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Below is an outline of the research progress during this contracting period and the

effort to present that work in journal publications.-"New research results we-e din the

FEL klystron theory, exotic short-pulse evolution, optical guiding in the high-gain regime, .;

fully four-dimensional simulations of the FEL, coherence development and line-narrowing in

~~the FEL, and a global map describing the trapped-particle instability and chaos regions in ,'

the FEL. Two review papers describe the development and fundamentals of FEL theory,,_

,4- and experiment. The theoretical foundations covered in the review papers were, in large."

part, supported by the Office of Naval Research over several years in this program.

Self-Consistent EL Klystron Theory

eIn collaboration with .Boscolo, the description of the high-gain klystron FEL wasa'.

improved. Previous work has assumed low-gain in the analysis of the high-gain klystron

ldesign. The gain of the klystron FEL in this research was calculated with use of the

coupled, self-consistent Lorentz-Maxwell equations. For high gain, the objective of the

,'V.

Ilsrn collaboration, wthe gin Bspcothem isfdesrition bofido the hihgiprvousl EELw was

,.
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low-gain result. This is caused by the shifting of the optical phase during the gain process

and is calculated for the first time. The effects derived are not obtainable from the Madey

Theorem. The klystron saturation in strong nonlinear optical fields is also discussed. We

make a comparison, of the use of plasma theory and distribution functions, and the single

particle approach. A manuscript of the research has been published, and the reference is

below:

I. Boscolo and W. B. Colson, "Small Signal Gain Formula and Saturation in an Optical

Klystron Free Electron Laser", Nuclear Instruments and Methods in Physics Research

A237, 118 (1985).

FEL Review Papers

During the contracting period, two review articles were requested and written on FELs.

The first was written for the annual FEL conference held in Castelgandolfo, Italy. It is a

tutorial describing the theoretical work on FELs supported over a number of years by ONR.

,, Extensions of the Lorentz-Maxwell theory are described that can be solved analytically, or

numerically on a small computer. A brief discussion looks at high-gain collective effects,

P short pulse effects, harmonics, energy spread and emittance, transverse diffraction, and

noise. The reference is

. W. B. Colson, "Tutorial on Classical Free Electron Laser Theory", Nuclear Instruments

and Methods in Physics Research A237, 1-9 (1985).

The second is a more general review of experiments and theory for the FEL written in

cooperation with Andy Sessler of LBL. This paper is one of the most comprehensive

papers now available on FELs. One table provides a description of all the FEL

* ,., experiments, and another describes the electron accelerators that could be used to drive

-FELs. Specific experiments at LLNL, LANL, and Orsay are described in some detail to give

the reader a more complete view of practical devices. The reference is

"'" " ."' ... "'"..
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W. B. Colson and A. M. Sessler, "Free Electron Lasers", Annual Reviews of Nuclear

and Particle Science 35, 25 (1985).

Exotic Short-Pulse Propagation in the FEL

An FEL powered by an RF accelerator uses a series of short picosecond pulses

b ,'. injected into the FEL undulator in the oscillator configuration. We explored how the

trapped-particle instability can alter the length of the short optical pulse and make it much

shorter than the electron pulse. Typically, high-power saturation is reached after several

hundred passes, and the FEL works in steady-state for an additional 103 to 104 passes.

The current density of each short pulse .(z) is taken to be parabolic with the form
2 2j(z)=j (1 -2z /a2) for Iz Ilo 2 /4  and j(z)--O for Iz I>//42; the FWHM a, is

normalized to the slippage distance NX. RF accelerators produce current densities that
"'

give values of the dimensionless current density j in the moderate range 1 -* 100 and ",

oz = 1 - 30. In addition to gain, there is loss on each pass due to mirror absorption and

transmission; in the absence of gain, the optical power decays as e' Q where n is the .4,-.

, ~'. pass number. Usually, Q is from 2-* 200.

- An important factor determining the optical pulse length is the matching of the electron

pulse repetition frequency and the bounce frequency of the light pulse in the resonator 2Sc.

These frequencies must be closely synchronized so that each new electron pulse arrives at

the beginning of the undulator simultaneous to the rebounding optical pulse. Define d, the

"desynchronism," as the displacement between the pulses on each pass; if the mirrors are
.4.

too close together by the distance AS, then d =2ASIN, where N is the number of

undulator periods and X is the optical wavelength. Maximum power is obtained at small

d>0. The desynchronism can be used to control the optical pulse length relative to the ',

. "-.electron pulse length. When the desynchronism is small, the optical pulse is short; when .

the desynchronism is large, the optical pulse is long.

