

CONTROL OF MOLECULAR WEIGHT DISTRIBUTION OF THE BIOPOLYMER PULLULAN PRODUCED BY THE FUNGUS Aureobasidium pullulans

BY B. J. WILEY S. ARCIDIACONO S. SOUSA J. M. MAYER D. L. KAPLAN

OCTOBER 1987 FINAL REPORT 1986-1987

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

UNITED STATES ARMY NATICK RESEARCH, DEVELOPMENT AND ENGINEERING CENTER NATICK, MASSACHUSETTS 01760-5000

SCIENCE & ADVANCED TECHNOLOGY DIRECTORATE

DISCLAIMERS

The findings contained in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of trade names in this report does not constitute an official endorsement or approval of the use of such items.

DESTRUCTION NOTICE

For Classified Documents:

Follow the procedures in DoD 5200.22-M, Industrial Security Manual, Section II-19 or DoD 5200.1-R, Information Security Program Regulation, Chapter IX.

For Unclassified/Limited Distribution Documents:

Destroy by any method that prevents disclosure of contents or reconstruction of the document.

				Form A	pproved o 0704-0188
18 REPORT SECURITY CLASSIFICATION		15 RESTRICTIVE		Exp Da	o 0704-0188 ite Jun 30/1986
INCLASSIFIED		ID RESTRICTIVE	MARKINGS AL)-H19	1070
2. SECURITY CLASSIFICATION AUTHORITY			N/AVAILABILITY OF REP		
b OECLASSIFICATION / OOWNGRADING SCHEOU	LE	Approved 1 unlimited.	for public relea	se; dist	ribution
PERFORMING ORGANIZATION REPORT NUMBE	R(S)	5. MONITORING	ORGANIZATION REPOR)
ATICK/TR-88/012					
68 NAME OF PERFORMING ORGANIZATION	6b OFFICE SYMBOL (If applicable)	7a NAME OF N	ONITORING ORGANIZA	TION	
J. S. Army Natick RD&E Center	STRNC-YEP				
6c ADDRESS (City, State, and ZIP Code)		75 ADDRESS (C	ity, State, and ZIP Code)	
latick, MA 01760-5020					
Ba NAME OF FUNDING / SPONSORING ORGANIZATION	8b OFFICE SYMBOL (If applicable)	9 PROCUREMEI	NT INSTRUMENT IDENTI	HCATION NU	MBER
J. S. Army Natick RD&E Center 8c ADDRESS (City, State, and ZIP Code)	STRNC-YEP		FUNDING NUMBERS		
ac mouness (city, state, and zim code)		PROGRAM	PROJECT	TASK	WORK UNIT
Natick, MA 01760-5020		element no 61101A	NO 1L161101A91A		ACCESSION NO
11 TITLE (Include Security Classification)			L		<u> </u>
(U) CONTROL OF MOLECULAR WEIGH FUNGUS Aureobasidium pullu		OF THE BIOPO	DLYMER PULLULAN	PRODUCED	BY THE
12 PERSONAL AUTHOR(S)					
3. J. Wiley, S. Arcidiacono, S. 13a TYPE OF REPORT 13b TIME CO			L. Kaplan ORT (Year, Month, Day)	15 PAGE	
	<u>Mar to <u>87 Sep</u></u>	1987 Octo	ober		30
16 SUPPLEMENTARY NOTATION					
17 COSATE CODES	18 SUBJECT TERMAS (Continue on reve	rse if necessary and ide	ntify by bloc	k number)
FED GROUP SUB-GROUP	BIOPOLYMER TNU	JTRIENTSシー	CHEMICAL PR	UPERTIES	CARBON
		ERMENTATION DLYSACCHARI	/ PHYSICAL PR DES, MOLECULAR W		NITROGEN
	and identify by block r section of this	study, the	evaluation of e	nvironme	ntal condi-
This report summarizes one			ilar weight dist	ribution	and vield.
tions and their influence on the					
tions and their influence on the ilms, fibers, and chemical deri and the characterization of thes	vatives made from the materials will	om these dif I provide th	ferent molecula se bases for and	ir weight other rep	products, ort. In
cions and their influence on the ilms, fibers, and chemical deri and the characterization of thes order to determine optimum growt	vatives made from the materials will the conditions for	om these dif I provide th r the contr	ferent molecula ne bases for and rol of molecular	r weight other rep weight	products, ort. In distributior
cions and their influence on the lilms, fibers, and chemical deri and the characterization of thes order to determine optimum growt of extracellular pullulan, preli Aureobasidium pullulans. One st	vatives made from e materials will h conditions for minary studies u rain, NRRL-Y 622	om these dif provide th r the contr utilized ce 20 A. pullu	ferent molecula ne bases for and rol of molecular Il suspensions c lans, was select	r weight other rep weight of nine s ced for f	products, ort. In distributior trains of urther study
tions and their influence on the lilms, fibers, and chemical deri and the characterization of thes order to determine optimum growt of extracellular pullulan, preli Aureobasidium pullulans. One st Carbon and nitrogen sources, alo	vatives made from e materials will h conditions for minary studies u rain, NRRL-Y 622 ong with phosphat	om these dif provide th r the contr utilized ce 20 A. pullu te concentra	ferent molecula te bases for and rol of molecular Il suspensions c lans, was select ation were evalu	ir weight other rep oweight of nine s ced for f nated for	products, ort. In distributior trains of urther study their effec
tions and their influence on the ilms, fibers, and chemical deri and the characterization of thes order to determine optimum growt of extracellular pullulan, preli Aureobasidium pullulans. One st Carbon and nitrogen sources, alo on pullulan yield and molecular continuous fermentations of one	vatives made from e materials will h conditions for minary studies u rain, NRRL-Y 622 ong with phosphat weight distribut liter and 10 lit	om these dif I provide th r the contr utilized ce 20 A. pullu te concentra tion. Batch ters were a	ferent molecula te bases for and rol of molecular Il suspensions o lans, was select ation were evalu systems, scale lso evaluated.	r weight ther rep weight of nine s ed for f lated for oup batc Processi	products, ort. In distributior trains of urther study their effec h, and ng variables
ilms, fibers, and chemical deri and the characterization of thes order to determine optimum growt of extracellular pullulan, preli Aureobasidium pullulans. One st Carbon and nitrogen sources, alo on pullulan yield and molecular continuous fermentations of one including solvents, extraction t	vatives made from e materials will th conditions for minary studies us rain, NRRL-Y 622 ong with phosphat weight distribut liter and 10 lit time, etc., were	om these dif provide the the contr utilized ce 20 A. pullu te concentra tion. Batch ters were a also studie	ferent molecula te bases for and rol of molecular ll suspensions of lans, was select ation were evalu tsystems, scale lso evaluated. ed. Pullulan bi	r weight other rep weight of nine s ed for f ated for Processi opolymer	products, ort. In distribution trains of urther study their effec h, and ng variables products
tions and their influence on the ilms, fibers, and chemical deri and the characterization of thes order to determine optimum growt of extracellular pullulan, preli Aureobasidium pullulans. One st Carbon and nitrogen sources, alo on pullulan yield and molecular continuous fermentations of one including solvents, extraction t with weight average molecular we around two, were produced. The	vatives made from e materials will th conditions for minary studies us rain, NRRL-Y 622 ong with phosphate weight distribut liter and 10 lift time, etc., were rights from 100 for evaluation of ci	om these dif provide the the contro- dilized ce 20 <u>A. pullu</u> te concentra tion. Batch ters were a also studie thousand to nemical/phys	ferent molecula te bases for and rol of molecular ll suspensions of lans, was select ation were evaluant systems, scale lso evaluated. ed. Pullulan bi 4 million, with sical properties	r weight ther rep weight of nine s ed for f ated for Processi opolymer a dispe	products, ort. In distribution trains of urther study their effec h, and ng variables products rsity of
tions and their influence on the ilms, fibers, and chemical deri and the characterization of thes order to determine optimum growt of extracellular pullulan, preli Aureobasidium pullulans. One st Carbon and nitrogen sources, alo on pullulan yield and molecular continuous fermentations of one including solvents, extraction t with weight average molecular we around two, were produced. The weight fractions of pullulan is	vatives made from e materials will th conditions for minary studies us rain, NRRL-Y 622 ong with phosphate weight distribut liter and 10 lift time, etc., were rights from 100 for evaluation of ci	om these dif provide the the contr utilized ce 20 A. pullu te concentra tion. Batch ters were a also studie thousand to nemical/physicigation.	ferent molecula te bases for and rol of molecular Il suspensions of lans, was select ation were evaluant systems, scale lso evaluated. ed. Pullulan bi 4 million, with sical properties	r weight ther rep weight of nine s ed for f lated for -up batc Processi opolymer a dispe of defi	products, ort. In distributior trains of urther study their effec h, and ng variables products rsity of
tions and their influence on the films, fibers, and chemical deri and the characterization of thes order to determine optimum growt of extracellular pullulan, preli Aureobasidium pullulans. One st Carbon and nitrogen sources, alo on pullulan yield and molecular continuous fermentations of one including solvents, extraction t with weight average molecular we around two, were produced. The weight fractions of pullulan is 20 DISTRIBUTION AVAILABILITY OF ABSTRACT DUNCLASSIFIEOTUNLIMITED SAME AS F	vatives made from the materials will the conditions for minary studies of rain, NRRL-Y 622 ong with phosphat weight distribut liter and 10 lift time, etc., were rights from 100 for evaluation of ci- now under invest	om these dif provide the the contr stilized ce 20 A. pullu te concentra tion. Batch ters were a also studie thousand to nemical/phys tigation.	Ferent molecula te bases for and rol of molecular Il suspensions of lans, was select ation were evaluan systems, scale lso evaluated. ed. Pullulan bi 4 million, with sical properties <u>UNCEPTY</u> CLASSIFICATION IED	r weight ther rep weight of nine s ed for f lated for Processi opolymer a dispe of defi	products, ort. In distribution trains of urther study their effec h, and ng variables products rsity of ned molecula
tions and their influence on the Films, fibers, and chemical deri and the characterization of thes order to determine optimum growt of extracellular pullulan, preli Aureobasidium pullulans. One st Carbon and nitrogen sources, alo on pullulan yield and molecular continuous fermentations of one including solvents, extraction t with weight average molecular we around two, were produced. The weight fractions of pullulan is	vatives made from the materials will the conditions for minary studies us rain, NRRL-Y 622 ong with phosphate weight distribut liter and 10 lift time, etc., were rights from 100 for evaluation of ci- now under invest	om these dif provide the the contr stilized ce 20 A. pullu te concentra tion. Batch ters were a also studie thousand to nemical/phys tigation.	ferent molecula te bases for and rol of molecular il suspensions of lans, was select ation were evaluan systems, scale lso evaluated. ed. Pullulan bi 4 million, with sical properties <u>UCCULES</u> ECUPITY CLASSIFICATION IED	r weight ther rep weight of nine s ed for f lated for Processi opolymer a dispe of defi	products, ort. In distribution trains of urther study their effec h, and ng variables products rsity of ned moleculo

