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1. PROGRESS REVIEW

The flow physics associated with strong viscous-inviscid interactions

is generally quite complex. Computational methods to evaluate such

aerodynamic phenomena have typically been associated with full, very time

consuming, Navier-Stokes (NS) solvers or with approximate matched inviscid-

interacting boundary layer (IBL) procedures. The-purpose of the current

AFOSR research program is the development and application of a global

pressure relaxation or flux-split pressure differencing procedure for

assessing steady and transient flows, respectively.

A reduced Navier-Stokes (RNS) system that is more computationally

efficient than full NS solvers and more accurate and less cumbersome than

matched viscous and inviscid (IBL) methods has been shown to apply to a

significant class of aerodynamic problems. This RNS system is a composite

of the full Euler and boundary layer equations and is discretized to

optimize the numerical representation of viscous and inviscid regions,

respectively.

Two primitive variable RNS systems have been considered. The first is

for the pressure/velocity variables and represents a major upgrading of the

parabolized Navier-Stokes or PNS methodology. This allows for full elliptic

or upstream interactions, including flow separation, shock capturing, etc.

The second is a composite pseudo-potential/vortical-veloclty model that

represents an extension of full potential methodology to viscous interacting

flows. This formulation allows for the numerical advantage of potential

flow methods and those of boundary layer methods to be included in a single

and integrated, composite RNS solver.

The pressure/velocity formulation has been applied for two-dimensional

steady and transient flows involving airfoil viscous/invi5cid interaction,

1 % 5.



jet/base flow interaction, transonic and supersonic interactions. The

composite velocity formulation has been applied for subcritical and

transonic viscous airfoil and boattail aerodynamics. Both procedures are

currently being developed and applied for three-dimensional flows over

afterbodies and wing-body configurations, where axial and secondary flow

separation and strong pressure interaction occurs. Numerous publications,
N.

N.

presentations and dissertations have resulted from this research activity.

Recent papers and presentations are detailed in the reference section. A

review of progress during the year is given in the summaries and results

that follow. Detailed information can be found in the references, most of

which have been submitted for AFOSR review. A summary of highlights is

detailed at the end of this report.

1.1 Pseudo-Potential/RNS Progress and Solutions

This methodology has been developed for the viscous RNS/potential and

viscous RNS/Euler systems. The effect of Euler versus potential outer flow

conditions on shock capturing, entropy/vorticity production and viscous

interaction, in particular separation, has been evaluated. A major result %

obtained during the investigation relates to the appropriate 'conservation'

differencing that (i) accurately convects the vorticity generated behind the

embedded shock and (ii) reproduces the correct vorticity/entropy across the

shock. A combined conservation/partial conservation form leads to the

capturing of very sharp shocks with accurate entropy jumps and without any

spurious generation of entropy in subsonic regions or near the leading

edges. Recent solutions for the pressure and entropy distribution on a NACA

0012 airfoil are shown in figures la and lb. As seen from the figures, the
b

entropy jump is dominant only at the shock. The overshoot in entropy is
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quite physical and typically occurs within the structure of a shock. In the

present case, shock capturing is determined by the momentum shift principle

of Osher-Enquist. The effect of outer potential/Euler conditions on the

separation bubble is given in figure Ic. The skin friction is extremely

sensitive to the outer flow formulation. A detailed paper on this aspect of

the composite/RNS investigations was presented at a symposium at the

Polytechnic University in August, 1987. The full paper will appear in a

special issue of the journal, Computers and Fluids in August 1988.

This procedure has now been extended to three dimensional flows. The

CV/RNS equations in a generalized non-orthogonal coordinate system are

solved by the consistent coupled strongly implicit (CSIP) space marching

procedure. The viscous analysis and early results will be described in

section 1.5. Application of a three-dimensional preconditioned conjugate

gradient-CSIP for the computation of inviscid flows past the afterbody

configuration (figure 2a) has been completed. Both subsonic and transonic

solutions have been obtained. The pressure distribution along the

centerline on the top side of the body is depicted in figure 2b for a free

stream mach number of 0.8. A comparison with a partial solution obtained

elsewhere by a panel method is also shown for the boattail region. The mach

contour along the top flap is shown in figures 2c. The flow is mildly

supersonic on the boattail.

A Ph.D. student, Raymond Gordnier has been visiting at the AFWAL/WPAFB,

with Professor Rubin during his sabbatical leave and now on a weekly basis,

to continue the evaluation of the three-dimensional viscous afterbody

interactions. This study should be completed later this year, see section

1.5.
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1.2 Unsteady RNS Flows

The RNS formulation has also been considered for the computation of

unsteady flow past airfoils at incidence. For this purpose, time consistent

CSIP, time consistent forms of global and alternating direction line

relExatlon and a sparse matrix direct 
solver (DS) have been considered. It

should be emphasized that the present RNS formulation predicts the correct

viscous-inviscid interaction at the trailing edge and does not require any

second-order upwinding or fourth-order damping typically found in time

dependent Navier-Stokes solvers. The RNS formulation also allows for larger

time increments (At) and for more efficient placement of far field

boundaries and application of boundary conditions. A paper containing

additional details has appeared in the AIAA journal in July 1987.

