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A. Introduction

I. Nature and Scope of Effort.

The Acoustic Model Evaluation Committee (AMEC) has

been concerned with the evaluation of various acoustic models,

the principal model types being transmission loss and ambient

noise. Work on validation of transmission loss models has beeno.

done by the Panel On Sonar System Models (POSSM) which has run

a number of well-known transmission loss models against the same

set of environmental inputs (ref. e). Throughout this effort,

I, a number of technical concerns have arisen regarding transmission

loss model validation (refs. e and i). For ambient noise models,

however, model validation seems to be restricted to either model

development or the validation of a single model against a single

type of environment (e.g., acoustic assessments). NORDA 320 has

tasked the contractor "to assist in the formulation of an initial

evaluation methodology for low frequency ambient noise models".

In this report, we seek to establish a more general framework for

ambient noise model evaluation.

This report addresses several considerations which

will impact ambient noise evaluation, and provides an Initial Model

Evaluation (IME) methodology for omni and horizontally directional

ambient noise models. Inasmuch as ambient noise model evaluation

for vertically directional models or temporal noise models involves

both the criteria given in the IME and a number of other considera-

tions unique to the models assumptions, it was considered better

to address just the most widely used types (i.e. omni and horizontal

directionality noise models) in this effort. Furthermore, considera-

tion is restricted to the two major mechanisms of low-frequency

noise: shipping and wind. Noise due to seismic, biologic and
other meteorologic phenomena is assumed to be minor or negligiable

at the frequencies under consideration. Since readers with different

interests may read only those sections pertinent to them, there is

some duplication of material between sections.
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II. Fundamentals and Approaches.

If one were to do an ideal model evaluation, the model

would be run on all types of inputs scenarios and its results

would be compared with the "true" results for those sets of inputs.

In ocean acoustics, this is blatently impossible. Environmental

inputs are only known at certain points, and from there they are

extrapolated throughout the ocean basin. Second, the physics of

the model is a simplification of what we scientifically consider

reality to be. A third source of difficulty is with the computer

implementation of the model itself, which is a mathematical sim-

plification of physics. Finally the output cannot be compared

* with any "truth", for all that is available is a set of acoustic

measurements taken at a point, which are subject to a number of

measurement and processing errors. Additionally, the number of
possible cases necessary to thoroughly check this model would be

phenomenal.

Out of this primeval chaos the acoustic modelers seeks

to bring order. By judicious selection of cases, one may attempt

to insure that the environmental and acoustical fields are well

represented by the data, both qualitatively and quantitatively.

Also, one may ask for less than perfect agreement. The comparison

of model vs. data is often subjective, ranging from "It looks great"

to "Oh no", thus a set of objective criteria must be structured.

The extrapolation of model validity based on one or two acoustic

sites to the entire ocean basin is a separate problem and this is

often treated subjectively as well. Due to the lack of resources

and desire to obtain measurements across the entire acoustic

basin, such extrapolation is a necessary procedure, but it should

* be performed only when it can be reasonably justified. This is

not to denigrate subjective analysis; it is a powerful tool when

it incorporates the environmental and acoustic insights of an

expert. In general, such learned subjective analysis is a pre-

requisite to a meaningful quantitative objective analysis.

6.
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If one is given a model, there are two broad types of

approach to its evaluation. One may approach the model as a

scientist, asking the question "How well does the model perform

scientifically", implying both a valuation of performance in

comparison with other models and a valuation of performance of

the individual components. Or one may take the approach of the

end user, and ask "How well does the model estimate its principal

outputs" implying a comparison against the specific system require-

• <ments. This is not a dichotomy between pure science and applied

engineering, rather it is a decision based on the use and possible

N. uses of the model. A model such as FACT which is used by a number

of organizations to compute transmission loss, and is a component

of a number of large computer models, requires a scientific evalua-

tion to determine the limits of performance for a wide variety of

situations, thus the former approach is necessary. On the other

hand, a model whose sole function is to serve in one specific

system model, which is integrated into that model to the degree

that it is untenable to remove it for future application, need

not be evaluated in such a rigorous manner. If the overall system

evaluation proves acceptable, under the full range of possible

environment conditions for which the system is considered, than

the individual components of the model may be considered to have

performed acceptably, even though their performance by scientific

p standards may be rather poor. There are a number of instances

in which peculiar types of model deficiencies in submodules tend

to cancel themselves out, or have negligable effects, when in-

corporated in much larger models. For example, in a system

performance model, both signal and noise are subject to transmission

loss. Thus while a poor transmission loss module may lead to poor

ambient noise predictions, the resulting SNR may be acceptable, due

to certain types of errors canceling themselves out. Similarly

in computing directional ambient noise the shipping field may be

so evenly distributed that a range-averaging model (with little or

.

N .. O ". 1



no convergence zones) proves just as acceptable as a more precise

model. These two approaches,of course, may be combined into a

more flexible model evaluation methodology in which individual

components such as transmission loss or ambient noise models are

evaluated individually and then they are judged acceptable or

unacceptable for the system model based on system requirements

for accuracy of individual modules.

Evaluation obviously is based on the output of the

model, such as components of transmission loss, transmission loss

itself, and ambient noise. Thus the methodology developed will
be dependent on the particular quantities produced. Modules which

form the basic building blocks of larger models may produce out-

puts that are not easily identified with final system performance

parameters, and thus whose influence may be difficult to determine

on specific situations. Typical modules which produce only com-

ponents of a measurable quantity are: transmission loss produced

by normal mode calculations (assuming an infinite loss), bottom

loss functions (as a submodule), or the vertical directionality

- patterns of the ship radiated noise level.

In evaluating a particular ambient noise model, one

* is evaluating sufficiency, accuracy, and stability of its specific

outputs. Hence, depending upon the type of evaluation desired,

one may work either from the final model output, or may demand

an intermediate result from the individual modules. The types of

outputs themselves differ considerably between the ambient noise

models. Additional outputs needed for validation may include

transmission loss curves, ship tracks, or decorrelation times.

The plethora of possible outputs produced by some models tends

to overshadow the outputs of primary importance.

One aspect of module evaluation that cannot be ignored

is the performance of the computer system itself. As oceanographers

and acousticians, we tend to judge performance on the ability to

replicate various underwater acoustic or oceanographic phenomena.

,5I
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However, uses of these models either as part of larger models, or

by the fleet, often requires reasonable running times and hardware

requirements. Computer parameters such as core requirements,

execution time, ease of software modifications and adaptability

to fleet computers do not properly play a part in the acoustic

or oceanographic evaluation, but these considerations play an

important role in comparing the computer performance of one model

against another (refs. e and k).

A
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III. Ambient Noise Models and Their Outputs

Although individual ambient noise models may differ

significantly in their underlying science, order of computation,

and methods of computation, all low frequency ambient noise models

can be broken apart into component modules, such as those listed

below:

* Ship distribution fields, either discrete or

densities, along with allied ship acoustic

information.

e The transmission loss module, which may be ray

theory, normal mode theory, parabolic equation,

or other type of model.

o Environmental field input module, containing wind

speed, bathymetry, bottom loss, sound speed pro-

files, and any other environmental information

needed to fully describe the ocean region for

the transmission loss or ambient noise module.

* A module for beam patterns. This would convolute

the ambient noise pattern with the beam pattern to

produce the received beam noise. 1
o A summation module, which sums all noise sources

according to their position.

Not all models have these functions broken out separately;

indeed it is quite common for one computer subroutine to perform

several functions. Rather, they have been broken apart in order

to facilitate discussion and identify problem areas.

The shipping distribution module is essentially an

input routine, which requires the ability, based on the geographic

position of the receiver, to determine how much shipping information

is needed and where the appropriate boundaries (either real, such

as beaches, or acoustic, such as seamount chains) exist. Also,
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data on ship movement (if this is a temporal noise model), ship

radiation pattern (which may be omni, dipole, horizontally dir-

ectional, or vertically directional), and nature of the field

(discrete or density) is needed. The transmission loss module

will require a large number of environmental data items, and

this is usually the principal data input.

The beam pattern module is normally quite simple,

Oi.e., the beam patterns are specified either from a file or

internally. But linear arrays are sometimes not linear and

not all hydrophones continue to work at their original calibra-

tion setting, thus the beam pattern produced by an array in

actual use may differ significantly from the theoretical beam

pattern it was designed to have. Furthermore, differences in

the acoustic intensity of both signal and noise along the length

of a large aperture array may be significant, thereby completely

altering the effect of signal processing based on the theoretical

beam pattern. Most long arrays are designed on the assumption

that all incoming acoustic energy is propagated in planar wave

fronts of uniform intensity: measurement during exercises in-

dicates that this is not always the case. Thus, the beam pattern

module, while it may be simple, cannot be overlooked in terms of

ambient noise model evaluation, for the real world may be incredibly

complex.

The summation module is, fortunately, relatively

straight-forward even for temporal noise models. However, the

second order statistics of temporal noise models are highly

sensitive to the tracks given for the discrete ships in the ocean

area, and it may be difficult to separate problems in summation

from problems with the tracks.

The type of ambient noise model varies according to

application: Omni noise models are used for predicting performance

of sonobuoy fields, horizontally directional models are used for

arrays and fixed systems, vertically directional is necessary

'VW,



for vertical arrays, and temporal noise models find application

to extremely-narrow-beam systems. Within temporal models, one

may discriminate between analytic and replicative models, i.e.,

analytic formulation and those which keep complexity but usee

multiple replications (ala Monte Carlo) to achieve statistical

validity. Also with temporal models there are a number of types

of output available: distribution, first moment statistics,

second order statistics and specific probabilities (e.g., beam

free time). The number of ambient noise models existing is

extensive, hence no overview or synopsis of them will be attempted.

It suffices to say that all models functionally fall into one

of several categories: static models (omni, horizontal, vertical

directionality), temporal analytic, or temporal replicative.

Since the types of inputs for these models has been discussed

above, we will proceed to the more significant problem of the

types of outputs.

For convenience for the remainder of this report, we

will define a number of terms relating to the outputs of the

* ambient noise models. Preliminary to this, we note that all

these quantities are subject to the following general qualifica- 4
tions:

e noise level may be at fixed frequency or set of

frequencies.

* acoustic levels may be either continuous wave or

broadband, depending upon the transmission loss

module and the ship spectra inputs.

* noise may be at a fixed point or set of points in

the ocean region.

When making comparisons it is always necessary to

consider these qualifiers and their value or values. In all

equations given, the overscored quantity will represent the

intensity of the level, and that without overscore represents

%-i %~*~ ,** %-* * ~ ****~ ~ I ~ * . d



the dB equivalent. For example, N(.) represent noise in dB

while N.) the same level in intensity, so that

N(-) = 10 log NC-)
.4

In regards to omni noise, we make the following symbolic

definitions. Let:.4

N be the omni noise value produced from a stationary

AN model

N(t) be the omni noise as a function of time t E(0,T)

from a temporal AN model

F(x) be the distribution function of omni noise from a

statistical AN model

M be the mean value of the distribution of omni noise

from a statistical AN model

V be the variance of the distribution of omni noise

from a statistical model0
It should be noted that mean and variance are dependent

upon the system of unit used, i.e., intensity or decibels. This

depends upon the ambient noise model under consideration. For

purposes of this discussion, it will be assumed that mean and

". variance are computed in intensity rather than dB. Use of the

median rather than the mean eliminates this unfortunate ambiguity,

* ., for the median is equivalent whether calculations are performed

in intensity or dB. While this is fine for first order statistics,

it is not particularly helpful for the second order moments. In

the case of a horizontally directional ambient noise model, the

following symbolic definitions are made. Let:

N(e) be the noise in the horizontal sector at azimuth e.

Since this quantity is dependent upon the sector

width, let A8 be the sector width in radians.

S|
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N(Ot) be the directional noise at azimuth e as a function

of time, from a temporal model.

B(e,t) be the noise measured on a beam pointed at angle 6

(and, of course, its mirror image) as a function of

time.

M(M) the mean directional noise at azimuth 6, from a

statistical AN model. As above, this may be in dB

or intensity.

V(6) the variance in the directional noise at azimuth e,
from a statistical AN model.

In the case of vertical directionality one may define

the quantities

in a manner similar to the horizontal case above.

The temporal ambient noise models have quantities

*" defined in a manner similar to the static case, but with a depen-

dence upon time. However, those quantities of greatest interest

in these models are not the noise quantities, but rather the beam.

noise statistics. Typical outputs for beam noise statistics are:

" the probability of the beam being free, or below

a preset threshold. In this case the beam "sees"

no ships, or if a threshold is used a small number

of distant ships.

* the mean beam free period; i.e., the expected value

of the interval in which the beam contains no ships.

e the mean time between beam free periods; i.e., the

expected value of the intervals during which the

beam contains ships.



. the distribution function of the beam free time,

i.e., the one dimension distribution function of

these time intervals.

* the auto correlation of beam noise, i.e., the

correlation of noise upon a fixed beam at different

times.

* the cross correlation between beams, that is the

second order moment relating to the noise on two
distinct beams at the same or different times.

Of the quantities defined above, there are several

interrelationships. It is assumed that the ambient noise models

under consideration take into account these fundamental relation-

ships, hence it is generally unnecessary to test in order to insure

that they hold. First we consider the relationship between the

directional noise and the omni noise.

2r n/2

N = 2AeJ N(e)dO = A ( ) d

0 -7/2

In order to relate the horizontal directional noise and

5the vertical directional noise fields, it is necessary to know

the two dimension (spherical) noise field. Let NCO,f) be the

spherical noise field in intensity per steradian. Than the re-

lations between these directionality functions is given by

" Tr/2
' NO) = -J COS * N(e,#) d#

= cos _ N(6,0) de



For temporal models there are further relationships

between the data. As the time interval over which the measure-

ments are made gets large, the averages of the temporal and

statistical quantities should approach those outputs of the

stationary model. This is based on the Ergodic Theorem, which

is generally used in temporal models, although its underlying

assumptions are rarely, if ever, fulfilled. Thus in the limit

the temporal noise, both omni and directional should average

out to the values calculated in the static case.

lim 1 T N(t)dt = N
T 1 c T R .t

0

_K i im 1 rT
T m T N(e,t)dt = N(O)

0

V li-

T-i x F(dx) = N

where in the last equation, the distribution function F is an

implicit function of T. Again this does not provide a method
for checking models, for the models generally use these relation-

[ ships in the calculation.

The final product of ambient noise model is often

riot the noise rose itself, but the noise as seen on the various

beams of a surveillance system. Conversely acoustical measure-

ments are not of the noise field per se, but of the noise seen on U
the beam of the array.

U
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Measured noise fields are generally obtained by de-

convolution of the measured beam noise. A number of the tests

to be considered for the horizontal directionality of the noise

roses apply equally well to the horizontal beam noise pattern.

However, there are several concerns in regard to making comparisons

based on the beam noise outputs as opposed to the noise rose

.l, itself.

First the beam patterns in most towed array or fixed

system models assume that the particular beams are looking out in

vertical planes at specified angles from the axis of the array.

In reality the main response axis of these beam patterns lie in
cones rather than vertical planes. Hence discrepancies in angle

*can be introduced and ships that the model places on one beam

may actually be seen on a different beam due to this geometry.

For RSR ray paths the arrival angle are generally within 300 of

the horizontal, thus the effect of this conical pattern is minimal

except for extremely narrow beam systems. For bottom systems

however, the acoustic energy may have hit the bottom in the locality

of the system, changing the ray paths and resulting in a greater

angle of arrival. Similarly for all linear arrays, nearby targets

can have bottom bounce propagation which could arrive at angles

differing significantly from the horizontal. In light of these

Pconcerns, the beam noise patterns should be used with care in
regards to end-fire and near end-fire beams. This conical main

response axis pattern is significant if the end-fire beam is

looking almost parallel to a shipping lane. It should also be
pointed out that in the transformation from horizontal directional

noise roses to beam noise patterns, some information is lost

(the amount of information being dependent upon the axial symmetry

of the linear array and the number of tows at different directions

made with the array). Thus agreement between measured beam noise

patterns and model beam noises level does not imply that there is

a corresponding agreement between the actual noise roses and the
- model noise rose.
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IV. Perturbations

Even when one is dealing with a static ambient noise

model, the perturbations in the environment are significant. The I
static model takes a fixed shipping distribution, a fixed environ-

ment and fixed source levels, but even if the model were perfect,

the result need not correspond to the acoustic measurements made

during an exercise. There are a number of fluctuation mechanisms

which can affect ambient noise:

* fluctuations in the sound speed profile due to

weather patterns, mixing, currents, turbulence,

internal waves or diurnal phenomena.

e changes in source and receiver positions due to

local ship or array motions, doppler effects,

changing aspect angles and movements in or out

of the ocean area.

e movement of both target and background noise sources

across the main response axis of the various beams

and their side lobes.

. movement of a towed array away from its theoretical

straight-line, level geometry.

e short-term variations in wind generated noise.

a changes in transmission loss for narrowband signals

due to coherence pattern of multipath arrivals. As

the various noise sources change position relative

to the array, their coherence pattern in a multi-

path environment may quickly alter.

The time scale for these mechanisms vary significantly,

and for any particular mechanism there is often a wide range of

scale. Some of these, such as nearby ships crossing the main

response axis of a beam, or fluctuation in transmission loss due

to internal waves, turbulance or microstructure phenomena may be

on the order of minutes. Others, such as diurnal phenomena have

a period of a day, and weather phenomena may have periods of

several days.

% V



The effects of these different mechanisms are usually

all lumped together into some sort of acoustic fluctuation, which

is often described as a Gaussian process with zero mean and some

standard deviation. This process is then assumed to quickly de-

correlate itself, so that for many models the environment is

assumed to be equivalent to a process utilizing several independent

snapshots. As noted above, the time scales of these fluctuations

vary from minutes to days, thus it is not possible to describe

this in terms of a set of independent looks. For if one assumes

a short time interval between the "snapshots", there will be a

correlation (for the long term fluctuations are still slowly

occurring). If one assumes a long time interval is necessary

before independence may be achieved, then one is losing the

radical effects of the short term fluctuation, for they would be

averaged out or missed completely. While a static ambient noise

model will give some sort of estimate of the mean ambient noise

field, it is difficult to determine the second order statistics

(e.g., variance and autocorrelation) from such a model. More

relevant to the problem of model validation, however, is the

effect of using measured data in such a static model. For the

measured data itself is often obtained using integration over a

period in order to smooth out small fluctuations. If acoustic

measurements are integrated over too long of a time period,

effects such as ships moving across the main response axis of

the beam will be integrated out. Such loss of resolution of

acoustic effects can only have adeleterious effect on a static

ambient noise model. On the other hand, if very small integration

times are used for acoustic data, the acoustic level cannot be

established with as much precision.

During exercises acoustic measurements may have inte-

gration times from a few seconds to a significant fraction of a

minute. When dealing with data collected by operational systems,

integration time may be on the order of minutes. Thus there is a

wide spread in integration times associated with measured data.

KfIz i %..W
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When computing the variance of measured ambient noise

data after the fact, e.g., in a model evaluation rather than a

rtduction of the raw data, one may compute the variance of the

measured noise values in a time period. Unfortunately, if the

decorrelation times of the acoustic field do not compare well

with the integration time used in data processing, than the es-

timate of variance may be significantly in error. Appendix A

deals with this method of computation of variance, and the effects

of a mismatch. The model given in Appendix A may be used to

determine the validity of second order moments calculated in

this manner and the effect of their use in ambient noise model

evaluation.
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B. Considerations and Comparisons

Before getting into the specific comparison methodology

it is wise to state a few elementary assumptions. In the com-

Sparisons of model vs model or model vs data, it will be assumed
that one is comparing equivalent data, thus individual comparisons

require that both sets of noise values be for the same depth,

*" same environment, and (in the case of horizontal directionality),

the same angular grid. Interpolation of noise fields to allow

comparisons between data at different depths or other conditions

is possible. In light of the uncertainty of ambient noise model
evaluation, however, it is far superior to not attempt such inter-

polation. Since we are not comparing data vs data, but a model

N. against data or another model, the model can be re-run at the

corr-ct depth, environment, etc., to match the input parameters

of the historical data. Thus all such interpolation of noise

fields may be eliminated from consideration. Furthermore, if

*. the deconvolved noise field is available, it is strongly suggested

that this be used in the evaluation. The beam noise patterns

may be used in addition to these, and would certainly be used

when the deconvolved noise field data was questionable. Thus

in the following test, although we may speak of just the noise

rose, it should be envisioned that the test is applicable to both

the directional noise field itself and the beam noise values. In

making comparisons of ambient noise models one must carefully dis-

tinguish between stationary models (i.e., those which predict noise

field independent of time) and temporal models (i.e., those which

give time histories such as statistical beam noise models).

