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TestGen - Testing tool for Ada Designs and Ada Code.

Thomas S. Radi, Ph.D.

Software Systems Design, Inc.

This paper describes a software program, TestGen, that The paper briefly describes the TestGen tool, shows
assists in the testing of executable Ada code as well some examples of the TestGen output reports and
as assisting in the testing of high level descriptions describes how the tool is being used.
of Ada designs. Control Structure Deteri Testing Effort

The TestGen program provides three distinct Ce

capabilities: Executable Ada source code and Ada/PDL designs which
1. The Design Review Expert Assistant- are expressed using a high level structured pseudo-

Allows Ada designs to be thoroughly reviewed, code have an internal control structure that can be
insuring that all paths have been evaluated, and analyzed to determine the total number of paths
that all possibilities have been covered, through a program unit.
2. The Unit Test Strategy Generator-

Assists in the definition of unit test procedures These paths form the "graph" of the control logic
using a "white box" testing technique. associated with each program unit in an Ada program.

3. The Test Coverage Analyzer-
Determines the extent of coverage (the percentage By examining the conditions at each branch point, as
of the total numbers of paths, branches and expressed in pseudo-code for the Ada design, and as

statements that were actually executed during a expressed in executable code, two independent control
given test sequence). graphs are developed to describe the control structure

of the design and the code respectively.
The TestGen tool is one of the AISLE (Ada Integrated
Software Lifecycle Environment) toolset, an integrated Figure 1 shows an example of some Ada code, and the
set of tools that assist the developers of Ada associated control graphs.
software.

The nodes of the control graphs represent branch
points (typically conditions) in the Ada design or in

Introduction the Ada program. The paths connecting the nodes
This paper describes TestGen, a tool which was consist of statements (pseudo-code or executable code)
developed to assist in the review and testing of Ada in the Ada program.
code.

During the creation of the control graphs, each node

TestGen is one of an integrated family of tools which is associated with the statements from the original
assist in the design, coding, documentation and Ada source file that correspond to the condition at
testing of Ada programs. the node. These statements are used to textually

identify the conditions that are required at each
The utility of TestGen is in four primary areas: branch point and also identifies the statements that

1. TestGen can inbure that Design Reviews are will be executed as a result of the conditions.
complete, and that every possible set of conditions is
examined to determine the proposed consequences of Once the control graph is known for both the design
that set of conditions. and the code, the graph (as stored internally by the

TestGen program) is used to determine
2. TestGen can be used in conjunction with a a) the number of branches through the program

"white box" testing approach to prepare Unit Test b) the number of paths through the program
plans and procedures for each program unit. c) the cyclomatic number (for McCabe Structured

Testing)
3. TestGen can be used to estimate the testing

complexity, by determining the number of tests
required to insure complete path coverage, or branch
coverage or some combination of approaches.

4. TestGen can be used in conjunction with a
"black box" testing approach to determine the
effectiveness of a set of tests, i.e. to determine the
number of paths or branches that a series of tests has
executed.

6th National Conference on Ada Technology 1988 1



The number of paths, branches and cyclomatic number TestGui works in comjunctiom with the ADM Ma/l
provide the user with an estimate of the time required procsor
to use either of three white box testing

methodologies: ADADL is the Ada-based Design And Documentation
Language. The ADADL processor analyzes designs

a) total branch coverage - where all conditions described using Ada/ADADL to produce reports that
at each branch point are executed at least once. highlight various aspects of the design. When used in

conjunction with TestGen, the ADADL processor analyzes

b) total path coverage - where every possible the Ada source code to determine the control structure
path through the design/program is covered, of each program unit.

c) Cyclomatic (structured) testing - a midground During the analysis of the source file, the AIADL
between branch and path coverage where the cyclomatic processor creates an intermediate control structure
number is used to determine the number of tests file, in which every statement is identified either as

required. a passive statement (not containing any branch
conditions), or as a statement containing a possible

branch condition. The specific condition at each

Figure 1. An example of a control graph branch point is identified and associated textually
with the branch point.

The code fragment
procedure Adog._ofanexample is TestGen Design Review Expert Assistant Identifies all
-- if the dog is hungry then possible comditions.--,feed it

else If the designer has used an Ada/PDL pseudo-code to

-- take its temperature describe the design algorithm, the Design Review
-- if it has a fever then Expert Assistant (DREA) portion of TestGen can be used

take it to the vet to insure that a thorough design review is conducted.

-- elsif it has a dry nose The DREA identifies all possible conditions in each
-- give it some water program unit, and delineates the expected result for

else each set of conditions.
-- : wipe its nose

end if Figure 2 is the ADADL pretty print output of the
example in Figure 1. There are four possible paths

begin through the design. Figure 3 is the output of the
null; -- executable code not shown TestGen Design Review Expert Assistant analysis of the

example.
end A.dogof anexample;

The control graph
Figure 2. The Example of figure I with ADADL Line
Numbers.

LINE
I procedure Adogof an example is

2 if the dog is hungry then
3 -- feed it

THEN ELSE 4 -- else

IF 5 -- take its temperature

THEN 6 -- if it has a fever then
7 -- take it to the vet

THN ELSIF 8 -- elslf It has a dry nose
9 -- give it some water

10 -- else

ELSE 11 wipe its nose

12 -- end if

13 -

begin
EN" F null; -- executable code not shown

end A dog of an example;

2 6th National Conference on Ada Technology 1988



Of WWWW -0111u~rlm WWVWWW1'w, - - - -

Pisue 3. A framt of the pesim Review kpert Wit Tt Strat1 .....ator
Assistant output.

The niut Test Strategy Generator (TSG) is used to
....... determine the test conditions that a test engineer

Sevieuing all paths Of Subprogram: will need to set up to insure the complete testing of
A Dog Of AnEximple the executable Ada code.

illn........................................g.... The G supports three "white box" testin
Design conditions reviewed case I of 4 for methodologies: complete path testing, branch coverage

subprogram: A_Dog_OfAnExample testing and Structured (McCabe) Testing as identified
in NBS Publication 500-99 (National Bureau of

The Design conditions examined for design case I are: Standards).

2: ( the dog is hungry ) is False The executable Ada code is analyzed by the ADADL
6: ( it has a fever ) is False processor to determine all of the relevant
8: ( it has a dry nose) is False control/decision points.

Expected results for design case I are:
The user can specify the methodology of testing that

5: take its temperature he/she wishes to employ during the unit test for each
It: wipe its nose module.

............................................. The TSG will subsequently identify the conditions that
Design conditions reviewed case 2 of 4 for muSt be set up at each branch point to insure that all
subprogram: ADogOf An Example necessary tests are run according to the testing

methodology specified (total path coverage, branch
The Design conditions examined for design case 2 are: coverage or Structured Testing).

2: ( the dog is hungry ) is False

6: ( it has a fever ) is False

8: ( it has a dry nose) is True Note that there is no guarantee that the conditions

identified by TSG are feasible conditions. Indeed the
Expected results for design case 2 are: program itself may very well prevent the execution of

certain paths as shown below. There are four possible
5: take its temperature paths through the example. The path where a is true
9: give it some water adc is true will never be executed. The path where a

is a is false and c is false can never be executed.

Design conditions reviewed case 3 of 4 for

subprogram: ADogOfAnExample procedure a is
a,b,c:boolean := false

rhe Design conditions examined for design case 3 are: if a then

b:=true;
2: ( the dog is hungry ) is False else

6: ( it has a fever ) is true c:=true;

end if;
Expected results for design case 3 are: if c then

c true;
5: rake its temperature else

7: take it to the vet c false;

end if;
.......... ...................................

Design conditions reviewed case 4 of 4 for

subprogram: A_Dog_OfAnExample One observation at this point is that perhaps the unit

under test should be examined for possible elimination
The Design conditions examined for design case 4 are: of infeasible conditions.

2: ( the dog is hungry ) is True

The example above could be re-written as
Expected results for design case 4 are:

procedure a is
3: feed it a,b,c:boolean := false

if a then
b:.true;
c false;

Since the MtEA shows the review team every possible else

path through the proposed design, using the IREA helps c:tre
insure that all design decisions hch affect the flow c.=tre;

of control through the progra have been examined, rendif;
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the iWhls idamtlfy infesible patlh ____AdaCode_________________________theCodetobe

We claim that by (human) examination of the TSG The Ada Code Instruenter Instrumnts the Code to be

strategy, infeasible condition n-tuples (which are Teste.path in he rogrm) an b idntifed.The TCA asks the user to identify two things:

paths in the proWram) can be identified. (a) the list of program units to be tested during a

Me do niot claim that all of these infeasible paths may particular run (this identifies the units under test),

always be eliminated by suitable re-coding of the and (b) the type of testing desired, where the user

algorithm. However, the identification of these will identify whether he wishes to instrument the

infeasible paths may lead the test engineer to a units under test for Branch coverage or path coverage.

closer examination of these "anomalies", which mayindeed lead to a more reasonable design.trenter i place
"instrumentation code" in the appropriate places in
the list of units under test . The ACI attempts to

?be pminimize the number and amount of instrumentation code

e T Pfvidem three test strategy options: that is placed in the code to be tested.

i. Cotlete Path Testithr The user must recompile the "instrumented" Ada source
ith complete path testing, the TSGi code, and run the tests using the results of the

conditions at every possible control point in the unit compilation of the instrumented code.
under test, to insure that every path in the program
is executed at least once during a series of tests.

