Hz)

Figure 3.24 - Disp:rsion Curves for the CE Mode
(Pinned Beam Truss)

The CE mode is complex .n a 1 Hz band starting at 70.8 Hz.

and continues for 0.6Hz.

The first pass band is a small region between 72 and 80 Hz.

Wavelengths in this region are of near infinite wavelength and

their wave modes involve only motion of the vertical longerons.
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20 Hz. 15 of 119 Bays

35 Hz, 15 of 50 Bays

50 Hz, 12 of 12 Bays

65 Hz. 8 of 8 Bays

Figure 3.25 - The CE Mode in the First Pass Band
(Pinned Beam Truss)

90 Hz. 15 of 35 Bays

120 Hz, 9 of 9 Bays

150 Hz, 7 of 7 Bays

Figure 3.26 - The CE Mode in the Second Pass Band
(Pinned Beam Truss)
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The second pass band begins at 80 Hz and continues until 155 Hz.

Initially the motion consists of longeron bending, but becomes

second pinned-pinned diagonal bending by the end of the band (Fig

3.26).

And finally, the CE mode enters its second stop band at 155

Hz. The wavelengths in this band are near infinite and the motion

consists of second pinned-pinned diagonal bending.

3.5 CoV1e lkods

For the pinned beam truss there were two frequency bands in

which wave modes were complex--from 35 to 40 Hz and from 72 to 95

Hz. If the dispersion curves of the S and PE modes are plotted

together, some interesting observations can be made (Fig 3.27).

Both modes are complex throughout the same bandwidths (35-40

Hz and 75-95 Hz). In addition, the magnitude of the eigenvalues

are exactly the same. The two wave modes couple throughout these

regions, producing the complex modes. The complex modes begin at

the first pinned-pinned frequencies of the diagonals and longerons

at a joining point. At the breah-amay points the modes once again

take on seperate character.

The frequency range between 70 and 85 Hz is full of complex

modes (Fig 3.28). Within this range, there are three pairs of

right-going complex modes. The S and CE modes couple for a very

short band centered at 71.2 Hz. At 71 Hz' even the euonescent mode

forms a complex mode with the PE mode. But the longest coupling

is between the S and PE modes. These two wave modes are complex

from 72.5 to 95 Hz. Note that the coupling is triggered near the

first pinned-pinned frequency of the longerons.
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It would appear then that a complex mode cannot exist alone.

Complex modes are formed in pairs. In fact, when two wave modes

couple to form complex modes, there also exist their left-going

'beother' modes, which are also complex. So when both right and

left-going waves are considered. four (eight, twelve, etc.)

complex modes must exist simultaneously in the truss. This can be

visualized in the E-plane (Fig 3.29). For example. between 75 and

95 Hz the S and PE modes couple to form complex modes. The

eigenvalues of the right-going complex modes (labeled with an r'

subscript) are complex conjugate pairs as are their etgenvectors.

The eigenvalues of the left-going complex modes ('I' subscript)

lie outside the unit circle and also have complex conjugate

eigenvalues and eigenvectors.

Discussion of power flow in complex modes as well as

properties of their eigenvectors are presented in Sections 4.2 and

4.3.

Re

Figure ,.29 - Eigenvalues of Foue Complex Wave Mode
in the f Plane
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Cipter 4 - avee N ]d e Pwr Flow

4.1 Dotermimtiom of Average Pomir Flow in a 1mve NOd

In Chapter 3 it was shown that each wave mode has frequency

bands in which there is propagation, bands in which there is no

propagation. and bands in which there is both attenuation and

propagation (the complex modes). Intuition might tell us that

when a wave propagates, it transmits energy along the structure

and when it does not propagate, it does not carry energy along the

structure. But what about complex modes which share aspects of

both propagating and attenuating waves? Do complex modes transmit

energy along the structure? And if so. how is this possible if

there is no damping in the system? Need addressed this point in

1973 and found theoretically that there is no net power flow in

these modes [N-2]. In order to gain some insight into this

question, this chapter examines power flow in the wave modes of a

pinned beam truss.

Instantaruous power is the product of the instantaneous

velocity and force. While noting that these are vector

quantities, this becomes,

P(t) = v(t) • f(t), (4.1)

where v(t) = Vm cos(wt + ýpv) = Re (Yet) (4.2)

V = V. et ' Vo lvi (4.3)
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and. f(t) = F. cos(wt + pr) = Re (Fet) (4.4)

F = F. e Fm = IFI (4.5)

The instantaneous power flow can now be written as,

twt L~it
P(t) = Re (Ye ) • Re (Fet) (4.6)

= Re (ue Lt) - Re (Fe tw) (4.7)

= Re (W uet) • Re (Fe )Wt (4.8)

which can be expanded to.

P(t) = Re [tw (ua + tut) (cos ut + rain wct)]. (4.9)

Re t(FR + tF,) (cos wt + tasn tt)J

After multiplying and taking the dot product this become.,

P(t) = w [ -uR.FR sin wt cos wt + un.F, sina Wt + (4.10)

- u,.FR cos 2 Wt + u,*F, sin wt cos wt )

The auerage power flow over one period, T--2w /(j. is deilued as,

PAYo = 1/T F0 P(t) dt (4.11)

After integruting Eqn 4.10 over one period we get,

PAY, = 1/2 w (uR n F, - u, - Fm) (4.12)

This then gives us the average power flow for each wave mode. u

and F are entries of the wave mode eigenvectors.



4.2 hWv Node Power Flow
4

Power flow was calculated for the eight wave modes present in

a pinned bem truss. The eigenvectors used in Eqn 4-12 were

normalized so that the x-displacement of node one was unity.

Figs 4.1 and 4.2 show plots of the power flow in the four

right and left-going wave modes. The outstanding features of

these curves are sharp spikes in power flow at member resonant

frequencies. Notice that power flow in left and right-going

'brother' waves (i.e., PE left-going and PE right-going) is equaL

and opposite.

More detail can be seen when the mognitude of the power is

plotted on a log scale (Figs 4.3 and 4.4). As expected, the S.

PE. and CE modes show power flow in pass bands-power flow in each

left and right-going brother wave pair being equal and opposite.

No power flow occurs in stop bands. Complex mode regions of the S

and PE modes show up as 'noisy' data on the plots. But as can be

seen by data from the right-going complex mode pair in the 73-96

Hz bandwidth (Fig 4.5). the magnitude of the power flow in these

complex modes is equal and opposite. Thus it would appear that

the net power flow in a right-going (left-going) complex mode pair

is zero. Mead. however, claims that the net power flow in a

single complex mode is zero [M-2]. It is. therefore, uncertain

whether the equal and opposite power flow shown in Fig 4.5 is

actual or the result of numerical round-olf.

Power flow in the evanescent modes, however, is contrary to

what one would expect. With the exception of a small pass band

about 70 Hz, the evanescent modes are in a stop band throughout

all of the bandwidth investigated. Because of this, one would
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clhn~ing& the eigenvector normlization. a check can be sade on the

validity of this result.

4.3 ENtor Norlimtim

The truss structure should 'appear the same' to a right-going
wave as it does to a left-going ave. This can be seen by

considering Fig 4.6. A right-going wave mode 'sees' the truss as

in Fig 4.6(a). The eigenvector normelrzatcon used in the

prvalditn otlysis re s to set the x-displacement of nod. one (u)

to unity. To a left guing wave. the truss would appear as in Fig

4.c(b). Bay (b) can be obtained from (a) by a simple rotation of

(a). In order for the eigenvector normalizations to renmin the

same, the normlization for the left going wave should be made by

setting u* to negative unity.
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Figure 4.6 - Invariability of Wav* Propagation
Under a Coordinate Transform

With the original normalization. the ei*mnvoctors of the

left/right going brother waves in pass bands occurred in complex

conjuqpte pairs. With the new naormaliation (left-1ping modes

normalized to u3 a -1). the elgenvectors had equal but reordered

values (to correspond to the buy rotation). They were now

'physically' similar. The left and right-going waves both 'saw

the same structure.'

A sample set of eigenvectors for 80 Hz. is shown in Fig 4.7.

At 80 Hz there are four complex modes present (between the S and

PE modes). Notice that the right-going complex modes (the PE and

S) have complex conjugate eilgenvectors (as do the left PE and S).

Also notice that the etgenvectors of the left/right-going brothers

have physically similar displacements and forces with the

exc-ptton of the shecar forces. The PE and Evan modes clearly show

differences in the shear force terms. What this implies is that

the results of the analysis depend on the frcame of reference. A

right-going wave sees a different truss than a left-going wave.

This, however, cannot be true. It violates the principal of

invariance under a coordinate transforumtion. This then leads to
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Figure 4.7 - Wave Mode Eigenvectors at 80 Hz

the conclusion that the power flew observed in the evanescent

modes is a numerical effect, and cannot be believed.

One normalization that would prove useful in the next chapter

is to normalize all the wave mode eigenvectors to imply unit power

flow. If this were done, the scattertnq matrtx (to be discussed

in Chapter 5) will be ,unLtary -- all columns and rows have unit

magnit ide EV-l]. But because power flow in some of the wave

modes is zero, this type of normalization could not be used. If

dampinq were added to tl.e system, this normalization would be

",,iable.
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bm ter 5 - Wave Node Boundary Condi tions

5.1 Scattering h1atricies

All of the analysis of Chapters 3 and 4 was performed without

regard to truss boundary conditions. In order to consider wave

mode propgation in a finite length truss, boundary conditions

must be taken into account. The concept of a scattering matrix

will be used to give the infinite truss closure.

The cross-sectional state vector. Y. may be transformed into

wave mode coordtintes by the transforuation (V-i].

Y = 3(G) W (5.1)

where W is the cross-sectional state vector in wave mode

coordinates, and D are the eigenvectors of the transfer matrix T.

The cross-sectional state vector W can be partitioned into

components which represent right-going waves. w*. and left-going

waves, w

W (5.2)

One can also consider wave modes which arrive at a member

boundary, a, and those which depart a boundary, d. The

relationship between the arriving and departing wave modes at beam

boundaries is depicted in Fig 5.1.
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dL • aft -- *
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Figure 5.1 - Representation of Arriving and Departing
Wave Modes at Beam Boundaries

a and d are related by the wave mode eigenvalues, •.

SA = fm dL (5.3)

a. = " da

where n is the number of bays

The boundary conditions at the ends of the truss may be

written as,

[ B(() I Y = FrXt(W) (5.4)

where the boundary conditions, B. and external forces. F. mniy be

functions of frequency. In wave mode coordinates this becomes

E B((w) ] [ v(w) _ [-.-] = FxT((J) (5.5)

Partitioning the boundary conditions gives.

[B,,~J B(w) ] [BO]W= FiXT (W) (5.6)

After some manipulation, the departing wave modes may be expressed

as,

d = -Be.'(w) B,(tw)a + Be- c (5.7)
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or, d = S(()a + Be" F1cX (5.8)

where S(wi) is defined as the scattering matrix at the boundary.

With no external forcing this becomes,

d = [ S() a (5.9)

Components of the scattering matrix are complex, frequency

dependent reflection coeffictents for the boundary. The second

term of EFn 5.8 is the wave mode generattng matrtx which indicates

how external forces at the boundary generate outgoing wave modes

[V-i]. The reflection coefficients indicate how an incoming wave

mode contributes to generating outgoing wave modes.

5.2 Derivation of the Scattering %tricies for a Pimnnd Bum
Truss Attache to the Shuttle Orbiter

Scattering matricies will now be determined for the case of a

pinned beam truss attached to the shuttle orbiter. Consider the

orbiter attached truss shown in Fig 2.6. The mass of the orbiter

is assumed to be much greater than that of the truss, thus

enabling the left side of the beam to be treated as being attached

to a 'brick wall'. Therefore. the cruss left boundary condition

is zero displacement. This leads to writing the boundary

conditions of Egn 5.5 as,

I I0 L
1 0

where Y <1 and Yf > 1 represent the eigenvectors of the
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right-going and left-going wave modes, respectively.

As discussed in Section 2.5, the last bay on the free end of

the truss must be closed by the addition of an end member. The

dynamic stiffness matrix of this member is frequency dependent and

so, therefore, is the boundary condition. This then leads to the

frequency dependent free end boundary condition.

E 1 =Y (5.11)
C DLdJ

where A, B. C. D are elements of the dynamic stiffness matrix of

the end member (Eqns 2.16,17).

In this example, the eigenvectors were normalized so that

x-displacement of node one of each bay was unity (the same

normalization used to determine the power flows of Chapter 4).

The left and right scattering matricies were calculated from 0 to

170 Hz. in steps of 0.2 Hz. Figs. 5.2 and 5.3 depict the real and

imaginary components of the scattering matricies as a function of

frequency. More detailed plots of the elements of the scattering

matricies are contained in Appendix B.

Each entry of the scattering matricies, Sti. represents how

much departing wave mode J is created by incoming wave mode I.

For examlle. the first column ot Si and SL indicates how the

outgoing evanescent, S. FE. and CE wave modes are produced by the

incoming evanescent wave mode.

Checks can be made on the validity of these reflection

coeffielents by examining limiting cases of these values. As

noted in Chapter 3, at low frequenctes the S mode resembles a beam
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in bending, while the CE mode resembles a rod in

tension/compression. Since the wave mode eigenvectors have been

norimlized with the x-deflection of the first node equal to unity,

checks can be made on the reflection coefficients of the CE mode

at both ends. Fig 5.4 shows selected terms of the left and right

scattering matricies at low frequency. The SL(4. 4 ) plot indicates

that the reflection coefficient for the CE mode at the left

boundary should be -1.0 + tO. while I + to at the right.

The incoming CE wave mode must satisfy the zero displacement

boundary condition on the left end of the truss. The reflection

coefficient for this wave mode can be easily determined. Consider

the arriving wave mode at the left boundary (Fig 5.5).

The zero displacement boundary condition can be met by

visualizing a phantom wauve, wph. being created oehind the boundary

and travelling to the right. The phantom wave has equal but

opposite nmgnitude at the boundary as compared to the CE wave.

This wave then, exactly cancels the displacement of the incoming

aE wave, thereby insuring zero displacement at the boundary. The

boundary amplitude of the phantom wave is w out of phase with the

incoming CE wave. The reflection coefficient is then -1 + tO.

A check can be made of the Sm(4, 4 ) term by a similar process.

The incoming CE wave mode must satisfy the zero slorse boundary

condition at the right end of the truss. In this case, the

phantom wave will have the same magnltude as the incoming CE wave.

and will be in phase. This leads to a reflection coefficient of 1

+ to.

SL(2.2) and SR(2,2) can be verified by thinking of th* S mode

as at Bernoulli-Euler beam in bending. For •his case, however.
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Figure 5.4 Reflection Coefficients for the S and CE

Modes at Low Frequency
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Figure 5.5 - Enforcing the Zero Displacement Boundary
Condition by Means of a Phantom Wave

consideration must also be given to near-field effects. The

reflection coefficients (at low frequency) for the pinned and free

ends were found to be consistant with those determined in [C-i]

CH-1].

5.3 Natural Freqwies by PImame Clomaze

Recall that in Section 2.6 a method was presented for

determining the natural frequencies of a truss by using the global

transfer matrix of the structure. It was pointed out that even

for trusses consisting of a small number of bays. it may not be

possible to determine the natural frequencies due to large

eigenvalues of the transfer matrix (generally associated with the

evanescent modes). By transforming the problem to wave mode

coordinates and employing the phase closure principLe this

difficulty can be eliminated. The phase closure principle states

that natural resonances occur at frequencies at which all wave

modes complete a circumnavigation of the b.am with a total phase

change of 2nw.

For the case of a seven bay truss Eqn 5.3 becomes,

an = f7 dt. (5.12)

af = d dO
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where f is a diagonal matrix of eigenvalues associated with the

right-going wave modes. Eqn 5.9 can be written for both

boundaries as,

dL M [ SL. aL (5.13)

df = C S. R aL

By repeated substitutions of Eqns 5.12 and 5.13. we obtain with

am, after one circuwmavigation of the beam,

a. 0 C SL E- S. aR (5.14)

Resonance occurs when this relation is an equality;

[E7 S.f 7  , -_ 1 a (5.1 3)

The only non-trivial way this can be true is if the determinant of

Eqn 5.15 is zero. Therefore.

det [ f SL f7 SR. -1 0 (5.16)

is a satisfied at a truss resonance.

Notice that. by replacing only one value in the formulation

(the number of bays), the natural frequencies for a truss with an

arbttrar'l number of bays can be determined "quick as a bunny."

The order of the problem does not increase with increasing number

of bays because the dimension of the transfer matrix is

independent of the number of bays in the structure.

Fig 5.6 is a plot of the determinant of Eqn 5.16 for a seven

bay, pinned beam truss with one free and one pinned end. The
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natural frequencies of the truss can be identified whenever Egn

5.16 tends to zero. Resonant frequencies determined by this phase

closure method aire listed in Fig 5.6. These frequencies reproduce

those determined by a finite element analysis of the same truss

except whenever the modes are closely spaced. The finite element

analysis obtains five modes within the 35.13 - 35.31 Hz bandwidth

while the phase closure method locates only two. This remains

true even when frequency steps of 0.001 Hz are used in Eqn 5.16

(Fig 5.7). The same results also occur about 70 and 154 Hz.

Because the Isolated modes are so accurately determined. one may

be tempted to attribute the phase closure method's failure on

numerical round-off rather than the physics of the problem. This.

however, remins to be shown.
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3

2K

0 20 40 60 80 100 120 140 160 180
Frequency (Hz)

Present Analysis Finite Elements

12.10 12.10 n/i 70.51
33.97 33.97 n/i 70.52
35.13 n/i 70.54

S35.25 n/i 70.54
n/i 35.29 n/i 70.55

? 35.30 n/i 70.57
/i 35.31 n/i 70.59

37.16 37.16 n/i 70.59
51.84 51.84 n/i 70.59
64.51 64.51 89.23 89.23
67.00 .6.L0.0. 103.83 103.83

? 69.50 121. 1 121.12 .
n/i 70.04 147.91 147.91

70.22 70.22 153.45 153.45
n/i 70.39 154.32
n/i 70.40 n/i 154.57
n/i 70.043 n/i 154.69
n/i 70.47 155.28
n/i 70.47 157.07 157.07
n/i 70.49

n/i = not identified

S= possible identification

Figure 5.6 - Natural Frequencies Obtained by Phase Closure
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Figure 5.7 - Natural Frequencies Near 35 Hz From Phase Closure
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'Chapter 6 - Conclusions and Recomefltions

This thesis computationally investigated wave mode

propagation in two-dimensional, periodic truss structures. Some

conclusions based on this research follow.

1) The transfer matrix technique proved useful in that the

dynamics of a complete truss beam were determined by

anaiysing only one of the periodic elements. Conventional

analysis tools such as the finite element analysis become

computationally cumbersome as the number of degrees of

freedom needed to model the structure increases. In the

transfer matrix method the order of the problem depends soley

on the order of one of the periodic elements.

2) The method of obtaining natural frequencies of the truss by

sequential multiplication of the transfer matrix and

subsequent application of boundary conditions is only

practical for cases in #hich the eigenvalues of the transfer

matrix are not large.

"3) The results obtained by examining a pinned rod truss by

transfer matricies closely match the results obtained by

continuum models of the same structure.

so0



4) As with continuum models of the truss structure, the pinned

rod truss loses its fidelity at the first resonant frequency

of the truss members. The rod modelling masks all local

member dynamics that would be present if member bending were

modeled.

5) The pinned beam truss exhibits complicated mechanical

filtering properties. As a function of frequency, there are

bands in which certain wave modes will propagate and bands in

which wave modes will not propagate.

6) At low frequencies, non-evanescent modes are characterized by

predominantly global displacements whereas at higher

frequencies this displacement becomes localized in the truss

members.

7) Complex modes must form in pairs and canot exist alone.

Thus in a pinned beam truss, there must be at 1east four

(eight, twelve etc.) or more complex modes present in order

for any to exist at all. Mono-coupled systems cannot support

complex wave modes.

8) Complex mode formation is initiated at member resonant

frequencies. No explaination could be found for termination

of complex mode coupiing.

9) Net power flow in a right-going (left-going) complex mode

pair is zero.
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10) Several results were obtained that indicate there nuay be

numerical round-off errors in this formulation.

a. Power flow was evident in the evanescent modes

throughout much of the of the bandwidth examined.

b. Shear force terms in the eigenvectors of modes in

stop bands are not invariant under a coordinate

transformation.

c. Closely spaced natural frequencies of the truss are

not detected when analysed by phase closure.

11) By using the phase closure principle and the eigenvectors of

the transfer mtrix ý.n wave mode coordinates. the restriction

imposed in 2) can be circumvented. In fact, by changing just

one variable in the formulation, the natural frequencies for

a truss consisting of an arbitrary number of bays can be

determined. As stated icA 10). however, this method will only

locate isolated resonances.

Following are some suggestions for follow-on research.

1) Investigate wave propagation in a three dimensional periodic

truss structure.

2) Identify and characterize wave modes experimentally.
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3) Develop vibration isolation and suppression schemes which

exploit the filtering behavior of truss beams.

4) Investigate localization effects in random periodic

structures.

5) Determine if issues of (10) are due to numerical round-off

error or are inherent in the transfer matrix formulation.

6) Investigate when and why complex modes decouple.

7) Resolve the questions involved with power flow in complex

modes. Is the net power flow in a single complex mode zero

or equal and opposite to that of Its coupled 'brother?'

8) And on a more practical and mundane level, determine a quick

and reltable automated method to sort eigenvalues!
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Ammamdix A - P-,.. tln %iff ICents -for a Pinned
3m Truss

The next two pages contain the propagation coefficients, 1,

and mi. of the four right-going wave modes for the pinned beam

truss. An explanation of these plots can be found in Section 3.2.
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Am•-,Ix 8 - Smttert'm Ntricies for a Pim•di-Fre_ TIss

This appendix contains the left and right scattering

matricies for a pinned-free truss. Ihe elements of the scattering

matricies are presented in more detail than possible in Figs 5.2

and 5.3. Each peg. represents a column of the given scattering

matrix. For example, the first page presents the first column of

the left sce -rliqg mvatrix -- how the arriving evanescent mode

produces outgoing Evan. S. PE. and CE waves. The solid lines

correspond to the real component of the reflection coefficient

while the dotted lines correspond to the igloinary part of the

reflection coefficient.

-88-



0

SL(l,l)m

-1.6e.10

0 20 40 60 So 100 120 14,0 160 180

1.2e+14

6.0e.13

0$L(2,1)=

.-6.0e+13

-1. 2..14 ,

0 20 40 60 80 100 120 140 160 180

1.2e.14

S (3,1)-
L

-1.0*413

0 20 40 bO 80 100 120 140 160 180

1.6.413

1.2a+13

S (4, J),
L

4.0e+12

0 o-. 0 90 I00 120 140 160 180

89



0

SL

o 20 40 so so 100 120 140 160 1S0

0. . ....

so(2,2)- -20

o40 -

0 20 40 50 so 100 120 140 160 160

40

20

SL(3,2)-

008

12

a

4

0 .. .......... ...

0 60 80 100 1:0 140 160 180

-90 -



20

SL (1,3)-

-20 .

0 20 • = 80 100 iae 140 160 180

20

20

) -20 -----------

-40

0 20 40 60 80 100 120 140 160 180

40

20

S L(3,3)-

-20

0 20 40 60 so 100 L10 140 160 18O

12

S (4,3)-

. . .. . .. ....................... -. -..-.

-0 o 1
0 :0 . 0 80 100 120 140 160 180

- 91.-



SL (1,4)- 0

O 20 40 60 80 100 120 140 160 180

$L(2,4)-... -

-4

0 20 40 60 80 100 120 140 160 180

10 1Mau

SL '3 4)- -10

-20

-30

0 20 40 60 80 100 120 140 160 180

20

10

SL(4 ,4)- -10

-10

0 20 40 60 80 100 120 140 160 180

- 92 -



0.3

0.2

0.1

s R 0

-0.1

-0.2

0 20 40 60 80 100 120 140 160 180

os
40

SR( 2 ,1)_ 0

-40 ,'

-80

-100 
.

0 20 40 60 80 100 120 140 160 180

120

60

SR(3,1), 0

-60

-120 r
0 20 40 60 80 100 120 140 160 180

80

40
S (4,1)" -•:

R 0 .........

p,i

-40
0 20 40 60 60 100 120 140 160 180

- 93 -



0.12

0.06

0

R -0.06

-0.12

0 20 40 60 80 100 120 140 160 180

20

10

s (2,2)- 0
R

~io[
-10

-I . . . . p . . ,

0 20 40 60 80 100 120 140 160 180

10

S R(3,2)-
R -10

-20

0 20 40 60 80 100 120 140 160 180

8

4

.,~~~ S(4,2)- .,. .. ........ ........ ,.'

-4

0 20 40 60 80 100 120 140 160 180

- 94



1.2

0.8

0.4

0
s (1L3 )-

-0.4

0 20 40 60 80 100 120 140 160 180

120

60

0 ~L _____....______

SR(2,3)- 0

-60

-120 F
0 20 40 60 80 100 120 140 160 180

40

20

0

0 - ----.-T

SR(3,3)- -20

-40

-60 . _____. ,_,____,, ,_,_.,_______. . ____

0 20 40 60 80 100 120 140 160 180

a

4

S (4.3)"- 0. . ..................

-4

0 20 40 60 80 100 120 140 160 180

: - 95 -



i. S i ~ .

0.4 -

7

SR (1,4)- 0

-0.4

0 20 40 60 80 100 120 140 160 180

20 1

10

s (2,4)-, 0. u- ....

-10

-20 •
0 20 40 60 80 100 120 140 160 10

2

0

SR(3,4)- 
-2

-4

0 20 40 60 80 100 120 140 160 180

1.2

0.3.

s(4,4)- 0

-0.8

-1.2
0 20 40 60 80 100 120 140 160 1S0

- 9 6 "



WhVE PROPAGkTION IN PERIODIC TRUSS STRUCTUP.S

Joel Signorelli* and A.H. von Flotow÷
Massachusetts Institute of Technology

Cambr idge, Massachoett3

Abstract

Wave propagation in periodic truss-work propagation in periodic fluid loaded plates. In
structures is analytically investigated. Transfer each study, the introduction of multiple coupling
matrix methods are applied to the analysis of a coordinates between bays has permitted a new type of
truss beam. The results, with members modeled as travelling wave mode; the 'complex mode' which both
rods with pinned joints, agree well with results travels and is spatially attenuated. Such modes
obtained from an equivalent continuum model of the were also discovered in this work, in which four
same structure. Use of beam models for the meirbers, coupling coordinates between adjacent truss bays
including bending, shows that the pinned rod model were used.
loses fidelity above the first resonant frequency of
latecal motion of the members. The truss, modeled A structural analysis is incomplete without
with beam members exhibits complicated mechanical consideration of boundary conditions. In this
filtering properties. Fixed and free boundary paper, conventional boundary conditions for truss
conditions are converted to reflection matricies. beams (equations relating forces and deflections of
The phase closure principle is invoked to predict bound,%ry points) are converted to wave-mode
natural frequencies of a fixed-free portion of the coordinations. The result is a matrix of frequency
truss. It is found that closely spaced resonant dependent reflection coefficients at each boundary.
frequencies are not identified by this method.
Computed results show subtle erroneous This paper then invokes the phase-closure
characteristics which are attributed to numerical principle to define and calculate natural
effects. frequencies: "Resonance occurs at those frequencies

at which each propagation path closes on itself with
1. Background total change of 2kr (kal,2...) after one

circumnavigation." The truss is thus modeled as a
Many large space structures will be multi-mode waveguide, terminated by reflection

constructed, in part, of truss-work companents. A matricies, rather than an assemblage of lumped
current example is NASA's space station. Truss parameter member models.
structures generally consist of an assemblage of
identical bays and are thus spatially periodic. 2. Wave Modes; Definition and Derivation
Periodic structures have long been known to act as
mechanical filters. In order to gain more insight A wave mode, on a one-dimensional waveguide is
and understanding as to how such filtering described by both a wave-mode eigen-shape-, and by an
properties can be exploited in the dynamics and associated propagation coefficient. The eigen-shape
control of large space str.ictures, this paper is that unique mix of cross-sectional variables
examines wave propagation in several mathematical which propagates with constant relative value and
models of a truss beam. phase along the member. The associated propagation

coefficient specifies the wavelength (Or,
Any survey of the literature of wave equivalently, phase speed) with which propagation

propagation in periodic structures must mention the occurs. A tensioned cable, for example, can support
book by Brillouinl . Since Brillouin's book, many (in the classic approximation) three wave modes in
papers have treated wave propagation in periodic each direction; one axial with a velocity of 4`EA'A' ,
structures, primarily mono-coupled systems (systems the other two are lateral with velocity of ¶7177.
with one coupling coordinate linking neighboring (EA is axial stiffness, T is tension, P is linear
bays). od9els uied include spring-mass2 , strings mass density).
and] rods•, and periodically constrained beams".
These works have all verified Brillouin's dictum Note that, in agreement with Boillouin's quote
paraphrased here: "A one-dimensional Periodic given in the introduction, these three wave modes
waveguide supports as many travelling wave modes in correspond to the three modeled deflection
each direction as the (minimum) number of ccupling coordinates.
coordinates between bays. Each wave-mode exhibits
alternating (possibly overlapping) frequency ranges Wave modes in periodic structures can be
of pass-band and stop-band behavior. The number of analagously defined. We select any reference
pass bands is equal to the number of degrees of cross-section in each bay, introduce kinematic
freedom within each bay." Few works have dealt with assumptions, and assign a numbeL of deflection
multi-coupled periodic wave guides. Mead has variables to define the deformation state of that
approached the problem mathematically, both for cross-section. (Mead has shown that a wise choice
general situations , and for a specific model for the reference cross-section is the one that
(Timoshengo beams with per iodicallv attached minimizes the number of deflectinn variables
inertias) . HIbdges, Powers and Wouhouse have required). A wave mode is then defined as that mix
reported theoretical and confirming experimental of cross-secticnal variables which repeat with fixed
work on wave propagation inp•riodic, rib-stiffened relative amplitude and phase in each subsequent bay
cylindrical shells'. Eatweli has considered wave along the structure. A corresponding propagation

coefficient per bay defines wavelength and

'Graduate Student propagation speed.
+Assistant Professor,
Aeronautics and Astronautics
Members AIAA



Wave Moes in a Truss Beam OD -i 0 I

Ibis paper invest~igatel the travelling wa¶.e - - II_ ---- [
modes supported by two models of a truss beam -D D -o J1D .
constkained to move in a plane. Fig 1 is a sketch RI 11 It. RI It 0IR4,RR UR
of the beam and of the chosen repeating element.

11 4(Negative values of F have been taken for
compatability of the trknsfer matrix and finite

4 element analysis force coordinate definition*.)

R]R] ' CB 'BA B-' rtU]

"L F]IR I' 1 - Bl A (W6)[

LU1  ju The first bay model usss 4 pinned-rod elements
3~ and yields 8 by 8 mass and stiffness matrices.

L4J Thus, no internal degrees i~f freedom need beeliminated. The second bay model includes memberFig 1 State Vectors Associated with bending effects. Eight beam elements are used, asOne Bay of a Periodic Truss sketched in Figure 2.

The members are modeled as being pinned at the6
Junctions, tI~us four deflections are required to38
define the deformation of the coupling
cross-section. If one introduces the corresponding2
four coupling forces, and groups the coupling
deflections and forces into a "cross-sectional state17
vector", then the dynamics of the bay can be 4described by a transfer matrix relationi

Y R - T] YLFig 2 Finite Element Nodel of Bay used to IncludeThis bay transfer matrix is square, with dimension member Bending Effects
8.

Nodes 2,4,5 and 6 are clamped, nodes 1,3,7 and 8 areThis transfer matrix can be obtained in many pinned. The resulting 28-egree-of-freedom finiteways. In this analysis, for purposes of direct element model thus Includles 26 internal degrees ofcomparison with a conventional finite element fteedom. Note that only the line~ar deflections ofanalysis, we derive T(w) by ekact numerical dynamic modes 1,3,7 and 8 are external degrees of freedom;condensation of a finite element model of the bay. the resulting transfer matrix is again a by 8.

Two bay models are used, each based upon a Wave Noe ro erties Inferred-from
particular finite element discretization. each ThAe Tranfer Matrix
model yields a mass and stiffness matrix;

A wave propagating along a periodic structureri rican be characterized by,

W2 lul U I I (2) Y1~ i -, (8)
MIindicating that the state at station i+l is the
t3R 1F R state at station i multiplied by a factor rLi This, together with the transfer matrix relation

which ir. then partitioned into left, right and il T Y(9internal degrees of freedom and manipalated to yield1+ T
the transfer matrixt forms an eigenvalue problem for *The eigenvalues

are generally complex and occur in t and I/ r, pairs,
o D L U L F corresponding to identical waves propagatitq inLL. 'L LR ] L post directions CEigenvalues of a symplectic
[---L ---IR H matrix occur'in inverse pairs].

D D] F in which the wave will propagate without attenustion
LRL R 'R J FRJ I ýI 1 (pass bands) and regions in which the wave

is attenuated I tI < 1 (stop bands) .

2



The relation betwen r and • / . can .he seen by ..... .
constructing a plot of the e plane (Ing 3).

Im ~ Im 'A
Post Bands Stop Bands Complex Modes - _________________

rig 3 The C Plane

the unit circle are in a pass baid. Those inside

the unit circle are positive-going waves in a stop
band while those reZlected outside the circle are
negative-going wavu in a stop bard. Values of I C I "'"
which lia in the interior (exterior) of the circle, .. ..
but not on the real eaes, are termed complex wave
modes. An a function of frequency, tha eigenvalues
move about the plane, continually charging magnituaie Bean-Based Finite Element odael
and phase. Rod-Based Finite Element Model

..... Timoshenko Beam Model
In the absence of damping, the transfer

matrix, T, is real, thus its eigenvalues will be Wave mode shapes calculated from the beam-based
real or members of a complex conjugate pair. finite element models
Complex modes thus occur only in groups of four;
wave moaje interaction is necessary. Mono-coupled
systems (with 2 by 2 trarsfer matricies) cannot
support complex wave modes.

10 liz. 28 Bays
Particular results w .-e Wculated for a truss

beam used in prior studies 'I. The bay members
were assumed to have no structural damping, a
bending stiffness EI - 2.6263e6 lb-in2 , mass per 30 Hz, 14 is
length mi -1.21163-4 slug/in, an axial stiffness of

FA 4.361eG I~ and longeron an] batten length of
55.8 in. Mills developed continuum models for this
truss, a Timoskenko beam model for bending, and a so H2
rod model for extension. Mills' equivalent values
for the truss are: axial stiffness EA - 8.322E6 lb.
bending stiffness EI - 6.596OQ9 lb- in , shear
stiffness Gk - 1.6693e6 lb, mass per length m - ?s Ns Is says

4.1G9e-4 lb-s /Irtland inertia per length P I a _ T7 ZF. 19438 lb-s . N.N -:. 44 •z ...avs•,

Figures 4-8 present dispersion curves and wave tpH.4;By

mode shapes for the four right-going wave modes.
Comparison with predictions of the continuum model
is provided. Wave mode shapes were derived from the
transfer matrix eigeswectors. One wavelernth of a
wave mode is shown at a given frequency.

At low frequencies the first wave mode shape
exhibits a global sinusoidal reponse and is thus
labeled as the bending mode. The dispersion curves 155 Hs. 19 says
for the bending mode indicate cunplicated mechanical
filtering of this mode as a function of frequency.
At low frequencies the mode is in a pass bard Fig 4 Dispersion Curves and Wave
(propagation with no attenuation). The mode shape Mode Shapes for the Bending Mode
shows mostly global response. As the first resonant
frequency of the bay diagonals approaches, the
response now becomes more localized in the hay
diagonals. At 35 Hz (the diagonal members' first frequencies, the truss response is no longer global,
pinned-pinned resonant bending frequency) the mode but becomes localized in the truss members.
becomes complex for a narrow bandwidth, both #
propagating and attenuating. At 40 Hz the mode Predictions based on Timoshenko beam theory,
enters a stop band, a region in which the :gave mode and results of the analysis with pinned rod members
will not propagate. The sharp spike at 70 Hz compare almost exactly, but diverge from those of
corresponds to the first pinned-pinned resonance of the more complete model at higher frequencies.
the bay longerons. The mode once again becomes Internal resonances completely dominate the motion
complex after this resonant frequency. For higher at these frequencies.

3
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""* /1 F -1- ptt bed -d -post

- I-n)

--- beamr-basd Finit-e E~lement Model -- Beam-based Finite clowent Model
--- -is id Finite Element b l .... d-Based Finite Element Model

S...... Timoshenko Beam Model
wave made shapes calculated from the beam-based

finite element modell Wave mode shapes calculated from the beam based
finite element nmdelt7. 7' 7 7 \. NT 7 _77.i -7 7 =7

10 HR. 10 of - "-ve
20 HRz, 15 of 119 Bavs

30 , Na.0of "a UY

5 0 H it. 1 6 o f 53 D ay s - ' ý

go0HR. 15 of 35 Bays

120 HR, 9 of 9 DYS

Fi isp ion and W M .\J,
Shapes aoa the Shear Mode 0-- F znite Byse

Unlike the bending mode which begins in a pdss
bardh the second mode examined begins in a stop
band. m his made initially has t ero phase Fid 6 Dispersion Curves and Wave
(non-prOpit ate rg) and does attenuate. These Mode Shapes for the Comptession Mode
proferties are similar to those of the Timoshenko

beam shear mode, which is a near field below W • Thne low-freque.ncy behavior of this wave modeSIIa 30 s. Because of this initial is essentially just c, mp ess ionex0tension and all

similarity, this mode is labelled the shear mode. models predict similar response. 7h•is mode is
UKtk• he bading soft, the shear made goes through characterized by quite large pass bards separated ý,y
alternating stop and pass bands, separated by bands narrow stop ba3nds. Complex mode formation fro t'iis
in which the mod* Is complex. Below 35 Hz, the mode only occurs between 70.8 and 71.3 H!, N12ar

wavelength is infinite. The complex mode shapes 50 Hzp thts comptession/ex tension response !s
(range 75-95 Ha) are identical to those of the suppressed by quite active longeron and diagonal
oending mode, since these modes couple to create the response. Ony the horizontal longerons remain in
com~pl3x modes in this frequency range. Near 130 Ht, bending by 65 Hz. Near 159 z, the response is

the seword pinned-pinned resonance of the diagonals confined to the second pinned-pinned resonance ofappears in the mode shape plots. the diagonals.

45H.
7 fDy



Bet~ th edn-n Sha Moes
Bot moe ar clpa hoghu h w

.4. -"

it .~. .. 4,.,, q

badidh (S41H an 75.9 He. I diin

temagnitude of tesgwle r xcl h

moe ei ttefis indpne frequencies

lkt he baak-way oint thdmode onc poin tak

Ný N I 
on seart chaacer

cha requnc tsranige between 71 and 85 Hz Is
ful ofcomlexmodes (Fig 9). within this target

70 Ha 120 Hz 15 Hz thr jar ando pairs of right-going complex ods

short bard centered at 71.2 Ha. At 71 Hz even the
evanescent mode forms a complex mode with the shearFig - Disperison Cutves and wave lode mode. But the longest coupling is between the

shapes foe the Evane-icert Modle bending ard shear modes between 72.S and 9S Hz.
No~te that the coupling is triggered near the first
pinned-pinned frequency of the lorqerons.

The megnitudu and phase of the fourth mode over
the frequency range investigated is essentially "

zero. This indicates that the TMoe 'dies out
quickly' so 'hat t1%e response can be considered to
tA confined b.. a single bay. With the exception o~f a .-.-

very narrow pass baed at 72 Hiz (the first *.-

pinn..r'pJinned diagonal resonancea of the diagonals),
this tkAe In always in it stop band. * he re-sponse
of the first bay as a function of frequency is shown
ab-e Between )ol and 72 Hs. the evanescent mode is
complex. "Toer is no analogous wave m~od in the.........
continuum model.

Complex mode-;

C.'zr~lc tave modes have iot received much 4**.**

attentkor. 4., the structors2. dynamics literature, and
apptar to haft _htn mentioned in only tiree
pblished papers ". The pinnre-bea truss model
reveal$ twa frequency bands in which wave modes are /
co1pdex--fr- 33 to 41 H1 and from 72 to 95dHz. if
then dispersion curves of the barding and shear nodes
are plotted together, m*e interesting observations
can be made (Pig 6).

Fig 9 Complex Mode Coupling About 7h Haz

5



Wave mode POWat fow

The precedirg figures show that each wave mode
has frequeni'y barls in which there i prop•glation -

bands in which there Is no propagation, and bands in
which there is both attenuation and propagation (the
cauplox modes). Intuition might tell us that when a
Wvet PrOpagates, it ttaiUmit e•glytl along the - .... --

structure and when it dems not Propagate, e*erly ,
cannot mowe. But what a coWal modes which
ehate aspects of both pcopaatinr and attenuatinr .
waves? Do camplat modes tranmit energy along the
structure? Aid it so, how in this possible if there .
is no damping In the system? Mead addreased this
point in 1973 atd found theoretm:alv that thetr is
no net power flow in theme modes . I .

Insanmtaneous powe is the product of the• ". 1 -1 11
irstantaneous velocity ard force. While noting that ,

theme are vector quantities, this becmeeI,

S( 0 a ie it) * R N A lst) , .... )

- Re (aet'") * ie lfihit) (11) Bending Mode

a Re (li Ueiwt R ie (riwt

which can be expanded to

P(t) - R& (iwa (u + iuI) (CoS W t + isinw t)e' (11) ,,

Re '1(FR + iF1 ) (CosNt + i'sn a t)

The average pow6r flow ver one period, T= /, .,

is defined as, - ,"

ps a a I/Tj P(t) dt (12) .

After integraling over onea period we get,

P 0 1/2 0 (up . F1 - ut . Fpi) (13)

This then gives us the average power flow for each
wave made, were it alone present in the structure. ""
Interaction between wave modes, creatinr other forms - I
of power flow, is also plossible. . . i. r, .. ,. .

Power flow wee calc-alated for the eight wave Shear Mode
modes present in a pinned beam truss. The
eigenvectors used in Wqn 13 were normalized so that
the axial-displacment of node one was unity (see

Figure 1).
rigs Is shows plots of the log of the -

magnitude of power flow in the four left-qoinr wave
modes.

As expected, the bending, shear, and aompression
modes show power flow in pass bards-power flow in
each left and right-going brother wave pair being
equal and opposite. No power flow occurs in stop
bands. Complex mode regions of the bending and -

shear modes show up as 'noisy' data on the plots.
But the magnitude of the power flow in these complex
modes is equal and opposite. Thus it would appear
that the net power flow in a right-going
(left-going) complex mode pair is zero. Mead,
however, claims that net power flow in a single
complex mode is wrov's It is as ye-t, uncertain ________._i... __..____,_.____

whether the equal and opposite power flow is actual
or the result of numerical round-off.

Compression Mode

6
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Fig 1mmme msentat oft of Arriving ai
Departirn w4ave Moros at eNM Roudariýs

a ad d are related by the wave mode eiganvalues,

a C aRm d(
a nL a& n)

where n is the namber of bays

The boundary conditions at the ends of the
. trus may be yritten ase

there the boundary conditions, 11, and external =

Evanescent Mode forces, F, may ba functions of frequency. in wavemode coolrdintes this becomes

Fig 1 a gnitud e o f Pow r Flo in the
Left- n M ode*Bs W[ -] d (0) F etet(W) (18)

Power flow in the escent mode is also
contrary to expectation. With the exception of a A partial inversirn yields the bowuiary condition in
wall pe&a bard aout 73 Re, the eva•escent modes casual form,
are in a stop band throughout all of the bandwidth
inmestigated. Because of this, one would expect d Wbl) Be( +Va + t (19)
there to be no net power flow. Since Figure 11 bw aext
sugests that power is floving, numerical effects o, d - S(O)a + l ext (2)
are suspected, and are preasntly being inv.stigated.

where S(wa) is termed the scattering matrix at the
3. eavea Node Bewuracy Coinditiom boundary. With no external forcing this becomes,

All of the analysis of Chapters 3 and 4 was d S(w) I a
performed without regard to truss boundary
conditions. In ordec to consider wave mode
propagation in a finite length truss, boundary Components of the scattering matrix are
conditions must be taken into account. The concept complex, frequency dependent reflection
of a scattaring matrix will be used to give the coefficients. The second term of Eqn 21 is the wave
infinite truss closue,e. mode generating matrix which Wndicates how external

forcol at the boundary genetat~e outgoing wave
The cross-sectional state vector. Y. may be moaes

transformed into wave mode coordinates by the
transformation Derivation of the Scatteri Matrices for a

S W W) (14) - Pinned-Free TWi i...

The boundary conditions for the pinned e;d of
where W is the cross-sectional state vector in wave our truss (taken to be the left end) are
mode coordinates, and v are the eigenvectors of the
transfer matrix T.

1 '0
The cross-sectional state vector W can be [

partitoned into conponents which represent 10 j (22)
. LI : oJright-going weves, w+, and left-going wave&. w-.[ 10

II =I"•_[(15)

Following the prec•edirq derivation, we obtain the
scatterirn matrix given in Figure 12. More detailed
plots of the Individual entries are available inHe also label wave modes which arrive at a reference 11.

muMber boundary, a, and those which depart a
boundary, d. The relationship between the arriving
and departing wave modes at beam bnundaries is Application of the free boundary conditions at
depicted in rig 11. the right end requires a bit more care. These
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Fig 12 Reflection Coefficients for Free End of Truss

boundary conditions must include the effect of the compression wave is woll know to be 1 for a free-end
end -1 for a fixed end. The 8(4,4) plot of Figure

[which m fL U 4. 12 indicates that the reflection coefficient foe the

u3 , f3  compression mode at the fixed bouindary tends to
3 -1.1, while S(4.4) at the fee ad tends to 1.. The

U2. f2 low-frequency limiting behavior of these two terms

U U 1  is thus corre cut

This member has a force-deflection relation 4. ,4atural Frequencies bt RPhase Closure

The phase coue picp, tts ta
aUL ntural frequencies occur *hen all wave modes[[- 4,%21[ complete a circumnavigation of the structure with a

total phase change of 2K w . to the case of an
n-bay truss, the wave modes arriving and departing
the two ends are related by (Fig 11)

Where [A B9 C D) can be obtained from dynamic
condensation of a finite el0ment model of that ar Cn dL
number•n (24)

In this analysis, the member was modeled by 2
beam elements, thus the 9 dimensional finite element where E is a diagonal matrix of eigenvalues
model must be reduced to the form equation by associated with the right-going wave modes. Egn 21
dynamic condensation of five internal degrees of car. be written for both boundaries as,
freedom.

'beMks can be made on the validity of these aL a SL aL (25)
reflection coefitients by examining limiting cases dR = SR aL
of these values. At low frequencies the bending
mode resembles a beek in bending, while the By repeated substitutions of Eqns 24 and 25, we
compression mode resembles a rod in obtain a.A after one circumnavigation of the beam,
tension/compression. Since the wave mode
2igeamectors have been normalized with the axial a4 n 4L n
deflection of the first node equal to unity, checks a • SL Sa aR (26)
can be made on the reflection coefficients of the Resonance occurs when this relation is an equality;
compression mode at both ends. The
deflection-nomelimd reflection coefficient of a [n SL . n SR - = (27)



The only n-tciVal way this can be true is if tht
detstminant of Wn 2? is "Cro. Therefore,

dot I 'St.t ~S -t uS (28)I

is.a satisfied at a tross resonance.