In evaluating the ambient noise model it is wise to

consider the transmission loss as a module, thereby separating the

evaluation of the transmission loss component from that of the

ambient noise calculation itself. The overall accuracy, however,

depends upon both components. It is preferable that the trans-

z.4 mission loss module used in the ambient noise model be one which

has already been subjected to a thorough validation. If the

pu
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transmission loss module as a stand-alone model has not been

through such an evaluation, than one must attempt to validate both

the transmission loss and the remainder of the ambient noise model

at the same time. This can be very difficult given the extreme

variation in the environmental condition and resultant trans-

mission loss properties. In the long run, it is much easier to

perform a separate validation of the transmission loss model

against a large number of realistic environmental inputs and ex-

amine the resultant calculations of this module separately before

attempting to evaluate the ambient noise model as a whole.

For a stationary ambient noise model, one may compare

*. the model with itself (using the laws of physics) , with other

Pmodels (using various criteria to judge which model performs

adequately in various scenarios) and with measured data. Of

these three types of validations, none are absolute in the sense

of providing a perfect test. Both the model and that which it is

being compared against differ from "truth", thus any sort of test

has a certain level of uncertainty. By judicious use of different

models, different inputs and measured data, it is possible to

design a comprehensive methodology for stationary ambient noise

model evaluation.

When one is dealing with temporal ambient noise models,

however, there are additional considerations. One now deals with

either distributions and their statistics (such as first or second

* omoment of beam noise), or levels (such as the probability of the

beam being free, the beam free time, mean time to be free).

From SAI's review of temporal beam noise models (ref. k) it is

seen that the models differ greatly in regards to underlying

assumptions, applicable time scales and types of outputs. Thus

it is rather difficult to give a general approach to model evalua-

tion of temporal ambient noise models. Specific temporal beam

noise model evaluations have been done however (e.g., ref. h).

0.*
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- V. Comparison of Model Against Itself

The starting point of any model evaluation should be

the problems of model stability and model consistency. In this,

one begins with basic concerns: items which should have been

checked during model development. For a horizontal direction-

* ality noise model, the omni level should be the sum of the

horizontal directional noise levels. The ambient noise model

should work on elementary test cases, such as isovelocity and

isogradient profiles, flat bottom, uniform ship distribution

within the oceans basin, and infinite bottom loss. The trans-

:j mission loss module should have reasonable accuracy, i.e., it

should have been subjected to some test before the incorporation

in the ambient noise model. Obviously,without valid results on

tests such as these, it would make no sense to talk about per-

forming an ambient noise model evaluation.

The first significant step in the model evaluation

is the elementary tests. If the transmission loss is changed

by a constant amount, then the ambient noise should reflect this

difference. Similarly, if the radiated noise level of all ships

is increased by a constant factor (i.e., XdB), than the output

. should also be changed by XdB (except for the wind generated

components of the noise). The shipping field used, whether

-~ discrete or continuous, may be increased by constant factor (X%).

Again the ambient noise output should reflect this increase.

While it is not anticipated that these elementary tests will

.- detect any problems in the models, they form a good base for

initial evaluation. For the solutions may be computed exactly

and they give the model evaluator familiarity with data preparation

and model operation on the particular computer involved.

The next level of tests to be performed deals with

exact solutions. A particularly vexing question for acoustic

model evaluation is the role that "truth" must play. As pointed

out in the POSSM report (ref. e) there are a number of basic

problems in attempting to compare transmission loss models vs.
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the "truth" of the real world. Since transmission loss is the

most complex component of ambient noise model, the same considera-

tions there apply to this model evaluation. The physics of the

model i.e., the wave equation or ray acoustics, is not a correct

representation of reality, however, close it may be . Second,

experimental data is incomplete: one does not measure everything.

For example the noise level for each particular ship in an ocean

basin is not known, instead a class spectra is generally used.

Phenomena such as ice noise, internal waves and turbulence are

generally ignored. As Keller has pointed out (ref. d), the various

mathematical formulation of acoustics (wave theory, ray theory,

asymptotic expansions) all fail to reflect reality in certain
instances so that special extensions to these theories are then

necessary. Also the use of a CW model based on fixed frequency

calculations in modeling broadband system performance is a con-

sideration. As Lauer has noted (ref. e) use of incoherent infor-

mation at a fixed frequency has not been proven equivalent to

-broadband acoustic pro2agation . Despite all these drawbacks,

measured data must still serve as a backbone for noise model

evaluation and indeed any acoustic model evaluation. Exact

solutions of all problems may be used as supplemental checks and

as basic checks or to investigate phenomena believed due to the

physical basis of a model. Exact solutions however, have a

tendency to be somewhat simplistic when compared with the oceanic

environment. Nevertheless for questions of model sensitivity and

computational stability these exact solutions are often adequate

to determine the models performance. For ray trace models there are

exact solutions which may be perturbed in special ways, but always

leading to analytical results (refs. a, m & 1). For normal mode

models sensitivity and stability may be investigated by probab-

listic methods (refs f, c and b). Thus, the ambient noise model

under consideration should be exercised for some exact solution

cases.
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The cases mentioned in the elementary tests above

', '. should certainly be passed by any models; the exact solution

tests used here would be more complex. Unless one is dealing

with a strictly shallow-water model ray theory may be used for

the test case, realizing that ray theory has drawbacks at places

such as caustics (cf. ref g). It is suggested that a flat bottom,

parabolic profile environment with receiver on the sound channel

axis be utilized as a test case. This case has the advantage

that the profile is reasonably realistic, the ray paths are

" -. trivial to calculate, and the transmission loss along any ray

path is reasonably tractable. An exact solution ambient noise

test case is developed in Appendix B. A consideration in the

testing of exact solutions, of course, is the concept of the

spherical earth. While most transmission loss models assume a

4 '  flat earth for the radial run, when an ambient noise model is

exercised over a large area (such as the South Pacific Ocean),

there is a significant difference between the area of a radial

sector computed on a spherical earth and that of a flat earth.

If the ship distribution is given in terms of density ratier than

discrete ships, this in turn affects the ambient noise received

in that radial sector. For distances under a few thousand kilo-

.[ meters, this effect is negligable, but the world is round, thus

one might insist that the exact solutions used reflect this

Wspherical earth. The transmission loss modules used in most

ambient noise models do not have a spherical earth correction

in them. The exact solutions (in Appendix B), are based on a

flat earth, for the purpose of an exact solution is to test how

owell the computer model reflects its input physical assumptions,

not how well those assumptions reflect the real world. Purists

may further argue about running the transmission loss from the

receiver to various ranges, for the transmission loss is not

quite reflexive but it is influenced by factor which is the square

of the ratio of the sound velocity at the source to the sound

I o
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at the receiver. As the ratio of these two quantities is very

close to one, and ambient noise model results are rarely used

past the numeric significance of 1/10dB, this consideration may

safely be ignored.

In any comparison of model vs either itself, data,

or another model, it is necessary to consider the sensitivity of

the items being compared. In particular, one should understand

the sensitivities prior to comparisons. For ambient noise model,

it is wise to perform a perturbation analysis. As noted above,

there are a number of inputs to an ambient noise model, hence a

number of these parameters (those which are not known precisely)

may be perturbed. However, we concentrate on just two types of

perturbation: environmental inputs to the transmission loss

module and shipping signatures/distribution.

In regard to the environmental inputs, the theory of

geometrical acoustics is extremely sensitive to small perturbations,

e.g., potential errors in measurements or changes in the environ-

ment over time. Similarly normal mode models can show extreme

sensitivity in terms of small scale (e.g., coherence) phenomena.

In order to perform a scientific model evaluation, it is extremely

important when describing the acoustic field and its associate

characteristics to give not only a mean value of the quantities

of interest, but also to provide the statistics of those quantities.

Since geometric acoustics is used in a number of transmission

loss modules, one cannot gloss over the sensitivities of these

models. Geometrical acoustics may be described by a series of

non-linear differential equations and due to this non-linear form,

standard perturbation methods for obtaining statistics do not work.

That is, a small change in the environmental field may cause a

large change in the acoustic field. With such a set of differen-

tial equations, movable singularities arise, hence theoretical

bounds are generally difficult, and never global. Although

geometrical acoustics is an elementary application of asymptotic

* expansion methods, when these expansions are carried through to

investigate the statistical properties, divergence appears.
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Another variation is to examine geometrical acoustics as a

S""perturbation of a two point boundary value problem (the source

and receiver being the two points). Unfortunately, due to the

existance of caustics (which may be thought of as the locus of

places where the Riemann surface of the wave function bends back

* .upon itself)such boundary value perturbation methods will not

work. Methods for perturbation of wave theory solutions, while

more stable, tend to be very difficult (refs. f and c). In terms

of the complexity of the real world, the state of our acoustic

models, and the requirement for reasonable computer run time, it

would appear that the best way to perform a perturbation analysis

is to simply generate a number of perturbed environments (i.e.,

sound speed fields) and exercise the transmission loss module on

-, these, noting the sensitivity by elementary statistics (ref. m).

- . It should be noted that these perturbations should be such that

not only is the difference in the sound speed profile in any

given depth small, but the differences of both the first and

- .second derivatives of the profile at any given depth are also

small. This implies that microstructure, turbulence and mixing

cannot be accurately modeled by this method, for their resulting

statistics would be invalid.

The other consideration of sensitivity is the ships

themselves. Shipping in an ocean can be described by a stochastic

process. This process is such that, if an area in the ocean

satisfies four assumptions, then the number of ships in that area

is a random variable whose distribution may be approximated by

a Poisson law. The four assumptions are:

e the area is small in comparison with the entire

ocean
, the area is sufficiently far away from major ports

that ships enter and leave the area independently

(that is,the ships are not affected by docking

schedules or by harbor waits)

*.%
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* the area does not have a "weird" shape (i.e., it

can be thought of as the union of a finite or

countably infinite number of either circles or

rectangles). This eliminates unusual types of

sets which occur in measure theory. Any area

which is of practial use will satisfy this con-

traint.

e the area is large enough so that if two ships are

in it, their movement will not be dependent upon

one another (i.e., both ships can exist in the

area without taking evasive action to avoid im-

~. J. minent collision).

V- A Poisson distribution has the property that the mean is equal to

the variance. Hence it is seen that for most open ocean areas
the number of ships contained therein will fluctuate significantly

with time. Also, the characteristics of these ships will change.

It is possible to model the ship population as a sum of the dif-

ferent classes of ships, where each class has a Poisson law with

some particular parameter for that area, and the distribution of

distinct classes are independent. Now one is dealing with a

(still Poisson) distribution of ships, but with different radiated

levels for those ships. Numerous groups have measured ships

spectra levels, and obtained differing results. Of particular

significance are measurements made by NAVOCEANO on two sister

ships (ref. j) which turned out to have significantly different
spectra. Thus there can be significant changes in the horizontal

directional noise rose due to such ship movement. Fortunately,

for very large areas (e.g., the North East Pacific Ocean) the

number of ships is so large that there are no "holes" in the

directional noise pattern and, for reasonably wide beams, there

are a reasonable number of ships on the beam. This implies a

certain stability to the statistics which are lacking for low

ship densitites.
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The final type of test considered is that of field analysis.

i Given a point ambient noise model (i.e., a model that computes the

noise at a particular point) one may run the model on a set of close

, points and intuitively one would expect the ambient noise to be 'close'

Specifically, if one assumes that ambient noise is computed at nine

points (as in Figure 1), the bathymetry is flat in the region of

these points, and there is no local shipping within the grid, then

. one should expect that the ambient noise at the middle point should

not vary greatly from the values at the eight exterior points. One

can construct cases where the ambient noise at the center is vastly

different from that at the other points, e.g., by concentrating the

shipping distribution at caustics or by changing the Sound Speed

9 Profiles rapidly with range, but under 'normal' conditions there

should be a relation. Appendix C develops bounds for the directional

M ' noise at the center point based on the bounded variation of shipping

density, bounded variation in transmission loss, and change in en-

vironment. For various cases, these inequalities yield computable

-. bounds which may then be checked against the model runs. This

procedure may also be applied to field ambient noise models (which

compute noise at many points), but one would not expect it to be a

very significant test in this case.
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VI. Comparison of Model vs. Data

A major consideration in the comparison of a model

against measured data is the credibility and applicability of

the data. The first concern is to insure that all inputs are

made for the same time and area. It will not be possible in all
i cases to have all data meet these specifications: in such cases

it will generally suffice to insist that important inputs be at

the same time and area and other inputs taken under similar en-

vironmental conditions. This entails a further test to verify

similarities for data from different times (e.g., same season but

different year) or different areas (e.g., similar ocean basins).

One must be aware of the effect of using historical sound speed

profiles over a broad ocean basin to drive the ambient noise model.

For profiles measured at the time of the acoustic measurement

collection will generally be available only at a few sites in the

ocean basin. It is impossible during an acoustical exercise to

obtain profiles for an entire ocean basin. Profiles along a radial

run will generally be available, and these may be used for trans-

mission loss perturbation runs (i.e., using both measured and
historical profiles along that track) in order to investigate

* sensitivity to the sound speed profile measurements. A second

measurement consideration deals with the shipping distribution.

Shipping distributions during the exercises are obtained primarily

using aircraft, and several hours are needed to measure the field.

During these hours, however, the ships themselves may move a non-

trivial distance, so that the horizontal noise field may be

altered somewhat. Exercises in which ship course and speed were

obtained as well as position alleviate this. Exercises in which

the ocean basin could not be covered by aircraft for ship sur-

veillance have the additional uncertainty of using historical

ship distributions rather than the particular distribution of

shipping near the time of the acoustic measurement. Over the

course of an acoustical exercise, which may last several weeks,

transmission loss may change dramatically due to a wide range of

environmental anomalies: a transmission loss measurement made

e , er eW CW -
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*. at the beginning of the exercise may not reflect the detailed

structure present at the close of the exercise. Another general

consideration before detailed comparisons are made is the nature

of the acoustic measurement parameters. Parameters such as type

of signal (CW or broadband), processing details, signal to noise

ratio, and calibration accuracy allow one to perform a more in-

telligent assessment of the collected data. While such parameters

*" are well known at the time of the exercise, over a period of

" years the exact details tend to be known only by those responsible

for the data reduction and are buried in obscure Data Analysis

plans. Effects of integration time of both the measurements and

the environmental processes should also be considered at this

point.

A general approach to model vs. data comparison is to

first verify that the measured data is sufficiently stable to

warrant comparison with models: If the data doesn't agree with

itself, one can't expect it to agree with the model. Assuming

self consistancy and stability of the data, then comparisons

with omni measurements should be made, followed by directionality

measurements. If the omni levels show serious disagreement (more

than would be due to uncertainties in ship radiated noise level),

it is questionable whether directional noise comparisons would

be meaningful.

In regard to verifying the stationarity of omni level

acoustic measurements, the basic statistics considered are the

mean and variance of N(t). Examination of the variance of this

process is, of course, dependent upon the integration time used

in the measurement (see Appendix A). It is also valuable to

produce a trace of measured noise with time: this may allow one

to determine by "eyeball analysis" whether N(t) appears to be a

random fluctuation about a level line or instead a fluctuation

about some other sort of curve (see Figure 2). If the fluctuations

are about a level line, and the variance of the measured noise is
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sufficiently small, than a comparison with the model should be

made. If one has confidence in the omni comparison, that is,

the results either agree or the disagreement is due to identi-

fiable casues, than directionality may be considered.

To test stationarity of the horizontally directional

noise measurement, using the continuous data N(e,t) or its dis-

cretized equivalent, compute the statistics:
.

T
( ) = 1 J N(e't) dt

0

~2 = Tdt
a 2 (e)(F4(e,t)-w4e)) 2 t

0

S.

These, the mean and variance of the data for a particular direction,

may be handled in the same manner as the omni level statistics.

However, suppose that rather than continuous (or near continuous)

measurements, one has discrete noise measurements separated by

periods of several hours. If there are two to four such measure-

ments, a test for stationarity is to take the correlations of

the noise roses pairwise. This may be done by defining:

pi()= N(,t) - N(t i )

then defining

P (8) pj (e) dO
20

r 22 2
2 pi( ) d6f P () dO

0 0
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These give the correlations of noise over angle between discrete

times. Then comparison of these correlation coefficients will

determine if the data is stationary. If all correlations are

high, than stationarity may be assumed. If some correlations

are high (i.e., close to one) while others are low (i.e., close

to zero) then one must determine if a certain set or sets of

measurements have been subject to other environmental or acoustic

influences, or whether stationarity simply does not exist. If

there are more than four such discrete time measurements the

above method requires a selection algorithm to process a large

number of correlation pairs. Algorithms to construct maximum

consistant subsets of data are available, however, it does not

seem necessary to consider these until the occasion arises.

An alternative is to consider the discrete measurements as a

&continuous measurement set, which implies that the noise field

between the measurement is assumed to have not fluctuated signi-

ficantly.

A consideration in stationarity of horizontal ambient

noise measurements is the stability of the near field shipping distri-

bution. If in the course of the acoustical measurements, a ship

'. or ships has transited near the acoustic array, one would not

expect the horizontally directional ambient noise field to be

*stationary with time. It is possible to construct a test to
"" examine the princple transient noise components of a field (i.e.,

a component apparently due to a single noise source moving on a
straight line track across the field), and to determine if this

is a significant component of the total. If it is, this component

may be removed; however, such removal may affect the integrity

of the remaining data. Details of this test are given in Appendix

D.

If one is dealing with a model for vertical directionality,

then the comparison data must be subjected to stationarity tests

A:



as before. Whereas under uniform distribution of ships, trans-

mission loss, and environment, the horizontal noise rose tends

to a circular pattern (i.e., a constant level) the vertical

pattern does not. In a completely omni environment, there will

* .".be a significant directionality pattern to vertical noise, due

to the arrival structure at the receiver of the ray paths from

surface shipping. Using ray theory, a narrow cone may be con-

structed in which ray paths from the surface will arrive at a

receiver. While ray theory has several drawbacks, nevertheless

this does imply a significant directionality pattern. The nature

of acoustic waves, defraction in the ocean, surface scattering

and defraction, effects of the slope bottoms, range dependent

profiles, and bottom bounce propagation will tend to fill this
"noise notch" up to some level, but the resultant pattern will

*. still not be uniform. Thus even if ship distribution, sound speed

profiles, bathymetry, etc, are completely wrong, the qualitative

.'. -shape of the vertical directionality noise pattern which the model

produces may be similar to the pattern produced by the model with

the correct input. Therefore, tests based on mean, variance,
and correlation such as those used above for horizontal stationarity

.. are inapplicable to the vertical case. Quick analysis of vertical

directionality and beam widths (Appendix E) suggest that there

is no simple method for examination of such stationarity. Agree-

ments between measurements does not indicate agreement of under-

lying environmental parameters.

The methodology for comparison will now be addressed.

When dealing with point estimators, such as omni noise values,

there are only two numbers: the model estimate and the measured

estimate. Doing a point-to-point comparison, one is forced to

rely on the difference of these numbers. This difference is then
01. 1compared either with an absolute error tolerance, or a varying

.00 (dependent upon ocean environment , data stability, etc.) error

estimate. In either case, one is actually comparing the distri-

butions of errors which are represented by the point estimators.
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If one has a number of data measurements, so that the data may

be described by an envelope (or, better, a distribution function)

then one may compare the model's point estimate against this

envelope (or distribution), yielding point-to-envelope comparisons.

The most elementary such comparison is to ask whether the point

lies inside the interval or outside (Figure 3). Unfortunately,

this test is by no means ideal: indeed with increasing volume

- of data, it is generally counterproductive. As the amount of

data available for construction of the envelope increases, the

underlying distribution of that envelope becomes better known

(in the statistical sense), but the larger sample size often

implies that the interval needed to contain the sampled points

grows as well. This is a property of distributions with tails.

If the underlying distribution can be described in terms of

statistics, such as mean and standard deviation, then one can

describe the distribution rather than the interval. In such a

case methods of hypothesis testing may be used to determine (at

a preset confidence level), whether the hypothesis of ascribing

that point to the given distribution is acceptable. Standard

hypothesis testing methodology makes the assumption of under-

lying normality for the distribution, which is often invalid for

a7'.ient noise acoustic levels, but in view of the uncertainty of

the sample mean and standard deviation estimators in most situ-

ations of interest, the assumption of normality is a minor detail

(unless one is working at an extreme value for the confidence

level). The measured data may vary, and by perturbing the

environmental and shipping inputs to the model, the model outputs

will vary, thus it is possible to consider the comparison as

being of envelope-to-envelope (or distribution to distribution).

Again , if the underlying distributions are unknown, one is left

with comparing only the envelopes, i.e., the amount of overlap

(Figure 3), which is generally unsatisfactory for reasons given

above. Thus if the underlying distributions can be estimated

to any reasonable degree, it is far better to make the comparison

based on hypothesis testing methodologies. Making the blatent
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assumption that both distributions are Gaussian, one may than

apply a simple statistical test to determine Cat a preset con-

fidence level) whether both sample distributions are representative

of the same underlying distribution. Mathematical details of com-

parisons methodologies will be found in Appendix F.

