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I. INTRODUCTION

The type of noise known as "1If" noise is a universal phenomenon, found in

measurements as diverse as of the Earth's rotation, seasonal temperature

variations, the neutron flux in the terrestrial magnetosphere, the flow of sand

in an hourglass, the frequency of sunspots, the light output of quasars, the

flow rate of the Nile, and the parameters of electronic devices. In spite of

its widespread occurrence in such diverse and often simple systems, 1/f noise

has defied explanation by conventional theories.1-5

In electronic devices, 1/f noise appears whenever current is carried by a

small number of carriers or is forced to pass through a bottleneck. Such

bottlenecks include very thin films, surface conducting layers, potential

barriers at contacts, and the points of contact between individual grains in

granular conductors. It usually has a very slight temperature dependence and

is proportional to the current squared. In addition to an applied voltage, it

can be induced by a temperature gradient.

As a particular example of electronic devices, 1/f noise limits the

sensitivity of HgCdTe infrared detectors operated in the low frequency "staring

mode", the preferred mode for high spatial and temporal resolution

observations. This research concentrates upon 1/f noise measured in such

HgCdTe devices.

1/f noise obtains its name from its power spectral density, which varies

with the inverse of the frequency (Fig. 1). Thus, in electronic applications,

the lower the frequency at which one wishes to operate, the more troublesome

this source of noise becomes. No lower frequency limit to the 11f spectrum has

been found, even with measurements down to 5E-7 Hz. This remains inexplicable

because the lack of a low frequency rollover would result in the dissipation of

an infinite amount of energy in the noise. The noise extends to very high

frequencies as well. It has been measured in carbon resistors at 1E+6 Hz. 1- 5

In electronic devices, it is established that 1/f noise results from

fluctuations in resistance. This conclusion emerges from the fact that 1/f

noise appears only in the presence of a current. However, in a novel

measurement, Voss and Clarke found an even better way to demonstrate this

connection. They measured the fluctuations in the magnitude of the Johnson

3
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noise in samples of niobium, InSb, and carbon paper resistors and found that

these fluctuations had a 1/f spectrum. Since Johnson noise is proportional to

resistance only, the 1/f type of fluctuations in the Johnson noise indicated

that the resistances of these materials also fluctuated in this manner and

were, in fact, the origin of the 1/f noise.

This result still leaves the question of whether the carrier density or

the mobility causes the resistance of a sample to fluctuate. Another type of

measurement has apparently settled this issue. By measuring the noise in the

thermoelectric voltage of intrinsic and extrinsic semiconductors, and

performing some rather lengthy analyses, some researchers have concluded that

it is the mobility that fluctuates to produce 1/f noise. 3 We will soon present

further evidence that mobility fluctuations lie at the heart of 1/f noise.

A major division of opinion exists as to whether 1/f noise originates in

the bulk or at the surface of a material. Much data can be cited to support

either contention. It is well known, for example, that the type of surface

etching employed in sample preparation will affect the magnitude of 1/f

noise. Also, for germanium single crystals, the composition of the ambient

atmosphere affects the magnitude of the 1/f noise by 10-20 dB. In the specific

case of HgCdTe photoconductors and photodiodes, researchers have demonstrated

that the magnitude of the 1/f noise could be increased upon the application of

a voltage at the material's surface. These examples seem to provide strong

evidence for the surface origin of 1/f noise.1  On the other hand, it appears

possible that 1/f noise remains, even with the best of all conceivable surface

preparation techniques, and that this residual noise is a fundamental property

of the bulk material.

0-6
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II. HgCdTe PHOTODETECTORS

The research on 1/f noise in HgCdTe photodetectors has duplicated many of

the controversies of the field in general. For example, fervent advocates of

both the surface and the bulk theories exist. 6 -8  However, in one particular

case, considerable agreement occurs. Most believe that, in HgCdTe at least,

the phenomenon of 1/f noise is strongly related to, and probably arises from,

generation-recombination processes such as those that produce leakage currents

in p-n junction diodes.

