
'~fll204 R TIMING EYRLURTOR FOR C PROGRAMS GENERATED IVTE 1/2
NODEL SYSTEN(U) RENSSELAER POLYTECHNIC INST TROY NY
DEPT OF COMPUTER SCIENCE M SRINIVASRN ET AL.. DEC 67

UNASSIFIED RPI-TR- ?--29 N 14- 66-K-0S442F/12/ NL

101 112S 8
o,-" I mi23-1

,'

I.

- .- - - -1-4 1 6 I,

-7-*--7 %- ~~-
%- C

IC.[ILE GSUP .Y

Department of Computer Science A
Technical Report 4.,,:,o,

A Timing Evaluator for
C Programs Generated by

the Model SystemI
Mahesh Srinivasan

and

Boleslaw Szymanski

DTIC
S FEB 1.9

.5. ..

Apprc." ,d fr 'J
Diatiuti, ,n .Utdijrjj'A

Rensselaer Polytechnic Institute
Troy, New York 12180-3590

:.5-..

Report No.

= - .7- 28 - J 0 2. .

A TIMING EVALUATOR FOR C PROGRAMS
GENERATED BY THE MODEL SYSTEM

by

Mahesh Srinivasan

Project Advisor

Prof. Boleslaw Szymanski

Submitted to Information System Program
Office of Naval Research

Under Contract N00014-86-K-0442

Technical Report

.€

OfcTAB
.,

-..-..

mL

CONTENTS

Page

LIST O F TA BLES .. iii

A BSTRA C T iv

1. INTRO DUCTIO N .. 1
1.1 The M O DEL System ... 1

1.2 Using the MODEL system .. 3

1.3 The Timing Evaluator .. 4
I

2. USING THE MODEL TIMING EVALUATOR 6

2.1 Introduction 6

2.2 The input C program .. 7

2.3 The instruction timing data file......................................10

2.4 The function timing data file 14

2.5 The Timing Report ... 17

2.6 Parameters to the MTE .. 20

3. M TE INTERNALS 22

3.1 Introduction ... 22

3.2 The Lexical Analyzer ... 23

3.3 The Parser ... 24

3.4 Symbol Tables and Types .. 25

3.5 Code Generation ... 27

3.6 Timing Evaluation ... 29

3.7 Timing Report generation .. 31

4. LIMITATIONS OF THE MTE ... 33

4.1 Introduction ... 33

4.2 The Target M achine .. 33

4.3 MTE Internal Inaccuracies .. 34

4.4 Future Modifications .. 35

A PPEN D IX 1 36

A PPEN D IX 2 47

A PPEN D IX 3 56

ii *1%

LIST OF TABLES

Page

Table 2.1 Instruction Set ... 11

Table 2.2 Addressing M odes .. 12

Table 2.3 An Example Timing Report 18

Table 2.4 Param eter file ... 21

ABSTRACT

A timing analyzer for the C programs generated by the MODEL compiler has been

developed. Timing analysis is carried out before the input programs are executed on the

target machine. The overall module delay and the relative delays between the module input

and output events are reported.

t

ivi

N• %

.
iA A A

IFVK. 1ViWW1A 1W iV.rWV Y 'Pi N?- N.'.-N -9(w*-L ' - -

CHAPTER 1

INTRODUCTION

1.1 The MODEL System

The MODEL system was developed to address the problems involved in the

development and maintenance of real time software for embedded computer systems. The

primary goal of the MODEL system is to ease the task of developing and maintaining real

time software by using a nonprocedural language approach. The secondary goal is to

provide automated support to assist programmers in meeting the time constraints imposed

by real time software systems.

A real time software system can be defined as one which controls an environment by

receiving data, processing it and taking action or returning results quickly enough to affect

the functioning of the environment at that time. Real time applications are usually connected

to embedded computer systems where software controls the operation of a host system

such as an aircraft, ship, or factory. Examples of such applications are flight control systoms,

radar tracking systems, industrial process control systems, etc. (.

Some of the major problems involved in the development and maintenance of real

time software are :

1. The software is typically large and complex. This makes the software development

process expensive since it is man power intensive.

2. Real time requirements put high demands on both reliability and performance. Both the

time constraint on program response time and program correctness are of vital

importance in real time applications.

3. During the system life cycle, change is continuous due to the evolution of environment

and technology. To keep the system up to date with the state of the art technology, it
is essential that maintenance of the software system be easy and convenient.

Another major concern for real time systems is writing concurrent programs. This is due to
t.|

2

the asynchronous parallelism characteristic of these systems.

In order to handle the problem of size and complexity, automated supports have to

be provided as much as possible. A nonprocedural language, MODEL, with the capability of

auton-atic code generation, providing high level operations, and accomodating concurrent

systems, has been developed. In order to check that the timing constraints imposed on real

time systems are met, a MODEL Timing Evaluator has been developed in this research to

provide information about module (program component) delays between comunications

with other modules or the outside world.

The MODEL approach aids or automates the following portions of the software

development and maintenance process:

1. High level source code generation from specification - a very high level, nonprocedural

language (MODEL) is provided for writing the software specifications. The MODEL

compiler uses this to generate code in a high level programming language (C, ADA,

Fortran, or PL/1).

2. Synchronization and communication channels between modules executing in parallel.

These are established by the Configurator using a specification from the user written in

the Configuration Specification Language (CSL).

3. Simulation - An executable model of the system that runs on the host computer is

produced as a result of using the MODEL compiler and Configurator. This model can

be used for testing, debugging & performance study purposes.

4. Documentation - A number of reports are generated automatically. The following is a

partial list: the system design & structure, individual program listing, generated C (or

Fortran, ADA, or PL/1) code listing and timing reports.

5. Early timing performance analysis - Normally, the timing study can be done only after

programs in target machine code have been produced and executed. Instead, with the

help of the timing evaluator, performance analysis can be done when an individual

'6*

% ' ' ' ' "-4'• • V " . •.• " • " .°," " , .e , °.'• • .'.-.-' ,-." - . a" .o.', . ," , . ,' -- ,' , , ,- x a'.' , .-.--

. R

3

module has been specified, even on a host other than the target machine.

1.2 Using the MODEL system

The MODEL software development support system consists of three parts - the

MODEL language and compiler, the Configurator, and the MODEL Timing Evaluator (MTE). It

is the Timing Evaluator that has been developed by the author and is the main subject of this

report. The MODEL compiler can at present generate code in any of the four high level

programming languages - C, ADA, Fortran, or PI/1. However, the MTE that has been

developed is useful only for the case in which C code is generated by the MODEL compiler.

Henceforth, any reference made to the object programs produced by the MODEL compiler

is a reference to the C programs it generates.

The real time software development process begins with the availability of the

software system requirement, which usually consists of three parts:

1. Functional requirements - defining the functions and subfunctions of the system.

2. Performance requirements - time constraints for time-critical performance of the system.

3. Interface with the environment - the layout of the data communicated with the

environment.

The software designer begins by dividing the system functions into into software modules

and data files. A function may be carried out by one one or more modules, or several

related functions may be combined into one module. The relationship and communications

between modules are also defined at this point. The modules are in skeletal form, with only

the external data structures outlined as files. The designer can now use the Configurator to

verify global system consistency and completeness.

Next, the designer composes the module specifications independently for each

module in the MODEL language. The MODEL compiler processes each module separately,

performing completeness and consistency checks within each module, and in the absence of

errors, generates a C program to perform the task of that module. The user can now employ

?" :%

,'x- .w ~v ii.- ~ ,'

L

4

the Timing Evaluator on each generated C program to verify if the time constraints

associated with the corresponding module are satisfied. The Timing Evaluator produces a

Timing Report for each module that provides information on time delays between instances

of input and/or output in the module. The user has to provide certain timing data of the

target machine to the Timing Evaluator for it to generate the Timing Report.

The designer may also have to check if global time constraints are met by adding

individual module delays in a path of the configuration to obtain the overall delays between

critical events involving multiple modules. If some of these constraints are not satisfied, the

designer may have to modify the configuration of the entire system by partitioning some

modules to obtain a greater degree of parallelism.

Once all the modules have been satisfactorily processed by the MODEL compiler

and the timing evaluator, the designer uses the Configurator to synthesize all the system

components (modules and data files) into an integrated system. The user composes the

system by specifying a configuration of modules and files in the Configuration Specification

Language that is the input to the Configurator. It then schedules individual modules,

synchronizes modules that will execute in parallel, sets up communication channels between

modules, and generates command language procedures that will run the C programs with
C"

maximum concurrency in the host computer's multiprogramming / multiprocessing

environment.

Finally, the system can be executed and tested on the host machine, code can be

generated for the target machine using cross compilers, and the real time software system

can be tested on the target machine.

1.3 The Timing Evaluator

The MODEL Timing Evaluator (MTE), which is the subject of this report , has been

developed to assist MODEL users in determining whether their real time software meets the

initial timing requirements without having to actually test run the software on the target

.; ;.. ,,;€,..,- ,,...-.. . , :.-. _, ,_,:....:. :... , _....:. U..,

5

machine. The MTE can be integrated with the MODEL compiler and can be activated as an

option of the compiler. Timing information about individual modules can be obtained as

soon as the compiler determines that the module specification is error free and generates a

C program to implement a particular module.

Briefly, the MTE operates as follows:

* 1. Reads in timing data of the target machine from a file.
o1-.

2. Reads in the MODEL compiler generated C program, translating it into machine level

instructions and calculating execution times for these instructions. Input/Output

operations in the program are remembered for use at the end in preparing the timing

report.

3. A Timing Report is printed, giving the delays caused by I/O operations and the worst

case time delays between different I/O events. The worst case total time of program

execution is also reported.

The next three chapters describe the MTE in detail. Chapter 2 is a user manual for the MTE,

chapter 3 describes the internal design and implementation of the MTE and chapter 4

concludes by discussing the limitations of the MODEL Timing Evaluator.

I,

CHAPTER 2

USING THE MODEL TIMING EVALUATOR

2.1 Introduction

The MTE was developed on the Sequent Balance 21000 running the DYNIX operating

system which is a variation of the UNIX operating system. Though the MTE can be used on

any system the example commands that follow apply to all UNIX systems only. The MODEL

Timing Evaluator will be referred to by the abbreviation MTE.

The MTE source program is made up of 4 files

. arameters.h

2. lex.src

3. yacc.src

4. aux.c

All four files should be in the same directory. To construct an executable object file on a

UNIX system, the following commands should be used:

hostname% lex lex.src

hostname% yacc yacc.src

hostname% cc -o mte y.tab.c -Im

The first command produces a C file lex.yy.c while the second command produces the file

y.tab.c. The final compilation produces the executable file, rte. The last two commands

both produce warning messages which can be ignored.

Having obtained the executable MTE program, it can now be run to perform a timing

analysis of a C program produced by the MODEL compiler. The MTE reads the C program

from standard input, takes the names of 2 data files as arguments, and prints the timing

report on standard output. An example:

hostname% cc -E -C program.c I mte idata fdata >report

where idata is a file that contains the instruction timing data for the target machine, fdata is

- "6

.-.. % %. . %. %

d"

%

'

a file that contains the function timing data and program.c has the C program to be

analysed. The timing report is put in the file report and can be pnnted on the system

printer. Note that the C preprocessor has to be used on the C program for macro

substitutions while preserving comments in the program since these comments contain

useful information for MTE. The rest of this chapter is devoted to the explanation of the

syntaxisemantics/restrictions on the contents of the above files.
0

2.2 The input C program

The MTE takes advantage of the fact that the MODEL compiler uses only some of

the features of the C programming language in its automatic generation of C programs from

the input MODEL language specification Theretore. though the MTE is primarily designed to

be used with the MODEL system. it can actually be used to perform timing analysis on any C

program that satisfies the follc',ving constraints/assumptions/requirements
'

1 The C program is correct, syntactically and semantically. Since the input to MTE is

generated by another program, namely the MODEL compiler, no errors are expected.

The MTE does not perform extensive semantic checking and its behaviour is

unpredictable if faced with semantic errors.

2. The program has exactly one function called main and this function is not recursive.

Moreover, the times of all the functions that are called from main() are present in the

function timing data file. This applies even to functions whose bodies are present in the

same file as the MTE performs timing analysis of only the main() function.

3. It is assumed that certain legal C statements will not be present in the input program.

These are the entry, fortran, & asm statements.

4. The MODEL compiler also generates comments in the C program it produces. Some of

these comments improve readability of the program while some comments convey

information to the MTE that is necessary to calculate time delays. Comments intended

for the MTE are distinguished from other comments by having the character string MTE

pa

at the beginning of the comment. There are exactly two cases in which these

comments should be used:

a. Loop ranges - every loop in the main() function should be preceded by a

comment that has a constant integer which will be interpreted as the number of

iterations the loop will perform before exiting. If this number is not known, then

the maximum number of iterations should be provided. This enables the MTE to

evaluate the worst case delay caused by the loop. A missing comment will be

treated as an error and the MTE will halt without producing any timing report.

Eg;

/* MTE 5*/

for(i = 0; i < j; i++)

0~ {

}

This will cause MTE to assume that the loop is executed 5 times.

b. Filenames for I/0 operations - the timing report produced by MTE gives the time

delays between input/output operations in the C program. In order to make this

report more readable, the name of the file on which an I/0 operation is being

performed can be given as a comment before the call to the I/0 function. If there

is a comment, MTE uses the given filename in its timing report, otherwise it refers

to the I/0 operation by the linenumber in the C program on which it appears.

