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A. Introduction

I. Nature and Scope of Effort.

The Acoustic Model Evaluation Committee (AMEC) has
been concerned with the evaluation of various acoustic models,
the principal model types being transmission loss and ambient
noise. Work on validation of transmission loss models has been
done by the Panel On Sonar System Models (POSSM) which has run
a number of well-known transmission loss models against the same
set of environmental inputs (ref. e). Throughout this effort,

a number of technical concerns have arisen regarding transmission
loss model validation (refs. e and i). For ambient noise models,
however, model validation seems to be restricted to either model
development or the validation of a single model against a single
type of environment (e.g., acoustic assessments). NORDA 320 has
tasked the contractor "to assist in the formulation of an initial
evaluation methodology for low frequency ambient noise models”.
In this report, we seek to establish a more general framework for
ambient noise model evaluation.

fuThis report addresses several considerations which ;
will impact ambient noise evaluation, and provides an Initial Model i
Evaluation (IME) methodology for omni and horizontally directional
ambient noise models. Inasmuch as ambient noise model evaluation
for vertically directional models or temporal noise models involves
both the criteria given in the IME and a number of other considera-
tions unique to the models assumptions, it was considered better
to address just the most widely used types (i.e. omni and horizontal
directionality noise models) in this effort. Furthermore, considera-
tion is restricted to the two major mechanisms of low-frequency
noise: shipping and wind. Noise due to seismic, biologic and

other meteorologic phenomena is assumed to be minor or negligiable

at the frequencies under consideration. Since readers with different
1

interests may read only those sections pertinent to them, there is

some duplication of material between sections.
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II. Fundamentals and Approaches.

If one were to do an ideal model evaluation, the model
would be run on all types of inputs scenarios and its results
would be compared with the "true" results for those sets of inputs.
In ocean acoustics, this is blatently impossible. Environmental
inputs are only known at certain points, and from there they are
extrapolated throughout the ocean basin. Second, the physics of
the model is a simplification of what we scientifically consider
reality to be. A third source of difficulty is with the computer
implementation of the model itself, which is a mathematical sim-
plification of physics. Finally the output cannot be compared
with any "truth", for all that is available is a set of acoustic
measurements taken at a point, which are subject to a number of
measurement and processing errors. Additionally, the number of
possible cases necessary to thoroughly check this model would be

phenomenal.

-Out of this primeval chaos the acoustic modelers seeks
to bring order. By judicious selection of cases, one may attempt
to insure that the environmental and acoustical fields are well
represented by the data, both qualitatively and gquantitatively.
Also, one may ask for less than perfect agreement. The comparison
of model vs. data is often subjective, ranging from "It looks great"”
to "Oh no", thus a set of objective criteria must be structured.
The extrapolation of model validity based on one or two acoustic
sites to the entire ocean basin is a separate problem and this is
often treated subjectively as well. Due to the lack of resources
and desire to obtain measurements across the entire acoustic
basin, such extrapolation is a necessary procedure, but it should
be performed only when it can be reasonably justified. This is
not to denigrate subjective analysis; it is a powerful tool when
it incorporates the environmental and acoustic insights of an
expert. In general, such learned subjective analysis is a pre-

requisite to a meaningful quantitative objective analysis.
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) If one is given a model, there are two broad types of
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approach to its evaluation. One may approach the model as a

r
o

scientist, asking the question "How well does the model perform
scientifically”, implying both a valuation of performance in

e

comparison with other models and a valuation of performance of

the individual components. Or one may take the approach of the

end user, and ask "How well does the model estimate its principal
outputs"” implying a comparison against the specific system require-

A
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ments. This is not a dichotomy between pure science and applied
engineering, rather it is a decision based on the use and possible
uses of the model. A model such as FACT which is used by a number

.
| YA

of organizations to compute transmission loss, and is a component

E of a number of large computer models, requires a scientific evalua-
x

” tion to determine the limits of performance for a wide variety of
- situations, thus the former approach is necessary. On the other

K

hand, a model whose sole function is to serve in one specific
- system model, which is integrated into that model to the degree

[y

that it is untenable to remove it for future application, need
not be evaluated in such a rigorous manner. If the overall system
evaluation proves acceptable, under the full range of possible

.

environment conditions for which the system is considered, than

the individual components of the model may be considered to have

Xalu

~ performed acceptably, even though their performance by scientific
u standards may be rather poor. There are a number of instances
2
N in which peculiar types of model deficiencies in submodules tend
e to cancel themselves out, or have negligable effects, when in-
o corporated in much larger models. For example, in a system
performance model, both signal and noise are subject to transmission
Y
'i loss. Thus while a poor transmission loss module may lead to poor
ambient noise predictions, the resulting SNR may be acceptable, due
ﬁ to certain types of errors canceling themselves out. Similarly
s - in computing directional ambient noise the shipping field may be
:.4 so evenly distributed that a range-averaging model (with little or
|
)
) .
B
-
-
A
\‘H

5

L S S R T S Y, ¥
Lo r‘r O




“ AW oY ‘e &0 S'a 82 8 % 2% A A, by *4b el val tal v it

no convergence zones) proves just as acceptable as a more precise
! model. These two approaches, of course, may be combined into a
more flexible model evaluation methodology in which individual

l.' '

“‘h 0 . » (3

> components such as transmission loss or ambient noise models are
'i: evaluated individually and then they are judged acceptable or

b unacceptable for the system model based on system requirements

for accuracy of individual modules.

N
:jz Evaluation obviously is based on the output of the
L model, such as components of transmission loss, transmission loss
. itself, and ambient noise. Thus the methodology developed will
% be dependent on the particular quantities produced. Modules which
1% form the basic building blocks of larger models may produce out-
}": puts that are not easily identified with final system performance
i: parameters, and thus whose influence may be difficult to determine
= on specific situations. Typical modules which produce only com-
_ ponents of a measurable quantity are: transmission loss produced {
j: by normal mode calculations (assuming an infinite loss), bottom
{ loss functions (as a submodule), or the vertical directionality
E patterns of the ship radiated noise level.
- In evaluating a particular ambient noise model, one I
;4 is evaluating sufficiency, accuracy, and stability of its specific
- outputs. Hence, depending upon the type of evaluation desiregd, 1
54 one may work either from the final model output, or may demand
_E an intermediate result from the individual modules. The types of
. outputs themselves differ considerably between the ambient noise )
-: models. Additional outputs needed for validation may include
'E transmission loss curves, ship tracks, or decorrelation times.
K The plethora of possible outputs produced by some models tends
o to overshadow the outputs of primary importance.
i One aspect of module evaluation that cannot be ignored
;3 is the performance of the computer system itself. As oceanographers g
b and acousticians, we tend to judge performance on the ability to
‘P

replicate various underwater acoustic or oceanographic phenomena.
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However, uses of these models either as part of larger models, or
by the fleet, often requires reasonable running times and hardware
requirements. Computer parameters such as core requirements,
execution time, ease of software modifications and adaptability

to fleet computers do not properly play a part in the acoustic

or oceanographic evaluation, but these considerations play an
important role in comparing the computer performance of one model
against another (refs. e and k).
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III. Ambient Noise Models and Their Outputs

Although individual ambient noise models may differ
significantly in their underlying science, order of computation,
and methods of computation, all low frequency ambient noise models
can be broken apart into component modules, such as those listed
below:

e Ship distribution fields, either discrete or
densities, along with allied ship acoustic
information.

e The transmission loss module, which may be ray
theory, normal mode theory, parabolic equation,
or other type of model.

e Environmental field input module, containing wind
speed, bathymetry, bottom loss, sound speed pro-
files, and any other environmental information

needed to fully describe the ocean region for
the transmission loss or ambient noise module.

e A module for beam patterns. This would convolute
the ambient noise pattern with the beam pattern to
produce the received beam noise.

a

o ]
"

e A summation module, which sums all noise sources
according to their position.

Not all models have these functions broken out separately;
indeed it is quite common for one computer subroutine to perform
several functions. Rather, they have been broken apart in order
to facilitate discussion and identify problem areas.

The shipping distribution module is essentially an

B O = AN

¥
-

input routine, which requires the ability, based on the geographic
position of the receiver, to determine how much shipping information

==

is needed and where the appropriate boundaries (either real, such

as beaches, or acoustic, such as seamount chains) exist. Also,
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data on ship movement (if this is a temporal noise model), ship
radiation pattern (which may be omni, dipole, horizontally dir-
ectional, or vertically directional), and nature of the field
(discrete or density) is needed. The transmission loss module
will require a large number of environmental data items, and
this is usually the principal data input.

The beam pattern module is normally quite simple,
i.e., the beam patterns are specified either from a file or
internally. But linear arrays are sometimes not linear and
not all hydrophones continue to work at their original calibra-
tion setting, thus the beam pattern produced by an array in
actual use may differ significantly from the theoretical beam
pattern it was designed to have. Furthermore, differences in
the acoustic intensity of both signal and noise along the length

‘'of a large aperture array may be significant, thereby completely

altering the effect of signal processing based on the theoretical
beam pattern. Most long arrays are designed on the assumption

that all incoming acoustic energy is propagated in planar wave
fronts of uniform intensity: measurement during exercises in-
dicates that this is not always the case. Thus, the beam pattern
module, while it may be simple, cannot be overlooked in terms of
ambient noise model evaluation, for the real world may be incredibly

complex.

The summation module is, fortunately, relatively
straight-forward even for temporal noise models. However, the
second order statistics of temporal noise models are highly
sensitive to the tracks given for the discrete ships in the ocean
area, and it may be difficult to separate problems in summation

from problems with the tracks.

The type of ambient noise model varies according to
application: Omni noise models are used for predicting performance
of sonobuoy fields, horizontally directional  models are used for

arrays and fixed systems, vertically directional 1is necessary

U WO it g S22 a"l'.l.‘v NASSOD )

'?’}'7 v o !r'{".’f o P S LT [h Y RN
"-, -C ...0.. ‘N. 0 Wy "";W ,\»‘:_ n ¢

e~ =t ey



for vertical arrays, and temporal noise models find application

L i R
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to extremely-narrow-beam systems. Within temporal models, one

may discriminate between analytic and replicative models, i.e.,
those which make the mathematics sufficiently simple to yield to
analytic formulation and those which keep complexity but use
multiple replications (4la Monte Carlo) to achieve statistical
validity. Also with temporal models there are a number of types
of output available: distribution, first moment statistics,
second order statistics and specific probabilities (e.g., beam
free time). The number of ambient noise models existing is

It suffices to say that all models functionally fall into one

directionality), temporal analytic, or temporal replicative.
Since the types of inputs for these models has been discussed
above, we will proceed to the more significant problem of the

types of outputs.

For convenience for the remainder of this report, we
will define a number of terms relating to the outputs of the
ambient noise models. Preliminary to this, we note that all

these quantities are subject to the following general gqualifica-

tions:
e noise level may be at fixed fregquency or set of
frequencies.
® acoustic levels may be either continuous wave or
broadband, depending upon the transmission loss
module and the ship spectra inputs.
® noise may be at a fixed point or set of points in
the ocean region.
When making comparisons it is always necessary to
consider these gqualifiers and their value or values. In all

equations given, the overscored quantity will represent the

intensity of the level, and that without overscore represents

L

extensive, hence no overview or synopsis of them will be attempted.

of several categories: static models (omni, horizontal, vertical

Do

-
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the dB equivalent. For example, N(.) represent noise in dB

5; while N(.) the same level in intensity, so that

! N(-) = 10 log N(-)

. In regards to omni noise, we make the following symbolic

N

-, definitions. Let:

E N be the omni noise value produced from a stationary

hﬂ
AN model

e

}; N(t) be the omni noise as a function of time t €(0,T)
from a temporal AN model

f; F(x) be the distribution functicn of omni noise from a
statistical AN model

E: M be the mean value of the distribution of omni noise

from a statistical AN model

v be the variance of the distribution of omni noise
from a statistical model

It should be noted that mean and variance are dependent

E_ upon the system of unit used, i.e., intensity or decibels. This

& depends upon the ambient noise model under consideration. For

Ff purposes of this discussion, it will be assumed that mean and

< variance are computed in intensity rather than dB. Use of the

. median rather than the mean eliminates this unfortunate ambiguity,
;3 for the median is equivalent whether calculations are performed

in intensity or dB. While this is fine for first order statistics,

@i it is not particularly helpful for the second order moments. 1In

the case of a horizontally directional ambient noise model, the
following symbolic definitions are made. Let:

N(8) be the noise in the horizontal sector at azimuth 6.
&, Since this quantity is dependent upon the sector
width, let A6 be the sector width in radians.

&
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N(6,t) be the directional noise at azimuth 6 as a function :%
of time, from a temporal model. )
B(6,t) be the noise measured on a beam pointed at angle 6 o
(and, of course, its mirror image) as a function of
time. a
M(8) the mean directional noise at azimuth 6, from a

statistical AN model. As above, this may be in 4B
or intensity.

=l

v(e) the variance in the directional noise at azimuth 6,

%

from a statistical AN model.

e

In the case of vertical directionality one may define

the quantities

g

N(¢), N(¢,t), M(¢), M(o,t),A0¢

in a manner similar to the horizontal case above.

The temporal ambient noise models have guantities
defined in a manner similar to the static case, but with a depen-
dence upon time. However, those gquantities of greatest interest
in these models are not the noise quantities, but rather the beam.
noise statistics. Typical outputs for beam noise statistics are:

e the probability of the beam being free, or below
a preset threshold. 1In this case the beam "sees"
no ships, or if a threshold is used a small number
of distant ships.

® the mean beam free period; i.e., the expected value
of the interval in which the beam contains no ships.

e the mean time between beam free periods; i.e., the
expected value of the intervals during which the

beam contains ships.

k) Ued Y LY O Ry SR Sy TS e ) Gl i R I IS 2 W 0 -~ A A 5 : (W
B A A A A R R R U A A R L SRR S SRR



-

P

B =

e the distribution function of the beam free time,
i.e., the one dimension distribution function of
these time intervals.

e the auto correlation of beam noise, i.e., the
correlation of noise upon a fixed beam at different

times.

e the cross correlation between beams, that is the
second order moment relating to the noise on two
distinct beams at the same or different times.

Of the quantities defined above, there are several
interrelationships. It is assumed that the ambient noise models
under consideration take into account these fundamental relation-
ships, hence it is generally unnecessary to test in order to insure
that they hold. First we consider the relationship between the

directional noise and the omni noise.

2T w/2
1

l ——
= 2mAB / N(6)d® = Tl / N (¢) a¢
0 -n/2

=|

In order to relate the horizontal directional noise and
the vertical directional noise fields, it is necessary to know
the two dimension (spherical) noise field. Let N(6,4¢) be the
spherical noise field in intensity per steradian. Than the re-
lations between these directionality functions is given by

se "2 _

N(8) = m / cos ¢ N(8,9) d¢
. -Wbﬂ
oY) _

N(¢) = 2 cos ¢ N(68,¢) db

l,‘fh'.n."’?"n‘!o.
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For temporal models there are further relationships
between the data. As the time interval over which the measure-
ments are made gets large, the averages of the temporal and
statistical quantities should approach those outputs of the
stationary model. This is based on the Ergodic Theorem, which
is generally used in temporal models, although its underlying
assumptions are rarely, if ever, fulfilled. Thus in the limit
the temporal noise, both omni and directional should average
out to the values calculated in the static case.

lim

1 (T - =
T 'rf N(t)at = N
0
. T
lim 1 = =
ol [ Ree,0a = Ko
0

lim j x F(dx) = N

where in the last equation, the distribution function F is an
implicit function of T. Again this does not provide a method

for checking models, for the models generally use these relation-
ships in the calculation.

The final product of ambient noise model is often

not the noise rose itself, but the noise as seen on the various

beams of a surveillance system. Conversely acoustical measure-
ments are not of the noise field per se, but of the noise seen on
. the beam of the array.
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Measured noise fields are generally obtained by de-
convolution of the measured beam noise. A number of the tests
to be considered for the horizontal directionality of the noise
roses apply equally well to the horizontal beam noise pattern.
However, there are several concerns in regard to making comparisons
based on the beam noise outputs as opposed to the noise rose
itself.

First the beam patterns in most towed array or fixed
system models assume that the particular beams are looking out in
vertical planes at specified angles from the axis of the array.

In reality the main response axis of these beam patterns lie in
cones rather than vertical planes. Hence discrepancies in angle
can be introduced and ships that the model places on one beam

may actually be seen on a different beam due to this geometry.

For RSR ray paths the arrival angle are generally within 30° of
the horizontal, thus the effect of this conical pattern is minimal
except for extremely narrow beam systems. For bottom systems
however, the acoustic energy may have hit the bottom in the locality
of the system, changing the ray paths and resulting in a greater
angle of arrival. Similarly for all linear arrays, nearby targets
can have bottom bounce propagation which could arrive at angles
differing significantly from the horizontal. 1In light of these
concerns, the beam noise patterns should be used with care in
regards to end-fire and near end-fire beams. This conical main
response axis pattern is significant if the end-fire beam is
looking almost parallel to a shipping lane. It should also be
pointed out that in the transformation from horizontal directional
noise roses to beam noise patterns, some information is lost

(the amount of information being dependent upon the axial symmetry
of the linear array and the number of tows at different directions
made with the array). Thus agreement between measured beam noise
patterns and model beam noises level does not imply that there is
a corresponding agreement between the actual noise roses and the

model noise rose.
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. IvV. Perturbations ]
-
. Even when one is dealing with a static ambient noise
P, model, the perturbations in the environment are significant. The i
[~ static model takes a fixed shipping distribution, a fixed environ-
-~ ment and fixed source levels, but even if the model were perfect, i
‘: the result need not correspond to the acoustic measurements made
ﬁ during an exercise. There are a number of fluctuation mechanisms q
o which can affect ambient noise: '
‘
!" e fluctuations in the sound speed profile due to i
. weather patterns, mixing, currents, turbulence,
ii internal waves or diurnal phenomena. i
2 :
o e changes in source and receiver positions due to
o local ship or array motions, doppler effects, g
- changing aspect angles and movements in or out a
$ of the ocean area. 4
53 e movement of both target and background nocise sources ‘
b
s across the main response axis of the various beams
5 and their side lobes.
.
7. e movement of a towed array away from its theoretical
e straight-line, level geometry.
o e short-term variations in wind generated noise.
.
59 , . .
~ e changes in transmission loss for narrowband signals
b~ . .
': due to coherence pattern of multipath arrivals. As
i the various noise sources change position relative
>, to the array, their coherence pattern in a multi-
a path environment may quickly alter.
L)
h
K The time scale for these mechanisms vary significantly,
;3 ana for any particular mechanism there is often a wide range of
) scale. Some of these, such as nearby ships crossing the main
)
'Q response axis of a beam, or fluctuation in transmission loss due
N to internal waves, turbulance or microstructure phenomena may be
‘- on the order of minutes. Others, such as diurnal phenomena have
e a period of a day, and weather phenomzna may have periods of
'Cy
L‘ several days.
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averaged out or missed completely. While a static ambient noise
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The effects of these different mechanisms are usually
all lumped together into some sort of acoustic fluctuation, which
is often described as a Gaussian process with zero mean and some
standard deviation. This process is then assumed to quickly de-
correlate itself, so that for many models the environment is
assumed to be equivalent to a process utilizing several independert
snapshots. As noted above, the time scales of these fluctuations
vary from minutes to days, thus it is not possible to describe
this in terms of a set of independent looks. For if one assumes
a short time interval between the "snapshots", there will be a
correlation (for the long term fluctuations are still slowly
occurring). If one assumes a long time interval is necessary
before independence may be achieved, then one is losing the

radical effects of the short term fluctuation, for they would be

model will give some sort of estimate of the mean ambient noise
field, it is difficult to determine the second order statistics
(e.g., variance and autocorrelation) from such a model. More
relevant to the problem of model validation, however, is the
effect of using measured data in such a static model. For the
measured data itself is often obtained ﬁsing integration over a
period in order to smooth out small fluctuations. If acoustic
measurements are integrated over too long of a time period,
effects such as ships moving across the main response axis of
the beam will be integrated out. Such loss of resolution of

acoustic effects can only have adeleterious effect on a static
ambient noise model. On the other hand, if very small integration
times are used for acoustic data, the acoustic level cannot be

established with as much precision.

During exercises acoustic measurements may have inte-
gration times from a few seconds to a significant fraction of a
minute. When dealing with data collected by operational systems,
integration time may be on the order of minutes. Thus there is a

wide spread in integration times associated with measured data.
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When computing the variance of measured ambient noise
data after the fact, e.g., in a model evaluation rather than a
reduction of the raw data, one may compute the variance of the
measured noise values in a time period. Unfortunately, if the
decorrelation times of the acoustic field do not compare well
with the integration time used in data processing, than the es-
timate of variance may be significantly in error. Appendix A
deals with this method of computation of variance, and the effects
of a mismatch. The model given in Appendix A may be used to
determine the validity of second order moments calculated in
this manner and the effect of their use in ambient noise model

evaluation.
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B. Considerations and Comparisons

Before getting into the specific comparison methodology
it is wise to state a few elementary assumptions. In the com-

parisons of mod«l vs model or model vs data, it will be assumed

*38

that one is comparing equivalent data, thus individual comparisons

'{ require that both sets of noise values be for the same depth,

- same environment, and (in the case of horizontal directionality),

= the same angular grid. Interpolation of noise fields to allow

i comparisons between data at different depths or other conditions

.. 1s possible. In light of the uncertainty of ambient noise model

;; evaluation, however, it is far superior to not attempt such inter-
polation. Since we are not comparing data vs data, but a model

Ei against data or another model, the model can be re-run at the

AW

corr~ct depth, environment, etc., to match the input parameters

of the historical data. Thus all such interpolation of ncise

ht 21

fields may beeliminated from consideration. Furthermore, if
-, the deconvolved noise field is available, it is strongly suggested
. that this be used in the evaluation. The beam noise patterns
may be used in addition to these, and would certainly be used
" when the deconvolved noise field data was questionable. Thus
in the following test, although we may speak of just the noise

rose, it should be envisioned that the test is applicable to both

“-.-v

the directional noise field itself and the beam noise values. In

y making comparisons of ambient noise models one must carefully dis-

v tinguish between stationary models (i.e., those which predict noise

2 field independent of time} and temporal models (i.e., those which

N give time histories such as statistical beam noise models).

EB In evaluating the ambient noise model it is wise to
consider the transmission loss as a module, thereby separating the

P evaluation of the transmission loss component from that of the

Ny ambient noise calculation itself. The overall accuracy, however,

" depends upon both components. It is preferable that the trans-

Tﬁ mission loss module used in the ambient noise model be one which

has already been subjected to a thorough validation. If the

R

)
R A NN
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N
;a: transmission loss module as a stand-alone model has not been

i*' through such an evaluation, than one must attempt to validate both

;5: the transmission loss and the remainder of the ambient noise model i
;?: at the same time. This can be very difficult given the extreme

o variation in the environmental condition and resultant trans-

- mission loss properties. In the long run, it is much easier to

’\, perform a separate validation of the transmission loss model

;j against a large number of realistic environmental inputs and ex- :
:3 amine the resultant calculations of this module separately before

- attempting to evaluate the ambient noise model as a whole. ‘
“§ For a stationary ambient noise model, one may compare j
50 the model with itself (using the laws of physics), with other

;$ models (using various criteria to judge which model performs

i adequately in various scenarios) and with measured data. Of

33 these three types of validations, none are absolute in the sense

;ﬁ of providing a perfect test. Both the model and that which it is
.i; being compared against differ from "truth", thus any sort of test
i . has a certain level of uncertainty. By judicious use of different

;: models, different inputs and measured data, it is possible to
:ES design a comprehensive methodology for stationary ambient noise
Fi‘ model evaluation.
D
- When one is dealing with temporal ambient noise models,

‘E however, there are additional considerations. One now deals with

%E either distributions and their statistics (such as first or second

Y moment of beam noise), or levels (such as the probability of the

beam being free, the beam free time, mean time to be free).