DISCLAIMER NOTICE

1

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

PREFACE

This report contains the results of a study performed to determine the control of molecular weight distribution of the biopolymer pullulan produced by the fungus <u>Aureobasidium pullulans</u>. This study was funded under the U. S. Army Natick Research, Development and Engineering Center (Natick) Program Element 61101A on Biopolymer Production for Varied Military Applications, Project No. 1L161101A91A, Task No. 07, Work Unit No. 144. The work was undertaken from March 1986 to September 1987.

We thank Dr. Elwyn Reese and Dr. Mary Mandels for their expertise and support.

Citation of trade names in this report does not constitute an official endorsement or approval of the use of such items.

Acces	Ion for	1	
NTIS	CRAEL	+	
0110	TAB	ŏ	
Unand	iounded	ā	
Justifi	dation		
By			
District	etten f	* =	
A	variaciitity	in fes	
Dist	ANEN PA	a/ <i>a</i> /	
	Si 40	1.1	. !
Δ	ł		ł
[1-]			

*** SSSSS*******

TABLE OF CONTENTS

6.4.A. 16.4

	Page
PREFACE	iii
LIST OF ILLUSTRATIONS	ŕv
INTRODUCTION	۱
METHODS AND MATERIALS	3
Cultures Media Culture Conditions Processing and Purification Decolorization Procedure Treatment with Activated Charcoal Commercial "Mini-column" Differential Precipitation by Solvent Analytical Methods	3 3 4 4 5 5 5 5 5 5
RESULTS	6
Batch Culture Continuous Culture Extraction and Processing Purification Decolorization	6 7 7 7 8
DISCUSSION	8
CONCLUSIONS	10
REFERENCES CITED	11

۷

and the state of the state of the

NAME AND PARTICLE AND DESCRIPTION OF A D

Married Married

Kunner

and the second

Date and the

Ĵ

LIST OF ILLUSTRATIONS

Figure		Page
1.	Weight Average Molecular Weight Pullulan vs. Time.	13
2.	Percent Yield of Pullulan vs. Time.	13
3.	Pullulan Processing Conditions.	14
4.	GPC Chromatograms Showing the Effect of Purification on MW Distribution.	15
Table		
١.	Fungus Cultures Used for Pullulan Production	16
2.	Comparison of Cultures for Pullulan Elaboration	16
3.	Comparison of QM Cultures for Pullulan Elaboration	17
4.	Effect of Incubation Time on Pullulan Yield Using QM 5752 <u>Aureobasidium pullulans</u>	17
5.	Effect of Carbon Source on Pullulan Yield Using NRRL-Y 6220 <u>Aureobasidium pullulans</u>	18
6.	Effect of Nitrogen Source on Pullulan Yield Using NRRL-Y 6220 <u>Aureobasidium pullulans</u>	18
7.	Effect of Phosphate Concentration on Pullulan Yield Using NRRL-Y 6220 <u>Aureobasidium pullulans</u>	19
8.	Production of Pullulan by 10-Liter Batch Fermentation Using NRRL-Y 6220 <u>Aureobasidium pullulans</u>	20
9.	Effect of Incubation Time on Pullulan Yield Using NRRL-Y 6220 <u>Aureobasidium pullulans</u>	20
10.	Production of Pullulan by Continuous Fermentation Using NRRL-Y 6220 Aureobasidium pullulans	21
11.	Effect of Purification Procedures on the MW Distribution of Pullulan	22
12.	Percent Pigment Removed from Pullulan	23

1

c.

ومراجع والمراجع والمراجع والمراجع

S. J. C.

CONTROL OF MOLECULAR WEIGHT DISTRIBUTION OF THE BIOPOLYMER PULLULAN PRODUCED BY THE FUNGUS Aureobasidium pullulans

INTRODUCTION

Pullulan is a biopolymer, which is released into the extracellular medium as a secondary metabolite by the dimorphic fungus <u>Aureobasidium</u> <u>pullulans</u> (de Bary) Arnaud during the yeast-like phase of the growth cycle but not used during routine metabolism. 1,2 Pullulan is a linear α -D-glucan, predominantly 1,4-linked maltotriose with some maltotetraose units, connected by 1,6-linkages between the terminal glucosidic residues of the trisaccharide. 3,4

In this study, the term "biopolymer" refers to polymers synthesized by bacteria, fungi, or algae that are not part of the basic cellular structural or functional macromolecules common to most of these organisms. Thus, nucleic acids, carbohydrates and proteins produced during routine metabolism or for structural support in the cell are not considered under this definition of biopolymer. Biopolymers can be found intracellularly, extracellularly, or in the cell wall or membrane.

