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SUMMARY

Task Objectives .

Phase 2 of the Adaptive Segmentation Evaluation contract addressed the

issue of improving the segmenter performance on military vehicles in -IR-J-'. .

imagery through the use of temporal processing techniques. 4heL specific

objectives were- as follows:

1' Develop temporal-based techniques to augment current segmentation

algorithms,

2" Develop a set of metrics to quantitatively represent segmenter

performance in terms of quality and consistency of segmentation-

3 Perform a comparative study of performance results between the

modified segmentation approach and the unaided approach.

Technical Problems

A study of the usefulness of dynamic scene information is necessary to

fully evaluate the options associated with temporal-based segmentation

techniques. The purpose of this study is to identify those attributes that 0

are most readily applicable to segmentation. Subsequent modifications to

the segmentation algorithm will depend on the type of information available

and the optimum point of application.

4b
1.1 General Methodology

Two basic approaches for using temporal properties were assessed. ,n-o

Each of these approaches is based on a different definition of the

segmentation problem. One definition states that inconsistent segmentation '- -

results are due primarily to the inherent sensitivity of the algorithm

methodology. For this definition, the solution would be to enhance the ,
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algorithm. The second definition states that the difficulty in developing

an algorithm that generates consistent results is due to the high degree of

data variation between frames. For this definition, the solution would be

to stabilize the data. An analysis of a single metric, ERIM's TIR 2 , computed

for two military vehicles (tanks A and B) over a sequence of 20 consecutive

frames indicates that data variation (tank B varies over a range of 71.21)

not algorithm sensitivity, is the problem (Figure 1).

8.000 V

6.000

4.000-

A A

2.000- AA AA B

AAAB AA BB B B RBB B BBBB E

0.000 I I I I
25.68 41.50 57.33 73.16 88.98 104.8

TIR 2 INT E3400-1 h,

Figure 1. Variations of TIR 2 Over the 20-Frame Set
for Tank A and Tank B

For this reason, the methodology concentrated on developing techniques

for image data stabilization rather than segmenter enhancement. The justi-

fication for adopting this methodology is that a more consistent input sig-.

nal would obviate the need for special case processing by the segmentor.

Image data stabilization was accomplished through the use of multiframe .

iv Tr.



data integration techniques. These techniques attempted to smooth the

frame to frame transition of image data by limiting the noise effects and

other image ambiguities.

Experimental Methods

'A set of experiments was defined to assess the effects of multiframe

data moothing on vehicle signatures and segmenter performance. The

.ex-iments consisted of applying a multiframe data smoothing operator and

an independent frame enhancement operator to three sets of consecutive

.r- sequences of ERIM truthed TI images. The rule directed segmenter was then

applied to the raw data, smoothed data, and independently filtered data.

Finally, a comparative analysis of segmenter performance was conducted by

evaluating the segmenter stability metrics on each of the three data types;

61% and data variations in vehicle signatures were analyzed from the results of

the data variation metrics.

The filters used for the multiframe data smoothing experiments were

the lxlx5 median, lxlx7 median, and lxlx9 median. Smoothed data from the

multiframe mean filter were not significantly different from the median to .9

warrant extensive testing. The 3x3xl median was used as the independent

. frame enhancement operator. This operator allowed comparison with a more

conventional approach to noise reduction.

Discussion

In general, the experiments conducted on the test data sets confirmed

the primary strengths of multiframe smoothing. Both the conventional and A

multiframe filtering improved segmentation results compared to those with

the raw data results. The primary difference was in the behavior of the

features computed on the three data types. The features computed on the

raw data and conventionally filtered data showed random fluctuations and

• wide distributions, which is typical for FLiR data. The features computed

on the multiframe smoothed data were better clustered and showed increased

signal qualities. The improved feature organization and higher response

;% •
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reflect the increase in data stability and noise reduction. These results

have two important consequences. First, the improved signal quality

greatly reduces the need for special purpose processing by each automatic

target recognition (ATR) component to compensate for image ambiguities in

the raw data. Second, features that represent higher levels of structural

detail, which are usually masked by noise, can be computed for improved

object discrimination and classification performance.

Important Findings and Conclusions

The results clearly indicate the advantages of multiframe data

smoothing. These results also emphasize the difficulties that exist when

image characteristics are not well represented. When a sensor is in

motion, scene information must be registered prior to processing. Bland

image conditions do not provide sufficient feature information to track

with the degree of accuracy required for multiframe integration. This

situation represents a constraint of the multiframe approach.

The problem of bland image conditions is not solvable through the use

of image enhancement techniques. Such techniques do not improve the funda-

mental elements represented in the data. These techniques mainly improve .

the aesthetics of the image. The bland-image problem must be addressed at

the system level. A viable solution is to switch between multiframe

processing and independent frame processing, based on the success of frame

to frame feature tracking.

Implications For Further Research

The most important advantage of multiframe data smoothing is improved ".

signal quality. This improvement increases segmenter performance and, more

importantly, feature stability. The increased response and improved clus- -

tering of the metrics for the smoothed data images indicate the importance

of this technique for object classification. A comparative study of

feature selection, feature clustering, feature separability, and object

classification between an ATR trained on raw-data images and smoothed-data

images would provide a total assessment of multiframe data smoothing.

vi

%%~



PREFACE

This report was prepared by Martin Marietta Corporation, Martin

Marietta Electronic Systems, P.O. Box 628007, Orlando, Florida 32862-8007,

under Contract DAAL02-85-C-0084, with the U.S. Army Center for Night Vision

and Electro-Optics. Mr. Joe Kitrosser is the technical monitor for this~program.

. This evaluation was begun in July 1985 and was completed in August ..

1987. Ron Patton, (305) 356-9516, was the author and task leader.
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1.0 OBJECTIVES AND APPROACH

Phase 2 of the Adaptive Segmentation effort was concerned with ,

improving segmenter performance on military vehicles in IR imagery through

the use of temporal processing techniques. The approach concentrated on

developing methods for image data stabilization rather than segmenter

enhancements. The logic being that a more consistent input signal would

eliminate the need for special case processing by the segmentation

operator. Image data stabilization was accomplished through the use of

multiframe data integration techniques. These techniques attempt to smooth

the frame to frame transition of image data by limiting the effects of

%noise and other image ambiguities.

To evaluate multiframe processing, a data base consisting of three

sets of consecutive sequences of ERIM truthed TI imagery was created. A .,

multiframe smoothing operator and an independent frame enhancement operator %

were applied to each of the data sets. A comparative analysis was performed 10% %

on segmentation results for each set of consecutive sequences of unprocessed .A

(raw) imagery, independently filtered (enhanced) imagery, and multiframe 0

smoothed imagery. The frame-to-frame consistency was analyzed for both the 0

structural properties of the vehicles and the segmentation results for each

data set.

To assess the structural stability of a vehicle, a set of local

intensity-based metrics was computed for each data type in a test set. The e..'

truth silhouettes provided by ERIM were used in computing the metric -

values. Structural consistencies were assessed by examining the variation

* ~in the distributions of each of the metrics. The process used the degree ,-

of frame to frame correlation of each metric to determine the structural

stability in the data properties represented by the metrics. Variations in

signal quality were determined by comparing the metrics for the two filter- s

ed image sets to the metrics for the raw imagery. The polarity of their

differences indicated an increased or decreased signal response.

A, P
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.

To assess segmenter performance, a comparative study was conducted

using the rule directed segmenter (RDS) as the control algorithm and the "1
segmentation accuracy metric of binary area cross correlation as the

performance measure. For each test set, the RDS was applied to each of

the three data types: the raw data, multiframe smoothed data, and .F

independent frame enhanced data. Performance stability was determined

by examining the degree of frame to frame consistency in the segmentation

accuracy metric. Performance quality was measured by computing the aver-

age of the metric. Improvement in segmentation performance was determined

by comparing the response of the metric for the two filtered image sets to

that computed on the raw imagery.
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2.0 TEMPORAL INFORMATION ANALYSIS

2.1 Definition of Temporal Properties Ve

(p,

The utility of dynamic scene information is universal, extending to

all elements in the target-recognizer system architecture (enhancement,

detection, segmentation, feature extraction, and classification), as well .-.-

as post-processor functions such as target prioritization, tracking, and

aimpoint selection. The multiframe approach provides the opportunity to

improve component-level performance and, subsequently, ATR performance.

The overall utility of multiframe processing and the key attributes of

dynamic scene information are summarized in Table 2.1-I. Table 2.1-1 shows

that two scene attributes, platform motion and temporal statistics, are

most readily applicable to segmentation.

TABLE 2.1-1

Summary of Multiframe Processing and Dynamic Scene Information .