The Test Coveraie Profiler ouantifies the

iith branch coverage, the TSG identifies the effectiveness of test coverase.
conditions at each control point to insure that each The TestGen Test Coverage Profiler (TCP) quantifies
possible branch is exercised with the branch point the effectiveness of the series of tests which have
taking on every possible value. Branch coverage is been run against the units under test.
equivalent to insuring that every (reachable)
statement has been executed. The TP generates reports which show the user how

effective a particular series of tests have been with
Structured Testin respect to the execution of all of the branches and/orStructured Testing, as identified by cCabe in

National Bureau of Standards Publication 500-99, is a paths.

combination of Branch coverage and Path coverage. If
the user selects Structured Testing, TSG identifies
the conditions at each branch point to insure that the
requisite number of tests will be run. In structured Of equal interest to the test engineer is an

testing the cyclomatic number (McCabe metric) identification of those branches and/or paths which

identifies the suggested number of tests. There are have not been executed during the testing process.
usually several possible sets of Structured Tests that Knowing the set of statements which have not been

can be identified for a given unit under test; the TSG executed, and using TestGen's Unit Test Strategy

identifies one set of tests. Generator, the test engineer can easily prepare
additional test conditions that will execute the
missing branches and paths, or the test engineer can
determine why the particular branches and paths were
not executed as originally expected.

Test Coverage Aelyzer Determines the tent of
Funetiomal Test SucceSS. Test Coverage Profiler also provides Timins Estimates

The TestGen Test Coverage Analyzer (TCA) is used to
determine the effectiveness of a set of tests. The _ In addition to delineating the sets of branches andmay be used either during "white box" Unit Test, or paths which have been executed during a test, the TCP

d u d efunctional "black box" testing of the program, can provide estimates as to the percentage of time the
during fprogram has spent in each routine.

The TCA consists of two parts: This capability is useful in determining where any

aCode Test Coverage Instrumenter 
additional optimization of the code would have the

Ada Cmost effect in terms of execution speed.

Test Coverage Profiler A typical output report is shown in Figure 4.
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Figure 4. A portion of the Test Coverage Profiler
Report. $tat ment Coverage Analysia

Statement coverage Deficiencies of Module feed the Dog

The Input film A total of 5 statements were not executed:

1: Procedure feed theDog a. If Owner-allows-meat than
(Size of Dog : Dog Size typet; 9: Throw_ incagec item *x, steak);

Owner _ alows _meat : Boolean) is 10: End If;

II: when Small --
2: Case Size ofDog is 12: Fill-_feed-bowl

3: When Big -x (with food for -* email dogs);

4: Fill _feed bowl
(with _food_ for -- Large dogs);

5: Throw in cage~item -' steak);
6: When Medium ii5
7: Fill _feed_ bowlSttmnExctoCutPrfs

(with -food -for ss medium dogs);Steen EecioCutPofl
8: If Owner allows meat then
9: Throw in cage(item -. steak); Statement Execution Count for Module Feed theDog.
10: End If;
II: When Small --
12: Fitl feed-bowl Count Statement

(with food for -x small dogs);

13: End Csed thog: Procedure Feed _the _Dog
14: nd Fed te Do; CSize ofDog : DogSize type;

Owner allows meat : Boolean) is
Path Coverage Analysis *

... ... .. ... .. ... ... .. ... .. ... ... .. ... .. 23 j 2: Case Size ofDog Is
20 I3: when Big --

Path Coverage Deficiencies of Module Feed theDog. 20 4: Fill feed-bowl
(with food-for -- large dogs);

20 5: Tl'row _in_ cage(item -' steak);
There were 2 paths that were not to'uered. 3 6: When Medium --

3 I7: Fill feed-bowl
Path Deficiency 1: (wIth-food for -- medium dogs);

3 I : If Owner-allows-meat then
Path Statements: 1,2.6.7.8.9.10.13.14 0 9: Throw in cage(ltem .' tt k);

3 I 0: End If;

1: Procedure Feed theDog 0 I11: When Small --

Size ofDog : Dog Size type; 0 12I: Fill-feed-bowl

Owner _allows _meat : Boolean) is (with-food_ for .sosaot

2: Case Size_ of-Dog is 23 I13: End Case;

6: When Medium =, .. 14: End Feed theDog;

7: Fill feed bowl

(with food for -s medium dogs);

B: If Owner ailows-meat then

9: Throw in cagelitem *'steak);

10: End If; Invocation Profiler Report
13: End Case;.. . . . . . . . . . . . . . . . . . . . . . . . . .

14: End Feed theDog;

Invocation Count I- Package Kennel

Path Deficiency 2: Subprogram Name Number of Invocations

Path Statements: 1,2,11,12,13,14 K enneiNandier I1123
IFeed theDog I110
IPer form_1Medi cal _Check_ Up I52

1: Procedure Feed theDog IWalk theDog 123

I Size-of-Dog : DogSize type;

Owner allows meat : Boolean) is

2: Case StIze of Dog Is

11: When Small -,

12: Fill-feed-bowl

(with food for vssmall dogs);

13: End Case;

14: End Feed-theDog;
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%ture Efforts Author Blgrai y:

The TestG.n tools are currently operational on several
computer systems, including VAX/VMS VAX/Unix, Sun, Dr. Radi is president of Software Systems Design, Inc.Apollo, Data General and Harris. He has over 15 years of experience in the

Aerospace/Electronics industry in both Hardware design
The tools are currently configured are designed to be (logic and comrput~r design) and Software development.
totally independent of the Ada compiler being used on He is the Software Design Manager at the General
the host ind/or target system. Dynamics/Pomona Division. He is the originator of

ADADL one of the most popular Ada/PDL processors, and

A closer integration of TestGen with a compiler's the AISLE (Ada Integrated Software Lifecycle
debugger is an effort that is planned for the future. Enviror ent) family of Ada software development tools.
This integration will provide the additional
capability of running "uninstrumented" Ada code on the
target machine. A subsequent analysis of the execution
paths on the target would determine the branches and
paths that were (and were not) executed.

Conclusion

We have described the capabilities of TestGen, a tool
which was developed to assist in the Testing of Ada
designs (as expressed in a structured pseudo-code),
and in the testing of actual Ada code.

Testing encompasses all phases of the development
lifecycle. During the Design phase, the testing
process is a process of Design Review. The Design
Review Expert Assistant portion of the TestGen tool
assists in insuring that the design of each unit id
thoroughly reviewed.

The Unit Test Strategy Generator assists in the
preparation of the test plans and procedures for each
program unit. The number of tests required is
determined by the complexity of the unit being tested,
and the test methodology selected.

The Test Coverage Analyzer reports on the
effectiveness of a series of tests which are performed
on the program.
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Ada Complexity Extension (ACE)
An extension of McCabe's Cyclomatic Complexity Metric

for Analysis of Ada Software

Holly J. Tauson-Conte

TELEDYNE BROWN ENGINEERING

ABSTRACT

This article contains the results of initial research work sequential code with a graph node and a program logical
performed to extend the applicability of McCabe's transfer of control with an arc. Applying graph theory to
Cyclomatic Complexity Metric for the analysis of Ada a flow graph of a program module yields a cyclomatic
software. Having proved useful both as a logical complexity number by evaluating the formula
measurement technique and as a testing aid, the Ada
Complexity Extension (ACE) is proposed for generalv()e-n+2
acceptance as a standard to provide a useful metric that O)=e-n+2
may assist in improving the quality of Ada software whreistenmrofdgsadnstenubrf

progams.nodes.

1. INTRODUCTION At the time of McCabe's complexity theory's introduction

Ada is designed to support modern software engineering in 1976, high-order programming languages were using
principles. The use of Ada-oriented metrics, together expression and control abstraction as initial mechanisms
with the features of the Ada language, constitute a for controlling complexity. The application of McCabe's
valuable framework against which to apply these complexity measure to the expression, control, and
principles during software development. To address the procedural abstraction of languages in the mid-1970's was

nedfrAda metrics, this paper proposes a metric, Ada a relatively direct mapping. Ada's advanced language
Complexity Extension (ACE), which describes, quantifies, cabitessuhssrogypnakgsak,
and makes visible the logical complexity of Ada modules generic units, and exception handling, go beyond the
11]. At the time of this publication this theory has not capabilities of most preceding general-purpose high-order

bevaiaebyetnieempirical data. languages and therefore generate an impact on the
beenvaliate by xtenivetraditional McCabe complexity metric. The ACE theory

The ACE metric is an extension of McCabe's Cyclomatic incorporates evaluation of data abstraction (packages)
Complexity Metric and preserves many of its basic and process abstraction (tasks), plus the remaining special
properties. ACE has a mathematical basis in graph features present in the Ada language, to provide an
theory, supports structured programming, and is accurate static evaluation of Ada modules.
applicable to multiple phases in the software life cycle.

3. MAJOR DIFFERENCES BETWEEN ACE AND
McCABE'S METRIC

2. HISTORICAL BACKGROUND
It was necessary to modify and extend the traditional

McCabe developed and published in the 1970's a graph- McCabe metric for complexity analysis of Ada modules
theoretic complexity measure to address the need for a because the Ada language contains a number of con-
mathematical technique that provides a quantification of structs and statements that may be used for inter-module
software system modules [3). The technique is intended dependency and communication and other unique langu-
to assist in the identification of software modules that age features. The ACE theory evaluates complexity by
may consume time and prove costly during test and applying the formula (e-n+2) to flow graphs that have
maintenance. been modified to appropriately represent the flow of Ada

program modules. The major modifications are discussed
The properties of McCabe's Cyclomatic Complexity briefly in this section, to be followed by a more detailed
Measure include its mathematical basis, its support of description in Section 4.
structured programming, its applicability to multiple
phases of the software life cycle (design, implementation, The static complexity analysis of program modules that
testing [41, and maintenance), and empirical support involve inter-module dependency and communication may
through case studies verifying correlation between logical result in interrupted program module flow paths. The
complexity and software program errors. This com- interrupted paths may be illustrated on the flow graph by
plexity theory is pragmatic because it assists with the unconnected nodes and, in some cases, specialized arcs
management of software complexity by making control- connected to a single node are introduced to depict either
flow visible and quantifiable. Each software module may a dynamic transfer Into the module or a dynamic transfer
be depicted as a flow graph by associating a block of out of the module.

