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PHASE I FINAL REPORT

ABSTRACT

Concerning adaptive array and null steering applications of
polynomials with restricted coefficients, the basic mathematical
question to consider in electronic beam steering, with a discrete
array consisting of omni-directional elements spaced at equal
increments along a straight line, is how coefficients of a polynomial
may be chosen in a robust yet computationally efficient manner soO as
to arrive at a desired beam pattern. In numerous applications, these
coefficients are required to satisfy certain restrictions, such as a
bound on their dynamic range. Thus, particularly in null steering, it
is often advantageous, or even necessary, for the shading coefficients
to all have the same magnitude. Basic properties of such polynomials

and their applications toc beamforming are described.
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A. STATEMENT OF WORK

Determine the robustness of the pclynomials with urimodular
coefficients introduced by the principal investigator in 1977.

Determine how to best introduce multiple nulls by employing the thecry
of polynomials with unimodular coefficients.

Develop adaptive array processing algorithms employing the ccncect s°
unimodular shading coefficients.

Determine to what extent coherent variation aof shading coefficients
can be controlled by restricting them tc be unimodular.

Determine methaods of choosing the best averaging process, as describez

in the. Phase 1 Work Plan, for constructing polynomials with the
required properties.

Solve the Littlewood and Erdos conjectures for Fa.

Construct actual polynomials which satisfy the Littlewood conjecture
for G..

Develop a theory of interpolation by polynomials with unimodular
coefficients and determine applications of these ideas tao null
steering and adaptive array processing.

Study the zeroces of these polynomials for both theoretical and applied
purposes.
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B. STATUS OF RESEARCH EFFORT

The fallowing narrative describes the significant accomplish-
ments, praogress tocwards research objectives, new discoverias, and
specific applications of ¢the Phase I research carried out by

Prometheus Inc.

I. INTRODUCTION

The fundamental purpose of our current research 1is to
contribute to a deeper understanding of the properties and
applications of polynomials with restricted coefficients, and in
particular with coefficients of magnitude 1. Such understanding 1is
crucial to the area of array design and to the construction of rcbust,
camputationally efficient adaptive array algcrithms. This regort,

with its appendices, summarizes ocur progress to date.

The basic mathematical question to consider in electronic beam
steering, with a discrete array consisting of omnidirectional elements

spaced at equal increments along a line, is how coefficients of a

polynomial may be chosen so as to arrive at a desired beam pattern.
In numerous applications these coefficients are required to satisfy

certain restrictions, such as a bound on their dynamic range. Here,
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dynamic range réfers to the ratic of the largest to the smalles*

magnitude. Thus, particularly in null steering, it 13 cftsn
N
3 advantageous, or aven necessary, {or the shadirg coefficiznts +to ail

£d

-l

-

3

have the same magni tude.

-

Although the mathematical, statistical, and physical problems
that arise in the consideration of array shading have been stuciez? fcr
roughly half a century, many interesting questions remain. This is
true even for the "simple" case of the discrete line array referrecd o
above. In this case, of course letting n denote the number af
elements, the pattern function G(z) is a polynomial of degree n-1, =z
is a point on the unit circle, and the shading coefficients are just
the n coefficients of this polynomial. An important reason for
performing array shading is to shape the pattern function G so that it
has low sidelobes and small beamwidth. As is well known, both of
these quantities cannot be minimized simultaneously, and the choice of
shading coefficients results in a tradeoff between these two desirable

ends.

Electronic beam steering 1is anaother fundamental purpose of
array shading, and 1t is this application that we address in this
report. In addition to permitting the rotation of the main response
axis of the pattern function, beam steering allows the simultanecus
formation of a number of beams in different directions. In

particular, if sources of i1nterference lie at bearings different from

that of the desired signal, then the signal-to-noise plus intarference

L e AN e N
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ratio (SNIR) may be increased dramatically by directing nulls of the

pattern function toward these interfering sources, in spite cf the
fact that the absolute power of the desired signal is thereby reduéed.
Adaptive techniques have been developed, by which array processing
systems can electronically respond to an unknown interference
environment. However, although the basic adaptive array principles
have been known for scme time, their application has been limited by
hardware constraints and by the lack of sufficiently robust, real-time
algorithms. New approaches to this latter consideration are described

herein.

There are many cases when constraints must be placed upon the
magnitudes of ¢the coefficients of the pattern function. Thus, as
explained by Hudson (131, when coefficients are implemented by
attenuation they must be scaled so that the largest modulus is unity,
since the amplitude gain for the desired transmission, and even the
overall output signal-to-noise ratio (SNR), can be reduced by large
coefficients. In discussing main—-lobe constraints on optimal arrays,
Hudson observes that when a main-lobe null 1s created very large
shading coefficients are formed, resulting in enhanced output of
uncorrelated noise. Hence, size restrictions on the coefficients are

again required.
On the other hand, in a situation such as occurs 1in an

adaptive radar receiver after clutter has decayed due to increasing

range, so that there will be few and widely spaced target echoes of
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minimal power compared toc a steady jamming source, it is necassary b3
constrain the adaptive array so that the shading coefficiantz are
prevented from falling to zero. A similar situation occurs 1in an
adaptive antenna using the least mean square (LMS) algorithm, where
the shading coefficients will decay to zero if either the signal level
falls to @, or if the reference signal is absent for some reascn.
One mathod of controlling this is to substitute the steered gradient
system described by Griffiths for the reference signal LME antenna,

but this has the disadvantage of being very sensitive to errors in the

assumed direction of the desired signal.

As mentioned earlier, another approach to these questions is
to restrict the dynamic range of the shading coefficients. Although
an informal rule of thumb for this range appears to be "2 and everyone
is happy, 1@ and some are happy, 100 and nobody is happy,® a formal
mathematical study of the relevant properties of polynomials, whcse
coefficients are thereby restricted, does not seem to have been
previously undertaken. An important thrust of the research effort
reported herein has been to initiate such a study, and to relate tte
large amount of work that has been accomplished by mathematicians, on
polynomials with restricted coefficients, to the above applications.

These efforts will continue i1n Phase II.

Furthermore, there 1s an intimate relationship between the

engineering questions described above and several areas of classical

mathematical analysis. Foremost among the problems of mutual interest
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concern to thearetical mathematical analysts because of the

is the gquestion of how close to constant the modulus of a polynemial
can be along some curve, typically the unit circle. This is of d=zen

=

fundamental nature of polynomials and the simplicity ard intrinsic
beauty of the question, and it is equally important to engineers
working in such fields as 2y design, adaptive beamforming and null
steering, filter design, peak power limited tranemitting, and tra
design of reflection phase gratings. This report describes cur

research into both aspects of this remarkable intertwining between tre

disciplines of pure mathematics and engineering.
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II. MATHEMATICAL RESULTS

Concerning the purely mathematical aspects of our work, note
that properties of polynomials with restricted coefficients have been
the subject of much fruitful research in twentieth cantury
mathematical alalysis. Of particular interest have been polynomials

with coefficients +1 or complex of modulus one. The study of such

L

functions was apparently initiated by G.H. Hardy (see Zygmund (23,

ety

p.1991), and furthered by J.E. Littlewood, P. Erdos and others.

LA N WP A A

a7

For the purposes of this discussion, it will be convenient to
introduce the notation of Littlewood [17]. Thus, let F. and G. be,

respectively, the class of all polynomials of the farm

n n
f(z)= Z +lz%, giz)= T exp lawi) z'%,
=0 -]
wherelzkl and the a. are arbitrary real constants. Clearly the L2 ncrm
of g is (n+1*L faor all g € G, (and hence for all f€ F.{G.), and the

question "how close can such a g come to satisfying

fge(n+1)2ra =

has long been the object of intense study.

« e e T * e Tu® e
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The first qualitative resul® conc2rning the above cuestizn for

Gn was obtained by G.H. Hardy [23,p.1991, whc demornstrated <he
existence of a positive constant C and a seguence igﬂz ’ IJn € Ga
satisfying )g"(z)ls { n* 2 for all n and z. The identical ra2sult for

Fn was obtained by Shapiro [22] and published by Rudin [1?13.
Littlewocd [ 161 conjectured that there exist positive censtarnts A4 and

P such that, for any n, there is an f€.(53€6.) satisfying
An*”g,f(z)|iBn*’= (An"zg]g(z),iBn”z)

for all =, while Erdas caonjectured [111 that there is a positive
constant C such that for ng2,Hg|L2(1+C)n*’2 for all g€G. (and hence
for all f€F.). Analogous conjectures far the L® norms of g€iG, were
settled in a series of papers by Beller and Newman (L 11, [21, and
£31). Beller and Newman [ 4] also proved the Littlewood conjecture for
polynomials whose coefficients have moduli bounded by 1, after
observing that the proof of this result given by Clunie [(i0@1 depenced
upon an erroneous result of Littlewcod. In 151 KOrner was able +z
modify the results of Byrnes in [&6] to prove the Littlewood corjecture
for Gn., and then Kahane [14] showed that the Erdos conjecture is false

for Gn. These conjectures for F, remain unresolved.

One approach to the Erdos conjecture for polynomials in F, is
to consider their L* norm. Our principal results in this regard are

described in Appendix B. For polynomials in Ga, wea have the following

result:
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Theorem 1.
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w30

Therafore,

that n is even,

v
“_\‘_ '&Ck
"o

o

=(n+1)=

[

=(n+1)=2

<(n+1)2 + 4

{(n+1)=

AT 5

L
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satisfy the required property.

[a) [a)
I Cu@tw® - e-tme = nels T
mi0Q

Aotaiint ol b oL ARAR SRS SIS

For =2ach positive intager n, there is a zesuesnce

)

”
of coefficients ick} such that allled =1 and
k=

n 4
2 cw E‘”°1 de{(n+1)ZF+4(n+1)372,
=0

We show that in fact the Gauss coefficiants,

Toward that and,

note that

(2}
z z;c--Jc-)e‘J°;
JFe °

by Parseval’s Theaorem, assuming for convenience

<+ n Py
et 2| de =(n+1)2+ |5 cmn, &
_)*‘O ™m0

4(n+11372,
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where we have used the facts that

[sin jx/sin x| < 4, and[1/sin x| £ TI/2x for 27x<TI/2.
This completes the proof of Theorem 1.

