-A191 883 REPRESENTRTION AND DECI NECHANISNS ll ARTIFICIAL
INTELL IGENCECU) DUKE UN URHAN NC DEPT OF COMPUTER
SCIENCE O W LDVEL&ND E 28 DEC 87 AROD-. 21213 7-MR

DRRG29 -84-K-08072

G 12/9

UNCLRSSIFIED

=
¥ iA
= 15

10

FFFER

rr{

r
rr

25 1L g

T Uy REST TINS TEST CHART

N3T TNA. BLRFA. CF STANDARTS - QR

ot © |] L
T Tt
R Ry ‘»*»5.,,\?»

9, 4
f\- -.
f\ ALY
s "'\-:.'u’*. «. 5
"a- .l..i.'\..n

y
£
) "

% 4By b.\

>
)

tey b d
By
% L Ao 2113-7-MA

o)

M
N 00 i
S OTIC FILE COPY
' -
26 o Repres . . :
e s epresentation and Decision Mechanisms
o5 . o s .
3 < in Artificial Intelligence
R) I
3_-: < Final Report '
N
B Donald W. Loveland '
i' Alan W. Biermann
:- ,-';chl:j}iéﬁ_F;)r

D » .

o, nTYE GRAkL %
B L ey

e December 28, 1987 PEDTAT

@ Unanneunced O
&= { Justification

Availability Codes

|
By
U.S. Army Research Office !—D?“”b““"“/______
L
I

fAvail“aﬁd]of
Dist Special

g ARO Grant DAAG29-84-K-0072 |

g %/{'/]

Duke University
Durham, NC 27706

N
AR ‘
AL

=y

. 2 s'?&"é'

Approved for Public Releﬁ,se;
Distribution Unlimited.

04 88 1 27 069

CAXNAK)
D N O D Y

p .
LA XA A

RN AN
Pop e el

A ey

s
s atala Al

VN5

O XX AT TAGY

BT

LN

3 THE VIEW, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE
THOSE OF THE AUTHOR(S) AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL
DEPARTMENT OF THE ARMY POSITION, POLICY, OR DECISION, UNLESS SO

DESIGNATED BY OTHER DOCUMENTATION.

Al Ty

ol
TERLENT LS

b T)

.

w
s
[]

w s s

I
LKy

-8 N

o,

R - _ae =
-_a¥_L. v,

LT T

o -

M-"a s 22

L5558

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PA

.“ .

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION

] sified

6. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

3 DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

Approved for public release;
distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

5. MONITORING ORGANIZATION REPORT NUMBER(S)

Afy 21213.9-mA

Duke University

6a. NAME OF PERFORMING ORGANIZATION
Department of Computer Science

6b. OFFICE SYMBOL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION

U. S. Army Research Office

6c. ADDRESS (City, State, and ZIP Code)

Durham, North Carolina, 27

706

7b. ADDRESS (City, State, and ZIP Code)

P. 0. Box 12211
Research Triangle Park, NC 27709-2211

8a. NAME OF FUNDING / SPONSORING
ORGANIZATION

U. S. Army Research Office

8b. OFFICE SYMBOL
(if applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
DAAG29 - 84 - K - 0072

8c. ADDRESS (City, State, and ZIP Code)
P. 0. Box 12211

Research Triangle Park, NC

27709-2211

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

"Representation and Decision Mechanisms in Artificial Intelligence"

12 PERSONAL AUTHOR(S)

D.W. Loveland and A.W. Biermann

16 SUPPLEMENTARY NOTATION

13a. TYPE OF REPQRT 13b. TIME_ COVERED
Final Report FrROM 5/84 T0 9/87
e ———————

ATE OF REPORT (Year, Month, Day) [1S PAGE COUNT
87/12/28 11

The view, opinions and/or findings contained in this report are those
of thq authgr(s) and sgguld not Es1g22§ g d as, an fficial Degﬁrtment of the Army position,

Dﬂ 1Ccy cr1sion pog QN acumpentat
17 COSATI CODES 18. SUBJECT TERMS (Contmue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Representation, learning, adaptive systems, Prolog,

testing procedures, expert systems ,

‘9 ABSTRACT (Continue on reverse if necessary and identify by block number)