6th National Conference on Ada Technology 1988 7



Ada package bodies and generic units require further The static evaluaton of Ada constructs and features
extensions of McCabe's metric. Complexity evaluation of according to the ACE theory is described in the following
Ada package bodies requires a recognition of the optional subsections. Flow graphs illustrate the path analyses
sequence of Ada statements that may be present in the associated with example Ada program modules.
executable part of the package body as well as the nested
bodies that are contained in the declarative part of the 4.1 Ada Conditional Statements
package body. The complexity analysis of nongeneric
units produced by the Ada compiler as a result of The first kind of conditional construct, the Ada if
instantiations of the generic units cannot be acquired statement, has the same complexity as that described in
through source code analysis. The complexity value of McCabe's metric. The second conditional construct, the
each instance of a nongeneric unit must relate back to its Ada case statement, selects one of a number of alter-
corresponding generic unit code analysis. native sequences of statements for execution, depending

on the value of an expression. Since the alternative
The ACE does not attempt to measure the dynamic choices are exhaustive and mutually exclusive, the Ada
features, such as creation, termination, and suspension of case statement with x alternatives has a complexity
Ada tasks, but does include the static complexity analysis measure of x - 1.
of Ada features, such as the select statement, guard
conditions, the abort statement, and entry calls. 4.2 Ada Loop Statements

The Ada exception handler feature is yet another reason
to extend McCabe's traditional metric. An Ada exception The Ada loop statement may be expressed in a variety of
handler represents replacement or recovery code, which ways, with the completion of the loop execution
may incorporate a large variety of Ada constructs depending on an iteration scheme, the execution of an
resulting in a recovery algorithm that may be as com- exit statement, or some other transfer of control. The
plicated or more complex than the abandoned algorithm. Ada basic loop statement involves no evaluation of a
The ACE theory introduces a composite value to quantify logical decision and therefore does not contribute to the
the complexity of an Ada program module that contains complexity of the program module. Unlike the basic
one or more exception handlers. loop, the Ada "while" and "for" loops both contain an

iteration scheme that represents a logical decision
4. ACE DESCRIPTION regarding completion of the loop. Therefore, the

evaluation of an Ada loop with an iteration scheme willThe traditional McCabe metric is designed to anr'yze result in contributing one to the value of the module
modular divisions of a larger program. The definition of complexity.
a program module varies from programming language to
programming language and it is appropriate to identify
those units that constitute analyzable Ada program Any form of the Ada loop statement may contain an exit
modules. Certain Ada compilation units and certain statement. If the exit statement includes a condition,
declarative items are the essential units that may have a the loop will complete when the exit statement is
static complexity value associated with them. By reached and the condition evaluates to TRUE. The exit
eliminating the compilation units that contain only statement that does not include a condition will cause the
declarations, the analyzable Ada program modules loop to complete when the exit statement is reached.
include subprogram bodies, package bodies, generic The conditional exit statement then will contribute one,
bodies, and subunits. in addition, nested declarations of whereas the unconditional exit statement will not
proper bodies are also considered analyzable program contribute to the program module complexity. The
modules. These nested declarations include subprogram complexity evaluation of an Ada procedure that contains
bodies, package bodies, task bodies, and generic unit a loop plus a case statement is illustrated in Graph 1.
bodies. The Ada procedure is given in Figure 1.

bel", EXAMPLE I

:~ 

IXAMPL 

I

FIGURE I

procedure EXAMPLE I is

begin (7) (12) A' T"'

OPEN (FILE,....
while not END OF FILE (FILE) loop

TEXTIO.GET (INPUT CHAR );
case INPUT CHAR is

when Character'VAL (7) =. RING BELL;
when Character'VAL (12) => SKIPTONEXTPAGEPOSITION;
when w'.'K W CHOOSEAMENU; p,
when others => exit; - EXA/PLE-1

end case; v (EXAMPLE_) - e -n - 2
end loop; 13- 10 - 2
CLOSE (FILE); - 5

end EXAMPLE 1;

Graph 1
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FIGURE 2 CONSTRAIN-ERROR I
begin AVERAGE NUMERIC-ERROR

type Vector is array (Integer range -) of Integer-, ................

function AVERAGE ( V : Vector) return Float is ir begin
SUM : Integer 0;

begin
if V'LENGTH = 0 then end if for loop

return 0.0;
end if; 

ret r o

for J in VRANGE loop for low

SUM := SUM + V (J)lo
end loop;

return Float (SUM) / Float (V'LENGTH);
exception

when CONSTRAINT ERROR I NUMERICERROR =>
declare retura

SUM : Float := 0.0;
begin

for J in V'RANGE loop end AVERAGE and AVERAGE
SUM := SUM + Float ( V(J));

end loop; v (AVERAGE) = (e-n+2,e-n+2)

return SUM / Float (V'LENGTH); - (9-8+2, 7-7+2)

end; ( 2)
end AVERAGE; Graph 2

4.3 Ada Exception Handlers recovery from, the normal sequence of statements within
function AVERAGE. The total complexity for function

During program execution, an Ada exception may arise AVERAGE is a pair of values (3, 2). The first value
from several sources: a raise statement, another Ada represents the paths through function AVERAGE during
statement, an operation that propagates the exception, or normal execution; the second value represents paths in
during the elaboration of declarations. When an the exception handler(s).
exception is raised, control transfers to a user-provided
exception handler, which may occur at the end of a block When appropriate, a program module may contain several
statement or at the end of the body of a subprogram, exception handlers. In this case, the second value of the
package, or task unit. composite complexity is the sum of the individualcomplexities of the handlers. Although the logic of the

Since the exception handler has the potential of being individual handlers may not be continuous, the second
executed as a result of a transfer of control from any complexity value is a deliberate compromise designed to
Ada statement in its current frame or from any Ada indicate the total complexity of all sequences of Ada
statement, operation, or elaboration of declarations in a statements outside the normal execution of the program
nested frame, the number of possible paths to a handler module. The second value therefore approximates the
cannot be determined by any method of static analysis. amount of additional path testing necessary to verify
Also, the Ada language rules allow a large variety of Ada proper operation of the program module.
constructs to be coded within the handler, which may 4.4 Unconnected Flow Graph Segments
result in the recovery algorithm being as complicated or
more complex than the abandoned algorithm. The third Unlike McCabe's traditional metric, which is based on a
consideration regarding the replacement code or recovery strongly connected graph, the ACE theory requires
code within an exception handler is that the handler unconnected flow graph segments to accurately depict
actions are outside of (and often quite different from) the the flow of control. These occurrences of unconnected
normal sequence of actions. These three characteristics flow graph segments may be noted on Graphs 1 and 4.
of the Ada exception handler justify the ACE decision to Unconnected graph nodes may be caused by the following
compute the complexity of the exception handler conditions:
separate from the complexity of the normal sequence of
statements within the program module. The total module * In any form of the Ada loop, execution of an
complexity is then represented by a composite number. unconditional exit statement results in a direct

transfer out of the loop. Therefore, no arc should
Graph 2 and Figure Z illustrate a possible exceptional connect the exit node with any node inside the loop.
condition raised within the sequence of statements of
a frame that contains a handler for the exception. e An apparent "endless" loop may be legally coded in
Consistent with the intent of the Ada handler, when Ada. Therefore, there is no connecting arc to an Ada
function AVERAGE raises CONSTRAINT ERROR or statement that follows the "end loop" node of any Ada
NUMERIC ERROR the sequence of statements within basic loop that does not contain an explicit transfer
the handler are executed as a replacement for, or statement.
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0 By localizing the complexity analysis of an exception determined by using the following ACE guidelines for
handler to those Ada statements within the handler it analysis of the unique Ada statements that may appear in
is inappropriate and often impossible to connect nodes the implementation of the Ada task body.
associated with transfers of control outside the
handler. Therefore, within an exception handler a 4.6.1 Ada Abort Statement
node depicting an abort statement or raise statement
may not be connected with any node in that program Stopping execution of an Ada task without stopping
module. execution of the entire program may be implemented by

4.5 Ada Raise Statement one task executing an abort statement. The abort
statement may list a collection of task names, including

Applying a similar analysis to the raise statement as was the task object name that corresponds to the body
applied to the exception handler, the Ada raise statement containing the abort statement. If the task name of the
should also represent a departure from the normal task issuing the abort, or a master task, or an indirect
sequence of statements. The ACE proposes to represent master task of the task is included in the abort state-
the raise statement on the flow graph by a node with an ment, then the "abort" node on the flow graph will be
exit path whose destination is undefined. The rationale connected to the end node. When these task names are
for the unconnected exit are is based on actions not included, the "abort" node is connected to the next
performed when the raise statement is reached during sequence of actions. In either case, the evaluation of the
execution. When the raise statement is executed, abort statement does not contrbute to the complexity v.
execution of the normal sequence of statements within
the current frame is abandoned in search of the exception 4.6.2 Ada Select Statement
handler named in the raise statement. This search may
transfer program control flow to a handler at the end of The select statement may be implemented in many
the current frame or propagate it to an enclosing frame. forms, including the selective wait, the timed entry call,
Since the destination of the search transfer varies and the conditional entry call, employing such features as
dynamically, it is not possible to statically determine an guard conditions, delay alternatives, the terminate alter-
accurate connected flow graph. Procedure SALARY in native, and the else part. Although the evaluation of
Figure 3 and Graph 3 contains an illustration of a raise such features as guard conditions and the terminate
statement. alternative cause the decision mechanism within the

select statement to become rather complex, the execu-
FIGURE 3 tion of this statement leads to a choice of just one of the

select alternatives. The complexity evaluation of the

procedure SALARY (EMPLOYEEDATA: in ... ; select statement is analogous to the Ada case statement.
RETURNINFO : out ... is That is, the selective wait, having x alternatives, will