A variety of leakage current mechanisms act to limit the resistance of p-n

junction diodes. At higher temperatures, the leakage arises predominantly from

diffusion currents. Specifically, electrons and holes diffuse across the

junction because of the existence of the large carrier concentration gradient

there. At lower temperatures, this "diffusion current" falls below another

leakage current, the generation-recombination or g-r current, which then

becomes dominant. This current arises from the spontaneous creation and

annihilation of mobile electron-hole pairs in the junction region. Both the

diffusion current and the g-r current generate their own type of noise. Thus,

we speak of the g-r noise as that arising from the g-r leakage current.

A number of experiments have demonstrated a clear correlation between the

magnitude of the g-r current or noise and the magnitude of the 1/f noise in

HgCdTe photodetectors.6 -8  One particular study showed that the I/f noise was

proportional to the g-r current for 14 variable area diodes (Fig. 2).7

Meanwhile, the 1/f noise does not increase with the photo-induced current,

which is essentially a diffusion current. Thus, only the g-r current, not the

total current, contributes to 1/f noise in HgCdTe photodiodes.

Since the 1/f noise did not increase with the diffusion current, and the

noise was found to be independent of the p-side thickness, the study by Bajaj

et al.8 ruled out the bulk n- and p-regions as ultimate sources. Since they

discounted the surface as well, they settled upon t.ne depletion region as the

origin of the 1/f noise. Further support for this cooclusion comes from the

observation that the 1/f noise depends strongly on appliel voltage and most of

the voltage drop is across the depletion region.

5



III. MODELS OF 1/f NOISE

Attempts to account for 1/f noise using conventional approaches have

failed because of the unusual features of this type of noise. The small

temperature dependence presents one major difficulty. It apparently rules out

thermally driven processes, such as those that drive Johnson and other noise

currents, as responsible for the 1/f fluctuations.

The enormous frequency range of the 1/f spectrum has created another

severe stumbling block to conventional theories of its origin. For example,

suppose we speculate that 1/f noise is due to free electrons becoming

temporarily bound to impurity atoms or defects, thereby remaining immobile for

some average length of time. With many electrons falling in and out of such

"traps", the overall free electron concentration would fluctuate and produce

similar fluctuations in the resistance. Alternatively, we might suppose that

upon becoming bound to such traps, the electrons could alter the scattering

mechanisms of the lattice and hence cause the resistance fluctuations because

of the resultant mobility fluctuations.

In such cases, the resultant noise spectrum would display a time constant

indicative of the average time of occupancy of the traps. In order to achieve

the very wide frequency range exhibited by 1/f noise, our model must include a

superposition of processes with an equally wide range of time constants. In

particular, any model of 1/f noise based upon trapping requires a distribution

of time constants, tau, with a weight, g(tau), described by

g(T) =A/Ux)2

Inventing a theory that produces this distribution of time constants has proven

as troublesome as explaining the 1/f noise spectrum directly.

A general theory due to McWhorter deals with the time constant problem by

having electrons enter and leave the traps at the material's surface by means

of the quantum mechanical process of to:nneling. Specifically, they tunnel

through some potential energy barrier at the surface, such as could be caused

by an oxide layer.



One strength of the McWhorter model is that the tunneling mechanism has a

weak temperature dependence, as does 1/f noise. Also, the probability that an

electron can penetrate a barrier by tunneling varies exponentially with the

thickness of the barrier. As a result, a barrier which varies slightly in

thickness over the surface would produce a very wide distribution of time

constants, such as is required. Nevertheless, the theory has deficiencies.

The time constant distribution does not automatically acquire the proper

weighting. In addition, experimental data do not fully support the McWhorter

theory. It turns out that practically any surface treatment affects the

magnitude of 1/f noise but not its spectrum. From the theory, we would have

expected that the addition or removal of surface layers would affect the

distribution of time constants and, as a result, the spectrum of the noise. 4

A bulk theory of 1/f noise has long been advocated by Vandamme, Hooge, and

Kleinpenning. Their belief hinges upon the discovery of an empirical relation

that seems to exist between the 1/f power spectral density, SV, and the total

number, N, of free carriers in the sample.3 The relation is

SV/V 2 = adf/Nf

where df is the bandwidth of the measurement apparatus, f is the frequency,

and a is a universal constant with a magnitude of approximately 2E-3. This X*

relation has been shown to hold for a wide range of metals, and both n- and"X"