:...

- 4• ' hC. ..
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The general features of the trapped-particle instability in short-pulse FELs are briefly

outlined below; many features have now been observed in experiments.

0 At small d>0, the FEL usually reaches power levels large enough to cause the

trapped-particle instability. In this case, the optical pulse will be centered on the

, ielectron pulse, and will have sharp spikes due to the instability. This gives a broad,

possibly chaotic, optical power spectrum, and a broad electron distribution. The

trapped-particle instability adds frequency components that further shorten the already

short optical pulse.

* At large d, the steady-state power is smaller due to the reduced coupling, and the

trapped-particle instability is less likely to occur. The final optical power spectrum is

narrow and in a single-mode; the final electron distribution is narrow due to the weak

optical fields. Since the optical pulse is advanced by a large d on every pass, the

center of the optical pulse may actually be ahead of the electron pulse. The

desynchronism can be used to change the optical pulse length by as much as xlO in

-" ,.an operating FEL.

- When d is in the intermediate range, we have often observed limit-cycle behavior in

the simulations. In this case, the pulse continually changes shape while the trapped-

particle instability creates new subpulses. A user-facility may be able to make use of

i : this affect by providing users with both long and short pulses from a single machine.

The changes take place on a time-scale like 101.s.

-  Increasing the current density j or the resonator Q increases the steady-state power;

this increases the synchrotron frequency and the sideband gain. The addition of

sideband power is cumulative, since the presence of a strong sideband again

- increases the steady-state power.

In Figure 1, a number of graphs show the results of a simulation where a steady-state
U " "optical pulse has evolved that is much shorter than the electron pulse. At the lower-left, the

current density of a short pulse j (: +T) is shown at T -0 (black), and at T 1 (white) in the
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calculational window of width W = 3. All longitudinal distances are normalized to the

slippage distance NX which can be in the picosecond range or smaller. The peak

dimensionless current density is j = 50. The optical pulse amplitude I a (z, n) I is shown at

the left evolving over n = 80 passes through the resonator. The grey scale shows the peak

field I a (z, n) I 163 in white, and zero field in black with two contours. On each pass, at

,r = 0, the optical wave is not driven because the new electron pulso from the accelerator is

not bunched. At a later time c : 1 when bunching develops, the electron pulse slips back,

and drives the trailing edge of the light pulse. The light pulse is distorted on each pass

because gain is preferentially deposited on the trailing edge of the pulse. Consequently,

the center of the light pulse appears to be traveling slower than c even though in vacuum.

.EMI FEL Pulse Evajtwfn IEEXE
j=

5
, a . -1 d ".01

0=3 A/iO D O N=100

,(zn) EM 1G'3 P(V.ni f(r p)

*90aiI

.'a.
0r)

Figure 1. Simulation of a short, "spike" optical pulse; small d =0.01.

The desynchronism in Figure 1. is d = 0.01 and the advancing of the light pulse is

seen in the first few passes. The gain and resonator loss at the mirrors, determined by

Q =3 as defined above, combine to reshape the pulse until steady-state is achieved. The
'," total power, P (n) =PZ I az (Z)2 shown at the lower-right, has increased from the seed pulse "

to strong-field saturation. The short optical pulse shape gives the multimode power

spectrum P(v, n) shown evolving in the middle. For reference, the single mode gain

a,,

- •] I d : - i . . . " a. - - . . . . li
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spectrum G (v) is plotted at the bottom-center for j = 50. Mode competition keeps the

fundamental optical spectrum near peak gain in weak fields, but strong field saturation will

.P. move peak gain to larger values of v. At saturation, the trapped electrons oscillate in the
W.%

V.- closed orbits of phase space on each pass. Over many passes, the frequency of the

9P. trapped particles mixes with the fundamental wavelength to produce sidebands. Note that

the trapped-particle instability has, in this example, conspired to shorten the optical pulse

and make the optical power spectrum P (v, n) actually broader than the FELs natural gain

bandwidth. At the right is the evolution of the electron phase-velocity distribution f (v, n)

taken at the end of the undulator 'r = 1 on each pass; the final spread in phase velocity

becomes broad as the field strength increases. The spread induced by the strong optical

fields is roughly given by the peak-to-peak height of the separatrix 41 a 1112.

