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Partial Likelihood Analysis of Time Series Models, with
Application to Rainfall-Runoff Data

i I

by Eric Slud and Benjamin Kedem
Mathematics Department
University of Maryland
College Park , MD 20742

Abstract: A general logistic-autoregressive model for binary time

series or longitudinal responses is presented, generalizing the discrete-

time Cox (1972) model with time-dependent covariates as well as the

recent regression models of Kaufmann (1987) for categorical time-

series. Since this model is formulated in terms of time-series
covariates which are not themselves explicitly modelled, the large-
sample theory of parameter-estimation must be justified by means of

Partial Likelihood in the sense of Cox (1975), using theoretical results

like those of Wong (1986). The large-sample theory also justifies

goodness of fit tests analogous to the chi-squared tests of Schoenfeld

(1980) and to the tests based on sums of (normalized) squared

residuals used in logistic regression. These ideas are illustrated by

analysis of a rainfall-runoff hydrological dataset previously analyzed

by Yakowitz (1987).

i Research supported by the Office of Naval Research under Contract

N00014-86-K-0007

b



PARTIAL LIKELIHOOD ANALYSIS OF LOGISTIC-AUTOREGRESSIVE

AND LONGITUDINAL LOGISTIC MODELS, WITH APPLICATION TO
RAINFALL-RUNOFF DATA

I II

by Eric V. Slud and Benjamin Kedem
Mathematics Department, University of Maryland, College Park

1. Introduction. A generic description of a great many datasets
collected over time is the following: () a univariate time series X t

[or a set of independent realizations Xit of such a series] is of

primary interest; (ii) auxiliary vectors Zt [ or Z in the case of

multiple realizations ] are gathered for their value in explaining the

behavior of X t in terms of information observable up to time t-1 ;

but (iii) no probabilistic models are available concerning the

stochastic evolution over time of the explanatory variables Zt ,

because the behavior of {Zt} either is too difficult to model effectively

or is not of direct scientific interest to justify restrictive assumptions.

The scientific problem is then to understand the mechanism by which

values Xt , t=l,...,T, arise from the antecedent configuration as of

time t-I . The practical problem in hand may be to predict , forecast,

or classify future values Xt from data available up to t-1 ; alterna-

tively, one may wish only to estimate or test hypotheses about certain

parameters describing the strength of dependence of Xt on antecedent

variables Z In either setting, the problem can be formulated as

one of Inference concerning time-invariant parameters 0 of the

conditional law of Xt given the observable data Ft- as of time t-I .

Thus it may make sense to perform inferences concerning parameters 0

describing a constant causal structure, even when the "inputs" Zt_

._I
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from which Xt arises may be nonstationary. In very different contexts,

this idea is familiar both to econometricians (cf. the discussion of Wold 0

1959 concerning exogenous variables) and to biostatisticians (e.g., in

the Cox 1972 model with time-dependent covariates). One of the main

purposes of the present paper is to argue that the same formulation

deserves a more prominent place in time-series analysis.
The class of models which we consider in this paper specializes the

previous discussion to the case where the series Xt or X t are

binary, i.e., take only the values I or 0 , and where the conditional

laws of Xt or ( t ) i given Ft-, [the a-field generated by all

variables X and Z s  or X i and Z i s , for 0 s!t-1 ] are given

by

) = A IX 1 FIF (XJt jti) } 1+ e (*) 'St =

where the real vector parameter P has the same dimension d as the

covariate vectors Z' t . Here all vectors are taken to be column-

vectors, and denotes inner-product. Informally, the model (*) says

that the variables X (for i=l,...,n and t=i,...,T ) are conditionally
independent for different i given Ft_ , and satisfy a logistic

regression model with respect to the covariates Z For notational

convenience, we take Xt - X t and Z if n1 ; and we take the .,-,
t tt

first coordinate of the covariate vectors Z to be I , so that the

intercept-coefficient is fl.