Dynamic Scene -
Attribute App lication Utility

Target motion Moving target Motion as detection,
V indication (MIT) segmentation cue

Target velocity for
prioritization, prediction,
aspect, aimpoint

Motion as context %

"- -Platform motion Motion stereo Scene normalization ''-

Passive ranging
Terrain and object 3-D relief
Navigation

. Temporal Sequential compound Classification accuracy a
statistics decisions Consistent segmentation

k' Adaptive preprocessor thresholds -

Scene history Scene predictio' A prior knowledge for next frame
Environment evaluation
Feedback and global control .-

All of the above Intelligent tracking Multitarget track
Track through obscuration
Reacquire after breaklock 0

3%
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The effects of platform motion on the imagery can be accurately de-

termined by applying multiframe processing to the sequence of images.

Motion is defined in terms of direction and magnitude of displacement.

These parameters can be effectively used for frame to frame registration

and scene normalization.

Temporal statistics of the dynamic scene improve performance by basing

statistical decisions on ensemble data rather than single-event data. This

capability provides adaptive optimization of image enhancement parameters

4 and segmentation consistency.

2.2 Advantages of Temporal Properties

To recognize the advantages of using temporal context in image pro-

cessing, the problems associated with single frame processing must be

understood. The two major problems in image processing are data

instability and image degradation.

For any given frame of information, an operator, such as a segmenter,

determines the optimal result, based on the conditions represented in the

data. If data conditions vary significantly from frame to frame, the

operator's results will be inconsistent; and these inconsistencies

propagate through each component of the ATR system, impacting overall

performance.

A second problem associated with single frame processing is image -

degradation. Atmospheric eftects such as attenuation, diffusion, and

diffraction can affect image quality. Sensor effects such as lens

distortion, focal length, and vibration; and effects associated with the

pixelization process, can also affect image quality.

2.3 Application of Temporal Properties

For this application, multiframe data smoothing is defined as the

process of operating on a "M" deep stack of registered images to reduce the J

4
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A

independent random fluctuations in the data, while improving signal quality

and stability. When this process is applied to an image g(x,y) that is

formed by the addition of uncorrelated noise n(xy), the noise component of

that image decreases as the number of integrated images increases. The

reduction in the random component is specified by the equation:

_1

lie UC(xy) -n(x,y) is

where a - standard deviation.

This equation shows that the reduction in noise is inversely proportional

to the square root of the number of images (M). As the number of noisy

images becomes large, the data quality approaches that of an uncorrupted

%signal. However, the benefits of using large numbers of images for noise

reduction are limited by the natural constraints inherent in a moving and

sensor. Closure, magnification differences, changes in perspective, and

information masking limit the number of images that can be effectively e. "

integrated. The number of images for multiframe smoothing is therefore 
0

determined by the range to the vehicles and the behavior of the sensor

(aircraft, tank, etc.).

We have tested three data smoothing techniques: lxlxn median, lxlxn,S

mean, and lxlxn conditional mode-median. The "n" factor in the lxlxn 0

notation relates to the depth of the filter or number of stacked images.

One advantage of the Ixlxn median filter is that the median is not

sensitive to single sample spike, noise, or other extremes that may exist in 4k-

a sample set. Another advantage is that the number chosen to represent the

sample set is a number which exists in the sample set. A third advantage

is that the median is also a minimum distance number when computed as

IX 1  - Al MDN when A = median . ie

5 •



The lxlxn mean filter has properties similar to the median when the

samples are fairly related. Unlike the median, the mean filter considers

all numbers in the sample set when computing a result. For this reason,

the mean is sensitive to extremes for small sample sizes, and the number

chosen to represent the sample set may not be an original member of the

asample set. Like the median, the mean is also a minimum distance number

when computed as

n 2
n(X 1 - A) when A = mean

1=l

The conditional Ixlxn mode-median filter optimizes the sample

selection process. The median filter is used when a sample set contains

unrelated numbers. When a single value occurs more than once in a sample

set, the median result is replaced by the most repeated value or the mode.

This process is similar to assigning a probability to each sample value.

The selected value is either the highest probability number (mode) or the

median (when equal probability exists).

N.
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3.0 DEFINITION OF METRICS

A set of metrics that assesses the behavior of information as a

function of time were defined. The metrics fall into three general

categories: sensor variation metrics, segmenter stability metrics, and

optical flow stability metrics.

* 3.1 Sensor Variation Metrics

Ilk The sensor variation metrics statistically represent fluctuations in

the raw data prior to any processing. These metrics indicate the degree of

instability in the image acquisition process (from sensor to digital

format). Since the metrics can only be computed on the digitized images,

their results represent the accumulated effects of each processing

component in the image acquisition system. System fluctuations are -

measured from the variations in thermal properties of the vehicles and

their local background over a sequence of "n" consecutive images. The

thermal properties of the object and the background for any given image are

represented by the intensity-based metrics: entropy, contrast, TIR 2 , and

TBIR 2. By computing the variations of these metrics over "n" images, ?

the metrics for entropy variation, contrast variation, TIR 2 variation,

and TBIR 2 variation are derived. The variation (V) metrics are given by

the equation:

4 ~n(C -72 "+

V=
n-i

where C are the metric values, C is the average metric value, and n is

the number of images.

"Characterization of ATR Performance in Relation to Image Measure-

ments" (ATRWG working document 12-12-84) defines these four metrics to

i.....
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represent the fluctuations in object-to-background separability in terms of

1) average intensity (contrast), 2) background intensity variation

(TIR 2 ), and 3) object and background intensity variation (TBIR 2 and

entropy).

The sensor variation metrics show the effectiveness of data smoothing

in stabilizing the signal (noise removal). The degree of data stability is

determined by computing the percent change in variation before and after

smoothing; (AV) which is given by

1C - C r x 100%
C
r

where C is the smoothed-data and Cr is the raw data.

3.2 Segmenter Stability Metric

The segmenter stability metric represents the ability of the segmenter

to consistently perform over a sequence of "n" consecutive images.

Consistent segmenter performance is defined as a result which is similar to

the previously generated segmentation result, independent of the quality of

the segmentation. This means that a segmenter, which consistently segments

50 percent of the object, would have a higher stability measure than one

that oscillates between 70 and 90 percent. It also means that outputs of

segmented objects where one is consistently 40 percent and the other

consistently 90 percent have the same stability measure. The average

quality of segmentation for each object is also computed. This combination

of measures indicates the quality and stability of segmentation for each

vehicle.

The segmenter stability metric is determined by computing the

variation in the segmentation accuracy measure of binary area cross

8
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correlation (BACC) for each object over a sequence of "n" consecutive

images. Segmenter stability (SS) is given by

ss - L(BACC - BACC)

The segmenter stability metric is computed over the objects prior to and

after data smoothing. The segmenter stability metric provides a good

indication of the effectiveness of data smoothing in stabilizing the output

segmentation. Success in achieving segmenter stability is determined by

examining the values of the variation metric before and after smoothing,

9 . while the degree of success is measured by computing their percent of

change. The percent change in segmenter stability (ASS) is given by

Iss - ss I x 100%
, ASS s rS r

where SSr is segmenter stability for smoothed data and SSs is segmenter

stability for raw data.

3.3 Optical Flow Stability Metrics

Optical flow is derived by recording the frame to frame displacement

./ . of a set of distinct features distributed throughout the image. A feature.

* "is selected according to its uniqueness, relative to other information in

its local neighborhood. The type of information that features represent,

such as a tree trunk, road segment, or manmade object, is completely

scenario dependent. Scenarios that afford a high degree and variety of

*. scene context are ideal for feature selection and matching. However, as

scene conditions become indistinguishable, such as in a desert, the process

.. - of locating and tracking distinct features becomes very difficult.

9
r'
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The uniqueness factor of a selected feature is an important indicator

of the likelihood of the system to correctly track that feature over time

(sequence of "n" images). A measure of uniqueness is computed by examining

the maximum response of a feature relative to the average response over its

local neighborhood. The feature uniqueness (F) is given by

F= maxim um feature - mean feature

feature variance

For example, if the feature of interest was contrast, then the local region

representing the highest level of contrast would be selected. Feature

uniqueness would be determined by computing the difference of highest

contrast and average contrast normalized by the contrast variance. The

feature-uniqueness metric is a measure of reliability when performing frame

to frame registration for data smoothing. Low-uniqueness features have a

higher probability of correlation error and subsequently registration

error.

Successfully tracking the positional changes of selected features -1
between consecutive images is accomplished by applying full-intensity area*1~''

correlation. The degree of success in feature matching is indicated by the

correlation coefficient [p(i,j)], which is given by

N,M
I [R(x,y) - R] [L(x-J, y-i) - L]
xly

p ~~P(i,j) = ~
V/N ,M 2y-i)

[R(xy) - R (L(x-J, y-i) L]
xxy xOy

The average correlation coefficient, which is computed over the "n"

consecutive images, is a good indicator of the reliability of the

10
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4.0 SYSTEM APPROACH

The most advantageous attribute of multiframe processing, as compared

to independent frame processing, is the ability to integrate information

acquired over a continuing sequence of imagery. When a sensor is

stationary, the integration problem involves applying a data smoothing

operator to stabilize the signal. However, when a sensor is in motion,

the problem becomes more difficult. As a sensor moves, the information in

the image (field of view) also moves. To accomplish multiframe integration

in this context, the image smoothing operator must be preceded by frame to

frame registration of the data. Since scenarios for this contract specify

moving sensors, our system approach includes the extraction of scene motion

followed by frame to frame registration.