Another method of constructing polynomials with unimodular
coefficients is to form a suitable weighted average of existing aones.
For example, we may emplaoy a slight variation of the basic

construction in [&] as follows:

For =2ach m, @<i{miINZ-{, and for z=e2Tlie  |et

W=l | zrri(%,f'*(J*‘NJL"‘) j+kW
2

Nt
Pm(2)=Pmi®) = 5 3 e

Clearly, each P. is a polynomial of degree N2-1 with coefficients of
modulus 1. Furthermore, it follows from [&6] that, for a suitable small

positive E (i.e., of order N-2), |P,(9)l is essentially flat for
E - m/N2 ¢ 0 ( 1-E-m/N=

Now define P=(&) bty

N .
P=(©) =Z zm P (),
mz=0

P* is a palynomial of degree N*-1 with coefficients of modulus 1.
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Alsc, by writing

- ¢
oo 2T %— | - iN
Pe(®) = Te AL ——I% y
*Q e L T LRt wmeN e
|I-e

<

and letting
S = -N-*(A+BN+CN2) for B<A<N-1, @<BiN-1, B<C:iN2—1,

it is seen that

Aty « ST
NE.1- I —_—
Pe(®) = NZ e RN caren) Y )

so that |p=(&|= N=,

In addition, the essential flatness af,P'(ss/ in the interval Ezi€<1-€,
where now E is of order N-%, follows as before. However, numerical
evidence suggests that P*( 2-'N-#+) = 0(1), a similar situation to that
which occured with the original poliynomials [61. This being the case,

P* is not quite a Kahane-type polynomial, as we had ariginally hoped.

Note, however, that the above methcd of constructing P=(®¥ can
also be employed ta create new flat spectrum sequences, which are
periodic sequences Ea.xzo with the property that their discrete
Fourier transform (DFT) has a power spectrum consisting of a very

small number (usually 1 or 2) of distinct values. This is because the

DFT can be thought of as the values of the polynomial

_ln_
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Nl
P(z)= ¥ anz™,
0

where n 1is the period, at the n-th roots of unity. Our caonstructicn
yialds polynomials whose spectra are essentially flat at almost all
points of the unit circle, not just at the roots of unity. Observe
that flat spectrum sequences constructed in this manner satisfy the
additional property that all of the terms of the original sequence
have the same magnitude. Applications of these concepts to natch

filtering and communications are discussed elsewhere in this report.

Another method of viewing these questions is in the context of
interpolation problems. As noted earlier, for any P€G., the Parseval
Theorem implies that the L2 narm of P on the unit circle C is
(n+1)*72_, Furthermore, since |P(z)] 2 is expressible as z-"Q(z), where

Q is of deg. ee 2n, there can be, at most, 2n distinct points z. where
[P(z)) = (n+1)272,

Let us call such a set of points an L2 Interpolating Set for P. A

natural question is which, if any, subsets of C consisting of 2n

points can be an L2 interpolating set for some P af the required farm.

In its full generality, this question appears to be quite

difficult. For n=1, it 1is trivial to show that s={a,b}is an L=

Interpolating Set if and only if b=-a. For arbitrary n, observe that

. -y
PLAN P
a0 I
! L

x

L]
P e g
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an
far S ={F“1 to be an L2 Interpolating Set, the coefficients of P
o

nust be chosen so that

Q(z)={(n+l)z = 'ﬁ\.(z—z.‘),
L8}
where ™ is a constant of modulus one. Furthermore, the conefficient of
2™ an the left side of this equation vanishes, so thte same must be
true on the right side. Clearly, this will be a very rare occcurence,
so that most sets will not be L2 Interpolating Sets. In fact, it is
not at all obvious that for n>1, there exist any L2 Interpolating
Sets. Thus far, we are only able to show that if S 1is ¢to be such a

set, its elements cannot be too close to each other. More precisely,

Theorem 2 For any n, there is an E>® such that no S of the

-— et e ate—— =

form
s=ie‘°‘} y with|Ow| < € for 1<k12n,
w\
is an L2 Interpolating Set for any P€Ga.

Proof gf Theorem 2. Assume the contrary. Fix n. Then, for

any E>@, there is a set

‘n
i
=
.‘.‘
gt

an

y withleu|< € for 1g¢k<2n,

S=S(E,n) = iekc‘g

LS A

LR BN S
2

such that S is an L2 Interpolating Set for some P, say
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N
Pe.n(z) = Tag.w =, with all |ag.w}= 1.
X0
a0
Choose a sequence of positive £'s, sagsiug_ , apprcaching Q.
Jl\

a0
For each k, B<{k<n, the sequence {ae.,ky
> -

is bounded, and all terms
1. By the standard method
k at a time, we can find
integers

-
sz%_ , and a set
J=)

of complex numbers all of

33y

of each of these n+l1 sequences have modulus
of choosing a convergent subsequence for cne

a strictly increasing sequence of positive

n

e

modulus 1, such that

zat . ug converges to aw« for every k, 2ikin.
ﬂl,

Since ]Qﬂ,(e”‘ ) =tn+1)172 can't change sign for
3

| €. Jcex 1T,

we can assume, by taking another subsequence if necessary, that either

)P&_s (@*® )| - (n+1)1-2
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is always positive or always negative for
|€, ) <OTT.

Suppose the former (the argument being the same in the latter case:?,

and define

x:o

-

Clearly iPe (z)}_ converges uniformly to Pg(z) on |z|= i,
L %)
3 It

so that |Pa(e*®)|:(n+1)272 tor B<OY2TT.

Since the L2 norm of Pg is (n+1)*72, this is impossible, and the prcof

of Theorem 2 is complete.

Also of interest is the lacatiaons of the zerces of polynomials
with unimodular coefficients. This is directly related to many other
aoroblems discussed herein and has obvious importance in the choice cf
pattern functions for null steering. To quantify this question, let ~r
K

e s 1£j¢n, be the zerces cof P, &€ Gn, normalize P, so that =h=

.t -

- Y,

coefficient of z™ :s 1, and define

o ']
o = max min |1-r,|anc }’,_q = max(.: h-r V7)),

J )

where the maximum is taken over all such Pn(z),
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A €inze any Pi(z)=z-e %" for some real Ks « it iz obvious ttat
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Considering the case n=2,

X . Ll L)

X - o<
P2(2)=22_(|‘“ S '+Y‘3 e ‘)z"'\”;r‘ze

so that

X ..
rara=|rse ' +rae °<‘, =1

Assume that r,>1. Since
K
1=|r.e*% + raze 2rai-rz = r.- 1/r,,

tHhe maximum value for r;:-1/r, (hence the maximum value for r.-1) 13

achieved when r,-1/r,=1, or

In this case,

and 1 - -ra= L._‘_ @— ’
- A >
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30 that

Also,
Faa = Max ((r=1)3+(1-1/r)3),
r

By an elementary calculus argument, it is seen that this maximum

ozcurs for r=({3+1)/2. Thus,

Wwe leave as an open question the behavior of other values of }a and
Fr.a-

The final mathematical question which we examine here is one
which is particularly important for applications. Namely, how rcbust

are polynomials with unimadular coefficients? Thus, expressing P€5,. as

n
P(z) = T Auz%, |AL]=1,
kzo

consider that the coefficients A, are not fixed quantities but may be
written as A, + aw, where a. = a,(w) is a random variable representing

the coefficient error. Hence, the polynomial becomes

n n
Q(z)= Z Anz™ + J an.z™
k:o k=0

Gy U T
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where the final sum represants an error polynomial whose behavior is :f
. .

to be analyzed to determine the robustness of a system employing trese -
. 3
functions. $
o
'
..
Since the class Fn of polynomials of the form )

e

A

N o

P(z)= Zi-lz" \-l"
k=0 ::n'

]
"
is of particular interest, let us begin by examining error gpolynomials N
N
of the form X
0‘
n
f(z) = 3 awz™ ,
k=0

-

where a, are real random variables which we assume ta Se independent
and normally distributed with mean @ and variance 1, to be written

N(@.1). Later, we shall indicate how to generalize our work to the

. ‘qu( r‘r..t{f.ﬁs't '}- e ’-‘I);-‘:l?

case of other random coefficients and, finally, to complex randecm

-

b
._J‘
coefficients. 7
e
Let us rewrite the error polynomial as ;
t(t) = 3 an(wlerns o
k=0 o
where the aw. are independent real random variables which are N(@,1) i:
and t € [@,2T1). We begin by considering the real part of f(t), which + o
S
' Y
is b
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n
2 an(w)zos kt.
k=0

Re f(t:=P(t,w)

In estimating the effects of coefficient inaccuracy 1in
transversal +iltering, Gersho, GSopenath and 0Odligzko [121 analy:ze
similar error polyromials. In comparing various performance measures,
they conclude that the most appropriate measure 1s the maximum
deviation in frequency response magnitude from the desirec values over
a particular frequency band. Their analyses and conclusions apply in

our case and lead us to estimate the rancom variable

M®{w) = sup P(t,w).
tele,2m)
Our methods, which differ from those of Gersho et al, are based on
pioneering work in random polynomials done by Salem and Zygmund ([221].
They yield good estimates without unknown constants and are

computationally simple.

Let us now outline the procedure, beginning with two lemmas

which give estimates of the site of P(t,w).

. %:(ml)

Lemma 1. E(e *®c¢t.w>) y where E represents expectaticn.

Proof. It is well known that for aw~N(0@,1), the moment

: . fa, y'%
generating function of a« 1s given by E(e ) = e .