Eg;

/* MTE OUT1 */ write(........

will cause MTE to refer to this I/0 operation in the timing report as "write OUTT".

5. All variables appearing in the maino function are declared within the same function.

Those that have been declared elsewhere will be considered to be of type int & this

%

o"h '' -"r % U*I .
6
UW ' ., , - , ' * ,, ,' " . . .:; , .- . * %, %"*_*, '.

_K' '

9

assumption might lead to inaccuracies in the calculation of timing data. All variable

declarations are before the first executable line in the main function. There should be

no declarations within blocks inside the main function.

6. The only legal variable types recognized by the MTE are the basic scalar types of the C

language, arrays of objects of legil type & structures and unions of objects of legal

type. Please note that the pointer type is not recognized and its appearance in the C

program will cause an error. It is also assumed that there is no typedef statement within

the main function and no usage of a defined type within the main function.

Furthermore, typecasts can contain only basic scalar types and not more complex types
''.

such as structures or arrays.

7. If a & b are structures (or unions) of the same type, there is no statement of the form

a =b

Also, structures are not passed as parameters to, or returned by, functions.

8. There is a provision to express function timings as an arithmetic expression of the

number of arguments in a call to the function, and/or the constant integer that is

passed as a parameter to the function, and/or the dimension of a string that is passed as

a parameter. In the last two cases, the actual calls to the function in the program should

pass, respectively, constant integers and one dimensional character arrays as

parameters. Anything else would cause an error as the MTE would be unable to

evaluate the function delay. If a one dimensional character array is going to be used as

a parameter to a function whose timing expression requires the size(dimension) of the

array, then the declaration for the character array should contain the size explicitly as a

constant integer.

Eg; , iar a[20L, bfl[10], cQ;

Both a and bliJ can be used as string parameters to functions that need the string size,

but not c.

0-

10

9. There is no dynamic memory allocation in the main function. This is actually implied by

the earlier constraint that there is no use of pointers.

Though the above list may seem very restrictive, it is fully satisfied by the C programs

generated by the MODEL compiler and greatly simplifies the design and implementation of

the MTE.

2.3 The instruction timing data file

The MTE works by compiling the input C program to machine level instructions that

can be found on most general purpose computers and adding the individual instruction

execution times to arrive at the total time delay. In order to function, the MTE needs the

execution times of certain instructions for the taget machine in question. This data file has to

be changed each time the user wants a timing analysis for a different target computer.
r.U

The syntax of the instruction timing data file,idata, is simple - it should be a file

containing 279 numbers, integer or floating point. These numbers correspond to the

execution times of 279 different instructions, all times being in microseconds. The assumed

instruction set and addressing modes are listed in Tables 2.1 and 2.2. To help the user to

prepare this file, there is another file, idata.template that has the names of the instructions

and useful explanations enclosed within comments("/*" & "*/") along with the

corresponding execution times. The file idata can be obtained by simply running the C

preprocessor on the file idata.template to remove comments. The template file for the

Sequent Balance 21000 is listed in Appendix 1. Obviously, the order of the instructions in

the file is fixed and should not be changed.

A few basic and unavoidable assumptions have been made about the target

machine:

1. The target computer has floating point hardware to support the floating point

instructions found in Appendix 1. Most modem day general purpose computers satisfy

this requirement.

,' .','. " " "• ,." ,. .. , •.," . "• ".. "., ".. ".. " ." .• ". ". ."" ,. - . .._." ,. ,, . .. ,. . ,. , ,, . . .• .. • .'. 'a'

Table 2.1
Instruct ion Set

Instruction Explanation

RET Return from function call
BR Unconditional branch
BRcond Conditional branch
Scond Conditional set
MOD Modulus
AND Bitwise and
OR Bitwise inclusive or
XOR Bitwise exclusive or
COMP One's complement
ASH Arithmetic shift
ITOF Convert integer to floating
FTOI Truncate floating to integer
ADDR Form the address
MOV Move
ADD Addition
SUB Subtraction
MULT Multiplication
DIVD Division
NEG Negation
CMP Compare

2. The computer has the four listed addressing modes - in fact, most computers possess a

much richer set of addressing modes but to be on the safe side, only these four have

been assumed.

3. The size of the C data type int is less than or equal to the size of a word of memory. In

most machines, the sizes are the same. "Integer" instructions in the template file refer

to data that is the size of the C data type int and "Floating" instructions refer to the

type float. Where no type is mentioned, it is implied that only one type is possible &

that is "Integer".

4. The size of a pointer on the machine is the same as the size of the int data type. If not,

the time delays reported could be inaccurate & on the optimistic side.

There are two instructions in the listed set that require some explanation. If these

instructions are not present on the target computer, alternative sequences of instructions
10

N N-

% %'

12 %

.%

-fable 2.2
Addressing Modes

Mode Explanation

IMDTE Immediate - constant operand
REG Register - operand in a register
ABS Absolute - address of the operand
REG_REL Register relative - the address

is offset + register

can be used to calculate execution times:

1 ADDR forms the address of the source operand and places it in the destination

operand.

ADDR ABS,dest

is equivalent to

MOVi IMDTE,dest -

and

ADDR REG REL,dest

is equivalent to

MOVi REG,dest

ADDi IMDTE,dest

2. Scond sets or clears its operand depending on whether cond is true or false.

Scond dest

is equivalent to

BRcond true

MOVi IMDTE,dest

BR next

true: MOVi IMDTE,dest

next:

... . .. ,°, .-:,: :,,-..:,..-. . . --:.. .,,:.%- :.,<-,< . .-.-.. , ..,., <<.... .<,..<:,. ...-,...,',

13

The worst case timing should be used for the above instruction sequence.

Finally, some hints on how to find the individual instruction times. It is assumed that

the input C program executes on the target machine in a dedicated mode with the entire

program in main memory (ie) the MTE does not account for delays caused by involuntary

context switching or paging of virtual memory. One way to find the instruction timings is

from the manufacturer's data - but this is often unreliable and overly optimistic; so this

method has not been explored. The other method is to directly experiment on the target

machine to obtain the instruction timings and is described here.

Since individual machine instructions take only a few microseconds or even less to

execute, and since it is difficult to measure such time intervals accurately even on a

computer, each instruction can be executed in a loop a few million times and the elapsed

time noted. Next, the empty loop (without any instruction in its body) can be executed the

same number of times and the elapsed time for this can be stored. From this, by simple

subtraction and division, the execution time for a single machine instruction can be found. A

few things to note:

1. The asm statement can be used to directly insert an assembly language instruction in a

C program. This can simplify the programming effort involved.

2. If the target machine architecture is such that instructions are prefetched from memory,

the measured instruction execution time could be greatly exaggerated (sometimes by

100%) if this program segment is used

for (i=0; i < 1E6; i+ +) asm("instr");

This is because the repeated branching nullifies the effect of prefetching and is not

typical of normal programs. Instead the following segment could be used to obtain

more accurate timing data:

for (i=O; i < 1 E4; i++)

asm("instr');

14

asm("instr);

.o.$

100 times

}

This ensures that prefetching is in effect for 97% 98% of the instructions executed

within the loop.

3. Elapsed time intervals can be measured on UNIX systems using the system calls

setitimer & getitimer. These calls provide an interval timer that can measure virtual

process time (ie) the timer decrements only when the process is executing.

4. The above methods can be used to find the timings for most instructions. However,

branch instructions require a slightly different approach. Instead of executing the

instruction a fixed number of times and measuring elapsed time, branch instructions can

be executed for a fixed amount of time and then interrupted. A counter can keep track

of the number of iterations the infinite loop (2 branch instructions jumping to each

other) goes through.

2.4 The function timing data file

Whenever the MTE encounters a function call in the main() function of the input C

program, it attempts to find the time of execution of the function from the data in the

function timing data file, fdata, to evaluate the time delay caused by the function. The MTE

does not differentiate between C library functions, user defined functions and system calls.

Every possible function that can be called from the main() function in the input C program

should be present in the function timing data file and have a valid timing expression

associated with it.

The f data file should have one function to each line, with the name of the function
as

at the beginning of the ine, followed by some whitespace, followed by the timing-,"

*4.4

a-,/

15

expression for the function, the syntax of which is described below. Since the execution

times of some functions, like string manipulation functions & I/0 functions, can depend on

the parameters that are passed to them, expressions, rather than constant numbers, are used

to indicate their execution times. The timing expression for a function is evaluated and

reduced to a numerical time for each call to the function in the C program. The syntax of

the timing expression for a function can be described by the following context free

.1' grammar:

expression --> terminal

(expression + expression

Iexpression-expression

I expression * expression

terminal --> constant-number

Ian

jAn

where constantnumber can be an unsigned integer or floating point number and n is an

unsigned integer a 0. Note that no parantheses are allowed and the usual priorities hold:

plus = minus < times

Only decimal format is allowed for constantnumber - the exponential format is not

recognized. All times should be in microseconds. The meaning of an(or An) is as follows:

1. aO is the number of arguments passed to the function in a call to the function.

2. an, n > 0 is the value associated with the nth argument passed to the function in a call

to the function. The value associated with an argument is defined below:

a. if the argument is a constant integer, then its value is equal to the constant

integer.

I'

16

b. If the argument is a one dimensional character array or a constant string, its value is

equal to the dimension of the array or length of the string.

c. Otherwise the value of the argument is undefined.

Similar to the instruction timing data template file, there is a file fdata.template to

assist users in preparing the fdata file. The fdata.template file for the Sequent Balance

21000 computer is listed in Appendix 1. This file is not complete since the MODEL compiler

is being rewritten at the time of this report and a complete list of functions being used is

not available.

Function times should indicate the delay from the beginning of execution of the

branch to subroutine to the beginning of execution of the next instruction in the calling

function. This is why there is no entry for a branch to subroutine instruction in the

instruction timing data file - it is always included in the function time. In the case of

functions used for communicating with other concurrently executing modules, delays may

be caused by having to wait for the other module(s) to be ready for communication. These

delays are not accounted for in the timing expressions for these functions since they are

unpredictable. Only the sending/receiving time is considered and not the waiting time.

Function times for a target machine can be determined in a manner similar to

instruction times - by executing the functions repeatedly and measuring the elapsed time. In

the cases of functions like strcpy and read, whose times are dependent on the parameters

-1 passed to them, their execution times can be determined for several different parameter

values and a first degree polynomial with the parameter values as independent variables can

be found - this polynomial would be the timing expression for that particular function.

Lastly, if the timing expression for a function involves one or more values associated

with its arguments, then these values should be defined in every call to the function within
5%

the maino function of the C program being analysed. Otherwise, the MTE would be unable

to evaluate the time delay caused by the function and it will halt after printing an error

° :.I

' , . lL, b , k h -. ., v- . :,
.
'- , . - . -., a, , .. - -, , -. -. a . . ,

17 J*

message. Moreover, if the MTE is to know the dimensions of character arrays, these arrays

should be declared within the maino function and the sizes declared should be constant

integers.

2.5 The Timing Report

The timing report is the output of the MTE and gives the total execution time of the

program and the time delays between critical events in the program. These critical events

include I/O operations and message transfers from/to concurrently executing programs

(modules in the overall MODEL specification). An example MODEL program and the C

program generated for it by the MODEL compiler are listed in Appendix 2. The timing report

produced by the MTE for this C program is given in Table 2.3.

The general philosophy behind the timing report produced by the MTE is to always

consider the worst case time delays - when it is faced with conditional structures like the

if-then-else statement or the switch statement, it has no way of predicting which path will

be chosen during program execution and so the MTE assumes that the longest path is

always chosen. This is due to the fact that if the software system satisfies the time :'!
constraints in the worst case, it will always satisfy those constraints. When the MTE

processes loop statements in the C program, it expects to see a loop range before each

loop as described in Section 2.2. This integer gives the number of iterations the loop will go

through or, if that is unknown, the maximum number of iterations for the loop. Using this

loop range, the MTE is able to determine the worst case time delay caused by the loop.

The Timing Report gives the time delay from every critical event to every other

critical event for which there is a possible path (flow of control) from the 1st event. If a

critical event occurs within a loop, then the time from one occurrence of the event to the

next is also reported. A critical event in the program is simply a call to one of a set of special

functions - for more details refer to the next section. Normally this set of special functions
I

would contain I/O and communication (with other modules) functions but there is no

•V I
. .

".. .'',= " ..'",'.""."". .'0 ",' "" . " . "." .'.'.'",/' "'., ". . -. ". "- "- .- .. ./ ".. ". .- ." .' ". ",. ,," • , ",,",, " .. ", ,.I ", I z . , ', -._ , , .. . -. 'S

18 .

Table 2.3
An Example Timing Report

* MODEL TTMING EVALUATOR

*** TIMING REPORT

LEGEND

No. NAME TIME

0 PROGRAM BEGIN 0.000 millisecs
1 read ACMINS 2.259 millisecs
2 write ACMOUTT 2.360 millisecs
3 PROGRAM END 0.000 millisecs

All times in MILLISECONDS
All times FROM beginning of one event TO beginning of next event

<- TO ->
From 0 1 2 3

0 ** 18.134 7805.761 7808.427

1 ** ** 7787.627 7790.293

2 ** ** ** 2.666

5'

Total Execution time - 7808.427 millisecs

Exiting MODEL timing evaluator

'S

V

S.'ar

-3 -if V V V- nr0--77 -.Ti w

19

inherent limitation in the MTE as to 'the nature of these functions. In addition to the above, there are

two predefined critical events - the physical program beginning and program end ie) the 0th line in

the main() function and the (last + 1)th line of the function.