In the model (*), t is always a discrete time-variable; the

A,Si



independent time-series replications indexed by i will ordinarily

correspond to independent individuals under study; the dichotomous

response-variable Xit will often indicate that the i'th individual under

study failed at time t (on test). In cases where the number n of

replicates is 1 , Xt may indicate that Zt ties inside a certain subset
of Rd , e.g. that a specified function Vt =- E(Z t) is greater than 0

Finally, the vector Z' of covariates for the i'th replication will be
t N

observable by time t but may of course include past values (before t)

of time-series observables or responses.

The logistic form (*) for the conditional probability that X -

is a model assumption which may not always be appropriate. However,

there is a simple argument deriving from statistical mechanics which

helps to justify logistic regression but does not seem to have been given

before by statisticians. The proof of the following assertion is a

straightforward exercise on Lagrange multipliers.

Lemma 1.1. Suppose that the random variable X takes values 0,1

and that pi -P{ X=i } is restricted in terms of the constants
("covariates") Y, * Yo to satisfy the constraint : Pi Y, + po Yo c

for a given constant c between Yo and Y, . The probability

p- p-P(X=I) which maximizes the entropy -p In p - (l-p) ln(1-p)

is given by P(X-1) = 1/{ 1 + exp[ -y (Y,-Yo)] } ,where the constant

y is uniquely determined by the constraint.

2. Examples. How can time-series models of the type (*) arise ?

First, if the covariates Z for all t and i cari be regarded either as

design-parameters, or more generally, as known at time 0 , then



conditionally given the entire set of covariates, the responses Xi
t,/

follow an ordinary logistic regression model. However, the models (*)

are much more interesting and subtle when the covariate-vectors include

information about past values X1  for s-<t-I or about values Y of

time-series from which X is derived.s

2.A. Linear- and Logistic- Autorressive Models

Consider the case of a single time-series Yt in terms of which the

indicator-series X = X is defined. For example, we may wish to
t

analyze the level-crossing behavior of a continuous-valued time series P

Yt ,in which case we might take Xt-I for some constant r.'[Y t r]

The model (*) can arise in this context in a very simple way. Suppose

that Y were an Autoregressive time-series of order p i.e., that

Et - (Yt - 'O- 'Y' Yt-i ...I Yt )/ X :'

is independent of { Y : s!t-I } with the Logistic density eX/(I+ex)

s 
,

Then it is easy to check for each fixed r c R that Xt I

satisfies (*) with Zt - (1 ,Yt IYt2,... Yt_p)' , dp+l , and
__ t-p I t-

(yo-r,y ,...Y l p) '/X . In other words, the AR(p) model with logistic

errors for Yt implies (*) for Xt I [Yt r] for all r . Conversely, if

(*) holds for I[tr] for each r , with the corresponding coefficients

t 1

fi differing only through fl (yo-r)/X , then Y is AR(p) with

logistic errors. A worthwhile extension of the foregoing is to take .- _

4
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Et (Y "t/A independent of { ys, Us sst-1 } where Z t

(ZttUt")" with Zt defined as above and Ut an auxiliary covariate

series observable at the same time as Xt  We do not know any models

essentially different from these for continuous series Yt , in which

I[Yt:>r] satisfies (*) for more than one value of r.

tN
The model (*) for I for a fixed (known) r is a much

tS
weaker restriction on Yt and Zt than the assumption that Yt is

AR(p) with symmetric errors, since it leaves the conditional law of

Yt -r given {Zs : s-<t-1} and I[Yt>r] completely unspecified. In this

way, it is more general than the categorical time-series models of

Kaufmann (1987) . In Section 5, we describe a dataset where a long

continuous-valued series Y does seem to obey a model (*) for I

with some fixed values of r , but does not seem to fit an AR(p) model.