Then
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! Pl 24, (W) cos kt n *a, (W) cos k¢ o
PR N~ =E(TT e °© ) ~
; k=0 "
. oY
n A cos kT ak(w)
=TI E(e ) ;
k=0 "
14 1 1 T )
n M n X _)_’_(nfl) h
=Tlre ¢ L Tle* = e * . “
k=0 k=0 b
[ 4
where the second line follows by the independence of the aw’s. This "_::
; ccmpletes the procof of Lemma . o
3
Lemma 2. Define M(w) = sup [Pt ,uw)l. :
telo2n)
.
-
Then there exists, for each w, a random set I(w) ¢ [Q,2TI) of Lebesque &
‘ ~
b maasure at least 1/n such that N
\ 3
[Pt w2 Mw)/2 for each te I(w). L.
=
\.b
Proof. By Bernstein’s theorem, ‘
v Y
: 3P - 2
1Pl = sup I___ (t,w)l < nM(w). R
© tefoan) ot N
Since P(t,w)is continuous for each w, there axists toel®,2T1) such ~
o
that M(w) = +P(tg,w). Thus, for fixed w, -
.
.2
P(t,w)=P(ta,w)| < [t-ta] /IP’/L, < Jt=taln Mew).
If M(w) = +P(ta,w), [P(t,w -M(w)| Mw)/2 for [t-ta|n<1/2 (mod 2TT). "
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If Miw) = =3(tg,w), |Plt,w)+M(w)| SM(w)/2 for |t-to|n<1/2

Thus, lP(t,m(zmw)/z for telto—1/2n, teo+1/2n1 mod (ZTT).

and Lemma 2 is proven.

We combine the above lemmas to

estimation.

z
Z (n+))

Theagrem 3. E(am?*2)4TIne

Proof. E(e'-'?v=)=/em-’7~f= dP (w)
A=
2

S/e"“"}”a(fnlt‘w’(t) dt)dP(w),
o

g

where we have used Lemma 2 with

1 e 13 1?0~0

lttu)(t)=
0 otherwise

Therefore,

r

abtain

E(E"pz)ﬁn/—( [e mewrAoz lxu.n(t)dt)dp(u’)

N [+]

ir

&[(fre‘-"-w + e -7~'"*-w]dt)dp(u)
[-]

"

because

-0~

[N R )LVl * N ~.‘\"V\~’\.’\"

(mod 2TT).
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Now use Fubini’s Thearam “o interchange the order of

integration, and apply Lemma 1 to obtain
1

%-(nu) %f (ne1)

ar
E(e"?/’*)gnf Ze dt= 4TIne
)

and we have Theorem 3.

To obtain our estimate cof the size of M, we prove th=
foi.lowing:
-«/o(n+1)
Thecrem 4. P EM>o<] < 4TIne for o > @.
Proof. Let A>@ and use the Markov Inequality and Theorem 3 to
obtain
lz( « A
—(Ne]) = i
«xh R =03

PEM > x] = P(e " 2 > &™) ¢ E(em?r2)/"*"' £ 4TThe

To get the best bound for a given «, we employ elementary calculus to

minimize

h(L) = a2(n+1)/2- Ax/2,

yielding Ae=x/2(n+1). Substitut: ng A< into the right side

yields Thecrem 4.
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We can now obtain similar estimates for

.

N(w) = sup [f(t,w)| , where

telom)

N
flt,w) = F ag(w)e ikt
k=0

and the a. are independent N(Q,1).

~«?/i§(ne1)
Theorem 5. P{N(w) g_x}g 8TTre

n n
Proof. Let Re f = 3 a. cos kt and Im f = $ a. sin kt. We have

kz0 k=0
shown in Theorem 4 that

-<*/16(n+1)
4TIne

[FaN

P{sup IRe f(t,uw)f > /J':Tj

te &)ur)

By applying the analysis in Lemmas 1 and 2 and Theorems 3 and 4 to Im

f, we obtain

~ac /16 (n+1)

P{sup im fet,w)f > o /J"E}g 4TIne
Lelom

Since |f(t,w)|= =[Re fFCt w2 + [Im fit,w)|=, we have

Eal.épﬂ[f(t,w){ = > xzzg(tsupclRe fFltyw) 2 > X2/20Esup [Im £(t,w) = > xx2/2],
k&

élom) el

Therefore,

PN <f < sup |Re flt,w)| > /JE}+ P{sup Im f(t,w) » o /E}_:

Y16 trei) telorr) telom)

~of

TIne 6 ,
_22..
A g O o A SR R RN RNy -."_-.'-. AT AT AT AT A AR T A

LR
U

Wt
‘. o

L4

RN YYYY Y

y;}?{._

e
T
-

g )

LA P

y,‘-{‘-’ﬁf'n,l" l(f.'.

LAY

[3
.

B N

QXA NSSTIR

h 2e i 25 4 W 4
[4

N ]

rﬂ('Ir.'r')rﬂr et

g /l.{"/"- {"

E %



completing the proof of Theorem 5.

We now choose X to obtain suitable expiicit bounds. If we put

o= 4J?n+1)(lcg 8TIn+4 loc log n). then
P{N zaf.} 2 1/(lag n)e,

which improves an estimate in Thecrem ! of [121].

?

[ Ifo = 4J}n+1) log (8TIn=), then

; P[N > -<}5. 1/n.

| In this way, estimates of any desired precision may be cbtained.

When coefficient error 1is due to digital round-off, it is
reasonable to assume that the coefficients aw are uniformly
distributed on the interval [(-1/2,1/21, denoted a.~U{-1/2,1/21. The
following result gives the analogue of Theorem 5 in this case.

Theorem 6. Let

f(t,w) = ?:ak(w)e i+ ¢ (0,2TD,
-
where the a. are independent random variables which are u-1/2,1/721.
Then
—at g (nsl)
P{N 2-’.}5 8TIne

Proaf. A direct calculation shows that

<

s rd e
W

x7v

2 _x
ra, C(eT_e *)/x 5 220

1 5 L=0

* e
£

[

r|_
?ﬂbJ.
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By simple use of the exponential series, we have "
¢ ¥
- N
¢ wk l -

E(EZ-Q.) _ “(7_/,,)‘ . (/) . - % (r/2) ‘ 029_ [(7./7.)]

- -7 / = { = %,
3! 5 o GRS = TR
using 2%k!'! < (2k)' . (2k+1)!
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Finally,
AL ‘/ ,
> = (’), /g) X~ /3 ]
E(a ) < 2 = = . .
e
k:o ' .‘
¥
We now fcllow the steps in the procedure for normal .t
coefficients to obtain similar results to Theorem 5. First consider ;'
4 a2
’
) 'F!
n ‘u
P(t,wi= ¥ ax cos kt and M(w) = sup [P(t,w)]. o

k=0 teﬂgnﬁ

;‘1;."‘9

A Following Lemma 1, we obtain

55

o
-

kR
}, (n+1)

B E(elﬂtt.u’) < e

>

¥ and from Lemma 2,

”1’1".*‘ et

{J
XA

Nl

M (n+1)
E(e ) £ 4TIne %?

l'} »

.
-

As in Theorem 4, we have
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P{H 2«}5 4TIne
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We obtain a similar bound for the maximum o¢ the imaginary part of

.l{'l. ",

fit,w), and we combine these as 1n Theorem 5 to obtain
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N
which completes the proof of Theorem 6.

Remark. We may obtain specific estimates for P{N > &8 in the
uniform case just as we did for the normal case after Theorem 5. For
example, setting

« = 2J(n+1) log (3TIn=?), we obtain P(N > &) £ 1/n.

We are now prepared to give estimates on the error polynomials
obtained from polynomials with unimodular cca2ffici2nts. These error
pclynomials are aof the form

n
fltyw) = X a, @ 2=t
k=0
where the a. are independent complex random variables. In other
words, aw=X.+id. where X« and A. are independent real random
variables. We state the main Theaorem.
Theorem 7. Let N(w)=sup [f(t,w), where
telorm)
n (]
fl(t,w)= 2 adwn(wletxr
k=0
and the aw X +id., are independent random variables. We suppose that {“
“;';-'
the real and imaginary components of each aw, namely . and ﬁL, are :R?
“.q
independent. Then S
-4 (Nt1) N
(a) If <, and A. are N(@,1), P{N >} < 16TIne g

~at /16 (n¢1)
(b) If X and A, are U [-1/2,1/21, P{N >} < 14TTIne

Proof. Let us write

FCt,w) = f,(t,w) + ifa(t,w) , where

n n
Fel(t,w) = T, e*** and fal(t,w) = $ A.atxe,
k=0 ko
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Consider the case where x,, A. are independent N(3,1). If
N.(w) =t§5);3”;ln(t,w>!, i=1,2, then
{If(t,w)[ > o<i¢_: {lf,,(t,w){ T/ Z}U{If.z(t,wll we 2},
since lf[glf;'+,le. Therefore,
P{N(w) _o<f<_ P{Nt(w) >/ 2f+ P[N,(w) >/ 25= ZP{N‘(w) Yo / :}
Applying Theorem 6 yields

I'd "‘1/‘4(h+’)
PIN(w) zx} < 16TIne

)
vhich 1is (a). A similar procedure applied to the uriform case gives
(b}, and we have Theorem 7.

In summary, we have obtained easily calculated and flexible
upper bounds on the maximum deviation caused by random error

polynomials. These bounds offer estimates of the robustness of a

discrete array of omnidirectional elements.
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III. APPLICATIGNS

As mentionad in the in*roduction, applications of pclyncmials
with rastrictad coefficients abound in the engineering wuorld. Thosa
wnich we focus on herein include null steering, adaptive beamfcrming,
naotch filterirng, peak power limited transmitting, and the synthesisz cf
low peak—-factor signals and flat spectrum sequences.

In Appendix C, several new designs of analytic null steering
algorithms for linear arrays are described. Two oaof them, the J-
Technique and the Positive Coefficient Model, allow for placing an
arbitrary number cf nulls in arbitrary directions, while maintaining
main beam and sidelobe level control. A methcd of incorporating these
deterministic null steering techniques into existing adaptive
algorithms is proposed. The resulting Direct Adaptive Nulling System
offers the possibility of significant increases in array perfcrmance
at very 1little cost. This possibility will be investigated in fuil
detail in Phase II.