Extracellularly produced biopolymers are the most economical in terms of large-scale production due to the ease of purification, processing, and yield. General properties of many biopolymers include: an ability to form transparent films with low gas permeability, an ability to form an adhesive-like matrix, biodegradability, and excellent strength and flexibility characteristics. 5-7

Biopolymers offer a number of potential advantages over synthetic polymers, including selective superior physical/chemical properties, biological compatibility, potential for genetic manipulation, control over polymer characteristics, an ability to produce defined molecular weight (MW) fractions, and nutritive value as desired. In addition, regulatory approval may be easier to obtain due to the natural source of these materials. The Japanese have commercialized the use of pullulan, producing films and powders for use in the food industry, and with potential applications as adhesives, laminates, fibers, and fabrics. 5-14

The physiological requirements for pullulan production by <u>A. pullu-</u> lans have been studied extensively. Ueda <u>et al</u>.¹⁵ studied the production of the polysaccharide by 16 strains of growing cells over time, and monitored the pH, dry weight of the cells, and the residual sugar in the medium. They also compared various sugars as carbon sources for the production of the polysaccharide, and found the MW of the polysaccharide to be approximately 250,000, when determined by light-scattering. Catley, 16-21 and others also did extensive studies on various physiological requirements for production of the biopolymer, and the influence of these constituents on biosynthesis and elaboration.22-24

The vegetative cycle of <u>A</u>. <u>pullulans</u> was studied extensively by Ramos and Garcia Acha.²² They found that an inoculum containing a cell concentration of at least 2 X 10^7 cells/flask (150 mL) was required to maintain

blastospore (yeast cell) production. They also found that nitrate as a nitrogen source could cause the blastospores, after about 46 hours of incubation, to give rise to pseudomycelial forms with low viability that autolyzed as the culture aged. They found that chlamydospores were readily formed in a medium containing ammonium ion as a nitrogen source.

Catley 18,19 and Ono, et al. 23 found that the appearance of extracellular pullulan was not concomitant with an increase in cell mass, but that there was a lag in the rate of elaboration. Catley also studied the role of pH and nitrogen on the production of pullulan and found that the uptake of glucose at more acid pH was diverted to the synthesis of extracellular pullulan, and that high extracellular pH inhibited its production. He found that pullulan elaboration is dictated by depletion in nitrogen availability, and not carbon in the growth medium. 18 Ono et al. 23 found that maintaining a constant, controlled pH gave lower yields of pullulan than an uncontrolled culture. Lacroix et al. 24 described the development of a bistaged pH fermentation process, whereby the first stage of the fermentation was conducted at a very acidic pH (pH 2.0), then the pH was adjusted to a higher value (pH 5.5) to promote the production of pullulan. The amount of pullulan produced was determined by viscosity measurements. Molecular weights were not determined in their study.

Kato and Shiosaka described the effect of phosphate concentration on culture period and yield of pullulan.¹⁰ They showed a marked decrease in mean MW of pullulan when comparing various concentrations of phosphate at pH 5.5, pH 6.0, and pH 6.5. Phosphate concentrations of 0.2%-0.4% yielded high MW pullulan at the lower pH level. They reported that using hydro-lyzed starch as the carbon source resulted in yields of pullulan as high as 75\% or more.⁹

To summarize the nutrient requirements for pullulan elaboration as reported in the literature: hydrolyzed starch yielded the largest amount of pullulan;⁹ pH, nitrogen source, and nitrogen limitation affected pullulan elaboration,^{18,22} and pH and phosphate concentration affected the MW of pullulan.¹⁰ Culture incubation varied from a few hours to seven days, and most results were reported for batch studies. However, most of this information has not been assembled into a cohesive study. Only a few authors have reported the MW distribution of the pullulan elaborated in their studies.^{10,15,16} In most reports, total carbohydrate was determined by a colorimetic procedure, estimation of glucose by glucose oxidase reagent, or by the viscosity of the medium.^{15,23,24}

The objective of this study was twofold: first, to produce and characterize various MW's of pullulan, and second, to investigate the unique properties of pullulan for potential military applications, such as lower oxygen permeable films for food packaging, binders for material coatings, high performance fibers, nonwoven fabrics, derivatization for chemical agent applications, and edibility/digestibility properties for survivability applications. The first objective is the subject of this report.

Cultures

Nine strains of <u>Aureobasidium pullulans</u>, <u>A. pullulans</u> var. <u>melani-genum</u>, or <u>A. mansonii</u> (Table 1) were evaluated in preliminary studies to compare pullulan elaboration. Strain NRRL-Y 6220 <u>A. pullulans</u> was chosen for further studies, based on product color and yield, when compared with the other cultures (Tables 2, 3, and 4). All cultures were maintained on potato dextrose agar slants.

Media

The following media were used, in grams per liter of distilled H₂O: (A) Ramos and Garcia Acha,²² K₂HPO₄, 1.0; KCl, 0.5; MgSO₄ $^{\circ}$ 7H₂O, 0.5; NaNO₃, 2.0; FeSO₄ $^{\circ}$ 7H₂O, 0.01; (NH₄)₂SO₄, 0.6; pH 5.3. (B) Ueda <u>et al.</u>,¹⁵ K₂HPO₄, 5.0; NaCl, 1.0; MgSO₄ $^{\circ}$ 7H₂O, 0.2; yeast extract (Oifco, Detroit, MI), 0.4; pH 5.5 and 6.0. (C) Kato and Shiosaka,¹⁰ K₂HPO₄, 2.0; NaCl, 2.0; MgSO₄ $^{\circ}$ 7H₂O, 0.4; FeSO₄ $^{\circ}$ 7H₂O, 0.01; peptone, 2.0 (Difco); pH 5.4. Preliminary studies were performed to determine optimum sugar concentration (10%). The 10% sucrose (commercial grade) solution was prepared separately, and added aseptically after autoclaving, per liter of final volume.

Culture Conditions

For batch cultures, an Aquaferm® Water Bath Shaker (New Brunswick Scientific Co., Inc., Edison, NJ), temperature 25°C to 28°C, was shaken at 150 and 120 rpm. An Environ-Shaker® (Lab-Line Instruments, Inc., Melrose Park, IL), temperature 26°C to 27°C, was shaken at 120 rpm. A Model G25-R Incubator-Shaker(New Brunswick), temperature 26 $^{\circ}$ C \pm 1 $^{\circ}$ C, was shaken at 125 rpm. A BioFlo Model C30 Fermentor® (New Brunswick), temperature 26°C, was set at an agitation rate of 300 rpm, and aeration at 0.5 L/min. Media flow-rates were controlled with a Rabbit Peristaltic Pump® (Rainin Instrument Co., Inc., Woburn, MA) for the continuous fermentation studies. A Magnaferm Model MA-114 Fermentor® with an Automatic pH Controller and Pump Module (New Brunswick) with a Constant Speed Controller (Cole-Parmer Instrument Co., Chicago, IL) was used for the 10-liter studies and was set at a temperature of 26°C, an agitation rate of 1,200 rpm, and a variable oxygenation rate. A Model RC-5 Sorvall® Refrigerated Centrifuge (du Pont Instruments, Wilmington, DE) with a GSA rotor, 23,430 X g for 20 minutes. was used to remove the cells.

