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An Assertional Characterization of Serializability and Locking

Ernest Robert McCurley, Ph.D.

Cornell University 1988

The problem of synchronizing transactions in a database system so that concurrent

execution transforms the system from one consistent state to another is called the Con-

currency Control Problem. Over the past 20 years, a property of concurrent execution

called serializability has evolved as a universal paradigm for solving the Concurrency

Control Problem. Up until now, most work on serializability has been characterized

by an emphasis on sequences of operations. Researchers studying programming logics

and methodologies have developed a different approach to characterizing the semantics

of concurrent programs. This approach is called assertional reasoning, and emphasizes

the system state instead of sequences of operations. This dissertation describes the ex-

tension of the formalisms and tools of assertional reasoning to the Concurrency Control

Problem.

Proposed is a definition of serializability that generalizes previous definitions in

many respects. Two methods are described by which this definition of serializability

can be specified in an assertional programming logic using formulas called proof out-

lines. As a consequence of specifying serializability with proof outlines, it becoines

VZ



possible to formaly verify serializability. The use of an assertional programming logic

eliminates the need to explicitly consider transaction interleavings, simplifying verifica-

tion. Another consequence of specifying serializability with proof outlines is the ability

to derive synchronization protocols for serializability. This possibility is realized in the

form of a method for deriving locking protocols from assertional specifications. The

method is based on a novel view of locking, in which locks held by transactions reflect

properties of the system state. Using this method, semantic information available dur-

ing the derivation process can be used to obtain locking protocols permitting greater

concurrency among transactions than locking protocols obtained by more traditional

methods. Examples are given throughout the dissertation to illustrate the methods

described.
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Chapter 1

Introduction

Many computer applications involve information that must be stored, retrieved, and

modified. For example, a bank must maintain customer account balances and update

them as deposits and withdrawals are made; a university must record information

about course offerings and student grades.

Database sysiems are computer systems that store and maintain large amounts of

information. Information in a database system is typically stored on magnetic disk

storage devices rather than in primary memory because of their high capacity for

data storage and relative involatility. It is accessed through one or more processors

Sonnected to these storage devices.

Information stored in a database can be viewed as modeling some aspect of the

application it supports. For example, a banking database system might store a list of

numeric values to model balances of customer accounts. As events, such as deposits

and withdrawals, transform the application state, the database state is transformed

2O.
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accordingly by running programs called transactions.

The correspondence between an application and a database system imposes certain

restrictions on the database system state. A bank might require account balances to

be non-negative, which restricts the stored values that model these balances to be

non-negative. Restrictions imposed by an application on the database system state

are called consistency constraints. A consistency constraint can be thought of as a

predicate on the database system, although in practice such predicates are often too

complex to be written explicitly. States that satisfy the consistency constraint are

called consistent states.

Database systems are started in a consistent state and transactions are constructed

so that they model the events to which they correspond, thereby guaranteeing that

each transaction individually will transform the system from one consistent state to

another. A serial ezecution of transactions is one in which transactions are executed

one at a time, starting one only after the preceding one competes. By a simple inductive

argument on the number of transactions, any serial execution will transform the system

from one consistent state to another.
$5'%

Concurrent execution of transactions, in which one or more transactions are started

before previous ones complete, has an advantage over over serial execution. In some

systems, a large portion of transaction execution time is spent waiting for responses
S'..

from relatively slow I/0 devices (such as a user terminals or storage devices). By

running transactions concurrently, the time that one transaction spends waiting can be

used to run operations from another transaction that is not waiting, thereby increasing

the rate at which transactions are processed.

F ..o
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Unfortunately, without synchronization, concurrently executed transactions can in-

terleave in ways that leave the database in an inconsistent state. The problem of syn-

chronizing transactions so that concurrent execution transforms the system from one

consistent state to another is called the Concurrency Control Problem. Over the past

20 years, a property of concurrent execution called serializability has evolved as the

basis for solving the Concurrency Control Problem. Until now, however, most work on

serializability has been characterized by an emphasis on sequences of operations. The

definition of serial execution of transactions is an example of this style of characteriza-

tion. The view that locking protocols exclude operations from executing concurrently

is another example.

A different approach to analyzing the semantics of both sequential and concurrent

programs has been developed by researchers studying programming logics and method-

ology. The approach is called assertional reasoning and emphasizes system states rather

than operation sequences. This thesis describes the application of assertional reason-

ing to database systems. We give an assertional characterization of serializability; it

generalizes previous definitions of serializability. Our approach to defining serializabil-

ity not only allows the correctness of synchronization protocols for serializability to be

proven formally, but also allows semantics of an application to be incorporated into the

derivation of synchronization protocols that allow a high degree of concurrency among

transactions. We illustrate this benefit by giving an assertional characterization of

locking and a method for deriving locking protocols from specifications.

-u-
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1.1 Consistency and Concurrency

A simple example illustrates the Concurrency Control Problem. Consider a database

system that models bank accounts numbered from 0 to N. The database stores account

balances as values in an array a[0.. NJ, with ali ! holding the balance of account number

i. Another variable ba holds the value of bank assets. As is typical of database systems.

these values are stored on magnetic disk.

Disk drives typically provide two types of operations for accessing values: read and

write. Let r(z,t) denote a read operation that copies the value of z (stored on disk)

into a computer memory location denoted t; let w(z,e) denote a write operation that

evaluates expression e involving values in computer memory and copies the resulting

value back to z on disk.

The requirement that bank assets match the amount deposited in accounts induces

a consistency constraint ha = a[ij, specifying that ha equals the sum of values in, ' o' < N

a[O.. NJ. As customers make deposits and transfer funds within accounts, transactions

must be run to update the values in a[O.. NJ and ba while leaving the system in a

consistent state.

Using read and write operations, the transaction DEP(aJ.1,z) of Figure 1.1 incre-

Anents a[i] and ha to reflect a deposit of amount z to that account. The transaction

reads the balance of a[i] into memory and writes the updated balance back, sub-

sequently updating ba in the same way to ensure that the consistency constraint will

hold afterwards. In a similar manner, transaction INT(a[]J, y) of Figure 1. 1 increments

aJjJ and ha by y*a~j], reflecting the accumulation of interest at rate y by account).

.Js
.
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w(a~ij,t0 + z); w(aj ',t2 +y t2);

r(ba,t1); r(ba,13);

w(batl I+) w(ba,10± y*t 2 )

Figure 1.1: Deposit and Interest Transactions.

Suppose that a deposit of d to account s is made at about the same time interest

at rate r is begin credited to that account. If DEP(aisi,d) and INT(a~sI,r) run

* concurrently and without synchronization, transaction operations can interleave in the

following order: 1

DO: r(als], )l); r

r(a~s],12);

,(((aJ, tO + d);

w(atsj, 12--r *i2);

r(baI3);

w(ba, i1 + d);

r(ba,t );

w(ta, 0 + r * 12).

A sequence of transaction operations like oO that denotes an interleaving resulting from

,.5
conurre executionpsi alld ao scdue. Th smae u the setcmpotion interst

ator i between operations aows the schedule to be viewed as a sequential program

having the same effect as the particular concurrent execution it is modeling. When con-

current execution produces schedule oo, the update w(acsatO+d) by DEP(avejd) is

overwritten by INT(as!,r), effectively losing the deposit into aose. As a consequence,

o'O will leave ha d + all, an inconsistent state..5
O~t< N

V,
% AL - -

r( a s],t ); ".,

S,(afst~t0

w~a~s~t2 r~t2; .5

r~b,tl); p'd. ~"~' '% ''..... '"



1.2 Serializable Schedules

As ,O) ilustrates, not all schedules in which transactions interleave transform a database

system from a consistent to an inconsistent state. One type of schedule that preserves

consistency is a seriahzable schedule. A serializable schedule is one that "behaves

Like" some serial schedule-a schedule that denotes a serial execution of transactions.1

Since serial execution of transactions transforms a database from one consistent state

to another, execution resulting in a serializable schedule will do so as well.

An example of a serializable schedule of DEP(a(sj,d) and INT(a(sj,r) is

a 1: r(a[i],t0);

w(a[s],1O +d);

r(a[sJ, t2);

U(a[s!,12+ r*t2);

r(ba, 11);

". w(b, l +d);

r(ba, 3);

w(ba,t3+r*2).

4iFor any given initial values of a[O..NI and ba, rl leaves the same final values as the

serial schedule

'We describe more formally what it means for one schedule to "behave like" another in Section 1.3.4.

4,-
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o,2: r(aIsJ,tO);

w(aastW+d);

r(ba,11);

w(ba,tI +d);

r(a[s1,t2);

w(a[s],t2 + r * 12);

r(ba,13);

w(ba,t3 + r * (2).

The consistency-preserving properties of seriahzable schedules imply that the Concur-

rency Control Problem can be solved by synchronizing transactions to ensure that

every schedule is serializable.

1.3 Related Work

A great deal of research has been published about serializabihty. Several different

,-'U database models have been considered and several different definitions of serializability

have been proposed.

1.3.1 Operation Types
B..

One way in which database system models differ is in the types of operations that

dan be used to construct transactions. Many models [BBGLS83,BG83,BG81,BSW79,

GW82,G83,G78,P79,R83,SLR76,TS85,Y841 assume that transactions are constructed

from read and write operations as the ones described in Section 1.1 were. This reflects

the use of storage devices, such as disks, that implement these operations in hardware.

More recently, models have been devised for systems that support operations other than

-" read and write. For example, a model with operations that traverse and manipulate

B.e
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search structures is considered in [GS85] and one with operations on abstract data

types such as queues and sets is considered in 'SS841 and W841. The model of [K831

does not place any restrictions at all on the operations from which transactions are

constructed. Although system models with a greater variety of operations tend to make

analysis of concurrent execution more complicated than in read-write models, they do

make it possible to describe more accurately the semantics of concurrent execution.

Many models also make assumptions about the way operations are ordered within

transactions. In [P791 and [BSW79], for example, transactions consist of a single read

operation followed by a single write operation, each of which accesses several variables

at the same time. In [Y841, transactions can contain several read and write operations

but the operations are assumed to be ordered so that no transaction writes to the

same variable twice or reads a variable it has previously written. Such restrictions on

transaction structure simplify analysis.

In addition to assumptions about organization, different models make different as-

sumptions about the degree to which semantics of individual operation are known. In

[P791, only the set of variables accessed by a write operation is considered when ana-

lyzing its behavior; the function used to compute the value it stores is left unspecified.

- The same is true in [Y84]. In contrast, the models of [SS84 and [W84] specify not only

' the variables that operations access, but also details of how these operations transform

these variables from one state to another. As with restrictions on operation type and

order, weaker assumptions about operation semantics simplify analysis of concurrent

execution. However, models that make stronger assumptions about semantic infor-

mation allow use of this information when deriving synchronization for serializability,

sq
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usually allowing more concurrency than models that make weaker assumptions.

1.3.2 Transaction Synchronization

Another area of difference in various database system models is the way in which trans-

action synchronization is represented. In some models, synchronization is implicit-

transactions do not execute synchronizing operations directly but send requests for

operations to a system process called a scheduler [P79}. The scheduler considers the Im

history of requests when deciding whether to delay or grant a pending request. An ex-

ample of implicit synchronization is timestamp ordering [BG81], in which a timestamp

is assigned to each transaction as it begins to execute. Each request submitted to the

scheduler is marked with the timestamp of the transaction submitting it. The scheduler

then uses these timestamps to order requests. In other database system models, trans-

action synchronization is explicit-synchronizing operations appear among transaction

operations for manipulating data.

1.3.3 Locking

A form of synchronization used in many database system models is locking !G78,K83,

Y84,KS79]. In database systems that use locking for synchronization, transactions

#cquire and release entities called locks. In some systems using locking, transactions

explicitly execute operations to acquire and release locks, while in others, locks are

acquired and released implicitly as transactions execute operations. A locking protocol

characterizes how locks can be used to synchronize transactions. A locking protocol

specifies

%. /
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" a set of possible modes, or types, that locks can have,

" a compatibility relation indicating what locks can be held concurrently, aind

* a set of locking rules transactions must follow when acquiring and releasing locks.

Synchronization results from mediation of lock acquisition and release requests ac-

cording to the compatibility relation, delaying requests that are inconsistent with the

compatibility relation.

Previous research on synchronization in database systems has focused on developing

locking protocols that allow as much concurrency as possible among transactions, but

restrict possible schedules to serializable ones. Several protocols have been proposed.

One area of difference between them is the set of lock modes assumed. The set of lock "d"

modes is usually derived from the set of operations that the database system model

permits. Each lock mode typically specifies the operation with which it is associated %

and the process that has acquired it.

Lock compatibility relations have traditionally been derived from the semantics of
5%"

the operations with which they are associated. Exclusive locks are used whenever the o%

net effect of concurrently executing transactions can depend on how operations of a par-

ticular type interleave. For example, the value left in a1t5 by transactions DEP(a's5,d)

. I %

and INT(a[sj,r) of Section 1.1 depends on how the write operations w(a s,t0 , d) and

w(ba,tl +d) in DEP interleave with w(as],t2+r*t2) and w(ba,t3+ r-t2) in INT.

Consequently, the lock mode associated with write operations would by exclusive. If

both transactions consisted of only read operations, every interleaving would produce

the same result, which implies that the lock mode associated with read operations need p

.5.
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not be exclusive.

Locking rules for acquiring and releasing locks generally require a transaction tt,

have acquired and not yet released a lock for an operation before it can execute that

operation. Several additional restrictions on lock acquisition and release have been

proposed. For example, lock acquisition and release is often required to be two-phasc

[EGLT761, which means that a transaction never acquires additional locks once it has

released any lock. This divides transaction execution into a lock acquiring phase and

a lock releasing phase.

A two-phase locking rule is shown to be sufficient to guarantee only serial schedules

for the model used in [EGLT76). The necessity of two-phase locking in the absence of

restrictions on transaction structure is also discussed there. In models where more is

known about the structure of access to data, locking rules that are not two-phase have

been proposed. In [BS77], for example, a protocol for transactions that traverse and

modify B-trees that does not obey the two-phase restriction on lock acquisition and

release is presented. This approach is generahzed in 'GS851 to obtain locking rules that

are not two-phase when transaction operations are structured to traverse more general

types of linked data structures.

1.3.4 Definitions of Serializability

As with database system models, several different definitions of seriahzability have

been proposed. These definitions differ primarily in the formal definition of when a

schedule "behaves like" a serial schedule.

One of the earliest formal definition of serializability, found in 'EGLT76', fans into

-1I
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a class of definitions that has subsequently been called conflict scrializability l86

In conflict serializability, behaviors of schedules are compared according to certain

conflict relations that they induce. A schedule o induces the conflict relation ('R. on

pairs of operations in a, where (a,,a,) C CR, if and only if a, and a, are from different

transactions, a, appears before a, and both operations cannot be run in the other order

and produce the same result. The conflict relation CRa is extended to transactions by

defining (T,, 7)) E CR, if and only if (a,, a,) E CR, for some operation a, from r, and

a3 from T).

A conflict relation CR, reflects the potential for one transaction to influence the

behavior of another in the concurrent execution represented by the schedule a. Thus,

the behavior of two schedules can be compared by comparing there associated conflict

relations. Two schedules a and o' are conflict equivalent if and only if CR, and CRl

are the same relations on transactions. A schedule a is conflict serializable if and only

if it is conflict equivalent to some serial schedule o'. An equivalent definition sometimes

given is that a is conflict serializable if and only if CR, is acyclic, since this ensures at

least one serial schedule shares the same conflict relation.

As the second formulation of conflict serializability illustrates, whether or not a

particular schedule is conflict serializable depends directly on the strength of the conflict

relation: the more conflicting operations there are in a schedule 0, the more likely

CR, is to contain a cycle and hence fail to be conflict serializable. For this reason,

operation semantics are used to define conflict relations that relate as few operations

as possible. In models with read and write operations, the conflict relation is defined

so that (a,,a)) E CR, whenever a, and a, reference the same variable and at least

a,
.

.
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one is a write operation. This is becauie pairs of operations on different variables or

pairs of operations that only read the same variable cannot influence each other. In

A' models such as [K83 and [GS851, the greater degree to which operation semantics are

specified permits weaker conflict relations to be specified. For example, two operations

that change the value of the same variable do not necessarily conflict as they would if

they were simply considered to be instances of write operations.

Another class of serializability definitions involves those that compare schedules

on the basis of how they transform a system from one state to another. This class

is sometimes subdivided into final-state serializability and view serializability [P861.

In both of these subclasses, a schedule "behaves like" another if and only if both

€., transform identical initial states to identical final states. However, final-state and view

serializability differ as to what portion of the system state is used to compare the effect

of schedules. a.

In the definition of final-state serializability found in [K831, system states are com-

pared according to the value of only those variables that are shared by transactions.

However, it is argued in [Y84] that final-state serializability is inappropriate for mod-

els in which transactions contain read operations because it ignores the values copied

into a transaction's local storage by read operations and does not take into account

the possibility that transactions might read inconsistent values and behave erratically

or present inconsistent output to users of the database system. View serializability is

therefore proposed in [Y84 as a more appropriate definition of serializability. When

comparing the effect of schedules, view serializability includes in the system state the

* values read by transactions in addition to the values of shared variables.

.Jr.
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In 'P791, the relationship between conflict and view serializability is explored. It

is proven that every conflict-serializable schedule is also view serializable. In light

of this result, view serializability would seem to be a preferable definition because of

its generality. However, it is also shown in !P791 that the complexity of the general

problem of deciding wheiher a schedule is view serializable as a function of its length

is NP-complete. This makes it improbable that efficient algorithms can be constructed

for synchronizing arbitrary sets of transactions. Because a schedule can be determined

to be conflict serializable in time polynomial in its length, conflict serializability is more l.

often used in practice as the basis for concurrency control.