A major reason for combining deterministic metheods with
existing techniques is that arrays must ordinarily deal with
significant random noise. In these cases, one has no a priori
information about the direction or nature of such unwanted signals.
Thus, in  such applications, as well as 1in cases where advance
knowledge of jammer characteristics is lacking, indirect statist:ical
methods are unavoidable, although their efficiency may be greatly
increased by combining them with analytic approaches.

There exist applications, haowever, where much 1is known in

advance about the characteristics of both the desired signals and *he
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undesired noise. This is especially true where one has contrcl of the
generation of these waveforms. Thus, in the case where one system is
procducing both offensive signals (i.2., searching for and htoming in on
targets) and defensive signals (1.e., icentifying and tracking
incoming weapons), s that mutual interference becomes a pradominant
concern, the problem is almost exclusively deterministic in nature. In
such cases, robust and computationallg efficient analytic algorithkms
contrclling both the individual performance of the offensive and
defensive signals and the interactive jamming between them are crucial
to mission success. The application to such cases of the new
deterministic null steering algorithms develcped by Prometheus will be
analyzed in detail during Phase II.

A related problem is the determination of coptimal shading
coafficients for a confecrmal array. As is well known, wusing various
measures of optimality, this is a computational problem of order n3,
where n is the number of array elements. Thus, the computational ioad
will be reduced by a factor of 8 if the coefficients may be restricted
to be real. Circumstances where this occurs are described in Appendix
D. A different method of improving computational efficiency, namely a
convex praogramming approach, will be an important focus of ocur Phase
Il research.

Another interesting application of our concepts is to notch
filters. Appendix E describes a nearly ideal notch filter employing
coefficients of equal magnitude. Applications ¢to the design of
transmitting antenna arrays are discussed briefly. The construction

is based wupon earlier work of the author 1nvolving polynomials with

_28_
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restricted coefficients. The fundamental idea employed in Appendix E
to construct a notch filter with a single notch may be combined with
the concept of an n—nomial {5] tc produce nearly ideal filters with
multiple notches. Furthermcre, as noted elsewhera, zero coefficients

do not affect the dynamic range, so that these multi-notch “ilters

maintain the property of having unit dynamic range. Details of

(2 4

i3
new construction and experimental results employing it will e
developed during Phase II.

In addition to their use in the construction of naotch filters,
Byrnes Palynomials [6,14,15] have potential applications to the design
of peak power limited transmitters and the synthesis of low peak-
factor signals and flat spectrum sequences. In transmitter design, for
example, one is often faced with a peak power constraint. Under
various conditions, the transmitter output may be modeled as a
polynomial. Here the maximum modulus of the polynomial on the wunit
circle represents the peak power, while the L? norm of the polynomial
is the average power. Thus the classical engineering problem of
minimizing the peak to average ratio becomes the mattematical question
of minimiting the ratio of the sup norm to the L® norm of a polyrnomial
on the unit circle.

In the trivial case where one frequency is to be transmitted
(ie, the polynomial can be a mononomial), clearly the ideal value !

'S

for the peak to average ratio i1s achieved, and the polghomial is

indeed of constant modulus on the unit circle. For the more

interesting and practical case of transmitting many linearly

increasing frequencies, 1 * 13 usually desired to transmit eact
- 29_
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frequency at the same power, which should be as large as passible. As

the power of each individual frequency is represented by the moadulus
‘ of the corresponding'coefficient, the mathematical question naturally
arises ocf how close to constant the modulus of a polynomial with
aquimodular coefficients can be on the unit circla.

More precisely, if n pure tones are transmitted with
frequencies of the form fo+kAd, where fo is the fundamental frequency
and A is the increment, then the waveform is

x(t) = giAk cos [2IT(fa+kA)t +8.1]
=|S(t)| coslarg S{t) + 2IT £,t1.
nei (8 .
Here, S(t) = % A.e ei12rikar g = phase and A.= power in k*" tone.
=0

As me:tioned, almost always all frequencies are transmitted

with equal power, so that AL=1. To minimize the peak power of x(t),

the maximum (over t) of fx(t)l must be minimized (over O,). It is

relatively straightforward to see that the exact problem is to obtain

¢
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a job which is performed by the Byrnes polynomials [(§] in nearly ideal

“
¥
-

w

fashion.

The adaptation of such pclgnomiéls to thesa problems is
important, since in applications like the Link 11 Communications
System, the average power is usually maintained at one tenth or less
of its theoretical ideal to prevent transmitter overload. Employing

concepts such as those described above should yield a significant

N S R

reduction in the peak-to-average ratio, thereby allowing a large
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increase in average power, hkence a more a2fficient communizaticns
system. These consicerations also show that the Byrnes constructicn
has direct application to the synthesis of low peak-factor signals.

Now consider the problem of desigring a flat spectrum saquenca
(ak%:a, as defined on page 13. These sequences have direct use in such
diverse areas as concart hall accustics, the quieting of an object’s
response to radar and active sonar, and speech synthesis. Schroecer
{211 precents many of the fascinating details of these applications.

As we observed earlier, the DFT can be thought of as the
values of the polynomial

P(z)= g:‘akz",
®0
where n is the period, at the n-th roots of unity. The Eyrnes
construction [ 6] yields polynomials whose spectra are essentially €lat
at almost all points of the unit circle, not just at the roots of
unity. Furthermore, they have the additional property that all of the
terms of the original sequence, éaah have the same magnitude.
Applications of these concepts to notch filtering and communications
are discussed elsewhere in this report.

In our final application, we have hegun to exploit the grea:
success of J.P. Kahane [14] in solving the Littlewood conjecture. As
we note in part II, Kahane showed that there indeed exist polynomials
with unimodular coefficients whose moéulus is essentially constant on
the unit circle. It is our opinion that the breakthrough of Kahane

was due to the ingenious use of randomness and probability in his

31
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construction. Behind his and previous approaches was the idea of

Qauss, viz. the *Gauss Sums.*® To put it quite simply, we feel that
Littlewood’s problem was vanquished by the “"equation®
Kahane = Gauss Sums + Probabilistic Choices
Our idea is to exploit the Kahane breakthrough by developing

methods to judiciously make the "Probabilistic Choices" referred to

above, and thereby convert Kahane’s “randomized” proof intc a
constructive one. This would not only result in exciting new
mathematics, but would alsc be directly agpplicable to several

important engineering problems. In addition to the areas cf p=ak
ﬁower limited transmitting and flat spectrum sequences discussed
earlier, such polynomials would find immediate use 1in the design of
reflection phase gratings, and therefore be employable in solving
concert bhall acoustics problems and in quieting the response of an
object to sonar or radar. Another potential application of this
‘educated randomness® construction is in the synthesis of multielement
omnidirectional beam patterns.

In the concert hall acoustics application of reflecticn phase
gratings, it is desired to design the ceiling so that sound is widely
scattered except in the specular direction. As described =2arlier and
in Appendix E, 1in the context of notch filter design, the Byrnes
polynomials [&6] place a null in any given direction while 2
coefficients maintain their other desirable properties of being both
flat spectrum and low correlation sequences. Thus, they might even be

preferable to the Kahane polynomials 1in this context. This also

appears to apply to monostatic radar, where the null would be placed
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in the direction of the radar. Fer bistatic racar, on the other hang,
the receiver diregtion is often unknown. Thus, if a constructior
Dased upon the Kahane polynomials could be employed, radar energy
would be reflected equally in all directions, threreby r=a2ducirg *he
probability that there would be encugh energy reflected in any
particular direction to enable detection. A possible undersea
application of these ideas occurs in the design of baffles usa2d *o
quiet machinery noise from submarines, in an attempt toc prevent the
noise from escaping the hull. Note that our constructions would
complement the coatings that are already in use, or Deing designed, to

attack these problems, since these coatings provide uniform

attenuation. Furthermore surface structures basad upon the BREyrnes

polynomials would have the highly diffusing property over a large set

of frequencies. It is ncot yet clear whether the Kahane polynomials

also yield this important property. The design of two—-dimensicnal

Iy e N

.'NV

arrays so that energy may be scattered with equal intensity over the &;
.f?

solid angle 1is also of considerable interest. It appears that a Y
o

i

straightforward product formulation gives the desired results for the

.
et ot

Pyrnes polynomials, but the situation 1is not so clear for Kahane

polynomials. Qur Pnase II vresearch will focus upon +the many

C o

fascinating questions raised in this final paragraph.
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APPENDIX A
Additional Information

A=-I1. TECHNICAL PUBLICATICNS

1. PByrnes, J.S., The Minimax Optimization of an Antenna Array
Empnloying Restricted Coefficizsnts, Scientia {(to appear, 1987).

2. Newman, D.J. and Pyrnes, J.S., The L* Norm of a Polynomial wi*h
Ccefficients +1, {(submitted).

3. 3Byrnes, J.5. and Newman, D.J., Null Steering Employing Polynomials
with Restricted Coefficients, (submitted).