The LEGEND in the timing report lists all the critical events (special function name followed

by a filename if present, else its line number in the C program), their time of duration (delays caused

by the events), and their serial numbers by which they are referred to in the rest of the timing

report. After the LEGEND, the report gives the delays between critical events in a tabular form.The

times are all in milliseconds, and the delay from the beginning of one event to the beginning of

another event is the table entry corresponding to the row for the first event & the column for the

second event. If there is no possible flow of control from one event to another, the corresponding

table entry is "°". The time delays reported in the table are to be interpreted as follows :

1. If both events are not inside any loop, then the delay is just the obvious time difference

between the 1st event and the 2nd.

2. If the 1st event is within a loop and the 2nd event is not in that loop, then the delay is the time

between the last occurrence of the 1st event and the occurrence of the 2nd.

3. If the 2nd event is within a loop and the 1st event is outside that loop, then the delay is the

time between the 1st event and the first occurrence of the 2nd event.

4. If both the events are inside the same loop, the delay is the shortest possible time between an

occurrence of the 1st event and an occurrence of the 2nd.

These rules can be applied recursively to critical events occurring within nested loops. A few

things to note:

1. Every possible path that can be followed by the executing program is considered in reporting

delays between critical events even though only the longest path between any two events is

used for evaluating the overall delay between any two events. In other words, by always being

pessimistic in calculating time delays, some of the worst case delays may turn out to be

b, mutually exclusive (ie) they cannot simultaneously occur in a single execution of the program.

e .
'l

p.

L

20 -

2. When two critical events occur within the same loop, the shortest possible time is

reported because it is impossible for the MTE to predict which path the program will

follow in which iteration of the loop. "

Finally, the reported time delays are by no means accurate - they are conservative I %

estimates that serve the purpose of the MTE in helping to schedule concurrently executing

modules in an optimal way to obtain minimum execution time (or respose time in the case
p

of real time software) for the whole software system. More about the limitations of the MTE P

can be found in chapter 4.

2.6 Parameters to the MTE

The file parameters.h is used to convey certain operational parameters to the MTE

and may need alteration when the MTE is ported to a new system or when internal data

structures overflow. Since the file parameters.h is part of the source code of the MTE

program and not a data file, the MTE executable image has to be reconstructed each time

the file is altered. A listing of the current version of the file is shown in Table 2.4.

Names of functions that are to be treated as critical events should be placed in the

array specialfuncs. When an internal overflow occurs, MTE prints a message telling the

user that an internal error has occurred and the name of the parameter that needs to be

changed. Error messages are also generated when the MTE detects any syntax errors in the

input C program / the two data files or if there are any violations of some of the constraints

listed in section 2.2. All errors cause the MTE to halt with a return code of 1 and no Timing

Report will be generated.

- ,,,

'4l

""' " " """ " "- . ', .'.' ',.'.'....,',."." "..'..',-"-,,'....-.'-.'.',." ," ." -" -" -'.-' -'.x .,..,. -,,-." .".'X -, -,",."4 "."-"-. U'.

21 Pr"..

pIw

Table 2.4
Parameter file

/*'***** ****"*"* " ... *FILE "parameters.h" ""°'°°''''" ***°°* *

17th Nov. '87 Mahesh K. Srinivasan

This file contains parameters to the MODEL Timing Evaluator
program that need to be altered when porting to a different system or
performing timing analysis on certain types of C programs or altering
the code generation part of the MODEL compiler.
NOTE : After any alteration is made, the MTE program will have to be

recompiled. This file is "#nclude"d in file "yacc.src".

/* The tag at the beginning of comments intended for the MODEL Timing
evaluator in the input C program is the string below, without the
quotes.

#define COMMENTAG "MTE"
/* Initializing the debug flag to a value > 0 causes the MTE to print

the machine language instructions it generates to calculate time
delays. "1

int debug flag = 0;

/" The following parameters determine sizes of various internal data
structures of the MTE. If there is an internal overflow, the MTE
issues an error message that gives the name of the parameter whose
definition has to be increased. After recompilation, the MTE can be
used for analysis of the program that caused the overflow. *.

typedef short type type;
#define MAXD 9
#define MAXSTRUCS 10
#define MAXIFNEST 20
#define MAXLOOPNEST 20
#define MAXARGS 10
#define MAXDEPTH 5 %

#define MAXFUNCS 50 '.
#define MAXLEN 50
#define MAXSSTACK 10

/ Every string in the array below is interpreted as the name of an
I/O or communication function. Adding the name of a function to
this array will cause the MTE to treat every call to the function
as a critical event that will figure in the Timing Report. */

char *special funcs[] = {"read","write"}:

/" NCOLS will determine the number of columns per table printed in
the Timing Report. MAXNAME is the numer of significant characters
for identifier names, and N BUCKS is the number of buckets used in
the hash tables. Can be increased to improve speed.

#define NCOLS 6
#define MAXNAME 20
#define N BUCKS 10

I,.

• . ." ." .' .-.,,''i"-."-.''. - -, "....'_%-*.""._. ".,- " ,.'I"%" -% .' ,g ,,. %"-."*."%" i" '" % 'i %""i',,
"
%" ,"" ".," ," " ,", -. %,, .- r .-, - ,-

Lrow".

p'

CHAPTER 3

MTE INTERNALS

3.1 Introduction

The basic algorithm of the MTE is to compile the input C program down to machine

language instructions, and using the timing data provided by the user, calculate time delays.

The MTE was developed on the Sequent Balance 21000 and implemented in C. It tries to

mimic the Sequent C compiler without using any of the specialized instructions of the

machine's NS3200 processors - a compromise between accuracy and portability.

The code that the MTE generates, in order to calculate the time delays, is not .

intended to run on any machine; this made the task of designing the MTE a lot simpler than

any actual C compiler. Moreover, since the input C programs are generated by another

program (the MODEL compiler), it is known beforehand that not all of the features of the C

programming language will be used and the MTE has been designed to take advantage of

this fact. For more about the features of the C language not used by the MODEL compiler, p..

refer to section 2.2.

The MTE is organized as a lexical analyzer, a parser, and an auxiliary file having

functions that the parser calls to generate machine instructions, evaluate instruction and

function times, and make the timing report. A listing of the documented source code for the p.

MTE can be found in Appendix 3. There is also a parameter file that is part of the MTE

source program and is described in section 2.6. The MTE's main function, in the file "p.
N-

yacc.src, begins by reading the instruction and function timing data into memory. It then

begins lexical analysis of the C program and continues until the identifier main is

encountered. At this point, control is passed to the parser which then processes the body of

the main function, generating code and building the data structures required for the timing

report. At the end of the main function, control is passed to the function that interprets the
, l.

built up data structures and prints a formatted Timing Report. Note that the code generated

22

-. -** a ~ ,I

23

is used only for calculation of delays and is not printed unless debug |lag in the file

parameters.h has been set to 1.

3.2 The Lexical Analyzer

The lexical analyzer of the MTE is in the file iex.src which is the source specification

for the UNIX utility lex. This utility is a lexical analyzer generator which, from the input

specification, produces a finite state machine, implemented in C, to perform the task of

lexical analysis and puts it in the file lex.yy.c. For more details of the operation of lex, refer

to the Lex User Manual.

The file lex.yy.c contains a function yylex() that is called anytime a new token is

needed. yylex0 returns a distinct integer for each token and -1 upon end of file. Every

reserved word of the C language is a separate token; so is every operator of the language.

Integer constants, floating constants, character constants, string constants, and identifiers are

the other tokens returned by yylexO.

Any C preprocessor lines in the C program are ignored. The C program might

contain comments, some of which are intended for the MTE and others that are not. ,%

Comments meant for the MTE should begin with the string MTE, and are used to convey .,%

either a looprange, or a filename. The lexical analyzer ignores comments without the MTE

tag and returns the tokens LOOPRANGE or FILENAME for the other comments.

The lexical analyzer uses one or both of the following mechanisms to pass additional

information about tokens to the parser:

1. A global variable, yylval, which is defined as

struct { float time; short where; typetype type; } -.

where typetype is currently defined as short. This variable is considered by the parser

to be the value of any token that is returned by ,yvlexo.

2. A string table which is an array of character strings and is defined in the file aux.c.

Strings are stored into the string table in a cyclic way so that the table never overflows.

- :.. .':.r;:.. . .'.' , '¢,. .* r:"'".'. ' '-': : e":. "' . . ; ','." /." " . , " ." "''. A,'

24 %

Additional information is passed only for the following tokens:

1. Identifiers, string constants, and the token FILENAME. The identifier name, or the

string, or the filename is copied into the string table and its index in the table is copied

into the where field of yylval.

2. Constant integers and the token _LOOPRANGE. The actual integer is copied into the

field time of yylval.
J.

3. Additional information is not passed for any other token, since it is not needed.

The lexical analyzer has no access to any symbol table; this is one of the reasons for

the MTE not being able to handle types defined by the user through typedef statements.

The lexical analyzer cannot distinguish between an identifier and a defined type.

3.3 The Parser

The parser of the MTE is in the file yacc.src which is the source specification for the

UNIX utility ,yacc. This utility is a compiler compiler that, given a context free grammar,

generates a C program to parse the language defined by the grammar. It places its output in

the file y.tab.c that contains a function yyparse0 which performs the task of parsing, yacc

also has provisions for specifying actions to be performed when grammar rules are reduced.

For more details about this compiler compiler, refer to the Yacc User Manual.

The grammar used for implementing the parser is not an exact grammar of the C

language; the parser generated from it will also accept certain incorrect C programs.

However, it has been chosen since the input C programs are expected to be correct and

this inexact grammar makes implementation easier. Certain parts of the grammar have been

deliberately made ambiguous; this causes yacc to generate conflict messages which can be

ignored.

The generated parser is a bottom-up, shift reduce parser of the LALR class. The

parser receives control when the) in the declaration main(...) has been seen. It calls a

function, yylexO whenever it needs a new token. The parser has a value stack where it stores

-

25

the value of every nonterminal and terminal (token) that resides on the parsing stack. The

type of the value stack is defined as

struct { float time; short where; type type type; }

This definition has been used keeping in mind that the most frequently occurring

nonterminal on the stack will be exp which stands for expression. The field time is used to

store the time delay caused by the expression, where has information on where the

expression currently resides (ie) how it is to be addressed, and type contains information

about the type of the expression (ie) whether it is an array, or an integer, etc. It should be

noted that in the cases of a few nonterminals, these fields are used to store other, unrelated,

information.

Since the parser imposes restrictions on when actions can be performed, the MTE

implementation is made more difficult. Furthermore, some nonterminals need-much more

information to be associated with them than the above defined structure allows. To save

memory, the structure has been kept to this size since these nonterminals are not expected

to occur frequently on the stack. Since yyparseO controls the order of events, recursion

cannot be used and instead, explicit stacks have to be used to handle certain other

nonterminals.

3.4 Symbol Tables and Types

The MTE maps all variable declarations in the input C program to two basic types,

integer and floating, and two storage classes , static and automatic. It also recognizes arrays,

functions, and structures of these types. The default type for any variable is integer, and the

default storage class is automatic; (ie) variables declared (or mapped by MTE) as such are not

stored in any symbol table and, to the MTE, are indistinguishable from variables occurring in

the maino function that have not been declared in this function. Since the majority of '4p

variables are expected to be of the default storage class and type, this strategy prevents

cluttering of the symbol tables and saves space.

\ii

%

26 I.

The C types char, short, unsigned, int, and long are all considered to be of type

integer and the types float and double are mapped to the MTE type floating. The C storage

classes static and external are considered to be static and all oter storage classes are

considered to be of the class automatic. Note that variables declared register are also

considered automatic because the C compiler dQes not guarantee that these variables will

be placed in registers. ,s

There are two symbol tables, implemented by open hashing, one for storing

variables whose storage class is static and one for variables whose type is not integer. The

second table contains type information for each variable entered into it, type information

being encoded so that the following types can be distinguished between:

1. Floating scalars.

2. Floating arrays - the number of dimensions of the array is also encoded.

3. Integer arrays - the number of dimensions is also encoded.

4. ,Character arrays - both the number of dimensions of the array and the size of the last

dimension (for use in evaluating function timings) are encoded. This is the only case in

which the C types int and char are differentiated between.

5. All structures - there is a separate array that stores structure definitions, with each

element of the array being the header for a linked list of fields of non default types

belonging to a single structure. It is the index into this array that is encoded as type

information for variables declared as structures.

The justification for the above choice of types and storage classes will be more

apparent in the next section, where the usage of the symbol tables during code generation

is explained. The functions used for processing of variable declarations, in the file aux.c, are

tab init, hash, insert, search, new, link, getfield, getstruc, findstruc, sproc, & update.

n.,.

27

3.5 Code Generation

The target instruction set and addressing modes are listed in chapter 2. Briefly, the

MTE's internal storage classes, static and automatic, correspond to the addressing modes

ABSolute and REGisterRELative. The mode IMDTE is used for literal constants and REG is

for intermediate results stored in the processor registers. The types integer and floating

There is no building up of elaborate data structures or parse trees before code is

generated. The MTE tries to imitate the Sequent C compiler to the extent permitted by its

limited instruction set and addressing modes. Optimization is not done to a great extent, the

reason being that it is better to err on the conservative side. Depending on the types of the

operands, integer or floating instructions are generated and code to perform necessary type

conversions is also generated. One assumption behind the mapping of all integral types to

one type, integer, is that the C type int occupies a word or less of memory & operations on

it take the same time as operations on smaller types such as char and short.

