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The Fast Multipole Method (FMM) is a recently developed algorithm for the evaluation of
potential fields in particle systems. In order to evaluate the fields induced by a set of N charges (or
masses) on each other, the FMM requireg ,order O(N) work rather than the O(N 2 ) work required
by the direct evaluation of pairwise ireractions. The constant of proportionality for the method
depends on the cost of applying a translation operator to a multipole or Taylor expansion. In
existing implementations, this is 0(pZ) in two dimensions and 0(p " ) in three, where p is the degree
of the expansion. In this paper we describe a procedure permitting translation operators to be
applied to p't degree expansions for a cost proportional to p. log p in two dimensions, and p2 

. log p
in three. The incorporation of this technique into the FMM scheme speeds up the execution of two-
dimensional single precision codes by a factor of two or three, and the execution of three-dimensional
codes by roughly a factor of eight.
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1 Introduction

The Fast Multipole Method (FMM) is a recently developed scheme for the evaluation of po-
tential fields which has been used in a variety of contexts, including the numerical solution
of the Laplace equation, fluid dynamics, particle simulations, and numerical complex analysis

[8,4,3,1,7]. In order to evaluate the fields induced by a collection of N charges on each other,
the FMM requires an amount of work proportional to N rather than N2 . The constant of
proportionality depends, in turn, on the cost of applying a translation operator to a multipole
or Taylor expansion. In existing codes, the latter is O(p 2 ) in two dimensions, and O(p 4 ) in
three, where p is the degree of the expansion (see [8,4,5]). The value of p used by the FMM is
roughly equal to log2 (i) , where e is the desired precision of the calculation.

This paper can be viewed as the sequel to (41 and [51. Here, we describe a procedure per-

mitting the translation operators for the Laplace equation to be applied to arbitrary pth degree

expansions (both multipole and Taylor) for a cost proportional to p - log p in two dimensions,
and p2 .log p in three. The incorporation of this technique into the general FMM scheme should
speed up the execution of two-dimensional codes by a factor of two or three compared with
the results reported in [3], and is expected to make large-scale three-dimensional simulations
affordable.

2 Theory in Two Dimensions

2.1 Translation operators

The following three lemmas describe translation operators for multipole and power series ex-
pansions for the Laplace equation in R 2 , and provide error bounds allowing the manipulation
of these expansions in the manner required by the Fast Multipole Method. Detailed proofs of
Lemmas 2.1 - 2.3 below can be found in [4]. The first, Lemma 2.1, supplies a mechanism for
shifting the center of a multipole expansion.

Lenima 2.1 (Translation of a Multipole Expansion) Suppose that

00

O(z) = ao log(z - zo)+ _ k

~i(z - z0)* 1

is a multipole ezpansion of the potential due to a set of m charges of strengths qj,q2,... ,qm
all of which are located inside the circle D of radius R with center at zo. Then for z outside
the circle D, of radius (R + Izol) and center at the origin,

00 b
= aolog(z) + z (2)

L=l

where

a' 1



aozo'

bt + zo' ( ' (3)
k=1

with (1) the binomial coefficients. Furthermore, for any p > 1,

Ob(z) - ao log(z) - P "bi A-<l + (4) :
-- 1 LZo. - z'

with A defined by the formula

in

t=1

Lemma 2.2 describes the conversion of a multipole expansion into a local (Taylor) expansion
inside a circular region of analyticity.

Lemma 2.2 (Conversion of a Multipole Expansion Into a Local Expansion) Suppose
that m charges of strengths qj, q2, ... , qn are located inside the circle D, with radius R and center

at zo, and that Izol > (c + 1)R with c > 1. Then the corresponding multipole expansion (1)
converges inside the circle D 2 of radius R centered about the origin. Inside D2 , the potential
due to the charges is described by a power series:

00

O(z) = >bi z' ,  (6)
1=0

where

bo =aolog(-zo) + za(-1)h, (7)
k-I

and
b= o a,+ (I + k (- (- 1 )k fori_ 1. (8)

a--O1 -z1 L-azk lk - 1 1 80k= l

Furthermore, for any p >_ max (2, . , an error bound for the truncated series is given by

P ~ A(4e(p +c)(c +)+ C2 ) +1~
c(z)-Ebjcz' < c( - , (9)

1=0 M

where A is defined in (5) and e is the base of natural logarithms.