To simplify the data registration process and limit registration

errors, the data registration operator is only applied to subimage windows
that pertain to the vehicle of interest. The window locations are

determined by the detection reports generated by the prescreener, while

window sizes are based on estimated object size using interpixel distance

, .- information (IPD). A point matching operator is used to associate each

detection report with a corresponding flow vector containing the x,y

displacements for that subregion of the image over the full sequence of

m ,.., images. Once the data registration operator has been run, the final

45 process is the application of a data smoothing operator. Our overall

system approach is shown in Figure 4.0-1.

4.1 Extraction of Scene Motion

SIn regard to motion extraction, scene motion is defined as the frame

to frame changes in position of scene information. The system approach for

extracting positional changes of scene information consists of using an

interest operator, partition/local maximum operator, and an interest point

correlation operator (Figure 4.1-1).

13
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Raw ItrsPatto/Correlation Optical
Image Operator L,*[ocal Max. thnFil

AInterest Sparse Array
Points of Points

Figure 4.1-1. Optical Flow Generation

Initially, a FLIR sensor is used to transform the three-dimensional

scene into a two-dimensional projection of the scene (Figure 4.1-2, upper

left corner). Points representing locally distinctive regions within the

scene that can be readily matched from frame to frame are then

* automatically identified, using an interest operator. j

%
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Our current operator is called the size contrast operator (SCO). The 1'

SCO (Figure 4.1-3) is designed to measure the level of contrast between an ,9

inner size-grated rectangle and an outer surrounding size-grated collar. r.

The difference between the average of the inner window and the outer border

region is computed and stored as an image metric for each pixel (Figure

4.1-2, upper right corner). The SCO can function as an edge operator or as

a detector for localized regions of high contrast and specified size. The

advantage of the SCO is that it accurately locates the centroid of

localized features; the major disadvantage is that it is not effective when
m'..

the scene lacks localized regions of high contrast such as in a desert

environment.

" ' Average
Intensity B (x,y)

Outer Window

4.°

Moving Average
Filter __ Intensity T

Input Image

Central Pixel Inner Window
(x,y)

Figure 4.1-3. Size Contrast Window

To reduce the contrast metric image to individual points representing

locations of local maximum contrast, a partition and local maximum operator

is applied (Figure 4.1-2, lower left corner). The procedure consists of

partitioning the metric image into "N" windows (In this representation N =

36) and locating the highest local maximum within each window. The

windows are recessed from the edges to avoid nominating points at the edge

of the image. This method of point nomination has two basic advantages.

First, by nominating the most distinctive location in each partition the

166
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local maximum operator maximizes the chances of successful point correla- %

tion. Second, the resulting point distribution is by definition, nearly

uniform (Figure 4.1-2, liwer right corner - selected points overlaid on

intensity image).

Establishing frame to frame correspondences is, perhaps, the most

difficult step in the multiframe procedure. Occlusion of regions and

regions that are not rigid (e.g., smoke or vehicle exhaust) can be

difficult to match. Also, because the platform is constantly moving,

regions continuously enter and leave the field of view. Full intensity

area correlation is a widely used and well understood technique for solving 0

the correspondence problem. Correlation is applied by defining a reference

window centered on an interesting point in the earlier frame. A search

" window which is several pixels larger than the reference window is defined

in the current live frame at the same x,y location. A template the size of

the reference window is then moved throughout the search window area. The

live template that best matches the reference template represents the

updated location of the interest point in the live frame. The measure of

similarity is the normalized cross-correlation coefficient, which was

described previously.

When the live template and reference template match exactly, the ..

. probability (p) is 1. When the two templates are exactly inverted, p is
- . If the reference and live templates are totally uncorrelated, p is 0.

The row and column in the live frame where the correlation is maximized -

represent the location where the live template best matches the reference

template. This change in location of an interest point between two frames 0

is defined as optical flow. The result of this processing on all interest

points, which is called an optical flow field, is a quantification of the

frame to frame disparities (Figure 4.1-4).

Credibility of the optical flow field is maintained by establishing a

goodness criterion in the form of a correlation threshold. This threshold

reduces the risk of tracking low confidence interest points that do not

J..
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Figure 4.1-4. Synthetic Optical Flow Field

accurately model the true scene motion. However, the correlation threshold

will not eliminate those points that do not conform to the global optical

flow because of overcorrelation. Overcorrelation can occur when a feature

is selected by the interest operator in a window containing very low .1
contrast or cyclical patterns. The correlation coefficient for this type

of point equally exceeds the threshold at a number of locations, which

causes the maximum to be deterministically assigned. To purge the flow ,

field (Figure 4.1-5) of this type of interest point, the affine transform

is used. The affine model is a first-order approximation to the optical

flow field. The affine transformation is defined as:

x' = Aix + A2Y + A3

y' = Bix + B2 Y + B3 .

To derive the affine coefficients, the flow field is least-squares fit

to an affine sensor model and the residual error for each point is recorded.

ThQ flow point with the worst residual error is discarded, and the

S18
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In the affine model, the residual error is defined as the product of

the magnitude of the observed flow and the sine of the angle between the

predicted flow vector and the observed flow vector. If the cosine of the

angle is less than zero, the residual error is the magnitude of the actual

flow.

Accounting and maintenance of the optical flow field are accomplished

through the use of a scene history file (Table 4.1-I). The history file

provides a mechanism for accumulating interimage information regarding the

selected interest point, thereby providing a historical reference of scene

history. Key information in the history file includes:

I KAV - Entry key of this optical flow point (key access value)

2 FRM- Frame number

3 ROW - Row location of point for this frame

4 COL - Column location of point for this frame

5 MET - Metric value of interest point at point selection time .-

6 AVG - Average of metrics in window partition

7 SDV - Sigma of metrics in window partition

8 MET - Highest correlatio- ficient from area correlator p.

9 DIR Quantized direct rL indicating orientation of point change

10 RDS - Row displacement a point between last and current frame

11 CDS- Column displacement of a point between last and current

f rame
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12 DIS - Total distance that a point has moved between last and

current frame

13 ATE - Current affine transform error of a point.

4.2 Flow Vector Selection

-, Once a scene history for a consecutive sequence of images has been

generated, a process is run that selects the optimum flow vector for each

detection report. The locations of the detection reports are extracted

from the image header file, which corresponds to the last image processed

in the image sequence. The vector selection program computes the distance

between each flow vector that has been successfully maintained over the

entire sequence, and the detection reports (Figure 4.2-1). The flow vector

that is closest to each detection report is used to decompose the frame to

frame positional shifts that occurred over the sequence of images during

the application of the subimage registration process.

4

"p...

Figure 4.2-1. Flow Vector Selection
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4.3 Data Smoothing

The data smoothing algorithm performs multisubimage registration

(three to nine images) and applies a pixel smoothing technique between

subimage windows. The smoothing process is acccomplished by applying a

lxlxN filter to each pixel in the subimage set, where N equals the number

of registered images (depth); the filter type can be a mean or median or

other such filter.

A prerequisite for this process is the existence of an optical flow

history file generated over the N consecutive images. The history file

contains the frame to frame positional changes of scene context that occur

over the sequence of images. The positional changes recorded in this file

are used to register the subimages extracted from each full frame image.

The smoothed images are generated by working backwards through the

history file. The last image written to the history file will be the first

image processed. Each vehicle in an image is processed in the same
O

manner. The general concept is as follows:

1 Identify an optical flow vector. Using the optical flow history

file, the optical flow vector, closest to a detection report

(vehicle) in the last image in the sequence, is identified. The

vector must have been tracked through all the images in the

S' sequence. This flow vector is used to register all subimages in

the sequence pertaining to this vehicle.

2 Equalize the number of passes. The number of passes (and output

smoothed images) equals the total number of images in the test

sequence minus the number of images used in the subimage smoothing "

process (called a cluster) plus I (i.e., pass = total - cluster + e
4." 1).

4.7
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3 Read cluster images. For each cluster (such as five images per

cluster) the most current image (newest) is the master image

(Figure 4.3-1). The images corresponding header file is used to

determine the extent of the window needed to fully encompass the

detected vehicle and to include enough background for metric

computation (subimage includes vehicle and background collar area). K
Each subsequent image in the cluster is read, and a subimage of

equal size to the first is located (using the flow vector to
-.

compensate for x,y change) and stored. When all five images have

been read, registered, and stored, a lxlx5 filter is applied. The ,,

output filtered subimage is then placed back into the master image.