Notice that, by replacing only one value in
the formulation (the number of bay*) , the natural I
freqxmnies for a trues with an arbitrary number of.-
bay* can be determined *quickt as a bunny.' Tho
order of tha problem does not Increase with
Incroaatrg nufbor of bays, but remains that of the
transfer mate in,

Fig 13 is a Plot Of the determinant of Eg 23
fee a aeven bay, pinned beam truss with one free and
one pinned d.' fth natural frequencies of the I -

trusa can be Identified whtnever Wy 23 tends to
auo.e TaftnanA. frewftencies determined by this phase
0106%" Method age listed In Ti9 13. Thes 0
frequencies roi~w uc ttase doeterined by as finite * " o
element analysisf of the same* truss except whenever ?q.I()

the madls are closely spaced. The finitea element
analysis Obtains five Modes within the 35.13 - 35.31
Mes bandwidth while tt* phase closure method locates Present Finite
only two. this remains true even when frequnoy mayi Eeet
stepe of 6."l He are used in Wq 20. The same
results also occur About 76 and 134 Ms. because the
isolated makes are so accurately detearmined, One may 12.13 12.15 n/i 73.51
be tempted to attribute the phase closure 'method's 33.9 397 n/i 71.52
failure on numerical round-off. Tis, howe~ver 33.13 35.13 n/i 78.54
remains to beson -~r- n/i 71.54

?3S.36 n/i 78.57
5. Unmdelai Effects n/i 3S.3.1 n/i 71.59

I'M WT n/i 70.59

Linear behavior has been assumed. An actual 51.84 31.84 78.59
spacecraft truss may exhibit significant 67.31 67.6 163.83 113.09
ren-linearities, particularly if it is deployable ? .121.14 121.12
and thus has relatively loose joints. The effects n/i 76.34 147.91 147.91
of such joint non-linearities upon the results 76.22 71.22 153.45 153.45
prevented here are not known. It eemu plausible, D/ 1 7.39 ? rni:-r
that the situation would become even mare complex, n/i 76.41 n/i 154.57
and that the pattern of stop and pass bands, at any n/i 76.43 n/i 154.69
given response amplitudes would suffer soe sort or ~ 79.47 ThI- I MWt
blurring. n/i 76.47 157.07 157.67

Even were an actual truss linear, it would not /7.4

be perfectly periodic. Small, unintentional n/i a not identified
variations from perfect per iodicity would be
pre-sent. 'The statistical effect on wave propagation ?a possible identification
of such random variat oen in bay properties is the
subject of reference 1 '. This reference, shows tha t Figure 13 -Natural F'requencies Obtained
the first-order effect is that all wave moes at all b hs lsr
frequencies will be spatially attenuat~ed. ThebyaeClsr
degree of attenuation is proportional to
"Wrandamness* and inversely proportional to the
acoupling strength" between bays. (Uttable
non-dimensional Measures of randtomness and co4uplir
strength must be introduced).* The physical 6. Conclusions
exploration for such localization is that the
coherent wave, is scattered into incoherencel tle This research ccnputationally investigated
vibrational enegy is tranaferre-i into a spatially wave mode propagation in two-dimensional , periodic
localized response. Wb thus anticipai~ that an truss structures. Some conclusions based on this
actual truss (as cvISpmred bo its id2eaized research follow,
mathematical model) wili exhibit the characteristics
described by this paper only approximately. 1) The transfer matrix technique proved useful in
?1mal-world effects (non-linearity, disorder, and that the dynamics of a canplete truss beam were
others) will tend to mod ify this response determined by snalysing only one of the periodic
(especially at higher frequencies) to be more of an elements. Conventional analysis tools such as the
ill-defined local rattle, that slowly appears and finite element analysis become computationally
disappears in local portions of the structure. cumbersame as the number of degrees of freedon

9



needed to model the structure increase:;. In the Retfrences
transfer matrix method the order of the ncoblem

depends only on the order of one of the
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resonant frequency of the truss members. The rod Coupling," Journal of Souwd and Vibration, 1973,
modelling masks all local member dynamics that would 27(2), 235-266.
he present if member bending were modeled.

C. Mead, D.J , "A New Method of Analyzing Wive
S The pinned beam truss exhibits complicated Propagation in Periodic Structures: Applications to

mechanical filtering properties. Periodic Timoshenko Beams and Stiffened Plates,"
) C m tJournal of Sound and Vibration, 1986, 104(l), 9-27.

/ 6) Complex modes must form in pairs and cannot
exist alone. Thus in a pinned beam truss, there 7. Hodges, C.H., Power, J., Woodhouse, 3., "The Low
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complex modes present in order for any to exist at of Sound and Vibration, 1985, 10!1 (2) 219-255.
all. Mono-coupled systems cannot support complex
wave modes. 8. Eatwell, G.P., "Free-Wave Propagation in an

Irregularly Stiffened, Fluid-Loaded Plate," Journal
7) Complex mode formation is initiated at member of Sound and Vibration, 1983, 88(4) 567-522.
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Trusses," SM Thesis, Department of Aeronautics and
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10. von Flotow, A.H., "Control Motivated Dynamic
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formulation. Conference, Williamsburg, VA, Aug 17 and 18, 1986.

a. Power flow was evident in the evanescent 11. Signorelli, J., "Wave Propagation in Periodic
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b. Shear force terms in the eigenvectors of 12. Kissel, G., "Wave Localization in Disordered
modes in stop bands are not invariant Periodic Structures," "roceedings of the AIAA
under a coordinate transformation. Dynamic Specialist's Conterence, Monterey, CA, April

1987.
c. Closely spaced natural frequencies of the

tru3s are rnot detected when analysed by

phase closure.
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bays can be determined. As stat.d in 16), however,
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XCrIVE MODIFICATION Of WAVE REFLECTION AND TRANISMSSION
IN FLEXIBLE STRtUCTRES
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fassachusetts Institute of Technology

Otabridge. IMssachusetts

ABSTRACT
shown (7) that a restriction to local velocity

A theory for active control of elastic wave feedback (a diagonal gain matrix) results in
propegation in structures to developed. Attention negligible degradation in performance.
is focused on active modification of the scattering This paper develops an alternative to direct
behavior of discrete locations in a sutuctural velocity feedback for active dumping. Feedback
network. The wave mode input/output relation at a compensators. based an spatially local models.
structural Junction containing control actuators actively modify wave transmission snd refleotion
can be altered in two ways. First. the closed loop characteristics of the structure. Such reflection
reflection and transmission coefficients can be and transmission coefficients are relatively
specified, and the necessary feedback to achieve Insensitive to modelling errors, depending only to
these coefficients determined. Second. an optimal first order upon local parimter perturbations.
wave controller -a be formulated which maximizes Prior work (8.9) has shown that. in special
the aveo,•W power dissipation at a Junction. If cases. compensators designed for active absorption
the opeot loop structure is stable, then the optimal of travelling waves can be very similar to direct
control iarantees stability, since energy is velocity feedback. In general tbey can be quite
actively dissipated at the Junction. Sample different.
controller* are derived and simulated ror a
free-free boen to deonstrate the techniques end TRAVELLING WAVE DYNAIWlLJ
indicate the achievable performance.

Modelling wave propegation through structures
INTRlW=Icf of arbitrary complexity can become impractical.

However it is invariably poasible to find many
Nodal analysis of strumtural dyrdmics is a comiponts in any structure for which a wave

powerful and widely applied technique. The propagation viewpoint is feasible.
technique, however, is limited to systems with a This paper considers one rich component; a
relatively sparse spectrum. since the medal Junction of an arbitrary nmber of slender
parameters, particularly oigenshapes. are otherwise onw-dimsnsional elastic members (Fig. 1). The
known to be extremely sensitive to small parameter members are viewed as waveguides along which a set
perturbations of the structure (1). Since modal of discrete decoupled travelling wave modes my
density increAses with mode number, this propagate. Theme travelling wave modes are coupled
sensitivity has prompted one analyst to suggest (2) to one another at the Junction, the dynamics of
that it is possible to mske the modal model too which are described by frequency dependent
complex (of toe large a dimmwion). Analyses (3.4) reflection and transmission coefficients. Since
for some future space missions show that hundreds the reminder of this paper builds upon the
of modes of an elastic spacecraft can contribute travelling wave description of Junction dynnAics.
significantly to performance degradation. Many of we provide a brief sunmry (10).
these modes are considerably beyond the range where
they my be confidently modelled. Thus. one faces function Dynamics Formulation.
the problem of controlling structural dynamics This section makes reference to Fic. I which
which are well beyond the frequency range in which shows an arbitrary Junction of several members. and
modal analysis is applicable. may include a flexible body. The brundary

One alternative is the achievement of conditions. vhich my be a function of frequency w.
significant levels of dumping by passive or by describe how boundary motions interact with member
active meens. Direct velocity feedback between forces and externally exerted influences. Such a
dual (colocated and of like type) sensors and relation hu, the gene,*el form
actu,•.nrs has been shown (5) to be unconditionally
staoiiziliw if the matrix of feedback gains ,s U(r )
positive definite. This concept has been B(w) y(w) a ( Bu) -(E) ]L jtB) I I) QM (1)
formlized in a two level control architecture. J
kztcwn as IIAC4C (6). Although the feedback gain
matrix my. in FIrinciple. be full. experience has where the vector u contains the boundary motions

and f contains the member forces at the boundary.
Research Assistant. PMr o r AIAA The square mntrices B. and Be contain the

a Assistant Professor homogeneous dynamics of the boundary while Q is a
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In this Junction description, the matrices $ and #
represent homogeneous and neihsnemonu wave
behavior and are called the scattering and
generation matrices, renpectively. Both may be

Woo complex and trequency dependent. This description
o contains only local Junction end structural

dynamics sand does not contain Information about
other portions of the structure.

The scattering behavior of this Junction
description can be altered actively through
exertion of external influences, such a commnded

1-- nmotions or ampplied generalized forces, which depend
upon Inconing wave notion at the Junction. Before
doing so. methods are required to help determine
"the performance and stability of such active

Wit BDY Qcontrol.

Avers Junction Power Flow
Figure 1 The generic Junction. The Junction can Travelling waves can move elastic and kinetic
include a flexible body and can be connected to energy through a structure. The not poter flow out

nminy members. Each member supports incoming w, ed of the Junction is a quantity of interest and can
outgoing w. wave modes. External Influences Q my be used for control desein. The power flow out of
also be applied. a junction Is iven by

Power M S .f(t) (7)

vector of external influences (forces and relative
deflections) acting on the boundary. It is necessary that care be taken to ensure that

This boundary relation can be transformed into the entries in u and f are ordered such that their
a relation governing the local wave behavior. A dot product represents power flow out of the
full rank transformation is mde from physical Junction with positive net power flow indicating
variables u and f to wave mode coordinates w, as that more power flows out of the Junction then into
follows: the Junction (en example of this Is given later).

Note that power flow ti a time dependent quantity.,- ] [which is a bilinear function of the bou ry forces
Y( = f y y w, e Y(o) w(m) (2) and velocities. Heope. the Averege power flow is

not simply the sum uf the power flow of the
individual wave modes. However. the total average

where the transformation Y has been partitioned power flow is equal to the sam of the average power
into square subeatricos and the vector of wave mode flow at each frequency. due to the orthogonality of
amplitudes hae been partitioned into incoming and sines and cosines at different frequencies.
outgoing wave mode amplitudes w, and w.. This Therefore we consider the average power flow at
transformation is a characteristic of tho members each frequency w independently.
attached to the Junction. Each wave mode The time average power flow over one cycle is
propagates along one of the members, independently
of the reminder of the member response. 1_
Associated with each wave mode is a frequency PAVO) a w(U)" P(o) w(W)
dependent mix of member deflections and forces
(each column of Y(w) in Eq. 2). Substituting Eq. 2 where w to the vector of wave mode amplitudes, and
into the boundary relation (Eq. 1) gives the superscript H denotes the complex conjugate

transpose. The matrix P is given by

[ B Bt 3 [:: . [::w] . (3)P.If!P rl.,:",i, ¥.,"¥,. ri.,,:,,,y ," .I
"LLY11, Y,.0Y,.J]Y,*y,::, Y,.NY.,,.J] (9)

which is an expression of the boundary conditions
in wave woe coordinates. PAv. is real for any mi.x of wave modes in w since P

Equation 3 can be rearranged to give the is hermitian. A pmssive, nendiasipative Junction
input/output relation governing a Junction with will have zero net power flow (PAVe M 0).
outgoing waves resulting from the scattering of
incoming waves and generation by external forcing;

w=Sw& + # Q (4) CURltOL DESIGN

where Two methods for wave control derivation are
presented in this section. In the first method.

S * -( B.Yv. + BDYs. E1  B .Y. + B,Y,, ) (5) the closed loop rccttering matrix is fully or
partially specified. and the control which achieves

' * J" u.y.+ IsY. ]' (6) this behavior is derived. In the second method.
the control is derived such that it minimizes a
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cost based Upon the sum of Junction power flow plus Q -- 'P..* + R]" r EPo4 + s* s] wt • F w, (17)
the @Motrol effort qxpendgd. Finally, the
performance achieved by both methods is discussed. This gives cootrol exertion which is proportional

to the Incoming wave mode amplitudes. Again, these
j he Ittsrirml itin wave muoe mplitudOe am be transformed to give

It the extermll applied influence Q is given proportional feedback of physical deflections at
by a linear ciinatiOn of the Incoming wave mode the Junction using Eqs. I end 2.

ampi tudes, The second derivative of the integrand of Eq.
13 (Eq. 15) with respect to Q is_Qu=F wi (10) (8

t Poo R t(8
then the Junction relation will have the form

P.. is hermitian and positive semideffnite. since

w, * ( S + # F 3 w, a Sek wk (11) outgoing waves propagate energy away from the
Junction. (In fact. this condition defines outgoing

It the control designer specifies the entries wave modes.) It R is chosen to be positive
needed in the closed loup scattering matrix S... definite, then Eq. 16 is positive definite and the
then the frequency depeident gains can be found control in Eq. 17 minimizes the cost functional in
(10). For exmmple. all outgoing waves can be Eq. li.
eliminated by setting the closed loop scattering Several properties, of Eq. 17 can be realdly
matrix sque.l to the mall matrix using the gain seen. For conservative systems that support only

propagating waves, energy is carried independently
F -'S (12) by each wave. This cause* Poe to be of full rank

and P.o to be the zero matrix. This allows a
Since wave modes my be difficult to measure. Eqs. control to be derived using Eq. 17 with R equal to
1 and 2 can be used to derive equivalent feedback the zero matrix. In other words. if # to square
using physical deflections u. (all actuator types used) then there exists a

minimum achievable cost and it corresponds to the
optimal Wave Control control derived using Eq. 12.

Optimal control is defined by the minimization For system with evanescent waves. P.e wile
of some cost. typically based upon the response of not be of full rank and I mest not be nonzero in
the system and the effort expended in control. For order to prevent inversion of a singular matrix.
the wave control problem, with a gal of active In this case. actuator restrictions such as
damping, net power flow out of a Junction is an saturation limit the achievable performance. If
obvious quantity to minimize since that lacreases only a subset of possible controls is available,
the ensrgy dissipation at that Junction. there are situations in which the product #'Po.o

Using Eq. 8. a possible cost functional has will result In a matrix of full rank and R can be
the form set equal to the zero matrix to obtain minimum cost

with the available actuators. Note that with
( 3R = 0. the resulting closed loop scattering matrix

J P w P w + Q" R Q ! do (13) will be nonzero. This is because the outgoing
evanescent wave can combine with the incoming
evanescent wave to dissipate snerg• at the
Junction.

where R. penalizes control effort. Since the wave Since Pve is never positive for an
mode amplitudes are affected by the control action, uncontrolled Junction and the coritrol in Eq. 17 is
the w vector In a function of the Incoming wave chosen to minimize the quadratic in Eq. 13. the
modes and the control. so that optimal feedback gunrantees dissipation in the

active Junction independent of the incoming wave
[ w, (14) mode. six.

• SW, + # FREE-FREE BE.AN EXAMPL.E

Then the integrand of Eq. 13 is tgiven by The derivation and properties of wave control
can be best demonstrated using an example. A

wl"P, wi + w'"PAO(SwA + ') free-free beam is chosen for the example structure
" (Sw, + eQ)"Pesw, because such a beam exists in our laboratory (Table
"a. (Sw. + #Q)"P.o(SwI + 4Q) (15) 1) allowing designs to be experimentally

demonstrated. The Bernoulli-Euler beam model
where the P watrix bha been partitioned as supports one evanescent and one propagating wave

mode in each direction.

pp, P , (16) Bena End Dyn"mIcs Formulation.
The first step is to derive the boundary

conditions for each beam end. The free-free beam
This cost functional cii be minimized by and externally applied influences are shown in Fig.

minimizing the tntegrand at every frequency. The 2. The boundary condition relations for the left
integurand is minimized with respert to the control and right ends are

Q when
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Table I Free-Free bem and amtmtor $p4fiti1OPS For the remainder of this am*ple, only the left

Junotion will be dealt with explicitly.
Evaluating the entries in the transformation

usi Propertiest matrix of Eq. 9, using Eq. 20. gives

14terleA Brass
,., I s 7.3152a, ,r -

Bending Utittnsos 1 a 31.1 1k w,
NaSs per Unit Lenth pA a 2.f=3 '5" -E ] ifik Eik k -tElit Elk( w| (3)

Actuator Propertitao [Ei J14 ke Elk* -11k ElkJ w,,J

ro.0o 0.00391 w, rI ,]?3lsI

B. •'L 1.515 -0.1lJ ; B ,with x a 0 at the boundry position. SubstttutingS.. - ,Eq. 22 end 33 Into Eq. 19 and solving for the
scattering and wave generation matrices as defined
by Eqs. 5 and 6. respectively. gives[:~ 1 , 1,,,, ,[ 000 1 v') I (24)

1000 11 -El' V: XJ (19 1  +1 1J
ElT" WL]R L.R

where the prima denote spatial partial derivatives 2* [1 1,-k]
of the transverse beam displacement v.

The four wave solutions to the Dernoslli-Eulerbeen quatin at*The transfer function irce an external force
be equationi are applied to the right end of the biea to the

transverse displaommemat at them esand can be
Vw ekxIlt . ',,, W,710LCiwt + expressed am
Wipelkili 4 WoolknS l (20)

where the wave mier via El o1 o oY [U] (Z'fSLNa'C3L"8ta [0 F (25)
k a (pA/EK)]' u i•' (21) where

is a positive, real quantity and the subscripts and
constants are defined as * [*M I0 (27)

rpz rightweard propagating
re: right end evanescent and I is the length of the beea. This is an exact
lp: leftward propagating solution of the governing equation and boundary
Is: left end evenescelt, conditions.
p : mass density The next stop in to derive the net power
A : cross-sectional area matrix P at any bea cross section. This is done
E : modulus of elasticity by substituting the square wubmtrices of Eq. 23
I : cross-sectional inmsnt of inertia into Eq. 9. The resulting matrix, using the

definition of wave numer in Eq. a:. is

'LI ' VRT ')vi 1 0 001 (9

MLCFLI.___ ___ 1 ____ _ t__F1 )N3  P -2 w'k (pAFI)"a3  100110

Figure 2 Schesatic of free-free beam. Orientation Since the wrtve mode amplitude vector is
of external influences Q and basm deflections. v defined by Eq. 22. the (1.1) and (3.3) entries in
and v'. are shown. Eq. 28 represent the power flow associated with

propagating waves. The Imaginary (4.2) and (2.4)
entries represent power propagated by the
interaction between the two evanescent modes. Note

For the left end of the beem In Fig. 2. where that the evanescent modes do not propagate power by
the active Junction control will be performed, the themselves.
incoming and outgoing wave mode amplitudes are
defined as Wave Absorbers -or the IeaM

Sitw that the Junction dynamics and power
relations have been derived. Junction control
compensation can be formulated. First. the closed

wr '(22) loop (1.1) bcattering matrix entry will be sot to

[ wW. J zero assuming that only one physical deflection
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Sen urent is available. TWOi results in no wave oe feedback of
outgoing propmgattin save being creatad by an
incoming propagating save. Since the F 1 El ka ( (-li) (1÷1) 3 (35)
characteristlo attenmation length of the evneOaelnt
modes is inversly preortisiml to the square root Or, equivalently. feedback of deflection and

of frequency (Lt. 1i), ths Imortanc of this (1.1) rottion with
entry become more obviou at higher frequentcie.
Second optiml feed k of ftetcal deflection C a 0.5 (EI) 5"(0A)"' E 0 (-1+1) Wles s (31)
measurement@ will be derived. Perfor"ne of the
two deslgns will Owe be evaluated. In the This only calls for rotation feedback "nd does so
following discussion, the P end C matrices denote through what cma be tormed a halt ditterentiatoe
incoiG wave mode and PhySmicial doefection feodb.ok since It provides a frequenc5y peide m o*f W1

wans, respectively, and a forty-ftiv degree phase load. This results
Feedback of a physical deflection can be in a closed loop scattering matrix of

achieved by setting Q - C u in Eq. 4 and
substituting for ui trom the top halt of Eq. 23. r0 1 1
The ain for which the closed lop (1.1) scattering L-s lij (3T)
matrix entry to zero ca be extracted in closed
form or nmerically at various values at frequency.

If a transverse displacement ueasurement is To resulting not pmMr is
chosen in conjunctien with torque actuation. giving
feedback at the form p"V-a I "" 1 - 1- ] " WvPeLw, (38)

J(u) = C(u) u(N) a S(W)V) v(u) (29) [

then the closed loop scattering matrix has tie form This closed loop pmer matrix has eig•gvalues equal
to 0 Amid -2. Therefore• the matrix is n tive
semidefinite sod OrOW is NSer gemerated at the

I r-i-lr1-i) 1i-r( 1 (30) Ju.:,ution.
TeT ) 1-iFig. 3 compres the closed lotp responses with

the open loop response, foMd using Eq. 2S, ustin

where the feedbacks give1 In Eq@. 32 and 36. The open
lOOp Systen is provided with about 0.5Z damping

(1 . i) 3 through the addition of a linear dmnhpet at the
M a (31) right Junction. Note that the fedbmck in both
2EkS cases result in 135 degree@ ph&s Ing snd a

logarithmic manitude relOIft slope of -"2 above I
Setting the (1.1) term to zero and using the red/sec. This matches the recteam e tram force to
definition from Eq. 21 gives displacement at the right end ot a semi-infinite

beam. In other words, at high frequencies (bovse I
T WT-tI or g(w) = -I (pAEI)" m ie (32) "ad/soc It Fig. 3). where evanescent modes become

insignificant. the beep behaves as it it were
sami-inftnite. Fig. 4 illustrates that the

This corresponds to feedback of transverse velocity corresponding power flow out of the left Juncttin
to torque through a gain equal to -(pAEI)&"s. The is negative for all frequencies. Noting Fig. 3.
resulting closed loop scattering matrix is the performance is slightly bettor at low

frequencies for the optimal feedback, since

rC 1(3 evwanecent waves are being exploited to inzrease
1 a - 0 (33) Junction power dissipation.

Fig. 5 compres the closed loop transfer
fumtions to the open loop treasfer function wi th

Th. power flowing out of the closed loop Junctiong the dynamics of a torque wheel actuator included
at ech frequency, con be found by substitutingo (Table 1). The actuator dynamics more ignored
Eqs. 33 end 11 into Eq. 8 tO. P . during control design. but need not be. Note that

the controller derived by setttng Sc(ll) u 0

, , I al]9, = 4,PC6V, (34) results in an instability at 72 rod/sec. This
L1 winstability was verified using a finite elementmodel and is seen in Fig. 6 whare the power flow

This quadratic yields a real value for average out of the junction becomes at positive quantityi qraTic yieldse af r heal valused f oor av werag near 67 rd"scec. Arn interesting feature can be
power. The 1i4el uesnu1 of the closed loop power eden by comparing Fig. 3 with 5 and Fig. 4 with 6.
Itsix are 1.414 and -1.414. This means tbat an Note that wl.vn the compensator is derived basedis an indefinite matrix and may amplify certainupntecrctodlrsnatbavrapes
incoming wave mode mixes. Thorofare. junction upon the correct model, resonant behavior appears
d icoming daependeis. an therefore. i unctmiong wto vanish. When not based upon the exact model,
dissipation depends on the nmix of incoming wave resonant behavior still exists, because wave
modes, end therefore on the dymmics of the cancelling is not exact. and instability occurs for
reminder of the beam. tecmestri q 2

Optimal feedback can be derived using Eq. 17 the compensator in Eq. 32.

with R equal to the zero matrix since only torque
actuation is being used. This results in incoming
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the high perfetrmo of fedsibak gains optimiesd at CuidaAM. Contrl, and Dlnmmea, Vol. It No,4.
every frequWmne. no perfomance &ad dissipation July-Aug 19M, p. 46.
of the Junction control aon be determined without (l0)von Flotow, A. H.. Sobrafer, 5,. "Wave-Absorbing
knowledge of global structural behavior. Since the Controllers for a Flexible Dom." JurmLiL
design depends only upon local dyntics. it cannot Guaidane. Control. sod D mtes. Vol. n mo. 6.
be sensitive to modelling errors In distant Nov-D 19%. p. 673.
portions of the structure. By maximizing Junction
dissipation at all frequencies. h~gh perforomnoe
vibration suppression Is achieved. perhaps even to
the exo et of eltnieating reesoant behavior in the
structure. It we shoen that designing
compensators without read to actuator dynamics
causes a degradation In performance. But, the
actuator dynmmics way be Included In the boundary
condition@ to prevent this.

Several disadvantagee mast also be faced in
using this scheme. The compensators are typically
cooplet functions of frequency. Thess coa be
difficult to Implement, and may becone more
difficult when actuator dynmmics are modelled.

Many extensions to this theory of active
control of wave propation are possible. one
might, for eample. attempt to adopt such
controllers by observation of their performance.
One might attempt dynsmic esatisation of incoming
wave modes, using partial measureents and theory
yet to be developed. One might make these
measurements som distance "upstree." from the
actuator to provide for actuation and sousing
dynamics, and thus mike the theoretical
compensators meuer to Implement. This promises to
be an interesting area for research.
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got be applicable to very different systems such as tethers with neg- Of feet sad body attitude dynamics Would require she uear of misses two
Ugible end fAmIs, masmVe tapered 401t011, multiple tehens, rapidly mom *an-dimens~onal prnuseews, peraps d/L .md dV'F7r. whau
spinningl tethes, sad mlany others. d is the obet between the tather attach point and the and body mom

The sigem-saalysis presented is based upon the assumjpion of email ciater, min ts mass, and 4. ite inertia. A stmdy of the effects of this
deliectiona. Reteramess 18 sad 19 have considered larger amplitude coupling is left as a topic of ftutre peuiean.
motion of cables. Rfehreouc 18 shows that the quadratic terms in the
$train energy emtpoedoi. of a shallo wcaentary remain dominantl only SUMMARY
as bag as dellectioas remain small compared to the equilibrium sag. This paper has investigated the dynamics of typical tethered soace.

craft systems in man epository approximate Way. The motion is shown
to occur at two tim scales, one comparable to orbital rate, the other

RIL 10DW much faster. Spectral sep~iario is invoked to approidmately decouple
this ZROtlc.

Past Whtete vibrations acccii with respet to a slowly varying quasi.
equilibrium. The equilibrium shape of the tether is estimate to be
slightly sagged from a straight line, said the small perturbations from
thi equilibrium are described by a system of Uinear partial difM n-.

3 tial equations. Non-dimesaronl perimeter groups saw idemtileil which
Woern the character of the fast tether vibrations.
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Abstract

A cable Pinned on both ends was excited by a variable frequency shaker and various aspects of

its dynamic response were measured, including cable wave propagation speeds, resonant frequencies,

and resonant mode shapes. Cable tangential velocity at a point was determined by using

electromagnets to create a magnetic field that the cable oscillated in, thus giving rise to an induced

,voltage in a small filment wrapped around the cable at that point. This voltage produced made it

possible to experimentally determine cable wave propagation speeds and resonant frequencies.

Resonant mode shapes were determined photographically. Results were compared to a new

theoretical model that used the midspan deflectioii of the cable as a running pRrameter. All

experiments were performed at three different s ag levels to test the validity of the model. The results

of the experiment presented a limited proof that the model proposed accurately describes actual

behavior. It was concluded that certain non-modeled effects, particularly three dimensional cable

oscilations, were significant in the actual experiments and rec~ommendation has been made to

incorporate these effects into the theoretical model.
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1. Introduction

A curved cable sustaining driving oscillations exhibits a complex dynamic response that is

largely a function of how much the cable is sagged. A cable with a small degree of sag (with the

term Nsmall" defined more quantitatively later) behaves in a well known manner. This behavior

is predicted analytically by the so-called "string equation", which is the linear differential

equation that predicts the completely familiar normal string vibration modes. A cable with a

large degree of sag behaves in a somewhat different way; however, its analytical solution is

completely determined by solving a different linear differential equation. This classic "hanging

chain" equation, as well as the string equation, have been known for centuries.

As one might expect, the dynamic response of a sagged cable with an intermediate sag

should exhibit a dynamic response intermediate between the results obtained for the string and

the hanging chain. However, an analytical model of the behavior was not formulated until

recently. In a paper1 entitled Some Approximations for the Dynamics of Spacecraft Tethers,

Prof. A.H. von Flotow proposed a model to explain the intermediate behavior for the

intermediate sag case. His model predicts that there are two coupled differential equations which

are functions of sag describing the tangential and lateral motion of a driven cable . My partner

and I have attempted to verify the validity of Prof. Flotow's model by driving a pinned-pinned

cable with a variable frequency shaker and measuring its dynamic response. We have chosen

three figures of merit to determine experimentally: wave propagation speed along the cable,

resonant frequencies, and resonant mode shapes. We performed our experiment at three different

sag levels: a shallow sag representing string behavior, a large sag representing hanging chain

behavior , and an intermediate sag representing the interesting intermediate behavior. By using

an eigenvalue solution technique, solutions to Prof. von Flotow's equations of motion can be

solved and theoretical results for wave propagation speeds, resonant frequencies, and resonant

mode shapes can be ascertained for all three experimental sag levels. Clearly, then, the results

from theory and the results from the experiment can be directly compared and the validity of

Prof von Flotow's model (barring large exparimental errors) can be established.

In addition to possibly verifying a previously untested hypothesis, a further motivation for

our experimental study is the real-world application to spacecraft tethers. In a situation when the

only link between an astronaut and the mother ship is a spacecraft tether, the very safety of the

pstro•aut depends on the dynamic response of the spacecraft tether. Unfortunately, my partner
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and I were unable to simulate the pinned-free boundary conditions of a zero gravity environment.
However, a reworking of Prof. von Flotow's analysis with our pinned-pinned boundary
conditions was done and thus good experimental verification of the pinned-pinned case with our

pinned-pinned analysis will represent a verification of Prof. von Flotow's general model.
TMe methods used to experimentally determine wave propagation speed, resonant

frequencies, and resonant mode shapes are quite complicated and I will explain the basic
principles here. Basically, a way was needed to measure the tangential cable velocity at a point
along the cable. After much brainstorming, a reasonable solution was proposed. If the tangential
velocity of the cable at a point could be converted into a voltage, we would have a quantitative
measure of the cable's tangential velocity at that point. However, this can be accomplished
relatively simply by remembering simple electromagnetic theory. A wire moving through a
magnetic field develops a voltage proportional to its velocity through the magnetic field.

Therefore, by wrapping a small copper filament around the cable at a point and allowing this
point of the cable to shake thro.ugh a magnetic field, a voltage could be generated in the filament
which could be sent to an amplifier and then to a signal recorder. Indeed, this was done in order
to measure wave propagation speed and a cable velocity (tangential) vs driving frequency,
resulting in a transfer function plot, which exhibits peaks at the resonant frequencies. The

experimental determination of mode shapes has a much simpler solution. After experimentally
varying the frequency until a normal mode occurs, a time exposure photograph could be made at
that frequency. A "washed-out" picture of this mode shape could thus be obtained. All of these

experimental results can be compared graphically to theoretical results, which is a much clearer
method to compare experimental and hypothetical results than comparing numerical data.



3

2. Theoretical Background

An attempt will be made in this section to point out the main points in Prof. von Flotow's

theoretical model derivation and to explain how our theoretical results (to which our

experimental results were compared) were obtained. To begin, we must review the dynamics of

a hanging cable (refer to Figure 1). An equation can be derived for the radius of curvature R in

terms of the length of the cable L and the midspan deflection, or sag, 8 by considering simple

geometry. We obtain the following result:

R= L/ 8 (')
By considering force equilibrium on the cable, an equation relating the tension in the cable T to

the sag 8 can be formulated:

-q L(a)
where m is the mass per unit length of the cable and g is the acceleration to due to gravity.

From Prof. von Flotow's paper (Ref. 1), the following non-dhnensional parameter may be a

convenient way to reduce data and make it more general. This nor,-dimensional parameter X is

defined as followq:

where E is the Young's modulus of the cable and A is the cable cross-sectional area. In this

paper, it was discovered that for It[ I , 8 was small enough for the cable to be treated as a

string. Similarly, for 'tA"1 8, was large enough for the cable to be treated as a hanging chain.

However, for V1130. --as at the interesting intermediate case described in the introduction

section. Kwwing th-, it only remained for my partner and I to dtermine the value of sag

needed to give us the desired value for I,.

However, this can be done simply by substituting in qluations I and 2 into equation 3 for R

and T, respectively. The .1: of this substitution:

L sla(hs)
0 w(L)
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Therefo, since all quantities except for 8 and ). can be experimentally measured (and indeed

were measured), for a given value of •t the value needed for 8 is completely determined.

Plugging in the numbers, we arrived at the following settings for & for the low sag case ( Jt 'a I

), ".0030 meters: for the high sM case (Vs 1 84 ).0.200 meters; and for the intermediate sag
case( 1,t*30 ), 8=0.140 meters.

I won't attempt to rigorously develop the analytical model used in Prof. von Flotow's

paper, as the mathematics are quite abstract and complicated. Basically, linear partial coupled

differential equations were formulated and solved by using an eigen-analysis solution technique.

The resulting solutions were similar to a set of solutions prepared by a UROP student of Prof von

Flotow's a year ago, with one modification. Our analysis used pinned-pinned boundary

conditions while the boundary conditions discussed in Prof. von Flotow's paper were pinned-free

boundary conditions. Because of the large amount of matrix algebra involved in this solution

techniqne, the problem was solved on a computer using the programming language MATRIXX,

which has fantastic matrix manipulation techniques. The code was written to predict theoretical

mode shapes and transfer function plots of cable tangential deflection at a point vs. driving

frequency. Refer to Appendix A for a copy of the program used to predict the transfer function

plots and a page explaining the variables and constants used in the program. The output of this

program was three plots of cable tangential deflection vs. driving frequency for the three

different sag cases mentioned above. These graphs can be seen in the results section of this

report. Appendix B contains the programs used to generate mode shape data at the given

resonant frequencies. These resonances were determined by locating the peaks of the transfer

function plots. Again, a sheet is included to define the variables used in the computer program.

Appendix C contains the data obtained from executing this program. This data, which represents

cable tangential deflection vs. non-dimensional cable length, can be plotted on top of given plots

of the cable in the equilibrium position to obtain the deflected shape of the cable at the resonant

frequencies. Hence, these plots can be directly compared to plots made by taking data from

actual time exposure photographs. Again, these plots will appear in the results section next to

their theoretical counterparts.

The analytical model for determining the wave propagation speed down the cable is to use

the classic formula known for centuries:

* :I 5
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whore T is the tension supporting the cable at the ends and m Is the mass per unit length of the

cable. The value for T can be obtained from equation 2 and a numerical value can be obtained

for the wave prcpagatlon speed for each of the three sag levels. Again, these numbers will be

pesenmtd In the results section in a table comparing theoretical and experimental wave

rop onpeeds.

One important result that should stated at this point is that theory predicts mode coupling

for the intermediate sag case. Mode coupling occurs when two different resonances mode

shapes are excited at closer and closer frequencies. In fact, as the resonant frequencies merge

into the same frequency, a mode shape with mixed characteristics of the two parent modes is

seen. This mode shape coupling, as predicted by Prof. von Flotow's model, actually was

observed when the theoretical plots of the first four mode shapes were printed out for the

intermediate sag case. If nothing else, this helps to confirm that our number-crunching truly

represents the solution (for our boundary conditions) of Prof. von Flotow's previously untested

theory.



3. Experimental Apparatus

3.1 General Setup
A section of the strong back in lab was procured and our apparatus was ectup.

Subsequently we attached a twelve foot long nylon cable to the strong back with one vertical and

one horizontal cable clamp. The horizontal cable clamp was found in lab and simply bolted

rigidly into the vertical strong back wall. We found the base of the vertical cable clamp in the lab

as well. Using a lathe , we machined threads into the vertical aluminum rod that the cable

attaches to and screwed it into the rigid bolted-down base. With this design. it would appear that

our assumption of pinned-pinned boundary conditions is a valid one. This base could be moved

horizontally and bolted again -- thus, this offered us a way to vary the midspan deflection.

A variable frequency shaker was mounted near one end of the cable. Either a wave-tech

generator or a frequency spectrum analyzer was used to drive the shaker (after passing through

an amplifier) at a fixed frequency or as a white noise, respectively. The choice of the driving

mechanism depended on which of the experimental variables we were trying to measure (mode

shapes or resonant frequencies, respectively).

As mentioned in the introduction, a magnetic field is needed to measure tangential velocity.

This quantity was needed for the resonant frequency and wave propagation speed phases of the

experiment. From theoretical considerations, a practical minimum for the required magnetic field

strength was found to be about 10,000 Gauss. It is difficult to obtain magnetic field strengths of

this magnitude in the lab; therefore, my partner and I decided to construct electromagnets that

would give us the required magnetic field strength. This proved to be a demanding task. Indeed,

the construction of these magnets took up the majority of our machining time. Please refer to

!i&M 2 for a diagram showing our magnet construction scheme. The cable, when driven, moves
vertically in the air gap of the electromagnet. A small copper filament wrapped around the cable

at this point will achieve a voltage when passing through this magnetic field. The necessary

number of turns of wire around the magnet core was determined to be approximately 2500. The

wire wu wrapped around the core by using a lathe.



3.2 Wave Speed Propagption
In this phae of out expoNnent, both magnet wet used. The WaIl copper filmeants

wrapped amound the cable wet connected to leads that lead to a two-channel oscilloscope with
memoy. In the experimental procedures section, the method of obtaining the wave propagation

speed will be explained. Please see Fgu 3 for the experimental setup for the wave speed

propgtion phase of the experiment.

3.3 Resonant Frequencies
For this part of our experiment only one magnet was needed. A frequency spectrum

analyzer drove our variable frequency shaker( via an amplifier) with white noise, The induced

voltage in the coil was then sampled by the input channel to the frequency spectrum analyzer.

Please see Figr 4 for the experimental setup for this phase of the experiment.

3.4 Mode Shapes
In the final phase of our experiment, all magnets were removed. A manually controlled

wavetech generator was used to drive the shaker at a fixed frequency. A construction paper

Packgound was painted black and used as a backdrop for our photographs. We used a 750W

spotlight to illuminate the cable so it would register on a time exposure photograph. A 35mm

camera with a wide angle lens was used to photographically record black and white pictures of

the mode shapes. Please refer to Figure 5 for the experimental setup for the resonant mode

shapes of the experiment
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4. Experimental Procedures

4.1 Wave Speed Propagation
The experimental procedure in this case was particularly simple. We tweaked the cable at a

point to the right of the right magnet. This tweaking motion was accomplished by applying a

sharp pulse to the cable with one finger. When the transverse wave had propagated along the

cable to the point where the right magnet was located, the sudden displacement of the cable at

this point triggered our two-channel oscilloscope to begin a time sweep on both channels. It took

a small but measurable time for the transverse wave to propagate down the cable to the second

magnet. When the wave reached this point the first non-zero signal was generated on the left

magnet channel. By comparing the two channels on the oscilloscope, it was observed that the

channels registered a very similar signal separated by a time delay. By knowing the distance

between the two magnets, we then calculated the wave propagation speed along the cable by

simply dividing the distance by the time delay. This experiment was performed five times at

each of the three sag levels. The average of the five trials was calculated and is displayed in the

subsequent results section, compared with the theoretical value of the wave speed for each case.

One source of error in this experiment is certainly the setting of cable sag. Especially for

the case of small sag, a small error in setting the midspan deflection can cause a large change in

the experimentally measured wave speed. Therefore, we would expect a better correlation

between theory and experiment for the case of higher sag.

4.2 Resonant Frequencies

Performing this experiment was the most difficult in terms of the actual implementation. A

position was selected for the magnet near the right end of the cable. For each of the three

midspan deflection levels, a total of ten trials were used and an aver-)ge was taken. For each trial,

the frequency spectrum analyzer ouqtutted a white noise signal. This was fed through the shaker

pmplifier to the shaker. The measured cable response at the magnet location due to this white

noise was amplified and fed back to the frequency spectrum analyzer. The frequency spectrum

analyzer then Fourier analyzed the incoming data to obtain a transfer function of voltage in the

coil vs. the driving frequency. Since the voltage in the coil is proportional to the tangential
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velocity at this point, the frequency spectrum analyzer actually had data for the cable velocity vs.

frequency transfer function. This transfer function data was plotted by the spectrum analyzer and

saved on floppy diskette. Later, hardcopies of these transfer function plots were printed out.

Since, at a point, the tangential cable velocity is maximized at the resonant frequencies of the

vibrating cable, the graphs of the (plotted) transfer function should have maximums at the

resonant frequencies. Therefore, the resonant frequencies can be read directly from the transfer

function plots.

The sources of experimental error in this phase of our experiment are numerous due to the

complexity of the data taking process. Circuit noise appears to be the primary source of error,

especially in the low frequency range.

4.3 Mode Shapes

In this phase of our. experiment, the lab was darkened as much as possible and the data was

taken at night. A spotlight was shined down the length of the cable in order to create a white

washed-out picture of the desired mode shapes against the black background. We varied the

frequency on the wavetech generator until we had visual confirmation that we had indeed excited

a pure mode of the system. Once this frequency was set, three one-second time exposures were

made: one at the optimal f-stop (read from a lightmeter installed in the camera) , and one at the

next higher and next lower f-stops. We obtained these three pictures for the first four measurable

mode shapes for each of the three sag settings.

Sources of error were numerous here too. The most pronounced effect was the existence of

three-dimensional whirling modes, which were neglected in the analytical model provided by

Prof. von Flotow. Therefore, a washed-out photographic mode shape might appear two-

dimensional even if in actuality it was a whirling three-dimensional mode.



5. Results and Discussion

5.1 Wave Propagation Speed
The results of the experimental wave propagation speed are compared directly to the

theoretical results for each of the three different sag levels of .035 meters, .14 meters, and .20

meters in Table 1. As mentioned before, we expect a better correlation between theory and

experiment in the higher sag cases. Clearly, this is exhibited in the data, with experimental

results fromn the two higher sag cases actually quite consistent with the theoretical results.

There are many possible sources of error in this experiment, and below I mention ones I

feel to be the most significant.
1. Error in setting midspan deflection

2. Error in generating a consistent impulse by hand for diifferent data trials.

3. Error in the value for the Young's modulus of the cable. (This changes the
theoretical value of the wave propagation speed)

Even with these errors, I feel the results are significant and offer reasonable proof that the

theoretical model actually predicts the experimental behavior in the two higher sag cases. The

lowest sag case will probably need to be confirmed with a more elaborate experimental setup to

minimnize the errors mentioned above. Overall, I would say that experiment and theory match

reasonably and our results show some degree of validity.

5.2 Resonant Frequencies
As mentioned above, we will compare data graphically in this phase of the experiment. The

results and discussion are presented below for each of the three sag levels. It should be noted

that the actual value read from the theoretical vs. experimental graphs cannot be compared

becaus the experimental graphs represent cable tangential velocity vs. driving frequency while

the theoretical graphs represent cable tangential deflection vs. driving frequency. However,

since On velocity and deflection scale with each other (with a phase delay), the general shapes (

Rd dhenfore the resonant frequencies, which are where the peaks of each graph occur) can be
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S.2.1 Low Sag (8 0.035 m)
Phase corm the theoreticJ uasfr function plot Figure to th experimental transfer

function plot EWW 7. It can be uen from Figure 6 that values for do first four resonant

frequencies are 3.1 Hz, 5.9 Hz, 8.9 Hz, and 11.8 Hz. Looking at Figure 7, we find a clear second,

third and fourth mode at 6.1 Hz, 9.4 Hz, and 12.4 Hz, respectively. Howeve, the resonant peak

at the first mode is obscured by low frequency noise in the circuit. The results for modes two

through four are encouraging, It appears that the experimentally determined resonant frequencies

are only slightly higher than their predicted counterparts. This good correlation helps to validate

Prof von Flotow's dynamic model in the low sag case.

Again, in this situation, the sources of error were numerous. Clearly the low frequency

noise in our circuit is a major source of error, as an entire resonant peak was obliterated by its

presence. Attempts were made to reduce the noise; indeed a good deal of noise was rejected by

reducing the antenna effect of the wires in our circuit. Unfortunatc:,', time did not permit any

further modification to eliminate undesired signal noise. The inaccuracy in setting cable sag

could easily account for the fact that our experimental data was (consistently) slightly higher

than the predicted results.

5.2.2 High Sag (8 = 0.200 m)

The theoretical transfer function plot Figure 8 can similarly be compared to the

experimental transfer function plot Figure 9. From Figure 8, the first four resonances are found

to be at 2.5 Hz, 3.0 Hz, 4.1 Hz, and 4.9 Hz, respectively. Again, low frequency noise appears to

have affected our results in the experimental case, but I believe I can discern the first four

resonant frequencies at 2.6 Hz, 3.6 Hz, 4.6 Hz, and 5.3 Hz. These results arc fairly consistent,

but not quite as close as the low sag case. Again, the experimental values are seen to be slightly

higher than their theoretical counterparts.

Possible sources of error in the high sag case include circuit noise at low frequencies (as

before), incorrect values for the Young's modulus of the cable and patiulady three dimensional

Vibrating effects not incorporated into our model. In this case, the noise was more pronounced

ihan in the low sag case, thus rendering the experimental transfer function plot more difficult to

read.
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5,2.3 Intermedhate Sag (8 = 0140 m)
Please compare the theoretical trnsfer Naction plot rite 12 to the experimental transfer

finction plot 11. Prom Pgue 10, the first four theoretical resonww frequencies can be
seen to be 3.0 Hz, 4.5 Hz, 5.9 Hz, and 7.4 Hz. Reading the values of the fit four experimental

rP M-Nt frequencies from Figure 11, 1 find the peaks to occur at 3.1 Hz, 4.2 Hz, 6.3 Hz, and 8. 1

Hz. These results are promising, as well, and the correlation is pretty good. This is encouraging,

for the case of the Inwrmediate sag levels represents the little-known hybrid case between the

well known string and hanging chain behaviors and is the important case that we originally set

out to analyze.

In this intermediate case, possible sources of error include any of the sources present In

either the high sag or low sa cae, although prwbably to an intermediate extent. For example,

inaccuracies in measuring the cable sa would be more significant than in the high sag case and

less significant than in the low sag case. In general, the most pronounced effect was again the

presence of three-dimensional vibration modes, with a mixture of vertical oscillations and

horizontal oscillations of the cable. Remember that we neglected the horizontal oscillations of

the cable in using Prof. von Flotow's two-dimensional model.

5.3 Resonant Mode Shapes
Slides were obtained from the photographs that were taken of the experimental resonant

mode shapes. These slides were then projected on a wall and adjusted until the subsequent

washed-out mode shape could be traced on graph paper taped to the wall. We needed to do this

in order that the experimentally obtained mode shapes would be the same size as the theoretical

!mode shape plots. Only then can a reasonable comparison be made.

As it turned out, our pictures were too underexposed to allow for sharp mode shape

photographs (that is, the washed-out pictures of the cable were not bright enough) . However,

,using the method described above, feasible results were obtained with minimal effort.
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Q.1. Low Sag (8= 0.0.15 .)

In this classic string case, the first four m~ode shapes corresponded perfectly. See Figure 12
and 13 for the first four theoretical and experimental mode shapes, respectively. Little more can
be said about these results -- they were expected to be quite consistent and they are.