4. Pyrmnes, J.S., A Notched Filter Emplcying Coefficients of Egual
Magnitude, (submitted).

A-I1. PROFESSIONAL PERSCNNEL

1. James S. Byrnes, Principal Investigator. President. Promethteus Inc.
Ph.D. (Mathematics), Yeshiva University., 1967.

2. Donald J. Newman, Principal Scientist. Ph.D. (Mathematics), Harvarc
University, 1953.

3. Ste2phen Boyd, Senior Scientist. Ph.D. (Electrical Engineering),
University of California at Berkeley, 1985.

4. Andre Giroux, Senior Scientist. Ph.D. (Mathematics), University cf
Montreal, 1973.

5. Martin Goldstein, Senior Scientist. Ph.D. (Mathematics), University
of Wisconsin, 1969.




g " TR m
-h.hl-‘ """“"' be "I0a Y0, JPUNL BN - W AW oW, T ¥ aTa s mrava AT AT T &

"4 “.‘v".i<‘
! LA

vl

A-TII1. INTERACTIONS
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I. Invited Papers Presented by J. 5. Byrnes. .
i. Departmert of Electrical Engineering, Starford University. ;;
7 October, 1986. K
2. Naval Research Latoratory, Washington, DC, 12 Novem:zar
1986.
0\. k)
3. Naval Underwater Systems Center, New London, CT.. 28 b
January 1987. i
N
I1. Upcoming Invited Lectures on this Work, by J. S. Byrnes. =

[ g
- e

1. Departmen* of Mathematics, University of Maryland, April,.

Q‘
1987.
2. NATO Advanced Stucy Instituta aon EM Modeling ard o
Measurements for Analysis and Synthesis, Tuscany, Italy. "
August, 1987. N
~
3. XXIInd General Assembly of the International Union of Rad:»5 ™
Science, Tel Aviv, Israel, September, 1987. -
-
Ay
II1. Consultations on Potential Air Force and Navy Applications of S
Prometheus Ideas. S
t\.
1. Lecture presented by Donald J. Newman at Raytheon Equipmen* k

Division, Wayland, MA, 26 September 1984. Also, Newman anc
Byrnes of Prometheus consulted with Duane Matthiesen, Herb
@roginsky, Leon Wardle, and Fred Daum of Raythteon, Hars
Steyskal and John K. (Jay) Schindler of RADC - Hanscomb, Len
Smith of MITRE, and Richard Turyn of GTE - Natick.

L4

Ky 1'. '/.

.
".f. .
» v

2. Stanford University, 7 October 1986. Pyrnes and Pcy:s f;
consulted with Professor Bernard Widrow. ~
3. Naval Research Laboratory, 13 November 1984. BRyrnes E{
consulted with Emanuel Vegh, Paul Crepeau, Frank Kretschmer, Q
Karl Gerlach, J. Rao, Jack Ahern, S.N. Samaddar, and Alier b_
Miller. g‘
»
4. Various Locat:ons, 15-17 December 1986. See attached Tri: L
Report. <o
5. Naval Underwater Systems Center, 28 January 1987. Pyrnes .
consulted with Roger Dwyer, John Fay, Kurt Hafner, Huck Qua:z:. 5

Ed Eby, and Cliff Carter.
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 Prometheus Inc.

b % S

103 MANSFIELD STREET, SHARON, MA 02067 617-784-2355 1-800-225-5040

} TRIP REPORT
In connection with contract # F496208-84~-C-0@88
NULL STEERING APPLICATIONS OF POLYNOMIALS
WITH UNIMODULAR COEFFICIENTS
James S. Byrnes, Principal Investigator

A Phase I SBIR Contract with the
Air Force Office of Scientific Research
Dr. Ar je Nachman, Program Manager

Dates of Trip: 135-17 December, 1986
Prometheus Personnel: James S. Byrnes, Principal Investigator
Donald J. Neuman, Principal Scientist

Stephen Boyd, Senior Scientist
Installations Visited:

1. Rome Air Development Center, Hanscomb Air Force Base, MA (Byrnes,
Newman, Boyd).

2. MIT Lincoln Labs, Bedford, MA (Byrnes, Newman, Boyd).

3. Raytheon Equipment Division, Wayland, MA (Byrnes, Newman).

4, MITRE, Bedford, MA (Byrnes, Newman).

5. Raytheon Submarine Signal Division, Portsmouth, RI (Byrnes).

Purposes of trip: To discuss new results obtained by Prometheus under
the above contract, to learn of possible applications of these results

at the above installations, and to obtain suggestions for directions
of future resesarch. :

Personnel Visited:

i. RADC: Dr. Robert Mailloux (primary point of contact), Dr. Hans
Steyskal (617-377-2052), Dr. Robert Shore, Mr. Jeff Herd.

2. MIT Lincoln Labs: Dr. Charles Rader (617-863-530Q@, x2574).

3. Raytheon-Wayland: Dr. Eli Brookner (primary point of contact,
617-358-2721, x56346), Dr. James Mullen, Mr. Fred Daum.

4, MITRE: Dr. Dean Carhoun (primary point of contact, 617-271-2518),
Dr. Irving Reed, Dr. Warren Wilson (617-271-3913), Dr. John Cozzens
(617-271-3484), Mr. Len Smith (617-271-3983), several others.

3. Raytheon-Portsmouth: Dr. Dave DeFanti (primary point of contact,

401-847-8008, x4411), Dr. Stan Chamberlain, Dr. Roger Pridham, Mr. Al
Gerhein.

Results: Most of the above individuals found the Prometheus work very
interesting, and had many suggestions for applications and follow-on
work. These suggestions have been incorporated into ocur proposal
*Polynomials ‘with Restricted Coefficients and their Applications,® and
will form an integral part of ocur Phase II proposal.

2 | L Bpmes

Dat James S/ Byrnes, President
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: APPENDIX 2

The L~ Norm of a Polynomial with Coefficients +1.
Daonald J. Newman and J. S. Byrnes
Prometheus Inc.

123 Mansfield Street
Sharon, MA Q2@&7

A classic unresolved question regarding n—-th degree
polynamials with coefficients +1 is whether the maximum modulus of
such a polynomial on the unit circle can be n*72+g(n*72)., As shoun
by Kahane (2], if complex coefficients of modulus 1 are allowed then
not only is it possible for this property to be satisfied, but the
minimum modulus can be n*“/2+g(nt*’2) as well. Specifically, Kahane
proved that for any n there is a polynomial of degree n with
coeftficients of modulus one whose modulus everywhere on the wunit
circle is n3*/2+0(n373®1ag n).

Erdos (11 had conJéctured the existence of a c>@ such that,
for any polynomial P of the types described, ”P”£>(1+c)n*’=. Clearly
the Kahane result disproved this conjacture for the modulus 1 case,
but the situation for coefficients +1 remains open. Employing an
elegant construction Shapiro [4,3] demonstrated the achievability of
the order of magnitude n:*“2, but the maximum modulus of the Shapiro
polynomials is (2n)*“2, Motivated by these considerations we examine
the L~ norm of such polynomials. As one might expect, this leads to
several interesting combinatorial questions. We provide answers to
some of these, and conclude with a refined version of the Erdos

con jecture.
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lie on the unit circle. Thus,

v k
P(z)=2_£kz + each £k=1 or -1, z=e
k=0

, 0<o<1.

All integrals will be over 6€[Q@,1]1. We begin with a Lemma.

Lemma X: £ L&
JfkaL*W\ b st
ij)k'L,h'\(r}

Proof

¥
2ﬂc9)
L“ IP(C‘ 5{9
n-i o (e
J(T edd)(L )(Z
J:O J k‘ :
=‘/;onstant terms.
Since a constant term occurs in this product
the result follows immediately.
Of interest is the expected
coefficients £~ are chosen at random.
¥
Thegrem 1 E(HPH )=2n32-n.
Progf Clearly if exactly 3 of

identical, or if at least 3 of them

‘L )=@. It therefore follows from the lemma th

L M
*
1Pl ) - G E b
N Z (o Pom
or J-"’\ ard A-(

For each of ¢the n(n-1)/2 pairs

" \"\\'-‘-\

)(Zz 3"

m=0

if and only if j+k=l+m,

¢
value EC JIrll >, if the
L:}

the 1indices j,k,1l,m are

are different, then E(Q'i

J
at

(1)

of integers p,q, B<{p<q<n,
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t Throughout the paper n will be a positive integer, P(Z) will N

L

4 ] w)
denote a palynomial of degree n-1 with coefficients +1, and =z will 4

LS

ald

ASARN

»

”
-

5.\ P Ladl

A

.

"l,'..l,lr".' ¢,

4

ARl

I"' 'l' 'l' 'l. ."

PN,

(AL

7t

,"‘f" i

N
N
\f



L] g () .' \J N "'.' 9 “fad (] * 8- - 4 A M S g A .

there are 4 terms appearing in (1), namely 5/,, ??.[:" Ei ’ €2 E/, le 5,; ’
’Eiif%‘%_‘ The only other terms in (1) are £+, @<p<n. Since all

of these terms equal i,

L 4
g |pll L )=n+4(n) (n=1)/2=2n%-n,
!
completing the proof of Theorem 1.
the

J We now observe improvement

random choice is replaced by the Shapiro

Thegrem 2 If n=2% and P(2)
degree n-1, then
¢
IP]| =canz—(-1)%n)/3.
b
Proof Shapiro’s polynomials

auxiliary polynomials Q,
X Pa(z)=Qa(2)=1,
m
Paer(2)=Pa(2)+22 Qa(2),

Ques(Z)=Pa(2) =23 Qm(2),

As a result,
’puon

s0 that, as is well known,

Now (2) and (3)

l Pm', (i)lz =

yield

4

m
2

B-3
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by the recurrence
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that is achieved when this
coefficients.

the Shapiro polynomial of

defined, together with his

formulas

(t),x X ,Qm(i)r - 2(IP~\(%VZ+ /Qm(i)fz)

(3

(4)

3
f

3

£
A

¢
g

oL Rl O A AL 3 P

r'd

.
P

P f.-

A
r_t

LLtmrn) QP!

x

I T L "\,' W

. a e
[ 3
‘.'u'll-

L% %

SRS RRR] ey

Y L '-'

. "4

NN O

]
&

vy -

-
.

o

'
::I




M

Next wve observe that z 0,1 Ei is composed sclely aof

frequencies which are positive powers of 2, so that 1t can be thought

of as Qnﬁ;, where E; is the "reversad®" polynomial aft P . Thus

iR, ey fl0 B )

Since faos'is analytic and @ at the origin,

o 5 R (f5Y) = [R5~ fns)"
JCsf = ¢ (150 s QB2 [l 10T

Altogether then, we have

S0l 2 2™ 2 f1f " (i1 )
= 2" JIR 1Y

The remainder of the proof is now simply inductiaon on k. The

\

(5)

result is obviously true for k=@, since P, (2)=1. Furthermore, from
(5) and the inductive hypothesis

JIp s 2l

3 )

it follows that

¢ k+3 the3 K 2(kr)r2 ke
JP, 1T 2 2EY e (-2)

T s

This completes the proof of Theorem 2.