After each vehicle in the image has been processed in this manner, -

the smoothed master image is written to disk. The next newest

image is then read along with its set of four consecutive older

images. The process stops when a cluster of five images cannot be

formed.• '

IV
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Figure 4.3-1. Multiframe Data Smoothing
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5.0 EXPERIMENTS -

A set of experiments were defined to assess the effects of multiframe

data smoothing on vehicle signatures a.d segmenter performance. The

experiments consisted of applying a multiframe data smoothing operator and

an independent frame enhancement operator to three sets of consecutive

sequences of ERIM truthed T. images. The rule directed segmenter was then

applied to the raw data, smoothed data, and independently filtered data. A

comparative analysis of segmenter performance was conducted by evaluating

the segmenter stability metrics for each data type. Data variations in

vehicle signatures were analyzed from the results of the data variation

metrics.

The filters used for the multiframe data smoothing experiments were

the lxlx5 median, lxlx7 median, and lxlx9 median. The results obtained

using the multiframe mean filter were not significantly different from the

median to warrent extensive testing. The independent frame enhancement "

operator was the 3x3xl median. The inclusion of this operator enabled us " .

to compare the results against a more conventional approach to noise

reduction.

The primary difference between the multiframe median and the local

median is the method of sample set selection. The multiframe approach uses

sample elements (one from each of n consecutive frames), each representing

the same local area of information in the image. The integration of this S..

data improves signal quality without jeopardizing organizational detail.

The 3x3xl median uses nine sample elements (from the same frame), each .

representing a different local area of information in the image. The ...

relationship between the data represented by the nine samples determines %

whether the result represent signal improvement (all samples are related)

or signal degradation (all samples are unrelated). Since both cases occur %-

within the image, the result represents a combination of improved and ,

decreased signal quality. This property of the 3x3xl median makes it

.
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undesirable as a preprocessor for functions that require a precise I

fnumerical representation of the data, such as feature extraction. However,

the ability of the median to reduce some noise, while preserving step

edges, is useful to some types of image segmentation operators. In

comparison, the multiframe approach is idealy suited for both signal

improvement and feature enhancement.

5.1 Test Set 1

The first data set tested was the image sequence extracted from ERIM

data tape number 3014-12, set 4D. The data tape included the raw imagery,

ground truth information, metrics, and truth silhouettes. The first 30

images (44 total) in the sequence were removed from the tape, using the J

ATRWG read software.

- The image sequence (Figure 5.1-i) contains two tanks, which will be

referenced as tank-i (the rightmost tank) and tank-2 (the leftmost tank).

The images show side views of the tanks with their gun barrels in the

combat position. The engines and wheels are hotter than the bodies of the

tanks, which indicates that the tanks are either in motion or have recently

been moving. Tank-I, a T46, is approximately 1946 meters from the sensor;

Tank-2, a T95, is approximately 1919 meters from the sensor. Excluding the

tanks, the scene is virtually void of any significant context and only has

a gray level range of approximately 30 intensity levels (Figure 5.1-2).

The road on which the tanks are positioned is almost nondetectable. There ".

appears to be some sort of runway directly above tank-2. The lack of
I

context in this sequence makes frame to frame feature correspondence very

difficult. However, the close range of the tanks permits a better

assessment of the effects of multiframe smoothing on the structural detail

of the tanks, segmenter performance, and metric behavior.

2-
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Scene Motion

The 30-image test set was processed using the scene motion extraction

software. The parameters for the point selection and tracking operators

were set as follows;

L
1 Size contrast inner window size: 9 pixels wide, 7 pixels high

2 Partition and local maximum: 6x6 grid surface (36 total points)

3 Correlation coefficient threshold: 0.7 (less than 0.7 is deleted)

4 Affine error threshold: 8.0 (greater than 8.0 is deleted)
'I- I-

The number of feature points tracked for the entire 30-frame sequence

consisted of only six points or 16 percent of the initial number selected

(Figure 5.1-3). Four of the nominated points pertained to contrast P

measures between the two tanks and their local background. The high

turnover in feature points was due exclusively to poor frame to frame

" correlation due to bland scene conditions. When points are selected in low
contrast areas, the correlation operator is highly influenced by the noise

component of the signal. As the data becomes more nearly homogeneous, the

correlation process actually attemps to correlate the noise.

The flow vectors selected for performing multi-subimage registration

for the two tanks were vectors 3 (Table 5.1-I - for tank-2) and -4 (Table

5.1-11 - for tank-l). Assessing the quality of these vectors from the

"Optical Flow Metric Report" (Table 5.1-11) indicates a high degree of

credibility in accurately tracking the frame to frame positional changes of

the two tanks. A visual assessment of the correlation accuracy is shown in

14
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TABLE 5.1-111

Optical Flow Metric Report

nuaor Status trcktd qtIC -etIC 'eti C

1 Tracking 30 7.111 S.517 0.00

2 Tracking 30 12.!' 7 . 43 j.038

3 Tracking 30 12.333 6.44P C.03?
Tracking 30 4.250 95.621 0.000

5 Now entry 1 0.000

6 Now entry 1 0.000
7 N., entry 1 0.o00
8 New entry 1 0.000
9 Now- entry 1 0.000

10 Tracking 9 3.000 82.625 0.000
S 11 Tracking 3 3.000 76. 500

12 New entry 1 0.000
13 Noe entry 1 0.000
11. Now entry 1 0.000
15 Now entry 1 5.000
"16 Trcking 4 3.000 77.333

17 Ne. entry 1 0.03C
18 Tracking 30 3.000 84.897 0.000 4,
19 New entry 1 0.000

r 20 Tracking 17 4.0O0 33.250 0.000
21 New entry 1 0.000
22 Ne entry 1 3.000

V 23 Tracking 6 3.000 !5.400 0.000
24 Ne entry 1 3.000
25 Noe entry 1 3.033
26 Tracking 5 4.330 3 . 53 0.000 0

27 Ne entry 1 3.303 %

2 Now Pnt-y 1
29 Tracking 3 .30 ~ C .3

30 Tracking 22 3.37 77714 3.00C
31 Tracking 25 .30 5: ...00

32 Tracking 2 3.002 74. 03
31 Tracking 13 3. 331 7 0.00"
34. Tracking 24 2>0 00~ 00
35 New antry 1 a'"

36 r ck in: >0 0.0 C'-'0.

6,%

%%

Figure 5.1.4. The bright white pixel superimposed on the tanks indicates

the x,y locations of the selected feature centroids. For tank-2

(above two pictures) the contrast feature selected was in the wheels of the

tank. The dominate feature for tank-i was its engine. The location of the

feature centroids in frame 1 compared to their ending position in frame 30,

seems to indicate that an accumulation of a one-pixel offset may have

/. occured over the 30-frame sequence. If the correlation drift did occur, it

had no detectable effect on the data smoothing results.

333
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across the subimage window of tank-2, passing through the center of the '.

vehicle. The upper left image in Figure 5.1-5 shows how the multiframe -

approach preserves the detail on the vehicle. The center-left image shows

the influences of unrelated information on the filter process. Results

from a 5x5xl median filter were also included for comparison. A more

detailed view of the multiframe filter is shown in Figure 5.1-6. The 3-D

projection shows the ability of the filter to preserve surface detail on

the vehicle, while suppressing noise (most visible in the background data).

An improvement in the organization of the tank wheels and engine

compartment can be seen in the gray level picture of the tank.

., p.

,' p

i- I K

n 7

Jr -_lIT !_, P ,' -* !- EU-T I ,_H CON'T OUR PR O.JECT IO Ol N

S EMEDI I F ILTERED IM tIC E

Figure 5.1-6. Noise Reduction Via Multiframe Median Filter -%
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To determine the effects of the two enhancement techniques on

segmenter performance, the lxlx5 smoothed data set, 3x3xl median-filtered

data set, and raw data set were processed using the rule directed segmenter

(Figure 5.1-7). The results indicated that both enhancement techniques

improved segmenter performance. The segmentation accuracy metric, BACC,

for tank-2 (Figure 5.1-8) reveals that the level of improvement is almost

identical for both techniques. This implies that both techniques have

properties that are beneficial to segmentation.
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m;,Figure 5.1-7. Segments (RDS) from 26 Consecutive Frames (Tank 2)
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isTo understand how the two enhancement techniques improved performance,

it is necessary to determine how each technique altered the data. This can

be accomplished by comparing the intensity-based metrics computed on the

two enhanced data sets to those computed on the raw data set. A summary of

Sthose results is presented in Table 5.1-IV (ixlx5 median versus raw data)

and Table 5.1-V (3x3x] median versus raw data). A more visual examination

'.- of the intensity-based contrast metric is given in Figure 5.1-9. The plots

compare the values of the enhanced data metrics to the raw data metrics

computed on tank-2 (y axis) for each of the 26 images (x axis) in the data

sets . A study of the two plots shows that the 3x3x1 median behaves as a

low pass filter, suppressing the high-frequency information and subse-

*. quently reducing the metric values. The general profile of the median

graph is very similar to the raw data graph with the exception of a scale

factor. Conversely, the graph of the lxlx5 median filter shows a reduction

* in the range (vertical extent) of the metric with no decrease in metric

response. The results demonstrate the ability of multiframe filters to

reduce noise and improve signal stability. A summary of all five intensity

based metrics is given in Figures 5.1-10 through -14. The plots depict the

distribution of the metrics for the two tanks (1 and 2) for each of the

three 26 image data sets. In general, the important aspects of the plots

are the organizational features of the metric distributions such as range,

level of response, and clustering. The graphs reflect the overall superi-

ority of the multiframe smoothing approach to that of the independent frame

filter.