During the period of this grant, six subprojects were investigated and five
subprojects have reports and/or publications at present. The sixth area is
the subject of a Ph.D. dissertation expected to be completed in 1988. The
areas include: Automatic selection of most efficient programs, determination
of confidence factors in expert systems, analysis of errors that learning
machines make, real time program synthesis through graph factorization, an
extension to Prolog, and finding efficient test-and-treatment procedures. -

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT
W UNCLASSIFIEDUNLIMITED [] SAME AS RPT J OTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL

22b. TELEPHONE (Include Area Code) | 22¢c. OFFICE SYMBOL

DD FORM 1473, 8a MAR 83 APR::R;:H m:ytbe used unbtl' Txthausted. SECURITY CLASSIFICATION OF THIS PAGE
other editions are obsolete UNCLASSIFIED
ARG WE S O, O, SU L 8o, W il DO AR o L, N“ g
N e o S AR I < e B I AL IR ey S S TN

0%, 04 O TG VN TG T R WS W W A At ath ot ARl aihd arl ol ol il ol oo ol ol ol il e e
4

1
t !"\
T
i FINAL REPORT
o
s ARO Grant DAAG29-84-K-0072
YA
A
e This is the final report for Army Research Office (ARO) Grant DAAG29-84-1K-0072,
-:" for the period May 14, 1984 to September 30, 1987. The funding provided partial sup-
" port for two senior investigators, Donald W. Loveland and Alan. W. Biermann, and par-
v) tial support for four students which resulted in three M.S. degrees awarded and an
0 expected Ph.D. degree. (A Senior Programmer was also employed during a critical stage
o of one project.) This funding provided for a many-faceted exploration of new concepts in
b - the development of learning or adaptive machines and their application to practical sys-
N tem design. It also allowed investigation of a theory of efficient testing procedures with
R extension to the integration of treatments. It provided funding that permitted examina-
- tion of the power of the logic programming language Prolog and the first pursuit of a
G system to extend the underlying logic of Prolog while retaining much of the efficiency
N g
y that has allowed it to be so useful. The funded research in outcome can be viewed as
g six distinct lines of research which:
(1) show how adaptive software systems can be built to automatically select the best
e program for doing a task,
:‘_ (2) show for learning machines general relationships between the sizes of the classes of
~ learnable behaviors and the error rates and learning rates,
<
W (3) give a method for automatically discovering the confidence factors for the
{ knowledge based production rules in expert systems,
ﬁ (4) develop a synthesis technique for real time computer programs based on the con-
-7 cept of the factorization of a program behavior graph into its control structure and
:}' data structure graphs.

initiate the extension of Prolog to permit disjunctive clauses and the classical nega-
tion to be used, and

C
—_
Ut
~

-..
L A
%%
—
o
=

continue the investigation of the test-and-treatment problem where treatments are
integrated into a theory of designing eflicient (low cost) test procedures.

Each of these lines of pursuit has realized results of its own so it is hard to
highlight some results over others. Some results can be useful near-term, such as the

| @Ry

. determination of confidence factors for expert systems, while others are long term, such
N as studying the tradeoffs between fast learning machines and large-domain learning
':$' machines. This is a particularly interesting contrast because both results deal with
o automating adaptive behavior; the expert system project recognizes the presently unique
i . ability of the human expert to devise the governing rules relevant to the task domain
j& and “settles’ for adjusting the weights for the rule inference strengths relative to the
" inference network in which the rules are employved. This is itself a non-trivial task, gen-
J: erally too slow to be doue by simple algorithms on arbitrary rule sets. OQur longer range
N study just mentioned is particularly important because while manyv researchers have
é_ proposed learning machines of various tyvpes, few have discussed general properties that
o
ol
o
%
LA
4 .i'
v) i
R R

l'l'.'ltl
L O N

¥l

P

i

O

> &
LA AL

all learning machines must obey. Here, we show relationships between the size of the
learnable class and the learning and error rates.

Another area where we feel that this grant has promoted important work is the
extension of the logic programming language Prolog. While ‘‘extensions to Prolog™ have
been known since before Prolog was actually defined, they generally have not allowed a
natural programming viewpoint plus a declarative (logical) viewpoint simultaneously,
and also have been too slow in processing time to be useful over nontrivial problems. By
not trying to extend too far beyond the domain Prolog now processes we feel that we
maintain the key properties of Prolog in the extended domain. Although much research
and attention to implementation concerns still lie ahead, the basic structure of the
extension is now clear.