2.B. Discrete-time Cox models with time-depedent covariates and

multiple event-times. General models of the type (*) have appeared

before in the context of Survival Analysis [ Cox 1975; Andersen and 5

Gill 1982; Arjas and Haara 1987 ] In this setting, Xi is the

indicator of the event that the i'th individual under study fails at time t

[or, as in the more usual continuous-time context, has failed before

time t The vector Z't of time-dependent covoriates contains

all the relevant prognostic information for failure either at time t+1

or in the period (t,t+1] . What is worth emphasizing here is that

5
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models (*) can also accomodate "failures" that may happen more than

once to the same individual, such as recurrences of some disease-state

like a clinically detectable tumor . (See Gail, Santner, and Brown 1980
for the most notable previous effort to model multiple times to tumor).

For such applications, Zit may have the same medical measurement

occurring in more than one component according to how often the

individual has previously "failed", i.e., according to the number of

values s1 ,...,t for which Xi 1 . The purpose of such a definition is

to allow different coefficients to operate when previous failures

have occurred.

Other applications of models like (*) in the case of relatively few

long data-records have been given by Pons and de Turckheim (1985)

For them, Xi indicates that the i'th animal (rabbit) under study has

eaten something at time t , and Zi includes information about timest

and amounts of previous feedings. Their method of inference explicitly

allows for an additional undetermined (periodic) nuisance factor ho(t)

not depending on P in the expression for the conditional probability
Pt (P)  in ()

3. Partial Likelihood. Regularity conditions for large-sample theory.

The remarkable thing about model (*) is that under mild regularity-

conditions on the large-sample behavior of the covariate-processes

(Zt i=1,...,n, t=O,...,T) as n'T --+ o , there is a numerically stablestbl

estimator of f which is consistent and asymptotically normal with

6

.1 ". . . v "*"""" " """"".-.v-:.-;.- -.4'- - - ':';'2 F ----. <"-v 'v v -- - ' v ' v -t. . . , ' -



easily-estimated variance-covariance matrix. The theoretical apparatus

used to justify these statements is the Partial Likelihood of Cox(19 75)

as developed by Wong (1986) and expounded by Slud(1988). The notion

, Partial Likelihood , specialized to our setting, requires precisely

what we have so far assumed, namely a model for each t in terms of

,he same finite-dimensional parameter f , for the conditional

likelihood of the observable response data { xt i= 1,...,n I given the

a field Ft_ representing the ) collection of all data observable before

time t . The Partial Likelihood is simply the product, over times t

hen observations are taken, of these conditional likelihoods. In our

setting, the conditional likelihoods are given by (*) together with

-. conditional independence of, X t and the partial likelihood is

T n X1 1-XI

PL(fl) E: rF p (1-pit( )) ]

The maximizer PP of PL(f) is called the Maximum Partial Likelihood

,L.Stimator (MPLE) cf fl . Its large-sample behavior- under fl flo is

- ,-" i'~er~, : , witr' .e i i d Lf the score-statistic (d vc.').) process

S4 A _ Rd

S', ,',ich at. t:T is sin .ly I he gr'adient i n fP r:T' log PL . nmm St (

'-; , st rMJ~t ,i r. , rrartira- when f:-f0  I i , expression

n ,I~fl' . Z' 71, l) 1 ,ir5
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simultaneously plays the role of Hessian matrix for - log PL(f) with

respect to P) (and is thus an information matrix for estimating i) ,
as well as the cumulative conditional variance-covariance for St(f) at

P fo and t=T . The large-sample theory of MPLE's, including the

underlying martingale theory, is described in a general setting by

Wong(1986) and Slud(1988, Chapter 6), and in successively greater

and greater generality in the setting of (*) by A.idersen and Gill

(1982), Wong (1986) , and Arjas and Haara (1987). Related

asymptotic results on MPLE's in (*) for large T and fixed n were

obtained by Slud (1984), Pons and de Turckheim (1985), Wong (1986) ,

Arjas and Haara (1987), and Slud (1987). Because the ideas underlying

Consistency and Asymptotic Normality of MPLE's are very similar in

all the papers cited, based on the martingale Central Limit Theorem for

(n.T) ST(fo) and stability in probability of I(f)/(nT) , we do not give

any proofs. We content ourselves with some general comments, a
precise set of regularity conditions, and statements of results with

some small extensions which are helpfl, in time-series applications.