IXIX FEL Fk se Evokjtion filE

j= 1O~ d=O.l%

S--
ALA

n ' %, J"

51 Fiur 21 0~ 3 n 4C

Fiue2. Simulation of a long, modulated optical pulse; large d =0.1.

A second simulation is shown in Figure 2. with the same parameters except for thedesynchronism of d = 0.1. The resulting pulse shape is dramatically different, and the I
.'-' simulation demonstrates many features that are found in the study. The optical pulse, in ""

this case, is substantially longer than the electron pulse, and could be even longer with

increased desynchronism. The saturated field strength is larger enough to cause the I

-W job

'S ,, ,,, w "t,", " ,,5, " ,",,".,.,, .. ,," , ,, ,.5".,4,5. ,".""5•" "•'•'.'- v .. ,# # .''' . ",.. 2 , ' ,",- . ." ."

- I I I .. .. .. .. I "



, - 7 - NR 395-092

trapped-particle instability and modulate the optical pulse envelope. The modulated pulse

shaped continues to evolve forming a limit-cycle behavior. The net power, power

spectrum, and electron spectrum all oscillate over several passes n. Note that power

spectrum P (v,n) is now smaller than the natural gain spectrum G (nu), and shows sideband

structure due to the trapped-particle instability.

In conclusion, it was established that a wide range of optical pulse shapes can be

found by changing the desynchronism d for a fixed dimensionless current density j and

- loss factor Q. For large j and Q, the optical and electron pulse shapes could differ more

widely than with small i and Q. Experiments can easily reach the typical loss and gains

required, and optical pulses can be easily made xl0 smaller and xl0 larger than the

electron pulse length in the picosecond range. Greater divergence between the electron

and optical pulses is possible but more difficult to control parametrically; a slight change

make the resulting pulse and interaction chaotic and un-controllable. But, the controllable

range is already exciting for future applications.

Optical Guiding in the FEL

A current topic in the FEL field during the contracting period was optical guiding. This

effect describes the ability of the FEL interaction to focus light back into the electron beam.

Historically, C. M. Tang and P. Sprangle (NRL) found that the low-gain FEL oscillator would

modify the optical resonator mode so as to focus the light back into the electron beam.

Later, G. Moore (U. of N.M.), and T. Scharlemann (LLNL) and A. Sessler (LBL) found that

* the effect can be much more dramatic in the high-gain regime; the light and electron beams

r could propagate over large interaction distances with good coupling. This is important for

high-power, high-efficiency FEL amplifier designs. Natural diffraction normally provides a

severe limitation to a long undulator length, but the "optical guiding" effect allows the

electron beam and light to continue interacting over many Rayleigh lengths.

%J4

,J . '., ,-,
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A description optical guiding was developed that does not rely on the fiber-optic

analogy developed by Scharlemann and Sessler, nor the cubic dispersion relation used by

Moore. The conceptual arguments do not make use of complicated simulations, but

establish that the optical guiding effect comes from a large optical phase shift associated

with the high j operating regime. In free space, the optical phase at the center of a

wavefront evolves as AO=-A T/zo for a small step At. The FEL interaction also modifies

k the wavefront as described in the dimensionless wave equation and pendulum equation.

Consider a small electron beam in the middle of a co-propagating optical wave. If we
average the wave equation over the transverse Gaussian mode area irzo for a small step

A , we can approximately recover the simple form with the new dimensionless current

j - jF where the "filling factor" F = m: /tz 0 is the ratio of the electron beam area to the

%1-I optical mode area. The quantity jF - pF does not depend on the electron beam area, but

only on the current within the optical mode. In the high-current regime where jF >> 1, the

3S
,f optical phase evolves as A = (jF12)1 3A/2. We see that FEL interaction induces a phase M

shift that is opposite to that of natural diffraction, and therefore focuses the light back into

beam along r.

Both the FEL change in amplitude and phase are such that they counter natural

diffraction. To the extent that the FEL interaction on the optical field amplitude counters ONR

diffraction, this is termed "gain guiding". To the extent that the FEL interaction on the .

optical field phase counters diffraction, this is termed "phase guiding". Gain guiding is not

--. surprising, but phase guiding is not necessarily common to all gain mediums.