- contribute x - 1 to the complexity of the task body
... module.

begin
if EMPLOYEEDATA.ID > 50 000 then

raise EMPLOYEEDATAERROR; 4.6.3 Task Entries and the Ada Accept Statement
end if;
-- Calculate return into When an entry call has been made and the corresponding

end SALARY; accept statement has been reached, the rendezvous is
executed by the called task and the calling task is

4 b SALARY suspended. Since the task entry synchronization is so
closely dependent on the task owning the entry, the ACE
considers the complexity of the sequence of statements
in the accept statement to be an integral part of the task
body complexity. As such, the complexity value
associated with the accept statement is added to the task
body complexity and the nodes and arcs that represent
the paths within an accept statement are connected to

0_ SALARY the flow graph of the task body along the appropriate
logical path. Figure 4 illustrates a select statement,

v (SALARY) e - n 2 three aceept statements, and a basic loop coded within
a - s + 2 the Ada task body SCHEDULER.

* 2 Several items can be noted in Graph 4. There are three
branches corresponding to the three alternatives of the

Graph 3 select statement. The paths within the three accept

4.6 Ada Tasks statements are connected to the flow graph of the task
body. The basic loop contains no local means for

Process abstraction implemented by Ada tasks may completion. There is an incoming are connected to the
taosks asreacinmpented fromd tasks types and dyaialycetdorigi that iicaethes taesk bod toan complete.wInvolve a collection of sibling tasks, dependent tasks, end node that indicates there is a means of unknowntasks created from task types, and dynamically created orintawllaueteasbdyocmpt. ,

tasks, all exercising a high degree of interaction through
the rendezvous mechanism. The complexity of the 4.7 Additional Flow Graph Arcs
dynamic characteristics of the Ada task cannot be
evaluated by static analysis. However, an Individual Certain compilable Ada constructs may be combined in
complexity value for each task body in the system can be such a way as to produce either unreachable program
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FIGURE 4
begin SCHEDULER

WRITING : Boolean:= FALSE; loop

task body SCHEDULER is select

NREADERS: TaskCount := 0;

START
begin

loop case
select

when not WRITING => loop R

accept START ( REQUEST: -in...) do STOP WRITE
case REQUEST is

when READ => STOP READ
N_-READERS:= NREADERS +1;

when WRITE =>
for I in 1. .N READERS loop end loop

accept STOP-READ;
end loop; P s WR
N_READERS := 0; STOP-WRITE
WRITING := TRUE; end STOPREAD

end case; 
end START

end START; end START

or
when WRITING =>
accept STOP_WRITE do ed select

WRITING := FALSE;
end STOP WRITE; end loop

or end SCHEDULER
when not WRITING =>
accept STOPREAD do V (SCHEDULER) = e- n + 2

N_READERS := N_READERS-1; = 23 -19 + 2
end STOPREAD; =6

end select;
end loop;

end SCHEDULER; Graph 4

segments or locally nonexecutable activities. An guidelines for those Ada statements used within the
incoming arc that has an undefined source will be added executable sequence of that package body.
to segments of the flow graph that are not connected in
the forward direction. The additional arc will result in 4.9 Ada Generic Units
increasing the complexity value by one per are. The
increase is appropriate since these arcs will correspond to The Ada generic unit is a template in the form of a
the test paths necessary to fully test all code paths generic subprogram or generic package. Although the
within the program module. One example of an addi- body of a generic unit does not represent an executable
tional arc is illustrated at the bottom of Graph 4. Ada program unit, it is necessary to include it as an

analyzable program module. The reason is that the
4.8 Ada Package source code within the generic body represents the only

accessible reference for analysis. Each time an
The Ada package specification is designed to encapsulRte executable subprogram or package is obtained from a
logically related entities and may include a subprogram, generic unit, the compiler performs the substitution of
package, task, or generic declaration as a declarative the actual parameters for the generic formal parameters
item. If the package specification contains any of these and the resulting nongeneric unit becomes part of the
declarative items, then the package body must contain program. Since the nongeneric bodies are very similar in
the corresponding unit bodies in its declarative part. logic structure to that of their corresponding generic . IJ
Those program unit bodies that are included in the unit, the complexity of the instantiated program unit will
declarative part of the package body should have the be considered identical. A complexity value is only valid
ACE complexity evaluation applied to each program unit when the program module contributes to the complexity
that is considered a program module. of the program. Therefore, the complexity measure

computed for the generic body is to be applied only to
Consistent with the design of all Ada program unit each instantiation of the generic unit.
bodies, the package body may contain an executable
sequence of Ada statements with an optional exception 5. FUTURE RESEARCH AREAS
handler before the end of the package body. If this S
optional sequence is present, the package body will then The ACE metric recommendations that are provided in
require a complexlty evaluation incorporating ACE this article for extending McCabe's cyclomatic
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complexity metric have been evaluated and tested on a reviewed the ACE theory and offered comments that
limited amount of Ada software. Extensive empirical have been addressed in this article. The research effort
evaluation of the ACE will be necessary to "fine-tune" was partially funded by the Software Quality Assurance
the theory and maximize its practicality. Group of the U.S. Army Armament, Munitions and

Chemical Command.
There is support for the concept of expected maintenance
difficulties and error-prone modules correlated to high
complexity design and program modules. Consequently, 8. REFERENCES
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AN INVESTIGATION INTO THE COMPATIBILITY OF ADA

AND FORMAL VERIFICATION TECHNOLOGY
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4550 Forbes Blvd. P.O. Box 1144 9712 Ceralene Dr.
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ABSTRACT 3. Individual subjects must be
identified.

The goal of this study is to

investigate approaches to 'high- 4. Audit information must be
assurance' software written in the Ada selectively kept and protected
programming language. 'High-assurance' so that actions affecting
software includes the software in security can be traced to the
systems defined to be 'secure' by the responsible party.
Department of Defense Trusted Computer
System Evaluation Criteria (TCSEC) as 5. The computer system must
well as other software with very high contain hardware/software
reliability or security requirements. mechanisms that can be
The primary approach to high-assurance independently evaluated to
software considered here is formal code provide sufficient assurance
verification. This report investigates that the system enforces
Ada constructs relative to code requirements 1 through 4 above.
verification, the technologies necessary
to support code verification, and ongoing 6. The trusted mechanisms that
efforts directly related to verification e n f o r c e t h e s e b a s i c
of Ada code. Since Ada was not developed requirements mu st be
to be a verifiable language, there are continuously protected against
some constructs that will defy formal tampering and/or unauthorized
verification; these challenges do not changes.
seem to be overwhelming and could
presumably be controlled by restrictions The software in these systems is
on the use of the language. Tasking and frequently referenced as 'secure' or
exception handling are the two greatest 'trusted' software. The conclusions of
challenges that the language constructs this paper are directly applicable to
provide for verification, with tasking 'secure' and 'trusted' software and are
being the greater challenge. also applicable to a much broader

collection of software. This broader
collection includes software with very
high reliability or security

INTRODUCTION requirements, and software which must
function as intended or there will be

This paper addresses several issues. threat to human life or national
The abstract goal is to investigate security. Throughout this report, such
methods that would lead to a 'high software is referred to as 'high-
assurance' that software written in the assurance.'
Ada language would perform as intended.
To make this goal concrete required a The initial approach of the research
preliminary understanding of 'high on which this paper is based was a review
assurance.' The Department of Defense of each Ada construct as defined by the
Trusted Comouter Systems Evaluation Ada Languace Reference Manual (LRM).
Criteria defines secure computer systems This review was centered on the impact of
as those that satisfy six requirements: each construct on formal verification.

The assessment was based on the
1. There must be an explicit and feasibility to develop a verification

well-defined security policy axiom, or proof rule, for each construct
enforced by the system. in isolation. Those constructs with the

2. Access control labels must be greatest impact on verification are

associated with objects. r
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in addition to the axioms, other remains to be seen whether what remains
support technologies are required for has any semblance to what would be called
code verification. These include a Ada, and whether it would have any
formal definition and a specification usefulness for the objectives for which
language. Specification languages are it was designed into the language. Use

*not only necessary for formal code of t he techniques employed in
verification, but can also be used with Communicating Sequential Processors (CSP)
other techniques, both formal and less (Barringer] appears to be a promising
formal. An understanding of runtime possibility while other research
issues is necessary to understand the indicates that restriction of
limitations of code verification relative communication to only buffers (a la

*to how the software will function during Gypsy) [Young8O), to only scalars
execution. The status of each of these [Odyssey85j, or to only those entry
issues relative to Ada execution is points in which pre-condition and
presented. postcondition assertions have been

specified (Tripathi] would alleviate many
Some of the conclusions of this of the inherent difficulties in applying

study go beyond the initial study plan. formal verification technology to the Ada
While investigating the principle concurrency problems.
questions addressed by the study,
secondary observations were made and are it must be noted that those
included, restrictions to communicating between

tasks reflect the state of the art rather
than assess feasibility. Although no one

ADA CONSTRUCTS THAT AFFECT VERIFICATION has published proof rules for passing
aggregate types, for example arrays or

Ada is generally viewed as a rich records, development of such proof rules
language. The richness of the language seems quite feasible.
is perceived to be detrimental to formal
verification. This section highlights Several researchers (Odyssey85,
the constructs most challenging to PneuliJ have recommended that access
verification, identifies a few problems pointers to tasks not be allowed. The
considered to be unresolvable and intent of this restriction is to
outlines restrictions on Ada programming disallow dynamic creation of tasks. In
style that would be necessary if the code the absence of dynamic creation of tasks,
were to be formally verified. The proof rules can be obtained for tasking.
conclusion of this section outlines the However, it is unlikely that this
impact that using Ada would have on limitation will be readily accepted,
secure systems. particularly in the systems programming

arena.
Different perspectives are used in

different subsections of this section. The approach used [Owicki and Gries]
The subsections on challenging to verify Communicating Sequential
constructs, unresolvable problems, and Processes, Hoare's language framework for
necessary restrictions in coding style concurrent programming, is readily
assume that the intent is to verify code adapted to verification of Ada tasks.
using axiomatic verification techniques This approach consists of two distinct
on the code. The concluding subsection on steps: internal verification and
the impact of the use of Ada for secure external verification. Internal
systems takes a pragmatic view, assessing verification consists of proving that the
the impact of Ada on current practice. task is an isolated, sequential program.