dSince PL(P) is almost surely a c( ive random function of PER

with strict concavity under an assumption of asymptotic nonsingularity I

for I(fl) , there is no need to treat the possibility of multiple MPLE's %

for large nT . Moreover, concavity removes the need to establish
.4 *

uniform convergence [either a.s. or in-probability] of l(fl)/(nT) over

compact neighborhoods of ft's when the corresponding pointwise

convergence to a continuous concave limit is known (Andersen and Gill

1982, Appendix II) . Our regularity conditions, chosen for simplicity

rather than utmost generality, are

E8
.S.,



(C. i) The covariate-vectors Z' almost surely lie in a nonrandom
dt 

6

compact subset F of Rd , and the probability measure P governing

{ xt, Zit : i=l,...,n , t=O,...,T } obeys (*) with j=#o .

(C.2) There is a probability measure v on Rd for which

f z z/ v(dz) is positive-definite, such that under (*) with f=fo ,

Tn p
t1 i 1 [zit c A] -+v(A) for all Borel sets A C Rd as nT-+o.

Under assumption (C.2), which says that the empirical measure of the
set { Z' : O-s<T, 1-i:n } converges in a certain sense to a nonrandom

s

measure P,, it follows that for every continuous function g from Rd

to R (which is necessarily bounded on the compact support F of Zt )
tI

-A T n .I
Sdg( g(z)v(dz) as n--*o

(n) g (z g(dz)
t=1 i=1

From this convergence, it is easy to see that the nonrandom continuous

matrix-valued function A(b) defined for each b c Rd as the limit in

probability of l(b)/(nT) is given by

F ebARd (+eb'Z) (z ) v(dz) (3.1)

The matrix A(b), which is positive semi-definite by inspection for

every b , is also nonsingular at every b by the hypothesis on v..

9 ,
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Theorem A. Under assumptions (C. I)-(C.2) , the MPLE 8P is almost

surely unique for all sufficiently large nT , is consistent in probability

for fa as nT -+o, and satisfies (nT)4 (P- )--N(O A([lo)
-A

AA

In addition, [nT)4 [0 -flo) - (nT) -i A(flo) - i S T( A) P--.0 as nT- o

The large-sample behavior of PP described here is based on the

assumed stability of information l(ft)/(nT) per observation. The only

real novelty in our presentation is that a single theoretical result is

made to encompass both the cases where n becomes large and those

where T does. Other possible limiting distributional behavior is

possible in so-called nonergodic cases (Basawa and Scott 1983) where

normalized information converges in probability to a random limit

The reason for referring to (C.2) as an ergodic setting is that it is

follows from the Birkhoff Ergodic Theorem either in the case of indepen-

dent identically distributed processes (Z't: 0<t<T) for i=l,...,n with

T fixed , or of an ergodic and stationary process (Z t..Znt) in

t-O,1,... with n fixed.

In attempts to fit (*) to data, it is crucially important to be able to

assess the quality of fit of the model with parameters 8 in terms of

the residuals X - . These are precisely the residuals which one

uses in ordinary logistic regression, and two sorts of goodness-of-fit

statistics based on them are of particular value. The idea of the first is

to check the observed number of responses X't-1 corresponding to

Zi within each of a number of covariate-defined cells against the

10
.t ,
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cumulative one-step-ahead predicted number. The resulting chi-squared

statistic is closely related to the one given in a Survival context by

Schoenfeld (1980). Our second type of statistic is a sum of squared

normalized residuals. The theory underlying both statistics is c -Itained

in the following two theorems, which follow readily from Theorem A

" and several applications of the Martingale (multivariate) Central Limit

*' Theorem (as given for example in Andersen and Gill 1982, Appendix I).

