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PHASE I FINAL REPORT

ABSTRACT

Concerning adaptive array and null steering applications of

polynomials with restricted coefficients, the basic mathematical

question to consider in electronic beam steering, with a discrete

array consisting of omni-directional elements spaced at equal

increments along a straight line, is how coefficients of a polynomial

may be chosen in a robust get computationally efficient manner so as

to arrive at a desired beam pattern. In numerous applications, these

coefficients are required to satisfy certain restrictions, such as a

bound on their dynamic range. Thus, particularly in null steering, it

is often advantageous, or even necessary, for the shading coefficients

to all have the same magnitude. Basic properties of such polynomials

and their applications to beamforming are described.
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A. STATEMENT OF WORK

Determine the robustness of the polynomials with unimodular
coefficients introduced by the principal investigator in 1977.

Determine how to best introduce multiple nulls bg employing t e trhecr-."

of polgnomials with unimodular coefficients.

Develop adaptive array processing algorithms employing the ccncect s4-
unimodular shading coefficients.

Determine to what extent coherent variation of shading coefficients
can be controlled by restricting them to be unimodular.

Determine methods of choosing the best averaging process, as describe--
in the Phase I Work Plan, for constructing polynomials with the
required properties.

Solve the Littlewood and Erdos conjectures for F.

Construct actual polynomials which satisfy the Littlewood conjecture
for G,.

Develop a theory of interpolation by polynomials with unimodular
coefficients and determine applications of these ideas to null
steering and adaptive array processing.

Study the zeroes of these polynomials for both theoretical and applied
purposes.

i i a.
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B. STATUS OF RESEARCH EFFORT

The following narrative describes the significant accomplish-

ments, progress towards research objectives, new discoverias, and

specific applications of the Phase I research carried out by

Prometheus Inc.

I. INTRODUCTION

The fundamental purpose of our current research is to

contribute to a deeper understanding of the properties and

applications of polynomials with restricted coefficients, and 4n

particular with coefficients of magnitude 1. Such understanding is

crucial to the area of array design and to the construction of robust,

computationally efficient adaptive array algorithms. This report.

with its appendices, summarizes our progress to date.

The basic mathematical question to consider in electronic beam

steering, with a discrete array consisting of omnidirectional elements

spaced at equal increments along a line, is how coefficients of a

polynomial may be chosen so as to arrive at a desired beam pattern.

In numerous applications these coefficients are required to satisfy

certain restrictions, such as a bound on their dynamic range. Here,

. -I-.,
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dynamic range rifers to the ratio of the largest to the smallest

magnitude. Thus, particularly in null steering, it is often

advantageous, or even necessary, for the shading coefficients to all

have the same magnitude.

Although the mathematical, statistical, and physical problems

that arise in the consideration of array shading have been studied fcr

roughly half a century, many interesting questions remain. This is

true even for the "simple" case of the discrete line array referred to

above. In this case, of course letting n denote the number of

elements, the pattern function G(z) is a polynomial of degree n-1, z

is a point on the unit circle, and the shading coefficients are just

the n coefficients of this polynomial. An important reason for

performing array shading is to shape the pattern function G so that it

has low sidelobes and small beamwidth. As is well known, both of

these quantities cannot be minimized simultaneously, and the choice of

shading coefficients results in a tradeoff between these two desirable

ends.

Electronic beam steering is another fundamental purpose of

array shading, and it is this application that we address in this

report. In addition to permitting the rotation of the main response

axis of the pattern function, beam steering allows the simultaneous

formation of a number of beams ind different directions. In

*particular, if sources of interference lie at bearings different from

that of the desired signal, then the signal-to-noise plus interference

5--2-%



ratio (SNIR) may be increased dramatically by directing nulls of the

pattern function toward these interfering sources, in spite cf the

fact that the absolute power of the desired signal is thereby redaced.

Adaptive techniques have been developed, by which array processing

systems can electronically respond to an unknown interference

environment. However, although the basic adaptive array principles -

have been known for some time, their application has been limited by b

hardware constraints and by the lack of sufficiently robust, real-time

algorithms. New approaches to this latter consideration are described

herein.

There are many cases when constraints must be placed upon the

magnitudes of the coefficients of the pattern function. Thus, as

explained by Hudson [13], when coefficients are implemented by

attenuation they must be scaled so that the largest modulus is unity,

since the amplitude gain for the desired transmission, and even the

overall output signal-to-noise ratio (SNR), can be reduced by large

coefficients. In discussing main-lobe constraints on optimal arrays,

Hudson observes that when a main-lobe null is created very large

shading coefficients are formed, resulting in enhanced output of

uncorrelated noise. Hence, size restrictions on the coefficients are

again required.

On the other hand, in a situation such as occurs in an

adaptive radar receiver after clutter has decayed due to increasing

range, so that there will be few and widely spaced target echoes of

-3- 
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minimal power compared to a steady jamming source, it Is necessar4 t.z

constrain the adaptive arrag so that the shading coefficiants are

prevented from falling to zero. A similar situation occurs in an

adaptive antenna using the least mean square (LMS) algorithm, where

the shading coefficients will decay to zero if either the signal level

falls to 0, or if the reference signal is absent for some reascn.

One method of controlling this is to substitute the steered gradient

system described by Griffiths for the reference signal LMS antenna,

but this has the disadvantage of being very sensitive to errors in the

assumed direction of the desired signal.

As mentioned earlier, another approach to these questions is

to restrict the dynamic range of the shading coefficients. Although

an informal rule of thumb for this range appears to be 02 and everyone

is happy, 10 and some are happy, 100 and nobody is happy,' a formal

mathematical study of the relevant properties of polynomials, whose

coefficients are thereby restricted, does not seem to have been

previously undertaken. An important thrust of the research effort

reported herein has been to initiate such a study, and to relate th.e

large amount of work that has been accomplished by mathematicians, on

polynomials with restricted coefficients, to the above applications.

These efforts will continue in Phase II.

Furthermore, there is an intimate relationship between the

engineering questions described above and several areas of classical

mathematical analysis. Foremost among the problems of mutual interest

-4-



is the question of how close to constant the modulus of a poIgncmial

can be along some curve, typically the unit circle. This is of deem

concern to theoretical mathematical analysts because of the

fundamental nature of polynomials and the simplicity and intrinsic

beauty of the question, and it is equally important to engineers

working in such fields as 1,4 design, adaptive beamforming and null

steering, filter design, peak power limited transmitting, and t.

design of reflection phase gratings. This report describes our

research into both aspects of this remarkable intertwining between the

disciplines of pure mathematics and engineering.

'p
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II. MATHEMATICAL RESULTS

Concerning the purely mathematical aspects of our work. note

that properties of polynomials with restricted coefficients have been

the subject of much fruitful research in twentieth century

mathematical aialysis. Of particular interest have been polynomials

with coefficients +1 or complex of modulus one. The study of such

functions was apparently initiated by G.H. Hardy (see Zygmund [23,

p.1993), and furthered by J.E. Littlewood, P. Erd6s and others.

For the purposes of this discussion, it will be convenient to

introduce the notation of Littlewood [17). Thus, let F, and G,. be.

respectively, the class of all polynomials of the form

f(z)= +lz", g(z)= Z exp (aki) zk,

where+z1l and the ak are arbitrary real constants. Clearly the La norm

of g is (n+11) for all g 4 G, (and hence for all ff FV.,GV), and the

question "how close can such a g come to satisfying

lc*(n+1)'L-="

has long been the object of intense study.

-6-
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The first qualitative result concerning the above cuesticn for

was obtained by G.H. Hardy [ 2 3 , p. 19 9 1, who demonstrated he

existence of a positive constant C and a sequence jg,, , 3,,

satisfying Ig,(z)j _< C n--- for all n and z. The identical resLIt for

F, was obtained by Shapiro [22] and published by Rudin E193.

Littlewood [16] conjectured that there exist positive ccnstarts A and

S

B such that, for any n, there is an f(F,,(g*G,,) satisfying 0

for all z, while Erd~s conjectured C1i1 that there is a positive

constant C such that for n>2,_gl >(1+C)n for all g<G, (and hence

for all ffF,,). Analogous conjectures for the LP norms of, gkGn were 9

settled in a series of papers by Beller and Newman (EI, [23, and

[3]). Beller and Newman [43 also proved the Littlewood conjecture fzr

polynomials whose coefficients have moduli bounded by 1, after .

observing that the proof of this result given by Clunie [103 deoended

upon an erroneous result of Littlewood. In [15] Ktrner was able t:

modify the results of Byrnes in (6] to prove the Littlewood conjecture

for G,, and then Kahane [14) showed that the Erd&"s conjecture is false

for G,. These conjectures for F, remain unresolved.