External verification consists of proving
Most Challenging Constructs that, with the exception of entries,

tasks do not affect any subprograms,
*Tasks, Ada's implementation of tasks, or variables declared outside of

concurrency, are the most challenging the task being verified. External
obstacle to applying formal verification verification also requires proof that the
technology to the Ada language. By task in question is not affected by any

*allowing only restricted use of tasking, subprograms, tasks, or variables declared
it appears that concurrency in Ada can be outside of the task. Again, entries are
made amenable to application of formal the exception to this rule. External
verification technology; however, it verification is performed in two states:
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a) 1-0 assertions on entries are Unresolvable Problems
made and shared variables
are restricted. Programming languages not developed

for verification inevitably contain
b) A proof against deadlocks and constructs that are non-verifiable. Some

starvation is made. of these can be controlled through
restrictions on programming practices and

Deadlock and starvation avoidance are discussed in the next section. For
proofs are prevalent throughout parallel two common programming constructs there
processing literature, is no current solution. Although these

constructs are not unique to Ada, they do
The verification of tasks also exist in Ada.

assumes the following:
Verification of statements including

a) All processes terminate real numbers, and operations on real
normally. numbers, is beyond the state of the art.

This is due to the lack of accuracy. In
b) Subprogram calls have no side the statement

effects.
J:- (1.0/3.0) + (1.0/3.0) + (1.0/3.0)

c) Assignments have no side
effects. J would, mathematically, be set to 1.0.

However, not only is it uncertain if J
d) Tasks may not be aliassed. will equal 1, it is not known how close

to 1 J will be. The effect of this on
Exceptions are the other principle subsequent statements involving J is

obstacle to verification. The major unpredictable. As in other languages
difficulty with exceptions (Tripathi] in using real numbers, they cannot be used
the Ada language from the point of view if the software is to be verified.
of verification is the dynamic manner in
which exceptions are propagated, and the Another area that is not verifiable
resulting complexity that derives from is the process of setting timing
attempting analysis during symbolic constraints. If a section of code must
execution of programs in the verification be executed within a specified time,
step. This complexity is furthered by there is no way to verify that the
the fact that exceptions are propagated constraint will be met.
"as is,' which could cause an unhandled
exception to propagate from several Restrictions to be Enforced
levels down to a routine that has no
understanding of the meaning of the The recommended coding restrictions
exception. For example, a stack package of note involve aliasing, aliasing of
with a private implementation that raises access types, using shared variables by
INDEX-ERROR in the environment of the tasks, and side effects of functions.
calling procedure would be totally
unexpected and either unhandled or Verifying a specific subprogram call
mishandled. requires verifying certain conditions

about the parameters involved in the
Through adequate containment of the call. These parameters fall into one of

exceptions, the complexity should be two categories: input parameters or
reduced. However, the interaction of output parameters. Input parameters are
exceptions and other constructs moves used only for passing values to the
this issue well beyond the problem of subprogram; output parameters may have
bookkeeping. For example, if an their values altered by the subprogram.
exception is raised during execution of a The conditions that must be verified for
routine with IN OUT parameters, it is not each are as follows. No variable, either
clear if those variables will have been input or output, may appear in either the
updated prior to transfer of control to precondition or postcondition. No
the exception handler. variable that appears in the output

parameter list may appear more than once
in that list, and no output parameter may
appear as an input parameter. The former
condition results in updating multiple
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variables when only one is intended to be Ada functions are restricted to exclude
updated. For example, if two subprogram side effects, they can be verified
formal parameters, A and B, are both similarly to Gypsy function subprograms,
passed variable X through a subprogram in which these restrictions are enforced
call, the result of the statements by the language.

A:=O Shared variables are the major
B:=1 construct in tasking that will have to be

restricted (although perhaps simulated
leaves variable X with the value 1 and no through use of other constructs using
variable from the call with value 0. The synchronization) in order to apply formal
postcondition after these two statements verification technology to Ada. On this
would assume the existence of two matter, there is no disagreement among
distinct parameters, one with value 1 the the researchers (Cohen, Good80,
other with value 0. If an output Odyssey85, Tripathi].
parameter appears as an input parameter,
the time at which the input parameter is Many of these recommended
evaluated becomes critical. If the restrictions are consistent with what are
output variable is updated prior to the considered good programming practices.
evaluation of the input parameter, the The exception is use of shared variables
value of the input parameter may differ by tasks; forcing tasks to communicate by
from the value recorded if the output other means will restrict the utility of
parameter is not updated prior to tasking. If the code is to be verified,
evaluation of the input parameter. A however, the restriction may be
single actual parameter used for more necessary.
than one formal parameter is known as
"aliasing."

FORMAL VERIFICATION IN ADA
The association of parameters at

subprogram call points would be the ideal Formal verification is the highest
location to exclude aliasing [Good80, technology approach to increasing
Odyssey85]. Although there might be a assurance in the correct functioning of
loss of efficiency, the fact that computer software. Other approaches, such
aliasing is unnecessary and complicates as testing, configuration management, or
application of formal verification development methodology, have benefits
technology [Young8l] would seem to be but verification alone can make a quantum
sufficient reason for its elimination, leap in the level of assurance. This has

resulted in the unfortunate position that
The major concern in the use of verification is an all-or-nothing

access types is the possibility of proposition for software development
aliasing. One possible solution to the requiring very high levels of assurance.
aliasing problem with access types, This mentality has only slowed the
presented in [Tripathi), is to define a application of formal verification
new operator for access types that technology.
performs component copying, rather than
pointer duplication. This solution is The formal verification process
appealing with the advent of the consists of preparing, prior to the
evaluation of the Ada language, due in development of software, the formal
the latter part of the 1980s, when specification of a model of the intended
changes and updates based on several behavior of the software. Some effort
years of working experience with the may be placed (as described previously)
language will be incorporated into the in the analysis of the specifications to
language. However, restrictions on ascertain their completeness and internal
parameter passing (Odyssey85, Young8l] consistency. Then, following the
would appear to provide the same benefit software development methodology, designs
with fewer changes. and implementations at the various levels

of the software are completed, and formal
If a function performs input or correspondence with the specification is

output or accesses non-local variables, performed, resulting in proofs of
it is said to cause "side effects." If correctness of the implementation with
function subprograms are truly functional respect to the specification. The
they will not include side effects. If formal proof of correctness consists of w
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pshowing that the two separate, hopefully language. Although not required for code
somewhat orthogonal, descriptions have a verification, runtime issues are very
proper correspondence. important. Code, even if proven correct,

will not function as expected if the
Assessing the state of the art of runtime environment does not execute in a

formal verification technology relative manner that is consistent with the
to the Ada language requires perspective, assumptions of the proof.
To date, the largest code verified system
in operation is 4,211 lines of code. These issues -- formal definitions
Given that languages that are designed and semantics, specification languages,
and developed to be verifiable provide and runtime issues -- are discussed in
challenges to the development of large, this section.
complex systems, it would be naive to
expect that Ada would be easily Formal Definition and Formal Semantics
verifiable.

The most ambitious attempt at a
One of the earmarks of formal formal definition of the Ada language is

verification technology is its formality, being undertaken by the Dansk Datamatik
This is an area that seems to have had Center and its member companies. This
varied amounts of support during the definition is intended to give meaning to
design of Ada. In the early each Ada language construct by providing
requirements documents for the Ada meaning to each sub-construct. This
language, verification was mentioned as a def inition is to be a readable,
desirable goal, but the language contains unambiguous definition that will be
many constructs that prevent this goal. implementation dependent. The approach
In order to do formal proofs of was to develop a static semantics and
consistency between the specification and then to develop the dynamic semantics.
the implementation, a formal description The dynamic semantics will have embedded
of the language semantics is also in it the sequential constructs, as these
necessary. Some effort has been done by may be executing in parallel, and the
the EEC in this area, but it has not input-output portions of the language.
sufficiently matured to a stage where it
can be utilized in formal verification. The semantics are provided by use of
The only viable specification language axioms which are given as abstract data
for Ada, ANNA, has been geared more types and an algebra, or model, for
toward the utilization of runtime combining the constructs. In addition to
assertion checks, not f or malI being a basis for formal proofs, this
verification, and has largely ignored definition is meant to be a standard
the aspects of parallelism. At least reference or specification fo r
one known effort is involved in extending implementors of the language.
ANNA to overcome these deficiencies.

