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I. INTRODUCTION

L

The forced liquid project is being directed by the Munitions Branch of the
U.S. Army Chemical Research, Development and Engineering Center (CRDEC). The
Computational Aerodynamics Branch, Launch and Flight Division, U.S. Army ;
Ballistic Research Laboratory (BRL) has been tasked to determine the internal e
fluid dynamics within a partially, liquid-filled shell subject to large rapid- g
ly applied pressures which result from internal burster tube rupture. The -
main area of concern is the determination of the time history of the internal
pressure on the shell sidewalls and base.

.'
a' 'y

Previously, an analytical technique had been developed for predicting the .
internal fluid dynamics of a partially liquid-filled, nonspinning cylinder N2
subject to an impulsively applied pressure at one end.! While this analytical :3
technique did highlight many of the important fluid dynamic processes which X
occur internally, the effect of important parameters such as the internal )
shell geometry and time dependence of the burster tube rupture pressure could b
not be considered. ::5

h\.

Due to the difficulties in incorporating these parameters into an analyt- tx:
ical model, a numerical model has been developed and is discussed in this re- A
port. This numerical model solves the quasi one-dimensional Euler equations ¢
and a equation of state for a liquid using the explicit MacCormack numerical oo
technique. Results have been generated for an internal shell geometry cur- ;f
rently being tested by the Terminal Ballistics Division (TBD), BRL.2 Compari- "
sons are made between the numerically predicted pressure levels inside the f}

! 1iguid filled shell and the pressure measurements performed by TBD. v
1.
IT. NUMERICAL MODEL é\

A numerical model has been developed to simulate the internal fluid dyna- ;?
mics of a nonspinning partially liquid-filled shell due to burster tube rup- T
ture. In this section the numerical model is presented. First, a brief !f
description of the configuration and the basic fluid dynamics is given; the b,
governing equations and boundary conditions are then described; and finally \ﬁ
the numerical procedure is outlined. :‘
1. DESCRIPTION OF CONFIGURATION AND BASIC FLUID CYNAMICS EV

Figure 1 depicts the internal configuration being tested by the Terminal -
Ballistics Division and simulated in the current numerical model. The inter- e
nal configuration is an ogive-cylinder-boattail with a central burster tube {?
which extends axially from the nose. The axial dimension of the burster tube -
is approximately half the internal length of the shell. The wall of the -
burster tube has been purposely made weaker near the nose to control the loca- ’
tion of burster tube rupture. The test configuration is aligned nose down, )
leaving some percentage of ullage (air space above the liquid) in the boat- o
tailed section of the shell, as shown in Figure 2. \vf

N\

The fluid, initially at rest, is set in motion when the burster tube rup- K
tures due to the ignition of the propellant within the burster tube. The rup- A
ture of the burster tube subjects the surrounding liquid to a locally high ..
pressure causing a pressure wave to propagate up the 1liquid, as shown in -

=

1 .

L

)
b
I\.

o
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Figure 2. This pressure wave propagates up the fluid and reflects from the
liquid-air interface. After the reflection of the pressure wave from the
liquid-air interface, the interface begins moving towards the shell base. A
short time later the interface impacts on the base and another pressure wave
is generated which propagates down the fluid inside the shell,

Several features of the fluid motion can be deduced from this proposed
description of the fluid motion; (1) the compressible nature of the liquid is
important, (2) the primary motion of the fluid is in the direction along the
shell axis of symmetry, and (3) the interfaces which bound the fluid slug move
as a result of the high pressure from the burster.

2. GOVERNING EQUATIONS

e e T N

The motion of the fluid within the shell can be represented by the time-
dependent, quasi one-dimensional Euler equations, shown in vector form below.
This vector equation represents the equations of mass and momentum conserva-

tion along the axial direction within the shell; where p is the local fluid
density, u is the axial fluid velocity, and P is the local fluid pressure.
The internal area change within the shell is accounted for through the source
term, A, where A is the local cross sectional area of the shell.
!
b >
. g, ofF 2.
T T H=20
13 (1)
> P £ pU LR "
9= [OQ] ’ - [pu2 + P] » Ro= 1 2A
! 22 sl
] 'Aax"

Closure of this set of equations is accomplished using an equation of
state for liquid,3

_ E
L) @

where £ is the bulk modulus of the fluid. In using this equation of state, an
isothermal process is assumed. A fluid bulk modulus of 320,000 psi is used
throughout the computations.“

The equation of state can be incorporated within the equations of motion,
yielding the following vector equation,

.’
+ + = o
st fawthe0
(3)

1A

. 5 ou Kax P

_ - H =

a [puJ ’ [pu2 +E 1n o] ’ 1 24
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Because this set of equations is to be solved on a grid (x,t) which moves
with the fluid slug as a function of time, it is convenient to transform these
equations into a computational space (g, t) which remains fixed in time and

space. The resulting equations, after the transformation has been applied,
are written below.