1.3.5 Alternatives to Serializability JI-

Some have suggested that requiring every schedule to be equivalent to some serial

schedule is too strict a requirement for database systems (e.g. [L76!). The Concurrency

Control Problem requires only that transactions transform the database system from %

one consistent state to another. Every serializable schedule will accomplish this, but

in some cases there may be non-serializable schedules that do so as well.

An alternative is proposed in [G831. There, every schedule is required to be .9e.

mantically consistent rather than serializable. A schedule a is semantically consistent ,

p..

* a transforms the system from one consistent state to another, and -

* there is a serial schedule a' such that for every initial consistent state, o and o'

leave the same values in a specified set of RS variables (for Requiring Serializab-

ility). 6

'a.

%5.
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Since the RS variables need not include every variable of the consistency constraint,

the first requirement is not redundant. This approach has the advantage of allowing

more concurrency than if schedules are required to be serializable. A simple example

of a database system that models an airline reservation system is given in [G831 to

illustrate this. The system contains four variables SX, SY, TX and TY. The value ._*!

of SX denotes the number of passengers on a flight FX, while TX denotes the type

of plane scheduled to handle that flight: either "small" or "large". Variables SY and

TY denote the same information for a flight FY. The consistency constraint for the

system is

(SX > 100 TX "large") A (SY > 100 T TY "large"). 'S

The RS variables are SX and S Y.

Two transactions are considered, one that reserves a seat on both flights:

RXY: RI: Increment SX by 1. If SX > 100, change TX to "large".

R2: Increment SY by 1. If SY _' 100, change TY to "large".

and one that cancels a seat on both flights:

CXY: CI: Decrement SX by 1.

C2: Decrement SY by 1.

Suppose that both RXY and CXY run concurrently in an initially consistent state

with SX SY = 99 and TX TY "small" producing the schedule

o,3: R1,C1,C2,R2.

This schedule will leave SX = SY = 99, TX = "large" and TY = "small", which is also

a consistent state. It also leaves the RS variables SX and SY with the same values as

%;
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either of the two possible serial schedules. Consequently, o3 is semantically consistent.

However, o,3 is not serializable under any of the definitions described previously and

would not be allowed in a database system requiring serializability. Thus, an advantage

of replacing serializability by the weaker requirement of semantic consistency is that

more concurrency among transactions is possible. A disadvantage of this approach is
'.p

that analysis of synchronization requirements for semantic consistency can be more

complicated than for serializabiity because of the details of the consistency constraint

and operation semantics that must be considered.

1.4 Reasoning About Concurrency

A database system can be viewed as a concurrent program-a collection of sequential

programs that run concurrently. Properties of concurrent programs can be viewed

in terms of safety and liveness. A safety property is one that specifies that one of a

given set of "bad" states is never reached. An example of a safety property is partial

correctness, which says that execution that begins in one of a given set of initial states

'. does not terminate in a state outside of a given set of final states. A liveness property

is one that specifies that some set of "good" states are eventually reached. An example

of a liveness property is termination, which says that execution that begins in one of
'

"-V a given set of initial states eventually terminates.

As the schedules considered previously indicate, execution of a concurrent program

can produce any of a number of different interleavings of its constituent operations.

The interleavings that are possible depend on the atomic operations that constitute the

concurrent program. An atomic operation is one that indivisibly runs to completion

_ "p + , + _ p t d! + t +
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once started. Folowing [L801, an atomic operation that executes program text S is

denoted (S). In the sequel, we will write S in Guarded Command Notation ID761 but

require that S is deterministic.

For all but the simplest concurrent programs, the number of different schedules is

apt to be too large for safety and liveness properties to be verified by considering every

possible schedule. To address this problem, a more tractable approach to reasoning

about concurrent programs has been developed. It is based on the use of a formal

logical system relating program behavior to predicates on program states.

Proof Outline Logic 1SA87] is one programming logic for expressing and proving

safety properties of concurrent programs. A proof outline is a formula

{Q}S{R}

where Q and R are predicates on the system state and are called assertions; S is an

annotated program, a program in which each atomic operation (a) is preceded by zero

or more assertions. An assertion that immediately precedes (a) in the proof outline is

called the precondition of (a) and is denoted pre((a)). An assertion that immediately

follows (a) is called the postcondition of (a) and is denoted post((a)).

A proof outline {Q}S{R} specifies the safety property that if S is started at some

Mtomic operation (a) in a state that satisfies pre((a)), then at any point reached

during execution, the state will satisfy the assertion or assertions that appears at that

point. Proof Outline Logic provides a set of axioms and inference rules for inferring

valid proof outlines. These axioms and rules include those of Predicate Logic !S671

along with axioms and rules given in [SA87] that are specific to Proof Outline Logic.

A summary of these rules can be found in Appendix A of this dissertation.

I, " " * " " " ' b ".' q % ' w • Q
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Dijkstra's weakest precondition predicate transformer (D761, a function that maps

one assertion to another, is often used in conjunction with Proof Outline Logic to reason .

about programs. For S an operation or program and R a predicate, the predicate

wp(S,R) (read the weakest precondition of S with respect to R) denotes the largest set

of states in which execution of S is guaranteed to terminate leaving R true. From the

semantics of proof outlines and wp, it follows that

{wp(S, R)} S {R}

is a valid proof outline for any S and R. Thus, a precondition of S that allows a given

postcondition R to be asserted can be computed using wp. A summary of general

properties of wp along with rules for computing wp(S,R) can be found in Appendix B.

Assertional reasoning is the name given to the style of characterizing program

semantics in terms of assertions on the program state. When compared to other ap-

proaches to reasoning about concurrent programs, an apparent disadvantage of asser- -
Ir..

tional reasoning is the level of detail at which the analysis is carried out. Of course,

this is also an advantage since it is possible to capture detailed semantic information

that is ignored in other formal systems. Another advantage of assertional reasoning

is that properties of concurrent programs are often specified most naturally in terms

6f properties of the states reached during execution. For example, a solution to the

Concurrency Control Problem requires every execution that begins in a consistent state

to leave a consistent state. This is an assertional property since it specifies a prop-

erty of the system state (consistency) at points during execution (before and after).

Yet another advantage of assertional reasoning is the ability not only to prove that

a given program satisfies a particular specification, but also to derive programs from

S.

% % % % % %
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their specification, using the inference rules of the logic to motivate refinement of the

program.

1.5 Overview of Dissertation

%1 This thesis describes the application of assertional reasoning to the Concurrency Con-

trol Problem. Chapter 2 presents a new definition of seriaiizability that is based on

assertional reasoning and generalizes previously proposed definitions in several respects.

A method for using Proof Outline Logic to specify and prove that database systems

satisfy this definition of serializability is then presented. Chapter 3 presents an as-

sertional view of locking and describes a method for deriving locking protocols. This

method is then used to derive synchronization for a database system modeling a sim-

pie banking application. Finally, Chapter 4 summarizes the thesis and draws some

conclusions from the research presented here.

'

I
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Chapter 2

I

Serializability

As discussed in Section 1.3, there is no standard system model or definition of serial-

izability. In this chapter, we describe the system model used in the remainder of this

dissertation. We then propose a definition of serializability that generalizes previous

U2-

definitions of serializability in several ways. Finally, we demonstrate how this definition

can be formulated in Proof Outline Logic.

2.1 Database System Model

Concurrent execution of a set of transactions r 0 ,.. .,NI is denoted
1 "a

cobegin ro . IrN lcoend. (2.1)

A necessary condition for an atomic operation (S) in (2.1) to run is that it be enabled,

which means that the control point before (S) has been reached and the system state be

one in which S will run to completion. During execution of (2.1), however, it is possible

for more than one operation to be enabled at the same time. Consequently, a scheduling

20
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policy must be given to specify how operations are selected for execution from among

those that are enabled. We will assume in the remainder of this dissertation that

concurrent execution of transactions follows a weakly fair scheduling policy ISA871-

no operation that becomes and remains enabled wil be forever delayed.

Execution of (2.1) terminates when every transaction has terminated. A transac-

tion r, can terminate in two ways. One is for r, to complete by executing an operation

(end(rT)) and halting. The other way in which r, can terminate is to abort. A trans-

action aborts when conditions such as deadlock, system failure, or unexpected input

make it undesirable or impossible for it to complete. r, aborts by executing an op-

eration (abort(rT,)) and halting. Operation (abort(r,)) typically implements recovery
5%

operations to cancel the effect of operations previously executed by r.

A database system E can be specified by a 4-tuple ( V,C, T, -), where V =

(vo,.. ,vn) is a vector of variables, C is a predicate on V, T ={ro,.. .rl} is a set of

sequential programs, and - is an equivalence relation on the domain of V (the cross

product of the domains of the variables of V). Variables of V characterize the state

of S. Any system state can be written as a vector of constants V1 (v,... , v/), where

each v, is the value of the corresponding variable v, in that state. For any predicate P

on V, P is true in state V' if and only if PV, = true.' Predicate C in the specification

of S is a predicate that implies the consistency constraint of E; a state is consistent if

C is true in that state.

Each r, E T models a transaction of E. An ezecution of I is an execution of the

concurrent program

P' ** denotes the result obtained by simultaneously replacing all occurrences of v, by the corre- "

sponding e,.

% -% % %
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cobegin To [[.. I"N-I coend, (2.2)

and a schedule of E is the sequence of atomic operations resulting from a terminating

execution of (2.2). We assume that each -r, will complete leaving C true when executed

in isolation starting with C true. For each T', T, we will assume that V contains a

Boolean variable cfj, called the completion fla9 of 7i, such that cf, = true if and only if

rhas completed. This models information that is typically found in system logs.

The equivalence relation - in the specification of E is a binary relation on the

domain of V and partitions the states of E into equivalence classes. Each equivalence

class contains the states that cannot be distinguished from one another by the appli-

cation supported by E. This provides an abstraction that hides aspects of the system

-r state that are irrelevant to the application being supported. To limit the amount of

information that can be hidden, = is requires to satisfy two adequacy# constr'aints:

AC1. For all system states V' and Vi,

( V' - V") => (Vi: 0 < I < N: CA, = CA'it

9,

,,' AC2. For a&l system states V' and V",

cobg I v0  v"j cen d (2.2)).

dACa ensures that states in which different sets of transactinss have completed are

udistinguishable. AC2 ensures that consistent states and inconsistent states are distin-

¢ guishable.

BooAn exampale a ca e cimei la ofe is suc of Figure 2.1. a models an

applcation in which a series by i s oindn abstcmove elements one at a time from the

%
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:O - 1, (C0, TO, L 0)

CO -(q I -q0=Q A qOJ ( #k: 0 _k N: cfk =false)),

TO r,-- 7N-I

7= 51,: lqO: =qO(O), qO(l..));

52,: Kql:=ql-z1 ;

VO - VON) ;:, (qO' = qO" A qlV q I" A A cf cfj')
0< k< N

Figure 2. 1: Database System EO.

head of one queue to the rear of another, as in a factory where parts are transferred

%! from one assembly line to another. VO contains two sequence variables 90 and qi

modeling the two queues, and a variable z, for each -r, in TO to hold the item removed

from qO and not yet appended to qi. The following notation is used for sequence

variables:

sJ the number of elements in 5.

s(i) the ilk element of s for 0 < < Is.

-. .s(: .. J) the subsequence of consecutive elements from the A1

to the Jtk for O0 <~ 1'7 K sl (and the empty sequence if

s(I.) an abbreviation for i (I..! s-1)

il -s2 the catenation of s I and 12.

The conjunct q 1 qO Q in the consistency constraint CO specifies that queue el-

ements are not lost in the transfer, while the second conjunct2 qOl ( k: 0 k

-. 2(# s : R: P) denotes the number of values i in range R that satisfy P.

ifXI
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N: cfk c-false) specifies that qO contains enough elements for every transaction that

has not completed to remove one. Each transaction r, TO models the transfer of oie

element from the first queue to the second, using a local variable z, for temporary

storage of the element removed. For simphcity, we assume that transactions of EO

4.- terminate only by completing. The operation S1, moves the first element of qO into

z,, and 52, then moves it to the rear of qi; 53, has no effect other than ensuring that

cf, =true.

The equivalence relation =0 specifies that two states VO' and VO" are equivalent

when each of qO and q1 contain the same sequence of elements in both states, and the

same transactions have completed. The values of temporary variables z 0 ,... ,zN_1 are

ignored by =-0 since the particular order in which transactions run is insignificant in

this application.

2.2 Serializability

Recall that wp(S,R) denotes the set of states in which execution of S will terminate

, leaving R true. Using wp, it is possible to formalize the property that a schedule a

"behaves like" like a serial schedule.

Definition 2.2.1 (Serializable Schedule) Let 2 K V, C, T =) be a database sys-

tem and let SER( T) denote the set of serial schedules for E, each schedule consisting

of zero or more transactions of T. Let V be a vector of new variables each having

the same domain as the corresponding one in V. A schedule a of E is a sertalizable

schedule of if and only if:

.U.

-,
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ov _SER( T)

Definition 2.2.1 can be interpreted as follows. A state satisfying the antecedent is

one satisfying the consistency constraint and in which execution of a is guaranteed

to terminate in a state indistinguishable under - from V. A state that satisfies the
A.

consequent is one in which execution of at least one serial schedule of E is guaranteed to

terminate in a state indistinguishable under - from V. Thus, the implication specifies

that any consistent state in which execution of o, terminates in a state indistinguishable

from V is one in which execution of at least one serial schedule o.' of E terminates in

a state indistinguishable from V. From the assumption that = satisfies adequacy

constraint ACI, it follows that the states reached by o" and a' will have the same set

of completed transactions. From the assumption that = satisfies adequacy constraint

AC2, it will follow that the state reached by a will satisfy the consistency constraint "

if and only if the state reached by a' does. Since o.' is a serial schedule that starts in

a consistent state, it will always leave a consistent state, and consequently the state

reached by a will be consistent. _

- For an example of a schedule that is serializable according to Definition 2.2.1,

consider EO of Figure 2.1. When N = 2, execution of EO can produce the schedule

o"4: S1o;S11 ;S20 ;S2 j ;S30 ;S3t.

Consider the serial schedule

"5: Slo;520 ;S30 ;Sli;S21 ;S3j.
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Using the rules for computing wp (see Appendix B for a summary), it can be shown

that

(CO A wp(o4, V10 - 0  0)) =

qt.qO= Q A [q0 (# k: 0Kk<,2: cfk =false)/' qO(2 .. ) qO

A qI- qO(O). q0(1)-- qI A true = cf0 = cfI

and

wp(a5, Vo -o VO))

qO(2..) = qO A ql.q(0).q(1)= qlA true = cf = cfI

From this it follows that

(CO A wp(o.4, V0 -o ) wp(o,5, ,o -o O)

and since o5 E SER( TO),

(CO A wp(,4, VO =o V7-0)) - ( V wp(o', vo -0 O)).

o'ESER( TO)

Therefore, o,4 is serializable according to our definition.

Definition 2.2.1 for serializable schedules can be extended to obtain a definition for

serializable database systems.

Definition 2.2.2 (Serializable System) Database system E = (V, C, T,-) is a se-

rializable system if and only if concurrent execution of transactions that begins with

-C true always terminates and every resulting schedule is seriahzable. 0

Note that although the schedule a4 is serializable, r0 is not a serializable system since

o6: Sl 0;Sl;S21 ;S2 0 ;S3 0 ;S3j

is not a serializable schedule.

pF

,%,-.,-..,_ -. -, -, , ., .- _- .'.,.--.',.'.--.'. ,. .' , , -"s."r ~ -, ..',, ,' . -'.'¢ ',. - . *.. ' *. ,'7* * .*....-,- -5 -- -. '* . -'. ' -''-*.'



I,..I

27

2.3 Serializability with Proof Outlines

Definition 2.2.1 characterizes serializability using wp. It is also possible to characterize

serializability using proof outlines. Two benefits result from such a formulation. The

first is that Proof Outline Logic then can be used to verify formally the serializability
Vq

of a database system. The second, explored more fully in Chapter 3, is that it becomes

possible to derive synchronization protocols that ensure serializability.

A Proof Outline Logic characterization of serializability is formulated by intro-

ducing auxiliary variables and operations on them that allow the behavior of serial

schedules to be characterized by assertions. Let E (V, C, T, =) be a database system

with variables

V = (vo,...,v')

and transactions

T = {0,...,TN-1 }.

Define a vector of new variables

V = <.0,.- n),

4vith each new variable ik having the same type as the corresponding variable vk in

V. Each 'k is called the shadow variable corresponding to vk. With these shadow

variables, construct a set of new transactions

w.
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where each i, is obtained from r t7 T by replacing all reference to vy - V by a reference

to the corresponding ik E V. Each i, is called the shadow transaction corresponding

to r.

Let SER(T) denote the set of serial schedules consisting of zero or more transac-

tions of T. The isomorphism between V and -V and between each r, C T and , - T

implies that for any serial schedule o' z SER( T), there is a serial schedule & SER( T)

that transforms V in the same way that a transforms V. This isomorphism between

schedules of SER( T) and SER(T) makes it possible to construct a proof outline that h9L

is valid if and only if a satisfies Definition 2.2.1.

Theorem 2.3.1 (Schedule Serializability with Proof Outlines) Schedule a' of

database system V (V, C,,) is a serializable schedule if and only if

SSO(a): {CAV~v}

{ V wp(,V-v)}

&ESER(T)

is valid. ',

Proof of Theorem 2.3.1 From the interpretation of SSO(o') and of the weakest pre-

condition predicate transformer, SSO(a) is a valid proof outline if and only if

k(CA V=VAwp(a, true))-;wp(or, V wp(&,VE f). (2.3)
&t SER(T)

Thus, the theorem follows if a is a serializable schedule of E if and only if (2.3). This

is proven in Lemma 2.3.4 proven below. 0 U.

.

The proof of Lemma 2.3.4 will frequently rely on inferences that are justified by

,.!
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the following two lemmas. The first states that substituting subformulas of A with

equivalent ones results in a formula that is equivalent to A.