One approach to the Erdos conjecture for polynomials in F, is

to consider their L^ norm. Our principal results in this regard are

described in Appendix B. For polynomials in G,, we have the following

result:

-7- 
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Theorem 1. For _ach oositive integer n. there is a secience I

of coefficients such that all Ics.. = and
kA :

Ecmelk011d+A((n+1) 2 +4(n+l)-*'2.2. iT' C-

Proof We show that in fact the Gauss coefficients.

=e ;%w

satisfy the required property. Toward that end, note that

IIl

-ee -  = n+l+ Z ( Z cj }eA .
IWNCO

Therefore, by Parseval's Theorem, assuming for convenience

that n is even,

=(n+l):2 + 2 A. jT

=dn+l)( + 4

_<(n+1)2 + 4 rrl, 1' n j nm n+ ) /21 )

=(n+l)2 + 4(n+ 1 3,

ip I'
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where we have used the facts that

Isin jx/sin d< i, and If/sin xI 17/2x for <" "/2.

•S
This completes the proof of Theorem I.

Another method of constructing polynomials with unimodular

coefficients is to form a suitable weighted average of existing ones.

For example, -we may employ a slight variation of the basic

construction in [6] as follows:

For each m, O<m.N2 -I, and for z=ea" 1 4, let

kk

.()P()= F4 Ze 17J7 ' J ~"

Clearly, each P. is a polynomial of degree N 2 -1 with coefficients of

modulus 1. Furthermore, it follows from [6] that, for a suitable small

positive E (i.e., of order N-), IPa(#-)I is essentially flat for

E - m/N 2 < @ < I-E-m/N 2 .

Now define P-(' ) by

P (e) = Z - P" (O) .

N-0

P- is a polynomial of degree N-I with coefficients of modulus 1.

:-9-



Also, by writing

z~r N
r4 .p

and letting

0=-N--(A+BN+CNa) for 01'A<'N-1, 0:B'N-1, 0(C<'N=-1,

it is seen that

=11 N2 e N~

so that IP(-)=Na.

In addition, the essential flatness of IP-(e&)/ in the interval EJ<-.

where now E is of order N-", follows as before. However, numerical

evidence suggests that P'1( 2-1 N-) = 0(l), a similar situation to that

which occured with the original polynomials [63. This being the case,

P"" is not quite a Kahane-type polynomial, as wae had originally hoped.

Note, however, that the above method of constructing P-1 can

also be employed to create new flat spectrum sequences, which are

periodic sequences EakJo with the property that their discrete

Fourier transform (DFT) has a power spectrum consisting of a very

small number (usually 1 or 2) of distinct values. This is because the

DFT can be thought of as the values of the polynomial



V..7.

where n is the period, at the n-th roots of unitg. Our construction

yields polynomials whose spectra are essentially flat at almost all

points of the unit circle, not just at the roots of unity. Observe

that flat spectrum sequences constructed in this manner satisfy the

additional property that all of the terms of the original sequence

have the same magnitude. Applications of these concepts to notch

filtering and communications are discussed elsewhere in this report.

Another method of viewing these questions is in the context of

interpolation problems. As noted earlier, for any P<G, the Parseval ,

Theorem implies that the La norm of P on the unit circle C is

(n +) =  Furthermore, since IPlz)l a is expressible as z--Q(z), where ,

Q is of deqg ee 2n, there can be, at most, 2n distinct points z.. where

=~.. (n+1)'.

Let us call such a set of points an L2 Interpolating Set for P. A -

natural question is which, if anW, subsets of C consisting of 2n iii

points can be an L =a interpolating set for some P of the required form.

In its full generality, this question appears to be quite ..

difficult. For n=1, it is trivial to show that S=ta,b is an L =

Interpolating Set it and only it b=-a. For abitary n, observe that

1q, .'e"



for S to be an L2 Interpolating Set, the coefficients of P

must be chosen so that

Q()-(n+l)zti =w bv(Z-Ze re,

where K is a constant of modulus one. Furthermore, the coefficient of

z" on the left side of this equation vanishes, so tt-e same must Ie

true on the right side. Clearly, this will be a very rare occurence,

so that most sets will not be L2 Interpolating Sets. In fact, it is

not at all obvious that for n>1, there exist a L2  Interpolating

Sets. Thus far, we are only able to show that if S is to be such a

set, its elements cannot be too close to each other. More precisely,

heorgem 2 For any n, there is an E>O such that no S of the

form

S-j'-,=, with 1,. : E for I<k<2n,

is an La Interpolating Set for any PiG,.

Proof of Theorem 2. Assume the contrary. Fix n. Then, for

any E>O, there is a set

Le with-&.1< E f or 1<k<2n %

such that S is an L2 Interpolating Set for some P, say

-12-
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P= ra.k z'. with all iaI.,= 1.

Choose a sequence of positive E2s, sayufE,. , approaching 0.

For each k, 0.k<n, the sequence aE.k 41

is bounded, and all terms of each of these n+1 sequences have modulus

1. By the standard method of choosing a convergent subsequence for one

k at a time, we can find a strictly increasing sequence of positive

integers

and a set ak a

of complex numbers all of modulus 1, such that

a* converges to ak for every k, O'k<n. I"
j=1

Since JP.(eZ 1 )J-(n+l)i'= can't change sign for

)c..J< rr,

we can assume, by taking another subsequence if necessary, that either

."

-13-
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is always positive or always negative for

Suppose the former (the argument being the same in the latter case ,,,.

and define

Clearly (Z)I converges uniformly to P=(z) on z = 1

so that jP.(e'&)j>(n+l)1,1 for 0<-&21TI.  i

Since the L-2 norm of P. is (n+l)11 , this is impossible, and the proof

of Theorem 2 is complete.C

N.,

Also of interest is the locations of the zeroes of polqnomials

with unimodular coefficients. This is directly related to many other

problems discussed herein and has obvious importance in the choice c ..

pattern functions for null steering. To quantify this question, let r,.- -

e ,l'j<n, be the z-erces of P, <- G,, normalize P, so that f-'e

coefficient of z- 1-s 1. and define,"

N-

ihere the maximum is tasen over all such PA(z).

-%Io-
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Ein=e any Pt(z)=z-e' °' for some real D , it is obvious tt.at

,~- 2-.. 0.

Considering the case n=2,

P2 (z)=z
2 -(r z +ra e )z+r Lr 2 e

so that

rIr 2 -- I re' +rae 1.

Assume that rj>l. Since

I=jrle + r 2 e6 12-r= = rL- /r

the maximum value for r j-1/r & (hence the maximum value for rt-1) is

achieved when r,-1/rL=l, or

r , and rm=

In this case,
U.,

r-= and 1-r <

-15- .



so that

3JT

Also,

2- -===Max (r-1)2+(1-1/r' a)"

By an elementary calculus argument, it is seen that this maximum

occurs for r=(J-+1)/2. Thus,

We leave as an open question the behavior of other values of and

The final mathematical question which we examine here is one

which is particularly important for applications. Namely, how robust

are polynomials with unimodular coefficients? Thus, expressing PfG. as

n%
P(z) = A,.z,., IA.I= I,

ko

consider that the coefficients A.. are not fixed quantities but may be

written as Ak + ak, where ak = ak(w) is a random variable representing

the coefficient error. Hence, the polynomial becomes

O(z)= "Akz + az"

-16- S
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where the final sum represents an error polynomial whose behavior is

to be analyzed to determine the robustness of a system emploging these

functions.

Since the class F, of polynomials of the form

p(z)= " lzk
k--o

I

is o4 particular interest, lat us begin by examining error polynomials

of the form

nR

f(z) = _azI
Ik:O

where ak are real random variables which we assume to te independent

and normally distributed with mean 0 and variance I, to be written

N(O.1). Later, we shall indicate how to generalize our work to the

case of other random coefficients and, finally, to complex random

coefficients.