The following paragraphs describe these six topic areas and papers are attached
that include full presentation of results. (Note: Papers noted as attached to report have
been appended to an original copy sent to our ARO monitor. Other copies of this final
report do not have the reports appended; these reports have been deposited with the
ARO in standard manner and are available through the ARO document library.)

Adaptive Software: Automatic Selection of the Most Efficient Program. A common
problem for practical programmers regards which of several alternative solution methods
should be used in a given situation. The programmer may know of several alternative
data representations and not know which to employ; the programmer may also know of
more than one way to code the algorithm once the data structure is selected. Further-
more, the various alternatives may lead to widely varying performance levels so one
should make an informed decision.

Yet the problem of which to use is not easily solved. The programmer may need to
study the application carefully, to read relevant literature on the issue, and to run simu-
lations of the computation to discover the most efficient implementation. On the other
hand economic considerations require that the decision be made quickly so that the cod-
ing can be done promptly and attention can be turned to other issues.

This project proposes a pragmatic methodology for addressing this dilemma. If
several alternative ways exist to solve a problem, the suggestion is that all of them be
coded and loaded simultaneously into the application along with a monitor that will col-
lect data on their relative performances and eventually select the most desirable one.
The advantages of this approach are that

(1) the best selection will be reliably made,

(2) the decision will be based upon actual execution of existing code on the actual data
and machine for the application, and

(3) the programmer’s time required for analysis will be minimized.

A methodology for designing such a monitor is given in the attachment [5] where it
is assumed that two programs P and P, are available for doing a given computation
which must be executed L times. On each execution, the cost of running program P;,
will be assumed to be ¢,; with probability Pij s+ =12, and 7 =1,2,....m , respectively.
However, the p;;’s are unknown, so it is not known which program will have lower

RrERR:

RERRR

t,:"o

PRy B A |

PR e &

| Q "Q ‘.‘

"l
AL O T

expected crst.

It is desired to have a monitor in control which will, during the first few of the L
computations, select which program to run, note its execution time and decide what to
do next. It may select either program to run on the next computation or it may decide
to run one of the programs for the rest of the L executions. The paper {5] gives an
optimum strategy for the monitor which achieves minimum total expected cost for the
L computations assuming the cost of one monitor decision is g .

On The Errors That Learning Machines Will Make. Associated with each learning
system there is a class of learnable behaviors. If the target behavior to be acquired is in
the learnable class, it will be learned perfectly. If it is outside that class, the machine
will only be able to acquire a behavior that approximates the target and it will always
make errors. It is desirable for a learning machine to have a large learnable class to
maximize the chances of acquiring the unknown behavior and to minimize the expected
error when only an approximation is possible. However, it is also desirable to have a
small learnable class so that learning can be achieved rapidly. Thus the design of learn-
ing machines involves selecting a position on the spectrum: minimum error and slow
learning time versus larger error and faster learning time.

Several types of learning systems are examined from the point of view of the above
parameters including signature tables, linear system models, and conjunctive normal
form expression based systems. These studies lead to the concept of an ‘“‘optimum”
machine which spreads its learnable behaviors across the behavior space in a manner to
minimize the expected error. Two approximations to such optimum machines are
presented and their behaviors are compared to the more traditional learning machines.
The details of this study appear in [2].

Determining Confidence Factors for Expert Systems. Expert systems have been
used successfully in recent years to solve a variety of application problems related to
medical diagnosis, chemical spectroscopy, geological analysis, and other domains. Unfor-
tunately, immense problems arise in the construction of such systems preventing their
wider use. In fact, one or more computer scientists or ‘‘knowledge engineers” must
spend many hours over a period of months or years interviewing a specialist in the
application domain and coding the reasoning processes sufliciently so that a machine can

carry it out. This project aims at partially automating the process of such expert sys-
tem construction.

Typical expert systems are constructed with a set of production rules. Usually
these rules have two components, the logical operator which defines the manner in
which new information is derived from known facts and the confidence factor which
assigns a degree of certainty to each conclusion. Our assumption is that the expert
must provide the logical operators but we have developed a methodology for automati-
cally computing the contidence factors. The methodology requires only that samples of
input facts and their associated conclusions with confidence levels be given. From, these
examples one can compute the appropriate confidence factors for the rules used to
derive the conclusions from the input facts.