Lemma 2.3.2 Let A' be obtained from A by replacing some occurrences of B1 , ... , 1,

B, by Bl, ... , B, respectively. If

B 1  -, B , .... , L B. 4 , B'in

then

SA if and only if A'.

0

I.

p.

Proof of Lemma 2.3.2 By induction on the structure of A. See [S671 for details. [3

The second lemma characterizes the distributivity of wp over conjunction with a %

predicate B when B does not contain variables referenced by S.

Lemma 2.3.3 For any program S and predicates A and B, if S does not change any

variable of B, then

(wp(S,A) A B) wp(S,A A B). 9

[7..

Proof of Lemma 2.3.3 By definition, wp(S,B) represents the set of all states such

that execution of S begun in any one of them is guaranteed to terminate in a state

satisfying B. Since S does not change any variable of B, then wp(S,B) is the set of

states in which S is guaranteed to terminate and in which B is true. Thus,

i-V
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H (wp(S,true) A B)- wp(S,B). (2.4) !

By Predicate Logic, wp(S,A) can be conjoined to both sides of (2.4) giving

(wp(S, ) A wp(S,true) A B)(,,,(wp(S, A) A wp(S,B)). (2.5) %

Distributivity of Conjunction from Appendix B implies that
. 7

wp(S, A) A wp(S, tue)),w p(S, A A true).

Substituting the right side for the left in (2.5) gives

(wp(S,A A true) A B) * (wp(S, A) A wp(S,B)). (2.6)

Distributivity of Conjunction also implies that

wp(S,A) A wp(S,B))# wp(S,A A B).

Substituting the right side for the left in (2.6) gives

(wp(S,A A true) A B) 4(wp(S,A A B)). (2.7)

Since (A A true) -* A,

r(wp(S,A) A B)#wp(S,A A B).

."

Using these lemmas, the equivalence of the serializability of o" and the validity of

(2.3) can be proven.

Lemma 2.3.4 o is a serializable schedule of E if and only if (2.3). 0

"
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Proof of Lemma 2.3.4 By Definition 2.2.1, a is serializable under 5 if and only if

(C A wp(o, V-))=.( V wp(,,', V(2.8

T'IESER( T)

From Predicate Logic,

NP, ,(VV: V= V -,P

for any predicate P. Taking

P=I V wp(&,,v )!,
47 ESER( T)

and applying Lemma 2.3.2, (2.8) if and only if

(C A wp(, V =V)) =(VV: V=V=,( V wp(o', V-V))) (2.9)
Of'ESER( 

T)

From the construction of the shadow transactions and definition of SER(T),

"=( V ,p(&,V=V).( V Wp(a,v-V)).
"E'cSER(T) &ESER(T)

Thus, (2.9) if and only if

.(CAwp(o, V V))=(VV: V-= V ( V wp(&,V V))). (2.10)

&C-SER(T)

From Predicate Logic, when variables of V are not free in P,

,u::: (P => (V v: ) c (V v: P - )

Taking

P = [ A w(o,V=V)] and

Q = V= V ( V wp(&,V--))],
,ESER(t)

(2.10) if and only if
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sz(VV: (C .,wp(a, V l)) (V V ( wp(&,l VV)))). (2.11) 0_

&SER( T)

From Predicate Logic,

(VV: P) if and only if P.

Taking

P (CAwp(o, V-)) -(1,-=V ( V wp(&,V V)))I,
&ESER(T)

(2.11) if and only if

(C A wp(, V = )) ( V "( V wp(&, V- V))). (2.12)

&:SER(T)

From Predicate Logic,

P- Q =; R)] [ (P A Q) R]. -

Taking

P C A wp(o, V EVJ

Q = <vz=Vi and

R< V wp(&,V V)},
&ESER( T)

(2.12) if and only if

(CAwp(a,V-V)A V=V).( V wP(,VV)) '  (2.13)

&E SER(T)

By the commutativity of conjunction in the antecedent, (2.13) if and only if

(C A V = V A wp(a, V V)).( V wp(, V V)). (2.14)

&ESER(T)

From Predicate Logic,
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A((P, Q) R) ((P, Q)=.(Q, R)).

Taking

P C A v

Q =w[p(a, V a7)1 and

R= V wp(&,V-V)',

(2.14) if and only if

z(C A V7 V A wp(a,V 1-)) (2.15)

(Wvp(,, , _= ) ( V Wp(&, 1 _,))).
&ESER(t)

Since a does not reference any free variable of ( V wp(&, , - V)), it follows
&ESER(t)

by Lemma 2.3.3 that

(wp( , _V) A( V wp(&,V-V)))
&c- SER(T)

, wp(a, 1_-/A( V wp(, E V))).
, u*-SER(T)

Thus, (2.15) if and only if d,

.(C A v p(a,v V))- (2.16)

wp(', ,A( V ,p(&,
&ESER(T)

Since conjunction distributes over disjunction,

(V v A( V wp(&, - - ))) ( V _ 1 wp(&, '-)).
&E SER(T) &t SER(T)

Thus, (2.16) if and only if .,

-((C '. V' V *, w, p(O, V - ) -(2.17) ,

wp(a,,( V I" - A wp(&, 1" r))).
&SER()

s,%

i %S
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34iUsing the property that & does not modify any variable in _ V and Lemma 2.3.3.

K(1' t" = wp(,V I'))-wp(, -- A V - V)

for each &t SER(T). Thus, (2.17) if and only if

' a~~~(C A V= A wp(o,, V/ -) =(.
'N wp(u,( V wp(&, v A V 1_))).

£~SER(T)

Because - is an equivalence relation, it is transitive and symmetric. From this it
S

follows that

( = V A V =_ V),*( V V A V V).

Thus, (2.18) if and only if
ph'.

S(C A v V A wp(a, V = ) (2.19)

wp (o,( V wp(&, VA V=_))).
&C-SER(T)

Using the property that does not modify variables of V V and Lemma 2.3.3,

wp(, V = V A V - V) ( V V A wp(., V = V)).

Thus, (2.19) if and only if

(C A V A ,,(a, V (2.20)

wp(o,,( V V - V A wp(&, V V))).
.E SER( T)

Since conjunction distributes over disjunction,

V V=- V A wp(&, V V)),( V -A( A V wp(&, V
*&c-SER(T) &ESER( T)

Thus, (2.20) if and only if

I'I.i
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(C ' V A wp(o,V E/)) V(2.21)

wp(a, v - V A ( V wp(&, 1-))).
&ESER( T)

Since wp satisfies the property of Distributivity of Conjunction,

wp(a, 1- A ( V wp(&,V V )))
i7ESER(T)

(wp(a, V _ V) A wp(a, V wp(&,V 1))).
* ~&ESER( T)

Thus, (2.21) if and only if

(C A V = wp(a, VV)). (2.22)
(wp(o', V - ) A wp(o, V Wp(&, V))).

&ESER( T)

From Predicate Logic,

((P A Q) =.: (Q A R)) *((P A Q) -4- R).

Taking

P =ICA Vvl,
Q = [p(', V__) and

R = fwp(0, V wp(&,- = v))],
&ESER(TV)

2.22) if and only if

k(CA V=V A wp(o,VV )) wp(a, V wp(,V-- V)). (2.23)
& SER(T)

From Predicate Logic,

P if and only if uPv

for any predicate P. Taking

, .

i..

i3
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P [(C A V =V A wp(, V -V)) wp(a, V wp(&,1"EV)),
&kzSER( T)

(2.23) if and only if

S[(C A V =VA wp(o, V E ) 'wp(a, V wp(& V U))i y (2.24)

&u-:SER( T)

Since V does not occur in C A V - or in wp(o, V wp( , V -)), (2.24)
fESER(y)

if and only if

(CA V =V A [wp(a, V -1/)) ) wp(r, V wp(&,-V )). (2.25)
&ESER(T)

Since 3 V does not occur in a,

wp(, V - V)I V wp(,, V- V).

Thus, (2.25) if and only if

(CA V V A wp(, V -V)) =, wp(o, V wp(,, V)). (2.26)

&ESER( T)

Since = is an equivalence relation, it is reflexive. Thus,

(V - V) true.

Thus, (2.26) if and only if

H(CA V=VAwp(o,,true)) wp(,, V wp(4 ,V. V)). (2.27)

&"ESER(T)

By identity, (2.27) if and only if (2.3).

'This can be proven by induction on the structure of a.

A;.- P
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Theorem 2.3.1 characterizes serializability in terms of proof outlines the serializ-

abiity of a particular schedule of a database system. This result can be extended to

obtain a similar characterization of the serializability of an entire database system.

Theorem 2.3.5 (System Serializability with Proof Outlines) Database

system E = (V,C, T, = ) is a serializable system if and only if execution of E termi-

nates when started with C A V V true and

SDO(r2): { C A V v}

cobegin ro I ITN- coend

{ V wp(&,v V )}
&e SER( T)

is vahd. 0

Proof of Theorem 2.3.5 Since the variables of V do not occur in transactions of E,

execution of E terminates when started with C A V IV true if and only if execution

of E terminates when started with C true. The interpretation of proof outlines and

the semantics of cobegin imply that SDO(E) is valid if and only if

SSO(oj: {CA V= V~o{ V wp(&, VE)
&ESER( t)

is valid for every schedule a of E. By Theorem 2.3.1, SSO(a) is valid if and only if

a is a serializable schedule. The theorem follows immediately from the definition of a

serializable system. 0

The hypotheses of Theorem 2.3.5 suggest a method for proving a database system

serializable.

Method 2.3.6 (Proving System Serializability) To prove that a system E

(V, C, T,-) is serializable:

~d IC
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I. Introduce Shadow Variables and Shadow Transactions. Define shadow

variables V and construct shadow transactions T corresponding to the variables

V and transactions T of E.

2. Prove SDO(E). Prove that

SDO(E): {CAV V}
cobegin r0  TN-i coend

{ V wp(, Vv)}
&ESER( T)

is valid.

3. Prove Termination. Prove that execution of E terminates when started with

C A V V true.

0 '

2.4 An Example

We now present an example of the application of Method 2.3.6. As pointed out in

Section 2.2, SO is not a serializable system. However, a serializable system can be

constructed from a by synchronizing transactions using a simplified version of the

conservative timestamp ordering protocol in IBG81].

In conservative timestamp ordering, a unique integer timestamp is assigned to each

transaction as it begins to run. A version number associated with each shared variable

holds the timestamp of the last transaction to access it. An operation from transaction

; can access v if it satisfies the following conditions.

%.. . ...
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TS1. The timestamp of r, is greater than the version number of v.

TS2. No transaction 7, with a timestamp less than that of r, will later

attempt to access v.

Since each transaction sets the version number of v to its timestamp when accessing

it, condition TS1 implies that the timestamp of a transaction r accessing v is greater

than that of another transaction r3 that accesses v immediately before r,. One con-

sequence of this is that transactions are guaranteed to access v in an order consistent

with that of their timestamps. Another consequence is that the version number of v

is monotonically non-decreasing. Therefore, if a transaction 7) finds TS1 false when

attempting to access v, TS1 will subsequently remain false and prevent 7, from corn-

pleting. To avoid this possibility, condition TS2 requires r, to wait before accessing v

until all transaction attempting to access v and having smaller timestamps have done

so. 4 The result is that transaction satisfying TS1 and TS2 will access v in ascending

timestamp order without aborting.

We model the assignment of timestamps and synchronization of operations accord-

ing to version numbers as follows. Let clock, vqO and vql be integer variables holding

the global clock and version numbers of qO and qI. For each r, E TO, let ts, be an in-

eger variable holding the timestamp of 7- and let clock be an integer variable holding

the value of the clock. To model the selection of a timestamp by r, the operation

SO,: (clock,tsi:= clock + l,clock +-1)

'Many timestamp protocols relax the second condition and abort transactions trying to access vari-
ables with version numbers greater than their timestamp. However, these protocols require older versions
to be maintained for recovery purposes and also require additional machinery to cope with the possibilitY
of cascading aborts JBG811. We choose the more restrictive protocol so that the proof of correctness is
not obscured by these additional complexities.

-- A1

:.t..* ,.*.., .- s.1
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is added to r, before SI,. To model the update of version numbers when r, accesses

qO and qI,

vqO:= is,

is added to Si, and

vq1 tsi I

is added to S2,.

To denote synchronization that delays an operation S until a condition B becomes

true, we enclose S in a guarded command of the form 5

(if B - S fi).

The following lemma provides a guard B for S1, that ensures that the transactions of ,

TO satisfy conditions TS1 and TS2 for accessing qo.

Lemma 2.4.1 (Timestamp Condition) Transactions T0 ,...,TN-1 satisfy condi-

tions TS1 and TS2 for accessing qO if each SI, is delayed until vqO-t- 1 = is,. 0

Proof of Lemma 2.4.1 Consider operation SI, in transaction r,. Suppose that S1,

does not run until vqO+ 1 = Isi. Since

vqO + 1I ta, isi > vqO,

then delaying each S1 until vqO+ I is, ensures that the timestamp of each r, is

greater than vqO when ri accesses qO. This is what is required by condition TSI.

'Guarded Command Notation semantics specify that if B - S i executes S if started with B true
and will fail to terminate if started with B false. Since atomic operations run to completion once started,
execution of (if B -. Sfi) delays until B becomes true.

%.. .
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Now consider operation S I in a transaction - J - that runs after SI,. Note that

assignment vqO: = tsi in Si1 leaves vqO - ts, . Since

VqO + I = ts, =;- tsj , vqO,

then tsj > vqO will be true when SI1) runs. The assignment vqO:= ts, in S I ensures

that vqO > tsi after SIi runs. Since

(vqO+ 1 = tsj A vqO > tsi) -, tsj > ts,

then delaying each S1, until vqO+I = ts, ensures that the timestamp of Tr cannot be

less than the timestamp of ri when Sli runs after Si,. This is required by condition

TS2. 0

By Lemma 2.4.1, access to qO will satisfy TS1 and TS2 if vqO+ 1 I= s, is chosen as

the guard for each SIi. By a similar analysis, it can be shown that access to qI will

satisfy TS1 and TS2 if vql + 1 = tsi is chosen as the guard for each S2,. Because of the

synchronization that has been added to transactions, the conjunct

vqO = vql = clock

has been added to the consistency constraint C1 to ensure that transactions complete

when executed in isolation starting in a consistent state. In addition, the definition

• of =l has been changed to ensure that continues to satisfy adequacy constraint AC2.

This gives the synchronized database system E1 of Figure 2.2.

"5 We can now apply Method 2.3.6 to prove that E1 is serializable. First we define

shadow variables

:" ": ~VI: q O,ql,,.,..,iN-l,cfo,...,cf N-l,cl k, vqO, vq ,tso,...,is N-1

-%'-

. . . ..i , . -% -. / % S " .% * = I

'~5 ~ S. - -~ S -~S. .~ .
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I.

El V 11,C1, T1,_ 1 )
V1 = (qO, q 1, o,... ,N l ,cfo,... ,cfV -I, ,clock, vqO, vq I, tso,..,ts N  --t

SC1={q1-qO QAqO>(#:O'C1=-qI- Q qOI ?(# k: 0-k , N: cfk =false), vqO vq I clock,.,

T1I T ....;.. r' l ,"

-r=SOi: (clock, tsi:=clock -+1,clock + ;

Si,: (ifvqO+I=ts, -- z,,qO,vqO:-qO(O),qO(1..),ts, fi);

S2i: (if vqI +1 Is, -. ql,vql :=ql .z,,Is, fi);

S3,: (end(-ri))

(V1'-V1"), *(qO'=qO ' Aq l ' = q I "A A cf'=c f
0- k< N

A vqO1 = vqO" A vql = VqI" A clock' = clock")

Figure 2.2: Synchronized Database System E1

corresponding to the variables of V1 and construct shadow transactions

(clock, s,:=clock+ lclock +I),-

(if vqO+ 1 l=is, -, i,,qO,vqO:=qO(O),qO(1..),s, fi);

(if vql + 1 =is, - ql,vql:=ql.i,,is, fi);

corresponding to each -r'.p p
Next, we prove that

SDO(E1): {C1 A VI= V}

cobeginr I o . I i-4_ coend

I V _wp(&, V, I 1 V)}
&E SER(TI)

is valid. To do this, we first construct the full proof outline6

'A full proof outline is one in which every atomic operations is preceded and followed by at least one
assertion.

% -*,j -.'a - a " '% % % " • "Na ' *a q % % % % % % 
% % %
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FSDO(Et):
{ {cl A V1= T1

(CLOCKo, VQOo, VQ1O,...,CLOCKN 1, VQONAI, VQlN_1:=O,...,O);

{IA A O=VQ1k=VQOk - CLOCKk}
O<k<N

cobegin PO(r)I .. II POO"N1 ) coend

{vqO= vq1 =clock A qO= qO(N..) A q1 =ql .(qO(O..N- 1))

A A cfk =true A vqO=vql =clock=clckI+ N}
O<k<N

where each PO(rT) is the proof outline for r' shown in Fiure 2.3. In each T, auxiliary

variables[C73,OG761 CLOCKi, VQOi and VQ1i are used to record whether r has

incremented clock, vqO, and vql, respectively.

Each assertion contains the invariant

I: IOAI1AI2AI3AI4.

The first conjunct

10: cl-k = vqO= vql A (Vk: 0 < k < N: 0< VQ1k VQO,< CLOCK < 1)

Aclock =clock+ " CLOCK AvqO= vqO+ E VQOk
0<k<N 0<k<N

Avql= vql+ E VQ1
O<k<N

specifies that clock, vqO and vql remain equal, and bounds the values of clock, vqO and

' ql in terms of the values of the auxiliary and shadow variables. The second conjunct
J.