5.2 Test Set 2

The second data set tested was the image sequence extracted from ERIM

data tape number 3015-12, set 4D. The data tape included raw imagery,

S'"ground truth information, metrics, and truth silhouettes. The first 30

images (34 available in sequence) were removed from the tape, using the

-'"ATRWG read software. The image sequence (Figure 5.2-1) contains three

military vehicles: a truck (the leftmost object, object-I), a T95 Tank

" - (the center object, object-2), and a T32 Tank (the rightmost object,

: :..J3
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Scene Motion

The 30-image test set was processed using the scene motion extraction

software. Parameters for the point selection and tracking operators were

set as follows;

I Size contrast inner window size: 5 pixels wide, 3 pixels high

2 Partition and Icoal maximum: 8x8 grid surface (64 total points)

'P"
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3 Correlation coefficient threshold: 0.7 (less than 0.7 is deleted)

4 Affine error threshold: 8.0 (greater than 8.0 is deleted).

The number of feature points tracked for the entire 30-frame sequence -"

consisted of only two points, or 3 percent of the initial number selected. r.

The two points pertained to contrast measures between the two tanks and

their local background. The low contrast of the truck made it impossible

for the frame to frame correlator to track. A visual review of the tank
.

flow vectors indicated that correlation drift made them unreliable for .

multiframe smoothing. The lack of a reliable optical flow history file for -

the 30-frame set made it necessary to create one manually (Figure 5.2-3). -,

Manual generation of the optical flow history file was accomplished by

displaying the images on a monitor and noting the x,y positional change of

each vehicle, using a cursor which controlled a minimum encompassing object .

box. The process was applied using a zoom factor of 4 on the images to

minimize registration errors. The manual tracking process revealed the
extensive level of frame to frame structural variation of the vehicles.

These structural variations, along with the low contrast, made the manual -

tracking process about 75 percent reliable. p.

• r

.

Figure 5.2-3. Optical Flow Vectors Created
For Each Object-""

. %
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Data Smoothing

The parameters used for multiframe smoothing consisted of registering

clusters of five consecutive subimage windows (placed about the vehicles)

and applying a l×Ix5 median filter. This process generated a data set

consisting of 26 images (30 total images - 5 cluster size +1). A second

multiframe smoothing operator, which registered clusters of nine

consecutive subimage windows and applied a lxlx9 median filter, was also
used. This process generated a data set consisting of 22 images. The

consideration of nine samples in place of five attempts to further

compensate for the low contrast image conditions. In addition, the same 26

raw data images were processed using a conventional 3x3xl median filter.

To determine the effects of the enhancement techniques on segmenter
performance, the lxlx5 smoothed data set, lxlx9 smoothed data set, 3x3xl

O

median filtered data set, and raw data set were processed using the rule

'" directed segmenter. An assessment of the segmenter performance results

(measured using the BACC evaluation metric) indicated that none of the 4

techniques has a significant effect on performance. They also showed that

each vehicle was affected differently.

Object--I (the truck - Figure 5.2-4) had a small decrease in segmenta-

tion accuracy for the two data smoothing filters (lxlx5 and lxlx9), while

S 'the local median (3x3x1) improved performance slightly (2 percent). The

effect of the lxlx5 median filter on object-I can be seen in Figure 5.2-5,

where a gray level threshold of 61 was applied to the first four images of %-%

the lxlx5 median-filtered object and the raw-data images. The threshold
O

. represented the best number for object to background separation for both

data sets. A greater level of structural consistency can be seen in the .,.
p ..

multiframe filtered images. However, for this object at this range, the

changes in performance were still negligable.

Object-2 (the center tank - Figure 5.2-6) had the highest segmentation

accuracy scores, which averaged 76 percent. The multiframe smoothing

filters had a positive effect, reducing the degree of frame to frame
•S

performance variation for this vehicle, but no effect on increasing the

51 0
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The difficulty in obtaining consistent improvement in segmenter per- "

formance and frame to frame structural stability when applying the multi-

frame smoothing filters is due primarily to the manually derived optical . ,

flow history that was created for this data set. To confirm this, four

attempts were made at tracking the frame to frame positional changes of I.,.

each of the three vehicles through the 30-frame test set. Each attempt

produced a slightly different flow history, which caused the performance

results to differ. Due to the small size of the objects, minor inaccurac-

ies in determining the x,y vehicle displacements significantly affected the

ouLtcome of the smoothing process. Misregistrations can be more easily tol-

erated when object features are spatially large; however, when a vehicles

engine consists of only a few pixels, a one-pixel offset is significant.

From the variations accumulated among the four manually derived optical-

flow history files, a registration error of approximately 25 percent was

estimated. This flow error makes an accurate evaluation of the multiframe

smoothing operator difficult for this data set.

Despite the frame to frame registration problems, we were able to .-

extract positive tendencies of the data smoothing operators. A complete

comparison of each of the three enhancement methods (Ixlx5, lxlx9, and

3x3xl) is shown in the temporal variation metric listings (Tables 5.2-I .

through -1ll). The different responses for each of the three vehicles sub-

stantiate the ditficulities in generating accurate optical flow history for
" .%, o.'

this test set. Nevertheless, general improvements in metric response and

statilitv are evident in the frame to frame changes in several of the %

metrics. A comparison of the entropy-based contrast metric for object-3 P,

(Figure 5.2-8) shows an increase in metric response and stability for the

multiframe smoothing filters, while the 3x3xl local filter is still very -

unstable. This trend is also apparent to a lesser degree in the inten-

;tty-based TIR 2 metric for object-2 (Figure 5.2-9). This ability to

improve vehicle characteristics indicates that an accurate extraction of

opti Cl flow Shlild produce more favorable results than those currently

gene tratd. Th, roslits also indicate the importance of deriving accua ".

opt iCui ',low hi-;t rv, onpecially for vehicles at these ranges ,and beyond.
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5.3 Test Set 3

N The third data set tested was an image sequence from ERIM data tape

number 3031-10, set 40. The data tape included raw imagery, ground truth

information, metrics, and truth silhouettes. The first 22 images on the .P

tape were noncontinuous, unrelated frames of data taken at various times of

the day, which made them inappropriate for testing. The next 21 frames 7

consisted of consecutive sequences of images digitized at 1-second

intervals, with the exception of 2 frames, which were 2 seconds apart. The -

21 frames of data (Table 5.3-1) were removed from tape using the ATRWG read -

software.

TABLE 5.3-I p

Image List for Experiment 3

2020000D 2020007D 2020015D . 5

2020023D 2020031D 2020039D
2020047D 2020055D 2020063D
2020071D 2020079D 2021007D
2021015D 2021023D 2021031D

2021039D 2021047D 2021055D
2021063D 2021071D 2021079D

The image sequence (Figure 5.3-1) contains three military vehicles: a

jeep (the leftmost object, object-I), an APC (the center object, object-

2), and a truck (the rightmost object, object-3). All three vehicles are

positioned at side view aspects. Objects-I, which is approximately 6341 &

meters from the sensor, has the most uniformly distributed intensity

5, contrdst of the three vehicles. Object-2, approximately 6366 meters from

the sensor, has the best organized structure (most visibly distinguishable)

ot the three vehicles. Object-3, approximately 6415 meters from the

sensor, has himodel structural characteristics. Excluding the three

vehicles, the scene is void of any significant context and only has a gray

levi range of approximately 20 intensity levels (Figure 5.3-2).
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Scene Motion .', *

The 21-image test set was processed using the scene motion extraction

software. The parameters for the point selection and tracking operators

were set as follows: ..'

I Size contrast inner window size: 5 pixels wide, 3 pixels high

2 Partition and local maximum: 8x8 grid surface (64 total points)

3 Correlation coefficient threshold: 0.7 (less than 0.7 is deleted)

4 Affine error threshold: 8.0 (greater than 8.0 is deleted)

The feature tracking software was unsuccessful in maintaining the

positional changes of any of the features selected for tracking. This .,

failure was due to the low contrast of the imagery and the I-second spacing

between frames, which allowed object signatures to change significantly.

The lack of an optical flow history file for the 21-frame set made it

necessary to create one manually (Figure 5.3-3). Manual generation of the

optical flow history file was accomplished by displaying truth images on a

monitor and noting the x,y positional change of each vehicle, using a

cursor that controlled a minimum encompassing object box. The process was

applied on the images using a zoom factor of 4 to minimize registration " "'

tr r s .