L

' » b PO AP A A P G, OHCHAY Y S ',\N'- V})
h ’h’.‘x‘.'u -"“."‘-"l-.l.t“ Ny > ,u':.n W, " ‘ " s q. {Hﬁ T - ...b‘u.kt

N

NIt L R el b A Ml o Bl aah e el et Mok g Bob Bat Sav g Sal Aeb e Pyt el et e Bee Bar jiav Bec jae Ser aias fav jntoSn-ofa' b ol it ohi o ol ol avh SN otA ol o AS L A)

Specifically, we present in [10] algorithms to instantiate confidence factors in expert
svstems given that the logical operators are already instantiated. WWe show that nk
carefully selected input-output behuviors are sufficient to characterize a system with n
inputs and a finite set of k confidence factors. I ar oracle is allowed. we present an
algorithm to synthesize the confidence factors in O (n?) time with nk calls to the oracle.

If the confidence factors are real numbers, then 2n input-output behaviors are
sufficient to characterize the system, and we can find the correct confidence factors in
O (n) time with 2n calls to the oracle.

We also consider the case where we must satis{fy an arbitrary set of input-output
behaviors by instantiating the confidence factors. We present an algorithm to solve the
problem in this case. but also show that this problem is NP-complete by transforming
the satisfiability problem to it.

Real Time Program Synthesis Through Graph Factorization. This research begins
with an observation related to real time programs: if the infinite state graph represent-
ing a data structure and the finite state graph representing its control structure are
combined with a properly defined cross product operation, the result will be a graph
representing all of its possible behaviors. For example, a counter can be represented by
the graph

i | i | I
DDDDD

where I is the increment instruction and D is the decrement instruction. If we wish to
program an acceptor for the language a'b' # , ¢=0,1,2,3,... then a proper control
structure which uses the above counter is

where a (or b) means read a (or b) from the input. I and D mean increment and decre- |
ment the counter and # .0 means read a # from the input and a 0 on the counter. The !
cross prodiet of these two graphs is the “hehavior graph™. a representation of all possi-
ble behaviors the svsten can have,

NN N L N e
x5 ."..’ .(-Nz\f,'.l'\-r >~

X In this graph, the upper leftmost node corresponds to the zero state of the counter
o and the initial state of the control. The state to its right corresponds to the 1 state of
\ the counter and the initial state of the control, and so forth.

These observations lead one to a number of questions related to learning theory.
i Suppose one is given a behavior graph such as the one above and is asked to algorithmi-
- cally discover the data structure and control structure required to achieve that behavior.
A This corresponds to having an oracle available to answer questions about a target

behavior and to the automatic discovery of the data structure and control structure
\ required to achieve that behavior in general. The observations also suggest a methodol-
) > ogy for doing the synthesis. It is through graph factorization.

:‘; The research questions for the project thus become:

N 1) Is there a way to diagnose which data structure from a dictionary of available data
;‘\ (=]

structures (counters, stack, queue, etc.) should be used in the synthesis?

p N (2) Find an algorithm which, given the behavior graph for a computation and the data
n structure, will factor the behavior graph to {ind the control structure.

~ (3) Given the fact that general algorithms for the problem (2) appear to require
> exponential time to complete a computation, find subclasses of real time programs
¢ that can be synthesized in polynomial time.

Ay
[d

This project is ongoing and forms the doctoral dissertation project for Mr. Amr
Fahmy. A data structure diagnosis requires a bound on the number of states in the con-
trol structure and uses the rate of growth of the behavior graph as a function of dis-
tance from the initial node to estimate the needed data structure. Several synthesis
(graph factorization) algorithms have been developed, tested, and their properties
analyzed. One powerful synthesis strategy uses the technique of identifying all sets of

P

.t 'y e
PR)

l,‘
.

L

-."'_
nodes in the behavior graph that have similar topological environments and merging
B s!lis
o these nodes to yield the control structure. Attempts are being made to characterize a
- class of programs which have such a low cost factorization scheme. Detailed results will
: be presented in late 1988,
‘\ .
- Near-fHlorn Prolog. Somewhat over a year ago we suddenly saw an approach to a
.-'
roblem that has been of interest to us for some time. The area of concern is logic pro-
: gic |
o gramming and the potential importance of the idea, if successful in realization and elfect
g~ = o
on the area, warranted redirection of our research efforts to this question. To a large
® B
'j- extent this redirection of effort has occurred for one of the investigators of this grant
-~ Loveland). Our concern is with minimal extensions to Prolog, the primary logic pro-
% Y p
‘o gramming language in use today. Our intent is to increase the scope of the language
'3 while preserving as strongly as possible the speed of execution, a big factor in the
° present success of the programming language from a pragmatic point of view. \We now !
3 have a precise formulation of our new approach and have presented this first formula- -
- 2] .
e tion to the Logic Programming community in (9], a copy of which is attached. There is
y much left to do but the basic idea seems to have validity.
~ B . . N
~; Our approach in this work is quite pragmatic, building on the experience of the
)
. success Prolog has had in the world of computing in spite of many drawbacks (but
W
"
)
": |
) 1
L0
h
W
&
'l
U
L
j 4