A major result from the unsteady computations relates to a hystersis

phenomena that has been observed as the airfoil oscillates between 00 and

130 incidence. The separation, lift and force patterns are quite different

for the upward and downward motions. For example converged steady solutions

presented in figure 3a are obtained at 5.70 incidence when this angle is

approached from below. An unsteady solution is generated when this angle is

approached with initial conditions generated from a vortical solution at a

higher incidence. The skin friction for both the steady and unsteady

conditions at the same incidence is depicted in figure 3a. Such phenomena

have been observed experimentally but has not been reported in any earlier

computations. Further analysis and grid resolution studies have validated

these results. Unsteady flow solutions of the complete (,4-w) form of the

Navier-Stokes equations using the DS have also been obtained for comparison

purposes. These were presented in the last progress report. Additional b

information is given in section 1.6.
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The lift coefficient and streamline patterns at a somewhat larger

incidence and Mach number are shown in figures 3b,c. These results are in

excellent agreement with full time-dependent Navier-Stokes solutions, that

require considerably greater computational resources and times.

Additional results focus on an alternating direction predictor-

corrector method for shedding phenomena on airfoils and the DS for transonic

flows and for laminar flow breakdown on airfoils at incidence. More ,.

detailed solutions are contained in the Ph.D. dissertations of S.

Ramakrishnan and E. Bender and will also be presented in papers at the

National Fluid Dynamics Conference this June in Cincinnati.

1.3 Multigrid Acceleration of RNS Formulations

In the global pressure or pseudo-potential relaxation procedures,

downstream information typically propagates upstream, one mesh point during

each sweep. For flows with significant upstream influence and on finer

meshes, the rate of convergence will necessarily be significantly reduced.

In order to enhance the convergence rate, alternating direction (predictorA

corrector) and uni-directional multigrid procedures have been developed and

applied successfully. The latter is discussed here. Since the pressure or

"potential" is the only variable that is being 'relaxed', a one-dimensional

multigrid procedure, applied to the PV/RNS equations, has proven very

effective for highly stretched grids and separated flow regions. Standard

multigrid procedures fail in these circumstances. Both inviscid and viscous

solutions have been computed to test the applicability of this procedure.

Transonic flow past a biconvex airfoil, separated flow over a trough

configuration and trailing edge flows with large pressure interaction have

been evaluated, as these are representative of the interactive flow

A, A kl - A f.JL
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phenomena that will arise in the more complex configurations under

consideration. In each case, the multigrid procedure accurately captures

the physical phenomena at a significantly reduced computational cost,

figure 4a. In most cases the standard multigrid approach either failed or

provided marginal improvements in the convergence rate. For a deep trough

(never considered by previous investigators), separated flow solutions were

obtained for a moderate Reynolds number (8x10 4). A fine grid solution for a

5moderate trough is depicted in figure 4~a. On the deep trough, for Re =10

for a very fine mesh, a breakdown of the laminar flow solution in the

separated flow region is observed. As seen from figure 4c, the

recirculation bubble becomes locally unstable and the computation diverges

locally (not globally). A similar phenomena has also been observed

previously by the present investigators for the sine-wave airfoil (see

section 1.6). This is indicative of an apparent laminar flow instability

that is seen numerically on the fine meshes possible with the multigrid

procedure, e.g. 500 mesh points across the trough. This instability may

signal inadequate resolution, e.g., a small secondary vortex forms, or

incipient laminar flow transition, or the occurrence of dynamic stall, which

has also been predicted by large Re asymptotic methods. The present

results, which were presented at the AIAA meeting in Honolulu, June 1987,

provide a severe warning for coarse mesh calculations. Recent results

obtained with full NS solvers tend to confirm the RNS predictions and lend

credence to the RNS approximation even for these flow conditions.

1.~4 Solution of RNS Equations at High Supersonic Mach Numbers

The global pressure relaxation has also been uscd for the solution of

high supersonic flows past sharp nosed bodies. For mach numbers greater

a. 15
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than 3, all bow shock waves are fitted and imbedded shocks are captured.

Two axisymmetric configurations have been considered, i.e., a cone-cylinder

boattail and a simple forebody configuration of a fighter aircraft. The

calculated mach contours, pressure coefficient and skin friction for the

forebody are shown in figures 5a,b. At the higher mach numbers, the

separated flow region that forms on the boattail, due to shock-boundary

layer interaction, weakens and the shock becomes highly oblique. The shock

that develops near the canopy interacts directly with the bow shock. This

shock-shock interaction is captured reasonably by the present technique.

The present formulation is highly efficient for large mach number flows.

This is evident from figure 5c where the rates of convergence for the global

relaxation procedure are presented. The method converges very quickly, even

without the multigrid accelerator. Additional results for an axisymmetric

surface cavity have also been obtained, see figure 5d, and turbulent flow

computations have been initiated.
A.

A

1.5 Three-Dimensional Space Marching

The consistent (CSIP) algorithm has also been used for the computation

of three-dimensional flow configurations with the CV/RNS formulations. For

the problems that have been considered, the axial flow direction (in an

appropriate body-fitted coordinate system) is discrecized in a time-like or

marching character, and the cross-plane difference system is prescribed with

the familiar five-point discretization. The global pressure relaxation

algorithm described in previous discussions is directly applicable to these

problems. The flow over a three dimensional rectangular wing of zero

thickness and the flow past a centerbody of rectangular or elliptical cross-

section have been considered to date. The rectangular elliptical cross

19
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section has been examined with the PV/RNS formulation and the effect of

finite span on the trailing edge interaction has been assessed in an earlier

report. Current research relates to variable camber or thickness effects,

see figures 6a,b. The CV/RNS formulation has now been applied for an

rectangular/elliptical cylinder configuration. The skin friction along the

top and the side symmetry plane are presented in figures 6c,d. The

composite velocity/vorticity formulation has been modified to remove the

singular behavior that results for zero incidence and zero cross flow

conditions. The improved code has been tested for axisymmetric geometries

and is currently being applied to the CV/RNS computation of flow past the

afterbody configuration discussed previously. These results will appear in k.

a Ph.D. dissertation of R. Gordnier to be completed later this year. A

detailed paper should be available by early 1989.