In preliminary studies to determine optimum growth conditions for pullulan elaboration, cell suspensions were made of each of the strains of <u>A. pullulans</u>. Ten mL of sterile distilled water was poured onto an agar slant culture, and growth was scraped from the agar surface using a sterile inoculating loop. Aliquots of the suspension were used to inoculate duplicate or triplicate 250 mL DeLong® flasks containing 25 mL or 50 mL of sterile medium. After culture comparisons were studied, all further work with shake flasks used 50 mL/250 mL DeLong flask with 2% inoculum, or 500 mL medium per 2800 mL Fernbach flask and 2% inoculum. Inoculation of batch and continuous fermentations used two- or three-day old cell suspensions grown on the medium being studied.

Processing and Purification

The culture medium was neutralized using 1 N NaOH. Sometimes, the medium was diluted with concentrated ROCCAL II® (alkyl dimethyl benzyl ammonium chloride, EPA Registration No. 675-30-AA, Sterling Drug, Inc., Montvale, NJ) to a final volume of 1% ROCCAL II, then centrifuged at 13,180 X g to 23,430 X g for 20 min to remove the cells. The pullulan was then precipitated from the supernatant, using two volumes of acetone for each volume of supernatant, while stirring the suspension to eliminate lumping. After precipitation, the acetone was decanted, the precipitate was washed several times with acetone, and then filtered over vacuum. The pullulan was then dried over CaSO₄ in a desiccator.

Purification of the isolated pullulan was attempted, using two sixhour Soxhlet extractions. The first extraction was with 75% ethanol, 25% water, and the second was with 100% acetone. The first extraction solvent was used so as not to solubilize the pullulan, yet remove lower MW watersoluble contaminants. The dried pullulan was then extracted again with the second solvent. This procedure did not remove particulate impurities, so an alternative, less labor-intensive purification procedure was tried.

After the centrifugation of the culture medium, the supernatant containing the pullulan was purified using a Tangential Flow Filtration Unit with a Pellicon® Model Cassette System OM-141 (Millipore Corp., Bedford, MA). The pullulan solution was first passed through a $0.45\,\mu$ m cassette to remove particulate impurities. Next, the filtrate was passed through a cassette with a 30,000 MW cut off. The selectively permeable system retained the higher MW biopolymer but allowed the lower MW impurities to pass through. The concentrated retentate was then precipitated with acetone and processed as described above. Occasionally, a precipitate formed in the concentrated retentate, which was then filtered through the $0.45\,\mu$ m cassette again before the solution was acetone-precipitated.

Decolorization Procedure

A 1% (w/v) pigmented pullulan solution was treated by a variety of methods in an attempt to remove the unwanted color. The amount of decolorization was monitored by absorbance at 280 nm on a Lamda 3 UVvisible spectrophotometer® (Perkin-Elmer, Oak Brook, IL) before and after treatment. An unpigmented pullulan solution was used as a reference value, and samples prior to treatment served as controls. However, the absorbance of the pigmented control solutions at 1% was off-scale. Subsequently, all control and treated samples were diluted to 0.5% prior to reading the absorbance at 280 nm (0.681 units). The different treatment methods were:

Treatment with Activated Charcoal

Ten mL of a 1% pullulan solution was run through a column of activated charcoal (Sigma Chemical Co., St. Louis, MO) with either 1:1 (w/w) ratio of 14 mesh:20-40 mesh, or 1 g 20-40 mesh at a number of pH values. After the optimal pH was determined to be 8.9, 50 mL of a 1% solution at pH 8.9 was treated with 1 g fine charcoal powder (mesh size unknown), and shaken overnight at ambient temperature on a wrist-action shaker (Burrell Corp., Pittsburgh, PA).

Commercial "Mini-column"

Ten mL of a 1% pullulan solution, pH 6.9, was passed via syringe into three C-18 Sep-Pak® mini-columns (Waters Chromatography Oiv., Millipore Corp., Milford, MA).

Differential Precipitation by Solvent

Ten mL of a 1% pullulan solution, pH 8.9, was treated with the following solvent: a minimal amount of acetone necessary for pullulan precipitation, 4 mL (28.5% v/v); a mixture of 5 mL acetone and 5 mL toluene. After treatment, the precipitate was centrifuged and resolubilized to a 1% w/v) concentration.

Analytical Methods

Determination of pullulan weight average MW distribution and dispersity was performed on a Waters 150-C ALC/GPC Gel Permeation Chromatograph® (Waters Chromatography Div., Millipore Corp., Milford, MA). The system was calibrated using a series of polysaccharide standards ranging in MW between 12,200 and 853,000 (Polymer Laboratories Ltd., Church Stretton, UK). The standards were run through three Bio-Gel® (Bio-Rad Laboratories, Richmond, CA) columns; a TSK-60, separating in the 40,000 to 8,000,000 range, and two TSK-50 columns, effective from 4,000 to 800,000. The TSK-60 column preceded the two TSK-50 columns in line. A third order calibration curve was generated correlating MW distribution with retention time on the columns. The instrument automatically interpolated the calibration curve and these calculations were used to integrate the area under the sample MW distribution curve to determine weight average MW and dispersity. Standards and samples were solubilized at 0.1% in the carrier solvent, which consisted of an aqueous solvent of sodium acetate, 0.1 M; acetic acid, 2% (v/v), and sodium azide, 0.05% (w/v). The instrument was adjusted to 1.0 mL/minute flow-rate. The injection volume was 200 to 300 μ L and the run time was 40 minutes.

RESULTS

Batch Culture

A series of preliminary experiments were conducted, using nine strains of the black yeast <u>Aureobasidium pullulans</u>, <u>A. pullulans</u> var. <u>melanigenum</u>, or <u>A. mansoni</u> (Table 1). Strains of <u>A. pullulans</u> produce the biopolymer pullulan which is released into the extracellular medium. Initially, the medium of Ramos and Garcia Acha²² containing 5% sucrose was used to compare pullulan elaboration among the strains (Table 2). A five-day incubation period at a temperature of 28°C was chosen, based on previous observations of growth conditions of the microorganism on solid media. As shown in Table 2, the strains of <u>A. pullulans</u> varied in product color, yield, and MW distribution. The medium of Ueda, <u>et al.</u>, 15 and that of Kato and Shiosaka¹⁰ were also evaluated, and the strain of NRRL-Y 6220 was chosen for further studies based on product yield and color. Differences among strains are also illustrated in Table 3. The effect of length of incubation on MW distribution and yield of pullulan obtained from QM 5752 is shown in Table 4.

Figures 1 and 2 illustrate the effect of incubation time on pullulan yield and MW distribution using NRRL-Y 6220. The highest MW distribution product was attained on the first day of incubation, but the greatest yield was afforded after seven days of incubation. These results agree with those reported by Kato and Shiosaka; however, they did not evaluate culture periods of less than four days.

The effects of carbon and nitrogen sources, and phosphate concentration on pullulan yield are shown in Tables 5, 6, and 7, using NRRL-Y 6220 and the medium of Kato and Shiosaka. Fructose used as a carbon source resulted in the highest MW distribution of pullulan, but the use of sucrose yielded a greater amount of product (Table 5). The use of soluble starch resulted in the highest yield of pullulan; however, the MW distribution of the product was relatively low. Various nitrogen sources were evaluated for use in pullulan production. A combination of peptone and ammonium sulfate gave the highest MW distribution of product, and yields varied from 5% to 9%. The use of urea, and urea with ammonium sulfate resulted in a high MW distribution of product, and yields were between 10% and 11% (Table 6).