-S. Il: IqOI>N- E VQk A q01 >! N
O<k<N

A q0= q((( E VQoo)..)Aql=q l.[qO(O..( r, VQlk)-l)1

O<k<N O<k, N

bounds the size of q0 and qO and specifies in terms of the auxiliary variables the

elements that have been transferred from qO to q1. The third conjunct

0*Sq~5 ~ ~ ~ f- .. S.:,....''
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I

12: A CLOCKk 1 < clock .
0, k -- N

A A (CLOCK, 1 A CLOCKk =1) ts) tsk
05) 6k< N N11

specifies that different transactions choose different timestamps, while the fourth and

fifth conjuncts

13: (Vv: vqO<v< clock: (3k: 0<k<N: CLOCKk 1A VQOkOAvvts))

and

14: (Vv: vql<v<vqO: (Dk: 0<k<N: VQOk =1 A VQltk=OAv=tsk))

specify that some transaction rT has a timestamp tsk = v for every value v between

vqO+ 1 and clock or between vql + 1 and vqO.

The proof FSDO(E1) is a straightforward application of the axioms and rules of

Proof Outline Logic, and is omitted here.

From FSDO(EI), SDO(E1) can be inferred as follows. From FSDO(Sl), the proof '

outline

{ C1 A V1 = V1} (2.28)

cobeginr' II -N I1 r, coend

{qO = qO(N..) A q l = ql( qO( O .. N -1))A A cfk =tre }
O<k<N

,can be inferred using the Assertion Deletion Rule followed by the Auxiliary Variable

Deletion Rule. It can be shown by induction on N that

wP(MO ;.;fN-1, VI =1 T1)

= ( vqO = q 1 = clo-e A qO = qO(N..) A q1 = q- 1.(jqO(0.. N -1 ))

A A cfk = true A vqO =vq = clock lock + N),
O<k<N

= post(FSDO(1)).

K.¢
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1 A vql < VqO< clock A CLOCK, =OA VQOi =OA VQ1I, =O}

SO,: (clock, si, CLOCK,:= clock+ 1,clock 4- 1,1);

{I A vql <vqO< ts, <clock A CLOCK,= 1 A VQO, =OA VQ 1 = O}

.'. ~SI,: (ifvqO+l=tsi -,i,qO, vqO, VQO,:=qO(O),qO(1..),tsi,l fi);

{1 A vq1 < 6i <VqO< clock A zi =qO(tsi -(vqO+1)+ 7 VQOk)i O~k<N

A CLOCK, = 1 A VQO, = 1 A VQJ, =0}

S2i: (if vql I =s -, ql,vql, VQ1,:=ql zi,tsi,1 fi);

{I A ti vq1 < vqO < clock A CLOCK, = I A VQO, = I A VQ1i = 1}

{IA tai,<vql <vqO<clock A cf,=true A CLOCK,=1 A VQOi =1 A VQ1,=1}

Figure 2.3: Proof Outline PO(r').

Since ro;...; rN-l E SER(TI),

wp(M;...;FN-1, Vi V"-) = V wp(&, VO11),
'E SER(rl )

and SDO(EI) can be inferred from (2.28) using the Rule of Consequence.

Finally, we must show that execution of E1 terminates when started with C1 A V1

V1. Recall that we have assumed concurrent execution of transactions to be weakly

lair. The following lemma provides a general strategy for proving termination under

this assumption, and will be used here and in subsequent examples.

Lemma 2.4.2 (Termination Under Weak Fairness) If concurrent execution of

transactions is weakly fair, execution of any database system E will terminate if the

following two conditions are satisfied.

..
1.% . . . . . . . ,. . . .. . -,.... -,, ' .,s'... ' " " "" "0 " ? ,',..,
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T1. Every execution of E consists of a bounded number of atomic opera-

tions.

T2. As long as execution of E has not terminated, there is at least one

enabled atomic operation.

Proof of Lemma 2.4.2 Suppose E has not terminated. Condition T2 guarantees

that there must be at least one enabled atomic operation S. If no operation runs, then

S will be forever delayed in spite of the fact that it is enabled, which would violate

the assumption of weak fairness. Thus, some operation will run as long as execution

of Ej has not terminated. Condition T1 states that there is a bound on the number of

operations that can run before E terminates. From this it follows that E will eventually

terminate. 0

Thus, we can prove that execution of El terminates when started with Cl A VI=

I true by showing that execution of El satisfies conditions TI and T2 when started

with C1 A V1 = V1 true.

-Theorem 2.4.3 Execution of El satisfies conditions TI and T2 of Lemma 2.4.2 when

started with C1 A V1 = VI true. 0

Proof of Theorem 2.4.3 Since each of El contains only four atomic operations

and does not contain any loops, El trivially satisfies condition T1. Now, we show that

V1 satisfies condition T2. Suppose execution of El has not terminated. Then there

. . . . . * . . . ... ~. % . * % p , N .-- w. -
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must be at least one atomic operation S such that control point preceding S has been

reached. Suppose that S is SO, for some transaction -'. The states in which SO, will

run to completion are those that satisfy wp(SO,,true). Since

wp(SO,,true) = true,

SO, will be enabled when it is reached. Thus, condition T2 will be satisfied when SO,

has been reached.

Suppose that S1, has been reached. Note that

pre(SlI) = (I1 A VQOi=0),

=qO >0.

Thus, qO contains at least one element when Sli has been reached. In addition,

pre(S1,) (13 A vqO < clock),

(I3 A vqO< vqO+. < clock),

- ((Vv: vqO < v < clock:

(3k: 0<k<N: CLOCKk= l A VQOk =0Av =tsk))

A vqO < vqO + 1 < clock).

Since vqO < vqO + 1 < clock implies that vqO + I satisfies the range of the universal quan-

tifier in 13, the quantified expression can be instantiated with vqO + 1 substituted for

v. Thus,
U2

pre(SI,) =(3k: 0<k<N: CLOCKk=I A VQOk=OA vqO+ I =ts&)A qO .0.

It follows from the interpretation of FSDO(S21) that when execution of V.1 starts with

C1 A VI = Vi and reaches SI,, there is some r' such that CLOCKk = I A VQOk =0 '

, vqO+ 1 = tsk A jqOj >O. Since CLOCKk I A VQOk =0 implies that the control point

", before Sik has been reached and

5%

,
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( vqO+ I= i sk A Iq01 0) -wp( S I k, true ),",.

then S1 k in ' will be enabled when S1, is reached. Thus, condition T2 will be satisfied %

when S1, has been reached.

Suppose that S2, has been reached. Note that .-

pre(S2,) - (I4 A vql < vqO),

(13 A vqI < vqI + I -- vqO),

- ((Vv: vqI < v < vqO:

(1k: O<_k<N: VQOk IA VQlkOv tsk))

A vql < vql + 1 < vqO).

Since vql < vql + 1 < vqO implies that vql + 1 satisfies the range of the universal quan-

tifier in 14, the quantified expression can be instantiated with vql 1 substituted for ZIP

v, from which it follows that ,
p

pre(S2,)-'(3k: 0<k<N: VQOk .

It follows from the interpretation of FSDO(EI) that when execution of El starts with

C1 A V1 = V1 and reaches S2,, there is some transaction r1 such that QOk 1 r

VQl -OA vql+l =tsk. Since VQOk 1 A VQlk = 0 implies that the control point

before S2k has been reached and b
vql + 1 tsk 4 wp(S 2 k,true),

then S2k in will be enabled when S2, has been reached. Thus condition T2 will be

satisfied when S2, has been reached. 'I.

Finally, suppose that S3, has been reached. Since e

wp(S3,, true) true,

J.

p *F .$~P -. , . * *
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S3, will be enabled and condition T2 will be satisfied.

Thus, execution of S1 satisfies conditions TI and T2 of Lemma 2.4.2 when started

with C1 A V1 = V1 true, and consequently will terminate. 0

, 2.5 A More Tractable Method

The preceding example E1 with Method 2.3.6 is misleading in one respect. Because of

the uniformity of transactions in T1, all serializable executions of E1 leave the same

values in qO and q1. For an arbitrary serializable database system E, however, the size

of assertions in the proof of SDO(E) can be proportional to the number of different

serial schedules. If E contains N transactions, there are (N) possible serial
O<k<N

schedules, a number that quickly grows intractably large.

A more tractable method of proving database systems serializable in Proof Outline

Logic can be obtained by moving shadow transactions from the postcondition of the

proof outline into the transactions themselves. This is accomplished by constructing

an augmented system. For E = ( V, C, T,-), let E* = (V*, C, T*,-) be the database

system in which V* is the vector obtained by concatenating V and V, and T=

{r,.. .,r_l} is a set of augmented transactions in which each r,* constructed 7 by

replacing some (Si) in ri by (Si;fi).

For o* a schedule of E*, let o* Iv be the schedule of transactions in T obtained

by deleting the operations on V from o'*, and let o* I be the schedule obtained by

-: deleting the operations on V from o*. Note that o* I v is a schedule of E that transforms

variables of V in exactly the same way as o*, and u*, is the sequential composition

7 We define nested angle brackets (...(Sjk)...) to be equivalent to (... S ... ).
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of shadow transactions that contains i, if and only if r, completes in o* Iv If each 7:

has been constructed so that operation (S,;,r3 ) runs if and only if r, completes, then

the serializability of a'* Iv will follow from the equivalence of V and V after a* runs.

Theorem 2.5.1 (Schedule Serializability with Proof Outlines 1I) Let E* be

an augmented system for database system E= (V C, T, -) in which each -r has been

constructed so that (S,;iF,) runs if and only if ri completes. Let ar* be a schedule of

E*. If

SS(u): {CA V V1

is valid, then Yr V is a serializable schedule of E. 0

Proof of Theorem 2.5.1 SS(a') is valid if and only if
a'

.p'

(C A V V A wp(a"*,true)) : wp(or , V V). (2.29)
It

By Lemma 2.3.4, a* v is a serializable schedule of E if and only if

#(CA V VAwp(,*lV,true))=.wp(a' V, V wp(&,V V)). (2.30)

& SER( T)

Thus, the theorem will follow if it can be shown that (2.29) implies (2.30). This is

proven as follows.

Since V and V are disjoint, every operation of -Y'I v commutes with every operation

of o j,. From this it follows that

:wpr,* r , R) wp(o" v I Vlo , , R).,:'""

for any predicate R. Due to this and Lemma 2.3.2, (2.29) if and only if

.. . . .. . . .. . ........ . .. ..- .° .•%%°
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Zr true) ) O wp , a*,' (2.31)

By Lenima 2.3.3 and Predicate Logic,

wp(a*i ,;a' " , true ) :Y wp(, " v,,p(or*'C true)),.,

wp( 'V  true /, wp(a*'V, true)) ,

z- wp(o' " , true) A wp(o j,,true).

Thus, (2.31) if and only if

(C A V= V A wp(a*,,true) A wp(*! ,true)) (2.32)

,wp(*[V;uflj, I V )1"

Since conjunction is commutative, (2.32) if and only if

(C A V= V A wp(a*!Ip,true)A wp(a*iv,true)) (2.33)
-Wp( *lI v; *l V V).

By Predicate Logic, (C A V =V) = CY, and because a* is a serial schedule of

shadow transactions,

C -wp(* ,true).

Thus,

r(C A V = A wp(a*I ,true) A wp(r* V,true))

: (CA V= VA wp(a*V,true)).

Thus, (2.33) if and only if

#(C A V = V A wp(a* v,true)) wp(o'*V;o/,* V EV). (2.34)

By definition,

wp(a lV; 0'* ,v -V) Wp(,'* V, Wp(O -* = ))

a p-"

S..
,'U.

: .;,..: :;..'...:...',:,-'.--..-:-,'..-, ,, ,'.:,- ,-,.,.- , ,:4<- : . ,., - ,. .,: :" :. :. .:.',.ZeJy '1, _
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Thus, (2.34) if and only if

C (C A V - VA wp(o," 1 ,true)) wp(' v,,wp(o" ., V ; Vfl. (2.35)

By construction of T*, r*f I _ SER( T). From this it follows that

wP(0'jvEv)-.( V wp(&,Vl)"

&ESER(T)

and by monotonicity of wp,

wp(-V, wp(t ,VV) wp(C*v, V wp(&,V:V))
&ESER(T)

By Predicate Logic, if A' is obtained from A by replacing some occurrence of B by

B', and B =. B', then - A A'. If .4 =. A', then = A implies 6 .4'. From this it

follows that (2.35) implies

(C A V V A wp( I v,true))e wp(, v, V wp(&, vV). (2.36)
ESER( T)"

By identity, (2.36) if and only if (2.30). 0

Theorem 2.5.1 can be extended to obtain a tractable proof outline whose validity I,

:W-

implies that every schedule of E is serializable. "1

Theorem 2.5.2 (System Serializability with Proof Outlines II) Let E be an

ikugmented system for E in which each r* has been constructed so that (S,;-F,) runs if

and only if r, completes. E is a serializable system if execution of E* terminates when

started with C A V = V true and

SD(EV): {CAV~v}

cobegin 7- " rk, coend

...... .. _...... ... ..... ....... .... .... ... ---. , , ... .-. -|
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is valid. 0

Proof of Theorem 2.5.2 Since variables V do not occur in transactions of E, exe-

cution of E terminates when started with C true if execution of E* terminates when

started with C A V V true. The interpretation of proof outlines and the semantics

of cobegin imply that SDI(*) is valid if and only if

SSI(o{*): {CA V= Vji{VV}

is valid for every schedule a* of E*. By Theorem 2.5.1, the validity of SS1(or*) implies

that a* v is a serializable schedule. Since every schedule a* v is a schedule of E, the

validity of SDI(E*) implies that every schedule of E is serializable, and the theorem

follows by Definition 2.2.2 of a serializable system. 0

Theorem 2.5.2 serves as the basis for a simpler method of proving the serializability
'U

of a database system.

Method 2.5.3 (Proving System Serializability II) To prove that a system E

(V, C, T,=) is serializable:

1. Introduce Shadow Variables and Transactions. Define shadow variables

V and construct shadow transactions T corresponding to the variables V and

*,and transactions T of E.

2. Form Augmented System. Construct an augmented system E*

(V*,C, T*,=) in which one operation (S,) in each r, T is replaced by (S,;,)

and F, runs if and only if T, completes.