P

LA

A . v X "AT ». W Y O '\" '\"\"
Yy “uﬂ' ‘f .r / .' v fv‘(*’v NN e "-\."w. - o,.. .0‘.!:!\ .‘,4‘.\“:. AR ‘Q l,g, Maoneet

v 8% ' ATe X LT L e

2

ﬂ.'n-w-'l-v-vlhvw-;vL"\."L"\.TL'ULT e AN B AR VAl cadh vall sl sarl e B sl Al tel nal Sal Uadh Wl tul Gul Sal Sel & L G A Sl ol S i Sl Ak Sl Sadi ik Aol Sdh Sl Sl Bl Uil Sl §

Y
\
!._
L A 8
'\.‘:
L
> obviously because of many advantages). The idea is to give up some theoretical virtues
o to preserve a practical virtue that has proven its importance. Namely, we promote a
; v complete first-order proof procedure tha. is not in general as powerful as some that

already exist but appears to be much better in a certain domain close to the domain
Prolog functions on. We now clarify this. Prolog deals with a subset of logic known as
Horn clause logic, basically a positive implication logic. It is safe to say that Prolog’s
success is due to two things, the amazing number of useful problems that can be formu-
: lated within the Horn clause logic and the speed with which these problems can be exe-
; cuted. However, disjunctive facts and conclusions (e.g., P(a) OR P(b)) cannot be han-
-;f dled by Prolog. Moreover, negative information is not naturally processed within the
- Horn clause logic and this capability is needed, very often for database svstems.
) Presently the device of ‘‘negation as failure' is used. The disadvantage of negation as
-. failure is that it is built on the principle that anything not provable is false, and its
advantage is that its execution is achievable within the Prolog framework (but for

ground statements only) and so benefits from the speed of execution that Prolog
. possesses. Complete first-order theorem provers have proven to be too slow to be useful
':',-_: in the “‘real world” to drive logic programming languages.
The new procedure is called nH-Prolog for near-Horn Prolog. The relevance of the
o term near-Horn is that the procedure is particularly attractive for processing clause sets
= with few negations or disjunctive conclusions. This is because the speed of processing is

a function of the ‘“‘distance’’ of the clause set from a Horn set. The ideal is that the
processing speed fall off only in proportion to the distance from a Horn set, figured by
the number of negations in a Prolog-type input format, because many practical prob-
lems have relatively few negations in an otherwise legal Horn clause set. The nH-Prolog
system has this characteristic. The nH-Prolog procedure is indeed a complete first-order
proof procedure as mentioned above (when certain obvious expediences of Prolog are
altered). Although almost surely slower than some known theorem provers on “‘badly"
non-Horn clause sets, such as is characteristic of logic puzzles, our first implementation
shows that indeed we realize excellent speed on the near-Horn clause sets that we have
tried. A conference paper discussing the first implementation is now being written [11]
and, when completed. will be forwarded to ARO because some of the ARO funding par-

3

' ';.' Ol

+ e
R

AR
LA A AR

0

. e
PR i B

»

'.:: tiallv supported the implementation effort.
'.’ We are encouraged by the results to date and work continues on the design and
; implementation of nH-Prolog. There are many design and implementation questions vet
R to address, which we hope further funding will allow us to pursue, but we are still of the
'_ opinion thuat our efforts are well directed in pursuing this Prolog extension.
:::I
K.~ Testing procedures. For the past several years we have studied the design and
®. analyvsis of eflicient testing procedures in relatively unstructured environments. The
o problem that we hiave been studying recently is the integration of tests and treatments.
j This has resulted in a summary conference presentation [7] and a completed NS, thesis
j 6], the former attached and the latter submitted to the ARO in standard reporting
‘.. manner. A second problem involves methods for quick detection of multiple objects
o given a set of tests for doing that job. Both problems concern finding low cost decision
A trees where cost is an expected cost using given costs for tests and a priori estimates
.':
Cal
¥
o
-
3,
-" B At ,.), e ,$ "'\."'-")‘J'\.ﬁ\.}' el e \.r\.»_‘.r ax.-_».- _‘-'._.r:_z o .-\a.. # vr..\' ._.r,‘-*__.r,\ \a‘_-r_..»\ ,; ._-r,; ‘