This effort has produced a very
Once the remaining theoretical large volume for the formal definition.

obstacles have been overcome, it will Although the developers have built into
be necessary to develop automated support the definition mechanisms to establish
tools for the specification and the completeness and consistency of the
verification process. definition, these two concerns --

consistency and completeness -- are still

ADA-SPECIFIC SUPPORT TECHNOLOGIES mjr

SofTech has been working on an
Formal code verification requires effort to define the problems and

several key components. The potential solutions to the development of
implementation language must have a an axiomatic semantic definition of the
formal definition or semantics so that Ada language. The difference between an
the exact meaning of each language axiomatic semantic description of Ada and
construct and sub-construct is clear and the definition of Ada given by MIL-STD-
unambiguous. There must be a 1815A is that the semantic description
specification language. Since the proof de f in es the behavior and
establishes the consistency between the interrelationships of the individual
specification and the code, the language constructs in such a way as to
specificati.on must be stated in a formal be used as the basis of a proof. The

6th National Conference on Ada Technology 1988 171



existence of a semantic definition of a transitional errors in all but the most
language is necessary if a comprehensive detailed, trivial or exhaustively used
verification technology is to be system.
developed for that language. Any aspects
of a language that are not rigidly, The principle specification language
semantically defined are subject to for Ada was developed at Stanford
varying interpretations by different University. ANNA (ANNotated Ada) is an
compilers. Some of the Ada constructs annotation language for all constructs of
that pose difficulties in verification Ada except tasking. The language is
have been left out of the semantic designed to support various theories of
description. A list of the excluded formally specifying and verifying
constructs are address clauses, unchecked programs. One area of current research
conversions, variables shared among tasks is the use of parallel processors to
and subprogram calls that generate provide concurrent checking of
aliases, specifications.

To a large extent, most elements of Since the ANNA semantics closely
a semantic description are handled at parallel those of Ada, its use in secure
compilation time and need not be dealt systems development would allow the
with during verification time. it is system designers and implementors to use
important to realize that the actual the same underlying language semantics
verification environment is based on the for communication of the intended
semantic definition of Ada rather than behavior of their specifications and
the actual language, and constructs that programs. However, since the language
are not included in the semantic appears to have been targeted to the
definition invalidate the verification runtime validation of program execution
process. The Sof Tech study concerns rather than pre-execution proofs of
itself only with those constructs that correctness, its applicability in secure
are not dealt with at compilation time, systems development would be limited

until a supporting infrastructure, both
in terms of theoretical aspects of the

Specification Languages language and in terms of automated tools,
can be developed.

Specification languages are
necessary for code verification and can The use of Ada as its own
also be used for other proof-related specification language would enable the
purposes. Analysis of the specifications specification to be read and interpreted
prior to proving consistency between the by a compiler-like consistency checker
code and the specification, can only be which is able to enforce internal
formally done with a mathematically-based consistency within the semantics. Taken
specification language. Also, runtime to a higher level, the consistency
analysis is facilitated by use of a checker may be used to check the
specification language to state the consistency between different levels of
assertions that are to be checked at specification. In this manner the
runtime. Some Ada-specific work on integrity of the initial specification
specification language tools is being may be checked, level by level, down to
done at Stanford University. the actual code. The disadvantage of

using Ada as a specification language is
At the present time, software system the limitation of Ada's expressibility

specifications are done in the English relative to specifications.
language. While using English as a
specification language has the advantage
of providing easily readable, easily Runtime issues
composed specifications there are some
problems inherent with the use of Verification of a program, in any
English. The English language often language, takes place during a "proof
contains inconsistencies and ambiguities time" which occurs before the program is
which inhibit exact interpretations of executed. Situations that are difficult
the specifications. The translation to predict at proof time are generally
required from specification language to either discounted or disallowed by
coding is so broad due to the vast verif ication techniques. The result of
difference in media as to create this is that one of two things happens:
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either an issue is ignored or discounted robust manner. The state of the art is
in some superfluous way, or a great deal little more than the statement that "if
of effort is spent attempting to suppress an exception never occurs it creates no
possible occurrences of the problem. problems in verification."

Ada deals with runtime difficulties Runtime Assertion Checks
through the use of exceptions. Much work
has gone into exception handling during Another area in which specifications
verification. One of the more detailed may be applied is that of runtime
investigations into runtime issues assertion checks. This subsection
relative to verification is McHugh's work describes the various types of such
at the University of Texas at Austin on checks, their applicability and utility,
the Gypsy language [McHugh]. Gypsy's and the status of the technology as
exceptions are similar to Ada; this applied particularly to Ada.
enables us to apply runtime techniques
developed in Gypsy to Ada. Runtime assertion checks can

increase the assurance in the correct
McHugh handles exceptions in two functioning of a program in a number of

manners, one of which is that exceptions ways. First, the additional effort
that are considered domain related. expended in the development of such
These exceptions are discounted with assertions, whether they be informal or
regards to verification. An illustration formal, increases the level of the
of this is as follows: a verified programmer's understanding of the
satellite communications system would program. Second, the preparation of
fail if the satellite were disabled. The assertions can provide a gentle
effect of this decision is to localize introduction to the application of formal
the responsibility of the verification to verification technology, by allowing the
not include errors that emit from outside programmer to get a small amount of
the program. Should the satellite be exposure to part of the verification
verified in addition to the software, process without having to make the total
then a failure would indicate a fault in investment in learning the process at
the verification process. once. Finally, and the major reason for

their use, is that the runtime checks can
Exceptions that are not external in be used in instrumented versions of the

origin are handled differently. These executable programs to check the
exceptions are, in effect, eliminated programmer's understanding of the program
from the program to be verified, against its actual execution.
Exceptions of this type are indirectly
optimized during the verification process Runtime assertion checks can be
before runtime. This is performed by the included in a program in various forms.
creation of optimization conditions that The first, and most obvious, form of
are related to possible exceptions. assertion is simple inclusion of code in
Optimization conditions must be the programming language itself. This
sufficiently well defined to show that code may be instrumented in such a way as
the corresponding optimization condition to be turned on or off at runtime,
must occur before the exception may be although recompilation of the source code
raised. Given this, it is easily proven may be required. The level of overhead
that, if an optimization code can be associated with such checking increases
proven to never occur, the exception will from the lowest, in which the runtime
never be raised. It is easily concl.uded assertions are not included at compile
that an exception which is never raised time, followed by instrumentation with
cannot compromise the verification of a checks turned off, runtime assertions
program or module of a program. We may compiled in, to instrumentation with
now state that, if an optimization checks turned on. Another possible form
condition is offered as a precondition of of inclusion of runtime assertions is
a module of Ada code then the code may be through the use of a formal assertion
considered verif ied with respect to the mechanism. These may be processed by a
exception that corresponds to the preprocessor, as in the case of the C
optimization condition. language assert construct, and converted

into corresponding source code, or parsed

In short, the nature of exceptions with the program text, as in ANNA runtime

makes them difficult to verify in a %
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specifications, and expanded during the some of the benef its of the parallel
code generation phase of compilation, execution and reduce the apparent runtime

overhead penalty associated with the
One benefit of the use of runtime checks.

assertion checks is that the technology
is so similar to compiler technology that The use of ANNA is very CPU
it can be applied without additional intensive, not only in the execution time
technology development. Its application of the resulting software, but also in
is also at a suf ficiently low level to the execution time of the automated
allow its use by programmers at various tools. The lack of speed in these tools
ability levels (depending upon the level is due in part to their use of somewhat
of formality of the specification dated compiler technology. This drawback
language). Another benefit is that the might prevent its application in
technology can be easily integrated into environments that are unable to provide a
the traditional software development sufficient hardware base for development
methodology without having to make large environments. The benefit of the choice
investments in retraining, changes in of Ada has allowed transition among
practice, or additional hardware. available hardware configurations which

provide Ada software development
The use of runtime assertion checks environments.

is not without drawbacks, however. The
most obvious one is the overhead penalty
in execution time while running programs CONCLUSIONS
instrumented with such runtime
assertions. Another drawback is that the This study had several objectives.
application of formal verification The abstract goal was to investigate
technology may obviate such runtime methods that would lead to the highest
checks. With a formal verification assurance that software written in the
methodology, it may be possible to Ada language would perform as intended.
logically prove that the assertion holds This led to the examination of elements
at the point in the program's execution, related to the formal verification of Ada
and the resulting runtime check can be software, to the examination of formal
omitted, thus reducing the program's methods applied at levels other than code
runtime overhead and increasing its verification, and to the examination of
performance. less-iormal methods.