3. Prove SDI(E*). Prove that

Id
~~~~~~~~. . .. . . ......"• ........ 'U"'. -" ' """"o
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SD(E*): {CA V=VJ

cobeginr T . . r coend

is valid.

4. Prove Termination. Prove execution of E* terminates when started with C

V=1' true.

0

2.6 Examples of the Second Method

We now present two examples that use Method 2.5.3 to prove serializability. In the

first example, we give an alternate proof that El of Figure 2.2 is serializable. In the

second example, we prove that replacing equivalence relation -O of YE0 by one th.:

reflects the semantics of a different application results in a database system that is

serializable without any synchronization at all.

2.6.1 An Alternate Proof of Serializability for -1

As the first step of Method 2.5.3, we define shadow variables

VI: q,ql,4 ,... N- 1 , cf 0 ,...,CfN- ,clock,vqO,vql,tso,...,tsN 1

corresponding to the variables of V1 and construct shadow transactions

N -V,
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I/"" V .I -C1, T1

vi.

T*

-* SO,: (clock, ts :clock 1- 1,clock + 1; );

Sli: (ifvqO+l tsi -z, qO, vqO:=qO(O),qO(I..),t sfi

S2i: (ifvql + I si - ql,vql :q Izi,,ts, fi);

53i: (end(<*))

Figure 2.4: Augmented Database System E-1" r

,(clock,ts, :=clock +l,clo-ck +l) I

(if v qO+ = i -- i,qo,v qO:=0(0),b(l..),t ,fi); f.,

ifv ql~i +I - -, qi 4-:1 l. 1,, fi);,,

(end(fi!))

corresponding to each r.

Next, we construct the augmented system Vl* of Figure 2.4. Each r: is constructed

from rT by replacing SOi with (SO,;-,). In this position, shadow transactions will

execute in timestamp order. By our assumption that transactions always complete,

SOi is reached if and only if ri of E1 completes, as required.

Next, we prove that

SDI(EI*): {C1A VI=V1}

cobeginr* "'I r_ coend

{ V=1 V1}

is valid. To do this, we first construct the full proof outline
: f-|
a €'f 1

"°,4 d ,€I

'f

• .. ... .. -.- - ...- :-.-- -., .:.- -.. . - . - . - - - '... :-: ,* "tj "-=.'; , " -
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a '

FSDI(El*):

vLab 1, CLO CKo, VQO o , VQ1, ... CLOCKN_, VQON , VQN I
:= I ql I .. , )

I{A (Vk: O~k<N: 0-- volk= vook = C L O c K k ) }

cobegin PO(r)11. PO(ren o ) eoend
{ qO = qO Aq l=q lA A c-fk =cf k A vqO = vqOA vq I =vq l A clock = clock

0O k - N

where each PO(-r,) is the proof outline for 7-* that shown in Figure 2.5. Auxihary

variables CLOCKi, VQOi and VQ 1, are used again to indicate when r,'has incremented

clock, vqO, and vql, respectively, and an additional auxihary variable LQ1 is used to

record the initial length8 of q1.

Each assertion contains the invariant

I: IOAI1 AI2AI3AI4.

Here, the first conjunct

10: clock=vqO vqlA(Vk: 0<k< N: 0< VQlIk VQO&< CLOCKk 1)
Aclock =clo k A vqO+ CLOCK k =qO+ 7 VQOk

O<k<N O<k<N

Avql+ i CLOCKk =vql+ j VQ1 k
O<k'zN 0<;r N

specifies that clock, vqO and vql remain equal, a result of executing shadow transac-

tions atomically, and bounds values of clock, vqO and vql in terms of the shadow and

auxiliary variables. The second conjunct

ONote that consistency constraint Cl does not imply that initially q1 is empty.

..
V.
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/I: q0 ~N- V "Qok/ O! -N - Z CLOCKk
0- k<N 0<-k< N

ALQ1>-OA~qll=LQI+ ZCLOC'k
0< k N

AqO=1,ql((LQI+ V' VQok)..)q -4-

0<k< N

O~k<N

bounds the size of sequences qO, JO and qi1 and specifies in terms of the auxiliary

variables the elements that have been transferred from qO to qI. The third conjunct

12: A CLOCKk =1 =>tk<cock
0<k< N

A A (CLOCK-I=1A LCk=);,t ts
0<1 k< N - CO~~)-s~

specifies that different transactions choose different timestamps, while the fourth and%

fifth conjuncts

13: (Vv: vqO <v <clock: (1k: 0O< k< N: CLOCKk I1A VQO=0OA v tsk))

and

14: (Vv: vql < v <vqO: (3k: 0< k <N: V'QO&I1A VQ~k =0OA tsk))

specify that there is a transaction rk with timestamp tsk v for every value v between

vqO +I and clock or between vql -I+I and v9O.

The proof FSDI(El*) is a straightforward application of the axioms and rules of

Proof Outline Logic, and is omitted here. SDl(El*) can be inferred from FSD1(ElI)

using the Assertion Deletion Rule followed by the Auxiliary Variable Deletion Rule.

Finally, we show that concurrent execution terminates when started in a state

satisfying pre(SDl(ElI)). This proof is exactly the same as the proof of termination

in Section 2.4, so we will not repeat it here.IN

A

%-% V % %

% % % %'
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{I A vqlI vqO< -clock A CLOCA', =0 A I'QO, =0 A I QI, =0}

SO,- (clock, tsi, CLOCA'i:= clock+ 1, clock+ 1, 1;i

{IAvql<vqO~ts<clockACLOCA'=AQO,OAV'Ql,=Acf,=trueI

SI,: (ifvqO±1 is, - z,qO,vqO, VQO:=qO(),qO(I..),ts,l1fi);

{A vql < tsi: vqO< clock A i =-~I(LQI +tsi-(vq-+-)± Ej VQOk)
O<k<N

A CLOCK, = 1 AVQO, = 1AVQ, =Af i= true}

S2i: (if vql+ 1 = Is, -* ql,vql, VQI, :=ql -z,,ts,,1 fi);

{I A ts, vql < vqO < clock A CLOCK, = 1A VQO =1IA VQ1 =I A cf , = lrue}

S3i: (end(-r))

{IA tsvq1 vqO~clockA CLOCK=1 A VQO,1A VQ1,= A chf,} -,

Figure 2.5: Proof Outline PO(-ri).

2.6.2 Sequence Variables with Set Semantics I

Database systems in which variables are instances of abstract datatypes are considered

in [55841, where it is shown that by ignoring parts of the state that do not produce

visible differences in the values of the abstract datatypes implemented, a larger set of

schedules can be considered serializable. This view of serializability can be formalized in

our system model by using the equivalence relation. We illustrate this by considering

the transactions of the database system a2 described in Section 2.1 in a context in

which sequence variables qO and q1 are viewed as implementing sets.

Recall, BO models an application in which a series of independent events move

elements of qO to qI. Suppose qO and qI are treated as unordered collections instead

of as queues. Database system 'M of Figure 2.6 models this situation. Note that the
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r2 v2, C2, T2,- 2?
V2 = (qO,qI,zO,... ,ZN_ ,cfo,.. ,efN-1)

C2-({qO} U{ql} Q A IqO (# k: 0<k .N: efk false)),
T2 = { TO0, ... rN _ 1}

"r Sli: (z,qO:=qO(O),qO(1..));

S2i: (ql:=ql.z1 );

S3,: (end(r,))

(1V2' =2 V2") , ({q0'} = {qO"} A {ql'} {ql"} A A cff cfj')
O<k<N

Figure 2.6: Database System E'2.

variables V2 and transactions T'2 of E2 are the same as VO and TO of YO. However,

the consistency constraint CO of EO has been replaced by the weaker constraint

C2: {qO}u{ql}= Q A qOI>(#k: O<k<N: cfr,=false)

and the equivalence relation =0 has been replaced by the weaker relation

(V2'- 2 V2") ({qO'}={qO"} A{ql'}={ql"} A A cf =cf")
O<k<N

to reflect that the order of elements within qO and qI is no longer significant.

For any initial state satisfying C2, any schedule a" of T2 will leave a consistent state

in which qO and q1 contain the same elements as they would after some serial schedule

o, although o and o t might order the elements of qI differently. Consequently, every9.

schedule of '"2 will be serializable under Definition 2.2.1, as is easily proven using

Method 2.5.3.

First, we introduce shadow variables

V2: (qO,ql, o,...,iN-IlCfO,...,cf N-l)

/W
I

' ._. . .. ......... ,.. - . ., - ... :x ","¢'- : :,- Z ', ;- , 5: ; 4
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Xw2 K V2*,C2, T2*,2)

V2°  V2- 2

f2 = qil ,.,N 1 O ..  ,c I No l), d

T2" = , ......k } .
r,= Sl,: (z,,qO:= qO(O),qO(1..);;F,); .'

S'2,: (ql:=ql.xi); 2

S3,: (end(Tr2))

Figure 2.7: Augmented Database System -2*.

and construct shadow transactions

f,: (-ij,qO:=qO(0),qO(1..));

(ql:=ql-z,); ,

(end(fi))

for each ri, of E2.

Next, we construct augmented system -2* of Figure 2.7.

Next, we prove that

SDI(E2*): {C2A V2=V2}

cobeginro fl *.. fl r coend

{V2 -=V2)

jB valid. This follows by the Assertion Deletion and Auxiliary Variable Deletion Rules

from the validity of the full proof outline

-m "tI
. ",, ,zzC% "- J..*%p\~%mq>j.> ~ ..
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PO(r,'): {I D {}}
Sig: t,,qO,D:=qO(O),qO(1..),{qO(O)};-F,,;

I 1 /- 1 D. 1rj3 tue}

S2,: (ql,D,-=ql.z,,{});

I A D, A{} A true}

S3,: (end(-r))

{l A D,={} A cf,=cf,}

a, Figure 2.8: Proof Outline for PO(<r*) for r,* of N'2*.

*,. FSD I(-"2):

{ C2 A V2- =v2}~~~(Do,... ,DN-1 {}. }\

{I A A Dkz{}}
O<k<N

cobegin PO(-r6) 1 1 I PO(r7 _1 ) coend

I {{qO ={ } A {ql ={(i} A A cfk= }fk}
o<k<N

where each PO(7-") is the proof outline for -r< given in Figure 2.8. Auxiliary variables

D, have been added to indicate the elements of Q that have been deleted from qO but

not yet added to q. Each assertion contains the invariant

I: qO=qOA({q1}U U Dk)={q 1} A jqO-(#k: O< k - N: cik -false).
0<k< V

,7The proof of FSD1(E2*) is straightforward and therefore is omitted here. From

FSD I(E2*), SDI(E2*) can be inferred by applying the Assertion Deletion Rule followed

by the Auxiliary Variable Deletion Rule.

Finally, we must show that execution of 2* terminates when started with C2 .

V V2 true. To do this, we use Lemma 2.4.2, which states that under the assumption

5-a.- .,' % - ':at - -
-- ", * - 1 .. ... a' = '4. % -% v a *;. **%
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that concurrent execution of transactions is weakly fair, execution of l"2* will terminate

if conditions TI and T2 are satisfied.

Theorem 2.6.1 When started with C2 A V72 - 2 true, execution of !2* satisfies con-

ditions TI and T2. 0
'I.,

Proof of Theorem 2.6.1 Since each r| of V_2* contains only four atomic operations

and does not contain any loops, execution of _2 trivially satisfies condition T1.

Suppose that execution of Y"2* has not terminated. Then there must be at least

one atomic operation S such that control point preceding S has been reached. Since

FSDI(-2*) is valid, pre(S) will be true when S is reached. Since

pre(S) -' wp(S, true)

for every S in FSDl(E2*), then S will be enabled when it is reached, and condition

T2 will be satisfied.

2.7 Incompleteness of the Second Method for
Proving Serializability

The characterization of serializability in terms of proof outlines given by Theorem 2.3.5

is complete. This is because the property that database system E is serializable is

equivalent to the properties specified by the theorem's hypotheses, namely (i) SDO(E)

is a valid proof outline and (ii) execution of E begun in a state satisfying pre(SDO(E))

is guaranteed to terminate. Because it is derived from Theorem 2.3.5, Method 2.3.6

for proving the serializability of database systems is complete relative to the method

with which validity of SDO(E) and termination of E are proven.

IIV

•z,.

ma'. •4." . . ." ' ' " ' "'"" " '" " "%% " '' % % ° " '"% '"%°°
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E3= V3, C3, T3, _ 3)

V3 = z0 , zl,z 2 ,x 3 ,rz0,rl,rz2 ,cf0 ,cf 1 ,cf 2 ),

C3 = true,

T3 = ro, 7-, r2

r,=Sl,: (rx,:=z,);
S2,: (xi+l :=rx, +1);

S3,: (en (,,)

(V3' 3 V3") * ( V3' = V3").

Figure 2.9: Database System E3.

In contrast, the characterization of serializability in terms of proof outline that is

given by Theorem 2.5.2 is not complete-there are serializable database systems E for

which it is not possible to construct an augmented system E* such that SDI(E*) is

valid. For such systems, it will be impossible to use Method 2.5.3 to prove serializability.

An example of such a system is E3 of Figure 2.9.

E3 is serializable, but there is no way to construct an augmented system _3* such

that SDI(E3*) is valid. To see this, assume the contrary. Thus, assume there is an

augmented system _3° for which SDI(E3*) is valid. Consider the schedule

o,7*: Slo;Sll;S20 ;S3 0 ;S12 :S21;S3 1;S2 2 ;S3 2

of -3". In a7, note that SII, which reads zl, precedes S2 0 , which writes Z1. Conse-

quently, rz1 will be left holding the initial value of zl. Likewise, S1 2 , which reads z2 ,

precedes S21, which writes Z2, and so rz2 will be left holding the initial value of z2 .

From the validity of SDI(E3*) and the interpretation of proof outlines, it follows

that

r .
t•- . .- . .. -. . - -. - -C¢.. - - ., , .¢ ; -. ,,,,, . .,,,,. - .. ,, ,. '.' ';.,,- ":':,'':''-'-'''..
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{C3 A V3 v3} 7 {V3 v3} (2.37)

is valid. This implies that shadow transactions r0, -rl and F2 in or7* run in an order

that leaves i t and iz 2 storing the initial values of i 1 and i 2, respectively.

Since the last operation of r precedes the first operation of -r in u7", fo will run

before 2, regardless of how the augmented system E3* is constructed. Thus, a7* f, -3

must be one of the schedules 7"0;" 2 ;"1 , 7"0;7"1;"2 or 7"1;7o;"2. In the first and second

cases, i1 will be left holding a value one greater than the initial value of i 1 , while

in the third case, Fz2 will be left holding a value one greater than the initial value of

z2. This contradicts the values of ii and i 2 inferred from the validity of SDI(E3*).

Thus, SD1(E3*) cannot be valid.

Incompleteness of Method 2.5.3 arises because shadow transactions can model only

limited serial behavior when they are used to construct an augmented system. In

any schedule o,* of an augmented system E*, each shadow transaction -F, runs during

execution of the augmented transaction -r* that contains it. If -r* and -r" do not

interleave with each other in o'*, then the order in which Fi and "Fj run will be the

same as that of T" and r.. For this reason, the proof outline SDI(E*) of Method 2.5.3

specifies that every schedule a of the original system E behaves like a serial schedule

a, in which the order of transactions is consistent with the order of non-interleaved

transaction in o'. Database system E3 demonstrates that not every serializable database

system satisfies this property, and consequently not every database system can be

proven serializable using Method 2.5.3. In spite of this, the tractability Method 2.5.3

compared to Method 2.3.6 makes in preferable in situations where it suffices.
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2.8 Discussion

2.8.1 Comparing System Models

By constructing transactions from appropriately chosen atomic operations, the system

model presented in Section 2.1 can model any of the database system models described

in Section 1.3. For example, a system implementing read and write operations such

as those used to construct the transactions of Figure 1.1 can be modeled by using an

atomic operation (t:=a(i]) to denote each read operation r(a[i],t) and (a[ij:=e) to

denote each write operation w(a[l],e). U_

Explicit synchronization is represented in our database system model by includ-

ing synchronizing operations among the atomic operations from which transactions

are constructed. Implicit synchronization is modeled in one of two ways: either by

introducing a scheduler process to which transactions make operation requests, or by

modifying transaction operations to perform the function of the scheduler themselves. - -

This second approach was illustrated in Section 2.4, when the synchronized database

system El was constructed from EO.

2.8.2 Comparing Definitions of Serializability

In Section 1.3, we divided definitions of serializability into two classes, those character-

izing schedule behavior in terms of conflict relations and those characterizing it in terms

of state transformations. Definitions 2.2.1 and 2.2.2 generalize in two ways definitions

in the second class. One generalization results from the inclusion of the equivalence

relation for database system state equality. This allows various criteria by which previ-

ous definitions of serializability compare system states to be represented. For example, S

A
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-= V4, C4, T4, = 4 )

V4 = (x,y, b, z,cfo,cf),

C4 = (z + y = 1000),

T4 {-ro, }"
7 0  A1: (if b - y:=y+17O-1-b - z:=x-17fi);"

A2: (if b - z:=z-170 -b - y:=y+ 17fi);

A3: (end(-o))

- iB I : (z:= z);

B2: (end(tr))

(V4' =4 V4") z =z 1 A y' y A b' b" A z' z" A cfO cfd' A cf=cf') .

Figure 2.10: Database System E4.

final-state serializability can be represented by Definition 2.2.2 by choosing so that

V E V" if and only if V' and V" agree on the final values of every shared variable

of the system; view serializability can be represented by adding auxiliary variables to

transactions to record the value obtained by read operations and choosing - so that

WE V" if and only if V' and V" agree on the final values of both the shared variables

and the added auxiiary variables.

A second source of generality in Definitions 2.2.1 and 2.2.2 results from the use

of wp to compare the way in which schedules transform the system from one state

to another. A schedule that is final-state or view seriahzable is required to "behave

like" a particular serial schedule; a schedule serializable according to Definition 2.2.1

is allowed to "behave like" different serial schedules depending on the initial state. To

S.

I,
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o

see this, consider 1 4 of Figure 2.10. In particular, consider the non-serial schedule

a"8: A1;Bl1B2;A2;A3

of r0 and Tr.

The two possible serial schedules of FA are

a"9: A1;A2;A3;B1;B2

and

o10: B1;B2;A1;A2;A3.

Schedule cr8 is neither final state nor view serializable because neither cr9 nor or10

individually produces the same final state as a"8 for every consistent initial state. In