Note éhat Theorem 2 implies that the L*® norm of the n-ie=*
degree Shapiro polynomial is asymptotic to Vn times the fourth root
of 4/3=1.@7457/n. Based upon extensive numerical evidance emplaying
the Bose-Einstein statistics methodology of Statistical Mechanics, we
conjecture that the Shapiro polynomials do nat give the minimum L*
norm among all polynomials of the same degree with coefficients +1,

but that this minimum L* norm is asymptotically VA times tha fourtn
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root of 6&/9=1.04644yNn. O(bDserve that the truth of this conjecture

' . . L
AN L SIIEAD

would 1imply that of the Erdos conjecture mentioned earlier, with

€=(6/3) 2 7%- 1= 04bb4.
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ABSTRACT

Several new designs of analytic null steering algorithms for
linear arrays are described. Two of them, the A-Technique and the
Positive Coefficient Maodel, allow for placing an arbitrary number of
nulls in arbitrary directions, while maintaining main beam and
sidelobc level control. A method of incorporating these deterministic
null steering techniques 1into existing adaptive algorithms is
proposad. The resulting Direct Adaptive Nulling System offers the
possibility of significant increases in array performance at very

little cost.
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Null Steering Employing Polynomials with Restricted Ccefficients
J. S. Byrnes (Sr. Member, IEEE) and Donald J. Newman
Promethaus Inc.
I. INTRODUCTICN
In view of the well-known one-to-one correspcndence between
polynomials and linear arrays with commensurable separaticns between
elements, as describad in detail by Schelkunoff [?], null steering
questions involving such arrays translate directly into mathemati-cal
problems regarding the locations of zeroes, on the unit circla, of
polynomials. Furthermore, physical and electronic limitations placed
upon the array elements, such as a maximum allowable power or a bSound
on the dynamic range, imply various restrictions upon the coefficients
of these polynomials. Here, dynamic range refers to the ratio of the
magni tudes of the largest to the smallest weight, or shading
coefficient, of <the array. Thus, the theoretically challenging
question of the placement of zeroes at specified pcints on the unit
circle, of polynomials whose coefficients satisfy certain
restrictions, is also a problem of strong practical interest to
antenna designers.

The design of filters 1is another application in which such
questions arise. For example, the classical mathematical problem 1in
notch filter design is to produce a polynomial whose magnitude on the
unit circle is close to constant in almost all directions, but which
has a small number (1e, 1, 2 or 3) of deep nulls ("notches®) at
specified points. In [3] the construction of [4] 1s employed to

produce such a polynocmial having one null, with the added feature tha*
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considered in the design of null steering algorithms. In addition =

the basic problem of placing the nulls the main beam must be stesered,

.;'. A.‘ :

'.
o
K
-,

| <

1 A

f all coefficients have the same magnitude. Hence, the dynamic range cf $

. )

. . . . ‘N

: the notch filters presented in [S51 is one. .

| .‘

I This paper addresses the null steering applicaticn desc-ibec L4

| N

, in the first paragraph. There are several factors which must t= iy

3

3

)

}

»

the width of the main lobe controlled, and the sidelobe levels must be

_I
sufficiently below that of the main lobe. Control of the siZelote :if
level 1is usually achieved by attenuating the shading coefficients as =?
one moves away from the center of the array. Often thesa attenuation j
4
" facters (Chebyshev, Taylor, etc.) are chosen in advance, and may not ;:
be easily altered once the array is in place. This leads directly to !ﬂ
Y >7)
{ a beautiful mathematical question, similar to the peak-factor problem :y
in engineering attacked by Boyd [21], Schroeder [ 181 and others: 1T

[N

) Given the magnitude of the coefficients of a polynomial P, a {-
b i
; finite subset S of the unit circle C, and a point p€C distinct 3.
Y

¢

t from those 1in S, chcose the phases of these coefficients so E:

)
that P(z)=@ for all z€S, the maximum on C of [P¢z)] occurs at hES,

. .
z=p, and the maximum of lP(z)! on a subset of € excluding an ﬁ

appropriate interval (the beamwidth) around p is as small as i

~ v,

+ possible. h

r
) ::
' We consider various subprcblems 1in this paper. Research on tte .
e

L

N

general question is continuing. i

]

I1. DIRECT ADAPTIVE NULLING N
-\
Currently the most widely used class of null steering methcds Cf
~
1s known as adaptive null:ing (:,3,6,7,8,121. Adaptive arrays have A
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developed over the past twenty-five years as the oreferred methscd of

reducing the performance detericration in signal recapticn sg;tems
which is inevitably causad by uncesired noise entering the sys~tem.
Sources for this noise include multipatt affacts, elsctronic
countermeasures, clutter scatterer returns, antenna location errors,
array element thermal noise, etc. The proliferation of such ncise
sources has greatly increased the importance of interference
suppression in essentially all applications. Although such adaprive
methods as the Widrow least mean squares (LMS) and Howells-Applebaum
sidelobe canceller have achieved consideratle success, difficulcs
problems remain. Foremost among these are poor transient respconse,
signal ;ancellation resulting from interaction between signal and
interference, excessive computation time, and sidalobe degradaticn
when _jammer cancellation is attempted. A secondary problem 1is the
lack of control in adaptive algorithms of the dynamic range of t-e
weights.

These methods are indirect adaptive schemes, they do ncrt
explicitly form an estimate of the directions of arrival ct
interfering sources or explicitly steer nulls in those directions. A
scheme in which these two tasks are actually performed can be called a
direct adaptive algorithm. Thus, one approach to the solution of such
problems is to complement an appropriate indirect adaptive algorithm
with the analytic null steering methods described herein. In this way,

the actual noise suppression achieved can be enhanced beyond that

which would be available through either adaptive or analytic methods

exclusively.
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The first sten in this "Direct Adaptive Nulling

.

be to emplcoy available techniques, such as the maximum

spectral estimaticn, a spatial discrete Fourier transfcrm of *-e arr
outputs. a search in angle with an auxiliary beam [ 221, cr <rte §fi-3=
loop of the indirect adaptive algorithm, to estimate noise and siznal
directions. Our analytic methods would then be applied to choose
shading coefficients which place nulls in th2 estimated ~oize
directions, while maintaining other desired progertiess of trhe Ltea~
nsattern. Feecding these coefficients back into the adaptivae pcrtion
the algorithm then results in reestimates of the directions cf th=
noises and signal, which are used in turn by the analytic portion t=
improve the choice of the shading coefficients. This process
continues until convergence is achieved. Furthermore, each executicn
ot the analytic step is essentially instantanecous, as the evaluation
of the coefficients given the required directions is simply a mat+er
of plugging the data into elementary formulas.

We expect such a direct scheme to outperform the indirect
methods in cases where noise or interference is highly correlated wit®
the desired signal, such as occurs with multipaths or intelligent
Jjamming. Indirect schemes tend to perform poorly 1 thase
environments. In addition,a direct scheme allows much greater usae o7
prior knowledge, such as known jammer locations or known multipaths.
Thus, this interactive direct method offers the possibility of
significant increases in performance at very little cost.

I11. COEFFICIENTS OF EQUAL MAGNITUDE

An important subproblem of the general mathematical quest:icn




described earlier 1i1s the case when all of the coefficiznts 04 +ta
oclynomial have theé same magnitude, which, by normalizaticn, we can
assume to ofe ore. Such phase—only shading occurs, for examp.2. 1n Tha
design of transmitting arrays which are cmnidira2cticnal 2xczps for

specified nulls. These features are crucial in certain communizaticrs
areas, where it is desired to null out listeners in known directions
whil=2, at the same time, for maximum efficiency, sl!l1 antenna =zla2ments
are broadcasting at full power. lso, in order to minimizz the
relative size of the quantisation steps in a gradient algoritim  such
as LME, the coefficient magnitudes should be kept as close as
to unity £7, p. 1531. Note that this "equimagnitude” progerty of th=
coefficients precludes the use of attenuators, with the conccmitans
savings in electronic hardware.

The most elementary example of the above is the unshacded array
— all coefficients are 1. In spite of its simplicity, this uniform
array 1is of practical importance. Observe that in this case the
zeroes of the polynomial are almost uniformly spaced around the unit
circle, occurring at all of the n+l=c {where n 15 the degree of the
polynomial) roots of unity except z=1, where there 1s a maximum.

At the other extreme 15 the case where an n—fold cero is
regquired at one point. One application of this, as discussed oy
Steyskal [11], is to broaden a pattern null so as to null an ent:re
sector. Clearly, by a simple change of variables, this cero-point can
be assumed to occur at z=1. It is a straightforward mat:ter to
construct such a polynomial with coefficients of magnitude 1; in fact,

the coefficients may all be taken to be *1. Namely, define P{z! 5y:
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n-—1
. Y m
P(zy=T I(1-22 ) (1)
m=0
problem with this construction is that, although RP{z) ooviousig

oW W W E =

satisfies

required properties, it does so at very high cost.

Since P has degree

elements. We show in

coefficiernts to be @ as well as +1. Since this simply means tha*

-1, its reaiization requires an array with 2°

a

the fellowing theorem that, for all but small
3

situatisn may b2 greatly impravad by allowing

array el2ments are turned off, the dyunamic rance of the coefficients

is not affected in any meaningful wau.