p-type semiconductors. The fact that N is the total number of carriers in the

sample indicates a bulk effect (Fig. 3)03,9

However, the difficulties with this model are several. First, "a" does

not appear to be that good of a universal constant. For silicon diodes, fits

to the data require values for "a" of 6E-3 and 1E-4, a large variation from

the supposedly fundamental value of 2E-3.10

Second, the model is more of an empirical correlation between parameters

than a working theory of 1/f noise. It merely postulates some unknown

mechanism for producing mobility fluctuations. Thus, it does not tell us

whether the noise can ultimately be eliminated. Finally, in the case of HgCdTe

p-n junctions, mobility fluctuations cannot explain why the 1/f noise is seen

in the leakage current due to generation-recombination but not in the leakage
current due to diffusion.

8
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Numerous other theories of 11f noise have appeared, and all of them suffer

deficiencies of one sort or another.1-5



IV. CHAOS THEORY

All of the standard theories of noise, 1/f or otherwise, have one major

feature in common. They all attribute noise to some sort of random process,

and in many cases that random process is thermally driven. However, we know

that erratic looking behavior need not have a random driver. Consider the case

of turbulent flow of a fluid. When flow velocities exceed critical values, the I'

placid laminar flow will break up into a complex and unpredictable pattern of

swirls and eddies, and this transition to turbulence occurs without the

assistance of any random process. Te equations that describe hydrodynamic

systems, the Navier-Stokes equations, are entirely deterministic. When erratic

behavior arises from deterministic equations, we now refer to it as "chaotic"

in order to distinguish it from that driven by random processes.

Up until very recently, we lacked the mathematical sophistication to

analyze chaotic behavior. However, that situation is changing rapidly. We are

now beginning to understand the conditions that lead to chaos. For example,

although the Navier-Stokes equations that give rise to turbulence in fluids are

exceedingly complex, we now know that chaotic behavior can result from

surprisingly simple equations. All that one requires is some sort of

dissipative process along with nonlinear coupling between dependent variables.

Linked with the notion of chaos is a mathematical construct known as a

"strange attractor". 11  To understand the concept of an attractor, see Fig.

4. Suppose we have a system describable by the phase space variables x, and

x2. A pendulum, for example, will have phase space coordinates for position,

x, and momentum, p. Suppose, further, that the system engages in some type of

orderly periodic motion. In this case, the trajectory representing the

evolution of the system in phase space will repetitiously retrace the same

simple path. In the case of our pendulum, phase space will be represented by a

.wo-dimensional graph with axes for x and p, and the trajectory will be an

ellipse. Furthermore, if the system does not initially follow this ellipse, it

will eventually evolve to do so. The phase space trajectory is "attracted" to

this ellipse as the stable solution for the motion. Thus, we refer to the

ellipse as an "attractor". In contrast, a randomly driven system would be

represented by a phase space trajectory that wanders erratically over the

entire graph.

11



Most systems of interest involve more than two phase-space parameters. In

these cases, the attractor is a curve winding through a multidimensional phase

space. To visualize an attractor in such cases, we look at a two-dimensional

slice of the complete phase space and construct a "Poincare once-return map".

Where the trajectory passes through the Poincare section, we mark a dot,

something like a hole left by a moving bullet. With each subsequent pass,

another dot appears. If our system is describable by a periodic behavior, the

sequence of dots will "walk" towards a single dot, the attractor, and remain

there forevermore. For random behavior, on the other hand, the dot pattern

would resemble a shotgun blast.

Also shown in the figure is the case of a quasi-periodic attractor.

Instead of a single dot, our bullet may repetitiously pass through a well

defined set of dots forming a (possibly quite complicated) limit cycle.