Runtime assertion checking is a Relative to code verification, the
technology which can be, and currently is continuing examination of Ada constructs
being, applied to increase the assurance reveals two findings. Since Ada was not
in the correct execution of software developed to be a verifiable language,
written in Ada. Research at Stanford there are some constructs that will defy
University has resulted in ANNA, a formal verification; these challenges do
specification language for Ada, not seem to be overwhelming and could
specifically designed for use in presumably be controlled by restrictions
preparing runtime assertion checks. to the use of the language. Tasking and
Automated tools for supporting the exception handling are the two greatest
software development process using such challenges that the language constructs
checks have been developed, and provide for verif ication. of these,
preliminary results have been obtained on tasking is the far greater challenge.
a number of research and development
projects. Code verification requires both a

formal definition and a specification
ANNA was designed primarily fo:: use language. The formal definition being

with th3 sequential aspects of the Ada developed by DDC will need to be
language. Efforts are underway to extend verified, validated or certified by
ANNA and combine it with other languages someone outside of the developing group.
to use it for the parallel aspects as This is a major issue. Also, the
well. Additional research is being structure and syntax of the definition
targeted at providing a mechanism for will limit its utility.
concurrent execution of the resulting
runtime assertion checks (on multi- ANNA as a specification language has
processor hardware) in order to exploit limitations which are being addressed by
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Odyssey Research, and alternative forms technology relative to the Ada language
for specifications are being investigated requires perspective. To date, the
by Computational Logic. largest code verified system in operation

is 4,211 lines of code. Given that
As these various elements of formal languages that are designed and developed

verification with the Ada language to be verifiable provide challenges to
progress, it will remain to apply the development of large, complex
resulting technology in order to gain systems, it would be naive to expect that
experience with it and to evaluate the Ada would be easily verifiable.
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Ada SOFTWARE METRICS

LTC Richard P. Delaney, U. S. Army,
AWIS/CCS Project Management Office,

Fort Belvoir, Virginia
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Fairfax, Virginia

ABSTRACT The goal of this modernization effort (both
Joint and Army) is to reduce the life cycle costs

Metrics are the quantification of through reliable, portable, and reuseable code
environmental and performance factors to produced under strict configuration control
measure the effectiveness of activities in the utilizing the DOD-mandated Ada programming
areas of resources, schedule, quality, and risk. language [DOD87a, DOD84b]. AWlS expects
Metrics provide both a prospective and nearly two million lines of code to be produced
retrospective measure of accomplishment, incrementally with phased releases to the
Retrospective data provides a baseline for the multiple world-wide sites. Because there is
next project. Prospective data support insufficient direct experience in the management
forecasting, planning, and control of on-going of such a program utilizing Ada under the
activities. The latter is obviously preferrable. guidelines of DOD STD-2167 [DOD 85], this

contract has been on the leading edge of both
This paper summarizes the types of metrics Ada technology and management of that

developed during the foundation phase of the technology.
Army WWMCCS Information System (AWLS), and
the methodology applied to achieve a selected
subset of these metrics. Current plans are to From a Program Manager's view point,
continue to tune and refine these metrics during there are four areas of importance required for
full scale development, which starts early in 1988 forecasting, planning, and controlling a project to
and is expected to last for five years. achieve the desired end product. These areas

are resources, schedule, quality, and risk.
Resources are those replenishable ingredients of
people, equipment, facilities, and support (e.g.,

IR UIcommunications, supplies, etc.). Schedules deal
with the one non-replenishable resource - time.
Quality consists of an evaluation of how well the

Project Managers strive to be in the fore- product conforms to the desired specifications.
front of technology. However, along with the Risk is the degree of expected success in
distinction of being a technological first come managing the first two factors in order to achieve
problems that do not surface in other projects that the third. The common denominator across all
follow. Both of these statements are true of the factors is cost.
Army WWMCCS Information System (AWLS)
Software Development project.

AWlS is in the process of developing
methodology, collecting data, and performing

The AWlS Software Development is being analyses to develop Metrics to support the
done in Ada and is the first large scale non- management and control of the above variables.
embedded Ada development within the Army. Results to date are preliminary but the approach
AWlS is the Army portion of the Joint appears to have merit. They are presented to
modernization of the World Wide Military encourage discussion and invite the interchange
Command and Control System (WWMCC6). WIS of concepts and findings in this early but critical
(WWMCSS Information System) is also being aspect of Ada development.
developed in Ada, but in many respects AWlS
software development is ahead of the WIS
software developments. AWlS has started the
designing and coding of Ada applications
software utilizing methods and procedures
specifically tailored for this project.
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The contract, being p,-riurmed by TRW,
Inc., is divided into two phase6. Phase I is
structured to provide a foundation for the full scale

The World Wide Military Command and development of Ada software to replace the more
Control System (WWMCCS) serves the National than eight million lines of COBOL and FORTRAN

Command Authority (NCA) and key commanders software presently being operated at the Army

across a broad spectrum of planning and supported WWMCCS sites. Phase I will acquire

operational activities from day-to-day through an Ada Programming Support Environment;
crisis operations to conventional and nuclear war. develop plans, procedures, and a methodology
The computers, software, and associated for Ada development; establish training courses

telecommunications form the backbone of the specific to AWlS; and build a pilot subsystem to

current WWMCCS ADP system. Its use is ensure that the methodology, plans and

expanding both in breadth and depth of procedures are correct. Phase II will use the

operational applications, approved methodology and procedures to
implement the full-scale development of the
estimated two million lines of Ada code. Phase I

Modernization of the WWMCCS program is projected to be completed in February 1988,

officially began in November 1981 with the with Phase Il immediately following.

establishment of the WIS Joint Program Manager
(JPM). The JPM is the focal point for coordination
and control of all existing WWMCCS ADP FOUNDATION
requirements and upgrades. The overall goal of
the WWMCCS Information System (WIS) program
is to build an affordable system that makes Metrics are the quantification of
maximum use of commerical off-the-shelf (COTS) performance projected for or resulting from the
hardware and software to provide responsive management of resources, schedule, quality, and
support to JCS validated operational risk. Metrics provide both a prospective and
requirements. The new system will allow for the retrospective measure of accomplishment. They
future integration of state-of-the-art improvements, are vital components of management on both the
as well as provide system enhancements in part of the Government and the contractor.
survivability, DOD standard protocols, modularity, Retrospective data provides a baseline for the
flexibility, sustainability, etc. next program phase. The more important use of

metrics to a program manager is prospectively. It
is in this mode of usage that forecasting,

Army WIS (AWlS) is a part of, and an planning, and controlling can be exercised.
extension to, the larger joint modernization effort
called WWMCCS Information System (WIS). As
the Army portion of WIS, AWlS includes those The challenge facing a program manager
service and command capabilities in support of with Ada as the software development language
the Joint and Army missions not provided by WIS. is the sparseness of retrospective data. In
The Army maintains primary responsibility for recognition of this deficiency in the Ada
implementing these supporting applications, environment, the Army included metrics
AWlS will provide information to WIS and development as one of the foundation tasks for
additional information handling capabilities at the Phase I of AWLS. Specific emphasis is given to
WWMCCS sites managed by the Army. developing an Ada Cost/Schedule Estimating
Therefore, AWLS, the Army subset of WIS, Model [DEL88]. Initially it was envisioned that
provides joint operational planning and execution metrics would only be gathered in Phase I.
capabilities to meet the command supporting However, it has been realized that additional data
requirements at the eight sites ior which the Army points are needed.
is responsible.

Key to improving software cost estimation
The AWlS Software Development (ASD) capabilities is to collect data, data, data. This is

effort will provide the applications software for the reason for extending the metrics task into
Army and command subsystems that will support Phase II. The Government has realized that the
WIS. The applications software is being Phase I metrics tasks only provides a single data

designed and implemented in Ada. The AWlS point. This point is only one of many that makes

applications software will provide for command- up a cost estimating curve. The exact shape of
supporting wartime and transition functions and that curve can not be determined by only one
will be resident on joint hardware at the point. More data is needed to determine whether
appropriate locations, the curve is a straight line or some other shape.
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Prospective usage of metrics is most Although there may be differences
effective where the environment and between the Government and the contractor in
methodology can be controlled and the cycle of where sub-optimization can or should be

mehooog cnbecntole adth cce fachieved, the end goal of success is common and -'

activities repeats itself a sufficient number of times pred ,nt .e f c e i sati on and

so that the metrics can be refined and applied. predominant. Effective utilization of metrics
The longer the period of performance and the requires both the Government and the contractor

higher the number of cycle repetitions, the greater to believe the viability of the metrics and be

thewilling to use them as a significant basis for

these charactenistics. forecasting, scheduling, planning, and control.
Metrics can help alleviate the fears and fantasy
associated with Ada [BAM87J.

Why bother with metrics at all? The
following quote from Lord Kelvin sums it up..
"When you can measure what your are speaking Metrics are of little value without definition
about, you know something about it. When you and control of the context in which they are

are unable to use a quantitative description, then developed. In recognition of this, the Army
your knowledge is meager and unsatisfactory." required several early products in Phase I to

establish the proper foundation for Phase II. TRW
also, recognized this and invested during Phase I

The fundamental goal of metrics is to in the creation of a processing and development
gather data from an historical perspective, environment sufficiently robust to support Phase
analyze the data, and formulate a methodology of II.
predicting future performance of similar
developments. In this project, the Government
desires to prospectively determine the In the area of control, the objective is to

incremental costs of the full-scale Phase II effort. establish a feed-forward mechanism rather than a
The Government needs to more accurately feed-back mechanism of control. This provides

forecast the cost and schedule of this the Program Manager with an ability to "steer" the
development project. Adequate funds must be project to the desired goal, rather than recovering %

programmed, and more importantly, defended to after the fact.
assure development completion. Once funds are
budgeted, programmed and provided to the
project office, then the amount of work to be Among the first products to be produced
tasked to the contractor can be properly scoped were a description of the design methodology
using the metric data. Schedules must be known and a Software Standards and Procedures
to assure ease of transition at each of the Army Manual. Another early product was a study that
supported WWMCCS sites. Many sites require led to the selection of an APSE, including the
long-term planning to assure proper integration of initial tool set. A risk management program,
implementation scheduling, configuration control system, quality evaluation

program, and metrics development program wereall started very early in Phase I.

Metrics data can also be used by the Army
(Government) to evaluate how much IV&V effort is
required for a particular development. Analysis of With all the components in place, a 0% ..

the data can help direct the proper application of preselected subset of a Functional Description
the IV&V effort available. Metrics can then be was implemented to verify the foundation and
used to determine when the IV&V effort has provide for appropriate refinements where the
achieved "acceptable" results. processes, procedures, and controls were found

lacking. Strict configuration management control
was exercised at all times.