Let us rewrite the error polynomial as

'1

f(t) = awwe" .

where the ak are independent real random variables which are N(O.1)

and t 4 [0,2T"l. We begin by considering the real part of f(t), which

is

-17- 1
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Re f(t.=P(tw) = Faf(w)cos kt.

k:o

In estimating the effects of coefficient inaccuracg in

transversal filtering, Gersho, 3openath and Odlzko [123 analgzssm

similar error polynomials. In comparing various performance measures.

they conclude that the most appropriate measure is the maximum

deviation in frequency response magnitude from the desired values over

a particular frequency band. Their analyses and conclusions apply in -"

our case and lead us to estimate the random variable

.

MI(w) = sup P(t,w). %
t E

Our methods, which differ from those of Gersho et al, are based on

pioneering work in random polynomials done by Salem and Zygmund 120].

They yield good estimates without unknown constants and are

computationally simple.

Let us now outline the procedure, beginning with two lemmas

which give estimates of the size of P(t,w). %

Lemma_ 1. E(e %'''--') < e , where E represents expectation.

_Pqg_. It is well known that for ak -N(0,1), the moment

generating function of ak is given by E(eq) = e .

Then

-18-
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PIt Ep I( )ts + iE(e ) = E(e '  = ECiT e
k 0

= TT E(e k
kzo

=TTT e =e e
k=o k o

where the second line follows by the independence of the a.'s. This

completes the proof of Lemma 1.'

Lemma 2 Define M(w) = sup IPt..)I .

Then there exists, for each w, a random set I(w) [ [0,=-) of Lebesaue I

measure at least 1/n such that %

IP(t,w)f> M(w)/2 for each te I(w).

Proof. By Bernstein's theorem,

11 P'11 sup (t, (t nM(w).

00!

Since P(t,w)is continuous for each w, there exists t0e[0,2-7) such

that M(w) = +P(t.,w). Thus, for fixed w,

If M(w) = +P(t.,w),IPt,,)-M,(w)KM(w)/2 for It-tIn.-1/2 (mod 2 7).

-19-



If Mlw) = -=(tw), P(tw)+M(w) jM(w)/2 for t-th /2 (mod 1T•

Thus, IP(t,w4 M(w)/2 for tef[t=-1/2n, t=+I/2n] -nod (2-)

'V'

and Lemma 2 is proven.

We combine the above lemmas to obtain the principal ,

estimat ion.

Theorem 3. E(e M 2).(4rne

_Pr Of. E ( eon 7--M) =/' ' t=dP(w)

n l c.),(t) dt dP(w).

where we have used Lemma 2 with

Therefore,

E (e--;-a) <n/ Ce_ lz-; = ,,(t)dt dP(w)

.A. 0

+ e - *'( - . I.dt dP(w)
f o)

because

-20-
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Now use Fubini's Theorem .o interchange the order of

integration, and apply Lemma 1 to obtain

f 2e dt= 4T ne

0

and we have Theorem 3.

To obtain our estimate of the size of M, we prove t!_a

fc .iowing:

Theorem 4. P EM> o<3 < 4flne for C< > 0.

Proof. Let .>0 and use the Markov Inequality and Theorem 3 to i%

obtain

P EM> <j = P(e >'= _> e '% < E(e;'-2)/ew' /  4TTne

To get the best bound for a given X, we employ elementary calculus to

minimize

hl L) = (n+1)/2- /2,

yielding -== 0</2(n+1). Substituting into the right side above

.0%

yields Thecrem 4.

-21-
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We can now obtain similar estimates for P

N(w) = sup If(t,w) , where

tC[o,7zr)

f(t,w) _ak(w)e IkV
kzo

and the ak are independent N(0,1).

Theorem 5. PLN(w) ", B<-ne"

Proof. Let Re f = -ak cos kt and Im f = a .a sin kt. We have -p

shown in Theorem 4 that

-z/16 (n+ )
P~ f sup Re f(t, w ) > / F2  < 4'TTne

By applying the analysis in Lemmas I and 2 and Theorems 3 and 4 to Im

f, we obtain

sup f (t )'> IF2 477ne

Since jf(t,w)f 2 =/Re f(t,w)j- 4-jIm f(t,w)/2 we have

Esupf (t,w)la > (M]c[supCIRe f(t, w)l a > 0(2/2JUsup /Im f(t, w)l2 > /2.

Therefore,

PLN o _ P[ osup )Re f(t,w)J I _o< l"IF+ Psup JIM f(t,w) K' IJ2
t~c*ovrj te C6Ot7W

13T~ne



completing the proof ol Theorem 5.

We now choose K to obtain suitable explicit bounds. If we put

o= 41(n+l"(lcg E3'.n+4 Ioc log n). then V

P N > 11(l n) ,

which improves an estimate in Thecrem 1 of [12].

Ifo< = 4J(n+l) log (8TTn2 ), then

P IN > 01 <1/n.

In this way, estimates of any desired precision may be cbtained.

When coefficient error is due to digital round-off, it is S

reasonable to assume that the coefficients a are uniformly

distributed on the interval [-1/2,1/23, denoted ak-JI-1/2,1/2). The

following result gives the analogue of Theorem 5 in this case.

Theorem 6. Let

n

f(t,w) F _ ak(w)e ''*, t e [~0,2rI),

k:O

where the ak are independent random variables which are U(-1/2,1/2 A.

Then

P N > < SIne

Proof. A direct calculation shows that

e,

E(e )

By simple use of the exponential series, we have

%4

E(e a ) 1+ -"-. ! /- < - )

using 2-k! < (2k)' _ (2k+1).

-23-
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Finally,

- 1.

E (e )
k=0

We now follow the steps in the procedure for normal

coefficients to obtain similar results to Theorem 5. First consider

-4

n /

P(t,w)= - ak cos kt and M(w) = sup IP(t,w)I.

Following Lemna 1, we obtain

(AM

E~etm ''" )< e '%

ri.

and from Lemma 2,

Pf (n+/)'"

E(e ) < 4TTne

As in Theorem 4, we have

PfM >--I 4TTne

We obtain a similar bound for the maximum o' the imaginary part of

f(t,w), and we combine these as in Theorem 5 to obtain

P N >o(l( P[sup IRe fI / , .,+ P sup .lIr f/ x /J2< STIne

%

-%'.



which completes the proof of Theorem 6.

- in the
Remark. We may obtain specific estimates for R N >_

uniform case just as we did for the normal case after Theorem 5. For

example, setting

2 (n+l) log (9STn2), we obtain P(N I 1/n.

We are now prepared to give estimates on the error polynomials

obtained from polynomials with unimodular coefficients. These error

polynomials are of the form

nS

f(t,w) = ak e ,
ko

where the ak are independent complex random variables. In other

words, ak=Km+i4 where o<k and A are independent real random

variables. We state the main Theorem.

Theorem 7. Let N(w)=sup /f(t,w), where

f (t,w)= ak(w)elk* 'w.

and the ak =Kk+iA. are independent random variables. We suppose that

the real and imaginary components of each ak, namely K.. and I.., are

independent. Then

(a) Ifo<k, and A.. are N(0,1), PIN > a< < 161Ine

(b) If O<k and A. are U [-1/2,1/23, PIN >-,<1 < 16"lTne

Proof. Let us write

f(t,w) = fi(t,w) + if2 (t,w) , where

fl(t,w) = £ elk and fa(t,w) = k 4,ea.
-2 - o
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Consider the case where c,, 8k are independent N(O,1). If

Nt(w) = sup if,(t,w)t, ji,2, then

[itf(t,W)( D> g< fit " t , w)l 0 ( U jjjff twI xo

Since Ifl I if+if Therefore,

P N (w) >0 PIN, (w) > 0 / 2+P;N. w) / 2PfN%(w) 2.<

Applying Theorem 6 yields

P N(w)> 0< < 16"[ne

uhich is (a). A similar procedure applied to the uniform case gives -

(b), and we have Theorem 7.

In summary, we have obtained easily calculated and flex'ible

upper bounds on the maximum deviation caused by random error-

polynomials. These bounds offer estimates of the robustness of a

discrete array of omnidirectional elements.

p26
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III. APPLICATIONS
n

As mentioned in the introduction, appliCations of pclyncmia.s

with rastricted coefficients abound in the engineering jorld. Those

wnich we focus on herein include null steering, adaptive beamfcrnng,

notch filtering, peak power limited transmitting, and the synthesis :f

low peak-factor signals and flat spectrum sequences.