In both Theorems, it is crucial that the set of possible pit( ) values

for all i and t and all i tn a neighborhood of flo lie in a nonrandom

compact subset of (0,1) . This fact follows from (C.1) .

Theorem B. Let C1 , ... , Ck be a partition of Rd into measurable

sets, and define Nj and E (f) for j 1,..,k through the formulas

n T n T
N. 2 2 1c. V X t1 E j

Put N (NI,...Nk)' and E(f) (E(f),...,Ek(fl))' . Then for fixed k ,

(nT) ((N- E(o))' (fP-o)' )' --- N( 0, X)

where Z is a square d+k dimensional matrix of the form A B'
[B DJ

Here A is kxk and diagonal with j'th diagonal element

2 C _'z -
a2 (_e___z)_ v(dz) , D A(flo) is dxd , and the j'th

J

column of B is given by 
I ad to

e - 2 Dz v(dz) .In addition,
,, J

, 11
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(nT) - (EC#P)-E(#o) ) - (nT) B' D (fP-go) - 0 as nT -- w.

k 2 2
It followgs that as nT-1x), both the statistics -' (N .-E j (so)) /a. and

i - -I2

(N- E(#))' (A-B'D B) (N- E(#")) are asymptotically Xk-distributed.

Theorem C. Under hypotheses (C. 1) and (C.2) , let a>O be fixed

arbitrarily, and define v(i,t) p -(o) (I-p t(fo)) for all i, t Then I

n T I ( (ot )) i-a]
i=v t=1 v(i,t)a

oNA01) as nm -- o .v(t) l- 2 a I -4 v(i,t) N

i-i t=1

The result of Theorem C is equally valid when the residuals and

v(i,t) are calculated with go replaced by flP. However, in applications

where predicted response-probabilities pit(9o) can get very close to 0

or i , the behavior of the normal deviates in Theorem C may not be

very reliable .

4. Asymptotic-efficiency calculations. Extensions to other link-functions.

How efficient is a data analysis based on (*) and the Partial Likelihood

when a fully specified model for (xit,zt) is available ? While no noz

general answer to this question is possible, we can calculate the

12



asymptotic relative efficiency in the AR(p) Example of § 2.A, where

forafixed r O,
I I×t -×  t- IZt_ -Z- (,Yt_ ... p)

[Yt-!r] x t-z =z" -

/

E ((-yo-r)/X, yii/X, ... , -y'/X) t -Y ft'Zt ) # / X
and ct is assumed to be independent of Ft_ I =a( Zs: s~t ) and to have

the logistic density f(x) -eX/(1+e ) Taking the initial data Zo to be

given, one can easily derive the likelihood L(ft) for the observed data

Yt t1 i as well as the limiting information about the parameter

vector Pi per observation. This information-matrix, equal to the

inverse of the asymptotic variance matrix for the maximum-likelihood

estimator of ? when the true parameter value is go , is given by

C- e } E{(zz'} "-
Uoe) Z OZZoo e g

where E o denotes expectation when the random (p+ 1)-vector Z has

the stationary distribution for Zt (assumed to exist) as t--wco , and

E is a logistic random variable independent of Z. The corresponding
"partial likelihood" information-matrix arising in Theorem A above was

derived in (3. 1) as

efloZ
P (0o) - A(flo) = E Z Z'} Eo f( 0o'Z) Z' }

Since the function f(x) has maximum value 4 , it follows immediately

from the last two formulas that for any vector b c Rp+ I

13 I
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b' P(Po) b V b' I(,8o) b

Thus, any scalar parameter derived from , can be estimated with
asymptotic relative efficiency (ARE) at best J via the Partial-
Likelihood Logistic-Regression method as compared with a maximum-
likelihood AR(p) analysis. Of course, the ARE could (for some AR(p)

models) be much worse than J , but it should be somewhat reassuring
that the cases where relative efficiency is worst are the cases where the
predictors pt(flo) spend most of their time close to I or 0 , i.e. the

cases where prediction is very good .