5.3.2 High Sag (8 =0.200 m)
For this sag setting, the experimental and theoretical results were similar, but not exact. See

Figure 14 for the first four theoretical mode shapes and Figure 15 for the corresponding
experimental mode shapes. The first and second mode shapes seemed to correspond very well.
The third theoretical mode shape showed two nodes (points where the cable is stationary) near
the middle of the cable, while third experimental mode shapes had only one node at the center.
T'his is due to the fact that it is difficult to experimentally excite certain mode shapes for some
reason (proximity to other resonances , presence of whirling modes, etc.). Therefore, in this third
mode case, the true third mode was not experimentally excited at all. A similar phenomenon
occurred at the fourth resonance -- the experimental case had one node at the center and two
nodes closer than halfway to the center while the theoretical case had one node at the center and
two nodes halfway to the center. However, the general shape in each is approximately the same.

5.3.3 Intermediate Sag (8 = 0.140 m)
In this case, results were a little more bizarre. Please compare the theoretical mode shapes

plot (Ewrez 16) with the experimental mode shapes plot (Figure 17). For the first mode. the
coupling between the traditional first and second string vibration modes as predicted by theory
ýwas seen in the experimental case. Modes three and four also matched well when we compared
theory and experiment, giving a symmetric three node and four node result, respectively.

However, the results for the second mode were not consistent. Theory predicted a symmetric

two-node scenario, whereas our experimental results showed another coupled mode with no
nodes. Again, this was probably due to the problem of trying to experimentally excite the correct
mode. Notice, also, that the resonant frequencies in this case ( 4.5 H'z theoretically vs. 5.2 Hiz
experiuuentally) are sizeably different. This clearly points to the possibility that an experimental

mode shape was bypassed.
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6. Conclusion
It appears that no absolute statement concerning the validity of Prof. von Flotow's model

can be made with our crude experimental results and sizable experimental errors. However, in all

three phases of the experiment, it appears that our results suggest that Prof. von Flotow's model

is a valid one and experimental results can be predicted by his theorie?'.

The mode shape coupling seen in the intermediate sag case was predicted to occur as it did.

Since spacecraft tethers operate in the intermediate sag case, this mode coupling probably would

mazufest itself in the pinned-free boundary conditions of space. Of course, the ronnal modes are

different for this case of pinned-free boundary conditions -- it is the coupling of these new

normal modes that we predict. Perhaps this may someday be tested in a zero-gravity environment

to further validate Prof. von Flotow's model.

Finally, we would like to recommend that the horizontal dimension be taken into account in

a more advanced theoretical model. The horizontal motions of out cable were simply too large

too ignore. In fact, whirling modes were occasionally set up where the horizontal motion was the

same magnitude as the vertical motion. Clearly, in this situation, the assumption of a two-

dimensional model is no longer valid. However, adding a third dimension would significantly

complicate the theoretical model, so tradeoffs would be involved.
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I. Transfer Function Plot Programs
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n-191; 4..35-
delta-0.035; 0a~
1-3.537;
t-.666;
9-t'600000; Ow
a- 0000143;
mu-. 00152;
@psbar-t/(e*a);
rbarml/(S*d~lt&);
freratml*sqrt(mu/t);
afix-.951;
feitmi;
fox tb-foxt/t;
J-1;
wain-6 .283185307;
wimax-125. 6637061;
abarm. 0233;
3ass-. 09935;
mbarmmass/(mu*1);

, for iu.0:n,~..
wbar-frerat*(wuiri+( (wmax.-wmin)/n)*i) 1...

bO.( 1,0,0,0;0,0,1,0J;. ..
bl1[1,0,0,0;0,0,1/abar-mbar*(wbar)**2,1I; ...
amatm 0, epsbar, 0,0; 1/( rbar**2 )-( wbar )**0,0, . .
-1/(rbar*epsbar);0,0,0,1;0,1/rbar,1 /((rbar)* ...
*2*epsbar)-.(wbar)**2,0];..
[evec,eval]- eig(amat); ...
yO-evec; ...
couapexlmexp( eval (1,1)); ...
comp-ex2-exp(eval(2,2)); ...
compex3-exp( eval (3,3)); ...
#'Ompex4-exp( eval (4,4)); ...

uievec*diagortai (Icompex , compex , compex3 ,compex4I); ;...
dmatu-( 1.,0;0,1;0,0;0,0]*(bO*yO);..
dmatlm[0,0;0,0;1,0;0,1)*(bl*yl);..
dmat-dmatu+dmat1; ...
commagl-exp(ev'al (1,1) *sfix);...
commag2-exp(eval(2,2)*sfix);...
commag3-exp( eval (3,3) *sfix) ; ...
commag4-exp( eval (4,4) *sfix);..
ymat-evec*diagonal( [commagl,commag2,commag3,commag4]); ...
hmatmymat*inv(dmat); ...
outvec(j)m20*log(abs(hmat(3,4)));...
outfreq(j)-.9+(j/10);..
jm j+1; ..

nd
eturn



doltamO .20;
1-3.537;
tn. 117; C

0~")1000000;146+•A
mu-.00152;
epsbarmt/(e*a)s
rbarml/(Sadolta);
fr~ratml*sqrt(mu/t);
afixu'.951,
fext-l;
f ox tb-f ox t/t ;
Jini;
wmin-6 .283185307/2;
wmax-125. 663 706 1/2;
abar-.02 33;
masi-. 09935 .
mbar-mass/(mu*1);
for i-0:n,...

wbar-frerat*(vain+((wmax-wuin)/n)*i); ...
bO-( 1, 0,0, 0;0, 0,1, 0] ..
blinf1,0,0,0;0,0,1/abar-mbar*(wbar)**2,1J; ...
amatm(0.epabar,Q,0;1/(rbar**2)-(wbar)**2,0,0,...
-l/(rbar'epsbar) ;0,0,0,1;0,1/rbar,l /( (rbar)*...
*2*epsbar)-(wbar)**2,0);...
ievec,evall- eig(ainat); ...
yO-evec; ...
compexl-exp(eval(1.1)); ...
compex2-exp(eval(2,2));..
compex3-exp( oval (3,3)); ...
'ompex4-exp(eval( 4,4)); ...

.-mevec~diagona1 ( compex , compex2, cozupex3, compex4 I);...
dmatuin(1,0;0,1;0,0;0,0J*(bO*yO); ..
dmatlm[0,0;0,O;1,0;0,11*(bl*yl); ..
dmat-dmatu+dmatl; ...
commaginexcp( eval (1,1) *sfix); ...
commag2-exp(eval(2,2)*sfix); ...
commag3inexp( oval (3,3)*sf ix); ...
commag4-exp(eval( 4,4)*six) ;..
ymatinevec*diagonal( (commagl,commag2,commag3,commag4 I);...
hmatinymat*inv(dmat);..
outvec( j )20*log(abs(hmat( 3,4))); ...
outfreq(j)-.45+(J/20); ...
j- j+1; ...

-?nd
return



n-191; 6' 3 : 4
ddeltsm0.143
1-3.537;
t-n. 167;

00'~000OO;
a- .i0000143i INTEME-0I TE SAG
mu-.00152;
opsbar-t/(e*a) I

rbarml/(8*delta);
freratinl*sqrt(mu/t);
afix-.951;
foxtml;
f extb-f ext/t;
J-1;
vain-6.283185307;
vmax-125. 66 37061;
abar-.02 33;
mass-. 099 35 ;
mbarmmass/(mu*l);
for i-0:n,...

wbarinfr~rat*(wmin+((wmax-wmin)/n)*i);...
bO-(1,0,0,0;0,0,1,0J 3...

bum! 1, 0,0,0;0, 0, l/abar-zubar*(wbar )**2,1J;..
akmat-[0.epsbar,0,0;1/( rbar**2)-(wbar)**2,0,O,..
-1/(rbar*epsbar);0,0,0,1;0,1/rbar,1 /((rbar)* ..
*2*epsbar)-~(wbar)**2,OJ;..
levec,evalJ- eig(amat);...
yo-evec; ...

compexl-exp(eval(1,l));...
compex2-exp(ea(2,2)); ...
compex3-exp(eval(3,3)); ...
impex4-exp(eval(4.4)); ...
.L-evec *diagonr 1( Icompexl, compex2 ,compex3, compex4l));...

amatuinI1,0;0,1iO0,;0,01*(b0*y0); ...
dmat'w(0,0;0,u;,1,0;0,1J*(bl*yl); ..
dmat-dmat--*Cmt1; ...
commag1-exp(eva1(1,1)*sfix); ...j commag2-exp( eval (2,2) *sfix); ...
commag3-exp( oval (3,3) *sfix); ...
comma94-exp( oval (4,4) *sfix); ...
ymat-evec*diagonal ( commagl ,commag2 ,commag3 ,commag4 I); ...
hrnatmymat*iriv(dmat);...
outvec( j )i20*log(abs(hmat( 3,4))); ...
outfreq( j)-.9+( jib); ...
j- j+1;...

and
return
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11. Mode Shape Data Programs



APENI 
(3_

mejePAJ~l 13cd.Výpd ~m 7



de-0 35; 64se{ ~ 's
1-3.5371
t-. 66.6;
e-61600000;
a- )000143;Lo SA
mu-. 003.52; O
epabar-t/(e*a);
rbar-1/( 8*delta);
frerat-1*sqrt(mu/t);
feXta1;
fextb-fext/t;
abar-.0233;
mass-. 09935;
mbar-mass/(mu*l);

inquire w 'Enter frequency (rad/s)'
wbar-frerat*w;
bO-[1,O,0,O;0,0,1,03;
blm[1,O,0,O;0,Q,1/abar-mbar*(wbar)**2,1J;
amatm[0,epsbar,0,0;1/(rbar**2)-(wbar)**2,0,0,-l/(rbar*epsbar);.
0,0,0,1;0,1/rbar,1/((rbar)**2*epsbar)-(wbar)**2,01;
(evec~evall-eig(amat);
YO-evec;
compexl-exp( eval (1,1));
compex2-exp(eval(2,2));
compex3-exp(eval(3,3));
compex4-exp( eval (4,4));
ylusevec*diagonal( [compexl,compex2,compex3,compex4 I);
dmatum(1,0;0,1;0,0;0,01*(bO*yO);
dmatlm(0,0;0,0;1,O;0,1]*(bl*yl);
dmat-dmatu+dmatl;
dir inv(dmat);

for i-0:ni....
commaglmexp(eval(1,1)*( i/n)); ...
commag2-exp(eval(2,2)*(i/n)); ...
commag3-exp(eval( 3,3) *(i/n) ); ...
commag4-exp(eval(4,4)*(i/n)); ...
ymat-evec*diagonal( (commagl,commag2,commag3,commag4j); ...
hmat-ymat*dinv; ...
outmod(i+l)-abs(hmat( 3,4)); ...
length( i+1 )-i/n; ...

mnd
:eturn



n-50; ,. 5

1-3.537; m
t-.117;
e-30000000;
am 000143;MU-.141GL4 SA&G
epsb~ramt/(e*a) F
rbar-1/( 8*delta);
freratml*sqrt(mu/t);
fext-1;
fextb..fext/t;
abarm. 0233;
mass- .09935;
mbar-mass/(mu* I);

inquire w 'Enter frequency (rad/s)'
wbar-frerat*w;
bOum1,,0,0O;0,0,1,0J F
blm[l,0,0,0;0,0,1/abar-mbar*(wbar)**2,lJ,
amatmt0,epsbar,0,0;1/(rbar**2)-(wbar)**2,0,0,-l/(rbaz*epsbar);..
0,0,0,1;0,1/rbar,l/((rbar)**2*epsbar)-(wbar)**2,01;
(evec,evall-eig(amat);
yO-evec;
compexlmexp( eval (1,1));
cornpex2-exp(eval(2,2));
compex3-exp(eval(3,3));
compex4-exp(eval(4,4));
ylmevec*diagonal ([compex , cornpex2, compex3 ,compex4 1);
dmatum(1,0;0,1;0,0;0,0J*(bO*yO);
dmatl-[ 0,0;0,0;1 ,0;0, 11* (bl*yl);
dmat-dmatu+dmatl;
di- -inv(dmat);

for i-0:n,...

commaglmexp(eval(2,2)*(i/n)); ...
commag2inexp(eval(3,3)*(i/n)); ...
commag3mexp(eval(4,3)*(i/n)); ...
ymat-evec*diagonal ( commagi ,commag2 ,commag3 ,commag4 1); ...
hmatmymat*dinv; ...
outmod( i+1 )-abs(hmat( 3,4)); ...
length( i+1 )-i/n; ...

end
return



delta-. 140;~~3 g .'~
1-3.537;
t-.167;
e-36000000; 56A6a- 0000143; 3 P 1 ? A P 3t
mu- .00152;
epsbar-t/( e*a);
rbarml/(8*delta);
freratml*sqrt(mu/t);
fext-1;
fextb-fext/t;
abar-.0233;
mass-. 09935 ;
mbar-mass/(mu*1);

inquire w 'Enter frequency (rad/s)'
wbar-frerat*w;
bO-(1,0,0,0;0,0,1,01;
blm[l,0,0,0;0,0,1/abar-mbar*(wbar)**2,11;
amatm(O,epsbar,0,0;1/(rbar**2)-(wbar)**2,0,0,1I/(rbar*.psbar);..
O,O,O,l;0,1/rbar,1/((rbar)**2*epsbar)-(wbar)**2,01;
[evec,evalj-eig(amat);
yO-evec;
couipexl-exp(eval(1,1));
compex2-exp( eval (2,2));
compex3-exp(eval(3,3));
compex4-exp( eval (4,4));
yl-evec*diagonal ( compex , compex2 ,compex3, compex4 j);
dmatu-[ 1,0; 0,1;0, 0;0, 0] *(bO*yO )
dmatlm(0,0;0,0;1,0;0,1J*(bl*yl);
dmat-dmatu+dmatl;
dir 'inv(dmat);

for i-O:n,...
commagl-exp(eval (1,1)*( i/n)); ...
commag2-exp(eval(2,2)*(i/n)); ...
comzmag3-exp(eval(3,3)*(i/n)); ...
commag4-exp(eval(4,4)*(i/n)) ...ug2,cmagcmag];.

hmat-ymat~dinv;...
outmod(i+1)-abs(hrnat(3,4) );..
length(i+1)-i/n;...

end
return
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!11. Mode Shape Dat.
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<> Outmod

0UT1JOD n Ccfd g
0.0000 4 J/ M EL
"M0179
0.0358
0.0536 L.OEd SI'G
0.0712
0.0886
0.1056
0.1223
0.1386 cdk Ittj +h
0.1543
0.1694
0.1839
0.1977
0.2106
0.2228
0.2341
0.2445
0.2539
0.2623
0.2696
0.2759
0.2810
0.2851
0.2880
0.2898
0-2904%
0.2898 Mvt t
0.2881

.2852

.2812
0.2761
0. 2699
0. 2626
0 2542
0. 2449

0.2345
0.2233
0.2111
0.1982
0.1844
0.1700
0.1549
0.1392
0.1230
0.1063
0.0892
0.0719
0.0543
0.0365
0.0186

0.0007

> diary (0)



. . . . . . . .. . . . . . ...

<> outmod

OUTMOD - tAA5C+t&I C c 0 OCv
0.0000 f o7, 7 r.,/Ij c ao) O
0.0368
0.0729
0.1080
0.1413
0.1724
0.2007 w O-f t
0.2259
0.2476 CAl le, 4

0.2653
0.2788
0.2879
0.2925
0.2925
0.2878
0.2786
0. 26 50
0.2472
0.2255
0.2003
0.1718
0.1407
0.1074
0.0723
0.0361

- 0.0374
- 0.0735

.1085
- v.1418

0.1728
- 0.2012
- 0.2263
- 0.2479
- 0.2655
- 0.2790
- 0.2880
- 0.2925
- 0.2924
- 0.2877
- 0.2784
- C.2647
- 0.2469
- 0.2251
- 0.1998
- 0.1714
- 0.1402
- 0.1068
- 0.0718
-. 0355
- 0.0012

<> diary(O)



(> outmod

OUTMOD t"aa 5eh.+%,A coo~ 6~
0.0000 (CCwe., im- Wo r"ad/ =MoDEO3
0.0216
0.0425
0.0619 Lou) AG
0.0791
0.0935
0.1046
0.1119 (fnC.iAS• 1.
0.1154 c4 lk Le'+•
0.1147
0.1100
0.1014
0.0892
0.0739
0.0559
0.0360
0.0148

- 0.0070
- 0.0284
- 0.0489
- 0.0676
- 0.0839
- 0.0972
- 0.1070
-0.1131
-0.1131 '

0.1070
1.0971
0.0838
0.0675
0.0488
0.0284
0.0069
0.0148
0.0360
0.0559
0.0739
0.0892
0.1014
0.1100
0.1147
0.1154
0.1119
0.1045
0.0934
0.0790
0.0618
0.0425
0.0216
0.0001
diary(O)



<> outmod

OUTMOD ~ A~1CedUt
0.0000 [CftC.AýI. -f: 0,O % (
1.0498 aU 1 I. L
0.0965 gu
0.1371
0.1690
0.1904 IK(AJ ILj0.1998 t- t .
0. 1965 C,, t t
0.1810
0.1540
0.1174
0.0734
0.0247

-0.0255
-0.0741
- 0.1180
- 0.1545
- 0.1813
- 0.1967
- 0.1998
- 0.1902
- 0.1687
- 0.1366
- 0.0959
- 0.0492

0.0504

0.0970
".1375
J.1694
0.1906
0.1998
0.1965
0.1808
0.1537
0.1170
0.0729
0.0242
0.0260
0.0745
0.1184
0.1548
0.1815
0.1968
0.1997
0.1900
0.1684
0.1362
0.0954
0.0486
0.0012

<> diary(O)



II iA *. .- g liB - - I ..

0> outuod

OUTMOD - + 3ui,, C4It( , ,
0.0000
".0229
tJ.0454
0.0671 Z1iT•f46
0.0878
0.1071 Act";
0.1247 CA.[k
0.1403CA
0.1536
0.1645
0.1728
0.1784
0.1811
0.1810
0.1780
0.1722
0.1637
0.1525
0.1390
0.1232
0.1055
0.0862
0.0654
0.0437
0.0212

-0.0016
0.n-- - MIDPOW•T,

0.0467
'.0684
1.0889
0.1081
0.1255
0.1410
0.1542
0.1650
0.1732
0.1786
0.1812
0.1809
0.1778
0.1719
0.1632
0.1519
0.1383
0.1224
0.1046
0.0851
0.0642
0.0423
0.0198
0.0031

<> diary(O)



<> Outmod

-UMO tAAlcnft4( C4(e &
0.0000 

/ f
0.0082
0.01630.0239 • • 'I•' A
0.0308

0.0415
0.0449
0.0467
0.0471
0.0458
0.0430
0.0388
0.0333
0.0268
0.0194
0.0115
0.0033

-0.0048
-0.(126
-0.0198
- 0.0260
- 0.0312
- 0.0350
-0.0374

S0.0374 v #

0.0351
0.0314
0.0263
0.0201
0.0129
0.0052
0.0030
0.0112
0.0191
0.0265
0.0331
0.03860.0429
0.0457
0.0470
0.0468
0.0450
0.0417
0.0370
0.0311
0.0242
0.0166
0.0086
0.0004

<> diary (0)

L-



0 outmod

OLITMOD -- uA+,C+i' at c g CI4G%.
0.0000.
0.0154

0.0425

0.0590 II
0.0618 C4•ID .
0.0608
0.0560
0.0476
0.0363
0.0226
0.0075

- 0.0080
- 0.0231
- 0.0367
-0.0480
- 0.0563
- 0.0611
- 0.0621

- 0.0592
- 0.0525
- 0.0426
- 0.0300
-0.0155

0.0154
0.0299
).0425
0.0525
0.0591
0.0621
0.0611
0.0564
0.0481
0.0368
0.0232
0.0081
0.0075
0.0225
0.0362
0.0476
0. 0560

0.0608
0.0618
0.0590
0.0524
0.0425
0.0300
0.0155
0.0001

<> diary (0)



<> outmod

OUTNOD - Cq÷,Id 4, Q o
0.0000
"1.0042MOE
0.0081 L Lf6, r,-,, - IOE
0.01120.0132 - TER,4 )I4TE .,•
0.0139
0.0133
0.0114 ;Ji
0. 0084 c-. IC Iej
0.0046
0.0003

- 0.0039
- 0.0077
- 0.03108

- 0.0134
0.0127
0.0108

- 0.0077
- 0.0039
+ 0.0003

S0.0045
t 0.0083

S0.0113*0.0133

0.0132
0.0112

.0081
,).0043
0.0000
0.0042
0.0080
0.0109
0.0128
0.0134
0.0126
0.0106
0.0075
0.0036
0.0006
0.0048
0.0086
0.0115
0.0133
0.0139
0.0131
0.0110
0.0079
0.0040
0.00003

<> diary(O)



<> outmod

OUTMOD m~A¶et& &

0.0387 r-oi• ",,)( =MOPE
0.0766

0.1133
P, 1482 1& A I4 Th6
0. 1806 crtr4J 7
0.2102 c,4VIt kcAj0.2364 .,eej ,
0.2589
0.2772
0.2912
0.3005
0.3051
0.3048
0.2998
0.2900
0.2756
0.2569
0.2341
0.2076
0.1779
0.1453
0.1105
0.0739
0.03620,_. o6o TH• rA?'"t
0.0781
1.1145
J.1491
0.1813
0.2107
0.2368
0.2592
0.2774
0.2913
0.3006
0.3051
0.3048
0.2997
0.2898
0.2754
0.2566
0.2337
0.2071
0.1771
0.1444
0.1093
0.0724
0.0344
0.0043

<> diary (0)



0> outmod

OUTMOD +A ICAA 14 Cd466A~a--

ooo L'(Co4j,%, r-O I t M OPE-Q. o2
').0204

0.0361 SAG
0.0467 ,0.0521
0.0521 I.,k I-Ik

0.0467
0.0360
0.0202

-0.0002
- 0.0247

- 0.0529
- 0.0839
- 0.1172
- 0.1519
- 0.1872
- 0.2223
- 0.2563
- 0.2885
- 0.3180
- 0.3443
- 0.3666
- 0.3845
- 0.3975

0.4053
- 0.4077

0.3965
1.3830
J.3648
0.3421
0.3155
0.2857
0.2533
0.2192
0.1841
0.1488
0.1142
0.0811
0.0502
0.0224
0.0018
0.0218
0.0371
0.0473
0.0523
0.0518
0.0460
0.0348
0.0187
0.0021

<> diary (0)



(> Qutmod

OUrMOD o -j fr .- iL, ci ,-,
0:0000 cfeJ4ýO

0.00720.0110 ,41L/1 f 5"^
0.0146
0.0179
0.0208 c, IC.•jTVk
0.0232
0.0249
0.0259
0.0261
0.0256
0.0243
0.0223
0.0197
0.0167
0.0132
0.0095
0.0058
0.0022

-0.0013
- 0.0043
- 0.0068
- 0.0087
-0.0098

-0.010 3..A~ll~0.0099
0.0089
"1.0071
J.0046
0.0017
0.0017
0.0053
0.0091
0.0128
0.0162
0.0194
0.0220
0.0241
0.0254
0.0261
0.0259
0.0250
0.0234
0.0211
0.0183
0.0150
0.0115
0.0077
0.0040
0.0004

<> diary (0)



<> outmod

OteTMOD -* d'4c 4~~

0.0209
0.0296 ~~~f
0.0365 4
0.0411 g ¢ st f0.0431

0.0423 c~IC icn,1H
0.0389
0.0331
0.0252
0.0156
0.0051

- 0.0057
-0.0163
- 0.0257
- 0.0336
- 0.0394

- 0.0428
- 0.0434
- 0.0414
- 0.0367
" 0,0298

0.0210
0.0109
S0.0001 "'

0.0208
0.0297
0.0366
0.0413
0.0434
0.0428
0.0395
0.0337
0.0259
0.0164
0.0059
0.0049
0.0155
0.0250
0.0330
0.0389
0.0423
0.0431
0.0411
0.0366
0.0297
0.0210
0.0109
0.0002

<> diary (0)
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Localization in Disordered
Periodic Structures

Glen J. Kissel'
Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract k. nondimensional spring constant

in, random mass of jth bay

Disorder in periodic structures is known to L.. p m average mas., mas of perfectly periodic struc-
tial localization of normal modes and attenuation of waves ture
in all frequency bands. This paper uses a wave perspec-
tive to investigate these effects on one-dimensional peri- N number of bays
odic structures of interest to the engineer. Relevant work
in the fields of solid state physics and mathematics is re- IV, nondimensional internal force, jth point
viewed. A limit theorem for products of random matrices 0(-) terms of order greater than the argument
is exploited to calculate localization effects as a function
of frequency. Localization is studied on two disordered P(X) probability density function
periodic systems using both theoretical calculations and
Monte Carlo simulations. The problem of localization in ry reflection coefficient of jth bay
multiwave systems is briefly dlscussed. ry reflection coefficient of X bays

t) transmission coefficient of jth bay

Nomenclature ty transmission coefficient of N bays

T (superscript) matrix transpose
a element of Cayley matrix

T transfer matrix
A cross-sectional area of rod

T, random tran~sfer matrix, jth bay
• R(L) amplitude of left traveling wave at right(left)

end of bay T(ci) transfer matrix, function of random variable a

b element of Cayley matrix ul di.placement of jth mass

BR(L) amplitude of right traveling wave at right(left) U, nondimersional longitudinal displacement, jth
end of bay point

C Cayley matrix W wave transmission matrix, jth bay

E Young's modulus x a state vector

H (superscript) hermitian transpose normalized state vector or direction of state
vector

ft nondimensional transfer function

X eigenvector matrix

a random variable
k wave number

"-1 localization factor

k, spring constant
A) nondimensional jth mas

"graduate student, Department of Aeronautics and Astronautics,
student member AIAA Mass density per unit volume



variance of random vsriablt a// 3
wradian frequency

nondimenzicinal frequency

*(superscript) complex conjugate

<> average of a random variable

1A(*) indicator function, its vAlue is one when the ()
argument lies on A and 0 otherwise Figure 2.

(a) Mode of a perfectly periodic structure, from 13.

(b) Localized v-ode of a disordered structure, from "41.
1 Introduction

disturbance propagation in and control of structures, as

This paper describes some of the consequences of dis- well as complicate schemes to idcntify the actual dampingThispapr decries sme f th cosequnce of is- of a system, engineers should be awa•re of the localization
order in what are normally perfectly periodic structures, ph emen ginon e

The periodic structures of interest are those having repet-

itive bays along one linear dimension and include the Localization effects have been studied extensively by
skin-stripger panels found in airplane fuselages and truss solid state physicists but only recently by engineers. This
beams that will form the suppori structure of the space is the first paper to calculate frequency dependent local-
station. See Figure 1. The dynamics of periodic :ystems ization factors for disordered periodic systems of interest
are characterized by frequency bands that alternately pass to th- structural dynzmicist.
and stop traveling waves (assuming no damping) with the
frequencies of the structure lying within the passba, ds. In Section 2 the literature relevant to the study of

localization, including works by physicists, mathemati-
•--:• cians and engineers is surveyed. The modeling of peni-

Station Modules odic and disordered periodic systems carrying one pair of
Waves is discussed in Section 3. Section 4 explains how

WORM ....... _.. the theory of products of random matrices is used to cal-
AAL* LO, culate frequency dependent localization factors when one

parameter in each bay is disordered. in Section 5 local-
Docked ization effects are investigated for a chain of springs and

"Shuttle disordered mases. Section 6 includes an examination of
a rod in longitudinal compression with periodically at-
tached disordered resonators. Section 7 includes a briefFigure 1. Truss beam extending the length of the space dsuso ftelclzto hnmnni utwv

stAtiondiscussion of the localiation phenomenon in multiwave
systems. Concluding remarks are made in Section 8,

Because of manufacturing or assembly defects, no
structure will be perfectly periodic. Disorder can occur
in the length of bays and in the material and mass prop- 2 Survey of Localization Litera-
erties of the structure, The disorder is assumed to be ture
distributed among all the bays and not confined to just
a few. Recently, Hodges and Woodhouse '2,31 demon-
strated with simple examples that this disorder in peri- The study of localization has a colorful history span-
odicity can have some amazing consequences. Disruption ning three decades with contributions from researchers
in the periodicity will lead to attenuation of waves in all around the world. In this section we survey some of the
frequency bands independent of any dissipation in the sys- relevant contributidns to localization studies by solid state
tem! Equivalently, each normal mode, whose amplitude is physicists and mathematicians and discuss the handful of
equally predominant along the length of a perfectly peri- engineering papers that have recently appeared on the
odic structure, will have its amplitude spatially localized subject.
in the disordered counterpart. See Figure 2.

The localization phenomenon was first explained in
This localized behavior of the mode shapes, 3r equiv- 1958 by Philip Anderson [5) in the contexT te electron

alently the attenuation of all .he traveling waves, means transport ir. dii;ordered crystals. As a result of his original
that energy injected into one end of a disordered structure contribution, the phenomenon is occusionally referred to
will not be able to propagate, but will be confined to the as Anderson localization. Anderson was cited in part for
region near the input. Because such behavior can impact his work on localization when he was awarded the Nobel

2



Prize for Physics in 1977. Despite a Nobel Prize, some Before discussing the calculation of localization effects

fundamental questions arose about even the existence of we will show in this section how periodic and disordered

localization. As a result, localization in one-dimensional periodic structures can be modeled. The discussio,, will

systems received a freeh look in the early 1980's [6,71. be confined to systems described by 2 x 2 transfer matri-
ces.

In 1963 Furstenberg [81 published an important limit
theorem on products of random matrices. Because a dis- A periodic structure in one linear dimension consists of.

ordered periodic structure can be modeled via a prod- identical substructures connected in identical ways. When

uct of random transfer matrices, with each matrix mod- each substructure can be modeled with a 2 x 2 transfer

cling one bay, Furstenberg's theorem is obviously rele- matrix the system is called a mono-coupled periodic struc-

vant to the study of such systems. In 1IN8 the Russian ture. Each transfer mistrix relates a 2 x 1 state vector x,

mathematician Oseledets[91 proved another limit theorem to the succeeding state vector xi+. along the length of

for products of random matrices relevant to multiwave the structure. The formulation of the transfer matrix as-
one-dimensional systems. Mathematicians have taken re- sumes a sinusoidal time dependence, and no damping is

newed interest in the theory of products of randora ma- included in the models so that the effects of disorder can

trices as indicated by two recent publications 1IO, later be highlighted.

The Japanese physicists Matsuda and Ishii 121 Because each substructure or bay is identical, (as in

pointed out the importance of Furstenberg's work to one- 16ý it is assumed that the boundary conditions are such

dimensional disordered systems. However, theorems on that the transfer matrices at the ends of the structure are

products of random matrices have generally received scant the same as those modeling the rest of the structure) the

attention from physicists workinG on localization, because state vector at the end of the structure is simply related

they have relied on their own heuristic techniques, and be- to that at the beginning by

cause they have been more interested in two- and three- N
dimensional systems which cannot be as easily handled XN T x0
with transfer matrices.

Because we are raising a transfer matrix to the Nth

Hodges 121 was the first to exploit the analogy between power, we only need to examine the transfer matrix T to

loca'.ization work on periodic systems of importance to the understand the dynamic properties of the periodic struc-
solid state physicist and some simple periodic models of ture.
interest to the structural dynarnicist. Hodges and Wood-
house i31 also demonstrated the phenomenon experimen- Priefly, a periodic system is characterized by alternat-
tally. More recently Bendiksen 1131 has examined mode ing frequency bands known as passbands and stopbands.

localization in closed disordered periodic structures, like In the passbands waves travel according to e=th, where k
a compressor rotor and a dish antenna. These closed sys- is the real wave number and the positive sign indicates
terns are not mathematically equivalent to the linear one- negative-going waves and the negative sign positive-going

dimensional structures under consideration here, Pierre, waves. The wave number k refers to the phase difference

Tang and Dowell [141 also examined localization, but only of mot: ns in adjacent bays. In the stopbands, waves

with the aid of a deterministically disordered beam on travel according the ela or e("''"' . The real exponent a
three suppoiýs. None of these engineering papers pro- implies nontraveling or attenuating waves. The a+ in" ex-
vided analytical calculations for localization effects over a ponent implies adjacent bays -.ibrating out of phase with

wide frequency range. each other in addition to wave attenuation. Only in the
passbands can energy be transmitted along the structure.

The most rigorous examination of localization in an

acoustical setting has been that by Baluni and Willem- This underlying wave structure becomes apparent

sen 15[. They effectively used Furstenberg's work to find when the transfer matrix T and TNV are diagonalized. Di-

frequency dependent localization factors (defined below); agonalizing TN we get in the passbands:
however, their application was for layers of sandstone and e÷qlvh
shale with random 6nicknesses. e_• ] (I)

In this paper localization effects as a function of fre- and in the stopbands we get:

quency will be calculated for simple periodic structures of N

interest to the structural dynamicist. These calculations e ] (2)
are greatly facilitated by making use of a traveling wave

description of the structures. Note that a and k are functions of frequency.

The natural frequencies of the periodic structure lie

3 Models of Periodic and Disor- within the paisbands. In particular N natural frequen-
cies lie in each pasaband of an N bay structure. (This is

dered Periodic Structures only strictly true when each bay has symmetry of mass



and stiffnsse about its midpoint. If the bay is unsymmet- A random transfer matrix T, car be put in Cayley
tic, one frequency will occur in a stopband. See i171 for form via a certain similarity trarnsformation:
details.) For a periodic structure the mode shapes have

equal amplitude along the entire length of the stucture. C, = X- 1 TjX

The reader is referred to [16,17,1S8 for a more extensive We also require that the similarity transformation diago-
discussion of the properties of perfectly periodic struc- nalise the transfer matrix of the perfectly periodic struc.
tures. ture. Hori [19! has given conditions that the transfor-

mation should satisfy to ensure that T, can be trans.Now ,re consider the case when the structure is not formed to a matrix e'f Cayley type, The Cayley form of

perfectly periodic. Even relatively minor variations from the transfer matrix may not be precisely the wave trans-

bay to bay can drastically change the dynamic picture pre- mision form of Equation 4; howtbe r, in Equation 6 a

sented above. The mode shape amplitudes of the disor-

dered structure are spatially localized and not extended as will be precisely L while 6 may differ from ti by at most a

in tha perfectly periodic case. Equivalently, waves are at- phase factor. The wave transmission or Cayley forms are

tenuated in all frequency bands including what had been convenient for understanding and calculating localization

the passbands of the perfectly periodic structure. It is effects.

this latter wave attenuation effect that is studied closely
in the paper. 4 Calculation of Localization Fac-

When a periodic structure is disordered, the transfer

matrix for the entire system is not T', but rather a prod- tors
uct of random transfer matrices:

ft TTIn the introduction the dynamic effect of localization
Tj T T ... T1  (3) was described as being an attenuation of waves and a spa-

tial localization of modal ,vnplitudes. We will see that the
The transfer matrices are assumed to be functions of a waves in the disordered periodic structure are attenuated
single random variable, like a mass or a spring constant. as e-"N where -7 is the real localization factor. It has
In addition, the random variables and in turn the ran- been argued that this same exponential, e-'N, describes
doam transfer matrices are independent and identically dis- the envelope of the localized modal amplitude [12,201.
tributed. Thus the disorder is distributed equally among
all the bays and not confined to just a few. As mentioned earlier, a long disordered periodic struc-

ture can be modeled as a product of random matrices.
Unlike the cue of Equations 1 and 2 for the peri- The question arises s how to measure the effect of this

odic system, one cannot simultaneously diagonalize each randomness. Does one examine the reflection coefficient
transfer matrix of Equation 3 with the same similarity for this disordered periodic structure and then show that
transformation. However, it is possible to put each of the it is very large for the disordered system indicating de-
random matrices forming the product into the following caying wave propagation? This point is critical and even
wave transmission form: confused some solid state physicists in the late 1970's.

Choosing the wrong variable to examine can lead to very[4R 1:1 A f" 1 *L 1 Misleading results. Anderson et. aL. :6 argued some-
BR J- - BL J what heuristically that the appropriate variable to aver-

age when studying localization effects is the natural loga-
This is a wave transmission matrix for one random bay rithm of the absolute value of the transmission coefficient
inserted in the middle of an otherwise perfectly periodic of the system. Ironically, Matsuda and Ishii ý121, relying
structure carrying a pair of traveling waves. Physically, on Furstenbergi[8, much earlier had shown In ,t,sl to be
t,! ! represents the ratio of transmitted energy to incident the key variable to average. Here a much more straight-
energy, and Irl', the ratio of reflected energy to incident forward argument than 121 is made to show the relevance
energy. Energy conservation implies that :t4, 1. r,* = 1. of In ;tNi to localization studies of systems described by

2 x 2 transfer matrices.
So the transfer matrix in wave transmission form for

the entire structure is: Furstenberg (81 showed that products of random ma-
.k _ 1x I trices follow a law of large numbers. (This is most easily

V = _ 8  I seen if this product acting on some input vector is viewed
S; uas a Mlrkov chain tilO). One result of 181 was the follow-

The wave transmission matrices in Eqx:ations 4 and ing equation:
5 are matrices of the Cayley type written as: Un lir - In I1T,,... Till (7)

a or
b) a (6 = lr-InjI 1W... Will (8)
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where -1 > 0. The norm here is simply the 2-norm or the For this 2 x 2 case it represents a point or, the unit circle.
maximum singular value of the matrix product. Recall Equation 9 is valid subject to the probability density for t

that the singular values of a matrix A are simply the being invariant with respect to the probability density for

positive square roots o(,AM A or AA'., This aorm is also the random variable inside the transfer matrix. In other
defined a. words, for Equation 9 to be valid we must find a proba-

xfAxj I, bility density for the direction of a vector, such that when
All = t it 1s multiplied by the random transfer matrix, T(a), the

resulting vector will have probability density for its direc-

The most insight into the meaning of -y comes by ex- tion identical to that of the premultiplying vector.

amining the maximum singular value of the matrix prod-
uct of 5 in wave transmission form. Recaling Fquation This required condition of invariance is described

5 a little algebra shows that mathematically in many ways including:
, H w;, x+ jrI,,fff"

J1 WAi itnl ] A(tR)P(I)dX =, ] flA(ijT(kji)Pctc)daP3tI)dIt (10)

so from Equation 8 where A is seearc along the unit circle. This equation is

1 known in the sol;d state ; ys:cs lierature a.w the P-,son-

- im= ir [In(l + lrsI) - In 1tsll Schmidt self-consistency condition [21].

Because 0 < Irril < 1, taking the limit means the first Unfortunately it is difficult, if not impossible, to find
term will vanish and we are left with the invariant probability density for 3t. Therefore Equa-

1 tion 9 can rarely be soved.
'y= -lira i--ln Itv

Note that an average over an ensemble Of in 'tNd is not One must then consider approximations to the local-
ization factor. Because it is never quite certain over whattaken. Furstenberg's theorem tells us that by letting N --

oo we need not average over an ense~able. Variables like frequency ranges these approximations axe valid, Monte

In ItNI behaving in this way are called self-averaging. This Carlo simulations are used to check those ranges.

result indicates why In ItNI is relevant to the study of lo- Baluni and Willexsen [151 suggested a Taylor series
calization. expansion of terms inside the integral 9 as well as 10

We are able to consider as well disordered periodic except for the probability density of a. This leads to an
structures with finitely many bays. These can be simu- approximation for the localization factor which is good tostruturs wth initly anybay. Thse an e smu- order in the varia~nce of the disordered parameter in the
lated by a product of a finite number of random matrices.

The final matrix product can be put in wave transmis- transfer matrix. The motivated reader is encouraged to

sion form, after which the transmission coefficient can be consult [151. The answer is arrived at conveniently whenthe random transfer matrix is put in wavd transmissionextracted and the localization factor calculated as the localian fatr is thin cace as
form, The localization factor is th,-n calcuiated a~s

InjtY I

......N •= (�, 0-(ao (11)
Because we have not allowed N to tend to infinity we faust 2 9a2

really average In It over some ensemble. This is accom- It is this equation that we will use to compute the wave
plished computationally via a Monte Carlo simulation. So attenuation effects present in disordered periodic struc-
for the case of finite!y many bays: tures. Note that only the (1,1) term of the wave trans-

s In IW >mission matrix (or Cayley matrix) is needed in Equation"-1= V 11.

The next goal is to show how the localirdtion factor
can be computed analytically fo, models described by 2 x 2 5 Localization Effects for a Mass-
transfer matrices. In addition to Equation 7, the local- Spring System
ization factor, -y, is the following limit:

"lira 1 In JIT.... Tjxll
=-o In ' In this section we will use a simple example to derr on-

where again the matrices are independent and identically strate the localization calculations. The structure is the
distributed, infinite mass spring system shown in Figure 3. First con-

sider the transfer equation for one bay of the system:

Furstenberg found that this limit .an be calculated r i+1 r 2-a
from the following double integral: [ I= I [-u• .1 L 1 0 u -

Sf f In JjT(,)Xllp(a)d",p(jt)dx (9) j L 1 0 U),

For the disordered system, m is replaced by rni where



f k, and
•.t22.• U• Xx -__ [(-s)/(2 sink) (se-b)/(2 sin k) 1

I (ie-*)/(sink) (-i)/(2snk)
Figure 3. A chain of spring'- and masses. The transfer matrir in Cayley form is now:

m =< mi >. The terms are nondimensionalized as fol- + e"(iS6,) i6, i
lows: ri~ 1 -,;) -11 hr [j -i6 C"(1~ s6)

ui 1 0 ui3 I where Ji = (c'I(gs. - 1))/(2sink)

where
W W2Note that the (1,1) term of this Cayley matr-ix is

CM) (t(,))- Using Equation 11 , the localization factor to

and order of the variance in the nondimensional mass is:

"S 8sin2 /r

For the perfectly periodic system j = 1. From the with sin 2 k _ 'then:
condition that Itrace(T)i < 2 in a passband we can see

that a single passband exists for the perfectly periodic
system when: )(12)

All higher fiequencies are in the stopband. A mare exten- If we "llow cu -- 0, the localization factor is:
sive discussion of the perfectly periodic structure can be
found in [161. The wave number for the passband of the 8
periodic mass-spring system is governed by this equation:

-2 and switching back to dimensional form, at low frequency:
cosk 1 --

8k,m
Using an appropriate elgenvector simndarity transfor- which is the result usually found in the physics litera-

mat~on, the random transfer matrix is put it in Cayley ture and is derived through much more torturous methods
form. He1e 1es I than are used here. The theoretical result of Equation 12

X= tI e,&J is plotted in Figure 4 for the passband of the underlying

0 001

0 OO.l

0 0000t

0 00b01J1

00000001 oLegend

theorolicol

"< rnmonhl carlo

J 0000000t 0"-- .
0 0Z 0 4 0 b 0~ 8 1 1 1 4 18 IS 1

Figure 4. Localization factor for mass-spring system.
Masses disordered, with </ u >= I and a' = .333 x 10-".
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perfectly periodic structure. Localization would provide where
only a small amount of added attenuation to that already = coairQ
occurring in the stopband.

A Monte Carlo simulation was made of the disordered S i7ra

mass-apring system using 200 random transfer matrices, where the nondimensional transfer function of the at-
The random, nondimensional man, uj, had a uniform tached resonator is:

probability density function with width of .02 centered - 1 -_
around < js >= 1. As a result, a' = .333 x I0- . Monte =k -- _ ,1

Carlo results are also shown in Figure 4. Notice how well k

the Monte Carlo simulation tracks the theoretical result. and where the nondimensioaal frequency, stiffness and
The plol will be raised or lowered depending on whether mass are:
the disorder is greater or smaller as reflected in the nondi- =

mensional mnas variance. X

k'I
Clearly the maximum attenuation occurs as we ap- EA

proach the nominal stopband. At Q = 1.99, for example, m

where -y = .1654 x 10-2 a wave will have decayed by a (pAl)
factor of .44 after 500 bays even though no damping is The transfer matrix models a bay extending across a
present. A modal amplitude for a normal mode at that length of rod, across a resonator, and then across another
frequency would be confined to an exponential envelope length of rod.
governed by -1 = .1654 x 10-2. The localization effect

is obviously less pronounced at lower frequencies, but is Here the attached mass is randomized so that j&, be-
nonetheless present. comes a nondimensional random variable and u = < i >.

The attenuation caused by the disorder is uinlike that A discussion of the dynamic characteristics of the per-

of dissipation. Here localization prevents the wave from fectly periodic structure can be found in [181. The wave

traveling along the structure, uniike the case for a per- number k for the passbands of the perfectly periodic struc-

fectly periodic system, where the wave would travel with- ture is determined by
out attenuation. Localization tends to confine the wave
near its point of origin, whe-e it is eventually dissipated by cos k = c + 2-
the damping that inevitably exists in all real structures.

By applying the transformation:

6 Localization Effects for a Rod 38 + (s(1 + c))/(2) s- (R(1

with Disordered Resonators and

"In this section we investigate localization factors for ax (i-)/(2sink) (2-s + t(I 4- c))-'

model proposed by von Flotow 1181 which mimics some of the transfer matrix in Cayley form is obtained:
the important behavior of a truss structure. The model is
a longitudinal wave carrying rod with attached resonators [ ie' (- -(16+ z6)

that repi'esent the vibrating cross-memberm present in a -6 h(1 +

real truss structure. The model and relevant properties where
are shown in Figure 5. 6 2(sink)Ar ,

k1  m ~ _ I.),(i 1_-.~.w .iLA.A~9 .LWA ~ ~and

Figure 5. Rod carrying longitudinal waves with attached
resonators. Again our attention focuses on the (1,1) term, which is

the reciprocal of the transmission coefficient for one bay.

Applying Equation 11 , the localization factor for a rod

The transfer equation for the perfec'.ly periodic model with attached resonators having disordered mases is:

is: (sini 7•)O'•

I'il 1 [ 2ICIjr (13) 8(3in 2 k)(7rf7) 6jM'((l/k. - (1/W 7r'A))4
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This localization factor is plotted for the first four
pusbands of the system in Figure 6. For this plot C = .5 Recent work by Pichard 1221 on multiwave solid state
and MJ is random with a uniform probability density func- systems has used the theorem of Oseledeta[9,1J). To use
tion of width .02 centered around < A, >= .2. This im- Oseledets' theorem, we assume that the transfer matrices
plies that u = .333 x 10'. A little thought reveals that are independent and identically distributed and that they
at low frequency the localization factor will go as 0. are symplectic. A matrix T is symplectic if TTJT = J

where:
These results were confirmed with a Monte Cai-lo sire- J= [ 0

ulation of 200 bays with probability density mentioned
above. The Monte Carlo results are also shown in Figure The symplectic property also implies that the eigenvalues
6 and these results track the theoretical calculations quite of T will occur in reciprocal pairs.
well.

The theorem of Oseledets tells us that
Clearly the maximum attenuation exists around the

first stopband. This stopband occurs around . = Limr[(T, ... T )r(Tn. . T,)) = B
(k.) i/n, the frequency at which the average attached res- where B is a random mat, ix, whose eigenvalues are non-
onator vibrater. Note that a wave near the first stopband random s atcix, wo i reo
at Q = .45 will have decayed by a factor of .25 after 200 random. The spectrum of B is:
bays even no though damping is present. The localization -

effects diminish substantially in the higher paisbands.

7 Localization in Multiwave Sys-
tems

where •y > ... > .

