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Final Scientific Report
Office of Nava! Research N00014-85-C-0493
July 1, 1985 to December 31, 1986
W. B. Colson

Scientific P{ogress Report:

Below is an outline of the research progress during this contracting penod and the
effort to present that work in journal publications.-"New research results were-found m the
FEL klystron theory, exotic short-pulse evolution, optical guiding in the high-gain regime,
fully four-dimensional simulations of the FEL, coherence development and line-narrowing in
the FEL, and a global map describing the trapped-particle instability and chaos regions in
the FEL. Two review papers describe the development and fundamentals of FEL theory
and experiment. The theoretical foundations covered in the review papers were, in large
part, supported by the Office of Naval Research over several years in this program.

Self-Consistent FEL Klystron Theory y;

In collaboration with 1. Boscoloi’ the description of the high-gain klystron FEL was
improved. Previous work has assumed low-gain in the analysis of the high-gain Kklystron
design. The gain of the klystron FEL in this research was calculated with use of the
coupled, self-consistent Lorentz-Maxwell equations. For high gain, the objective of the

klystron configuration, the gain spectrum is found to be modified from the previously known
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low-gain result. This is caused by the shifting of the optical phase during the gain process

. and is calculated for the first time. The effects derived are not obtainable from the Madey E
i N Theorem. The klystron sqturation in strong nonlinear optical fields is also discussed. We ;'E
j - .make a comparison of the use of plasma theory and distribution functions, and the single .
- particle approach. A manuscript of the research has been published, and the reference is ;
v below: : :
¥ I. Boscolo and W. B. Colson, "Small Signal Gain Formula and Saturation in an Optical .
\ ? Klystron Free Electron Laser®, Nuclear Instruments and Methods in Physics Research I
; - A237, 118 (1985).
K o .
- FEL Review Papers \
; .:,. During the contracting period, two review articles were requested and written on FELSs. \
L - The first was written for the annual FEL conference held in Castelgandolfo, Italy. It is a ~.
X ﬁ tutorial describing the theoretical work on FELs supported over a number of years by ONR. ,
' " Extensions of the Lorentz-Maxwell theory are described that can be solved analytically, or ;
oL numerically on a small computer. A brief discussion looks at high-gain collective effects, E
' - short pulse effects, harmonics, energy spread and emittance, transverse diffraction, and ,
" noise. The reference is
EZ: W. B. Colson, "Tutorial on Classical Free Electron Laser Theory", Nuclear Instruments :
i ' and Methods in Physics Research A237, 1-9 (1985). , '
: The second is a more general review of experiments and theory for the FEL written in '
: cooperation with Andy Sessler of LBL. This paper is one of the most comprehensive .
; i:' papers now available on FELs. One table provides a description of all the FEL
.’: experiments, and another describes the electron accelerators that could be used to drive 3‘:
0 ™ FELs. Specific experiments at LLNL, LANL, and Orsay are described in some detail to give "
M the reader a more complete view of practical devices. The reference is : :
.
: . .
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. E W. B. Colson and A. M. Sessler, “Free Electron Lasers", Annual Reviews of Nuclear N
and Particle Science 35, 25 (1985). K
g < :
" Exotic Short-Pulse Propagation in the FEL
n' ~, :
A An FEL powered by an RF accelerator uses a series of short picosecond pulses :‘
3 2 injected into the FEL undulator in the oscillator configuration. We explored how the N
> S ~)
7 trapped-particle instability can alter the length of the short optical pulse and make it much .
! l—'; shorter than the electron pulse. Typically, high-power saturation is reached after several ;:
l:‘
b hundred passes, and the FEL works in steady-state for an additional 10° to 10* passes. :
) “ The current density of each short pulse j(z) is taken to be parabolic with the form 5
i j2)=j(1-22%67) for )z)<o,N2 and j(z)=0 for |z]>0,V2; the FWHM o, is ]
L S By
) t‘ normalized to the slippage distance NA. RF accelerators produce current densities that :
- give values of the dimensionless current density j in the moderate range 1— 100 and
’ E o, =1-30. In addition to gain, there is loss on each pass due to mirror absorption and =
! . transmission; in the absence of gain, the optical power decays as e™'? where n is the IE
A K
." ”. pass number. Usually, O is from 2— 200. K
' ’l An important factor determining the optical pulse length is the matching of the electron «
a pulse repetition frequency and the bounce frequency of the light pulse in the resonator 2Sc. _Z'_
" 13;i These frequencies must be closely synchronized so that each new electron pulse arrives at \
v - .
; the beginning of the undulator simultaneous to the rebounding optical pulse. Define d, the _
= . . . -
# '1 “desynchronism,” as the displacement between the pulses on each pass; if the mirrors are .
e
" too close together by the distance AS, then d =2AS/NA where N is the number of '.fj
:_ k undulator periods and A is the optical wavelength. Maximum power is obtained at small
) d>0. The desynchronism can be used to control the optical pulse length relative to the ‘
Cd
0 L4
¥ electron pulse length. When the desynchronism is small, the optical pulse is short; when ;
. »
- ., the desynchronism is large, the optical pulse is long. b
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v g The general features of the trapped-particle instability in short-pulse FELs are briefly