The MTE does not keep track of register usage during code generation; it does not

even know the total number of processor registers available on the target machine. Instead,

it assumes that a register is available whenever an intermediate result has to be stored. This

assumption is justified in most cases, since normally, expressions are not long enough for

the number of intermediate results to exceed the number of available registers. Another

assumption is that parameters are passed to functions by pushing them onto the stack, and

functions return their values in a register.

Code generation for most statements is self-explanatory and obvious. A few points

to note about code generation for expressions:

1. Identifiers - both symbol tables are searched to determine the type and addressing

mode and this information is filled into the type and where fields of its value, time is

set to 0. A similar procedure is followed for constants except that searching of symbol

28

tables is not necessary.

2. Function calls - code is generated to push the parameters, if any, onto the stack and

then a function call instruction is generated. The type symbol table is searched to

determine the type of the value returned by the function.

3. Array expression - Address calculation code is generated. Optimization is done in the

sense that calculations that can be performed at compile time are assumed to be done

by the compiler. MTE also keeps track of whether the expression is an address or

whether it refers to an object in the array.

4. Structure expression - the named field is searched for in the array containing the

structure definitions, and if present, its type is copied into the type for the expression.

The type encoding for fields in the structure definitions array is exactly the same as the

type encoding for variables in the symbol table. This is how nested structures are

handled. No code is generated since the address calculation can be done at compile

time.

5. Relational operators - the operands are checked to make sure that they are addressable;

if not instructions are generated to make them addressable. Type conversions, if

necessary, are performed and a CoMPare instruction is generated. The relational

expressions's where field is set equal to "PSW" which stands for processor status word.

This is done because the expression could either be used to set or clear a variable, or

to alter the flow of control. The first case would require a conditional set instruction

while the second case would need a conditional branch instruction. When an

expression is in the PSW, it is not in an addressable form.

6. Unary operators - code is generated immediately rather than waiting to see what the

unary expression is to be used for. An exception is when the operator is logical not and

the operand is in the PSW. In this case no code is generated since the condition in the

following conditional instruction just has to be reversed.

29

7. Binary arithmetic operators - both operands are converted to addressable forms and

necessary type conversion code is generated. If the operator is commutative, at least

one operand has to be in a register; if it is noncommutative, one particular operand has

to be in a register. Code is generated to ensure this before the instruction to perfcrm

the actual operation is generated. The result is always stored in a register.
'.1/

8. Binary logical operators - code is produced to ensure that both operands reside in the

PSW. A conditional branch instruction is generated and the logical expression's where

field is set to PSW.

9. Assignment operators - if the operator is not simple assignment (=), code generation

proceeds as in the case of binary arithmetic operators except that the destination is not

a register but a memory location. Expressions with the equal to operator are optimized

to a greater extent since they are very frequent.

Finally, it should be noted that instructions are not always generated in the correct

order as the MTE cares only about the total time delay. The routines used in code

generation, in the file aux.c, are getIvalue, getops, adjsttypes, arrayint, flotint, arithop,

relop, asgnop, & logic.

3.6 Timing Evaluation

When the MTE starts executing, it reads 279 numbers from the instruction timing

data file into a single linear array. Function timing expressions are read from the function

timing data file into an array of strings, with one line of input data, having a function name

and its timing expression, being stored in one string. At this point, the syntax of the timing

expressions are also checked. Then the array of strings is sorted by function name to make

later searching faster.

Whenever the MTE generates an instruction, it actually calls the function eval which

returns a floating point number that is the time in microseconds of instruction execution.

eval takes 4 parameters - the instruction code, its type, and 2 addressing modes for its two

30

operands. A dummy parameter, DUM, is passed to this function in place of one or more of

the last 3 parameters if they are not applicable. If the instruction is a function call, eval calls

a different function to evaluate the delay caused by the function. Otherwise, based on the

parameters it receives, eval calculates an index into the array storing the instruction times

and returns the time there.
a.P

As the input program is being processed, whenever a function call is recognized, (ie)

the construct identifier(is seen, an entry for the function is made on top of a stack of

entries. An entry for a function contains the function name and space for storing the values

of its arguments (as defined in chapter 2), and the number of arguments in the function

call.The stack is necessitated because an argument to a function might itself be a call to

another function. As the arguments in a function call are parsed, their values (if any) are

evaluated and stored in the entry on top of the stack. When the end of the function call is

recognized, eval is called to evaluate the function delay and finally, the entry on top of the

stack is popped off.

When ev'al is called to evaluate function delays, it calls a function f[proc to do the

task, with the implicit understanding that the entry for the function resides on top of the

stack. f_proc calls other functions to do a binary search on the array of strings having the

function times to retrieve the timing expression, substitute for any argument values in the

expression, and evaluate the resulting arithmetic expression. Lastly, f proc checks if the

function name is present in the array specialfuncs to determine if the function is a critical

event. If so, it calls other functions to create a node for the event, as explained in the next

N, section. The calculated delay is then returned to the calling function.

The functions, in file aux.c, that are used for timing evaluation are i init, eval,

finit, f cmp, validexp, get iidex, f proc, f calc, bin search, & exp eval.

I

2N

31

3.7 Timing Report generation

While the program is being parsed, a linked list of nodes is constructed, with each

node corresponding to either a critical event or a control event (loops). This list is made up

of nodes of 2 types, iotype and controltype, and the list begins and ends with 2 nodes

of io type corresponding to the program beginning and end.iotype nodes can store a

nodenumber, arrival time, delay time, function name, filename, a stack of integers and a

pointer to the next node. There is a global variable, clock, that is used to keep track of

elapsed time in the program. Whenever the function eval is called to evaluate an instruction

or functio- time delay, clock is inrrement ,d by the calculated delay. This variable is also

adjusted elsewhere to account for conditional and looping program structures. Whenever an

io type node is attached to the list, it is given a unique positive integer as its nodenumber

while a controltype node has a label that denotes what kind of control event it

corresponds to. .

Briefly, the linked list of nodes is constructed as follows.

1. Before parsing begins, the list contains one node of io type that corresponds to -

peogram beginning and has a nodenumber of 0.

2. Whenever a critical event is recognized, a node is attached to the list, with the value of

clock being its arrival time and the stack ifstack being copied into its stack of

integers. Each "if" statement is assigned a unique integer and the if stack has the '*

numbers of all the enclosing "if" statements at any point in the program. The number is

positive if the enclosing statement is the "then" statement and negative if the enclosing

statement is the "else" part of the "if" statement. Each critical event has a copy of this

stack at the point it is encountered in the program so that mutually exclusive critical

events can be recognized as such by comparing their stacks. switch statements are

treated in exactly the same way as nested "if-then-else" statements.

3. Whenever a loop statement is encountered either the combination of

4%

01 %

32 .

Si

WHLBEGIN-WHLEXIT.WHLEND or DOBEGIN-DOEND control-type nodes is created

depending on whether the loop is a while loop or a do-while loop.for loops are

treated the same way as "while" loops as implied by the definition of "for" loops. The

nodes WHLBEGIN or DOBEGIN are created before the loop is parsed, and the nodes

WHLEND and DOEND are created after the body of the loop has been parsed. The

WHLEXIT node is created after the loop control expression has been parsed, but before

the body of the loop is parsed. In all cases, the "arrival" time is the value of the clock

when the node is created, and the field "exit", used only for the WHLEXIT and DOEND

nodes, is the time the loop is exited.

4. clock is always set to 0 before a loop statement is parsed. Hence, all nodes within the

loop statement will have their arrival time marked relative to the time of arrival at the

top of the loop. The "clock" variable is set to the loop exit time at the end of the loop.

5. At the end of the program, the node corresponding to program end is attached to the "5

list.

Finally, using only the information in this linked list, a complicated recursive function

calculates time delays between all pairs of critical events according to the rules listed in

section 2.5. The functions used for timing report generation are makenode, windup,

access, t caic, node calc, line, & printreport.

I

4- " " "''- ' ',''W -,# '' ' ,' " " --'=- • " - • . "p.

r%

CHAPTER 4

LIMITATIONS OF THE MTE

4.1 Introduction

This chapter describes the shortcomings of the MTE in its current implementation

and suggests modifications that might improve its performance. The task of estimating a

program's execution time without actually executing it is inherently difficult because most

modem day computers have complex operating environments whose effect on the program

execution time is not easily predicted. The estimation is made even more difficult (and

inaccurate) because of the requirement that the MTE be portable (ie) be able to predict

execution times for different target machines.
The decision to have the input to the MTE as the C programs produced by the

MODEL compiler, and not the user provided MODEL specification, or the MODEL compiler

generated intermediate level flowchart, or the machine language program produced by the

C compiler, was taken due to a number of reasons. The higher the level of input, the greater."

the duplication of work will be and the greater the inaccuracy will be. On the other hand, a .

very low level input such as machine language program results in a loss of information about

program structure and a loss of portability. Hence, a compromise between accuracy and

portability was reached by starting from the C program as input.

4.2 The Target Machine

The following is a list of assumptions about the target machine's environment that

may cause inaccuracies.

1. The machine is dedicated to the program it is executing, (ie) whenever the program

wants CPU time, it obtains it. This is not true of multiprogrammed systems; however,

large real time applications do usually run on dedicated systems.

2. The entire program resides in main memory all the time; delays that may be caused by

33

34

page faults during program execution are not accounted for.

3. The program does not have to wait in any queue for input/ output opt-rations. All the

resources of the computer should be dedicated to the program.

4. If the program is executing on a multi-processor machine and communicates with other

programs -unning on other processors, delays caused by waiting for the other programs

to be ready to communicate are not accounted for.

5. The instruction set and addressing modes that most machines have are much more rich

than the assumed target instruction set. For example, the Sequent has some "quick"

instructions for small integers and 2 additional addressing modes which could make

programs execute faster.

4.3 MTE Internal Inaccuracies

In order to ease the task of designing and implementing the MTE, a few assumptions

have been made that may cause inaccuracies:

1. The MTE maps the C type double to floating instructions. This is because frequent use

of the above data type is not expected; however, if the user wants a very conservative

estimate, he would just have to alter the time for every floating instruction in the

instruction timing data file by substituting the time for the corresponding "double"

instruction.

2. The MTE expects a constant integer to be specified as the range for each loop. The

number of iterations for each loop may not always be known - in this case, a maximum

number is specified which may not reflect the true number of iterations.

3. Complex optimizations are not performed on the code generated. Realistically, the C

programs are likely to be compiled with the optimizing option to obtain the final

*' executable version. So, the generated code will be close to the unoptimized version

and not the final version.

Ir.

' - S '0 V oil,

35

4.4 Future Modifications

Here are some modifications that could be made to the MTE to improve its accuracy

1. The types of the target instruction set could be enriched without much danger of losing

portability.

2. It might be possible to split individual instruction times into a fetching and executing

time, a fetching time for the source operand, and a fetch and store time for the

destination operand. This way, the size of the instruction timing data file could be

considerably reduced from its present cumbersome size of 279 numbers.

3. The syntax of function timing expressions in the function timing data file could be made

more powerful. At present, it is difficult to accurately express timings for functions like

" printf and scanf with the current syntax.

4. Code generated could be optimized more to reflect the true code generated by the

actual C compiler, (ie) the MTE should be tuned according to the nature of the C

compiler that generates code for the target machine in question.

5. Each looprange could be considered a variable and time delays could be expressed as

functions of these variables. The user could then manually substitute the actual

Ioopranges for each execution of the program and arrive at a better estimate for the

time of that particular program execution.

'.e

S.

5,. 5555

. - t - - ..---------------------- --

I'

I,

APPENDIX 1

U

1*
I.
p

Data files

I.

~1~

p1

1*

'p

'C

C-

C-

U).

1%*

.1*

I,.

36

IIw~- *%.*I*"%%~ C -, . C- C- - - . ~ . '. -- 'p

in

z - 0, 0

E 4, -: - ~
0~ Y O 0

* 0 - uo >~~-O EC

U L~ U t

9- C
c 00 -.

*~~ Z c-:-~. 5S u 40

u W L *0I

-4 En .r L

L C =)0a-CI-S

- - C SW 0 C
0 0W M LtW

(n~~- IM - C r >)0
0
0
50'f m :

-o LC Z .r ,V.-
CL 0)Vf In
al 0- -- -to>V 0 0 w

0S -
0 L *5-f

0

4);L

m u zOC w qjC. to - IV C 5
- U L U. I i W L M

0 3 L C U

a -In L 0 -. CC

- £~t -' . * -C.)m

OA U. 'UUc' 0 4

> L0 W C C in- ; W) C
F E , Z c-(E050 L C s: 4c- 0

5' 10. E1 N' I ~ v -* %~'..\ - , 0 .4 C *. 0- ,

-o - w *n .b.