el T SIS R S St S it Fas as ind Al walh Sl Sl Vol Sud Sal Al Ml Al tal Sal hel tab Sal Aalb NSk Sad LAatl Sal Fath Sk A LA RS "Ales Al Tle ThPe SR e BNe b R AR S A A B |
\

.r:.i
- 7
ez
o regarding the probability that an object is a (the) desired object. We will brieflv discuss
! :-_;‘: the problem that received most attention and then comment on the second problem.
1 > We are studving a problem that we call the fest and treatment problem. so-named
-~ because of the integration of treatments within the testing problem itself. A related
_:::’ problem studied by many people has been called the diagnosis problem. We state it
: here in the form studied by computer scientists although a more general form has been
: intensely studied by statisticians. A doctor-patient model is used for concreteness of
20 presentation and because of its intuitive simplicity. Suppose that a patient appears at a
-.:- doctor's office with an unknown disease. By inspection the doctor can reduce the diag-
23 nosis problem to a set of n diseases and give some weight as to the likelvhood of each
'_:f,'.' candidate diagnosis being the correct diagnosis. For simplicity we assume that there is
A only one disease to discover. (The multiple-disease problem is the alternate problem we
"“‘ mentioned above.) Refining this initial diagnosis requires non-trivial tests and so the
A doctor wishes to assess the order in which the tests are done. The tests have costs asso-
".".!', ciated with them; the costs reflect not only economic costs but patient risk, discomfort.
_" etc. The problem is to produce the lowest possible (optimal) cost test procedure, using
expected cost as the cost measure. For the case when all tests have unit cost computer
" scientists have determined a number of facts about this problem already. \We grossly
‘i oversimplify here to give a quick general picture of the situation. If every test is avail-
:-:: able then there is a fast algorithm for finding the optimal test procedure. and it is essen-
J\ tiallv the Huffman coding procedure. \When some tests are unavailable for use (the
N incomplete test case) then the problem is NP-hard, i.e. all procedures for finding the
e optimal decision tree may take exponential computation time in the length of the prob-
(lem presentation. Because in practice it is impossible to find the optimal tree in the
e incomplete test case we seek good but fast approximations. Statisticians use the max-
, imum likelvhood estimator, which degenerates to the binary splitting algorithm when
o much of the probabilistic considerations (such as unreliable tests) are dropped to permit
- deeper analysis of performance. Analvsis shows that the binary spitting algorithm can
y be extremely bad in the general incomplete test case, although if the full class of single-

) discuse tests exist then the performance greatly improves but is still not too good.
: :;:: (Some of these results were ours and published prior to receiving this ARO grant.) Even
e when all the a priori probabilities are equal the binary splitting algorithm can be quite
‘{-‘ poor.

"

° While working on the diagrosis problem just described we realized that for most
o real-l./e situations the problem missed a key point. One does not often wish to diagnose
o to isolation for the true disease just to know the disease; rather, one seeks that inter-
i mediate knowledge in order to treat the patient. But often it is cheaper to prescribe a
‘ \—, treatment before testing to isolaticn. The classic example is the doctor's refrain, ‘‘take
."' two aspirin and call me in the morning™. \We seek a unified theory of test and treat-
v ment and have been at work on this problem for several vears. Surprisingly, we have
:.‘::j,' not fonnd previous work in the literature and asking statisticians about the problem las
'}:"’ not vielded any analvtical work trom that camp either. Recently, there have been
-f: snggestions that the area of decision support theory has related material but the actual
- connections are unclear.

!’.