As can be seen in Table 7, the phosphate concentration, within the range evaluated, seemed to have little effect on the MW distribution or the product yield, at least during the time period studied. Kato and Shiosaka reported, however, that using a medium containing glucose, phosphate concentration and initial pH value affected the yield, and MW distribution of pullulan. Their culture period was from four to seven days, whereas a time period of from two to three days was used in this study. We found that length of incubation and initial pH had more of an effect than phosphate concentration (see Table 10).

Table 8 shows the production of pullulan by 10-liter batch fermentation for two-day periods, using a 1% inoculum. The weight average MW was variable, but within the 2 to 3 million range, averaging about 2.2 million. For batches 4 and 7 alone, the weight average MW dropped to between 1.6 and 1.7 million. A 10-liter batch fermentation is shown in Table 9, where sampling was done from the fourth through the seventh day. A steady decline in MW was observed, corroborating the results shown in Fig. 1, although lower MW distribution pullulan was obtained from the flask study. Pigmentation and oxygenation were problems that occurred with the 10-liter fermentation studies. One factor that may have affected the results was the use of 1% inoculum for the 10-liter fermentations. Ramos and Garcia Acha²² have reported that the initial concentration of cells used in the inoculum does have an effect on the amount of pullulan produced and the appearance of pigmentation in the culture. In the smaller batch studies, a 2% inoculum was always used, and pigmentation was not produced.

Continuous Culture

The production of pullulan by continuous fermentation is shown in Table 10. A modified Kato and Shiosaka medium (0.1% phosphate) with an aeration rate of 0.5 L/min, an agitation rate of 300 rpm, temperature of 26°C to 27°C, and a variable flow-rate was run for a total of seven days. After an initial culture incubation of two days, the media flow was begun. Yields were low, but the weight average MW of the product was 4.3 million. The use of urea and ammonium sulfate, and unmodified Kato and Shiosaka medium, are also shown in Table 10, as is the effect of varying the flow-rate of the medium. Weight average MW held within the 3 to 4 million range. Only after an extended period of cultivation (11 days) with a flow-rate of 15 to 20 mL/h was there a significant decrease in MW distribution. At this point, the culture began to decline, forming pigmented cells, and the fermentation was halted.

Extraction and Processing

The method of Ueda et al.¹⁵ was first used to process the biopolymer. This involved diluting the culture medium with an equal amount of distilled water, neutralizing with 4% NaOH, and centrifuging at 7,000 X g for 15 min. The supernatant was diluted with an equal amount of 95% ethanol, then refrigerated overnight at 5°C. The mixture was centrifuged at 2,500 X g for 15 min.[#] The precipitate was washed twice with 55% ethanol, then washed with absolute ethanol and twice with ether. The product was then dried. A simpler and easier method was devised (Fig. 3), using acetone, eliminating the second centrifugation step, and the petroleum ether drying. The use of ROCCAL II aided the processing of the culture medium and helped remove the discoloration in the older cultures. Acetone-precipitated polymer yielded a fine white powder when all excess moisture was removed.

Purification

The effect of further purification, using Soxhlet extraction and/or tangential flow filtration on MW distribution, is shown in Table 11. The GPC chromatograms are shown in Fig. 4. The initial weight average MW of

the sample was 2.3 million. Tangential flow filtration was more effective than Soxhlet extraction in removing contaminants, as can be seen by the size of the monomer peaks in Fig. 4. All purification methods lowered the MW distribution, and reduced the size of the monomer peak.

Decolorization

Table 12 summarizes the variety of methods that were tried in order to remove unwanted color from pullulan solutions. The amount of decolorization was monitored by absorbance at 280 nm on a UV-visible spectrophotometer. Treatment by activated charcoal on a column at various pH values yielded a product that removed 57.8% of the color at pH 8.9. The amount of pigment removed increased with increasing pH. However, only 42.5% of the color was removed at pH 10.9. Using fine activated charcoal (mesh size unknown), and shaking the solution overnight increased the surface area and the amount of pigment in contact with the charcoal. The percent decolorization was increased to 62.2%.

Treatment of the pigmented solution by passing it over three C-18 columns removed 50.3% of the pigment. The disadvantage of using this method was the long elution time needed.

The use of solvents met with mixed results. The acetone/toluene mixture caused absorbance of the resolubilized pullulan to increase to 1.153 units. The acetone/pullulan solution (28.5% v/v) removed 55.5% of the pigment.

The absorbance of an unpigmented pullulan solution was also determined. It yielded 0.191 units, far below that of the pigmented sample tested (0.681 units). When this sample was filtered over a 0.45 μ m filter, the absorbance decreased further to 0.094 units.

DISCUSSION

In order to determine the best culture for pullulan production, nine strains of <u>Aureobasidium pullulans</u> were examined. Of these strains, only QM 3090 had been reported previously as being used for the study of pullulan production (cited erroneously as QM 3092), 17-19 except for the QM strains used by Dr. E. T. Reese of this Center (unpublished data, 1965). Tables 1, 2, and 3 detail the comparison of these strains. Three of the cultures produced an acid-soluble glycan, probably that first fractionated by Bouveng <u>et al. 25, 26</u> as discussed by Catley. ¹⁸, 20 The fraction was not investigated further in this study. The criteria used in selecting the best culture were: product color, yield, and MW distribution. Both cultures of QM 5752 and NRRL-Y 6220 produced a white product, but the MW distribution of QM 5752 was low when compared over time (Table 4). The culture of NRRL-Y 6220 also produced a low MW product initially, but when the culture medium was changed, greater yields and higher MW distributions were obtained (Figs. 1 and 2).

Studies of carhon and nitrogen sources, and phosphate concentration, shown in Tables 5, 6, and 7, determined that 10% sucrose was the best carbon source, based on availability and economy, although the use of fructose produced the highest MW product, and soluble starch gave the best yield of low MW product. Combinations of peptone, ammonium sulfate, and urea were the best nitrogen sources evaluated, in terms of yield and MW distribution. Phosphate concentrations at pH 5.4 seemed to have little effect on MW distribution, at least during the incubation periods studied, in contrast to those reported by Kato and Shiosaka, as mentioned previously.

Ten-liter batch fermentation results are shown in Tables 8 and 9. In these studies, a 1% inoculum was used, in contrast to the smaller flask studies. The weight average MW was in the 2.2 to 2.8 million range, with about a 12% yield for the 10-liter studies (Table 8). With the smaller flask studies, weight average MW was in the 4 million range and yield was 15%. Pigmentation problems occurred with the large batch studies, and again, this can be attributed to the use of the smaller amount of inoculum.

The production of pullulan by continuous fermentation is shown in Table 10. Both 0.1% and 0.2% dipotassium hydrogen phosphate, and nitrogen sources of peptone, ammonium sulfate, and urea were studied, as well as two initial pH levels. After incubation of the culture for two days, the medium was dispensed into the fermentor jar at various flow-rates. With a flow-rate of $\simeq 50$ mL/h, a high MW product was obtained using 0.1% phosphate, although yields were low. Changing the medium to urea and ammonium sulfate affected both the NW distribution and the yield of the product when a higher flow-rate was used. When 0.2% phosphate was used at two different pH levels, MW distribution remained high, even at relatively high flow-rates. When the flow-rates were decreased, the turnover rate correspondingly decreased, and the cell mass and the extracellular polymer increased. The culture began to decline and hecame pigmented. This was probably due to lack of oxygen availability and the viscosity of the fermentor contents.