Finally, we come to the case of a "strange attractor", also shown in

Fig. 4. Our set of dots does not converge to a single dot or to a small set of

dots. On the other hand, they are not random either. Instead, thn dots

converge onto an extremely complex pattern of dots. This pattern is the

"strange attractor," and its existence marks the presence of chaotic behavior. p

A strange attractor and the resultant chaotic behavior can arise from very

simple equations. An example is the Henon attractor shown in Fig. 5. It

results from the following equations between the two parameters x, and x2,

x 1  : 1+ x2  - ax 12  *1*,*

x2 = bx1

with a : 1.4 and b 0.3. To construct the attractor, we plot each (xl,x 2 )

pair and then use the above equations to calculate the next pair. When we do

so, we find that the plotted points appear seemingly at random on the graph,

but nevertheless produce a clearly recognizeable pattern. And, were we to

simply plot one of the parameters vs time, as is done in Fig. 6, we see that we

would be hard pressed to distinguish the result from a plot of random noise.

Of particular interest in chaos theory is the transition into a chaotic

state. Fluid systems, for example, often evolve from laminar to turbulent flow

12
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as the Reynolds number, Re, is increased above some critical value. We can

observe this transition in the mathematics by watching the behavior of the

attractor. At low Re, the system is typified by a normal attractor. But, when

Re exceeds a critical value, that attractor loses its stability and is replaced

by a qualitatively different attractor, as indicated schematically in Fig. 7.

Mathematically this process is termed a bifurcation. Further increases in

Reynolis number may lead to additional bifurcations; it was shown by Ruelle and
12.Takens12 that only three or four such transitions are required to reach a

chaotic state in the equations of fluid motion.

Figure 8 shows how the power spectrum evolves with the bifurcations. The

upper curve displays the power spectrum of a periodic signal typified by a

normal attractor. It exhibits a fundamental frequency and a few harmonics.

The lower curve shows a spectrum after four period-doubling bifurcations. The

system appears to be halfway in evolution between a set of discrete frequencies

and a 1/f type of spectrum. It is this type of result that first led us to

believe that the answer to the enigma of 1/f noise lay in chaos theory.

' I"i
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V. ANALYSIS OF DATA

As previously mentioned, all existing theories of 1/f noise have

incorporated random processes. If, on the other hand, 1/f noise has a chaotic

nature, these theories cannot be valid. It is of interest, therefore, to

determine whether 1/f noise is random or chaotic. In the last few years,

theorists have been attempting to develop methods whereby experimental noise

data can be analyzed as to its random or chaotic nature.

Currently, one of the best available techniques to distinquish random from

chaotic behavior is that developed by P. Grassberger and I. Procaccia. 13  The

basis of the approach is to construct the attractor from the data and then

determine its dimensionality. If we again study the case of the Henon

attractor in Fig. 5, we note that it is a "fractal"; that is, it is an object

with a noninteger dimensionality. As we examine it to greater detail, we find

ever deeper layers of structure, showing that it is not merely a simple

one-dimensional curve. On the other hand, since it does not fill the

two-dimensional space of our plot, it is not two dimensional either. It has a

dimensionality between I and 2. In contrast, purely random data would fill the

space and have a dimensionality of 2.

We call the dimensionality of the attractor its fractal dimension and the

dimensionality of the graph the "embedding" dimension. Chaotic behavior is

typified by a fractal dimension which is noninteger and less than the embedding

dimension. Random behavior has a fractal dimension which equals the embedding

dimension. Thus, in order to distinquish chaotic from random behavior, we need

merely construct the attractor and check its dimensionality as a function of

the embedding dimension.

The Grassberger-Procaccia algorithm allows us to determine the

dimensionality of an attractor mathematically. The justification of the

proceedure is lengthy and will not be gone into here. One begins with a set of

N noise measurements, Xn, separated by a fixed time interval. From these

data, one calculates a correlation function, Cd(r), which is N- 2 times the

number of data pairs (m,n) for which the distance between phase space points is

less than r.

15
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N 2Cd(r) I Hjr-llx m- x n11 }IN2
mn=1

where H is the Heaviside function and I YIH denotes the Euclidean norm of Rd.

If we plot a family of inCd(r) vs ln(r) curves for different values of d, they

should appear, over a limited range, as parallel lines of slope v. It turns

out that d is the embedding dimension while v is the correlation exponent,

related to the fractal dimension.