In Appendix C, several new designs of analytic null steering

algorithms for linear arrays are described. Two of them, the J-

Technique and the Positive Coefficient Model, allow for placing an

arbitrary number of nulls in arbitrary directions, while maintaining

main beam and sidelobe level control. A method of incorporating these

deterministic null steering techniques into existing adaptive

algorithms is proposed. The resulting Direct Adaptive Nulling SysteT

offers the possibility of significant increases in array performance

at very little cost. This possibility will be investigated in full

detail in Phase II.

A major reason for combining deterministic methods with

existing techniques is that arrays must ordinarily deal with

significant random noise. In these cases, one has no a priori

information about the direction or nature of such unwanted signals.

Thus, in such applications, as well as in cases where advance

knowledge of jammer characteristics is lacking, indirect statist:cal

methods are unavoidable, although their efficiency may be greatly

increased by combining them with analytic approaches.

There exist applications, however, where much is known in

advance about the characteristics of both the desired signals and t-le

-2 7-
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undesired noise. This is especially true where one has contrcl of the oi

generation of these waveforms. Thus, in the case where one system is

producing both offensive signals (i.e., searching for and homing in on

targets) and defensive signals (i.e., identifying and tracking

incoming weapons), so that mutual interference becomes a predominant

concern, the problem is almost exclusively deterministic in nature. In

such cases, robust and computationally efficient analytic algorithms 

controlling both the individual performance of the offensive and

defensive signals and the interactive jamming between them are crucial

to mission success. The application to such cases of the new

deterministic null steering algorithms developed by Prometheus will be

analyzed in detail during Phase II.

A related problem is the determination of optimal shading

coefficients for a conformal array. As is well known, using various

measures of optimality, this is a computational problem of order n2,

where n is the number of array elements. Thus, the computational load

will be reduced by a factor of 8 if the coefficients may be restricted

to be real. Circumstances where this occurs are described in Appendix

D. A different method of improving computational efficiency, namely a

convex programming approach, will be an important focus of our Phase

II research.

Another interesting application of our concepts is to notch I
filters. Appendix E describes a nearly ideal notch filter employing

coefficients of equal magnitude. Applications to the design of

transmitting antenna arrays are discussed briefly. The construction

is based upon earlier wor6 of the author involving polynomials with
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restricted coefficients. The fundamental idea employed in Appendix E

to construct a notch filter with a single notch may be combined with

the concept of an n-nomial [53 to produce nearly ideal filters with

multiple notches. Furthermcre, as noted elsewhere, zero coefficients

do not affect the dynamic range. so that these multi-notch ilters

maintain the property of having unit dynamic range. Details of t!% I,

new construction and experimental results employing it will be

developed during Phase II.

In addition to their use in the construction of notch filters.

Byrnes Polynomials [6,14,15) have potential applications to the design

of peak power limited transmitters and the synthesis of low peak-

factor signals and flat spectrum sequences. In transmitter design, for

S.

example, one is often faced with a peak power constraint. Under

various conditions, the transmitter output may be modeled as a .5

polynomial. Here the maximum modulus of the polynomial on the unit

circle represents the peak power, while the L2  norm of the polynomial

is the average power. Thus the classical engineering problem of

minimizing the peak to average ratio becomes the mathematical question

of minimizing the ratio of the sup norm to the L2 norm of a polynomial

on the unit circle.

In the trivial case where one frequency is to be transmitted

(ie, the polynomial can be a mononomial), clearly the ideal value

for the peak to average ratio is achieved, and the polynomial 1s

indeed of constant modulus on the unit circle. For the more

interesting and practical case of transmitting many linearl-j

increasing frequencies, it is usuallg desired to transmit eac.

-29-
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frequency at the same power, which should be as large as possible. As

the power of each individual frequency is represented by the modulus

of the corresponding coefficient, the mathematical question naturally

arises of how close to constant the modulus of a polynomial with

equimodular coefficients can be on the unit circle.

More precisely, if n pure tones are transmitted wit"

frequencies of the form fm+kd, where fm is the fundamental frequency

and 8 is the increment, then the waveform is

x(t) = . Am cos [21-r(f,+ka)t +e]

=IS(t)I cos[arg S(t) + 21- t.

Here, S(t) Ame'1 eL'-m*,ek= phase and Ak= power in k*h tone.
k=o

As mentioned, almost always all frequencies are transmitted

with equal power, so that Ak.I. To minimize the peak power of x(t),

the maximum (over t) of lx(t)I must be minimized (over 0.). It is

relatively straightforward to see that the exact problem is to obtain

min max1  e I, C'A

'19k t O

a job which is performed by the Byrnes polynomials [1 in nearly ideal i.-

fashion.

The adaptatial of such polynomials to these problems is

important, since in applications like the Link 11 Communications .1.
* .1

System, the average power is usually maintained at one tenth or less

of its theoretical ideal to prevent transmitter overload. Employing

concepts such as those described above should yield a significant

reduction in the peak-to-average ratio, thereby allowing a large

-30-
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increase in average power, hence a more efficient communi:atizns

sAstem. These considerations also show that the Byrnes constructicn

has direct application to the synthesis of low peak-factor signals.

Now consider the problem of designing a flat spectrum sequence

Ca. , as defined on page 10. These sequences have direct use in such

diverse areas as concert hall acoustics, the quieting of an object's

response to radar and active sonar, and speech synthesis. Schroeder

[21) presents many of the fascinating details of these applications.

As we observed earlier, the DFT can be thought o as the

values of the polynomial P

P(z)= 7- a .Z K,

where n is the period, at the n-th roots of unity. The Byrnes

construction [6) yields polynomials whose spectra are essentially flat

at almost all points of the unit circle, not just at the roots of

unity. Furthermore, they have the additional property that all of the

terms of the original sequence, laj, have the same magnitude.

Applications of these concepts to notch filtering and communications

are discussed elsewhere in this report.

In our final application, we have begun to exploit the great

success of J.P. Kahane [14) in solving the Littlewood conjecture. As

we note in part II, Kahane showed that there indeed exist polynomials

with unimodular coefficients whose modulus is essentially constant on

the unit circle. It is our opinion that the breakthrough of Kahane

was due to the ingenious use of randomness and probability in his
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construction. Behind his and previous approaches was the idea of

Gauss, viz. the aGa.ss Sums.' To put it quite simply, we feel that

Littlewood's problem was vanquished by the "equation"

Kahane = Gauss Sums + Probabilistic Choices.

Our idea is to exploit the Kahane breakthrough by developing

methods to judiciously make the mProbabilistic Choices" referred to

above, and thereby convert Kahane's mrandomizedm proof into a

constructive one. This would not only result in excitina new

mathematics, but would alsc be directly applicable to several

important engineering problems. In addition to the areas cf peak

power limited transmitting and flat spectrum sequences discussed

earlier, such polynomials would find immediate use in the design of

reflection phase gratings, and therefore be employable in solving

concert hall acoustics problems and in quieting the response of an

object to sonar or radar. Another potential application of this

@educated randomnessm construction is in the synthesis of multielement

omnidirectional beam patterns.

In the concert hall acoustics application of reflection phase

gratings, it is desired to design the ceiling so that sound is widelg

scattered except in the specular direction. As described earlier and

in Appendix E, in the context of notch filter design, the Byrnes

polynomials [6] place a null in any given direction while the

coefficients maintain their other desirable properties of being both

flat spectrum and low correlation sequences. Thus, they might even be

preferable to the Kahane polynomials in this context. This also

appears to apply to monostatic radar, where the null would be placed

-32- S
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in the direction of the radar. For bistatic radar, on the other hand,

the receiver direction is often unknown. Thus, if a construction

based upon the Kahane polynomials could be employed, radar enerQ

would be reflected equally in all directions, thereny raducing *:e

probability that there would be enough energy reflected in any

particular direction to enable detection. A possible undersea

application of these ideas occurs in the design of baffles used to

quiet machinery noise from submarines, in an attempt to prevent the

noise from escaping the hull. Note that our constructions would

complement the coatings that are already in use, or being designed, to

attack these problems, since these coatings provide uniform

attenuation. Furthermore surface structures based upon the Byrnes

polynomials would have the highly diffusing property over a large set

of frequencies. It is not yet clear whether the Kahane polynomials

also yield this important property. The design of two-dimensional

arrays so that energy may be scattered with equal intensity over the

solid angle is also of considerable interest. It appears that a

straightforward product formulation gives the desired results for the

Byrnes polynomials, but the situation is not so clear for Kahane

poljnomials. Our P.)ase II research will focus upon the many

fascinating questions raised in this final paragraph.
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1. Bgrnes, J.S., The Minimax Optimization of an Antenna Arra2
Employing Restricted Coefficients, Scientia (to appear, 1987).