The processing procedure used in this study is shown in Fig. 3. The use of ROCCAL II (suggested by Dr. E. T. Reese, unpublished data) in processing the polymer was with reference to the work of Scott 27 and that of Bouveng et al. 25,26 who used long-chain quaternary ammonium compounds to precipitate acid-soluble glycans and β -linked glucans from α -linked glucans. The neutral α -linked glucans remain in solution and after the precipitated products are removed by centrifugation can then be precipitated by solvents such as ethanol or acetone. Very little of the quaternary compound precipitates with the polymer, and this compound can be removed by solubilizing the polymer in water and re-precipitation. Fuller's earth or activated carbon can also be used to adsorb the quaternary ammonium compound from the solubilized polymer; also, these substances aid in removing the discoloration products excreted into the medium by older cultures, 7.9, 10, 27

In summary, defined MW fractions of pullulan were produced by varying fermentation conditions such as constituents of the culture medium, pH, length of incubation, etc. Pullulan biopolymer products with weight

average MW from 100 thousand to 4 million have been produced. The appropriate conditions were then established to produce sufficient quantities of low (below 500 thousand weight average MW), medium (1 to 2 million weight average MW), and high (above 2 million weight average MW) molecular weight pullulan products. Films and fibers, and chemical derivatives made from these different preparations are now under evaluation in terms of physical/chemical characterization.

CONCLUSIONS

In this study, fermentation and processing conditions were characterized for the production of the biopolymer pullulan. Parameters can be controlled so that quantities of defined MW product can be produced. The evaluation of physical/chemical properties of pullulan, and the investigation of specific military applications, such as low gas permeability films for food packaging and high performance fibers, has now begun.

REFERENCES CITED

- 1. Hoog, G. S. de, and E. J. Hérmanides-Nijhof, The Black Yeasts and Allied Hyphomycetes, Studies in Mycology 15, 222 pp., Centraalbureau voor Schimmelcultures, Baarn, Netherlands, 1977.
- Romano, A. H., Chapter 7, Dimorphism, p. 181-209, <u>in</u> The Fungi, Volume II, The Fungal Organism, Edited by G. C. Ainsworth and A. S. Sussman, Academic Press, New York, 1966.
- Sandford, P. A., and J. Baird, Chapter 7, Industrial Utilization of Polysaccharides, p. 412-490, in The Polysaccharides, Volume 2, Edited by G. O. Aspinall, Academic Press, New York, 1983.
- Gorin, P. A. J., and E. Barreto-Bergter, Chapter 6, The Chemistry of Polysaccharides of Fungi and Lichens, p. 365-409, <u>in</u> The Polysaccharides, Volume 2, Edited by G. O. Aspinall, Academic Press, New York, 1983.
- 5. Yuen, S., Pullulan and Its Applications, Process Biochem. 22: 7-9 (1974).
- 6. Yuen, S., Pullulan and Its New Applications (unpublished data, Hayashibara Biochemical Labs., Inc., Japan, 1974).
- 7. Sugimoto, K., Pullulan: Production and Applications, Fermentation and Industry (Hayashibara Biochemical Labs., Inc., Japan, undated).
- 8. Pullulan, Features and Applications (unpublished data, Hayashibara Biochemical Labs., Inc., Japan, undated).
- 9. Kato, K., and M. Shiosaka, United States Patent 3,827,937, Method of Producing Pullulan (1974).
- 10. Kato, K., and M. Shiosaka, United States Patent 3,912,591, Process for the Production of Pullulan (1975).
- 11. Kamiya, S., Personal Communication, 13 January, 1987.
- 12. Kamiya, S., Personal Communication, 16 May, 1987.
- -Sumitomo Chemical Company, Ltd., and Hayashibara Biochemical Laboratories, Inc., Japan, British Patent 1,496,017, Process for Producing Pullulan Fibres (1977).
- 14. Domoto, M., and K. Tsuji, United States Patent 4,092,454, Novel Nonwoven Fabric and Method for Manufacturing Same (1978).
- 15. Ueda, S., K. Fujita, K. Komatsu, and Z. Nakashima, Polysaccharide Produced by the Genus <u>Pullularia</u>, I. Production of Polysaccharide by Growing Cells, Appl. Microbiol. 11: 211-215 (1963).

REFERENCES CITED (Cont'd)

- Catley, B. J., Pullulan, a Relationship Between Molecular Weight and Fine Structure, FEBS Letters 10: 190-193 (1970).
- Catley, B. J., Utilization of Carbon Sources by <u>Pullularia pullulans</u> for the Elaboration of Extracellular Polysaccharides, Appl. Microbiol. 22: 641-649 (1971).
- Catley, B. J., Role of pH and Nitrogen Limitation in the Elaboration of the Extracellular Polysaccharide Pullulan by <u>Pullularia pullulans</u>, Appl. Microbiol. 22: 650-654 (1971).
- Catley, B. J., The Rate of Elaboration of the Extracellular Polysaccharide, Pullulan, during Growth of <u>Pullularia pullulans</u>, Jour. Gen. Microbiol. 78: 33-38 (1973).
- 20. Catley, B. J., Chapter 4, Pullulan Synthesis by <u>Aureobasidium</u> <u>pullulans</u>, p. 69-84, <u>in</u> Microbial Polysaccharides and Polysaccharases, Edited by R. C. W. Berkeley, G. W. Gooday and D. C. Ellwood, Special Publications of the Society for General Microbiology 3, Academic Press, New York, 1979.
- 21. Catley, B. J., The Extracellular Polysaccharide, Pullulan, Produced by <u>Aureobasidium pullulans</u>: A Relationship between Elaboration Rate and Morphology, Jour. Gen. Microbiol. 120: 265-268 (1980).
- 22. Ramos, S., and I. Garcia Acha, A Vegetative Cycle of <u>Pullularia</u> <u>pullulans</u>, Trans. Br. Mycol. Soc. 64: 129-135 (1975).
- Ono, K., N. Yasuda, and S. Ueda, Effect of pH on Pullulan Elaboration by <u>Aureobasidium pullulans</u> S-1, Agric. Biol. Chem. 41: 2113-2118 (1977).
- 24. Lacroix, C., A LeDuy, G. Noel, and L. Choplin, Effect of pH on the Batch Fermentation of Pullulan from Sucrose Medium, Biotechnol. Bioengineer. 27: 202-207 (1985).
- Bouveng, H. O., H. Kiessling, B. Lindberg, and J. McKay, Polysaccharides Elaborated by <u>Pullularia pullulans</u>. Part I. The Neutral Glucan Synthesized from Sucrose Solutions, Acta Chem. Scand. 16: 615-622 (1962).
- Bouveng, H. O., H. Kiessling, B. Lindberg, and J. McKay, Polysaccharides Elaborated by <u>Pullularia pullulans</u>. Part III. Polysaccharides Synthesized from Xylose Solutions, Acta Chem. Scand. 17: 1351-1356 (1963).
- Scott, J. E., Aliphatic Ammonium Salts in the Assay of Acidic Polysaccharides from Tissues, pp. 145-196, in Methods of Biochemical Analysis, Vol. VIII, edited by D. Glick, Interscience, New York, 1960.