éf (q) +-§z (¢, 9+ & F) +H=0
where
= 08 _ _ -
Et-— 'a'f' xt EX ’ \J = l/xg (4)
o 9E _ o X .
Ex Fax =Y 0 X Eogp s X F

3. BOUNDARY CONDITIONS

The governing equations discussed above describe the fluid motion inside
the fluid domain. Using the quasi one-dimensional approach, the state of the
fluid must also be specified at the two endpoints of the domain.

One of the domain endpoints is located at the location where the burster
breaks. At this point the fluid is exposed to high pressure from the burster.
This high pressure has been measured experimentally by TBD and is used in the
numerical model to specify the pressure as a function of time at this endpoint
in the computational domain. Using the equation of state, the first of the
two dependent variables, the density, can be specified.

o(t) = b exp [P(t)/E] (5)

where Po is the liquid density at ambient conditions. The second dependent
variable, pu, can be obtained by applying the momentum equation.

At the other endpoint of the domain, the liquid-air interface, one of two
sets of boundary conditions is applied depending of the state of the inter-
face., The first set of boundary conditions is applied between the time the
burster breaks and the 1liquid-air impacts on the shell base. Here, the
pressure acting on the interface is nearly ambient, compared with the pres-
sures produced by burster. Using the equation of state, the first of the two
dependent variables, the density, can be specified,

0= 0, - (6)
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The second dependent variable, pu, can be obtained by applying the momentum
equation,

The second set of boundary conditions is applied after the interface
impacts on the shell base. The fluid is brought to rest locally, and the
second dependent variable becomes zero at this endpoint in the fluid domain.
The boundary condition for the density is obtained by applying the continuity
(mass conservation) equation,

4. NUMERICAL PROCEDURE

The governing equations are solved using the second order accurate explic-
it MacCormack finite-difference numerical procedure.® The solution is obtain-
ed by dividing the computational domain into a number discrete intervals (or
grid points) and the solution advanced in time using the following predictor-
corrector approach.

Predictor
dg:r - q? - ot [(gtjE? " Bty-1 q?-l) (6a)
(65 €Y - &5 Ejp) + WY
Corrector
q?+1 = %- qﬂiT + Q? - At [(gtj+1 q?f{ - EtJ' d?TT) (6b)

—

N+1 N+1 N+1
(Eje1 Bja1 = & E5 ) +H ] $

A

o

Lo

P,

where superscript "N" denotes the time level of the solution and the subscript ;5
"j" denotes the spacial location of the grid point. ;
n

Boundary conditions are updated at the predictor and corrector steps using 'Y
the appropriate one sided spacial differencing. After the solution is o

updated, the updated position of the grid is determined by integrating the R
velocity of the grid endpoints in time.

The solutions presented in this report were obtained using 251 grid points
and typically required 1750 time steps to span the time interval of in-
terest., Each solution required approximately seven minutes of CPU time on a
VAX 780 computer.
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ITI. RESULTS
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The results of the application of the numerical model are presented in two
sections. The first section is concerned with validation of the numerical

Y

model, and comparisons are made between the numerical model and experimental jg
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results obtained by TBD. In the second section, results of a parametric study
examining the effect of ullage and the internal shell boattail angle are
presented.

1. VALIDATION OF THE NUMERICAL MODEL

A total of 18 cases (various ullages and burster pressures histories) have
been run using the numerical model and comparisons made with the experimental
pressure data obtained by TBD to provide validation of the numerical model.
Data from five of these cases are presented in this report. TABLE 1 displays
the ullage for each of the five cases. In the experiments performed by TBD,
the driving pressure produced by the burster was tailored by loading the
burster with varying amounts of propellant. The amount of propellant used in
each test is also shown in TABLE 1.

TABLE 1. Description of Cases.

Case 1D Ullage Burster
FF3 10% 40gm
FF4 5% 40gm
FF5 3% 40gm
FF7 o 50gn
FF11 % 30gm

The TBD pressure data consists of output from five pressure gauges located
inside the pressure vessel. The locations of four of these gauges is shown in
Figure 3. The additional gauge (Gauge 1) is located inside the burster tube
and does not provide information of interest to the current study. The
pressure output from Gauge 2 is used to specify the pressure time-history at
one endpoint in the fluid domain in the numerical model. The data from this
gauge is numerically filtered before each computation to eliminate high fre-
quency oscillations present in the experimental data. (In the results shown
in this report only the Gauge 2 experimental data has been smoothed. Experi-
mental data shown from the other gauges is the raw experimental data.)