particular, cr8 produces different values of z depending on whether b = true or b = false

initially.

According to Definition 2.2.1, cr8 is serializable if and only if

I (C4 A wp(0r8, V4 4 4)) z=. (wp(cr9, V4 4 V4) V wp(a"10, V4 4 174)). (2.38)

Computing wp(0.9, V4 =4 V4) and wp(0 10, V4 = 4 V4) using the rules of Appendix B
4"

gives

wp(or9, V4 = 4)

=(z -17= A y+17 = A b= b A z -17= z A true =cfo true =cfl )

and

wp(rlO, V4 =4 -V4)

-=(z - 17=i A y +17=j ~A b 6 A z x A true ccc 0 A true cccf 1 ).
CV 4

' Computing wp(cr8, 1(4 -- 1/4) gives

.
-'S . ,. . . , ,. . , ._ _........, . . ,-. .. .... ,-.,.,-. . .......... ....... '... .. :. . ...

.,' "" " " '" " "., .' ' ' ' ."l' ' ' ; ' " % ' I . . 1 I 1
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wp(o'8, V4 4 V4)

[(b =- (x -17 = A y + 17 = b A x =- true cf0 ,true =cfI)

A ( -~b (x - 17 = i A y + 17 b ' b x z 17 = A

true c 0 A true : Cf1 )1,

(b -:; wp(alO, V4 = 4)) A (-b wp(oa9, V4 E 4 4)).

For any predicates P and Q, it follows tautologically that

C4 A(b =, P) A(b= Q) I P v Q].R

Taking P to be wp(alO, V4 4 V4) and Q to be wp(a9, V4 =4 V4), (2.38) follows triv-

ially. Thus, a8 is serializable according to Definition 2.2.1.

One previous definition of serializabifity that is similar to ours can be found in

C811. Like Definition 2.2.2, the definition of [C811 characterizes system behavior by

the way in which the system state is transformed. Our definition and that of C81_

also share the property that final states are compared using an equivalence relation on

states, although the equivalence relations that can be specified in [C811 are limited to

those having the form

(7 17= ") .( U' U") "

for some vector of variables U containing a subset of those appearing in V. subset of ,"I
those that can be specified in our definition.

'

However, a more significant difference between the two definitions of serializability

is in the formalism chosen to describe the way in which concurrent execution trans-

forms the system from one state to another. Instead of using wp to describe program 'a

semantics as we do here, the definition of ('81 uses an extension of Dynamic Logic

FL79,H791 called Concurrent Dynamic Logic P87 to reason formally about concur-

a.

S.

I.

E' a" ,$~q~' P d ' aa' a'a ~ ,., , a p . a '~% ~ ~a'~" ' ~' VaP *f~* ~aa' 'Va
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rent program semantics. The main advantage using wp in Definitions 2.2.1 and 2.2.2

is that it provides a better foundation for translating Definition 2.2.2 into Proof Out-

line Logic, and Proof Outline Logic is more familiar to programmers than ('rcurrent

Dynamic Logic.

NN

-.5,

!-.

4:..
4.

-'5,

'4"0 ]



Chate 3,- --

Deiin okigPotcl

VaigM t m 16-rM t-d27 ipe ~'" lt4 a

C n hapo ater 3, lutati,-r- 0'pl

iDer- iv ting Locin Protocols - dril- -,

S.. I~sy hins \in , 2.1atmi Wh trar~t~ t *W III'2a r. a a*a~&r ~~r.

&srtii al i, art Itizn.tIii -,f 114 pr.'. i , ft pr ."er e .'

t-) 'i) J - L It rd ) 1 11 k ti a pr r. i :..t, .s ~ Vjei , . 1 , I~t., *i ,.,'

a,; I



a - - - - -- . %

a 71

3.1 roof of oncurentProgams

ro

3.1lfif/dwt Proofs ofde Conurrent Programsln LgcinApedxA

dlJiI -, .i ills (yti .pr eo mirstexai ehw pofotie o ocretpo

kP0,\ ~Q cobgin M r,,d/? j3!)l on R112

lI I r'' I hI Iin I.iie t)i H isl In qfprr d , tdWl)etep i rst, thiae cobe i Rti lef,,

0 Ppill It atifull pr of),,tlr

Io vgl ,.-.e F,, 4 efi, I t ~irei ti il apjilir k f4, *jCrEi9- tierirlil hrIi firsi

I,..-v to. If P~. 14i ,~ j I i s ,iir

P ~ y~ 'If A.



C'
72

H3: (post(P0(T0 )) A ... A post(PO(TV 1 ))) R.

The last hypothesis of the cobegin Rule is called interference freedom fOG761. For a

an atomic operation and A an assertion in FPO(E), a is parallel to A (denoted a !! A)

if a occurs in one transaction and A occurs in the proof outline of another. Interference

freedom ensures that no atomic operation invalidates an assertion to which it is parallel:

H4: (Va,.4: a '' A: NI(a, A): {pre(a) A A}a{A}).

When NI(a,.4) is not valid for some a parallel to A, we say that a interferes with A.

A full proof outline satisfying the hypotheses of the cobegin Rule can be con-

structed by a step-wise derivation in which sequential proof outlines are chosen to

satisfy some of the hypotheses initially, and are transformed in a series of steps until

they satisfy the remaining hypotheses 'SA87'.

Method 3.1.1 (Deriving Full Proof Outlines) To derive a full proof outline

'1I',1 { cobegin POfr) PO(r- I) coend{R}

that atishes the hypotheses of the cobegin Rule, do the following.

,." I Construct Sequential Proof Outlines. ('onstruct valid sequential proof out-

lines POr 0 ). PO( rN I) in satisfying hypotheses HI and H2.

2 Eliminate Interference. While hyp,,thsis H I remains unsatisfied, do the fol-

l a jlumerate and check the interfernce freedom formulas.

I ( h,,o,.se an invalid .N'I(,, 4) for ,i in P0r,) and .4 in PO(r,) and do one of

"5 " the ftillowunlg

- 'I

.

J.b
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e Strengthen pre(a). Replace pre(a) by a stronger assertion I pre(a)'

such that the interference freedom formula {pre(a)' A A } a I A } is valid,

strengthening assertions that precede pre(a)' as necessary to ensure

that PO(7r,) remains valid.

* Weaken A. Replace A by a weaker assertion 2 A' such that the interfer-

ence freedom formula {pre(a) A A'} a { A'} is valid, weakening assertions

the follow A' as necessary to ensure PO(rj) remains valid.

3. Check that the resulting proof outlines satisfy hypothesis H3.

3.2 Interference and Synchronization

"d Even when PO(E) of Equation 3.1 is not valid, it is often possible to derive synchro-

nization that ensures that PO(E,) is valid by examining where constructing FPO(..)

with Method 3.1.1 fails.

It will always be possible to construct proof outlines PO(-ro),...,PO(rN-1) that

satisfy hypotheses HI and H2 as specified by the first step of the method. Suppose

-that in the second step, an invalid triple NI(a,A) for a in PO(r) and A in PO(rT)

is discovered. Two options are available: replacing pre(a) by the stronger assertion

pre(a) A (-IA V wp(a,A)) or replacing A by the weaker assertion A V post(a). However,

the other hypotheses of the cobegin Rule effectively limit the strength of pre(a) and

ipre(a)' is stronger than pre(a) if pre(a)' ' pre(a) and pre(a) A pre(a)'.
2 A' is weaker than A if A : A' and A' A A.
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the weakness of .4.
In particular, hypothesis H2 limits how strong pre(PO(r,)) can be made, Because

HI requires PO(r,) to remain valid, the strength of prr(PO(r,)) effectively limits the

strength of pre(a) and other assertions that follow prr(t'O(r,)). In a Millar Iiarilier.

hypothesis H3 limits how weak post(PO(r)) can be made, and consequently how weak
'a

A and other assertions preceding post(PO(r ) ) can be made. Because of these hinita-

tions, it is possible to reach a point in Method 3.1.1 at which an invalid interference

freedom formula NI(a,A) has been identified, but pre(a) cannot strengthened or .4

weakened enough to ebminate this interference without making it impossible to satisfy

one of the hypotheses HI through H3.

Such conflicts can be overcome if a method of selectively strengthening assertion

can be found. With such a method, pve(a) could be strengthened enough to eliilji

nate interference while assertions that precede it are left weak enough to) ensure that

other hypotheses remain satisfied. Likewise, A could be riade weak enough to ehum

nate interference while assertions that follow 4 are strengthened to ensure that other

hypotheses remain satisfied.

In the remainder of this chapter, we will demonstrate how locking can be used to

implement synchronization required to do this. We first show how locking can be used
t*1

to ensure that concurrent execution of transactions preserves a certain type (if invari

ant, called an ezclusoun invariant. We then show how the problem of strengtheing

assertions selectively can be reduced to one of preserving invarants of this type

%3

p ~ .%
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3.3 Exclusion Invariants

A locking protocol A can be specified as a triple !, L('. R , where .f is a set of hW k

modes, LC is the lock conpatibility relation on these mides, and R is the set ,f rules

that transactions must folow when acquiring and releasing locks A lock with ,node

Al"' is denoted fiM . Locking protocols described in the literature often use locks that

are associated with system variables. In read-write locking protocols, for example, each

read or write lock is associated with a particular variable or set of variables. Locks

associated with variables can be formulated in our notation by including associated

variables in the mode of the lock. For example, read and write locks on z can be

denoted I R(a)J and t W(s), respectively.

The set of locks held by a transaction r, is denoted ls,. Lock compatibility relation

LC is a predicate on the lock sets of the transactions of S. To add locks to Is,, rs

acquirrs them with the operation

acq( t M01-. !,fI)

and to remove locks from Is,, r, releases them with the operation

relt tf

M 0 ''.. MiI

The predicate

is true if and only if T, has acquired locks tfMoi'..,tM1 but not yet released them.

A database system synchronized wih a locking protocol can be denoted by a pair

E)'A,. Here, A (M,LC,R) is locking protocol and E V,C, T,-) is a database

*1* , % . , - b ' ' " % " """%., "°"% . ,
' "

'• , . "a .a~, -. . -



JP

systenil sucrh that V contains the lock set Is, for each tranlsactlion 7-0, F' C' , L(C ankd

eah tra n~sactio ,t t , TF folh w s the rules f R ,i,"

i(

I'he loc, l . ta t r f a tra n sact ion r, s the pa rt ,f th e 4Y,'ste uin sta te th a t ,t l yV r 1 ,a nlI

niod fy F r exa ml ple, varables that only r, (an m nod fv ar e" ,c, m p on, ents ,f the h,,cal.-

state of r,. as s the value f the pr ogram c unter ,,f r , A. pred ic'ate L P' is local t,, 7. '

if LI P , asi predicate on the o cal1 state of r. I,

A\n e'clu.noa invariant is a predicate o)f the f()ri i

3.

where Ll. arid l.¢ are predicates local to different transactions r, and rP, respectively. -

Locking implements synchronization that prevents sections ,of different transactions

,ar he used t,, preserve exclusion nvarints Th'lis is accom plshed by givling Illodes a ndt

rules tan t couple tie 1, 1 state f transactons to te sets f l o ks they hold, an( lockii

e rpatibility relations that provid the ue following theore

suggests a way to do this.-'

Theorem 3.3.1 Let LP and p a l be local predicates of transactions r, anti 7, ,f E'- ,  "'...-

anti let " ,0" and " M I be modes of the locking protocol k f p a ' slten -

L P -* I, -) t IM01} :3

L Q Is a predite (14)caef

arid Ia

,(Is, ( tfM of 01 A s --) {tj M I I ( 1.5 ) %

,w.
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imply

(LP I LQ).

,C360

Proof of Theorem 3.3.1 By Predicate Logic, (3.3) and (3.4) imply

(LP A LQ) .(l 1, -, 1,{ M o} Is, {tMI }). (3.6)

Since .4 . 8 if an( only if B A, (3.6) implies

(Is, {MOl ?, Is) { {1Mj M ) -:  (LP LQ).

From this it follows that (3.3), (3.4) and (3.5) imply

(LP 'LQ)

From Fheorem 3.3.1 follows a method for using locking to guarantee an exclusion

invariant.

-Method 3.3.2 (Guaranteeing Exclusion Invariants) Let 1- be a database sys

tern synchronized under locking protocol A M,LC, R. and let LP and LQ be local

predicates of transactions r, and r,, respectively, of E. The transactions of E can be

synchronized to ensure that

X.: (LP A.LQ)

. . . . . . . . . . . . . . . . . . . . .
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remains true by doing the following.

1. Introduce Lock Modes. Add new lock modes "M0" and "MI" to if.

2. Strengthen Lock Compatibility. Strengthen LC so that

a.
LC -'(I m I eMJ A i -ferMlI}YH

3. Strengthen Rules. Add rules to R that ensure that

LPI: LP -c'Is, {t[M0,

and

'a
L Q1: L Q -I s t~l

° a

remain true at all times.

J.5

3.4 Using Locking to Strengthen Assertions
Selectively

We now return to our original goal, which was to synchronize transactions so that an

-assertion P in a proof outline PO(r,) can be strengthened selectively. Without loss

of generality, assume that P is to be replaced by a stronger assertion P1 such that

P' z-. (P A B). For certain choices of B, the problem of replacing P by P' can be

reduced to one of guaranteeing a set of exclusion invariants, as we now show.
p

Lemma 3.4.1 Let -

P
St.

,. -- -i -,, ',. ",'. ~.-"- ",', " '. ".'.* y .'V *",", ', ," " ', '%. , N .: .4< ': ',,P "€ '' ' :'
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FP0(E): {Q~cobegin P(U~) - PO(-r.wI)coendJR I

be a ful-l proof outline for a database system E and let P be an assertion In one of the

P0(r5 ). Let LP be a predicate local to -r, such that

*P -,LP (3.7)

and for each 0 _ j i -N let L Q) be a predicate local to 'r) such that

P-.B v V L Q,). (3.8)
0, jfa N

Then

(P,,, A -(LP ,LQ)) (P AB).

0O ),to, N

Proof of Lemma 3.4.1 From (3.7) and (3.8) it folows that

P . (LP - (B V V LQ,)). (3.9)
O', as< N

Since conjunction distributes over disjunction, (3.9) implies

P -:-((LP AB) V V (LP ALQ1)). (3.10)

Because

- ( V (LP ALQ))4-*- A -'(LP ALQ))
O ) 0O'j;s- N

and because disjunction is commutative, (3.10) is equivalent to

P J'( A - (LP A LQ))) v (LP / B)). (3.11)
O< ,ta< N
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By Predicate Logic, (3.11) is equivalent to

(P A (LP L ft P H),

from which it follows that

(P ' A (LP [Q))i H 3 2"

Because P appears in the antecedent f 1 121 an P P. 3 121i

P

(P'AI A (LP LQ)) ( -P B
0- pt I, N

Provided local predicates LP and L ) Natisfying hypotheses (3 71 and , . at, t-

found, Method 3.3.2 can be used to strengthen P with each of the exclusion invari et.i

(LP LQ1). The resulting assertion I" will iri ply / A 1' 1 1 aI "

therefore by Lem m a 3.4.1 will satisfy P' ( P H I [his gies the f,ll,,i 'Kni tth,t .'

for using locking to strengthen assertions.

Method 3.4.2 (Selectively Strengthening Assertions) let

FPO(E): {Q}cobeginPO(ro) PO(ryv I coend{R-

be a ful proof outline for database system 1 and let P be an assertion in one of the

PO(r,). To strengthen P to an assertion P' such that P' P B), do the following
re

1. Choose Local Predicates. ('hoose a predicate LP local to r, such that

P LP
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P' H. V I Q1 )

2 Guarantee Exclusion Invariants. Mec 1tthu)i .1 .3 2 ssteihi \.Kt

,rit-i ,l i cIt h(fr pat I i ti t ti ei aila t. ,dk J' d' A~ IV&.- I, Q,-i S e h'

MethodlethuI I 3.4. (Derin Synchroizjatio ritfr Sriaiaiiy I~ ie trictriar

..ertia5INiza i- 'i'il f~~r prutizt her~ihlt f45~db~C'~,tri \eh.

'2 ethd 3. ad.3 ariable SynTrnsac os )ralsaiay 1 r~t d.11

stiadow traibctionis T correspotidiiig to tIe~ % arialiles I arid aiid t rdii~. s tiit, I

T Form Synchronized Augmented System. ('oistruct all atigtri tedf Nstvin

Ve.
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cobegin Ir), N) coend

dConstruct Sequential Proof Outlines. ( ''ristruct .aid proaf outlies

Fli gninat e Itterference. \iii he a.a Ii~ I rermdjii, uiiatishevd, do the

1- i-i ertA all - ieai . 'r rtefeeia freteaio s i -rmiulabs

?i. *-.. ti i &~jt I I a 4~ ,r 1 ii '() danld 4 in1 1 Ir arid do

*Strengthen pr? If p~sdirTpilae pryk by stroniger asser-

'ItnT pv't, .u. uati that prtit 0,ot I INi vatid, strenigthening

4!z.srrt it a thIat ;rea'etie prv(t, e-ii I C Iaul th at P0 7, ) remains valid

r-quired k) h~i III kut niot eniough that hypothesis H 2 is

ivadidated If h pa at hes, III anid H 2 prohibit strenigthening p"r)

enough t,) rimmxiiate interferenice. Ilse Method T-4.2 to selectively

strengtheni prvii without mvaidating these hypotheses.

e Weaken .4. If poshible, replace .4 by a weaker assertioni A' such

that the interferenice freedom formula { pm(a (k ) 4" } a{ 4' is valid.

weakeig assertions that fol-low A' entough that PO( rj ) remainis
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b

valid as required by hypothesis Hl but not enough that hypoth-

esis H3 becomes unattainable. If hypotheses HI and H3 prohibit

weakening A enough to eliminate interference, use Method 3.4.2 to

selectively strengthen an assertion following A so that A can be

weakened without invalidating these hypotheses. "

(c) Check that the resulting proof outlines satisfy hypothesis H3.

5. Infer SDI(E*). Using the Assertion Deletion Rule, Infer

SDI(E*): { C AV= V }

cobegin ro' I - I coend

{v=v}

from FSDI(E*).

6. Prove Termination. Prove that execution of E* terminates when started with

CA V true.

"'I

3.5 An Example

'To illustrate use of Method 3.4.3 to derive locking protocols for serializability, we

consider a database system that supports a simple banking application. In deriving

synchronization for serializability, we will illustrate another point as well. This example

was first used in [L761 to argue that serializability is inappropriate as a correctness

criteria because of the restrictions it imposes on concurrency among transactions. We
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will show that choosing an equivalence relation more accurately reflecting the semantics

of the banking application makes it possible to derive a locking protocol that does