The foregoing analysis of model (*) has many possible generaliza-
tions. One that is especially worth pursuing is to allow the predictors

P (t) in model (*) to take some other parametrically specified form

F(fZ't1 as a function of a linear expression in the explanatory

variables Z * One choice for the "link" function F , which leads to

methods bearing the same relation to probit regression as our previous

analysis does to logistic regression, is the standard normal distribution

function F 4 . The model from which conditional likelihoods are

constructed is now
P/ X t=1 I F - (Xat j t)} (p) (D (f t_ - ) *

Virtually every aspect of our analysis of (*) has an analogue for (**).

The AR(p) time-series examples of (**), with Xt = [, ] will now

have Gaussian error-distribution. The proofs of Theorems analogous to

A, B, and C are very similar to those in the logistic case, except for

some extra complication since the log Partial Likelihood will no longer

14
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be a.s. concave for finite data-samples. Finally, the ARE calculations
of this Section can be carried out for the AR(p) examples of (**) and

lead to formulas
2

ioo :E o{ Z Z'} , (fCo) = E o( Z Z' }

where Z now has the stationary distribution of Zt in an AR(p) model

with normal errors, and * is the standard normal density. The highest

possible value for ARE in estimating scalar parameters related to Pi is

now 2/ir, and again the ARE can be much worse than that in cases

where prediction is very accurate.

5. Application to Rainfall-runoff data. We now describe the results of
applying model (*) to the analysis of a hydrological dataset which has

previously been analyzed by quite different methods. The data, which is

described by Yakowitz (1987), consist of daily measurements by the

National Weather Service of rainfall and runoff in the Bird Creek Ohio

watershed. Data were collected for a 13-15 week period during each of

the years 1939-1964. The purpose of collecting such data seems

partly to have been to develop models for the prediction of flooding.

Thus we regard daily runoff Yt as the (continuous-valued) response

variable, with past runoff together with current and past values of rain-

fall Rt playing the role of explanatory variables. Since flooding is of

interest, it is natural to try to understand the relationships between
level-exceedances X I and the explanatory variables. Our use[Ytr

of this example is not intended primarily to develop a formula for

prediction, but rather to illustrate how models (*) may be estimated

15
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and shown to pass tests of adequacy in a particular situation where the

linear autoregressive model turns out not to be appropriate.
For our data analysis, we split the 26 years of data into a training

set [ the years 1939-48, consisting of 1031 rainfall-runoff pairs ]
and a testing set [ the years 1949-64, consisting of 1691 observation-

pairs ]. Since the models we contemplated involved explanatory

wriables defined from (Yt-,'Yt-2'Yt-3"Yt-4,RtRt-Rt-2R-) our

covariate-data for the first four response-variables Xt in each year

were incomplete. Deleting these observations led to a complete dataset

of 991 observations for model-fitting and 1627 observations for test-

ing model adequacy. The cutoff threshold r used in defining the

indicator response Xt was chosen to be I or 3 (cubic ft/sec.)

These levels respectively corresponded to 244 and 56 positive
responses [i.e., values Yt above r =1, 3 1 out of 991 in the fitting-

dataset, and to 401 and 87 out of 1627 in the test data.