Truth images were used in place of raw data images in an attempt to I
improve tracking accuracy and to avoid dealing with the low level contrast

conditions of the raw data. The manually derived optical flow field

depicts the significant amount of positional change for each vehicle over

the 21-frame set. The low contrast conditions of the imagery and the

manual tracking process gives the derived optical flow field a reliability .- -

rating of about 75 percent. -

-
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Figure 5.3-3. Optical Flow Vectors Created for '-.-

Each Object t r

Data Smoothing

Parameters used for multiframe smoothing consisted of registering

clusters of five consecutive subimage windows (placed about the vehicles) S

and applying a lxlx5 median filter. This process generated a data set -

consisting of 17 images (21 total - 5 cluster size + 1). A second

multiframe smoothing operator, which registered clusters of seven consecu-

tive subimage windows and applied a lxlx 7 median filter, was also used.

This process generated a data set consisting of 15 images. The

consideration of 7 samples in place of 5 attempts to further compensate for

the low contrast and attempts to further reduce the degree of frame to

frame variation. In addition, the same 17 raw data images were processed _

using a conventional 3x3x1 median filter. ,

To determine the effects of the enhancement techniques on segmenter

performance, the lxlx5 smoothed data set, lxlx7 smoothed data set, 3x3x1

median filtered data set, and raw data set were processed using the rule

directed segmenter. The segmenter (measured using the BACC evaluation

metric) improved performance accuracy for two of the vehicles, with only a

slight decrease in performance for the third vehicle. The results also 0

revealed that each vehicle was affected differently by each of the

enhancement techniques.

Object-I (the jeep - Figure 5.3-4) had the largest increase in -

segmenter performance of the three vehicles in this data set. The best -

response was to the lxlx7 data smoothing filter, which increased perform-

ance accuracy by an average of 44 percent. All but one of the lxx7

smoothed images, processed by the rule directed segmenter, had improved

65 •
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accuracy. The least successful filter was the conventional 3x3xl median,
, ,6 . -j,

which still improved performance accuracy by 14 percent. The lxlx5 data

smoothing filter increased performance accuracy by 32 percent, but was less -

stable than the lxlx7 filter. The improved performance is due to a more

accurate frame to frame object registration than the last data set tested.

Object-2 (the APC - Figure 5.3-5) also had improved segmentation

accuracy scores after data smoothing. The lxlx5 filter and lxlx7 filter

showed a 24 percent and 22 percent average improvement in performance over . -

the raw data results, while the conventional 3x3x1 median showed a 5

percent increase. Although the lxlx7 filter had a 2% lower performance S

gain than the lxlx5 filter, it still exhibits a high degree of frame to

frame stability. The benefits of multiframe data smoothing can be seen by .-

comparing the variations on structural characteristics of the APC for five

consecutive frames. (Figure 5.3-6, raw data; Figure 5.3-7, lxlx7 smoothed .

data; Figure 5.3-8, 3x3xl smoothed data). The highest degree of structural

similarity is seen between the lxlx7 smoothed data images. The 3x3xl

filtered images show the smoothing effect, but lack the frame to frame

consistency seen in the lxlx7 results. S

Object-3 (the truck - Figure 5.3-9) had lower performance scores than

the other two vehicles. A reduction performance accuracy was generated for

both of the multiframe smoothing operators and the conventional 3x3xl S

median which produced the worst results. Although the average segmenter

pertormance of the 1xlx7 median-smoothed data set was 12 percent lower than " %

the raw data rt.sults, an increase of 15 percent was achieved in frame to

frame stabilitv of results. The stability factor, an important property of ,,

.Le multiframt smoothing approach, is also extremely beneficial during the

fetur , napping process used for object classification.

. ..
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2021047D .IMG 2021055D. IMG 20210630. IMG

A.
-. • o°+

20201070.MG 22 107StD . IMG

Figure 5.3-6. Object (APC) Variations Over 5 Frames (Raw Data) -

2002l047D . MG 2021OS550. IMG 20_2 031 MG t%

Figure 5.3-7. Object (APC) Variations Over 5' Frames After

lxlx7 Median Smoothing

6.i. .. . ::..:""



-4-

.J*%

::,a-~~~~*A 1*1 G 2 2 0 3D I

Fiur 5*.-8. Obec -AC VaitosOeb5Fae fe

3x~ Mdia Smoting

Tne iftcult inobtanin conistnt iproemen in1eg .nte

per~~r2iic"indta ofaestutrlsaiiy hnapyn h

IT, u I

__pt iii ~whoyadtelre im nevl ewe mg ape

stru, Figure v .-. Ojc AC ariations Ovee eile hchoc r whe thFr gamesl

i iparL n 3x the edrin Smooting aei i cl ooti

4- nba i t,-iit in probtangconitnemrvmeti.emne

perrflI~O ~n f-anetofrmestucurl tailtywhn ppyig0h



1-4~

x ii

% -6

K, L33--- NO3 S*(. :)VI.

C~ 4 3r4 O1SMN 'd3

-w 10

E 6 3IN 3 AO&3 - 4 K

6 0e

714-

.Z.



Neverthel1ss, we were still able to extract positive tendencies of the %

data smoothing operators. A comparison of each of the three data enhance-

ment m tpid is shown in Tables .3-II through -IV. The different

resps e; for e.ich of the three vehicles point out the difficulties in

generating accurrdt, optical flow history for this test set. However,

,eneral ,ipr a.'c:nents in metric response and stability can be seen in the

'rame t) Irame .hdig(-s in several of the metrics. For example, a

comparison of the intensity-based TIR 2 metric for object-2 (Figure

5.8-10) shows an iicrease in metric response and stability for the

muitirane snoothing filters, while the 3x3xl median filter shows an -

increase in metric response and a decrease in metric stability. The -

increased metric response and stability reflect the beneficial

characteristics ,f the multiframe smoothing operator.

These test resilts support the conclusions expressed in the second

experiment evaluation, which emhpasized the importance of obtaining an

accurate optical flow history, especially for vehicles at these ranges.

4. "4

-. ,4

W
*72

o. 5?

". .

7 2 . 5., -



VV

>'C >>''' > 4 > >>4q' *.l 446' 646 6.
41 1 0 0 0 0 004,0 0000 a- fu004 0.4b.. 14441

M j 555 I- 1- -51- .S_ 6- 6-.-- >c. 9- 9--SI. 9.5 . f- I I..

4.4 I 1 E-E 000 600 0 0 C 1 0 0 0 a c c 0

u - v000 - coo r- aow~ ca C .soL w0~on 1 _j _j

r 1 1 -C 0M1 N of a (~V-. C 1 P-0 Mn 0 -~vr M 1 1 (r1 W-TL/5

q W - 'a-i -

aI 0

W 0 I r- CVOM - 0, 00 , M 01I WO-W' t1 N-l~ OOflIDI. .0O-OMO V

-I CV W O t00000 r, 0 a- 00.0--- *0 1- 4 O-on M-..%0
I1 -;ci 'o66 6666oc 6 66 6 6 .6.4 6 m6~ 6m i6N66N6

r' P 0 1

0 '10 coo0

ru0D I c C --- i ' .h 1
oe N5 4.6 0. n -0, - 0M-M

ca I0 0 if rdwm f * w0r
>, & 'Q I ''

m- 1"6'6 _0 6 0 0 7 ; 6 ~ 6 6 6

-d >

5-' 4%
0

ri

F 4) I
1 1 ap0 v'al.0 v04.0 aco 'duo0 .

"ai i .0 41 04p 064 to' 5''4 .
10I 1 0 4' 4 Z. 414 $. oe ~ m aI 4 -P s-4 V 4~'

1 iIA 4. - & 43 V ' t 4. A 4 aM 4 . f. -2
4' VA4 4' 2,4 to'01 0 .' 0'4 a ' v4

6 1 - - 4G 4) - 40 0~s It MR,4- y 'J 0 4.u- .
- th 06 c C 4 C 4'00 C I0 *40 Iot o L4210 91 WC 0 VLA

6.. ep ap4 S.C4 .J'4 -, f.C 4C4 f,-
. 41 .61 L;~4 -41 4 4 u '44~ PI p~044 L.3. 4 .