ensure serializability while at the same time ensures a high degree of concurrency

among transactions.

Database system E5 of Figure 3.1 models a simple banking application. Variables

V5 include an array a[O.. NJ that models account balances. For j > 0, array element

a[j] holds the balance of a customer account; a[0) holds the balance of a dummy account

that is equal to minus the sum of customer accounts, modeling the bank's financial

obligation to its customers. This implies a consistency constraint that the elements of

a sum to zero.

Transaction r0 models an auditor that inspects account balances to determine if

funds have embezzled. The auditor accomplishes this by copying account balances

into a ledger I for inspection at a later time. V5 contains an array I[0..N] modeling

the ledger used by the auditor to record account balances. Transaction r1 models a

sequence of deposits, withdrawals and transfers. (A deposit to or withdrawal from
an account a[j] would be implemented by a transfer between that account and the

bank's account a[0].) Here, r1 is shown performing only two such updates, to simplify

analysis. To ensure that array references by r1 are within a's range of subscripts, C5

bounds variables cO, dO, cl and dl.

States equivalent under - are those in which corresponding elements of a[0.. N]

and variables cO, dO, cl and dl have the same value, and in which elements of 1[0.. N]

., sum to the same value. 3 The latter property of =5 reflects that only the sum of ledger

S "'This value is 0 (ot consistent states.

L~ -
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E5( V5, C5, T5, -=5),
V5 =(a [O.. NJ,l[0.. NJ,k,cO,dO, tO,cl,dI, I , cfo,efl),

C5=(N>OAO= E a[j] AO<cO<dO<NAO<cl<dl<N), S.

0<i<N%

T5 = {ro, r 1},

-= AO: (k,1[o]:=O,a[O]); S

dok#4N

Al: (k,[k+ll:=k+l,a[k+l1)

od;

A2: (end(ro)),

7= TO: (a[cO],a[dO]:=a(cO] + tO, a[dO] - tO);

TI: (a[cl],a[dl]:=a[cl] + tl,a[dl] -t

T2: (end(ri)),

(V5' = V5")
*(at[O..NJ=at'[O..N]A ̂ E /' = l"

0sjsN o<):<__N

A cO'= cO" A dO' dO" A cl'= cl" A dl' = dl" A cf = cfo' A cfl=cf,')

Figure 3.1: Database System E5 for an Idealized Banking Application.

entries is significant in the context of the banking application.

When r0 and 71 run concurrently, it is possible for TO or T1 in r1 to credit an

Account c that has already been recorded in [0..N] and debit an account d that

has not yet been recorded. If this occurs, then /[O..N] will not sum to zero when

ro completes, and the auditor's ledger will incorrectly reflect that funds have been

embezzled. To prevent this, we use Method 3.4.3 to derive a synchronized system

(A6,a6) that is serializable.

First, we choose a trivial locking protocol A6 with no rules and add lock sets to the

eII *i
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A6 = (M6, LC6, R6),

A16 ={ },
LC6 = true,

R6={}

S6( V6, C6, T6,- 6),

V6 = (a[O..N],l[O..NJ,k,cO,dO,tO,cl,,t1co,cf,lso,Lsi),

C6 = C5

T6 = T5

(V6' =6 V6")

(a'[O..N])=a"[O..N] A E '11 Z l"[IA cf=c 'Acfi'cf,'
o<j!<N O<j<N

A c'=cO" A dO' = dO" A cl' cl" A dl'= dl" A Is' ls' A Is, =1 1')

Figure 3.2: Synchronized Database System (A6,E6).

variables of E5 to give the synchronized database system (A6,,6) of Figure 3.2.

Next, we define shadow variables

V6=([O..N],l(O..N],k,cO,dO,tO,cl,dl,il,cfo,Cf ,,1s 1)

corresponding to those of V6, and shadow transactions

o= (k,i[oI:=O,a[O]);

do k N-

(k,I[k +]:=k+1,a[k +1)

od;

(end(fo))

and

*J,
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E6" = (V6*, C6, T6*,- 6),

V6* = V6. V6,

T6* = {To*,r '},
To'= AO: <k,t[0j:=0,a(0j);

do k 3 N--

Al: (k,l[k+l]:=k+l,ajk+l])

od;

A2: (end(,O);o)
*= TO: (a[cO],a[dOJ:=a[cO] + tO,a[dO] - tO);

Ti: (a[cl],a[dl]:= a[cll + 11,a[dl] -t);
: T2: ( end(-rl);' )

Figure 3.3: Augmented Database System E6*.

(afl,a[dl :=a ia[[iL1 i;

(end(F 1 ))

corresponding to T0 and r . With these we form the augmented system (A6,E6*) of

Figure 3.3.

Next, we strengthen the locking protocol A6 so that a valid full proof outline

FSDI(E_6*) can be constructed from which SD1(E6*) can be inferred. We present

.-the derivation of A6 as a succession of versions of (A6,_6*) and FSDI(E6*). Each

version follows from the previous by a change to the database that makes progress

towards satisfying the hypotheses of the cobegin Rule.

As a proof outline for the initial version (A6,6*) of Figure 3.3 we construct

a .
.. . . . . . •_, . . .,. _ . .',.,a.-.-, ,. ., " -_ . -.-.-. , .. ', , .-:..,,." .',' . .". - . ..,... N
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FSD 1(S6)

IC6 A V6 =V6

colbegin PO(7r0) 11PO(-rj) coend

{a [O..N] =i[O..NA I j A ~ J [J ijAcfo =c f 0Acfl =cf I

A cO=cO A dO~dO A lc1cAdl=Z A .is 0 [A1 =[,,Is~

where PO(-ro) and PO(-rl*) are the proof outlines of Figures 3.4 and 3.5. Each assertion

of PO(i-6) and PO(Tj') contains the invariant

10: C6 A cO=cO AdO=dO AtO~tO A clci A dl di A tliI

A cfo= A cf1 = el.

It is easy to verify that FSDI(E6*) satisfies hypotheses HI and H2 of the cobegin

Rule, so we omit the details here.

Next, we enumerate and check the interference freedom formulas. When this is

done, we find that NI(TO,posi(AO)), NJ(TO,pre(A 1)) and NI(TO,poat(A 1)) are in-

valid because TO can make the conjunct

_<: k<y<N 0<)<

of the loop invariant PO false by transferring funds between an account in a[O. . k I that

has already been audited and an account in a Ik + 1I.. N I that has not. For the same

,Teason, NI(T1,pot(AO)), NI(TI,pre(AI)) and NI(TI,post(A 1)) are also invalid.

It is not possible to weaken PO by deleting this conjunct because doing so would

make it impossible to obtain a postcondition po,9t(PO(T&0)) strong enough to satisfy hy-

pothesis H3 of the cobegin Rule. Consequently, we strengthen pre( TO) and pre( T I).

Since

{pre( TO) A -'(cO' k <dO) A POI TO{IPOI
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PO(7r6):

JOA 7jaj= []
0-,)<N O<pcSN

{IAO k1: ( 2 ljJ 2a));
OK<3 <k k<N 0<)<N

do k $N-

Al: (k,ilk+l]:=k+l,alk+lJ)

{I0 A POI

od;

{IO A 2 [] 2 [}

A2: (end(ro)fo)

{IOA '[1 2 iI

Figure 3.4: Version 1 of PO(7r&).

PO(rj*): (10OA A aj~~1
o <j<N

TO: (a(cO,a[dO:=a[cOI+eO,a[dOl-tO); 
4

{IO A A aUj] =a[j A a~cOJ a[cOJ + O A a~dO] a[doJ - 10)
j$cO,dO

TI: (a[elI,a[dlI:=a[cl]l 11,ald1 -11);

(10OA A aj = iijI A a[cOj = i[cOJ + (0A a~dOl = a[dO] - tO
j c0, do, cl, ii

A a[Clj = a(clI + i A atdll iidI - Il

{IO A A a[,~~l

Figure 3.5: Version 1 of PO(r*).

%S
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and

{pre(TI) A -'(ci k< dl) A P0} TI {P}

are both valid, interference by TO and T1 can be eliminated by replacing pre(TO) and

pre( T1) by stronger assertions pre( TO)' and pre( T1)' such that

pre( TO)' (pre(TO) A -(cO < k < dO))

and

pre(T1)' (pre(Tl) A -(cl < k < dl)).

However, strengthening pre(TO) and pre(Ti) in this way would require replacing

pre(PO(-rj')) by a stronger assertion that implies both -,(cO< k <dO) and -,(ci <

k < d1). Since neither C6 nor V6-6 V6 in pre(FSDI(a6*)) imply these predicates,

strengthening pre(TO) and pre(Ti) in this way would violate hypothesis H2. Conse-

quently, we use Method 3.4.2 to strengthen pre(TO) and pre(T1) selectively.

To facilitate application of the method, we introduce a Boolean array At[O.. N] of

auxiliary variables local to TO* and another Boolean array In [0.. NI of auxiliary variables
• .

local to "rj. Elements of At are used to indicate in the local state of To the value of

k at points where assertions that are interfered with appear. This is accomplished by

adding assignments to -ro that ensure

A * At[k]

for every assertion A in PO('ro5) that contains P0.

In a similar manner, elements of In are used to indicate in the local state of T'N

the indices j in the range cO <j < dO at the point preceding TO, and those in the _-

-ih ,, ,. d ' e' ' € , , " "-" -, .. . . - f In n i .. . .
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range cl _j ".. dl at the point preceding TI. This is accomplished by adding to r*

assignments that ensure

pre(TO) = A In[j]
cO<j<dO

and

pre(T1) = A In[j"
cl<j<dl

This gives the second version of (A6,6"), where A6 remains unchanged from Figure 3.2

and E6" is shown in Figure 3.6. The proof outline for this version is

FSD1(,6*):

{C6A V6=V6}

(At[O],In[O],...,A[N],In[N]:=false,...,fale);

{C6A V6=V6A A -At[j] A -In[jI}

cobegin PO(r) I PO(r) coend

{a[O..NJ=a[O..NA F, l~I]= E 7[j]c/Acfo c/f0 Acf 1  I,
O<_<_N O<j< N

AcO=cOAdO=dAcl=clAdl=dl A/.0=Iso0A/s 1 =1s 1}

where PO(r) and PO(7r-) are the proof outlines of Figures 3.7 and 3.8.

* With the introduction of these auxiliary variables,

{pre(TO) A A -At[j]AA}TO{A}
cO<j<dO

and %

{pre(Tl) A A -At[jJAA}TIA} i
cl<j<dl

now are valid for every assertion A containing P0. Thus, we can prevent TO and TI

from interfering with assertions containing P0 by strengthening pre( TO) and pre( T I)

to assertions pre( TO)' and pre(TI)' such that

4I
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S V6*, C6, T6*,E,

V6*= V6.V

T6 T*

To*=(A i[1:= rue)

AO: (k,1[OI:=O,a[O1);

do k N

(At[k + l:= true);

Al: (k,I[k+lj:=k+l,alk~fl,);

(At[k - l:= false)

od;

(At[NI :=false);

A2: (end(ro);f0 )

TO: (a[cOJ,a[dOJ :=alcol +tO,a[dO - tO);

(In[cO,...,In[dO-11j:=falje,...,fajje); t

(ln~clJ,...,lnjdl - l:= tue,..., truse);

TI: (a[cl],a[dlJ := a[clliJ l,a[dl - Ii);

Figure 3.6: Version 2 of W6.
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PO(-rj):

{IO A A 'A t[j] A Z aj
O~j<N O<1 KN j<

10OA At[0J A A 'At[j'J A a[jJ a J
O~y<N 0O'j<N 0 yN

AO: (k,l[0]:=0,a[01);

{IO A Attkl A A -'AtjJ A P0: (~ [J ~]~~ L
O<j k<N O<1<k j<0<N

dok$4N

10OA At[kI A A -'At[j]A P0Ak$5NJ
O<jt$k<N

(At[k +1J:= true);

(10 {A At[k A At[k-+ 11JA A -'At[)-]A PO Ak$-AN}
O<, -k<N

Al: (k,Ljk+lj:=k+1,a[k+lI);

{(10 A AIlk - 1 A AL[k] A A -'At[j] A POI
O jEk< N

(Atlk - 1j:=faise)

110A At[kj A A - AtjA P0I

od; O<j .jk <N

d ~~{10AMi[NI A A -'ALUJA E 1[jUI=W

(At[N] :=falae);

.4: ~{IO A A -'Ati] A E 1[j]= 2 [1

A2: (end(ro);%0 )

{IOA A -AtjA , '[11= Z 1[1']
O~j NO<j<N O<2 K N

Figure 3.7: Version 2 of PO(rJ*).
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PO(7*): 10OA A -InWJ1A A a (J] a[J]}
O~j<N 0O<)'<N

{IO A A In(Jj]A A -'In[J] A A a [J] (j I
cO<,<dO i(cO<j<do) 0<)<N

TO: (a[cO],a[dOJ:=a[cOJ ± O,a[dO - tO);7
{IO A A Inj] A A -InjA A a [J}I~

cO<j<dO -'(cO<j'zdO) t-cO, do

A a[cOJ = iacOl + tO A a(dOj ~ - to}
(In[cO,...,In[dO -11:=false,. .. ,false);

{IO A A 'Irj A A aj= aj I
O<j<N j~cO,dO

A a1cO] a~cOj + 10 A a[dO] a[dO] - tO}
(In[clj,...,In[d1 - 11:= true,...,true);

10OA A In~l A A -'Inhil A A a~jj ajj

A a[cO] =a[cO] + tO A a~dOj= a[do] - io}

TI: (afclJ,a[dlj:= afcl] + t,a~dl] -11);

{IOA A InjA A -In [J)A A a[I [
cl~j<dl -(cl'zj<d1) j?4cO,dO,c1,d1

A a~cO] = iicOj + tO A a[dO] = a[dOI -t1O A a[cij = i[cl] + t1
A a[dl] = a[dlj - ti}

(In~clJ,...,In[di -I:=false,..,false);

(10OA A -'In(II A A a['] =a['] A acO] = alcO±+tO L
OKj!KN j~cO,dO,cl,d1

A aldOl = a~do] - 10 A a[cl] =a[cil +tl A a[dl] iid~ - tl}

T2: (end(rj1);? 1 )

(10OA A -'In~jjA A a[-] a[,]}
O~j<N <)!

Figure 3.8: Version 2 of PO(i-1 ). S
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pre( TO)' ^ (pre(TO) A -At[jj)

for every cO < J < dO and

pre( Ti)' -= (pre( Ti) A -'At[j])

for every cI <j < dl. We do this using Method 3.4.2.

To use Method 3.4.2 to strengthen pre(TO) with a particular -AtI[j], we must choose

a predicate LP local to rr* such that

pre(TO) = LP.

Since

pre(TO) =' In[j]

for each cO < j < dO, we choose LP = In[j.

As the next step of Method 3.4.2, we must choose a predicate LQ local to 7'0 such

that

pre(TO) (-At[j V LQ).

Since

pre( TO) : (-AQi] V Atj])

tautologically, we choose LQ = At[Ij.

As the last step of strengthening pre( TO), we strengthen the locking protocol A6

to guarantee that

-(!InU] A At[j])

4',

g5
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is invariant. Following Method 3.3.2 for estabLishing exclusion invariants, we define

modes "IN[jj1" and ".4TIj ]", strengthen LC6 so that

LC6 =- -'(1s ,h { A[J.%TL,1 }A 10--{tATb1]})

and add rules to R6 that ensure

LIN,: Inf j]- l' ({INDII}
4'

and i

LAT,: Al[jJ =;lso_ { AT[ ])}

remain true. %

Method 3.4.2 is used to strengthen pre(TI) with -,At[j] in a similar manner. Since k

pr( TI) = .I,,.,A e

and~t

pr(TI) =: (-AtlJ1 V Atj)

for each clI <J < dl1, we choose L P =Inlj]I and L Q A At jJ . Strengthening A6 to ensure"

that -(In[) ^I Ai[]) is accompished exactly as before.,

,.Repeating for each appropriate value of J the steps described above for strength-

ening pre(T0) and pre(T) with -At[j] results in the third version of A6, shown in

Figure 3.9. Since cO, d0, cl and dI are not known in advance, we have made the

modes, lock compatibity constraint and rules of A6 general enough for any possible

values. The rules of R6 have been abbreviated by the invariants they require to remain

true.

that...(!n ] A- ,,. is . -, accoplshed exactly. as bef. '"p

Repeat- """ig for each apprpriate valu of ,I the se above for strength-
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A6 = (M6, LC6, R6),

M6= {AT[O,IN[O],...,AT[N],IN[N]},

LC6 = A -(/si D {I[IN[,l]} A ISO _ {[ATDj]I}),
0<j<N

R6 = {LINo,LATo,...,LINN,LATN}.

Figure 3.9: Version 3 of A6.

Having strengthened A6, we must also modify 6 to ensure that it continues to

follow the locking protocol. The rules of R6 require each LATi to remain true, and

so -r& must hold t[iNU] ] whenever Inj] is true. Since each At[j] is false before the

cobegin, ,r- satisfies these rules initially. To ensure that r continues to satisfy R6, we

add an operation to acquire t(ATrj]] at the point where At[j] becomes true. The rules

of R6 also require each LIN, to remain true, which implies that ir- must hold t[AT[j]]

whenever Ai[jl is true. Since each In[j] is false before the cobegin, -rt satisfies these

-/. rules when it starts. To ensure that r* continues to satisfy them, we add an operation

to acquire f[INI1 at the point where InUL] becomes true.

Addition of these acquire operations requires that the consistency constraint C6

also be strengthened to ensure that transactions complete when started in a consistent

state. We accomplish this by strengthening the consistency constraint to

" C6': C6AsO =I1j={}.

To ensure that they leave a consistent state when started in one, r and 7r must release

every lock they acquire. To promote concurrency, we place release operations to that

locks are released as early as possible.

Since LAT, is true whenever At[j] is false, we add operations to rO to release each
VP

VP
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tIAT,1l at the point where AtII becomes false. Likewise, we add operations to -r*to

release each t[IN1 }] at the point where In[j I becomes false. This gives the third version

of E6* in Figure 3.10 and completes the third version of (A6,E6). The proof outline

for this version is

FSD1I(S6*):
{C61 A V6 =V6}

{C6'A V6=V6A A -'At[j']A -n[j']}
O<j KN

cobegin PO(i-o*) 11 PO(i-fl* coend

{a[O..N] a[O..N1 A Ei [j Ej ![)] AcefocfO A cf 1 cf 1

AcO = CO A dO = WO A cl =clA dl = dl A Iso = 1so A Is, = Is~}

where PO(r&) and PO(Tj') are the proof outlines of Figures 3.11 and Figure 3.12. Each

assertion of PO(TO*) and PO(T) COntains the stronger invariant

11: e6A cOcO A dO=OA tO = @A cl = lA dl=dW1Ail =til

A cfo= f A cfj = f I A F90 = {}
A A LINi A A LATI.

0<)<N O<j<N

When the interference freedom formulas are enumerated and checked again, we find

every formula NI(a,A) to be valid. Thus, FSD1(E6*) satisfies hypothesis H4 of the

* cobegin Rule. We have been careful to preserve hypotheses I and H2, and it is easy

to verify that

(po,9i(PO(TrO)) A post(PO(,rj"))) : post(FSDlI(W6))

as required by hypothesis H3. Thus, FSD1(26*) is valid.

As the next step of Method 3.4.3, we must infer

A.% % i
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(6*V6*, C6', T6*-,

V6*~ V6 -V6,

C6' -C6 A la =1{}

T6* IO, j

-r= (acq( [AT 0 1]); At[oI:=true);

AO: (k,I[0J:=0,a[0I);,

do k $N

(acq( t[AT[k+1]1); At[k + I]: true);

Al: (k,l[k+1I:=k+1,a[k+1);

(At[k - 11:=falae;rl( [AT[k ij]))

od;

(At [NJ: =false; rel([A TtNII));

A2: (end(To);fo)

TO: (a[cO],a[dO]:=a[cOJ + O,a[dO - tO);

Ti: (a[el],afdlJ:=a[clJ + t,ald11 -£1);

(In[c1I,...jIn[d1 -1:=fale, ...,ase;re(t~ cj ,[INd -11))
* T2: (end(-r1 );f 1 )

Figure 3.10: Version 3 of X,6*.



100

SDI(6'): {C6 A V6= 6}cobegin * I!-r coend{ 76 =6 l6}

from FSD1(E6*). This is accomplished by first applying the Assertion Deletion Rule

to obtain

{ C6 A V6 = v6
In[O1, At[O],...,ln[NI,At[ N] : =fate,...,false;

cobegin If 'r* coend

{ V6=6 V6}

and then applying the Auxiliary Variable Deletion Rule to delete assignments to ele-

ments of In and At.

Finally, we must prove that execution of ,6" terminates when started with C6 A

V6 = V6 true. To do this, we use Lemma 2.4.2, which states that under the assumption

that concurrent execution of transactions is weakly fair, execution of _6* will terminate

if the following two conditions are satisfied.

TI. Every execution of E6* consists of a bounded number of atomic operations.

T2. As long as execution of E6" has not terminated, there is at least one enabled

* atomic operation.

Theorem 3.5.1 When started with C6 A V6 = 6 true, execution of S6" satisfies con-

ditions TI and T2. 13
"..

-' Proof of Theorem 3.5.1 Note that the number of iterations of the loop in TrJ is