When a periodic structure is modeled with a transfer
watrix of size 2n x 2n with n > 1, the structure will The eigenvalues physically represent n pairs of waves
carry n pairs of waves. Fewer results are available on traveling in both directions. The theorem of Fursten-
localization effects in such multiwave disordered periodic berg allows us to calculate -y. However, in this multi-
structures. wave case with In, < cYi, -., represents the wave with the

tO "

10)

/
0 /

10"

Legend
!heor'eticc.

moildI cdrlo

0 05 I5 3

Figure 6. Localization factor for rod with attached res-
onators. Masses disordered, with < As >= .2, 3 =
.333 x 10' and k, = .5.



least amount of decay and thus it carries energy along the the Air Force Office of Scientific Research, with Dr. Tony
structure farther than the wave represented by 7y. Thus Amos serving as technical monitor. The author would like
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ABSTRACT

Disorder in periodic structures is known to cause spatial localization of normal
modes and attenuation of waves in all frequency bands. This thesis uses a traveling
wave perspective to investigate these effects on one-dimensional periodic structures of
interest to the engineer. Relevant work in the fields of solid state physics, mathemat-
ics an~d engineering is reviewed. A transfer matrix formalism including wave transfer
matrices is used to model disordered periodic structures. A limit theorem of Fursten-
berg for products of random matrices is exploited to calculate localization effects as
a function of frequency. The approach presented is applicable to virtually any disor-
dered periodic system carrying a single pair of waves. Localization is studied on three
disordered periodic systems using both theoretical calculations and Monte Carlo simu-
lations. Localization is found to be quite pronounced at frequencies near the stopbands
of the perfectly periodic counterparts. The problem of localization in one-dimensional
systems carrying a multiplicity of wave types is examined using the theorem of Os-
eledets on products of random matrices. A new result is presented - the multiwave
localization factor as a function of the transmission properties of the system.
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Chapter 1

Introduction

1.1 Introduction to Localization

This thesis describes some of the dynamic consequences of disorder in what are

normally spatially periodic structures. Periodic structures are frequently encountered

in many fields of engineering and physics. Periodic electromagnetic waveguides, crys-

"alline structures and periodic truss structures are some examples that come to mind.

The periodic structures examined here are systems having repetitive bays along

one linear dimension. Those of interest to the structural dynamicist include beams on

e,tenly spaced supports, the skin-stringer panels found in airplane fuselages and truss

beams that will form the support structure of the space station. See Figure 1.1.

The dynamics of perfectly periodic systems have special characteristics. Most no-

tably they are characterized by frequency bands that alternately pass and stop traveling

waves (assuming no damping) with the natural frequencies of the structure lying within

the passbands. See Figure 1.2 In addition, the normal mode shapes of periodic struc.-

tures are themselves periodic. See Figure 1.3.
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Station Modules

.-- ..----.. Shuttle

Figure 1.1: Periodic truss stucture along the length of the space station from [Covault

86]

w

Figure 1.2: Alternating pass and stopbands of a perfectly periodic structure. The

attenuation coefficient, a, represents the decay per bay
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Figure 1.3:- Mode of a perfectly periodic structure from [Hodges and Woodhouse 83J

Because of manufacturing or assembly defects, no structure will be perfectly peri-

odic. Disorder can occur in the length of bays and in the material and mass properties

of the structure. The disorder is assumed to be distributed among all the bays and not

confined to just a few. Recently, [Hodges 82,Hodges and Woodhouse 831 demonstrated

with simple examples that this disorder in periodicity can have some amazing conse-

quences. Disruption in the periodicity will lead to attenuation of waves in all frequency

bands independent of any dissipation in the system! See Figure 1.4 This is a result of

the multiple scattering effects from the randomized bays. Equivalently, each normal

mode, whose amplitude is periodic along the length of a perfectly periodic structure,

will have its amplitude spatially localized in the disordeted counterpart. See Figure

This localized behavior of the mode shapes, or equivalently the attenuation of all

the traveling waves, means that energy injected into one end of a disordered structure
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Figure 1.4- Attenuation in all frequency bands of a disordered periodic structure

Figure 1.5: Mode of a disordered periodic structure from [Dean and Bacon 631



will not be able to propagate arbitrarily far, but will be confined to the region near

the Input. Because such behavior can impact disturbance propagation in and control

of structures, as well as complicate schemes to Identify the dynamic characteristics of

a system, engineers should be aware of the localization phenomenon.

A simple example from [Hodges 82) will intuitively illustrate the localization phe-

nomenon. Consider an infinite chain of equivalent pendula with nearest neighbors

connected by identical springs. This is an example of a perfectly periodic structure

and so its mode shapes will be periodic. Now consider disordering this system by re-

placing each pendulum by one with a random length. In this way the natural frequency

of each pendulum is random, and so we no longer have a perfectly periodic system.

First assume that the spring constant between each pendulum is zero, so that each

pendulum vibrates independently. This is a trivial example of mode localization. Now

consider adding a tiny amount of the same spring constant between each pendulum.

In this case each pendulum will vibrate at a frequency different from its neighbor) and,

with the spring stiffness being so small, its amplitude will not couple significantly with

its neighbor. Indeed, if there is only a small probability of encountering within a short

distance a pendulum with the same natural frequency as the one under consideration,

we can understand how the vibrational amnplitude of this pendulum will be localized.

Though the appellation *localization' comes from the fact that normal modes are

spatially localized, we will be studying the phenomenon from a traveling wave per-

spective. Very few analytical results are available dealing directly with normal modes

in disordered systems. Our approach is consistent with that in the field of solid state

physics, where the phenomenon was originally discovered.

The localization phenomenon makes for a particularly attractive field of study. From

the perspective of structural dynamics this is true because it seems to manifest itself

as a damping mechanism even though vanishingly small damping may be present. The

study of localization is frequently referred to as one of great mathematical richness
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and subtlety and this has made for a challenging course of research, especially as we

have made use uf the mathematics for products of random matrices. The fact that

the localization phenomenon has been studied for many years by solid state physicists

allows us to borrow the Insights and avoid the mistALkes from their analogous work.

In addition, any new results generated by this research have immediate applicabil-

ity to virtually any disordered periodic sysaem, even outside the structural dynam-

ics S.d. Finally, connections between localization theory and the rapidly developing

fields of fractals [Rubin 84], chaos [Ikeda and Matsumoto 86] and superconductivity

[Lee and Ramakrishnan 85] have been noted.

1.2 History of Localization Studies

The study of the localization phenomenon has a colorful history spanning three

decades, with major contributions from researchers in the United States, United King-

dom, Japan, France and the Soviet Union in the fields of solid state physics, mathe-

matics and only lately in engineering. In this section we review some of that history in

order that we can place the contribution of this thesis in proper context.

1.2.1 Solid State Physics, Mathematics and the Localization

Phenomenon

Two notable papers in t.e 1950's [Dyson 53,Schmidt 57] explored the effects of

disorder on the eigenvalues of an infinite mass-spring chain in one linear dimension.

Though they did not examine the effects of disorder on the eigenvectors or on wave

propagation, some of their results help explain the mathematics of wave transmission

in such randomized systems.
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The scientist to first describe eigenstate localization was solid state physicist Philip

W. Anderson, whose 1958 paper [Anderson 58] showed that an ele..tron in a three-

dimensional disordered lattice of infinite extent had a finite probability of not being

transported from its original site as time tended to infinity. In honor of his original

contribution, the phenomenon is somctimes called Anderson localization. Localization

was at first not well understood or even believed by many people. But through the

efforts of researchers like [Mott and Twose 61] it gained acceptance in the solid state

physics community. Meanwhile [Borland 63] examined the one-dimensional localiza-

tion problem from a nonrigorous probabilistic perspective and [Dean and Bacon 63]

did numerical simulations of disordered mass-spring chains of finite length showing

that eigenmode localization was much more pronounced at high frequency than at

low frequency. The solid state physics literature on localization has become quite ex-

tensive over the years and much of it is not relevant to this thesis. The reader is

referred to [Ziman 79,Erd~s and Herndon 82,Lee and Ramakrishnsai 85] for extensive

bibliographies relevant to that field. The remainder of this review will encompass those

physics, mathematics and engineering papers that have had some impact on the thesis.

The pioneering work of [Furstenberg 63] on products of random matrices has pro-

vided rigorous results that have immediate applicability to the one-dimensional local-

isation problem. This is so because each bay of a disordered periodic structure can

be modeled with a random transfer matrix, and, as a result, the entire structure can

be modeled with a product of random matrices. Tht researchers [McCoy and Wu 68]

were apparently the first to recognize the importance of Furstenberg's therorem to

disordered physical systems when they studied random Ising models of ferromagnetic

systems. However, [Matsuda and Ishii 70] and [Ishii 73] were the first to bring Fursten-

berg's work to bear on the localization problem. They carefully related Furstenberg's

results to eigenmode localization and wave propagation in disordered chains and some

simple quantum mechanical models.

In [Oseledets 68] a Russian mathematician proved a multiplicative ergodic theorem
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L that has enhanced our understanding of the asymptotic behavior of products of random

matrices. This theorem has important applications to the study of the localization phe-

nonmenon in systems carrying a multiplicity of wave types at a given frequency. Lately,

[Pichard and Sarma 81-1], [Pichard and Sarma 81-2] and [Pichard and Andr6 86] have

"examined localization in solid state multiwave systems. In analy7zing these systemis they

have exploited the work of Oseledets on products of random matrices. Mathematicians

have taken renewed interest in the theory of products of random matrices as indicated

by twr" -P-nnt publications, [Bougerol and Lacroix 85,AMS 86].

The work of [Herbert and Jones 71,Thouless 72] provides another perspective as far

as the calculation of localization effects are concerned. They derived a formula for the

localization factor (defined below) which is a function of the spectrum of the disordered

system. Their approach is nearly as rigorous as that using products of random matrices.

In 1977 when Anderson and Mott (and Van Vlec&) were awarded the Nobel Prize

in physics, they were cited in part for their work on localization. In his speech in

Stockholm, Anderson [Anderson 78] made the following comment:

Localization ... has yet to receive adequate mathematical treatment, and

one has to resort to the indignity of numerical simulations to settle even

the simplest questions about it.

While it is still true that we must use numerical simulations to confirm our inalyticai

insights ,tbout localization, we will argue in this thesis that mathematical tools are

available which allow us to answer some very important questions aboat localizti~on

in one-dimensional systems.

Despite r. Nobel Prize, [Czycholl and Kramer 79] raised serious questions with their

numerical work about even the existence of localization in one-dimensional systems.

This prompted [Anderson et al 80] to do some fundamental work on the localization
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problem in one dimension. They derived what they called a scaling variable for one-

dimensional disordered systems carrying a single pair of waves. This variable, involving

In 1til where t is the transmission coefficient for a bay, was argued to be the statisti-

cally meaningful quantity to average when examining one-dimensional random sys-

tems. They also argued that the variable satisfied a central limit theorem. Earlier

[O'Conn-ir 75] had made an impo~rtant contribution toward establishing a central limit

theorem for disordered periodic systems. Subsequently [Abrahams and Stephen 801,.

[Andereck and Abrahams 80] and [Stone 83] provided numerical evidence to support

the central limit theorem ideas of [Anderson et al 80]. Apparently [Le Page 821 has

provided the definitive mathematical work supporting a central limit theorem con-

tention.

1.2.2 Structural Dynamic and Acoustical Applications of Lo-

calization Theory

Solid state physicist C. H. Hodges (Hodges 821 was the first to recognize the rele-

vance of localization theory to disordered periodic systems of interest to the structural

dynamicist. He used wave arguments to calculate localization effects at high frequency

for a beam on randomly spaced supports. His work raised the possibility that disorder

could have a dramatic impact on the dynamics of what are normally spatially periodic

structures. Unfortunately, his analysis provided little indication of how localization ef-

fects varied with frequency, and his techniques were not applicable to a broad range of

periodic structures. Both the insights and shortcomings of his work motivated research

leading to this thesis.

1The precise scaling variable they used was In which is simply -2 In ItI They utc the term scaling

variable in the sense that the mean value of the variable for two bays is the sum of the mean values of

the variable -for each bay individually. Also the variance of this variable scales at least according to a

weak law of large numbers.
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In a later paper [Hodges and Woodhouse 83] attempted to apply the work of

[Herbert and Jones 71,Thouless 72] to estimate localization effects in two passbands

for a taut wire with unevenly spaced masses. They also conducted an exleriment on

the wire-mass system which qualitatively confirmed the localization effects.

More recently [Bendiksen 86,Bendiksen and Valero 87,Cornwell and Beiidiksen 87]

have examined mode localization in closed disordered periodic structures, like compres-

sor rotors and dish antennas. These closed systems are not mathematically equivalent

to the linear one-dimensional structures under consideration here. [Pierre et al 86] and

[Pierre 87,Pierre and Dowell 87] have also examined localization, but only with the aid

of deterministically disordered systems with as few as three bays. None of the engi-

neering papers so far provided analytical calculations for localization effects over any

significant frequency range. This thesis and [Kissel 87] are the first publications to

calculate frequency dependent localization factors for disordered periodic systems of

interest to the structural dynamicist.

The most rigorous examination of localization in an acoustical setting has been that

by [Baluni and Willemsen 85]. They effectively used Furstenberg's work to calculate

frequency dependent localization effects; however, their application was for layers of

sandstone and shale with random thicknesses. The paper [Sheng et al 86] also examined

localization with geophysical applications in mind.

Recently, more solid state physicists [Anderson 85,Flesia et al 87] have recognized

that localization manifests itself in acoustical and optical systems. They append the

term "classical localization" to the phenomenon when it occurs outside the context of

quantum mechanics.
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1.3 Goals, Approach and Contribution of Thesis

The ultimate goal of this research is to provide the analyst and experimentalist with

the tools to decide (given some engineering judgement of the disorder) how significant

the dynamL, -ffects of disorder will be on a periodic structure as a function of frequency

and the properties of the structure. This thesis is P major step toward the goal of pro-

viding tools to rigorously examine the localization phenomenon in one-dimensional dis-

ordered periodic structures. We present the tools for mono-coupled disordered periodic

structures (structures in which one bay is connected to its neighboring bays through

one coupling coordinate) to calculate, analytically -,nd numerically, localization effects

over a wide frequency range at moderate levels of disorder. In addition, in important

new tool is presented here to guide localization work on multiwave systems.

The approach of the thesis is probabilistic, as opposed to th,• deterministic analysis

of [Bansal 80,Pierre and Dowell 87]. The methods of probability theory allow us to

modei our uncertainty in a way that yields meaningful answers. This is particularly

true when we make use of theory on products of random matrices, which puts us on a

firm mathematical footing.

What had the most profound impact on the direction of the research was the obser-

vation of confusion about localization in the late 1970's in one-dimensional disordered

systems. In this instance the confusion could have been avoided had more researchers

availed themselves of the appropriate mathematical tools. The very important obser-

vation about the In ItI being the key statistical variable in the study of localization can

be easily deduced in a few algebraic steps by making use of wave transfer matrices and

Furstenberg's theorem. This is explained in Chapter °3.

It is the philosophy of this thesis that the transfer matrix formalism accompanied

by the appropritte theories on products of random matrices can lead to a better under-

standing of the localization phenomenon. This philosophy has been needlessly neglected
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in most of the theoretical localization literature to date. The reason that theorems on

products of random matrices have generally received scant attention from physicists

working on localization is that they have relied on their own heuristic techniques, and

that they have been more interested in two- and three-dimensional systems, which

cannot be as easily handled with transfer matrices.

The first principal contribution of the thesis is the explanation of how random trans-

fer matrix techniques can be used to model disordered systems, deduce transmission

properties and calculate localization effects. This includes a discussion of the impor-

tant transformation to wave transfer matrix form and the relevance of the theorems of

Furstenberg and Oseledets to the one-dimensional localization problem.

The second principal contribution is the calculation of localization effects as a func-

tion of frequency for three disordered periodic models of interest to the structural

dynamicist. In most instances the localization effects are found to be strongest at fre-

quencies near the stopbands of the normally perfectly periodic structures. Localization

effects are also pronounced when the length of a bay is disordered.

The third principal contribution is the derivation of the localization factor for mul-

tiwave one-dimensional systems as a function of the transmission matrix. This at last

allows a rigorous treatment of localization in multiwave systems. Because transfer

matrix methods can be used to model almost any disordered periodic system in one

dimension, including systems of interest to the solid state physicist, the results here

will be of interest outside the engineering field as well.

In addition to these principal contributions, we will note in the body of the thesis in-

stances where previously published results are extended and where mistaken approaches

and conclusions exist in the literature.
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1.4 Preview of Thesis

Before studying the effects of disorder on periodic structures, Chapter 2 presents

a brief discussion of the modeling and dynamics of perfectly periodic structures. Here

the transfer matrix formalism is introduced and the important passband and stopband

property is discussed. The modeling of disordered periodic structures is next presented

and the very important wave transfer form of the transfer matrix is introduced.

This serves as a prelude to Chapter 3 in which we discuss Furstenberg's theorem

on products of random matrices. This is the tool used to study localization for mono-

coupled periodic structures. With Furstenberg's theorem in hand, we are able to deduce

the asymptotic behavior of the transmission coefficient, rT, of the n bay disordered

periodic structure. We will show that the wave intensity, jr,,I, decays as e-11, where

"-y is the localization factor. We are also able, using the same theorem, to estimate

the localization factor as a function of the level of disorder, frequency and physical

properties of the system.

This theory is demonstrated on three examples in Chapter 4. The first and sim-

plest example is a linear chain of springs and masses. Initially only the masses are

disordered and then only the springs, f3llowed by masses and springs disordered si-

multaneously. All calculations are confirmed by Monte Carlo simulations. Similarly,

a rod with attached resonators is studied. First the masses, springs and lengths are

disordered individually, after which all three variables are disordered. The last mono-

coupled example is a Bernoulli-Euler beam on simple supports with random lengths

between the supports.

Most real structures carry more than a single pair of wave types at a given fre-

quency, bo localization in these multiwave systems should be investigated. Unfortu-

nately, Furstenberg's theorem will be of little use for investigating localization effects

in multiwave structures; however, the theorem of Oseledets is precisely suited to mul-
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tiwave analysis. In Chapter 8, after discussing Oseledets' theorem, we present a new

result - the localization factor for rnult~iwave systems in terms of the transmission ma-

trix, r. The significance of the result is discussed, and an analytical technique for

calculating the localization factor for multiwave systems is suggested.

Concluding remarks and suggestions for future research are made in Chapter 6.

Several appendices are included and are referred to frequently in the body of the the-

sis. Appendix A discusses some definitions and properties from matrix theory and group

theory used in the thesis. The derivation of the wave transfer matrL for mono-coupled

systems is discussed in Appendix B. In Appendix C the modeling of a mass-spring

chain, a rod with attached resonators and a beam on simple supports is discussed,

both when they are periodic and when they are disordered. A simple method to calcu-

late localization factors, not depending on theories for products of random matrices, is

discussed in Appendix D. In the final appendix, Appendix E&, we examine some prop-

erties of scattering and wave transfer matrices that will be useful in Chapter 5. The

reader should at least scan these appendices before proceeding with the rest of the

thesis.
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Chapter 2

Transfer Matrix Models of Periodic

and Disordered Periodic Structures

2.1 Introduction

In this chapter we will describe the nature of periodic structures of interest in the

thesis and .,w how transfer matrices are used to model these structures. Some of

the properties of periodic structures are mentioned, including the important passband

and stopband characteristic. The modeling of disordered periodic structures via a

product of random transfer matrices is then discussed, along with the very important

transformation of these matrices to wave transfer form.
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2.2 Perfectly Periodic Structures

2.2.1 One-Dimensional Periodic Structures

In Chapter 1 we described the kinds of periodic structures of interest in the thesis as

those with repetitive bays in one linear dimension. These identical bays are connected in

identical ways to form what is intended to be a perfectly periodic structure. Because we

are looking at structures in a linear dimension, our discussion excludes closed periodic

structures like a compressor rotor or a dish antenna which can be modeled as one-

dimensional periodic structures [Bendiksen 86]. We will not be examining periodic

structures in two or three dimensions as they are much more difficult to model with

transfer matrices, and, in addition, the localization effects are understood to be much

less pronounced in these higher dimensions than in the one-dimensional case.

2.2.2 Modeling of Perfectly Periodic Structures

The key modeling tool used throughout the thesis is the transfer matrix. Each

bay of the periodic structure is modeled with a linear transformation, T, which relates

a state vector of one cross-section to the state vector of the succeeding cross-section,

namely:

xj= Tx1....

This is a difference equation, where the matrix T can be thought of as a spatial state

transition matrix evaluated between the points j and j - 1. One transfer matrix is

associated with each bay in the structure. The state vector may consist of generalized

displacements and forces, for example, or it might consist of the generalized displace-

ments of neighboring bays. The transfer matrix can be found by manipulating the

dynamic equations of motion of a bay, possibly derived with the finite element method.

The derivation of transfer matrices is discussed at length in [Pestel and Leckie 63]. The

31



formulation of the transfer matrix assumes a sinusoidal time dependence (eiwt) in the

equations of motion. No damping' is included in the models so that the effects of

disorder can later be highlighted.

The transfer matrix will always be of even dimension, as will the state vector. For

most of the thesis we will confine our discussion to bays modeled with 2 x 2 transfer

matrices, which in turn means each state vector is 2 x 1. These structures are called

mono-coupled periodic structures because each bay is connected to its neighboring bays

through one coupling coordinate. Mono-coupled periodic structures carry only a single

pair of waves.

Because each bay is identical, the state vector after n bays is simply related

[Faulkner and Hong 85] to the state vector at the beginning by

X=-TnxO

Because we are raising a transfer matrix to the nth power, we need only examine the

transfer matrix T to understand the dynamic properties of the periodic structure.

The three transfer matrices describing the three example periodic structures in this

thesis can be found in Appendix C. These structures comprise a chain of springs and

masses, a rod in longitudinal compression with attached resonators and a Bernoulli-

Euler beam on simple supports.

2.2.3 Properties of Perfectly Periodic Structures

To appreciate the consequences of disorder in pericdic structures we must first ex-

amine the modal and wave properties of periodic structures without disorder. There

is extensive literature on perfectly periodic systems and the reader is referred to

1The analogous assumnption in the solid state localization problem is to neglect inelastic scattering

mechanisms.
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[Brillouin 46,Miles 56,Mead 70,Cremer et al 73,Mead 75-1,Elachi 76,Engels 80] and

[Faulkner and Hong 85,Mead 861. The literature specifically examining periodic sys-

terns carrying a multiplicity of wave types is much less abundant, [Mead 73], [Mead 75-2],

[Signorelli 87], [Bernelli et &l 87]. The properties we are examining below are for struc-

tures with transfer matrices of dimension 2 x 2.

In a periodic structure the vibrational mode shapes are themselves periodic, i.e.,

have amplitude equally strong along any aection of the structure. As we will see shortly,

the natural frequencies at which these modes vibrate tend to occur in clumps along the

frequency axis.

Dual to the modal properties of the structure are the wave properties. Two types

of waves, traveling waves and attenuating waves, occur in alternating frequency bands

known as passbands and stopbands, respectively. In the passbands waves travel accord-

ing to e±, where k is the real wave number and the positive sign indicates negative-

going waves and the negative sign positive-going waves. The wave number k - is a

spatial frequency which refers to the phase difference of motions in adjacent bays. Here

A is the wavelength and k varies in magnitude from 0 to 7r or some multiple thereof. In

the stopbands, waves propagate according to e*e or e£(*+it). The real exponent a im-

plies nontraveling or attenuaiting waves. The a + iwr exponent implies adjacent bays vi-

brating out of phase with each other, in addition to wave attenuation. Both k and a are

functions of frequency. Only in the passbands of the perfectly periodic mono-coupled

structure can energy be transmitted along the structure [Mead 75-1]. Another type of

wave - a complex traveling wave - can occur, but only for systems modeled by transfer

matrices of dimension 4 x 4 or greater [Mead 75-2,Signorelli 87,Bernelli et al 87].

The frequency ranges of passbands for mono-coupled periodic structures can be

found by determining those frequencies at which the eigenvalues of its transfer matrix

are complex, e*k. By examining the characteristic equation of the 2 x 2 transfer matrix

T, where det(T) = 1 because we have assumed no damping, we readily deduce that
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pasabands occur at frequencies where Itr(T)I < 2. Otherwise, the eigenvalues are real,

Oft or e**+i, and we are in a stopband.

This passband and stopband property is characteristic of any periodic system,

whether it be an electrical network, a periodic truss structure, a layered acoustic

medium or a periodic potential along which electrons might propagate. It Is Important

to remember that in the frequency ranges of the passbands of the perfectly periodic

system there is perfect transmission of waves and energy.

The connection between the wave description and modal description for a finite

structure is formally made with the phase closure principle [Cremer et &I 73,Mead 75-1]

and [Signorelli 87]. This principle says that at a natural frequency, the total phase

change of a wave as it travels backwards and forwards once through the entire structure,

including the phase changes at the boundaries, is an integral multiple of 27r. The

connection between this wave description of a periodic system and a modal description

becomes more apparent by noting that the natural frequencies of the periodic structure

lie within the passbands. For a periodic structure of infinite extent an infinite number

of natural frequencies lie densely in each passband. For an n bay periodic structure,

n natural frequencies lie within each passband. (This result is strictly true only when

each bay can be modeled as having symmetry of mass and stiffness about its midpoint.

If the bay is unsymmetric, one frequency will occur in the stopband [Mead 75-1]).

Another property of mono-coupled periodic systems to note is the order in which

the passbands and stopbands occur. For periodic systems connected to the ground, a

stopband will occur first as a function of frequency followed by a passband after which

the pattern is repeated. This makes sense because clearly the low frequency motion

is constrained by the connection to the ground. For periodic systems not connected

to the ground, this pattern is reversed, with a passband occurring first followed by a

stopband and so on.
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No real structure will have an infinite number of bays, but frequently a structure

with a finite number of bays can mimic quite well the properties of an infinite structure,

especially If it is long. But surprisingly, [Roy and Plunkett 861 note good agreement

between passband/stopband properties of a theoretically infinite dissipationless beam

with attached cantilevers and their experimental results for such a system with only 15

cantilevers.

2.3 Disordered Periodic Structures

Now that we have described the kinds of periodic structures of interest, and some

properties they possess, we turn our attention to disordered periodic structures.

2.3.1 Nature of the Disorder

The term diso-' "br refers to each bay of the structure having one or more of its

properties departing irk a random fashion from the average. We assume here that the

disorder is distributed equally among all the bays and not scattered in a few. (In some

literature [Toda 66] the term localization refers to the effect of disordering two well

separated bays out of an otherwise perfectly periodic system. We are taking a more

general definition of localization which encompasses a finite to an infinite number of

disordered bays without any intervening perfectly periodic section of bays.) With this

kind of disorder, the properties of the bay being disordered, whether masses, springs or

lengths, can be modeled as independent identically distributed random variables. Note

here that we do not model continuously disordered systeiis like a turbulent atmosphere

[Wenzel 83] or a beam with mass that is a random function of length [Howe 72]. Rather,

our disorder is discrete in that it occurs from bay to ba'.,.

When several variables of a bay are disordered we assum'ie that the random variables
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ae mutually independent. Because the randomness for any variable will not be con-

sidered too large, we will make use of *narrow' uniform probability density functions

from which to draw the random variables. This is also in conformity with the practice

in the solid state localization literature.

2.3.2 Modeling of Disordered Periodic Structures

For the disordered periodic stiucture we will contirue to use the transfer matrix

formalism established in Section 2.2.2. For each bay now the transfer matrix, Tj, is

simply a function of one or more random variables, Tj(a1 ,..., a,). See Appendix C

for the random transfer matrices of our three periodic structures. Because the random

variables are independent and identically distributed, so also are the random transfer

matrices.

The disordered periodic structure with n bays cannot be modeled as T', but is

modeled as a product of random transfer matrices:

ft T = To-.. T

This is the key modeling assumption of the entire thesis. We will examine one important

asymptotic property of products of random matrices and deduce from that the nature

of the localization phenomenon.

2.3.2.1 Wave Transfer Matrix

Because strong wave attenuation already occurs in the stopbands, our focus is on the

e3ects of disorder in the passbands of the normally perfectly periodic structure. Unlike

the case for the perfectly periodic structure, we cannot simultaneously diagonelize each

T, with the same eigenvector similarity transformation. However, we caL transform
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each random transfer matrix, Tj, forming the product into a wave transfer matrix, Wj

seen in the following equation (see Appendix B):

,- _ ýi 1.. (2.1)

where A is the ampiitude of the left traveling wave and B is the amplitude of the right

traveling wave.

This is a wave transfer matrix for one random bay inserted in the middle of an

otherwise perfectly periodic structure carrying a pair of traveling waves. The wave

amplitudes in Equation 2.1 are those supported by the periodic system surrounding

the disordered bay. The transmission coefficient, ti, is the complex amplitude of a wave

emerging from the right of this random bay when a wave of amplitude 1 is incident at

the left. The reflection coefficient, ri, is the complex amplitude of the reflected wave

when a wave of amplitude 1 is incident from the left. Physically, Itjil represents the

ratio of transmitted energy to incident energy, and Irj12 the ratio of reflected energy to

incident energy. Energy conservation implies that jt, 12 + Ir, 2 = 1.

Some readers may be more familiar with ri and ti appearing in a scattering matrix.

The scattering matrix corresponding to Equation 2.1 appears in the following equation:

Bit 3  r, Ai

The scattering matrix relates wave amplitudes leaving a bay (which are on the left of

the equation) to those entering the bav (which premultiply the scattering matrix). The

disadvantage in using the scattering matrix to analyze A disordered periodic system is

that it is not a tranusfer matrix. This means that the scattering matrix for two or more

bays cannot be realized by simple multiplication of the respective scattering matrices.

The scattering matrix for two or more bays is realized through a complicated "star

product" described Ain [Redheffer 611.
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TOW

We will use the wave transfer matrix precisely because it is a transfer matrix and
because it allows us to model disordered periodic structures by pure matrix multipli-
cation. So the wave transfer matrix for the n disordered bays is:'

where rT is the transmission coefficient of the n bay disordered system, and pn is

the reflection coefficient of the n bay disordered system. Here 1741' is the ratio of

transmitted energy to incident energy for the disordered structure.

2.3.2.2 Properties of the Wave Transfer Matrix

The wave transfer matrix ha& some special properties that will be exploited to

simplify our analysis of the localization phenomenon. First, because we will always use

transfer matrices of determinant one to model our disordered bays (this is true because

no dissipation is included in the models), the corresponding wave transfer matrix wilr

have unit determinant. Thus the wave transfer matrix is an element of (see Appendix

A) SU(1, 1) and Sp(1, C).

Recall that the original transfer matrix, T, was real and of unit determinant, and

so was an element of the group SL(2, R). What has happened in going from T to W

is that we have taken advantage of an isomorphism between SL(2, R) and SU(1, 1).

T
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Chapter 3

Furstenberg's Theorem and

Calculation of Localization Factors

for Mono-Coupled Disordered

Periodic Structures

3.1 Introduction

As has been discussed earlier, disordered periodic structures can be modeled via a

product of random transfer matrices. In this section we will exploit the mathematical

theory of products of random matrices to reveal an important transmission property of

disordered periodic systems. It is precisely this transmission property that we associate

with the localization phenomenon. In the chapter we will formally state Furstenberg's

theorem, then restate it in more familiar terms. We then relate the localization factor

to the transmission coefficient of the long disordered system, after which we will find

an approximate analytical expression to calculate the localization factor.
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3.2 Furstenberg's Theorem

A rigorous statement about the properties of a product of a finite number of random

matrices is difficult to make; however, we can come to some rigorous conclusions on

properties when the number of matrices in the product becomes very large. We will

focus on one property that was originally proved in [Furstenberg 63] and which we

specialize to 2 x 2 matrices. One formal statement of this limiting behavior of products

of random matrices is as follows:

Theorem 1 (Furstenberg's Theorem, original form) Let T 1, T 2,... , T,, be inde-

pendent identically distributed 2 x 2 random matrices with distribution A. Let G be the

smallest closed subgroup of SL(2, R) containing the support of A. If G is a noncompact

subgroup of SL(2, R) such that no subgroup of G of finite index is irreducible and if

E[rnax(ln jlTll,0)] < +,0

then there exists -y > 0 such that for each x0 0 0

lim 1In IIT'" Tixoll = -y w.p. 1

and

lim - In liT, .Till = -y w.p. 1.4'.-4 o n

and if v is a pA-invariant distribution on P(R 2)(P(RI) is the projective space of RA,

namely half of the unit circle), then

"I = ff In IITA1ldA,(T)dv (A) (3.1)

where i is in P(R2).

The condition of invariance for v is stated mathematically in many ways including:

J 1A( Titd)duCT)dv()R)
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where 1A(*) is the indicator function; its value is one when the argument lies on A and

0 otherwise.

There is one special direction for the initial vector xO for which the Furstenberg

result will not hold for a given realization of T, ... T 1 . Namely if Ao is along this

special direction, then
nim 1 In 11n" T, 0- = TA

n--oo n

This is a consequence of the theorem of Oseledets which will be discussed in Chapter 5.

The above theorem can be modified and restated in more familiar terms with just

a few assumptions and some explanation.

As stated in Chapter 2 we are considering our random matrices to be functions

of one or more random variables, where the random variables are drawn from some

probability density function (Dirac delta functions are permissible in our definition of

probability density functions, so probability mass functions are possible in the above).

We exclude Bernoulli random variables (random variables having probability density

functions with ma& at only two points) in our transfer matrices because they can result

in the distribution v having neither mass nor density. The distribution for V would

be a so-called continuous singular probability measure. So now probability measures a

and v become p(a) and p(R), respectively.

The subgroup G can now be interpreted as the set of all matrices generated by

the probability density functions of the random variables plus the inverses of those

matrices, plus the identity matrix, plus any products of the above matricef,. The

conditions concerning noncompactness and irreducibility of G have been shown by

[Matsuda and Ishii 70] to be equivalent to requiring that G contain two elements in

SL(2, R) with no common eigenvectors. In addition, [Goda 82] has shown that the

Furstenberg result will hold for matrices in GL(2, R) as long as

lir lln( I det Ti[) 0 0 (3.2)
n--4oo n 1
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Finally, the theorem will also hold for matrices with complex entries

[Bougerol and LP.croix 85].

Now that we have clarified some of the conditions under which Furstenberg's the-

orem holds, let us examine why the Furstenberg result, Equation 3.1, is reasonable.

As the deterministic vector x0 is propagated by the random matrices, its direction, R,

begins to take on a probability density of its own. In fact as n -. oo, the probability

density of this direction becomes invariant with respect to the probability density for

the random transfer matrices. Specifically, the invariance condition means if

Xn -- TnXn-1

then as n -- 00

P(2n) = PGAn-l)

This condition of invariance is frequently called the Dyson-Schmidt self-consistency

condition in the solid state physics literature [Ziman 79]. This condition of invariance

does not hold for systems in two or three dimensi..ns or for closed periodic structures in

one dimension [Ziman 79, page 309]. Therefore, as n -+ oo the two relevant probability

distributions are those for T and X, and the double integral of In IITMR1 over these two

distributions seems reasonable.

With these points in mind, we can restate Furstenberg's theorem as follows:

Theorem 2 (Furstenberg's Theorem, modified form) Let W 1 , W 2 , ... , W, be

complex valued, invertible, independent identically distributed 2 x 2 matrices where

Wi = Wi(a) is a function of the random vector a with probability density p(Q). If at

least two of the random transfer matrices do not have 'ommon eigenvectors, and if

lim In(fI I det Wil) = 0
n--#oo n =

and if

E[max(In IWill,0)) <+00
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then there ezists -y > 0 such that for each zo : 0

lirn In 1IW.. Wizoll =-Y w.p. 1
n--o n

and

lirn In IW, WW1 1 =Iy w.p. 1

where

'Y =J In IIW(c)IItp(a)d•p(1)d- (3.3)

where p(l) is invariacit with respect to the probability density function p(a) for the

random transfer matrices, i.e.

f)1A(2)p(1)dZ [A( W(a)l )p(a)dap(A)dZ

where A is any arc along the half unit circle.

A number of other properties for products of random matrices can be shown

[Bougerol and Lacroix 851; however, Furstenberg's theorem gives the one property which,

as we will see, is relevant to localization in a disordered periodic system.

Furstenberg's theorem is a law of large of numbers for products of random matrices.

More recently a central limit theorem [Le Page 82,Bougerol and Lacroix 851 has been

proved for products of random matrices. The central limit theorem tells us that

1distribution-(ln I W,." Will - n-y) - (0, O')

The conditions on the random matrices are a little more restrictive than the ones for

Furstenberg's theorem, but determining whether they apply to the transfer matrices

considered here is left for future research.
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3.3 Localization Factor as a Function of the Trans-

mission Coefficient

Now we will relate the Furstenberg limit theorem for products of random matrices

tu a transmission property of disordered periodic systems. From Furstenberg's theorem

we know

- lim -in IjWn...-Wil w.p. 1 (3.4)4---*9o n

Recall that a product of n wave transfer matrices is of the form:

n- = - (3.5)

To apply Equation 3.4 we first take a matrix norm of Equation 3.5. Here we choose

the maximum singular value (see Appendix A); so a little algebra gives:

"1 = -1 In()1 + JPn

or
"-y = lir 1 In(1 + IN D In Irnj

n--.oo n n

Knowing that O < IPNI < 1, the first term vanishes, and we are left with

'y=- lim I lnIrTI (3.6)
n--b O0 n

Now we can understand the relevance of -y to the dynamic properties of a disordered

periodic structure. Asymptotically, Equation 3.6 says that the absolute value of the

transmission coefficient decays exponentially with n, the number of bays. The rate

of decay per bay is governed by -y which will be called the localization factor. Thus

traveling waves will no longer be propagated perfectly, but will tend to be confined

near their point of origin according to the localization factor 'y. This result says that

Irni, Ic- -2 •", the transmitted energy decays exponentially with n. It has been argued
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[Matsuda and Ishii 70,Pastawski et al 85] that the now spatially localized modes are

governed by an exponential envelope of the form e-".

We observe that In Ir.I is a statistically well behaved variable, namely we have

derived an asymptotic relation for it based on a law of large numbers for products

of random matrices. Notice also that we are not taking an expectation of In Jr, S to

find -y; the result holds as n -+ oo. Random variables with this property are called

self-averaging [Pastur 80,van Hemmen 82].

The notioa that the In Jr,I is statistically well-behaved is further strengthened if

one applies these same manipulations to the central limit theorem for products of

random matrices. Thus using the available mathematical tools, we confirm in just a few

steps the conjecture about the statistical behavior of In IrI by [Anderson et al 801 and

[Stone et al 81].

3.4 Calculation of Localization Factors via an Ap-

proximation to Furstenberg's Theorem

In this section we will simplify Equation 3.3 of Furstenberg's Theorem; this will

lead to an approximation for the localization factor, -. First recall Equation 3.3

" = f/In IIW(a)Z!Jp(a)dap(z)dZ

then without loss of generalit-' we have:

ei[
1 "

W(a)=[
t4 t5
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where for the moment we suppress the dependence of t and r on a. So,

1 *0 t

After some complex algebra we find:

1 -r _lIIW(a)Ifl = IF-
t

Now the equation for -1 is

'I In - e-C'°Ip(a)dap(O)dO (3.7)
if ~t

where p(O)dO must satisfy the invariance condition:

J 1(O)p(G)d9 = [fA( W(:)2(0) )p(a)dap(O)dO (3.8)

Because p(e) can only be found in rare instances [Pincus 80], we will find an ap-

proximation to -yby taking a Taylor series expansion about < a >, recalling that a is

a vector, of the terms in Equations 3.7 and 3.8 and retaining terms to first order in a.

This approach has been discussed in [Baluni and Willemsen 85]. Let us first recall the

form of the Taylor series expansion for a multivariable function. The first three terms

are:

f(a) = f(a)I<'> + afL("- < ot, >) 1<.> +
1=1

1 q q a 2f(a)
-2 D"' < c4 >)(a- < a, >) I<> +""2 1= /=

We now examine the expansion of In It-• - 1e-2 . The first term in the expansion

is simply that for the undisordered or perfectly periodic system. Recall that

l il

for the perfectly periodic system in the passband. Therefore the first term is:

In leitk = 0
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The second term in the expansion will not be needed because the termi

(o4- < c4 >) vanish when integrated over p(c).

Finally, the third term is examined. Because the terms in the random vector are

mutually independent, we know that (cQ- < m >)(ai- < a >) i I will vanish after

integrating over p(a). We are left with

E10- < 04>)-

So -y to first order in the variance of the c4s is:

1 a2 In 11- Pf~ck~-i~e

"Ej=u• J°21 atI I<4>p°(O)d8 (3.9)

where we now must find Jf(O) which is p(9) to the zeroth order in the variance of a.

To find p°(e) we examine Equation 3.8 where we only look at terms to zeroth order

in or, namely:
r Jf , W(a)I(9)

1A (e)p0(O)d8 =/ A("IIw(I($)II I <a>)p(a)dap0 (6)dO

but

W(a)ZI<0 > = i i

0[eik C ]V2-Ci] V5 ]-~~
We therefore require p0 (6) to satisfy

f 14 (O)p°(0)d = f 1A(k + 8)pP(()dO

Because k can take on any value between 0 and 7r, or some multiple thereof, we must

have that p°(O) = .1, which is a uniform probability density function.

To further simplify Equation 3.9 we note that

1nl r (a) _,., ,1

In I _ = ` In - I + In 11 - r(a)e-2'0
t( Q,) t (a) t a

The term ln 1 - r(a)e-i 2 Il can be expanded in a series, and recalling

C-'s = cos 20 - isin 20, the term vanishes after integrating.
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Therefore we are left with

allo, at, I<o> + o(oQ)

or
""--_,al .in It (o)

This is also equivalent to

W • In <-.
1= •'= B 0 In a•,,"r'" "c", + o(o') (3.10)

where
<t >

< 041>

<a'>

The prime indicates that all but the lth term is evaluated at the mean value. This

latter result says we can calculate localization effects by disordering one variable at a

time in a transfer matrix.

Notice that the localization factor to first order in the variance is simply a sum

of the localization factors for each variable randomized individually. We suspect that

as the variance of the disordered variables increases the estimate of "1 will be poorer

because we have retained terms only to first order in the variances.

We also note that Furstenberg's theorem has been shown to be robust to uncertainty

in the probability law of the random transfer matrices The paper [Slud 86] shows that

if the postulated probability measure for the transfer matrices is "close" to the actual

one then the asymptotic behaviors will be arbitrarily close.
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A technique to approximately calcillate localization factors without resorting to

theories on products of random matrices is presenLed in Appendix D.
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Chapter 4

Calculation of Localization Factors

for Three Mono-Coupled

Disordered Periodic Structures

4.1. Introduction

This chapter will illustrate localization calculations for three periodic structures

that can be modeled with 2 x 2 transfer matrices. The results will show dramatically

how localization effects can vary with frequency. The analytical results are compared

to Monte Carlo simulations of these systems. We provide, where possible, a physical

explanation for the observed localization effects.

The first system examined is a chain of spring and masses. This simplest possible

system provides a convenient vehicle to illustrate the calculation of localization effects.

Indeed, this thesis provides the first comprehensive examination of the localization

effects of a disordered mms-spring chain.
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The second example is a rod in longitudinal compression with attached resonators

which mimics some of the important dynamic behavior of a real truss structure. Unlike

the mass-spring system which has only a single passband, the rod with resonators has

an infinite number of passbands. We examine localization effects over several of these

paMsbands.

The final example is E Bernoulli-Euler beam on simple supports. When we disor-

der the distances between the supports we will see a very pronounced effect near the

stopbands of the underlying periodic structure.

Lht our analysis we will consider the random variables, al disordered ±p% from the

average va !ue < al >. A disorder of ±p% from the average value < ag > translates into

uniform probability citý:sity functIon with width of 2PL. and height of '<>The

uniform probability density function will be centcred around < ag >. Note that the

variance of any random variable with a uniform probability density function is always

Width
2

12

4.2 LocalizatIon in a Mass-Spring Chain

We will examine at length the localization effects in a chain of spring., and masses.

The mass-spring chain is an excellent example to begin our discussion of localization,

not only because of its simplicity, but also because this system and its analogs have been

studied over the years, giving us the opportunity to directly compare our results with

those already published. Even though the mass-spring chain and its equivalents have

received a lot of attention in the literature, amazingly it has not received exhaustive

treatment. For example, in the literature the chain is examined with only the mass

disordered and the localization factor calculated is generally valid over only the first

half of the passband. In this thesis we will study localization in this chain where masses

and springs are disordered and the equation we present for the localization factor will
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be valid over virtually the entire passband.

In the next sections we will first examine the chain with only masses disordered and

present our analytical approximation of the localization factor based on Equation 3.10.

These results will be confirmed by a Monte Carlo simulation. We will also compare this

analytical result with the on, usually found in the literature. The localization factor

will be studied for three levels of disorder: masses with a .1%,1% and 10% variation

above or below the nominal value. We will see that the localization factor depends only

on frequency and the level of disorder. Throughout the thesis any such dependencies

are suppressed when writing the localization factor, -1.

Next we examine the chain with only springs disordered and show that this disorder

is dual to the mass disorder. Finally both masses and springs are disordered and we

again confirm the analytical results with a Monte Carlo simulation.

4.2.1 Only Masses Disordered

We first examine a chain with disordered masses, which in the physics literature is

identified as isotopic disorder, referring to atomic systems with various isotopes. This

chain with masses disordered has been examined in [Matsuda and Ishii 70,Rubin 84];

its electrical circuit analog was studied in [Akkermans and Maynard 84], and the solid

state analog in [Stone et al 81] and elsewhere.

The mass-spring model and its transfer matrix are presented in Appendix C.1. We

make use of a nondimensional frequency, 0, in the transfer matrix and our analysis:

WJ

The condition for the existence of a passband (see Chapter 2) tells us that only one

passband exists and occurs for

0<)< 1
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In the passband waves and energy travel with perfect transmission. However when the

system is disordered, the transmission is disrupted; and the resulting disruption in the

passband is what we are examining.

In our analysis we will first consider masses disordered from their average value

on the chain. We make use of nondimensional quantities wherever possible. Here the

nondimensional mass is Aj, where

J~j - M and rn =< mi >

and m is the mass for the perfectly periodic system. The transfer matrix for one bay of

this chain with a disordered Tiass is shown in Appendix C.1 and the (1,1) term of that

transfer matrix is , Equation C.1, which can be used in Equation 3.10 to calculate

the localization factor, -y,. For this mass-spring system with masses disordered we will

go through the calculation of the localization factor; this will serve as an example of

the steps necessary to do the calculation for any disordered system. Equation 3.10 now

becomes
1 2 t(In I1

2' aju•

where - indicates we are neglecting terms of order greater than the variance. From

Appendix C.1.1 we have
= 

i6( )

where
2C2(1 -/•s)

sin k
and where

cosk = 1 - 202

Suppressing the subscript j, we now have

1 2 a2 ln(1 + 62)

Letting
a6' _a -202

53 sink
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we have the first partial derivative

a In(1+ 62 ) 266'

a14 1 + 62

Taking a partial derivative again we have

a2 In(l + 62) 266' 26' 266"

p 2 ý+b(1+62)2 + 1 + 62 + 1 + 62

We have to evaluate the above terms at < A >. Note that 6 evaluated at < u > is

zero, so now we have

or
204a2

"sin2 k

Knowing cos k from above, we can calculate sin 2 k and so finally for the mass-spring

system in the passband, 0 < 0 < 1:

-2 2a; _ 2 (4.1)

We observe that the localization factor is a function of the nondimensional frequency

C and the variance of the nondimensional mass. Clearly the localization effects increase

with frequency and also with the amount of disorder. At low frequency

-2 a
'Y1A _-" _ (. (D --+ 0) (4.2)

2

indicating that -1 is prnportional to D2 at low frequency. The low frequency estimate of

the localization factor for a chain with disordered masses is the one usually seen in the

literature [Matsuda and Ishii 70], but in the following dimensional form(and derived

through much more torturous methods than are used here):

w' --" 2 -- 0)
8k. m

The nondimensional analytical results of Equation 4.1 and Equation 4.2 for masses dis-

ordered ±.1% from the average value are plotted in Figure 4.1 with the nondimensional

frequency ax the abscissa and log1o(-y) as the ordinate.
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The frequency dependence of "7 can now be seen explicitly. Note the rising value of

-1 as it approaches the stopband near Q = 1. This makes physical sense, because the

masses are vibrating at higher frequencies as we approach the end of the passband, so

we expect that disorder will have a greater impact than it would for masses vibrating

at lower frequencies. The dashed line represents the nondimensional low frequency esti-

mate of "y1. Clearly it provides an adequate estimate of -y, for about half the passband,

while it grossly underestimates the localization effects at the highest frequencies of the

passband.