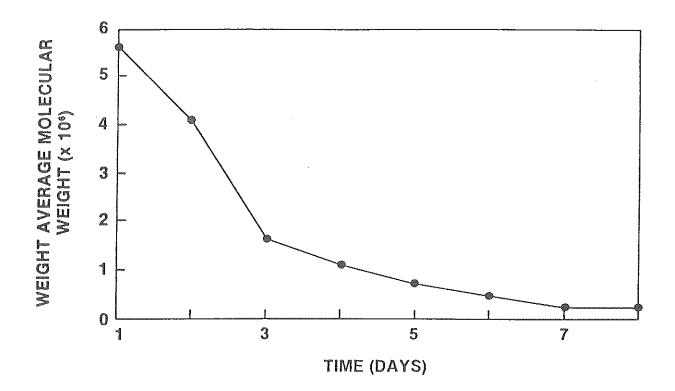
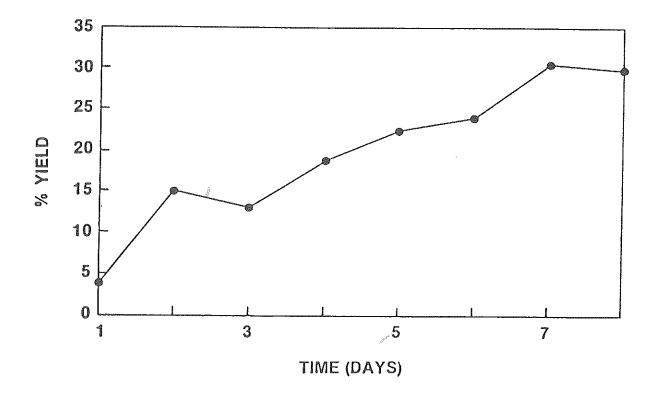
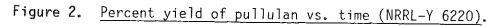




Figure 1. Weight average molecular weight of pullulan vs. time.

Culture Medium Neutralized w/1N NaOH

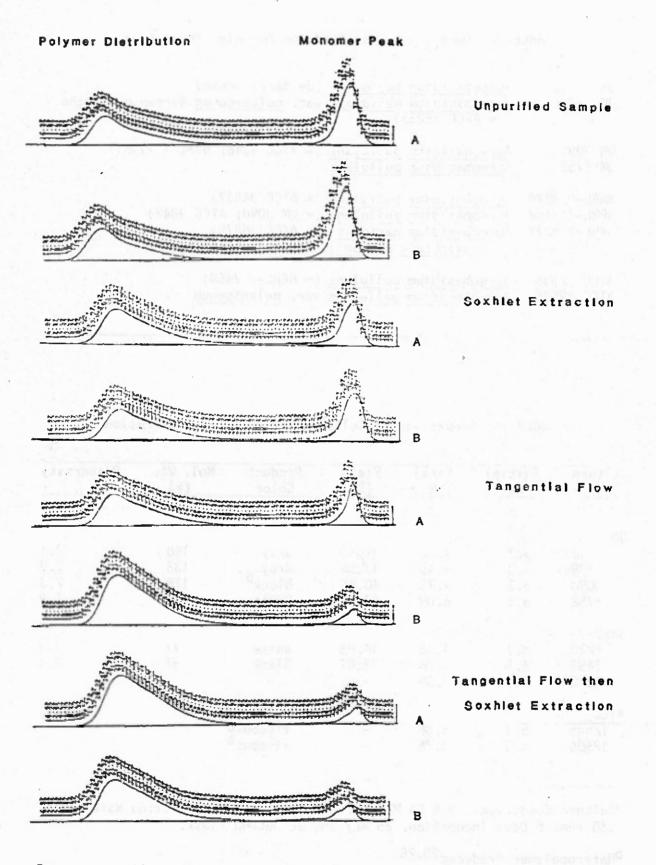
Dil. w/ROCCAL (1%)

Centrifuge 23,430 X g, 20 min

Supernatant

Dil. 1:2 w/Acetone w/Stirring

Let Stand at Room Temperature or Refrigerate Overnight at 5°C


Decant Water/Acetone Solution

Wash Precipitate Several Times With Acetone

Filter over Vacuum

Dry over CaSO₄ in a Desiccator

Figure 3. Pullulan processing conditions.

Figure 4. <u>GPC chromatograms showing the effect of purification</u> on <u>MW distribution</u>.

QM 72c QM 279c	<u>Aureobasidium pullulans</u> (de Bary) Arnaud <u>Aureobasidium pullulans</u> var. <u>melanigenum</u> Hermanides-Nijhof (= ATCC 15233)
QM 3090	<u>Aureobasidium pullulans</u> (= ATCC 9348; NRRL-Y 7498)
QM 5752	<u>Aureobasidium pullulans</u>

TABLE 1. Fungus Cultures Used for Pullulan Production

NRRL-Y 6220 NRRL-Y 7498 NRRL-Y 6272	Aureobasidium pullulans Aureobasidium pullulans Aureobasidium mansonii [= Exophiala mansonii	(= QM 3090; ATCC 9348) (= ATCC 36276)
---	---	--

Aureobasidium pullulans (= NRRL-Y 7469) ATCC 12535 ATCC 12536 Aureobasidium pullulans var. melanigenum

Culture No.	Initial pH	Final pH	Yield (%)	Product Color	Mol. Wt. (k)	Dispersity
QM						
72c	5.3	4.42	31.50	Gray	168	2.1
279c	5.3	4.45	42.56	Gray _	133	2.9
3090	5.3	4.75	40.66	Black ^D	118	2.3

White

White

Black

Viscousb

Viscousb

138

77

57

_

1.9

1.7

2.1

47.30

44.03

33.07

TABLE 2. Comparison of Cultures for Pullulan Elaboration^a

^aCulture Conditions: R & GA Medium, 5 % Sucrose, 28°C, Shaking Water Bath, 150 rpm, 5 Days Incubation, 25 mL/ 250 mL DeLong Flask.

bHeteropolymer Produced 25,26

5.3

5.3

5.3

5.3

5.3

5.3

6.09

4.16

4.26

6.39

5.86

3.26

5752

6220

7498

6272

12536

NRRL-Y

ATCC 12535

Culture	Initial	Final	Yield	Mol. Wt.	Dispersity
No.	pH	pH	(%)	(k)	
72c	5.46	3.57	29.30	137	2.4
279c	5.46	3.67	19.40	653	2.5
3090	5.46	3.47	6.79 ^b	1803	2.0
5752	5.46	5.93	31.17	94	2.3

TABLE 3. Comparison of QM Cultures for Pullulan Elaboration^a

^aCulture Conditions: K & S Medium, 10 % Sucrose, 26.5°C, 120 rpm, Environ-Shaker, 4 Days Incubation, 50 mL/250 mL DeLong Flask, 2% Inoculum.

bHeteropolymer Produced 25,26

TABLE 4.	Effect of Incubation Time on Pullulan Yield	
	Using QM 5752 <u>Aureobasidium pullulans</u> *	

Culture Period	Initial pH	Final pH	Yield (%)	Mol. Wt. (k)	Dispersity
3	5.4	5.51	13.68	58.8	1.1
4	5,4	5.26	19.87	47.5	1.6
5	5,4	4,64	22.45	28.0	1.8
6	5_4	4.84	21.10	21.1	1.6

*Culture Conditions: Mod. K & S Medium, 10 % Sucrose, 27°C, Environ-Shaker, 75 rpm for 3 Days, 120 rpm 4th Day, unshaken 5th Day, 120 rpm 6th Day, 50 mL/250 mL DeLong Flask, 2% Inoculum.

Carbon Source (10%)	Initial pH	Final pH	Yield (%)	Mol. Wt. (k)	Dispersity
Fructose Sucrose Maltose Corn Syrup Dextrose	5.44 5.44 5.44 5.44 5.44 5.44 5.44	3.76 3.69 4.08 3.85 3.91	27.0 34.4 25.4 29.3 23.3	1122 895 881 840 563	2.5 2.4 2.1 3.3 1.8
Lactose Sol. Starch Dextrin	5.44 5.44 5.44 5.44	3.79 4.24 2.99	5.8 70.3 21.6	518 137 9	1.6 1.4 1.1

TABLE 5.	Effect of Carbon Source on Pullulan Yield
	Using NRRL-Y 6220 <u>Aureobasidium pullulans</u> *

*Culture Conditions: K & S Medium, 0.2% K2HP04, 26.5°C, 120 rpm Environ-Shaker, 4 Days Incubation, 50 mL/250 mL DeLong Flask, 2% Inoculum.