Let n:13d. Then here is a polynomial P(z), o=

n

ss than n3,

such that P(z) has arn n—-fold zero at z=1, and all

coefficients cf P are either +1 or Q.

f Theorem I Given n:1@, choose k so that

is increasing for x:e, and 18/1n(id)>3/1n(2), the choicze

b=n3 certainly

implies (2). Actually, for any ¢€>3, it is clear *that

large encugh we may take k=n=2**%, but such precisicn 13 nct

necassary Now,

for =ach arbitrary subset S gf tha set of

ncnnegativs integers less than k, let

Q== Z.:”\’
me$
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and form the vector

(Q{L1), Q' (L), Q7 (1N/2 ,...2¢"=>2 1)/ (n—-1)").

These are nteger vectors, and the largest entry is bcocunded by

[
k-1 .
7S
me—iLkn, d
In
mzo

h o
@ Py

2
Thus,there are lagss than k™ such vactors. Sinca theres are 2% subsst

0

S, and so 2% polynomials Q, =gquation (2) implies that at least *:
f y

-

Ty P
r ,.'f

distinct polyncmials, say 2,(z) and Qaz{(z). have the same associated

vactor. Hence,P(z)=Q.(z)-0z(z) is the desired poiynomial, and Theorem

I is proven.

R A

AR

-',‘-’_.

The idea underlying equation (1), which we cal:

s

*encapsulation," may also be employed to construct polynomials wit-

o

I..:I

coefficients of magnitude 1 that place any number of arbitrary nulls. ﬁ-
LS

Namely, we have: W

n
Theorem Il For any positive integer n, let Ez,qm be an

[}

.
&

arbitrary set of (not necessarily distinct) points on the unit circle.

P4
Y

g,

Then there is a polynomial P(z) with coefficients all of magnitude 1,

.,

of degree 2"n-1, satisfying P(z.)=@, 1:Zm<n.

3 .l“l
~ v Ny

[

Proof of Theorem Il As i1ndicated above, we simply producs an

et
-

4
e e ey

explicit formula for P(2):
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; It is straightforward to see that this P(z) satisf:es the require: N
~
E properties, establishing Theorem II. t
i IV, SIMULTANEQUS NULL STEERING AND MAIN BEAM PLACEMENT f
; B
3 In the previous sectiona., we attacked the suborcblem 2af th2 :,
. ;
general gquestion stated earlier which arises when the dynamic rancs g
of the coefficients is required to be one. We now consider another
2] :\
t aspect of the original problem, perhaps of mare interest +to antenna Q
“ S
- ol
g designers. Namely, how can arbitrary nulls be placad whils &~
g
maintaining a specified main beam direction and specified mawimum <
sidelobe level? We describe two methods, the $-Technique and t-= a
'
Positive Coefficient Madel, of achieving these goals. ;f
To set the problemy, again let n denote any positive integer, b
-
n .
and let S= 2m1m' be an arbitrary set aof (not necessarily distinct: o,
points on the unit circle. Also, let zg be a point on the unit circles {.
) L
distinct from those in S. Our methods allow the placement of zerc=s o
of a ploynomial P at all paoints in S, while simultaneously having t-=2 ?
. ny
maximum of [Pl on the unit circle occur at z=za. Furthermore, tta h'
|
difference between IP(Z.)I and the highest sidelobe can be mace 3
3
arbitrarily large. As will be seen, the costs encountered N ;
s
achieving the last property are an increase in the degree of P, anc a v
L
loss of control of the dynamic range of the coefficients. N
To proceed with the constructions, define the angles [©.3], -
Q:im<n, by Zm=exp(i®.), -TKO.<I. As before, a simple changs <c* -
]
variables allows us to assume 9a=8, so that za=1. t
e
Method 1. The #-Technique "
n ~
“~
Let d=-cot-*I2 ] cot(8./2)1, z==exp(id), i~
m:| Vo
<
-
A
C-9 .
rd

)

I R I I'




and defire (2} by

3

n
Q(z)=(z—-=*)TT z2-Zm’.
mz|
A straightforward calculatiorn shows that lQ(z)l has a relative maximum
at z=1. Hence, for c a iarga enough pcsitive intagar,
P(z)=(1+2)"Q(z) will certainly satisfy the required rproperties. It

can be shown that, in order to guarantee an absolute maximum of lP(z)l

at z=1, 1t is sufficient to take c=ﬁ/€L where €=min19m1. 0f zourse,
1in order to further increase the main lobe level relative tc the
sidelobes, it will be necessary to take c larger.

Method 1II. The Positive Coefficient Model

0

P

For each m, 1{m<n, choose the smallest positive integer k. .

o

\ .

such that exp(ikm®s) lies in the left half plane, and define P(z) by :ﬁ

LA

LN 4

fl
o

n k k k -
P(z)= T (i"-Zm"‘)(i"—Zk"‘),

m:|

! Clearly P(z) has the necessary zeroes. Furthermore, all of *he

ccefficients of P are positive, so that the maximum of lP(z)l cn t-e
unit <circle obviously occurs at z=1. Once again,it is simple +*o
further increase the main lobe level relative to the sidelobes by
multiplying P(z) by an appropriate positive integer power of 1+:z.
There are two additional points which can be made about the
Positive Coefficient Model. One is that its electronic implementation
will be greatly simplified as compared ta that of arbitrary shading

coefficients, since the positivity eliminates the need for phase
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shifters. A second is that some corntrol of the dynamic range =% :ke
coefficients can be achieved by combining this method witt the
s=ncapsulation technique dJdiscussed e2arlier, if we again izZnersa *hs
gifects of @ coefficients.
V. CONCLUSION

Various aspects of a fascinating probliem :ir classicsl
mathematical analgsis,’ with direct applications to anterna array
design, have been discussed, and saveral results gbtained. Foremos*
amcng these are two analytic methods for placing an arbitrary numkter
of nulls in arbitrary directions, while maintaining main beam and
sidelobe level control. A method of incorporating these analgtic null
steering techniques 1into existing adaptive algorithms is proposed.
The resulting Direct Adaptive Nulling System offers the possibility of

significant increases in array performance at very little cost.
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AFPSPENDIX T

The Minimax Optimization aof an Antanna Array
Employing Restrictad Coefficients

J. S. Eyrnes

Prometheus Inc., 1@3 Mansfisld St., Sraron, MA A22Qs7, UEA

It is wel)l known that the determination of optimal shading coefficients
for an antenna array, using various measures of optimality, is a computational
problem of order nJ, where n is the number of array elements. Consequently,
if it 1s possible to achieve optimum results by employing real shading
coefficients, so that the effective number of coefficients to calculate is
halved, the computational load can be reduced by a factor of 8. It is shown
by Lewis and Streit [1] that real coefficients do indeed suffice for the
minimax design of a linear antenna array. The purpose of this note is to

prove that a similar result can be achieved, under certain circumstances, for
a conformal array.

To precisely define the problem, assume that there are n elements located
at points (xy, yj. z§). 1<J<n, and a _set F of farfield points
us(cosa, CosB, cosy) cosa + cosB + coszy = 1., Let the shading
vector be u-(w1.w2...)wn). and denote the beam pattern by

T(u,w) = Z j exp ( X (xjcon + yjcosB + chosY)) 1)

where A is the wavelength of the design frequency. The minimax optimization
problem can be stated as follows:

(*) Choose shading vector w so as to minimize the quantity Max !T(u u)'
subject to the normalization JdeF

T(ug,w)=1. (2)

Here, ug=(cosag, cosBg, cosyg) is a fixed farfield point. The
normalization (2) is Intended to force the Maximum Response Axis (MRA) to
occur at the farfield point ug. Consequently ug should not 1ie 1in the set F.

It is proven herein that {n certain cases problem (*) can be solved, with

the same minimum achieved, when the weight vector w is restricted to be real.
Namely, the fdllowing theorem holds:
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Theorem ). Let F be symmetric with respect to the origin of (x,y,z) space;
that s, ucF if and only if -ucF. Let the positive z-axis be the MRA, and

assume that all z; are integer multiples of \/2. Then the minimum achieved
in solving problem (*), when the weight vector w is restricted to be real, is
equal to the minimum achieved without this restriction.

Proof. Let v=(vy,vy,...,v,) bDe any (complex, in general) vector
which solves probliem (*), and let vy= ; + 1s4. The proof will be
finished if it can be shown that th2 (real) éector r=(ry.r2,....rp) also
solves (*). Toward this end, first consider the normal]zat1on constraint
(2). Since the MRA is the positive z-axis,

ag = Bg = v/2 and yg = 0.

Combining this with (1) and (2) yields

n
1-T(u°.v)-z vy exp (12§ 2y), (3)
3=
so that
n
JZ} r'.1 cos({l zj>- sj s1n(ilzj>- 1,

(4)

n
< rJ s1n<§1 zj)+ sJ cos(%! zj)- 0.

However, since all z4 are a multiple of /2, it follows that all terms in

(4) involving sin(2« j/x) are zero. When combined with (3) this immediately
implies that

n
T(u,.r) -Z ry exp (1i—' zj) -1, (5)
=1

which means that the vector r satisfies the normalization constraint also.
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To see that r satisfies the required minimax property, recall that F is
symmetric with respect to the origin, and apply the method of [1]. Thus,
letting an overbar denote complex conjugate, any weight vector w must satisfy

Max T(u.i)l = Max r(-u.i)l = Max lT(u.u)],
ucf ucf l ucfF
so that
] 1 -
Max {T(u,Re(w))| = Max |T(u, s w + 5 W)
ucf ‘ ‘ ucf ‘ 2 2 | (8)
< % Max lT(u.u)‘ + % Max |T(u.§)l = Max lT(u.w)l.
ucfF uefF ucF
Applying (6) to the optimum vector v yields
Max [T(u,r)| < Max |T(u,v)| .
ucfF | ucf ] l (N

However, since v minimizes this maximum among all normalized weight vectors,
and because r satisfies (2), it follows that the inequality in (7) must in
fact be an equation. Thus the real vector r solves problem (*), and the
theorem 1S proven.
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We now show that the above method also yields a more general
result for a linear array than that in [1l]. Namely, we prove that the
shading coefficients in a minimax optimization problem for a linear
array can be taken to lie along any fixed line L through the origin in
the complex plane, if the normalization condition is altered to requira
that the sum of the weights be either of the two fixed complex numbers
of modulus one lying on L. Thus, consider n omnidirectional elaments
located at arbitrary fixed positions x, along the x—axis. The minimax
problem for a linear array steered broadside becomes:

(#%#) Choose the complex weight vector w=(u,,ut,...,w") €0 as to
minimize the quantity

Max [T,
u, < luler

subject to the normalization constraint
n
T(@O)= g_wk =1. (8)
2t
In this case, the beam pattern T(u) is

T(u)= 51 w exp(-id, u), with
k¢

dk= UT..;“_, u=sin € ,

© =directional of arrival of a plane wave of wavelength A, and uois a
small positive number.