As an example, let us consider the effects of localization at Q - .9995, where

%, - .1665 x I0-1. This result tells us that on average the transmitted energy, 17,1',
after 1000 bays will be e-2"165XIO-a31°° = .72 of the incident energy even though no

damping is present. A modal amplitude for a normal mode at that frequency would

be confined to an exponential envelope governed by c-" with -y = .1665 x 10-3. The

localization will be less pronounced at lower frequencies, but is nonetheless present.

The attenuation caused by the disorder is unlike that of dissipation. Here localization

prevents the wave from traveling along the structure, unlike the case for a perfectly

periodic system, where the wave would travel without attenuation. Localization tends

to confine the wave near its point of origin, where it is eventually dissipated by the

damping that inevitably exists in all real structures.

Our localization result in Equation 4.2 is one-half the result' presented by

[Chow and Keller 721. In their work they calculated the effects of randomness on the

coherent portion of waves traveling through a random chain. We can reproduce their

results with the aid of Appendix D. If in Appendix D we proceed to find the mean value

of r. and then take the natural log, instead of averaging In it,, directly, we will get twice

the result of Equation 4.2. Clearly, they are averaging the wrong variable, r.. In ad-

dition to making the statistical arguments about averaging of proper variables, we can

'Note that the relevant result in [Chow and Keller 72] has a typographical error on the bottom of

page 1412. It should read Jrnk(w, e2) -- P. , •

56



make the following physical argument to explain their results. By examining only the

coherent or mean wave, as was also done by [Eatwell 83], they really neglect the inco-

herent portion of the wave which can also carry energy. When we average over In Irt, we

are taking into account all the energy transmitted, because by definition Ir,4 is the ratio

of transmitted energy to incident energy. Other authors have pointed out the invalidity

of averaging other quanitities like ITr. [Hodges 82], p, [Baluni and Willemsen 85] and

1" 1 2 [Stone et al 811.

The validity of the analytical result should be verified by some numerical simulation.

Specifically, we want to see whether the analytical result is valid for the entire frequency

range of interest and for increasing levels of disorder. The obvious simulation is to

multiply a huge number of random transfer matrices at a given frequency to see if

indeed

"1=- lim 1lIn lrnI
n-"o n

Because we cannot really take an infinite number of products, we must resort to averag-

ing In IrnI over an ensemble of realizations of the chain. The question arises whether to

use a large number of matrices per ensemble or a large number of ensembles and a few

matrices. Upon examining this issue numerically, we found that we did not even have to

take a product of random matrices to get Monte Carlo results that matched our analyt-

ical results. Rather, averaging In IttI from an individual matrix o- ir a sufficient number

of realizations (in our case 1001) gave excellent agreement with the analytical results

over large frequency ranges. A similar observation was made by [Pastawski et al 85].

The agreement was good in the sense that the mean value of the Monte Carlo sirn-

ulation tracked our analytical results well (as can be seen in the numerous figures),

but also in the sense that the standard error was copsistently one to two orders of

magnitude smaller than the mean value.

Recall that in a Monte Carlo simulation [Hammersley and Handscomb 64] the un-
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biased estimator of the mean value is

< In Iti >= - In It1 i

where r is the number of realizations in the simulation. We estimate the standard error

as:

etandard error =

where s2 is the unbiased estimator of the variance:

a 1 I-(lnItl- < lnItil >)2
1 j=1

Again the standard error was one to two orders of magnitude smaller than the mean

value for the simulations of all three structures. The results of the Monte Carlo simu-

lation are indicated with the small triangles in Figure 4.1. They confirm the validity

of the analytical result over the entire passband.

Now we choos, to increase the disorder in the masses so that they vary ±1% from

some nominal value, which means that the uniform probability density function has

width of .02. Exmnining Equation 4.1, we would simply expect our localization factor

to be scaled by the new or compared to the previous result. Indeed this is what we

confirm with our simulation illustrated ,n Figure 4.2.

Finally we examine the chain with a 10% variation in the masses. Such a highly

disordered state would probably not occur through unintentional assembly or manufac-

turing error, but rather we look at this highly disordered situation to see if the theory

accurately predicts the localization effect. Because of the increased disorder we will

clearly have greater localization, as is pictured in Figure 4.3.

Notice, however, at high frequency that our theoretical result overpredicts the lo-

calization factor. For example, at 0 = .9999, at the very edge of the passband,

"Yjma,crIo = .1178 and "htjo,,tja = 8.332. This discrepancy can probably be attributed

to the neglecting of higher order terms in our Taylor series expansion performed in
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Chapter 3. These higher order terms could become significant as we approach the edge

of the passband (Q - 1), just as the term to first order in a; in Equation 4.1 becomes

significant as 0 -- 1.

4.2.2 Only Springs Disordered

Consider a chain in which every mass is exactly the same, but each spring, k., varies

in a random fashion from some average value. This localization problem for the mass-

spring system has been rarely discussed in the literature. One researcher, [Goda 82]

(citing [Toda 66]) argues that the localization problem with only springs disordered is

exactly dual to the localization problem with only masses disordered. Our calculations

support this contention. Duality [Toda 66] here means that each mass of a mass-spring

system can be replaced by a certain spring and each spring can be replaced by a certain

mass such that the new system behaves in the same way as the old and in particular

has the same natural frequency.

To examine the problem, we begin with the transfer matrix for the chain with only

springs disordered, which is in Appendix C.1. Here k.j is the nondimensional spring

constant. Identifying • in Appendix C.1, we again use Equation 3.10 to calculate

". and find:

k'
"*k. - 2[1 - 0"2

So indeed this is the same as Equation 4.1 with t' replaced by a., and confirms Goda's

contention that the localization problem with masses disordered is dual to that with

springs disordered. This means that all the localization results displayed in Figures

4.1-4.3 will apply to the problem of springs disordered by simply replacing the word

mass by the word spring.
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4.2.3 Masses and Springs Disordered

Finally we consider the situation where both masses and springs are disordered. As

was stated in Chapter 3 the localization factor for this situation is simply the sum of

the individual localization factors when a single variable is randomized. So

(0 + a!.)

We check this result with a Monte Carlo simulation in which both masses and springs

are randomly varied form their average values by ±1%. The Monte Carlo results again

track the analytical results. See Figure 4.4.

Before closing this section, one final note is in order. When [Goda. 82] originally

considered the localization problem of masses and springs disordered (without solving

for his transfer matrix did not have unit determinant, so he knew he could not

use Furstenberg's original theorem which requires unit determinant for the random

matrix. As a consequence he spent most of the paper proving that the Furstenberg

result will hold even if the determinant is not unity, so long as Equation 3.2 is satisfied.

Apparently Goda was not aware that the transfer matrix could be reformulated so that

even when both masses and springs were disordered the transfer matrix would still have

unit determinant. The transfer matrix Goda used had the state vector containing two

adjacent generalized displacements:

[d.
d,,-II

while the state vector we use contains a generalized displacement and a generalized

nondimensional force at the same point.

resulting in a unit determinant transfer matrix.
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4.3 Localization in a Rod with Attached Resonators

In this section we investigate localization factors for a model proposed by

[von Flotow 82] which mimics some of the important behavior of a periodic truss struc-

ture. The model is a longitudinal wave carrying rod with attached resonators, where

the attached resonators represent the vibrating cross-members present in a real truss

structure and the continuous rod models compression, bending, shear or any continuous

deformation of the truss member. This simple model allows us to gain some insight into

the dynamic behavior of truss structures without having to deal with models of real

truss members involving transfer matrices of dimensions possibly 12 X 12 or greater.

The model and relevant properties are discussed in Appendix C.2.

We will explore the localization phenomenon when the attached masses, the at-

tached springs and the dist %nces between the attached resonators are individually

disordered. Finally we examine the system when all three variables are disordered.

Our results will indicate that the most, pronounced localization effects will occur at

frequencies near the stopbands.

4.3.1 Only Masses Disordered

We first consider disordering only the masses on the attached resonators and eval-

uate the effects on the transmission properties of the system. The transfer matrix and

wave transfer matrix when the attached masses are disordered are presented in Ap-

pendix C.2. Note our use of the nondimensional mass, A,, where < A, >= A. In all of

our examples for the rod with attached resonators A = 0.2 and k. = 0.5. These values

allow for the ease of presentation of results and are consi3tent with [von Flotow 82].

Now we use the equation for jy, appearing in Appendix C.2, in Equation 3.10 and
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find that

(sin2 1@)u• (4.3)
"-- 8(sinz k)(�r) 6/ 4((1/k.) - (1/Q'7r 2p)) 4

Clearly the dependence of 'yp on frequency is much more complicated than we found

for the simple mass-spring system. An analysis of the localization factor shows that it

is proportional to &2 at very low frequency, as was the case for the mass-spring chain.

We now examine the localization factor over the frequencies of the passbands of the

periodic system. Our first analytical and numerical results are for the masses disordered

±.!% from 7- . erage value of p = .2. As can be seen in Figure 4.5 we have excellent

agreement betwec-. the analytical and Monte Carlo results even when the localization

factor varies by seven orders of magnitudte over one passband.

Sime distinguishing features are noticeable for this type of disorder. First, the

localization factor is largest in the vicinity of the first stopband. This first stopband

occurs around 0 = (-L)2'/1wr = .5033, the natural frequency at which the average at-

tached resonator vibiates. Adding even more resonators would compound this effect.

Second, we notice that the localization effects generally decrease with increasing fre-

quency. This resuh 6eems reasonable because we suspect that at higher frequency, the

attached mass vibraiwes less and less because of its inertia.

Notice that near the second and higher stopbands (each of which begins at integer

values of c) the localization factor decreases with frequency approaching the beginning

of the stog.band, while nn the other side of the passband the localization factor is clearly

ampilfied near the stopband. One explanation for this behavior is that the frequency

at the beginning of the second and higher stopbands (0 = 1,2,...) coincides with the

frequencies in the perfectly periodic system at which the rod of length I between the

resonators vibrates as if it had fixed-fixed boundary conditions [Mead 75-1]. Some

calc-lations confirm this efft3ct. Therefore, at these integral frequencies, the rod does

not vibrate at the noints of attachment of the resonator, thus the fact that the mass

on the resonator is disordered would have '.Mttle impact on the dynamic behavior. On
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the upper end of each stopband each segment of rod no longer vibrates in a fixed-fixed

condition and so the disordered mass can now influence the transmission properties.

Ta give us some idea what the nondimensional frequencies might correspond to in

reality, we have substituted some values for the physical parameters. From Appendix

C.2 we have

We choose a length I of 9 feet (2.74 m), E of 45 x 106 lb/in2 (3.103 x 108 kN/m 2) and

p of .063 lb/in3 (1.7 x 103 kg/M 3 ). This corresponds to a graphite epoxy rod, and the

bay length was suggested at one time for the space station. With these values we find

that 0 = 1, the beginning of the second stopband, corresponds to w = 15,491 rad/s or

a frequency of 2465.5 Hz.

We next consider the attached masses disordered with a 1% variation from the

average value. In this case the localization effects are increased proportionately through

2 in Equation 4.3. We show the localization factor as a function of frequency in four

passbands for this level of disorder in Figure 4.6. We essentially see the same pattern

we saw for the lower level of disorder.

Finally we increase the disorder of the mass to ±10% of the average value of the

nondimensional mass. The results are presented in Figure 4.7. Again we see the familiar

behavior of the localization factor as a function of frequency. As we did in the previous

section on the mass-spring chain, we notice that the theoretical prediction diverges from

oux Monte Carlo simulation when the localization factor has a value of .1 or greater.

Aga".n this must be a result of only calculating -yp to first order in c•.

in summary, we conclude that the localization effects are strongest in the vicinity of

the stopband associated with the natural frequency of the average attached resonator,

while the effects become less and less significant at higher frequencies.
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4.3.2 Only Springs Disordered

We next disorder only the springs of the attached resonators, where the average

nondimensional spring constant, < k,j >= k, = .5. We will examine springs disordered

±.i1.%, ±1% and ±10% from the average value. In all instances the localization effects

follow, as a function of frequency, a pattern very similar to that been for only masses

disordered. One difference we will note though is that at the same levels of disorder,

the localization effects that are due to the mass disorder are greater than those due to

the spring disorder in the first passband. In the second and higher passbands the trend

is reversed and we find that disorder in the springs has greater localizing effects than

does the comparable disorder in the masses.

The transfer matrix and wave transfer matrix with the springs disordered is dis-

cussed in Appendix C.2. By using Equation 3.10 we find the localization factor for

only springs disordered:

(sin 2 7ro) or(sn k•a. (4.4)

"• 8(sin2 k)(7r•) 2 k.((1/k4) - (1/0 2 7r2ps)) 4

Note that %.L is very similar to "yp, though they are not dual to each other.

This localization factor is plotted in Figure 4.8 for ±.1% variation in the springs.

The results of the Monte Carlo simulation are also plotted at several frequencies and

follow very closely the analytical results. One discrepancy between analytical and

Monte Carlo results occurs at the lowest frequency shown. This is a consequence of

working with numbers that are too low even for double precision simulations. Note the

frequency dependent pattern is very similar to that for the case when the masses were

disordered. Again we see the most pronounced localization effects occurring around

the first stopband. In addition the localization effects become less pronolnced with

increasing frequency. We again• see that on the immediate left hand side of the second

and higher passbands the localization factor is diminished while on the immediate right
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hand sides it is amplified.

Comparing this localization factor with the one for masses only disordered we find

that Pyj is consistently larger than "yjo in the first passband. This difference can be

as much as one or two orders of magnitude at the very lowest frequencies plotted.

The lower the frequency the greater the difference. On the other hand, for the second

and higher passbands the localization effects due to spring disorder are consistently

greater than those due to mass disorder. These differences can be as great as four

orders of magnitude at the highest frequencies seen in Figure 4.8. The effect is more

pronounced with increasing frequency. Similar effects are noted for the higher levels of

disorder. These effects seem reasonable if one considers the effect of wiggling the end

of a spring with a mass on the other end of it (this is essentially what the rod is doing

to the attached resonator). At low frequency, most of the motion is associated with the

movement of the mass, while the spring stretches and compresses very little. Therefore

we expect that disorder in the mass will have a greater impact at low frequency than

will disorder in the spring. This is indeed what we observe. At higher frequencies, as

we move past resonance, 4 = .5033, the inertia of the mass will cause it to move little

while the spring will see a lot of motion. So disorder in the springs should give a much

larger contribution to localization effects at high frequency than should disorder in the

masses. This too was observed.

Finally, the localization factor is placted for variations of ±1% and ±10% in the

nondimensional spring constant in Figures 4.9 and 4.10, respectively. With increasing

disorder the localization effects are amplified, and we again see that our theoretical

results mispredict the localization factor near the first stopband for the highest level

of disorder.
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4.3.3 Only Lengths Between Resonators Disordered

Now we allow all the resonators to be the same with A = .2 and k. = .5, while we will

disorder the lengths between the attached resonators by ±.1%, ±1% and -10% from

the nominal value. The transfer matrix and wave transfer matrix for lengths disordered

are discussed in Appendix C.2. Note that we use the nondimensional variable T=

so that < Ti >= 1. With the lengths only disordered we will find a startling change

in behavior of the localization factor as a function of frequency compared to the cases

where only the masses or springs were disordered.

The calculation of the localization factor for lengths only disordered, 'Ye, is much

more complicated than that for the previous two cases. Applying Equation 3.10 we

find:

o2
S=" -[-7r•sin(7rC)FTcos(7rc)

A'2 sin (ro)-(7c)' cos' (7() -
4

+ C2 sin2k {2(7ro)' sin'(wD) - 2()rcv)f cos (w)

fI2 f72 cos' (7rc)
2 2

At low frequency "yr behaves as 0, as was the case for -, and "yk.

This localization factor is pltted in the first eight passbands of the underlying

perfectly periodic system in Figure 4.11. Here we immediately notice some striking

differences from our previous localization plots for the rod with attached resonators.

We notice that the localization effects are amplified on either side of all stopbands. We

also notice that for a narrow band of frequencies in each passband, the localization

factor is greatly diminished. Note that it was difficult for the Monte Carlo simulation

to reproduce the extremely small localization factors seen in the plot in the middle
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of the passbands. We do not believe that this is a result of numerical problems at

these low values, but rather is a result of our neglecting higher order terms in our

Taylor series expansion that apparently make a significant enough contribution at those

frequencies. At higher disorders the effect is even more pronounced. The fact that these

discrepancies do not show up in the fifth and eighth passbands is because we have not

found that frequency where the localization factor takes it smallest values in those

passbands.

These effects seem reasonable because the wavelength of the traveling wave at the

end and beginning of each stopband is some multiple of the length between the res-

onators. Thus we would expect that disorder in the length between resonators would

have its greatest effect at those frequencies as opposed to other frequencies where the

wavelengths are not so correlated with the bay length. Why -If becomes so extremely

small in the middle of the passbands is not clear.

Similar effects are noted when the disorder in length is increased to ±1% and

±10% from the nominal value. The corresponding localization factors as a function

of frequency are shown in Figures 4.12 and 4.13.

4.3.4 All Three Parameters Disordered

Finally we examine what might be the most realistic situation in which the masses,

springs and lengths between the resonators are disordered. The transfer matrix as

a function of pi, kj and 4j is presented in Appendix C.2. Again we assume that

< p >= .2, < i, >= .5 and < Ii >=- 1. Here w- will disorder both the masses

and springs ±1% from their average values, while we will only disorder the lengths by

±.1% from its average value. As was explained in Chapter 3, the localization factor

with several variables disordered is simply the sum of the localization factors when each
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variable is disordered individually,

- + N.~ +

In Figure 4.14 we see that our analytical results and Monte Carlo simulation agree

very well over eight passbands for these levels of disorder. In this case the localization

factor is greatly amplified around all the stopbands, particularly the first one which

is associated with the natural frequency of the average attached resonator. The local-

ization effects tend to diminish with increasing frequency. For these levels of disorder,

we find that the localization effects are predominately caused by the mass disorder in

most of the first passband, while in most of the second passband and in the middle of

the subsequent passbands the disorder in the springs has the greatest contribution to

'tj. Only near the second and subsequent stopbands does the disorder in the length

predominate in the localization factor. The physical reasoning given earlier when each

parameter was disordered individually helps to explain these effects.

4.4 Localization in a Beam on Simple Supports

The final example concerns a Bernoulli-Euler beam on evenly spaced simple :up-

ports in the periectly periodic case, and on randomly spaced simple supports in the

disordered case. The perfectly periodic system is presented in Appendix C.3 and its

dynamics have been discussed extensively by [Miles 56,Mead 70].

The beam on randomly spaced supports has been discussed in [Yang and Lin 75]

and [Lin 76]. There they considered a beam on up to six supports and numerically

averaged frequency response functions when the beam was under point loading or con..

vected loading. Their results were consistent -with what one would expect from local-

ized dynamics. Unfortunately this approach gives very little insight into the underlying

mechanisms associated with disruption of periodicity. Our approach is analytically rig-
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orous and centers on a variable which is known to be statistically well-behaved and has

physical meaning. In [Bansal 80] a situation similar to ours was considered in which a

disordered segment of beam was inserted between perfectly periodic beams on supports.

However, the analysis was for deterministically disordered segments.

The transfer matrices for the perfectly periodic system, as well as for the disordered

system are presented in Appendix C.3. The random length is nondimensionalized so

that 4, = and < t* >= 1. From the equation lor -I- and Equatiun 3.10 we
<j I

can calculate the localization factor. The calculation is quite involved and many of

the terms needed in the calculation are presented in [Yang and Lin 75,Lih. 76]2 After

extensive calculation we find

" -!- 1 o3[2g ' + 2g rg " + 2g '

+ 2gg!' - (2grg' + 2gg)•2 ]

where

gr = COS k

gr= -Vi[S4 + cos ,kc2]/ss

"= -w k[2¢, +silssI/s•gr = -- COSk[24+S-9' 3

gi = sir, k

sink C04C2

+ =-- [sinh' vos vok - cosh V--i-sin 3

2 We believe one term in Appendix A of [Lin 76] and Appendix I of [Yang and Lin 75] should read

b"2  -(ý/EJ)((s 4 (l) +2cosk 2 L]/s1

- ,(1)[2C() -
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•sin k
_ [(s4 + 2C2 cos2a

- C4(2c: -

+2 sin---

Clearly, we will have to look at a plot of -it in the passbands to make some sense of

the above equation. This has been done in Figure 4.15 where we have disordered the

nondimensional length by i.i% from the average value.

In the eight passbands we clearly see that the maximum localization effects occur in

the immediate vicinity of the stopbands, while in the rn'ddle of the iominal passbands

the localization factor is greatly diminished. These result- .eem reasonable because

in the perfectly periodic system at the beginning of the stopbands it is well known

[Mead -'0] that each span of the beam vibrates as if it were clamped on both ends,

while at the end of each stopband it vibrates as if it were pinned on both ends. In-

deed, the traveling waves become standing waves at the edges of the stopbands. Thus,

the dynamics of the system are very sensitive to the distances between supports at

frequencies near the beginning and ends of the stopbands. This explains the large lo-

calization factors at those frequencies. At all other frequencies the wave motion is not

so physically correlated with the span lengths.

To give some meaning to our nondimensional frequency, we choose some properties

for our physical parameters corresponding to those given in [Yang and Lin 75]. From

Appendix C.3 we have

If we let the thickness of the beam be .05 inches and the width be 1 inch, E be 10.5 x 10O

Lb/in2 and jA be 2.616 x 10-1 lbs'/in2 , we find that for Q = 100, we have w = 1530.5

rad/s or 243 Hz.

Finally, we examine the case of extreme disorder where the distances between the
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supports are randomized by ±10% from their average value. The localization results

are plotted in Figure 4.16. Our localization factors take on very high values and we see

that the theoretical result overpredicts the Monte Carlo simulation. Yet, the simulation

clearly shows the same pattern observed at the lower disorder. The localization effects

are most pronounced near the stopbands.

We also notice that the localization effects seem to become stationary with in-

creasing frequency in that the pattern of the localization factor as a function of fre-

quency does not change substantially. This may be a function of the phase randomness

ideas discussed by [Hodges 82,Lambert and Thorpe 82,Lambert and Thorpe 831 and

jBaluni and Willemsen 85]. The argument here is that at high enough frequency com-

plete phase uncertainty in the wave sets in leading to a particularly simple calculation

of the localization factor. The calculation leads to the conclusion that the localization

factor will be a constant as a function of frequency. In [Hodges 82] it is found that

=y In I t.opport I

where toupt is the transmission coefficient for one support on an infinitely long beam.

From [Cremer et al 73, page 321] we find that jtu,,,t 1 = .5 This gives & value of

the localization factor that is .347. Clearly, though, we do not observe the localization

factor becoming a constant as a function of frequency. Instead it is noticeably amplified

in the vicinity of the stopbands. Therefore the notion that the localization factor

becomes a constant with frequency must be considered misleading for this kind of

system. However, the fact that the localization factor behaves in the same manner

from passband to passband at high frequency could be a consequence of these phase

randomness ideas.
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V

4.5 Obseryations

We have collected a lot of results in this chapter on localization effects in some

useful structural dynamic examples, so we need to reflect on some of the insights we

have gained.

Clearly the localization effects increase with greater amounts of disorder, though

our theoretical results hav" ' ..ulty tracking the localization factor when it becomes

greater than - = .1. More importantly, localization effects are strongly varying func-

tions of frequency. Whenever the first frequency band is a ?assband, we notice that

the localization factor is proportional to frequency squared. The most dramatic fre-

quency effect we see is that the localization effects can be quite pronounced around

the stopbands. The localization factor was particularly high in the vicinity of the

stopband associated with the natural frequency of the attached resonator on the rod.

This result indicates that localization effects could be quite important on periodic truss

structures which have a number of cross-members. Real periodic truss structures are

really multiwave systems which will be investigated in Chapter 5; however, we suspect

that the insights we have generated with the mono-coupled systems should generalize

to the multiwave systems. We also notice that disorder in the lengths of bays result

in quite pronounced localization effects in the vicinity of stopbands as well. Specifi-

cally, we see that the localization factor when lengths are disordered consistently take

on high values at the edges of the passbands, while they are consistently small in the

middles of the passbands. This is in contrast to disorder in masses and springs where

the localization factor does not vary so dramatically over any but the first passband.

Because localization can become quite pronounced inthe vicinity of stopbands, exper-

imental measurements on real periodic structures in those frequency regimes could be

susceptible to the effects of disorder.

In addition, our analytical and numerical work has clarified some of the few, yet

misleading, results that have appeared in the literature. Most published results up to
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this point have simply indicated that the localization effects increase with frequency

and take on constant values at high frequency. Clearly these results are mistaken. Our

work indicates that the importance of localization effects can vary greatly over even a

single passband and generally become quite pronounced near the stopbands.

88



Chapter 5

Localization in Multiwave Systems

For the bulk of this thesis we have considered the localization phenomenon in mono-

coupled disordered periodic structures, i.e., systems modeled with 2 x 2 random trans.er

matrices. However, most real structures are better modeled with transfer matrices that

are of dimension 4 x 4 or greater. This implies the structures can carry a multiplicity of

wave types at a single frequency as oppost, to the one wave type in the mono-coupled

cue. Periodic structures of this kind are called multiwave or multichannel systems.

Frequently in the solid state physics literature the term "wire" is used to describe these

systems in contrast to the term "chain* used to describe mono-coupled systems. Just as

there are many complications in going from single-input single-output to multiple-input

multiple-output control system design and analysis, there are analogous complications

in ,oing from disordered one-dimensional systems carrying a single pair of waves to

disordered one-dimensional systems carrying a multiplicity of waves.

Before embarking on our analysis of multiwave systems, let us review the terri-

tory we have covered for mono-coupled disordered systems. After briefly summarizing

some relevant properties of periodic systems, we demnstratcd that disordered periodic

structures can be modeled via a product of random transfer matrices. That product of

89



random matrices was then transformed to a wave transfer matrix involving transmission

and reflection coefficients. By employing Furstenberg's theorem on products of random

matrices, we were Able to show that the transmission coefficient, r., is well-behaved In

the &anse that

" "=- lim-I In Jr. , -, > 0

Furstenberg's theorem also provides ans with a closed-form solution for -y involving a

double integral over two probability density functions. Because one of the probability

density functions is virtually impossible to find, we were forced to approximate the

double integral to first order in the variances of the disordered variables.

We then examined the localization factor for tb -t one-dimensional disordered

mono-coupled periodic structures. For reasonable levels of disorder our analytical so-

lution to -7 provided a good applrcximation to the Monte Carlo calculations of the

localization factor. We noticed that the localization factor was a strongly varying func-

tion of frequency taking on its greatest values at fr,.aquencies near the stopbands of the

underlying perfectly periodic system.

We believe the approach followed in the study of mono-coupled disordered periodic

systems should be followed in the study of multiwave systems to yield the best results.

Indeed, as we will see below, this approach has already been successful in giving us the

multiwave localization factor as a function of the transmission matrix.

Perfectly periodic multiwave structures have been examined by [Mead 73,Mead 75-1]

and [Roy and Plunkett 86,Signorelli 87,Signorelli and von Flotow 87,Bernelli et %l 87].

Just as mono-coupled periodic structures have passbands and stopbands, so do multi-

wave periodic systems. However, in the passbands of multiwave systems, both traveling

and attenuating waves, frequently called evanescent waves, can exist simultaneously.

Indeed, even complex waves, those which propagate according to eik+*, are known to

exist, yet these act as if they were evanescent waves. Because evanescent waves are

already strongly localized, our focus in this chapter will be on the effects of disorder
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on the traveling wav,- [Bfittiker et al 85].

The localization phenomenon in multiwave systems has received much less attention

than its singlE wave counterpart. A, derson [Anderson 81] derived a scaling variable

for multiwave systems from an analysis of the scattering matrix. Several researchers

[Pichard and Sarma 81-1,Pichard and Sarma 81-2,Pichard 86,Pichard and Andri 86]

and [Imry 86] have used the transfer matrix formalism and theory on products of ran-

dom matrices to study multiwave systems, tlo'igh mainly with +" intention of extend-

ing the results to two- and three-dimensional sy.stems. In [Johnston and Kunz 83-11

and [Johnston and Kunz 83-2] the locali:4tion problem of multiwave systems is ex; •-

ined in its own right.

In our analysis of the problem, we state our assumptions about the wave transfer

matrix, which follows from certain properties of the scattering matrix. As we shall

see, Furstenberg's theorem will not be of use in analyzing multiwave local'zation. As

in [Pichard and Sarma 81-1], we will use the theroem of Oseledets to guide our work.

Two subsections ate devoted to discussing this important theorem. Our goal is to find

the multiwave analog to our mono-coupled result:

"=-- lira 1 1,17nI
n--oo n

We will indeed derive a multiwave analog to this and compare our result with three

others that have appeared in the literature. Physically, our goai is to find that wave

in the multiplicity of attenuated waves, which is attenuated the least by the disorder.

This least attenuated wave carries energy the farthest and so is the one of interest when

thinking about localization in multiwave systems.
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5.1 Wave Transfer Matrix Assumptions

Our wave transfer matrix assumptions will follow from two properties of the scatter-

ing matrix usually found in the solid state literature [Anderson 81] and

[Johnston and Kunz 83-1,Bfittiker et al 85]. We assume the scattering matrix of one

disordered bay sitting in an otherwise perfectly periodic system is both symmetric and

unitary,. The symmetry of th~e scattering matrix follows from the symmetry of the

impedance (or admittance matrix) describing the bay [Carlin and Giordano 64] and

unitarity follows from assuming no dissipation and excluding any evanescent waves

[Battiker et al 85]. See Appendix E.

Our two assumptions about the scattering matrix, S, translate into two properties

of the wave transfer matrix, W. First

S symmetric 4==. W symplectic

and second

S unitary €=ý' W E SU(d, d)

These properties are discussed in Appendix E. Both properties will be important in

the derivation of the multiwave localization factor in what follows. The wave transfer

matrix W can be derived from the corresponding real transfer matrix, T, by premul-

tiplying T by the transposes of the left eigenvectors and postmultiplying by the right

eigenvectors corresponding to the traveling waves.

5.2 Theorem of Oseledets

As we did for mono-coupled systems, we will in the case of multiwave systems rely

on a theory for products of random matrices to guide our work. We use the theorem

'This corresponds to the physical assumptions of time reversal symmetry and current conservation

in the solid state localisation problem.
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of Oseledets [Oseledets 681 specialized to symplectic matrices; however, the reader is

referred to [Bougerul and Lacroix 85] and JAMS 861 to better understand its relevance

to the problem at hand. We divide the relevant portions of Oseledets' theorem into

several parts. First we will state a result concerning the eigenvalues of an asymptotic

matrix product, then we will discuss a vector propagation interpretation of the same

theorem. In the final section we will see how the Lyapunov exponents (defined below)

might be calculated analytically.

5.2.1 Eigenvalues of Limiting Matrix

Let W 1 , W 2,..., W,, form a sequence of independent identically distributed random

symplectic matrices of size 2d x 2d. Suppose also that

E(sup{lna,,o2 (Wi),O1) < +oo

If we iet V, = W ... W, then the sequence of matrices (VHV,)u2 converges w.p.1 as

n -+ oo to a random matrix B with 2d nonrandom eigenvalues e',... , el, e-7, .. ) e -'

where 11 _ ... yd > 0 [Johnston and Kunz 83-1]. These -y/s are the Lyapunov expo-

nents of the random matrix product Wn ... W1 . In random dynamical systems, Lya-

punov exponents are considered a measure of stochasticity [Benettin and Galgani 79].

The eigenvalues physically represent d pairs of waves traveling in both directions.

The theorem of Furstenberg applied to 2d x 2d matrices allows us to calculate -y1, which

is the uppermost Lyapunov exponent. However, in this multiwave case with 'Yd •_ -Yi,

"-y represents the wave with potentially the least amount of decay, and so it carries

energy along the structure farther than the wave represented by -yj. As a result, -Yd is

the quantity of interest when calculating multiwave localization effects.

Note that we can also express the Lyapunov exponents of this random symplectic

matrix product in terms of its singular values (sec Appendix A), oj. = - j(Vn). If
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we recall that the singular values of a symplectic matrix occur in reciprocal pairs:

a0,..,OdOrd ,'",O11 where c. > ... > •,1. Then w.p. 1

'yJ= lim-lnaj(Vy) 1 j<d

This result [Bougerol and Lacroix 85] wi!l be very useful in the section in which we

derive -yd as a function of the transmission properties of the system.

5.2.2 Vector Propagation Interpretation of Oseledets' Theo-

rem

Another aspect of Oseledets' theorem involves the limiting behavior of a random

matrix product premultiplied by a nonrandom vector. This aspect will help explain one

of the properties mentioned in connection with Furstenberg's theorem in Chapter 3.

Given the assuraptions and results of the previous section, let 1>02 ¢> "'" > ,

(with r < 2d) be the strictly decreasing Sequence of distinct elements of

(11, , "sd, -Yd, -, . Then there exists a strictly increasing sequence of subspaces

{O} = S,+ C S, C... C S, = C2d

(known as a filtration of C2d) such that if

• E S, \ Si+l

then
It I lim 1 In IIW. ... wIZO1l =j • y < r

Here zo E Si \ Si+l says that zo is an element of the subspace S, but not an element of

Sy+,. Also we have

dim S+,j - dim Sy =

number of elements of the sequence ('11,'",Yd, -'Yd," ,-)

whict are equal to Oy
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This vector propagation property is best understood by examining the example

of 2 x 2 real transfer matrices. In this case our sequence of Lyapunov exponents is

(-I,,--I,) where '7j > 0, so r = 2 and ki = -'y" and b2 = -- 1I. We have the sequence of

subspaces

{0) = s3 C S2 c S, = R2

If

YC GS2\S3

i.e.,

SE S2  \ {o}

where S2 is a particular line in R', then

lim - In JIT... Ti*01 = -,
n-,4o n1

What direction ,c takes in R' will depend on the particular realization of the infinite

matrix product. Likewise if xo E S, \ S2 , i.e., xo E R2 \ S2 then

lim 1 In 1ITn... TjxoI = "yjn--.oc•

These vector propagation ideas are the basis for numerical methods to calculate Lya-

punov exponents of various dynamical systems [Benettin and Galgani 79] and

[Pichard and Sarma 81-2,Ikeda and Matsumoto 86].

SThis propagation behavior is very analogous to what happens when a vector is
propagated by a product of deterministic matrices, T, whose eigenvalues are A and 1

with A > 1. If we choose any vector v, so long as it has some piece along the eigenvector

associated with A, then as n becomes large the direction of T"v will become aligned

with the eigenvector associated with the A. If, on the other hand, the vector v is

aligned with the eigenvector associated with I then T"v will always be aligned with

that eigenvector no matter how large n is.
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5.3 Localization Factor for Multiwave Systems as

a Function of the Transmission Matrix

In the previous sections we have identified the dth Lyapunov exponent, Iyd, of the

matrix product Wn "'" W, as the localization factor for a multiwave disordered periodic

system. Much as we did for mono-coupled sytems, in which we showed

- lim-1 In - rI
n--oo n

we want to find %j as a function of the transmission properties of the system. Work

relevant to this issue has been done by [Anderson 81], [Johnston and Kunz 83-1] and

[Imry 86].

Here we assume the 2d x 2d wave transfer matrix is symplectic and is an element

of SU(d, d), so

Vn -Wrj ] (5.1)
j=1 -r.I*# * r;•

The form and prop -rties of the wave transfer matrix were established in Appendix E.

The two assumptions about the wave transfer matrix are those made by [Anderson 81],

[Johnston and Kunz 83-1], [Imry 86], though [Anderson 81] adds more restrictive as-

sumptions. For the rest of the discussion we will suppress the subscript n on the

transmission and reflection matrices, r and p, respectively.

We will show that the localization factor (or the dth Lyapunov exponent of Vn) is

"7=d - Pim-1 lnam.x()n--4o O'n

or

SY - lim I tr(rrn2
n.-oo n

or

"Yd = - lim 1 In Irilm
n--oo n
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where r is d x d and ;,j is the ijth element of r and all the results hold w.p. 1.

The derivation of these results begins by recalling

-yd = lim Ilnad(VI)
-- oo n

Recalling that the dth singular value of V. is the positive square root of the dth

eigenvalue of VffV, we have

-Yd - lira I n in 'V,)
n-.oo 2n

Consider the matrix

" - 2(rT-)-l - I -pT(r*rT)-l - (rrH)-p 1 (.2)
v -v = -pM(rrH)- - (r'rT)-p* 2(r'rT)-1 - I(]

Here VV.V is symplectic, so its eigenvalues will occur in reciprocal pairs Al," A ,

1 .. whereA1• A.d.>A•j1
A.d• ' Alm -

Our analysis will be simplified by recognizing the following 2:

(VH'V") + VN.-l 4(rm - 21 0
n V•)(nv"-- [4 n--I *00 4(.i-*rT)-'- 21 (5.3)

where each block in the matrix is d x d. The matrix has repeated eigenvalues

Al + -L, Ad + - for a total of 2d eigenvalues. However, we notice that these eigen-

values are the eigenvalues of the two diagonal blocks of this block diagonal matrix.

The eigenvalues of each block are clearly real because both blocks are Hermitian. In

addition, each block is the complex conjugate of each other, and real eigenvalues be-

ing invarii.nt with respect to complex conjugation, both blocks must have the same

eigenvalues.

So the eigenvalues, 1j, of 4(rrT)-l - 21 are

I Td

2 [Engels 80,Pichard and Andrd 86] recognized a similar result, though [Engels 80], working in a dif-

ferent context, never realized he was dealing with symplectic matrices.
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where

Now let As[*] be the jth eigenvalue of the indicated argument. So

1Ad + AT = Md[4(TTH)-i - 21]

= 1Mm1,4(?tH)-1 - 21]

= 4Amin1(tT"Y)-1 ] - 2

where we have used a couple of determinant identities in the last equation. Now taking

the same limit on both sides:

lim I inCAd + 1) -- n- lim n{4Mmin[CTTH)11 _ 2)
no2n Td n-o2n

We notice that

lim 1 In(Ad+l--) I= rn-.oo in ATd -- -limn •n 1-

= .lin 1-n(Ad) + nlim In(1l
"n--*Q2n 2n~c

Recalling that Ad _! 1, the second term above must vanish in the limit. So we are left

with (recalling the definition of -yd )

= lirm 1 In{4p.i.[(rr,)- 1 ] - 2)
"n--* 2n

Note that

Mmrin[(TT H ) 1 = 1

So we can write

"-d - lim 1 n( 4 2)
n-0 2n Mxrj

or
"yd -- lima 1 1-H

-1d - In(0 H])(4 - 214mx[TrHT)
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or

'd= lim-Iln()
"n-oo 2n Mm. rx

1
+ lim I- ln(4 - 2M~majXrtT]))

In Appendix E we show that 0 < Mm.[rr"] < 1, so that the second term above must

vanish in the limit.

We are left with:

"Yd = - lim I In Mmax[rr ]
n-o2n

or recalling the definition of singular values

1
n = - (rrn -lno.(r) (5.4)

As a byproduct of this analysis we can find all d of the Lyapunov exponents of Vn

in terms of the transmission matrix r. First recall from Section 5.2.1

"-yj = 2im I In _j 1

and from earlier in this section

X = ,ui[4(rrR)-' - 211

Note here that

[Ad-i+lt_+rr• 1 Si S d

So taking limits on both sides and discarding vanishing terms we find:

,=- lim 1 in 0 d-j+1 (')
R--o n

This reproduces our result for Id, and also tells us that

"= - lim 1_Inad(r)n-*oo n

- - ir In - min W(r)
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Now we return to examining '7d and proceed to show that 'i addtion to Equation 5.4

"= - lim -ln[tr(Ts)]|
n-"o n

First examine

- lim I Intr(rrH)
n-c2n

Take an eigenvector drcomposition of the Hermitian matrix rrH, and rewrite this as:

- lim I lntr(Udiag{j,)UH)-- ooin

where U is a unitary matrix. Recalling that tr(ABC) = tr(BCA) "or compatible

matrices we see that the above limit equaL
1

- lim I lntr(diag{1A})
n-o2n

or
- lira 1 nj +---+jd- 2n( ..1

or

- limr In(gs[1 +-- +.-.-+ -+

Recalling that IA _> " - > 0, we have that the term in brackets is finite and

bounded below Lb, 1 xd above by d, so when takiing the limit, we are left with

- lim I InplTrr"
"n-o 2n

which is precisely equal to

- lim- InmY(r)= "d

Thus we have indeed shown that

lid I' lm I n[tr(r)] (5.5)
n--.ooo n

One final simplification in our result is now possible. Starting with

"lim 1 ln[tr(rrH)]
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let rij be the ijth element of the matrix r. Now (this is the square of the Frobenius

norm of r)

- i'+ :rizi2 + -' .. + lraji'

We have that for one element of r, lrii I > irks1, k 96 i, 1 96 and we will denote it

I, a.So

tr(rr') =IrIL.(X E~, -
So

"-~2n ri

and because the term in parentheses is finite and bounded below by 1 and above by

d2, it vanishes aftir taking the limit, so we are left with

4Y'd= frn 1-InI1%l".R

or-d 
B M 1I ITo MO(5 6

This result tells us that the wave that propagates the farthest is governed by the

transmission coefficient with the largest absolute value, which makes perfect sense.

Notice that our result agrees with our localization result in the mono-coupled case

where the matrix r is a scalar.

Now we are in a position to compare our result with three others that have appeared

in the literature. In [Anderson 81], a scaling variablde, mentioned in Chapter 1, is

icerived for multiwave systems in which Anderson tried to mimic the techniques which

accurately gave him the scaling variable for mono-coupled disordered periodic systems

[Anderson et a~l 80]. In addition to assuming that the scattering matrix was symmetric

and unitary, he also assumed, in order to make the problem tractable from his point of
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v -,ý..w, that certain chtunels In what he called a back reflection matrix were independent.

In the piper he acknowledged that this latter assumption was not correct, but guessed

it would have little impact on the final result. The scaling variible he arrived at was

p. In(1 + 1

with

p. = 2, 1J-40

p. = 1.764 -+00

For us -4+oo is the relevant limit. An analysis of our results indicates that we

would exp ct the scaling variable to be

I
trtrrJ1)

Apparently the difference between the results is a consequence of Anderson's extra

assumptions on channel independence. Note also that Anderson's result does not reduce

down to the scalinz variable in the mono-coupled case.

A much more direct comparison of results can be made with [Imry 86]. Imry made

exactly the same assumptions about the wave transfer matrix as we have, and, through

the work of Pichard, was aware of Oseledets' theorem. In his paper, Imry makes some

heuristic arguments concerning tr(rrN) leading to the inverse localization length, 1,

(the same thing as our multiwave localization factor) being

I -lira I intr(rym)

The problem with this result is the missing square root over tr(rrm).

Finally we compare our result with [Johnston and Kunz 83-1] who relied rigorously

on theories of products of random matrices. In their paper, Johnston and Kunz used the

work of [Tutubalin 68,Virster 70], though they were aware of Pichard's work. Arguing
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as we have, that the smallest Lyapunov exponent of a random symplectic matrix prod-

uct is the localization factor for long multiwave systems, they derived the localization

factor an:

"-d = li 1 In IrlnKI for any r~ i

This result differs from the one presented in Equation 5.6 in that our -1d involves only

the limit of I%1.,. To evaluate whether the result of [Johnston and Kunz 83-1) makes

sense, we see if it gives us the correct answer for the undisordered or perfectly periodic

system. For a perfectly periodic system with n bays, the transmission matrix, r, would

look like:

e- Oda

with all the off-diagonal terms zero. In [Johnston and Kunz 83-1] the claim is that we

can take any element of r and get the proper localization factor. Yet if we choose any

off-diagonal term we get the following absurd result:

"Y = - lim -In(O)
-600

= i -lir
i--.cc n

This is in contrast to Equation 5.6 which takes the element of r with the maximum

absolute value, namely, Ie-•i~I = 1, from which we find

= - lim - In(l) -0

This is precisely the result for perfectly periodic systems, i.e., there is no localization.

Note that all three of our localization results, Equations 5.4, 5.5 and 5.6 only hold

as n --, oo. Indeed all three must give equivalent answers in the limit. However, if we

were to evaluate each of the three expressions for finite n wZ would likely find three

different answers. This is a consequence of

103,, (r) <
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Clearly, when we are averaging one or a finite number of bays over an ensemble,

Ir•;,M, appears to be the variable to average, otherwise we would misprecict the

value for 1,d. Indeed, we conjecture that by averaging -In irqi- over a large en-

semble of wave transfer matrices we could compute an accurate estimate of "td. This

observation could lead to a method which would bypass the necessity of multiply-

ing as many as 10,000, 50,000 or even 60,000 matrices together as has been done in

[Pichard and Sarma 81-1Johnston and Kunz 83-2,Garca et al 86].

However, before pursuing some complicated numerical analysis, we should first try

to discover an analytical solution for -yd with which to compare any numerical result.

This is the subject of the next section.

5.4 Calculation of the Multiwave Localization Fac-

tor Via p-Forms

Similar to our approach in Chapter 3, we need to examine the analytical tools to

actually calculate "1,i the multiwave localization factor. For mono-coupled systems we

!.>ad Equation 3.3 that gave a closed form solution for -y. We will discuss the analogous

equation for -1d in this section.

The mathematics for calculating Lyapunov exponents for products of random 2d x2d

matrices becomes increasingly complex compared to the case of 2 x 2 matrices. In par-

titular, we will be making use of p-forms. The recent book, [Bougerol and Lacroix 85]

is an excellent reference on the mathematics necessary to handle multiwave discrdered

systemns. For completeness the relevant theorem is as follows and is adapted from

[Bougerol and Lacroix 85, page 89]

Theorem 3 (Calculation of Lyapunov Exponents) Let W 1,W 2 ,. . ,W. be in-
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i
dependent identically distributed 2d x 2d random symplectic matrices with distribution
ps and let p be an inteqer in {1,..., d}. Suppose that W., the smallest closed semigroup
in GI(d, C) containing the support of As, is p-contracting and Lp-strongly irreducible and

that E[ln 11W).1] is finite. Then the following hold

'Vp > '%-+i

For any nonzero zo in Lp,

lim Iln hIA'Wn... Wizoll = 'yj4 -- 4 6 6 n Y = 1

and
1 .plim -In n!A"Wn... wiI->

There exists a unique p4-invariant probability distribution vp on

P(Lp) = -{1 E P(APR 2d); Z E LP)

then

I = ff In IIAPWzIldp(W)dvp(Z) (5.7)

Clearly to calculate -yd we do it inductively. Namely, we have to calculate from

Equation 5.7

"•x+ " + •

then

"YJ + ""+ 1,1-1

from which we can obtain 1,.

To illustrate the increased complexity of this multiwave localization problem we
note that for a 4 x 4 matrix, W, we have that A'W is just the matrix W while A2 W
is a 6 x 6 matrix in an appropriate basis. This also means, when p = 2 in the above,
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that I will be a 6 x 1 vector. We should also note that the norms of these p-forms take

a particularly simple form:

I IAIwl = 1.o2

where o, is the ith singular value of the matrix W.

The path of the research seems clear. First the conditions of Theorem 3 need to

be clarified to show that they clearly apply to transfer matrices that would occur in

practice. Then an approach similar to that in Chapter 3 could be taken. Namely,

we cculd perform a Taylor series expansion on the relevant terms of Equation 5.7 in

order to get some analytical approximation for -y to first order in the variance of the

disordered parameter. Then we would be in position to calculate localization factors

numerically and have some analytical results with which to compare them.