After some preliminary fitting [via maximum partial-liklihood],

plotting of residuals, and computation of partial likelihood-ratio

statistics for the 1939-48 data, we found that the important covariates
in model (*) for I[ (r] I or 3) were Rt Yt- I Rt*Yt'

R t- I Rt*R t-I Rt-2, Rt- *Rt-21 Yt-2, and Yt I*Yt_2 . Although the

mechanics of soil-saturation naturally suggest that interaction-terms

involving successive days' rainfall and runoff should play some role in

explaining future runoff, previous linear - as opposed to logistic -

regression analyses do not seem to have included such terms. As it

turned out, not all the terms listed above had significantly large

coefficients for each threshold r, but no other terms appeared to play
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of a role. In particular, our attempts to discover covariates to account

for year-to-year differences in runoff - and such differences do appear
to be real - did not produce new covariates worth including in the

model. For interpretability of coefficients, we continued to include

separate terms corresponding to each significant interaction-term.
The values P and standardized values PiP/[Var(] of the

The vavues 'Ji

fitted coefficients i in model (*) are exhibited in Table 1, for each of

the cases Xt -I[Yt >r] with r=i and r=3 . In each case, the 10-

dimensional covariate vector is

(5.1)
( 1,Rt y t-P R Rt*Y t-11 'Rt-i R Rt*R t-11 'Rt-2 Rt-1 l*R t-2' Yt-2 Yt l*Yt-

The most important covariates are : the intercept term , the interaction

terms Rt*Yt_ I Rt-,*R t-2 t-2 as well as the obviously

important covariates Rt , Yt 1 , and Rti and/or Rt 2 . The log-

likelihoods for the fitted models (on the 991 training-observations)

were -142.7 for r=1 and -71.5 for r=3.

Motivated by the results of Yakowitz (1987), we tried also to fit

models in which the linear residuals Ys- E for Zt-s and

s=t-2 from a preliminary fit would serve as additional covariates

[i.e. as additional components of an augmented Z-vector. ] From the

perspective of partial likelihood-ratio tests performed on the training

data alone, the coefficients of these additional covariates were on the

borderline of significance ; the maximized partial likelihoods [ for 12-

dimensional covariate-vector vs. the previous 10-dimensional covariate-

17
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vector (5. 1) ] were respectively -140.2 for the case r- I and

-68.2 for r=3 . [Thus twice the log partial likelihood ratios for the

two cases are 5.0 and 6.6 , which should be compared with the .05
2

percentage-point of 5.99 for the X2 -distribution . The validity of

partial-likelihood ratio tests in this context follows from Theorem A by

standard arguments with the asymptotic multivariate-normal

distribution of PP .] The slight advantage of the extra two covariates

disappeared when we applied the ten- and twelve-covariate models to the

testing-dataset (the 1627 observations for years 1949-1964). Therefore

we confine our further discussion to the fitted models (*) based on

covariates (5.1) alone .

The previous attempts surveyed by Yakowitz (1987) to fit models

to rainfall-runoff data involved linear (auto-) regressions, with or

without moving-average error terms. As we have seen above in

Section 2 , if the error-terms were approximately logistically

distributed then we should expect the logistic autoregressive models fit

with different thresholds r to share the same important covariates and

coefficients (other than the intercept-term). Even a cursory inspection

of the fitted coefficients in Table 1 shows that this is not the case for

our rainfall-runoff data. This is indirect evidence for inadequacy of a

linear-regression model. Indeed, after numerous linear-regression fits

with different sets of covariates, we convinced ourselves that prediction

* of I[Y r] was much less good with linear than with logistic models.
t We

To begin to assess model adequacy for the logistic models (*)

fitted to the 1939-1948 rainfall-runoff data, we calculated goodness-of-

fit statistics as described in Theorems B and C of Section 3 , replacing
I I
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the (unknown) parameters fl in those statistics by their estimators 16P

based on the 1939-1948 data .The k (=27) cells used to define the Xk2

statistic of Theorem B were based on arbitrary cutoffs 0.004 and

0.008 for R, 10.0 1 and 0.02 for R t+R~ t-1and 0.5 and 1.0 for
2

Yt-_ and the variances a. of Theorem B were estimated from the

data as described in Table 2 below. The goodness-of-fit statistics were

calculated (using the same estimated 8P ) both on the training dataset

(1939-1948) and on the testing-dataset (1949-1964), with illuminating
2

results. The goodness-of-fit chi-squared statistics XB based on a

Table 1. Coefficients and Standardized Values for Model (*) fitted to

Rainfall-Runoff Data for Years 1939-48 with covariates (5.1) .