Lemma 2.3 provides a formula for shifting the center of a local expansion within a region of
analyticity. In the formula (10) below, n can be either a natural number or o. In both cases,
expression (10) is an exact one, and no error bound is needed.
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Lemma 2.3 (Translation of a Local Expansion) For any complex zo,z and {ak}, k =
0,1121,...,n,

ft ft

:ak(Z - Zo)k = Zb, -' (10)
k=O /=0

where

IIak

k=1

2.2 Convolution Form of Translation Operators

For the sake of simplicity, in the remainder of this paper we will assume that the zero-order term
in all multipole expansions vanishes. This will not affect the resulting complexity estimates
and allows us to ignore the logarithmic terms in all the preceding expressions.

Note now that equations (3), (7) - (8), and (10) define three infinite-dimensional linear
operators connecting the sequences {ai} and {bi). In numerical calculations, both multipole
expansions of the form (1) and Taylor expansions of the form (6), are truncated after a finite v
number of terms, and the resulting sums are used in place of the original series. The validity %
of this approximation is established by the error bounds (4) and (9). We therefore restrict
our attention to the finite-dimensional versions of formulas (3), (7), (8), and (10). Truncating -

all expansions in Lemmas 2.1 - 2.3 after p terms (p _ 1) leads to three linear operators
UP, VP, WP C x CP -. CP defined as follows. The vector u = UP(zo, x) is given by

u0 X 0 (12)

and k

ui ZkZ 0 z)for I1, .,p-1I (13)
k=i k

The vector v = VP(zo, x) is given by %

1 -- .xkl+k-l 1 (-1)k forl-1,...,p- . (14)

Zok= Z6 k- I

Finally, the vector w = WP(zo,z) is given by

=W k(k' ) for) - =1,.. .,pf-1. (15)
k=1 \

Expanding out the binomial coefficient, the first translation formula (13) may be written
in the following manner:
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1 .... t * ( k -1 (

k=1=

and,

I i/-k
_____ zk Z,(16)

(z-1)= : (-z) zk
Similarly, formulas (14) and (15) become

k=1 Zk (+k - 1)! (17)v,.I!.(-1l --- (k - 1)! (-z0)I+k

~and

ftw .!. )=k k (18)
k_ (-ik (k-I)!

respectively.
In this form, it is clear that all three translation operators can be viewed as convolutions

preceded and followed by diagonal scalings. They can therefore be computed by means of
the Fast Fourier Transform (FFT) and the total cost of applying a translation operator to
a p - term expansion can be reduced from 0(p 2 ) to O(p. logp). From the point of view of '.

complexity theory, this is a significant improvement. However, the FMIM requires fewer than 20
terms for single precision calculations, and fewer than 50 terms for double precision, so that a
straightforward application of the convolution theorem does not reduce the actual computation
times significantly. Fortunately, a more considered use of the Fourier transform changes the
situation considerably, and gives rise to a significantly faster implementation. In order to
describe this approach, we will require a more formal analysis of the translation operators.

2.3 Diagonalization of Translation Operators

We proceed by introducing some of the notation needed in this section. Suppose that p and J,
q are natural numbers with p _ q. For a vector z E CP, we will denote by TP'¢(x) the vector

y E C q defined by the formula v

Y, =z for:=0, .,q-l, (19)"

and refer to the mapping T P'q as truncation. For any vector y E Cq, we will denote by EqP(y)
the vector z E CY defined by the formula

zi =y fori=0,...,q- 1,

z =0 fori=q,...,p- , (20)

and refer to the mapping E9 as embedding. Finally, for any natural number p, we will denote
by 7" the mapping CP -. CP defined by the Discrete Fourier Transform.

In the Fast Multipole Method, the operators UP, VP, WP are repeatedly applied with vari-
ous translation vectors z0 to various expansions x representing the fields generated by specific
combinations of particles. We will denote by UP, VP, and WP the matrices representing the op-
erators UP,VP, and WP, respectively. The following three theorems describe the decomposition
of these matrices in the desired form.
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Theorem 2.1 For any integer p _ 1 and zo E C,

UP = SP o T p '" o KP o o,2p o (S)-l

= SP o T 2" " o (jr2p)-I o D2p o 72p o .2, 0 (Sp)-, (21)
'

where SP is a diagonal matrix defined by the formula

(SP),, = (i- 1)!, (22)

KP is a periodic convolution with the finite sequence R" given by

{ , fori=O,...,p-1; (23)
0, for i = p,...,2p- I

' .7.

and D 2 is a diagonal 2p x 2p matrix with.N

(D-p)ii= (.72 p o Ep 2p(Rp))i. (24)

Proof. The first equality in (21) follows from formula (16). The second is an immediate
consequence of the (discrete) convolution theorem.