From SAI's review of temporal beam noise models (ref. k) it is

N . : .
W seen that the models differ greatly in regards to underlying
I . . .

. assumptions, applicable time scales and types of outputs. Thus
%
.- it is rather difficult to give a general approach to model evalua-
:ﬂ: tion of temporal ambient noise models. Specific temporal beam

. . .
Ko noise model evaluations have been done however (e.g., ref. h).
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V. Comparison of Model Against Itself

The starting point of any model evaluation should be
the problems of model stability and model consistency. In this,
one begins with basic concerns: items which should have been
checked during model development. For a horizontal direction-
ality noise model, the omni level should be the sum of the
horizontal directional noise levels. The ambient noise model
snould work on elementary test cases, such as isovelocity and
isogradient profiles, flat bottom, uniform ship distribution
within the oceans basin, and infinite bottom loss. The trans-
mission loss module should have reasonable accuracy, i.e., it
should have been subjected to some test before the incorporation
in the ambient noise model. Obviously,without wvalid results on
tests such as these, it would make no sense to talk about per-
forming an ambient noise model evaluation.

The first significant step in the model evaluation
is the elementary tests. If the transmission loss is changed
by a constant amount, then the ambient noise should reflect this
difference. Similarly, if the radiated noise level of all ships
is increased by a constant factor (i.e., XdB), than the output
should also be changed by XdB (except for the wind generated
components of the noise). The shipping field used, whether
discrete or continuous, may be increased by constant factor (X%).
Again the ambient noise output should reflect this increase.
While it is not anticipated that these elementary tests will
detect any problems in the models, they form a good base for
initial evaluation. For the solutions may be computed exactly
and they give the model evaluator familiarity with data preparation

and model operation on the particular computer involved.

The next level of tests to be performed deals with
exact solutions. A particularly vexing question for acoustic
model evaluation is the role that "truth" must play. As pointed
out in the POSSM report (ref. e) there are a number of basic

problems in attempting to compare transmission loss models vs.
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" the "truth” of the real world. Since transmission loss is the
é{ most complex component of ambient noise model, the same considera-
R tions there apply to this model evaluation. The physics of the
,: model i.e., the wave equation or ray acoustics, is not a correct
15 representation of reality, however, close it may be . Second,

. experimental data is incomplete: one does not measure everything.
;‘ For example the noise level for each particular ship in an ocean
:: basin is not known, instead a class spectra is generally used.

.E Phenomena such as ice noise, internal waves and turbulence are

o generally ignored. As Keller has pointed out (ref. 4), the various
~ mathematical formulation of acoustics (wave theory, ray theory,

N asymptotic expansions) all fail to reflect reality in certain

; instances so that special extensions to these theories are then

\ necessary. Also the use of a CW model based on fixed frequency

,f calculations in modeling broadband system performance is a con-

E sideration. As Lauer has noted (ref. e) use of incoherent infor-
N mation at a fixed frequency has not been proven equivalent to

s broadband acoustic prosagation . Despite all these drawbacks,

\ measured data must still serve as a backbone for noise model

: evaluation and indeed any acoustic model evaluation. Exact

; solutions of all problems may be used as supplemental checks and
k- as basic checks or to investigate phenomena believed due to the

physical basis of a model. Exact solutions however, have a

i tendency to be somewhat simplistic when compared with the oceanic
) environment. Nevertheless for questions of model sensitivity and
f computational stability these exact solutions are often adequate

¥ to determine the models performance. For ray trace models there are
} exact solutions which may be perturbed in special ways, but always

leading to analytical results (refs. a, m & 1). For normal mode
; models sensitivity and stability may be investigated by probab-
} listic methods (refs f, ¢ and b). Thus, the ambient noise model

under consideration should be exercised for some exact solution

cases.
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The cases mentioned in the elementary tests above
should certainly be passed by any models; the exact solution
tests used here would be more complex. Unless one is dealing
with a strictly shallow-water model, ray theory may be used for
the test case, realizing that ray theory has drawbacks at places
such as caustics (cf. ref g). It is suggested that a flat bottom,
parabolic profile environment with receiver on the sound channel
axis be utilized as a test case. This case has the advantage
that the profile is reasonably realistic, the ray paths are
trivial to calculate, and the transmission loss along any ray
path is reasonably tractable. An exact solution ambient noise
test case is developed in Appendix B. A consideration in the
testing of exact solutions, of course, is the concept of the
spherical earth. While most transmission loss models assume a
flat earth for the radial run, when an ambient noise model is
exercised over a large area (such as the South Pacific Ocean),
there is a significant difference between the area of a radial
sector computed on a spherical earth and that of a flat earth.
If the ship distribution is given in terms of density ratiner than
discrete ships, this in turn affects the ambient noise received
in that radial sector. For distances under a few thousand kilo-
meters, this effect is negligable, but the world is round, thus
one might insist that the exact solutions used reflect this
spherical earth. The transmission loss modules used in most
ambient noise models do not have a spherical earth correction
in them. The exact solutions (in Appendix B), are based on a
flat earth, for the purpose of an exact solution is to test how
well the computer model reflects its input physical assumptions,
not how well those assumptions reflect the real world. Purists
may further argue about running the transmission loss from the
receiver to various rangdges, for the transmission loss is not
quite reflexive but it is influenced by factor which is the square
of the ratio of the sound velocity at the source to the sound
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at the receiver. As the ratio of these two quantities is very
close to one, and ambient noise model results are rarely used
past the numeric significance of 1/104B, this consideration may

safely be ignored.

In any comparison of model vs either itself, data,

or another model, it is necessary to consider the sensitivity of
the items being compared. In particular, one should understand
the sensitivities prior to comparisons. For ambient noise model,
it is wise to perform a perturbation analysis. As noted above,
there are a number of inputs to an ambient noise model, hence a
number of these parameters (those which are not known precisely)
may be perturbed. However, we concentrate on just two types of
perturbation: environmental inputs to the transmission loss

module and shipping signatures/distribution.

In regard to the environmental inputs, the theory of
geometrical acoustics is extremely sensitive to small perturbations,
e.g., potential errors in measurements or changes in the environ-
ment over time. Similarly normal mode models can show extreme
sensitivity in terms of small scale (e.g., coherence} phenomena.

In order to perform a scientific model evaluation, it is extremely
important when describing the acoustic field and its associate
characteristics to give not only a mean value of the guantities

of interest, but also to provide the statistics of those quantities.
Since geometric acoustics is used in a number of transmission

loss modules, one cannot gloss over the sensitivities of these
models. Geometrical acoustics may be described by a series of
non-linear differential equations and due to this non-linear form,
standard perturbation methods for obtaining statistics do not work.
That is, a small change in the environmental field may cause a
large change in the acoustic field. With such a set of differen-
tial equations, movable singularities arise, hence theoretical
bounds are generally difficult, and never global. Although
geometrical acoustics is an elementary application of asymptotic
expansion methods, when these expansions are carried through to

investigate the statistical properties, divergence appears.
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n Another variation is to examine geometrical acoustics as a

- perturbation of a two point boundary value problem (the source

K. and receiver being the two points). Unfortunately, due to the

d . existance of caustics (which may be thought of as the locus of
places where the Riemann surface of the wave function bends back
T upon itself)such boundary value perturbation methods will not

o work. Methods for perturbation of wave theory solutions, while

if second derivatives of the profile at any given depth are also

+ - more stable, tend to be very difficult (refs. f and ¢). 1In terms

N :: of the complexity of the real world, the state of our acoustic

X models, and the requirement for reasonable computer run time, it

‘ ; would appear that the best way to perform a perturbation analysis
is to simply generate a number of perturbed environments (i.e.,

;' I: sound speed fields) and exercise the transmission loss module on

N s these, noting the sensitivity by elementary statistics (ref. m).

: o It should be noted that these perturbations should be such that

¢ not only is the difference in the sound speed profile in any

-; given depth small, but the differences of both the first and

small. This implies that microstructure, turbulence and mixing

cannot be accurately modeled by this method, for their resulting

MR

statistics would be invalid.

N

Ay

NS The other consideration of sensitivity is the ships

s themselves. Shipping in an ocean can be described by a stochastic
! : process. This process is such that, if an area in the ocean

p | satisfies four assumptions, then the number of ships in that area
; E; is a random variable whose distribution may be apwroximated by

" ' a Poisson law. The four assumptions are:

" e

5 Eﬁ e the area is small in comparison with the entire

» ocean

i

‘ ?ﬂ e the area is sufficiently far away from major ports
‘B that ships enter and leave the area independently
éj ﬁ; (that is, the ships are not affected by docking

ﬁ . schedules or by harbor waits)

.
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the area does not have a "weird" shape (i.e., it
can be thought of as the union of a finite or
countably infinite number of either circles or
rectangles). Thiseliminates unusual types of
sets which occur in measure theory. Any area
which is of practial use will satisfy this con-

traint.

the area is large enough so that if two ships are
in it, their movement will not be dependent upon
one another (i.e., both ships can exist in the
area without taking evasive action to avoid im-

minent collision).

A Poisson distributior. has the property that the mean is equal to
the variance. Hence it is seen that for most open ocean areas

the number of ships contained therein will fluctuate significantly
with time. Also, the characteristics of these ships will change.
It is possible to model the ship population as a sum of the dif-
ferent classes of ships, where each class has a Poisson law with
some particular parameter for that area, and the distribution of
distinct classes are independent. Now one is dealing with a
(still Poisson) distribution of ships, but with different radiated
levels for those ships. Numerous groups have measured ships
spectra levels, and obtained differing results. Of particular
significance are measurements made by NAVOCEANO on two sister
ships (ref. j) which turned out to have significantly different
spectra. Thus there can be significant changes in the horizontal
directional noise rose due to such ship movement. Fortunately,
for very large areas (e.g., the North East Pacific Ocean) the
number of ships is so large that there are no "holes" in the
directional noise pattern and,

for reasonably wide beams, there

are a reasonable number of ships on the beam. This implies a
certain stability to the statistics which are lacking for low

snip densitites.
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The final type of test considered is that of field analysis.

Given a point ambient noise model (i.e., a model that computes the

noise at a particular point) one may run the model on a set of close
A points and intuitively one would expect the ambient noise to be 'close'.
Specifically, if one assumes that ambient noise is computed at nine
K points (as in Figure 1), the bathymetry is flat in the region of
these points, and there is no local shipping within the grid, then
- one should expect that the ambient noise at the middle point should
'3 not vary greatly from the values at the eight exterior points. One
can construct cases where the ambient noise at the center is vastly
different from that at the other points, e.g., by concentrating the
shipping distribution at caustics or by changing the Sound Speed
Profiles rapidly with range, but under 'normal' conditions there

g
Catg

should be a relation. Appendix C develops bounds for the directional
~noise at the center point based on the bounded variation of shipping

density, bounded variation in transmission loss, and change in en-

I

vironment. For various cases, these inequalities yield computable
bounds which may then be checked against the model runs. This

procedure may also be applied to field ambient noise models (which
!? compute noise at many points), but one would not expect it to be a

very significant test in this case.
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VI. Comparison of Model vs. Data

A major consideration in the comparison of a model
against measured data is the credibility and ap»nlicability of
the data. The first concern is to insure that all inputs are
made for the same time and area. It will not be possible in all
cases to have all data meet these specifications: in such cases
it will generally suffice to insist that important inputs be at
the same time and area and other inputs taken under similar en-
vironmental conditions. This entails a further test to verify
similarities for data from different times (e.g., same season but
different year) or different areas (e.g., similar ocean basins).
One must be aware of the effect of using historical sound speed
profiles over a broad ocean basin to drive the ambient noise model.
For profiles measured at the time of the acoustic measurement
‘collection will generally be available only at a few sites in the
ocean basin. It is impossible during an acoustical exercise to
obtain nrofiles for an entire ocean basin. Profiles along a radial
run will generally be available, and these may be used for trans-
mission loss perturbation runs (i.e., using both measured and
historical profiles along that track) in order to investigate
sensitivity to the sound speed profile measurements. A second
measurement consideration deals with the shipping distribution.
Shipping distributions during the exercises are obtained primarily
using aircraft, and several hours are needed to measure the fieild.
During these hours, however, the ships themselves may move a non-
trivial distance, so that the horizontal noise field may be
altered somewhat. Exercises in which ship course and speed were
obtained as well as position alleviate this. Exercises in which
the ocean basin could not be covered by aircraft for ship sur-
veillance have the additional uncertainty of using historical
ship distributions rather than the particular distribution of
shipping near the time of the acoustic measurement. Over the
course of an acoustical exercise, which may last several weeks,
transmission loss may change dramatically due to a wide range of

environmental anomalies: a transmission loss measurement made

Wl f\'f' T ".r" 0y .q.r :5 % LA eu et -r,( AN ST .‘V‘ . »;‘2" o

5

T T RI VI TP TTr UW WY VY T T 7 T U T U T O ey

-.ﬂvwi

2t Y A L3 4
‘I. ¢ .,}.‘ln.l...‘ &' X . [ l‘ ... 8,0 KJ A A .‘ .JO LD 0 BAK 3 g, ¢, "v .'js' ‘.. ﬁ\- '.’: !




Pl

at the beginning of the exercise may not reflect the detailed "4
structure present at the close of the exercise. Another general
consideration before detailed comparisons are made is the nature
»j of the acoustic measurement parameters. Parameters such as type -~
v of signal (CW or broadband), processing details, signal to noise
: ratio, and calibration accuracy allow one to perform a more in-
f telligent assessment of the collected data. While such parameters
. are well known at the time of the exercise, over a period of 7
years the exact details tend to be known only by those responsible
for the data reduction and are buried in obscure Data Analysis

plans. Effects of integration time of both the measurements and

iz the environmental processes should also be considered at this .

N point.

3 3

P A general approach to model vs. data comparison is to -

o first verify that the measured data is sufficiently stable to

;f warrant comparison with models: If the data doesn't agree with A
itself, one can't expect it to agree with the model. Assuming

{ self consistancy and stability of the data, then comparisons -

: with omni measurements should be made, followed by directionality -t

- measurements. If the omni levels show serious disagreement (more '3

p than would be due to uncertainties in ship radiated noise level), f

N it is guestionable whether directional noise comparisons would

L’ be meaningful. ?

?E In regard to verifying the stationarity of omni level

: acoustic measurements, the basic statistics considered are the v

A mean and variance of N(t). Examination of the variance of this :
process is, of course, dependent upon the integration time used t
in the measurement (see Appendix A). It is also valuable to

: produce a trace of measured noise with time: this may allow one i

i to determine by "eyeball analysis" whether N(t) appears to be a

; random fluctuation about a level line or instead a fluctuation V

9 about some other sort of curve (see Figure 2). If the fluctuations )

3 are about a level line, and the variance of the measured noise is :j
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ently small, than a comparison with the model should be
If one has confidence in the omni comparison, that is,
ults either agree or the disagreement is due to identi-

casues, than directionality may be considered.

To test stationarity of the horizontally directional

noise measurement, using the continuous data N(6,t) or its dis-

cretized equivalent, compute the statistics:
T
ya 1 <
~{3) = = N(6,t) dt
T
0
T
2 1 x 2
ot (8) = 3 (N(B,t)-u(8)) dt
0
These, the mean and variance of the data for a particular direction,
may be handled in the same manner as the omni level statistics.
However, suppose that rather than continuous (or near continuous)
measurements, one has discrete noise measurements separated by

periods of several hours.

If there are two to four such measure-

ments, a test for stationarity is to take the correlations of

the noise roses pairwise.

p,(8) = N(8,ty) - N(t,)

then defining

This may be done by defining:

27 2
[ p; (8) py(8) o
o = 0
13
7 2.4 T
J p (%) def py(¥) df
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These give the correlations of noise over angle between discrete

R times. Then comparison of these correlation coefficients will
determine if the data 1s stationary. If all correlations are

! high, than stationarity may be assumed. If some correlations
are high (i.e., close to one) while others are low (i.e., close

s to zero) then one must determine if a certain set or sets of

measurements have been subject to other environmental or acoustic

32 influences, or whether stationarity simply does not exist. If
- there are more than four such discrete time measurements the
I above method requires a selection algorithm to process a large
o number of correlation pairs. Algorithms to construct maximum ‘
. consistant subsets of data are available, however, it does not
;j seem necessary to consider these until the occasion arises. |
An alternative is to consider the discrete measurements as a
E; continuous measurement set, which implies that the noise field
between the measurement is assumed to have not fluctuated signi-
;; ficantly.
-
A consideration in stationarity of horizontal ambient
a_ noise measurements 1s the stability of the near field shin»nping distri-
bution. If in the course of the acoustical measurements, a ship
&3 or ships has transited near the acoustic array, one would not
expect the horizontally directional ambient noise field to be
] stationary with time. It is possible to construct a test to
: examine the princple transient noise components of a field (i.e.,
o a component apparently due to a single noise source moving on a
v straight line track across the field), and to determine if this
. is a significant component of the total. If it is, this component
tg may be removed; however, such removal may affect the integrity
- of the remaining data. Details of this test are given in Appendix
% D,
. If one is dealing with a model for vertical directionality,
ﬁ: then the comparison data must be subjected to stationarity tests
e
L
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as before. Whereas under uniform distribution of ships, trans-
mission loss, and environment, the horizontal noise rose tends

to a circular pattern (i.e., a constant level) the vertical
pattern does not. In a completely omni environment, there will

be a significant directionality pattern to vertical noise, due

to the arrival structure at the receiver of the ray paths from
surface shipping. Using ray theory, a narrow cone may be con-
structed in which ray paths from the surface will arrive at a
receiver. While ray theory has several drawbacks, nevertheless
this does imply a significant directionality pattern. The nature
of acoustic waves, defraction in the ocean, surface scattering

and defraction, effects of the slope bottoms, range dependent
profiles, and bottom bounce propagation will tend to f£fill this
"noise notch" up to some level, but the resultant pattern will
still not be uniform. Thus even if ship distribution, sound speed
profiles, bathymetry, etc, are completely wrong, the qualitative
shape of the vertical directionality noise pattern which the model
produces may be similar to the pattern produced by the model with
the correct input. Therefore, tests based on mean, variance,

and correlation such as those used above for horizontal stationarity
are inapplicable to the vertical case. Quick analysis of vertical
directionality and beam widths (Appendix E) suggest that there

is no simple method for examination of such stationarity. Agree-
ments between measurements does not indicate agreement of under-

lying environmental parameters,

The methodology for comparison will now be addressed.
When dealing with point estimators, such as omni noise values,
there are only two numbers: the model estimate and the measured
estimate. Doing a point-to-point comparison, one is forced to
rely on the difference of these numbers. This difference is then
compared either with an absolute error tolerance, or a varying
(dependent upon ocean environment, data stability, etc.) error
estimate. In either case, one is actually comparing the distri-

butions of errors which are represented by the point estimators.
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If one has a number of data measurements, so that the data may

be described by an envelope (or, better, a distribution function)
then one may compare the model's point estimate against this
envelope (or distribution), yielding point-to-envelope comparisons.
The most elementary such comparison is to ask whether the point
lies inside the interval or outside (Figure 3). Unfortunately,
this test is by no means ideal: indeed with increasing volume

of data, it is generally counterproductive. As the amount of
data available for construction of the envelope increases, the
underlying distribution of that envelope becomes better known

(in the statistical sense), but the larger sample size often
implies that the interval needed to contain the sampled points
grows as well. This is a property of distributions with tails.
If the underlying distribution can be described in terms of
statistics, such as mean and standard deviation, then one can
describe the distribution rather than the interval. In such a
case methods of hypothesis testing may be used to determine (at

a preset confidence level), whether the hypothesis of ascribing
that point to the given distribution is acceptable. Standard
hypothesis testing methodology makes the assumption of under-
lying normality for the distribution, which is often invalid for
armbient noise acoustic levels, but in view of the uncertainty of
the sample mean and standard deviation estimators in most situ-
ations of interest, the assumption of normality is a minor detail
(unless one is working at an extreme value for the confidence
level). The measured data may vary, and by perturbing the
environmental and shipping inputs to the model, the model outputs
will vary, thus it is possible to consider the comparison as
being of envelope-to-envelope (or distribution to distribution).
Again, if the underlying distributions are unknown, one is left
with comparing only the envelopes, i.e., the amount of overlap
(Figure 3), which is generally unsatisfactory for reasons given
above. Thus if the underlying distributions can be estimated

to any reasonable degree, it is far better to make the comparison

based on hypothesis testing methodologies. Making the blatent
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Point-to-point comparison

W% Point-to-envelope comparison
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Figure 3 Scaler Comparison Methodologies
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assumption that both distributions are Gaussian, one may than

apply a simple statistical test to determine (at a preset con-

Y
'.—l
P B 3

fidence level) whether both sample distributions are representative

of the same underlying distribution. Mathematical details of com-

e

P
o

parisons methodologies will be found in Appendix F.

S |
YR The test becomes more complex when the outputs to be
X compared are not point estimates, but functions, such as horizontal
X E: arbient noise roses or beam noise levels. Since all such data is
w discretized, one may apply the above mentioned point tests to
> 5 individual pairs, and then form some sort of overall estimation. {
i = This approach, however, is not ideal. Much is lost in terms of
': " the order, shape, and correlation between levels in various
; o directions. It is possible for example, to be comparing a single
: " curve with an envelope of curves and have undesirable results.
: t‘ " Consider a set of curves (either measured data or model outputs
S from perturbed environments) for directional ambient noise as in
3 %f Figure 4. Note that all noise roses in this ensemble have a
ﬁ bulge in the Northeast direction. Compare this to a curve of
' ﬁ uniform level fitting within the envelope bounds (Figure 5).
- Then this curve is completely contaired within the envelope, but
i: :: it does not acceptably represent the distribution, for it lacks
TR the Northeastern bulge characteristic of all samples. Thus
% elementary tests are not always applicable. Mathematical method-
y' ! ologies for comparison of functions and distributions of functions
- will be found in Appendix F.
>
For these comparisons, whether they be point-to-point, point-
@ ;; to-envelope, or envelope-to-envelope, the following order is suggested:
o e Omni noise values: N
:g &i ® Horizontal directionality: N(6) ‘
¢ ® Vertical directionality: N(¢)
? ~ ® Omni temporal noise: N(t)
. E: e Horizontal temporal noise: N(6,t)
} ® Vertical temporal noise: N{¢,t)
'i {? ® Beam noise value: B(6,t), B{(¢.t)
X ® Statistics
S
R
Y
q
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Comparisons of omni and horizontal noise fields may be made in
accordance with Appendix F, in light of the considerations noted
above. Since vertical arrays tend to have rather large beam widths,
and vertical directionality (as predicted by acoustic models) tends
to be well structured into bands of surface noise, deep channel

noise notches and locally generated noise contributions, the tech-
nigues used for horizontal noise cannot be meaningfully applied to
the vertical case. For even if the transmission loss is significantly
erroneous (in level, not in arrival angle structure), and the ship-
ping distribution iswidely in error, the vertical directionality
patterns usually are qualitatively similar, and may be gquantitatively
close (Appendix E). In regard to the statistics, the comparison of
the distribution functions should be done using the Levy metric,

and comparison of moments of the distribution should be done using

statistical tests.