(n N CN 0 CI u) D p

Ln 0ca 0r-- ,T W u
Ic m -7 -T C) ITU') -5 ' 0 (

'T ir Qj n C.)Cj C
.) .; 0 0 cl W L

V) L 4c 0 r
0) In N C-

C, 0 = 0 C

c 0

0 .5
*j pj-

OL Vo , - j u z c

uG 0r UJ M a z- xc 9 z u jc j

-t - V~N~~-,

L w Uu ju

10~~~ p.5 zujL j(zC.c u ju
c

0 A(o* I0V)r g(4 .4 .9 a. xmM .9 9 CC atJ MM -J -J - ~ uppj
LM ~ .. 61 0c -D W L w p0

L

0 (xU M cz m~n ~ n (,l~O m

L ~~~~~ ~ ~ ~ ~ ~ ~ U U U 00
-J. C.)W

* :~ 0

W F r ep

W- SL I. -

3 r. LO tD r- 0)c1

u ow mL pTl D o '

L n c. 4f ?) -v L))0 - Y

IoWL nr n 0 LSr Ouj -t
24c !, AL - , n M 0 r)r-C C(nc l yc4....E-c --

tor c4cy
-N a): NNc

L E

wu,

M a0j L j 6

0 Ln
('5C w 0 00 0V CC Xwt j

lo oN o CNZC -9I Z4 u OV X

*l .9 C IyE j>c 4c :4 tM4Mc..
. . . z -K

0

CC 4 m
4 I 2

(0
w L

n U ,
-j- jI A.ju

jw j _ jC. z c ju

uj rj w
*z (ju II I I

cz a ix w 1
U *u w

w *NN -. (DU) LU 0 j

I . (00u L 00 a : xI-) mmw
*u

%,
X , 14 j w w

v) o 0 0 uu Oc mw000L)0 !2 94I xi

CC~~~~~~~~~~L toLU iL :C 4. CM xi 0L "w oO jwj

4.4. cz m - -Ix C IX.4 4-M c cya - -

LU LU
0.0 L. .0 .0 .M i a L -1

0
4

.W.L.

w~ 2P.6

JI.

OD u M

cli o 0 r4) L) r CD) fGo -e w

00-OC V U) -40 WNc

0N 0 'TC, 0c
o -) OC - -C4 -. oN0 NL o(

wj *A) uJ LkJ -j LLJ -j -J - u

c CU 4) I" Ix u
0 CA, u0 a IA 0 ea 000U((0 (3

U((~l M UJL oU)u Uu au

m -9 a ce- cu jc jI K(.cowWW wm-C4 al

0 atq . . . !a C '

fa
LLL .V W-w w. w 0 - --- - - ~ - - ---

I'- l f(. O0 0 -z0 0 0 0 oao 000

** . " I
L&-%

- p. ~~ .~. - ~ j k . Y V ~.4~'~V~~. q~fl U. -J~E Lo -7.-F C-) N. .ID a)* - CID -. l 0J -*~

Nr DO r

NNQi m0 - C4m. na

d.,I T DL
a,~ w 0 E L 00C) cNC q

UL U

01

Ifl (j -j uC4
-j -j - -

I. UAmL Ku

W N. N. . .

.~~~~c -d * . .. ***.
J) . z 4 . h .(-c c

CZ -M -M -~ m SM SM 4 4maaMMMM 4 S4M M- lmm

cc. -~ - - - - -. - - - -J

.dx zww 444JSM 44444-9S 44 444 %44 4 V 0 M0 0 0 koLA0L

or-~ W, rI do C' q w~~~~ % % % C %(U ULC~nSfC

VS

kD 'D M4D W O

OD 0 p A) ' LDr- I- - LOP- C4 0 O t
(:) 0 C f- 0 mLO .

(N 0) D CO T w '

VI.

91 . . .

cm l (z z cz cz L cz
at,

I,

*q atT.

"i LU 61 w . " pA wi

cj cz. *uj 4" w 2, of "w joco, U dI:m cu d
-Jw ww w ui CO c

-J - -. - -r

1%4~ d.~e o. l 7M

- I.Jww wwwLO-.

V...~-W.V ~~F.M ~F.' ' ~ i ~ . a ~ ~ J.~ -r-'~ ~ ~ ~ W' *W~ P - F~ ~ . * W V ~ ~0

OD L M r- CO 10 L M r- 4 O

C"C U qO

M cc0)i , 14 CD w r - c(OW 4a .c

.1 *5*r

C1 5 4C- n 0 .)L -L

NJ E

LIJ w-j u uj L w - u5

Lj I9z -Ix x Lw c LP

w LU x c I ly .

uj Ix x I I
ex m0 00 V)a 0 0 00 0 0 o v

10 V)0o L3 1 A0u "u

a K C9

L

- m -no~ - --OC - -

> >C(' wa c o o.cc a 00 0 0 0 0L0 LMMC L 10 .Q La

z0w w ww w w ww w w w ww---z z x zz x z z

0 zzzzzzzzzzzzzzzzzzz auwuuuuuuuuuv

.I
(Dp

ujp
Lp.

05

LnL
co cc j ui L

CL C m C CL L m

z z I Iz z z.

r y , r "%

I ~~~C rt- t '. %rw

41

L 0 .0

0.

La

0 a

L~ u 0 E)J N.
0> 1) 0 0) 4)

a) U
a)0 g) Z
c LO

CE 0 m %
.. 04 a) a) -

C- - Ea L- C V)- > .
L U - -04 -aU) %E

CL toC 4) m34- %~0 fla c c 3 (3 0
0 - C-. . W 0C-

S a0 CO- > ~ 4U 'D > 0 Z .
o4--C U) a V Z a) -

V0 *3 *; c 10 ta u
U) U)L- M-) 0 00 c U)4)W ccai~ol - D*

10 CA 0 wD ac c 0- * U .v
L V r- 0 0 &0Ua -j c 1 to C

-) 41 ~r ~ a 4 -2 *) - 0

-J 0 +C40 U' + + -
L 41 -' - C C + + +

a> Co xC M> C + C
-L - -o c -o M

- %-W . 4> L L (C) LvC40mw 4

U- L~ 0) U0c w C r0 0 .. CN Va) N' Cad: aO L~4) 0) 0 LUa 0 IL
-C L - E aOLL) v)-~

40 10- C L -CA 0aIla r-0 (0 M

'D~ ~ ~ m - rn0 O - w)

L U 4- 4uU) C o N LOW (n - C4d
c~ 0~ C cCC'

I-~-2 l U: LUUUUEZaL - U)4-0a aU -4-a4 w E) a) UCU> Oc-
it 4) (YaE. -a):flW a)> L CL ULMLULE L :U C 0 LL3

> a cl U X a)) U. C -U C U C to 0-a
N .4) 0E .2)E. Q.u)a- L. (I M > L L LULUL LUInN C) L a) IM L 1 .0

z C 0 02 z D. x zm 0w -- - - - 0M x0 0 ,0 -

u M U) D Z 0 00 0

LeP

tn +
-a 0

L a

ts0p.L

* ~ ~ ~ -- ~. ~. ~ - - - *.. - . - - - -

tj

'I

APPENDIX 2

a

It
Id'

a

~Ia.

Example program
I)...

Id
1

-I

WI

-a..

*II

It
a.

-J
= ~1

a'

a.
a.

I~q

VI
-- I:

'I

WV

a.
A 47

I,. ~

J(M " ~ . ' -,J. ~ ~ -. V*V* ~ 7..P*-.qv-? ~ ~ J..~ ~ ~ W. ~. ~N Nd. . M

V iV

a',.,

95n
z L

a', U

X =,

00 7 - Ln

-- WLW WL".
a u ,

z 4,W 4 *

- 0
z 00 ..

.5 - - 7
CL a. _. 'U -

Y.
'a,~~ * Z IZ- -

CI y, -
LM 0-0 0L

- -l cc Iz -
0L/ z. z -Z

0. CA 0 0 C 4

ft.. -- 0lu = jujU
uj ~ ~ .j -j- M0 - 100V .L

z z * I0 S

cz -0- =
-z * -. 4 -:

*/ x In)0 -I V

k.-~

0%

>

cl°%44

S E

p....

Ix2-L , -

0

0) IX f

-. ,<)

0 Z V).Z LI-

V) L 0

. LA .- C- D m -31 0 _ X "
I.'- " U L

- Z cc M > 0 "* > W I Z 0 M IT IT N 13

In • - •I l x "c" x :3 0 1 M I I1 10 O O 0_ 0 IZ C'O

L0

II .-

u L 20 . l*

L) L L L - Lo

Lfl to 0 -. ** -.
u -

c U V

C -

4k,

'-"%'-'.

ini-O " " . -. r -.- : , . n, , - .

o- -4

00

, , , , 0 L In L

z CL., i ' ' "

"U + 0- + I , i-

I , o-

.+ + 0I. + IT IT- Ca-l
a -

-
Dm . I L ,, 11 1 :3 . 0- 0 ,, 'T

O~~~ ~ in" Ul ,i - r, 0 0e 0 - In U ,10 U.1~l~ o~

U. cc

z 0 0

u a 0 0 v.I

C) 0) -X 0

- o - Il 0 =) CNI
n 1131 39

0)Co-01+
IL In 0.

0 M C
11X -- (t : I L L 0 ' - 0 q P'

on > In HV - I LII
-D r o) 4- 0- ' ~ - Lu00. g Cl 0 00co4 (- I - :: 01I/I CI -M

u- 0 uI - U. - 0. - 0 .-..
- --~ C . 7 - -- TI

z 4z z z 2 >0 0 0. -.-

01W . 4I 1 II
ADIF 7 4 , 4 o

I -*0 +
," " ,";",',, '-'U ".'-,'-, . .I-'.,-'.:,-..-....',/,. -- , ,. .'v''v-- -. '-'-,'-....:..

0 00

c 390, C OD Z -4 : N
3.5

0 co.CL

uj 00

x, IfO C

C4 0,
-4 I- -. - 08 -

- 0 1 c.I.'

.X I'4- X I I IO .
- 31 a' Q- U,4 ,. U8 0. C "x L . , 0)8

1 4 00 A, '-9 48 t-1 -lo 1 1Z
- - - Ni.

1: 0 : .0Z -1: 7 -A -VD 0

0 1 10 - 0 c'l 0.- 0. -U4 ',40 0 0 0- 0 1-.

V)Co~ 0 o.l
V. CNr 17 q? -7 -7 ?4c

- 0 00 to 0 0 0 -0 0, '4

I - ~ j%

V7

.P

a,

.,

J+

a-.

a.",

a-

.0.

L
N N

O0 .0. .a 0 . 0 1. -
- - -- c) " -i

-_C - - ". Q - :-

1 v IV T " , . . 0-O

a 0 -N -~t 0,~ I--

- 10 - -- 0
-- -

--
sU 31 31 C4 C-. a.4 C4 C4 C- M 3a. .7 - -~

%0

m -(F a- -m -mC4I

-7 w V 0

3-I - -- Q0 V4U u 1 0 - l~
1- - 0 -d :

VI -. ,) - N -,

IT0!
o

0 0 0
N 0 0 . - 0

N.... C) N m 0) M -

a. -- ~ s.- ; oX

e %~

a. %V % ~ % % %Q 0 a

00.

212

L c
0 0 -C

SU -

A
L

N
U) 0

- (2

-~ V)fl

0 P

- > C 2 0

3j to- -
3I L (n - 0

12 -

(N -- 4 4 4

o ~ t to 0

(2I. u

0L 0
+ L

+ U Vo~~~ 0 O 0 ~'
-- CI in

- ~ o~ CL

U 31 M .0 -0 N f-It - . to V) - . 41v

0. .. I + .. (2 0n0

L 0 c c r-C 0 4

fa >~~n. D. (L C4N)I3~~~~: to'4 m --4.- 3 ~ ~
In* c 4 c c 0n Cz 0

4~~I2)'4*2 3 1

AA

0 - -

C Ix.

CLL

10 r

LN 0

A u A

JO - 01

7 II 4- --
4) L - V) I-C c - mt

C~. - 0 01-C

*0 0. -
V c zo o- c -

.A 0 10 > c a -U

-0 0 00 L . -jU

C CU0 c U0 0-a,"0 V' >1 N 01 1

3N uL 0 > 4 1
.... lfl - m<2 -~-

IV
Lk..,0 0

.*'~~~~'**~~~~ L. ~ q ~ ~ ~ *U

10>/

9) u

-v 0 +

-1 0 0 -

-0 .. 0 Of L -

0 If:: - 0 >
C U U >UU

N -C3 -

-,Z 2v 0uU in + .-

0 M ~0 0 w. >->-w

I..~ L -a~

~APPENDIX
3

MTE source code

p :
$

*d'. ' . %? r; . :2 . . .; ; ; ; :. :: ... ; : .. . :.;.:.?..

-. --. - ~ ~ Mc - ~

4. C

C 4)4

x E 4

AL -- lJ,1

> * - m oV
u -m

0~ L

L)~u C-u

*1 w -u~a~4 A)

1 0)

-w 0 L LC >)4

a u) 04Z4)c 4)
2 to - - u *

CL 10 4 4)W 0

c '-;4 x-- 4) to

* C C L ic 0 * 0
u i 4)

01

0 u *L - 0

L~ 0" * -
L L 0L*0 - .

0 L ~ - C

*~ 0 U O) : N - - 0 . -

a~. L Ua ~
L *0 0 0 A L - 4 0)

* c M 4) 0 4) -) A -) . 4) >' r
A C 0)x. L A m0

- :a :- V~) r e.)0 CE-
C*E~~~ L C Z A > L

x -L) U) L L

a) 4) '4~ L) L JO
)

L 0 4)

A 0 U c 3 - C m * 4)>C ~ in4)x a m)c
0 4 c ZZ 0 0C 0 J-u W x ;-0 0 -

-~u u -- t, CL 0 z 0 ICC c

ol

so .

.A

cc"

C'%'

A
I

* A.

mA

IIL

"II

It CC.