.5

Theorem 2.2 For any integer p > 1 and zo E C,

V = (QP)-l o Tpo o P2P o (SP) -

= (Q,)- 1 o T 2 p'p o (7v2 P)-I o 2p o 2p o P 2 p o EP2 p o (SP)- ..

-p~ (Q)0 ( 7
2 p)-1 2p a p 2p 7 2p E 2 p (SP) 1 -I25= (Qp) - I o T2 " o(r) o D p2 oY2 o EP' o( -  (25) 0-"

where SP is defined by equation (22), QP is a diagonal matrix defined by ,.
.5

(Qp),,ii .( l' (261).

KP is a periodic convolution with the finite sequence P4 given by

for i = O,...,p- 1; (27)
0,? '  fori=p,...,2p- 1,

D2 is a diagonal 2p x 2p matrix with

(m-2)i = (1 2p( )),, (28)

and p2p is a permutation operator defined by the formula

P X-Jmod 2P (29)

5
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Proof. The first equality in (25) follows from formula (17). The permutation matrix p 2p simply
changes the indexing scheme so that the summation is in convolution form. The third equality
is obtained from the second by the observation that p2p commutes with the discrete Fourier
transform.

%

Theorem 2.3 For any integer p _ 1 and zo E C, -- "

Wp- = (Q)-l o T2 p ,p sP o E P  o -. ,"

S(QP)-l o T 2pp o (72p)-l o D o o E ,2 o Qp, (30)

where QP is given by (26), KP is a periodic convolution with the finite sequence RP defined by

1, fori=0;
R ) : 0, fr =1,..p (31)

2 ,- fori=p+ 1,...,2p-1,

and D3 is a diagonal 2p x 2p matrix with

2p)= (1 2 p o E "2p(R)),. (32)

Proof. The first equality in (30) follows from formula (18). The transfer function R has been
ordered in the manner indicated in (31) so that the summation is in convolution form.

3 Incorporation into FMM

Suppose now that we would like to apply the matrix UP to a vector x E CP. Using Theorem
2.1, we can evaluate the product U-(x) in the following five steps:

A) Apply the diagonal matrix (SP) - 1 to the vector z. j
B) Embed the vector (SP)-1 (z) in C2 P by zero-padding, and compute its discrete Fourier .-
transform with the FFT.
C) Multiply the resulting vector by the diagonal matrix D given by (24). ..a
D) Compute the inverse discrete Fourier transform of the resulting vector with the FFT.
E) Truncate this length 2p vector to one of length p, and apply to it the diagonal matrix SP-
to obtain the desired result UP(z).

Obviously, the cost of the above procedure is dominated by that of steps B and D, each of
which is proportional to p.logp. Thus, the cost of applying the matrix U-P to an arbitrary vector

has been reduced from O(p2 ) to O(p. logp). A similar procedure permits the matrices VP and

6
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WP to be applied to arbitrary vectors in a "fast" manner, with the help of Theorems 2.2 and
2.3, respectively. Nevertheless, as mentioned previously, the number p varies roughly between
10 and 50 in practical situations, so that this observakion does not reduce the computation
times significantly.

The surprising fact is that the bulk of the Fast Multipole Method can be carried out in .
Fourier space, where the translation operators are diagonal. More specifically, we recall that
in Step 1 of the FMM as described in [4], we form the multipole expansions for all boxes at the
finest level of refinement. In Step 2, we then obtain the multipole expansions for all boxes at
all higher levels by merging ( Theorem 2.1 ), each translation being carried out according to
formula (16). But suppose that we add a new Step la, in which each expansion at the finest
level is scaled by S P and Fourier-transformed (Steps A and B above). The diagonal matrix D ,

which depends only on the shift vector zo, can then be applied to each expansion. The result is
the shifted expansion, albeit in Fourier space and scaled by the matrix SP. The merger of the
four child box expansions in Step 2 can then be carried out by adding together the coefficients
in Fourier space. But this sum is already in the form needed to carry out the subsequent shift.
The way in which the convolution is written in formula (16) should make this clear. Thus the
entire upward pass of the FMM can be carried out in Fourier space and we have the multipole
expansion for each box at each level in the transform domain.