bounded by N. Since every other operation is executed as most once, execution of _6"

satisfies condition TI.

- Suppose that execution of E6* has not terminated. There are three possibilities:

.MIX.&



10 Ais0j{}A A 'At[jjA a[j~V.P
0<)0N j N 0'yN

(acq(t[AT[011); At1 [01: =true);

1JOA ij0={f[AT[0olI}A At [01A A At)! A Z a)jI=V~[[
0<y--N 0' < N 0<)<N

AO: (k,I[0j:=0,a[0J);

{IO A "'0 - {[AT[k)J A AL~k] A A -. tj

APO: ( i [jJ+ a~jj})= E

do k A N-.

10OA sO = {[AT[kJJ}IA Aijk]A A -'Ait]A POA k j4 NJ

(acq(t[AT[k+111);At[k + 1] :=true);

{I0 A '30 ={'[ATtkJ],ItAT[k+1Ii} A AtjkJ A At~k + 11 A A -'A [j] A PO

AkXN} ~ ~

Al: (k,1]k+lJ:=k+1,ajk+1[); 4

{10 A 130= {[AT~k-1jI'IAT[kjJ]} A .4tk -1 A At~kJ A A -'Ail*] API

{IO A 130 ={'[AT[kH} I A 
.4- 

A -II' O

od;

{10 A '30 {![AT[NII} A ALIN] A A -AIt A V- 1!)-V~[
0-j, Oj.N O'cj<.N 0-i<N

(At [NJ: =false; reIl( AI( Ni);

10OA lio {A A -At ]JA 0<E I~l 1 : ajj}
O~j! _j<N 0, N

A2: (end(ro);'fo)

{10OAlIso {A A -'At[)J]A ~1j= W
0~ - 0,-j,_ N 0 _ J, N

Figure 3.11: Version 3 of PO(-rj).

% .... .....
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PO(-r,'): 10OAlsj91 }A A -Injj A A a!j: iJ}
0, )pN Oj_) N

10O A 1.51 [Ncj1**~'Ndop A In~j A A Inj
cO'j~dO iO~_~dO)

A A all ~I}I 1
O.. N

TO: (afcOj,a[dOJ :=acO? ± t,adO! - 1);
110 A 1.91 = {1[IN[cjl'"- ',tfNldO- II A c-A In[,I A A -4'

_) < dO -'(cO- j, dO)
A A a[,! =ai[jJ A a[cOj = iicO] + 1O A a[dOj = ii[dO] - 1o1

);4cO, dO
(In cO,...hjntdO-11l:=falae,...,false;rel([INcoJ,..., [tIN [d0O 111))?

10OA 1I ={}1A A -'Jnj A A ail] = alij A a~cOj =iicOj +tO
O<j'ZN , cO,dO

A a~dOj = i[dOJ - iO

(acq(rjrN~cjJl, £-[IN[dl iii); Inlc 1],..., !n[dl -1]:= true,..., true);

f 10 A 131 = { t [IN[cilj], It[IN[di -III} A A In[J] A A - In iJl
c I ') <d I -'(cl-j) dI)

A A aj= a['] Aa[cO = a~cO + t0A a~d0J= afdo1- tO}
jcO,dO

TI: (afcl],a[dlJ:=a[cll + t,aldll -11);

f{10 A 191 ={ t [JNfclJ]'',tIN[di1-1, 1 A A In[LiI A A -Inl,
cI'j<_ di -'(cl- j, dI)

A A a [)'= a[jA acoj = cOl tO Aaid1 = idOj - tO
, cO,dO,cl,dl

A acl= alclJ + t I A a~dll = iid1j - il I

IflIL I,. .. In d - lj .- jalic,..,a er lt[N c l- - ' fiNjdI - 1i11)

10OA is1 ={A A -'!n['l}A A alj}=-al }
O<yz N O'j'- N

T2: (end(r 1 );fI)

10OA Is1 ={A A - InjW A d jaF; }

Figure 3.12: Version 3 of PO(rj').e
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* One of rt or 7- has reached an operation S, that is not an acquire operation.

" One of rT or r has reached an acquire operation S, and the other has terminated.

" Both rj and -'* have reached acquire operations S, and S,.

Assume the first case. Since FSDI(E6*) is valid, pre(S,) will be true when 5, is

reached. For every S, in FSDI(E6*) that is not an acquire operation,

pre(si) -; wp(Si,t,.e))

Thus, Si is enabled.

Assume the second case. Since both transactions release every lock they acquire,

the lock set of the terminated transaction will be empty. This implies that the acquire _I

operation S, is enabled.

Assume the last case. Without loss of generality, assume that S, is an operation of

r and S, is an operation of r'. Note that the lock set of rT is empty when an acquire

operation in rT has been reached. This implies that S, is enabled.

In each case, at least one operation is enabled. Thus, V6 satisfies condition T2. 0

Thus, database system (A6,E6) of Figure 3.13, obtained by deleting auxiliary and

shadow variables from (A6,,6*), is serializable.

3.6 Discussion

3.6.1 Comparing Locking Protocols

Database system locking protocols are usually specified operationally. Lock modes

typically correspond to the types of operations from which transactions are constructed

Vet
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A6~ (M6, LC6, R6),

M6 =IA T[0j,IN[0J,... ,A T[Nj,IN[ N~
LC6= A -U-91 2I {[IN[,]]} A 'SOD A {[TtI}

R6 ={LINo, LA To,-.,LINN, LA TN}

E6=V6, C6% T6, =6),

C6'= C6 A sao =sl={
T6 =-o l1

*rO (acq( tAT[01]));

AO: (k,I[O]:=O,a[O));

dok$6N

Al: (k,I[k+l!:=k±1,a~k±1I);

od;

(rel(fAT[Nj]));

A2: (end~ro))L

-l: (acq(l[jNc0 11,. --,[IN~do- 11));

TO: (a[eOl,a[dOl:=a[cOI + O,a[dO] - 0);

(rel(t[JN[cOl],...- ,tIN[dO ii]));

TI. (a[clI,a[dlI:=a[cl + t1,aldl] -11);

T2: (end(rl))

Figure 3.13: Serializable Database System (A6,M).
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and the compatibility relation typically specifies that modes associated with operations
of a given type are exclusive when the outcome of transaction execution is influenced by

the order in which operations of this type interleave. Rules for acquiring and releasing

locks almost always require a transaction to hold a lock when executing an associated

operation.

In contrast, the locking protocols derived using the method of this chapter are spec-

ified assertionally. Lock modes correspond to predicates about the system state, and

lock compatibility relations forbid different transactions from simultaneously holding

locks when the associated predicates should not be simultaneously true. Rules for ac-

quiring and releasing locks enforce a coupling between the state of a transaction and

the set of locks it holds by requiring a transaction to hold a lock with a given mode

whenever the associated predicate is true.

3.6.2 Locks and Local State

Locking protocols derived using Method 3.3.2 associate the locks held by a transaction

T, with its local state through rules that require invariants of the form

LPI: LP - Is, _ {[M]}

ho remain true. Since no other transaction can modify the local state of r or change

the contents of its lock set, the requirement that LP is local to r, ensures that LPI

is not interfered with. This property simplifies the task of synchronizing ri so that

LPI remains true. In addition, this property makes Method 3.3.2 appropriate for syn-

chronizing transactions to eliminate interference, since it avoids introducing additional P

interference in the process.

Pii
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Section 3.5 demonstrated that the search for appropriate local predicates required

when using Method 3.4.2 to strengthening assertions can lead to introduction of local

auxiliary variables to capture relevant properties of the local state of transactions.

While this may seem somewhat cumbersome, it does tend to make exphcit the points

at which locks should be acquired and released.

,
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Chapter 4

Concluding Remarks

4.1 Summary and Discussion

This dissertation has addressed two fundamental problems that arise in the context of

database systems: the characterization of serializability and the construction of locking

protocols to synchronize concurrently executing transactions. In contrast to the use

of operational reasoning that has dominated previous research on these problems, we

have used assertional reasoning to analyze the semantics of concurrent execution of -'.

transactions. As a result of this effort, we have been able to apply to database systems

the tools and techniques that have been developed for reasoning assertionally about

-more general types of concurrent programs. This has lead to insight into semantics

of serializability, provided new methods for specifying and proving the serializability

of database systems, and suggested new ways of constructing locking protocols for

database synchronization.

In Chapter 2, we presented a formal definition of serializability. A unique feature

1.107
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of this definition is an equivalence relation with which final states reached by schedules

are compared. The equivalence relation, which can be derived from the application

supported by the database, makes explicit the way in which the effects of different

schedules are reflected in the system state. It does this by partitioning the set of

,1 systems states into equivalence classes, each containing states that are indistinguishable

by the supported application. The inclusion of this relation as a parameter of the

definition can be viewed as a generalization of previous definitions, which make implicit

assumptions about aspects of the system state that are relevant.

Our initial characterization of serializability shared with previous ones the property

that the serializability of a database system is defined in terms of the serializability of

each of its possible schedules. Because of the potentially enormous number of different

schedules possible in a typical database system, it also shares with previous definitions

the property of limited utility as a practical basis for verifying the serializability of

database systems. For this reason, we turned to proof outlines to obtain a more useful'S

characterization of serializability.

Proof outlines provide a way to reason formally about a concurrent program with-

out considering every possible interleaving of its operations. We presented two char-

acterizations of serializability in terms of proof outlines. The first was equivalent to

our original definition; the second was strictly weaker, specifying a property that only

implied serializability under the original definition. Translation of serializability into

proof outlines was made possible using shadow variables and transactions to model se

rial schedule behavior in the system state. Our two characterizations of serializability

with proof outlines differ concerning how these shadow variables and transactions were

ML. ,
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used to accomplish this.

Our first characterization of serializability with proof outlines used shadow trans-

actions within assertions to specify the set of states reachable by serial executions

of a database system. This necessitated a proof outline with a postcondition of size

proportional to the number of different serial schedules for that system. This num-

ber, though smaller than the number of all types of schedules, can be large enough in

many situations that the proof outlines used to specify and prove serializability grow

unwieldy.

Our second characterization of serializability avoided this problem by moving the

shadow transactions from assertions into transactions themselves, where they run se-

rially along side other transaction operations. This makes it possible to characterize

serializability with simpler assertions, because serial behavior is captured implicitly in

the state of the shadow variables as the shadow transactions run.

Our use of proof outlines to characterize serializability provides not only a way to

characterize and reason assertionally about serializability, but also provides a frame-

work in which synchronization to ensure serializability can be derived from the proof
%'

outlines that specify it. We explored this possibility in Chapter 3, where we described a

method for deriving locking protocols for database systems. Our method is built upon

an assertional characterization of locking: locks are associated with predicates on the

system state and lock compatibility is induced by restrictions on configurations of states

during concurrent execution of transactions. This is different from the traditional view

of locking, in which locks are associated with operation types and lock compatibility

is motivated by restrictions on the types of operations that can run concurrently. .4i

0I "
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I sing our method, locking protocols are derived using full proof outlines for trans-

actions. Since full proof outlines contain assertions before and after each operation,

information about the context in which operations run is available while deriving syn-

chronization. This information can be used to identify those interleavings of operations

that do not violate serializability, and incorporated into the derived locking protocol

to increase concurrency among transactions that follow it. Locking protocols derived

operationally are not able to capitalize on such information.

4.2 Topics for Further Research

In our database system model, we have assumed that database systems execute a fixed,

finite number of transactions concurrently. Such a model is appropriate for special

purpose databases that support applications in which the set of transactions necessary

can be determined in advance. It is not as appropriate for systems in which new

transactions are introduced and executed as time passes. Further research is needed to

determine the extent to which the results of this dissertation can be applied to these

types of database systems.

Serializability is an instance of a type of virtual atomicity that appears in areas of

concurrent programming other than database systems. An example of one such situ-

ation is described in [HW86J, where concurrent processes access instances of abstract

datatypes by invoking abstract operations. To simplify the design of processes in such

systems, processes are constructed under the assumption that individual abstract oper-

ation invocations run atomically. When abstract operations run concurrently, however,

the operations from which they are composed can interleave to violate these assump-

I~l~%
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tions. To prevent this, abstract operations are synchronized to guarantee a property

called linearizablIdtiy that ensures every concurrent execution is equivalent to one in

which abstract operations run indivisibly. Analysis of tinearizability and other situa-

tions requiring virtual atornicity is warranted to see if the assertional tools developed

in this dissertation are useful.17
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Appendix A

Axioms and Inference Rules of

Proof Outline Logic

skip Axiom.

{R}skip{R }

Assigment Axiom.

Let = zO,...,zN be a vector of simple variables (i.e. not elements of records or

arrays) and let E= eo,...,eN be a vector equal in length to i of expresions in

which the types of each ei and zi are the same.

11I-
, 112
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Acquire Axiom.

For ac~(,,, 17[m..j) an acquire operation in 7,,

{(LC =;- R1-

Release Axiom.

For re~[,~]..'[k)a release operation in r,,

{(LC : R)3

Q { R}

Statement Composition Rule.

{P}SO{Q}, {Q}S1{R}

{P}SO;{Q} S1{R}

if Rule.
{BO A Q}SO{R},...,{Bn A Q}Sn{R}

{Q}
if BO -~{BOA Q} SO{R}

'4 OBn -. Bn A Q}Sn{R}

(RI
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do Rule.

{BO A I}SO{I},...,{Bn A I}Sn{I}

do BO -, {BO A I}SO{I}

OBn -, {BnAlISn{I} 

od "

{I A -BO A ... A -Bn}

Rule of Consequence.
{Q}S{R}, Q' . Q, R R'

{ Q'} S I R'}

Assertion Deletion Rule.

Let S" be the result of deleting one or more assertions from annotated program

Si.

{QIS'{R}
{Q}S"{R}

Atomicity Rule.
{Q}(S'){R}

Auxiliary Variable Deletion Rule.

Let A V be a set of auxiliary variables in annotated program S and let S IX- be

the annotated program obtained by deleting from S all assignments to variables

of AV. If Q, R and the assertions of S do not mention any variable in AV, then

{Q}S{R}
{Q}SIS{R}

. . . .-a" a . v . .. . . . . U.
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cobegin Rule.

Let P00 ,.. ,PON be full proof outlines (ones in which at least one assertion

preceeds and folows each atomic operation.) Define a A . if and only if a is an

atomic operation in one proof outline P0, and A is an assertion in another proof

outline P0,.

HO: P00 ,... 'P0 N-1,

H I: Q -(pre(POO) A... Apre(P0N-1)),

H2: (post(POO) A ... A poat(PON-l)) =, R,

HI3 (Va,A: a 11 A: NI(a,A): {pre(a) A Ala{JAI)
fQ Icobegin POO I P01O I PON-I coend{R}
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Appendix B -w

The Weakest Precondition

Predicate Transformer

The weakest precondition of S with respect to R, denoted wp(S,R), represents the

set of all states such that execution of S begun in any one of them is guaranteed to

terminate in a finite amount of time in a state satisfying R [G81]. wp satisfies the

following properties.

Law of the Excluded Miracle.

wp(S,false) = false.

Distributivity of Conjunction.

(wp(S,Q) A wp(S,R))4 wp(S,Q A R).

116
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Law of Monotonicity.

If Q -' R then wp(S,Q) wp(S,R).

Distributivity of Disjuntion.

(wp(S,Q) V wp(S,R)) z:. wp(S,Q V R).

Distributivity of Disjuntion for Deterministic S.

(wp(S,Q) V wp(S,R))4 wp(S,Q V R).

skip Axiom.

wp(skip,R) = R.

Assignment Axiom.

Let F = z0 ,. . . ,zN be a vector of simple variables (i.e. not elements of records or

arrays) and let Te= eo,...,e N be a vector equal in length to Y of expresions in

which the types of each e, and zi are the same. Define DOM(eo,...,eN) to be

_* the predicate that describes the set of all states in which each e, is well-defined.

wp(zO,... ,zN:=e,...,eN,R)= DOM(eo,...,eN) A R, *,,N

.. ....,
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if Rule.

Let IF denote

if B0 -, So

0 B- S1

OBN -SN

and let BB denote

Bo V BI V ... V B..

.,

wp(IF,R)=(DOM(BB) A BB A A Bi => wp(S,,R)

do Rule.

Let DO denote

do B0  So
.-.-- S .-

OJBI -- Si

OBN -SN

od ,.

and let BB denote

Bo v BI v . v B,.

- : 
!
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Define

Ho(R) -BB A R.

and

1 U(R) Ho (R) v wp(IF,Hk_1 (R))

for k >0.

wp(DO,R)=(3k: 0<k: H.(R)).

Composition Rule.

wp(S1;S2,R) wp(S1,wp(S2,R)).

=V M

'Sd
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