II uj I

0 _ o 0 cc - I.- ..=o - × , -o - z, ,, ,, . .. >,= ,-, , ,.Z .-
z + c O -w

- = 0,

-0 -1 z

10 0 -- '
"

.

o - 0)L Z - i 00Z - X 3 -

10 1- C L)I ILC ICC uW IU

0 C

I C

L D Z L. L 3 L I

C- L0 Z- C * . 2
L L. CI C L L O

u) - C)

7 0 -= L= L~ .- L SD

-. ~ L L. 'U)h L..0 Z.-..) Z

._. -- - - - .. '. - .. - -. -. .. .0 . -. .J O- -,..' -.. • .C,-.-.-. - -.,-,, 0

-. ") .",

CLCL u 10 :3 'c- ~ 4 '.

mA.)c 0 uZ . C--- I- c I-C C (a
+ L - U C .. ' fC- L IC) ML. 0- 0L (D -3

m _ O Z 0 0)) 0 :) M - 4 - - 0 M L
- : 0 L, LL -I~. CL -L W 4 Lg . W)C V - - f

3 J 0 C0C X0 > 4 - L - 0 0 (3M0 C 0 70

U0 0 in~ Z0 Cm W -) 33 V.U1

- 4,

(IC~ . . .0 WA . C41

-~~~~ .'. a) w CN. .- . --

L L L L L

Z C Z C

u u u u L .
en.

U L),

V) V)p

c z z oz L

L ., 0

0 0 0

-- -a u -,u> CL

C (A 0 0 0 0)f

C) - L (n

c t/C --E~-

z) 3 1
~0)U~

S 0 L C u, - 0,.

L - L

> L.) > -
Q) L) 0) f~- -

CL L. 00 d. > >~)

u>L- - ~-

.0 0

It -00

c Z> > a

L. CI.

-~x -V -0

000

C- L~r geK

-FE .. U)
1 ->. -- ,, -

.a

0 . . -" > . -

a- L

04 C, >

4a >
00

CI [.... .

-,.". L i 'n

x :z ,, U) U

i V

+a Ei
0 > U C4...a

0> e~wL wn

O1 O .&a X
, -, m - .. •.
r . U _ L , I .->+ L . LC

In L -

0 V)
'V~~~> CZ£~

I I -I atl Z CL Iu E GL Lz :z IM > 0
.' - -L

L Do L4 L . L

C4 0 0LL000 L0 L 0 -
L L t- L** L. . . .Lo . L L

* ~ ~ ~ ~ ~ ~ (-,C z~- Q* ~
* 3in 'OZ Z 0 W L" 0L

0.0I' Ile- I- I...* ---

I'

(.

) 1

-A-

C >

c -

2 E
OV 0

c2,'. - - .. -o

c -- "

0- E' ZZ u"

L U
0 t

o---. -0-

L- z

20 C

-. %2,o - 2- %.- 1.. o .o

-r> L u

04 X) 0 W -
EI 0 0> -

u >> -2 0 E%~z > I
E > 4) x)V

-W~L m0. L--w 4 >*00 -0 - - E2 2
c > ~>-

~~~ V)- -

g0 .JX Ij (x > - C
I-C-~( C- It-- L C- '-- i

-jwP-0 f w00 a0. - >2

C-f I- I-- C L- z I- - I u-m

ID. L L0L 0L L 0 W L22W ..L2L 2W 0 it 3t
L~ L L L LULL L ULi LU L 7-

2 0
- L 0

-u

V I I I A A E > I f

v V 'I AAA C :3. >L r a l t . . L C ---.

1% - .* *** . ' * * . . .



* ~ *-.- *'~**'.*-*-\ *-*-.*... .".**.-.--~--~,*--------

I

I..

V
V

4.-
-S

C.

~;J.
.5

.55

.5
-5

I
-4

-4
~44

*454

~~~~4

.4

S
* -5

- 4 '.4

4.

"5

---- C I0, ~
- + C

0.-

0.5~

3

0.~*

r 4 .4

-L

Cu- - ...-

I
-I

4-
4-

~ *P* 4444 44 -4

0 -0 (V

0 D

'D a, w -- ~(

Z -

L Z) C~-~ - - -a

V) 0 >Vn

00Z- L E > 0 cL

I - .

C- 417 a) -

E :3~'(V) m u (M a) w L

L ,4 a L E0 CC u W

* CL a. a) - ,. .- C
a) Et E~ C- :: - .D I

oo Lta

m u , L L a! C C

CL -.a - * C -, c. x 0
cc -% C: - - o c

L) % r (L a) LrV00
(V 0 C) -) 4 - (V

U~ C U UC L C'. E'. M.

* L w(L0((,
2

(ca C (V -

)- - x-)
:: -C a,~ V) - (n (

> L. o
C -E-- (

(t - 0
E 0 >(

l*uj1 0 -(V CLC noC : c0V 0)V(u x

L ~~0. C > a >. " - mx

- x - m - u 4) m 0 E C 0
0 - -0 i

U L V V V U O *l 0-0 a'- ... V to CC -
* V (M> L'C > Q)

NLU(r. ' -4) LC A.aXC a. 00 - cWV (La -h

L O *Z >a'- U 0 0L ZCa'Al *y - c--

(V *(C C 0- VL.(0) C0C o Qa) L(VOa C-O CO (V C C(D- - --- -- -> *C -V *
5 c > L c

ft~~~~~~~. -. V W. fti ftS a - -- - - - - - - - - - - . f

7:,

z 0.

zf

z cz
04

07 Lr-vi It

op -
-- 5- 4%

z c E

o Z '-f

0 Zw-n

4-C a'.I

*~~ ~ - z
a a, - l - .0-

E o' Z a m I-QC -
Z o I m I d,

-~ r -

- - 5

0~ 0.o6w c e

0 - - ~ -

.M O U 4) X w0(,M T , 1 2

r.

p .0

% z

I. -.-

- -

* - * * *. -5 -.. t & *

., - -'

i; ---

I- -

5."

Li'-

to ,. I . .o t

to to so2
.0 -0 z

~ It

.0 f op

U..

LC

66

-c r

-1 -a
0. I9

Z A.1

J L to

C
0

;: 4, .L.
4,z a 6

In e to 40~

6* - - -

0 ; a a-
7 - - - 0-A -,,0

I,

-0

C00

* U
m LW~

a 0 l

CY 1.
.C

.j0 02

U)_, W L

E :
) -W c s

c 0) *r 0 L

3 E. cc~ a

.0 0 0
.0, M, .. 4 c
(D o0 U -c 0 l '

n4 -) .- , In '

0Y O04cL- 0 : : 0
0)> I - E-j 0 U

j0 4 1 u u

0 *L -
In -U w

Or - I0V o .v0~

cC - 0 -K *ca.I

0 10 .
0

I U0*

.0C 0 -.14

*~ 0 EZ a[~UU

0 C I-c

.0 a0

L 00C C

10.

- - - .. t S b ~ - - -- ' a * .~. - .t~S - S a

5,-

5

5-

.5-

.5

5*

-. 5

p5%

-. 5

'ii.

..s.

5*~

.5..

p.-

S
S. '5

* .5.

-, *5%*

* '-p
5%

-~ U

-~ ~1 p
-'a

-U,
5%

a-

a -'

a
~g -~ -'

U, --

U,, -~ a ~>

'a -Si C
- - 'a SI.

a ~,; ~; .5~
- ~d)

-- a -~ *
- u.

a £ ~ - - - S

* - . - S
-~ 'a.e ! U - t~I,

': -

1 . -~
'a - *~'a .5

- -~ 'a.'

~ ~ 'a
-- -~ a ~'a -I- - S

- 4 - - * p

* V - .. ~ a
- a z - - *

- --- a ~ - a ~ a
- ~ - - -

:..

- a.' S

- 'a 'a -~ - - 'a-- 'a ~ -~ t ~'a
- a 'a .

a. -
- ~*COR- -~ - -,a --

;I z 'a;~ ~ -f F F -f
C- ~'a U S *5
.5- a ~ .'..: 0

4 0 -
- ~'a (~)'a - -- 'a 'a 1.' 'a

~'a .,.'a 5- - a-- .- .'a 'a 'a 1.' 'a
. 'a 2.' 2

I , 5- - -.
* ~ I

1

- - - - - - Ia
a-

a tsp

.5*5,

p
'S

S

Vv'% a- .'.~%.%%%%%% ... %a-~%5 5. .5
J ~ .$£ . ~ .5 d .. i" '~ a- ~ I .*.; * .~.'.' ** .5 '-v. 1.4'

-4 -- - - .p -M - -. -F '.x . 0.~ ,

.7 Jv , -7 -

404

04v

> >p
40'

Otp

Z to to

IL%

ia~ ~ ~ J' .v jr -7 -. L- P.w~

"SL

0 > 1

0 4

V 0

EE

0 0 0 = -

41~6
0 in

D0 0 -

o c CL

-. .- - 0 2

- ~ 11 uz
-~ V

1
41 - ,

0 -0 - 0, ,E

a~i
+ uv o * .

-o 0.

01 -0
-

-0 - U -u0 C UO. . 00- .

>0
(

m 0 A -[U

al - - a 61

40 40

541

> IN

w 3E,

CLL

100
0 0 U S4 C)u0 E0 4

a f- L £

E 0~ u w "3 4) -)

C 0.0
U0 + ~ 0 - ;

L 0 - %

-) A '0n4)m-A 3

C ~ u .u LL . 4 .M

to -
L 0. M L 0: 0 L

- i0. D. a O

0.v IV L . 4 OcCLU . -. U U US .

o~ 0 0C 0 0
'O5 2 * - 'C 0 .. Q6

c.3 ! 0 AEf .0 0
0

L 0

CL P0 E CL to 0 K u 2.. u

OA 0 c 0 -" p.

0 ~ u i 0 -

00

.

-IF-

VC

E)
VL

u," a .

u to-

'N

a)m
c 21N+, 0

L 4) 060

w 0. a) * -

~oE V) L

0 5l u - O
L CW- +) L

a) (A L L
W) If w)

M> L CL a L. CD
at I-w L C a- 1a C

- - -'D 0 w 0
4)C c4 ut(L JC 4.

-0 L + A 4 0 u0)
in 0 3

* LL C-L -

E CU 0z E t0 .

CAX, 0. L

0 0 0 0.0) 110V,: 0F >
-CL -c4)C(x L u L -

x 5-

to 6* 0 -I -0C
L - - 0 I N) *

a i0 sr
0 L

uI - - -* -

Lf

- ' * 1

Ca N

o~ a%

4).

tA-

0 t

-C

z
-w

(L tow
vi 00

c 6W C 1, **x

+ ,zcz - w . -1, . C. 4)
Z -. + .. - *0

0 z z -d. g L. E
0- E C. E0 Z L(

w V) -330
L U. 4A . Ix $

-z Lf Z 1- 0
0. .c I CL

-m C.) CL 40 CL
L) X

> ~
~: IN.0U. I

0 0j u L" .0 CL O OL

-i -t ftftl

ma
N i

in. C* ~ Z 3' ,~ . W
-o ~ ~0 w

- u- *a00O

000

c

V)5

CL z a

0 C 0.

.5 - j
cz >..,

L ~ Q 39 - - C

(D CL LJ 0

0) V) L ~ L

c >. o3 w C

a) > L. 0 L -)

0. c W. 11 -
>-4 0 .o 0 c-I

L. C 0. 3L
- . 3 EI W 6. L

t4 c

- w1" 0 .

00 >1W '
w o. 0 c f

.. u1. C' W 3 L W to

CD

E * z u- 0.).-

(x 0. - L)

0 4o o 411

D1 w) L 414 u .

a)e OL 0) z u c ~ Ln

.C i* 3~ E-n 4 n o1

5*V*5 - --

- -0 04) L a 1

041 t.41' UL

x CLz t

0~

5*L) 4n0
.F viL

41 -~c

41 -- ~41 4

ICIO

ca,.