40 v GO''- -0 1' ' 0 w m 4,'' a 4 . .0 w ,5.
0' 1 . C 0 C 0 C 40 . C '0 C V C 0

in ' a1 &. m ( S.51 & . 01 ! -5 .- 5 . _ !-
0 z 42 - IC- 4'4 0 U4' #0 44~ .4- 11 3 to 4'4 0 4 ' P4 a0'

- S- 0 bI s- a,-W 5- 1--W z -a. :1-ms 1 W IS kA-5-Cfll

4'0 qI q t Ir(n. q00.4E10 go M o (n . 0I 00 -. .M0 0. II0&0W m &T m 0o.U
I- Z) 0 1- 10- -0 i.0l0 Z .' In .11- ;)- 1 6. U _ _V)

CU400 IV 
I1 4,

4 1 0 0I m 0rm. . 5- .41 00 . 0 0 0

u-a'" 0 a' -0 ~ 41

00 0

4.4 0 4 4I 4.I

E a.6 'l'00 m . I - cum 1 t

Z ZIZ 0C rCI

5 73

'N V V



paQn".Vl 1 010 VVV

1 0 v o a10 r -1 6 t & &a &0 I %-

a0 06 6 a6 > 0 6 6 '06 66 666 660

IC ki .u u u CLu u C C C ou uuoC. u 3u Vu 3u u 3wvuuv
55 60 5 65 6 c. 5 c~ aC C c O ac c c 0 c c r

Uk~~~~~~~~~~~ 1 j- 0 -0'-- -0 0 -.a - .a J . J

m m ,0D , - 40 Z0M O .10m 0 r )I

It D WITl- (- 0-4 CO N n .-'-0'a4- It uIr r~() - ItO0Of O O '0 r

r)- P, - nN-I rdIt.- DI nwi w M C

0 SI

UI ul
0 I 0-~~ - r, M(1 O r, '- 0 .4 r 3V TW n N4 t-.4Of) M- I~ft -0

Vdr M N (V N- - W- 0 - 0 0fa.(V , O NII~ Nplr- N 0 IT0 ItIt

~o6 6 66666 66o66 6 -'ri ci 6 6 - 6o, -6 6o

-

01 0 1

0 0a Nm Q.- It- 4 N- Na0-- P0 ' In 0 N N N M '.r -'0W 0 - It

05I-.06 -o66 o 66 f. i -6nd6 ri6 ~a6 r6 6 r o

10 I1 0 .0

T 6 fI fl.000 NWV0- u-~r' .0-ON N 1- .0OI- 40 . -0

11 LO I-0 UOLarro0IUQ 4J - r- i -P6 -~-6P P -Pg4 6- - V t'~ tv
-W3 k"-Z 04AI wt ip1 Z-400 W 1 'V

toI I . g m I.I ..

Q; 10 o

0a QJ 1 - #a-I
4E4 G 3 I I. -D 1~0 3 I o D I I , - l 24. -0n -C 4. 0 .0 oI 00a .3a,0 '0a, I. '05 lp3 a 0 z 0r

I C - U - a- I I. -. to . -. U)'.-1 0 1 -.40'
E' IC C Cr- 564 - 64 r- cS4 m r 56rrmG-r = 5C64'

M 1a 4' C 0 - 0 0 1 - IS 0 0 m 0 0 M 0
z u u - w u u' m u zS vi (i ~

-I 05 005 S

CV a,'C 4'-U CU-Cm 4 - 5 4'S 4 -am- Iii Ni'i' a-rl4' MC~ I ~ 4 5 .05' 4
El Eo'C Eo'C eo '0 II 5-'S 50 'S 5

'a~~~~~~~ ZC C- zO '' 0O -OI 0-a 0 a0 C 0a

4' * -. ,. C-a~~1. * -'. I I-aI- C~-41 74.S



4. cl.

0 a 6 0 a aua a 6 0 e 0 r-a 1 0 u-u-ca c -0 a

r- N Y I> 0 m N 005 4 oe eo 4 I n -T-46 0 M0 -C .aSo1-B4T.t
4 ci 4 .U U m nUUaUCU I 0U .a) -T M3 u Mu u 0 3u n-0 ,Inm 3T

-a~~~ ace 6-oc -coo 4r 01o -r- .4-.- .J-o j

0? 0 1

c ainKIr'd OD0 v in o- cin- -.t in.0 -roo t- rd otK-
In w t0 .0 0 Ni040- 0 - 000 0 in P N 6 0r-- ~0.0 IO O0 M r
i c , 6* 6 6 -6 o 6 o o 6iru -o c 6 ri -0000;ci6

m 0u N ; -0 0 N N 40~ It a V 0 0m
I IC (-~ Vc 0 -4 N- M W0.oJ (V -0 LD4 o r r i g 0 w o m

.4( 6c 06 6-O O O0iO 0.0 i E -60 4 ~6 L66 o r)6 ri 6 o -o- o6
~~i 0 0

4.)0

,4 a- a I r, 0o-4 t *0 C - N N P,~or na I W 1UW - 00- V V 0, M
L4 4u- 4, t-ov 0 . 04 N o-- - ooriNr w-P as w ' -~ R -~l CO' O D P 1 tin

cc v 4. 1-w N o - -0(.0 u - -0w 1-
'I i-6-r6 -66o66 -66o .6N46 r) 6r~e~q 66 ri 6N 6 o

cco
05

m~ -6 a. I v~ GI0 1

Mc~ -l -to~-~ c ' - e~a - e

43 4j 6 -9. a - 40 .0 -P P - a P

M I ' o -C No a5 'A 0.C tA
Uif i c-i e u 2. ecu IN cc V- L c )e U

1. 41 - a .4J6 r 4j -P 1'a .- '~C 4A64~ - C45

40 -P 'AA' = ' 4 AI 4 4 4 4 .P 4 1 ~4 ' A 4 b' V .U

,*04SM~~ CL'eS S -- 5W4 III4-0 to--- 4 - CL6- 41 S1-S

CI c 0 c.. - 4S. 11,a U1WL 1Cu .0 0- CV' 0 C ? e a4
a 4w do'~l suu~ s~-(l l's'fl 5u'I~ q o~

44*1 64 4J4'~q 5Mi~ 4'5i~4 S/ 4'45~g '4'i U 6 MiV

4, fI00 ..n.- 04 CC . C.0 05 1-' OC50 90-
'Z ZlJ,~- UU'l-- uU -0 ~ u - -< 4 t z-I--410 l-C *-4AIs-It

045 I.u- 4'U I U) I . I I U) I . &.f ) I

C40 z~ u u u u~ u64z Q

ft A iS. M i

L 0 0 ~ 0L)

m -I M 1J Ir

575



- -- ~.- - - -

& p.,

,~1
/

( I - . U

IM., U

I-x -r
-C C p

3 N. ,.
'C

A - -'C

33 -~ -C,

a QJ *~C 'C

I Cl) -C
I-

C I
U 'Urn 'C -.

/ ~

/ I '-C

4 1~i *;;~ SC-, -

K 4-C

JI; C

;--K

a a a a a a _ -ii i
- C- 'a C~ t 'C 'C -

* C:23m2 ~I14 S~T~A 3IhL~d - A
C-. C'

'4-4

v'I 0 -

(-a -~ ~ 0
U. Cl) r

K
j ('-C

- I 0)
n .- I

C) / ~ , ,

~ 3 a 3 3 3 3 3
* N IS UC 'C PC #4 *C CC *C

"~ 0
C'

- ~ * I13~~ ~Uj SUTUA ~IML*i - A
(-'-C ~C

U

I Lr~

C, C. - w ~
5 1-4 C, *~

g 'C.

U

C'

CC

I,
'CC 'C

*~.* ~C

,.~\.L 1  
- C

U 3 3 1 1 3 1 U
- C 'a C' 4 C' CA -

'C

I.

76

CC

.4.

CvN~.;%;%.-C~%C~v%. **~'.'~***'-.' CC'C'-~-/-.'*.-*:-.'*:5%-~f%. <~ *." **-* - '.~ ~--.y C~ -



i~'U

6.0 CONCLUSIONS AND RECOMMENDATIONS

The temporal processing system used in multiframe integration was oil
designed to solve the two major conceptual problems. The most difficult of

the two problems is the extraction of accurate scene motion, defined as the

frame to frame positional changes of scene information. More specifically,

scene motion entails recording the x,y location of specific scene context

as a function of time. The accumulated scene-motion information is used to

align subimage windows extracted from a discrete number of consecutive data

frames. The second problem is determination of an effective technique for

integrating the stack of registered subimage windows. The integration

technique must reduce the independent random fluctation in the imagery and

improve signal quality and stability. In this section, we present our

conclusions and make recommendations for the scene-motion extraction and

multiframe-integration software designed under this contract. I,

Scene Motion Extraction

The implemented system for extracting scene motion consists of an

interest point operator, a partition and local, maximum operator, an

intensity-based area correlator, and an optical flow noise filter (Figure

6.0-1).
.4.
.4

' .Refined
Raw 'l terest Partition Correlation Affine Optical

Data Operator Local Max. Matching Transform Flow
Field

.4- Interest Sparse Array Optical
Points of Points Flow Field

, Figure 6.0-1. System for Extracting Scene Motior
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I Size contrast operator ..