N

;

$,

“-I

o

o

i

- -
B A S e e L o A e R A S R S A R

2 - - e PO E TETERETY TTTE TR T ETETATET 4T AdT T aTE T RaT AT e T
bl ek Aal b} R Ak & 82 84 K-a ita Bvs gen A-a At Aty §ta Ala At Ry B e ke ~Ria A Sl Sl Ui i Al Al Sl A

2
s
:‘ 8
-\::
x’ Because of the superposing of treatment possibilities on top of the testing problem
oy the test-and-treatment problem is a much more ditficult problem in several wavs.
> Whereas the diugnosis problem has an Of/njlog n)) ranning time for the complete test
problem, the test-und-treatment problem is NP-lard even for the complete test-and-
N treatment problem. Also the problem is much more complex to analyvze. We cliose to
- work on an important special case to understand the mechanisms at work, and have
,'::: some interesting results for that special case. NMore importantly, we have learned much
'::j about the behavior of test-and-treatment decision trees. We chose to take the special
cost case of unit cost for all tests (which copies the cost simplification used in the diag-
v nosis problem) and have the cost of the treatment proportional to the power of the
. treatment, where the proportionality constant is a parameter. Here treatment power is
- the sum of the a prior: probabilities of the objects (diseases) that are successfully
- treated by that treatment. (All treatments are reliable and unambiguous in that the
object either is or is not successfully treated.) Moreover, we chose the complete test-
. and-treatment case with equal a priori weights and with a simple approximation algo-
n rithm, one that vields a complete binary tree of arbitrary level. The general problem
f::-: and the specific results are outlined in a talk given at the Fourth Army Conference [7}:
::-_'.‘. the report is attached. Proofs are omitted from the talk.
;‘ Why was the ahove cost model chosen? Preliminary investigation strongly sug-
o gested that if the treatments have widely differing cost/power ratios then an optimal or
__': near-optimal procedure is found by merely selecting treatments by ordering them low-
3 to-high with respect to the cost/power ratio. The difficulty arises when the cost/power
:j ratios are equal or nearly so. Indeed, this much is quite intuitive. What is not intuitive
- is to how to proceed when the cost/power ratios are the same, which became the basis
- for our first study. Again, we emphasize that the study named above was chosen for its
o simplicity to allow us to understand the problems we faced.
.:'_: The MLS. thesis of Paul Lanzkron contains some analvtical results along the line
. just described. However, it also contains some experimental results where the problem
i statement was free of the constraints we needed to obtain analytic results. In particu-
a far, we let the test and treatment costs be arbitrary and the a prior: probabilities also
o be arbitrary. \We chose several approximation algorithms which our analyvtic work had
" led us to believe would yield reasonably good approximations in many cases. What was
. surprising was how good they were given the simplicity of the algorithms relative to the
> difficulty of characterizing the optimal solution. \We hope to publish these results in a
_.:‘ journal in the biomedical computing area so that the results become known outside the ‘
j:: domain of academic computer science,
oy Study of the multiple faulty object problem has been initiated, and an appropriate
- model defined. A very restricted subproblem has been chosen for study but no definite
e results have been obtained yvet. primarily beeause our energies were diverted to the test-
‘_«' g and-treatiment problem. This diversion occurred partly for the pragmatic reasons that
- we had ecarly sueesss with establishing some key results regarding test-and-treatment
s problems and then aostadent, Panl Lanzkron, developed interest in this problem and so
:.: attention remained focussed there. NMoreover, the multiple faulty object problem seems
- most meaningfal when the a priore probabilities are statistically independent. Thus the
?_" model is quite ditferent in detail and we felt that we wished to pursue the test-and-
Mg
-
.ri
N
.4
X
::"-r"f AL M "r:a".r".r"ﬁ.-:::.r;f\.':.f-_':-‘:.f‘.':".o\':.-;r:w:.r:‘_.r?.r:«-;.r;:.-“' I, ‘.-"‘.r‘.r_:f:.°;;.-_:¢:‘.';.-§¢::¢;f;.-;.-:f<

bodindl 2ol Ball Sub Sak sad Sad Sadh hafl Bl Sad Sad el Siadl il Aad Sal el aall Nalh il ual Sl Aad sal dal tub Sel cal te b el ol Rl ngle tih SAR el Iy S hli® Alke " W A AaAte A4

Lhg
=}

treatment problem that people seemed to be ignoring in spite of its importance. The
multiple test problem is an important one and we hope to pursue it in the not-too-
distant future. Our results to date thus are very preliminary and no publication in this
subarea is seen in the near future.