Figure 9 shows a family of plots described above for a laboratory

experiment involving a chaotic system, in this case turbulent fluid flow. Also

shown is the resultant plot of correlation exponent vs embedding dimension both

for this chaotic behavior and for random "white" noise. We see that fractal

dimension equals the embedding dimension for the random system but approaches

the constant value of 2.8 for the chaotic system. We see, then, how this

analysis clearly distinguishes between the two types of noise.14

161



VI. ANALYSIS OF HgCdTe PHOTODIODE DATA

We have applied the Grassberger-Procaccia analysis to 1/f noise data

measured on a HgCdTe MWIR photodiode. The diode was one of an array of diodes

on a chip fabricated and provided to us by Honeywell Corporation of Lexington,

Mass. The chip was mounted in a low temperature Dewar (Figs. 10-11). The

Dewar includes a preamplifier mounted next to the chip, and both are cooled to

80 K.

The schematic diagram of the electronics is illustrated in Figure 12. The

spectrum analyzer and oscilloscope were used to verify that the noise had an

ideal "llf" spectrum. We were unable to entirely eliminate 60 Hz pickup.

However, by proper choice of the time interval between data points, we could

Insure that all of our recorded data were for frequencies below 60 Hz. Spec-

ifically, we collected 10,000 data points spaced 20 msec apart. This corre-

sponds to a frequency range of 0.005 to 50.0 Hz. In our actual analysis, we

used no more than 4000 data points, correosponding to a lower frequency of

0.0125 Hz.

The data collection network, with its A/D converter and IBM PC, could

handle data of 15-bit precision. Since the 1/f noise of interest was

superimposed upon a much larger do voltage, it was necessary to subtract this

dc component before amplification so that we could record the noise to this

precision. After this dc supression, the noise was amplified as necessary by

two PAR 113 amplifiers.

The great level of amplification required for maximum precision presented

another problem. The collection of the 10,000 data points took over three

minutes, and we could not maintain the sample temperature sufficiently steady

over this time period. The diode resistance varies exponentially with

temperature. A tiny drift in temperature during data collection would, by

producing changes in the diode resistance, lead to a drift in the large dc

component that we were attempting to suppress. This meant that we had to make

a few adjustments to our applied suppression bias in the course of the data

collection. Otherwise, the drift net dc component would saturate our

amplification/collection electronics. As a result, our supposedly pure llf

noise data were contaminated by two unavoidable features, gradual drift and

17
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sudden corrective jumps. We would need to determine if these features could

cause faulty analysis by the G-P algorithm.

Meanwhile, we also needed to establish that our data were of sufficient

precision and quantity for the G-P algorithm to make a proper analysis. Only

with random data of infinite precision, will the G-P analysis produce a fractal

dimension that increases forever with increasing embedding dimension. As soon

as data are truncated to a finite precision, a deterministic element has been

introduced. This will cause a lower fractal dimension. In fact, in the white

noise data of Fig. 9, one can see the beginnings of a rolloff of fractal

dimension at an embedding dimension of 11, no doubt caused by the limited

precision of the data.

To check for the quantity of our data, the precision of our equipment, and

the ability of the G-P algorithm to distinguish random from deterministic data,

we used the same procedure to collect and analyze random noise as used for our

1/f noise. For the random noise, we collected Johnson noise from a resistor of

16 ohms, about the same resistance as our diode sample. It should be noted

that, since the random noise was collected under zero bias conditions, the data

suffered no contamination with drift or Jumps.

Figure 13 shows the results of the Grassberger-Procaccia analysis applied

to the 1/f and random noise data. The lower curve is the result obtained from

analyzing 4000 data points of our 1/f noise. We see that the fractal dimension

does roll over and approaches a value between 9 and 10 with increasing

embedding dimension. We also see that the same analysis applied to the random

noise data, while not giving the ideal behavior indicated by the straight line,

does give a result that differs notably from that for the 1/f data. This

demonstrates that the precision of our data is sufficient for the G-P analysis

to detect departure from pure random behavior. To save computer expenses, only

2000 data points were used in the random noise data analysis. However, for two

embedding dimensions, those of 20 and 40, we also used 4000 data points, the

same as for the 1/f noise data. On the graph, these are indicated by the

triangles. We see how the use of more data causes the random noise analysis to

approach closer to the ideal and depart farther from the behavior of the 1/f

noise.