za
Za

,X

0 in

10p

~~~~~~~~~4 to to. . . . - -t . . - * % . % .~ % . * %

to~ to x *

0. 
to

%a-%~%~ .%%*..%%.'%.~%\\a-a-



4044

.5

W4.

C'44

464

*

CC,

x w

- --- 0

ALL A

_ - Lt = a..

° m ' E W 4,

. . . .. 4- - .- ,
i-• s _ ,

z

- --,, ,2... , , ,*% 2 ,..-..-.o.- . . . - . - • ,, . . . - .. • . . . . . . .,- . .- ,. -



VOS n --M7 TOT77T - AJ-. W- i - .-

00

:0 C-

ab ab ab 05 ob o
go OW 40 V

If -oI c -0 . B 0
40 to -5 ao 14 0

.5 00' 1 c 00 .

w a* o 40 to # to.

V. V, 1 0 0. 0.a -a. CL CL -!C !cl L0CLu . '

- -.00000W0LL CU )C Cu -. 6S

of -X -I - 0 - --- - 0 Ch on CD z m> C tdo 4 M -j L (4 f. U4 L Z L -,-0 - c z 0 .g

CL a Q. O* a* CL O* 06 0. CL CL IcC
O4 4 4 C) C) ) a' ) W 0) a) a) 4) W* W* 0

0* 0* 5 * 0 4 * 4
.e 4 4 4 4 4 -4* * 4* 0*E

50 5 4* * 4 4* * 4* 4 4 4 4 ~

I '-

*,a 0



J~4 -~ -. ~ ~7~P7 ~ ~ -~ F.J~ .- 7.' F~7~Pr.FFwp-p, -, ~ F J

K.

p
p
p

.1*

9

~1%

a.
in,

3 - 4

a. - K
a.

a. .4.

U

4.

I- /

- - -. 4-

a.
- - * 3
- - - a.

- ~

- ~ a.

.1 I
-d 4 a. 4

I - z 4-
-a. - a. -- - - _ 4

- a.
- - 4 4 ~ --

- 3 - C-- - --
- - ,K 4 -. -.

-;-; - 2 9
- . - ~- -- C ~ 4

- - -~ - - a.-- -c.a.~a. ~ - - -
S S - -- - p p - . -~~a.3~ 3 a. o. 4 .~-. -~ * 4 4 ~ ~)Sf)

- K >~>- ) I ~ 4 4 -e
- - - a. - ~- -

.. S a.~.
- -f - ~ S * 4 4 - - K

- - -~; ~ ~ ~ ~* p
'OLS * 4 4

- - - - - * ~K*a.* 9K. *C,.S. *
- a. a. Z~ ... 4 a 4 ' 4  4~4K. - - 3* *'....a. Co - K.

a. a.~a.~ -~

- C S9
- a. .pga,,uao9-9....i m-~ ~ - -K. ~~CE~S~4 '.5 S

S -. t-.- K
a. ~-
- K 4 A K K K S
3 K. a. ~ a. a. a. -g

a.
~, £ C......
'K C

I - - K-
4.

- V K.'
C

o > U

- I K.

.3".

.3

K.

S

%. *..%,.3p.V v 's' %KI' .3w' L~ * . .. ~ ~ ,~ ~



. ,, . : L . , ,. . , -, . . ,'. : , - - - . , ,- ° a - h a. A. *. S 5 5 A, . S . - i , ., . t

$5
$5

.3

ql, ..

_ .I

II

4 = _- -1 -

I -

-4 .

- a

- -%*1
'2.- 2'2- ' .''/ .' -"°-"" " v .¢..'.- '-. . " , q ''-.".'.._..,2,'."..,;.'.'...'',o,''2,..';'.. '.-..'. .-.. '."- ..



p

cx z
0p

w c.50
4).

> L.
'j L .

Z CL

-IA j I - I ; a

4n5

C.L

0 c.

U 4
0) U

U, 0 4
L, :

0 :c20

%- , I

J6. P- P- ..



L L

z C
06 x

00 0a

10 00 -

A 0 S

0 - 4)

L L LO

10 .C. x.C.. -

0 0 - L CL
r 06

OU L
*~ a .

L L ,....
>CDp



-, -. -. , ;~ ;p. ~p.V.V.V. -u*.--w~

A

I,

C,

'3 3

J A
.4

St

1
.5,

cii 4

t
4 4

2, 9 ci

-c U. I

I a '5

'1 4r
p

a.

a..,

- ci I--. 3d

2
/ ci as

a.1 3
q@4 ~9 S

3- - -, S
4 9 -. a. 4 5-

~ ~ > - ~ -I

a S

C U 5- @4

*
~ 'C *5%

~ a.

~ 5%

@4
.5. ~'~C

a.
~4.

*5,
4~

*45

'.4
'V ~ - . P -s.. .,.-S a S P a a.



,'

°.

-5

* 9
* . ,e

A .

. is

."

-* 4* " r.i i ii i i



5CA

41

'A V

*00

. .-.. . . . ..-

*k 41 -' lk l'



I hr

4 7

5In

10

4 V A6 ad u

100

- ~ ~ ~ ~ V 06 - 4 - ~ 5' 5

0 4

it 4k- WA F&3 -k t l 4 k



lv- I.- -V VI 1% '60

in.

LnI

41 
cc.

L'

'CC

u c
c'S

44

4; -

oJl
-U u -

*~ LO Z O 0

*0 - . Z

- z I0 - t -

X -
2a 11 00 -- c . S S-

-0 z o
C Z to U~ U

0 L- a :3 In bl

-~~ ~ - f o. :
-k C -ri



w

p

~

9
2. ~ *

-- I
U u~o~ ~. - V V.

S -

-~.

V -- - - - -- V..

* - - -
* - - n-V-- 4%

/ V...

- - V - -

-a -- - - - V
-- -- -

~-- .- - - I-- -- - - V
V -4- - .- - -.

-~ --- z -

-~ Q C ~- S
* Z~4** - ~QVC 2 -- -

V.

JS ~ ~ "V- - - -~

V - - - -0 .-

~E~- & - - ,-- 6
C~ OL ~ V-. as~.- -~ ~:.a- a- o a

-~ £
- 6 -~~ eqz 6 6
- - - I
- II

.1

0 *' -~ 6 V.

* C~ 6C..~
V - V

~ -'V ~ - - V
6 -
0-~

- .- -

-V..

V.

p.-.

p

V.

V.

i"~-'~ ~ P - V *9p. ~. .p * V'. ~ *~ *~* ~, ~ V ~- ~% .V~% % *..*% .. ~ 'V



* ~ ~ ~ r * C * 4

.A c.

L. L4

N.

aa

-0 0 0 C

- 0 fa I -

u 0 t U 
c 2) u

ou m



I. I-7--1-T7-7.7a

:%-

c c

c 0 a

0

> c z z 1:u : :;

0 0. 0 1 0

~44.-.44



CL C

L x

C T

C a' C

a4 C

4I.

.0p.



ft 204 A TIMINO EVI.UATOR FOR C F1OSI ETEDl NY THE 2
MODEL. SYSTEN(U) RENSSELAER POLYTECHNIC INST TROY Ny
DEPT OF COMPUTER SCIENCE N SRXNIYRSRN ET AL. DEC 67

UNCLSSIF XEDRI-R -29NN1--67-42Nf4U- F/12/5 W



11111111102-0
""I 1. ~ ~ 1 *

125 II" HI'*** ~* Illl

if

it-

}H

i-



C 0 4
u

* 4' L

0 w

41 0 U

u c c
C x

0 01Ln

LI - j 0

E~~ 4'C

.C 41 C~
% E

*~~ 015

z 0 0 - .
W S -L

-m %- CL

U - C4 01 u

cUn 0 C O

L 01 4' u a In

L L 4', c
L* L0 U U CX C

a. -1 c Q; 1 m1 z1 i -
++ z~ +S 2CL4 c ;1 4 i >

L) a C C I..~~ C A C C.
1

-~ -L L' ( I -

C 0E 4' Z2
- ~ I 4'a - v-.0

c1 ' 01 c-0 S5 4'L 0 4-V LA

- . Z LS f-I4 L 1 0L Lu
1 . . 0 L1. .

' 
0, CS WC Q'

wO U. LA m ~ 4' U. U. UL C
-~ ~ _ 0' 10 - - -

L. ZU' Z z -C E0 % 0 - %' 4' m C
U u uj > U La U ' u - E U -' - -0

01m u L r~ D-

4) 20 m. mN a 5- 4 ' 4
c ri ' u ) U U D V

C -4**.~. n 5E

V01 ,4 L L E W

LU
0  

U .. 1 1
4

U' L 5 -cm1C 01 1. to '  U- '0 ;.a.-to 
0 L -O o f

IC :3 c C C m.
10 z C C5 *

C-~~~W d, -. f a.--.fl -



0 0 u

z

c + 

4
E 0 =

c -,
- 0

4- li

c fn

:d L

+ iI.~L 10
E, - . ,

-A m L 0*

CL 0
L An

Z~ C.L -~ X-- *L + s

C CL a

0 .L mC L L * 0. -- ' LCcg, so CL ) 004
- Ci 4 V S

0. 3 1 ?Lw 7- +o 0 -
4 u 0 > ~ 0 ~ .~

0 
L

% Z. 4- c
5 

40..
.5 L

is 0 0) x- x 03
-~ ~ u .- is. Is s

CL C. CD c3 L M Sy L
iL c Ls A la L. -S~ 0.i

4J C-x ;
(I . g 4) L 0 0 L 0. SL

c.. 0 0 ) 4- 0s L o a s
4m . U) 4)

u x



.U,

CU

- Ln

U U

L

0 C L

u z c
L E c~

C 0

-. I

4 -) (U -

aL1 u u 0

0 L U C - 1I iS

L -4 C4 + AA 5

4) 
00L CD 4 4

- 4' 0 .0cw

0I - ;"4 0
SCC 0 - 4 DzP

3 0 D-~ D c 
BV

4- -

uj c

*a E 5E -- -Z 0
to v

0 L L ) og CL C

E- 0



fa

4-E CL C I 4

c U) 4
0 u a) o3 C)~

V) 2 E M.w a)-~)
L u~

L.0 t- .) '0 C 0a
o) -c x) -Ya

: - -%14 C 0 B 0 D 3.0) u C

-)Q w CC l o m
1o0 L- 0~ oC -C 0

0) ~ C U 0 04a)~~ >u1

4O ; a) : 'c ) a) C z U)
L - CD m~ 0- m 0.~0

00 C,54 4- O 0 c -1 0 ) 4-4 U)
C 4) 4V >~ 0 4

u C a C 0) > . CL 0-U~
4

0 U ) 5 0 x V 0 L-0
4- -> 0) L C CO c~n 0

4- I E C) 0>~4
L ~ a)O) 04 ;n .~ !~ 0 L m
0 -x4 .- 06 -(1 L a) C ) 10 4

I. Ca) 0 zIn u0aj~f U)I 0 l t

. C CD m~ w C C 150 0-~

L 4) 14- - , z' -
a) 10 -')... C ~ M In

a)EU C) 39
- ' I..) * L ) U a

-d ) f, - a) .. 15 -I

4- L5 c F- IA
CU X L %. - w (A

C1 0a VC E,  C (A

1C 0 c XmcU) 2C L- -
0 > Cl > 0i (D ma ~ 0 Z a

In L ) C4- 7 C 4- 7- CL
0
-

v V 015 Eo5 U) 10 w inO0) 0 o
1

C ' a-I0
0 0- D CC CCL. 1 0 Ul > - 0-~ 4

-L- c -- fal LLc 4

a)
4 - ~~~ 0E n -

06 00 a)4 0 0U
4- C C C C4i In L 0) U. -f -

'-0 C C . 0  > C'-4-

V) 0 -05 D 0 ) L 0) U

a)0 C.. .4
c6 Z to2 0 40

>011 0) C C z5~- SC I.u

a)
2 ~ ~ 0. 0. 0 ~ , W ,4

u -0 a 
0
-

1 5 
I 0)C Lc I I

C .C ~ -0I3- . zz c L;
.40 CL C..........*C.*.....*4)~~ MVVL~~I~ -5 m .



ff UWX -. - ~ J A rA N 'J ~p p r .. 7J.1 . '. ~PI~.'V r~VX .~YV.V.V~ J .WV i W~W4 ~wJjW ~ ~ K YU j i

U) 0.

L Jc to

Cp

0

* ~ ~ a)0 ~
jo .. D. C-

00>

0 0..~z to c0 - L
'L C 3 C

0l . 0 c 4
cl a. L~n ~ 0 4; W

CDU 05  
04 L. 0 C > 0 -o
0 -
- 

- cm 0 4
0 4) , C c

C c 4- , 4- 4) 0
Cl 0 0 1

4. -

in - .C 0 
4) c.4>i 0 - 0 

0- -z - L

''U - 0 0 L c o0>
-o C. - .C =

> 0. 0 -4)1 -0 a 0
3~
. .

~* E.0 0 V X q) r4,

4fl 0 0 u i ~4
00 *u0 0. L~

(P 0 0
0 -JC )

r uj 0 0CD~~r, C4. 1.- O
- 0 0 A n 0V Z C

0 10 :~ 0 00r CL O .0 L 0 0
>0 ~ ' '0 CD ,

L a) CL 00
to, '. 4 . x -

abU. z0 in >
. 

L-~ 0 0*V C E
In L 0 444 > C 0"u C Vi5 tomi

-- 004.-C

nV miC Ij -Kc L 1  1 0 Lii L U '0 50 C.
c0,. > .x 033%30 0 0 v -5 '.4.0

CdCC +C CC cC U) u 0C
.

4. C'.CEE+ 0
-4.Cal c 0 -0 ' u 0 LU 5

L VO 10S 5555 5045I'
0*.**. 00 VxV zVVV X 0: O 3O L

CU. L4 cS W c E-. - ~ - N



4)f) L

U, - e

CL) 
-

10 0 N
Z ~ ~ 0 4

c) r 0.

w 044-0
L 

0
oor 0

In u (- c0 0.
o ..) 4)C

4)u4)x. E -

(n -- C:10
0 La-

4) 4) U. 0-~004 00 4,)

oV4 E 0 0 0 *C C
z 4) -C - 0u

m. -. AAAL c=
C = c m 0 m - m -, '00

0 ' C 4i. 0 .: 4)

In L c O 2) 0. 0 u -.
0) 10 N~0 ) *