The size contrast operator (Figure 6.0-2) emphasizes unique local ,€

regions, based on intensity information. The uniqueness feature of

the operator is contrast. Contrast is a fundamental feature;

texture, gradient, variance, and other image features are dependent

upon contrast. This constraint provided the motivation for the use -

of this feature. ' "

The size contrast operator has the advantage of being size adjust- "

able. This feature allows it to be gated for specific image con-

text. In our experiment, the inner window was set to object size

to maximize the potential for nominating vehicles as the feature

points to be tracked. Tracking vehicles is highly desirable since

the multiframe-integration registration process requires a flow

vector near each vehicle. When the flow vector directly represents

the temporal transformation of a vehicle, misregistration errors -

are minimized. In addition to the size criterion, the size con-

trast metric provides information about the integrity of each ."

feature (Figure 6.0-3). Locations where the metric forms high

sharp peaks represent well organized contrast regions, which are

well suited for feature tracking. Locations where the metric is

low or where the metric is constant over a large area represent low

* confidence regions. 'S

The overall performance of The size contrast operator for the data

sets was very good, considering the characteristics of the imagery. *

The close-range image data set was almost void of any detail, with A

the exception of the two military vehicles. For this data set,
both vehicles were selected as local points of maximum interes-.c

Both vehicles were sucessfully tracked through the entire image

sequence. The two-long range image data sets were void of any .

detail and contained very low contrast vehicles. Neither of these

images sets contained characteristics that favored feature

78
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.RAW DATA IMAGE (2020000D.IMG).

,-.. Figure 6.0-2. Size Contrast Metric Image

A

i

• ." tracking. Although the size contrast windows were optimized for..

"-' long range vehicles, the metric responses were low and not well

.. organized. As a result the selected features could not be tracked :

". throught either of the two image sets.'

..' Results from the experiments indicate that a constraint exists when .

image characteristics are not well represented. Bland image condi-,.,

" tions do not provide featore information considered significant 
'

enough to track with the degree of accuracy required for multiframe

' ~79 |RWDAIG(000.2
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these values, a determination of whether to select a feature from a

partitioned window can be made. In addition, when features are

sparse in a specific area of the image, other well organized

contrast features can be substituted. This upgrade will make it

possible to predict the accuracy of the scene motion extraction

subsystem by interpreting the strength of the contrast features

Iselected for tracking.

% .% 2 Partition and local maximum operator

The partition and local maximum operator controls the selection of

feature points from the size contrast metric image and the spatial

distribution of those points. Currently, the user supplies the

* ~.partitioning grid size to the operator. The grid (Figure 6.0-4) is

an effective approach for controlling the spatial distribution of

N. features. The feature point selection process is easily adaptive

• "to range. To increase the number of selected points required for

long range images, the grid density is simply increased. The grid

size selection process could be made autonomous by using ground

truth information about range to set the grid parameters. The ,

recessed boundary of the grid from the edge of the image assures

that each selected feature has an opportunity to be tracked. If a

feature is too close to the edge of the image, a full correlation i

window cannot be placed about it.

The partitioning technique has one major drawbaci( in that features

are forced to be selected in windows that are void of any signifi-

cant contrast. Window interpretation, which is discussed in the

size-contrast evaluation section, would alleviate this problem.

The optimum location for this upgrade is within the local maximum

selection operator (Figure 6.0-5). This operator currently selects r

the location of maximum metric response in each window without

WI regard to feature credibility. The statistical examination of each

window prior to point selection would avoii nominating meaningless

features that cannot be tracked.
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3 Full intensity area correlation

Frame to frame feature matching (tracking) is accomplished through I
the application of a full intensity (all 8 bits) area correlator.

Accurate feature tracking is imperative for successful of multi-

frame integration. Misalignment of subframe windows due to feature

registration errors degrades the multiframe integration. Instead

of reducing noise and improving signal quality, registration errors

add additional degenerative effects.

The correlation process is the most difficult and time-consuming

operator in the motion extraction subsystem. The correlation

operator is applied iteratively to each feature point over an area

defined as the search area (Figure 6.0-6).

For 36 feature points and a search area of 25 by 25 pixels, 22,500

applications of the correlator are required. The number of appli-

cations does not take into account the mathematical computations

necessary to compute each correlation measure. The accumulation of

correlation measures over each search window represents a correla-

tion surface (Figure 6.0-7). .4

The organization of the correlation surface determines the degree

of similarity between each contrast feature in the last and current

SN~r. taame. A close examination of four search areas (Figure 6.0-8)

shows the variations in behavior of the correlator for different

contrast features. The ideal correlation surface would depict a I

singular peak representing the location of great similarity

(correlation 1).

The success of intensity-based area correlation is totally depend-

ent on the characteristics of the features being matched. In the

close-range test set, the correlation operator very accurately

determined the frame to frame positional changes of the two
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Figure 6.0-8. Correlation Surface of Various Image Features

vehicles. In the tatter two test sets, the features were so poorly

represented that accurate correlation was not possible. In fact,

the manualy derived correlation history, which was required to

process these two test sets, was extremely difficult to obtain and

v'as only partially accurate.

Although the intensity-based area correlation has inherent weak-

nesses, it is still one of the better feature-matching techniques.
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When intensity area correlation fails due to poor feature represen-

tation, other techniques such as peak intensity matching, feature

vector-based matching, and segmentation centroiding also fail.

A viable solution to poor correlation is to switch between multi-

frame processing and independent-frame processing, based on the

success of the correlators. Most correlation problems occur with

long-range poor-contrast images. As the sensor closes on the scene

or as contrast conditions improve, multiframe processing can be

instituted.

4 Optical flow noise filter F

The affine transform is used to identify and to remove feature

points that do not accurately represent the frame to frame posi-

tional changes of scene context. These feature points are unreli-

able for use in multiframe integration processing. Discrimination

between valid and invalid feature points is accomoplished by build-

ing a model of the scene motion and by comparing the history of

each feature mode. To initially create a reliable model, a

sufficient number of valid points must exist.

We were unable to evaluate the effectiveness of the affine as a

noise filter because none of the three data sets generated enough

valid feature points for the affine to create a model of the scene P

motion.

Assessment of the Multiframe Integration

The experiments conducted on the three test sets were used to assess

the performance of the data smoothing techniques used for multiframe

integration. The primary filter used for multiframe data smoothing for the

three test data sets was the lxlxn median. The lxlxn mean and lxlxn

mode-median filters did not produce significantly different results to
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warrent continued testing. All of the tests consisted of running the rule

directed segmenter on the raw data, multiframe smoothed data (lxlxn median),

and conventionally filtered data (3x3xl median, independent frame filter)

generated for each test data set. We conducted a comparative study of the

rule directed segmenter performance results and the behavior of a set of

features computed on the data types.

The experiments conducted on data set I provided the best overall

results. A comparison of the rule directed segmenter applied to the three

data types for data set 1 accentuated the primary strengths of multiframe

smoothing. Both conventional and multiframe filtering improved segmenta-

tion results over that of the raw data results. The primary difference was

in the behavior of the features computed on the three data types. The

features computed on the raw data and conventionaly filtered data contained

random fluctations and wide distributions, which are typical for FLIR data.

The features computed on the multiframe smoothed data were better clustered'. S

and showed increased signal qualities. The improved feature organization

and higher response is an indication of the increase in data stability and

noise reduction. These properties have two important consequences. First,

the improved signal quality greatly reduces the need for special purpose
processing by each ATR component to overcome image ambiguities found in the

raw data. Second, features that represent higher levels of structural

detail usually masked by noise can be computed for improved object

discrimination and classification performance.

The experiments conducted on the other data sets had similar results.

. Both of the test data sets used during these experiments consisted of low

contrast images void of any significant context. These conditions made it

necessary to manually derive the scene motion information needed for frame

to frame registration of the detected vehicles. The scene motion informa-

tion was estimated to be 75 percent reliable. Nevertheless, the overall

p." results of the data smoothing process were positive. Improvements in the
structural characteristics of the vehicles were evident from an examination
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of the features computed on the three data types. These results for low

contrast images characterized by scene motion information demonstrate that p

data smoothing is successful under less than ideal conditions. _W

Multiframe Integration Using Edge Maps

The initial research using multiframe smoothing consisted of

registering and integrating subimages of raw data placed about a detected

vehicle. All subsequent processing was performed on the smoothed

subimages. Additional research was conducted on integrating edge maps

generated by applying the composite edge operator to the raw images. The

edge maps were handled in the same manner as the raw data images. The

process consisted of registering and integrating subimages of edge map

information place about a detected vehicle. Test data for set 3 contained

one jeep, one APC, and one truck, all at long range (over 6 kilometers).

This data was used for the experiments. The basic idea was to use " ,

multiframe data smoothing to stabilize the edge map operated on by the
9,

segmentation algorithm. The edge map integration process consisted of

registering a set of five edge magnitude subimages (Figure 6.0-9) and

applying the lxlx5 median. The direction associated with the selected edge

magnitude was retained as the direction for the edge point.

A comparison of the raw- and smoothed edge images (Figure 6.0-10) .

shows the benefit of multiframe edge map integration. The properties of

stability and improved organization depicted in the smoothed edge images

are consistent with those seen in the raw-data smoothing results. The

implication from these experiments is that data smoothing is an effective

data enhancement function when used as a pre-processor or as an imbedded ':

algorithm function.
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