The test becomes more complex when the outputs to be

compared are not point estimates, but functions, such as horizontal

U. ambient noise roses or beam noise levels. Since all such data is

discretized, one may apply the above mentioned point tests to

individual pairs, and then form some sort of overall estimation.

This approach, however, is not ideal. Much is lost in terms of

the order, shape, and correlation between levels in various

* directions. It is possible for example, to be comparing a single

curve with an envelope of curves and have undesirable results.

Consider a set of curves (either measured data or model outputs

from perturbed environments) for directional ambient noise as in

Figure 4. Note that all noise roses in this ensemble have a

bulge in the Northeast direction. Compare this to a curve of

*uniform level fitting within the envelope bounds (Figure 5).

Then this curve is completely contained within the envelope, but

-. it does not acceptably represent the distribution, for it lacks

the Northeastern bulge characteristic of all samples. Thus

-elementary tests are not always applicable. Mathematical method-

*ologies for comparison of functions and distributions of functions

will be found in Appendix F.

For these comparisons, whether they be point-to-point, point-

to-envelope, or envelope-to-envelope, the following order is suggested:

9 Omni noise values: N

9 Horizontal directionality: N(e)

q * Vertical directionality: N(f)

* Omni temporal noise: N(t)

* Horizontal temporal noise: N(e,t)

* Vertical temporal noise: N(4,t)

e Beam noise value: B(G,t), B(4.t)

* Statistics
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Comparisons of omni and horizontal noise fields may be made in

accordance with Appendix F, in light of the considerations noted

above. Since vertical arrays tend to have rather large beam widths,

and vertical directionality (as predicted by acoustic models) tends

to be well structured into bands of surface noise, deep channel

noise notches and locally generated noise contributions, the tech-

niques used for horizontal noise cannot be meaningfully applied to

the vertical case. For even if the transmission loss is significantly

erroneous (in level, not in arrival angle structure), and the ship-

oing distribution is widely in error, the vertical directionality

oatterns usually are qualitatively similar, and may be quantitatively

close (Appendix E). In regard to the statistics, the comparison of

the distribution functions should be done using the Levy metric,

and comparison of moments of the distribution should be done using

statistical tests.

Invariably, when comparing the model against measurements, dis-

agreements will arise. If the model and the data were to agree

• perfectly, (e.g., to. 01 dB) then one would have grave misgivings on

the credibility of the test. It is to be expected with any non-

trivial test that differences between the model and the measured

data will be abundant. When these differences becomes excessive,

it is necessary to determine the principal source or sources of the

discrepancies. By working backwards in comparison of beam noise,

a.abient noise and transmission loss, the principal area of dis-

agreement may often be quickly isolated (see flow chart)
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One still must determine the precise area of disagreement;

several possibilities are listed below:

0 The transmission loss may have been measured during a

period of fluctuation, thus not reflecting the mean

environment.

* The transmission loss model may be inaccurate or erroneous

0 The environmental data used in the transmission loss run

may not correspond to the precise conditions at the time
of transmission loss measurement.

* The positions of discrete ships, particularly nearby ones,

may not correspond between model and reality.

0 The radiated noise level of ships in the model are class

approximations.

0 The assumptions within the ambient noise model (e.g.,

radiated noise pattern of ships) may be erroneous.

. The theoretical beam patterns used by the model may grossly

misrepresent the actual array performance.

I This list, of course, is not complete but it does cover the

principal areas. Again, the utility of using a validated trans-

mission loss module with the proper environmental conditions is

demonstrated in this problem of error tracing.

Before leaving the subject of model vs. measurement comparisons,

a few words in regard to data sources are appropriate. There are

a number of sources of acoustical measurements. However, for famil-

iarity with the data collection techniques, data quality and intricaciel
%; of the experiments, it is felt that at the initial stage measurements

should be selected from previous NORDA (earlier LRAPP) exercises.

The SEAS data bank is designed to provide both environmental and

acoustical data and can be quite useful for such an evaluation.

i Since most acoustic data is not yet in the SEAS data bank, it must

be obtained from the NORDA contractors who collected it. The primary

: source of such acoustic data from previous LRAPP exercises is ARL/UT.

The principle NORDA exercises for such data are as follows:
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4• Exercise Area

Church Anchor Northeast Pacific

Church Opal Northeast Pacific

Eastlant Northeast Atlantic

Square Deal Northeast Atlantic

Med ASW Augmentation, Task I Mediterranean

Med ASW Augmentation, Tast V Mediterranean

Church Gabbro Caribbean

Church Stroke III Gulf of Mexico

The data collected during these exercises includes acoustic as
*4"m

well as environmental data. The envirionmental data consists of

XBT, AXBT, SVTD, SVD, STD, SVSTD and SVCTD measurements. Different

exercises performed different measurements. For acoustic data,

measurements were made by towed arrays and vertical arrays using

stationary and towed sources as well as SUS. The SEAS Data Base

Manual details what measurement results are available in the data

base for each exercise and its format.
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VII. Comparison of Model vs. Model

In comparing the model under consideration with another model

q (in some sense a "standard" model),the underlying principles and

technique parallel the case of model vs. data comparisons. The

types of tests mentioned in Section VI above, are again applicable

to model vs model comparison. The significant property of model

vs. model comparison is the flexibility, whereas measured data is

a fixed set (i.e., certain sets of data exists, and these cannot

- be expanded quickly to cover other situations.) A model, however,

can be exercised under whatever environmental conditions the modeler

seeks: one is not limited to the existing acoustical data sets.

This allows the development of methodology that will isolate the

probable reasons for differences between the two ambient noise

models as they are run on the same sets of environmental (and

acoustical) inputs. If one notices a difference between the outputs

of the two models, but is unsure as to the precise cause of this,

•. particular environments may be developed which show certain charac-

teristics very strongly (e.g., surface ducts, infinite bottom loss,

no bottom loss, heavy surface reflection loss, double or triple

sound channels, ice noise, unusual shipping patterns, extremely

rough bathymetry, sea mount blockage, inverted profiles, no wind

noise, extreme wind noise, etc.). These somewhat artificial but

extremely valuable environments serve to isolate a peculiar phenom-

enon (of either the environment or model) in order to isolate the

root cause of disagreement. This requires, however, that the model

* against which comparisons are being made has been, in some sense,
4"validated": thus when one does see agreement of model outputs, it

is unlikely that both models are dead wrong, or, if disagreement,

that neither of them matches "reality".

One may envision constructing a set of test environmental con-

ditions which may not reflect any "real" environment yet would test

all the significant characteristics which are found in normal open

ocean, long range, low frequency ambient noise modelling. This set
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of test environments could form a library against which various

ambient noise models can be exercised. From this, this modeler may

be able to develop a list of strong and weak points for the various

models. Again, before getting deeply involved in such methods, it

is recommended that some sort of "reasonably believeable" model be

available for each type of environmental phenomenon. This avoids

myriad problems in determining how "truth" compares with the various

models.
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C. Initial Model Evaluation

VIII.The IME

P As stated before, the initial model evaluation (IME) con-

centrates only on omni and horizontal directionality noise (in-

cluding beam noise). Temporal and vertical directionality models

are not considered. In developing this IME, the underlying

philosophy has been that of Occam's Razor: "entia non sunt

multiplicanda praeter necessitatem". This principle, that things

should not be more complicated than needed, seems particularly

*[ relevant to this problem. The following methodology draws upon

the tests described in previous sections and the appendicies:

thus, the details will not be repeated.

A. Model vs. itself test.

ja. 1. If documentation is not available to show that elementary

cases (isovelocity and isogradient environment) have

.'been tried in the ambient noise model, test these two

cases.

2. Change ship source levels, ship density, wind speed

S.. etc., to ensure that model reflects these changes.

3. Use exact solution for flat earth, parabolic profile,

* . .uniform bathymetry and infinite loss bottom for various

ship. distributions.

4. Perturb the sound speed profile. bottom loss functions,

*shipping distribution, etc., to see if the ambient noise

model is stable. If the transmission loss submodule

- has been investigated in detail this test may be sim-

-, plified considerably.
5. If the ambient noise model is for use in open ocean

areas, perform the Nine-Point test in an appropriate

region or regions.

" B. Model vs. data tests.

-. 6. Choose a data set or sets representative of the environ-

mental and acoustical conditions for which the model is

, to be evaluated. The following steps in this section

should be performed on each data set.

-~ N~s~p1.., ~ J'~.Ld. ~ '~ VV ' . *. 'w V



7. Test data for omni stationarity.

a. If the variance of the measured omni noise is large,

than the model will almost certainly lie within the

o+a interval hence the exercise of the model is of

little value.

b. If the measured omni level noise is not a fluctua-

tion of the mean level, but rather a fluctuation

about another curve, this alternative curve must

>1 be explained. If the data cannot be explained

do not try to validate the model using it.

* c. If the measured noise data is stationary, then it

may be used for the test.

8. Test data for horizontally directional stationarity.

a. Test for transits for nearby ships which could
contaminate parts of the horizontal noise measure-

* ments.

b. Test statistics (mean, variance, correlation) of

horizontal noise measurement for stationarity.

c. If ambient noise measurements are not available, but

o-ly beam noise values, use beams near center of the

array in order to minimize problems with the conical

beam patterns.

V d. If horizontal noise shows a stationarity either

qualitatively (in terms of correlation) or quanti-

A tatively (in terms of variance) than comparisons

with model should be undertaken. If neither of
these holds, it is fruitless to attempt comparison.

9. Compare Omni noise measurement with model.
a. Point-to-point comparison. The principal value of

these tests is to have a single number indicitive

of the closeness of model and measurement. If the

number is large, determination of the cause or

causes of this disagreement is required prior to

proceeding. If the number is small, i.e., in good

agreement, this does not indicate that model and

data agree; the further tests will determine it.

0.



b. Point (model run) to envelope (measurement) compari-

sons. In light of the extreme variability of

acoustic measurements, it is extremely important in

having a number of rep3lications of the acoustic

Pmeasurements (at least more than one). In this

case, one may then compare the point prediction

of the model to the envelope (or, if enough measure-

*- ments exist, the distribution) of the measured data.

This is perhaps the most relevant test for the omni

noise estimate.

c. Point (mean measurement) to envelope (model with

perturbed environment) comparison. In the case

where only one measurement exists, or in the case

where the point to envelope comparison, in b
above, is inadequate, the mean measured data

should be compared to the distribution obtained by

running the model against the environment perturbed

in a realistic fashion. This indicates whether the

disagreement is due to model (or environmental) in-

stabilities or whether true disagreement is present.

This test is not necessary if a and b above are

successful.

d. Envelope-to-Envelope Comparisons. If the model is

exceptionally stable, and agreement in a and b above

is also noteworthy, this test may be skipped. Other-

wise the model should be used on a number of differing

environments and the ensemble produced (including

its underlying one dimensional probability distribution

be compared to the ensemble of measured data.

e. Based on the above tests actually performed (between

two and four of a thru d) the omni noise prediction

of the model for this data set may be judged either

acceptable or unacceptable. If they prove unaccept-

able, the root cause of the discrepancy should be

identified (although in many cases it will take model

vs. model comparisons to make a positive identification

of the cause).

pN |~



10. Compare Directional Noise Measurement with Model Pre-

dictions.

a. Even though the omni comparisons performed in 9

above may not be as good as anticipated or pre-

ferred, the directional tests should be performed

v as well. The division of the directional test

into three areas (corresponding to level, variation

and shape) enables one to test the directional noise

levels for some property even if the omni values do

not correspond well.

b. Point-to-Point Comparison. These comparisons should

be on means of differences, variance of differences

and correlation of noise roses.

c. Point (model)to envelope (measurements). With more

than one set of measurements, the point-to-envelope

* comparisons should be performed. As in 9c, these

are more relevant than the point-to-point comparisons.

If a large number of measurements are obtained,

distributional tests may be performed rather than

simple envelope tests.

d. Point (measurements) to envelope (model with per-

turbed environment) comparisons. If the point-to-

envelope comparisons made in c above prove inconclusive

or poor, the model sensitivity to environmental and

shipping perturbations should be used in this test,

where the beam measurement is compared with the
distribution of model outputs. As in 9d, this need

not be done if b and c show adequate agreement.

e. Envelope-to-envelope Comparisons. If the above

analysis is not conclusive (either for or against

the validation of the model on this data set) an

envelope-to-envelope comparison should be initiated.

However, for directional noise, such a comparison

involves a large amount of data, and detailed analysis.

This test should be invoked only when the prior

test are not sufficiently conclusive.

0*..



11. Analysis of Discrepancies. Before launching into the

model vs. model comparisons, the discrepancies noted

in the various measurement data set', vs. model com-

parison should be analyzed and their probable causes

noted. This will allow a much more rigorous testing

in the third section, and avoid tests which are immaterial

(based on either extremely good or very poor results

noted in the current analysis). Obvious model defici-

encies noted at this point should be documented, and

model successes noted as well.

C. Model vs. Model

12. Selection of Test Environments. Based on the problems

noted previously, the capabilities of both the model

under consideration and the "standard" model (which

need not be perfect), a set of test environments should

be selected. These environments need not be chosen

from reality, but should cover the various environmental

phenomena under consideration. It is assumed that

the "standard" model has been subjected to an ambient

noise model validation prior to this (in the sense of

A and B above) so that questions of model stability,

environmental anomolies, etc., may be treated in a

cursory rather than a detailed fashion.

13. Examine the Omni Noise Prediction of the "Standard:'

Model for stationarity and believability. Since this

model may be exercised at will on perturbed data, we

may deal directly with one dimensional distributions

-N rather than envelopes (i.e., intervals on the real line)

If there are no outrageous outliers and the numbers seem
'p

reasonable, then comparison may continue for the omni

values. If the "standard" model gives predictions that

are suspicious (either from the point-of-view of

stationarity or reasonableness), then comparison based

on this case should be avoided.

14. Examine the Directional Noise Prediction of the "Standard

Model. As in 13 above, this should be done using the

distributions rather than the envelopes. It is antici-

pated that if the "standard" model has passed the test

of 13, it will pass these tests with no problem.

V %



15. Compare Omni Noise Prediction of Both Models.

'. a. Since we are dealing with two models, both may be

run in order to get sufficient replications. Thus

one may deal with point-to-point and envelope-to-

envelope comparisons based directly upon the dis-

tribution. Point-to-envelope comparison (with

either model providing the mean statistics for the

point estimator) should be used only when the

previous two (i.e., point-to-point and envelope-to-

envelope) methods of comparison yield ambiguous

results.

16. Compare Directional Noise Prediction of Both Models.

a. As in the model vs. data comparison, above in 10,

we compare the mean of the difference, the variance

of the difference and the correlation of the values.

As in 15 above, two comparison methods should be

used: point-to-point and envelope-to-envelope

comparison on the distribution. Point-to-envelope

comparisons are not recommended in this case: the

amount of information that they would contribute

seems small in comparison with that obtained from

the first two methods.

17. Overall Ambient Noise Evaluation: Using the results of

all the above tests, lists of those good and bad model

points should be drawn up. Quantitative expressions of

model accuracy, reliability, predictability may be given

as well (if the stability of the input environmental

and acoustical data is adequate to warrant this). Based

on these two lists and the applications envisioned for

the ambient noise model, the model may be either vali-

dated, conditionally validated, or considered unsuitable

at this time for those applications. Based on this

model validation,model improvement (if necessary or

desired) may be undertaken.
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IX. Conclusions:

This IME, like any validation process, may be used or misused.

Its proper use requires understanding of all model inputs and

.neasurements. A benefit of such use is that many of the test pro-

cedures are also applicable to questions regarding the limits of

model accuracy. Its misuse is accomplished when one forgets the

general limitations, the implicit assumptions, and the nature of

the real world. The tendency to use a model beyond its region of

applicability is prevalent in any applications-oriented community,

and for acoustic models the deterioration of performance due to such

gradual over-extension is slow but significant. Another misuse is

to accept a validation of the model for one use as implicitly validat-

- ing it in every use for which the model was intended. Finally, it

should always be remembered that there are cases for which no current

ambient noise model will work, such as when shipping noise is bounced

off the sides of canyons and thus arrives at the receiver from a

number of (horizontal) directions (e.g., Rockall Basin).
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APPENDIX A: On Integration Time and Second Order Statistics

is IConsider some function, such as an ambient noise measurement, which

is measured by integration over some period. The same interval of data

- . can be measured by integration over two or more different periods.

This appendix will deal with the effects of using different periods of

integration on some second order statistics.

Let X(t) denote the function which is to be measured. Since in

the general case for ambient noise the environmental parameters involved

are not all known precisely, consider X(t) as being an event in the

sample space of some stochastic process, X(t,w). Let Xi be the i-th

data sample obtained when using an integration period of At. That is,

T +j±r

~X.=t X(t)dt
xi'A.tf T +, ^ X, tfor i = 1,2,...,N

,~ +(-i--).

* where T is the poin. at which the initial sample measurement begins

and N is the total number of samples. (Hence, NAt is the total length

of integration).

Now, before dealing with the second order statistics using {Xi }

or other integration periods, some assumptions must be made about {Xi
and, therefore, some restrictions must be placed on the underlying

stochastic process, X(t,w). In order to be able to deal with the second

order statistics considered in this appendix and have those statistics

* . be in a useful form, it is necessary to assume that for i=l,2,.. .N,S 2 N
2EX < and that X N consists of identically distributed random

a' Ei i i~l

variables. ( fX.} need not be independent). These assumptions restrict

the stochastic process X(t,w) to the set of processes Z(t,w) such that

EZ 2(t,w) <-

EZ(t,w)Z(T-W) = r(t-x)

where r, the covariance function, depends only on the difference t-T.
.. ' ~



* That is, X(t,w) must be a weakly stationary stochastic process (see

reference s). Thus, for any of the material in this appendix to be of

any use, the analyst must understand the process that is being measured

and be sure that it satisfies these restrictions.

So, assuming that the restrictions on X(t,w) are met, then {Xii=

as defined above has the desired properties. Suppose that a new

integration period was used to sample the same process for the same

interval. That is, suppose X(t) is sampled using an increased integration

period of mAt while only taking n samples where n and m are integers

*- such that rim = N, (Thus, the total integration time, nmAt, remains

N.t). This type of change in the integration period is common. For

example, the integration period is increased to improve the frequency

4% resolution of the measurement.

This change in integration period changes the resulting sample.

For the increased period of integration, mAt, let Y. be the j-th data
J

sample obtained that is,

Y 2.jmAt X(t)dt for j = 1 ,2 ,...,n..
mAt T +(j-l)m~ t

. Now, from the definitions of {Xi} ' {Y'}, N, m, and n, Yj is also given

by

Y. m

j mil mlj-l) + i for j = 1,2 ,...,n.

Therefore, the effects of using different periods of integration on

4 second order statistics can be determined by examining the statistics

based on {X-} and those based on {Y.}.

2
Let w denote the common means of {X.} and let a denote the common

variance. (Although normality is not required, this would be the case
2

if it is assumed that each X. is N(w,a )). The dependency is assumed

to be a simple correlation. That is,

LN



Coy (X.,X.) = pi'j o2

for some constant p, o< P< 1. (Note, this places an additional

restriction on the covariance function, r, of the underlying stochastic

process). The mean and variance of the sample {X;}- are given by

. N
-" r i 1  I Xi

_ i=l

and
N

.2 _L (X- m)
S1 N-1. I

,:"- respectively. Similarly, the common mean and variance of the sample

( . . are,

1 n
2 E I

j=l

' and

2 V 2
2  n (YI-m 2 )

. '.2 2
Note that the second order statistics mI ?m2 , 91, and S2 are random

variables. (They are statistical estimators based on random variables).

SOf interest to the analyst are the expected values of these statistics-'
and how their expected values vary with changes in the period of

P. integration.

Since mi = m, there is no difference in the computation of the

expected values of the sample means. Em1 
= 1, and so, m1 and m2 are

unbiased estimates. This also shows that the sample mean is independent

of the period of integration.

2. 2 2
In general s1 is not the same as s" The computations of Es1  and,2 1€ 2 1 2

Fs2 are rather lengthy, and so, only the main steps in computing Es 1
and an expression for Es are given here. The entire derivations for

2 2 2
both Es 1 and Es 2are given in appendix G.



2 ~N2

I 1 )
Es E -(x.-.)