1.6 Application of the Sparse Matrix Direct Solver (DS)

During the last contract period an innovative approach to the solution

of compressible flow problems, based on a direct sparse matrix solver, had

been initiated. The solution algorithm is highly flexible and robust. The

most significant outcome of the research has been the development of a

domain-decomposition-iterative procedure based on the DS. The computational

domain is decomposed into several overlapping subdomains. The DS is then

used to solve the problem in each sub-!domain. Although a related procedure

has recently been presented by others for simple and highly elliptic

equations, the present decomposition is found to be more suitable for the

solution of the Navier-Stokes equations at high Reynolds number. This

procedure honors the asymptotic character of the flow.

24
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The technique has been applied to the computation of flow past the

sine-wave airfoil at high Reynolds number discussed previously. Earlier

calculations on coarser meshes had predicted a considerable dependence of

the solution on the grid distribution; in particular, sensitivity on the

size and structure of the separation bubble and possible laminar flow

breakdown with NS and RNS solvers. Recent calculations with the full (-w)

form of the NavierMStokes equations and with second order central

differencing on a very fine mesh of 355x101 have been possible using the

domain decomposition procedure. The skin friction at Re = 5x05 is shown in

figure 7a. Solutions using seven domains converged in 35-30 iterations.

Results for a variety of Re are given in figure 7b. A paper on this

investigation will be presented at the National Fluid Dynamics Conference in

Cincinnati in June 1988.

Additional issues relating to non-linear iteration and sensitivity to

initial conditions have also been investigated. A paper on this study will

be presented at the International Conference on Computational Engineering

Science to be held in Atlanta in April 1988. Furthermore, the application

of the DS to the computation of transonic inviscid flow has also been

completed. A modified Newton method and several other techniques have been

investigated to explore the sensitivity to initial conditions. Recent

computations of transonic flows by M. Hafez using a direct solver required

the application of a continuation technique for the solution of flows with

strong sharp imbedded shock. For such cases, it has been determined by the

present investigators that the choice of initial conditions is critical. In

a majority of the transonic flow cases, the direct application of Newton's

method will lead to divergence. A number of modifications have been carried

out in order to eliminate this sensitivity to initial conditions. The

29
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solution for the flow over a biconvex airfoil at M =0.92 has been obtained#6

very efficiently. This flow exhibits a complex fishtail shock that has been

computed with arbitrary initial conditions, see figures 7c,d. These new

features include the modification of the Newton's method and/or the addition 5

of a transient artificial viscosity that vanishes in the converged state.

More complete results will appear in the Ph.D. thesis of E. Bender later

this year. Several technical papers are in progress and should be completed p

by early 1989. 
5.

Application of the sparse matrix DS for three dimensional space

marching is also under investigation. The DS is used, at each marcing step,

to solve for the discrete algebraic system in the secondary flow plane.

Preliminary solutions have been obtained for flow past a finite plate and 5

along an axial (900) corner. A paper on the three-dimensional wing-bump

solutions presented previously has been presented at a CFD meeting in

Sydney, Australia in August 1987. A second paper will appear in the near

future.

1.7 RNS Relaxation and Flux Vector Splitting

The relation between global pressure relaxation and a new form of flux t~

vector splitting has recently been clarified by the present investigators.

A paper on this subject is scheduled to appear in Computers and Fluids. A

preliminary copy is appended herein.
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1.8 Highlights of Research Progress

1. An effective computational methodology based on PV and CV/RNS equations

for the solution of inviscid and viscous flows with strong pressure

interaction has been established. The procedures require reduced

storage for steady flows and are computationally efficient for steady

and transient flows. Several steady state and transient flow

applications have been completed for airfoil and transonic flows. An

alaternating direction (predictor-corrector) algorithm has been applied

successfully with larger values of At than allowed by NS solvers for

airfoil interaction with shedding.

2. A consistent version of the coupled strongly implicit procedure (CSIP)

for unsteady and three-dimensional space marching flows has been

developed. A number of PV and CV/RNS solutions have been presented

with this algorithm. Three-dimensional applications using the CV/RNS

development have been demonstrated for an afterbody configuration and

with the PV/RNS development for a wing of variable camber.

3. A hysteresis phenomena for unsteady flow over airfoils has been

predicted and has now been confirmed with more detailed and refined

computations.

4. For separated flow computations, the strong influence of grid on the

resolution of flow behavior has been established. A laminar flow

'instability' has been observed for fine meshes and large Reynolds

number. Further RNS and NS analyses have demonstrated that the

appearance of this "shock like" reattachment is probably physical and

not numerical. Grid refinement, temporal accuracy and large Re

asymptotic theories have reinforced this result. Artificial viscosity

In conventional NS solvers suppresses this behavior as well as the true
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diffusional influences on the flow. This has been shown independently

by F. Marconi of Grumman and by researchers at NASA Langley for flow U

over conical and airfoil geometries.

5. A uni-directional multigrid pressure relaxation algorithm has been

developed for highly stretched grids associated with thin viscous

layers and separated flows. Conventional procedures fail in these

cases. This procedure is now being considered for three-dimensional

computations.

6. The RNS philosophy for high supersonic flows has been confirmed. Flows

with shock-shock interaction and cavities have been successfully

computed. A flux vector split analysis has demonstrated the

relationship of pressure splitting to the flux eigenvalues. This

procedure appears quite promising for hypersonic flows.

7. The application of a sparse matrix direct solver (DS) for the solution

of separated flow and transonic flow problems has been investigated.

The application of the DS can markedly improve the computational

efficiency of the solution procedure. Overlapping grid DS procedures

appear to be quite promising. A variety of solutions have now been

obtained.