In order for optical guiding to persist, the FEL interaction must continually compensate

for the phase shift associated with free-space diffraction at each step AtC ; that is

(jF/2)' 3/2 > zo. The critical current density needed for optical guiding is then given by

j* 16zo 2t. An FEL utilizing a small electron beam and a small optical wavefront (with

a correspondingly short Rayleigh length), requires a larger current density for guiding.

When the initial optical wavefront is focussed onto the electron beam, we would expect that

'OV.--

• ' V- I i ..
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the filling factor F is not too small; we use z012 to write a simpler relation estimating

the critical current density needed for optical guiding,

-3j* = 32 z o

1 2
~. If the normalized Rayleigh length is small, say zo = wo IL= 0.2, natural diffraction would

spread the light over a large transverse area after the interaction length A't = 1. Optical

guiding can compensate in a typical high-current case where j-104>1* =4x10 3 . Note

that the relations j* 16zo 2 l 2 and j* =32zo 3 do not depend on the length of the

undulator L, but express a comparison between the rates of natural diffraction and FEL

focusing along r.

.)X'X 0.4 -0 2 zC

3 C [)-0 N 100 o0 r- T C. '.

%o J. f=2.e %

2 

-

Figure 3. Optical guiding in the FEL.

Figure 3 shows a simulation that solves the full, diffracting wave equation, together

with the pendulum equation, numerically to illustrate FEL optical focusing. The electron

pulse is taken to be long, so that no z dependence is followed; in the transverse dimension,

the electron beam is symmetric in x-y with the parabolic shape j(r)=.i(1-r2/2o.) for

j > 0, and a, = 0.4. The peak density is j = 10000, and the initial phase velocity of the

beam is v0 = 0 for maximum gain in the high-current case. A Gaussian optical mode is

N.
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focused near the beginning of the undulator at E., = 0.001 with a Rayleigh length zo = 0.2,

and an initial field strength a o = 2 at the center of the mode. The field amplitude I a (xj)I

Sgrows along t, and reaches a peak value I a (0,1)1 750 (white) a short distance along the

undulator; points of zero field amplitude are shown as black. The scale at the top-right

• "indicates the field amplitudes plotted in grey, and several contours following points of

* .constant amplitude are superimposed. Without the FEL interaction, the mode would

smoothly spread in z because of natural diffraction, but the contours show how the

'wavefront is focused back into the electron beam. This example is close to the ELF

experiment at LLNL. In that experiment, a waveguide confined the optical mode so that

optical guiding would not have been observed, but future visible experiments may be able

.. to see the effect. There is also clear strong-field saturation in Figure 3 whereas the

discussion above assumes weak optical fields to describe optical guiding. All that is

needed for optical guiding is the optical phase shift that counters diffraction. Simulations

show that the optical phase shift continues after saturation at the same rate as in weak

fields. For this reason, experiments are expected to continue to use optical guiding to

, '-. enhance efficiency in the saturated regime. The simulation in Figure 3 shows that optical

guiding can continue after strong fields are reached.

Four-Dimensional, Self-Consistent FEL Theory

Historically, the pendulum equation approach to FEL theory was designed to clarify

the electron dynamics and gain in the low-current regime. Later, the method was extended

in order to solve the short-pulse problem in the Stanford SCA FEL. Multimode dependence

in the longitudinal dimension was followed with field sites in the optical wave envelop and in

the electron pulse. The extensions have continued, with ONR support over several years,

. so that a fully self-consistent, four-dimensional theory, following electron and optical

quantities in (x,y,z,t), could be developed. In this theoretical approach it would be

possible, in principal, to include all relevant FEL effects. The development of spatial
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periodic boundary conditions in the simulation of FEL longitudinal mode evolution is now

being used extensively in the FEL community. Studies of the trapped-particle, sideband

instability with long electron pulses must use this technique. The method has been

employed at LANL in the FELIX code (B. McVey), at LLNL in the GINGER code (B.

Fawley), and at Boeing/Spectra-Physics (D. Quimby). In the longitudinal dimension, the

important physical process followed is the trapped-particle instability, while in the

transverse dimensions, the concern is with diffraction, or optical guiding. The next few

paragraphs outline some of the information regarding the multimode analysis used with

periodic boundary conditions in order to document that part of the research effort.