This brings us to the final issue. Do the drift and Jumps in the 1/f

noise data bring in enough of a deterministic element to account for the

18



resulting lowered fractal dimension? The first question addressed was that of

the relative importance of drift vs jumps in the data. To determine this, we

performed the G-P analysis on two subsets of the I/f data, each of which

contained 1350 data points. The first subset had strong drift but no jumps,

while the second subset had a number of jumps and practically no drift. For

the embedding dimension of 30, the fractal dimensions were 9.902 and 8.168,

respectively. We also analyzed a subset of 2000 data points which contained

the drift data of the first subset plus a few jumps among the additional data

points. The fractal dimension for this subset came to 9.247. It appears from

these comparisons that jumps do lower the fractal dimension and do so far more

effectively than does drift.

Given that jumps were present in the 1/f data and absent in the random

data, and given that jumps lower the value of the fractal dimension as

determined by the G-P analysis, we must investigate whether the disparity

between the two types of data could be the result of these jumps. To do this

we performed the G-P analysis on the following two sets of data. The first

consisted of 2000 points of 1/f data which contained four jumps but no drift.

The second was 2000 points of random noise data in which we had artificially

added four jumps of the same relative magnitude and spacing as in the first

set. The resulting fractal dimensions were 7.928 and 13.8, respectively. We

conclude that, although the jumps have depressed the fractal dimension of the

random noise data, they have not done so nearly enough to account for the

disparity between the fractal dimensions calculated for the two types of data.

We believe, on the basis of this analysis, that the true explanation of

i/f noise can be found only in the mathematical discipline of chaos theory, not

in the exclusively random mechanisms that have been previously investigated.

1
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VII. CHAOTIC MODELING OF 1/f NOISE

Establishing the chaotic nature of 1/f noise does not, in itself, answer
the question of its origin. Rather, it redirects the direction of theoretical

investigation. It points us away from random processes towards deterministic

ones. We have made an initial attempt towards constructing a chaotic theory

model of 1/f noise. Our model makes use of what is known about 1/f noise from

both general investigations and investigations specific to HgCdTe. It also

includes criteria for chaotic behavior known from chaos theory.

From chaos theory, we know that the equations must possess both

nonlinearity and dissipation. From general 1/f noise data, it appears that a

geometrical constraint plays a vital role and that mobility, in particular, is

strongly affected. Finally, from HgCdTe 1/f noise data, we conclude that

generation-recombination processes drive the 1/f noise.

To include all of this in our model, we begin with the

continuity-diffusion equation applied to the carriers.

0t + (vEp) x - D pxx -4rp (1)

This links the carrier corcentration, p, to the mobility, 1. Also included are

the electric field, E, the diffusion coefficient, D, and the generation-

recombination lifetime, T. To complete the nonlinear coupling between the

carrier concentration and the mobility, as well as to explicitly include

dissipation, we note that the mobility is a function of temperature to the 3/2

power; the local temperature, in turn, depends upon the local resistivity via

Joule heating, and that resistivity depends upon the mobility and carrier

concentration via

resistivity = (qop)-I (2)

We further use the geometrical arrangement of Fig. 14. This has two

normal mobility regions separated by a low mobility barrier. This barrier

corresponds to the depletion region of a p-n Junction such as that which exists

in a HgCdTe photodiode. We take T as non-zero only in this barrier region, as

we expect to be the case in reality.
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All of these features are factored into a computer program that we have

written for an IBM PC. The program uses the values of p and V as a function of

position at one time and then calculates new values for the succeeding

moment. The computer code is provided in the appendix.

Figure 15, which shows the mobility vs time, is a typical output of such a

calculation. Also in Fig. 15, we provide a log-log plot of the Fourier

analysis of this output. The straight line which overlays the calculated data

points corresponds to

y axis = frequency
-1

indicating a 1/f type spectrum over most of the range.
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VIII. SUMMARY

We have obtained strong evidence that 1/f noise is chaotic, rather than

random, in origin. We have also begun to construct a model of 1/f noise in

HgCdTe photodiodes based upon chaos theory and the results of experimental

investigations. This simulation has produced noise with a 1/f-like spectrum.

However, considerable development is required. For example, the model gives a

power spectral density dependence of frequency -2 rather than the sought for

frequency - 1 and includes a random driver, specifically, the generation-recom-

bination mechanism.