8. Applications to three-dimensions have been initiated. The influence of

moderate bump on a wing geometry has led to the first 3D separation

solutions. Further results have been obtained for juncture and

afterbody geometries.
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2. AFOSR PUBLICATIONS, PRESENTATIONS, ACTIVITIES AND INTERACTIONS

1/87 - 1/88

A. Publications and Proceedings

1. Khosla, P.K., Rubin, S.G.: Consistent Strongly Implicit Iterative

Procedures for Two Dimensional Unsteady and Three Dimensional Space

Marching Flow Calculations. Computers & Fluids, 15, 4, pp. 361-378, •

October 1987.

2. Lai, H.T. and Khosla, P.K.: Global Pressure Relaxation Procedure for

Steady State Euler Equations. Computers & Fluids, 15, 2, pp. 215-228,

July 1987.

3. Ramakrishnan, S.V. and Rubin, S.G.: Transient Flow Past a Finite Flat

Plate at Incidence. AIAA Paper 87-0192, February, 1987.

4. Ramakrishnan, S.V. and Rubin, S.G.: Numerical Solution of Unsteady

Compressible Reduced NavieriStokes Equations. AIAA Journal, 25, 7, pp.

905-913, July 1987.

5. Bender, E.E. and Khosla, P.K.: Solution of Two-Dimensional Navier-Stokes -.

Equations Using Sparse Matrix Solvers. AIAA Paper 87-603, February, 1987.

6. Himansu, A. and Rubin, S.G.: Multigrid Acceleration of a Relaxation

Procedure for the RNS Equations. AIAA Paper 87-1145 CP, June 1987.

7. Gordnier, R.E. and Rubin, S.G.: Transonic Flow Solution Using a Composite

Velocity Procedure for Potential, Euler and RNS Equations. To appear in a .

special issue of Computers and Fluids, July 1988.

8. Rubin, S.G.: PNS Methodology Hypersonic to Low Speed Flows. AIAA Special

Publication, June 1987.

9. Reddy, D.R. and Rubin, S.G.: Consistent Boundary Conditions for RNS

Schemes Applied to 3D Internal Flows. AIAA Paper 88-0714, January 1988.
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10. Cohen, R. and Khosla, P.K.: Three-Dimensional RNS Solutions for Subsonic

Unseparated Flows Using Global Pressure Relaxation. Proceedings 2nd

International Conference on Numerical Methods in Fluid Mechanics, Sydney,

Australia, August, 1987. %

To Appear

11. Bender, E. and Khosla, P.K.: Application of Sparse Matrix Solvers and

Newton's Method to Fluid Flow Problems. Proceedings of National Congress %

on Fluid Dynamics, Cincinnati, Ohio, June, 1988.

12. Bender, E.E. and Khosla, P.K.: A Modified Newton's method for the

Computation of Fluid Flows. Proceedings of International Conference on

Computational Engineering Science, Atlanta, Georgia, April 10-14, 1988. ,.

13. Khosla, P.K., Rubin, S.G. and Himansu, A.: RNS Solutions for Two

Dimensional Transient and 3-D Steady Flow. Proceedings of 11th ICMFD I
Conference, Williamsburg, Virginia, June, 1988.

14. Rubin, S.G.: RNS Pressure Relaxation and Flux Vector Splitting. Accepted

for Computers and Fluids, 1988.

15. Lai, H.T. and Khosla, P.K., "Global Pressure Relaxation for Transonic

Turbulent Flows," accepted for Computers and Fluids, 1988.

16. Ramakrishnan, S.V. and Rubin, S.G.: ;Numerical Solutions of Unsteady

Compressible RNS Equations. Proceedings 1st National Congress on Fluid

Dynamics, Cincinnati, Ohio, June, 1988.

Presentations

1. Himansu, A. and Rubin, S.G.: Multigrid Acceleration of a Relaxation

Procedure for the RNS Equations. 8th AIAA Computational Fluid Dynamics

Conference, Hawaii, June, 1987. "
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2. Reddy, D.R. and Rubin, S.G.: Consistent Boundary Conditions for RNS

Schemes Applied to Three-5Dimensional Internal Flows, 25th Aerospace

Sciences Meeting, Reno, Nevada, January, 1988.

3. Cohen, R. and Khosla, P.K.: Three-Dimensional RNS Solutions. Second

International Conference on Numerical Methods in Fluid Mechanics, Sydney,

Australia, August, 1987

Seminars and Short Courses

1. Rubin, S.G., Ballistics Research Laboratory, December 11, 1987.

2. Rubin, S.G., NASA Lewis Research Center, May 3, 1987.

3. Rubin, S.G., Grumman Aerospace Corp., March 26, 27, 1987.

4. Rubin, S.G., AFWAL, WPAFB, March 4, 1987.

5. Khosla, P.K., NASA Lewis Research Center, September 10, 1987.

Student Presentations

1. Himansu, A.: " Multigrid Acceleration of Relaxation Procedure for the RNS

Equations". AIAA Student Paper Competition, Region III, Dayton, Ohio,

March 1987. (Won Second Prize)

2. Pordal, H.S.: "A Comparison of Conjugate Gradients and Minimum Residual

Algorithms for the Acceleration of Relaxation for Three-Dimensional

Inviscid Flow Past an Afterbody Configuration". AIAA Student Paper

Competition, Regton III, Dayton, Ohio, March 1987.

3. Himansu, A.: "Multi-Grid Acceleration of a Global ?ressure Relaxation

Procedure". M.S. Thesis, January, 1987 (Now Ph.D. Student).