The carrier wavelength provides the smallest relevant scale X-X O/2 y in the

longitudinal dimension. The natural scale-length for multimode effects in the longitudinal

- dimension is determined by the natural gain spectrum width (112N), or by electron-optical

slippage distance; both estimates lead to the same important longitudinal distance NX. A

single point in the electron beam interacts with only N optical wavelengths during a pass

through the undulator. Conversely, a single point in the optical wave envelope interacts

with the electrons in a section of the beam NX long.
P

An extension of the form of the optical field to multiple frequencies would make the

optical field a function of the optical wavenumber k = k.f in the longitudinal dimension. An

alternative method is to follow multiple positions a (z) along the wave envelope. This is

choice made in both GINGER and FELIX. The extension to spatial modes a -- a(:) is

completely equivalent to an extension in longitudinal wavenumbers a -4 a (k). The concept

of slippage in the FEL is somewhat more natural in the spatial modes representation. It is

expected that the relevant mode spacing would be smaller than, but comparable to the gain

bandwidth given by Ak/k ! (2N) - '. Normalize all longitudinal distances to the slippage

distance for this discussion: z =Z/N X where Z is the actual spatial coordinate, and - is the

dimensionless longitudinal position. The complex optical field, the electron phase, and the
electron dimensionless phase velocity must become a function of z: -- a (:), v---(a), and

, -

t " " " , ._. _ , ." " " " .N , .", " .._' " ."" .: .'5 ., '. ' .,K " .." ... " " " " " % " " % ' ." " ' " .1'" ' " ' ' -% " " " "
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-- (z). The number of sites needed in a particular problem is determined by the amount

of detail to be followed in the optical spectrum. Recall that the FEL electron and wave

equations assume a slowly varying optical amplitude and phase. They are, therefore,

ION invalid equations of motion for describing a simulation that follows one optical wavelength

. adjacent to the next optical wavelength. The sampled sites in any given problem must be

several to many optical wavelengths apart. This implies that the dimensionless z must

have steps Az >> 1/N.

The electrons and light can evolve significantly in the slippage distance, or in one pass

through the undulator. In fact, significant evolution of any quantity over this length scale

* 1 NX is the typical case. It is therefore necessary to sample several to many times in the

distance Nwhich implies that N<Az<< 1. Typically, with N 100 this would imply that

10-2 << Az << 1 which would be satisfied with by the choice Az z 0.1. In a numerical

simulation, the number of sites along the optical field envelope is finite, and the "window"

-* containing those points is finite in length. The width of the window w is measured in units

of the slippage distance NX as are all other longitudinal dimensions; the window width

" "w = 1 corresponds to a length of one slippage distance in dimensionless units. When the

i* number of sites in the window w is N., then the modes that are properly represented is

given by the expression: 4.

41NAk, / vl =vo-(2n/vw)(-N,/2) whereI=0,1,2,... N.-1

w =NAz, and AX, is shift in wavelength away from the resonant wavelength X. The mode

spacing is given by Av, = 2xtw.

i* " ' It appears that in most cases explored so far that , - 1-10 is adequate to

, characterize most free electron laser phenomena. The choice of w = 1, or 10, is

determined by the kind of physics expected in the simulation. The window is typically only

,. a few, to several, slippage distances long, since w is not a large number. This means that

short pulse problems with lengths comparable to N X are handled easily in such a window.

'1,1
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When the electron pulse and optical pulse are long compared to NX, as in the case of an

induction linac at LLNL, periodic boundary conditions can be imposed on all dynamical

quantities at each end of the window w: C(z - w/2) = C(z + w/2), v(z - w/2) = v(z + w/2),

and a(z -w/2) =a(z +w/2). The end-effects of the periodic boundary conditions are

considered non-physical and inconsequential. The shorter window allows problems typical

of the long pulse induction linacs at LLNL to be solved on existing computers. The electron

pulse from the induction linac is from 102 to 104 slippage distances in length so that without

periodic boundary conditions computation would not be practical.

The number of sample electrons is important in determining the amount of memory

required in the computer. The longitudinal or transverse problems can each be handled on

an IBM PC, but when combined, the code requires a Microvax II or CRAY level computer. .

The number of electrons at each site in the simulation can range from 20 to several %

thousand depending on the kind of problem being researched. As a general guide, FEL ,,

problems that saturate at power levels such that there is approximately one synchrotron

oscillation, that is when the dimensionless optical field is I = 4X2 or less, then as few as
20 sample electrons might be adequate to represent the dynamics of the beam. If there is

* an initial energy or angular spread (emittance), then more are required. If the undulator
design is tapered, then more are required because the electron phase acceleration spreads

S"-" electrons over a wider range in phase space. In the high gain regime, the saturated power

can be much greater than that required for one synchrotron oscillation so that more

Nelectrons may be necessary.