5.5 Summary

In this chapter we have tackled the very difficult problem of localization in one-

dimensional multiwave disordered periodic systems. The multiwave nature increases

the complexity of analysis considerably compared to the localization problem in mono-

coupled periodic structures. Our first task was to clarify the assumptions on our wave

transfer matrices, after which we appealed to the theorem of Oseledets to understand

the asymptotic behavior of products of random multiwave matrices. We noted that

the theorem of Furstenberg was of little use here. The principal contribution of the

chapter was the derivation (,f the multiwave localization factor (the dth Lyapu,,ov

exponent) as a function of the transmission matrixfor the disordered system. This

issue lhas been addressed, but in our view unsatisfactorily, by a number of solid state

physicists. Thus our results and insights should have some impact in the solid state

field where traditionally most ,of the localization work has been done. In addition,

the recent work of [Pichard and Sarma 81-1,Pichard and Sarma 81-2] indicates that
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vur result may have some impact in clarifying the localization mechanism in two- and

three-dimensional disordered systems. Finally, we pointed out the tools that can be

used to analytically calculate the localization factor.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

In this thesis we have explored the effects disorder has on the transmission properties

of normally perfec periodic structures. Disorder is known to spatially localize the

mode shapes of disordered periodic systems, so the term localization is used to describe

tile various dynamic manifestations of disorder. The localization phenomenon has been

most extensively studied in the context of solid state physics and only recently with

disordered systems of interest to the engineer in mind.

This thesis has provided the tools with which engineers can decide the importance

of the dynamic effects of disorder o, mono-coupled periodic structures. The first prin-

cipal contribution was the elucidation of random transfer matrix techniques to model

disordered systems and calculate transmission proporties. This included a discussion

of the important transformation to wave transfer matrix form and the relevance of the

theorems of Furstenberg and Oseledets to the one-dimensional localization problem.

The second principal contribution was the calculation of localization effects as a
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function of frequency for three periodic models of interest to the structural dynamicist.

In most instances the localization effects were found to be strongest near the stopbands

of the normally perfectly periodic structures. This result indicates that care must

be taken when doing experimental work at frequencies near the stopbands of what

are ostensibly periodic structures. Effects of length disorder in the bays were quite

pronounced, even at high frequency.

The third principal contribution was the derivation of the localization factor for

multiwave one-dimensional systems as a function of the transmission matrix.

6.2 Recommendations

The localization phenomenon is a fascinating and difficult problem to tackle. This

thesis has presented some very useful tools that have allowed us to make some impor-

tant progress in understanding localization effects. The pr~r~nary recommendation is to

continue work with random transfer matrices and theories on products of random ma-

trices to gain further insights about the phenomenon. The tools we have discussed in

this thesis have immediate applicability to many other fields of engineering that involve

disordered periodic systems, as well as the field of solid state physics where localization

work is traditionally done.

The analytical formula for calculating the localization factor to first order in the

variance could be extended to include higher order effects. This would allow us to pre-

dict anaiytically the transmission behavior for highly disordered systems at frequencies

walere the localization phenomenon is most strongly felt. Possibly some asymptotic

analysis near the stopbands would be another alternative to pinning down the trans-

mission behavior there analytically. The issue of localization in one-dimensional sys-

temns which include damping should be addressed as well as the manifestation of the

phenomenon in finitely long structures with fixed boundary conditions.



The localization phenomenon in multiwave systems with the evanescent waves in-

cluded should be studied more rigorously. This, however, will require a better under-

standing of the wave transfer matrices in these situations, for which there is a dearth of

information in the literature. Indeed, we observe that there is a need for a comprehen-

sive study of the interrelationship of admittance, impedance, real transfer, scattering

and wave transfer matrices for both periodic and disordered periodic multiwave sys-

tems.

In Chapter 5 we have presented the background that could lead to an analytical

formula, analogous to the single wave case, for localization effects in multiwave sys-

tems. This is a very important area of research needed to understand localization

effects in multiwave systems. Also, as [Pichard and Andr6 861 have pointed out, the

one-dimensional multiwave analysis could prove to be the key to understanding the

localization phenomenon in two- and three-dimensional systems. Localization of clas-

sical waves in two-dimensional systems has recently been studied by [Flesia et al 87].

Only after the analytical issues have been explored should we proceed to examine

the numerical issues in multiwave one-dimensional analysis and possible extensions to

higher dimensions. The results in Chapter 5 could potentially simplify the numerical

computations considerably by eliminating the need to multiply huge chains of matrices.

While we think that the transfer matrix formalism is a powerful tool to study the

localization phenomenon, we also feel that the Herbert-Jones-Thouless formula should

be explored to see if it can be easily applied to structural dynamic systems. Some

efforts in this direction have already been made by [Hodges and Woodhouse 83]. Also

[Johnston and Kunz 83-2] have developed the corresponding formula for multiwave sys-

tem-s..

Other important issues continue to be explored in the literature. Systems with

correlated disorder among the bays, as opposed to the usual case of independent iden-

tically distributed random variables, have been studied by [Johnston and Kramer 861.

110



The impact of system nonlinearities on localization effects has been addressed by

[Doucot and Rammal 87].1 In the nonlinear case the transfer matrix formalism will

be of little use.

An intentionally disordered periodic system could be valuable for the attenuation

of propagating disturbances. However, if active control is performed on the same

structure, the fact that the mode shapes are spatially localized may complicate the

control effectiveness of actuators that are placed at locations where mode shapes have

little amplitude.

Some experimental structural dynamic/acoustical verification of localization has

been reported by [Hodges and Woodhouse 83,Pierre et al 86,D6pollier et al 86] and by

[Hyde and Sybert 871, where the latter work was inconclusive. Further experimental

work would clarify our analytical and numerical thinking. These experiments would

have to be done with care. Initially, the dynamic charac•.eristics of the perfectly

periodic system should be understood exnerimentally. Clearly, the effects of damp-

ing and boundary conditions need to be taken into account when comparisons are

made with our analytical results. In an actual experiment on a disordered system,

the measurements would have to done over many realizations in order that the re-

sults could be compared with the theoretical prediction. The experimental techniques

of [Hodges and Woodhouse 83,Roy and Plunkett 86] seem particularly attractive. In

these cases a disturbance was inserted ino one end of the system and the effectc were

measured at the other end. The bearm:v ith cantilevers of [Roy and Plunkett 86] was a

perfectly periodic system but could be easily randomized and would provide an excel-

lent structure to verify multiwave localization effects.

The study of the literature has provided invaluable insights into the localization

phenomenon. Future researchers should continue to avail themselves of the work done

on localization in many fields in order that maximum progress can be achieved in

1 In solid state ph)sics this is equivalent to considering electron-electron interactions.
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understanding the effects of disorder.
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Appendix A

Matrix and Group Properties

In this appendix we collect most of the matrix and group properties mentioned in the

thesis. First we note that all of the matrices in the thesis will be of even dimension,

2d x 2d, where d ranges from 1 to some finite value. In addition, all matrices will be

invertible and so they are elements of the group GL(2d, C). Here the letter G stands

for the word general which means that the matrix is invertible. The letter L stands for

the word linear. The 2d inside the parentheses implies the matrix dimension is 2d x 2d,

and C tells us that in general the matrix elements are complex. If we were restricting

ourselves to matrices with only real entries, C would of course be replaced by R.

Frequently we will make use of matrices which have unit determinant; these matrices

are elements of SL(2d, C). The letter S stands for the word .special which means that

the matrix has determinant equal to one.

Some of the more familiar matrices we will use ar - unitary matrices, which satisfy

Note that unitary matrices arc elements of SU(2d). Symmetric matrices satisfy

WT=W
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even if they have complex entries, while Hermitian matrices satisfy

WH=W

The symplectic (Sp) matrix group will be frequently encountered in the thesis. Sym-

plectic matrices are always of even dimension and their group is ide-atified as Sp(d, C).

A matrix W is symplectic if

WTJW = J

where

-1 0

where I is d x d. Note that we take a transpose even though W is a complex matrix.

The inverse of a symplectic matrix is easy to find:

w-1 == _JWTJ

An important property of symplectic matrices is that their elgenvalues occur in recip-

rocal pairs, A and • [Bougerol and Lacroix 851. It is also not difficult to prove that

any 2 x 2 matrix with unit determinant is automatically symplectic. This tells us that

SL(2,C) = Sp(1,C).

The special unitary group, SU(d, d) will be met in the thesis. A matrix W is an

element of SU(d, d) if

WHAW = A

where
1 0

where again I is d x d. The 2 x 2 matrices which are elements of SU(1, 1) are of the

form

b* 12
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This matrix is in the so-called Cayley form [Hor! 68).

We will make use of matrix singular values in the thesis. Any reader not already

familiar with singular values and ti,,; singular value decomposition of a matrix is en-

couraged to consult [Noble and Daniel 77]. The singular values, vi, of a complex 2d x 2d

invertible matrix W are

o•(W) ={A,(W"W)}i i=1,...,2d

where we assume that the au are ordered such that o, > oa,+. Note that the singular

values of a symplectic matrix will occur in reciprocal pairs a and

The maximum singular value, a,.. (W) coincides with the spectral norm of a matrix:

O'.M..(W) = max I[WZ112 = IlWll
ujOO 11412

where 11zl12 is the usual Euclidean length of the vector z.

Another matrix norm that is useful is the Frobenius (sometimes called Euclidean)

norm:

IIWIIF = {tr(WHW)}&

= {Y:IWq 12}1
i=19=1
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Appendix B

Derivation of Mono-Coupled Wave

Transfer Matrices

In this appendix we show how the wave transfer matrix, Wi of a bay (ordered or

disordered) is calculated for frequencies in the passbands of the normally periodic

system. In terms of the left and right traveling wave amplitudes, A and B, we have:

[i Ai1 _* = WiV

where

Wj=

The approach is to express our traveling wave amplitudes first in terms of a state

vector involving generalized displacements, then to express the wave amplitudes in

terms of a state vector which inciudes generalized displacements and generalized forces.

This latter relationship is what we desire because all of our real transfer matrices involve
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a state vector which includes generalized displacements and forces, namely,[ "] Ti [ iz: (B.1)

where

j [T 11 T12
T21 T22

and where uj is a generalized displacement and fi is a generalized force. Note that u3

and h, may be nondimensionaL. When uj is nondimensional, then the wave amplitudes

will be nondimensional as well. Again T, is the transfer matrix for the periodic or

disordered system.

The generalized displacements of the perfectly periodic system can be expressed in

terms of the wave amplitudes via

Ui-I BI

where

Q=[:& e]e -ik e ik

Note that k is the wave number of the perfectly periodic system.

Now from B.1 we find

hi Ui-I

where
1 0

T22 ýI T,1- T3 2Ti -3 1

So now we find

[j X[ A.] (B.2)

where

X=VQ
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Equations B.1 and B.2 imply

So the wave transfer matrix for a single bay in

W, = X-IT.X (B.3)

Note that we have used the perfectly periodic wave basis to derive our wave transfer

matrix, whether the real transfer matrix is random or not. The columns of the matrix

X are the eigenvectors of the transfer matrix of the perfectly periodic system. When

the transfer matrices are random, the eigenvector matrix will be that for the avtrage

transfer matrix. So for the perfectly periodic system in the passband the wave transfer

matrix looks like

Wj = i
0 e-ih

while in general

Note that both matrices are elements of SU(1, 1).

Finally, we note that I- can be shown to be invariant with respect to the scaling
of the eigenvector similarity transformation used in Equation B.3, while • will be off

by at most a magnitude and a phase factor. Using the eigenvector transformation X

defined above, though, we are guaranteed to get exactly the wave transfer matrix, W,.
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Appendix C

Models of Three Periodic and

Disordered Periodic Structures

In this appendix the three periodic structures examined in the thesis are described.

The first system is a chain of springs and masses. The second structure is a rod in

longitudinal compression with attached resonators. The final structure is a Bernoulli-

Euler beam on simple supports. For each system the transfer matrix for a typical bay

of the perfectly periodic structure is presented along with the associated state vector.

Also shown are the eigenvector similarity transformations which induce a wave transfer

matrix. Most variables are nondirnensionalized in the transfer matrix descriptions.

Then a single variable is randomized and the associated transfer matrix is presented,

along with the relevant terms in the wave transfer matrix. Some general properties of

transfer matrices are discussed in [Rubin 64].
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Figure C.A: Mass-spring chain.

CGe Mass-Spring Chain

A chain of springs and masses is one of the simplest periodic structures we can

examine. The system is pictured in Figure C.1 and a typical bay is shown in Figure

C.2. This choice of bay (as opposed to one involving a spring and a half of two masses,

for example) ensures that the det(T) = 1 whether rn, k,, or both are disordered. For

this bay:

L 2 1 L
1k k] t. i-1

Here d, is the displacement of the jth mass and fj is the force on the jth mass. Note

that -L has units of displacement as does di. Let Q2 = , which is the frequency

at which the passband ends, then

1[ I-40 -1

342 J
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Figure C.2: One bay of mass-spring chain used to form its transfer matrix.

From the condition that Itr(T)I < 2 in a passband (see Chapter 2), we see that a

single passband exists for the perfectly periodic system at 0 < ' < 1. All higher fre-

quencies are in the stopband. The wave number (the spatial frequency of the traveling

waves) for the traveling waves in the passband of the mass-spring chain is governed by

cosk = 1 - 20 2

A more extensive discussion of the mass-spring system can be found in

[Faulkner and Hong 85].

The eigenvector similarity transformation used here, which will induce a wave trans-

fer matrix (see Appendix B), is:

e-•k e 1 ek -

and its inverse is

X_ (elk - 1)/(2isink) -1/(2isink)

(1 - e-k)/(2isink) 1/(Iisink)
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C.1.1 Only Masses Disordered

Now consider disordering only the masses, i.e., let the mass be a random variable

and let j = ,whe:,: < mi >= m so

1 - Ii4j2 - 1

j#j402 1

The corresponding wave transfer matrix is, where we suppress the subscript j on the

transmission and reflection coefficients.

W(pj) = X = 1 -

where
1 _ elk(1 _ i63) (C.1)

t

and
r eikaj
t

where
20G2 (1 -

sink

C.1.2 Only Springs Disordered

Now consider disordering only the springs, i.e., let k, be a random variable and !et

I = <:jwhere < k,j >= k,. The transfer matrix is:

1 - 4i._.• _ -
T(k••) = k.i k',o

4•2 1

In the corresponding wave transfer matrix

1 = ek(1 -j)

t
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and

t

where now

sin snk k

C.1.3 Masses and Springs Disordered

Finally with both the masses and springs disordered we have:

T (l#, k oi) (D k.i kqi

4['i 1]

Note that we have no need to compute the wave transfer matrix in the calculation of

the localization factor when both the masses and springs are disordered, because of the

additive nature of the localization factor discussed in Chapter 3.

C.2 Rod with Attached Resonators

The second model is a longitudinal wave carrying rod with attached resonators that

represent the vibrating cross-members present in a real truss structure. The model and

relevant properties are shown in Figure C.3.

The transfer equation for the perfectly periodic model is:

Oj+ = + C + N,] (C.2)-•+, •' + C C, + le- •r

where

7Uj
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ks m

E,A,p <1 >

Figure C.3: Rod with attached resonators

is the nondimensional longitudinal displacement of the jth point and

EA

is the nondimensional internal force at the jth point. Also

C = CO,7rTJ

a = :asnrw

where the nondimensional transfer function of the attached resonator is;

k 027r2p

and where the nondimensional frequency, stiffness and mass are:
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= ksl--!

m
M=~If = f ; A --)

The transfer matrix models a bay extending across a length of rod, across a resonator,

and then across another length of rod.

A discussion of the dynamic characteristics of the perfectly periodic structure can

be found in [von Flotow 82]. For our work on the rod with attached resonators, we

will use p = .2 and k, = .5. These values put our first stopband around D = .5033

which is the natural frequency of the attached resonator. This particular stopband

frequency makes for ease of presentation of localization effects in the first passband. In

real structures the stopband associated with the resonant frequency of a cross-member

is likely to be much closer to Q = 0.

The wave number k for the passbands of the perfectly periodic structure is deter-

mined by

cos k = c + H
23

The eigenvector similarity transformation that induces the wave transfer form is

isinkl - ) -isink/(! - ,, I
and / (2 sink)

1 i([ - 7(.-I))/(2sink)

C.2.1 Only Masses Disordered

Now disorder the mass, m, of the attached resonator. So let

M1
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be the nondimensional random variable, < A, > = a. Note that we do not feel compelled

to divide by the average value of A because this variable is already nondimensional.

Now the random transfer matrix T(Ais) is found by replacing p, which occurs in Ht, in

the nonrandom transfer matrix, T, by pj. In the corresponding wave transfer matrix

1 = e'•(1 - i6k)
t

and
-i = -i6,

t

where
6 = (sin ircv)A fj

2(sink)7c)

and
-22-(1 )_1_(1 1)1_i

AH: " w2r2A1  k. wD2rpj

C.2.2 Only Springs Disordered

Now consider disordering the springs of the attached resonators. Let

,=k where < k, >= k.
EA

be the nondimensional random variable. The transfer matrix T(k,,) is the nonrandom

transfer matrix with k. replaced by k,,. The wave transfer matrix is the same as for

the disordered masses except that
Af/=( ___1 _, (1 1)-

AH,= 2 2 y

C.2.3 Only Lengths Disordered

Finally we examine the disordering of the bay length, i.e. the distance between the

resonators. Let the nondimensional random variable be

<14>
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where < lj >= I. The transfer matrix for the lengths disordered is

cos(,7tr ) + Rs .in(wt*)- W •, + .I, ,oIr,

-irO jsin(7rQT,) + Tj.[+Co,,(,T)A cos(7ra -#) + ein(w Z)

In the corresponding wave transfer matrix

1 = i[_ + v)

t 2sink

and

t 2sink

where a is the (1,1) term of T(IQ) and where

Tlft[i + cos(7ri',) 1 [ H(i- C)
P = [-7raT jsin (7rod,) + 2 -- I2 292

and

+f[1 Cos (7r04)~1 +I tisin(r; ) 1 o27r2 •)2  2

C.2.4 All Three Parameters Disordered

Finally the transfer matrix for masses, springs and lengths disordered, T(Fli, k.j, 1j)

is simply T(lj) with t replaced by
1 1 )-___

ftr. - 1

k., w 7r uj

C.3 Bernoulli-Euler Beam on Simple Supports

The final system examined is a Bernoulli-Euler beam on simple supports shown

In Figure C.4. In setting up the transfer matrix for the beam on supports we will

us2 much of the terminology of [Yang and Lin 75,Lin 761, except we nondimensionalize
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p,EI <1 >

A A

Figure CA: Beam on simple supports.

where possible. The transfer matrix for a bay relates the slope, €, and nondimensional

moment at adjacent supports

]j -rCos k -'1(0.3)

W - - k cos k IM _.
Eli a Eli-

where
sinh v,/ cos V/ - cosh vi/' sin vx/cos k -=

sinh VW - sin VZ

where

iA mass of beam per unit length

and where (adopting the notation of [Yang and Lin 75,Lin 76])

C4

C4 - (cosh VZcos V/ - 1)/2
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3 = (sinh V-sin V')/2

,94 = sinh v/ sin v4

c = (cosh v/Q - cos vQ)/2

The eigenvector similarity transformation which induces the wave transfer matrix
is

1X=si1k]

0~ isink -i-)."sn

and
- 1 ha

Now consider disordering the length I between each bay and let the nondimensional

random length be

<l• >

where < 1, >= 1. So the transfer matrix T(I) can be written by simply replacing i

whenever it appears as an argument of sin, sinh, cos and cosh by x/,I. Anywhere I

appears it can be interpreted as < lI >.

In the wave transfer matrix for the beam on disordered supports

I = cosk()+i[a() sin!k + isin ,)
t 2a+ 2a(4j) sink

and
st 24(nj) sin k 2

Once again, whenever the argument (Ti) appears, it implies that the underlying circular

and hyperbolic functions should have Vr replaced by -V/-..
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Appendix D

A Simple Method to Calculate

Localization Factors

This appendix describes the calculation of localization factors using a simple method

which does not depend on theories involving products of random matrices. The method

has given very g . results for systenm with sufficiently low randomness and over

wide frequency ranges. The method is applied to systems that can be described

with 2 x 2 transfer matrices and is a generalization of a result which appeared in

[Akkermans and Maynard 84].

Briefly, the method involves taking a transfer matrix which is a function of a random

variable and expanding it in terms of a Taylor series expansion about the average

vr.lue of the random variable. Only the first two terms of the expansion are retained,

after which they are converted to wave transfer form.via the appropriate similarity

transformation. Products of this low order form are taken, but only terms of order one

are retained. From this low order representation of the matrix product, the transmission

coefficient, r., is extracted and the localization factor, y, is calculated as

< In 1j44 >
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First consider tie bay transfer matrix which is a function of the random variable

u, T(a) or T for short. Now expand T in a Taylor series expans::n about the mean

value of a.
OT (6a Wa'T

T =T<.> + 2! aa 2! +

Consider retaining only the first two terms:
OT

T 6a TI.> + 6aT-•..>
au

Now choose an eigenvector transformation that induces a wave transfer matrix, so

X- 1TX X-'TI<.>X + 6aX-' a >X [-j+6Q a[

So now" we have approximated the jth wave transmission matrix as

[ e'Q + (6aj)a (6a0)b
(bai)b" etk + (baj)a"

Now let us calculate H 1=, W, by retaining terms only to first order in bay. Note

for example that terms like lc*6ac i # j will vanish by mutual independence when

averaging. The final result gives:
e'nk[ "(n-'-'vT" 6&j) (2,' 1)

Wj --" &ý+ j,.=l

The (1, 1) term of the above matrix product approximation is our approximation to r-

From this, one can calculate Jr.t1:
ftn n

1/[I + ae&(tZba) + e ' (EZbay) + Ja1=(Z6%)']
Jj= j=1

Taking the natural log of jr.12

In I r.In =l(1) - In (I + a*e" (t 6 %) + aei( bay) + Ja1 2(Z, bj)2)

Recalling the following expansion:

Z3
ln(l+z)--j-+j--... Izz)1, =#-g
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So retaining terms to first order in z:

In jrII' -- 'e"k(• •6 ) L 0- n."&(i 6a) - Ia1(i 6Ck,1)
Sj=1 =1

Now taking the average of In ITftI' and recalling that < 6ai >= 0 and invoking inde-

pendence of 6*,. we arrive at:

RIn l• r1' >-"-o'•< 16cri)' >) = -I.'-'o:
j"1

Now
< In I&I >

n

or

or <lInlJ& 12 > __ IGI'o7,
2n 2

which is the final result.

We find the result agrees with caiculations from Equation 3.10 when ,' has the

forms e'k(1 + i6-) or (1 + i64). So this formula is valid for the mass-spring chain and

the rod with disordered masses or springs on the attached resonators. The formula will

not give Accurate results for the rod with disordered lengths between resonators or for

the beam with random lengths between supports.
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Appendix E

Properties of the Scattering and

Wave Transfer Matrices

In this appendix we discuss some of the properties of the scattering matrices and

wave transfer matrices used in the thesis. These matrices will be used to describe

the propagation of traveling waves in the passbands of periodic or disordered periodic

structures. We will state the scattering and wave transfer matrices in their most gen-

eral forms and then impose conditions on the scattering matrix ai.d discuss what this

implies for the wave transfer matrix. Note that we will suppress any subscripts on our

transmission and reflection matrices. The scattering and wave transfer matrices are of

dimension 2d x 2d. Scattering and wave transfer matrices are discussed in [Redheffer 61]

and in [Carlin and Giordano 64,Hlawiczka 65] and for some specific disordered systems

in [Osawa and Kotera 66,Omar and Schfinemann 85].

The scattering matrix, S, in its most general form is

where A and B represent vectors oi" traveling wave amplitudes in the indicated direc-
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tions. The corresponding wave transfer matrix involves a rearrangement of the state

vector, so that we relate waves on the right of a bay to those on the left of a bay:

A. - -r Ai[ , It t-t I A- (E.2)

Now we require that the scattering matrix be symmetric. This means that

r rTr = rT

and

t -T

These are exactly the same conditions needed for the symplecticity of the wave transfer

matrix W, namely that

WTJW = J

be satisfied. Thus

S symmetric = W symplectic

Now we impose the requirement that S be unitary, namely

SHS = SSH =I

Now S'S = I tells us that

r Hr+Vtt=I

tOt + •t• H I (E.3)

r Ht + tHi= 0

These are precisely the same conditions that must hold when W is an element of

SU(d, d) or

WHAW =
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We conclude that

S unitary -< W E SU(d,d)

Now imposing both symmetry and unitarity on the scattering matrix we have

r t

{tT -tl'*rt ]t
where r = r T and -t-'r~t =- tT r~tH. Equivalently when the wave transfer matrix

is symplectic and an element of SU(d, d) we have

W= Air -t:r]

From the condition tHt + t~i' I above, we can prove that

0 <gOi t~tJ < 1

where lis4*] is the ith eigenvalue of the indicated argument. Al3o note that

Uit~]= g~itt"]

so that all the results stated beiow hold for ttH as well as tOt. First we assume that

t~t is invertible so that it is positive definite:

tOt > o

We also have that tei' is at least positive semni-definite:

ifft>o0

From Equation E.3 we have

Doing an eigenvector decomposition on the above equation we get

= 15(I - diag{gj~t~t]})IJN
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The positive definiteness of tH t and the positive semi-definiteness of iHj now imply

0 < jd[eHf] < 1

and

0 < U.[tHt] < 1

which is the desired result.
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ABSTRACT

Theories have been developed predicting wave and mode localization in

disordered periodic structures, but only one experiment has been previously

conducted to test the theory. Theory predicts attenuation of wave amplitudes

at all frequencies, and spatial localization of mode shapes in a disordered

periodic structure. Our eyperiment tests for amplitude localization in a

truss model. The apparatus consisted of a steel ribbon under tension

(modeling the truss) and spring-mass sub-structures (modeling cross members)

spaced evenly along the ribbon length. The perfectly periodic structure had

equal oscillator mass in each bay and the disordered structure had random mass

Ln each bay. It was shaken at one end and ribbon amplitudes were measured at

each bay. There was little or no diffe'ence between the disordered case and

the control case in the amplitude versus position profiles. A single mode

could not be identified in the control or disordered experiments due to

non-zero damping. An alternate experiment using the same structures involved

forcing the ribbon at one end with white noise and reading the ribbon

amplitude near the other end. By taking the Fourier transfiorm of the transfer

function of output amplitude over input force, a localiztion Nactor can be

deduced. The results again showed no localizat~on.
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INRODUCTION

Many engineering systems deal with vibrations of one form or another. An

important engineering system that is getting a lot of attention is the space

station. A malor component of the space station will be large trusses.

Theoretical and experimental research has been done on these periodic

structures; however, it is assumed that the structure is perfectly periodic.

Yet, there could be inconsistencies in the material properties or the exact

length of the bays of the truss structure. These inconsistencies cause a

certain disorder in the structure. Another example of a periodic structure is

an aircraft skin stiffened with stringers Located at intervals across the

skin. In both the space truss and the skin-stringer systems, the main

structure has sub-structures located across the main structure.

Disorde-, whether designed or unintentional will change the oscillitory

properties of any system. The disorder will disrupt the vibration propagation

properties found in the perfectly periodic structure. The difference in the

properties from one bay to the next causes reflections of travelling waves and

tends to spatially localize amplitudes in one region. It is -mportant to

understand this localization phenomenon in order to exploit it and to be aware

of possible problems it could cause. It c-n be useful in isolating vibrations

to areas where the energy can be dissipated harmlessly and not propagate to

more sensitive areas of the structure. The localiztion could be harmfulL'

large amplitude vibrations localized in a sensitive area (especially important

in the near-zero damping conditions of space). One can explolt this

phenomenon in a space station design, where, for example, the vibrations

caused by a meteor strike on a solar panel would not be transmitted down the

1



truss to more sensitive parts of the space station.

Previous work

Disorder in a periodic structure was first connected with solid state

physics and the mathematics of random matrices. The localization phenomenon

was first explained by P. W. Anderson in an article on electron transport in

disordered crystal lattices." In 1963, H. Furstenberg wrote on products of

random matrices, which can be applied to the craveling wave properties of each
2

bay in a disordered structure. The only experiment on the structural

dynamics application of this phenomenon was performed by Hodges and Woodhouse

using an eight bay model and randomizing the length of the bays.3 They used

seven beads on a string as their apparatus, plucked it at one end, and

measured string amplitude near the other end. A localization factor was

deduced from the Fourier transform of the string amplitude. The results of

the Hodges and Woodhouse experiment showed a moderate amount of localiztion

even for very weak disorder.

Overview of our experiment

Our study is centered on a disordered truss structure where the

cross-member in each bay has a random oscillatory behavior (natural

frequency). The disorder is distributed across the whole structure. In

probability terms, this is called "independently and Lden tically distributed,"

which means that the random property in a bay doesn't depend on that oC any

other bay. The disorder that is present in the system should cause an

attenuation of travellng wave amplitude at all frequency bands. This Ls

different from the perfectly periodic system, where waves are attenuated only

in certain frequency ranges (stop bands) and travel without atbenuation in

2



other frequency ranges (pass bands). This attenuation can be equivalently

described as mode localizahion, where significant amplitudes are confined to a

region in the disordered structure and are equally predominant along the

perfectly periodic structure (see figure 1).

Fijure I: Typical "ode shnapes r a pertect.y perioal stnicture '

and % iisordred periaodic structurt 'bottom)'

The experiment consists of an idealized truss structure made of a steel

riboon under tension and idealized sub-structures made of spring-mass

oscillators (see figure 2). The disorder in the structure is realized by

randomizing the mass of the spring-mass sub-structures. We attempted to keep

the effective spring constant and bay length constant fnor all bays. A sine

wave was input to a shaker at one end of the ribbon, and ribbon amplitudes

were measured -t each bay to get amp!itude versus nosItion graphs at varying

frequenies above the stop band. A localization factor was to be haken frnm

these graphs by fitting the amplitudes to an exponential deca- envelope.

Figure 3 shows this envelope, where the localizion factor is one over the

localiztion length. An alternative experiment, similar to that of Hodges and

Woodhouse, was conducted on the same structure. We input a white noise force



to the ribbon at one end and measured ribbon amplitude near the other end.

Using a digital signal processor, a transfer function of ribbon amplitude over

forcing input was determined. Following the method of Hodges and Woodhouse,

we tried to deduce a locsa.ization factor from the Fourier transforms of the

transfer functions of the disorderd case compared to the perfectly periodic

case. Due to some non-idealities in the experiment, there was no localization

determined by either of" the two methods attempted. In hindsight, we found

that to see localiztion cleanly, a different experimental setup would have to

be Ased.

I
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Tholeattcal Amayt

Graduate work on this topic is currently being done at MIT by Mr. Glen

Kissel, under the counseling of Profeasor Andrew von Flotov. In Kissel's

paper "Localiztion in Disordered Periodic Structures," products of random

matrices are used to develop a theory that predicts localization. The end

result of these ma/uhematical calclialtions is a frequency dependent

localization factor for the disordered periodic structure. Kissel uses a

mathematical model of an infinitely long, undamped periodic structure with

traveling waves.

Kissel models each bay of this structure with a two by two transfer

matrix, vhich implies a pair of waves traveling along the structure (one to

the right and one to ihe left). No damping (dissipation) is modeled ho make

the effects of localiztion more pronounced. No end conditions are modeled to

make the calculations easier. The transfer matrix of the J bay is denoted

by Tj and relates wave transmission from the left side to the right side of

the bay as shown:

Aýh

The transmisslon coefficient )f the 1i bay is t. , Rnd the reflection

coefficient is -J, and the superscipt * ienotes complex conjugate. Wave A is

traveling from right to left and wave B is traveling from left to right.
o 2Consevation of energy considerations give (tj)•.(r.)j = 1.

j



A section of the struwture Oan the be modeled by multiplying the transfe"

matrices for the bay% together. if the structuire section of n bays is denoted

with the subscript N, the wave trnsmission characteristics of that sectionr

can be described byt

(AJ

Where the product is of the form:

"" k/]t C3)

Kissel randomizes the transmission and reflection coeffients of the model

to introduce disorder. Through these calculations, a localization factor I is

determined. This factor is the average w6ve attenuation factor per bay, so is

defined by

where < > denotes a statistical average. If • is the ttenuation Lactor per

bay there will be an average decay envelope like e x where x is the number of

bays away from the localiztion center.

A localiztion factor expressLorn was developed by Mr. Kissel and depends

on several non-dimensional parameters (frequency, stitfness rtio, and mass

rat 0 (5

• : kT..._•

Lf A/ 1L Y !.,.=_ i
¢,(17)



where Wis the frequency of oscillation, L is the length of the structure,

is the mass density of the structure, A is the cross sectional area of the

structure, T is the tension, and m is the mass of the mass-spring

substructure.

A Taylor series expansion of Furstenberg's formulas is used to arrive at:

where O is tne variance off A and <A•> is the statistical average of ,k. k
p

repre Jnts a wave number for the perfectly periodic structure and is defined

by:

cos k = cos~wl;) + sin(,

where = .

We adapted Mr. Kissels formulas to our experiment and the results of

versus frequeLicy are plotted in figure I.

A more clear explanation oC the differezce betweern the modes expected in

the perfectly periodic case and those expected in the disordered case was

given by Prof. von Flotow. Figure h shows that the looa!Lzed mode phenomenon

is predicted only in the first pa-s band (at the natural fre,,.ency of the

maes-spring sub-structures, w ), This modal theory predicts 30 close½y spaced

modes all in the vicinity of w.. In the second and higher passbands, the

sub-structures vibraLe with a much smaller amplitude than the mai, structlre,

LIld there is littl.. differnce between týe disordered and perfectly periodic

structures.
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Experiment.l Apparatus

The experimental structure consists of a steel ribbon that models a

truss. 30 evenly spaced mass-spring resonators model the substructures of the

truss (see figure 5). The ribbon is ten mil thick steel, six inches wide and

eight feet long. It is clamped at both ends and tensioned to about one third

..of its ultimate stress. A shaker is-attached.near oneend to input a force

into the ribbon. The mass-spring substructures consist of "diving-board"

cantilevered beams made of four mil thick shims. These diving board

resonators have washers bolted to the tips and vibrate in the vertically

through holes cut in the ribbon. The holes are one and three quarters inches

in diameter (centered three inches apart), and the shim resonators are one

half inch wide and one and a half inches long. The spring-mass properties are

provided by the bending stiffness of the cantilevered shim and the washer mass

at the beam tip. The washers ire bolted to the tips of the shim resonators.

In the perfectly periodic tests an equal number of washers were bolted to each

of the 30 resonator tips. In the disordered case, the number of washers on

the tip was changed -to a random number (from zero to twelve). The number of

washers for each bay of the disordered structure was generated by a

pocket-calculator random number generator. Each washer weighed a little less

than a gram, and the nut and bolt weighed approximately the equivalent of two

washers. The effective spring constant of the cantilevered shim was such that

under full loading (twelve washers), the tip sagged a half an inch at rest.
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Figture 5: Exper~nenza-I -tppatrat~us, %rd det~t• -if -3ne bay 3hoving the
"diving boarl" mass-ipr'ing aub-s~rUC6Irt.

The choice of the canti-levered be~am approach to the resonator was

determined by a need to restr,-*,t freedom of movement to the vertical

direction. At small amplitudes of tip oscillation the mass travels

appr•oximately only up and down. An attempt was made to keep tip oscilla.tion.



from being too great and thereby keep the oscillations linear. The

thicknesses and tension and average tip mass considerations were made on two

guidelines: (1) the average tip mass in a bay is approximately the same as

the mass of the ribbon in a bay; (2) the pinned-pinned first mode of the

overall structure is significantly higher in frequency than the natural

frequency of the average resonator. Both the average tip mass and the ribbon

mass per bay are about seven grams. The first global ribbon mode is at about

30 hertz and the average resonator has a natural frequency of about eight

hertz. Since most testing occurred at frequencies less than 20 hertz, this

kept us from exiting the global ribbon mode at, 30 hertz.

The ribbon was supported by the railroad type I-beams of the test bed in

the basement of building 33 at MIT. Angle iron clamps were used at the wall

(and shaker) end of the ribbon and the other end was clamped to the tensioning

lever. This lever consisted of a four foot long beam effectively hinged to

the test bed on the end (see figure 6). The other end had iron and lead

weights placed on it to transfer tension to the ribbon clamped to upper side

of the lever base. This lever transfered weight of about 150 pounds into

tension of about 700 pounds. This constant tension vas used through all

experiments and could not be affected by creep or temperature changes.

Figure 61 Tensioning iever 3cheme le-U!. The force of the vetght

placel on the end is MangCifted by the iever Y sd &-ppLied

&s tensi.on on the ribbon.
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.. .... ... ...... .... . . . ... .... . .. ... ----

A magnetic distance sensor is used to measure the ribbon amplitude at any.

bay, This device outputs a voltage proportional to the distance between the

ribbon and the tip of the sensor probe. A recording oscillascope is used to

measure the AC peak to peak amplitude of this voltage. In calibrating the

sensor, we found it to operate linearly in the range needed with a DC voltage

of about negative six volt3. The sensor is held by a movable stand and the

tip height can be adjusted so that the sensor is measuring AC amplitudes in

its linear range. The stand can be moved to any bay and ribbon amplitudes

measured from beneath the ribbon at a point in the center of the ribbon

directly between the holes. A second identical sensor is placed to measure

shaker amplitude so that output amplitude voltages could be normalized to

input amplitude voltages, getting a non-dimensional ribbon amplitude at each

bay.

A quick look at some errors inherent in the manufacture of our

experimental strucutre reveal that even the "perfectly periodic" case is

somewhat disordered. The lication of the small hole through which the bolt

passes is in error of about ten percent from to bay. The epoxy technique

yields a fifteen percent error thaý -.ffects the coefficient of end fixity and

therefor the effective spring constant. These two major manufacturing

:inconsistencies yield a possible error in the natural frequency of any

oscillator to 25 percent. This error in resonant frequency ',as seen Ln the
initial testing of the perfectly periodic structuhre.



SAmplitude,.yersu$,lio on Experiment

From this experiment graphs of ribbon amplitude at each bay versus bay

position were generated for sinusoidal inputs of several frequencies above the

stop band. The nominal experimental plan vas to identify a specific localized

mode in the disordered structure and deduce its local!ization factor using an

--exponential curve fit to the amplitude versus position graphs as3 shown in

figure 7. The perfectly periodic case was expected to exhibit no

localization.

I X

F~c :Om-sins! "tthod :3f jete-.Mwimim ?oa. zatli jon isn h vith Ian

exponenti&a. Cure Vit% : his -eothd could rot be used because '

3i=gle mode could not be "denttfied.

Procedure

A signal generator is used ho generate a sine wave of' a frequency between

10 and 20 hertz. This sinusi.al input is amplified and sent to the shaker

thqt forces the ribbon with the same sinasoid. The amplitude of the -ibbon at

the shaker is adjusted (by adjusting the volume of the amplifier) to be

approximately a sixteenth of an inch (o:oresponding to five volts peak-to-peak

from the distance sensor above the ribbon, next to the shaker). The other
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magnetic distance sensor was placed under the ribbon and its height adjusted

so -that it is operating in the linear range. The probe tip vat positioned

beneath the ribbon at a location directly between the holes of each bay. On

our intitial tests, we noticei a substantial 30 hertz component of the ribbon

amplitude due to the first global mode of the entire ribbon. This should not

be present in a linear system, if we are exciting it at frequencies less than

20 hertz, but our system is relatively qon-linear. To avoid the effect of

this component on our ribbon amplitude measurements, we low pass filtered the

sensor output with a cutoff frequency of 2T hertz. The peak-to-peak amplitude

of the filtered output of the sensor was measured from the oscilliscope and

recorded for each bay. We did tests at 12, 14, and 16 hertz for both the

perfectly periodic structure and the disordered structure.

Results

Amplitude versus position graphs were generated using the non-dimensional

amplitude arrived at by dividing the measured peak-to-peak amplitude voltage

by the five volt shaker amplitude. The position variable is the index of the

bay where the amplitude was measured and numbers from 3 to 29 (sensor would

not fit beneath bays 1, 2, and 30). Error in the amplitude measurement is

estimated to be five percent due to the precision of reading the oscillascope

and the error of the sensor. Figure B shows the results from the 14 hertz

tests of both the perfectly periodic and disordered cases. There is little or

no difference between the amplitude versus position plots of the two cases.

This is obviously not what we suspected, since it implies that there is no

difference in the two cases determined by this method. The tests at 12 and 16

hertz were almost identical to the 14 hertz test shown. All three tests

showed both the perfectly periodic and the disordered amplitude versus
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position graphs failing from about -twice the input amplitude near the shaker

end to near zero at the far (clamped) end. Since the first three bests showed

no localization and indeed no difference in the two cases, we did not

experiment further..

Discussion

The nominal experimental plan was to identify a single mode in the

disordered structure. We were not able to do this due to non-zero damping

which causes modal overlap. Theoretically, there are 30 modes in the

structure, all near the average natural frequency of the resonators (8 hertz).

If this were true, these modes would have to be spaced extremely close

together in frequency. Since the damping due to air friction is not zero, we

could not excite one specific mode without exciting the others. The problem

is that the modes are closely spaced and lightly damped (rather than undamped,

as theory assumes). Figure 9 shows the difference that the damping makes on

the ability to isolate a single mode. Mode equations reveal that the modal

spacing over the mode frequency has to be much greater than "he damping in

order to be able to excite a single mode. If, 4% is the frequency difference

between two adjacent modes:

This condition is far from present in our experimentsa setup, so in 20-20

hindsight, we realize that we could not Ldtentify a single mode.

I>
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Figure 9: lanitude of ribbon amplitude over 'requency .tersus frequency.
rjuy •ven there Le tntinitesimal damping can only one wode be

excited.



... . -.. .... .......

Another non-1dea. condition present in our setup is the rtlative disorder

it the supposedly perfectly periodic structure. The 25 percent possible error

it the natural, frequency _of l mwt' kar ma-* an theu a-o v_&*z~_Ald as

a control. The trend of ribbon amplitude decaying away from the shaker may be

localization, but even if this is the case, the disordered structure is much

-morpe disordered than the perfectly periodic case, and should exhibit a greater

localization. There is no way to determine if the small disorder in the

perfectly periodic setup is causing localization without building a setup

that is more strictly perfectly periodic. The decay toward the clamped end

could also be just due to the fact that there is a clamped end; the theory

that is being tested assumes an infinitely long struc';ure (no end

constraints). The inability to identify single modes in the disordered case

and the relative disorder in our control case prevent this experiment from

determining localiztion. Ignoring damping in the development of. theories

makes it difficult to test those theories in an experiment where damping is

unavoidable.



?&nater P?¶antlon 3xI~,?iment,

Since no conclusive results were obtained in the ffLrst experiment, we

attempted to adapt our experiment to the experimental method used by Hodges

and Woodhouse on their beaded string experiment. An alternate experimental

using the same apparatus involved forcing the ribbon at one end with white

noise and reading the ribbon amplitude neal' Lhe other end. A localizhion can

then be deduced from a comparison of the spectrums of the transfer functions

of -the disordered structure and the perfectly periodic stt-ucture.

Procedure

We used a PC based digital signal processor to generate our forcing

waveform and to sample the ribbon amplitude. A white noise waveform was

created by selecting the random output waveform from the signal processor (the

ribbon was forced equally in all frequencies). The white noise forcing signal

was a-lso fed back into a channel of the signal processor for digital sampling.

The magnetic distance sensor was placed and calibrated as in the first

experiment, but was stationary at the 27th bay for this second experiment.

The sensor output voltage was fed into P separate channel of the signal

processor for digital sampling. A Hanning digital low pass filter was used tn

prevent sampling alias. Both signals were sampled so that frequencies up to

20 hertz could he determined, and a digital fast Fourier transorm done to get

their spectrum. These spectra were determined ten times and the results

were then averaged. Using math software avallable with the signal p-ocessor,

we divided the spectrum of the output amplitude by the input forcing to get

the spectrum of the transfer function. This transfer function spectrum was

integrated over frequency and the "step" near 8 hertz measured graphically.

'9.



The test vaa done on the perfectly periodic case (six va•a•rz in ech bay) and -

the disordered ease (same random configuration as was used 1n the amplitude

versus position experliment), as vell a.s a "semi-mrndom" c-infiuration (only

five or six washers on each).

The significance, of -this step -height is determined throughý some Tmda-l --- .....

analysis. If we assume the transfer function of output ribbon amplitude to

input torc-ing is given by

VJ1,1

where " is the modal residue, given by the product of the modal amplitudes at

the driving point and the response point. We expect the ra'tio of the modal

residues for the two cases to be related to the localization factor:

where L is the number of' bays between excitation and response. If one assumes

as Hodges and Woodhouse did, that is constant over the frequency ran~e

examined then:

which leads to:

( ,T4



Results

The spectrums of -the transfer functions and their integrations are shown

in f'igure 10 for both the perfectly periodic case and the disordaroid case.

Reme mbering 1epp-4A

then the step height f'or the perfectly periodic case should be larger than

that of the disordered case. Thi step heights determined by our experiment

~ow the disordered case to be about five times greater than the perfectly

periodic case. This re3sult implies negative localizt-Ion, which is a

meaningless conc.?pt. The step height determined for the semi-random case was

larger than -that of the perfectly periodic case, and smaller than the fully

random case, as might be expected.
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Firure 10: Spectra (l.eft) and I~ntegrated spectra ',right) for the transf,!'
functi.ons of the perfectý!- periodic ipse (top) int th- Aisordered
case (bottom). ?or iocailition t~o oe ooserved, the ~step of the
perfectly~ periodic case should be l.arger than the disordered case
(doesn 't hP- 1)



SDiscussion

The result of no localization int this second experiment is due to the

unexpectedly large step in the disordered case compared to the perfectly

periodic case. The large step height of the dtisordered case is due to a large

component in the freque cy response near S hertz. This result could possibly

be due to a local pexk-at the sensor location. This local peak could be due

.. to -mode localiztion or due to the resonator of the 27th being excited at its

natural frequency. We could avoid this possible local peak phenomenon by

averaging the response of many different configurations of the same

randomness. This is done by generating more random numbers (still zero to

twelve washers) and changing the washer placement configuration. Averaging

the results of many configurations would reduce the effec's of possible

singularities at the sensor location. Furtermore, the relatively low step

height in the perfectly periodic case could be due to the unintentional

disorder or the modal overlap problem discovered in the amplitude versus

position experiment. The modal theory predicts 30 closely spaced frequency

respouse modes near 8 hertz, but the spectrum showed only a "lump" near 8

hertz. The lack of identifiable spikes is probably due to the modal overlap

caused by non-zero damping.