4. Ramakrishnan, S.V.: "Numerical Solution of Unsteady Compressible Reduced

Navier-Stokes Equations". Ph.D. Dissertation, February 1988 (now at

Rockwell International, Sunnyvale, California).
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5. Pordal, H.S.: "Conjugate Gradient Type Methods for Three-Dimensional

Potential Flow Calculations." M.S. Thesis, October 1987 (now Ph.D.

Student).

6. Bender, E.: "Use of Direct Sparse Matrix Solvers and Newton's Iteration

for the Numerical Solution of Fluid Flows". Ph.D. Dissertation, April,

1988 (scheduled).

7. Lai, H.T.: (see publications), Post-Doctoral Fellow and Ph.D. graduate

(now at Sverdrup, Inc., Cleveland, Ohio).

B. Committees and Assignments

Rubin, S.G.

AIAA Session Chairman and Organizing Committee, Fluid & Plasma Conference,

Honolulu, 1987

AIAA Session Chairman, CFD Conference, Honolulu, 1987.

NASA Aerospace Research & Technology Subcommittee (ARTS), 1986-88.

NASA Aerospace Advisory Committee, CFD Validation Subcommittee, 1986-87.

Case Institute/NASA Lewis Institute for Computational Mechanics in

Propulsion (ICOMP) Advisory Committee, 1987-89.

WPAFB - IPA - Visiting Scientist, 1987.

Editor-in-Chief - International Journal, Computers and Fluids.

NASA Review Committee of Aeronautics Advisory Committee - Supersonic

Aircraft Drag Reduction, 1988-89.

Khosla, P.K.

Editorial Advisory Board, Computers and Fluids.
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C. Interactions

During the period of the current AFOSR contract the principal

investigators have interacted technically with several outside researchers

and organizations. The CSIp developed by the PI's has been applied to

internal flow problems by D. Reddy of Sverdrup, Inc. in conjunction with the

NASA Lewis Research Center. A paper on this subject was presented at the

AIAA meeting in Reno in January 1988. This procedure is also being

considered for internal flows by R. Pletcher of Iowa State University. The

RNS model and CSIP algorithm are continuing to be applied to hydrodynamics

problems by Raven and Hoekstra at MARIN, The Netherlands and to aerodynamics

problems by D. Reddy at Sverdrup, M. Rosenfeld of The Technion (Israel) and

the NASA Ames Research Center, M. Barnett at United Technologies Research

Center (see AIAA paper, Reno 1988) and C. Fletcher of the University of

Sydney in Australia. Roger Cohen, a Fulbright Research Fellow from the

University of Sydney has completed his work on these techniques during a

two-year visit at the University of Cincinnati. He has developed the three

dimensional code for the rectangular wing with spanwise ripples. The

results of these studies were presented at the International CFD Conference

in Sydney during August 1987. His Ph.D. dissertation should be completed

during 1988 and a second paper with P. Khosla is in progress.

During 1987, Professor Rubin spent a sabbatical lave on a joint

AFOSR(IPA)-University Resident Research Program at AFWAL, WPAFB. He worked '.

with Dr. J. Shang and Dr. D. Rizzetta of the Computational Aerodynamics

Group to develop the RNS procedure for high speed three-dimensional flows.

The earlier AFOSR supported work on PNS and RNS computations have led to two

results that are now default options in the latest version of the AFWAL PNS

code as updated by Lockheed. The minimum step size restrictions
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A = 2 yM= I /I and the sublayer apoproximations of Rubin and Lin are new

features of the code. Moreover, the boundary region or cross flow diffusion

terms have been added to account for large curvature or separation effects.

The result of this activity is several papers on high-speed RNS techniques

and flux vector splitting that will appear in the near future.

The work on the application of sparse-matrix direct-solvers has

generated significant interest around the country. L. Wigton at Boeing,

D. Venkata at NASA Ames, M. Salas at NASA Langley, C. Merkel at Penn State,

M. Hafez at University of California (Davis) are just a few of the

researchers who are actively engaged in pursuing similar ideas and who have

requested further information on our investigations. Papers on this

subject, by Professor Khosla and E. Bender, are to be presented at

conferences in Atlanta this spring and in Cincinnati this summer.

Professor Rubin presented a two-day seminar at Grumman Aerospace on RNS

methods. A two-dimensional/axisymmetric code has been provided to the

Grumman group for evaluation. Further discussions are ongoing with

Dr. R. Melnik relating to a possible research project on three dimensional

aerodynamic flows. As a result of these discussions, a project on the

effects of artifical diffusion and cross flow (boundary region) diffusion .4

was initiated. This has led to some important conclusions that were

presented by Dr. F. Marconi of Grumman at the 1988 Reno meeting.

Professor A. Polak is continuing the application of the RNS code for

the investigation of roughness effects at supersonic speeds. The geometry

under consideration is a hollow cylinder at M = 3 for aircraft

considerations. Professor P. Disimile is investigating the roughness

problem in collaboration with the experimental aerodynamics group at WPAFB.

He has a mini-grant to aid in this project. The RNS code as modified by
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Professor Polak, will provide the computational support for this work. In

addition, W. Sturek at BRL has expressed particular interest for application

to roughness problems in ballistics. A seminar by S.G. Rubin was presented

at BRL this winter. Additional computation. by several Ph.D. students have

demonstrated the strong convergence properties of the RNS formulation for

high supersonic Mach numbers and strong pressure interactions, including %

shock waves and separation.

A new high Mach number RNS initiative with members of the staff at

Sverdrup, Inc. is under discussion. Professor Rubin will visit ICOMP and

NASA Lewis and present a seminar at Sverdrup this spring. Other

interactions with AFWAL, General Dynamaics and Grumman, as they relate to

hypersonic aerodynamics, are under discussion.