Let us turn then to the downward pass in which multipole expansions are converted to local
expansions and local expansions are transmitted to child boxes. By examination of formula
(17), it is clear that these scaled, Fourier-transformed multipole expansions are already in
appropriate form for the conversion to be a diagonal procedure. In the decomposition of the
operator VP given by formula (25), we have in essence already applied the operators

'72P o o (SP)-  (33)

so that the shift corresponds to multiplication by the permutation operator P2p given by (29)
and the matrix D2 given by (28). The new expansion is the desired local expansion, again in
Fourier space and scaled by QP. The local expansions can then be accumulated in this dual r.
form. Finally, in the second loop of Step 3, the net local expansions are transmitted to the
child boxes by applying the operator WP. But, as before, we have already implicitly applied
the operators

r2p o E P o2p , QP (34)

so that the shift corresponds to multiplication by the matrix D3 given by formula (32). The
resulting expansion is the local expansion for the child box, in Fourier space and scaled by QP.
Once the finest level is reached, it remains only to apply the operators

(QP)- 4 0 T2 p'P o (7 2 P)I (35)

to each local expansion, in order to obtain the coefficients in the original coordinate space.
In the original formulation of the method, as described in [4], the amount of work required

by all the shifting procedures is of the order

Nkt 27. p2  (36)

7 z



complex operations, where Nk is the number of boxes in the refinement structure. As described
in this section, it costs roughly

N .27.p+ Nk. 10. p log 2 p (37)

complex operations, assuming that one application of the FFT to a vector of length p costs
5 -p. log 2 p operations. Even for relatively small p, this is a significant improvement.

Unfortunately, the strategy indicated above will not work well when the desired accuracy is
high (p is large). The reason for this is that the convolution operators contain factorial terms
which exceed the precision of the machine fairly quickly. This problem can be overcome by
scaling, leads to a more complicated scheme, and is addrassed in more detail in section 5.

4 Theory in Three Dimensions

The three-dimensional version of the FMM is based on spherical harmonic expansions. These
arise from consideration of the Laplace equation in spherical coordinates

I a 2 " 1 a / < I$ 1 O2-(Pr- sin -- +. (3)
r 2 0 r 8r) r 2 sinO 0O r2sin2 0 0¢2 (38)

The standard solution of this equation by separation of variables results in an expression for
the field as a series, the terms of which are known as spherical harmonics.

oon n + MLn _) n (, (39)
D = E E~ir + n rn+' i

nt=0 m't=- n

'p

In the above expansion, the terms Ynn(, O)rn are usually referred to as spherical harmonics
of degree n, the terms Yfi(O, O)/rn+l are called spherical harmonics of degree -n - 1, and the 's
coefficients Ln and Mnm are known as the moments of the expansion. In a far field (multipole)
expansion, the coefficients L n are set to zero. In a local (Taylor) expansion, the coefficients
M: are zero.

The following three theorems are the generalizations to three dimensions of Lemmas 2.1,
2.2, and 2.3. Theorem 4.3 below can be found in a somewhat different form in the literature
[2,9]. Theorems 4.1 and 4.2 are recent results, described by the authors in [5,6).

Theorem 4.1 (Translation of a Multipole Expansion) Suppose that 1 charges of strengths
qi,q2 ,'",q are located inside the sphere D of radius a with center at Q = (p,a,B), and that
for points P (r, e, b) outside D, the potential due to these charges is given by the multipole
ezpansion

4D(P) =o n m
nT- n (0, 0 ) ,(40)

n=0 m -

where P - Q = (r',6','). Then for any point P = (r,0,0) outside the sphere D, of radius

(a + p),

8
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NJ= o _, JT . A. . JrF , (4Fj.1 21 j . . ..

d.

00 iv

~Y i.Y (0,4,), (41)

j= k=-j

where
3 0 Jk- Amf Akmk.ny- m (a,,'5)

IV L - mk n, (42)
n=om=-n A

with A' defined by

(_l()Am1) (43) "'
A % (n _ -)!" (n + n)!,

and where

jm' f (-)mn(im'ZmI) if m* < 0; (44) "
1, otherwise. (44

Furthermore, for any p > 1,

- \r - \ ) .5 .