In the high current, high-gain regime (j >> 1), where the weak-field gain can be as

large as 1012, the electrons and light may experience many e-foldings of growth in the

slippage distance. Details of the interaction may not be "remembered" over the whole

slippage distance, so that it is possible to use w < 1 in a simulation. In another view, the

gain spectrum for the high current case has a width 5v--4j 6, or Ak/k = 2 16/7N, which '.

* can be significantly wider than the natural gain spectrum width 1/2N. Several hundred time

- A .



-14- NR 395-092

steps with some sophisticated numerical integration scheme are usually necessary in the

high current regime.

j-1 f, * lXlXE FEL 41 Evokjtioi xxIIxx

j-1000 al a0=10 -=0 6=0

D30 N-100 Z0 =1 tw=0.O 60=1

P1(z,'r0 01111 li P(b,') kv(x,r)
SII

-O.S z O.S -so , SO-3 x 3

0 r 150 Is So0o

Figure 4. Fully four-dimensional FEL simulation results.

*Figure 4. shows the results of a four-dimensional FEL simulation. In the longitudinal z

dimension, periodic boundary conditions are used over one slippage distance with a

-, •window of length w, = 1 and 16 sites. In the transverse x-y dimensions, an electron beam

.Uwith a parabolic shape and size o =ay = 1 drives an optical wave. The peak current

" density is j = 104 with the electrons in the beam starting at resonance vo= 0; there are 16

electrons at each site where the current is non-zero. The initial optical wave is focussed

near the beginning of the undulator at , = 0.01 with a Rayleigh length of z0 = 1 ; the initial

peak field strength is ao = 1 and the transverse window has width w = 6 with 16 sites in

-'- each dimension. Even with this minimal number of electrons and field sites in each
-,.

.- dimension, the code runs for more than an hour on a Microvax II for a single pass through

the undulator. The graphic output is a combination of figures shown in Figures 1, 2, and 3.

At the bottom left is the evolution of gain G (r) and at the bottom right is the evolution of the
I?,

. , : net optical power P (T) along the undulator. At the middle, bottom is the single-mode gain

spectrum G (v) for reference; above it is the evolution of the power spectrum P (v,T). On the

r p-~
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6left is the evolution of the longitudinal field magnitude I a (z ,T) I in the window one slippage

distance long; the final field structure is shown above the evolution with a grey scale for

reference. On the right is the transverse optical field magnitude structure a (x, ) which

remains focussed near the center of the window of width 6; the final transverse magnitude

structure is shown at the top right. This kind of computer run can demonstrate the coupled

.. ~ effects in the longitudinal and transverse dimensions; for instance, the optical guiding of the:-,' ..:

transverse optical mode increases optical power and tends to create further sideband

growth in the longitudinal optical field.

Coherence Development and Line Narrowing in the FEL

There has been relatively little research on the topic of line narrowing, or coherence

development, in FEL theory. The FEL gain spectrum has a well-defined shape in the low-

gain limit with a peak at v = 2.6. In the FEL oscillator, the optical field grows in power over

• - many passes and develops coherence. In the first few passes, the optical power at each

mode, identified by a particular phase velocity v, is provided by spontaneous emission.

The spontaneous emission lineshape is the integral of the gain spectrum is symmetric in

shape and has a width Av = 2n. On each subsequent pass, the power in each mode at a v

" "changes for three reasons: the spontaneous emission process adds power, the resonator
mirrors and output coupling cause a loss, and the gain process with its antisymmetric

shape increases or decreases power at a wavelength with phase velocity v. On one pass

this can be described by

AP (v) = S (v) + P (v)(G (v) - 1 IQ)

where P (v) is the optical power in mode v, S (v) is the spontaneous emission in mode v on
,4%

' ,.' each pass, AP (v) is the change in the optical power, G (v) is the gain spectrum, and 1/Q is

the loss each pass taken to be independent of v here.