Nitrogen Source (%)	Initial pH	Final pH	Yield (%)	Mol. Wt. (k)	Dispersity
NaNO ₃ (0.2)	5.31	6.67	2.00	78	1.1
NaNO3 (0.2); Y. Ext. (0.25)	5.30	6.49	5.30	85	1.4
Peptone (0.2)	5.30	3.64	6.30	1935	2.3
Peptone (0.2); (NH ₄) ₂ SO ₄ (0.01)	5,50	3.50	9.00	1384	2.8
Peptone (0.1); (NH ₄) ₂ SO ₄ (0.01)	5 . 31	3.27	4.95	2940	4,9
(NH ₄) ₂ SO ₄ (0.14)	5.30	2.26	1.17	-	-
Urea (0.3)	5.30	4.93	10.20	2061	2.6
Urea (0.3); (NH ₄) ₂ SO ₄ (0.14)	5,32	5.08	11.02	1898	2.7
Y. Ext. (0.25)	5.31	4.16	18.80	859	6.7

TABLE 6.	Effect of Nitrogen Source on Pullulan Yield
	Using NRRL-Y 6220 <u>Aureobasidium pullulans</u> *

*Culture Conditions: K & S Medium w/o Nitrogen, 10 % Sucrose, 26.5°C, Environ-Shaker 120 rpm, 3 Days incubation, 50 mL/250 mL DeLong Flask, 2% Inoculum.

Culture Period	Phosphate Conc. (%)	Initial pH	Final pH	Yield (%)	Mol. Wt. (k)	Dispersity
2 Days	K ₂ HPO ₄ 0.1 0.2 0.3 0.4 0.5	5.42 5.42 5.42 5.42 5.42 5.42	3.43 3.65 3.58 3.88 3.93	8.50 11.10 11.20 13.70 14.00	2704 2659 2646 2165 2477	2.0 2.1 1.8 2.3 2.2
2 Days	KH ₂ PO ₄					
	0.2	5.42	3.50	9.20	2608	2.1
3 Days	K ₂ HPO ₄					
	0.1 0.2 0.3 0.4 0.5	5.42 5.42 5.42 5.42 5.42 5.42	3.65 3.79 3.82 3.97 4.10	11.60 14.40 13.10 16.20 18.40	1968 1551 1629 1369 1169	2.2 2.3 2.2 2.3 2.4
3 Days	KH2P04					
	0.2	5,42	3.77	11.00	1933	3.7

TABLE 7. Effect of Phosphate Concentration on Pullulan YieldUsing NRRL-Y 6220 Aureobasidium pullulans*

*Culture Conditions: Kato & Shiosaka Medium, 10% Sucrose, 26°C - 26.5°C, 125 rpm New Brunswick Shaker, 50mL/250 mL DeLong Flask, 2% Inoculum.

10250

,

Batch Oxygenation No.		Agitation (rpm)	ү 9	ield (%)	Mol. Wt. (k)	Dispe	ersity
1	45 (5L/min)	1200	113	11.3	2875		2.5
3	50	1200	75	7.5	2163		1.5
4	50	1200	100	10.0	1752		1.4
5b.c	60	1200	188	18.8	2425		2.4
6 b .c	60	1200	150	15.0	2416		1.9
7 b ,c	60	1200	209	20.9	1663		1.6
8 ^c	150	1200	-	-	2399		1.5

TABLE 8. Production of Pullulan by 10-Liter Batch Fermentation Using NRRL-Y 6220 <u>Aureobasidium pullulans</u>^a

^aCulture Conditions: Kato & Shiosaka Medium; 10% Sucrose; Temperature 26°C ±1°C, Two-Oay Incubation, 1% Two-Oay-Old Inoculum.

bPigment Produced.

^CNew Culture Transfer.

TABLE 9.	Effect of Incubation Time on Pullulan Yield
	Using NRRL-Y 6220 Aureobasidium pullulans*

Incubation (Oays)	0xygenation	Agitation (rpm)	Yield g (%)	Mol. Wt. (k)	Oispersity
4	45 (5L/min)	1200	-	2262	2.0
5	45	1200	-	2013	2.5
6	45	1200	-	1586	1.6
7	45	1200	-	1438	2.5

*Culture Conditions: Kato & Shiosaka Medium; 10% Sucrose; Temperature 26°C ±1°C, 10-Liter Batch Fermentation, 1% Inoculum.

Medium	Initial pH	Final pH	Volume (Product)	Flow-Rate (mL/h)	Ý _9_	ie1d (%)	Mol. Wt. (k)	Disp.
0.1% K ₂ HP0 ₄	.5.4	3.44	·10.19 L	±50	43.5	(4.3)	4312	2.4
Urea/ ^b (NH ₄) ₂ SO	4 5.4	3.07	9.53 L	±120	20.0	(2.1)	2190	1.5
0.2% K2 ^{HPO} 4	6.0	4.01	3.57 L	100	9.0	(2.5)	4404	2.3
0.2% K ₂ HP0 ₄	6.0	4.68	5.88 L	75	27.0	(4.6)	3639	2.6
0.2% K ₂ HP0 ₄	6.0	4.47	1.33 L	Ferm.	11.1	(8.3)	2986	3.8
0.2% K ₂ HP0 ₄	5.4	3.70	0.53 L	15	4.1	(7.7)	4223	3.6
0.2% K ₂ HPO ₄	5.4	3.56	1.46 L	15	17.5	(11.9)	4115	3.0
0.2% K ₂ HPO ₄	5.4	3.37	0.85 L	15	9.2	(10.7)	3247	2.7
0.2% K ₂ HPO ₄	5.4	3.79	1.45 L	20	23.9	(16.3)	1547	1.7
0.2% K ₂ HPO ₄	5.4	4.05	2.14 L	20,60 ^{°,} Ferm.		(15.4)	1258	1.8

TABLE 10. Production of Pullulan by Continuous FermentationUsing NRRL-Y 6220 Aureobasidium pullulansa

^aCulture Conditions: Modified K & S Medium: 10% Sucrose; Aeration 0.5 L/min; Agitation, 300 rpm; Temperature 26°C ± 1°C; Flow-Rates Variable, 2% Inoculum.

^bUrea 0.03%, (NH₄)₂SO₄ 0.014%.

^CAeration 0.6 L/min, Agitation 400 rpm; 20 mL/h, 1 Oay.

^dAeration 1.0 L/min, Agitation 400 rpm; 60 mL/h, 1 Oay.

Mol. Wt. (k)	Dispersity
2305 2296	1.97 2.18
1759 1796	2.20 2.02
tion	
1778 1727	1.95 1.80
1644 1639	1.89 1.94
	(k) 2305 2296 1759 1796 tion 1778 1727 1644

TABLE 11. Effect of Purification Procedures on the MW Distribution of Pullulan

distr.

Treatment	Percent Removal
1:1 14:20-40 Mesh Charcoal Column	
рН 4.9 рН 6.9 рН 8.9	36.7 42.2 50.5
1 g 20-40 Mesh Charcoal Column	
рН 4.9 рН 6.9 рН 7.9 рН 8.9 рН 9.9 рН 10.9	37.5 49.2 54.5 56.5* 49.9 42.5
50 mL 1% Solution pH 8.9 Plus 1 g Fine Charcoal Shaken Overnight	62.6
1% Solution pH 6.9 C-18 Cartridge (3X)	50.3
10 mL 1% Solution pH 8.9 Plus 4 mL Acetone	55.5

TABLE 12. Percent Pigment Removed from Pullulan

*Repeated Twice