Y= k=- r_, qj a )~

Theorem 4.2 (Conversion of a Multipole Expansion into a Local Expansion) Suppose "J

that I charges of strengths ql, q2," , qj are located inside the sphere DQ of radius a with center
at Q = (p, a, 0), and that p > (c + 1)a with c > 1 Then the corresponding multipole expansion

(40) converges inside the sphere Do of radius a centered at the origin. Inside Do, the potential
due to the charges q1,q2,'" ,q is described by a local expansion:

00)

ID(P)= Nj -N Y.Y(0,¢)ri, (46)

i=O k=-j

where
00 n 0 _ jn my -- k "3

N),= n k n (a,)(47)
n=O m=-n A-2k .p"

with A, defined by equation (43) and where

0,,' f (-l 1)-in ( 'I!mI), if M m' > 0;
1)n', otherwise. (48)

Furthermore, for any p > 1,

D(P) N / . Y(0,). d- p+ (

=a k=-a

9 *
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Theorem 4.3 (Translation of a Local Expansion)
Let Q = (p, a, ,3) be the origin of a local expansion

P n

n(P)=Z Z Y (0', (50)

where P = (r,O,0) and P - Q = (r',0',0'). Then

P j
4I (P) N jY(°¢ " i  (51)

j=O k=-i

where

P n :,Jm 2 n A,k(a,) .pnN = E E o. 1 j-,-"a_ ;.Y (,3.p- (52)
n %d

n= ijm=-n 
A m 

r

with A' defined by equation (43) and where

1n 1)", ifm.m'<O;
Jn,, = {-1)}2-1)'-m, -.' > 0 and Im'I < Iml; (53)

(- 1) ' , otherwise.

4.1 Convolution Form of Translation Operators

As in the two-dimensional case, equations (42), (47), and (52) define three infinite-dimensional
linear operators connecting the sequences {Om} and {Nm}. Again, in practice, both multipole
expansions of the form (40) and Taylor expansions of the form (46), are truncated after a finite
number of terms, and the resulting sums are used in place of the original series. The error
bounds (45) and (49) indicate the accuracy of these approximations. We restrict our attention
therefore to the finite-dimensional versions of formulas (42), (47), and (52). Truncating all
expansions in Lemmas 4.1 - 4.3 after the pt" degree (p _ 1) leads to three linear operators
UP, VP,W P : R3 x ..

+ _Cpx2p+.

We proceed now to write the translation operators in convolution form. To do so, we will
require the following obvious lemma expressing the constants J,', J',m', and Jm' in terms

of powers of i = V-1.

Lemma 4.1 The constant Jm' in equation (44) is given by

jm' = ij'+m'j-j'j-j ''  (54)

The constant j.,m' in equation (48) is given by

j,2,'  (- )"'n i 'l -n'-'  (55)"
The constant Jm' in equation (53) is given by

10
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. .. ..• -". S- ' -_ a a . l P ' ,

jn' = (-1)n'. ij-"m1I+ml- Im'l (56)

The first truncated formula (42) may then be written in the following manner:

__ - A. n_ ;-p-" " ; mk ),)j : -n jn An(57)
----n=0 -m

Similarly, formulas (47) and (52) become

aMN.iI P n1 Om -Am yk~).ilk-mI
= I n _m n (58)M E =-. il-I (-*)"+;" Am- (as)

n=O m=-n n
and

) = ' A=-

respectively.
It is clear that all three translation operators can be viewed as two-dimensional convolutions

preceded and followed by diagonal scalings. They can be computed by means of the FFT, and
the total cost of applying a translation operator to a pth degree expansion can be reduced
from 0(p 4) to 0(p 2 .log p). By contrast with the two-dimensional case, this already provides a
noticeable improvement in computation time, since the net gain grows as p2 / log p rather than
as p/log p. As with the two-dimensional case, however, the entire algorithm can be formulated
in the Fourier transform domain, giving rise to an even faster numerical scheme.