. Case FF5 is examined first in some detail to reconcile the physics with
T~ the experimental and numerical output. Results from the other cases follow a

.
t%ﬂ similar pattern. Figure 4a displays the experimental output of Gauge 2 and
N the smoothed data used as input to the numerical model. Figures 4b-4d show

the experimentally measured and numerically predicted pressure at Gauges 3, 4
_ and 5 respectively, and reference to these figures is made repeatedly in the
- following several paragraphs. In order to aid in understanding the results in

riﬁ these figures, critical events have been marked on the graphs by alphabetic
o characters, and are referenced to in the text.

)

gl

MO The event begins with the breakage of the burster tube. Gauge 2, which is
] near the location of burster rupture, experiences a rapid increase in pressure
s almost immediately. Two tenths of a millisecond later the primary pressure

wave has propagated up the pressure vessel to Gauge 3(A), and at 0.35 milli-

Y
P

h€: seconds the pressure wave passes Gauge 4(B). The pressure wave continues to

‘D
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propagate up the pressure vessel until it reaches the liquid-air interface.
When the pressure wave reaches the liquid-air interface, an expansion wave is
generated and begins propagating down the vessel. At the same time, the

liquid-air interface is set in motion and begins moving towards the shell -
base. The liquid-air interface eventually impacts on the shell base, produc- ‘
ing a large pressure rise at Gauge 5(C), and generates a compression wave -
which propagates down the pressure vessel. As this compression wave propa- '
gates through the boattailed portion of the vessel, the pressure behind the -
wave decreases with time., This is reflected in the drop in pressure at Gauge 4
5 following the large increase in pressure (D). -
At this point in time there are primarily two waves propagating down the :
pressure vessel; an expansion wave propagating ahead of the compression wave. .
As the expansion wave reaches Gauge 4 (at about 0.5 milliseconds) (E), the R
pressure is relieved down to zero. A short time later, the compression wave -
passes Gauge 4 producing a large increase in pressure to nearly 40 kpsi (F). <
Between 0.65 and 0.75 milliseconds both of these waves pass Gauge 3(G). h
Both the expansion and compression waves reach the pressurized surface of :
the fluid and reflect as compression and expansion waves respectively. Both ~
of these waves propagate up the vessel, with the compression wave ahead of the )
expansion wave. As these waves pass Gauge 4 at about 1.0 milliseconds (H), a S
small increase in pressure due to the compression wave is observed, followed a A
large drop in pressure as the expansion wave passes Gauge 4. At 1.15 milli- A
seconds the expansion wave has reached the shell base and the pressure is ﬁ
relieved back down to zero (I). g
Pressure waves continue to cycle throughout the vessel, however the exper- o
imental results indicate that the internal pressure levels are significantly o
smaller once the pressure on the shell base has been relieved. v
‘J
The internal fluid dynamics follow the same pattern in the other cases {
that were examined. Presented below are comparison of the experimental and v
numerical results for four additional cases in which the ullage and amount of o
burster propellant are varied. »
Figqures 5a and 5b show the experimental and numerical output from Gauges 4 >
and 5 for Case FF3. (No experimental data was obtained for Gauge 3 in this K
test.) The numerically predicted pressure time history is in good agreement
with the experimental results for Gauge 4. The numerically predicted pres- "
sures at Gauge 5 are somewhat higher that the experimentally measured values. N
The arrival times of the waves are generally in good agreement. The relief of N
pressure on the base near the end of the event occurs slightly later in the -
numerical simulation than in the experiment. ..
The experimental and numerical results at Gauge 4 and 5 for Case FF4 are )
shown in Figures 6a and 6b. The pressures at Gauges 4 and 5 are somewhat -
underpredicted in the numerical analysis. The arrival times of the pressure
waves are again predicted fairly well, except for the pressure wave which .
relieves the pressure on the shell base. -
Figures 7a,b,c display the experimentally measured and computed pressures B
at Gauges 3, 4 and 5 for test FF7, The computed pressure history at Gauge 3 ?
compares well with the experimental measurements, The numerical predictions g
"\
6 "
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. show that between 0.7 and 0.85 milliseconds the lower boundary of the fluid

» domain has been pushed past Gauge 3 by the burster gases. During this time
. period, high frequency oscillations in the experimental pressure trace are
. evident, which may suggest that experimentally the gauge is being exposed to
Y the combustion gases from the burster tube. The computed and experimental
,} pressure history at Gauge 4 are in fairly good agreement., The numerically
~; predicted pressures at Gauge 5 are slightly greater than the experimental
N values and again the pressure relief on the shell base occurs later in the
Ry computation than in the experiment.