1 ELN-1i ±

N N N
1 EF (X V) 21 (X (X.~)

_ 322 N2  N2 C

t=i

F-,

2 2 F N- N- 1 i t-

1 (NN-1) L

1Es N(N-1) - 2p L (p if p
i=1

Now, by differentiation of a geometric series it follows that,
"N JxJ-i NxN+1 -N+I)xN+1

Nz (x-l) +1
j=i

And so, after simplification,

Es2 = 2 N(N-) (i-) (N-) - No + P N]

Which can also be written as,

Es2 = N(N) N(N-I) - 2(N2 -I)P + N(N+)p 2 - 2p N + I
1 N(N-1)(1-p)Z

for p#i. Of course,

2
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' Es' is computed in a similar manner using the common variance of

lY 2 and the covariance of {Y.}. The variance of Y.,a2, is given by,

-- + 2(m-1)-mp+pml
_ 02+m2(p)[

S for P0ll and by

0.2 = a 2
y

for p = 1. The covariance is given by,

~p 0 2  m(ji-j J-l) l-a 2

Coy (Yi"Y) = -a-p i 1--m
m

for p I and by,

Coy (YiY.) =

2for o=i. The expected value of s2 obtained using these expressions is,

Es2 oY2 22Ml nEs2  = n(n-l)m-2(n p-n(n-l)mp+2n 2pm+l 2nm

flr (n-l)m TnF (l-

for p3i and
2

Es2  0

22

* From these expressions it is clear that the expected value of s

will equal the expected value of s2 only when m=l (and hence, n=N and
2 2 2

sl=S2 ) or at isolated values of P (e.g. o-l). However, while these

expressions give an exact mathematical representation of how changes

S in the sample integration period can effect the expected sample

variance, the expressions do not provide the analyst with an intuitive



2understanding of how Es is related to N, n, and m.
2

2

clearer, Es 2 has been graphed as a function of p for various values of

N, n, and m. These graphs are presented in figures A-I to A-9. These

*- figures are grouped into three sets of three figures.

The first set of figures, figures A-1 to A-3, show how Es2 is
2

effected by increasing m while keeping n fixed. That is, these2z

figures show how Es changes when the number of samples is fixed but2
the period of integration for each sample, mAt, is incresed. (And,

hence, the total integration time is increased). It is clear that for

small values of p, Es2 decreases and the integration period increase2 2.-
and that for large values of p, Es increases as the integration period

0 increases. These two results are expected if the expression for the
2common variance of Y. is examined (since Es2 is an unbiased estimator

Fo 2
of ).For small values of p, a 2 increases as m increases. It can

also be seen from figures A-1 to A-3 that as the sample size is increased

the Es increases for all values of p.
2

Figures A-4 to A-6 are included to make this even more apparent.

For each of the figures the integration period (mAt) is held constant

while the sample size (n) is increased. The increase in sample
variance is expected due to the dependence of {Y.}.

J

Now, the third set of figures, figures A-7 to A-9, show how these

factors interact when the total integration interval is held constant.

That is, these figures show how the expected value of the second

order statistic s2 varies when the integration period, mAt, is increased

while decreasing the sample size, n, in order to sample the same

interval, NAt.

.1V
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-. As a concrete example of what this third set of figures shows,

consider the situation where X(t) is sampled for 5 minutes. Let the

short period of integration be 5 seconds and the longer period of

integration be 20 seconds. Using the shorter period of integration,

N = 300 sec/5 sec.

= 60

and so n = 60 since m = 1. The graph of Es 2 (Es1 ) in this case is

shown in figure A-8. (It is marked n=60, m=l). Using .he longer

period of integration,

- N = 300 sec/5sec.

= 60,

n = 300 sec/20 sec,

= 15

and

m = 60/15

4

Th2 aThis graph of Es is also shown in figure A-8. (It is marked n=15,

-4.- m=4).
42 2e

Now that the expressions for Es1 and Es
2 have been derived and

intuitively described the question arises of what use are these' -4

4. expressions. There are two uses. First, these expressions can be

used to estimate unknown parameters. Usually, the exact values of n,

m and N will be known. The values for Es , Es2 , p, and o2 will not
2 2no2

be known. Using s 1 and s2 estimates can be made for P and o. Thisw24 -. ±

- ', can be done by first taking the quotient of the expressions for Es 2
2

2 2 2and Es . This yields an expression where the unknowns are Es , Es 2 and

. if 2is substituted for Es and s2 for Es 2, then an estimate for
1. If s2 2

0, ., can be found using numerical methods. An estimate for o2 , ,

can then be found by using s 2 and in the expression for Es2 and

solving for 2 (s1 and the expression for Es1 can also be used). This

method for estimating a can also be used with estimated Obtained in

other manners.

lV
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However, there are some problems associated with this method for

estimating a and p. To begin with it will almost surely be the case
2 2 2 2

that s21 1 Es1 , and s2 Es 2. From figure A-7 it can be seen that for

most values of p small variations in Es2 and Es may result in significant

error in the estimate . This is compounded with the fact that error

in the estimation 0 will lead to errors in 82 (especially for large

values of p e.g. p>.9 in figure A-7). Thus, this method of estimation

is very unstable.

The second and more important use for these expressions is to make

it graphically apparent that when the integration period of the sample

is changed, the second order statistics can be drastically effected.

Thus, when the analyst is making use of second order he should be aware

of the dependence of the statistics on the sample period of intergration.
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APPENDIX B

A Nontrivial Exact Solution for Ray Theory Models

1. Introduction

2. Environment

3. Propagation

4. Discrete Ships

5. Shipping Densitites
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I. Introduction

The general approach will be to describe the nature of

propagation in a specific environment, and show that for given

ocean basin limits (acoustic, geographical or artificial) and

ship distribution, one can (without the use of a large computer)

obtain the horizontal directional ambient noise. This will allow

a wide range of possible test cases for either discrete ships or

densities. These equations are then used to obtain two test

cases, which can be easily used in a computer model.

2. Environment

The purpose of this appendix is to provide a test case for

ambient noise models which is capable of analytic solution, yet

exercises more environmental acoustics than the traditional iso-

velocity and isogradient test cases. To this end, the test

environment used will have a range-independent sound velocity

profile having a sound channel axis at depth zo, of the form

20

c(z) = c(z 0 )/{l-y (z-z 0 21/2 > 0

This parabolic profile applies to all depths z from the

* surface (0) to the bottom (zbott), and requires that

ylz-z 0 1<1

for

O Z Zbott

The bottom is assumed to be flat, below the conjugate depth, and

has infinite loss. Thus

Sbott E C(zbott) >c(0) Csurf

e.LPC LW



There is no wind-generated noise, i.e. only surface shipping is

calculated.

The receiver is placed on the sound channel axis, and range

is measured from it. Thus the coordinates of the receiver are

(x,z) = (0, z0)

The angle the raypath makes with the horizontal at the receiver

is 6o' measured clockwise (Figure Bl).

x

II e

z

2Z

Figure BI. Raypath Geometry

3. Propagation

The raypaths may be specified by a system of differential

equations (ref. n). Let z(x; 0), abbreviated as z(x), be the

equation of the raypath having angle 0 at the receiver as a

function of range x, W(x) the partial derivative of z(x) with

respect to 00, I(x)/Io the (relative) intensity at range x and

T the travel time along the raypath.

6,
W. IP



Then within the ocean region

1 _=( d )2

2
c(x,z) + - d

dx

c(x,z) d2  ( 2z c(xz) + Y 2 d
dx2  dx dx2  dx

+ /2 c dz 92c d2 z aec

3z2  dx axaz dx2  3z

T(x)/Io x COS9

T fx/cT f T = (x,z)dx

0

If the raypath hits the boundary of the region, these quantities" " dz
are adjusted for the reflection (e.g. S-) and for the boundary

less (e.g., I(x). Attenuation loss may also be applied.

Applying these equations to the particular example yields

three types of raypaths. The first type encompasses the raypaths

' O which do not meet either boundary, i.e., the refracted paths. For

these, the angle at the receiver 6 must satisfy

<o < 6o0 -- 0

L where

= Arcsin (yzO )  (0 , 2)
0

is the angle of the ray which grazes the surface.

WPI



Then.. w

Z + -1sin8o sin{y x sece 0

), 1 cos@Osinty x sece } + x tan2 eo cos{Y x sece.I

Coherent summation of rays also requires the travel time, which is

T cosS dx
cose 0 c2 (z)

0

(2 - sin2@e) x + s COin 21SfQsin (2ox seceo)
c Coscost 2 4y

The second type of raypath is the RSR, i.e., that which hits the

surface but not the bottom. Let 0 be the angle at the receiver

of the ray which grazes the bottom, i.e.,

. = Arcos(c /c ) s (0, Tr/2)
o (Co/Cbott

Then if . satisfies either

S- <Ae < -6

SS

the raypath will hit the surface but not the bottom. Define

the auxillary raypath parameters

' 1i (e) =-y- cos o arcsin (yzO csc eo)

72 ( )  -2rl(18 1) + Y ICos 0

2 c0 0

S,! L.V 9t'9 ' ~ Vf \?~i



where the (multiple-valued) arcsin function is taken to be the

unique value in the range

0, iT U ( T, T
fh 2

Then r1 is a negative quantity which represents the range at which1
the ray would hit the surface if it were extrapolated through the

receiver to negative ranges.

The parameter F2 is the period of the raypath (Figure B2).

Two more auxiliary raypath parameters are needed. Define

2

3 (e 0 )  2c 2coSo (2-sin29 ) 7 -zoCOSe o  Cos cos2

4 (9o) = -2r3 (8oi) + (2-sin 20) *rcose)
3 2c. cos ,

.ote that

(e ) < 0
3- 0 3

C 2 C9 ), 4 (6 o) > 0

Then 13 is a negative quantity which measures the travel time of

the ray from the receiver back to the range corresponding to T

And F4 is the travel time along the raypath for a period r2'

Define the function

A (X) = (x-r 1 ) / 12]

k,.
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where [-] is the greatest integer function. The raypaths are

then given by the equation:

) -1

z = z + y -sin{y(x -A(x)F 2 ) sece0 }

Let xk be the k-th positive range at which the ray hits the surface,

i.e.

Xk = Fi + kF 2

Since we are dealing with ship generated noise, travel time is only

needed between the receiver and these ranges.

T(xk) = 3 + k 74

L• Note that

(xk) = k

and at any range x > 0, A(x) gives the number of reflections the

ray has at the surface in the interval [O,x]. With the travel

time and the number of surface reflections, the phase for a CW

signal may be calculated for the raypath.

To compute the quantity (x), note that within the region

3, z ax dz

0 0az dz

At the surface, 2-° and - have discontinuities, for as the ray

goes through the reflection these two derivatives change sign. Thus

at the surface

11-- = -sgn0 -xl--I96 0 3 0 dx

since

@''% ' ,. 4"", "I" '' ;-" ',m" ."W ,x", , w " ,/ w "#".'"," ,, " 
"
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axk

30 < 0 for e 0 > 00
0

ax k Ofr <-
T8- -> fr o0 60

0

Now if O(x) represents the angle the ray makes at range x (measured

downward from the horizontal), then

dx

0(0) =00

and by Snell's law

Voe~ Csurf csV os~k) =c(z 0 0os

thus

tanG eco (xk) os2 (x)

c (zo) s 2e

Csurf

also

ax k drl~ dr2
0 0 0

NOW

dP1  z0 cote Cos9

0 10 2 /

anid

-gne - r y- in
2so0 de I 0Iin 0



'Xk
Thus is known.

36 0

Let X(6) be the ratio of the intensity of the reflected ray to

that of the incident ray at the surface, for incident angle 0

(measured from horizontal). Then

0 < X(O) < 1

Attenuation is usually given in terms of loss aR, in dB. Let
A be the corresponding intensity factor, i.e.,

10 (ax/10) x

Then the intensity of the raypath is

cos 0o Ae(x)
"P I(x)/I O - XI]COS8 8xA

p
so that

~c
, i(cI surf Itan ekI axklk

k c (z ) axk

g'~. 0

Where all quantities on the right-hand side are known.

The third type of raypath is that which, if extended, would

strike the bottom. With the infinite bottom loss, this restricts

the case to RAP propagation, nearby ships and negative angles:

2< e0 - o

The equations used above may still be used, provided that the

range is restricted.

~~~~~~ PV .W VO.J -



Thus RSR (and RAP) propagation occurs when 0 is in the set

= (-o, -0) U (0of o

and RAP propagation only may occur when 0o is in the set

Define

4. Discrete Ships i
To construct a test case for discrete ships, a small number

.of ships may be positioned at various ranges (preferably chosen

so that the angles e0 of the significant raypaths are known). Then

the intensity and phase (if desired) of the raypaths for each ship

may be calculated. The distinct ships are summed incoherently.

5. Shipping Densities

If the shipping for the model is in the form of densities

rather than discrete ships, the test cases should also use ship I
densities.

Consider the ambient noise coming in along a horizontal radial

sector of width A (in radians). Let x be range measured along tha'

radial. Let Q be the maximum range for that radial. Let f(e,)

be the density function for shipping, i.e., the expected number of

ships per one square unit of area, where the unit is matched with

that of the range x. Although f is specified as a function of lati-

tude and longitude, we need it along the radial as a function of

range. Let f(x) be this ship density along the radial (figure B3)

Let O(x) be the set of receiver angles 0 of rays which hit
0

the surface at range x(and, of course, go to the receiver). Let

X(80 ) be the set of ranges x > 0 at which the ray having angle ° .

at the receiver hits the surface, i.e.

Ir e,% r
629
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E) (x) = { : z.(x;eo 0) o
'%0 0Gxe) = x z(x;8 o ) = 0}

X(6 0) (x: z(x;6 0 ) =O}

0I

Notice that x e X(eo ) only if x = x k(e ) for some k > 0. Thusok •

X(e o) = { Xk: k>O, Xk< n}

Let k be the largest such index k, i.e.

k, (%) = max{k: xk E X(e)0

Hence

k,(e 0 ) AM) if eo e=

if o- 2

Let s be the level (in intensity) of the 'average' ship in this basin.

Then the ambient noise received on this sector is given by the in-

coherent integral of intensity over range:

S.
AN = sAI TL(x) f(x)x dx

0

In the computer model one tends to separate the ship level

and add it (in dB) in after the major computation. But for the

purpose of this example, we leave the noise in the above form.

The transmission loss at range x may be computed by coherent,

semi-coherent or incoherent addition of raypaths. Contributions

from discrete ships should be added incoherently, and those of an

individiual ship added coherently. But when working with ship

/e..sities (e.g. 1.7 ships), the model cannot do both. Also, co-

nerent summation tends to produce much fine structure in the
5.

transmission loss curve: structure that is much smaller scale
• -.an the uncertainties in ship positions (historical ship distri--

-:tion are given by 1O square).

.he test cases-given will be for an ambient noise model using

e , -%pV



incoherent summation in the transmission loss module. Thus TL(x)

is assumed to be incoherent. A different formulation is needed

for coherent addition. By breaking transmission loss into an

intensity summation over all raypaths, and changing the variable of

integration, we have

AN = s Af TL(x)f(x)x dx

0

= SAro TL(x; 0) f(x)x dx
e EOO0

= s& TL(x; 0o ) f(x)x d-x de0 0 0

r 3 ~xA(x)l 0 _

S= "J- xf (X) ai !cot9 d9X xl~icos ' oT0
- xE:X o

k, k-i
"'. ~~~xk i COS-- . o: ufJ

S-. C S-~ fix ) cot- !
-L 

-,,Cos.- surf k Surf

= .k CS= ~k - Xk k-ie

- 08 kI
= ~S4 c----1S~ 3 -f (Xk)dq *

•s n surf ' k =1

This is the type of approach taken b':' Talham (Ref. 0) , and used

in FANM. Unlike these, howe-.er, the shippinq densit f need not



constant over a ray cycle. The above derivation assumes that

a) 71 0 for any x E X(e0 )

teb) 0 4 - except on a 0o-set of measure zero

c) the ship density f(x) is continuous

For the parabolic profile, the first two hold for all O0E E. The

*third may be relaxed to include simple functions (i.e. finite lin-e".

combinations of step functions).

The intensity does not appear explicitly, which seems to violate

*i common sense. However the spreading effects are used, for the

measure of integration (shipping density over xk times Lebesque

measure over 90) implicitly contains the geometric spreading.

From this equation for ambient noise a number of test cases

.a'v' be developed for various ship densities , etc. Two will be

ive n.

*(2st ca~se

Assumptions:

* a) The maximum range f is large (e.g. over 1500km)

b) The surface loss is significant, so that RSR rays from

the maximum range are attenuated signficantly.

c) Assumptions a and b may be quantitatively expressed as

where

m =kr(60) 4 2c'

is the minimum number of surface reflections at maximum

range ai



d) The frequency is low, so that the surface reflection loss

is more significant than the attenuation over a ray cycle.

Using the attenuation coefficient of Thorp (Ref p) it is

seen that at 100hz the attenuation loss over 70kyd is only

1.6%, hence this should not be a serious restriction.

* e) The ship density is constant along the radial out to range

With these assumptions, three approximations will be made. The

first is that the attenuation over any ray cycle having 0 EE 1 will

be approximated by a constant. This constant may be taken as the

geometric mean of the endpoints, viz

!F =r2 r2 0r 0 )1/2

The error committed in making this aporoximation deoends on the

values of csurf, c(zo) and c and the relative loss due to

reflection versus attenuation. Usually this will be small.

The second approximation is obtained by running the summation

* to infinity. This increases the ambient noise by a value between

0 and

_101ogl0)(lXm

dB, which may be made very small by proper choice of X.

The third approximation is short-range attenuation. The attenuation

between the receiver and the first surface bounce for RSR raypaths

may be approximated by the geometric mean of the four endpoints:

'= (-r 1 ) 2-r,() ar 2 180 ) r1 (8o) 8 r2 (o) + r 1 (O0 ))1/4

d.1'
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For RAP paths of greater angles, i.e., those in :2, it is assumed

that the attenuation may be ignored. Since we are dealing with N

close-to-vertical raypaths, their length is very small.

Since the attenuation involved in this partial ray cycle is small,

the effect should be minimal. Note that if the model is run with

* = 1 (i.e., no attenuation), then two of these assumptions are

superfluous.

These ambient noise integral may be expressed as an integral

over E, and one over E 2 , call the portions AN 1 and AN 2 . Then

AN sAf COSe E 3 + kF2 Xk-lf de
*1 Arn -

surf k=l
-1:4I

s cosine k E k-l xk-if de
Isinsurfl k=1 0

cosO v'f
sA jsinesurfl X deo

surf'

= sAvf COSe d6
1-vX A /1-n 0coS0

where

n = csurf /c(z) > 1

I



Now -Ei is the union of two intervals, so the integral is split into

pieces. Now the first is

20

00

lnn sin 0 + n/l sn cosurf

n~ ssfl+: sie u

The second integral, over (-e o -e ) has the same value. Therefore,

v7--l

TFV~Tnsin.-

TLhe second component, due to local ship' ingi

AN s= coe AW :) f d82  Isin surfI 0

-e4 6 coseo f d9
A, 0 .n 2Cos 2 2 C 0

ro-TT/20

n l sin6 + n-1 in
0 siisurf



Therefore we have a relatively simple expression for the ambient

noise for this case.

Test Case 4
Most ambient noise models using shipping densities assume the

density is uniform over a small range, and at the end of that range
it jumps to another value, remaining uniform on the next small in-

terval. Such a function is, of course, a finite linear combination

of step functions, i.e., a Simple function. As noted above, the

ambient noise integral is valid when f(x is a Simple function.

Thus given a Simple function for the shipping, any surface reflection

and the attenuation appropria--e for the frequency, the ambient noise

integral may be evaluated. This may be done analytically, but the

number of logarithms and inverse trigonometric functions required

for the general expression is incredible. Thus it is easier to

evaluate the exact ambient noise integral using numeric quadrature

rather than using closed-form expressions. Unlike case a, no ap-

proximations are made (except the error introduced by the quadrature

which may be made arbitrarily small). Using a shipping density on a

grid (the standard method of feeding the models), one can thus trans-

form the two-dimensional Simple function to one-dimensional Simple

functions along various great circle radials from the receiver, an-2

obtain tihe ambient noise along each radial by numeric quadrature.

This appears to be an ideal exact solution to use for model evaluation.

'.

p.'.



APPENDIX C: Nine Point Field Analysis

The ambient noise at a point is the acoustic energy arriving

at that point. As such, ambient noise is subject to the laws of

physics. Hence, the values of the ambient noise at the points which

make up an ambient noise field should satisfy the mathematical rep-

resentations of the physical laws (e.g., the values of the ambient
S.

noise field will be a solution to the wave equation).

Ambient noise models produce estimated values for points

within an ambient noise field. In order for these estimates to be

considered reasonable, it is a necessary condition that they also

satisfy the mathematical representations of the physical laws. In

particular given the ambient noise at each point in the array of

points shown in Figure C-i, the ambient noise at point m will in

some ways be related to the ambient noise at the points 0 throuah

7.*

The purpose of this Appendix is to determine what some of

these relaticnships are. To fulfill this purpose several situations

will be examined. First, the relationships between the directional

ambient noise at two points will be considered. Using the informa-

tion gathered from that situation, the case of directional ambient

noise at nine points will be considered. Next, the relationships

between the omnidirectional ambient noise at two points will be

examined. Finally, some bounds for the omnidirectional ambient

noise at nine points will be determined.

-.5.

There are several approaches that can be taken when consider-

ing the problem of determining some of the relationships between the

directional ambient noise at two points. The approach that will be

used here is to first consider the problem in an idealized case.

*Note: This Appendix will only consider horizontal ambient noise.

For vertical ambient noise one can formulate a similar problem,

however, different tools must be developed to solve it. The tech-

nique given in ref. q should provide a basis for some vertical

directionality tests when the shipping field is smooth (i.e., when

range-averaging applies).
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From this a general solution can then be used to determine what the

relationships will be as various assumptions are made about the

environment.
q

For the idealized case imagine the earth covered by water

with depth excess everywhere so that there are no acoustic obstructions

(such as continents, islands, sea mounts, etc.). Choose two points

and denote them by pm and pl. Select a direction e, Oe, [0,27T) (i.e.,

an angle measured from north).

The ambient noise at the point p1 in the direction 9, denoted

ANl(a), will be given by

AN 1 ()=Tl(P)dF(p)

In this equation, TL (p) is the transmission loss between the points

p and p The symbol

,: dF (p)

is used to indicate that a Stieltjes integral with respect to the

distribution of noise sources, F, is taken along 2Z (6). £ (0) is

the directed great circle passing through p and oriented in the

direction 9. (See Figure C-2.)

The equation for the ambient noise at the point pm in the

direction 9, denoted AN (9), is

AN () =f TLm (p)dF(p)

m

V I



North

5,.,.

Figur C-2:p,(a)

04



*" " where Z (6) and TL (p) are defined in the same ways as their counter-. ."m m

parts for pi. (See Figure C-3).

Thus, are exact expression for the relationship between

the ambient noise levels at p and p in the direction e is,!

AN ( m)-AN (e) TL (p)dF(p)-f TLm(p)dF(p)
mm 10) zm(e)

The magnitude of this difference is governed by the physics of the

situation (e.g., the distance between p and pM, the distributions

of noise sources, the environment giving rise to TL and TLm etc.).

4 In ambient noise models AN (S) and AN (6) are estimated
1m

rather than known. Similarly, the environment is not known exactly.

What will be known when using noise models is the distribution of

noise sources and reasonable upper bounds for the difference between

the two transmission loss functions. Using the equation above and

these two known factors, bounds will be palced on the difference

Sbetween the anbient noise estimates.

41 First, for convenience of notation several definitions will

* be made. For any two points p' and p" let p(p',p") be the great

circle distance between the two points. Let R be defined as the

linear transformation on the surface of the sphere with the three

properties:

I W (i) R preserves distances,

(ii) R: .m(6) - Z (6) preserving the orientation,

and (iii) R(p) = pi.

U * c.
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... ~i will ha-a:Ln ann

transfor.at on. Let R denote this inverse. Next, define the

-f funct ion F by

F(p) F (p)-F(R (p))

-~oe thtwieFp o l ~ F may be either positive or
- , '.. .;oe that whi le F (p) > 0 for all pl, a eete oiieo

=necati've. Hence, ' F will induce a signal measure when integration

Is -one with respect to . F.
_ P ip

• w sn the equation for the difference in the ambient

". . .. = L (p )dF c )- f TL (P )dF (p )

f m
! , m

F(R p)) TL(p)dF(p)

~m(9

T LTL F -k RTL ()pF(p)
-" -'",2) n , (R (o )- T

•m

" : m

fTL p)dLF p)+fTl. R p))dF(p)-JTLm ()dF(p)

7' p) d^Fp) TL,(R(p))-TL (p) dF(p)
f , " (

m 

m'-,I
S.-,T
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This final equation expresses the difference between the ambient

noise levels at the two points in terms of the variations in the

noise source distribution in the direction 8 and the transmission

loss functions. That is, the first term on the right hand side of

the equation is the difference in the ambient noise that is due to
variations in the distribution of noise sources along X (e) and

Z (e). The second term is the difference in the ambient noise* m
that is due to the variations between the transmission loss functions

TL and TLm

The difference in the estimates for the directional ambient

noise levels at p and pm should then be bounded by

AN1 (9)-AN m ( 9 ) I J LI (p)dIA F(p)I+f ITL1(R(p))-TL m (P)IdF(p)Pi

f9.~I £ (8)

Since this is an idealized situation, it is not worthwhile to examine

this bound more closely. Instead, a general realistic solution for

the problem of comparing ambient noise at two points will now be

considered.

The most general case is the same as the idealized case

except that acoustic obstructions are considered. For this situation

define the points p, and p* (see Figure C-4). pm is the point
m I m

at which Z (8) first meets an acoustical obstruction. p is defined.m 1

in the same way for Z. (e). p* is the point on m (8) which is furthest1
from pm such that if p is between pm and p* then there is no acoustical

obstruction between p and p and for which

p(p ,R(p))<p(p I p
1 - I

The expression of the difference between the ambient noise

levels at the two points in this situation depends upon the relative
A

positions of Pmf Pi and p*. There are three possible expressions:

pio V

I .Y
r T

* .
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Case1: ppm~p)<~ ,,p) and p(r) p*)<p(pm,p

In this case the difference in antbient noise is given by

AN (6) -AN '8 ) TL (p rF(' p)dp

PIS

where findicates that the Stieltj es line integral is to be taken along

5,the line 918) from the point p' to the point p" This can be broken downM o

A

AN (8)-AN m(8) = f TL I(p)dF(p)+ TL (,)d~) T (~Fp

R(p*) P, PM
[ti(6) 2()] [z.(e)]

- TLMPdF~p

which reduces to

1 n R(p*) Pi P1 ..

[~([EJ [8)(8]

A

f TL m(p)dF(p)

[2. (8)



4 (See Appendix G for a complete derivation of this equation.) As

in the idealized situation, this equation indicates the source of

Y .- the difference between the two ambient noise levels in terms of

quantities that can be bounded when using ambient noise models.

The second term on the right hand side of the equation is the

difference due to the variation in the distribution of noise sources

along Z (a) and Z (6). The third term is the difference which is
1 m

due to the variation between the transmission loss functions TL

and TL . The first and fourth terms together are the difference that• - m
is caused by acoustical obstructions.

The difference in the estimates of the ambient noise levels

at the two points as produced by ambient noise models can, thus, be

bounded by

fPfR(p*)
'AN (3)-AN < TL (p)dF(p)+ TL (p)dAF(p);
"4 Pi

R(p*) p

p*
+IITL (R(p))-TL(p)jdF(p)+ TL (p)dF(p)MM p.

[Zm (6 [£ M(e)

This bound will be considered further after the second and third

cases have been presented.

Case 2: P(PI'P) =pp p*) and p m<p

L.

*'°:



* As in Case 1 the difference between the ambient noise levels at the

two points is:

AN 1(6)-AN M(6) fTL 1(P)dF(p)-fPTLm(p)dF(p)
p m

which in this case reduces to

A4(e )-AN m (e) = 'TL I(P)d F(p) +f TL (R(p))-TLm(P) dF'±'

mm

fTLm (p) dF (p)

[zM(e)]

.'ote that in this case R(p*) = and p* RR6% 1). The terms in

this equation are due to the same factors as the terms in the ana-

lagous equation in Case 1. In this case, however, one of the terms

due to the acoustical obstructions is zero.

Here, the bound for the difference in the estimated ambient

noise levels is,

A-N (5)-A'N (0) < TI(pdApj ITL (R(p))YTL m(p)IdF(p)

A

Tf~Lm (p)dF(p)

ZM (0)]

ofp



Case 3: p(p M p m)< P(p ) and P* = pm

As in the other two cases the difference in the ambient

noise at the two points is,

AN I(6)AN (O) TL (P)dF(p) -lTL (p)dF(p)

Are. (e)]

which reduces to

" R(p*) P*

AN,(3)-A0N (e) ITL1(p)dF(p)+ TL (p)dLF(p)+ TL (R(p))-TL(p) dF(P). m Jp* Jpl nm 1

S ] [ 1 (1)]

I°" 
P

This is similar to the analogous equations derived in Cases 1 and 2.

Like Case 2, one of the terms due to acoustical obstruction is zero

in this Case.

The bound for the ambient noise estimates similar to those

presented in the previous Cases is,

-A. R(p*)

iAN (0)-ANm(e)< TL (p)dF(+ TL (p)dF(p)+ L (R(p))-TL (p)IdF(p)
Z , (6)] It 1 (61] [ZM(e)]

V
V,



Therefore, in this general case the difference in the estimates

of the ambient noise levels at the two points as produced by ambient

noise models can be bounded by

. R(p*) p*

JAN (8)-AN m()J< TL(p)dF(p)+fTLI (p)dIAF(P)I+J ITL (R(p))-TL(p)IdF(p)

R(p*) P, P1  m

AA

+TL (p) dF(p)

with the possibility that one or both of the terms due to the acoustical

obstructions could be zero.

Now, when actually estimating a bound for the difference

in the ambient noise estimates, each of the terms in the equation

above would be bounded. Further, the bound for each term that would

N be used would not be the bound for a particular pair pm and p,. Rather

it would generally be a bound for all possible points p given that

(Pm' P ) <r for some fixed pm and some constant r.

Thus, for the term representing the difference in the esti-

mates due to the variations in the distribution of noise sources,

p I I I

r9 1 (8)]Z (8)]

Max TL (p) TV (AF (p)

pp

;',
'-U

.



where TV (AF(p)) is the total variation in AF(p) along the great
P1  Pl

[pI'R(p*)]

circle arc between p and R(p*). Let E denote the bound for

this term on the set A = (plIp(pm, 1l) < r}. Ep is given by

C= max [ ma (TLI (P))] [ TV (AF(p)
P l A  PE [PIR(* ] [PI, R(P*)] p,

For the term representing the difference in the estimates

due to the variation in the transmission loss functions,

J ITLI(R(p)) - TLI(p) IdF(p)

m

4% < max
mp,] ITLI(R(p)) - TLm(P)l dF(p)

m
. [Jm (6)]

max: .. = IF(p*) -]F(Pm) I  pe:pmrp* 1 TL1(R(P))-TLm(P)i

Let E denote the bound for this term on the set A. E is givent t

by

E PlAiF(P*) - F(pm) I pa[pxp*] ITL (R(p)) - TLm(P) I

These two expressions, E and E t . are generally estimated rather

than computed.

The two terms representing the difference in the estimates

due to acoustical obstructions are lumped together. Let E a denote

the bound for these two terms on the set A. Since E and ct are

Ile|



not tight bounds and since the difference in the estimates due

to the acoustical obstructions is usually trivial when compared

to the error in E and Ct' ca will almost always be set equal

to zero. When not zero, e is estimated instead of computed.a

Thus, if no restrictions are placed on the environment,

then

JAN 1 (6) - ANm() I + C t +a

Other bounds can be obtained from this by making assumptions about

the environment. If it is assumed that pm is sufficiently distant

from all acoustic obstructions, then

JAN1 (6) - ANm(e)I < Ep + t

If in addition to this it is assumed that TL 1  TLm for all pLeA,

then

ANl(e) - AN (Q) E
1m P

Note that this assumption will greatly effect the estimates ANi(8)

and AN (e). However, since internal model consistency is beingv m

tested and not model accuracy, this effect is not important. If

instead of a uniform transmission loss, it is assumed that the

distribution of noise sources is a constant distribution, then

ANI (e) - ANm () I< Et

Even though this is an unreasonable assumption for a real-world

situation, it is nonetheless useful when testing internal model

consistency.

This completes the discussion of the two point directional

*, ambient noise case. The nine point directional field analysis

will be considered next.

h The question was posed at the beginning of this appendix

of how the ambient noise at the point m in figure C-1 is related

to the ambient noise at the points 0 through 7. (Denote these



points by pm' P0 Pip ... p 7 respectively.) When testing inter-

nal model consistency, this question is equivalent to asking what

can be said about the expression

1 7
JANm(e)- W .AN. (0)I

1=1 1 1

for appropriate choices of Wi, i = 0, 1, ..., 7.

One way to answer this is to use the bounds derived above.

Let r be the distance between p and pi for even i. (See figure
m

C-5.) Let p(r) and t(r) denote the bounds derived above for the

distance r. Define wi, i = 0, 1, ... , 7 by

[Q(g (r) + E (r))] if i is evenp t

S1 -li
[2(E (/2r) + E t/2r))] if i is odd

P t

'L

where Q = + r) + to ensure that
1 E(r (/r) + (/2r)

p t
7

Z w. = 1. For this choice of w.i= 1

,, . 7IANm(6) - i i.AN. (e) I <  8

1=0

(see appendix G for a demonstration of this.) This bound can be

improved. Let c. be the bound for the difference in the estimates1

of the ambient noise levels at p and pi (i.e., the bound for the

two specific points p and pi ) . Define w., i = 0, 1, ..., 7 by1 1

W- - for i =0, 1 ., 7
1 1

when QA = E. . For this choice of w.

i=0 1

J ANNe) - i<r A~ie 8

'=0

!.
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This is an improvement over the previous bound since £ < 2 (how-

ever, more work is required to obtain w. } in this case).

* There are other methods of finding bounds for the level

of ambient noise at pm" Assume that the transmission loss func-

tion for each point is monotonic. (This assumption is made in

-. many of the current ambient noise models.) Also, assume that the

distribution of noise sources is identically zero for an area

around the array of points.

If the distribution of noise sources is continuous, then

upper and lower bounds for the ambient noise at p in the direction

are
AN (0) < w ANk ( ) + w)AN

M -1 k W 2 A(kl)md8

-and

AN m wAN (k+4)mod8 (6 + W2AN(k+ 5 ) mod8 M

where k [4' (i.e., the greatest integer less than or equal
40

t.0 )w2 -e k, and w1  1 - w2 .
A-

For a discrete distribution of noise sources similar

bounds can be determined. Let the distance from the edge of the

. array of points to the nearest ship be kr (see figure C-6). Let

t be an angle such that

jai < 2 arcsin(2k) -

The upper and lower bounds for the ambient noise at p in the

- ,'" direction 8 are

AN (0) < max A0]
AN Am() < e1,02 lANk(6l) + w2AN(k+l)mod8(e2 )

-. and
AN (0) > max [wlAN ( + w2 ANk(2

m - 01O2 (k+4)mod8'l w (k+5)mod8 2)J
S.

- %
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where wl, w2, and k are defined the same as for the continu-

ous distribution of noise sources. max is used to indicate

that the maximum is taken over the values 8I E(8,6 + ai) and

o2 (8- a2 , 8) where

It + la l Ictl

as shown in figure C-6. min is defined analogously.
r81,82

To obtain different bounds different arrangements for

the points p. can be used (see figure C-7). For this arrangement,

the difference in the transmission loss functions with range

should be compared with the difference in the distribution of

noise sources. That is, 6TL should be compared to 6F where

6TL = max max) ITLi(R(p)) - TL(

and

6F= maxl max F'

i z : "  A
where Z. (6), TLi(p), Ri , and F are defined in the same fashion

A
as £1(6), TLI(p), R, and P F. If 'TL < c6F (c a constant to ac-

count for units of measure) then a bound is found using E (r) andP

Et (r) and points along radials near e, i.e.,

Iw I  w2  w
JA_6 N()-- AN ( ) -1AIANm(O) 2 ANk( 8 ) - 2 (k+l)mod8 - - AN(k+4)mod8(8 )

W 16- A N ( 8 ) < E F r

- 2 (k+5)mod8 r) + t

where w1 and w 2 are computed as before. If 6TL > c6F, then