4.2 Diagonalization of Translation Operators

As in the two-dimensional case, we proceed by introducing some notation. Suppose that p and
q are natural numbers with p > q. For a vector z E CpX,2p+l, we will denote by TP. (x) the
vector y E Cq,2q 1 defined by the formula

.. I=x fori =0,...,q-landj=--i,...,i (60)

and refer to the mapping TP, as truncation. For any vector y E Cqx2q+1, we will denote by
Eq.P(y) the vector z E CPx2P+1 defined by the formula

=-i yi for i =0,..., q - 1 and ]=-'.,i,

Xi =0 for =q,...,p-landj=-,...,i, (61)

and refer to the mapping EqP as embedding. Finally, for any natural number p, we will
denote by 7P the mapping Cpx 2 p+I ..-. px 2 p+1 defined by the two-dimensional discrete Fourier
transform. We denote by UP,VP, and WP the matrices representing the operators UP,VP, and
WP, respectively. The matrix decompositions described below are the analogs of Theorems 2.1
- 2.3.

11
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* Theorem 4.4 For any integer p >_ 1 and (p,cz,,) E R3 ,

U = Sv o T , o o .EY'2 o ( -

-- T 2p p  (7 2p)-I o D o 72 o E-.2p o (SP) - 1 , (62)

where S P is a diagonal operator defined by the formula
{s (=)}7 - " An'

{SP() = i"' (63)

KI is a periodic two-dimen.sional convolution with the finite sequence RP e Cgpx 'v+1 given by

) a..,-'(,2,) for n = 0,... ,p-I and m = -n,...,n; (64)
(R)n 10, otherwise,

and D, is a diagonal operator with

{D 2(T)}I {7" o Ep.2p(RP')} . (65)

Proof. The first equality in (62) follows from formula (57). The second is an immediate
consequence of the (discrete) convolution theorem.

Theorem 4.5 For any integer p 1 and (p,a,8) E R3 ,

v- =(Q)- o T= , o K[P' o EP o S)
VP~ = (Q2p-1 2 0 T2 " 0 p2p 0 p2 (SP) -
= (Qp,)- o TPP o (7 ) o D2' o 7"p o P o o (S )-

- (Qp)-' o T o ( oP)o D p2 P 7oJ' E' 2 " (So) - 
, (66)

where S P is defined by equation (68), QP is a diagonal operator defined by

{Q,,(x)ln _ (67) j
A A. (- 1)m (67)

KI is a periodic two-dimensional convolution with the finite sequence RP e C ×"" +1 given by

= Yf n ",.," for n =0,... ,p-1 and m = -n... ,n (
(44 10, -Am otherwise (68)

D2P is a diagonal operator with

}= {7n o EP' (Rp)}X' , (69)

and p2, is a permutation operator defined by the formula

{P 2 p(X)}, X, (70)S_- mod 2,
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Proof. The first equality in (66) follows from formula (58). The permutation matrix P2 p

changes the indexing scheme so that the summation is in convolution form. The third equality ,.
is obtained from the second by the observation that p2p commutes with the two-dimensional
discrete Fourier transform.

Theorem 4.6 For any integer p , 1 and (p,cfl) E R3 ,

W- = (QP)- o o o o
- (QP)-l o o (y 2

p)-l o D o 72 p o E. 2p o Qp , (71)

where QP is given by (67), K3 is a periodic two-dimensional convolution with the finite sequence
E C 2px4P+' defined by

1, forn=O andm=O;
y 2: ( ).P~m -- P'-" for n = p+l,...,2p.1-

( n) 2 A -n ° -+,,- (72) .'
m = n-p,...,2p-n;

0, otherwise ,

and D2p is a diagonal operator with

ID{y2X)} { o= (.72p Ep,p (R, )} (73)

Ps oof. The first equality in (72) follows from formula (59). The transfer function Rg has been

ordered in the indicated manner so that the summation is in convolution form.

Remark: The three-dimensional version of the FMM has been modified to incorporate the
translation operators in diagonal form. The use of Fourier space and the description of this
modification are essentially identical to that described in Section 3. We simply note here that
in the original formulation of the method, as described in [5,6], the amount of work required
by all the shifting procedures is of the order

N. .875. p4  (74)

complex operations, where Nh is the number of boxes in the refinement structure. In the new
implementation, it costs roughly

Nk •875•p 2 +Nk 10.p logp+ , (75)

13
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complex operations, assuming that one application of the FFT to a vector of length p costs
5.-P -lo0 2 P operations. The improvement is clearly more dramatic than in the two dimensionalcase.