$ outlined below; many features have now been observed in experiments.

g I !
Sy

-" g e At small d>0, the FEL usually reaches power levels large enough to cause the

*‘ . trapped-particle instability. In this case, the optical pulse will be centered on the

,2: &2 electron pulse, and will have sharp spikes due to the instability. This gives a broad,

4

:_-i ) possibly chaotic, optical power spectrum, and a broad electron distribution. The

A :.

trapped-particle instability adds frequency components that further shorten the already

short optical pulse.

e At large d, the steady-state power is smaller due to the reduced coupling, and the \

: 4 trapped-particle instability is less likely to occur. The final optical power spectrum is 4
‘; ) narrow and in a single-mode; the final electron distribution is narrow due to the weak '
\: .’_ optical fields. Since the optical pulse is advanced by a large d on every pass, the
‘N center of the optical pulse may actually be ahead of the electron pulse. The )
.; b desynchronism can be used to change the optical pulse length by as much as x10 in
'é «:-\.; an operating FEL.
::Z - e When d is in the intermediate range, we have often observed limit-cycle behavior in
:‘. \ 5: the simulations. In this case, the pulse continually changes shape while the trapped-

"3 ) particle instability creates new subpulses. A user-facility may be able to make use of '
'-;: ?’E this affect by providing users with both long and short puises from a single machine. f
} The changes take place on a time-scale like 10us.

AN
| : ;j . Increasing the current density ; or the resonator Q increases the steady-state power; )
'E e this increases the synchrotron frequency and the sideband gain. The addition of '
b sideband power is cumulative, since the presence of a strong sideband again
: w increases the steady-state power.

] in Figure 1, a number of graphs show the results of a simulation where a steady-state

Do optical pulse has evolved that is much shorter than the electron pulse. At the lower-left, the
i » ' current density of a short pulse j{z +1) is shown at 1= 0 (black). and at 1 = 1 (white) in the
f %
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g g calculational window of width W =3. All longitudinal distances are normalized to the
. slippage distance NA which can be in the picosecond range or smaller. The peak
N
: & dimensionless current density is j =50. The optical pulse amplitude {a(z,n)| is shown at
v
, the left evolving over n =80 passes through the resonator. The grey scale shows the peak
o field |a(z,n)| = 163 in white, and zero field in black with two contours. On each pass, at
AN '
Y t =0, the optical wave is not driven because the new electron puls2 from the accelerator is
L] ‘-. . . .
' ::. not bunched. At a later time 1< 1 when bunching develops, the electron pulse slips back, )
and drives the trailing edge of the light pulse. The light pulse is distorted on each pass
yJ
’ E:: because gain is preferentially deposited on the trailing edge of the pulse. Consequently, ¥
- {
: ¢ the center of the light pulse appears to be traveling slower than ¢ even though in vacuum. "
E Oy
I XNXX FEL Puse Evolution EEXX "
S =50 0,1 d=0,01 N
¢ '.\ Q=3 8 /=0 D=0 N=100 .
| o ozon ONMEE 163 PO ) £
d i p
»
i A
1 :
. 2 ;
M .
e
e
- Figure 1. Simulation of a shor, "spike" optical pulse; small 4 = 0.01. T
< The desynchronism in Figure 1. is d =0.01 and the advancing of the light pulse is X
N -:: seen in the first tew passes. The gain and resonator loss at the mirrors, determined by ,
v o7 .
o (Q =3 as defined above, combine to reshape the pulse until steady-state is achieved. The
; \ total power, P (n) :sz lu(z)l2 shown at the lower-right, has increased from the seed pulse .
K . to strong-field saturation. The short optical pulse shape gives the multimode power v
> at .
y spectrum P (v, n) shown evolving in the middle. For reference, the single mode gain .
s .
’ .
3 ¥ :
s :
S .
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3 :
! spectrum G (v) is plotted at the bottom-center for j =50. Mode competition keeps the '. A
v fundamental optical spectrum near peak gain in weak fields, but strong field saturation will "
;; move peak gain to larger values of v. At saturation, the trapped electrons oscillate in the \
b closed orbits of phase space on each pass. Over many passes, the frequency of the ,
zf trapped particles mixes with the fundamental wavelength to produce sidebands. Note that
~ the trapped-particle instability has, in this example, conspired to shorten the optical pulse ’ '
'{? and make the optical power spectrum P (v, n) actually broader than the FELs natural gain ,
= bandwidth. At the right is the evolution of the electron phase-velocity distribution f (v, n) ;
';; taken at the end of the undulator t=1 on each pass; the final spread in phase velocity 'é,
. becomes broad as the field strength increases. The spread induced by the strong optical ::‘:'
F‘ fields is roughly given by the peak-to-peak height of the separatrix 4|a | 2. i"‘-‘
o