a bound is found using C p(r) and t(r) and points on radials

nearly perpendicular to 8, i.e.,
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I. AN (0) w AN (6) - -Z AN()
m 2 (k+2) rood8 2 (k+3) mod8

A 2 ANk(e) - - AN ( E) I < c (r) + E (r)

As an extension of this arrangement, consider the case where

the ambient noise at pm is combined into sections with width of

.Choose 4N points equally spaced on: the circle of radius r

centered at pm" Compute the ambient noise at these points (see

figure C-8). The previous two equations simplify to

IANm(6) - 1 - -AN < E (r) + e (r)M 22 (j+2n)mod4n Pe)

and

AN (0) - 1 ANA1e
IA~m( ) 2 A(j+n)mod4n() (j+3n)mod4n

< E (r) + c (r)

.whnere N1

wj = [(T-+ .5)mod 4N.

V Note that the bound is the same for all sets equations.

These bounds can be improved and other arrangements of points can

be considered. The alternate bounds Ei developed previously may

be used. This is significant since now the bounds will depend upon

the Total Variation in transmission loss in the one direction and

on the difference between transmission loss curves in the perpen-

dicular direction. However, the bounds and arrangements presented

above represent the basic techniques that can be used. Omnidirectional

arbient noise will now be considered.

1 L The problem of finding the relationship between the omni-

directional ambient noise at two points is similar to the problem

of finding the relationship between the directional ambient noise

at the two points. Hence, it will only be covered briefly. The

method used to solve this problem will be the same as was used

for the directional problem. That is, first an ideal case will be

considered. Then a general case will be examined. Finally, a nine

point field analysis will be developed.

( P . ji 7 '
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JI. In the ideal ocean with depth excess everywhere, as de-

scribed above, the omnidirectional ambient noise at the point pI'

denoted by AN1 , is

AN, f TLI(P)dF(p)

where TL 1 and F are as previously defined. This integral is a

two dimensional Stieltjes integral taken with respect to the dis-

tribution of noise sources F over the entire sphere.

As in the directional case one way to compare the ambient

noise levels at the points p1 and pm is to compute the difference

in noise levels. This difference is given by

AN1 - ANm =ff TL 1 (P)dF ( p ) -fL TLm ( p ) dF ( p )

which can be expressed as

AN -AN0 =fT TLl(P)d A F(p) +-f{TLI(R(p)) TL m(P)}dF(p)1 0 1 Pl{TlR()

where R is the linear transformation determined by pit pm and the

great circle containing p and p.

In the general case there are acoustical obstructions to

be considered once more. To take these obstructions into account

define the following sets:

A = {pj the great circle arc ppm is unobstructed or the

great circle arc pp1 is unobstructed),

A0 = {pj the great circle arc pip is obstructed and pEA},

A1 = {pj the great circle arc pmp is obstructed and peA},

A2 = {pl PeA\(AoUAI ) and R(p) ( A\A01,

and

A = A \(AoUA1 UA2 )



4I

Using these sets the difference in the levels of omnidirectional

ambient noise at p1 and pm is given by

AN -

N AN =I TL 1 (p)dF(p) -fJ TLm(P)dF(p)

A\A 0  A\A1

*. which is equivalent to

AN1 - ANM = JTLl(P)dF(p) + TLl(P)d A F(p)mf Pl

A1UA2  A 3

+ff{TLI(R(P)) - TLm(P)}dF(p) -f TLmP dF(p)

A 3 A0 UA2

Using this expression an upper bound on the difference is

J IAN 1 - AN I =f TL1 (p)dF(p) +ff TL1 (p)dI A F(p)
AIUA2  A3

+fITL 1 (R(p) - TL m(p)IdF(p) -j ffTL M(PdF(p)

A 3  AQUA 2

As with the directional case, define the three quantities

c, ct and c . Let Ep be the bound for the difference in the omni-

directional ambient noise level due to variations in the distribu-

tion of noise sources (the second term in the above equation).

Let c tbe the bound for the difference in the omnidirectional

ambient noise levels due to the variations in the transmission

loss functions (the third term above). Finally, let c 0 be a

* * .



bound for the difference in the noise levels due to the acous-

tical obstructions (the first and fourth terms above).

These three bounds can be used in an omnidirectional nine

point test similar to the directional test previously described

(see figure C-5). This test has exactly the same form as the

directional test. However, the omnidirectional bounds just

given are used in place of the directional bounds.

In conclusion, the estimated ambient noise levels must

satisfy the mathematical expression which represent the laws of

SPh'sics. Using these mathematical expressions, bounds on the

variation from point to point in the estimated ambient noise

Field can be established. These bounds can be expressed in

terms of quantities that can be either computed or estimated.

Fin-.lly, these bounds can be used to test the physical consis-

tency of ambient noise models.

I,
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APPENDIX D: On Transits of Nearby Ships

This appendix is concerned with the effects on the ambient

noise field of a ship passing near to an array. These effects will

be considered from both a theoretical and practical point of view.

* Obviously, if a ship is of sufficient size or it passes suf-

ficiently close to an array, it will be possible to identify its

' passage using only a visual inspection of the data. However, in

marginal cases visual inspection will be inadequate. That isin

S.\ some cases it will not be clear that a ship has passed. Thus,
since low frequency ambient noise is the summation of ships at vari-

ous distances, this appendix will deal only with the problem of

determining the significant ships (assuming none are found by cur-

sory visual inspection.)

In the theoretical problem it is necessary to make some assump-

tions concerning the ship making the transit and the environment.
It is necessary to assume thatthe ship is on a great circle course

relative to the array (whether towed or fixed) and that the ship

moves with a constant velocity along this course. The ship must al-

so be a reasonably uniform radiator of noise. For the environmental

requirements it will be assumed that the transmission loss will be

a monotonic function. Hence, the received level of noise will be a

. 'maximum at the ship's closest point of approach.

To represent the problem matnematicaily3 it is necessary to

specify the coordinate system that will be used. Polar coordinates

relative to the array will be used. Also since the distances in-

volved are much less that the radius of the earth, it will not be

necessary to use spherical geometry. Finally, ambient noise will

q ,be considered rather than beam noise so that there will be no am-

biguity with beams.
5, -'.

As notation for this problem let to denote the time at which

CPA occurs. The location of the ship at CPA to the array can be

*specified by two quantities: a and b. a is the distance from the

array to the ship at CPA. b is the anqle relative to the array of

J- - - .. . ..w ..



the CPA. Denoting the velocity of the ship by v, the position

of the ship can be specified for any time, t, using these con-

stants. In the polar coordinate system, the angle, 8, of the

ship relative to the array at the time t is given by

e = b + arctan[v(t-tO)/a]

The distance p from the ship to the array at time t is,

P(8) = a sec(8-b)

(Note that the unit used for v is determined by the units sel-

ecttd for a and t.)

If the range of time is large, then the noise from the ship

will be detected at a great distance, as the ship passes CPA, and

as the ship moves off to a great distance. A graph of the maximum

noise level is given in figure D-1.

The ambient noise due to a single ship making a nearby tran-

sit is given by

AN() = (

where s is the source level of the ship and I is the transmission

loss function in intensity. (the expression I(p [e)) is used to

6 show that I is a function of range which in this case is a function

of e.)

This expression can be made more specific by making additional

assumptions regarding the transmission loss. If, in addition to

being monotonic, the transmission loss is assumed to be due to

spreading loss (i.e. I(p) =p m for some fixed m) then the ambient

noise due to the ship is

S

AN (S ) = m sem ( -b
a sec (8-b)
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Furthermore, if m=2, then the ambient noise reduces to the simple

expression

^' s
AN(e) = 2 v2 2a + v(t-t0)

However, even if these additional assumptions are not made the

maximum noise due to the ship will still have a graph similar

to the one shown in figure D-2. Observe, that if e in this graph
were considered to be frequency and not angle, then the graph

would represent a standard signal processing problem (e.g. a

Doppler shift or Frequency Tracker problem.) These kinds of prob-

* lems can be solved using well established algorithms such as Maxi-

*mum Likelihood Estimators or Least Squares methods.

Thus, for the theoretical problem of a ship making a transit

near to an array several assumptions (which may be unrealistic)

must be made about the ship and the environment. The problem can

then be reduced to a standard signal processing problem. This

signal processing problem can be solved using well known methods.

In practice many of the assumptions made above will not hold.

It will not be possible to use ambient noise. Instead, noise

measured on beams will be used. These beam measurements are sub-

ject to some ambiguity in direction. Also, there is the problem

of cones with the endfire beams. These beam measurements will not

be made over an infinite period of time. Thus, it is possible that

a ship making a nearby transit will be measured for only part of

that transit (e.g. this will occur when the measurements stop be-

fore the ship reaches its CPA or if the measurements begin after

the ship has left its CPA.) Finally, the transmission loss will

almost certainly not be a simple spreading loss and will usually

not be monotonic.

The practical situation will also differ from the theoretical

in that more information will be known. In the practical case

there will generally be some data on the nearby ships. For towed

I 4V 1 .
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arrays the tow ship will have radar to locate ships within the

-. -vicinity. In some cases there will also be aircraft surveillance

to extend this coverage out to a few hundred miles. Buoys and

fixed arrays will not have this kind of coverage. However, with

the buoys there is normally little or no horizontal directionality.
. The buoys will use the noise level without even trying to handle

the direction problem. Fixed arrays may have over-flights, but

the watch officers are very good at visual spotting even without

the aid of aircraft data.

Therefore, in practical situations the problem of determin-

ing the effects on ambient noise of ships making transits near

an array involves two cases. One case is when omnidirectional

(or vertical) noise is considered. The other is when horizontal

noise for ships not found by other methods (e.g. radar, aircraft,

or visual inspection) is considered.

First, the omnidirectional case will be covered. In the

theoretical part of this appendix the ambient noise for a single

S nearby ship was found to be

.ANV() - a 2  2S

a2  - v2 (t-t) 2

4 .hen the transmission loss was due to spherical spreading. In this

case it will only be assumed that the transmission loss is of the

form

I(Q) 
=  f( 2 )

i.e. the transmission loss is not spherical spreading but some

function of P 2 Using this transmission loss the ambient noise

due to the ship is

AN(t) - 2 2 2
f(a + v (t-t)

, V
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K. which is symmetric about t = to. If the transmission loss func-
.0*

tion, f, is far from monotonic then little can be done. However,

for monotonic transmission loss there will be a relative maximum

in the ambient noise at CPA. Such maxima are best found using

visual inspection

In the horizontal case the ambient noise data will gener-

ally be in discrete form. That is, the noise measured in the

direction of the beam at e. during the intervalJ
rT + (i-l)At, T O + (i)Lt] will be

Tij = Ti(6 j ) = BN (t)dt
JT + (i-l 1At

..;here BN. is the noise along beam j, T0 is the time at which the

noise measurements began, and At is the integration time. The

transit of a nearby ship will show up as a relative maxima mov-

ing from beam to beam (see figure D-3).

In order to make this pattern of movement easier to detect

the discrete data should be averaged. This can be done using

either

N N

kj ZT(n(k-l) (n(k-l) + i)i(jj

or N N

Akj N (k-l) + i) j N ((k-l) + i) (e.)
i=l il

w,:here N in an integer. N should be chosen large en ough to elim-

inate small fluctuations in {T ij. N should also be small enough

so that near CPA the ship will spend at least 2N periods in the

beams. That is,

r



2N. tv < 2R sinAO~2RAe (see figure D-4)

or
N < R66@

- VAt

Once N is chosen, Akj (the groups of N T ij's) can be examined.

- This examination cannot be made using the noise level. This is

bacause the transmission loss is not necessarily monotonic.

Also, the range of the ship need not change significantly over

the period of the measurements. And so, instead of using the

absolute level of noise, the relative level of noise will be ex-

amined. That is, define the matrix {aij} where the elements of

the matrix are given by

k f1 if Akj Aklj and Ak i Ak + lj

ak3 =
a =[0 othe wise

and a =0 for all j.
Oj

Kf For a ship making a transit this matrix should show a pattern of

zeros and ones similar to a discrete version of figure D-1. (see

Sfigure D-5).

The best way to determine if such a pattern exists is a

visual inspection of the data. Since a visual inspection is to

be used, the type of average above will depend on the amount of

data. That is, if there is a great deal of data which would pro-

duce a large {a ij} matrix, the first method of averaging should

be used. Otherwise, the second method of averaging should be

used.

I' L In conclusion, the effects of a nearby ship making a transit

of an array can be determine both theoretically and practically.

The theoretical method reduces to a signal processing problem after

making some assumptions. The method used in practice will generally
it, involve reducing the measured data to a symbolic format and visu-

ally inspecting it for the patterns expected from the theory.
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Appendix E Vertical Deconvolution

The purpose of this Appendix is to discuss the usefulness of

comparing measurements of vertical directionality of ambient noise

due to surface shipping with model results. The discussion will

show that the agreement of model results with measurements does not

necessarily indicate that it is a good model. First, the nature

of this ambient noise will be discussed considering the effects of

varying shipping distributions and transmission loss. The noise

directionality of vertical arrays and the beam widths at the 3 dB

down points will be compared to the properties of the shipping noise.

Conclusions will then be drawn concerning the applicability of

testing vertically directional models using this approach.

Ambient noise at an array due to surface shipping can be

modelled in the following fashion. For weak (or absent) dependence

of sound speed with range, distant shipping contributes to ambient

* noise at an array site as shown in Figure E-1. If -or a range-

independent sound speed profile and a flat bottom one considers

ray paths which originate at the surface and reach the receiver

after transitting a distance such that bottom bounce paths have

died out, the primary propagation paths for this shipping noise

will be received at the array in the solid angle limited by the

surface grazing ray ( sg) and the bottom grazing ray (6bg). The

ambient noise received in this solid angle from surface ships can

be described with the following equation

p. e~r

AN TL (p) - f(p) dp (E-1)

where 2 is the distance to which surface shipping is considered,

TL(p) is the transmission loss as a function of distance and f(p)
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is the shipping distribution function. For arbitrary shipping

distributions f(p) = 271pf(p) where f is the shipping density per

unit area.

Now the widths which current vertical arrays have are roughly

the same as the angle lebg - a sg This means, that the shipping

noise will arrive on essentially one beam. This means that there

is very little information available and it is not possible to

discriminate where on the surface the shipping noise is coming

from. In other words, there is insufficient data to perform any

deconvolution.

Now looking again at equation E-l, it can be seen that the

contribution to the ambient noise from the shipping cannot be dis-

criminated from the effect of the transmission loss on the ambient
jnoise. Shipping distributions, whether historical or measured are

usually inaccurate due to the dynamics of the field, and the ship-

ping radiated noise levels used are class averages, not measurements.

Therefore, when comparing model predictions with vertical array

measurements two situations can exist. If the model and the measure-

ments disagree the shipping distribution, or levels, may be the

cause and it can be adjusted until the model and measurements agree

The second situation is if the model and measurements do agree it

is hard to tell whether the model really is good or whether the

errors in the transmission loss and shipping levels have just off-

set each other. This problem is due to the lack of information on

the received noise. A vertical array doesn't have the advantage

that a linear horizontal array has in that very fine resolution

beams can be used to obtain more information from received energy.

The beams on vertical arrays are so broad that very little infor-

* mation can be gathered on energy received in the shipping lobes.

A further complication is the fact that arrays are designed speci-

fically to discriminate against energy being received in these lobes.

S.-



From this argument it can be seen that the accuracy of the

transmission loss cannot be determined by the ambient noise received

even if the shipping distribution is known. As long as the shipping

*. distribution is reasonably smooth, the transmission loss could be

*. very erratic with many convergence zones or it could be very smooth,

*. but due to the integration and only one beam measurement being used,

the two very different transmission losses could not be discriminated.

Thus it can be seen that it is not reasonable to try to prove

or disprove the validity of a vertical directionality model solely

by comparing its results with measured beam noise data.
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APPENDIX F: Horizontal Comparison Methodologies

Given two sets of horizontal ambient noise data, the proilir, ,

arises of how to compare the two sets of data. This appendix de-

scribes some solutions to this problem. First, the general type3 of

methodologies covered in this appendix are discussed. 4ext, the

6. factors that should be considered when selecting a particular m3tho2

of comparison are given. Then the methodologies themselves are pr2-

sented. Finally, a summary of the methodologies and when they shoull

be used is provided.

The methods of comparing ambient noise data that are given i,

this appendix are all quantitative in nature. That is, the two s d

of noise data are reduced to a set of parameters using well definQ.

mathematical tests. These parameters have been chosen so that thiair

values indicate the similarities and differences between the original

dtwo sets of horizontal ambient noise data. In some cases the para

* meters may also be used to determine possible sources of the diff2rences

in sets.

The mathematical tests used to determine the parameters are

of two types: point tests and functional tests. The point test3

treat the sets of data as individual points. These tests are motlj

statistical in nature. They can be found in almost any text on

statistics. However, anyone using these statistical comparison

*tests should be very familiar with the underlying statistical testL.

They should be aware of the mathematical limitations and the imolicit

assumptions of the statistics.

The functional tests on the other hand treat the sets of

data as values derived from some ambient noise functions. These

noise functions are considered as members of some family of function3.

The functional tests compare the ambient noise functions as member;3

of this family.

Regardless of the type of test, pointwise or functional. tha
test may be absolute or relative. Absolute tests are those which

I
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depend solely on the data in the sets that are being compared. For

example, if each set contained only one value, then an absolute test

would be whether the two values are equal or not. A relative test

is one which depends upon data not in the sets themselves. An ex-

" ample of a relative test would be to compare the difference in the

*' values in the sets to some quantity which had been derived empirically.

This kind of test results whenever concepts such as "large" or "small"

are quantified. In the example just given the difference might be

considered "large" (significant) if it is greater than the quantity

derived from past values.
-I

For each of the above types of tests there are many useful

tests that fall into that particular type. However, not all of

these tests should be used with each pair of sets of ambient noise

data. It would be pointless, for example, to use the functional

comparison tests when there is only one value in each set. Thus,

it is important to consider what factors will determine whether a

particular test is used in a given comparison methodology.

One important factor in selecting comparison tests for a

* particular methodology is the amount of data in each set of data.

- This amount can vary from a single value in each set (as in the case

when two omnidirectional noise levels are compared) to an entire

set of functions in each set (as in the case when comparing repli-

cations of two different directional ambient noise models). This

factor is of such importance that the individual methodologies pre-
S "sented in this appendix will be characterized by the amount of data

* that they require. Table F-1 lists the possible quantities of

data, examples of how these quantities could be obtained, and which

N" of the methodologies presented later in this appendix to use in each

case.
6

However, while the amount of data is important, another

factor to consider when selecting tests for a particular comparison

methodology is the quality of the data. This factor, rather than

Oeffecting which comparison test is used in a methodology, effects

Id
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the constants used in the relative tests in that methodology. Con-
sider two cases: measured ambient noise compared to computed ambient

noise and computed ambient noise from one model compared to ambien

noise computed by another model. In the first case data that is
different in kind is being compared. In the second case while the

data is from two different models it is still the same kind of data.

Thus, the constants for relative comparison tests would be different

for these two cases.

Now, the comparison methodologies themselves can be presented.

Methodology 1: Point-to-Point Comparison

Denote the two noise values by y and x. Since there is so
little data available in this case there is only one reasonable test

It is,

1 if D < Ix-y

v, =  0 if d < Ix-yI < D

1-1 if Ix-yj < d

where d and D are constants. This is a relative test. That is, for

different kinds of data the values of d and D are different. How-

ever, for each kind of data Ix-yj > D indicates a significant aif-

A ference in the values while Ix-yj < d indicates no significant dif-

ference. As noted previously, the values for d and D for each kind

- .. of data should be determined empirically.

Methodology 2: Point-to-Envelope Comparison

In this method of comparison two parameters will be used
to indicate the similarities between the two sets of data. Denot.

by y the single value in the first set of data. Denote by {xij1

the values in the second set of data. For the first comparisonO.'
test in this method let,

x = max {x.}
-. J
. 1< j <n

and

x = min fx}

Sl<j < n

~ ~ '% * ,>V % ~V



i4ow, the first test is,

V2 1ifX<y<x
V2 10 otherwise

This is an absolute test. It shows, in a rough way, whather

y is similar to {xj}. It has two advantages over the other test in

this method. V 2 can be determine even when there is very little data

(e.g., even when n = 2). Also, this test can be used without making

any assumptions about the statistical distribution of {x.} (i.e.,

if {xj} is considered as a random sample from some population no

assumption is placed on the distribution of that population).

, rThere are also some disadvantages to using this comparison

test. These disadvantages are illustrated in Figure F-1. In the