,
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S.GI. Rubin
Department of Aerospace Engineering & Engineering .-cnanics

University of Cincinnati
C ncinnati , OH a5221

1 :roducIon

The present author and co-workers have previously presented composite

orimitive variable and velocit:y/potenoial" 8) formulations for the

cnmoutation of visocus/invis.id interacting flows. These procedures have

been .esigned to emulate large Reynclds number (Re) asymptotic behavior,

but, at the same time, to allow for the efficient solution of a single

composFite system of equations. This methodology is intermediate to that of

full time-dependent Navier-Stokes solvers and to that of interacting or

inverse matced bounaary layer-inviscid solvers. The resulting system of

reduced Navier-Stokes or RNS equations is a composite of the full Euler and

second-order boundary layer systems. The neglected Navier-Stokes or

diffusive terms are higher-order in Re for appropriate 'streamline'

coordinates. Although, these terms can be retained through an explicit

deferred-corrector, it must be emphasized that the boundary conditions and

the discrete approximation to the differential equations are dictated solely

by the form of the lowest-order implicit RNS operator.

The RNS model, which is valid throughout the entire Macn number (M)

range, represents an enhancement of the hypersonic merged layer(9 11) and

(11)thin layer approximations wherein the axial (x) or streamwise pressure

(12,13)*" gradient (px) is prescribed, or of the PNS model (  
, where p is

approximated with the truncated form wp x . The parameter w(M) is a function

p. "- ,'.', '.- - .%~.\ ... .. . 1% ,,%S _ ~/~
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of the local Mac, number and i such that < , j . < , ere e'

W (1) 1 1. These systems of equations are all 'hvertolic' , x.e., exn it

initia--value character in the axial or x airection. Forward march in ng or

backward (upwind) differencing is aoolied in order to ortain a solution in a

single x sweep. These methods are inadequate however, when axial flow

separation, transonic regions with strong shock waves, press.ure-vlscous

layer interaction, large axial curvature or subsonic to moderate supersoni-

free streams are present. I

With appropriate treatment of the elliptic character of the equations,

the RNS approximation, which allows for the full implicit pressure gradient

(px ), has been shown to accurately represent axial reversed flow and stronE

pressure-viscous interaction and to provide a more efficient method than

full time-dependent Navier-Stokes solvers for this important class of flow

problems. Although the upwind character of the solution procedure is

retained, the RNS solver it no longer of initial value type and therefore

the upwinding, or more appropriately, flux-vector splitting, must reflect

the pressure (or potential) and/or reversed flow boundary value character.

A global pressure relaxation or multi-sweep procedure for the RNS

model has been presented Viscous RNS and inviscid (Re = =) or Euler

solutions have been obtained for a variety of flows with strong pressure

( 1 ,2 ) ( ,1 ) (2 ,3 )
interaction , with captured shocks and with flow reversa.

(1-4) (14)
Both steady and transient algorithms have been developed and a uni-

directional (x) multi-grid accelerator ( 15 ) has been effective for improving

the convergence rate of the relaxation procedure.
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iThe RNS discretization reflects first or second-order upwinding only in

the axial or x direction. The normal (y) gradients are approximated with

'central' discretizations. These are two-point or trapezoidal for first-

orcer terms, e.g. v , p in the continuity and normal momentu.m equations,

res pe.ti ely. This allows for consistent non-reflectiv? boundary conditions

and reduces numerically induced oscillations that may appear with full .

three-point central discretizations for these terms. This also allows for

more fficient application of far-field boundary conditions and more

accurately represents the behavior of thin viscous layers, see references

14) for further details.

Cther investigators concerned with Euler, thin layer Navier-Stokes or

full Navier-Stokes equations have also presented algorithms that are

1%
designed to relieve the 'artificial-viscosity' difficulties associated with

central-difference discretizations. These are 'upwind' approximations that

are associated with the movement of the physical forward and backward moving

waves, i.e., flux-difference splitting, or with the movement of the discrete

forward and backward moving particles, i.e., flux-vector splitting.

In previous PNS or RNS investigations, the choice of

pressure/convective upwinding has resulted from characteristic or stability

considerations. However, these results should also be derivable from a form
-

of flux-vector splitting, since the characteristic anaiysis is simply a

reflection of the eigenvalue or flux behavior. Therefore, in the present

note, the pressure-velocity decomposition, that has been applied for the

initial value PNS or boundary value RNS methodology, is re4examined from the

point of view of flux vector splitting. The results represent a variation

stgrwrig(16) (17)

of the methods previously presented by Steger-Warming and Van Leer (

U .1I II II 5
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2. Analysis

For the purpose of the present analysis we consider the one- imensional

Euler system given by

+ (E(Q) = 4 (E(Q)1 {E (Q)}x = 0 , (1a)S+ E( )x x x(.)}x

TN
where Q is the solution vector Q = p, ou, pe] T  is the specific internal

energy, p the density and u the velocty. E(Q) =E (Q) E(Q) and is sucn

+
that all eigenvalues X- of dE /dQ, dE /dQ are non-negative and non-positive,

res pecti vely.

Tn order to reflect the initial value characteristic behavior for

supersonic flows, we also require that E (Q) = E(Q), E (Q) = 0 for

M= u/a , where a is the sound speed (a2 = Yp/p for a perfect gas), Y is

the ratio of specific heats and p is the pressure (p = (Y-1)pe). Other

desirable properties are that E±(Q), dE±(Q)/dQ and X be continuous for

all M, or for all (u ) for incompressible flow, and that dE-/dQ have at
ref

least cne zero eigenvalue for IMI < 1. This latter condition allows for a

steady state shock structure with a maximum of two interior zones (1 7 ) and

therefore results in more accurate shock capturing. In the present

(17)
analysis, we have abandoned both the uniqueness condition that E(Q) is

(17)
the lowest degree polynomial in M and the symmetry condition for M 4 -M

The objective here~n is to identify the flux-splitting as strongly as

possible with the respective convective (axial) and acoustic disturbances in

order to maximize the 'marching' or relaxation bias of the RNS formulation.