Conclusion~s

Although we did not support nor disprove the wave/mode localiztion

theory, this was a useful experiment. We suspected to observe localiztion in

the disordered structure when we were designing it, aad we expected to be able

to produce a near perfectly periodic control structure. The fact that neither

of these goals was achieved leads to two useful conclusions: all real world

structures have some inherent disorder that cannot be totally eliminated, and

this particular theory assumes some idealities that cannot be acheived in a

real structure (i.e. zero damping or infinitely long). We did some additional

research and found that the coupling of one bay to the next figures

significantly into the localization prediction. In our case we were

constrained to have very little coupling from cne bay to Lhe next. The -mall

coupling was due to the high ribbon tension neccesary to keep from exciting

the full ribbon mode. There also seemed to be little coupling between the

ribbon and the resonators; at most frequencies the resonators qreened to be

just "going along for the ride" and not influencing the ribbon or the next

resonator. We attempted to make up for this small coupling with a large

degree of randomness in the disordered structure. A different experimental

setup would perhaps be better for observing localiztion if it used large

coupling between bays and only a small degree of disorder. Our only defineite

conclusion is that localtztion theory can be neither proved nor disproved with

this particular experimental setup. The experimen' must meet the constraints

assumed by the theory if the theory is to be supported.

zI



Recommendations

In subsequent experiments, the perfectly periodic system must beas

perfectly periodic as possible to be a valid control. Also care must be taken

to better fit the coupling/disorder constraints and the damping/end conditions

constraints. Hodeges used a mathematical model of a coupled pendula system in

his initial research; perhaps this system could form the basis of an

experiment . The coupled pendula apparatus could consist of many 'more than

30) pendula connected together with relatively soft springs. The whole

experiment could be conducted in a vacuum with an impedence matched far end;

this would better approximate the zero damping and infinitely long constraints

on the system. Another idea is a slinky type traveling wave experiment where

reflected wave phenomena could be observed by eye. In both cases only weak

disordering of the bays would be necessary to observe localiztion since the

coupling would be stronger. This topic definitely warrants further study,

and I would enjoy experimenting on a disordered system where the wave/mode

effects would be slow enough in time and large enough in size to be observed

by the naked eye. This condition would provide a better understanding of the

reflection and transmissLon effects, on which the local1ztion theory is based.

II
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for performance requ:rements.
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INTRODUCTION

The large dimensions and high performance requirements of envisioned
space structures will result In close modal frequency spacing within the
bandwidth of the control system. The control of structural vibrations
will therefore be a critical part of the primary control system for many
applications, Including large coimmunication .s-atelittes and precision
optical structures. Control system design techniques which focus on
modification of vibratory characteristics~ of flexible structures will be
necessary in future system design proceeures.

The goal of this research Is to develop a hierarchic c~ontrol methodology
for flexible structures. This methodology Is based an the assumption of
an~ Intelligent structure. L.e.,. a structure which incorporates widely
distributed sensors and actuators possibly numbering in the hundreds or
even thousands. Such high numbers are quite feasible with the projected
technology for distributed components (Ref. 1). A feasible approach for
such a highly distributed Intelligent structure Is to distribute the
control functions Into an echelon feedback architecture. The pr imary
reason for developing this particular control methodology is to reduce
the computational burden of structural control by dividing the control
awoong many Independent processors while limiting the Input/output
handling requirements of each processor to a smaller number of
measuremerdts and control commamnds. Further, It is proposed that this
distribution be done In such a way as to complement the dynamic modeling
of the structure.

The most conceptually simple traditional approach which might be
considered for structural control is full state feedback. in which each
control force Is a function of every measurement. The computational
requirements of such a scheme are quite demanding and can become a
limiting factor In the real time application of control of a structure.
In addition, the possible lack of access to the full state would make a
full state feedback Implementation unlikely. For these reasons, full
state feedback control of large systems has generally been avoided.

Another apprnach to the control of flexible structures is to feed back
the measurements from a small number of sensors to drive the available
actuators. Such an approach can be based on optimal or suboptimal
direct output feedback (Refsa. 2.3). Alternatively. the measurements can
be used to drive a "full" or reduced order estimator (Ref s. 2.4.5).
Such approaches have evolved by the extension of techniques originally
developed for relatively modest dimensional systems (such as the six
degree of freedom dynamics of an aircraft or spacecraft). They have in
various ways been modified to take into account the high dimensional
nature of the structural control task. Yet they are still conceptually
focused on doing the most with a small number of sensors and actuators.

The above approaches call for a central processor to perform, at a
minimum, a computation of the order of the number of sarisors times the
number of actuators, and at a frequency which is a multiple of the
highest mode to be controlled. The~ estimator based sysecems must also
perform additional calculations to update the dynamic estiminte. But as
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the number of sensors, actuators, and modeled modes increases, the
number of computations required per second increases at a power between
N* and N4 even for output feedback systems. One must begin to consider
systems which distribute the processing, preferably in a way which will
also reflect the physical distribution of information flow in the
structu.,u, and therefore reduce the possibility of unwanted control
spillover.

A division of control effort, suggested by Aubrun and Margulies
(Ref. 6). is that there be two parallel control tasks, high authority
control (HAC) and low authority control (LAC). The objective of LAC is
to supplement the natural dumping iii the structure by providing simple
state feedback at all colocated sensors and actuators, reducing the
possibility of destabilization due to control spillover from the HAC.
Th'r colocated LAC feedback mechanism provides simple damping to the
whole structure with good sxability characteristics (Refs. 7.8). The
HAC loop is then designed to meet performance specifications for the new
plant which includes the supplemental feedback. There is no
coordination between the control effort of the HAC and LAC loops. The
input/output requirements of the HAC controller offer no improvement
over single control approaches in that the HAC loop generally requires
the processing of every measurement to determine every control force.

Another control arc:hitecture, which addresses the issues of dividing the
control responsibility and computational and input/output burden, is
hierarchic control (Ref. 9). The hierar,7hic feedback structure
considered here is based on the assumption of widely distributed sensors
and actuators and involves a two-level echeloi feedback architecture
(Fig. 1). Level 1 consists of many autonomous regional processors which
interface with the sensors and actuators in separate finite control
elements of the structure. The design of these finite control elements
must also allow for the distribution of the processing among independent
processors, t.e. . the structural model and control must be regicmally
banded. The functions of the regional controllers are coordinated by r.
global processor, at level 2.

Level 2 T - e h Ah

Level c ,C"" fr"aon, te i or aton l
€ONTAOLLER C :HTRt -• C CNT ROaL C I

St r u c t u r e F I NI T C €: O "T R O I. Ir I NI T C ¢ O N T R O L I :H tT g CO N '.(Plant CLCHCKT I t•tt"• 2 rV ,L•th

Fig. 1 Two-level hierachic control structure.

In contrast to the HAV/IAC formulation. the Information flow in this

design does not require that any single controller be responsible foe
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7 coordinatiig all the measurements and control forces of the system.
This greatly reduces the input/output burden of any single processor.
In addition, with sufficiently simplified control tasks performed at the
global and regional levels. computational requirements can theoretically
be reduced by two or more orders of magnitude compared to a full state
feedback design.

This paper details the development and evaluation of a two-level echelon
hierarchic control methodology for implementation in flexible structure
control. The methodology outlines the division of control between
global and regional control and specifies the control functions
performed at the two different levels. Methods of analyzing the control
interaction between the two control functions Is discussed in terms of
pole-zero analysis. The procedure is then applied to the simple example
of a rod in extension.

HIERARCHIC CtITRh SYFTMSIS

A_rchi tec ture

The fundamental idea behind the hierarchic control formulation presented
here is a parallelism between the division of an original large finite
dimensional structural model into finite control elements and the
division of control authority into regional controllers overseen by a
global controller. just as short wavelength disturbances are propogated
in a structure locally (t~e., the stiffness matrices are banded), the
control is distributed into local regions. And as it is possible for
long wavelength modes to develope, there is also a global controller.
Global control is based on nodal state inforwation represented at the
nodes of a finite control element reduction of the original large finite
dimensional model of the structure (Fig. 2). The global model
characterizes structural motion by virtual displacements q, and
velocities qL at these discrete node points. These global virtual
states are related to the degrees of freedom of the original finite
dimensional model by the element interpolation functions (e.g., T,,), in
a wanner discussed below. Likewise. structural forces can be
represented by equivalent virtual forces acting at those same node
points. The regional control model is based on the original finite
dimensional model of the structure. This is the level at which the
location and influence of the physical sensors and actuators are
important. This method of representing the structural behavior by
boundary nodal values is conceptually similar to the component mode
synthesis approach of structural dynamics (Ref. 10).

The correspondIng division of control function in a two-level hierarchic
controller is outlined in Fig. 3. The global controller is responsible
for implementing control functiorns based on the global nodal states x9.
As in finite element structural modeling techniques, the effectiveness
of the global controller is based on the assumption that the global
model accurately describes the structural motion. The regional
controllers, when combined form the residual control block in Fig. 3,
operate within the global element boundries based on 0. the residual of
the local measurements y and the estima,;es of the local measurements
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Interpolated from the global estimates 3e. The specific objective of
the regional controller is to perform inner loop compensation within
each region to force the structure to track the behavior expected by the
global model.

FINITE COMM ELENT MOM LOCATIONS

TI T % q q. q

T T T T

t~ t t t T iT t tt
q ,, r qr , q, aqrs q q, a qeq qo1 0 qrtt1 q.

I,- F C Element I -4. F C Element 2 -*- F C Eleuent 3 -*1

ORIGINAL FINITE DIENSIO•AL MODEL DEGREES OF FPEEDON

Fig. 2 Control domains based on finite dimensional model

Control Objectives

The objective of the global control is to control the overall behavior
of the structure based on the global finite control element model.
Three basic tasks are involved in Implementing global feedback and are
shown in Fig. 3: the measurement aggregation which reduces the system
measurements y into an estimte of the states in the global model *-,;
the computation of the virtual global control commands vq from the
estimtes of the global states; and the distribution of the global
control which calculates the physical control forces V, to be applied to
the system based on the global conmands.

Level r o a nbI ~ 1 0 U A---

Leve 2q v I GLC:AL XX 1

Fig. 3 Hierarchic Contrrl Functicnal BlIock Diagram

The residual controller operates on the differen.ce between the global

finite element model and the original, higher dimon.sional model of the
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structure. The estimated global states are interpolated to form a set
estimted measurements I that are consistent with the nodal states
- These measurements are differenced with the actual measurements of

thae system y to form an estlmate of the residual error C. The residual
controller calculates control forces ut to drive the residual error to
zero. The combined global control forces v, and residual control forces
a are then commnded of the actuators.

In order to understand the steps involved in Fig. 3. consider first the
original finite dimensional model of the structure. This model is
derived using any appropriate finite element. finite difference. or
other imodeling technique. As with most structural models, the inherent
dumping is Initially assumed to be zero. The second order dynamic
equation describing the structure is then

N Kq=m u (1)
where q t is the vector of the generalized coordinates, u C e is the
vector of control inputs, It is a symmetric. positive definite mass
mtrix, K is a symmetric, non-negative definite stiffness matrix. and
is the control influence matrix.

For the following development of the two-level hierarchic control
technique, two simplifying assumptions will be wade. The first is that
complhte measurements of the full state of the original finite
dimens:.onal model (q, and 4) are available. This assumption is
intentionally restrictive in order to simplify the presentation of the
technique. In most systems, the full state must be estimated from
partial state measurements. The second assumption is that the system
has as wmny nonredundant actuators as generalized coordinates (i.e.. #
is sqiare and full rank). This assumption is also restrictive and
further simplifies the analysis. Since the probable application of this
technique is xo systems with large numbers of 4istributed sensors and
actuators, these restrictions are not as severe as might be thought.
Qurrently. research is underwy to analyze the implications of relaxing
these constraints, but the reminder of this presentation will accept
the restrictions.

Global Control Synthesis

The objective of the global control law is to control the long
wavelength motion in the structure that is critical to the system
performonce. In the global model, the motion of each finite control
element is defined in terms of the global nodal degrees of freedom as
shown in Fig. 2. According to finite element theory, the motion of
every point within the finite control element is specifled in terms of
exct interpolation functions (such as T91 in Fig. 2) and the associated
nodal degrees of freedom. In this formulation, the finite element
interpolation is applied to an existing finite dimensional model, rather
than the continuous structure. Thus, each finite control element
contains a unique subset of the original finite dimensional model
degrees of freedom and an associated subset of the sensors and
actuators. In terms of the global degrees of freedom, the original
degrees of freedom can be represented as
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q {qN) -TV q, (2)

where q9( le' is the vector of global nodal degrees of freedom of the
global model and is is the number of global degrees of freedom. TV is
an interpolation matrix constructed by combining the local transfor-
ration matrices from each finite control element into a mingle matrix.
T1 is also used to consistently interpolate from the global to the
original model velocity by differentiating Eqn. 2 with respect to time.

The consistent global equation of motion is obtained by substituting
Eqn. 2 into Eqn. 1 and premultiplying by TV transpose, yielding

where IS n T1 T@ is the global msa matrix and K, a T; K TV is the
global stiffness matrix. Since i, is usually much smaller than a. this
system has a far greater number of actuators than generalized
coordinates. Since a full state feedback control of the global system
will result in at most a, independent control forces, a transformation
must be defined for distributing those a, global control forces over the
entire set of a actuators. In this sense, a nodal force is spatially
distributed over the discrete actuators within the element.

A global control vector, v,. is defined so that the control vector
consists of a, independent virtual global forces, each associated with
one of the global degrees of freedom in the vector q,. These virtual
global forces must then be distributed into physical forces, V,
according to the general relation

Vr ast Ys (4)

where S, is the global force distribution matrix. One way of specifying
a complementary choice of S, which is consistent with the measurement
interpolation is to require

s V N T, (5)

This choice of 8, will provide that the control force distribution
matrix is banded with respect to the regions in that the control
commmnds can be divided among the regions for application to the
structure by the actuators controlled by the regional processors. The
effect of this choice of So can be seen by substituting Eqns. 4 and 5
back into the global dynamic model. Eqn. 3. yielding

NV + q, %m E (6)
It is seen that the global control force distribution causes the virtual
global controls to appear as global node acceleration commands and thus
results in structural accelerations which are consistent with the global
model. Each global control force is distributed by the global
interpolation matrix, multiplied by the local mass to generate the
appropriate force, and then multiplied by the inverse of the control
influence matrix to obtain actual control commands (Eqn. 5).

Since the global nodal states required for global control are not
directly measured, the virtual measurements must be estimated by
spatially filtering the physical measurements within each control
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elemei',, The global finite control element formulation assumes that the
Interpolation functions (Eqn. 2) provide an exact description of the
structural defor,,ntion for the subset of the degrees of freedom within
the element. In reality, there is a difference, or residual, between
the actual structural deflections, des.ribed by the original finite
dimensional model, and the global description, The error based on the
estimated global displacements Is given bý

e -q - T9 q, (7)

where a 4 t is the vector of the estimated residual degrees of .1reedom.
The optimal estimate of the global state is defined in terms of
minimizing a welghted quadratic of the estimate of the residual.

ql a (TI t Td" T" q ,, T,- q (8)

The resulting matrix that relates q to q9 is actually a pseudo left
inverse of the transformation matrix T9. In other words, q9 is the
weighted least squares estimate of the global states based on the
interpolation functions, The mass was used as the weighting matrix dum
to thm similarity of the pseudo inverse with the staidWrd modal
orthogonality condition. If the actual mode shapes are represented by
the orensformation matrix, ri, then Eqn, 8 will yield in exact
transformation from physicai to modal coordinates, For consistency, the
seae transformation is used for both displacement and velocity.

Now that the measurement aggregation function (the transformation from q
to 4,) ham been defined, t'., effect of the global control loop on the
structure can be exj'nined by substituting the reduced global control law
bauk Into ýhe original equation of motion, which yields

3 4 K q . N 1 FW9 q NT F L (9) I

where el donotes the feec back pins and has been broken into velocity
and displa.ement submatrires. Equation 9 can now be used to predicc
changes in system performance due to the global control loop.

Residual Control Svitheshl

The residual control (igner loop) of the hierarchic control qcheme
generates control signals based on the residual error between the actual
measurements of the Rtates of the original finite dimensional modc! and
the interpnlaIon of the virtual global states, The objective of the
residual control ts to suppress the local structural motion that is
inconsistent with the global model dynamics. One of the primary
"requirements of the residual control implementation is that it be
performed within each of the region@ based only upon local information
and information received from the global cosetroller. Also, the residual
control should not excite, the global motion of the structure. These two
requirements will restrict the possible control implementations. In
addition, it As desirable tr"• the residual control be computationally
simple,

In order to analyze the residual control, consider the encimate of the
displacement residual error as

(6)



A -t.

S -q T (I- T T ) q (10)

The general form of the feedback law that implements the residual
control is

Ur Ad-Fv (11)

Since the residual control is designed not to excite global motion, the
component of the structural acceleration that results from residual
uontrol forces must be analyzed. Th1is acceleration, which will be
called the residual control acceleration, is

; - # ur (12)

An estimate of the global acceleration due to the residual control
acceleration can be determined using the same estimation matrix that is
used to determine the reduced order global state measurements from the
full order measurements (Eqn. 8)

, "TL I I u (13)

The first requirement that the residual control only affect the residual
motion is satisfied if Eqn. 13 is identically zero.

One restricted form for the residual feedback gain that meets this
requirement, and the requirement that the feedback be applied based only
on local information, is

F r a-'# I , F M K.#'1 N (14)

where a and P are nonnegative scalar constants. The residual control
acceleration for these gains is

-aoe^ - Poe (5

Here, the residual control acceleration is in direct proportion to the
estimates of the residual states in the system and will be called direct
proportional feedback. In addition, if a and P are negative, the
control acceleration always acts against the residual displacement and
velocity.

To analyze the effect of the direct proportional feedback on the
dynamics of the system, consider the reduced model based only on the
residual modes, just as the global model describes the dynamics of a
subset of modes in the system (Eqn. 3), there also exists a model of the
subset of the residual modes of the system. This reduced model requires
a transformation that relates a set of residual model states to the full
order residual of the system. The transformation T9 maps the flq

dimensional global displacement vector q9 into the a. dimension vector
space of q. Therefore, the residual must reside in the remaining
subspace of q that is orthogonal to the subspace of q9. The dimension
of that subspace is a, w a - nj, Therefor.t, the complete vector q can
be expressed as q a T r q, + T 9q. (I

where q. C er is the vector of residual degrees of freedom and Tr is
the residual transformation matrix. The combination of the two mapping
functions in Eqn. 16 must span all possible vectors q (i.e., the matrix
T, spans the null space of TI).

(9)



The exact choice of the residual transformation matrix is found by
considering the estimated global degrees of freedom based on Eqn. 16 and

premultiplying by T9L (Eqn. 8) to obtain

qq= T9  Tr qr + q9  J (17)

To make the estimate of the global degrees of freedom equal the actual
values, the first product in Eqn. 17 should always be zero. This

-L

product is identically zero only when T) T, is null. Examining the
-I=

definition of T in Eqn. 8, this requirement reduces to

T T N T = 0 (18)
9 r

(t.e., Tr is orthogonal to T9 with respect to M). The combined
requi'rements of Eqn. 18 and that Tr span the null space of Tg fully
specifies the space mapped by Tr.

The reduced order residual model can now be formed by assuming that the
residual motion in the structure is orthogonal or decoupled from the
global motion in the structure. Thus, there is a subset of structural
motions for which T9 qg is zero and the remaining motions are described
by the relation

q {qr} = T qr (19)

Substituting this into the original equation of motion (Eqn. 1) and
premultiplying by Tr transpose yields the reduced order residual model
equation of motion

Er r + Kr qr -a'Nr q, - 'lqr ;r (20)

where Er = Tr N Tr and K& = Tr K Tr. While the reduced order global
model characterizes the longer wavelength modes of the higher order
dynamic model of the system, Eqn. 21 provides a reduced order
characterization of the remaining modal dynamics.

The effects of the residual feedback on the reduced order residual model
is best evaluated if Eqn. 20 is transformed into modal coordinates
(Ref. 11) to obtain

Ir + * (aI + Ar)r = 0 (21)

where E, C Per is the vector of tha residual model modal coordinates and
A is the diagonal matrix of the residual model squared natural
frequencies. It is clear from the form of Eqn. 21 that the decvy rate
(P/2) for each of the residual model modes is the same. Likewise, the
increase in the square of the natural frequency (a) is the same for all
modes due to direct proportional feedback. Thus, it can be concluded
that direct proportional feedback affects, all residual model modes
equally.

One possible selection of the residual control feedback gains a and P is
to chose them as the averages of the closed loop gains of the full state
optimal regulator solution applied to the entire structure. The
residual modes' decay rates can be made to approximate tae full order
optimal regulator decay rates of the residual modes if 1 is selected as

P3 = 2/, alo (22)
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where ai is the real part of the closed loop poles of mode t of the -cull
order optimal regulator and the summation is made over all system modes
in the residual model. A similar" approch can be used in selecting the
stiffness parameter a. The stiffness increase of the residual modes is
chosen to equal the average stiffness increase of the associated modes
in the full order control system by selecting a to be

*2 2

a .- 2/alr ; (W4 L 2 (,) (23)

where w, is the closed loop iatural frequency of mode t of the optimally
controlled full order dynamic model and w, is the open loop natural
frequency of mode t of the full order dynamic mod~l. The hierarchic
control that results from this selection of a and P and the global
control of the previous section can now be combined to analyze the total
system performance.

HIERARCHIC CONTROL ANALYSIS

Using standard techniques, the two-level hierarchic control scheme can
be designed with stable controllers for each level of control. However,
since the two controllers do not operate in isolation, the two control
functions will interact with each other. Large levels of control
interaction may result in system destabilization. Therefore. the
ability to accurately predict the closed loop dynamics of the hierarchic
control implementation is an important concern.

Control Coupling

In order to evaluate the effect of control interaction between the
global and residual control, the mechanisms through which these
functions interact must be established. The full closed loop dynamic
equation can be written by combining Eqn. 9 and Eqn. 20 to obtain

X q + K q (M TTF* TL + aeNCI - T"Tg ))q
9 9d 9

(M T T ? TL + P.(I - T TL )); (24)9 9V 9 9 9

where the terms involving Fg result from the global feedback
implementation and the terms involving a and P result from the residual
feedback implementation. The coupled dynamics of the two subsystems can
be obtained by substituting Eqn. 16 into Eqn. 24 and premultiplying by
suitable transformation matrices to obtain

X + Ki,%r =- q - (25)

xrq + Krqr + T rq= - a*.[rqr - 1'3[r.r (26)

The two subsystems of Eqns. 25 and 26 are the global and residual models
developed in the previous section with the addition of an elastic

T

coupling term, Klr = Tg K Tr-. When KIr is identically zero, T9 exactly
represents a linear combination of ag natural modes of the original
system, and Tr exactly represents a linear combination of the other nr
natural modes. The coupling between the two systems will be light if T9
closely approximates a subset of the normal modes and the control forces
have been selected to not introduce any further coupling.
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To guarantee that the full hierarchic feedback system is stable, one
viable solution is that the control implemented in the global and
residual design models (Eqns. 25 and 26) muse duplicate the effects of
passive components. With this restriction, both models will act as
stable passive systems. This will guarantee system stability si-iac the
coupling of two passively stable systems cannot result in overall system
instability (Ref. 9).

MIMO System Zero Analysis

The assurance of a stable control design is just one important aspect in
evaluating the effect of control coupling in the hierarchic control
design. The primary design goal is not just one of stability, but of
wmeting specific performance requirements. This means that the effect
of the hierarchic control on the closed loop dynamics of the system rust
be understood.

The primary method of analysis used in this section is based on the
relationship between the generalized zeros of MIMO system (Ref. 12) and
feedback system response. With few exceptions, such as the work done by
Taylor (Ref. 13), MIMO system zero analysis has not been applied to
structural control design. MIMO system zeros are close counterparts to
zeros of classical single-input/single-output (SISO) systems and their
properties can be exploited in many of the same wrays.

There are two important properties of MgMO system zeros that directly
relate to output feedback control laws. The first is that system zeros
remain invariant under output state feedback (Ref. 14). The second
property is that if the MIMO system has j finite system zeros, then j of
the 2n system poles will converge on the finite zeros and the remaining
(2m-J) poles will go to infinity as the output feedback gains are
increased to +w in a positive definite manner (Ref. 15). Both these
properties are familiar to SISO feedback systems and are used explicitly
in root locus analysis design. For the same reasons, the MIMO zeros are
important to MIMO feedback system design. In particular, the evaluation
of the MIMO zeros of the global and residual control functions will be
importar ' to the evaluation of the hierarchic control design.

Three topics will be discussed with respect to MIMO zero analysis of the
complete hierarchic control structure. First, the mechanisms which
cause system zeros in the global and residual control implementations
will be established. Second, the relationship between global and
residual system zeros and the closed loop dynamics of the full order
structure will be examined. Finally, an exact method of determining the
location of these zeros and the mechanisms that influence their
locations is established. The culmination of these results will provide
valuable guidelines for the hierarchic control design.

For the hierarchic development presented in the hierarchic control
systhesis, the initial structure had full state measurement and complete
independent control. Given these constraints, it can be shown that
there are no zeros for the full system. However, MIMO zero analysis is
useful for analyzing the subsystems defined by the global and residual

(12)



control functio.,:s. The global feedback gains perform output feedback
around the residually controlled structure and, therefore, will not
affect the location and number of possible zeros of the global control
system. Since the global measurement and the global control influence
matrices are designed to isolate motions in the structure that are
consistent with the reduced order global model, there are many motions
in the structure that cannot be represented or affected by this control
system. These motions will be characterized by the global system zeros.
The analysis of the residual control system zeros is nearly identical in
that zeros arise in this system that correspond to structural motions
that cannot be represented or affected by the residual control system.

The relationship between global and residual zeros and the closed loop
dynamics of the structure will be examined through the evaluation of a
particular example. This example is the unique case in which the
reduced order global model exactly characterizes a subset (n,) of the
structural modes. Subsequently, the motions described by the residual
model must exactly describe the rema~ning nr modes of the saructure.
Thus, the global and residual subsystems are totally decoupled (i.e.,
Kqr = 0).

For this simple case, the subsystem decoupling can be described in terms
of global and residual control system zeros. For complete decoupling of
the two subsystems, it can be shown that the measurement matrices of the
two subsystems are each orthogonal to the modes of the other.
Therefore, the global controller must have decoupling zeros at each of
the residual pole locations. Likewise, the residual controller will
have system zeros at the global pole locations. Therefore, for
completely decoupled subsystems, the zeros of the two subsystems will
correspond exactly with the locations of the closed loop poles of the
combined system.

The next step is then to consider the effect when Tq and T, do not
provide exact models of the global and residual system modes. The
global and residual zeros will not disappear, but rather many (or all)
of the decoupling zeros will become transmission zeros. If the new T,
is very close to the decoupling matrix just discussed, the zeros of the
global or residual control systems should be close to their previous
locations (i.e., the poles of opposite system). If :his is the case,
the zero locations offer an approximate description of the closed loop
dynamics of the structure.

For selection of Tq that does not provide exact or near decoupling
between the global and residual subsystem, the relationship between the
respective system zeros and the system dynamics becomes less clear. It
is clear that feedback of the residual system will affect the zeros of
the global system and vice versa. The relationship between the controls
and the closed loop zero locations can be determined through the results
of two theorems (Ref. 9).

Theorem 1: In the limit, as the global displacement feedback gain,
Fqd, becomes very large (in a positive definite sense) and llFqdll >>

llFqv1l, 2nr of the system poles converge to the closed loop poles of the
residual control model (Eqn. 21) and the remaining 2nr of the system
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poles are the closed loop poles of the global model (Eqn. 9).
Theorem 2: In the limit, as 0>0O and lal >> j1PI. 2n, of the system

poles converge to the closed loop poles of the global contiol model and
the remaining 2n, of the system poles are the closed ioop poles of the
residual model.

These theorems summarize the analysis of the closed 'Loop poles of the
coupled global and residual subsystems. Of these closed loop pole
locations, 2ni, converge to the closed loop pole locations of the
residual model and 2hi. converge to the closed loop pole locations of the
global model. Since the residual model pole locations rema~in fixed as
Fqa is increased and since these are converging points of the full order
system poles, they must elso be the zero locations of the global
controller. Likewise, since the global model pole locations are fixed
as a is increased, the remaining converging points are the zero
locations of the residual controller.

From this analysis, it is clear that the proximity of the global and
residual control system zeros to the poles of the actual system is a
direct indicator of the decoupling between the global and residual
controllers. For perfectly decoupled control systems, the zeros of the
global control system correspond to 21tr of the system poles and the
zeros of the resi.~ual control system correspond to the remaining 2n,
poles of the system. Even with coupled subsystems, the poles of the
complete system will tend to follow the poles of tie uncoupled
subsystems, depending on the amount of coupling and the relative
magnitudes of the feedback gains.

As with all finite element applications, a more accurate model of the
structural modes will produce more accurate predictions of the response.
For the application to the control problem, accurate modeling of the
structural modes is seen to reduce the control problem into decoupled
subsystems which can be effectively controlled using the hierarchic
control technique. The natural conclusion from this analysis is that
the free model parameters should be selected to provide the lowest
coupling between the global and residual controllers.

EXAMPLE

For the following example, the hierarchic control technique will be
applied to the case of controlling a bar in extension using widely
distributed sensors and actuators. A possible model for the full order
control problem is shown in Fig. 4. This lumped parameter model is
assumed to have seven diegrees of freedom with a sensor and actuator on
each mass. In addition, the value of each mass and stiffness is set to
uni ty.

(14)
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Fig. 4 A 7 Degree of Freedom Model of a Bar in Extension

The open loop pole locations of the full order system are shown in the
first column of Table 1. This model will be used to demonstrate the
various synthesis processes in the development of the complete two-level
hierarchic controller.

Global Control

Assume that, due to performance requirements, the global control will
nominally control the relative position of degrees of freedom qj, q 4 ,
and q 7 of the original model. These three degrees of freedom will be
the locations of the global degrees of freedom qq., q.2, and qg3 . The
global finite control element model defined by these three nodes will
have two finite control elements. The degree of freedom q4 will be
assigned to the first global element so that the full order degrees of
freedom included in the first element are 1 through 4 and in the second
element are 5 through 7. A linear interpolation between the global
nodes is used to define the relationship between the global degrees of
freedom and the regional degrees of fre-dom within each element. The
interpolation between global and regional degrees of freedom is given by

q(l} = T 1{l) qg{l) and q{2) - T,{2} qg{2)

where

q{l} = [q, q 2 q3 q4 ],T q{2} = [qs q6 q 7

qT{1} = 3qaI qqa]", qT{2} = -qg 2 q1:0] T

9 012 31 2 3

Combining these two regional relations results in the global
interpolation relation (Eqn. 2), where

T0 = 2 3

The reduced order global model (Eqn. 3) can now be formed by using the
interpolation matrix Tq for both displacement and velocity. The open
loop pole locations of the global system are shown in the second column
of Table 1. The modal frequencies of the global model are very close
to the modal frequencies of the first three modes of the full order
system. The rigid body mode is identically modeled in the global iao&1l
and modes 2 and 3 are 10% and 41 higher than the full model.

'(15)



As was stated previously, the main computational effort of the
hierarchic control technique Is distributed among the muny i-egional
pro,.essors, which are overseen by the global processor. Therefore, the
global state aggregation (Eqn. 8) is divided into three seqtential
processes. one performed at the regional level and the remaining two at
the global level.

q N I T 1 Iq= zm = yIi)qq = N - T-" q a qz NI t

Working from right to left in the above equation, the first process,
which is performed by the regional processors, creates regional
estimates y9(i) of the global nodal states by multiplying the regional
measurements by the regional mass and interpolation matrices. Since the
mass matrix is unity, this becomes

y,(I) = [y• 1  a yV ] T = T,(9) t q(1)

yg{2} = y(2) y$(, ' - T{(2)}q{2}

The remaining two processes are performed at the global level. In the
first, the regional estimates of the global nodal states are sent to the
global processor to form a new Interme.ate estimate of the global nodal
state z9 by averaging all of the regional otimates at that node.

X9 ~y(p !x(y(1)+yg(2)) y4g)]

The second global process then correlates these intermediate virtual
estimates into the final virtual displacement estimate qq by
premultiplying by the inverse of the global mass matrix defined in
Eqn. 3. A simple check will verify that these steps reproduce the
pseudo left inverse of the transformation matrix as defined in Eqn. 8.
The formation of the estimated global velocity is identical.

Since the actual form of the global control is not critical to the
hierarchic control formulation, a simple full order optimal regulator
was derived with the state penalty placed uniformly on displacement, no
velocity penalty, and a nondimensional control penalty of unity. The
poles of the optimally controlled full order system are listed in the
first column of Table 2 and shown in Fig. 5. The optimal regulator
problem was then solved for the 3x3 global systtr. using the known T9 and
Sg from Eqn. 5. The closed loop poles of the global model are shown in
the second column of Table 2 and also in Fig. 5. Comparing the closed
loop pole locations of the global model with the closed loop pole
locations of the lowest three modes of the full order system indicates
that they arc very similar. The global control synthesis has,
therefore, resulted in implementation that effectively isolates the
first three modes.

Residual Control

The functions of residual control consist of obtaining estimates of the
residual error state and applying colocated feedback based on the
estimate. The two steps to the estimation process are global state
interpolation and differencing the interpolated state estimates with the
actual measurements. From the regional interpolation functions Tqfi),
the residual states in each region can be independently calculated by

(16)



the associated regional processor using Eqn. 7 where the estimates of
the global states are given to the regional processors from the global
processor.

To demonztrate the synthesis of a reduced order residual model, th',
first step involves the formation of the residual transformation matrix,
T,. For the model of the bar In extension, the residual model had four
remaining degrees of freedom (or modes) to be modeled. In addition, it
m•st also be orthogonal to Tq with respect to N (Eqn. 18). The
resulting residual transformation matrix can be obtained as

60o -. 270 -. F40 0 .540 .270 -. 160
TT .362 -. 476 -. 136 .497 -.135 -. 476 .3&a

Tr .21 -.531 *413 0 -. 413 .531 -. 217

.o0. -. 347 .*61 -. 466 .s51 -. 347 .o09

The open loop poles of the residual model are shown in the last column
of Table 1. These pole locations are very close to the open loop pole
locations for the highest four modes of the full order system. In all
cases, the residual model poles are slightly below the comparable poles
of the full order system.

The process of constructing direct proportional residual feedback and
Its effect on the closed loop dynamics depends on the selection of the
feedback parameters a and P. Using the four highest modes of the full
state optimal regulator solution, !qns. 22 and 23 were used to compute
values of a = 0.193 and P = 0.613. The closed loop pole locations of
the reduced order residual model for these residual feedback parameters
are shown in the fourth colu=m of Table 2 and in Fig. 5. As was
predicted from the analysti of the residual model, the poles of all four
system modes have been affected equally.

The full hierarchic closed loop pole locations are shown in the last
column of Table 2 and in Fig. 5. It can be seen from these pole
locations that the residual control has caused the decay rates of the
four higher modes to incrtise by approximately the same amount. The
closed loop polb locations of the residually ,ontrolled system are also
very close to the closed loop pole locations of the higher four modes of
tbe full hierarchic implementation. The closed l)op poles of the full
state optimal regulator are also very close to those of the full
hierachic control implementation.

CONCLUSIONS

This paper has presented .he inititl development of a hierarchic control
technique for flexible strucuures. A two-level architecture was
outlined which consisted of many decentralized regional controllers and
one centralized gl)hl controller. The 'hierarchic architectuje was
developed to both reduce the computational requirements and to reduce
the input and output communication requirements compared to using a
single centralized processor for a system with a large number of siensors
and actuators.

(17)



The hierarchic control methodology is capable of yielding low
interaction between the global and residual control functions. It was
found that the interaction between the global and residual control
operations is only due to elastic coupling between the global and
residual control design models. For global feedback gair.s that meet
certain requirements, it could also x guaranteed that the coupling
would not destabilize the structure.

There are several issues that should be addressed in the future
development of the hierarchic control design. First, the control
synthesis was developed under the constraint of full state measurement
and full actuation of the highest order control design model. A control
synthesis which relaxed this constraint should be developed and
evaluated through system zero analysis or some other technique. Also,
analysis of the performance of the hierarchic control design through
numerical simulation and laboratory experiment should be performed to
verify the viability of the control design. Finally, the regional
controller implementation was of the simplest proportional feedback
design. Regional controllers based on traveling wave, distributed
parameter or component mode concepts should also be investigated.
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Table 1
OPEN LOOP POLES OF TrE FULL SYSTEM

COMPARED TO THE SUBSYSTEM POLES

Full 7 DOF 3 DOF Global 4 DOF Regional

0.0 0.0001 0.0 0.0001

0.0 0.4451 0.0 4 0.4631

0.o 0 oe0s6 o 0.0 0.991
0.0 j 1.2471 0.0 1.2411

0.0 - 1.5641 0.0 1.5621

0.0 1 .0O21 0.0 ,1-.011

0.0 j 1,9501 0,0 j 1.9371
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Table 2
anE LOOP POLE c nARISo OF THE FULL OPTImAL REGULATOR

WrIH THE SUBSYSTEM POLES AND FULL HIERARCHIC DESIGN

Full 7 DOF 3 DOF Global 4 DOF Residual Full Hierarchic
Optimal Reg Optimal Rea State Feedback Control Desijg

-0.707 o.'?o071 -0.707 . 0,707i -0.707 : 0.7Ur1

-0.641 0 0o.701 -Ooa 0 0.70t&i -O.oa * 0.,7761
-0,499 A 1.0011 -0,409 .,•0l -0a489 0 0,1o
-0.380 1.3081 -0.3061.3kellI -0.310 1.2861
-o.314 1.81951 -0.30o 16.901 -0.30O * 1S9i61
-0.374 1. 1,31 -0.06 &. *aSl -O,07 1.8291

-0.84 l.96S1 -0.300 1.931 -0.309 1 .97Ua

3

X Full State Opt Reg

SLe A 3 DOF Global Opt Reg
v 4 DOF Residual Feedback

L2 + Full Hierarchic Design

2x

l~a 9x
1.4

1.4

0.2
-U-

0.A -

0,
-1 -0J5 --0.8 -0.4 -0. 0

Fig. 5 Closed Loop Pole Comparison of the Full Optimal Regulator
with the Subsystem Poles and Full Hierarchic Design
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FIGURE! I Surface damping treatments typically eniploy, a I001190, These performance curves were taken !rom refer-
thin layer of viscoelastic material, which may be constrained 4nce (41,
to diform stongly In sheear by a stiff constraining layer The
mess penalties associatedl with No~ type of damping ore given
by expressions (0) and (10j. over a relatively narrow frequency range, The mass penalty useciated

can e etenee y ulis oeeralvisoetsti maerils m go~nti with this approach is somewhat more difficult to evaluate, aines It will
each active In a particular tsm porat ure/frrquency range. The MAUs depend upon many factors, Results reported In references 141 and 161,
Penalty associated with this tehnillue will be approhimately additive both based upon single tuned vibration absorbers applied to beamso in
to that Predicted by oquation (9), bending, suggest th4' to achieve a meodal damping ratio of (,, A mula

One approach used to enhance the efrectiventess of uch static penalty of
damping treatments Is to sandwich the viscoelaticd material between athe structure and a thin, extensionally atil, constrainingla Iyem (see fig. AM / 1 / t
urs 1b), The constraining layer Induces large shear doformAtIon of the ~-IS.-iSm.(I
viscoelustic matcrial when the subs~ructure deforms, Review of toecults will be Incurred, using optimally tuned and damped absorbeors, If this
reported in reference 141 suggeste that the use of constral~inin layers result can be extrapolated to arbitrary structures, the tentative con,
reduce@ the mass penalty associated with achieving a composite losn cluelon Is that modal damping rtilos of f a 0.01 can be obtained with
factor of I~ to a a mass penalty of AM/Mma 0,006 per damped mode, lubsequent

discussion suggeass the possibility of using portions of the structureAM .* 1.o ass tuned vibration absorbersi thus this mars penalty may be further
q1*-.;-ii(0 rejuced,
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typically chosen such that the device is tuned to a particular strut.
tilral resonance. The result Is that the structure is strongly damped



Maayeary stuctralsoutol xperznss (1 wee cncered nlyResidue tailoring can also be accomplished by modliscAio of moe&Manyeary Mlva cotro exerient II wo cocered nly shapes by structura re~dssig. This used M4modify Sthe recsonaMwith active damping augmentation. As such, the results might be com-. fraquenc4s1*aJ, but in general wil do so,
pared with passive damping techniques; in particular, the mans penalty
associated with an active damrping Implementation might be estimated. Otmlso
Whem summingi the component massm L. an active damping system, Thes formalisation of residue and sptetrum tailoring leads to struc.the question airises what mumse to asslgs to power supplies, Alters and $Ural optifrisation References (12,131 and [141 are representative of thisassorted laboratory equipment. If all equipment used in the export approach. Alth16ga& oI~lofimsation is beyoun4 the scope of this paper, one
ment Is Included, It Is doubtful if an experiment hus been performed observation wil be mad; It is unlike1114Y that a globally optimum ttru..in which the control syslen, weighed les than thes structurel Although tural design will be achis red by shuff11LIng9 transfer function poles andflight hardwar, wW doubtless be lee maussive than laboratory equip- ooross along the Jw.&xjs, pnlrgiculzrly in view of the relatively mod.men$, the mas penalty of an active damping augmentation system is act MAss Penalties assciated with passive damping treatments, Thelikly to be quite high. Is is not clear that the mas penalties estimated Potential system benefits of passive damping in taerm of reduction offor passive damping treatments tan be improved upon with m4 active complexity and else of the active control system are just too great, Thedamping system, optimum structural design wil be in the 'liftshaf 0-plane'.

Actilve damping augmentiont systems may actually destabilise high
frequeoncy medes. A minimum amount of passive damping must be TAILORINQ OF TRUSE §TgUCIUtrEN
Present so prevent this destabilsalion, which occurs because the in.
evitible rell~off of the active oystem.181 The level of active damping Truss structures appear toOlfer opportunities for synergistic eleictsthat can be achieved is proportional to the passive damping already in dynamic tailoring, This is due to their relatively unique dynamic
prCesens,(I1 thus an active damping system is perhaps best thought of propertiels; he coexistence of very different 'local' and 'global' modes,
ms a multipLicative approachi an undamped inlinite-dimensional osruc. Figure 4 shows a struss structuen scheduled for on orbit vibration teest in
sure cannot be damped by purely active moans. Damping inherent in 1989,1131 The vibrasions of this structurep wil be governed by member
many of the beam., plates and other laboratory astrucures used to date elongation (&and joint compliance) up to approxtimately 10 He, Thishas often been insufIcien141tso prevent such instabilty, froq'sn@cy fange Includes the lirst I flexible modes when the beam is

fully deployedI1SJ1 The pinned-pinned frequency of she diagonal mom.
fieftimher zalnbnIs At 12 Ho.(156,161 Thus, at or near 12 Hs, thoese 188 diagonals

Tau~mZiletigo tesro alrsos setu asW a wWpriipat strongly1 11`11YIn the reoepnso, adding 336 'local' vibration
Taiorng f he tr~tu al res on e s ecrum ha be n co mo m odes, This wil be repeated At higher frequencels, in the vicinity ofapproach for avoiding interactions between spstiocrdt attitude control ec oa eoacT ei omdlteelcldgeso reo

systemso and structural dynamics. The structure is simply stiffened to w"ith loali relement@ mTod weis oud rqel appr oxiatly10 degrees o reo
rai"se he structural eieleunisbeyond the control bandwidth, ofti freeom A1MnI alternative based reupon anpiputouimtput10 desrieio so

A frquecy atioof in o to (9 beweencouroler bndwdthand a single bay, Is under developmeasl7(T. In the remainder of this paparstructural resonances Is typically sufficient, sines structural frequencies this elecet is examined using false element n7,odolo of a simplei trussscale inversely with dimension, thisi technique will not be piractlcal for 1tiucture.
arbitrarily large structures, Extesioon of osuc spectral separation to the
problem of active control of the irst few modes of a structure it possible
in principle; one would need to design the structure bo provide a broad
resesnanceo-free range Is she vicinity of the control rolies.roff ~ure 3
makes this point graphically, To be oelective, this range would need to
be quite broad, on the order of @no decade,

Is does Not appear practical to achieve this goal with structural
re-design, If 'raesonne free' is Interpreted somewhat liberally to in.
elude well-dampod resonances, the approach may become feasible, U
damping is provided by passive tuned vibration absorber, such con' @poy '~u'

sldarations may be used to choose modes so tuneI to, Ronuilsoato of
this Idea through minor metidiicatlons of existing truss~worh structures
appears feasible, and is discussed In a subsequent section,

ýNTI I a,,Ito

4We 4"06 i

FIGURE I One approach to 'Specrum talloring' Involves
stiffenin of the structure to rails 1i egnre4nce be.
yond the controller bandwidth, The enmiogus to this for ex.
IreMelY l11rge structures Would be to PrOVOIs 44 Intermediate
resonance-froil rinse,

ftiedmLXf
Much resarch has been Performed on she strongf eloc& of octuator

and senior positioning on the performance of active control Iyalkine"l ioi
Actuator and sensor positionilng governs the residues and ser,,es of
structural transfer functions, bus to Birst order, not th-v poles, Thus
the pole-meo sequence along the jW-aniS is changed, potentially saltring
the Interaction between modes and the constrneoln syte t be Itebillsing
or dookabillsing(2j, In th14 extreme case of 4ull sensing and actuation,
all residues are Positive, and all modes stably lniteracting.Ilj L 1Attempts
so OPsimise actuator and sensor posltlonsli10j tend to be computation FIGURE 4 This deployable P~uss beam, scheduled for near
Intensive, hemight into the Proemse is loot, anid the optimlsAtIon may term on-orbli vibration test, will display ontrenie modal do.
coniveres to any of several local Optima. SineracY at approximately 12 Hi,

3



7Npa. I lo a sketch a( a pluma model ofan MIT experimntala clamped-clamnpod frequenciss of theme members. This is followed bye
sterture, the Isructures Assembly 2emonsertmion Bxpoimeal (BADS) mixed mods with both global and local response as 74 Rs, followed
tmee. A three-dimensional version of shis trues hus been under coulid, by many local mode. beginning as 82 He. As the.. frequencies the
eratlon for a shuttle payload bay assembly mad vibration experiment. system response is characterized by many similar and closely spaced
The dynamics of %his trues were the subjecs of a recess MIT thesis(169, modes. Many small non-Uinearities (joint backlash, member buckling,
in which the vibration mode shapes sketched in Figure 5 were reported. joint friction) are sure to be important, but are Ignored in Whs analysis,
The dimensions ueed in the analysis were (for ieach member): bonding Thaeir expected elfects wili be briefly discussed in a subsequent section,

The member modes wil be comparatively easy to damp; local
a. ~strains are large and rotational join motion is excited. A small amount

of damping material, strategically placed, wil have a large elfect, Good
S locations would be member surfaces, eveu better would be internal to

J~,, XJ X \J X N J the joints, The mass penalty of this damping might be eatimated by
- expressions (9) to (11), with the reference mass taken to be only the

MODS 1, 12.3 ns mass of those members participating in the response, The mass penalty
would thus be correspondingly reduced.

Figure 6 give. a selected transfer function for this example. Damp-
Iug is Assumed to be present in two ways, Figure Ga, assumeso a uniform

massg~'i lose factor of unspecified origin and of level o7 so 0.01, Figure 6b is au
MODS 2. 49'es Ms attempt to illustrate the sloegt of local damping treatments; the modal

lowe factor is estimated so be the weighted average of two value., the
bending loss factor co, ta so 0,05, anod the extensional loss factor of
P7& so 0,01. Each Is weighted acording to the fraction of the modal
strai energy attributable to that type of member deformation. The

- ~introduction of the large bending loss factor is an attempt to model the
NODS 2, 611 *Sme elfect of Joint and other local damping treatments.