Invariably, when comparing the model against measurements, dis-
agreements will arise. If the model and the data were to agree
perfectly, (e.g., to .0l dB) then one would have grave misgivings on
the credibility of the test. It is to be expected with any non-
trivial test that differences between the model and the measured
data will be abundant. When these differences becomes excessive,

it is necessary to determine the principal source or sources of the

discrepancies. By working backwards in comparison of beam noise,
arplent noise and transmission loss, the principal area of dis-
agreement may often be quickly isolated (see flow chart)
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One still must determine the precise area of disagreement;

several possibilities are listed below:

° The transmission loss may have been measured during a
period of fluctuation, thus not reflecting the mean
environment.

The transmission loss model may be inaccurate or erroneous
The environmental data used in the transmission loss run
may not correspond to the precise conditions at the time
of transmission loss measurement.

° The positions of discrete ships, varticularly nearby ones,
may not correspond between model and reality.

° The radiated noise level of ships in the model are class
approximations.

° The assumptions within the ambient noise model (e.g.,
radiated noise pattern of ships) may be erroneous.

® The theoretical beam patterns used by the model may grossly

misrepresent the actual array performance.

This list, of course, is not complete but it does cover the
principal areas. Again, the utility of using a validated trans-

mission loss module with the proper environmental conditions is

demonstrated in this problem of error tracing.

Before leaving the subject of model vs. measurement comparisons,
a few words in regard to data sources are appropriate. There are
a number of sources of acoustical measurements. However, for famil-
iarity with the data collection techniques, data quality and intricacie
of the experiments, it is felt that at the initial stage measurements
should be selected from previous NORDA (earlier LRAPP) exercises.
The SEAS data bank is designed to provide both environmental and
acoustical data and can be quite useful for such an evaluation.
Since most acoustic data is not yet in the SEAS data bank, it must
be obtained from the NORDA contractors who collected it. The primary
source of such acoustic data from previous LRAPP exercises is ARL/UT.
The principle NORDA exercises for such data are as follows:
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Ko vn Exercise Area
B -
| \."\
. Church Anchor Northeast Pacific

o Church Opal Northeast Pacific

o Eastlant Northeast Atlantic
o Square Deal Northeast Atlantic
T . :
A Med ASW Augmentation, Task I Mediterranean

ﬂ, Med ASW Augmentation, Tast V Mediterranean
‘_‘Zij Church Gabbro Caribbean
E; Church Stroke III Gulf of Mexico |
*5\ The data collected during these exercises includes acoustic as
7C§ well as environmental data. The envirionmental data consists of
Aoy

:2 XBT, AXBT, SVTD, SVD, STD, SVSTD and SVCTD measurements. Different
» J', K3 .

‘ exercises performed different measurements. For acoustic data,
o measurements were made by towed arrays and vertical arrays using
f; stationary and towed sources as well as SUS. The SEAS Data Base
,ff Manual details what measurement results are available in the data
S
: base for each exercise and its format.
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VII. Comparison of Model vs. Model

. ’- ..A

In comparing the model under consideration with another model

K%

(in some sense a "standard" model),the underlying principles and

s s a1 & LA

a |

technique parallel the case of model vs. data comparisons. The

types of tests mentioned in Section VI above, are again avpplicable

L%

to model vs model comparison. The significant property of model

vs. model comparison is the flexibility, whereas measured data is

A

a fixed set (i.e., certain sets of data exists, and these cannot

% o,
Vs

be expanded quickly to cover other situations.) A model, however,
& can be exercised under whatever environmental conditions the modeler
- seeks: one is not limited to the existing acoustical data sets.
This allows the development of methodology that will isolate the
b 5: probable reasons for differences between the two ambient noise
NS models as they are run on the same sets of environmental {and

acoustical) inputs. If one notices a difference between the outputs

Y
i XA

of the two models, but is unsure as to the precise cause of this,

AR

«

i
.

O]

particular environments may be developned which show certain charac-

it S

teristics very strongly (e.g., surface ducts, infinite bottom loss,
[" no bottom loss, heavy surface reflection loss, double or triple
- sound channels, ice noise, unusual shipping patterns, extremely

rough bathymetry, sea mount blockage, inverted profiles, no wingd

N > <2,
x4 2 8 & A e
3

- noise, extreme wind noise, etc.). These somewhat artificial but

Png

extremely valuable environments serve to isolate a peculiar phenom-
enon (of either the environment or model) in order to isolate the
root cause of disagreement. This reguires, however, that the model

against which comparisons are being made has been, in some sense,

b e ]
e

"validated": thus when one does see agreement of model outputs, it

- T . ety

is unlikely that both models are dead wrong, or, if disagreement,

T

s

that neither of them matches "reality".

L L s

4y

One may envision constructing a set of test environmental con-

- ditions which may not reflect any "real" environment yet would test
2 .j all the significant characteristics which are found in normal open

s ocean, long range, low frequency ambient noise modelling. This set
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of test environments could form a library against which various
ambient noise models can be exercised. From this, this modeler may
be able to develop a list of strong and weak points for the various
models. Again, before getting deeply involved in such methods, it
is recommended that some sort of "reasonably believeable" model be
available for each type of environmental phenomenon. This avoids

rmyriad problems in determining how "truth" compares with the various
models.
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- C. Initial Model Evaluation

.«

f
e

VIII.The IME

As stated before, the initial model evaluation (IME) con-

<

centrates only on omni and horizontal directionality noise (in-

T cluding beam noise). Temporal and vertical directionality models
/ ~ are not considered. 1In developing this IME, the underlying
" " philosophy has been that of Occam's Razor: "entia non sunt
Ve multinlicanda praeter necessitatem"., This nrinciple, that things
. . should not be more complicated than needed, seems particularly
f ;; relevant to this problem. The following methodology draws upon
. the tests described in previous sections and the appendicies:
R EZ thus, the details will not be repeated.
o «*
3 A. Model vs. itself test.

X

1. If documentation is not available to show that elementary

=
'}

. cases (isovelocity and isogradient environment) have

> ~ been tried in the ambient noise model, test these two
& §' cases.

{',- i 2. Change ship source levels, ship density, wind speed

E- etc., to ensure that model reflects these changes.

- 3. Use exact solution for flat earth, parabolic profile,
ﬂ;_f uniform bathymetry and infinite loss bottom for various
X ship. distributions.

‘. g 4. Perturb the sound speed profile. bottom loss functions,
:Etﬁ shipping distribution, etc., to see if the ambient noise
N model is stable. If the transmission loss submodule
S has been investigated in detail this test may be sim-
A plified considerably.

~£ -~ 5. If the ambient noise model is for use in open ocean

;: . areas, perform the Nine-Point test in an appropriate

‘; ?ﬂ region or regions.

:::Q B. Model vs. data tests.

f, v 6. Choose a data set or sets representative of the environ-
’: ~, mental and acoustical conditions for which the model is
L | to be evaluated. The following steps in this section

: v should be performed on each data set.

~IRY
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:f 7. Test data for omni stationarity.

ji a. If the variance of the measured omni noise is large,

;:: than the model will almost certainly lie within the
; . u+0o interval hence the exercise of the model is of |
:E; little value.

253 b. If the measured omni level noise is not a fluctua-

09 tion of the mean level, but rather a fluctuation

]f} about another curve, this alternative curve must

e be explained. If the data cannot be exvlained

‘:E do not try to validate the model using it.

- c. If the measured noise data is stationary, then it

may be used for the test.

:;3 8. Test data for horizontally directional stationarity.

‘3§ a. Test for transits for nearby ships which could

e, contaminate parts of the norizontal noise measure-

f ments.

;3: b. Test statistics (mean, variance, correlation) of

Y horizontal noise measurement for stationarity.

'35 c. If ambient noise measurements are not available, but

N orly beam noise values, use beams near center of the

*ﬁ array in order to minimize problems with the conical

E; beam patterns.

AY d. If horizontal noise shows a stationarity either

J gualitatively (in terms of correlation) or quanti-

N tatively (in terms of variance) than comparisons

.;% with model should be undertaken. If neither of

b these holds, it is fruitless to attempt comparison.

o 9. Compare Omni noise measurement with model.

,ﬁ: a. Point-to-point comparison. The principal value of

';E these tests is to have a single number indicitive

: of the closeness of model and measurement. If the

' number is large, determination of the cause or

'% causes of this disagreement is required prior to

é% proceeding. If the number is small, i.e., in good

fﬁ agreement, this does not indicate that model and

0. data agree; thc further tests will determine it.

RORARON
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Point (model run) to envelope (measurement) compari-
sons. In light of the extreme variability of

acoustic measurements, it is extremely important in
having a number of renlications of the acoustic
measurements (at least more than one). 1In this !
case, one may then compare the point prediction

of the model to the envelope (or, if enough measure-
ments exist, the distribution) of the measured data.
This is perhaps the most relevant test for the omni
noise estimate.

Point (mean measurement) to envelope (model with
perturbed environment) comparison. In the case

where only one measurement exists, or in the case
where the point to envelope comparison, in b

above, is inadequate, the mean measured data

should be compared to the distribution obtained by
running the model against the environment perturbed

in a realistic fashion. This indicates whether the
disagreement is due to model (or environmental) in-
stabilities or whether true disagreement is present.
This test is not necessary if a and b above are
successful.

Envelope-to-Envelope Comparisons. If the model is
exceptionally stable, and agreement in a and b above
is also noteworthy, this test may be skipped. Other-
wise the model should be used on a number of differing
environments and the ensemble produced (including

its underlying one dimensional probability distribution
be compared to the ensemble of measured data.

Based on the above tests actually performed (between
two and four of a thru d) the omni noise prediction

of the model for this data set may be judged either
acceptable or unacceptable. If they prove unaccept-
able, the root cause of the discrepancy should be
identified (although in many cases it will take model
vs. model comparisons to make a positive identification

of the cause).

~ N c Nt m o an L] L) w ARy p s ", 3 \ - A, P m L
N A e A G O A O T DTS RGO



=

b ¥

% .

«2{ 10. Compare Directional Noise Measurement with Model Pre- |

;ﬁg dictions.

»y a. Even though the omni comparisons performed in 9

a above may not be as good as anticipated or pre-

:ﬁ; ferred, the directional tests should be performed

:}ﬁ as well. The division of the directional test

:\* into three areas (corresponding to level, variation

.) and shape) enables one to test the directional noise

&{ levels for some property even if the omni values do

!*F not correspond well.

kﬁ b. Point-to-Point Comparison. These comparisons should
be on means of differences, variance of differences

iig and correlation of noise roses.

S c. Point (model)to envelope (measurements). With more

Eﬁ? than one set of measurements, the point-to-envelope

o comparisons should be performed. As in 9c, these

f? are more relevant than the point-to-point comparisons.

:Eﬁ If a large number of measurements are obtained,

i?é distributional tests may be performed rather than

j simple envelope tests.

:}f d. Point (measurements) to envelope (model with per-

;gq turbed environment) comparisons. If the point-to-

fii envelope comparisons made in c above prove inconclusive

D) or poor, the model sensitivity to environmental and

;S& shipping perturbations should be used in.this test,

'i; where the beam measurement is compared with the

'éﬁ distribution of model outputs. As in 9d, this need
not be done if b and ¢ show adequate agreement.

?af e. Envelope-to-envelope Comparisons. If the above

3\. analysis is not conclusive (either for or against

g " the validation of the model on this data set) an

.‘4 envelope-to-envelope comparison should be initiated.

‘g: However, for directional noise, such a comparison

Eﬁ involves a large amount of data, and detailed analysis.

s& This test should be invoked only when the prior

'@, test are not sufficiently conclusive.

e

e

I'.

04

Rl

iy :

R R T S e A iR




o

O
A

e
LN

~aA

Y

| LA

.}. P

- ¥

55

VB

RV
LS SN

A

; a ‘\r"‘.r"'} g

S 00,979,109,V BTy,

11.

Analysis of Discrepancies. Before launching into the
model vs. model comparisons, the discrepancies noted

in the various measurement data sets vs. model com-
parison should be analyzed and their probable causes
noted. This will allow a much more rigorous testing

in the third section, and avoid tests which are immaterial
(based on either extremely good or very poor results
noted in the current analysis). Obvious model defici-
encies noted at this point should be documented, and
model successes noted as well.

C. Model vs. Model

12.

13.

14.

Selection of Test Environments. Based on the problems
noted previously, the capabilities of both the model
under consideration and the "standard" model (which

need not be perfect), a set of test environments should
be selected. These environments need not be chosen

from reality, but should cover the various environmental
phenomena under consideration. It is assumed that

the "standard" model has been subjected to an ambient
noise model validation prior to this (in the sense of

A and B above) so that gquestions of model stability,
environmental anomolies, etc., may be treated in a
cursory rather than a detailed fashion.

Examine the Omni Noise Prediction of the "Standard”
Model for stationarity and believability. Since this
model may be exercised at will on perturbed data, we

may deal directly with one dimensional distributions
rather than envelopes (i.e., intervals on the real line)
If there are no outrageous outliers and the numbers seem
reasonable, then comparison may continue for the omni
values. If the "standard" model gives predictions that
are suspicious (either from the point-of-view of
stationarity or reasonableness), then comparison based
on this case should be avoided.

Examine the Directional Noise Prediction of the "Standard™
Model. As in 13 above, this should be done using the
distributions rather than the envelopes. It is antici-
pated that if the "standard"” model has passed the test
of 13, it will pass these tests with no problem.
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15.

16.

WTEF TFwNEwWEwREwE

Compare Omni Noise Predictior of Both Models.

a. Since we are dealing with two models, both may be

run in order to get sufficient replications. Thus
one may deal with point-to-point and envelope-to-

envelope comparisons based directly upon the dis-

tribution. Point-to-envelope comparison (with

either model providing the mean statistics for the

point estimator) should be used only when the

previous two (i.e., point-to-point and envelope-to-

envelope) methods of comparison yield ambiguous
results.

Compare Directional Noise Prediction of Both Models.

a. As in the model vs. data comparison, above in 10,

we compare the mean of the difference, the variance

of the difference and the correlation of the values.

As in 15 above, two comparison methods should be

used: point-to-point and envelope-to-envelope

comparison on the distribution. Point-to-envelope

comparisons are not recommended in this case: the

amount of information that they would contribute

seems small in comparison with that obtained from g

the first two methods.

Overall Ambient Noise Evaluation: Using the results of

all the above tests, lists of those good and bad model
points should be drawn up. Quantitative expressions of \
model accuracy, reliability. predictability may be given

as well (if the stability of the input environmental

and acoustical data is adequate to warrant this). Based

on these two lists and the applications envisioned for '
the ambient noise model, the model may be either vali- :

dated, conditionally validated, or considered unsuitable

at this time for those applications. Based on this
model validation,model improvement (if necessary or
desired) may be undertaken.

LRSI DT D " '..“ 'l " ,':!!'- “.‘o'.ﬁ::‘,-::'.: W, k h'

o W ]
el i

ARSI Rl A A e sl anl o d ol d uid a2a 38 _Re aiek |

[V & LU ¥ Y

_ uledl )



i IX. Conclusions:
- This IME, like any validation vprocess, may be used or misused.

Its proper use requires understanding of all model inputs and

o measurements. A benefit of such use is that many of the test pro-
5~ cedures are also applicable to questions regarding the limits of
: model accuracy. Its misuse is accomplished when one forgets the
:;I% general limitations, the implicit assumptions, and the nature of
N

the real world. The tendency to use a model beyond its region of

Ll
]

applicability is prevalent in any applications-oriented community,

“ ¥
»

and for acoustic models the deterioration of performance due to such

radual over-extension is slow but significant. Another misuse is

“ 5
e

0 accept a validation of the model for one use as implicitly validat-

ing it in every use for which the model was intended. Finally, it

L

)
wa

should always be remembered that there are cases for which no current

e

ambient noise model will work, such as when shipping noise is bounced

off the sides of canyons and thus arrives at the receiver from a

number of (horizontal) directions (e.g., Rockall Basin).
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-g %: APPENDIX A: On Integration Time and Second Order Statistics

:: N

. ‘ . Consider some function, such as an ambient noise measurement, which

[ is measured by integration over some period. The same interval of data

; - can be measured by integration over two or more different periods.

2 il This appendix will deal with the effects of using different periods of

.q integration on some second order statistics.

f: ‘ Let X(t) denote the function which is to be measured. Since in

?: i: the general case for ambient noise the environmental parameters involved

;” = are not all known precisely, consider X(t) as being an event in the

N “x sample space of some stochastic process, X(t,w). Let X; be the i-th

'5 - data sample obtained when using an integration period of At. That is,
‘F’; . To+iAt.‘

. X; = 3t T (i1 bt X(edde ¢0r 5 = 1,2,...,N

g i‘, where T is the point at which the initial sample measurement begins

j . and N ig the total number of samples. (Hence, NAt is the total length

QE 0 of integration).

~ N Now, before dealing with the second order statistics using {Xi}

2 o or other integration periods, some assumptions must be made about {xi}

SN ard, therefore, some restrictions must be placed on the underlying

;i ;: stochastic process, X(t,w). In order to be able to deal with the second
. order statistics considered in this appendix and have those statistics

,: Ef be in a useful form, it is necessary to assume that for i=1,2,...,N,

:é EX? <» and that {Xi} ?=l consists of identically distributed random

K", Ei variables. ({xi} need not be independent). These assumptions restrict
' the stochastic process X(t,w) to the set of processes Z(t,w) such that
-"’,
:}
o~ E2% (t,0) <o

q . and

-. . EZ(t,w)Z2(T-w) = r(t-1)

; ES where r, the covariance function, depends only on the difference t-r.




.
ke Ia

.o

;2 That is, X(t,w) must be a weakly stationary stochastic process (see
[,

. reference s). Thus, for any of the material in this appendix to be of

M |

» any use, the analyst must understand the process that is being measured

~ and be sure that it satisfies these restrictions.

o

So, assuming that the restrictions on X(t,w) ‘are met, then {Xi}§=l

as defined above has the desired properties. Suppose that a new

&a%x

integration period was used to sample the same process for the same

[a At SU A ApL N e

interval. That is, suppose X(t) is sampled using an increased integration

LLLC

period of mAt while only taking n samples where n and m are integers
such that nm = N, (Thus, the total integration time, nmAt, remains

e

NAt). This type of change in the integration period is common. For

D T R T s |

example, the integration period is increased to improve the frequency

i 4 resolution of the measurement.

This change in integration period changes the resulting sample.
2 For the increased period of integration, mAt, let Yj be the j-th data
sample obtained that is,

L LA LR

o A

!

» N mo+]mAt .
; Y., = =5 X(t)dt for 3 = 1,2,...,n- 1

. 3 mAt[ T +(j-1)mat :
. Mow, from the definitions of {Xi}, {Yj}, N, m, and n, Yj is also given

: by

f m

{ 1
> = = X . . .

; 3 m 2£li m(j-1) + i for 3 =1,2,...,n.

Therefore, the effects of using different periods of integration on
second order statistics can be determined by examining the statistics
based on {Xi} and those based on {Yj}.
2
Let u denote the common means of {Xi} and let ¢ denote the common
variance. (Although normality is not gequired, this would be the case

L S W G KLk =xd)

D if it is assumed that each X, is N(u,0)). The dependency is assumed

to be a simple correlation. That is,
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>
< Eﬂ
; li-3]°
SN Cov (X..,X.,) =op o
N *\ 1 J
S
:% for some constant p, o< p< 1. (Note, this places an additional
' ! restriction on the covariance function, r, of the underlying stochastic
N process). The mean and variance of the sample {xi}?—l are given by
o .
P‘ .\
[ Tw o= -
S moe§ L%
. i=1
RN
D :"; and
.,: N
AR P 1 2
E 2 LT RTE, KM
N e Thi=l
! respectively. Similariy, the common mean and variance of the sample
R (v b are,
) 37I=1
N 1 n
[
= = Y
r M TR LY
- i=1
\ ;i
'f{ > and
S
b 2 1 ( 2
i = — Y.-m )
P ﬁ 52 n-1 ‘L- j 2
f 3=1
g 2 2
> 7 Note that the second order statistics m, ,m,, S}, and s, are random
o variables. (They are statistical estimators based on random variables).
¥ 5 Of interest to the analyst are the expected values of these statistics
j and how their expected values vary with changes in the period of
o 7-: integration.
1 »
y &
o Since m; = m,e there is no difference in the computation of the
:: e expected values of the sample means. Eml = uy, and so, ml and m, are
_; unbiased estimates. This also shows that the sample mean is independent
.‘ il of the period of integration.
T 2 . 2 . 2
: 7, , In general sl is not the same as s,- The computations of 1.=:sl and
. Esz are rather lengthy, and so, only the main steps in computing E:s1
M L and an expression for Es, are given here. The entire derivations for
.’:; both Esi and Bs‘; are given in appendix G.
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?
-. N
e 1 N- i=1 1

N N N
A l l Z
\ = —= .- - = X, - X, -
. el B D JRC N L (X, ~u) (X, -u)

i=1 i=1 i=1
: 1l 2 0'2 N f }l" Jr
: = — NO = — p

N-1 N ng i=1 )
2 [- Nt N
= 9 N2 - (2 Z ep " *
. N (N-1)
2 =1
o
o
2 _, N-l _q -1
\ Esi =hl— N(N-1) - ZDNlZ L(p l)
; NIN=L1) ] if p#¥l
§ = i=l
)
h Now, by differentiation of a geometric series it follows that,
d N
’ 31 _ N o el kN1
’ E: J =TT (x-D)2
: =1
, And so, after simplification,
™ 2 2 2p0? N
' = 0?2 - , -1) - +
i ES) N(N-1) (1-p) 2 [ (N=1) = Ne @ }
q
L}
)
3: Which can also be written as,
2 g? 2 2 N+1
K = - - 2(N“- + N(N+1 - 2p
r ES) = SN (i=9)2 [ N(N-1) (N"-1)0 (N+1)p }
)
E !
i~ for p#1. Of course,
. 2 _o,
}E:sl = for p=1
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Esi is computed in a similar manner using the common variance of

;Yj}and the covariance of {Yj}. The variance of Yjpc;, is given by,

’

20%p
2 _ ol m]
ol = = 4+ —————| (m-1)-mp+p
y om m2(l—0)2[ J
for p#1 and by
C)'2 = 02

for p = 1. The c¢avariance is given by,

_ po? m('l—jl-l)( l-om)
Cov (Yi,Yj) = ;7— o} I

for o#1 and by,

]
Q

Cov (Yi’Yj)

for o=1. The expected value of sg obtained using these expressions is,

2

Esg = ’ n(n-l)m-z(nz-l)o-n(n-l)mpz+2n20m+l'20nm+l

R(n-1)m%(l-p)?

for p#1 and
2
=0
E52
for p=1

From these expressions it is clear that the expected value of s2

1
will equal the expected value of Sg only when m=1 (and hence, n=N and
2

$,=s, ) or at isolated values of p (e.g. 0=1). However, while these
expressions give an exact mathematical representation of how changes
in the sample integration period can effect the expected sample

variance, the expressions do not provide the analyst with an intuitive

v*’




understanding of how Esg is related to N, n, and m.

In order to help make the relationships between N,n,m and Es%

clearer, Esg has been graphed as a function of p for various values of
N, n, and m. These graphs are presented in figures A-1 to A-9. These

figures are grouped into three sets of three figures.