‘ﬂ]
=5,

XXXX FEL Puse Cvolution XXXX
= az=1 a=0,1
Q=3 s/t =Q D=0 N=50
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" Figure 2. Simulation of a long, modulated optical pulse; large d = 0.1. :-‘_‘
-
e LYy
- A second simulation is shown in Figure 2. with the same parameters except for the ~
l-. -
desynchronism of d =0.1. The resulting pulse shape is dramatically different, and the o
. A
o simulation demonstrates many features that are found in the study. The optical pulse, in -
this case, is substantially longer than the electron pulse, and could be even longer with 'f::
LY tJ.\.
increased desynchronism. The saturated field strength is larger enough to cause the (]
s -
¥ r‘_«
N
]
~ 3
J-_:
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trapped-particle instability and modulate the optical pulse envelope. The modulated pulse
shaped continues to evolve forming a limit-cycle behavior. The net power, power
spectrum, and electron spectrum all oscillate over several passes n. Note that power
spectrum P (v,n) is now smaller than the natural gain spectrum G (nu ), and shows sideband

structure due to the trapped-particle instability.

In conclusion, it was established that a wide range of optical pulse shapes can be
found by changing the desynchronism 4 for a fixed dimensionless current density j and
loss factor Q. For large j and Q, the optical and electron pulse shapes could differ more
widely than with small j and Q. Experiments can easily reach the typical loss and gains
required, and optical pulses can be easily made x10 smaller and x10 larger than the
electron pulse length in the picosecond range. Greater divergence between the electron
and optical pulses is possible but more difficult to control parametrically; a slight change
make the resuiting pulse and interaction chaotic and un-controllable. But, the controllable

range is already exciting for future applications.

Optical Guiding in the FEL

A current topic in the FEL field during the contracting period was optical guiding. This
effect describes the ability of the FEL interaction to focus light back into the electron beam.
Historically, C. M. Tang and P. Sprangle (NRL) found that the low-gain FEL oscillator would
modify the optical resonator mode so as to focus the light back into the electron beam.
Later, G. Moore (U. of N.M.), and T. Scharlemann (LLNL) and A. Sessler (LBL) found that
the effect can be much more dramatic in the high-gain regime; the light and electron beams
could propagate over large interaction distances with good coupling. This is important for
high-power, high-efficiency FEL amplifier designs. Natural diffraction normally provides a
severe limitation to a long undulator length, but the "optical guiding” effect allows the

electron beam and light to continue interacting over many Rayleigh lengths.
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g A description optical guiding was developed that does not rely on the fiber-optic ‘J:
W™ wa
analogy developed by Scharlemann and Sessler, nor the cubic dispersion relation used by :"‘:
¢ o
ES Moore. The conceptual arguments do not make use of complicated simulations, but :;-s.
- establish that the optical guiding effect comes from a large optical phase shift associated g
- et d
Y with the high j operating regime. In free space, the optical phase at the center of a ':{'.
wavefront evolves as A¢ =—At/z,, for a small step At. The FEL interaction also modifies Z.-'-j;
'.': -
=) the waveiront as described in the dimensionless wave equation and pendulum equation. ;
b
¥, Consider a small electron beam in the middle of a co-propagating optical wave. If we :‘
o
@' average the wave equation over the transverse Gaussian mode area rz, for a small step ﬁ
bt
< At, we can approximately recover the simple form with the new dimensionless current ’;i?
: P
' Jj — jF where the "filling factor" F =1tcf/1cz° is the ratio of the electron beam area to the R
Eb optical mode area. The quantity jF «< pF does not depend on the electron beam area, but "’
-~ .\:.
only on the current within the optical mode. In the high-current regime where jF > 1, the T
l optical phase evolves as A¢ = (jF/2)"°At/2. We see that FEL interaction induces a phase L8
N
shift that is opposite to that of natural diffraction, and therefore focuses the light back into '.':\
n‘-' f!‘
N beam along t. :::\
Both the FEL change in amplitude and phase are such that they counter natural
. A
~ »
- diffraction. To the extent that the FEL interaction on the optical field amplitude counters ;I',f_
w '
L
- diffraction, this is termed "gain guiding". To the extent that the FEL interaction on the &ﬁ
,:.' ~

optical field phase counters diffraction, this is termed “phase guiding". Gain guiding is not