2. Newman, D.J. and Byrnes, J.S., The L 4 Norm of a Polynomial with
Coefficients ±1, (submitted).

3. Byrnes, J.S. and Newman, D.J., Null Steering Employing Polynomials
with Restricted Coefficients, (submitted).

4. Burnes, J.S., A Notched Filter Employing Coefficients of Equal
Magnitude, (submitted).
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3. Stephen Boyd, Senior Scientist. Ph.D. (Electrical Engineering),
University of California at Berkeley, 1985.

4. Andre Giroux, Senior Scientist. Ph.D. (Mathematics), University of
Montreal, 1973.

5. Martin Goldstein, Senior Scientist. Ph.D. (Mathematics), University
of Wisconsin, 1969.
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A-III. INTERACTIONS

I. Invited Papers Presented by J. S. Byrnes.

-. Department of Electrical Engineering, Stanford University.
7 October, 1986.

2 Naval Research Laboratory, Washington, DC, 10 Noveriar
1926.

3. Naval Underwater Systems Center, New London, C-.. 28
January 1987.

II. Upcoming Invited Lectures on this Work, by J. S. Byrnes.

!. Department of Mathematics, University of Maryland, April,
1987.

2. NATO Advanced Study Institute on EM Modeling ard
Measurements for Analysis and Synthesis, Tuscany, Italy.
August, 1987.

3. XXIInd General Assembly of the International Union of Rad: %

Science, Tel Aviv, Israel, September, 1987. "%

III. Consultations on Potential Air Force and Navy Applications of
Prometheus Ideas.

1. Lecture presented by Donald J. Newman at Raytheon Equipment
Division, Wayland, MA, 26 September 1986. Also, Newman and
Byrnes of Prometheus consulted with Duane Matthiesen, Hert .
Groginsky, Leon Wardle, and Fred Daum of Raytheon, Hans
Steyskal and John K. (Jay) Schindler of RADC - Hanscomb, Len
Smith of MITRE, and Richard Turyn of GTE - Natick.

2. Stanford University, 7 October 1986. Byrnes and Bcy"
consulted with Professor Bernard Widrow.

3. Naval Research Laboratory, 10 November 1986. Byrnes
consulted with Emanuel Vegh, Paul Crepeau, Frank Kretschmer,
Karl Gerlach, J. Rao, Jack Ahern, S.N. Samaddar, and Aller
Miller.

4. Various Locations, 15-17 December 1986. See attached Trig L
Report.

5. Naval Underwater Systems Center, 28 January 1987. Byrnes
consulted with Roger Dwyer, John Fay, Kurt Hafner, Huck Quazi.
Ed Eby, and Cliff Carter.

A-2

%.



Prometheus Inc.
103 MANSFIELD STREET, SHARON, MA 02067 617.784-2355 1-800-225-5040

TRIP REPORT
In connection with contract # F49620-86-C-00S8
NULL STEERING APPLICATIONS OF POLYNOMIALS

WITH UNIMODULAR COEFFICIENTS
James S. BWrnes, Principal Investigator

A Phase I SBIR Contract with the
Air Force Office of Scientific Research

Dr. Arje Nachman, Program Manager

Dates of Trip: 15-17 December, 1986 S
Prometheus Personnel: James S. Byrnes, Principal Investigator

Donald J. Newman, Principal Scientist-
Stephen Boyd, Senior Scientist

Installations Visited:
1. Rome Air Development Centers Hanscomb Air Force Base, MA (Byrnes,
Newman, Boyd).
2. MIT Lincoln Labs, Bedford, MA (Byrnes, Newman, Boyd).
3. Raytheon Equipment Division, Wayland, MA (Byrnes, Newman).
4. MITRE, Bedford, MA (Byrnes, Newman).
5. Raytheon Submarine Signal Division, Portsmouth, RI (Byrnes).

Purposes of trip: To discuss new results obtained by Prometheus under
the above contracts to learn of possible applications of these results
at the above installations, and to obtain suggestions for directions
of future research.

Personnel Visited"
1. RADC: Dr. Robert Mailloux (primary point of contact), Dr. Hans
Steyskal (617-377-2052), Dr. Robert Shore, Mr. Jeff Herd.
2. MIT Lincoln Labs: Dr. Charles Rader (617-863-5500, x2574).
3. Raytheon-Wayland: Dr. Eli Brookner (primary point of contact,
617-356-2721, x5636), Dr. James Mullen, Mr. Fred Daum.
4. MITRE: Dr. Dean Carhoun (primary point of contact, 617-271-2518),
Dr. Irving Reed, Dr. Warren Wilson (617-271-3913), Dr. John Cozzens
(617-271-3484), Mr. Len Smith (617-271-3905), several others.
5. Raytheon-Portsmouth: Dr. Dave DeFanti (primary point of contact,
401-647-6809, x4411), Dr. Stan Chamberlain, Dr. Roger Pridham, Mr. Al
Gerheim.

Results: Most of the above individuals found the Prometheus work very
interesting, and had many suggestions for applications and follow-on
work. These suggestions have been incorporated into our proposal
OPolynomialswith Restricted Coefficients and their Applications," and
will form an integral part of our Phase II proposal.

7tJms§r nes, President
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APPEN n TX 2

The L* Norm of a Polynomial With Coefficients +1

Donald J. Newman and J. S. Byrnes
Prometheus Inc.

103 Mansfield Street
Sharon, MA 02067

A classic unresolved question regarding n-th degree

polynomials with coefficients +1 is whether the maximum modulus of

such a polynomial on the unit circle can be n 1 a+o(n 1 1). As shown

by Kahane C23, if complex coefficients of modulus 1 are allowed then

not only is it possible for this property to be satisfied, but the

minimum modulus can be nl1 +o(n 1 2 ) as well. Specifically, Kahane

proved that for any n there is a polynomial of degree n with

coefficients of modulus one whose modulus everywhere on the unit

circle is n 1 =+O(n=' 1 log n). p

Erdos C13 had conjectured the existence of a c>O such that,

for any polynomial P of the types described, IIPtI>C14c)nla. Clearly

the Kahane result disproved this conjecture for the modulus 1 case,

but the situation for coefficients ±1 remains open. Employing an

elegant construction Shapiro [4,33 demonstrated the achievability of

the order of magnitude n1", but the maximum modulus of the Shapiro

polynomials is (2n) ' ". Motivated by these considerations we examine

the L* norm of such polynomials. As one might expect, this leads to

several interesting combinatorial questions. We provide answers to

some of these, and conclude with a refined version of the Erdos

conjecture.

B-i

2: i



Throughout the paper n will be a positive integer, P(z) will

denote a polynomial of degree n-1 with coefficients +1, and z will

lie on the unit circle. Thus,

n-1

P(z) F'Z, each £ =1 or -I ze , 0<l.
k-k

All integrals will be over 64[0,i]. We begin with a Lemma.

II~l n ,J t P ", c
Lem-ma P ~ L

= constant terms.

Since a constant term occurs in this product if and only if j+k=l+m,

the result follows immedliately.

Of interest is the expected value E( Il!,- it the

coefficients are chosen at random.

Theorem I E(11P]Iok)=2nli'n.

Proof Clearly if exactly 3 of the indices j,k,l,m are

-,,A,2l)- < <J

k (-.-o :0
identfcal, sor t at lat3o hmaedferms., thnjC.

For each of the n(n-)/2 pairs of integers p,q, <p<q<n,

B-2
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there are 4 terms appearing in (I), namely £ 6£ , I EL

, t t . The only other terms in (1) are C , p<n. Since all

of these terms equal 1,

completing the proof of Theorem 1.