The first set of fiqures, figures A-1 to A-3, show how Esg is
effected by increasing m while keeping n fixed. That is, these

figures show how E52 changes when the number of samples is fixed but

2

the period of integration for each sample, mAt, is incresed. (And,

hence, the total integration time is increased). It is clear that for
2 . . . .

small values of p, E52 decreases and the integration period increase

and that for large values of p, E52 increases as the integration period

increases. These two results are eipected if the expression for the
common variance of Y. is examined (since Esg is an unbiased estimator
of c; ). For small values of p, 0% increases as m increases. It can
also be seen from figures A-1 to A-3 that as the sample size is increased
the Esg increases for all values of ¢.

Figures A-4 to A-6 are included to make this even more apparent.
For each of the figures the integration period (mAt) is held constant
while the sample size (n) is increased. The increase in sample

variance is expected due to the dependence of {Yj}.

Now, the third set of figures, figures A-7 to A-9, show how these
factors interact when the total integration interval is held constant.
That is, these figures show how the expected value of the second
order statistic s§ varies when the integration period, mAt, is increased
while decreasing the sample size, n, in order to sample the same
interwval, NAt.
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As a concrete example of what this third set of fiqures shows,

;: consider the situation where X(t) is sampled for 5 minutes. Let the
short period of integration be 5 seconds and the longer period of
E integration be 20 seconds. Using the shorter period of integration,
N N = 300 sec/5 sec.
; o ! o
- and so n = 60 sincem = 1. The graph of E52 (Esl) in this case is
= shown in figure A-8. (It is marked n=60, m=1l). Using ::he longer
~ period of integration,
- N = 300 sec/Ssec.
2 = 60,
.. n = 300 sec/20 sec,
) =15
) and
i: m = 60/15
= 4

. 2
This graph of ESZ is also shown in figure A-8. (It is marked n=15,

m=4).

Now that the expressions for Esf and Esg have been derived and

intuitively described the question arises of what use are these

s
& expressions. There are two uses, First, these expressions can be
used to estimate unknown parameters. Usually, the exact values of n,
E m and N will be known. The values for Esi, Es; , p, and 0% will not
. be known. Using si and sg estimates can be made for p and o?2. Th;s
% can be done by first taking the quotient of the expressions for Es,
- and Esi.é This yields an expresgion whgre the %nknowns are Esi, Esg and
% 0. If s is substituted for Es; and s, for Es,, then an estimate for

p, 3, can be found using numerical methods. An estimate for o2, 82

can then be found by using sg and § in the expression for Esg and
solving for ¢? (si and the expression for Esi can also be used). This

=

- method for estimating o? can also be used with estimated f obtained in
‘o

'l‘::.'; vy

other manners.
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However, there are some problems associated with this method for
estimating o and p. To begin with it will almost surely be the case

that si, # Esi, and sg # Esg.
most values of p small variations in Esi and Esg may result in significant

error in the estimate f. This is compounded with the fact that error

From figure A-7 it can be seen that for

in the estimation § will lead to errors in 32 (especially for large
values of p e.g. p>.9 in figure A-7). Thus, this method of estimation

is very unstable.

The second and more important use for these expressions is to make
it graphically apparent that when the integration period of the sample
is changed, the second order statistics can be drastically effected.
Thus, when the analyst is making use of second order he should be aware

of the dependence of the statistics on the sample period of intergration.
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3. Propagation
Discrete Ships
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™ A Nontrivial Exact Solution for Ray Theory Models
1. Introduction
2. Environment
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1. Introduction

The general approach will be to describe the nature of
propagation in a specific environment, and show that for given
ocean basin limits (acoustic, geographical or artificial) and
ship distribution, one can (without the use of a large computer)
obtain the horizontal directional ambient noise. This will allow
a wide range of possible test cases for either discrete ships or
densities. These equations are then used to obtain two test

cases, which can be easily used in a computer model.

2. Environment

The purpose of this appendix is to provide a test case for
ambient noise models which is capable of analytic solution, yet
exercises more environmental acoustics than the traditional iso-
velocity and isogradient test cases. To this end, the test
environment used will have a range-independent sound velocity
profile having a sound channel axis at depth z,, of the form

c(z) = C(ZO)/(I-YZ(Z-ZO)Z}I/Z y >0
This parabolic profile applies to all depths z from the

surface (0) to the bottom (z ), and requires that

bott

vylz=-z_|<1

O l

for

< <
© 2% I Zpott

The bottom is assumed to be flat, below the conjugate devth, and

has infinite loss. Thus

“bott = c(zbot:t) >c(0) = Csurf
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There is no wind-generated noise, i.e. only surface shipping is

calculated.

The receiver is placed on the sound channel axis, and range

is measured from it. Thus the coordinates of the receiver are

(x,2z) = (0, zo)

The angle the raypath makes with the horizontal at the receiver

is 60, measured clockwise (Figure Bl).
p
; T e
f
: ‘\\\\\\\
2 AN
° | AN 8 N\
, o)
t
] \\
2z
v
Figure Bl. Raypath Geometry
3. Propagation

The raypaths may be specified by a system of differential
equations (ref. n). Let z(x;eo), abbreviated as z(x), be the
ejuation of the raypath having angle 60 at the receiver as a
function of range x, ;(x) the partial derivative of z(x) with
respect to 60, I(x)/Io the (relative) intensity at range x and

T the travel time along the raypath.
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Then within the ocean region

2
c(x,2z) Q_% + Y-(%% - %% %§>= J

dx
2 2
ctea S5 - v (a2 22 102 )
dx dx

e (2% gz % \_ &% 3c), _,

cos 8
T/, =S¢ Tcoss

X
T =.[ Wﬁ/c(x,z)dx
o}

IZ the raypath hits the boundary of the region, these quantities
are adjusted for the reflection (e.g. %%) and for the boundary
lcss (e.g., I(x)). Attenuation loss may also be apnlied.

Applying these equations to the particular example yields
three types of raypaths. The first type encompasses the raypaths
which do not meet either boundary, i.e., the refracted paths. For
tnese, the angle at the receiver 60 must satisfy

-8 <98

0 <9

(o] o]

where

. i3
60 = Arcsin (yzgle (0, 7)

is5 the angle of the ray which grazes the surface.

1, ) )
sttt
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VS Then

v'?-'

_‘f

b -1 . :

‘ z =z + Y "sind sin{y x seceo}

‘\:J

N "

e ! . 2

o~ L o=y cosGOSJ.n(Y X seceo} 4+ x tan 60 cos{y x seceo}
N :

E Coherent summation of rays also requires the travel time, which is
! T = Co /x dx

. B

:_._ c055O cz(z)

'\'i' o

K2

o 2 .2 .

[0 _ 1 (2 - sin"€,5) x + sin"8,cosfosin (2yx sec 8p)

b c_cosz 2 4y

D" (o] o]

) _‘J

W

=~ The second type of raypath is the RSR, i.e., that which hits the

-7 surface but not the bottom. Let 50 be the angle at the receiver

RS

}_i of the ray which grazes the bottom, i.e.,

e

[4

L

\".- E: _

j:- 8, = Arcos(co/cbott) e (0, m/2)

,.-_:

X <.

' Then if %Csatisfies either

)

- - 5 < A & - -e-

~ T . )

N

! 5 <8 <8
: o) o) 0

®

o ) ) _ {

b the raypath will hii the surface but not the bottom. Define
(PO

;:.:' the auxillary raypath parameters

o r.(5.) = -y“tcos8 arcsin (yz_ csc 6 )

7 "1 ° o o o

<&

7

K, -1

/. - & - =

o T, (e = 2rl(|eo|)+y ™ cos 8

¥ d"

R

o

’

(

-,

[

‘ol

v

-.’- o 4T oW K N N \' AT S Y W > Lo () '.d"\l('*( ’\ v‘r\
u“.o. 0 '\' N “?‘\-'S- .:' e'.‘. .:!' - <..’&‘:"‘l_|¢l“ ":“.t ] .:! .}l .' .-‘Q » “(&‘\‘!‘"v o, X N

o L W,

W "y, \. Oy nn. DA N .c't,o :'




-

Ll

1 4 L4
1.8 »_

Y

>

e

PN

RRF
Ea)

¥,

“{.v".f

LI M

Ml S

e

. . -
. ﬂ:':::\‘t‘\‘. WG,

where the (multiple-valued) arcsin function is taken to be the

unique value in the range

m 3m
[O, 5] U(TT, —é_]
Then Fl is a negative quantity which represents the range at which

the ray would hit the surface if it were extrapolated through the
receiver to negative ranges.

The parameter F2 is the period of the raypath (Figure B2).

Two more auxiliary raypath parameters are needed. Define

- _ 1 2 - 2z .2
3 (90) = 52;3553; !(2 sin 60) 0 zocoseO Vtos 60 ces 80 }
LY
T, (8) = =20, (le_|) + (2-sin’y) | mcose,
4 ‘7o 3 2cocos%3 Y

~Note that
T3, T4 (8) <0

80), T4 (80) > 0

Then 73 is a negative quantity which measures the travel time of
the ray from the receiver back to the range corresponding to rl.
And F4 is the travel time along the raypath for a period Fz.

Define the function

Mx) = [(x—rl) / FZ]
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wnere [(-] 1s the greatest integer function. The raypaths are

2 then given by the equation:

z =2z _ + Y—lsin{Y(x -AMx)T,) sec? }
g o 2 o)
¢ Let Xy be the k-th positive range at which the ray hits the surface,
\‘-:. i.e.
,:J' Xk = I‘l + kfz
':',f Since we are dealing with ship generated noise, travel time is only
- needed between the receiver and these ranges.
s T(x) = Ty + kT,
f-: Note that
::- R (Xk) = k

and at any range x > 0, A(x) gives the number of reflections the

E ray has at the surface in the interval [0,x]. With the travel

time and the number of surface reflections, the phase for a CW

W signal may be calculated for the raypath.

’ To compute the quantity Z(x), note that within the region
- 3z _ _8x /_d_z

:3 550 350 dx

w, . 9z dz . s

i$: A+ the surface, 5 and ax have discontinuities, for as the ray
\ 0

goes through the reflection these two derivatives change sign. Thus
é a~ the surface

. 3z _ dX [ dz
o 1551 = -son®, 55-[I5x!
LY o] o]

since

2
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55~ < 0 for 8 > 8,
el

axk _

-BTO- > 0 for 60 < —60

Now if 6(x) represents the angle the ray makes at range x (measured
downward from the horizontal), then

%% = tan 6 (x)
8(0) = 80

and by Snell's law

c
_ —surf
cose(xk) = ETE;T coseo
thus
itan 6 | = “vgos-ze(x ) -1
' (xk) k
2
c (z))
_ o 2, _
= c2 sec 60 1
surf
also
Ix ar ar
—_K e __dix 2
030 deo dgo
Now
ar z_ cotb cosb
1l _ _ + o o o
a’é'; = -|T (8,) tan 8/ — >
cos eo-cos eo
and
dar dar -1 _.
a;i = -2sgnd agi (|eoi) - T Y "sinb
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A Thus 352 1s known.

Let A(8) be the ratio of the intensity of the reflected ray to

~ that of the incident ray at the surface, for incident angle 6
F- (measured from horizontal). Then
~I
o
< <
- 0 A(8) <1
~
.- Attenuation is usually given in terms of loss aR, in dB. Let
-~
ot 3 be the corresponding intensity factor, i.e.,
ey
¥ (ax/10
10 ax/10) g%

Then the intensity of the raypath is

M cos eo

_ x, A(x)
.r:" I(X)/Io = mm B7A

so that
o,
i Ssurf ltan 9k | Xk, k
L" =

T(x ) /T sz ) e BT

Z ° |
o, aeo
Vs
. Where all quantities on the right-hand side are known.
joie]
!

The third type of raypath is that which, if extended, would
5&4-. strike the bottom. With the infinite bottom loss, this restricts
the case to RAP propagation, nearby ships and negative angles:

|
¥
- T ~
- > < eo i - eo
0
- The equations used above may still be used, provided that the
E- range is restricted.
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Thus RSR (and RAP) propagation occurs when eo is in the set
-eo) U (BO, 60)

and RAP propagation only may occur when eo is in the set

S -
=2 = ( 7' eO]
Define
= = :l U :2
4. Discrete Ships

To construct a test case for discrete ships, a small nunmber
.of ships may be positioned at various ranges (preferably chosen
so that the angles 60 of the significant raypaths are known). Then
the intensity and phase (if desired) of the raypaths for each ship
may be calculated. The distinct ships are summed incoherently.

5. Shipping Densities

If the shipping for the model is in the form of densities
rather than discrete ships, the test cases should also use ship

densities.

Consider the ambient noise coming in along a horizontal radial
sector of width A (in radians). Let x be range measured along thac:
radial. Let ! be the maximum range for that radial. Let £(%,¢)
be the density function for shipping, i.e., the expected number of
ships per one sguare unit of area, where the unit is matched with
that of the range x. Although f is specified as a function of lati-
tude and longitude, we need it along the radial as a function of
range. Let f(x) be this ship density along the radial (figure B3)

Let O(x) be the set of receiver angles 80 of rays which hit
the surface at range x(and, of course, go to the receiver). Let
x(eo) be the set of ranges x > 0 at which the ray having angle 8,
at the receiver hits the surface, i.e.
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Q(x) = {90: z.(x;eo) 0}

X{9) = {x: z(x;8,) 0}

Notice that x ¢ X(eo) only if x = xk(eo) for some k > 0. Thus

X(8,) = {xk: k>0, x,.< Q}

LLet k_ be the largest such index k, i.e.

k (90) = max{k: x

-]

x € X(eo)}

Hence

Ko(8,) = Q(Q) if 8 ez,
if 60552

Let s be the level (in intensity) of the 'average' ship in this basia.

Then the ambient noise received on this sector is given by the in-

coherent integral of intensity over range:

AN

Q
sej. TL(x) f(x)x dx
o

In the computer model one tends to separate the shio level
and add it (in dB) in after the major computation. But for the
ourpose of this example, we leave the noise in the above form.
The transmission loss at range x may be computed by coherent,
semi-coherent or incoherent addition of raypaths. Contributions
from discrete ships should be added incoherently, and those of an
individiual ship added coherently. But when working with ship
Ze..sities (e.g. 1.7 ships), the model cannot do both. Also, co-
herent summation tends to produce much fine structure in the
transmission loss curve: structure that is much smaller scale
=~an the uncertainties in ship positions (historical ship distri-

- .-1on are given by 1° square).

The test cases-given will be for an ambient noise model using
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incoherent summation in the transmission loss module. Thus TL(x)

N
WL
" t; is assumed to be incoherent. A different formulation is needed
N
LN o ; ; : ;
S for coherent addition. By breaking transmission loss into an
L]
N‘

intensity summation over all raypaths, and changing the variable of

integration, we have

=

“ Ea Q

W AN = sé/- TL(x) £ (x)x dx

v F o

0

ey & o

{\

f:' N =sA[ )N TL(x;8,) f(x)x dx

SRS <, 9,0

WS C
LES 4
:5 = SA]Z TL(x:8_) £(x)x |3z d8

::i ;.; _XEX o}

{ )

N

N 2 x,A(x)=-1

- - i -

A P _ . BTN COSGQ c 132 I i
vy = si ng xTZTcoss x5 (x) ggﬁ.cota‘dao
* & z

R

X

iﬁ' ::’ > xkA -l

S = st ¥ 2 zos X, SUxe )5 'cottsur‘ 19
I K=l k! =1C9%%gyurs :
) [ 4 z

'3 '

3 .-a

L

v, r k_ x

"'. - e k k"l

0 = 84 < £98°9 f(x, ) 2 "+ de

ot J fel 81n%gurt: k

sy g

:I‘i ﬁ

by

g«

?? . 5 Ko XK k-1

KN - cos - N

X o - ssf —So8% . o £ (x,)dd

. g surf’' k=1

!" :

") .

O :f

:’ . This 18 the type of apprnach taken by Talham (Ref. ©0), and used
Cd

R

- E? 1n FANM. Unlike these, however, the shipning density f need no:
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R
b
Y
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W constant over a ray cycle. The above derivation assumes that
W
b
" '
|
- a)  3x # 0 for any x € X(8 )
o 38 o}
"> (o] g
K
v )
; .
: b) 3x
. 355 * © except on a 8 -set of measure zero ]
4
: o} .
“
Y
2 c) the ship density f(x) is continuous 2
': For the parabolic profile, the first two hold for all Goe . The .
j third may be relaxed to include simple functions (i.e. finite linan~ '
:j combinations of step functions). .
& t
, The intensity does not appear explicitly, which seems to violatez
3 . v
common sense. However the spreading effects are used, for the y
~ measure of integration (shipping density over Xy times Lebesque
measure over 80) implicitly contains the geometric spreading.
r (
b
; From this equation for ambient noise a number of test cases "
N Q
t ma be developed for various ship densities , etc. Two will be
gLven. .
k) "‘
" U
Test case
LY
- b
. Assumptions: "
a) The maximum range i is large (e.g. over 1500km)
b) The surface loss is significant, so that RSR rays from "
the maximum range are attenuated signficantly. ’
. c) Assumptions a and b may be quantitatively expressed as R
i PP
. where
N
€ - )
A 2ﬂcosvo

»
: 1s the minimum nurber of surface reflections at maximum

range .. v
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s

fS d) The frequency is low, so that the surface reflection loss
- is more significant than the attenuation over a ray cycle.
N Using the attenuation coefficient of Thorp (Ref p) it is
seen that at 100hz the attenuation loss over 70kyd is only

Y )

1.6%, hence this should not be a serious restriction.

L

ti e) The ship density is constant along the radial out to range

n,

e’ With these assumptions, three approximations will be made. The

. first is that the attenuation over any ray cycle having eosEl will

“ be approximated by a constant. This constant may be taken as the
geometric mean of the endpoints, viz

N

o

w

- ' " =<BF2(90) . BF2(60)>1/2

The error committed in making this approximation depends on the

N values of c and the relative loss due to

- surf’ c(zo) and ¢

bott’
raflection versus attenuation. Usually this will be small.

The second approximation is obtained by running the summation

& to infinity. This increases the ambient noise by a value between

C v e
[RE B

0 and
L] - - m
N 10log,4(1 A)
~l
Qj dB, which may be made very small by proper choice of ).
o The third approximation is short-range attenuation. The attenuation
I‘
n between the receiver and the first surface bounce for RSR raypaths

may be approximated by the geometric mean of the four endpoints:

o= <8-p1(éo) B-I‘l(éo) Bl‘z(éo) + F,(éo) Brz(éo) + F1(50)>l/4

e . N . :
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For RAP paths of greater angles, i.e., those in z,;, it is assumed
that the attenuation may be ignored. Since we are dealing with N,

close-to-vertical raypaths, their length is very small.

Since the attenuation involved in this partial ray cycle is small,

the effect should be minimal. Note that if the model is run with

SIS

B =1 (i.e., no attenuation), then two of these assumptions are
superfluous.

These ambient noise integral may be expressed as an integral

over =, and one over =Z;, call the portions ANl and ANZ. Then ¥
)
AN. = SAJ’ cosfq I'n + kT2 xk‘lf a0
: Slnesurf k 1 ° :
ka
= SAf -I-E-fsg—seo——r v % Vk-lkk-lf deO
= surf k=1
- 8 v f X
* sAf 0850 s ;
WSlnesurf' 1-vX

"
—

= sAvV’f ‘[ cosb a6
1=va ;l—nzcoszeo °

Eg
where t

n = csurf/c(zo) > 1

U L)
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t: Now 21 1s the union of two intervals, so the integral is split in<o
1243
v pieces. Now the first is
NN
N
L) -
) g

E © cosfq ae
\ / 2 2 o]
. l-n"cos”™®
- é’ 0
. 1::\: 0
‘ v
Yy S.:'_ 5
R 1 ! . / 2 2 o

. == Injn 51n60 + v1l-n cos 90 _
P, |
- E %

/
& , - L x
+

o ‘}:‘g RS sin§_ + n sinf_ . t
) = n N . =
i sin8
i, The second integral, over (—60, -50) has the same value. Therefcre,
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Therefore we have a relatively simple expression for the ambient

noise for this case,

.
acx-m

Test Case B~

mdilba

Most ambient noise models using shipping densities assume the

i density is uniform over a small range, and at the end of that range
it jumps to another value, remaining uniform on the next small in-
terval. Such a function is, of course, a finite linear combination
N of step functions, i.e., a Simple function. As noted above, the

- ambient noise integral is valid when f£(x) is a Simple function.

Thus given a Simple function for the shippning, any surface reflecticn
and the attenuation appropria-.e for the frequency, the ambient nois=2
integral may be evaluated. This may be done analytically, but the

] ‘ !
Ak, AR,  mintes el

number of logarithms and inverse trigonometric functions required

for the general expression is incredible. Thus it is easier to

- evaluate the exact ambient noise integral using numeric guadrature
19 .
N rather than using closed-form expressions. Unlike case a1, no an- \
N proximations are made (except the error introduced by the guadrature
. . . . v . -
. which may be made arbitrarily small). Using a shipping density on a
1
o grid (the standard method of feeding the models), one can thus trans- b
J' . . . . . .
- form the two-dimensional Simple function to one-dimensional Simple
-,
o functions along various great circle radials from the receiver, and
- obtain the ambient noise along each radial by numeric quadrature.
A This appears to be an ideal exact solution to use for model evaluation.
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APPENDIX C: Nine Point Field Analysis

Mo The ambient noise at a point is the acoustic energy arriving
at that point. As such, ambient noise is subject to the laws of

g physics. Hence, the values of the ambient noise at the points which
rake up an ambient noise field should satisfy the mathematical rep-
.. resentations of the physical laws (e.g., the values of the ambient
noise field will be a solution to the wave equation).

E} Ambient noise models produce estimated values for points
within an ambient noise field. In order for these estimates to be
? considered reasonable, it is a necessary condition that they also
d satisfy the mathematical representations of the physical laws. In
N particular given the ambient noise at each point in the array of
~ points shown in Figure C-1, the ambient noise at point m will in

some ways be related to the ambient noise at the points 0 through

P o

. The purpose of this Appendix 1is to determine what some of

-
o

these relaticnships are. To fulfill this purpose several situations

w11l be examined. First, the relationships between the directional

ambient nolise at two points will be considered. Using the informa-

o tion gathered from that situation, the case of directional ambient }
i noise at nine points will be considered. Next, the relationships |
! between the omnidirectional ambient noise at two points will be
"~ examined. Finally, some bounds for the omnidirectional ambient
. noise at nine points will be determined.
2
There are several approaches that can be taken when consider-
:ﬁ ing the problem of determining some of the relationships between the
¢ directional ambient noise at two points. The approach that will be
v used here is to first consider the problem in an idealized case.
‘.
; *Note: This Appendix will only consider horizontal ambient noise.
&: For vertical ambient noise one can formulate a similar problem,
however, different tools must be developed to solve it. The tech-
ﬁ; nique given in ref. g should provide a basis for some vertical
directionality tests when the shipping field is smooth (i.e., when
:g range-averaging applies).
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Figure C-1: Array of Points
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From this a general solution can then be used to determine what the
relationships will be as various assumptions are made about the

environment.

For the idealized case imagine the earth covered by water
with depth excess everywhere so that there are no acoustic obstructions
(such as continents, islands, sea mounts, etc.). Choose two points
and denote them by Pn and Py - Select a direction 6, ee,{O,Zﬂ) (i.e.,
an angle measured from north).

The ambient noise at the point Py in the direction 8, denoted
A&l(a), will be given by

AN1(6)=Jr'rLl(p)dF(p)
2 (9)
1

In this equation, TLl(p) is the transmission loss between the points
p and pl. The symbol

[ dF (p)

Z (9)
1

is used to indicate that a Stieltjes integral with respect to the
distribu~ion of noise sources, F, is taken along 11(8). zl(e) is
the directed great circle passing through P and oriented in the
direction 8. (5ee Figure C-2.)