“

79 >

;: surprising, but phase guiding is not necessarily common to all gain mediums. .;'_E .
._ In order for optical guiding to persist, the FEL interaction must continually compensate EE
"~ for the phase shift associated with free-space diffraction at each step At ; that is :
) UF/2)"3/2 2 251 . The critical current density needed for optical guiding is then given by r—;: '
:'.: J* = 16:520[2. An FEL utilizing a small electron beam and a small optical wavefront (with 'E:
e a correspondingly short Rayleigh length), requires a larger current density for guiding. ::.':'
e When the initial optical wavefront is focussed onto the electron beam, we would expect that E
N
i ‘
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the filling factor F is not too small; we use of =242 to write a simpler relation estimating

the critical current density needed for optical guiding,
J* =32 20_3

If the normalized Rayleigh length is small, say z0=m§u=o.z, natural diffraction would
spread the light over a large transverse area after the interaction length At=1. Optical
guiding can compensate in a typical high-current case where j = 10% > Jj* = 4x10°. Note
that the relations j* =16zo°0;° and j* =322z,° do not depend on the length of the
undulator L, but express a comparison between the rates of natural diffraction and FEL

focusing along 1.

XXX Fti Optical (xsidrxg  MEREX
C L0000 o C.4 x()-rO a, 7z IO~C_}
4.C -C N=100 v =0 T =G0
o w '
D S - > =
fo-l__i 2 {-7,29105 BEEREE

0,0 lol 7%7%

Figure 3. Optical guiding in the FEL.

Figure 3 shows a simulation that solves the full, diffracting wave equation, together
with the pendulum equation, numerically to illustrate FEL optical focusing. The electron
pulse is taken to be long, so that no z dependence is followed; in the transverse dimension,
the electron beam is symmetric in x-y with the parabolic shape j(r)=i(1-r % 203) for
j>0,and o =0.4. The peak density is j = 10000, and the initial phase velocity of the

beam is v, =0 for maximum gain in the high-current case. A Gaussian optical mode is

T N T T

.....
.....
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w3

4

. u focused near the beginning of the undulator at T, =0.001 with a Rayleigh length z,=0.2,

:_:_‘. and an initial field strength a,=2 at the center of the mode. The field amplitude |a(x,1)|

:: :;:: grows along t, and reaches a peak value |a(0,1)| = 750 (white) a short distance along the

" v undulator; points of zero field amplitude are shown as black. The scale at the top-right

-::: - indicates the field amplitudes plotted in grey, and several contours following points of

L constant amplitude are superimposed. Without the FEL interaction, the mode would

: - smoothly spread in z because of natural diffraction, but the contours show how the

:5 .\\4 wavefront is focused back into the electron beam. This example is close to the ELF

E - experiment at LLNL. In that experiment, a waveguide confined the optical mode so that

: :-:“ optical guiding would not have been observed, but future visible experiments may be able

. to see the effect. There is also clear strong-field saturation in Figure 3 whereas the

E discussion above assumes weak optical fields to describe optical guiding. All that is

: needed for optical guiding is the optical phase shift that counters diffraction. Simulations

- i show that the optical phase shift continues after saturation at the same rate as in weak '
;—; - fields. For this reason, experiments are expected to continue to use optical guiding to
2 Z:I enhance efficiency in the saturated regime. The simulation in Figure 3 shows that optical 2
' ] guiding can continue after strong fields are reached.

Four-Dimensional, Self-Consistent FEL Theory

a ,".".'_)V“_ J
L )
L S W

Historically, the pendulum equation approach to FEL theory was designed to clarify

[
EaVa

the electron dynamics and gain in the low-current regime. Later, the method was extended

:' in order to solve the short-pulse problem in the Stanford SCA FEL. Multimode dependence :
‘ '.; in the longitudinal dimension was followed with field sites in the optical wave envelop and in

- the electron pulse. The extensions have continued, with ONR support over several years,
-

so that a fully self-consistent, four-dimensional theory, following electron and optical

l.‘".l“

quantities in (x,y,z,t), could be developed. In this theoretical approach it would be

L 3 B )

possible, in principal, to include all relevant FEL effects. The development of spatial
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periodic boundary conditions in the simulation of FEL longitudinal mode evolution is now
being used extensively in the FEL community. Studies of the trapped-particle, sideband
instability with long electron pulses must use this technique. The method has been
employed at LANL in the FELIX code (B. McVey), at LLNL in the GINGER code (B.
Fawley), and at Boeing/Spectra-Physics (D. Quimby). In the longitudinal dimension, the
important physical process followed is the trapped-particle instability, while in the
transverse dimensions, the concern is with diffraction, or optical guiding. The next few
paragraphs outline some of the information regarding the multimode analysis used with

periodic boundary conditions in order to document that part of the research effort.