case shown in Figure F-la, y is similar to many elements of the set

{xj}, and yet, it does not lie in the interval (x,x). Hence, it

may be the case that v =0 even when y and {xj} are similar. Th3

converse of this problem is shown in Figure F-lb. It is also a

problem with this test but it is not as important as the one s.o.1

in Figure F-la.

There are two ways to overcome these disadvantages. The

best way is to use this comparison test only when there is too

little data to justify using the other test (e.g., n<7). In this

way the problems cannot arise. The other solution is to use the

comparison test v with y and each element in the set {xj} when

. =0. If v =1 for several elements of {xj} then the situation
%2 1J

shown in Figure F-la has arisen.

. The second test in this methodology is a statistical test.

It uses the statistics,

n
S E x.Snj=l J

and

2 1 n 2
x n-i j= (x -mx)

S -O
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Also, for this test it is assumed that (xis a random sample

from a N(px, G
2 ) population.

This test, v uses the notion of tolerance limits. If,3wr

given the assumption of normality, the constants W and a2 were

known, then it would be possible to find a constant, k such that

100P percent of the population would be in the interval(wx,-kOx ,x+kox).

Here, however, the values for px and 02 are not known and are only

estimated by mn and S2. Nevertheless, it is still possible to find
x n x

a constant, K(y,P), for which it can be assumed with 100y percent

confidence that 100P percent of the population will be in the in-

terval [mx-K(Y,P)sx, mx + K(y,P)sx] (O<y,P<l). Tabulated values

for K(y,P) can be found in references r and t.

Using this idea let,

L x(YP) = m x-K(y,P)s x

and

U (y,P) = m +K(y,P)sx •
The comparison test v is,

3

V 1 if Lx(y,P) <y < O U (y,P)

P = )= otherwise

This test is not subject to the problems shown in Figure F-1.

Avoiding these problems is paid for by the requirements for more

data and the assumption of normality. When these requirements are

satisfied, if v = 1, then y and {x } may all be perturbations of3 J
the same value. If V = 0, then either y is probably not from the

3
same population as {x.} or if y is from the same population, then

it is probably an outlier.

The values of y and P to be used depend on the nature of the

data. The values that are of most use to the analyst will be deter-

mined empirically.

_%% I
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Methodology 3: Envelope-to-Envelope Comparison

In this comparison methodology four parameters will be used

to indicate the similarities between the two sets of data. Two

additional comparison tests will be introduced. Denote the first

set of data values by {x lnl . Denote the other set of values by

"y n2 2 j =l

yi~i L exXI ana2 be defined as in methodology
Similarly define

max
y l<i<n2

" m mi {Y i '
1<i~n-2

" .n.. y n
1=i

2 i1

2 1 m2
S - (Yi-m y

7. Y n2-1l y

and p and ay to be the parameters that uniquely determine the

normally distributed population to which {yi} belongs. Also, let

Z be a set function on the set of intervals where (I) is the

-- length of interval I.

The first comparison parameter is given by the value of

j for the intervals,

I = {zcRIx < z < X}

and

12 = {zERIy < z < y}

V ,'.' .

.% .



where

£4 I1  2)

S=min(Z(ii), Z(12)}

This test measures the overlap of tie sets tx.} and {yij.

The greater the overlap in the intervals is, the greater the simi-

larity between the two sets of data (see Figure F-2). v E (0,1).
'4

v = 0 when the intervals do not overlap (i.e., when x < y or y < x)

(see Figure F-2a). V = 1 when one interval contains the

other (i.e., when x < y < y < x or < x < x _ y) (see Figure F-2c).
It would be expected that if {x.J and {yi} were from the same

population (regardless of the population's distribution) that v

would probably have a value near to 1. Alternatively, if the two

-sets are from nearly independent populations then values for v

nearer to zero would be expected.

The advantages and disadvantages of this test are analoous

to those of v viz., the test can be done with little data and it
2

needs no assumptions about distributions, but it gives incomplete

information for some situations. An example of this problem is

shown in Figure F-3. In this figure while the intervals are very

different the value of V 4 is the same for both Figure F-3a and F-3b.

namely 1.

To distinguish between these two cases a second comparison

test is needed. Let,
4,,

12)

where I1 and 12 are defined as before.
b2
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Figure F-2: Range of Values for V4
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b. 0 <V4<1

C. V4=1
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This test compares the overlap in the two intervals relative

to the total length of the two intervals when taken as a single in-

terval (or in the case of disjoint intervals, when taken as two in-

tervals). v E (0,1). v = 0 when the intervals are disjoint and
-'"5 5

v = 1 when the intervals are identical. This comparison test can
S

be used to distinguish between the examples given in figure F-3. For

figure F-3a, v is nearly zero while for figure F-3b, v is nearly 1.

This is not to say that v should be used in place of v but rather

that v should be used in conjunction with v . Figure F-4 shows why

this is the case. In both figure F-4a and figure F-4b v is thejS
same. On the other hand, v is distinct in these cases.

4

Therefore, when comparing the two intervals, {zcRIx < Z x

and {zERiy < z < y} the recommended procedure is to compute both v

and v . v will indicate how much of the smaller interval is con-
5 4

Stained in the larger and v will indicate how the intersection of
5

the intervals compares to the union of the intervals. Used together,

each of the parameters compliments the weakness in the other.

Before describing the remaining two parameters that are used

in this comparison methodology a note of caution is needed. The

*1 tests v and v when using the intervals I1 and 12 are subject to

. the same kind of problems as v in methodology 2. That is, outliers
2

can strongly affect both v and v . The remaining two parameters,4 5

which are based on statistical methods, are not as strongly a~iected

by outliers. However, these methods make assumptions concerning

the distributions of the data points. Thus, the relative importance

of the non-statistical and the statistical methods will depend on

the quantity and quality of the data. In some cases where the data

is sparse or does not fit the assumed distribution, the tests as

described above should be given the most weight. When there is

sufficient data, the statistical comparison parameters defined next

should be given more weight.

The statistical comparison parameters are computed using

and v and tolerance intervals. Let L (y,P) and U (yP) be$x x
defined as before (i.e., the endpoints for the interval for which

IN



Figure F-4: Disadvantages Ln Using v5 Only
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there is a 100, percent confidence that 100P percent of the normal

population lies within the interval). Define,

L y( ,P) = m Y- K(y,P)sy

' and

U y(y,P) = m y+K(y,P)sy

where K(y,P) is the same as in computing Lx (Y,P) and U x(Y,P).

.4ow, let,

1 = {z-RL x(YP)<z<U x('',P)

and

1 2 = zcRIL y (Y 'P ) < z < U y ( f P )
_

J This method of comparing the sets of ambient noise data is

to compute v and v for these intervals. These two parameters

will provide the same type of information as the first two, but in

this case they will be less strongly effected by outliers. The

price paid for this improvement is the requirement for more data.

As with the choice of which intervals to use, the choice of values

If, and P will depend on the data and on the analyst's judgement.

Other comparison tests of a statistical nature are given in Appendix

H.

Methodo'n gy 4: Directional Noise Point-to-Point Comparison

The problem dealt with in this section is how to compare two

horizontal ambient noise functions, x(e) and y(e). The problem is

complicated by the fact that x(O) and y(6) are not known explicitly.

Instead, there are several values of at which both x(9) and y(O)

are known. Denote these values by Oi, i = 1,2,...,n.

This is the first case in which both statistical and functional

methods of comparison can be used. In the statistical comparisons
.... ad )n are considered as sets of points and the

ii=l ad, i i=lcomparison tests are similar to those in Methodology 3. There are

I,:.~*



three statistical comparison parameters in this method. In the

functional comparisons {x(6i) }n and (y(ei)}n are considered as-" i~l i.i=larcosdeds

values of x(e) and y(O). These values are used to obtain approxi-

mations for x(O) and y(e). The two approximation functions are

then compared using functional methods. There are four functional

.'W comparison parameters used in this method.
For the statistical comparison parameters define,

Di  = x(ei ) - y(ei) i = 1,2,...,n,
n

1
mD = nDi

n
. 2 1 (D

D n-l - mD
i=l

n
mx : n x(

-- i=l

n

my - Y( i) ,
i=1

and n

z. Z (x( i )  M - mx )  i ) - my)

(x(ei) - mx)2 (Y(Oi) - my)

The first statistical comparison test is,

1 if M<ImDI

V 6  0 if m<ImDI< M

.-1 ifImDI < m



" where m and M are constants. This is a relative comparison test,

and so, the values of m and M will depend on the type of data being

compared. Whatever the data, M will be selected so that if M<jmD1

then the mean difference between {x(6i)} and {y(O i )} is significant

(i.e., there is significant difference between x(6) and y(O)). m

will be selected so that if .mDl<m then {x(ei)} and {y(i)} are

similar (hence, x(e) and y(e) are probably similar).

The second statistical comparison test is,

1 if S < s D

= 0 if s < S < S€,."7 D -

-1 if s D < s

where s and S are constants. When v 1, then either x(-) differs
7

from y(e) in shape or in magnitude of variation or both. When v =1,
7

then the magnitude of variation in {x(ei)-Y(Oi)n=1 is small (i.e.,

x(e) and y(O) can be considered as having the same shape and magnitude

of variation from their mean level of noise).

1 if R < rxy

1 8 0 if r < rxy < R

-1 if rxy <r

where r and R are constants. When v =1 then the functions x(e)
8

and y(e) are similar shapes. When V =-i, then the two curves have
r 8

* different shapes. It should be noted, however, that in this test

(and, in fact, all three statistical comparison tests) the conclusions

about x(e) and y(0) are infered from information about {x( i) } and
" 'y(Q. ) }.

2.
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These three parameters are most useful when all three are

considered together. Table F-2 lists some possible values for v

V and v . It also gives interpretations of these values. The
7 8

remaining values for v , v , and v do not provide as clear a
6 7 8

description of the relationship between the curves. For example,

when v 1, = 1, and v = 0 the curves may be related as in
6 7 8

case 1 but with more random error, or they may be dissimilar as in

case 2 but with a higher chance correlation.

The remaining noise comparison tests in this section compare

x(e) and y(e) as functions (even though their values are known only

on the finite set [}_ ). However, before these tests can be
i i-l

described two things must be specified. First, since only {x(ei)}

and {y(ei)I are known, the method used to approximate x(8) and y(e),

respectively, using these values must be specified. Second, a

method of quantifying the differences between functions must be

adopted.

Horizontal ambient noise functions belong to the class of

bounded piecewise continuous functions on the interval [0,2-] . Given

the values of one of these functions at a finite set of points,

there are many types of approximation that can be employed. For

example, step functions, linear splines, cubic splines, or polynomial

interpolation may be used. It is recommended that linear splines be

used as the method of approximation. This method will generally be

superior to step function approximation and easier to compute than

other methods of approximation. The other methods, involving more

complex computations, in this case do not guarantee any improvement

in the approximation. However, any reasonable method of approximation

can be used.

Now, using linear spline approximation (or, in fact, any typ3

of approximation given above) the set of all possible approximation

functions becomes a subspace of each of the Lp spaces on the interval
rp[0,2r]. If the L norm for some acceptable value of p is restricted

p.

7
J
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to the subspace, then the subspace of all possible linear spline

approximation functions on the interval [0,27] is a metric space

with the restricted L norm as the metric. The distance between

two elements (functions) in this metric space will then be a measure

- of the difference between the functions.

For the remainder of this section this method of determining

• the difference between an individual functions will be used with

o=2. That is, the distance between two functions, say ¢ and i, will

be,

: : ;, ) - ( (@ - (e) ) 2  d ,

2 0

.ote, however, that the analyst is free to choose any metric and is
not restricted to the L2 norm (nor, in fact, to any L norm).

For the functional comparison tests, let k be the linear

spline approximation to x and 9 be the linear spline approximation

to y. The first functional comparison test is

* 1 if D < p( ,9)

0 if d < p(i,g) < D

- if p(x,y) < d

where d and D are constants that depend on the type of data. This e

test compares the distance in the function space between the two
functions to background data. If v = 1 it will be assumed that x

9
and y are definitely distinct. If v = -1 then it will be assumed9

that x and y are similar. When v = 0 the test in inconclusive.
9

Note that although the test is made using x and y, the inference

is made about the relationship between x and y.

For the remaining comparison parameters make the following
-fin- be the ambient noise function with a constant

z
* l'~lof z in all directions. Also, define,

N-

del %



= min{p(x,o )}
~zER

and

= min{p(y,o z )}
Y zeR

x is defined to be the element of {o IzR} such that p(x,x)=w.

Similarly, y is the element of {o z } such that p(y,y)=w Y Since

(o Iz R} is locally compact these elements exist and are unique.

Now, the second functional comparison test in this method

.- is,

(1 if D < w
0 = 0 if d < w < D

z-1 if W < d

where d and D are the same constants as were used in v This

comparison test indicates the relationship between a function and

the constant noise function that best approximates it (in terms of

' the metric o). If v = 1 then the function varies greatly from its
10

best constant approximation. If v = -1 then the function itself
10

is nearly constant. The two comparison parameters that are of in-

terest in this method are v (x) and v ()
10 10

The third functional comparison test is

4-

1 if D < p(x,y)

V 0 if d < P(TC,j) < D

-1 if P(x,.) < d

where d and D are the same constants as were used in v This9

test compares the best constant approximations to the functions x

and y. That is, this comparison test indicates what the (approximate)

difference in level of noise is between x and y.

,,.
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The final comparison test used in this methodology is

1 if D < p( -x,9-y)

V 0 if d <
12 1

,-I if p( -xY-y) < d

where, once again, d and D are the constants from the v9 test. This

test compares the variations from the constant approximations to x and

-" SThese five functional parameters v V (x), V (y), v and
9 1  10 1 0 1 1

v ,provide information about the relationship between the functions
A 1 2  

A
x and y. (Hence, they provide indirect information about the relation-

ships between x and y.) Table F-3 gives a summary of the functional

comparison parameters, their meanings, and how to use the tests in

conjunction with each other.

The final aspect of the directional point-to-point comparison

methodology to be considered here is the problem of using the sta-

tistical parameters versus the functional parameters. That is, if

only one set of parameters is to be computed which set should it be.

Or, if both sets are computed which set should be given more weight.

Unfortunately, there is no clear answer to these questions. There

are several reasons for not using or minimizing the importance of

the statistical comparison tests (e.g., the assumption of normality,

the assumption of independence, etc.) but there are also some reasons

* . for minimizing the use of the functional comparison parameters. As

a result the most reasonable way to determine how much each set of

0 parameters should be weighed is to base the decision on empirical

data. Thus, as in the choice of the best constants for the relative

S. comparison tests, the final solution of this problem will depend

on the judgement of the analyst as based on empirical evidence.

" Methodology 5: Directional Point-to-Envelope Comparison

Let {xj(6)} n l be the et of horizontal ambient noise functions

and let y(e) be the function that is to be compared with (9)}
Once again both y(6) and {xj(6)} are known at only a finite number

of points.

% J.
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For statistical comparison test the quantities 6.., givenij
by

= x (0 ) - y(8.)

are computed. The most apparent method of statistical comparison

is analysis of variance using {6ij}. However, the utility of

analysis of variance methods is questionable in this case. And

so, the statistical tests used when comparing one noise function

to a set of functions has been relegated to appendix H.

For the functional comparison tests, the problems of

methods of approximation and individual comparison arise once more.

As a solution to these problems, let y be the linear spline approx-

imation to y and let ^. be the linear spline approximation to x

for j = 1,2,...n. (The analyst may use any method of approximation.

Here, linear spline approximation is used because it is simple to

compute while still providing a reasonable approximation.) Let the

metric P be defined as before. That is, p is the L2 norm restricted

to the subspace of all bounded piecewise linear functions. As with

the method of approximation, the analyst may select another defini-

*tion of p.

The first functional comparison test is a-generalized, direc-

tional form of V2 . For this test define,

+ + max
l<j<nI j

t x (0) = l<j<n I  J

+
S= {0 [0,2 ] Ix () < <() _ x (8)}

and

= [0,27T]\G

Also, let U be the Lebesgue measure. The first comparison test is

%



1if p(O) < d
.0 otherwise

where d is a constant which reflects the quality of the data. d

is chosen so that this test indicates when the set of points where

x_(8) > y(e) or x (6) < y(e) is of no consequence. If this test

were made with y and {x(e)} and if these functions were based on

perfect data, then it would be reasonable to set d = 0. However,

y and {x.) are not used and the data will vary in type and quality.
3

Thus, in most cases d will be greater than zero. The exact value

of d for each type of situation will be based on the analyst's

judgement and previous data of the same type.

This test provides only a crude comparison between y and
{x.}. It is conceivable that y could be very distinct from {x.)
3 3

and yet "'1 = 0. Also, it could be the case that v = 1 and theO
function y could be very similar to many elements of {x.J}. Ex-

amples of these two situations are shown in figure F-5. Therefore,

while this test is useful in a general way, the remainder of the

functional comparison tests give a much more reliable description

of the relationships between y and (xi).

These comparison tests will be presented in three steps.

First, tests which characterize the set {x.} within the space of
J

functions will be given. Next, the tests which compare y to the

{x.} will be defined. Finally, a procedure for using two types

of tests together will be presented.

ix } can be characterized by the distance between its ele-

ments, the differences between levels of noise of the elements,

-'. and the magnitude of variation from these levels of noise. Let

+ m ax
M = {p(xi,x.)1
x ij 1 J

and
min" ~m = m ,)

m x ij 1

These two constants give the maximum and minimum distances, in

• terms of the metric p, between the elements of {xj. Recall that

peN ;
• 1l
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Figure F-5: Disadvantages ill tne '.1 Comi-aris~n "t

y

,1* 
a. V1 3=1 and y and {x.l are dissimilar

b. v =0 and y and :x.'; are similar
13J



". the distance between two functions of this metric space is a measure

of how the functions differ. The most reasonable comparison test

*- based on these two constants is
,[ +

(m will be used in later tests). The interpretation of this testx+
will depend not so much on the absolute magnitude of m+ but rather

on how this value compares with the other measures of dispersion.

It should be noted that this test may be affected by outlying func-

tions in the set {x.}. Thus, the analyst's judgment will be re-
3

quired to both compare this test with the other tests and to weigh

all of the dispersion tests in light of the quality of the data.

The set can also be characterized by the level of noise of

each of its elements. The levels of noise that will be used for

the elements of {x.} will be the functions that are the best con-

stant approximation to each of the elements of {x.}. To find the

best constant approximating function let,

~min ^
= {p(x.,o)} for j = 1,2,... n 1

3 zFR j Z

"" where o is the constant ambient noise function with level z in
z

all directions. For each j the best approximating function is the

constant function, xj, such that wj = O(xj,x.). (As previously

noted, xj will exist and be unique for all j.) w. can then be in-

terpreted as a measure of how good the constant function approxi-

mation is.

The parameters that characterize the differences between

levels of noise of {x.} are3J
-+ maxX 1<<n {p(x.,O )I

_<.n 1 0

and

- = min { (xj o•<j <n I  o

where 0 is the constant noise function with a zero noise level in

all directions. These parain 2ters are the maximum and minimum levels,

respectively, of the set of constant approximation functions, {x}.

' 3
iJ a
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S imilarly, for j>i

(Y m 2

Hence, for 1: i, jn~i j,
2

paj) 2 PM(~-~ (lPr)

2

Now, the derivatIon for ES 2 can be given.

2 n~ ~ m 2

S2 ( Yi M2)
n-il

~ I L.(.-I - zZ (Yil)YV)

nfn n

1 n

jY i nLY

s2 = ~ E ~ E E
n-l =1 I i J 1)K~ )J

Ta'cing the expected value yields

ES- j E (Y,- / EY

nI n 4=1I )

(n-l) 2  [0 1 2 mnJ j 1 ) l i N iiP
n-1{ y ~ ns i =1~ i
2f12 2P(12  +p~l

Es 2 - 1 (n-1) Ln + fM2 (1-p) 2  [(inl) -m O 0

0 -2 ( 1 pi) 2 n TI in1-i

nm 2 (1-C~)2 L ~ f) J
l.\l '~s
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In appendix C, case 1, an expression for the difference be-

tween the ambient noise levels at two points was presented. Its

derivation is

AN I (e) - ANm(0) TLl (p)dF(p) - Im TLm(p)dF(p)

P1  Pmn

[ki M) I [2. (e) ]

TL l (p)dF(p) +f TL l (p)dF(p)

pm p

[I ( @n [2.m(8)]
[i ( ) in

S_ p*)l TL 1 (p)dF(p)
[2" (p*)

'I.

p1 + TL1 (p)d F(p) F(R (p)) + F(R (p))

rrm
* D*pp

4- - TL M(pWd(p) -Pin TL m(P)dF(p )

Y, (0)] [2. (0)]1

I

m

, v~



APPENDIX C: Derivation of Equations

At several points in the body of this report equations were

used without being derived. This was done to make the text clear,

since only the final equations were needed. In these cases lengthy

derivations would only obscure the text. However, how these equations

are obtained is not always obvious. Therefore, some of the equations

and their complete derivations have been included in this appendix.

2
The first equation, which comes from Appendix A, is for Es I ,

It uses the identity

N N+l N
xN- 1  - (N+l)x +

(x-l)
=I

2
The derivation for Es1 , is:

N

Es 1  E Z (X M

= E -yZ(Xi_ u) 2 
-2(X i - i')(m I- )+ (mi- )

N N

= E l[N(Xi- 0)2 - 2(m- N (Xi- + N(ml - 2

NN N N N
.= E\~ XZ(X i_)2 - 2 Z (Xi_)(Xi-u)- NI (iZ) Xiu

-i=l i-i i=l i=l

= E Z ( ( (X i-)Z i-P)
i=l i=l

N N N *i
- i 7E(x:-1) - 1 [Z(X-I 1.-

. i=l J
N N

2{1
E X - ) - X.-j



-s 0 2  2N pN p

-E~ N(N-l) {N - [2 ~i -
2 1- i=l j=i

2 N - 2 Z 1 N-i Ni N (N-1)

= y 2 N( l - 2p N-1 9 (P-i 1 -1

a J,~l -2 N-i FNP-N-1 -(N+1)P-N + 11
N(N-1) NN+I) - )2

- {N(N+I) - 2  N -NI
(N - (N-1)

a 2 [ N+ 1

2 (1-p) 2N + 2(N-l)p 2 N
E(N-I) N N 1) -2. 2 2 2 N+.:. .
Es I 2= ajN(N-1) - 2 -) + N(N+I)P --

1: N (N-l) (1-0 2

The other expression for Es can be obtained in the same fashion
1

except the step

Es2 - 2 j 2  L" iLEs N(--1 N 2 P1-

j<l i j=iis replaced by the step)

Es2  Ga2  fN2 2E Z Pi-j + E Z i 1
1 N(N-1) Lf=1 __ i j=' J

and the derivation completed.
¢2

Es is obtained in a similar way. However, before deriving
2

2
the expression for Es 2  the equation for Cov(Yi Y.) must be

justified. Cov(Y i , Yj) is given by,

I.
- 1< 

.
&
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r/"1 Pm
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which is the expression that was given.