Remark: The constant 875 in the operation count above refers to the number of boxes at a

fixed refinement level with which each box must interact. Zhao, in [101, makes an observation
allowing this number to be reduced to approximately 200. The idea is simply that if each
of eight child boxes are in the interaction list of a given box, then that box can transmit its
multipole expansion once to the parent node rather than eight times to the individual children.

5 Numerical Stability

We turn now to the matter of numerical stability. As indicated in Section 3, when the desired
precision is high and the number of terms in the expansions is large, the strategy delineated
there will not work well. The convolution operators in both two and three dimensions contain
terms which grow as p!, where p is the degree of the expansion. While the FFT is stable in the
sense that it is a unitary operator, these terms quickly exceed the available machine precision.

In order to reformulate the FMM in a way which avoids this problem, we must reexamine
the convolution form of the translation operators. In this discussion, we will concentrate on
the two-dimensional algorithm. The numerical considerations in the three-dimensional case are
essentially the same.

There are two measures which may be taken to reduce the dynamic range of the problem.
The first is to split the input vector into two (or more) blocks, and to transform each block
separately. This requires that the translation procedures be reconstructed in block form. We
will describe a second approach consisting simply of polynomial scaling, which allows the
translation procedures to retain their form. For this purpose, we rewrite formula (16) in
the following way:

U 1 'sa kS zZ0-ks -l k

(I (I-- k)! (76)
k=1 (k-1!( )

with s an arbitrary constant. Similarly, formulas (17) and (18) become

_-_ s_ _- 1__. (I + k - 1)! (77)

1,=- 1 (k - 1)! (-z0)i+. (77)

and

.1!. (-1) ' Zk. 1.(-1)" z . s8()
sl - sk (k - 1)!

k=1

respectively. It remains to choose a. By inspection of the preceding formulas, it is clear that
we wish to reduce the dynamic range of sequences whose n th entry is of the form

____ (r. s)fl(1 or (r s(79)
(r. s)n n! '
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where r = Izol. This is true, not only of the transfer functions, but of the expansion sequences
themselves. (It is easy to show that the multipole expansion coefficients at a given level of
refinement grow approximately as r" and the local expansion coefficients grow approximately
as r-n, where r is the average distance of a shift.)

A reasonable strategy for choosing s is to require that r s = p. To see this, let us con-
sider the most troublesome sequence, namely the transfer function in equation (77). Unscaled,
with p= 16, the sequence values range from 0(1) to 0(1035). With the above choice of s,
the corresponding range is from 0(10-2) to 0(10-6), a reduction of 31 orders of magnitude.
Unfortunately, this requires a different scaling constant at each refinement level, and the fol-

-p lowing modification of the FMM. Let us suppose that, at a given refinement level, the scaled
translation operators have been applied. Before moving to the next level, either up or down,
each expansion sequence must be rescaled. Since the scaling is done in the original coordinate
space, this requires three steps:

1. Apply inverse FFT to each sequence.

2. Multiply k 1h term in sequence by (sold/snew4 )k-

3. Apply forward FFT to each sequence.

The expansions will then be in appropriate form for the next set of translation procedures.
The amount of extra work involved in the rescaling steps is roughly

4 .10-P- 10 2 P (80)

where Nk is the number of boxes in the refinement structure. The factor of four arises from the
fact that the rescaling of expansions is necessary at coarser levels, but not at the finest level.

U- This is a clearly a small addition to the workload when compared with the order estimate for
the whole algorithm (37), and does not affect the execution time in a substantial way.

It should be noted that scaling is not a universal remedy. The factorial and polynomial

% terms behave quite differently when p is large, and the dynamic range does grow. Nevertheless,
% for single precision calculations, the loss of accuracy can be held to less than one digit. For

double precision calculations, approximately three digits are lost. If more precision is needed, a

*4 ~ hybrid procedure can be constructed using both scaling and the block decomposition mentioned
at the beginning of the section.