The equation for the ambient noise at the point P in the
direction 8, denoted ANm(e), is

AN (8) =ITLm‘P’dF‘P)
m
2, (8)
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where zm(e) and TLm(p) are defined in the same ways as their counter-

parts for pl. (See Figure C-3).

Thus, are exact expression for the relationship between

the ambient noise levels at P, and P in the direction 6 is,

ANl(B)-ANm(e) =£[ TLX(P)dF(P)-J' TLm(p)dF(P)
1(6) lm(e)

The magnitude of this difference is governed by the physics of the

situation (e.g., the distance between p1 and P the distrikutions

of noise sources, the environment giving rise to TLl and TLm etc.).

In ambient noise models ANl(e) and ANm(e) are estimated
rather than known. Similarly, the environment is not known exactly.
What will be known when using noise models is the distribution of
noise sources and reasonable upper bounds for the difference between
the two transmission loss functions. Using the equation above and
these two known factors, bounds will be palced on the difference

between the anbient noise estimates.

First, for convenience of notation several definitions will
be made. For any two points p' and p" 1let p(p',p") be the great
circle distance between the two points. Let R be defined as the

linear transformation on the surface of the sphere with the three

properties:
(i) R preserves distances,
(ii) R: zm(e) + L (8) preserving the orientation,
1
and (iii) R(pm) =P -
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) T~.3 =ransformazion will b2 ounigue 2152, 1t will have an invarss
& - : ‘
t ~ransformation. Let R ' denote this inverse. Next, define the
. function L F by
. D1
-1
| © F(p) = F(p)-F(R  (p))
" o
~ ~o-e that while F{(p) > 0 for all p;, é? may be either positive or
- 1
negative. Hence, é F will induce a signal measure wnen integration
» . _ : .
e 15 Jone with respect to 4 F.
pl
- ow, usinjg the eguation for the difference in the ambient
59 levels,
-NN_ Ty = ITL (p)dF ig)- f TL_(p)dF (p)
- O )
“ v (3
’ (3)
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‘ «pud;r“,pHJTL ‘Rip) )dF(p)-ITLm(e)dF(p)

3R]
R a
m(.) im(e)
prdl {TL.(R(p))"TLm("J) }d?(p)
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ss This final equation expresses the difference between the ambient '
b noise levels at the two points in terms of the variations in the

' noise source distribution in the direction & and the transmission '

> loss functions. That is, the first term on the right hand side of

i: the equation is the difference in the ambient noise that is due to

s variations in the distribution of noise sources along 21(6) and

! am(e). The second term is the difference in the ambient noise

o that is due to the variations between the transmission loss functions
,3 TL: and TL -

)

| .

. The difference in the estimates for the directional ambient

Cj noise levels at P and P should then be bounded by

<

N~1

‘\J

2 A:h(%)-ANm(e)l f_[TLl(p)dlA F (p) |+[|TL1(R(p))-TLm(p) |dF (p)

o~ <

x 21(8) 2.(8)
;; Since this is an idealized situation, it is not worthwhile to examine
‘* this bound more closely. Instead, a general realistic solution for

N the problem of comparing ambient noise at two points will now be

'J considered.

W
5\ The most general case is the same as the idealized case

v except that acoustic obstructions are considered. For this situation
b . . A . A .
,? define the points P 51' and p* (see Figure C-4). Py 1s the point
:4 at which £m(8) first meets an acoustical obstruction. 61 is defined,
- in the same way for 21(6). p* is the point on Qm(e) which is furthest
4: from Pn such that if p is between Pn and p* then there is no acoustical
-‘.

>y obstruction between p and 2, and for which

-2

@
.o A
t-l p(p :R(p))<D(P r P )
, ] 1 - 1 1
I.:
K/

™ The expression of the difference between the ambient noise
}3 levels at the two points in this situation depends upon the relative
~3 positions of P’ 61, and p*. There are three possible expressions:

v
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Case 1: o(pm,p*)<o (pl,g)1 and o(pm,p*)<p(pm,?>m)

In this case the difference in ambient noise is given by

l\
AN (6)-AN, (0) -fTL (P) aF (p) -ITL (p)aF(p)
(2 (®)] [, (e)]

P
where Jr indicates that the Stieltjes line integral is to be taken along

p
2(8)

the line 2(8) from the point p' to the point p* . This can be broken down to

A
P, R(p*) p* ‘
AN}(S)-ANm(e) = j’ TLl(p)dF(p)+‘[ TLl(p)dF(p)—‘[ TLm(p)dF(p) ’
R(p*) P, " P
[9.1(9)] [zl(e>] [2,(8)]
AO
- fnm(p)dp(p)
p*
which reduces to
5 Bt
1
ANl(B)-ANm(B) =f TLl(p)dF(p)+I TL (p)dAF(p)+f{TLl(R(p))—TLm(p)} dF(p
R(p*) P, P1 P
(¢ (®)] [z (6)] [2,(8)]
Pa)
pm
- fTLm(p)dF(p)
p*
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é (See Appendix G for a complete derivation of this equation.) as

E o in the idealized situation, this equation indicates the source of

" Qf the difference between the two ambient noise levels in terms of

1 guantities that can be bounded when using ambient noise models.
E, The second term on the right hand side of the equation is the

‘ difZerence due to the variation in the distribution of noise sources
K &f along QL(S) and 2 (8). The third term is the difference which is

) due to the variation between the transmission loss functions TL

:Q and TLm. The first and fourth terms together are the differencé that
e is caused by acoustical obstructions.

Y The difference in the estimates of the ambient noise levels

at the two points as produced by ambient noise models can, thus, be

.: bounded by
¥
L}
' N\
) f: 1 R(p*)
) 'A.\J‘(E)-ANm(e)l if TL1(p)dF(p)+f TL‘(p)dlAF(p)}
S R(p*) o P1
' [ ] 1
2 (9)
! [“1‘9’]
K
()
3 A
> p* m
+L|TLI(R(9))-TL(P) |aF (p)+[ TL_(p)aF(p)
*
0 - m P
[zm<e>] [zm(e)]
k=~
i A\_
p This bound will be considered further after the second and third
D cases have been presented.
he

N
Case 2: o(p .,p ) = o(py,P*) and p*<p,

res,

B
p
A 6, AT AT e - " AT A A TN - v
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As in Case 1 the difference between the ambient noise levels at the
two points is:

~ ~

P
1 m
A&l(e)—ANm(e) =j; TLl(p)dF(p)t[;TLm(p)dF(p)

1

[zx(e)] [zm(e)]

which in this case reduces to

A

1
QN!(S)—ANm(e) =[pTLl(p)dS§(p)ﬁ[

p*
{TLI(R(p))-TLm(p)}dF(p)

v

P Pn

!:9.1(8)] [Zm(e)]

pm
-fTLm(p)dF(p)
D .

-*
]

Note that in this case R(p*) = 61 and p* = R—‘(Sl). The terms in
this equation are due to the same factors as the terms in the ana-
lagous equation in Case 1. In this case, however, one of the terms
due to the acoustical obstructions is zero.

Here, the bound for the difference in the estimated ambient
noise levels is,

? p*

AN (5)-ANm(O)| ijTL (p)d|AF(p) |+ ITLI(R(p))-TLm(P)ldF(p)
‘ P, Pm
[zl(e)] [zm(e)]

A
pm

-j' (p)dF(p)
p*

[zm(O)]
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C 3: p(p_,B)<elp ,B d P* = p
ase : P pm,pm pl,pl) an = pm

N
' As in the other two cases the difference in the ambient
e noise at the two points is,
o A
o B P,

AN (8)-AN_(B8) = TL (p)dF(p)-| TL_ (p)dF{p)
5 ‘ ™ ! p_
o 1 m
* [z (e)] rs. (e)]

1 [ m

i which reduces to
N A
- P R(p*) p*

AN _(3)-AN _(8) = fTLl(p)dF(p)+fTL (p)dAF (p) + ﬁTL (R(p))~-TL (p)} dF(P)
2 ‘ " R(p*) o, ' p P, m

Y

[z, 0] [2, (o] l [2m(rg)]

ey

This is similar to the analogous equa*tions derived in Cases 1 and 2.

' -
v

Like Case 2, one of the terms due to acoustical obstruction is zero

in this Case.

The bound for the ambient noise estimates similar to those

E presented in the previcus Cases is,

t; ’31 R(p*) p*

) {AN (8)-AN _(8)|< [TL, (p)dF(p)+ J;L (p)dISF(p)|+ 'L (R(p))-TL_(p) |dF (p)
~ 1 m - (pl) p 1 s m 1 m

[‘1‘9’] [stl(e)]l [zm(e)]
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LJ Therefore, in this general case the difference in the estimates
of the ambient noise levels at the two points as produced by ambient
- noise models can be bounded by
4 5 R(p*) p*
f? IAN (8)-AN_(8) |< jﬁL (p)dF(p)+erL (p)a|aF(p) |+ ITL (R(p))~-TL(p) |dF (p)
_‘f;: R(p*) P P,
A [9. (e)] [z (e)] [z (e)]
' 1 m
K>
:l N
e it
R + TLm(p)dF(p)
*
Y. [z (e)]
W2 m
[}
(',
o
”{ with the possibility that one or both of the terms due to the acoustical
. obstructions could be zero.
"
" Now, when actually estimating a bound for the difference

in the ambient noise estimates, each of the terms in the eguation
above would be bounded. Further, the bound for each term that would

P

be used would not be the bound for a particular pair Pm and pl. Rather
it would generally be a bound for all possible points pl given that

L om el

i {%v‘,&,\ > J .‘ l',&l [ }-L‘,' \/ ’-}x{-}- A"n'.’&‘ ;

o(pm, pl) <r for some fixed Pn and some constant r.

Thus, for the term representing the difference in the esti-
mates due to the variations in the distribution of noise sources,

{(p*) (p*)
ﬁL (p)d|aF(p) | = TL (p) | aF (p) |
P, pETp,,R(p*)] P P

. P
' [me;] [zl(e)]
E = pﬁizl,R(p*)] ’TL‘(p) ] [p),gYp*ﬂ (éi(p))
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. where TV (AF(p)) 1s the total variation in AF(p) along the great
*
[Pl,R(p )]
E circle arc between P, and R(p*). Let ep denote the bound for
this term on the set A = {pllp(pm,pl) <r}., €. is given by
r P
PN
max max ™V
g = * TL (p)] [ (AF (p))
- o) pleA [pe[pl'R(P )]( 1 ) [PlsR(p*)]pl
; For the term representing the difference in the estimates
v due to the variation in the transmission loss functions,
" p*
N J |TL, (R(P)) - TL, (p) |aF (p)
p
3 "
 § (2 (8]

p*

o ey [ITLy (R(R)) = TL_ (p) IU aF (p)
p

<
i *
- pPE [Pmrp ]

A

' (2, (8]
o max
PN = F * - F -TT !
|F (p*) (pm)l [pEIPm,p*l ITLl(R(p)) Thm(p)|H
§ Let € denote the bound for this term on the set A. € is given
r by
o8
’
{c: max max
= * - -
¢ = pyea|lF @Y F(pm)l[pe[p Jp*] |1 TLy (R(P)) TLm(P)IH

o m
b
W

These two expressions, so and Et' are generally estimated rather
&; than computed.
-

The two terms representing the difference in the estimates

i due to acoustical obstructions are lumped together. Let €a denote
)

the bound for these two terms on the set A. Since Eo and €, are
~
i
I
®

(N .
LAY
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not tight bounds and since the difference in the estimates due
to the acoustical obstructions is usually trivial when compared
to the error in €, and €, €, will almost always be set equal

t
to zero. When not zero, €, is estimated instead of computed.

Thus, if no restrictions are placed on the environment,

|aN, (8) - AN (8)] < e, * et gy

Other bounds can be obtained from this by making assumptions about
the environment. If it is assumed that P is sufficiently distant

from all acoustic obstructions, then

lANl(e) - ANm(e)l Sey e,

'If in addition to this it is assumed that 'I‘Ll = TLm for all pleA,
then

|aN, (8) - AN (8)] < €,

Note that this assumption will greatly effect the estimates AN1(8)
and ANm(e). However, since internal model consistency is being
tested and not model accuracy, this effect is not important. If
instead of a uniform transmission loss, it is assumed that the
distribution of noise sources is a constant distribution, then

|AN, (8) - AN (8)] < e

Even though this is an unreasonable assumption for a real-world
situation, it is nonetheless useful when testing internal model

consistency.

Ly

This completes the discussion of the two point directional
ambient noise case. The nine point directional field analysis

will be considered next.

The question was posed at the beginning of this appendix
of how the ambient noise at the point m in figure C-1 is related
to the ambient noise at the points 0 through 7. (Denote these

P

Y e s W a5

A
i - -~ - ~ 2
¥

"',o'! \ .: :'o'! ‘

t ..

yﬂj ';-(‘ v\"ﬁ;{*\ﬁ:{'};‘;\:;’\'\;iﬁ\; o, J'.. \-“;-l‘ 'i‘~( J‘ﬁf ’n{'
e Wy ] .

yab L) ooty uly -'.’u LA .t. . '05 » 2



oy

S

N fVVsn*w*& AT SO, Ty R A SR L (O AL C LN A N
I‘ el.|, .‘ ., t‘:.‘.' t.."'.‘l'- l. oi..*k‘\.q * * ‘i <, ’l " 3N \ N N 2N aX)

r“l'

points by Ppr Pgr Ppr =+ Pgs respectively.) When testing inter-
nal model consistency, this question is equivalent to asking what
can be said about the expression

7

|aN_(8) - ) w,AN,(8) |
1=1

for appropriate choices of ws s i=0,1, ..., 7.
One way to answer this is to use the bounds derived above.
Let r be the distance between P and P for even 1i. (See figure

C-5.) Let sp(r) and et(r) denote the bounds derived above for the
distance r. Define Wy i=0,1, ..., 7 by

(e (x) + €, ()17} if i is even
w. =
1 -1
[Q(ep(/?r) + Et(/fr))] if i is odd
where Q = 4[ T3 i I + 1 ]to ensure that
o t e, (VIr) + e (/2r)
7
E: w., = 1. For this choice of w.
i=o * , 1
L 8
|ANm(9) - iz=:0 wiANi(6)| 5

(see appendix G for a demonstration of this.) This bound can be
improved. Let € be the bound for the difference in the estimates
of the ambient noise levels at Pn and P (i.e., the bound for the
two specific points P and pi). Define w, i=0,1, ..., 7 by

w, = [e.q°] L for i =0, 1, ..., 7
1 1
7 -1
when Q° = ~§ e;” - For this choice of w;
7 8
|aN_(8) - i}=:0 wAN, (8) | < o
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This is an improvement over the previous bound since R < 27 (how-

- ever, more work is required to obtain {w,} in this case).

4 . There are other methods of finding bounds for the level

\ N of ambient noise at Po- Assume that the transmission loss func-
~ tion for each point is monotonic. (This assumption is made in

~ :‘-:: many of the current ambient noise models.) Also, assume that the

\ distribution of noise sources is identically zero for an area

. :2'_ around the array of points.
' If the distribution of noise sources is continuous, then
: L: upoer and lower bounds for the ambient noise at Pn in the direction
. 3 are
K o
o~ +
I AN (8) < wyANY (8) + WoAN (4 11y moas (9
W
[)
. "c;: and
' '\;
: > +
: AN (8) 2 WiAN 1 v 4)moas (8 + WoBN (1 i5)moas (®)
T
3 a where k = [47?] (i.e., the greatest integer less than or equal
.
L (. _ 45 . - 46 _ - _
;o o ﬂ), .42 - k, and W, 1 Vv2.
b \ For a discrete distribution of noise sources similar
> bounds can be determined. Let the distance from the edge of the
; ’ array of points to the nearest ship be kr (see figure C-6). Let
"c
x be an angle such that
D)
\ . la] < 2 arcsin(2k)”t
{ v -
(
. - The upper and lower bounds for the ambient noise at pm in the
. direction 9 are
b, max
D <
- AN _(8) < 8,6, [wlANk(el) + szN(k+1)mod8(62)]
1
S and
e max
» b“ +
% ANR(9) 26 0, [wlAN(k+4)mod8(6l) w2AN(k+5)mod8(e2)]
£ -
Ny
L) .-
: ):::
¢
i
" ;\'
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where Wir Wor and k are defined the same as for the continu-

ous distribution of noise sources. em?g is used to indicate
that the maximum is taken over the vaiuei 61 e(6,0 + al) and
62 e(6 - Ay 8) where

o |+ layl < laf
as shown in figure C-6. engz is defined analogously.

To obtain different bounds different arrangements for
the points p; can be used (see figure C-7). For this arrangement,
the difference in the transmission loss functions with range
should be compared with the difference in the distribution of
noise sources. That is, 6TL should be compared to SF where

. _ max max _
§TL = 77 pe2_(6) TLi(Ri(p)) TLm(p)‘
and
_ max max A
SF = 7y ped, (8) piF‘

where zi(a), TLi(p), Ri' and Ef F are defined in the same fashion
i

as 21(6), TLl(p), R, and Ef F. If ZTL < c¢déF (c a constant to ac-
1

count for units of measure) then a bound is found using sp(r) and

st(r) and points along radials near 2, i.e.,

w w

w
N § 2 N
|AN (8) = 5= ANL(8) = == AN 1ym0a8®) = 3 AN (i) moas (O
w2 ,
2 AN ) i5)moag(®) L g (r) + €, (r)

where Wy and w, are computed as before. If 8TL > céF, then

a bound is found using ep(r) and et(r) and points on radials

nearly perpendicular to 6, i.e.,
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3 AN k+2)mods

| - .2
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w w

1 (8)
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2 AN(k+6)mod8

7 AN k+7)mods

(8)] < e (r) + e ()

As an extension of this arrangement, consider the case where

the ambient noise at P is combined into sections with width of

g%. Choose 4N points equally spaced on'the circle of radius r
centered at Pr* Compute the ambient noise at these points (see
figure C-8). The previous two equations simplify to

IAN_(8) - % an.(8) - L an . (8)| < e (r) + e,_(r)

m 2 j 2 (j+2n)mod4n - p t
and

IAN_(8) - 1 an (8) - % an (0) |

m 2 (j+n)mod4n 2 (j+3n)mod4n
< ep(r) + e (r)

where

[(4_;1; + .5 mod 4N] .

Note that the bound is the same for all sets equations.
Trese bounds can be improved and other arrangements of points can
be considered. The alternate bounds € developed previously may
be used. This is significant since now the bounds will depend upon
the Total Variation in transmission loss in the one direction and
on the difference between transmission loss curves in the perpen-
dicular direction. However, the bounds and arrangements presented
above represent the basic techniques that can be used. Omnidirectional
ambient noise will now be considered.

The problem of finding the relationship between the omni-
directional ambient noise at two points is similar to the problem
of finding the relationship between the directional ambient noise
at the two points. Hence, it will only be covered briefly. The
method used to solve this problem will be the same as was used
for the directional problem. That is, first an ideal case will be
considered. Then a general case will be examined. Finally, a nine

point field analysis will be developed.
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In the ideal ocean with depth excess everywhere, as de-
scribed above, the omnidirectional ambient noise at the point Py
denoted by AN., is

1
AN, =H TLl(P)dF(P)

where TL, and F are as previously defined. This integral is a
two dimensional Stieltjes integral taken with respect to the dis-

tribution of noise sources F over the entire sphere.

As in the directional case one way to compare the ambient
noise levels at the points Py and p. is to compute the difference

in noise levels. This difference is given by
AN, - AN_ = TL, (p)dF (p) - rTL (p)dF (p)
1 m 1 J m
which can be expressed as
ANl - ANO =JI TLl(P)dEf F(p) +J {TLl(R(P)) - TLm(p)}dF(P)
l .

where R is the linear transformation determined by Pys Py and the

great circle containing P and p.

In the general case there are acoustical obstructions to
be considered once more. To take these obstructions into account

define the following sets:

A = {p| the great circle arc PPp, is unobstructed or the
great circle arc pp, is unobstructed},
Ao = {p| the great circle arc PP is obstructed and peA}l,
A, = {p| the great circle arc p,p is obstructed and peA},
A, = {p| PEA N\ (A UA;) and R(p) 4 A\\Ao},
and
A, = AN\ (A.UA UAZ)

3 071




I“ l'l‘.

QE
0
e Using these sets the difference in the levels of omnidirectional
?\ ambient noise at Py and Pn is given by

.

$: AN - AN JI TL (p)dF (p) l]lTL (p)AdF (p)
3 AAg A\A,
e which is equivalent to
e
" AN, - AN =H TL, (p)dF (p) +H TLl(P)dpA F(p)

1

: AlUA2 A3
\‘
N
i
19
o +J {TL, (R(p)) - TL_(p)}dF(p) -J} TL (P)dF (p)
{
b A3 RoUA,

Using this expression an upper bound on the difference 1is

'$ IANl - AN_| =J] TL, (P)dF (p) +JI TLl(p)dlgf F(p) |
1
A,UA, A3

-y

¥ +1I|TL1(R(p) - TL_(p) |4F (p) -JI TL_ (p)dF (p)

)

o

' A A_UA

v 3 0-"2

:‘ As with the directional case, define the three guantities
o € , €, and e.. Let ¢ _ be the bound for the difference in the omni-
# p t 0 p

o directional ambient noise level due to variations in the distribu-
tion of noise sources (the second term in the above equation).

! Let € be the bound for the difference in the omnidirectional

W ambient noise levels due to the variations in the transmission

W loss functions (the third term above). Finally, let €0 be a

B0 Sl . 0 ,
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bound for the difference in the noise levels due to the acous-

tical obstructions (the first and fourth terms above).

These three bounds can be used in an omnidirectional nine
point test similar to the directional test previously described
(see figure C-S). This test has exactly the same form as the
directional test. However, the omnidirectional bounds just

given are used in place of the directional bounds.

In conclusion, the estimated ambient noise levels must
satisfy the mathematical expression which represent the laws of
phvsics. Using these mathematical expressions, bounds on the
variation from point to point in the estimated ambient noise
field can be established. These bounds can be expressed in
terms of quantities that can be either computed or estimated.
Fin.lly, these bounds can be used to test the physical consis-

tency of ambient noise models.
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A APPENDIX D: On Transits of Nearby Ships
ANEN
AN ﬂ\
N This appendix is concerned with the effects on the ambient
()

noise field of a ship passing near to an array. These effects will

-
'
v

be considered from both a theoretical and practical point of view.

\
o
\"

S . C

bey o Obviously, 1f a ship is of sufficient size or it passes suf-
N - ficiently close to an array, it will be possible to identify its

: :~ passage using only a visual inspection of the data. However, in
™ rarginal cases visual inspection will be iradequate. That is,in
~ :ﬁ some cases it will not be clear that a ship has passed. Thus,

since low frequency ambient noise is the summation of ships at vari-

J i ous distances, this appendix will deal only with the problem of

- determining the significant ships (assuming none are found by cur-
N

N sory visual inspection.)

N In the theoretical problem it is necessary to make some assump-
s ff tions concerning the ship making the transit and the environment.

‘E ‘ It is necessary to assume thatthe ship is on a great circle course

: . relative to the array (whether towed or fixed) and that the ship

n . moves with a constant velocity along this course. The ship must al-
’f e so be a reasonably uniform radiator of noise. For the environmental
; - requirements it will be assumed that the transmission loss will ke
n a monotonic function. Hence, the received level of noise will be a
\: < maximum at the ship's closest point of approach.