L4 ) )0 -4) 0 4

(D E4 C 0 M L C 0 0 w - 0
u 4) - *0 -M 0 . - - . )

C 0. -0 4 -E 0.A.C.' 4)C

c- n n 4 z -U 0 Cp



E 91

0 0

+ L~

ln LL

L L

MC0  0 0
E~ L C0 C

-) 00
+ CL

1 (YL 6 04-C'.
00 U :

1 
0 V

0 ~ CO

0 ' 0 -

NL

C 0 c .. L

+r L w. . fL

- >0 i z

0 -o 4) - - - CC
C 0L .00 Q

q' -0 la 4) z 0
A- L > ~ . .

0 ~ ~ -A OL- 0C IP

0 L 4-) ;; 4 00 -v -U

or -0, 'o ~ .

Lfl0 L. - L0 C L-

L m c Ch o
0  

0- 0 ,- z- 4
E C IC 0

N c -0 L

o a o -0 -0
CL v- CV0 ~ L EL - L i

0062 40 c 0 .--- 0
L.0 4 ~ VL CC Oi -l c0 L c 00 EL

in - C 0L u m m 0 0 C L C ~ L

L 000 M CL0 0

!; O t - -5 I -06 o ~ - --Oc 0 c 0 C

*'>r4 , ~ -

L 0 ~
0 ** -0E40. N-*

-W N 



E C.

E..

LI

0.

0. ,
0 1

c

E L .

0 D14'a

C

- 0. c o-CV

- - m , c L
0A - c 0_

4 1 U 0 A1~1
0~

A * L 14

0 L 0 0*14
c U C V-

C- C L - l v
41 I I 41 E

0 ~ E 10 41u.N > 
1

01

L." - -U 0
a) L 1 0 z 0 L.' , *41

>11 L c0 0 0n0'>

0 014 V.A

CD - -
00

C c D E c a4 C4

41) 0, - -, m

00 CL -0. W .

(1) 0 ; e
w. 4) U- -u0 . . . . . . u1

10 u / 0 - 30 0



I
L c0

0 0 L oZii' L
- -- 0 u

x cc

UC Z

V~ 0 0

*I AE -~n 0 0 z L

E, 0 - L

L~ CLO

>) 0. Ec *0 A
L. V)L~.0 0

C IU L U
UL 0 0 -to C-

_j.H I=>: U I9 Iu

0 it E

VV 0
*E 0> C E ~ ~ E

+ S c L
.5 0 a 40 0 X



0 0

c 4)

z2 c -
L -)

C L + 0
- .. L. C

0 0 N
c 0 ..

U~1 7
L LA+

0LC

0 - .0 C

0 + 0

' C 0L0

a C~l 0, v.a v

V)' WCN U) 0 0_:~l 2
2' 0 4. 0 -0 n0- CL- 0. C

4a -

0 'NO- .. 0 Ur

o3 = 0 0~ 0 _

39 -% o. .. 4 E inC

L 
'- C

C~ 0 ~ 4 1 3 ~ 0 O
-~~~ -0 a-2 -~

OF 'I 144-- 0
go (



W~ ~~d~PI ~LW~J~ ~ ' %~~.'2NE

10 41 4 ,

41 

C)

+ 
u 

C 414 411

+- +n. 

0 014 4

L 
0 (M 4CD c

0 
0

on 10 10 L0

c 

-j0ID4

-N 0 

41 c
CL L zulCC 1

0 0

00 -E

7 2 
c > 0

to 3 O 
A7

a ,- + 0L 
w C CL

- : 4 C 
U 0 M ~ *

0. c 
0  

-o 
D

c 
0 >1

o u. -
4 4 ~ - 0 0 

.01
CLv L 41 ) c 41L )n 

-a ; :C .0
4 1

C
4 1

,v 6 L7 3 0 L 4-4 01a > 4

441 

- cn .)~

0 oC

> 4

CL 
41f

4E E41

4~ 
>4- 4

L (D c o

4D 
L 0 0 0 --U .4 C

U) 
0

o~~I 
WEn4***~

c~ CD

4) L\ -* 4(p L -&



W~1~~ YW~y.W hrrr. -- -. -. . - . - -

b

CL

L ua
CDU( aj

+ z

o U U 0. lr
x ,

0- (1) 4) -

44 >

E CL LU I) c

4C -mC C - D

0- x, 0 - -

CDL - (U -4Lo
co> , Wl 4)-

c4£ Lf*~* L U4

W, 0 - -

o ,,'6' - u25

CC at0£ 4- ao -) aA

Zw £0 (U L£0 -LW

ES E o < Lasa

flynn~ > (UxL~(
OCCZ a CC fl UiU() m

0 m Ln in j
k~~ -t -U 4- - U- .u--



p •

C4

. 0

2 C

- 'o 0
u 0

0
- 4 4

L

'"~~ (P, ( ,

EE D nL:C

U M
to U L 0 0

' " -- E -- --00--

M L Z-.. -
E Z '" , 0-

E L

- 0- • 0 0c.: 0-

L•-

0) 0

E > -j-L CL D '
D

.C 2 0

2 C - 0 L m

z lL c m 0
L 0) > 0

Eo D 0.
MpCL CIE a~.

Lr -jZ 0-CL L W a), 0 -)
L 3L 0 - L 0. C L0

4- L m > - 4

4. la 3o C- 0 0 0 Cr >
L Z 4-L L 0

0L 4 - 0 >S

0 0 fE- 31111I
C.-- L 0c C 0I

u V) 4-'% * , * ~ - . 0 .. - . '



L U) 0

L C'.

0 u2

L LA -
.

L 0

0 Ln

a, 10 . C.

L 0 C0 ) m3

C 3 - :; - !
L L M L x

Le p CI 5U,
-L U)L

- > L
C 1  CUO L~ u0

U, L )>C 0
- -- L -- u

C 0 0.. 0

C U E
09 . -. 4) L 7-

Uu a) CI* ~ I 0 ,

'0 ~ G ~- L M M - 0, C
u - V) - t

D 0, C > C 0 C 2 t 5 U, -C

.1n~ InU, 0 m 0

~0 0 E 10 mL 0 ) C 0 to
V) 7 *~

0 1
9  .. g m, E'I

U E > 0 C ~
C -) 0  0CL ) 0 A V I0)

L > V C *>*L U- 1
)  

z I .- Z -0 -lL 0 C 0 2 C 7&l0 -%" w

0. L 0 - LW a. m. ~ o* . %
'- E 0)0

U, toU, C Cz 3* 0 C'0C C
005 U, Zgg) )  *

11 0 3 vi L

4. in. -m -

V) 4.

.C, L u* %z CD' A~ L



.r' . -. -°•.-L . *- •' P - -M - '- -" -" ' " *

It~

5'i

Ac

L CD

A1

(a;'S.1

H ".-

'.,, .c z 0 ,

".. -* _

.* .. c
o,, .-, = -*o -C. .

D In LV - 0.

Z~ 00 1 >""

-. L

M-C V Cc

IouL +

d) C SuI
A A L -- z 7

- 0 3 - in
LV -L

CS - nV m- V)
L L -/

-V -s- - I
-)L o L

La( x -4
(al I.t V 

L . : 
.

L
5 

. - - o
0 .  

X) :

4V V CD - :
ei .: OL

cL L - U .

to I, 0,

I,, -~, : .

0 u 0o~~ @, u -uA~~-C In. LU~ V' L - M. V .,. -

0, us-

ie) In



pol

> C

* 
C

Z +

CL L uv

*~u 0 @3 a u~
00 0 ce u CLEL'

4) A
0 

0 L ~ L III rj .c -

0 A:~ ~ 0-- a

0%-3 3 o, LL-L 4.c - 1 -0 C N

C In In

o0~u go0C )I
u~I -1w -0

E.-4 L 4- 4-

to~ 0 . 1

0 1 LK

I- I 9. a''0 L.
U) 

a,~~



a)'

00 E

0 0 o £V)

CL~
00 c

U 0

C --

0 0 L-

z 3 - 06

A L - 0.

U. L m

10 0z 0.V a

00

00 Zl0  0
0 u

4), 0)

> 4) 4) 0 AE LW

* 00~R - -4- Lt
a) - ) 39L In1

c 4) L zW

L CL 0

C43cI 0 o 0
L C LI A + O

L - 0) 1 ; - -

C) (L 10 L ~ 0 0  
. L N~ 10

L ~ LL W -0 .
c e !0cC ( > V) cc L a

a)xc L rm c L L Q.
0) L 3AA OA Aa - 0. 0. 0

4- I I' I 4 L 0 21 " C

~0 D 0CC C C E)~ 0. L D
0 0 - -

0 
E CLL fO L E- 0 0 0

V* Ce 0- 0 4- 4- 0M m) 0) 0

* OL Q~ -~ I

C
4  

'm CS
0
- =- C C

U, -0 o 0 it
x ~ ~ ~LC0 L *C m

04. E~ Ea L 0

L 00

I00 _0 0 L10

A.* z 3 j V,0, . 0~) *

cS c X>0



WAX~- - - K -. 67 ""-. . .

0 A

A LJ
4) >n L

A L 0 > - La

c.. 0 Li

(NC 4
C0 CL 10i

4) C L0
0 A 0La>

m- o- 0' A 0~

ex 0
0 Z D . 3

.0 L" L
>0 - - I

0 - c. >

m L .. >
4(3 .6

1 
Go z6

E C > -

> U1 i > c> a.
O- L a.>.i. .L

JCW Lii . > 4> C 1 A
.cz c3 + 0 A 1
3 03 - 0 cA A cCV - 00 -00
A A 4) L 0 4) L L CC 0L a.I CV c 1 CLCLL L (N L0 O a

c w .. 0o0 O. CL 04 3Z L Cc 0  0 0 0 A 4
LOL c CtoLC LcZ- 3 I

04 00 V L C4 a.
cc, La U)C L1 (0 > L L L CaC

L UC 0 C . LU a o.
L L o z 0,0 0. 4 0 a.c CL0 A-(

CO ;- OaO0 ce U L0M a--
0 * 0 *t N

CC-- 0 %
In 0 L m~* 4 a.. %-D g a. L L 2. 0

LO 0 10- C .C. f-

c .0 0)0 00

In - 4) >0 -
0 >0 . *

*%



. C

®I

I I
3 -"

C CL 0. 4), . *

0 C > 0
L 0 +" E

A >I
N C cz A

0,)-= - - '- .-
> C 000 h

6~C1 L- Ci c j 0
-4 CL

L ... . 0
*L z I. wwC L0 ON -

4- a L OL L.-ao ex 0 - ,_ W 0 0- 0- -0i .'

- _. = - .

0) 4 6 C C . 0 ht

u .A, + C 0)L=" - C
A - --- +*'- C.-'

L >

,- - " :" o:"+ LL :

0) . h i hiih .0
% • ,. :." .' . - 0)0)0) .

0
0  

L - 0. 0
0 

0

-1 0 0 3A 10

CCC O. ) C0CL 4>o 0) Loo4 + L0
1- L ' ; - 4

Oul L L( . -E
A -C 3* +> 0 * L C)

3 ,A00

5, ,;]



.1

>|

CL° A

L L
S

4) 4) Q, 4.
3 >

A L.

I 0. A4

S.4 a - cc -

a. . . -.

L . ... -0 c,-

" ;a ," C-, -
AE L) .z z

A- 1., > - A

AA C4

(D Co OW VZ o L lo I
0 L 1 '0 c

a. -, >1 0J ' L L L c1

" ".Z .** , a

Q . LA > A . 0
0~ CLL 0 A L

4)L0 ) )L ),14 . - 0 C
L -L * AE 0 4C 4 C

A A4~ 10 CD 0 AN' A A
A L 1 ~ 0' VV

LV ca. CCd -0 10
II C- C. 10 -C VID - -.

A -A ACLL nL A l A
LL V, 0 = D C L aV. t

I- 0 >

Co CL z 0L - 01 Q cO

0 0- 0A 0CLL

WAD C41 LW ZO
L. La. OL Ite.N ~

a40~~~ ~~ 3 0 - 4A~L NA~ 0* C L V- 4 4 .

-~ ~ t 0 *. g i 1 . 4

~L L L Q V. *

02 0 34 O4 c

L .L

04 3 0 0
c a.

4-I-0



VV

" u
c 0

z C
31 3 c

0 0 *"0

c x

0 0 *

-L) C a L,

> C - . C . -"_ u 0  C-
0 0 0 0 M 0 -.

J. -L C. uCo a-L
a A. A . 0 . z x C, --0 L w " e

- A - L. • o a. z C
W e 0 - 0

0 .L. * " 0 >- --

"- 0- 0 - 0 0 0

U, CAU . a a (k- z 0 U) u E

- - ---. : +

-- - C. U

4) 1- 0 1 0 1 0 0 v q

- -o w : a L CC- 0 o-

3 - I 
- ,-C 0 .0 lo

40 - Ul~ C 3( *) -D L -

Ill. 0z 4 • . @ c0 & 0 - - - 0 u > "-
0 A -c c LL Vlog

3) 1 0 6

.
0 .

L ~ C e Q L C) C L-* ~
L.L0L 0 L OIL L 4)L 6 O0L ~ L L:: 'e m 0 U >- 0*- 0 O

CL! -. EU 00 :* 0  L -0 L -
Q0 *0 0 0 w L* L C .. L

>. ID 0 a 4)~ 0 aC LO gO
E 0L L 0 0 L L -L L L L0.

u L 00 L a;
0 C 

0
W C OcO'.C x c 

m 
'c

in. L~ u) C~~ OE O -wCCE LE
0~ -- L 01L .~ L0V.L C..

)A m U) Uc mc m 2 c >C 00



.4 1
* C L

L) u
:n 0 >

0 0;

zC I -C L LL

0 0 0 C
C 0~ 0 04

-- c 0 L x .

0 c/ x -) 0
.4. a *

ID 4) 4) LC 0

Q u u 0 1'

c -c

o o 0 .4-4C CL W

o 0 0 0 0 c
L C C Lg ~Lo 0 0 C -L x

4)-1 - 0- C '0 0
00 - 4 ' o i

C C C C L

L f- L L- -a L
0  

L~-

*~ L V 0 >



-- r.J d ' .A ' * .h - .. -
'' . a. = ',', - -- ' J' . -,. .- -,.,:, ,,., , ;,- ,- . , ,., !, -

! 
.-,,.h .

•~ .-, *,.,,

', °** -*

% ,.5,I0

2? '.. . '
LL. <.;

,,,,_"- ;,,,