* We now observe the improvement that is achieved when this

random choice is replaced by the Shapiro coefficients. 
%

Theorem 2 If n=264 and P(z) is the Shapiro polynomial of

degree n-1, then

IIPl ( n

Proof Shapiro's polynomials are defined, together with his

auxiliary polynomials Q, by the recurrence formulas

PM(z)=QM(z)=l,

PD..(Z)=P.(z)+z Q'(z), (2)

q,..=(z)=P.(Z) z = Q.(Z), m>O.
'4'

As a result, 2 . (
so that, as is well known,

-P + (3)

Now (2) and (3) yield

(4)
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Next we observe that zQ P is composed sclely of %

frequencies which are positive powers of z, so that it can be thought

of as Q P, where P is the "reversed* polynomial of P . Thus V

Since f-QP is analytic and 0 at the origin,

so that e(f!

Altogether then, we have

zl - ,+ + "-  "n/1 ,

- t .3 f Ie

z M tn IF,",I.

The remainder of the proof is now simply induction on k. The

result is obviously true for k-Q, since P (z)=. Furthermore, from

(5) and the inductive hypothesis

k

)ft
it follows that

1 t&3 k ~ eir

This completes the proof of Theorem 2.

Note that Theorem 2 implies that the L" norm of the n-l-,

degree Shapiro polynomial is asymptotic to V- times the fourth root

of 4/3-1.17457aW. Based upon extensive numerical evidence employing

the Bose-Einstein statistics methodology of Statistical Mechanics, we

conjecture that the Shapiro polynomials do not give the minimur, L- I

norm among all polynomials of the same degree with coefficients +I,

but that this minimum L* norm is asymptotically AT times the fourth
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root of 6/5Wl.04664vrW. Observe that the truth of this conjecture

would imply that of the Erdos conjecture mentioned earlier, with

c=(6/5) _l.4664"
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ABSTRACT

Several new designs of analytic null steering algorithms for

linear arrays are described. Two of them, the i-Technique and the S.

Positive Coefficient Model, allow for placing an arbitrary number of

nulls in arbitrary directions, while maintaining main beam and

sidelobe level control. A method of incorporating these deterministic

null steering techniques into existing adaptive algorithms is

proposed. The resulting Direct Adaptive Nulling System offers the

possibility of significant increases in array performance at very
A
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Null Steering Emplaying Polynomials with Restricted Coefficients

J. S. Byrnes (Sr. Member, IEEE) and Donald J. Newman

Prometheus Inc.

I. INTRODUCTION

In view of the well-known one-to-one correspondence between

polynomials and linear arrays with commensurable separations between

elements, as described in detail by Schelkunoff [93, null steering

questions involving such arrays translate directly into mathematizal

problems regarding the locations of zeroes, on the unit circle, of

polynomials. Furthermore, physical and electronic limitations placed

upon the array elements, such as a maximum allowable power or a bound

on the dynamic range, imply various restrictions upon the coefficients

of these polynomials. Here, dynamic range refers to the ratio of the

magnitudes of the largest to the smallest weight, or shading

coefficient, of the array. Thus, the theoretically challenging

question of the placement of zeroes at specified points on the unit

circle, of polynomials whose coefficients satisfy certain

restrictions, is also a problem of strong practical interest to

antenna designers.

The design of filters is another application in which such

questions arise. For example, the classical mathematical problem in

notch filter design is to produce a polynomial whose magnitude on the

unit circle is close to constant in almost all directions, but which

has a small number (le, 1, 2 or 3) of deep nulls (Onotchesa) at

specified points. In [5 ] the construction of [4] is employed to

produce such a polynomial having one null, with the added feature that

7..
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all coefficients have the same magnitude. Hence, the dynamic range :f

t'he notch filters presented in r53 is one.

This paper addresses the null steering applicaticn describec

in the first paragraph. There are several factors which must be

considered in the design of null steering algorithms. In addition .c

the basic problem of placing the nulls the main beam must be steered.

the width of the main lobe controlled. and the sidelobe levels must be

sufficiently below that of the main lobe. Control of the sidelobe

level is usually achieved by attenuating the shading coefficients as

one moves away from the center of the array. Often these attenuation

factors (Chebyshev, Taylor, etc.) are chosen in advance, and may not

be easily altered once the array is in place. This leads directly to

a beautiful mathematical question, similar to the peak-factor problem

in engineering attacked by Boyd E2], Schroeder [10] and others:

Given the magnitude of the coefficients of a polynomial P, a

finite subset S of the unit circle C, and a point p<C distinct

from those in S, choose the phases of these coefficients so

that P(z)=O for all z(S, the maximum on C of IP(z)l occurs at

z=p, and the maximum of IP(z)! on a subset of C excluding an

appropriate interval (the beamwidth) around p is as small as

possible.

We consider various sub~roblems in this paper. Research on tl-.e

general question is continuing.

II. DIRECT ADAPTIVE NULLING

Currently the most idely used class of null steering methcds

is known as adaptive null;-g ',3,6,7,8,123. Adaptive arrays have
S

C-3 '
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developed over the past twentg-five years as the preferred metho of

reducing the performance deterioration in signal recepticn systems

which is inevitably caused by uncesired noise enterimg the sys-em.

Sources for this noise include multipath affects, electroni:

countermeasures, clutter scatterer returns, antenna location errors,

array element thermal noise, etc. The proliferation of such ncise

sources has greatly increased the importance of interference

suppression in essentially all applications. Although such adaptive

methods as the Widrow least mean squares (LMS) and Howells-Applebaum

sidelobe canceller have achieved considerable success, diffi-ult

problems remain. Foremost among these are poor transient response.

signal cancellation resulting from interaction between signal and

interference, excessive computation time, and sidelobe degradaticn

when jammer cancellation is attempted. A secondary problem is the

lack of control in adaptive algorithms of the dynamic range of t~e

weights.

These methods are indirect adaptive schemes; they do nco

explicitly form an estimate of the directions of arrival c'

interfering sources or explicitly steer nulls in those directions. A

scheme in which these two tasks are actually performed can be called a

direct adaptive algorithm. Thusone approach to the solution of suc V

problems is to complement an appropriate indirect adaptive algorithm

with the analytic null steering methods described herein. In this way,

the actual noise suppression achieved can be enhanced beyond that

which would be available through either adaptive or analytic methods

exclusively.

C-4



The irst steo in this Direct Adaptive Nulling Sustem' oul'

be to employ available techniques, such as the maximum entrozy et .

spectral estimation, a soatial discrete Fourier transformi o e.9 arra-

outputs. a search in angle with an auxiliary beam [3., or -te first

loop of the indirect adaptive algorithm, to estimate noise and signal

directions. Our analytic methods would then be applied to ohone

shading coefficients which place nulls in the estimated -oioe

directions, while maintaining other desired prooerties of tre e

pattern. Feeding these coefficients back into the adaptive portion :r

the algorithm then results in reestimates of the directions af t .e

noises and signal, which are used in turn by the analytic portion to

Improve the choice of the shading coefficients. This process

continues until convergence is achieved. Furthermore, each execution

4or the analytic step is essentially instantaneous, as the evaluation

of the coefficients given the required directions is simply a matter

of plugging the data into elementary formulas.

We expect such a direct scheme to outperform the indirect

methods in cases where noise or interference is highlj correlated wit-

the desired signal, such as occurs with multipaths or intelligen:

jamming. Indirect schemes tend to perform Doorlw in t ese

environments. In addition.)a direct scheme allows much greater use 3f

prior knowledge, such as known jammer locations or known multipat .s.

Thus, this interactive direct method offers the possibility D.

significant increases in performance at very little cost.

III. COEFFICIENTS OF EQUAL MAGNITUDE

An important subproblem of the general mathematical questicm

C-5
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described earlier is the case when all of the coefficients o0 t e

oclynomial have the same magnitude, wrhich, by ncrali:aticn, 'Je 7a-

assume to oe one. Such phase-only shading occurs, for exampo e. ; t, V

design of transmitting arrays which are omnidirecticnal except fzr

specified nulls. These features are crucial in certain comnmuni-atics

areas, where it is desired to null out listeners in known directions

while, at the same time, for maximum efficiency, all antenna elements

are broadcasting at full power. Also, in order to minimize the

relative size of the quantisation steps in a gradient algor-t.;M such

as LMS, the coefficient magnitudes should be kept as close as gossi

to unity [7, p. 153]. Note that this nequimagnitude" property of th _

coefficients precludes the use of attenuators, with the concomitant

savings in electronic hardware.