We believe that the latter difficulty can be readily eliminated; the g-r

process can be duplicated using deterministic, rather than the random processes

now employed. With that change, it may be found that the power spectral

density converts to the desired frequency- 1 dependence.
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Plot of X2 Parameter Against Time
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Mounting Arrangement for Photodiode Array
and Low Temperature Amplifier

64-ELEMENT ARRAY OF
HgCdTe PI-OTODIODES

INI

Fig. 11



I-L

0C)
Iu

C-C,

UJL0(0 CC
LU C

C)

Q-

0) <
C .C C

cr 0
0 -j

(UU

.0
(Ui

-JJ

CD.

p p - : .. - - a * as



20 A

18 0
0

16-16 -,,,_RANDOM

14 0- NOISE
A DATA

C) 0U5 12 -

10- 0
-J 0

0 0 I/F DATA
S8 0

'-" 0 0

6 00

2

0 Ip I I
0 20 40

EMBEDDING DIMENSION

Fig. 13

41



-, -I -7- -0 7 7707

GEOMETRY OF MODEL

SITE OF G-R PROCESSES

________CURRENT

FLOW

LLOW MOBILITY BARRIER

"'p

42V

7NJI



w

00
.j I .-

Cio

or

Ez
5,N

0 00 0o 0nC

(Al~l!qow pez!iewJou) (apnl!ldwe pezilewjou) 601

0

40)

00
Ap

Lm-

or - ~ ~r ~ (I ,.~. ~ -* ~ ~ %



APPENDIX: COMPUTER CODE FOR THE 11f NOISE MODEL

In this appendix, we provide the calculation segment of the computer code

of our 1/f noise model. The programming language is Pascal. The temperature

is designated by "t" the electric field by "e", and the departure from the

equilibrium temperature, caused by local Joule heating, by "dtemp". "i" and

"j", the coordinates of our two-dimensional lattice, run from 1 to m, with m

usually taken as 5. The central strip defined by i=3 has lower mobility than

the surrounding lattice points and represents the depletion region of the p-n

junction. The index "k" designates the time. The output coordinate is the

quantity "dat", representing the mobility at the central lattice point (3,3).
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dx :- - - - - - - - -= 1.- E -6;

dx 1 E - 6;2:
For 1: 1 Io in Do
Begin
For j :zTo mn Do

Begin
dr[i,J] :~0.0;
mu[i,j] 1.0;
tau[i,jI 0.0;

rho~ij] 1/qr~m)

If (i =3) Then inu[i,j] 0. 001;
End;

End;
Begin;
For i :=2 to m-~1 Do

Begin
For j := 2 to rn-i Do

Begin
dteinp := 0.1 * (iu[i,Jlrho[i,j] Sqr(in) -1,0);

d :=(8.625E-5) *Exp((3/2) * Ln(1+dtenp))
'mu~i,J] t *dt/(dxdx);

dr[i,j] d= d (rho[i,j-l] + rho[i,j+l] - 2 * rholi,j];
dr[i,jI : d ' (rho[i-1,JI rho[i+l,j] - 2 * rho[i,j] +dr[i,j];
dr[i,j] :~-(rho[i,j] 0Exp((3/2) * Ln(1+dtemp))

*mu[i,j) -rho[i-1,JI 0 Exp((3/2) * Ln(l+dteinp))
'mufi-1,J)) e *dt/dx

+ dr[l,j];
dr'~i,jj : (rhor~i,j) Exp(j3/2) *Kb(l+dtemp))

* iu[i,j] - rho~i,j-l] 'Exp((3/2) *Ln(l+dteinp)) .
*mu[1,J-1]) * edt/dx

+ dr[i,j];I e
If (i= 3) Then tau[i,j] := (2E8) * (random - 0.5);

dr[i,j] := 4i 3.14116 £tau[i,j] dt + dr[i,j]; 4
End;

End;
For i i to m Do
Begin
Fori : 1 to mDo

Begin *

rho[i,j] := rho[i,j] + dr[i,j];0
End;

End;
dat :~Exp((3/2) + Ln(1+dtenp)) inu[3,3J;Il
End:
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