The carrier wavelength provides the smallest relevant scale A=1,/2y° in the
longitudinal dimension. The natural scale-length for multimode effects in the longitudinal
dimension is determined by the natural gain spectrum width (1/2N), or by electron-optical
slippage distance; both estimates lead to the same important longitudinal distance NA. A
single point in the electron beam interacts with only N optical wavelengths during a pass
through the undulator. Conversely, a single point in the optical wave envelope interacts

with the electrons in a section of the beam N A fong.

An extension of the form of the optical field to multiple frequencies would make the
optical field a function of the optical wavenumber k = k&7 in the fongitudinal dimension. An
alternative method is to follow multiple positions a(z) along the wave envelope. This is
choice made in both GINGER and FELIX. The extension to spatial modes a — a(z) is
completely equivalent to an extension in longitudinal wavenumbers a — a (k). The concept
of slippage in the FEL is somewhat more natural in the spatial modes representation. It is
expected that the relevant mode spacing would be smaller than, but comparable to the gain
bandwidth given by Ak/k < (2N )'1. Normalize all longitudinal distances to the slippage
distance for this discussion: z =Z/N A where Z is the actual spatial coordinate, and : is the
dimensionless longitudinal position. The complex optical field, the electron phase, and the

electron dimensionless phase velocity must become a function of z: a—a(z), vov(z), and
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{—L(z). The number of sites needed in a particular problem is determined by the amount
of detail to be followed in the optical spectrum. Recall that the FEL electron and wave
equations assume a slowly varying optical amplitude and phase. They are, therefore,
invalid equations of motion for describing a simulation that follows one optical wavelength
adjacent to the next optical wavelength. The sampled sites in any given problem must be
several to many optical wavelengths apart. This implies that the dimensionless z must

have steps Az > 1/N.

The electrons and light can evolve significantly in the slippage distance, or in one pass
through the undulator. In fact, significant evolution of any quantity over this length scale
N is the typical case. It is therefore necessary to sample several to many times in the
distance N A which implies that N« Az < 1. Typically, with N = 100 this would imply that
1072 «< Az < 1 which would be satisfied with by the choice Az =0.1. In a numerical
simulation, the number of sites along the optical field envelope is finite, and the "window"
containing those points is finite in length. The width of the window w is measured in units
of the slippage distance NA as are all other longitudinal dimensions; the window width
w =1 corresponds to a length of one slippage distance in dimensionless units. When the
number of sites in the window w is N_, then the modes that are properly represented is

given by the expression:

AN AN I A=V, =vy—(2r/w ) (I -N,_/2) where [=0,1,2,.. N, ~1

w =N_Az, and A\, is shift in wavelength away from the resonant wavelength A. The mode

spacing is given by Av, =2m/w .

it appears that in most cases explored so far that w — 1-10 is adequate to
characterize most free electron laser phenomena. The choice of w =1, 0or 10, is
determined by the kind of physics expected in the simulation. The window is typicaily only
a few, to several, slippage distances long, since w is not a large number. This means that

short pulse problems with lengths comparable to N A are handled easily in such a window.
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When the electron pulse and optical pulse are long compared to N A, as in the case of an

induction linac at LLNL, periodic boundary conditions can be imposed on all dynamical

e ¥ X R QA T

-
, ::3 quantities at each end of the window w: {(z —w/2)={(z +w/2), V(z —w/2) =Vv(z + w/2),
? and a(z -w/2)=a(z +w/2). The end-effects of the periodic boundary conditions are 0
& considered non-physical and inconsequential. The shorter window allows problems typical ;
! > of the long puise induction linacs at LLNL to be solved on existing computers. The electron E
x pulse from the induction linac is from 102 to 10° slippage distances in iength so that without ,
": periodic boundary conditions computation would not be practical. .:: '
i b The number of sample electrons is important in determining the amount of memory E
' 3 required in the computer. The longitudinal or transverse problems can each be handled on o
o an IBM PC, but when combined, the code requires a Microvax Il or CRAY level computer. :
\ i::l The number of electrons at each site in the simulation can range from 20 to several N
: thousand depending on the kind of problem being researched. As a general guide, FEL ‘3‘_
" i problems that saturate at power levels such that there is approximately one synchrotron !"
v oscillation, that is when the dimensionless optical field is |a | = 472 or less, then as few as E
- 20 sample electrons might be adequate to represent the dynamics of the beam. If there is
‘ .., an initial energy or angular spread (emittance), then more are required. If the undulator ;
| - design is tapered, then more are required because the electron phase acceleration spreads . 7
E :-_: electrons over a wider range in phase space. In the high gain regime, the saturated power E
N can be much greater than that required for one synchrotron oscillation so that more A
'::5 electrons may be necessary. .