6 Numerical Results

-. - Computer programs have been written in Fortran 77 using both the original formulations of

- the algorithm [4,5] and the formulations presented here. We compare the performance of
these methods for three-dimensional free space calculations. Charged particles were randomly
assigned positions in a cube, so that the resulting particle density was roughly uniform. The

potential fields were computed in four ways: by the original algorithm in single precision, by
the new algorithm in single precision, and directly in single and double precision. The direct

4- 15
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calculation of the field in double precision was used as a standard for comparing the relativeI
accuracies of the other three methods. The number of particles varied between 1,000 and
64,000, with charge strengths randomly assigned between zero and one.

All calculations cited below have been carried out on a VAX-8600, and the results are%
summarized in Table 1. The first column of each table contains the number of particles N in the
calculation. The second column contains the number of refinement levels nlev. In the remaining
columns, the upper case letters T and E are used to denote the corresponding computational
time and error, with the subscripts new, old and dir referring to the new algorithm, the original
algorithm, and the direct (single-precision) calculation respectively. Columns 3 through 5 show
the times, in seconds, required to compute the field by the three methods. The errors E,,,,
EOId and Ed, for the new, original and direct methods, respectively, are presented in the next-
three columns. They are defined by the formula

E = V 2 1/2.1

where f, is the value of the field at the i-th particle position obtained by direct calculation in
double precision and i is the result obtained by one of the three methods being studied.

Remark: For the tests involving 8,000 or more particles, it was not considered practical to
use the direct method to calculate the fields at all particle positions, since this would require
prohibitive amounts of CPU time without providing much useful information. We, therefore,
used the direct method to evaluate the field for only 100 of the particles, and used these
results to evaluate the relative accuracies. The corresponding values of Tdi, were estimated
by extrapolation. The values of TOId for 32, 000 and 64, 000 points were also estimated by
extrapolation.

On the basis of the data in Table 1, we may make the folowing observations:

1. The accuracies of the results obtained by the fast algorithms are in agreement with the

error bounds given in (45) and (49).

2. The actual CPU time requirements of the fast algorithms appear to grow sornwhat errat-
ically and nonlinearly with N, since the linear bound for the execution time is well abovep
the actual execution times until the number of particles is quite large.

3. By the time the number of particles reaches 64,000 the new FMM is about 15 times faster
than the direct method. This improvement is smaller than in the two-dimensional case,
where the speed-up would be by a factor of 200. It should be pointed out, however, that
the number of points required for the resolution of a given problem are much greater in
three dimensions. 64,000 points, for example, yield the resolution of a 40 x 40 x 40 grid.
In two dimensions, the same spatial refinement requires only 1600 points, at which point
the fast algorithm yields a speed-up of only a factor of 8-10 (see [3]).
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N nlev Tn, w Tod Tdi, Enewu Eod Edit
:f.4 0- 10-

1000 3 23.4 222 17.6 4.4 10 -  4.410 -  4.8 10- 7

2000 3 59.0 343 71.5 5.7 10 - 7  5.6 10 - 7  6.6 10 - 7

4000 3 179 504 291 9.3 10 - 7  9.3 10 - 7  1.1 10 - 6 ",

8000 4 403 3,939 1134 3.5 10 - " 3.4 10 - 6 1.2 10 - 6

16000 4 744 4,280 (4,490) 3.8 10 - 6 3.8 10 - " 3.1 10 - ,

32000 4 2490 (9,210) (17,960) 4.0 10 - 6 4.1 10-6

64000 5 4,810 (44,230) (71,830) 4.5 10 - 6 - 3.7 10 - 6

Table 1: CPU times and error estimates for N-body calculations in three space dimensions.
P

Particles uniformly distributed. Degree of harmonic expansions p = 8

7 Conclusions

A new implementation of the Fast Multipole Method has been developed by applying transla-

tion operators to both multipole and Taylor expansions in a system of coordinates where they

are diagonal. We estimate that for single precision results, the speed-up for two-dimensional .

calculations is on the order of a factor of two or three. We have demonstrated that in three-

dimensional calculations, the speed-up obtained varies between a factor of three and ten.

The irregularity of the speed-up, as well as the jumps in the CPU time requirements in Table

1, are due to the discrete number of refinement levels available to the non-adaptive algorithm.

Work is in progress on an adaptive version of the method, which is the three-dimensional
analog of the scheme described in [3]. We expect a significant improvement in the execution

time, even for fairly homogeneous distributions of particles. The relative improvement of the

new implementation should then remain fairly constant at a factor of eight. For double precision

calculations, the relative improvement will be on the order of a factor of thirty-two.
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