The most elementary example of the above is the unshaded arrau

- all coefficients are 1. In spite of its simplicity, this uniform

array is of practical importance. Observe that in this case the

zeroes of the polynomial are almost uniformly spaced around the unit

circle, occurring at all of the n+l -* (where n is the degree of the

polynomial) roots of unity except z=l, where there is a maximum.

At the other extreme is the case wnere an n-fold zero i5

P
required at one point. One application of this, as discussed t j

Stegskal [111, is to broaden a pattern null so as to null an ent:re

sector. Clearly, by a simple change of variables, this zero-point can

be assumed to occur at z=1. It is a straightforward matter to

construct such a polynomial with coefficients of magnitude 1; in fact,

the coefficients may all be taken to be +1. Namely, define P(:) .y:

C-6 .-P
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I

P (z )=-T (-z ) ()

7he mroblem with this construction is that. althoug. ?(z) 0ozvius!

satisfies the required properties, it does so at very higl cost. *

Sice P has degree 2-1, its realization requires an array with 2-

4?.

elements. We show in the following theorem that, for all but F.,--'1 a I

values of n, this situation may be greatlj improvd bu allowing -

rI

cDefficients to be 0 as well as +1. Since this simply means rhat sze.e

array elements are turned off, the dgiiamic rance of the coefficients

is not affected in any meaningful way.

Theorem I Let n'O. Then there is a polynomial P(z), o

degree less than n3, such that P(z) has an n-fold zero at z=I, and all
f .'

the coefficients of P are either +1 or 0.

Proof of Theorem I Given n'110, choose k so that

2w~k" (2).

Since x/ln(x) is increasing for x.:e, and 10/ln(10)>3/ln(2). the choice

k=n: certainly implies (2). Actually, for any 1C., it is clear that

for n large enough we may take k=n2 -1, but such precision is not

necessary here. Now, for each arbitrary subset S of the set of

nonnegativa integers less than k, let

Z Z,/

C-7
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and form the vector

(c ( j), Q 1) "( )/,- . .QC"-x) .l)!n-1) ). S, ,

These are integer vectors, and the largest entry is bounded y :'P

k-I
m < k

nq_--

Thus there are less than k" such vactors. Since there are 2k susat-_ S

S, and so 2k polynomials Q, equation (2) implies that at least tz

distinct polynomials, say 01,() and Qa(z). have the same associated

vector. HenceP(z)=Qt(z)--(z) is the desired polynomial, and Theorem

I is proven.

The idea underlying equation (1), which we call

"encapsulation," may also be employed to construct polynomials wit,

coefficients of magnitude I that place any number of arbitrary nulls.

Namely, we have:

Theorem II For any positive integer n, let Ez.] be an

arbitrary set of (not necessarily distinct) points on the unit circle.

Then there is a polynomial P(z) with coefficients all of magnitude 1.

of degree 2"-1, satisfying P(z.)=O, l .m'n.

Proof of Theorem I As indicated above, we simply produce an

explicit formula for P(z):

P(--)= TT a - ..a )

-0

0-8
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It is straightforward to see that this P(z) satisfies the reqLtir:

properties, establishing Theorem II.

IV. SIMULTANEOUS NULL STEERING AND MAIN BEAM PLACEM1ENT

In the previous section, we attacked the suboroo l f the

general question stated earlier which arises when the dgnamic rance

of the coefficients is required to be one. We now consider arother

aspect of the original problem, perhaps of more interest to antenna

designers. Namely, how can arbitrary nulls be placed whil- 7a
V

maintaining a specified main beam direction and specified ma:iril

sidelobe level? We describe two methods, the 4-Technique and t'e

Positive Coefficient Model, of achieving these goals.

To set the problem, again let n denote any positive integer,

and let S=[z. ) be an arbitrary set of (not necessarily distinct;

points on the unit circle. Also, let za be a point on the unit circl

distinct from those in S. Our methods allow the placement of :erc-s

of a ploynomial P at all points in S, while simultaneously having te

maximum of IPI on the unit circle occur at z=.. Furthermore, te

difference between IP(Zm)1 and the highest sidelobe can be mate

arbitrarily large. As will be seen, the costs encountered

achieving the last property are an increase in the degree of P. an z a

loss of control of the dynamic range of the coefficients.

To proceed with the constructions, define the angles Et?].

Om~n, by z.=exp(iO.), -TIke< IT. As before, a simple change Z-

variables allows us to assume 9a=0, so that ze=I.

Method 1. The A-Technique

n
Let 4=-cot- 2 F cot(tm/2)), z =exp(iA),

C-9'~: %



and defire Q(z) bg

71

A straightforward calculation shows that IQ(Z)l has a relative Ma'imLU M

at z=1. Hence, for c a large enough positive integer,

P(:)=(l+z)--Q(z) will certainly satisfy the required properties. It

can be shown that, in order to guarantee an absolute maximum of IP(z')

at z=l, it is sufficient to take c/, where <=minlej. Of =ourse,

in order to further increase the main lobe level relative to the

sidelobes, it will be necessary to take c larger.

Method II. The Positive Coefficient Model

For each m, 1<m<n, choose the smallest positive integer k,.

such that exp(ikA.) lies in the left half plane, and define P(z) by

C:early P(z) has the necessary zeroes. Furthermore, all of the

coefficients of P are positive, so that the maximum of IP(z)L on t-ie

unit circle obviously occurs at z=1. Once again~it is simple to

further increase the main lobe level relative to the sidelobes b ,

multiplying P(z) by an appropriate positive integer power of l+z.

There are two additional points which can be made about the

Positive Coefficient Model. One is that its electronic implementation

will be greatly simplified as compared to that of arbitrary shading

coefficients, since the positivity eliminates the need for ph.ase

C-10
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shifters. A second is that some control of the dynamic range -- _f

coefficients can be achieved by combining this method wit. the

encapsulation technique discussed earlier, if we again ncre r e -

effects of 0 coefficients.

V. CONCLJS I ('N

Various aspects of a fascinating problem :r classical

mathematical analysis, with direct applications to anterna arra"-

design, have been discussed, and several results obtained. Fremos,

amcng these are two analytic methods for placing an arbitrar2 numer

of nulls in arbitrary directions, while maintaining main bear and

sidelobe level control. A method of incorporating these anal6tic null '

steering techniques into existing adaptive algorithms is proposed.

The resulting Direct Adaptive Nulling System offers the possibility of

significant increases in array performance at very little cost.

C-1 1
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APOEND: X D

The Minimax Optimization of an Antenna Array
Employing Restricted Coefficients

J. S. Byrnes

Prometheus Inc., 103 Mansfield St., Sharon, MA 02067, USA

It is well known that the determination of optimal shading coefficients
for an antenna array, using various measures of optimality, is a computational -*

problem of order n3 , where n is the number of array elements. Consequently,
if it is possible to achieve optimum results by employing real shading
coefficients, so that the effective number of coefficients to calculate is
halved, the computational load can be reduced by a factor of 8. It is shown
by Lewis and Streit (1] that real coefficients do indeed suffice for the
minimax design of a linear antenna array. The purpose of this note is to
prove that a similar result can be achieved, under certain circumstances, for
a conformal array.

To precisely define the problem, assume that there are n elements located
at points (x1, yj. zj). lcJ<n, and a set F of farfield points
u-(cosa, cosN, cosy) cos 22 + cos 23 + cos 2y - 1. Let the shading
vector be w=(w1,w2...)wn), and denote the beam pattern by

n

T(u.w) " w1 exp I F (xjcosa + yjcoso + , (1)

where X Is the wavelength of the design frequency. The minimax optimization
problem can be stated as follows:

(*) Choose shading vector w so as to minimize the quantity Max TOM
subject to the normalization we F

T(uo~w)-l. (2)

Here, uO=(cosao. cos8?. cosyo) Is a fixed farfield point. The
normalization(2) Is intended to force the Maximum Response Axis (MRA) to
occur at the farfield point uO . Consequently u0 should not lie In the set F.

It Is proven herein that In certain cases problem (*) can be solved, with
the same minimum achieved, when the weight vector w is restricted to be real.
Namely, the fbllowing theorem holds:

C-:



TheoremJ. Let F be symmetric with respect to the origin of (x,y,z) space;
that is, ucF if and only if -ucF. Let the positive z-axis be the MRA, and
assume that all zj are integer multiples of X/2. Then the minimum achieved
in solving problem (*), when the weight vector w is restricted to be real, is
equal to the minimum achieved without this restriction.