LW TS
» 8 0,
WA

N In the high current, high-gain regime (j > 1), where the weak-field gain can be as

e e

. large as 102, the electrons and light may experience many e-foldings of growth in the

;. slippage distance. Details of the interaction may not be “remembered" over the whole :
l.' ‘ Y

A slippage distance, so that it is possible to use w < 1 in a simulation. In another view, the :.
- gain spectrum for the high current case has a width v=4;"%, or Ak/k =2;"®/xN, which N

can be significantly wider than the natural gain spectrum width 1/2N . Several hundred time
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e

steps with some sophisticated numerical integration scheme are usually necessary in the

£~ |

5'5 high current regime.
N
:t E EXXKER  FEL 4D Cvoution  EXEXXX
' J=1000 o=l a,=10 »,=0 =0
A D=0 N=100 z=1 t =001 do=i
¥~ s; ez O 18 Pl 1) lalx,
: e
~‘. Iy
N —
o — ,
,
Y & y ‘
N ry
. 0 1
D -0.5 z 0S5 -50 v 50 - t
) GIr)
l‘. :"F’ ‘
'-3 0 T 1 -50 v
Pd
~
o '
s - e
N Figure 4. Fully four-dimensional FEL simulation results. :
f ‘ i Figure 4. shows the results of a four-dimensional FEL simufation. In the longitudinal z
:_':' - dimension, periodic boundary conditions are used over one slippage distance with a
-
%:. " window of length w, =1 and 16 sites. In the transverse x-y dimensions, an electron beam
k with a parabolic shape and size o, =0, =1 drives an optical wave. The peak current
‘~ - density is j = 10° with the electrons in the beam starting at resonance v, = 0; there are 16
5 X
‘;ﬁ O electrons at each site where the current is non-zero. The initial optical wave is focussed .
r.. 1
near the beginning of the undulator at t,, =0.01 with a Rayleigh length of z,=1; the initial
S peak field strength is a,=1 and the transverse window has width w =6 with 16 sites in
i each dimension. Even with this minimal number of electrons and field sites in each
- ’ dimension, the code runs for more than an hour on a Microvax |l for a single pass through
i the undulator. The graphic output is a combination of figures shown in Figures 1, 2, and 3. 3
| N
o > At the bottom left is the evolution of gain G (1) and at the bottom right is the evolution of the K
v, , : , : : ;
(4~ net optical power P (1) along the undulator. At the middle, bottom is the single-mode gain N
v spectrum G (v) for reference; above it is the evolution of the power spectrum P (v,1). On the
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L3

i

left is the evolution of the longitudinal field magnitude |a(z,t)| in the window one slippage

distance long; the final field structure is shown above the evolution with a grey scale for

e
b

reference. On the right is the transverse optical field magnitude structure }a(x,t)] which

remains focussed near the center of the window of width 6; the final transverse magnitude

,.
Y ~
',;: ~ structure is shown at the top right. This kind of computer run can demonstrate the coupled
N.
:;: effects in the longitudinal and transverse dimensions; for instance, the optical guiding of the
s Ad "’-

transverse optical mode increases optical power and tends to create further sideband

growth in the longitudinal optical field.

Coherence Development and Line Narrowing in the FEL

There has been relatively little research on the topic of line narrowing, or coherence

development, in FEL theory. The FEL gain spectrum has a well-defined shape in the low-

S e e
£ 2]

gain limit with a peak at v=2.6. In the FEL oscillator, the optical field grows in power over

‘ o many passes and develops coherence. In the first few passes, the optical power at each ¥
é: - mode, identified by a particular phase velocity v, is provided by spontaneous emission. ]
;3 " The spontaneous emission lineshape is the integral of the gain spectrum is symmetric in |
) . [‘ shape and has a width Av =2r. On each subsequent pass, the power in each mode ata v

::T b changes for three reasons: the spontaneous emission process adds power, the resonator

-'é :: mirrors and output coupling cause a loss, and the gain process with its antisymmetric

v shape increases or decreases power at a wavelength with phase velocity v. On one pass

‘; ?-: this can be described by

': ' AP(v) =S (v) + P (V)G V) - 1/0)

where P (v) is the optical power in mode v, S(v) is the spontaneous emission in mode v on

:‘n“l x I‘LJ .«

o~ each pass, AP (v) is the change in the optical power, G (v) is the gain spectrum, and 1/Q is

the loss each pass taken to be independent of v here.
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Line narrowing and coherence development in the FEL is the same as in an atomic
laser except for the detailed shape of the gain and spontaneous spectra. In the first few
passes after the oscillator is turned on, spontaneous emission results in a typical weak
optical field of strength |a | = 107*. The field is initially incoherent with a coherence length
of only N ; the spontaneous emission linewidth has is 1/N. This coherence length is just
barely long enough to support the classical gain process where electrons must bunch while
passing through on slippage distance NA. Over several hundred passes in the low gain
regime, the coherence length can grow significantly longer than N A, and the linewidth can

become arbitrarily narrow.