'i ;: "To represent the problem mathematically, it is necessary to

. specify the coordinate system that will be used. Polar coordinates
‘: ET relative to the array will be used. Also since the distances in-

; ) volved are much less that the radius of the earth, it will not be
N necessary to use spherical geometry. Finally, ambient noise will

q g be considered rather than beam noise so that there will be no am-

"E - biguity with beams.

SO

.E N As notation for this problem let t, denote the time at which

i f' CPA occurs. The location of the ship at CPA to the array can be

ti K spacified by two guantities: a and b. a is the distance from the

;- Ei array to the ship at CPA. b is the angle relative to the array of
e

» > ‘
.'\\-\

~ ,
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the CPA. Denoting the velocity of the ship by v, the position
of the ship can be specified for any time, t, using these con-
stants. In the polar coordinate system, the angle, 8, of the

ship relative to the array at the time t is given by

8 = b + arctan{v(t-tg)/al
The distance p from the ship to the array at time t is,
p(8) = a sec(6-b)

(l'ote that the unit used for v is determined by the units sel-

ected for a and t.)

If the range of time is large, then the noise from the ship
will be detected at a great distance, as the ship passes CPA, and
as the ship moves off to a great distance. A graph of the maximum

noise level is given in figure D-1.

The ambient noise due to a single ship making a nearby tran-

sit is given by

S

AN(Z) = 51y

wilere s is the source level of the ship and I is the transmission
loss function in intensity. (the expression I(p (8)) is used to
show that I is a function of range which in this case is a function

of g.)

This expression can be made more specific by making additional
assumptions regarding the transmission loss. If, in addition to
being monotonic, the transmission loss is assumed to be due to
spreading loss (i.e. I(p) =p ™ for some fixed m) then the ambient
noise due to the ship is

, S
AN(3) =

amsecm(e-b)
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Furthermore, if m=2, then the ambient noise reduces to the simple c

expression

AN(8) = = :

a® + vZ(t-t,)? .

However, even if these additional assumptions are not made the

maximum noise due to the ship will still have a graph similar .
to the one shown in figure D-2. Observe, that if 8 in this graph
were considered to be frequency and not angle, then the graph 3
would represent a standard signal processing problem (e.g. a
Doppler shift or Frequency Tracker problem.) These kinds of prob-
lems can be solved using well established algorithms such as Maxi- ‘

mum Likelihood Estimators or Least Squares methods. .

Thus, for the theoretical problem of a ship making a transit
near to an array several assumptions (which may be unrealistic)
must be made about the ship and the environment. The problem can
then be reduced to a standard signal processing problem. This ~

signal processing problem can be solved using well known methods.

In practice many of the assumptions made above will not hold. -
It will not be possible to use ambient noise. Instead, noise
measured on beams will be used. These beam measurements are sub- A
ject to some ambiguity in direction. Also, there is the problem
of cones with the endfire beams. These beam measurements will not
be made over an infinite pericd of time. Thus, it is possible that
a ship making a nearby transit will be measured for only part of
that transit (e.g. this will occur when the measurements stop be-
fore the ship reaches its CPA or if the measurements begin after
the ship has left its CPA.) Finally, the transmission loss will
almost certainly not be a simple spreading loss and will usually

not be monotonic.
The practical situation will also differ from the theoretical

in that more information will be known. In the practical case

there will generally be some data on the nearby ships. For towed 5
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e
: . arrays the tow ship will have radar to locate ships within the
N .,-: vicinity. In some cases there will also be aircraft surveillance
’i ) to extend this coverage out to a few hundred miles. Buoys and
’ g fixed arrays will not have this kind of coverage. However, with
. the buoys there is normally little or no horizontal directionality.
3 - The buoys will use the noise level without even trying to handle
B the direction problem. Fixed arrays may have over-flights, but
A~ the watch officers are very good at visual spotting even without
! :, the aid of aircraft data.
f & Therefore, in practical situations the problem of determin-
ing the effects on ambient noise of ships making transits near
_‘:E an array involves two cases. One case is when omnidirectional
- (or vertical) noise is considered. The other is when horizontal
Iy noise for ships not found by other methods (e.g. radar, aircraft,
" or visual inspection) is considered.
; .
; f. First, the omnidirectional case will be covered. 1In the

theoretical part of this appendix the ambient noise for a single

nearby ship was found to be

.,.-
-
Y

)
) . . ~ . s
L AN(Z) = —5—— 2
NI ) a© - v (t-to)
" ! when the transmission loss was due to spherical spreading. In this
‘:j ) case 1t will only be assumed that the transmission loss is of the
form
- -..ﬂ‘
{
2
S
: .o i.e. the transmission loss is not spherical spreading but some
‘L function of p2. Using this transmission loss the ambient noise
Y due to the ship is
- AN(E) = ——s—S 7
f. . fla” + vi(t-t ) )
'y
y
] @
N
’ ]
)
(
.
> e

e
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Py

which is symmetric about t = tg - If the transmission loss func- )

tion, f, is far from monotonic then little can be done. However,
for monotonic transmission loss there will be a relative maximum
in the ambient noise at CPA. Such maxima are best found using

visual inspection

In the horizontal case the ambient noise data will gener-
ally be in discrete form. That is, the noise measured in the
direction of the beam at 8j during the interval

. + (i-1)at, T, + (i)4t] will be

Salo) 0

TO + (1)4t
T.. = T.(6,) = J( BN_. (t)dt

TO + (i-1'4at

where BNj is the noise along beam j, TO is the time at which the
noise measurements began, and At is the integration time. The

~ransit of a nearby ship will show up as a relative maxima mov-

ing from beam to beam (see figure D-3).

In order to make this pattern of movement easler to detect

tn2 discrete data should be averaged. This can be done using

either
N N
= 1 1
Apy = NZT(Mk—l) + 1) < ﬁZT(nm—l) + 1) 9y
i=1 i=1
or N N
A . = l—E:T =1V ¢ (6.)
kj N ((k-1) + i) J N ((k=1) + 1) 73
'=l l=1

where N in an integer. N should be chosen large enough to elim-
irate small fluctuations in {Tij}. N should also be small enough
so that near CPA the ship will spend at least 2N periods in the

beams. That 1is,
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2NAtv < 2R 5inlB~2R A6 (see figure D-4)
or
RAD
<
N = vat
Once N is chosen, Akj (the groups of N Tij's) can be examined.

This examination cannot be made using the noise level. This is
bacause the transmission loss is not necessarily monctonic.
Also, the range of the ship need not change significantly over
the period of the measurements. And so, instead of using the
absolute level of noise, the relative level of noise will be ex-
amined. That is, define the matrix {aij} where the elements of
the matrix are given by

0 othe.wise

and aOj = 0 for all j.

For a ship making a transit this matrix should show a pattern of
zeros and ones similar to a discrete version of figure D-1. (see

figure D-5).

The best way to determine if such a pattern exists is a
visual inspection of the data. Since a visual inspection is to
be used, the type of average above will depend on the amount of
data. That is, if there is a great deal of data which would pro-
duce a large {aij} matrix, the first method of averaging should
be used. Otherwise, the second method of averaging should be

used.

In conclusion, the effects of a nearby ship making a transit
of an array can be determine both theoretically and practically.
The theoretical method reduces to a signal processing problem after
making some assumptions. The method used in practice will generally
involve reducing the measured data to a symbolic format and visu-

ally inspecting it for the patterns expected from the theory.
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Appendix E Vertical Deconvolution

The purpose of this Appendix is to discuss the usefulness of
comparing measurements of vertical directionality of ambient noise
due to surface shipping with model results. The discussion will
show that the agreement of model results with measurements does not
necessarily indicate that it is a good model. First, the nature
of this ambient noise will be discussed considering the effects of
varying shipping distributions and transmission loss. The noise
directionality of vertical arrays and the beam widths at the 3 dB
down points will be compared to the properties of the shipping noise.
Conclusions will then be drawn concerning the applicability of

testing vertically directional models using this approach.

Ambient noise at an array due to surface shipping can be
modelled in the following fashion. For weak (or absent) dependence
of sound speed with range, distant shipping contributes to ambient
noise at an array site as shown in Figure E-1. If _or a range-
independent sound speed profile and a flat bottom one considers
ray paths which originate at the surface and reach the receiver
after transitting a distance such that bottom bounce paths have
died out, the primary propagation paths for this shipping noise
will be received at the array in the solid angle limited by the
surface grazing ray (esg) and the bottom grazing ray (ebg). The
ambient noise received in this solid angle from surface ships can

be described with the following equation

Q
AN =J TL (p) - £(p) dp (E-1)
! |

where 2 is the distance to which surface shipping is considered,

TL(p) is the transmission loss as a function of distance and f (p)

T e ey e

I e A

e T e = w» o TI



| 4=3

Lo~

Figure E-1

Vertical Distribution of Ambient Noise At Array

oA 2 AR

o
y
. Rk
Local Shipping é§*
and Wind q?/
&
S
(\
P

_ Subsurface and
Horizontal :

Axial Noise

Vertical

~




is the shipping distribution function. For arbitrary shipping
distributions f(p) = 2mpf(p) where f is the shipping density per

unit area.

X Now the widths which current vertical arrays have are roughly

the sam? as the angle ‘ebg - esg
noise will arrive on essentially one beam. This means that there

This means, that the shipping

PP
LA e

is very little information available and it is not possible to

ﬁ’ discriminate where on the surface the shipping noise is coming
from. In other words, there is insufficient data to perform any

o deconvolution.

N Now looking again at equation E-1l, it can be seen that the

o contribution to the ambient noise from the shipping cannot be dis-

.criminated from the effect of the transmission loss on the ambient

noise. Shipping distributions, whether historical or measured are

bt VY2

usually inaccurate due to the dynamics of the field, and the ship-

- ping radiated noise levels used are class averages, not measurements.

"-\ .'.

Therefore, when comparing model predictions with vertical array
measurements two situations can exist. If the model and the measure-
ments disagree the shipping distribution, or levels, may be the

cause and it can be adjusted until the model and measurements agree

T
D L s

The second situation is if the model and measurements do agree it

is hard to tell whether the model really is good or whether the

=R

errors in the transmission loss and shipping levels have just off-

set each other. This problem is due to the lack of information on

5: the received noise. A vertical array doesn't have the advantage

" that a linear horizontal array has in that very fine resolution

ﬁ- peams can be used to obtain more information from received energy.
& The beams on vertical arrays are so broad that very little infor-

o nation can be gathered on energy received in the shipping lobes.

ﬁ A further complication is the fact that arrays are designed speci-

fically to discriminate against energy being received in these lobes.
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From this argument it can be seen that the accuracy of the
transmission loss cannot be determined by the ambient noise received
even if the shipping distribution is known. As long as the shipping
distribution is reasonably smooth, the transmission loss could be
very erratic with many convergence zones or it could be very smooth,
but due to the integration and only one beam measurement being used,

the two very different transmission losses could not be discriminated.

Thus it can be seen that it is not reasonable to try to prove
or disprove the validity of a vertical directionality model solely

by comparing its results with measured beam noise data.
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APPENDIX F: Horizontal Comparison Methodologies .

Given two sets of horizontal ambient noise data, the probslar
arises of how to compare the two sets of data. This appendix dec -

scribes some solutions to this problem. First, the general types of

v

methodologies covered in this appendix are discussed. Jdext, the
factors that should be considered when selecting a particular matho?

of comparison are given. Then the methodologies themselves are nr:z-

sented. Finally, a summary of the methodologies and when they saoull
be used is provided.

The methods of comparing ambient noise data that are givea ia
this appendix are all quantitative in nature. That is, the two 52t
of noise data are reduced to a set 0f parameters using well definzl
mathematical tests. These parameters have been chosen so that thoeir
values indicate the similarities and differences between the original
two sets of horizontal ambient noise data. In some cases the para-
meters may also be used to determine possible sources of the diffaroaces
in sets.

The mathematical tests used to determine the parameters are
of two types: point tests and functional tests. The point tests
treat the sets of data as individual points. These tests are mostl;/
statistical in nature. They can be found in almost any text on
statistics. However, anyone using these statistical comparison
tests should be very familiar with the underlying statistical tests.
They should be aware of the mathematical limitations and the implici:
assumptions of the statistics.

The functional tests on the other hand treat the sets of
data as values derived from some ambient noise functions. These
noise functions are considered as members of some family of functions. A

The functional tests compare the ambient noise functions as membars

of this family.

o o on ]
A

Regardless of the type of test, pointwise or functional, tnh=

05 test may be absolute or relative. Absolute tests are those whicnh

»
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¥,
,;\ depend solely on the data in the sets that are being compared. For

3 example, if each set contained only one value, then an absolute test

hla would be whether the two values are equal or not. A relative test

is one which depends upon data not in the sets themselves. An ex-
ample of a relative test would be to compare the difference in the
values in the sets to some quantity which had been derived empirically.
This kind of test results whenever concepts such as "large" or "small"
- are quantified. In the example just given the difference might be
considered "large" (significant) if it is greater than the quantity

derived from past values.

o For each of the above types of tests there are many useful
’. tests that fall into that particular type. However, not all of

{E these tests should be used with each pair of sets of ambient noise
data. It would be pointless, for example, to use the functional
comparison tests when there is only one value in each set. Thus,
it is important to consider what factors will determine whether a

particular test is used in a given comparison methodology.

'l._'s.‘-_‘v“',",

One important factor in selecting comparison tests for a

o

particular methodology is the amount of data in each set of data.

This amount can vary from a single value in each set (as in the case

when two omnidirectional noise levels are compared) to an entire

N -
' Y
p ]

set of functions in each set (as in the case when comparing repli-

cations of two different directional ambient noise models). This

b - o
0 ) g

factor is of such importance that the individual methodologies pre-

.
Sl

k]

sented in this appendix will be characterized by the amount of data
that they require. Table F-1 lists the possible quantities of

BASE BN

-

data, examples of how these quantities could be obtained, and which '
of the methodologies presented later in this appendix to use in each

case.

el

However, while the amount of data is important, another

LI |

Jy

factor to consider when selecting tests for a particular comparison

methodology is the quality of the data. This factor, rather than

g el

» 2

effecting which comparison test is used in a methodology, effects
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'?G the constants used in the relative tests in that methodology. Con-
';j sider two cases: measured ambient noise compared to computed ambiei:
1 noise and computed ambient noise from one model compared to ambien:
N noise computed by another model. 1In the first case data that is
ﬁﬁ; different in kind is being compared. 1In the second case while tne
ft;: data is from two different models it is still the same kind of data.
; ) Thus, the constants for relative comparison tests would be different
AN for these two cases.

e

EE} Now, the comparison methodologies themselves can be presented.
.

A". Methodology 1: Point-to-Point Comparison

£

’iﬁ Denote the two noise values by y and x. Since there is so
;jf little data available in this case there is only one reasonable test
i N It is,

’; 1 if D < |x-y|
% vi =4 0if @ < |x~y| <D
s -1 if |x-y]| < 4
% i where d and D are constants. This is a relative test. That is, for
'ﬁﬁ different kinds of data the values of d and D are different. Iliow-
Eﬁ ever, for each kind of data |x-y| > D indicates a significant aif-
;HS ference in the values while |x-y| < @ indicates no significant Gif-
7 ference. As noted previously, the values for d and D for each kind
:ﬁ3 of data should be determined empirically.

gs Methodology 2: Point-to-Envelope Comparison

Pie

5%2 In this method of comparison two parameters will be used

:uﬁ to indicate the similarities between the two sets of data. Denot:
'ﬁg by y the single value in the first set of data. Denote by {xj}?=l
e the values in the second set of data. For the first comparison

,gﬁ test in this method let,

,,&-

_

;5 X = max {xj}

o. l<jiz<n
Q\ﬁ and |
‘? X = mln {xJ} (
A

X l<jgen

N
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E Jow, the first test is,

v, = | Lifx <y < x

! 0 otherwise

< This is an absolute test. It shows, in a rough way, whath2r

&: v is similar to {xj}. It has two advantages over the other test in
this method. v can be determine even when there is very little da:za

E (e.g., even when n = 2). Also, this test can be used without making

) any assumptions about the statistical distribution of {xj} (i.e.,

?*Q if {xj} is considered as a random sample from some population no
assumption is placed on the distribution of that population).

;S There are also some disadvantages to using this comparison

b test. These disadvantages are illustrated in Figure F-1. 1In the

o~ case shown in Figure F-la, y is similar to many elements of the set

r {xj}, and yet, it does not lie in the interval (§,§). Hence, it

o may be the case that v2=0 even when y and {xj} are similar. Th=

? converse of this problem is shown in Figure F-1bk. It is also a

. problem with this test but it is not as important as the one slioua
' in Figure F-la.

There are two ways to overcome these disadvantages. Th=
- best way is to use this comparison test only when there is too

little data to justify using the other test (e.g., n<7). 1In this

re way the problems cannot arise. The other solution is to use th2

comparison test v, with y and each element in the set {xj} when
f. 2=O. If vx=l for several elements of {xj} then the situation
S

shown in Figure F-la has arisen.

;, The second test in this methodology is a statistical :test.

It uses the statistics,

3
x
I
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Figure F-1l: Disadvantages in V;
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Also, for this test it 1s assumed that (xj)j=l i1s a random sample

from a N(u_, oi) population.

This test, v3 uses the notion of tolerance limits. If,
ﬁ given the assumption of normality, the constants u, and oi were
known, then it would be possible to find a constant, k such that
120P percent of the population would be in the interval(ux—kox,ux+kox).
Here, however, the values for ' end oi are not known and are only

estimated by m_ and s;. Nevertheless, it is still possible to find

L
- a constant, K(y,P), for which it can be assumed with 100y percent
‘ confidence that 100P percent of the population will be in the in-
'S terval [m -K(y,P)s_, m_ + K(Y,P)s ] (0<y,pP<1l). Tabulated values
& X X X X - —
for K(y,P) can be found in references r and t.
o Using this idea let,
~,
.ﬂ"'? L (y,P) = m -K(y,P)s
and
’ UX(Y,P) = mX+K(Y:P)SX
.‘ The comparison test \)3 is,
) < <
v 1if L (v,P) 2y U _(Y,P)
. } 0 otherwise
This test is not subject to the problems shown in Figure rF-1.
Avoiding these problems is paid for by the reguirements for more
" data and the assumption of normality. When these requirements are
" . . . . .
r satisfied, 1if v3 = 1, then y and {xj} may all be perturbations of
the same value. If v3 = 0, then either y is probably not from the
bR
ﬁ\ same population as {xj} or if y is from the same population, then
E it is probably an outlier.
- The values of y and P to be used depend on the nature of the
: data. The values that are of most use to the analyst will be deter-
I
'; mined empirically.
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Methodology 3: Envelope-to-Envelope Comparison

In this comparison methodology four parameters will be used
to indicate the similarities between the two sets of data. Two

additional comparison tests will be introduced. Denote the first

set of data values by {xj}nl . Denote the other set of values by
2 - 23:1 2
(yi)i=l' Let x, x, Mor Syr My and oy be defined as in methodology 2.

Similarly define

T 1<i<n {yl}'
2120
= min {yl},
liiinz
1 m 2
m = — Z Yi:r
y n; 4= 71
2. 1 o2 (y.-m )2
Yy n,—1 i Yy Yy

and uy and oy to be the parameters that uniquely determine the
normally distributed population to which {yi} belongs. Also, let

2 be a set function on the set of intervals where 2(I) is the

length of interval 1I.

The first comparison parameter is given by the value of
o for the intervals,

L
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where

1(11n 12)

Ve = min{Z(I,), £(I,)}

This test measures the overlap of the sets {xj} and {yi}.
The greater the overlap in the intervals is, the greater the simi-
larity between the two sets of data (see Figure F-2). v ¢ (0,1).
v,o= 0 when the intervals do not overlap (i.e., when x <“X or y < x)

(see Figure F-2a). vy, = 1 when one interval contains the

other (i.e., when x <y <y < xory < x < x <y) (see Figure

I]]

~2c).
It would be expected that if {xj} and {yi} were from the same
population (regardless of the population's distribution) that v

1N
would probably have a value near to 1. Alternatively, 1if the two

.sets are from nearly independent populations then values for v
4

nearer to zero would be expected.

The advantages and disadvantages of this test are analocous
to those of vz viz., the test can be done with little data and it
needs no assumptions about distributions, but it gives incomplete
information for some situations. An example of this problem is
shown in Figure F-3. In this figure while the intervals are very
different the value of v, is the same for both Figure F-3a and F-3,

namely 1.

To distinguish between these two cases a second comparison

test 1is needed. Let,

v = L(I;N I3)
5 Z(IlUIZ)

where Il and 12 are defined as before.
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Figure F-2: Range of Values for v,
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! Figure F-3: Disadvantages in Using v, Only

(O |

\
~——

parg |
Loume mm T
—

N
F'e)

&

a. R.(Il) >>‘,Q,(Iz)

2>
<

[N

- ¥ Y ;r x
___[__<_ ) ] —

e

f -

- b. Q(Il) = Q(Iz)

ha
EPPN

hJ
1

e >

) p. . n"-."c."w Yy o":.' 4.“t."|.' fl. '!.','. St vy ,t.'f::!::.‘?:..‘f!u‘fo:‘ .ﬁ“‘-"“‘.‘s"' ’0'. &, .’:’ e, 'a'.'o" o.‘l i’:’:'t.';:.:‘lﬁ.‘




halt et Sa Bt Bov

I FAM

This test compares the overlap in the two intervals relative

’l l‘ "‘ .l ﬂ

to the total length of the two intervals when taken as a single in-

v terval {(or in the case of disjoint intervals, when taken as two in-

tervals). vse (0,1). vs = 0 when the intervals are disjoint and

vs = 1 when the intervals are identical. This comparison test can

[3
i A ". x -}-

be used to distinguish between the examples given in figure F~3. For

- e e
4.

figure F-3a, v is nearly zero while for figure F-3b, v, is nearly 1.

Ry

This is not to say that v, should be used in place of v“ but rather

sy

that.\)5 should be used in conjunction with V.- Figure F-4 shows why

CREN

this is the case. 1In both figure F-4a and figure F-4b vs is the

s

same. On the other hand, v“ is distinct in these cases.

SEES

Therefore, when comparing the two intervals, {zeR|x < z < X}

and {zeR|y < z < yl} the recommended procedure is to compute both v

vy

"

and v . Vv will indicate how much of the smaller interval is con-
5 4

tained in the larger and v will indicate how the intersection of
S

the intervals compares to the union of the intervals. Used together,

PN 7S

v
L]
-~

each of the parameters compliments the weakness in the other.

‘1
N
.

Before describing the remaining two parameters that are used

.y, o

L

in this comparison methodology a note of caution is needed. The

2

1
Bty
L SN

tests v, and v, when using the intervals Il and 12 are subject to

LR e )

the same kind of problems as vz in methodology 2. That is, outliers

NP
PR

can strongly affect both v“ and vs. The remaining two parameters,

which are based on statistical methods, are not as strongly aiiected

by outliers. However, these methods make assumptions concerning

the distributions of the data points. Thus, the relative importance f

of the non-statistical and the statistical methods will depend on

Y RIS

the quantity and quality of the data. In some cases where the data
is sparse or does not fit the assumed distribution, the tests as
described above should be given the most weight. When there is

. sufficient data, the statistical comparison parameters defined next
should be given more weight.