This is in keeping with the methodology of interacting boundary layer

INA

calculations, in which the axial presure gradient provides the only %• %Do

4"''.
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boundary value contribution for attacnea flows. This is also true for tne

Euler system, wher'e the acoustic upstream influence is also pressure based.

For regions of reversed flow, the convective fluxes must be appropriately

upwinced in order to reflect the direction of the particle flow. The

(17)
soeclfication of the acoustic and mass flux-splitting is non-unique

Two new flux vector splittings that satisfy many of the properties on

delineated previously are introduced here. In one model, the continuity
apa

condition on E- at separation and reattachment. points is no longer

satisfied. For a second more satisfactory model, all of the properties

including continuity are satisfied; however, the additional requirement that

E - E(-, £ (Q) = 0 for M < -1 is not enforced. Since we are not

concerned here with reversed supersonic regions, this additional condition

does not appear to be a severe limitation. Morever, it is possible to

'blend' the two forms of flux splitting in order to move smoothly from one

to the other and thereb, satisfy all conditions. This would lead to a

'central' difference approximation over a limited range where -JMJ < M < 0

or -Jul < u < 0.

In order to evaluate the pressure/convective form of flux-vector

splitting, we consider the simplified, partially conservative, Euler

system (1). The differential system is given by

+ (dE /dQ)Q x + (dE /dQ) Q = 0 (1b)

or in scalar form

+ (pu) = 0 (1c)

2
(pu)- u Px 2u(pu)x w L(,Y-1)(pe)x + (1-uffi-1)(pe) o (id

t



p)t " pe e(.su) - euo - (au) _ -up = (le)
e . (Pe) x x x p x 0 e

where =

in the .NS metnodology for attached flows, all spatial gradient3, save

the pressure gradient (term in (Id), are associated with

(i). Therefore

0 1 0 0 0 0

_E___) 2 dE
-u 2u W(Ym1 , = 0 0 (1-W) Y-1)dQ dQ

-uh h u 0 0 0

(2)

2
where h = e p/p and a= (Y-1)h for a perfect gas. The values of (Q),

E (Q/ can be approximated by the following generalized expressions:

W(x) U'x) Pu(x) T .
+ (Q) -[pu, puu f(-1)[we pe d&], pue + f pd + h dr%

0 0 0

(3a)

W(x) . u(x) pu(x)

(Q) [, puu (y-1)[(1-w)pe + j pe d&], oue + J pd. - J hd] T

0 0 0

(3b)

where u (u,O) and u = -(-u,O) Note that the model equations are
max max

not in full conservation form and this leads to the integral flux

contribution in E-(Q). Also note that the contribution in E±(Q) from the .
- .-

2
preFsure gradient p or (Y-1)(pe) in (Id) is not given by pu , wp and (1-

x x

w)p, respectively. The parameter w is functionally dependent on M and has a

discontinuity in slope at M=I. However, with the definitions (3) for, (Q),

6 .'1.



x contribut-ions will not appear in dE(Q) . These terms are not present

in dE(Q)/dQ. Therefore, for the RNS splitting given by (2, , The

continuity of dE(Q)/dQ is maintained at sonic points to insure smooth FhOcK

capturing. The present form of E(Q) leads directly to the RNS pressure

decomposition that has been applied in earlier analysis. The

discretizations for {E(Q)} X can now be given by
xP

Wi.

1i+

. - ip;+ - f p dp]l xi-x i_ ) (14a)

+i 1 -
Wi W

for (Q), and [

I 
..,

( - )o - (-. p - f- ] ( .x) (Ub),
( i l - f r 1/ i1

11

fr d (Q)

x

+1 
P .

For / p d . - (w i - w._) p and p £ [P ,oP] we obtain for

WEQ i 1 ' i

andfo

(1p+1 1 f+)or'p = ( P+P

2 2 -.

7

and for {E-(%% %% %; 5 %''%% ~. '

' X' 
"". .



T.ese are precisely the discrete approximatiors specifiec in previus TC

Comut at ions.

t/

The eizenvalue (X) analysis for the matrices (2) leads to the

following for u >;

1/2 1 /2 (5a)A, tu + aw u - aw ()5a)
1,2,3

all of which are non-negative for u > 0, and

i.: 3 = (3, O, o) ,5 )'-

all of which are zero; therefore, in regions of attached flow upstream

influence is of purely ciffusive character. These results require that the

function w is given by 0 < < = M. For =

Su, 0, u) 15c)1,2,3 -.

and tnerefore dE (Q)/dQ has one zero eigervalue for all < 1.

For separated flows (u < 0), one choice of flux splitting is to reverse

+ , -+

the roles of all fluxes so that E(Q) E+(Q) and hence X As noted

previously, this satisfies all of the positivity (negativity) conditions.