In the limit of low gain, the optical power at each wavelength grows independently, the
development of each mode can be expressed as a function of the second derivative of the
gain spectrum expanded in a Taylor series about its maximum. Over many passes in the
FEL oscillator, the wavelengths in an increasingly small region around the wavelength for
maximum gain will fall behind in power leaving a narrow laser spectrum. A simple
expression results that relates the FEL spectrum width AVA, the current density j, the
number of undulator periods N, and the number of passes in the oscillator n. The spectral

linewidth expected in an FEL oscillator after n passes is given by
AMA = 1IN (nj)'"?

Eventually, at long evolution times, the spectrum is limited by practical or fundamental

noise sources like vibrating optical components, or spontaneous emission.

Shown in Figure 5 is the line narrowing determined by iterating the above equation for
the power spectrum change AP (v) on each pass through the undulator in the FEL oscillator
configuration. The spontaneous spectrum shape is shown at the bottom over a range of
phase velocities —6 < v < 6. Above it is the gain spectrum shape with a peak at v=2.6.
Over many passes, n =0 — 60, the figure shows how the normalized optical spectrum

P(v,n)P,, evolves from spontaneous emission into a narrower spectrum. The peak gain
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is G =0.135j, and the loss is determined by Q0 =10. The final spectrum is centered around

the phase velocity v=2.6 at peak gain, and has become much smaller than the :
spontaneous or gain spectra. The above formula for predicting the line narrowing after n E
passes would apply only after substantial narrowing has already occurred since it was s.
derived by a Taylor expansion around a narrow spectrum. It is probably applicable for the :

-

last 10 to 20 passes.
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Figure 5. Line-narrowing in the FEL optical spectrum. '
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The Trapped-Particle Instability j—O Map for the FEL E:
The development of spatial periodic boundary conditions in the simulation of FEL v

longitudinal mode evoiution is essential for solving long pulse FEL problems where the ,'
- . "

trapped-particle instability is expected. The technique evolved out of our work on short :.:_
pulse propagation. A finite number of modes, and hence field points are determined by A
imposing periodic boundary conditions on the sites sampled. The simulations take much :
Y

less memory and execution time than other methods, when the electron pulse length is .

long compared to the slippage distance. ~
s
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Another advantage of the periodic boundary conditions is the parametric simplicity ot
the simulations describing FEL multimode evolution in the oscillator configuration. The
physical input parameters are only the dimensionless current density j and the resonator
loss described by Q0. Other variables, like the number of sample electrons on each site, the
number of sites, the initial optical field strength, or the initial phase velocity of electrons,
should not affect the final steady-state result. In the oscillator configuration, the FEL initial
conditions only provide a seed for starting the calculation and should not change the final
steady-state optical spectrum, or electron distribution function. The initial conditions,
number of sites, electrons, field strengths, etc. must be selected so that the final result
represents the one that would be found in an experiment, and may be selected to find the
result most efficiently, but otherwise, are not important. That leaves only j and Q to
determine the muitimode behavior of an FEL oscillator without short electron pulses. A
single contour plot of the number of final modes as a function of ; and Q is a universal

description of all FELs.

It is the trapped-particle instability that creates the multimode behavior in the FEL
oscillator configuration. When the trapped electrons oscillate through a synchrotron cycle,
the FEL gain oscillates through one cycle. It is this oscillation in the driving phase, and the
FEL gain that causes the trapped-particie frequency, v, to be imposed on the optical wave
as it slips over electrons. The synchrotron or trapped-particle oscillation frequency is

12
vs =la|

when written in dimensionless units. The sidebands appear at v, + v, so that
the new FEL power is shifted from the fundamental wavelength by AMA =v /2rN. The
shift has a simple interpretation; AMA = "the number of synchrotron oscillations™/ "the

number of undulator periods.”