. The statistical comparison parameters are computed using
. and v and tolerance intervals. Let Lx(y,P) and Ux(y,P) be

de ined as before (i.e., the endpoints for the interval for which

-~
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Figure F-4: Disadvantages in Using vs Only
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there is a 100y percent confidence that 100P percent of the normal

population lies within the interval). Define,

, P -K(y,P
LY(Y ) my 7 )sy

,P) = +K(y,P
UY(Y ) my (v )sy

where K(y,P) is the same as in computing Lx(y,P) and U

Jow, let,

{zeR|L (Y,P)<z<U (vy,P)}

eRI|L , P U (y,P)}
(zeR|Ly (v, P) <2<U, (v, P)

This method of comparing the sets of ambient noise data is
to compute v, and vs for these intervals. These two parameters
will provide the same type of information as the first two, but in
this case they will be less strongly effected by outliers. The
price paid for this improvement is the requirement for more data.

As with the choice of which intervals to use, the choice of values

v and P will depend on the data and on the analyst's judgement.
Other comparison tests of a statistical nature are given in Appendix
H.

Methodo'H»gy 4: Directional Noise Point-to-Point Comparison

The problem dealt with in this section is how to compare two
horizontal ambient noise functions, x(8) and y(6). The problem is
complicated by the fact that x(6) and y(8) are not known explicitly.
Instead, there are several values of at which both x(8) and y(#8)

are known. Denote these values by Oi, i=1,2,...,n.

This is the first case in which both statistical and functional
rethods of comparison can be used. In the statistical comparisons
NP .n : a n
x50 0yoy and {y (8,007
comparison tests are similar to those in Methodology 3. There are

are considered as sets of points and the
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o three statistical comparison parameters in this method. 1In the

NERES

functional comparisons {x(Bi)}?=l and {y(Bi)}2=l are considered as
values of x(8) and y(6). These values are used to obtain approxi-

mations for x{®) and y(6). The two approximation functions are

il

then compared using functional methods. There are four functional

f: comparison parameters used in this method.
.S

For the statistical comparison parameters define,
”
Py _ . s -
- D; = x(81) - y(8i) i=1,2,...,n,

n

1
o ™ = R Z Dj
o 1=1

i=1
m, = o x(6.) ,
i=1
: n
- 1

: my = ) veep
" and =1
»” ) ;g;[(x(ei) - my) (y(8;) - my)]

4 n n 1/2
9 Z(X(Gi)-mx)ZZ(y(el) - my)2
- i=1 i=1

The first statistical comparison test is,

r
3
; 1 if M<|myl
- Vg ={ 0 if m<myl< M
<
N
v
®
e
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where m and M are constants. This is a relative comparison test,
and so, the values of m and M will depend on the type of data being
compared. Whatever the data, M will be selected so that if M<(mD|
then the mean difference between {x(ei)} and {y(ei)} is significant
(i.e., there is significant difference between x(8) and y(6)). m
will be selected so that if ImD]im then {x(ei)} and {y(ei)} are
similar (hence, x(8) and y(6) are probably similar).

The second statistical comparison test is,

1 if § < Sp

0 if s < sy < S

-1 if Sp L s

where s and S are constants. When v o= 1, then either x(¢) differs
from y(8) in shape or in magnitude of variation or both. When v7=l,
then the magnitude of variation in {x(¢ -y (8, )‘ is small (i.e.,
x(€) and y{(8) can be considered as hav1ng the same shape and magnitude

of variation from their mean level of noise).

1 if R < 1y

4

0 if r < rxy <

-1 if rxy L<r

STE3

-

Lo

where r and R are constants. When va=l then the functions x(8)

LR SN

and y(6) are similar shapes. When v8=—l, then the two curves have

different shapes. It should be noted, however, that in this test

, <
DREREAY B

{and, in fact, all three statistical comparison tests) the conclusions
about x(9) and y(6) are infered from information about {x(ei)} and

?y(ai)}.
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These three parameters are most useful when all three are
considered together. Table F-2 lists some possible values for v ,
v_ and v It also gives interpretations of these values. The -
remaining values for Vo Vo and v8 do not provide as clear a
description of the relationship between the curves. TFor example,
when v, = 1, v7 = 1, and va = 0 the curves may be related as in
case 1 but with more random error, or they may be dissimilar as in

case 2 but with a higher chance correlation.

The remaining noise comparison tests in this section compare
x(8) and y(8) as functions (even though their values are known only
on the finite set {ei}2=l)' However, before these tests can be
described two things must be specified. First, since only {x(ei)}
and {y(ei)} are known, the method used to approximate x(6) and y(6),
respectively, using these values must be specified. Second, a
method of quantifying the differences between functions must be

adopted.

Horizontal ambient noise functions belong to the class of
bounded piecewise continuous functions on the interval [0,27]. Given
the values of one of these functions at a finite set of points,
there are many types of approximation that can be employed. For
example, step functions, linear splines, cubic splines, or polynomial
interpolation may be used. It is recommended that linear splines be
used as the method of approximation. This method will generally be
superior to step function approximation and easier to compute than
other methods of approximation. The other methods, involving more

complex computations, in this case do not guarantee any improvement

in the approximation. However, any reasonable method of approximation

can be used.

Now, using linear spline approximation (or, in fact, any typ=
of approximation given above) the set of all possible approximation
functions becomes a subspace of each of the Lp spaces on the interval

[0,2n]. If the Lp norm for some acceptable value of p is restricted
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to the subspace, then the subspace of all possible linear spline
approximation functions on the interval [0,27] is a metric space

with the restricted Lp norm as the metric. The distance between

two elements (functions) in tilis metric space will then be a measure

of the difference between the functions.

For the remainder of this section this method of determining

the difference between an individual functions will be used with

©=2. That is, the distance between two functions, say ¢ and ¢, will

be,
27 1/2

~ote, however, that the analyst is free to choose any metric and is

not restricted to the L2 norm (nor, in fact, to any Lp norm) .

For the functional comparison tests, let X be the linear
spline approximation to x and ¥ be the linear spline approximation

to y. The first functional comparison test 1is

1 if D < p(X,9)
0 if d < p(X,¥)
-1 if p(X,9) < 4

"

< D

where d and D are constants that depend on the type of data. This

test compares the distance in the function space between the two

functions to background data. If v = 1 it will be assumed that x
9

and y are definitely distinct. 1If v, = -1 then it will be assumed

that x and y are similar. When v, = 0 the test in inconclusive.

wote that although the test is made using X and y, the inference

1s made about the relationship between x and y.
For the remaining comparison parameters make the following

Zofinrtions. Let o, be the ambient noisec function with a constant
1

of z in all directions. Also, define,

Culille
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= min{p (X, o, ) }

€
1

X 2eR
and
w. = min{p(¥,o0 )}
Y ZeR

x is defined to be the element of {oz[zeR} such that o(§,§)=wx.
Similarly, y is the element of{oz} such that p(y,§)=wy. Since

{ozfzaR} is locally compact these elements exist and are unigue.

Now, the second functional comparison test in this method

is,

1 if D < w,
v .
1o(z)= 0 if 4 < w, <D
- 1 <
1 if w, < d
where d and D are the same constants as were used in v . This
9
comparison test indicates the relationship between a function and
the constant noise function that best approximates it (in terms of
the metric o). If v 0= 1 then the function varies greatly from its
1
best constant approximation. If v . -1 then the function itself
1
is nearly constant. The two comparison parameters that are of in-

terest in this method are vlo(ﬁ) and v1°(§).

The third functional comparison test is

1 if D < p(xX,y)
v ={ 0if d < p(X,y) <D
-1 if p(x,y) < d
where d and D are the same constants as were used in vg. This
test compares the best constant approximations to the functions X

and Y. That is, this comparison test indicates what the (approximate)

difference in level of noise is between x and y.
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‘YQ The final comparison test used in this methodology is
R
. ] 1 if D < p(X-X,¥-Y)
'_ij:g v ={ 0ifd< k99

3 ) " = -
:t@ -1 1if p(x-x,y-y) <d
.o
? ; where, once again, d and D are the constants from the v, test. This
;:E test compares the variations from the constant approximations to x and y
ﬁi These five functional parameters v , v (X)), v (?), \V and
f:” VoL provide information about the relatio;shigobetweegothe fugétions
o Q and 9. (Hence, they provide indirect information about the relation-
:i ships between x and y.) Table F-3 gives a summary of the functional
::E comparison parameters, their meanings, and how to use the tests in
?:} conjunction with each other.
ixi The final aspect of the directional point-to-point comparison
‘fé methodology to be considered here is the problem of using the sta-
;ﬁy tistical parameters versus the functional parameters. That is, if
k)' only one set of parameters is to be computed which set should it be.
'W; Or, if both sets are computed which set should be given more weight.
740 Unfortunately, there is no clear answer to these questions. There
”: are several reasons for not using or minimizing the impcrtance of

the statistical comparison tests (e.g., the assumption of normality,

O

Zg; the assumption of independence, etc.) but there are also some reasons
:f’ for minimizing the use of the functional comparison parameters. As
i%f a result the most reasonable way to determine how much each set of
4:& parameters should be weighed is to base the decision on empirical

';; data. Thus, as in the choice of the best constants for the relative
7j£ comparison tests, the final solution of this problem will depend

v:; on the judgement of the analyst as based on empirical evidence.

l:z Methodology 5: Directional Point~to-Envelope Comparison

:E; Let {xj(e)}?il be the cet of horizontal ambient noise functions
:;} and let y(8) be the function that is to be compared with {xj(S)}.

*ﬁﬂ Once again both y(8) and {xj(B)} are known at only a finite number
Ty of points.
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For statistical comparison test the quantities 6ij’ given
by

. _ _ 0
oij xj(@i) y( i)

are computed. The most apparent method of statistical comparison
is analysis of variance using {Gij}. However, the utility of
analysis of variance methods is questionable in this case. And
so, the statistical tests used when comparing one noise function

to a set of functions has been relegated to appendix H.

For the functional comparison tests, the problems of
methods of approximation and individual comparison arise once more.
As a solution to these problems, let ¥ be the linear spline approx-
imation to y and let ﬁj be the linear spline approximation to xj
for 3 =1,2,...n. (The analyst may use any method of approximation.
Here, linear spline approximation is used because it is simple to
compute while still providing a reasonable approximation.) Let the
metric p be defined as before. That is, p is the L, norm restricted
to the subspace of all bounded piecewise linear functions. As with
the method of approximation, the analyst may select another defini-

tion of p.

The first functional comparison test is a.generalized, direc-

tional form of v,. For this test define,

xT() = 12§§n1{2j(e)}

min

xT(8) = 5e, (Ry(8))

1

{6e[0,27] |x"(8) < $(8) < x" (8)}

o
]

(o]
]

[0,27]N\0

Also, let u be the Lebesgue measure. The first comparison test is

K S ag]

v -




v”={1 if u(0) < d

{i. 0 otherwise

v where d is a constant which reflects the quality c¢f the data. d

1}ﬁ is chosen so that this test indicates when the set of points where

.ig x (8) > y(8) or xt (o) < y(6) is of no consequence. If this test

' were made with y and {xj(e)} and if these functions were based on

t perfect data, then it would be reasonable to set 4 = 0. However,

i:% y and {xj} are not used and the data will vary in type and gquality.

fjé Thus, in most cases d will be greater than zero. The exact value

'é- of d for each type of situation will be based on the analyst's

4.: judgement and previous data of the same type.

iﬁ This test provides only a crude comparison between y and

E&E {xj}. It is conceivable that y could be very distinct from {xj}

=" and yet v;3; = 0. Also, it could be the case that v;; = 1 and the

.;- function y could be very similar to many elements of {xj}. Ex-

N2 amples of these two situations are shown in figure F-5. Therefore,

fﬁ while this test is useful in a general way, the remainder of the

N functional comparison tests give a much more reliable description

ﬁﬂ: of the relationships between y and {xj}.

;i These comparison tests will be presented in three steps.

f; First, tests which characterize the set {xj} within the space of

:) functions will be given. Next, the tests which compare y to the {
'i: {xj} will be defined. Finally, a procedure for using two types

1{: of tests together will be presented.

Fg {xj} can be characterized by the distance between its ele- ‘
.% ments, the differences between levels of noise of the elements,

“ij and the magnitude of variation from these levels of noise. Let

K.~

mt =M% (o(k,,%.)}

g X i#7 i°73 !
. and .

m_ = ’f;r]‘ (p(%;, %)) |
;ﬁ} These two constants give the maximum and minimum distances, in

@ terms of the metric p, between the elements of {Qj}. Recall that 1
&Y
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Figure F-5: Disadvantages in tne 3 Comparison Test
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the distance between two functions of this metric space is a measure .

P

of how the functions differ. The most reasonable comparison test

i based on these two constants is

x
b b Y

[

(m; will be used in later tests). The interpretation of this test

2 will depend not so much on the absolute magnitude of m; but rather

e
Y

on how this value compares with the other measures of dispersion.

It should be noted that this test may be affected by outlying func- ;

[t DF B

tions in the set {x.}. Thus, the analyst's judgment will be re-
quired to both compare this test with the other tests and to weigh
all cf the dispersion testsin light of the quality of the data.

The set can also be characterized by the level of noise of
each of its elements. The levels of noise that will be used for
the elements of {xj} will be the functions that are the best con-
stant approximation to each of the elements of {xj}. To find the o

N best constant approximating function let,

{ min ~ .
3 Wi = LeR {o(xj,oz)} for j = l,2,...nl | .

where o, is the constant ambient noise function with level z in

et}
A

; all directions. For each j the best approximating function is the
- constanE function, §j, such that wj = o(ﬁ.,Qj). (As previously l
. noted, xj will exist and be unique for all j.) wj can then be in-

terpreted as a measure of how good the constant function approxi-

9 mation is.

The parameters that characterize the differences between
levels of noise of {xj} are

-+ max
X =

lijin {Q(XJIOO)}

1

‘ and

-= _ min

lijinl {p(xj,Oo)}

where 0o is the constant noise function with a zero noise level in

k- all directions. These parar :ters are the maximum and minimum levels,

respectively, of the set of constant approximation functions, {ij}. a
{
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Similarly, for j>i
2
) . _.m
Cov(¥;,¥Y | - PC o™ [(J v l] %-_O
)7 m? g
Hence, for 1l<i, j<n:i# 3.
2
- po m(|i-9]|- -p
Cov Yi'yj = T2 P —-p
m

Now, the derivation for ES, can be given.

2
2 _ 1 -
s ::._]: & <Yi m2>
1 - T Y

n "'n
2
1 n- 2 1 .]
n-1 n {=1 n'i=1 i#j J ,
! ) J
Taking the expected value yields
n
-, n
1 n-1 2_ 1
ES =___ | = E(Y. - - - -
? n-1 n .Z ( 1 u> n L2 _E(Yi u) <Yj U)
{ , i=1 i=1 Jj#i
1 1 n 2 m
=—{(m-nol - > ) ¥ (8% pn (i -31-1) ol
n-1 L i=1 j#i P
E,2 1 0% 2p0? m 3.
az —r-x—-_l 1(!’1—1) ;n— + m-p)z (m-l)-mo + p '
1 zi n
N —mOZ(l-Om) \ ) Z Z (pm)l-J
nn? (1-p) 2 , =
i=1 J<1
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P v x

!
. _ Esi = o? n(n-1)m(l-p)?+ 2n(n-1)p [(m—l)-mo + pm]
o n(n-1)m? (1-p)*
. ‘n-~1
. - m n—Q,
" g _2pt ™ (L-p™) 2 Z L(p )
- =1 .
R
o A
= g? n(n-1)m - 2n(n-1)mp + n(n-1)mp? + 2n(n-1) (m-1)p
] - n(n-1)m? (1-p)?
1 -
? "'\ m-l
_ -m, -1

\ . —2n(n-1)mp? + 2n(n—1)om+l _ ZOmn 2m+1 (l_om)z Z L(p )

o i=1

— 2 2 m+1

P - = c n(n-1)m - 2n(n~1)p - n(n-1)mp* + 2n(n-1)p
L. n(n-1)m®(1-0)°
: el - (n-1) (6" - (n) (&ML + 1
. -2 (1-p )? -m 2
. (o - 1)
L = g? n(n-1)m - 2n(n-1'p - n(n-1)mp? + 2r1(r1~l)om+l
! ﬁ n{n-1)m? (1-0)?

.':Ij nm+1 m , (n=1)p ™™ - no™TM 4

-2p (1-¢ ) s
: (1 - 0)
'
o = o2 n(n-1)m - 2n(n-1)p - n(n-1)mp2 + 2n(n-1)o" 1t
.. n(n-L)m” (1-p)?
N
b *
{ + 1
3 ~2(n-1)p + 2np™ 1 - 2,7
N
e Es? = o? n(n-L)m - 2(n’-1)p - n(n-1)mp? + 2n2p™1 _ 5™
4 ;—,‘ n{n-1)m° (1-p) 7%
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h‘?
:{ In appendix C, case 1, an expression for the difference be-

LY

N tween the ambient noise levels at two points was presented. Its

derivation is \

s

AN AN_(8) = 3 ( P dF \
- pl Pm

]

" 2,801 [2,,(8)]
;j

(- P Rip*) !
‘ = TL, (p)dF (p) + TL, (p)dF (p)

R 1 1

:; (p*) Py

" [21(9)] [21(9)]

5 ,
— p* Pn .
: - TL_(p)dF (p) -I TL (p)dF(p)

s, m p* m

- Pm 5
. [zm(e)] [Zm(e)] !
{ ,
{ B,

o =j TL, (p) dF (p)

3 Rip%)

» P

.: [9»1(9)] '
4 "
~I

” Fo%) -1 -1

‘ + TL. (p)d{F(p) - F(R " (p)) + F(R " (p)) »
o pl 1 ,:
1]

[2,(8)]

- -
=
-

42 s 3z Ae s

p* 1
-J TL  (p)dF (p) -J’ TL (P)dF (p)
*
Pn P
(2 (8)] (2 (8)]

> o
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APPENDIX G: Derivation of Equations

At several points in the body of this report equations were
used without being derived. This was done to make the text clear,

since only the final equations were needed. In these cases lengthy

derivations would only obscure the text. However, how these equations

are obtained is not always obvious. Therefore, some of the equations

and their complete derivations have been included in this appendix.

>
W 5
The first equation, which comes from Appendix A, is for Es,,
o It uses the identity
-
~ N + N
N ne1 NN et 41
- Z QIX = v}
] (x-1)
i =1

The derivation for Esi, is:

- N
v _ 1 2
. = E ﬁ'_"l' Z (x -m ) )
. =1
y i
—}—Z[(x-u) - 2(x,- W) (my= )+ (m = y) ]
:.:_ N- ll=l
= - N , N
= ST Z(X."p) - 2(m,- u) (X.,- p) + N(m -u)}
% N lLl:]_ i i;
. Ei 1 [ N ) 5 N N 1 N N
" N-1 LX‘ T Z (xl—u)Z(x -u)- EZ‘Xi‘“’Z‘Xf“’
. \ 1=1 i=1 i=1 i=1 i=1
ér; - N 5 N N
= Blgy| ) %m W - § Z X -u)Z(xi-m
;-_-q | Li=1 i=1 i=1
_ 1 . 1 _ _
. | LB - g E[Z( W )XW
v i=1 l:'l i=l
. N N
s _1 2 1 _ _
. =5-1 No© - NZZ [(X u)(X u)]
;?; i=1j=1
B
'
N

W ol " A
N " ) -
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B8 T wverr (M 2 :
i=13j<i i=1 j=1
, N
- o 2 E: N-
= __~ - [} -
Fovey (Y 2 P N
=1
N
52 - z L7121
= N+ -
N {N-1) N{N+1) 2e
=1
2 - N-1 N
_ N(;-l) N(N+1) - 20N 1 Np -_l(N+l)o2 + 1
(p - 1)
’ N+1
= _0 N(N+1) - —2 N - (N+l)p + p
I (N-1 2
(1-0)
2
- o s {N(N+1) (1-p) 2 = 28 + 2(N-1)p - 2o"*1
N(N-1) (1-P)
2 2 N+
Esi = ° i N(N-1) - 2(N2-l)p + N(N+1)p - 2p 1
N(N-1) (1-p)
The other expression for Esi can be obtained in the same fashion

except the step

, N
= _a?
ES] T m(n-D) 2 Z o*

i=1  j<i

is replaced by the step

N

2 _ o E;
ES) T Fv-D) 2,

l:
and the derivation completed.

:[_'o

-

Esg is obtained in a similar way.
the expression for Esg, the eguation for
justified. Cov(Y,, Yj) is given by,

~ ,*.".. ‘. . "y
» n..o'l.‘la fi "l.'ln.iniu.
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ESl R(p*)
| . =J' TLl(p)dF(p) ff TLl(p)dle(p)
.1::',' R(p*) Py Py
[Ql(G)] [1.1(6)]
i) R(p*) -1 p*
. + TLl(p)dF(R (p)) -j TLm(p)dF(p)
v °1 n
[4,¢8)] (2, (8)]
b "
- p
m
'. -J* TL,_(p)dF (p)
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- which is the expression that was given.
" The other expression presented without derivation in ap-

s pendix C was

X 7
- |AN_(8) - ) w,AN.(8)] < @

. i=0

\
0 To see that this is indeed true consider,
2 T -1 )

. |aN_(8) - w,AN, (0) | = w,AN_(8) -~ w.AN, (8) | .
. m & 101 & im o 1%
;‘ 7 .
e since Z w, =1 :
(N i=0 ;
S
R 4
- ) - |

: | J;O w; (AN_(8) - AN, (8)) |

s [4
s {3
' 7
h- < L wlan (9 - AN (8) ] _
{ i=0

: 3

v J
% <L wy (e (r) + e () ‘
v i=0
3
= + Z Wy 4y (€, (V2r) + €, (V2r))
N i=0

N

N 3 e (r) + ¢, () \
[ < Z o t

., T i=0 Qe (r) + €, ()

2‘ 0
EX Y
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By + v 2 t
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~ APPENDIX H: Alternative Comparison Methodologies

l\ _—

"

- This appendix presents ambient noise comparison tests that
can be used in place of the tests given in appendix F. The alter-

. native tests are listed by the methodology in which they would be

o~ included. The reasons that these tests were not used in appendix

’\' . »

o F are given along with the tests.

~ Methodology l: Point to Point Comparison

X

v There is so little data available in this case there is

;. only one reasonable metho: of comparison. This comparison test

< is the one given in appendix F.

o Methodology 2: Point to Envelope Comparison

o

\.I

In this method of comparison there is an alternative to
the test V3. This test uses the statistical notion of hypothesis

testing. It is assumed that {xi}2=
2
)

1 is from a population with a

distribution. This comparison parameter tests the null

(. ,0

X
hyoothesis,

i! HO: Ux =y

acainst the alternative hypothesis,

o~
Y
~ .
~ Hl. - #v.
F. The test statistic that is used is,
03'.’
/n
. t=— (m, - vy)
e sx X
‘.-.’;
This statistic has a Student's t distribution with n-1 degrees

33 of freedom. The alternative comparison test to v, is

1 if |t] < t a
& 5y = e [1 - 5l(n - 1)
L 3

0 otherwise
fa,
k& In this test o is the probability of Type I error, i.e., the pro-

bability of rejecting the null hypothesis when it is true.

Yo




> is the value of the t statistic with v degrees of freedom such
N that P(t < t

= €.