Proof. Let v-(vl ,v2,... vn) be any (complex, in general) vector r

which solves problem (*), and let vj-r - isj. The proof will be
finished if it can be shown that thi (Veal) ector r-(rlr 2 ,...,rn) also
solves (M). Toward this end, first consider the normal zation constraint
(2). Since the MRA is the positive z-axis,

80 - i/2 and yo - 0.

Combining this with (1) and (2) yields

n
lmT(UoV)m V exp (tg zj) (3)

J-1

so that

n

Srj cos(X, z )- sj sin( izj)- I,
J-1

(4)

r1 sin( z)+ sj Cos .

J-1

However, since all zj are a multiple of ./2, it follows that all terms in
(4) involving sin(2ivj/.) are zero. When combined with (3) this immediately
implies that

,. n

J-1

which means thAt the vector r satisfies the normalization constraint also.
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To see that r satisfies the required minimax property, recall that F is
symmetric with respect to the origin, and apply the method of (1]. Thus.
letting an overbar denote complex conjugate, any weight vector w must satisfy

Max T(u.w) " Max T(-u'w){ " Max IT(u.w)-
ucF ~I ucF I ucF

so that

Max IT(u.Re(w))l - M w + T w)j
ucF ucF

(6)"
Max IT(u ,w)I + Max 1T(u.w) Max TOw)(
ugF ucF ucF

Applying (6) to the optimum vector v yields

Max T(u,r)i . Max T(u.v) •
utF I uF I (7)

'."

However, since v minimizes this maximum among all normalized weight vectors.
and because r satisfies (2), it follows that the inequality in (7) must in
fact be an equation. Thus the real vector r solves problem (*), and the
theorem is proven.

D-3
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We now show that the above method also yields a more general
result for a linear array than that in 11l. Namely, we prove that the
shading coefticients in a minimax optimization problem for a linear
array can be taken to lie along any fixed line L through the origin in
the complex plane, if the normalization condition is altered to require
that the sum of the weights be either of the two fixed complex numbers
of modulus one lying on L. Thus, consider n omnidirectional elements
located at arbitrary fixed positions xW along the x-axis. The minimax,
problem for a linear array steered broadside becomes:

**) Choose the complex weight vector w=(w,w ,...,w,) so as to
minimize the quantity

Max IT(u)I,

'. Illii

subject to the normalization constraint
n

T(O)= w, =1. (8)

In this casethe beam pattern T(u) is

T(u)= w exp(-idk u), with
k:

d T us i n &-'

=e-directional of arrival of a plane wave of wavelength 2, and uis a
small positive number.

As indicated above, Lewis and Streit show that problem (**) has
a solution with a real weight vector w. Our generalization of their
result is as follows:

Theorem 2. Replace the normalization (8) by

T(O)= w,=exp(it). (9)

k:1

Then problem (**) has a solution where all wk are taken along the line
given (in polar coordinates) by -=T.

Proof. The projection of each component wk of any weight vector
w upon the line 0't is given by

exp(it) (cos t Re w,+ sin t Im w),

so that the method employed to obtain (7) yields

Max exp l')(cos t Re w +sin t Im w )exp(-id u)

D-4



<-LMax Imep(-idku + Max exp(-id u)Ma.. wexp(-iduf.

Furthermore, it follows from (9) that

Y exp(i)(cost Re w +sin * Im w )=exp(it) as well.

k-- ik:!I

Now suppose that tVk} is any sequence of weighting coefficients

satisfying this new constrained minimax problem. That is,

Lv =exp(it)
n k

and, for any wsatisfying

Maxi-lt v e:<p(-id u)k Max1Z w exp(-id u)

Then, by the above,

exp(i)(cos 'f Re v + sin " Im v

k
:I

also satisfies the problem, and these coefficients all lie on the line

0=1. This completes the proof of Theorem 2.

Finally, as Lewis and Streit note, under some circumstances a
condition such as T()=O for some point u+* might be a crucial
requirement added to problem (**). They correctly observe that now a
solution with real coefficients need not necessarily exist. However, it
is quite possible that a judicious choice of ' in the above will allow
for the solution of this modified problem to be found. We leave this as
a subject for future research.
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Figure Captions

Figure 1. A graph of 1P(&)I for N=10.
Figure 2. A graph of IP(0)i for N=60.
Figure 3. A graph of 1Q(o)l for N=10.
Figure 4. A graph of 1Q(e)i for N=60.
Figure 5. A graph of 1Q())i for N=60, in dB scale.
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A Notch Filter Employing Coefficients of Equal magnituce

J. S. Byrnes, Senior Member, IEEE
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Abstract

A nearly ideal notch filter, employing coefficients of equal

1 magnitude, is described. Applications to the design of transmitting

antenna arrays are discussed briefly. The construction is based upon

earlier work of the author involving polynomials with restricted

coefficients.

I. INTRODUCTION

The classical mathematical problem in notch filter design is

to produce a polynomial whose magnitude on the unit circle is close to

constant in almost all directions, but which has a small number (i.e.,

1, 2 or 3) of deep nulls (onotcheso) at specified points. Such

filters are applied, for example, to remove spectral lines from

otherwise broadband spectra. In this paper, we produce suct,

polynomials having one null, with the added feature that aMi

coefficients have the same magnitude. For convenience, this magnitude

is assumed to be one. Observe that this Ounimodular" property allows

E=
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the direct application of thest polynomials to the design of

transmitting antenna arrays which are omnidirectional except for I

null. This feature is crucial in certain communications areas, where

it is desired to null out one listener in a known direction while at

the same time, for maximum efficiency, all antenna elements are

broadcasting at full power.

If the polynomial P(z) is of degree n-1, it is clear from the

Parseval Theorem that its L2  norm (i.e., RMS value) is exactly n1 ',

since there are n coefficients each of magnitude 1. Thus, for IP(:)L

.A
to be close to constant on 1z1=1, that constant must be n'". The

question of the existence of such polynomials is a classic one in

mathematical analysis. Its study was apparently initiated by Hardy *:

[11,p.199], and furthered by Littlewooo [8,9], Erdos [53, Newman :%

11,2,3,103 and others. A basic result concerning these problems was

obtained by the author [43, which paved the way for solutions, by

Korner [7] and Kahane [63, of two of the fundamental conjectures in

this area. We modify the construction given in [4) to produce neary

ideals filters with one notch.

II. APPROACH AND RESULTS

Our starting point is the polynomial P, of degree Na-1, given

by

P (4 ) exp (2TTijkN-l)z ' - , -=exp (2T-Ti).

E-3



It is shown in [41 that P() satisfies:

(i) IP(jN-:I4=N for all integers j;

(ii) For any (, N-<2/2, IP(a)I=N E for (< /2, where

I l 1+2f-L.-5 (r7c-1; 9

(iii) min IP(&)1=0(1); and

(iv) lP()L((2 3T7--)N + 0(1) for all e.

Recent numerical evidence suggests that (iv) can be strengthened to:

(iv') IP(e)I<1.3N for all a.

Figures 1 and 2, which show IP(4)1 as a function of 4 for N=163

(i.e., P of degree 99) and N=60 (P of degree 3599), clarify the above

properties. Thus, as N-+, the magnitude of P is asymptotically close to

constant except for the immediate neighborhood of one point. By a

simple change of variables it is clear that this special point can be

taken anywhere on the unit circle.

',

If P() is changed by removing the first N terms, all of whose

coefficients are +1, and then dividing by z", there results

S - exp (2ijkN- ) z -,---.

This Q, which is of degree N -N-1, is the desired modification of P. In

fact, estimates (ii) and (iv') remain true for Q, while in addition
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Figure 1. A graph of IP(4)1 for N=10.
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Figure 2. A graph of IP(&)I for N=60.
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Q(0)=0. Also, it can ne shown that the null width of Q is less than ;

2/N. Figures 3 and 4, which exhibit Q()i as a function of 4 for N=10 V

(Q of degree 89) and N=60 (Q of degree 3539, and figure 5, which

transforms the plot of figure 4 to a dB scale, show that Q is indeed the

nearly ideal notch filter discussed earlier. Once again, it is clear 4

that a change of variables allows the relocation of the notch to any

desired 0.
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