The other expression presented without derivation in ap-

pendix C was
-7

IANm (a) - W.AN. (6) < Q"1=0

To see that this is indeed true consider,

U 7 7 7
JAN (6) - I W.AN I (e'= I i w ANm(e) - L wi.AN. ()I

1=0 =0 =0

7
since i = 1

l--0o
U
1

7
L= I ( iANm(8) - ANi(0)) I

.1U, 7
<_ LWIANi(e) - ANm(e)

i=0

< L WZ 2 ( E P (r) + t (r))
1=0

--- 3
+ I W2i+l ( (/2r) + t(/2r))

U1=0

< 3 C (r) + Ct(r)

=0 -- C(p(r) + et (r))

3 v/"r) + :t (V r)
+ I

=0 (C (V2r) + c (/2r)p t

< 4 4

7 8
IAN (e) - w AN ()l < Pmi=0 - 9

OP 1



APPENDIX H: Alternative Comparison Methodologies

This appendix presents ambient noise comparison tests that

can be used in place of the tests given in appendix F. The alter-

native tests are listed by the methodology in which they would be

*. included. The reasons that these tests were not used in appendix

F are given along with the tests.

Methodology 1: Point to Point Comparison

There is so little data available in this case there is

only one reasonable metho,: of comparison. This comparison test

is the one given in appendix F.

::ethodology 2: Point to Envelope Comparison

In this method of comparison there is an alternative to
-.-e test '.3. This test uses the statistical notion of hypothesis

testing. It is assumed that {x }n is from a population with a
i i=l

-.(f ,2) distribution. This comparison parameter tests the null

". hypothesis,

Hu

against the alternative hypothesis,

The test statistic that is used is,

t - (mx - y)
Sx

This statistic has a Student's t distribution with n-1 degrees

of freedom. The alternative comparison test to v3 is

^ l l ~I I < t~l1 if t=[1 - (n - 1)

0 otherwise

In this test a is the probability of Type I error, i.e., the pro-

bability of rejecting the null hypothesis when it is true. t

% .
V..

,' . .- ,% •% , , .%%•% .%%-. .% .%•% ,-. • - .

- . , .. ,],[ ,", , 
- !
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.

- is the value of the t statistic with v degrees of freedom such

that P(t < t[E] (V ) C.- ci(v
V 3 would be the ideal test to use if y were known without

*. any error. The value of V 3 in this case would indicate whether

{x i } is from the N(y,o 2 ) population (V 3̂ = 1) or from a normal pop-

ulation with mean p and p x 7 y (N 3 = 0). However, y will not be

an exact value, and so, the test based on tolerance limits will

be more reliable.

Methodology 3: Envelope to Envelope Comparison

There are several alternative comparison tests for this

methodology. Two of the alternative tests use the statistical

notion of confidence intervals. The remainder use hypothesis

testing.

n For the confidence interval tests it is assumed that

i ix l comes from a N(pxc7x ) population and that } 1 comes

from a N(. y2) population. For this discussion a confidence in-
y y

*' terval for a set will be a pair of real numbers L and U such that

there is a 100A percent confidence that the mean of the population

to which the set belongs is in the interval [L,U]. The parameter

. X is to be selected by the analyst. For the confidence interval

-" comparison test define

s
L (X) = m x t1

*U x(X) M + XtlX

xx p-[ 2 .]( - i)

L (X) m - Syt

y y VA;- 2 [)(n-1

2" 2

U (X) M + t
y y.n [2-]n 2 -1).1 - " Y Y /2 [2 ] ( 2  -l

I~r

4.



where t is the value of the Student's t statistic

[AL2u' (n 1 - 1 )I
as described above. The 100A percent confidence interval for the

mean of the x population is

I, = [Lx(?) , U(A)]

and the 10OX percent confidence interval for the mean of the y pop-ulation is

12 = [Ly() , Uy(X)]

As alternative tests to the comparison tests in appendix

F, ') and v5 can be computed using the confidence intervals defined

- above.

The reason that these intervals were not presented in ap-

* pendix F is that they do not present as much information as the

interval tests given there. When v = 0 and v5 = 0, then it is

reasonable to assume that the x and y populations are dissimilar.

However, when v4 and vs are not near zero, it is not necessarily

true that {x.} and {y.) come from the same population.

For the alternative comparison tests that use hypothesis

testing, it will also be assumed that {x.} is from a N(W, ) pop-

-lation and that (y.} is from a N( y , 2 ) population. There are
J y y

tw.o tests that compare the means of these populations. One test

is used when G2 = 02 and the other is used when 02 $ 02. If itx y tx2=G y
is not reasonable to assume that a = a or 02 ; 02 based on thex y x y
data alone, then hypothesis testing can be used to determine which

condition probably holds.

The null hypothesis for comparing U2 and 02 is
x y

H 02 02

0. x y

and the alternative hypothesis is

HI o2 02

x y

Se%% . I



-. The test statistic to be used is

F = x

y

This statistic has an F distribution. The test to determine

whether 02 is probably equal to 02 or not is
x y

~1 ifF<F <F

2 if (a/2 ) [n 1 -l, n 2 -1] (l-a/2) [n 1 -l, n 2 -1]

0 otherwise

,.here F is the value of the cumulative F distribution

(C) 1 , v2 1

with v:, V 2 degrees of freedom at which P(F < F ( ) [ V 2] =

a is the probability of Type I error and is selected by the analyst.

If v 2 2 
= 1, then it is reasonable to assume that 02= 02. If V 2 2 =

0, then it is reasonable to assume that a2 y.
x y

When a2 = 02 the alternative test to compare the means of
x y

the populations has null and alternative hypothesis

H0: y

and

H : x y

respectively. The test statistic is

t (m - m)

sn 1 + n-1 2

where s2 is the common variance given by

7 2 2
2 (n I - l)s1 + (n2 - 1)S2

n I + n2 -2

The comparison test is

SNil



1 if lt < t(l/2) (n + n 2)

0 otherwise

where t(I-o/ 2 ) (nI + n 2) is the value of the Student's t

statistic as described above and a is the probability of Type I

error.

When a2 3 o2 the alternative test to compare the means of
x y

the populations has the same null and alternative hypotheses as

V 2 3 (i.e., H0 : Lix = 1'y and H1 : 1 x ? , . However, the test

statistic here is

,'. (m -~ m ,

to = - X
/S2 nl1 + S2 n-1
x y 2

This statistic has a distribution which is approximately a Stu-

dent's t distribution. The comparison test itself uses the quan-

tities defined by

-, S 2

W Xx n 1

. Y n 2k':.

t = [l-c/21 (n - 1)

and

t2  t [l-c/2] (n - 1)

where t [/ 2]( 1 is the Student's t statistic as described

above. The comparison test is

Wt + v t
i if It'l < x 72

w + "V2 4 = Y ',.

0 otherwise

'tIl e



When v,, 1, it can be assumed that =x . Otherwise, W

It should be noted that this statistical test is only approximately

a t test. In practice, it is notoriously unreliable.

Since v 2 1 is not reliable, it was not included in appendix

.- F. V2 3 was not included in appendix F because it will seldom be
" the case that px = p y. Without V 2 3 and v24 there is no reason to

use V2 2 - Therefore, no comparison tests using hypothesis testing

were mentioned.

Methodology 4: Directional Noise Point to Point Comparison

In this section one alternative statistical comparison

test, one alternative functional comparison test, and several varia-

tions of the functional tests will be presented. However, these

alternative tests are not the most important part of this section.

The point that should be emphasized here is that it is the fact

that some kind of functional compa' _ on is made which is important.

,- The particular functional comparisons used are relatively unimpor-

tant. The alternative tests should be considered with this fact

in mind.

The statistical comparison test once again uses hypothesis

testing. It is assumed that {Di i=1 (the differences in x(8 i) and

, Y(i) for each i) is from a normal population, N( D , aD). The null

* hypothesis is

i.e., the mean difference between the paired sets {x( i ) } and

SY(o i )} is zero. The alternative hypothesis is

H : 76 U

The test statistic is

IM
""mD.z" t = Vn S

D

which has a Student's t distribution. The comparison test is

INN

%~~~~ % %~ % %p*' 4 ~ ~ * J .' - ~ **..%~.
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[ . ( 1 if Itl < t [la/2 ] (n - i

0 otherwise

where t [l-a/2]( 1 is the value of the Student's t statistic

as described under methodology 1 of this appendix. a is the

probability of Type I error. This test was not given in appendix

F because in most cases there is no reason to assume that {D.} is
1

from a normal population.

For the alternate functional comparison test define the

function x + t by

+ t] (8 + t) mod 2.

,,here - < t < 7T. The alternative comparison parameter is

min {p(x + t, 9)}"2 26 = t

This test indicates whether x and 9 are similar but slightly ro-
tated relative to each other. It should only be used when v9 

= -1

(i.e., when x and y are similar to begin with). V 2 6 may indicate

small errors in direction (e.g., when the bearing of an array is

incorrectly recorded by a few degrees when measurements are being

made every degree). However, since errors of this type will sel-

dom be found, the effort necessary to compute V2 6 is usually not

merited.

The variations in the functional comparison tests alluded

to at the beginning of this section arise from the method used to

approximate x(e) and y(8) and the metric used when comparing func-

tions. As mentioned before, these considerations are secondary

to the fact that a functional approach is used at all. Nonetheless,

it will be worthwhile to make a brief mention of them here.

The two functions x(O) and y(8) are known at a fixed,
n n thfinite set of values, (6i1 Using the values n((0.) 1 tUsngte ale {(1 ) }i 1 h

function x(1t) can be approximated in many ways. (The function x(e)

I-
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will be used here but the discussion will apply to y(e) and, in

fact, the sets of functions that arise in methodologies 5 and 6.)

For convenience of notation, define the quantities 0 , 0n+l

& (0) , X(n+1) by 60 = 0 n, en+ 1  = 01, x(e0) = x(en), and x(en+ I ) =

SX( l). The method of approximation assumed in appendix F was

linear spline approximation. That is,

x(ei+l) - x(Oi)
x(0) = (0 - 0i ) + x(8 i )0i+ 1 80 i 1I

where i is chosen such that 8. < 0<0 Also mentioned in
I1 i+1'

appendix F was step function approximation. In this case

x(a) = x(e i )
8. + e. 8 + 8i+

w-here i is chosen such that il i < e < i+l The step
2 - 2

function approximation has the advantage that it is simple to use

in computations. The linear spline approximation has the advantage

that it is continuous while still being relatively easy to manipu-

late. Cubic spline, polynomial interpolation, and other methods

all have their own advantages and disadvantages. However, as can

be seen from the simple example above, the different approximation

methods will produce approximation functions with different proper-

ties. Hence, while the analyst is free to chose any kind of approx-

imation, some consideration should be given to the results of this

choice.

Everything that has been said concerning the choice of

the method of approximation can be applied to the choice of the

metric p. In appendix F p was
2rr 1/2

P(O, 0, = [1-f 2 (0(6) -i())2 2dO] 1

Other possible choices for p are

i .. !_L fo TT 0) - tp(0) dO

2~ Tr

1



and
max

, = ~ 0,2T 2 Iq(e) - "(9) I}

Each of these metrics will produce different results. It is the

fact that a metric is used which is important. The selection of

that metric depends only on the analyst's requirements.

Methodology 5: Directional Point to Point Comparison

The only alternative comparison test that will be present

here is an analysis of variance test. For variations of the func-

tional comparison tests see methodology 4.

In appendix F it was mentioned that analysis of variance

could be used with {x.()nj=l and y(3i) where i = 1,2,...,n.

For this purpose the quantities 6...ere formed where

6 ij= x (Oi) - y(e i )

The additional quantities needed for analysis of variance are,

n 6 .
.j n i=l i-

and
- a n nn. n_

nn1  j=1 1 j=l "

The parameter that would be of interest to the analyst is

2-fl nl ),,V 2 7 n

rel27c ns -t1 j=v i

which is the mean residual error. v' reflects the variation in

the differences between each of the functions x. and the function

y. That is, when v27 is small the difference between x3 and y is

similar for all j.



The reason that this comparison method was not included

in appendix F is that the underlying assumptions of analysis of

variance will seldom be met by the data. That is, for analysis

of variance it is assumed that the elements of {6 }= are in-
V ij i 1

dependent and normally distributed for each j. The data from

ambient noise functions will seldom be normally distributed and

almost never independent. Thus, this method of comparison has

N very limited use.

Methodology 6: Directional Envelope to Envelope Comparison

In this section an analysis of variance test will be given

for {xj (6i)j=1 and {y (e 2 where i = 1,2,...,n. Also, an

alternative functional comparison test will be presented. For ad-

ditional variations to the function given in appendix F, see

methodology 4 in this appendix.

In appendix F the quantities 6.. were formed 'or use in
ijk

an analysis of variance comparison. They were defined by

6ijk x ( i) - i

For the comparison test compute the sums,

1n6 =j n 6ijk

"k n i=l ili

nl

12 n
n id 6 ijk

n

.'J" nn 2 =il =i:

and n 2 nl1 n

E E 6rnn 1n 2  k l ji i=l ijk

S%



The parameters that would be of interest to the analysis are

n
2"nn 2  12
2 8 ni _

anda 2 nn I  n2 2
V 2 9  1 Ei (Z. -5 ).n2 -1 k=l k

which are, respectively, the mean residual error due to fx} andJ
the mean residual error due to {y k}. These parameters are inter-

preted in the same fashion as V 2 7 . Also, the reasons for not
2 2 2 2using v 2 , and V 2 9 are the same as for not using 2-7 . That is,

the data will almost never meet the requirements of normality

and independence.

In the case where the sets of functions {xj (8) and

yk(6)) }were compared in appendix F it was noted that there was

no test which indicated the distance between these two sets and

which was both easy to compute and comprehensive. V 2 2 was given

as one way to compare the two sets. A second method to compare

the distance between the two sets is

-30 = med{(xj Yk)} + medlc(xjky
j'kj jk'Y

where xjk and ykj are as they were defined in methodology 6 of

appendix F and med(z is the median of {z }. This comparison

test has the advantage over v2 that it is less strongly effected

by outliers (since it is a rank test). Although V3 0 is more

difficult to compute than V2 2, it is still relatively simple to

compute.

This concludes the listing of alternative comparison

methodologies to those of appendix F.

y.
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The comparison parameter that is used to indicate the dispersion

of () isJ3
-+ -

\)15 = X X

This parameter is similar to V 1 4 in that it is the maximum dif-

ference between the constant approximating functions. Its value,

when compared to the value of V 1 4 , is an indicator of the differ-
ence in {x.} that can be attributed to variation in the noise

3

levels of the elements of {x.I. Like 'i,, it is also effected by
8 3
extreme functions.

A final characteristic of {x is the variation of the

elements of this set from their best constant approximati.s .. ,

the magnitude of variation of x. from x. for each j). For the
3 J

' comparison parameter for this type of dispersion define the co:.-

stants,

+ = max

x <j' n 1  j

and
- min

Wx l<j<n 1 {JI

the comparison parameter itself is
+

"I" = - w
x x

is is the maximum difference in the magnitude o. v' rat'o:,

These last three parameters, 4, vis, and i provide

;eneral characterization of {x.}. Cable F-4 can b,- used to inter-

"ret their values. An "L" indicates a value that is largE whe-,

:ompared to the value of v1 . An "S" indicates a value that is

,all when compared to the value of ;14. Clearly, the analyst's

.i-uation of the relative sizes of these values and of their size

7pirod to background data will determine the interpretation of

rresults of these three tests in any particular situation.

'I& _N~~ '



TABLE F-4: S ummary o- f . .. id

M a.. Meian

L L The functions in the stt -x are w. !ely .ist,:

in the space uf fur -tions. That is, the f -n t

vary in the level ,)f their constant appr,,xima' ;.

and in the1r ma,4n t'Ade f ',r.i ra from es

leve Is.

*1

r •Th i ' s 1 6"'1.

"2 I

,Y,

%



4'.

re:rc, the analyst will only be able to derive meaning from

*:>.e t-.ss after a body of data has been used.

w t ha a *;eneral picture of .x. has been built up, y

, to x . For the first comparison test let

1. Fl

(x ,y)

A -
et

, .4

• ..: '. , , : . " . ' "/ m n tti , e em ent of :
3

1 t e the aistaince

, ,O r. ter tha: the :kxifufl diu-

-at1 i f e r-
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e t ,

f X The fit
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Two additional comparison tests can be used to partially

determine the source of differences between y and {x.} indicatedJ
by table F-5. These tests indicate how the best constant approxi-

mation to y and the magnitude of variation in y compare with {x.}J
and {w.}. LetJ

W min
SZER {p(y z )}

and let y be the element of {o } such that w = p(y,y). Then thez Y
test that indicates the differences in the constant approximations

to y and to the elements of {x } is
I" j

1 if x < p(y,0 o  x
1~19

K[ 0 otherwise

where 0 is as previously defined. If q = 0, ten y and the ele-
0

ments of {x vary n their level -f noi.3e. On th-_ other hand, if

1i 1 3 1, then the differences between y and x.} ztre only p irtiall,,

*.[ explained as distinct leve.s of noi B.

The comparison test that ind.cates the difference in the

magnitude of variation in y and (xj } ;s

,.. I if W < W < W= .- y - x
)2 0

"0 otherwise

if V20 = 0, then the variation in y from y is different from toxe

vcriation in the set {xj. Thus, the distance between y and {x.}JJ
is due to the lifference in variation. If V 2 0 

= 1, then this dis-
tance is only pa.-tially explained by 0 .

The procedure for using all of these comparison parameters

together to cerive information about y and {x.} is as follows.)
First, V 1 4 , \.is, and V1 6 should be computed. Theoe parameters will

indicate the dispersion in the set (x.} as indicated in table F-4.

Next, v17 and vj, should be computed. Their value3 will indicate

the similarity between y and (x They should be i.terpreted



using table F-5 and the values from the first three comparison

parameters. Finally, \19 and "'2. should be computed. These two

parameters will indicate sources of differences between y and

Methodology 6: Directional Envelope to Envelope Comparilson

Let the two sets of ambient noise functions be denoted

by x. ( ) l and ky (0) 2 Once again the points at which al:J 1 k k=l

of t e functions are known is finite. Denote this set by .

As in the directional point to envelope conpari.%: m' -

(b< y there are some di'ficulties in using statistical tcs swi t!

X and y ! ) Hence, these statistical tests ire al';.

relegat -d to app.-ndix H. It should be mentioned, howev,-r, th-it

thesc s itistica comparisons use analysis of variance Tmthds

with the .uantit-. s

ijk i -

The func' *ial comparison tests in this -iethodoik ;-), 1"

a combination of g .neralized version cf the comparison tests fr.2

the omnidizectiona envelope to envelope comparison methu)do! 3y

and tests from the 'irectional point to envelope comparison )-th 2-

ology. Once more i. ear spline approximation arid the restricted

L2 norm will be uied The comparison tests will be presented in

three steps. First, the sets ix.! and LY will ba described as,-
jk

sets of functions in the space of functions. Next the two sets

will be compared. Finally, a orocedure for using hese two types

of comparison tests will be giv.?n.

As in the fifth methodology, the two sets of functions can

be individually characterized by the distance betw -en their ele-

ments, the differences between the levels of noise of the elements

of the sets, and the magnitude of variation from these levels of"+-

noise. Let m and m- be defined as in the previous section. Define
X x

'.-" -- ,.
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VA y , like x and x , are the maximum and mini-

ey.octve yof the set of constant approximation

*For indicating difference in the levels of

* se.'~i~ each o)f fhc? two sets {x 'and, the COMn-

1, *r nLo between the constant api)l rox Ira-

* t~h'~uI thoit w1Ill bte Of interest to) the

Ir~ ari! t heir. re lation to the iparametors

1 .e 1" These i irameter-s shuild be In-

* . ... jet 'r , was in the prevlous sect 1 oi.

na r r stic o)f the two sets that will bc

* ' ',, -n , n f the elements of the sets frlin their

i1Sy ApproX ht o ons tan r rxSPctiVe. ,ef In

-2

min *

,:, cmparison parameter that is used to find the maximum differ-

e i,,! the -rnitude of variation from constant functions within

e ,..f tre sets x and y l is
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These six comparison parameters, V 1 4 (x), v 5 (x), ' 1 6 (x),

-. )(y), y), and v 1 6 (y), provide a general description of the

sets (x } and £yk}. They are exactly the parameters V 1 4, V15,

p and , ,, from methodology 5. Thus, table F-4 can be used to in-

terpret their values. Also, these parameters, when compared pair-

wise (i.e., ' 4 (x) to v1t (y), V15 (x) to v1 5 (y), or v, 6 (x) to

6 (y)) , will provide some information on how the two sets are

S dispersed, relative to one another, within the space of functions.

Thus, a general. description of [xj} and {yk} can be found.

.ow there are many tests which will describe the similarities

between 'x and However, none of these tests are both com-] k "

p rehensive and easy to compute. The two which are easiest to com-

' ute %,ile still providing useful information are presented here.

Anuther comparison test is given in appendix H.

For the first comparison test let

min
.. " ],k j, Yk

riu ,-Mr:arison test is

1 i f M

-- : 0 if m < < M

"-1 if j <  m

where m and M are constants. This test indicates whether at least

une pair of elements, one element from (x.) and one element from

are similar. If '21 = 1 then it can be assumed that {x.)
? k' I

and {yk are dissimilar as sets. However, if V2 1 = 0 or V:1 = -1,

it can only be assumed that one pair of elements from the sets is

.: similar. The next test will provide more information about all the

elements in both sets.

For this second comparison test for each j define Ykj to

be the element of that minimizes P(2 Similarly, for

l<kn 2 define Xjk to be the element of {x.} that minimizes P(Yk. xj).

The comparison test is

4

4



V 2 2 _ P(ilki n E P(Xjk'Yk)
1 j=l 2 k=l

This could be modified so that its form would be the same as other

tests (e.g., V21). However, in order to choose reasonable con-

stants for the test, nI and n2 must be large. Thus, since nI and

n2 will generally be small the best way to evaluate the results

of this test is to make use of the analyst's judgment based on

past data.

There are additional comparison tests which are analogous

to vl and \ 2 0 - v1 9 was used to indicate differences in the best

" constant approximations. In this comparison methodology to indi-

cate the differences in the best constant approximations to the

• elements of {x.} and {yk) let x and x be defined as in method-

ology 5. Recall that

-+ =max
l<k<n 2 o,

-2
and

min
-= l<k<n k'-2

where 0 is the constant noise function with a zero noise level in

all directions. Define the intervals

={zcRIx < z

an d
tzRJY < z _ y+

now, the comparison tests 4 and v5 can be used. In this,'

method of comparison, these tests will indicate how the levels of

noise of the elements of {x } and {yk) compare.

.'20 was used to indicate the magnitude of variation from

constant levels of noise. For the test in this method comparable

to '20 define the intervals
- +

I = { z - R , x -- z < + x
1 'x-x



and
nd=zERw < z < w}

12 y -y

Once again the comparison tests ')4 and v5 can be used.

Here, these tests indicate the degree to which the magnitude of

variation from constant noise levels of the elements of (x.} com-

pares with the magnitude of variation of the elements of {yx}.

The procedure for using these comparison parameters together

in order to derive information about {x.} and {yk is as follows.

First, the parameters v 1 4 (x), v 1 5 (x), ') 1 6 (x), v 1 (Y), v 1 s(y), and

(Y) should be computed. These parameters will indicate how the

sets txj" and (y k} are dispersed in the function space. Next, v2 ,

and ?22 should be computed. These tests will provide an indication

of the similarities between the two sets of functions. Finally,

the comparison tests V4 and v5 should be used with intervals de-

scribed above in order to compare the levels of noise and magni-

tudes of variations of the sets.

Summary

Six comparison methodologies have been presented in this

appendix. The selection of methodology depends upon the quantity

of data. The tests within each methodology depend on the quality
of the data. It should be noted for the functional tests that

the important point is not which functional comparison test is

used, but rather that a functional test is used at all. The com-

parison tests described are listed by methodology in table F-6.

Alternative tests are given in appendix H.
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