(e (v
v; would be the ideal test to use if y were known without
any error. The value of V; in this case would indicate whether

{xi} is from the N(y,oz) population (33 = 1) or from a normal pop-

iaed B

ulation with mean My and My Y (33 = 0). However, y will not be
) an exact value, and so, the test based on tolerance limits will
»' ] :J
. be more reliable. w
.
N Methodology 3: Envelope to Envelope Comparison

There are several alternative comparison tests for this

" methodology. Two of the alternative tests use the statistical 3
o notion of confidence intervals. The remainder use hypothesis i
.. testing. .
- ]
L) n For the confidence interval tests it is assumed that g
-
< 1 2 : np
;: {xi}i=l comes from a N(Hx’ox) population and that {yj}j=l comes _
. from a N(MYIO;) population. For this discussion a confidence in- i,
;' terval for a set will be a pair of real numbers L and U such that
{ there is a 100X percent confidence that the mean of the population
. to which the set belongs is in the interval [L,U]}. The parameter

A is to be selected by the analyst. For the confidence interval A
L) +
N comparison test define
. S
N L (A) =m - — ¢t
> X x 1+A] _
b N G (LR
llaN []
. Sy f
P Ux(A) =m o+t — tr, .,
: NS EHERY :
h J
y s
0 L, = m - L trin "
« 1o [’2— (ny = 1) :
. )
: U (A) =m, + Lt 1
Z y Yooay [, -

2 2 2
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> Iy

wiere t i1s the value of the Student's t statistic
Y 1+
N —2——] (I’ll - l)

as described above. The 100X percent confidence interval for the

mean of the x population is

. 1, = [L,00, v (]

and the 100X percent confidence interval for the mean of the y pop-

ulation is

1, = [Ly(x), Uy()\)] .

.
&_N_¥_ &

¥ As alternative tests to the comparison tests in appendix
r, v. and vs; can be computed using the confidence intervals defined

above.

- _ The reason that these intervals were not presented in ap-
. vendix F is that they do not present as much information as the
interval tests given there. When v, = 0 and Vs = 0, then it is
reasonable to assume that the x and y populations are dissimilar.
However, when v, and vy are not near zero, it is not necessarily
true that {xi} and {yj} come from the same population.

For the alternative comparison tests that use hypothesis
~ testing, it will also be assumed that {xi} is from a N(ux,o;) pop-
2lation and that {yj} is from a N(uy,:;) population. There are
two tests that compare the means of these populations. One test

- is used when 0% = o?
X Y

and the other 1is used when 0 # o2 If it
.9 1s not reasonable to assume that ox = cy or Ox # Oy based on the
data alone, then hypothesis testing can be used to determine which

condition probably holds.

The null hypothesis for comparing o; and 0; is

and the alternative hypothesis is

. 2 2
Ik ox # oy

g--
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' The test statistic to be used is

K » 5)2(

Pl F = —

N s?

N Yy

; This statistic has an F distribution. The test to determine

\ whether c; is probably equal to o; or not is

1 if F < F <F

= _ (a/2)[nl-l, nz-l]
Vaz2 =

(l-a/2)[nl-l, n,—-1]
0 otherwise

where F is the value of the cumulative F distribution

(e) vy, v, ]

with v;, v, degrees of freedom at which P(F < F = €.

(€) vy, v,

a is the probability of Type I error and is selected by the analyst.

S L L

t If v,, = 1, then it is reasonable to assume that o; = 0;. If v,, =
> 0, then it is reasonable to assume that o; # 0;.
A
w When o2 = oy the alternative test to compare the means of
E\ X . . .
- the populations has null and alternative hypothesis
‘0
< H =
Y HO Hx uy
‘J
: and
L, Hy My 7 Hy v
" respectively. The test statistic is
w
q (m - m)
R~ t = = -
A /-1 -1
+

o svYn 1 n 2
) A 2
U where s° is the common variance given by
]

2 2
- - + -
- 2 (nl l)sl (n2 l);2
- S -
- + -—
: ny +n, -2
( The comparison test is
)
4§ 4
]
¢
~
\
sy T D O N VOVt




it el <t o) (as # n. - 2)
Va3 = 1 2

0 otherwise

where t 2) is the value of the Student's ¢t

(l—a/2)(nl + n, -

statistic as described above and o is the probability of Type I

error.

-

When o; # G; the alternative test to compare the means of
the populations has the same null and alternative hypotheses as
i.e. : = H.: U ).
Vi (l.e., HO ux uy and 1 ux # y) However, the test
statistic here is

(m - m
£ = X 1)
2 -1 2 -1
+
VSR

This statistic has a distribution which is approximately a Stu-
dent's t distribution. The comparison test itself uses the quan-

tities defined by

SZ

wX = nx
1

SZ

w = X
Y 2

S t[l-u/Z](nl - 1)
and

2 t[l—a/2](n2 - 1)

where t[l-a/2](nl - 1) 1s the Student's t statistic as described

above. The comparison test is

1 if |t <

0 otherwise
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when v., = 1, 1t can be assumed that px = Uy' Otherwise, ux # uy.
It should be noted that this statistical test is only approximately

a t test. In practice, it is notoriously unreliable.

Since v,, is not reliable, it was not included in appendix
F. v;3; was not included in appendix F because it will seldom be
the case that Hye = “y' Without v,; and v,, there is no reason to
use v,,. Therefore, no comparison tests using hypothesis testing

were mentioned.

Methodology 4: Directional Noise Point to Point Comparison

In this section one alternative statistical comparison
test, one alternative functional comparison test, and several varia-
tions of the functional tests will be presented. However, these
alternative tests are not the most important part of this section.
The point that should be emphasized here is that it is the fact
that some kind of functional compar. -on is made which is important.
The particular functional comparisons used are relatively unimpor-
tant. The alternative tests should be considered with this fact

in mind.

The statistical comparison test once again uses hypothesis

testing. It is assumed that {Di}?=l (the differences in x(ei) and
oé). The null

y(ai) for each i) is from a normal population, N(uD,

hypothesis is

H.: u. = 0

0 D

i.e., the mean difference between the paired sets {x(ei)} and
{y(ei)} is zero. The alternative hypothesis is

17 Hp
The test statistic is

/n

which has a Student's t distribution. The comparison test is
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1 if [t] < t[l~a/2](n - 1)

0 otherwise

where t 1) is the value of the Student's t statistic

(l-a/2] (n =
as described under methodology 1 of this appendix. o is the

probability of Type I error. This test was not given in appendix
F because in most cases there is no reason to assume that {Di} is

from a normal population.

For the alternate functional comparison test define the

function x + t by

[§< + t](e) = Q[(e + t) mod 2:]

where -7 < t < n, The alternative comparison parameter is

vee = ™ (o2 4 €, 1)

This test indicates whether X and Yy are similar but slightly ro-
tated relative to each other. It should only be used when vg = -1
(i.e., when x and § are similar to begin with). V,;¢ may indicate
small errors in direction (e.g., when the bearing of an array is
incorrectly recorded by a few degrees when measurements are being
made every degree). However, since errors of this type will sel-
dom be found, the effort necessary to compute v,s is usually not

merited.

The variations in the functional comparison tests alluded
to at the beginning of this section arise from the method used to
approximate x(6) and y(8) and the metric used when comparing func-

tions. As mentioned before, these considerations are secondary

to the fact that a functional approach is used at all. Nonetheless,

it will be worthwhile to make a brief mention of them here.

The two functions x(6) and y(8) are known at a fixed,

. : n
finite set of values, {61}1 L+ Using the values {x(6,)};_, the

function x(*) can be approximated in many ways. (The function x(6)
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will be used here but the discussion will apply to y(68) and, in

o

4
e

«
-

fact, the sets of functions that arise in methodologies 5 and 6.)

0’ en+l’
x(80) = x(en), and x(8n

For convenience of notation, define the guantities 6
x(%l). The method of approximation assumed in appendix F was
linear spline approximation. That is,

+1) <

x (6 ) - x(Bi)

i+l

x(8) (6 - Gi) + x(ei)

where i is chosen such that 6, < 8 < ei+l' Also mentioned in

apoendix F was step function approximation. In this case

6,1 * 9 8, + 6.
wnere 1 1s chosen such that — = B < — - The step

function approximation hés the advantage that it is simple to use

in computations. The linear spline approximation has the advantage
that it is continuous while still being relatively easy to manipu-
late. Cubic spline, polynomial interpolation, and other methods

all have their own advantages and disadvantages. However, as can

be seen from the simple example above, the different approximation
methods will produce approximation functions with different proper-
ties. Hence, while the analyst is free to chose any kind of approx-
imation, some consideration should be given to the results of this

choice.

Everything that has been said concerning the choice of
the method of approximation can be applied to the choice of the

metric p. In appendix F p was gi
2m 1/2
5 (6, V) = [—l—f (9(8) - v(8))2 de]
! 2m J 4 o
o
b
~

ther possible choices for p are

1 27
oo, ¥) = 5= [¢(8) - v(B)| 48
™ Jo

N R R A A R T



and
. _ max _ -
o (0, W) = g g am (I08) - (5}
ll Each of these metrics will produce different results. It is the
a fact that a metric is used which is important. The selection of
. that metric depends only on the analvst's requirements.

- Methodology 5: Directional Point to Point Comparison

Py The only alternative comparison test that will be present
here is an analysis of variance test. For variations of the func-

tional comparison tests see methodology 4.

. .
s
1%

- In appendix F it was mentioned that analysis of variance
i could be used with {Xj(ei)}§=l and y(%,) where i = 1,2,...,n.
- i

For this purpose the guantities Gij were formed where

q“l’

S5 = %508 = ¥(8))

The additional quantities needed for analysis of variance are,

n
RN

Ay

b ]
5 |

and

The parameter that would be of interest to the analyst is

9' 2 n 1 " = 2
% Var Ta=1 L Gyt 9
1 =
ii which is the mean residual error. v;7 reflects the variation 1in
* the differences between each of the functions x. and the function
; y. That is, when v§7 is small the difference between xj and y 1is
~ similar for all j.
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The reason that this comparison method was not included
in appendix F is that the underlying assumptions of analysis of
variance will seldom be met by the data. That is, for analysis

of variance it is assumed that the elements of {6..} are in-

n
ij i=1
dependent and normally distributed for each j. The data from
ambient noise functions will seldom be normally distributed and
almost never independent. Thus, this method of ¢omparison has

very limited use.

Methodology 6: Directional Envelope to Envelope Comparison

In this section an analysis of variance test will be given
1 1 .
for {xj(ei)}j=l and {yk(ei)}k___l where i = 1,2,...,n. Also, an

alternative functional comparison test will be presented. For ad-
ditional variations to the function given in appendix F, see

methodology 4 in this appendix.

In appendix F the quantities dijk were formed for use in

an analysis of variance comparison. They were defined by
éijk = xj(ei) - yk(ei)

For the comparison test compute the sums,

.3k T n i‘é °iik

1
n
1 n
z 1
$ = — S
k nn, 5=1 égl ijk
n
2 n
3 = _1_ )
It My 3 igl 13k
and " ] n, nZl i
= ) S
N, K21 =1 s 13K

e e S i R e S,




Y P §
. 0
st

7
:

>y

AP

kY

¢ G

B % 4
;,l.Ll.

e )
¥
a a 8

2w

|
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ny j=1 ]
and n
: ! 2 - = 2
Vag = ——— (6, - 8)
n, 1 =1} k

which are, respectively, the mean residual error due to {xj} and
the mean residual error due to {yk}. These parameters are inter-
preted in the same fashion as v§7. Also, the reasons for not
using v3, and vsg are the same as for not using vi,. That is,
the data will almost never meet the requirements of normality

and independence.

In the case where the sets of functions {xj(e)} and
{yk(e)} were compared in appendix F it was noted that there was
no test which indicated the distance between these two sets and
which was both easy to compute and comprehensive. v,, was given
as one way to compare the two sets. A second method to compare

the distance between the two sets is

. = (-
J39 med{o(xj, v..)} + medgh(xjk: Yk)}

kj

where xjk and ykj are as they were defined in methodology 6 of
appendix F and med{zl} is the median of {zg}. This comparison
test has the advantage over v,, that it is less strongly effected
by outliers (since it is a rank test). Although v;, is more
difficult to compute than v,,, it is still relatively simple to

compute.

This concludes the listing of alternative comparison

methodologies to those of appendix F.
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The comparison parameter that is used to indicate the dispersion
of {Qj} is

-+ -
Vis = X = X

This parameter is similar to v,, in that it is the maximum dif-
ference between the constant approximating functions. Its value,
when compared to the value of v,4,, is an indicator of the differ-
ence in {xj} that can be attributed to variation in the noise
levels of the elements of {xj}. Like w4 it is also effected by

extreme functions.

A final characteristic of {xj} is the variation of the
elements of this set from their best constant approximations (1.0,
the magnitude of variation of §j from xj for each j). For the

comparison parameter for this type of dispersion define the co:n-

stants,
oo max {w.}
“yx T 1<j<n i
2Jzn
and
b= MR )

x 1<j<ny 3

Jie T oW, T oW
X X

the comparison parameter itself is
"his 1s the maximum difference in th= magnitude of variation o |
|

..
J

These last three parameters, .., Vis, and v,;, provide a
;oneral characterization of {x.}. rlable F-4 can b2 used to inter-
.ret their values. An "L" indicates a vvalue that is large when
ompared to the value of v,,. An "S" indicates a value that 1is
s5mall when compared to the value of .,,. Clearly, the analyst's
saluation of the relative sizes of these values and of their size
.mpared to background data will determine the interpretation of

e results of these three tests in any particular situation.
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TABLE F-4: Summary

The functicns 1

of

in the space
vary
and

levels.

- This 1ndi ates

ML gt

i

in the level

in their magnit

o
AL

n th

Mdes he Ate i Ak ahs Sl g

Of Lo

Mean1n3

e set
fun~*i1ons.
nf their

ride - €

i Wi Ty g

LN

¥

’

N
)

and

are

That

W"‘! a4

1S

Tonstant

o

ariati

N

o".c B M ) i’.‘.! .r".t X} ‘,l‘l't .t",t ‘

ergWgwgvsTesEWwTY,., " W J/WJY W F T

¢ va Lodes o

, the fincr . o~
appro.xima* oo

from *nese

PPN
i G T

PR TR TR
§, 1 :
MU A R T



T

werefore, the analyst will only be able to derive meaning from

g
: 252 test3 after a body of data has been used.
. "W that a jgeneral picture of ",xj} has been built up, y
N4 s s ompared to f;();. For the first comparison test let
- min
'4, y o Ten s (X 'Y)
ooy j
‘f- M v voer, t 15
+ ¢ -
i Y Y
- +
- » ! x
v
S e bt e bt ey o and the elements of ".\')'
; Ceen ¢ . ¢ .+ = 1 then the distance
F 3
Vot ' ‘ . ireater than the maximun dis-
e x Tooun, oy 18 srynificantly Miffer-
' Loraar ¢ . it - = 0 or ., =1, then - 1s
.o o T - U X T v . The next te t . |
; )
. o i tlies e - 15 a whole,
o Soe v gveerage distance Letyeer
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b
N Two additional comparison tests can be used to partially
~ determine the source of differences between y and {xj} indicated

by table F-5. These tests indicate how the best constant approxi-
o mation to y and the magnitude of variation in y compare with {§j}

and {w.}. Let
o ]
% W, = mn {p(y,0 )}

Yy zeR P1¥19,

e - A =
b and let y be the element of {oz} such that wy, = p(y.¥Y). Then the

test that indicates the differences in the constant approximations
Ej to y and to the elements of {§j} is
] - - -

1if ¥ < o(y,0)) < &
,\’ \)19 =
N 0 otherwise
~ where 0o is as previously defined. If \,4 = 0, tnen y and the ele-
v
& ments of {xj} vary .n their level »f noise. On th=z other hand, if
#,_ Vv, == 1, then the differences between y and {xj} are only partially
&: explained as distinct leve.s o©f nois 2.
The comparison test that ind. cates the difference in the
. magnitude of variation in y and {xj} is
1 if w_ < <wl

oy _ RO = %y = %%
S Y20 T .
. 0 otherwise

1f vao = 0, then the variation in y from ; is different from t.e

e

vi riation in the set {Qj}. Thus, the distance between y and {xi}

” 1s due to the Jdifference in variation. If v,, = 1, then this dis-
‘1 tance is only pa.-tially explained by v,,.

;& The procedure for using all of these comparison parameters
. together to cerive information about y and {xj} is as follows.

. First, Vv;4, Vis, and v,;¢ should be computed. Theue parameters will
o indicate the dispersion in the set {xj} as indicated in table F-4.
B Next, v,;, ana v,;, should be computed. Their values3s will indicate
%ﬁ the similarity between y and {xj}. They should be i. terpreted

A% Y OASUAUN
LY ‘\’¢l';£

ORI
ey



using table F-5 and the values from the first three comparison

[ 22" 8 2B U

parameters. Finally, v,s and v,;. should be computed. These two

e s

parameters will indicate sources of differences between y and

e

XL
]

LA A

Methodology 6: Directional Envelope to Envelope Comparison

Let the two sets of ambilent noise functions be denoted
& n, n2

’ ! ( . £ 1 . : } .
N by ,xJ(-) =1 and {jk(d) k=1

N of t'e functions are known is finite. Denote this set by {-

Once again the points at which ali

n
IR T

As in the directional poilnt to envelope conparis o metn -
y wlc 3y there are some di‘ficulties 1n using statistical tests witn
'x]'ui ©and <yk(~l)>. Hence, these statistical tests are aln.
relegat d to app-'ndix H. Tt should be mentioned, however, that
these s atistlca comparisons use analysis of variance methods

with the guantit. s

The funct. ual comparison tests 1n this methodolc gy are
a combination of g -'neralized version cf the comparison tests firrro

the omnidirectiona ec¢nvelope to envelope comparison methodolc gy

Dar il AN g

and tests from the !irectional point to envelope comparison meth i-
ology. Once more l.ear spline approximation and the restricted
p Lz norm will be used The comparison tests will be presentecd 1in

» three steps. First, the sets (xjf and will b described as

k
sets of functions in the space of functions. Next the two sets
will be compared. Finally, a procedure for using . hese two types

of comparison tests will be given.

) As in the fifth methodology, the two sets of functions can

be individually characterized by the distance between their ele-
ments, the differences betweea the levels of noise of the elements
of the sets, and the magnitude of variation from these levels of a

. + - . . . . ,
nolse. Let mx and mx be defined as in the previous section. Define

‘ .

- i
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where . (X x ). For k - l,2.....n,
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[t}

ez best constant approximation function to yk 1s ;k where

I

. . . -+ _— -
tne levels of noise within each set are x and x which are defined

-4 -
1s before and y and y which are given by

BiS

:mcally compact.

=

“(Yk';k)' Each of these approximation functions exists and

s unlgjue since the space of linear approximation functions 1s

The parameters that characizrize the differences between

-+ _  max
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L the -~onstant nolse function with a zero level 1in all
P AR | ¥, like x' and x , are the maximum and mini-
LeveLn, restectively, of the set of constant approximation
‘s, v . For indicating difference in the levels of

cvroLecr moase withino each of the two sets {xj'and{yk‘ the com-

vwar .o dutterence between the constant approxima-s

X : : . ThHee parameters that will be of interest to the
o ~ i sroamd thelr relation to the parametars
respe ctively.  These parameters shoald be 1n-
CLotno Larameter .., was an the previous section.

e . characteristic of the two sets that will be

¢ .o . o+ crarration of the elements of the sets from thear
e fonlse Approxitations respective.  Define
M T
~ B Tll ] :
> ( I .
1 ' -
. . ]
‘n- Ut o]
. 1 -w'n k .'_J‘
2 .
- _ min . :l
. - V) ] o
T l;kf_nz k L
T comparison parameter that is used to find the maximum differ- o
¢r.ce 110 the magnitude of variation from constant functions within
eacn of tne sets ‘x_' and {y, } is “
) k \,
S
N ,(Z) = - w
Z =
™
i&
—ad
-
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These six comparison parameters, V,,(x), v;s(x), v,q(x),
Wly), v, sly), and v,,(y), provide a general description of the
sets {xj} and {yk}. They are exactly the parameters v,,, Vs,
and ., from methodology 5. Thus, table F-4 can be used to in-
terpret their values. Also, these parameters, when compared pair-
wise (l.e., v;,(x) to v, ,(y), v,s(x) to v, s5(y), or v ;g{x) to
e (¥)), will provide some information on how the two sets are

dispersed, relative to one another, within the space of functions.

Thus, a general description of ij} and {yk} can be found.
Now there are many tests which will describe the similarities
Letween sz- and tyk}. However, none of these tests are both com-
prehensive and easy to compute. The two which are easiest to com-
pute while still providing useful information are presented here.

Another comparison test 1s given in appendix H.
For the first comparison test let

min | L
- ],k \D()\).Yk)}

Jhie comparlison test 1s

1 lf M <« 14
I 0 if m < u <M

-1 1f wo<m

where m and M are constants. This test indicates whether at least
one palr of elements, one element from {xj} and one element from
‘4, i, are similar. If v,, =1 then it can be assumed that {xj}

and {yk; are dissimilar as sets. However, if v,, = 0 or v:; = -1,
it can only be assumed that one pair of elements from the sets is
similar. The next test will provide more information about all the

elements in both sets.

For this second comparison test for each j define ?kj to
be the element of {9k} that minimizes o(?k,ij). Similarly, for
l<k<n, define x,, to be the element of {ﬁj} that minimizes p (¥, .x3).
The comparison test is
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This could be modified so that its form would be the same as other
tests (e.g., v;,;). However, in order to choose reasonable con-

stants for the test, ny and n, must be large. Thus, since ny and

n, will generally be small the best way to evaluate the results

of this test is to make use of the analyst's judgment based on

P Al A

past data.

MOt e

There are additional comparison tests which are analogous

. to v;g9 and vy;4. V,q wWwas used to indicate differences in the best
constant approximations. In this comparison methodology to indi-
Z; cate the differences in the best ccnstant approximations to the
i elements of {xj} and {yk} let %' and X be defined as in method-
! ology 5. Recall that

-+ _  max
y =

1<k<n, lo(y, 0.0

T s

and
~= _  min

, T 1cken, P00

-
e

where Oc 1s the constant noise function with a zero noise level in

all directions. Define the intervals

- -4 »
1 {zeR|x < z < x'} ﬁi

—
Il

-+

{zeR|§ < z < §'} <

(]
!
} A

llow, the comparison tests ., and vs can be used. In this

-
Al
0

s

method of comparison, these tests will indicate how the levels of

X noise of the elements of {xj} and {yk} compare.

o290 was used to indicate the magnitude of variation from

constant levels of noise. For the test in this method comparable

T o
S a s

to .,, define the intervals

I, = {2=Rijuw

1 ‘ziu:}

- +
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X —

= 4§
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and

I. = {zeRlu. < z < w )
= {zeR|w
2 y — - Y
Once again the comparison tests v, and vs can be used.
Here, these tests indicate the degree to which the magnitude of
variation from constant noise levels of the elements of {x.} com-

pares with the magnitude of variation of the elements of {yx}.

The procedure for using these comparison parameters together
in order to derive information about {xj} and {yk} is as follows.
First, the parameters v;,(x), Vvis(x), v;6(xX), V4(y), Vv;s(y), and
215 (y) should be computed. These parameters will indicate how the
sets {xj} and {yk} are dispersed in the function space. Next, v,,
and v,; should be computed. These tests will provide an indication
of the similarities between the two sets of functions. Finally,
the comparison tests v, and vs should be used with intervals de-
scribed above in order to compare the levels of noise and magni-

tudes of variations of the sets.
Summary

Six comparison methodologies have been presented in this
appendix. The selection of methodology depends upon the quantity
of data. The tests within each methodology depend on the quality
of the data. It should be noted for the functional tests that
the important point is not which functional comparison test is
used, but rather that a functional test is used at all. The com-

parison tests described are listed by methodology in table F-6.

Alternative tests are given in appendix H.
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