,/
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Line narrowing and coherence development in the FEL is the same as in an atomic

laser except for the detailed shape of the gain and spontaneous spectra. In the first few

passes after the oscillator is turned on, spontaneous emission results in a typical weak

optical field of strength I a I = 10- . The field is initially incoherent with a coherence length

of only NX; the spontaneous emission linewidth has is 1/N. This coherence length is just

- barely long enough to support the classical gain process where electrons must bunch while
,.p"

passing through on slippage distance NX. Over several hundred passes in the low gain

regime, the coherence length can grow significantly longer than NX, and the linewidth can

become arbitrarily narrow.

In the limit of low gain, the optical power at each wavelength grows independently, the

development of each mode can be expressed as a function of the second derivative of the

gain spectrum expanded in a Taylor series about its maximum. Over many passes in the

FEL oscillator, the wavelengths in an increasingly small region around the wavelength for

,._ maximum gain will fall behind in power leaving a narrow laser spectrum. A simple

expression results that relates the FEL spectrum width AU., the current density j, the

number of undulator periods N, and the number of passes in the oscillator n. The spectral '-

linewidth expected in an FEL oscillator after n passes is given by

AU = - 1/N (nj)1'2  
a'-

Eventually, at long evolution times, the spectrum is limited by practical or fundamental

noise sources like vibrating optical components, or spontaneous emission.

Shown in Figure 5 is the line narrowing determined by iterating the above equation for

" the power spectrum change AP (v) on each pass through the undulator in the FEL oscillator

configuration. The spontaneous spectrum shape is shown at the bottom over a range of '"

Sphase velocities -6 < v < 6. Above it is the gain spectrum shape with a peak at v = 2.6.

Over many passes, n =0 -* 60, the figure shows how the normalized optical spectrum

P (v, n)/Pmax evolves from spontaneous emission into a narrower spectrum. The peak gain

-a,

I..°
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is ; =0.135j, and the loss is determined by Q = 10. The final spectrum is centered around

the phase velocity v= 2.6 at peak gain, and has become much smaller than the

spontaneous or gain spectra. The above formula for predicting the line narrowing after n

passes would apply only after substantial narrowing has already occurred since it was

N derived by a Taylor expansion around a narrow spectrum. It is probably applicable for the "S

last 10 to 20 passes.

Cahw'www Evakrtbn
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Figure 5. Line-narrowing in the FEL optical spectrum.
,S

The Trapped-Particle Instability j--Q Map for the FEL

The development of spatial periodic boundary conditions in the simulation of FEL

S.2 longitudinal mode evolution is essential for solving long pulse FEL problems where the

trapped-particle instability is expected. The technique evolved out of our work on short

* . pulse propagation. A finite number of modes, and hence field points are determined by

imposing periodic boundary conditions on the sites sampled. The simulations take much

S..- less memory and execution time than other methods, when the electron pulse length is

long compared to the slippage distance.
tN,-

.o
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Another advantage of the periodic boundary conditions is the parametric simplicity of

the simulations describing FEL multimode evolution in the oscillator configuration. The

physical input parameters are only the dimensionless current density j and the resonator

loss described by Q. Other variables, like the number of sample electrons on each site, the

number of sites, the initial optical field strength, or the initial phase velocity of electrons,

" . shnuld not affect the final steady-state result. In the oscillator configuration, the FEL initial

conditions only provide a seed for starting the calculation and should not change the final

steady-state optical spectrum, or electron distribution function. The initial conditions,

number of sites, electrons, field strengths, etc. must be selected so that the final result

-" represents the one that would be found in an experiment, and may be selected to find the

result most efficiently, but otherwise, are not important. That leaves only j and Q to

%determine the multimode behavior of an FEL oscillator without short electron pulses. A

single contour plot of the number of final modes as a function of j and Q is a universal

description of all FELs.

It is the trapped-particle instability that creates the multimode behavior in the FEL

oscillator configuration. When the trapped electrons oscillate through a synchrotron cycle,

the FEL gain oscillates through one cycle. It is this oscillation in the driving phase, and the

FEL gain that causes the trapped-particle frequency, vs , to be imposed on the optical wave

as it slips over electrons. The synchrotron or trapped-particle oscillation frequency is
1/2v. = l a I when written in dimensionless units. The sidebands appear at vo ± vs, so that

?..- '-'..: the new FEL power is shifted from the fundamental wavelength by AU .= vS/2xN. The

shift has a simple interpretation; AU = "the number of synchrotron oscillations"/ "the

• v- number of undulator periods."