\. L R T . PP W M AW R R W M- ’?, - w{ » "v- " s
PO o’ AN, o Lg
S o, { e AT e "\ O .c') a’l,‘h .0'0 'h .Q'Of:'u e e e D] :'

B0 B N Ny . B S

-
d
.
g

3 [{x‘.x., ll

“ ae iy BA S8 SNE UM ata SUR B4R B8 A'g B S 8 E SR 8 8.8 Wi s ial Gall Sau vap b wv*.rvr'v‘

-
-

10

’

PARTICIPATING PERSONNEL

,‘

L)
[

F |
P e

Student Degrees Farned

-
5 A
T

Amr Fahmy M.A., Ph.D.(in progress)

NN

* -S-.

Barry Koster

-
P

A

5.

Paul Lanzkron M.S.

=i -

..
Yy
.'.:',-f.r‘c,&‘

Albert Nigrin M.A.

-

-

XN

Sentor Programmer

';'l ‘o"n
-"v'.d‘l'

KK.C. Gilbert

4 ;. y Ay
)_I"'.t'.'"

P

"' ‘l

N

Senior Investigators

\-.

:j Alan W. Biermann
—-\:::

" Donald W. Loveland

19}

. .
" _® .
R 4

g
N}

4
2t

0%

Ax e N v

- e
AL A
- a2

S -‘

X

- -

-
oI
-.t‘r\\‘l'(

I

~ N
.

@7 r
pufll FR UL SL NEL WL O

TN
A
L)

4 A S A

‘ads »
A

L
.

AN
2 e s,

(O

Ny
Qo)

. N PN g
CaRnbny 8
sfate A e e I

4

T

a'a

-
n,
fa))
-
Ne

Nt Y

'n

’o‘ . 1'

11

PUBLICATIONS AND REPORTS supported by this grant.

(1] Biermann, A.\W. Fundamental Mechanisms in Machine Learning and Inductive Infer-
ence. In Fundamentals of Artificial Intelligence, Eds. W. Bibel and Ph. Jorrand.
Springer-Verlag, 1935.

[2] Biermann, A.W., Gilbert, K.C., Fahmy, A., and Koster, B. On the Errors That
Learning Machines Will Make. Report (submitted for publication), November, 1986.
(Abstract appears in the transactions of the Fourth Army Conference on Applied
Mathematies and Computing. Cornell University, May, 1986).

[3] Biermann, A.W. Fundamental Mechanisms in Machine Learning and Inductive Infer-
ence, Part 2. In Proceedings of the Advanced Conference on Artificial Intelligence, Ed.
R. Nossum, Springer-Verlag, 1987,

[4] Fahmy, AF. A Self Modifving Monitor for Algorithm Selection. Thesis. Duke
University, June 1984.

[5] Fahmy, A.F.. and Biermann. AW, Adaptive Software: Automatic Selection of the
Most Efficient Alternative Program. Report (submitted for publication), January, 1986.

[6] Lanzkron, P.J. Results on the test-and-treatment problem. M.S. Thesis, Computer
Science Dept., Duke Univ., Durham. NC, May, 1987, 137pp.

[7] Loveland, D.\W. Introducing treatments into test procedures. Proc. of the Fourth
Army Conf on Appl Math and Computing. Tthaca NY. May, 1986.

[8] Loveland, DAV, Automated theoremn proving: mapping logic into AL Proc of the
Int'l Sympos. on Methodologies for Intell Nystems IKnoxville, TE., Oct. 1986.

(9] Loveland, D.W. Near-Horn Prolog. Proc. of the Fourth Int'l. Conf on Logic Pro-
gramnung. MNelbourne, NMay, 1987,

[10] Nigrin. A.L. Determining Contfidence Factors for Expert Svstems. Report (submit-
ted for publication}, Sept. 10387.

[11] Smith, B.T. and DAV, Loveland. An implementation of nll-Prolog. In preparation.

"-.\.s.

el PNy

AYYS Y oy ey Y
o a AR WS
A ‘ SR T RIS
el Rr
i ! ’r‘- 3] -4 LSS

I N NASUNS
-~ -2 . [a_a

-
(e -iv

PSR PS Atk

PR
Ty B %6 2232

-

Y

AN AERERRRS |
> »
S b
. .
. 5
N,

, l‘..!'(o;, '
o

1)
4 3 ;

L J o ®
:'..’)"_ ':.:\'* T v N".-'.q;&v.;.vq(.- ;..‘;m R T
PSS\ PO "Q. ~-‘)tu,‘l'.$:. ::l ¢
SRR ~=§$.sss¢':¢*¢%’:§'~« 3
X L)) !O*.

"

>)
40 1 R S AT A R IR s SR