As indicated above, Lewis and Streit show that problem (##) has
a solution with a real weight vector w. Our generalization of their
result is as follows:

Theorem 2. Replace the normalization (8) by

- n
T®= ] w
kst
Then problem (##) has a solution where all w, are taken along the line
given (in polar coaordinates) by o=Y.

k=exp(i"’). (9)

Proof, The projection of each component wof any weight vector

™
t
hd

5

by Jn I ) w!’v

w upon the line =Y is given by k
exp(iYt) (cos ¥ Re w, + sin ¥ Im w ),
so that the method employed to obtain (7) yields
n
Max X exp(iY) (cos Y Re wk+sin Y Im wk)exp(—i%:u)
dyefufel ke
D-4
. . NS N s e e e B T I R N -','\-'\"-,\_,:.f'..,N..:-'-,,‘_'\_.'.-,\}-."-.,\IN-.\-;.\"\



Pa e bt g sl st i sl S ek el et S AL EARuahe uatehe RARE TR S

A
.

<

LGN A L,

Max ,Z_w exp(-id ul+—-ﬂaxlz w exp(—xd u)'-na ,Z w exp(-1d u
“ e k= “ Tk K )
- ] =

fFurthermore, it follows from (9) that
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n
Z; exp(i¥)(cosY Re w +sin Y Im wk)=exp(i*) as well.
k
k=t
Now suppose that {VJ is any sequence of weighting coefficients
satisfying this new constrained minimax problem. That is,
2 v =exp(iY)
and, for any %“1 satxsfglng
)/ —
- L uk-exp(1f)
J n k. i
¢ Max’{ v exp(—xd u),( Haxli w exp(—xd u)’
v ] k2 ® U by k
Then, by the above,
. n
": {exp(i*)(cos Y Re Y + sin Y Im Y )}
v N
. kzl
L also satisfies the problem, and these coefficients all lie on the line
'J =Y. This completes the proof of Theorem 2.
‘-'
ﬁ Finally, as Lewis and Streit note, under some circumstances a
. condition suctk as T(0)=0 for some point 0#0 might be a crucial
requirement added to prablem (##). They correctly observe that now a
solution with real coefficients need not necessarily exist. However, it
s is quite possible that a judicious choice of ¥ in the above will &allow
. for the solution of this modified problem to be found. We leave this as 3
. a subject for future research. '
N \
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A Notch Filter Employing Coefficients of Equal Magnitude
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Abstract

A nearly 1ideal notch filter, employing coefficients of equal
magnitude, is described. Applications to the design of transmitting
antenna arrays are discussed briefly. The construction is based upon

earlier work of the author involving polyromials with restricted
coefficients.
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Figure Captiaons

Figure t. A graph of lper| for N=18.
Figure 2. A graph of IP(8)] for N=&0.
Figure 3. A graph of 1Q(e)] for N=10.
Figure 4. A graph of [Q(e)| for N=60.
Figure S. A graph of [Q(9)] for N=6@, in dB scale.
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A Notch Filter Employing Coefficients of £qual Magnituce :'
' N
i
J. S. Byrnes, Senior Member, IZEE R
Prometheus Inc. N
~
183 Mansfield Street ;
Sharon, MA 232047 o
. Abstract -
- )
. N
‘ A nearly 1ideal notch filter, employing coefficients of equal =4
D) “
: magnitude, is described. Applications to the design of transmitting -]
3 antenna arrays are discussed briefly. The construction is based upon -
- earlier work of the author involving polynomials with restricted :F
i coefficients. ,
’ "
K I. INTRODUCTION -3
. ;.
- 22
. The classical mathematical problem in notch filter design 1s T
ke . '
. to produce a polynomial whose magnituce on the unit circle is close to $
- constant in almost all directions, but which has a small number (i.e., N
[. i, 2 or J3) of deep nulls ("notches®) at specified points. Such 2
filters are applied, for example, to remove spectral lines from i
v S
s o
M otherwise broadband spectra. In this paper, we produc2 such
2 polynomials having one null, with the added feature that all .
. -
3 coefficients have the same magnitude. For convenience, this magnituce ;
is assumed to be one. Observe that this *"unimodular® property aliows -
1)
r
3 ”
~
E-2 .
) Lg

rxs

-l -

“-g s -y - gy m - LY
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the direct application of thess polynomials to the cesign af
transmitting antenna arrays which are omnidirectional except for 1
null. This feature is crucial in certain communications areas, where
it 1s desired to null out one listener in a known direction while at
the same time, for maximum efficiency, all antenna elements are

broadcasting at full power.

If the polynomial P(z) is of degree n-1, it is clear from the
Parseval Theorem that its L2 norm (i.e., RMS value) is exactly n:-/=,
since there are n coefficients each of magnitude 1. Thus, for IP(:)I
to be close to constant on 121=1, that constant must be n*“2., The
question of the existence of such polynomials is a classic ane 1n
mathematical analysis. Its study was apparently initiated by Hardy
(11,p.1991, and furthered by Littlewocoa [8,91, Erdos [(S1, Newman
(1,2,3,181] and others. A basic result concerning these problems was
obtained by the author (41, which paved the way for solutions, by
Korner [71] and Kahane [61, of two of the fundamental conjectures 1n
this area. We modify the construction given in [41] to produce neariy

ideals filters with one notch.

II. APPROACH AND RESULTS

Our starting point is the polynomial P, of degree N2-1, given

by
N-I  N-
P(6)=£ exp (2TTijkN=t)zd4*=m~  zx=axp (21Tio).
k:0 ;=0
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It is shown in [ 4] that P(®) satisfies:

(i) IP(JN-34=N for all integers j;
(ii) For any €, N-*<€L1/2, lpcarl=n+E tor €<01/2, where
lEl<1+2TT~145(TT€)—1;
(iii) min lP(&)]l=0(1); and

(iv)  lrol<(2+3TT-3)N + 0¢1) for all e.
Recent numerical evidence suggests that (iv) can be strengthenea to:
tiv’) lpe<1.3N for all e.

Figures 1 and 2, which show lpey! as a function of & for N=12
(i.e., P of degree 99) and N=68 (P of degree 3599), clarify the above
praperties. Thus, as N2, the magnitude of P is asymptotically close to
constant except for the immediate neighborhood of one point. By a
simple change of variables,it is clear that this special point can be

taken anywhere on the unit circle.

If P(©) is changed by removing the first N terms, all of uwhose

coefficients are +1, and then dividing by z™, there results

Nl N=y
°‘°’*Z Z exp(2TTi jkN=2)z = ck=12m,
k=i =0
J

This Q, which is of dagree N2-N-1, is the desired modification of P. In

fact, estimates (ii) and (1v’) remain true for Q, while 1in additiocn

f

"8, 'l ll

o

'
s ‘A 2

R T T 2 Ju Y L BRNREE S ] Tl Pl

)

TNV N T VRV a PV w TVSVAN AT IRV Z Y

W Be T I IR I %

P LT "

. A
...... CE T B st et et At at A A p " .t et . » ; S PR RS TOTI TORSCS
f p" ". .\._ -,'!\. PN Y " '.-.'\\ < W \'\'\‘ f\" CACANA -' o IP . AN -' NN AT AENT n ¢ -' v -. Y -‘ Y I'\*

3
3



A AL AL S

AT TR

-

LGA N

A

Ty

<

. W,

C o

Ll Sl Sl

LA Sl O

.- -

LA e

L VL U A

KK

AT A

. »
N...\\\\\\\.'-\\-\f\f\.-\f\i. OO

T

qq-qj-

d<41q1—<11q114ﬂ—

T+
(41 (>
— —
N

@ w <+ o

‘*1ouBtg seauulg

\

v

A graph af IP(é)’ for N=10.

Figure 1.

- e A .

-\-\.

o a0l Y s Y NN - \\'7:..,.



-—— e .\\- v,

p ] y wh A P \xx:.
L 1\1.\55\.” P e e ] AT o -n.! \N&l\-.\u\n%ﬂ.\f.f\fﬁ’...l\;-(r\.\uv e ......-in EC -t \-v- R --..- (AR St g .‘llr

.'h-

A SASAN

4
o

.-J' ..-' -~

LI B B LA AR AR SN SLISLAR M BN BRLANLIL B AN AR SR LAY SRLAL S RLE

RSNy

4

WV

N=60.

[V

2
for

AT W

-
|

XS]

2
thetao
&
g ] Pty -.'_\'.\\'

A graph of
SCTCTTIN

Figure 2.
e

AW,

W

o Q 0 Q o

2 P i

w % < m —
N ﬂocm~m mmcu>m

N
]

s Py

NP—— - o s s AR




Q(2)=@. Alsa, it can pbe shown that tha null width of Q 1is less than
2/N. Figures 3 and 4, which exhibit lae)| as a function of © for N=10
(Q of degree 89) a;d N=6@ (Q@ of degree 3539, and figure 5, which
transforms the plot of figure 4 to a dB scale, show that Q 1s indeed the
nearly ideal notch filter discussed earlier. Once again, it 1s clear

that a change of variables allows the relocation of the notch to any

desired €.
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Figure 3. A graph of 10(9)1 for N=68, in dB scale.
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