Although, the eigenvalues of ;E±(Q)/aQ are continuous, both E(Q) and

dE E )/dQ) are discontinuous when u changes sign. Although this splitting

has been applied successfully for several time dependent ccmputatiors

it is sensitive to the temporal increment and marginally stable fcr Newton

linearized steady state relaxation. An alternate and more desirable form is

ottained with the fluxes (2,3), but with w = 0 for all u < 0. The flux

expressions (3) for u < 0 become

Pu(x)'

(Q) [pu, 0, ux) (a) "
0

81
€£ ; < < 4 4 , X 4 ; ;i. z / : , ¢ , < , < < . .' ."..:W2, < -,.,.. .,' . ."2 " .. ,' .,:€., '



jD u
P hu-- p o O - , n u

-na f or u " € 
I  

- , r ,. ,- - ( },
o 0

so that for u K 0

o 0 0 2 (

dE?- -0 2u 0 - -- u - (7b)

O0 h C I-uh .0

S4- 4- ,

:n th is for.-. E'<Q) and dE-(./dQ are continuous at u = 0, as well as at .M-i

a* ~aaete ei ut fues , which for u X - areol ziro or nonpostiove,

res pecti vel y:

A1,, - (0, 0, 0) (7a)

- (0, 2u, u) (7b)

* +

*ientical results for the eigenvalues A- are obtained with equations

(1) given in full conservation form in terms of entropy, or in terms of

total energy (eT = e + u 2/2), if the upx work term in the resulting energy

equation is split in the same manner as is px in the momentum equation. If

the up term in the total energy equation is unspl.t, i.e., constant

stagnation enthalpy or fully backward differenced, an alternate fcrm of flux

splitting results and the eigenvalues - for u > 0 become

4- u 2/
X ru, (2 + (Y- )(1-2 a(,-])M(1-} + J/ Ia
1,2,3 L 2

and

S1 ,2,3 [0, (1-u)u('f-1 ), 0]

,2,3 "



where again 0 < w < w but now u = and A =0 for M < 1
m 1 M1)

for w = w . This is a slightly different condition than obtained in (5) and

reflects the modification of the upx flux splitting. This condition was

(12) ,m d t aobtained previously by Vigneron et al. , where it was also assumed that

(Q) = 0, so that an initial value or fully backward differenced or forward

marched PNS solver results. Of course, as noted previously, this truncated

method is in considerable error for low speeds, for separated flows and for

attached flows, where upstream pressure interaction is non-negligible, e.g.

strong shocks, large curvature, surface discontinuities, etc. The RNS

formulation retains the full E (Q) contribution for all forms of the

differential approximation. The diffusion terms that are omitted from the

full Navier-Stokes system can also be recovered with a global deferred-

(14)
corrector, when such effects are not dominant

For reversed flows, full shifting of the E+(Q) terms is also applicable

fcr the total energy system; however, once again the alternative splitting

wherein for u < 0 we specify only u = 0, is preferable. This leads to the

desired continuity of E-(Q) and dE+(Q)/dQ. For the total energy forms of

the equati n.s tne eigenvalues A for u < 0 are,

= (0, -(Y-1)u, 0) (9a)

= (0, Yu, 2u) (9b)

Wh en the total energy is one of the dependent variables, an additional

condition iE required to maintain the full upwind form. Since

10



p Ye 21 pu, the (pu) x flux arising from p. aso cnangeF siwr.

with u; therefore, these terms which appear in the momentum, and energy

equations must also be given in u, u form. The results (9) are then

recovered. This additional condition does not arise when the temperature or

the specific internal energy is one of t he dependent variables; the results

(7) are then recovered.

3. Stability

It can be shown (1 9 ) that both the full shift and 0 0 shift flux-

splittings are unconditionally stable for steady state line relaxation.

These methods are sensitive, however, to the assumed initial conditions for

pressure, etc. that are required for steady-state calculations, for terms

entering from E-(Q). It has been shown (19 ) that this sensitivity can be

controlled by (i) an improved initial guess, e.g., several inviscid

relaxation steps, (ii) local non-linear iteration at each axial location or

(iii) underrelaxation of the velocities in separated regions, by the

inclusion of temporal damping, i.e., finite At, in the early stages of the

relaxation process. After a few steps, e.g., 5 to 20, full relaxation

without local iteration can be restored. It can be shown tha. the

discretization for the elliptic pressure term arising from () corresponds

to complete overrelaxation. While this is desirable close to convergence,

it is undesirable in the initial stages of the relaxation process. T his

difficulty can be tempered by a pressure correction term developed by

(18)
Israeli . The correction, which vanishes in the steady state intrcducesz

pressure underrelaxation and also residual smoothing for muti-grid

.-,,-
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transfers. A combination of the pressure smoothing with full overrelaxation

has provided a useful approach for the semi-coarsening or uni-directional

multi-grid accelerator(15,19)

L'. Conclusion

Global pressure relaxation for a pressure split form of the Euler or

reduced Navier-Stokes (RNS) equations has been shown to be equivalent to a

form of flux-vector splitting that satisfies the major eigenvalue and

continuity constraints on the fluxes and flux derivatives. The upwinding is

applied only in the axial or 'mass-flow' direction. In keeping with the

asymptotic form of the RNS system, two-point or trapezoidal discretization

is used for appropriate normal gradients in order to allow for the accurate

evaluation of shear layers and a consistent specification of far field

boundary conditions. If the pressure gradient parameter w(M) is given by

+ ,

its maximum value in subsonic regions, one eigenvalue of X is always zero

and therefore shock resolution is improved. For regions of reversed flow

convective upwinding is combined with the condition w = 0. This insures

that the fluxes, flux derivatives and eigenvalues remain continuous

throughout the flow. This form of flux vector splitting is specifically

designed to maintain a bias in the direction of the convective fluxes and

(17)
therefore abandons the (±) symmetry of the earlier forms of flux vector

splitting. The upwinding leads to a relaxation method that is solely

acoustic driven throughout subsonic regions, but also includes convective

relaxation in regions of reversed flow.

12 :%
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