;Q The pressure traces for Case FF11l are shown in Figures 8a,b,c. The com-
N puted pressures at Gauges 3 and 4 are again in good agreement with the exper-
W imental values. The computed pressures at Gauge 5 are significantly higher

A than the experimentally measured values, though the experimental results
" indicate negative pressures after 1.0 millisecond indicating a possible gauge
. zero-drift problem.

.

. ﬁ In general, the numerical results show excellent agreement with the exper-
o~ imental results at Gauge 3. This is not surprising due to the close proximity
N of Gauge 3 to Gauge 2, which is used as the driving pressure for the numerical
- model. The numerical results indicate that in a number of cases the lower
EY liquid interface is pushed past gauge location 3, particularly as the ullage
ﬁ} is increased. The numerical predictions of the pressure history at Gauge 4
:i are in good agreement with the experimental measurements. The numerical
=~ results at Gauge 5 display quaiitatively the same features as does the experi-
8 mental results. The arrival time of the fluid interface is well predicted and

q in many cases the pressures levels due to the impacting of the fluid interface

- on the base agree well with the experimental results., The eventual relief in
. pressure on the shell base occurs somewhat later in the computation than in
“:: the experiment, although this does not appear to be a critical parameter.

o
oy 2. PARAMETRIC STUDY

. One of the primary advantages of developing a numerical model, such as the
o one discussed here, is that parametric studies can be quickly and easily
- performed. The code developed in this study has been used to elicit the im-
-j: portant parameters of the forced liquid problem. Two parameters examined here
Zj. are the effects of ullage and boattail angle.

. a. Ullage A parametric study examining the effect of ullage on the
W internal pressure history has been performed. Results have been generated for
:j a single input pressure history (corresponding to Case FF5) and for several

2 ullages; 3, 5, 10 and 15 percent.

o

- Figures 9a and 9b show the pressure history at Gauge 3 for 5 and 10
2 percent ullages. For the first 0.6 milliseconds, the pressure history shows
o little variation between the two ullages. This was also observed in the l
o computed results for 3 and 15 percent ullages. After 0.6 milliseconds, the
o numerical results show that the lower pressurized fluid surface is pushed past
5O Gauge 3 for a duration of time that increases as the ullage increases. This

- behavior was observed in the computed results across the range of ullages
iy examined.
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The pressure histories at Gauge 5 for each of the ullages are shown in
Figures 10a,b,c,d. The figures show that the base is generally exposed to
higher pressures as the ullage is increased. However, the base experiences
the pressure loading over a smaller duration as the ullage is increased.

b. Internal boattail angle A study was performed to demonstrate the
effect of the internal boattail angle of the shell on the internal pressure
history. Computations were performed for two boattail angles (7 and 10
degrees) using the FF5 input pressure, and a ullage of 10%.

The pressure history at Gauge 3 show very little variation due to the
change in the internal boattail angle. The pressure history at Gauge 4, shown
in Figure lla, also show only small variations. The largest effect is noted
at gauge location 5 (on the shell base) where larger peak pressures are pre-
dicted for the larger boattail angle, as shown in Figure 1lb. The duration
and average magnitude of the pressure loading are approximately the same.

IV. CONCLUSIONS

A quasi one-dimensional numerical model has been developed to compute the
internal fluid dynamics of a nonspinning partially liquid-filled shell which
results from burster tube rupture. Computational results have been obtained
for a shell configuration currently being tested by TBD. The results show
very good agreement when compared with pressure measurements obtained by TBD,
validating the numerical approach. The numerical model has provided further
insight into the physical processes which occur within the shell.

A parametric study has been performed using the numerical model to examine
the effect of ullage and internal boattail angle of the shell on the internal
surface pressures, The numerical results show that the fluid interface
located in the vicinity of the burster tube rupture is pushed further from the
nose of the shell by the high pressure gases as the ullage is increased. The
results also show that the shell base is generally exposed to higher pressures
as the ullage is increased, however, the base experiences these higher pres-
sures over a somewhat shorter duration. The numerical results show that as
the boattail angle of the shell is increased the peak base pressures are
increased, though the average pressure and the duration of the pressure load
on the shell base remain constant.
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LIST OF SYMBOLS

local cross sectional area

fluid bulk modulus

flux vector

flux vector normalized by Jacobian
source term due to area change
source term normalized by Jacobian
Jacobian of the transformation
pressure

vector of dependent variables
vector of dependent variables scaled by Jacobian
time

axial velocity

axial coordinate

density

density at ambient conditions

Subscripts

derivative with respect to time
derivative with respect to axial coordinate

derivative with respect to spacial computational coordinate

Superscripts

n

denotes solution at "N"th time level
denotes solution at "N+1"th time level

denotes solution at end of "N+1"th predictor step
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