Sidebands have been observed in high power RF FEL oscillators where the FEL

: Y~ mechanism has also influenced by short to moderately-short pulse effects as well. In the

short-pulse FEL oscillator, the characteristics of the trapped-particle instability are affected

by the synchronism, or desynchronism, between the rebounding optical pulse and the

V1
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successive electron pulses from the RF accelerator. The instability has only been

observed when the FEL is near synchronism and the power in the resonator is largest.

Increasing the current density j or the resonator Q increases the steady-state power, the

synchrotron frequency, and the sideband gain. The addition of sideband power is

"- cumulative, since the presence of a strong sideband again increases the steady-state

power. When taper is introduced into the undulator design, the synchrotron frequency is

only slightly modified, and the sideband gain is reduced. In simulations and experiments,

Athe FEL oscillator runs for several hundred to thousands of passes through the interaction

region. In that time, the stored optical wave "sees" many synchrotron oscillations, so that

"N any sideband gain above threshold gives large growth from a small amount of noise. The

resulting steady-state features are therefore not affected by the details of the noise source.

Only one experiment, the high power FEL at LANL, has now seen the trapped-particle

sideband instability. It might have been observed earlier in the Stanford SCA FEL

experiments, but was not; possibly, because the short-pulse effects dominated the
-

a-.

" -. interaction. From the experimental results, it is not at all clear that the synchrotron

. sideband instability is as prominent a problem as indicated by simulations. In the FEL

amplifier, the input noise at the sideband frequency is important to the development of

- significant sideband power. This important factor cannot be found in any direct way by

studying the FEL oscillator experiments, but the sideband gain can be assessed.

Two papers reviewed the properties of the trapped-particle instability in FEL oscillators

and amplifiers. In these papers are the first examples of the trapped-particle instability in

the FEL amplifier configuration. The references are

W. B. Colson, "The Trapped-Particle Instability in Free-Electron Laser Oscillators and

* . Amplifiers", Nucl. Instr. & Methods in Phys. Res. A250, 168 (1986).

and

ORa
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W.B. Colson, "The Effect of Electron Trapping in Free-Electron Laser Oscillators and

Amplifiers", Proceedings of the 1985 International Conference on LASERs, Las Vegas

CA (Dec. 1985).

Figure 6 shows the result of many simulations that make up the data in two j-Q

contour surfaces; each point on the surface is the result of a long multimode simulation

over many passes of the oscillator. The range of current density explored on each contour

, surface is j =2 --> 20, and the range of resonator loss is Q = 4 --* 20. The surface on the

left is the total optical power P JI a I 2dz in all modes after evolution to steady-state over i-

many passes n =20Q at each site. There are 16 sites in a longitudinal window one ,

slippage distance long, or of unity length in dimensionless units. At each site there are 32

sample electrons, 512 electrons in all. The initial electron beam is monoenergetic at phase

velocity vo = 4. The initial optical field amplitude is ao = 6 with zero phase and a random

modulation of value ba = 4. At each point in each surface, the only values physical values

that matter are j and Q; the other variables are judiciously selected to make the

simulations valid and efficient.

F.,.
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The surface on the left of Figure 6 plots In(P) as a function of j and Q. Increasing

either j or Q increases the optical power smoothly P in this range. A grey scale is given at
, .

the top of the surface with contours for quantitative evaluation. At low values of j and Q,

the FEL is below threshold and the power decays to a small value. When j =-Q z 20, the

power increases to P =2.2x10 4; the corresponding field amplitude at saturation for this

j-Q value is then I a I 12 z 148. The synchrotron frequency is Os =a 1 1/2= 47c giving

two synchrotron oscillations of trapped-electrons in a single-pass through the FEL

undulator. This intense field amplitude will result in sideband mixing and chaos field

structure as shown in the second contour map on the right.

-' The right-hand surface shows the number of optical modes resulting from each

simulation. The number of modes ranges from 1 to 6, and generally increases when either

j or Q is increased. The number of modes does not steadily increase with j-Q, however;

there may be some features that require further study, but we can see from individual

simulations that the optical field becomes chaotic after just a few sideband modes appear.

This may, in part, explain the chaotic features in the modal j-Q surface. On the other-

hand, if there are actually special values of j-Q that avoid the trapped-particle instability, or

ppass through an evolutionary state where there is single mode behavior, this would have
important high-power FEL applications.

-- A
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