In.%poction of Figure Gb reveals thas this member bending damping
has little influsnce on the global mode., but that the member modes are
all elfectively damped with Ile. factors of I~ so qa 0,05 (f es 0.025),
This observation suggests the possibility of tuning the local mode.,

Not~ 14.JI/ No -

Uniforse loss factor
0.01

Moog 9, 74,1 M

Moog L1, 84,4 Mi _ _

'0'

ConelptqAl model

FIGURI 4 This plansr truss was the subject of a recent reopestss Loes factor
MIT Masters theisiill It Ils a planar model of.a trust under bonding 0105
conoiderstlon for experimental assembly on orbit, oteretchins 0,01

stiffnes 91 so 2,02X 10' lb-in; stretching stilfness NA as 4,36x 10 1b;
mass density p so 1.01 x 10-' sluif#/insh; with member Wlenths of 55
and SHv¶ inches, TIhe members are thus quits olendar; if a solid section
were used, the slenderness ratios would be 20 and 29 for the two mem.
bsr lengths, Notw tha In Figure 8 all mode. beyond the first two arwo, 1 .~~2-4-4- 1
primarily member imadesi memnbsr motion is much greater than joint ("P Ing response
motion, A conceptual model of such a truss Is a continuum beam wih . ---- *---i
periodically attached vibralirn absorbers, Member extensional stiff. socc (e
neo" gcvorne the global modes, while member bending deformation has
the global effect of a local vibration abeorber. These 'vibration ab. PIG URZ 6 A representative lransfer function for the truss
eorbors' wre strongly coupled (the joints are clamped), thus each local of Figure SIsi dolicted, The member modes near 63 liz
mode Involves several members, do not participate strongly In this response since both the

The frequencies of member mods@ are governed by the bending driving and the response points are at joints. Very different
natural frequencies of the members, Member bending eigen-frsquencies transfer functions ~essult from driving or observing at member
wil poteutlally be very low, comparable to global frequencies, especially midpoints, The offett of assum~ng large local damping is
If the structre hus bees opltnirclse with respect to static loAdIngjlgJ, Most strongly felt In the higher frequency *insmbsr* modes,
or if deployment hardware (a hinge) Is present on the mtrmberIl 131 ror
this example, the diagonal members have pinned-pinned and clamped- and using them to damp sI" global modes. This can be done with
clamped natural frequencies of 35 and 80 Hs recpectilvlyi the coneo. only minor influence upon the global frequencies. Figure I shows the
opondling frequencie. for the shortir members are 70 and 160 Ht, Thtus results of two such atiempts, The results of Figure ?a were calculated
there are several indlistinct groups of member trodes, each rtughlv &* with the bending stiffneus of the diagonal metabsrs reduted by a factor
sociated with one of the"e local resonanceo. For this example, 'he frirt of (43/83)1 in an attempt to tune these modes to the second bending
group of six member mode. is saseociated with diagonal member 'Send. frequency At 50 Hs. The result is a reduction of the amplitude of that

Ing and occurs in the range 60 tol 65 H, between the pinned-pianno uind i ode, due to an Increase of Its loss factor from of as 0.021 to as 0,036.



unifoom lose factor

diagonal embers tuned 00S I dioaseonad ambs od ed Composite loss factor

".3 bending 0,05
stretching 0.01

, 1,
f orc 1n2 reapo W e $ i i r t rcres pan e i -

? u )1T (He) FREQUENCY (Hs)
-1 "Composite loss factor

bandinX 0.05
diagonal embers tuned stretching 0,01

to third mods compogito lost factor

hsnting 0.05

si~rotching 0.01-

Ut
°°9 ..-....

rspon rsps

FRiQUENCY ("a) t FREQUENCY (Ha)

FIGUR• 7 The diagonal members of the truss of Figure 5 FIGURE 9 These transfer functions Correspond to the
can be tuned to resonate It selected frequencies, This figure mode shapes of Figure 8, Note that the member modes are
shows two results: one with the diagonal members stiffened, much more tightly grouped than for the case with clamped
the other softened, with respect to the reference truss, joint$, and that the global modes are effectively unchanged,

The frequency decrensecd only sligltly, to 44 HI. This modal lses factor
can only uymptotically approacti ,a As 0,05, higher values of local lee Greater tuning freedom is available if the joints are pinned rather
factors, achieved with additional local damping treatment, would lead than clamped. Figure 6 shows a few mode shapes for the SADE truss
to further damping of this global mode. Figure 7b shows the effect for the cue of pinned joints. With these joints, there is less coupl"g
of increasing the member bending stilnass by a ratio of (74/60)P, in of member motion, thus the Sink member modes come very tightly
an attempt to tune to the mixed mode at 75 Ha, the effect *n this grouped about 35 Hs, in the range 33 to 37 He, The ninth mode,
cae is less pronounced; this mode Already involved significant member
motion,

diagonal members tuned composite lorz factor

to first mode bending 0.05
stretching 0,01

MODE L, IL.L Hi
l .l

MODE } )5.1 HS
'ucort 4, Its I

ritQVueCY (IsI

MOD !,, )0,L HP

MODE11 05dN

)09I 2 12,) Ha
h et faxt 6 modes Are very similar)

MODE LI, ,.0 HA FIGC.URE 10 When the Joints are pinned, the members may

be much more precisely tuned, This transfer function shows

FIGURS I If the Joints of the SADE truss were p~nned, thd result of tuning the diagonal members to the first bend.

t~me pattern of mode shapes would be quite different, inLg mode, Note that a factor 30 reduction of the response
amplitude (compare with Figure 9b) has been achieved,

51 *



at 52 Hi, is essentially the second bending mode, as before. This is
followed by many more tightly grouped member modes, each associated

7 Z oNPLATE with either the diagonal or the short members. In more complex trussPIo: mm ALUMINUM structures, such as the one sketched in Figure 4, one would expect11(0,4 IrN) 254 mm (10 IN.) DIA.(0.434 IN.) 4,115mm (0.182 IN.) THICK such mode groups to be associated with a more complex form of local
resonance. A representative transfer function fcr the SADE truss with
pinned joints is given in Figure 9, both with a uniform lose factor of
7 0.01, and with the composite loss factor computed as before.

ASTROMAST Tuning of this truss is relatively straight forward. Figure 9 suggests
FIBERGLASS the possibility of tuning the diagonal members to the first bending
SINGLE.LACED mode (the second bending mode is already heavily damped.) Figure 10
APPROX. 53 OF HELIX shows the same transfer function as Figure 9, but with the bending42 STANDARD SAYSwr, 1  ,ANOA082ka (SA 8 LsS stiffness of the diagonal members reduced by a factor (12/35)2. For

STANDARD sAy I 17.2xI0 4
mm

4  reference, selected mode shapes are also given. Note that bending of
142.6 mm Eis 2 130 N.m2 the diagonal members now participates strongly in the first mode. The
(5.926 IN,) JO 222.5 N-mi/RAO. large reduction in peak amplitude at 12 Hs is due to the damping

introduced by this local vibration. The members are acting as effective
vibration absorbers.

Exp.erimental Verification
E:.perimantal verification of the results of this paper is needed.

The low mass penalties predicted for passive damping augmentation6.0"T(16.9375 FT.) of structures in general and of tunerl truss structures in particular,

might be verified. Laboratory tests would be adaquate, the relatively
AROSS SECTION large damping levels of interest would not be difficult to measure. One

relevant experiment has been performed. Figure 13, adapted from ref-
Serence 1201, describes a vibration experiment performed on a current

spacecraft true-work beam. The transfer function shown is similar in
character to those of Figures 6, 7, 9, and 10; high frequency modes
are indistinct and strongly damped. For this beam, the local mem-

y ber frequencies begin at approximately 30 He. Local damping in this
DIAMETER OF ENCIRCLEMENT beam is due to non-linear effects in the joints rather than to damping
228.6 mm It IN.) treatments.

Unmodelled Eiffects
The structural models used in this paper may not be valid for

investigation of the effects described. It is well known that small cou-
plir.g effects become important when the sigen-frequencies of a linear
model are closely spaced in frequency. A truss-work structure will ex-

SAY • hibit many non-linearities, most notably joint friction and backlash and
isU mm member buckling. These non-linearities will couple the closely spaced
(2.2 IN,) PLATE modes, leading to beating and potential limit cycling of an actve control

-- ALUMINUM system.7274 mm (10 IN.) OIA. These modes will also be very sensitive to small parameter varia-5.,tT mm (0.121 IN.) THICK
WEIGHT 0,44kg (0.01 Lii) tions, particularly the mode shapes. Since the individual member bend-

ing motion is only weakly coupled to its neighbours, the phenomenon of
10 .mode localisation[21,22,23j must be expected. Member modes will be

10• spatially localised rather than extending through the entire structure.

UJ /The moderate frequency response of a real spacecraft truss-work
A J structure may thus be characterized by a strongly damped local rattling

motion which slowly exchanges energy with other such rattles. The
impact of such dynamics on the performance of an active control system

C. is unknown.
= 0.1

0.01 The claim was made that a structure which is optimised for active
A control implementation will include significant passive damping. This

10 1 5 claim was supported by estimates of mass penalties of passive damp.
ing treatments, and estimates of the benefits in terms of reduction in
control system .se and complexity. Subtle effects in the dynamics of

L I" A. truss-work structur s were highlighted, and the possibility of their ex-
2 N.ploitation for control-motivated dynamic tailoring was investigated.
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THE ACOUSTIC LIMIT OF CONTROL OF STRUCTURAL DYNAMICS

A. H. von Flotow
Department of Aeronautics and Astronautics

Massachusetts Institute of Technology
Cambridge, MA, 02139, USA

ABSTRACT

This paper investigates the acoustic limit of active control of structural dynamics; the limit

as the control bandwidth includes a very large number of natural modes of the structure. The

point is made that in this limit modal analysis cannot provide reasonably accurate models of the

structural dynamics, and that control design with respect to modal models is then of questionable

value. Alternative modeling approaches are reviewed. A particular wave propagation formalism,

applicable to modeling the acoustic response of networks of slender structural members, is described

in some detail. 'Control options designed with reference to this formalism are reviewed, and

speculations as to future developments of such control are offered.

1. INTRODUCTION

Modal analysis is a powerful analysis technique, central to the discipline of structural dynamics

since the publication of Ray!eigh's[i] book. Nevertheless, practical limitations to the applicability

of modal analysis do exist. This paper attempts a definition of one such limitation, the high-

frequency acoustic limit, and points out the relevance of this limitation to the technology of active

control of structural dynamics.

It is difficult to define the boundary between structural dynamics and structural acoustics,

indeed, one might even insiet that the former includes the latter. The boundary between analysis

techniques is somewhat more clear; modal analysis relies upon a global description of an entire

structure, while structural acoustic response is typically described in terms of the scattering prop-

erties of local components. Exceptions exist. It may be convenient to describe some portions of a

structure in terms of acoustic parameters and other portions via modal analysis. Structures which

are coupled to a fluid or elastic body[2] of infinite extent are examples of such exceptions, since it

is then convenient to employ modal analysis for the structural response, and acoustic techniques

to define the effect of the infinite medium.



The discussion of this paper will be confined to structures of finite extent. Even in such

situations techniques of structural acoustics may be preferable to modal analysis. A structural

component, though finite, may be eff.ectiveL -infinite, This limit is approached if the component

is much larger than disturbance wavelengths or if damping levels are high enough to attenuate

a disturbance before many reflections can occur. Both situations tend to occur when excitation

frequencies include many of the structure's natural modes. The frequency boundary between

structural acoustics and structural dynamics thus depends upon the structure under consideration.

A reasonable division for aircraft might be a few tens of Hs. Ultrasonic devices are well described by

modal analysis at frequencies of several hundred kHz. Large flexible spacecraft, with fundamental

frequencies below one Hz, would enter the acoustic response regime at frequencies as low as a few

Ha. Figure 1 attempts to provide a graphical version of these arguments.

IMAGINARY

S-PLANE

statisti-
cal

energy
analysi

"deterministic-4 - 1 0 th to 1 0 0 th

wave- natural frequency
propagation|
analysis

modal fundamental
?analysis/ • system

poles

/ REAL

FIGURE 1 Approximate boundaries between the regions of applica-
bility of modal analysis and local acoustic analysis are sketched in the
a - plane. The high-fequency limit of modal analysis is due to sensi-
tivity to parameter uncertainty. The low frequency limit of acoustic
modeling is less well defined, and depends on geometrical complexity
of the structure.



A relatively strong argument can be made for a high-frequency limit to the applicability of

modal analysis. It is more difficult to define a low-frequency limit to the applicability of acoustic

techniques. Local descriptions of component scattering behaviour can, In principle, be evaluated at

any frequency, including zero, and can be linked into a global description, either in the frequency or

the time domain. The convenience of such an approach will depend upon the geometric complexity

of the structure, since this will govern the number of components and interconnections that must

be independently modeled. The low-frequency limit of structural acoustic analysis is thus set by

questions of convenience.

The advent of active control of flexible structures has underscored the limitations of structural

modal analysis; high-performance active control depends upon a design model of high fidelity.

Analyses of the response of proposed large flexible spacecraft suggest that hundreds of modes 3,4]

will contribute significantly to the performance metric, often defined as a line-of-sight error or

other measure of image quality. One is thus interested in the response at frequencies well within

the acoustic regime. Unfortunately modal analysis is unable to predict details of such responses

reliably, and control design with reference to such a model is then of questionable value.

An increase in the level of passive damping can make a major contribution towards an engi-

neering solution of active control of structural dynamics and structural acoustics. Passive damping

treatments tend to result in modal damping ratios which increase with mode number. Strongly

damped modes can often be safely ignored, since they will not contribute strongly to degradation

of the performance metric, nor couple with the control system. The virtues of passive damping

can be quantified with respect to the impact on control design.[5] Mass penalties associated with

passive damping treatments need not be enormous. Recent estimates[6] suggest that damping ra-

tios of five percent can be obtained in the fundamental mode with a mass penalty of five percent.

Higher modes can be damped passively with a much lower mass penalty, and the bandwidth of

such damping can be effectively infinite.

If passive damping treatment is excluded or insufficient, and active control of structural dy-

namics to acoustic frequencies must be accomplished, then it is appropriate to base the control

design upon acoustic models. Since these models are local, acoistic control will also be local. Such

control theory is not well developed; only a few studies have recently been published[7,8,9,10].

2. THE ACOUSTIC LIMIT OF STRUCTURAL DYNAMIC MODELING

Mathematical modeling of an elastic structure invariably introduces a sequence of mathemati-

cal idealisations. One of these is the constitutive law assumed to apply, others are the introduction

of simplifying kinematic assumptions leading to beam, plate, shell, membrane and other idealized



models of components and boundary conditions for their connection. Assumptions of linear elas-

ticity and infinitesimal deformations lead to a linear model of the structural dymanics of each

component. If the components are linked by linear boundary conditions, they can be assembled

into a &IlobW linear model which describes the dynamics of the entire structure.

2.1 A LIMITATION OF MODAL ANALYSIS

Modal analysis is a further Lanipulation of this global model. For relatively simple structural

idealisatbons, spatial discretisation may be avoided and the modal parameters (natural frequencies

and mode shapes) may be calculated as exact solutions of the global model. For most structures of

practical interest, discretisation must be introduced and the calculated modal parameters are then

only approximate solutions of the global model. The difference is perhaps only of academic interest,

since any level of the model is merely an approximate description of the structure. Although

one alternative produces modal parameters which are exact solutions of the lowest level of the

model, neither approach yields the exact modal parameters of the structure. These exact modal

parameters may aot even exist, since even the slightest non-linearity or temporal variation of

parameters excludes rigorous modal analysis.
It is often stated that a structure is infinite dimensional, and that discretisation of the mathe-

matical model obscures this property by the enforcement of a finite number of degrees of freedom.

Several analysts have questioned the validity of this claim,[11I pointing out that the origin of the

infinite dimensionality of the structural model can be traced to the introduction of the ideali-

sation of continuum constitutive laws, and that the infinite-dimensional viewpoint certainly fails

when the model dimension exceeds the number of atoms in the structure. This paper refrains

from contributing to this debate, and rather points out that a practical limit of modal analysis is

reached long before the number of modeled natural modes approaches the number of atoms in the

structure. The origin of this limit is the extreme sensitivity of modal analysis to modeling errors.

Several perturbation analyses have been published which define this sensitivity analytically.

These analyses depend upon assumptions of linearity and time invariance of the model and its

perturbation. Courant and Hilbert[12] offer an analysis in terms of operator notation, specific to

self-adjoint operators:

Let the eigenvalue problem be defined by

L(un) + A•nu = 0 (1)

where L is a linear self-adjoint operator assumed to describe the structural dynamics and An,

U.~, n = 1,2,3,..., are pairs of eigenvalues and eigen-functions of L. If the structure is actually

described by another linear operator, slightly perturbed from L;



L(Qn) - -rUs + Inun = 0 (2)

where the function r defines this perturbation and c is a small parameter, then the eigenvalues

in and eigen-functions On of this perturbed operator can be related to those of L by a classic

perturbation analysis. For the case of non-repeated eigenvalues A, the analysis goes a follows:

Expand the perturbed eigenvalues and eigen-functions in terms of the small parameter e;

in = Un -+-•Ot+ C +2Wn -+...

in =-•n + C/n + C2 Vn +... (3)

The first-order perturbation of the nt& eigenvalue Li then the inner product ,Un = < run, u n >, and

the first order perturbation of the nth eigen-function, vn, is given by a sum of the contributions

of the other unperturbed eigen-functions ui, j A n;

i < run, Uj > An(4
Vun= < L(un), u.> AR AU3(4

A similar argument in terms of matrix notation, valid for non-self-adjoint systems, has been pre-

sented in reference [13].

Modal density is invariably an increasing function of frequency; natural frequencies become
ever more closely spaced as the mode number increases. Inspection of equation (4) reveals that
this results in high-frequency eigen-functions with extreme sensitivity to small modeling errors.

Modal analysis is thus limited to frequency regimes where relative spacing of natural frequencies

remains large compared to the relative parameter uncertainty;

< run, Uj > < ,n - Aj.S~(5)
< Lu) n> An

Experience suggests that this limitation will not include hundreds or even tens of modes of any
structure. Many modes can be calculated, but the information, though detailed, will be useless.

Alternatives to modal analysis of linear structural dynamics, applicable to the high-frequency
regime, have been developed by acousticians. These analysis techniques can be classified ac-
cording to whether a stochastic or deterministic approach is taken. Hodges and Woodhouse[14]

recent review paper is a reasonable starting point for study of the stochastic approaches. These
approaches include asymptotic modal analysis and statistical energy analysis, and predict mean
levels of response to broadband excitation. Response to narrow band excitation is not available,
nor is deterministic response to any form of deterministic excitation. Such stochastic approaches



are not useful for the design of active control, but can be used for performance analyses of open

or closed-loop systems of very high order.

2.2 WAVE PROPAGATION ANALYSIS

A wave propagation analysis of structural acoustic response yields a deterministic model

upon which active control can be based. A complex structure Is modeled by an assemblage of local

component models. Each component is described in the frequency domain by frequency-dependent

scattering or propagation coefficients and by the equivalent impulse responses in the time domain.

'Only a few books[2,15,16,17,18] have treated the subject of structural acoustics. The focus

of these books has varied, this variation reflecting the wide variation of approaches to the prob-

lem. Lyon's[15j book on statistical energy analysis does not contribute to deterministic solution

techniques. Junger and Feit[2J are primarily concerned with the coupling of structural response

to the acoustic response of a surounding fluid. Auld[16] treats problems arising in ultrasonics and

response of crystals and di-electric materials. Cremer and Heckl[17] and Graffl18] treat situations

relevant to this paper; wave propagation and scattering in structural components which can be

idealized as beams, plates, shells, membranes and rods.

The treatments of both references [17] and [18] tend to be very example-oriented; indeed it

is difficult to develop a generic treatment of wave propagation in arbitrary structures. Too often

each new example considered introduces new types of behaviour. If the scope of the analysis is

restricted to structural components consisting of slender one-dimensional members and their inter-

connections, quite a general treatment is possible. Such a formalism was developed in a recent

dissertation[19] and in two derivative publications[20,21].

2.2.1 WAVE PROPAGATION ON SLENDER ONE-DIMENSIONAL MEMBERS

Modeling of a slender one-dimensional member begins with the introduction of kinematic

assumptions. Each cross section is assumed to deform from its reference condition according to

a number of deflection variables. These variables are a function of only one spatial coordinate,

the axial location of the section, hence the member is termed "one-dimensional". If the measures

of cross-sectional deformation are continuous functions of thi axial coordinate, introduction of

a constituitive relation leads to a set of partial differential equations in time and in one spatial

dimension. If the member is spatially periodic (an important subset, since this includes periodic

truss beams), the cross-sectional deflections are defined at a set of discrete locations.

2.2.1.1 DISPERSION AND WAVE MODES IN CONTINUUM MODELS

A continuum model of a structural member is traditionally formulated as a system of coupled

partial differential equations. Fourier transformation yields a system of coupled ordinary differ-



ential equations. For the purpose of this analysis, It Is convenient to transform into a system of

first-order, ordinary differential equations;

dyS- Awy(6)

in terms of the 'crous-etional state vector" y of physical crou-sectional va.'Iables. The dimension

of y is equal to twice the number of deflection variables assigned to the crou section. The choice of

the additional variables in y is not unique; they may represent Internal forces, or spatial derivatives

of the deflection variables.

Diagonalisation of (6) may be Interpreted in terms of wave propagation along the member.

The eigenvalues of matrix A(w) ae "propagation coefficients" -1i(w) = a,(W) + ik,(w), (i = VC ,

of traveling wave -nodes. The wave modes appear in forward and backward traveling pairs, thus

the eigenvalues of A(w) appear in pairs (-yj, -- •i). For non-dissipative models, A(w) is real. Its

eigenvalues are not arbitrary complex pairs, but are restricted by the principle of conservation of

energy to the first and third quadrants of the complex "y-plane. Thus they are either real (near

fields), or pure imaginary conjugate pairs (traveling wave trains). For dissipative models A(w)

becomes complex; the eigenvalues now appear anywhere in the first and third quadrants of the

complex ,y-plane.

The cross-sectional state vector w of the diagonalized system

dwW = r~)w(7)

is related to y by a frequency dependent matrix of eigenvectors

y = (W)w(8)

Each element of w represents the amplitude of a wave mode, with the corresponding eigenvector

occupying a column of Y(w). These wuve modes travel independently of one another within the

member; each has the form wi.(w) yi-(w) e .W(w) 2.

The polynomial equation det[A(w) -'- yI] --= 0 defines the dispersion relation between frequency

and propagation coefficient. The phase speed c. is defined by c,= f= . The group velocity c9 is

defined by ce = •-a. A medium for which these speeds are frequency dependent is called dispersive.

In such media, the signal distorts as it propagates. Most structural models of interest, with the

exception of the simple wave equation describing torsion and compression of a rod, and lateral

deflection of a cable, are strongly dispersive.



The Tnmofenko Boam Continum Model

Beuding and shear deformation of syn-ametric, solid section, slender beam is well described

by the Timoshenko beam model, even to frequwnclu where the wavelength approaches the beam

thicknes. This model is also often used as an equivalent continuum description of truss-work

beams In bending since the shear flexibility of such beams becomes Inportant at much lower wave

numbers than for solid wstions. The governing partial differential equations of this model are

typically given as a second order pair In terms of the dedectlon varlables 0 (face rotation), and w

(face translation)[181;

O* ' + - " 0 (9)

GA,(O +awz _ +pyj 0 (10)

The cross-sectional state vector can be chosen to contain only deflections and the associated internal

forces; y = (-w,O,M,V)T, where the additional variables M = EIP. (bending moment), and

V = GA.(P. + 0) (shear force), have been used. With this choice, the equivalent system of

ordinary differential equations is [0 1 0 -1
=z 0 -PlW2 0 1 Y (1

,paw2 0 0 0.

To make this ex:-.' ple specific, four beam parameters of a continuum model[221 of a lattice beam

were chosen. These correspond to a proposed space lattice beam with very slender members,

overall width and thickness of 5 m, and bay length of 7.5 m. The values are; pA = 2.39 kg/m,

pl = 11.8 kg - m, El = 1.77 x 108 N - in2 , GA. = 2.94 x 10s N. Structural damping of q = 0.01

is assumed.

The resulting dispersion curves are displayed in Figures 2a and 2b. This member supports two

wave modes in each direction; traditionally they have been termed bending and shear modes[181,

according to the dominant entry of the corresponding eigenvector. A key point to note in these

dispersion curves is that both the attenuation coefficient a(w), and the wave number k(w) become

?roportional to the frequency w for large frequencies. Both modes are dispersive, but have non-

dispersive asymptotes. This non-dispersive high-frequency asymptotic behaviour can be exploited

in calculating transient response by wave propagation.[211
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FIGURE 2 Dispersion curves for the two wave modes of the Tim-
oshenko beam model. The beam parameters were taken from refer-
ence [221 where they were derived as an equivalent continuum model
for the pictured lattice beam.



2.2.1.2 DISPERSION AND WAVE MODES IN PERIODIC MODELS

In the previous example the Tlmoshenko beam model was assumed to apply to the lattice beam

sketched in Figures 2a and 2b. It has long been known that periodic structures in general(231, and

lattice beams In particular[24,25], display somewhat differ'ent dispersive behaviour. This difference

becomes significant when the wavelength becomes comparable to the length of a single bay, and

at frequencies at which degrees of freedom Internal to a single bay resonate. The corresponding

dispersion curves display discontinuities and branching behaviour not exhibited by the dispersion

curves of the "equivalent" continuum model.

Both these limitations can be overcome by the application of methods which explicitly exploit

the periodicity of the structure. A convenient approach is based upon the transfer matrix of a

basic cell. This matrix relates the cross-sectional state vector of coupling deflections and forces on

one side of a cell to its counterpart on the other side;

yj+1 = Ty(w) y, (12)

One method of calculating the transfer matrix, T,(w), of a single bay employs finite-element

derived mass and stiffness matrices[25].

The defining characteristic of a wave mode propagating along a periodic member is the fact

that the entire cross-sectional state vector is multiplied by a complex factor, say ý, as the wave

passes through each cell;

Yi+i = e y (13)

Equations (12) and (13) form an eigenvalue problem for C, These eigenvalues appear in pairs

( -, L), corresponding to similar waves traveling in opposite directions. Equivalent propagation

coefficients 'tj(w) can be obtained from solution of the equation e1(w) = e:I:(w) Leed (where leel! is

the cell length). Care must be exercised to choose the correct branch of the complex logarithm.

The corresponding eigenvectors cf Ty(w) have an interpretation identical to that of the wave-mode

eigenvectors of continuum members (equation(8)), but are meaningful only at cell interfaces.

The important effect of periodicity, from the point of view of wave propagation, is to introduce

disnontinuities into the dispersion curves. Two types of discontinuity may appear. Excitation of an

internal degree of freedom results in an additional branch in the dispersion curves, at the resonant

frequency of the internal degree of freedom. Other discontinuities occur when k . (when the

cell length is an integral multiple of the spatial half-wavelength). This is well beyond the range

where an equivalent continuum model may be expected to be valid.



A Periodic Member in Torsion

Pe, iaps the simplest model of a periodic truss-work member is an equivalent continuum model

which has been made periodic by the addition(at regular Intervals) of masses, springs, or arbitrary

dynamic systems. Torsion represents the simplest of this class of problems. We choose Noor's[22]

equivalent continuum model for torsion of the member treated in the previous example. Periodicii y

Is introduced by mounting five percent of the inertia of the rod on torsional springs, fastened w.O

the rod at intervals equal to the bay length if 7.5 m. These springs are chosen to resonate at

wR = 40 tad/see, and are meant to represent an arbitrary internal degree of freedom, A structural

loss factor of 1 = 0.01 is assumed for this internal degree of freedom, and for the continuum model.

The continuum model has the parameter values GJ - 3.67 x 10N - Mi2 , pJ = 23.6kg - in.

The cell transfer matrix for such a model may be calculated exactly. The transfer matrix of a

single cell is given by the product TCELL = TIEPLr3 TpOINT TFIELD where the "field" transfer

matrix, TFIEZLD, Is an exact soluton of the governing partial differential equation, and relates the

cross-sectional state vector at two points of a continuous rod, separated by a distance Lj-";

(coo() in( ( (14)

where 0 = LaAjw/3.The "point" transfer matrix of a locally applied external torque lExT =

do) [H' ), ( ) <,,GH• -w)9) J isSF

S)RIGHT- Hw ](G )LET(5
The local degree of freedom is modeled as a simple oscillator, P1(W) = -W RI( -wi

The dispersion curves of this model are given in Figure 3. The internal degree of freedom

introduces the discontinuity and the additional branch at its resonant frequency, WjR = 40rad/aec.

Figure 3 shows that the resonant frequency of the Internal degree of freedom becomes an upper

limit for the applicability of an equivalent continuum model.

A real truss-work member will have many such Internal resonances. Each of these resonances

creates Its own discontinuity, and Its own additional branch In the dispersion curves. Reference (25)

reports a computational Investigation Into the wave propagation behaviour of a particular truss

beam, with each bay modeled via finite elements. Each of the wave modes supported by this

model exhibits many discontinuitles In Its dispersion curve. A new type of traveling wave mode is

reported In this work; a "complex wave mode" which both travels and is spatially attenuated.
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FIGURE 3 Dispersion curves of a periodic torsion model based upon
an equivalent continuum model of the pictured lattice beam. The
continuum model was developed in reference [22]. The discontinuity
at w = 40rad/aec is due to resonance of local degrees of freedom.

2.2.2 WAVE-MODE TRANSIENTS ON MEMBER SEGMENTS

The transient response of disturbance propagation along elutic members is conveniently cal-

culated in terms of the traveling wave modes. Indeed, it Is this convenience which prompted

their introduction in the frequency domain description of the previous section. This transient

calculation has historically been the focus of much work[18]. A.. computational approach based on

extensive use of the discrete Fourier transform Is reported in,reference [21]. These calculations are

not central to the remainder of this paper, particularly to the control design of section 3; their

description is omitted here in the Interest rf brevity.

2.2.3 SCATTERING AT JUNCTIONS AND DISCONTINUITIES

The following discussion is based upon the "generic" junction of Figure 4. ThI3 sketch, and

the notation (with the exception of the external forces, pf) can be found In most basic texts on

microwave eircuits.[26]
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FIGURE 4 The generic junction. The junction can include a flexible
body and can be connected to many members. Each member, j,
transmits incoming wave modes, as, and outgoing wave modes, bi.
External forces are grouped in the vector ef. The notation is standard
in microwave circuit analysis[261.

Associated with each member j, is a cross-sectional state vector yj, of size nj, defined at the

(arbitrary) interface between the junction and the member. This state vector may be transformed

into wave-mode coordinates according to the transformation derived in the previous section. Each

wave-mode state vector w, can be grouped into incoming a/ and outgoing bj wave modes.

The junction boundary conditions are conveniently defined in terms of the composite junction
state vector, ey = (YTy .. .y7,)T, having dimension en = r ,. The boundary conditions

can be expressed

pB(w) py = pf((1)
where pB(w) Is a (possibly lively) function of frequency and has gn columns and - rows, and

pf(w) Is a vector of size S of externally applied forces and deflections. If the junction contains a

flexible body, and is described by a system of ordinary differential equations, its description may

be reduced to the form of equation (16). Such reduction Is described In reference [19] and is a

relatively standard procedure in structural dynamics.

The junction boundary conditions can be transformed Into wave-mode coordinates by use of

a block-dlagonal matrix of member transformation matrices;



[i w/ 1)
py = eY(w) ow = 12 (17)

Ymp wM'/

After partitioning into incoming and outgoing wave modes, pw = (paT,pbT)T, and re-ordering,

the junction boundary condition becomes;

(~B~w) ~B (w) b( ) =pf(W) (8

If the sub-matrix eBb can be inverted, then the boundary equation (18) can be written in "causal"

form;

pb(w) = #S(w) pa(w) + 012(w) pf(w) (9

where the scattering matrix, pS(w) = -eB- 1 (w) pBa(w), is a matrix of frequency-dependent

transmission and reflection coefficients and 0 (w) = pB-1 (w) is a matrix describing the generation

of outgoing wave modes, pb, by the external forcing ef.

Junction of the Timoshenko Beam and Periodic Torsion Models

Numerous examples illustrating the application of the above derivation have been presented

in reference 119]. The example presented here describes the perpendicular junction of the two

members treated above. For this junction, the boundary conditions are;

1 00 -1 00 0 0
110 0 0 0 0 -1 0~ Y-RODA

0 0 0 00 10 01 YBEAM J0 (20)
to -1 0 0 1 0 0 1 YRoD9

Transformation into wave-mode coordinates and derivation of the scattering matrix is done nu-

merically. The scattering matrix is presented in Figure 5, over the frequency range 0 < w <

1200rad/sec. Periodicity of the rod member has been suppressed by setting H(w) = 0 in equa-

tion (15). Most of tli activity in the frequency dependence of these scattering coefficients is due to

the very dispersive nature of the Timoshenko shear mode. Thig mode exhibits a cut-off frequency

at w ft 00rad/sec (see Figure 2).

2.2.4 TRANSIENTS IN JUNCTIONS

The calculation of transient wave scattering through a junction described by equation (19)

has been the topic of published work[21]. This transient behaviour ii not relevant to the control

design techniques proposed In the next section, and so Is ommited here for brevity.
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FIGURE 5 The scattering behaviour of the junction of a beam in
bending modeled with Timoshenko beam theory and two rods in tor-
sion. The periodicity of the torsion model has been suppressed by
choice of H(w) = 0 in equation (15). The cut-off behaviour of the
Timoshenko shear mode (at w % 500rad/.3ec) has a strong effect on
these curves.

3. ACTIVE CONTROL OF STRUCTURAL ACOUSTICS

Active control of structural acoustic response, with reference to an explicit structural acoustic

model, is an almost untouched field of investigation with only four known publications[7,8,9,1O].

Conversely, control design for structural dynamics is the subject of a large literature[27]. Control

design techniques developed for systems of low order are being extended to models with many

(tens or even hundreds) of the structure's natural modes of vibration. Such extension is a de facto

attempt to achieve active control of structural acoustics. Unfortunately a modal description of

structural dynamics to these frequencies is essentially useless, as has been discussed in a previous

section.

Since high fidelity deterministic models of structural acoustics are spatially local, control

based upon such models will share this property. Each local controller will be based upon the local

dynamics of a component. Supervisory coordination between these local controllers is possible, but

the theory for such an architecture has not yet been developed. This section reviews approaches

to component control design based upon wave propagation models, and draws upon previously

published work for specific examples.



3.1 ACTIVE MODIFICATION OF WAVE PROPAGATION ON MEMBERS

Theory for the active control of disturbance propagation in structural members has not been

developed. One could visualize many possibilities for such a spatially distributed control; design

objectives might be to distort the symmetry of the wave propagation properties of the mem-

ber. A member might be actively modified, perhaps in selected frequency ranges, to propagate

disturbances in only one direction. Such member control might be spatially discretized for imple-

mentation with discrete actuators, or might be designed for a spatially discrete member such as a

truss beam. Many possibilities exist, all have yet to be investigated.

3.2 ACTIVE MODIFICATION OF JUNCTION SCATTERING BEHAVIOUR

Equation (19) is the frequency domain description of reflection, transmission and wave gen-

eration at a junction of one or several structural members. Two approaches to control of such

scattering have been developed, both build upon equation(19).

3.2.1 SPECIFICATION OF CLOOSED-LOOP SCATTERING BEHAVIOUR

One might, based upon intuitive reasoning or analysis, wish to specify values for selected

reflection and transmission coefficients of the closed-loop junction behaviour. Obvious choices for

such a specification would be zero for some coefficients, although the specification might be more

general, perhaps frequency dependent. This would result in selective absorption of incoming wave

modes, or shunting of some incoming disturbances into selected outgoing directions.

If the controller exerts influences (forces and relative deflections) upon the junction which are

grouped in the vector pf, and thir ;ntrol effort depends linearly upon the incoming wave modes

ap, then the control law

,f(W) = P9 1 (W)[,0SCL(4)- -S(w)]-a(w) Ca(W)Aa(W) (21)

leads to the desired closed-loop behaviour;

scL (w) C) (22)

Measurement of the incoming wave modes pa(w) may not -be practical since they are related

to physical variables through a frequency-dependent transformation (equr',ion (17)). Use of this

transformation permits manipulation of equ' .. (21) into the form

Pf(W) =PSCL(w)pa(w) = C11(w)py(w) (23)

where the control forces are now given in terms of the physical variables py.

The preceeding discussion has not considered the possibility that only a few actuators are

available at a given junction to effect control. In this situation, the number of independent entries



in of(w) would be less than the dimension of pa(w); more wave modes depart the junction than

one has actuators available. Several options have been developed for this situation[9,19]. One

might attempt to minimize a sum of squares of departing wave-mode amplitudes. One might set

selected departing wave modes to zero, while letting the others behave as they will, or one might

influence only subsets of the scattering coefficients. Each approach leads to a control of the form

of equation (23).

Ezample8 of Wavo-Shunting Control De. ign

Two examples, taken from prior published work, ue offered here to clarify the above discus-

sion. Figure (5), from reference [9], gives the open-loop scattering behaviour of the junction of

three members. One is modeled in bending with Timoshenko beam theory, the other two are mod-

eled in torsion with simple rod theory. The member models thus support four incoming and four

outgoing wave modes. As an arbitrary design exercise, a compensator has been calculated which

prevents waves from departing the junction along one of the members, that is, with reference to

Figure (5), bi = 0. The control force to accomplish this was (arbitrarily) chosen to be an external

moment applied to the junction.

An external torque, MEXT can be included in the boundary conditions of equation (20) by

introduction of an external forcing vector pf = (000 1)T MEXT. The boundary conditions are

then readily manipulated into the form of equation (19), where pS(w) is given in Figure 5. A bit

of algebra, done numerically at each frequency, yields a compensator of the form

MEXT = CA OA + CIIA rA + C-. wE + C0. IE

+ CMa ME + CvI VE + CO& OD + CrV rB (24)

where 0 (rotation) and r (torque) are the cross-sectional state variables of the two torsion members

at the junction, and w (lateral deflection), 0 (face rotation), M (bending moment) and V (shear

force) are the four cross-sectional state variables of the bending member at the junction. Sub-

scripts denote which member the variable corresponds to. Note that all eight local cross-sectional

state variables are used by this compensator. The open lopp scattering matrix of this junction

(Figure S) shows that all arriving wave modes must be countered. One of the eight compensators

of equation (24) is displayed in Figure 6 (the other seven are available in reference [19]). Note that

this compensator is both infinite dimensional and infinite in bandwidth.

Reference [91 takes this computational example somewhat further. The junction is imbedded

into a structure, and transcendental transfer functions are calculated with and without this wave-

absorbing control. The change in the structural response is dramatic.

A second example is taken from reference [10] and treats reflection cancellation for the free

end of a beam in bending. A beam, if modeled with Bernoulli-Euler beam theory, supports one
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FIGURE 6 Frequency dependence of one of the eight compensators
of equation (24). This compensator feeds local rotation at the junction
depicted in Figure 5 oack to a co-located external torque. The control
task is to set b1 = 0.

traveling wave mode in each direction. The governing differential equation permits another type

of response; near fields which decay exponentially with axial distance and have a simple harmonic

temporal behaviour. With reference to Figure 7 the deflection field can be written

v = ate'kz+'wt + a,ne k+iwt + bte-tkz+iwt + bn,-k-+cdiwt (25)

where k VwV E is known as the wave number, EI is the bending stiffness, pA is the mass

per length of the beam and at, an, bt and b, are wave mode amplitudes at the left end of the

beam, defined in Figure 7. If an external control torque, MEXT, can be applied to the beam at

the left end, the corresponding boundary conditions can be expressed in the form of equation (19)

as

bt - I~i (at) 1 +iT ME XT (26)
bn = l-i i an 2wr -i

The important entry of the scattering matrix is S(1, 1) since this term governs the creation

of outgoing traveling wave modes as a function of incoming traveling wave modes. One choice for

the compensation that achieves S(1, 1) = 0 is

MzxT,(w) =-iV'p-iAEwv(x = 0, w) (27)
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0
SCL(, 0) (28)

The compensation of equation (27) can be seen to be velocity feedback of local deflection to

applied torque. The effect of finite actuator dynamics and other sources of gain roll-off yet needs

to be investigated. The question is important to this example since experimental verification is

planned.

3.2.2 OPTIMAL WAVE ABSORPTION

A recent development[10] in the theory of traveling wave control is the proposal of a meaningful

cost function associated with the actively controlled junction. Minimization of this cost function

then leads to a control design, which since a reasonable quantity is being minimized, is termed

optimal. The proposed cost function is a weighted integral over frequency of the wave power

flowing out of the junction along the members and the power exerted by the control forces;

J = 0J (PwHPpw + pfHRpf)dw (29)

where the superscript H (Hermitian) denotes complex conjugate transpose. The first term in the

above integrand is the power flow, as a function of frequency, being carried out of the junction

by wave motion. The matrix P depends upon the characteristics of the members attached to the

junction under consideration, but is always Hermitian.[10] The second term in the integrand is a

quadratic penalty on control effort. The matrix R can be chosen by the control designer. It can

be a function of frequency but must be Hermitian.

Since outgoing wave modes depend upon the control effort, this cost function can be further

expanded using the substitution

OW= (pa pa (30)
eb pS~a + ptpf

The cost functional is minimized with respect to the control, pf by

pf = -[#THPbb#T + R]-IpH[Pb, + PbbpS]pa (31)

where the power flow matrix has been partitioned in an obvious way into square submatrices.

The optimal control, given by equation (31), differs from the control which achieves zero outgoing

disturbance, SCL = 0, derivable from equation (21) as

pf - -9- 1 pSpa (32)

In part, this difference is due to the penalty associated with control effort. If the control penalty,



R, is set to zero in equation (31), then the P6& term still creates a difference between the two

control laws of equations (31) and (32). The presence of the term P6. In equation (31) is due to

another effect. This term attempts to exploit power flow coupling between wave modes to draw

the elastic energy into the junction more effectively than merely waiting for it to arrive. The

off-diagonal entries of the P matrix are often zero, however, and it is not yet clear if this type of

"energy vacuuming" will be useful in application. The following example is intended to clarify the

situation.

Optimal Wave Cancellation at a Free Beam End

This example is a continuation of the beam example begun in the preceeding section. The

junction is the termination of a single beam, so that the power flow matrix will correspond only

to the four wave modes supported by the Bernoulli-Euler beam model;

P = 2w 2 k k/X 0 0 [ ' (33)

0 -i 0 0.

The wave modes are ordered pw = (at a,, bt b,)T. From inspection of equation (33) one can

deduce that the incoming traveling wave mode causes power to flow into the junction, the outgoing

traveling wave mode cause power to flow out of the junction, while the two near fields can cause
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FIGURE 7 Schematic of a free-free beam in bending. The left end of
beam is actively terminated by a wave absorbing controller, applying
external torques, M-xT, in response to local deflection or slope. The
right end is excited by a lateral force.

power to flow in either direction but only through interaction' with another. The in-phase portion

of one near field interac'z with the out-of-phase portion of the other near field to cause a net

power flow. One near field is created at the junction. Equation (31) suggests that ore exploit

this interaction between near fields to increase the power flow into the actively controlled junction

beyond that which is carried by the incoming traveling wave at.

When the requisite values of P, pf, and a value of R = 0 (no control penalty) are inserted

into equation (31), and the boundary conditions are used to convert to physical variables, the

optimal control becomes



MEX T = VE11/2 ~/f,-A _E (Z 0, W) (34)

which Involves feedback of the beam slope to the applied torque through a temporal 4half dif-

furetatlon".-

Leaving aside, for the moment, questions of realizability, It Is Instructive to investigate the

performance of such wave controllers in simulation. Figure 8 is a simulated transfer funiLtion

of a finite length of the beam. It is clear that the effect of compensation of thke form of either

equation (27) or (34) would have a profound effect upon the behaviour of the beam segment. Seen

from the driven (right) end, the controlled beam behaves essentially as if it extended to infinity.
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FIGURE 8 Magnitude and phase of the lateral deflection of the right
end of the beam of Figure 7 to a lateral force also applied to the right
end. The left end is controlled by a wave absorbing controller which~
either Sets SCL (1, 1) = 0, or minimizes wave power departing the left
end. Open-loop behaviour is shown for reference.



3.3 EXPERIMENTAL VERIFICATION OF TRAVELING WAVE CONTROL

The computational exarnples presented above have used vry ideal ausumptions in the deriva-

tions. In particular, no attempts wee made to account for actuator or sensor limitations. Without

exception, every compensator derived was of infinite bandwidth. The compensation In specified in

the frequency domain, and is in general infnite-dimensional.

Wave absorbing compensation with finite bandwidth will always be derivable; one must simply

trade performance against bandwidth. Several possibilities for doing this in a rational way come to

mind. One might use a frequency-dependent control penalty matrix R(w) in the optimal control

derivation with the frequency dependence chosen such that the compensation gain rolls off as

desired. One might specify a closed-loop scattering matrix ScL In equation '21) in such a way

as to create the same effect. As a last resort, one might simply roll-off the ;ompewsation with

low-pass filtering. The trade-offs of these techniques have yet te be thoroughly studied.

Whichever technique is used to make the bandwidth of the wave absorbing compensators

finite, their infinite-dimensionality will, in general, remain. Simplified and realizable approxima-

tions of such infinite-dimensional compensation can always be derived. A rational approach for

deriving such approximations has not been developed. Since the compensation is specified in the

frequency domain, - frequency domain fit with a realizable transfer function seems reasonable.

Such techniques, and their laboratory application to this problem, have yet to be developed.

To date, only one experiment in active control of traveling wave in structures seems to have

been reported[8]. This experiment attempted the cancellation of the reflection of bending waves

on a thin(1 mm) sheet of stainless steel in the frequency range from zero to 25 Hz. The tip

deflection could be sensed; actuation of lateral force was possible. The ideal compensation involved

feedback of the tip deflection to the lateral force through a tempoial 'half differentiation", as in

equation (34). Several analog circuits were used to crudely approximate this ideal actuation. The

compensation actually achieved was finally very similar to a previously calculated optimal velocity

feedback.

The performance achieved by the approximate wave-absorbing compensation in this exper-

iment was very comparable to that achieved by the optimized velocity feedback. Although the

two concepts represent alternative approaches to the problem of active damping of structural

vibrations, this experiment did not permit a solid conclusion of their relative merits.

3.4 POTENTIAL EXTENSIONS OF TRAVELING WAVE CONTROL

The active control of traveling waves in structures is a very recent development. Only relatively

crude theory has been developed, and an even cruder experiment has been conducted. Many

extensions to this work can be considered:



1 The sensitivity of traveling wave controllers to errors in the local acoustical models should be

investigated. A first order sensitivity to first order perturbations in the model is expected.

2 Explicit account might be taken of actuator and sensor dynamics during the design of wave

controllers. It is anticipated that the specified wave control compensator will then include an

inversion of these dynamics.

3 The approximation of specified wave control compensators with analog circuitry or digital

filters should be studied. It seems likely that realizability of these compensators will be

improved by measuring the approaching wave disturbance some distance "upstream" of the

point of actuation. With such precognitive sensing, the inversion of actuator and sensor

dynamics may even be possible.

4 Adaptation of wave controllers is possible. A signal upon which to ba~se the adaptation might

be the level of the outgoing wave mode which the control is designed to cancel.

5 D( 1~opment of controllers based upon the propagation behaviour of members rather than

scattering behaviour of junctions is a possibility. Such work would have to face the problem

of non-existence of distributed actuators and sensors, and should perhaps focus on periodic

truss beams.

6 Cooperative behaviour among several wave controllers and/or a global controller based upon

a low-order modal model might be studied.

7 All the control schemes proposed must be realised in hardware to be useful. Such experimental

work is perhaps the most important missing aspect of the work performed to date in active

control of structural acoustics.

4. SUMMARY

This paper makes the point that high performance active control of structural dynamics over

a bandwidth including many lightly damped modes is impractical if the control design is based

upon a model derived via modal analysis. The fidelity demanded of the model is simply beyond

that achievable with modal analysis. The analysis technique is too sensitive to small perturbations

and uncertainties in the model parameters.

Alternatives exist. An important possibility is passive damping ini conjunction with active

control of a small subset of the lower modes. Active damping through direct velocity feedback

can also be used. If active control of a lightly damped structure over a bandwidth including many

modes of vibration must be accomplished, then local, strucw~rs&l acoustic models of the response

are suh *'.e for the control design. This leads to local traveling wave control.

The paper presents a formalism for the synthesis of traveling wave models of a particular

class of structures; networks of slender elastic members. A review of control design techniques



applicable to the control of disturbance propagation in such structural networks is presented. The

conciusion is drawn that the theory is very incomplete, and speculations are offered as to future

developments.
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