r=i case r=3 case Z
,1

Coefficientx f P  standardized P  standardized

1 -5.933 -8.10 -5.655 -9.59

2 72.49 1.81 92.86 4.48

3 3.633 5.63 -0.397 -1.97

4 302.2 3.97 99.37 4.39

5 14.68 0.44 121.46 4.20

6 6985. 1.59 -3139 -2.14

7 -59.87 -2.22 43.97 0.94

8 11504 -2.56 -2422 -1.88

9 -0.630 -0.87 -0.42 -0.82

10 1.022 2.04 0.128 1.87
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decomposition of the covariate-space into 3 27 cells should be

compared with a quadratic-form in multivariate-normal random
2

variables which is stochastically smaller than X27 on the training-data

[due to having estimated fo from the same data] and stochastically
2

larger than X27 on the testing-data [since the estimated PP is approxi-

mately independent of the deviations N - E(fo) for the testing-data]
2

In the notation of Theorem B , the expectation of XB on the training-

data is k - A and its expectation on the test-data is k + A , where

k -i 2

A- £ (B'D B) / a. . In our example, with k=27, the (empirically

estimated) value of A turns to be L.K when r= and ;5 when

r=3 . The different behavior of A for the different thresholds r

appears to be due to the very different predicted response-probabilities

pt(fP) which arise in the models for different r with a given covariate-

covariate-vector Zt . Table 2 indicates that according to all three of

our goodness-of-fit statistics, the models (*) with X = [Ytr] for

both r=1 and r=3 are adequate for the training data and that the

corresponding models with coefficients fitted to the training data (years

1939-48) are seriously inadequate for the the test-data (years 1949-

64). This need not be too distressing, since there do seem to be

noticeably different rainfall-runoff patterns, including differences in

overall runoff levels, from year to year, although the differences are

not systematic enough to be easily encoded into additional covariates

Some care is needed in interpreting the results using the statistics
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(Xt-pt(P)) pt (  -pt  from Theorem C since many of

t=1

the logistic prediction-probabilities pt(P P) based on either dataset are

quite close to zero or one. For this reason, the results in Table 2 for

WC,0 are probably more reliable than those for WC 1"

Table 2 Goodness-of-fit statistics on trainir- and testing- data for

Model (*) with coefficients displayed in Table 1. The chi-squared
2 J"

statistic XB is defined as in Theorem B with fo replaced by PP,

2 
2 -IT

with or estimated by aET [Z EC] pt(PP) ( s and

with 27 partition-cells Cj defined as the intersections of all sets Rt

[0,.004] , (.004,.008] , or (.008,); Rti+Rt E [0 ,.0 1] , (.01,.02],

or (.02,co) ; and Yt-1 E (0,.5] , (.5,1] , or (1,c) . The statistics

WC,a for a = 0 and a=1 are the asymptotically normal deviates

defined in Theorem C , with flo replaced by P. In all statistics,
" ^2

estimators kP and a. are calculated from training-dataset ('39-'48).J

Training-data (991 obs.) Test-data (1627 obs.)
Statistic

r: I r=3 r= i r=3

XB 31.0 7.47 98.8 52.6

W 0.47 -0.03 7.4 2.4

W -0.01 1.14 44.9 18.8

21
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A further interesting conclusion from fitting models (*) to the

1939-1948 rainfall-runoff data of Yakowitz (1987) is that while these

models appear to fit reasonably well both with the level-crossing

thresholds r=l and r=3 , they do not in this example appear

compatible with a single linear model for runoff. In this sense, we

have a real example of (*) different from the examples of Section 2.A

which derive from AR(p) models with logistic errors.
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