Sidebands have been observed in high power RF FEL oscillators where the FEL
mechanism has also influenced by short to moderately-short pulse effects as well. In the
short-pulse FEL oscillator, the characteristics of the trapped-patrticle instability are atfected

by the synchronism, or desynchronism, between the rebounding optical pulse and the

MG I el

RN

~$. }f. V}:- v ’ J'v V A At h .f\f" "‘)-‘i‘\-'.‘":.w'.'i")-‘ ‘1"«‘.'~‘..“'- e ""'-' o " '-:'l-'-;"‘;'“:



-.-‘-. « Vo d.l(;ll a DA A" SN A AN A S A A AN A A A

L
f
> X ¥ _F

K
) .
l' -
N -19 - NR 395-092 X
:: N .
’

successive electron pulses from the RF accelerator. The instability has only been ~

observed when the FEL is near synchronism and the power in the resonator is largest.

“al" NN
L9
Pl dls

Increasing the current density j or the resonator Q increases the steady-state power, the

synchrotron frequency, and the sideband gain. The addition of sideband power is

hd

. ::: cumulative, since the presence of a strong sideband again increases the steady-state

:\: - power. When taper is introduced into the undulator design, the synchrotron frequency is :
s only slightly modified, and the sideband gain is reduced. In simulations and experiments,

: % the FEL oscillator runs for several hundred to thousands of passes through the interaction j
i:: v region. In that time, the stored optical wave "sees" many synchrotron oscillations, so that ':
) } any sideband gain above threshold gives large growth from a small amount of noise. The vy
f ' resulting steady-state features are therefore not affected by the details of the noise source. g
:: :.- Only one experiment, the high power FEL at LANL, has now seen the trapped-particle
? sideband instability. [t might have been observed earlfier in the Stanford SCA FEL :
h i experiments, but was not; possibly, because the short-pulse effects dominated the ¥
; - interaction. From the experimental results, it is not at all clear that the synchrotron :
L

sideband instability is as prominent a problem as indicated by simulations. In the FEL

amplifier, the input noise at the sideband frequency is important to the development of

BN

‘ significant sideband power. This important factor cannot be found in any direct way by "

:J studying the FEL oscillator experiments, but the sideband gain can be assessed.

¢ Two papers reviewed the properties of the trapped-particle instability in FEL oscillators
3 :: and amplifiers. In these papers are the first examples of the trapped-particle instability in .:
:: . the FEL amplifier configuration. The references are -
3 W. B. Colson, "The Trapped-Particle instability in Free-Electron Laser Oscillators and

Amplifiers”, Nucl. Instr. & Methods in Phys. Res. A250, 168 (1986). .
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W.B. Colson, "The Effect of Electron Trapping in Free-Electron Laser Oscillators and
Ampiifiers”, Proceedings of the 1985 International Conference on LASERs, Las Vegas

CA (Dec. 1985).

Figure 6 shows the result of many simulations that make up the data in two j—Q
contour surfaces; each point on the surface is the resuit of a long multimode simulation
over many passes of the oscillator. The range of current density explored on each contour
surface is j =2 — 20, and the range of resonator loss is 0 =4 — 20. The surface on the
left is the total optical power P =j| a lzdz in all modes after evolution to steady-state over
many passes n =200 at each site. There are 16 sites in a longitudinal window one
slippage distance long, or of unity length in dimensionless units. At each site there are 32
sample electrons, 512 electrons in all. The initial electron beam is monoenergetic at phase
velocity vy =4. The initial optical field amplitude is a, =6 with zero phase and a random
modulation of value da =4. At each point in each surface, the only values physical values
that matter are ; and Q,; the other variables are judiciously selected to make the

simulations valid and efficient.

X FEL () MAPS 1IX

NPower)
IREEE
-0.85 10

Figure 6. FEL j—0 map of the trapped-particle instability.
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The surface on the left of Figure 6 plots In(P) as a function of j and Q. Increasing
either j or Q increases the optical power smoothly P in this range. A grey scale is given at
the top of the surface with contours for quantitative evaluation. At low values of j and Q,
the FEL is below threshold and the power decays to a small value. When j =Q =20, the
power increases to P :2.2x104; the corresponding field ampiitude at saturation for this

j-Q value is then [a | =P "2

= 148. The synchrotron frequency is wg = |a | "2 = 4 giving
two synchrotron oscillations of trapped-electrons in a single-pass through the FEL
undulator. This intense field amplitude will result in sideband mixing and chaos field

structure as shown in the second contour map on the right.

The right-hand surface shows the number of optical modes resulting from each
simulation. The number of modes ranges from 1 to 6, and generally increases when either
j or Q isincreased. The number of modes does not steadily increase with j—Q, however;
there may be some features that require further study, but we can see from individual
simulations that the optical field becomes chaotic after just a few sideband modes appear.
This may, in part, explain the chaotic features in the modal j—Q surface. On the other-
hand, if there are actually special values of j—Q that avoid the trapped-particle instability, or
pass through an evolutionary state where there is single mode behavior, this would have

important high-power FEL applications.

Invention (Patent) Report:

None
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