From the TRW (Contractor) point of view,
metrics provide a baseline against which Tdt
resource, requirements, schedules, and risks can The design, development, test, and

-be identified, corrective actions evaluated, delivery of Ada software may span a period from ,

performance measured, and success achieved, several months to several years depending on
Quality may be evaluated prospectively. The the size and complexity of the application.
availability of good metrics will permit TRW to Metrics which are not available until after program
respond quicker and more accurately to the completion are of little benefit. AWlS has chosen
development scheduled required by the Army. the seven software development phases of DOD
The resultant improvement in planning will yield STD-2167 to provide the first level of
better resource utilization and, therefore, lower decomposition of activities and performance. The
costs. intent is that the Metrics at the end of the
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Requirements Analysis, Preliminary Design,mo
Detailed Design, Code and Unit Test, CSC
Integration and Test, CSCI Integration and Test,
and DT&E will provide the ability to evaluate
performance on the phase being completed and
adjust, as necessary, the expectation forRa
subsequent phases.

When the retrospective data is meager,
there is initially a need to "over-collect" data and =ZIT
perform analysis to discover the highly leveragedI RWTI
factors that should constitute the final Metrics set. 'I j
As analysis determines low correlation of the
factors to performance measurement and/or the FIGURE 1 - METRICS MODEL
ability to impact performance using those factors,
they are discarded. Where two or more factors
are interdependent and sensitive to the same
management actions, they are either combined or The Metrics model permits data to be
the most appropriate factor is selected for collected at each of the development phases andcontinued data collection. AWlS is in the initial still be aggregated over any contiguous numberstages of this determination, of phases. Thus, the resulting metrics at the end

of any phase provide for retrospective analysis,
adjustment, and a prospective look at succeeding

There is a need to have a high degree of phases of the total software development cycle.
automation in the Metrics program to assure
timeliness of results and to minimize the cost of
the Metrics activities on life cycle costs. AWlS has In the first phase of software development,used available tools where ever possible to the input products are the System Specifications
support the metrics activities. Since insufficient and the Functional Description (FD). The outputdata points are available to determine the final of the first phase is the Software Requirements
metrics set, only a small number of specialized Specification. The Software Requirements
tools are currently being applied to AWlS. Specification is also the input to the second

phase which is Preliminary Design. The process
flow continues in this manner through the total

Preliminary methodologies and results software development cycle.
from this foundation phase are presented in two
areas: Productivity and Quality. Continued
refinements to the methodologies and procedures The Functional Description provided toare obviously required and are on-going. TRW by the Army describes the functionality of the

system through a series of ADP events. The data
flows in the FD associated with an event are

PRODUCIVITYtranslated into data flows for the SRS. The data
flows lead to sub-programs as described in the
Software Top Level Design Document at

It was decided early-on that the lack of preliminary design. Figure 2 shows theglobal retrospective data for Ada developed correlation between these parameters on theunder DOD STD-2167 guidelines required AWlS selected subset of events implemented in Phaseto collect and analyze detailed data in a variety of 1.
areas. To facilitate this data collection and
analysis, a generic model was developed and is
presented in Figure 1. The project was One of the goals of AWlS is to provide ansegmented into the seven software development Ada Cost/Scheduling Model. For most modelsphases described in DOD STD-2167. Using this that exist today, there is a requirement to estimategeneric model, a mini-model is developed for the lines of code or the number of units to beeach of the phases. Each mini-model has its own developed. This is one of the more impreciseset of algorithms and is constrained so that the requirements in the process. There has beenoutput of one mini-model provides the input to the evidence for some time [BEL 76] that over the lifenext mini-model. cycle of a software product, the number of

.modules" has an impact on effort expended to
maintain and enhance the product. Other product
parameters may also have a bearing on life cycle

costs.
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AWlS has the fundamental tool set
necessary to support the collection on analysis of

SOFTWARE REQUIREMENTS ANALYSIS productivity metrics. This tool set will be
augmented as the most meaningful metrics are
determined and as automation is determined to

"- Dbe cost effective.

3 0

-The Complexity Measures Tool (CMT), by
,t o - EVB Software Engineering produces a count of
,T the lines of code (Blanks, Comments, Executable

- oLines, Data Declarations, and Total Physical0 Lines). Additionally, it computes the McCabe
Z, _ cyclomatic complexity metric and the fifteen

0 Halstead Software Science Metrics.

4 1 a 12
DATA FLOWS III FO
..A.A .. OUr .. , A tool has been developed by AWlS to tally

ATAp FLOW IN R S .1tS DATA LOW$ INFOA numbers of Ada type declarations, Ada sub-poe R ION QAION )R2)S:4

POWE OF ELATONSHP (A2) .74%program declarations, and "WITH" clauses. The
PRELIMINARY DESIGN counts from this tool also supports the

determination of Ada design complexity
1a2 

indicators.

14- The accounting utility of the development

processor is used to collect data on AWlS CPU
-=132 o usage, connect time, storage, page faults, and I/O.

12- These data support both the analysis of
O 10"I 0 development resources consumed and the

-=1 determination of sizing and timing data.

1-,_ 
AWlS uses Change and Configuration

4- 00 Control by SOFTOOL Corporation in support of
2 6 0 ,. 22 basic configuration management.

DATA FLOWS IN SAS

REGRESSION EQUATION IS:NU BE OF SU BROGAS SLO .0,1 • DAT FLO S SRS. 0 .5 Lou -2-3 on the IBM PC supports

POWER OF RELATIONSIUP (A 2) . s2% Lotus
analysis and reporting. STATPAK (PC) provides

COMPOSITE TRANSFORMATION regression analysis.
22l

AWlS collects and controls costs and
I" schedules using Cost//Schedule Control System

IACriteria deietdin DOD 7002 The Work.,4

1 Breakdown Structure provides the cost
IS 0accumulation and scheduling framework and
.. 0 supports the calculation of productivity measures.

.° ,o 0 The WBS is consistent with the selection of the
So0

03 o DOD STD-2167 software development phases for
productivity calculations. Modifications and

1o extensions of the WBS have been required at

I 00 
lower levels for more detailed cost collection. ,

A E 0 n 3

2 4 U I 12
P.RDESUBORAMS DAT, FLOWS IN FO The establishment of schedule networks

o , , I!RESSON =oA,,O S and critical path analysis is further supported by
NUMBER OF SUBPROGRAMS IN SLOD . 1.00 DATA FLOWS IN FO . tSA

POWER OF RELATIONSHIP (A 2) - 45% the use of ARTEMIS.

FIGURE 2 - METRICS CORRELATION
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Software Techology for Adaptable, ReliableNo code is generated during the Systems (STARS) framework for the 13 qualityrequirements phase. However, because of the factors shown in Figure 4. AMS is used by the
use of ADL for design, lines of code are quality evaluation team to assess the software
generated during preliminary design. AWlS is quality at the end of each software development
developing a profile of productivity on a weekly phase.
basis. An example is shown in Figure 3 for the
period from the start of development to CDR.
Attention is called to the decrease occurring at Design - How valid is the design?
226 Days After Contract. This decrease resulted - Correctness
from a simplification implemented during design Maintainability
which permitted the removal of code. The Verifiability
reduction in productivity 268 DAC resulted from Performance - How well does it function?
no code being produced during CDR. Similar Efficiency
anomalies have provided insight into the impact - Integrity
of various technical and management decisions. Reliability
The full impact of such visibility is as yet unknown, Survivability
but value has already been realized. Usability

Adaptation - How adaptable is it?
I - Expandability

U U -Flexibility

'I - Interoperability
-Portability7VAE: i = Reusability

CONTRAC, I
AWAAD 0 0 0 FIGURE 4 - QUALITY CONCERNSSON 106 0 0 0 0 0 26.44J 0FIUE-ULTCNEN

PDR 194 3052 10387 455 5256 21742 753 45.01 126
219 4150 14154 776 6016 27505 6792 54.43 125
224 5022 16123 7213 55 30542 635 56.64 113
233 4575 14559 740 :491 27953 5721 5940 9
240 4941 14748 670 5496 29098 6172 62.43 99
247 5339 16592 655 5838 31452 6793 64.92 105 The methodology employed appears toI254 6572 32401 1431 i7945 52403 9376 6 5.90l 142

CDR, 2 5 57373 34 . have merit in "scoring" each of the "ilities". It does
268 6855 1356 Isis 821 56352 90741 69.15 136 not yield quantified results on such parameters as275 861 35508 1816 sos0! 56952 9875 I72.11l 138

t IN.WOW reliability, survivability, efficiency, etc. Significant
,,,-d.--,,.,,,Ww , lwooft tailoring to the question set has been required for

an Ada/Object Oriented Design environment.
8 Problems have been encountered with some ofFIGURE 3 - PRODUCTIVITY the algorithms. Also, as a new tool and

methodology, some problems have occurred with
TRW's implementation.

Productivity increases to a peak at the
completion of coding then decreases through unit During the first phases, the quality
test and subsequent activities. When sufficient evaluation scoring lacked sufficient discrimination
data points are available, the profiles will be used in some of the metrics, e.g., scores of 1.0. The
to evaluate current progress against estimates for question sets will be reviewed for the introduction
developing end-item software. Significant of more sensitivity where possible.
variation in profiles and levels of productivity will
be used as triggers for futher management
evaluation. Figure 5 shows the population from which

quality evaluated metrics were developed during
the Detailed Design Phase.

QiUALI

Quality evaluation is a requirement of the Structure Total Distinct Comouted
AWlS program. The areas of concern are shown
in Figure 4. Again, it was decided that data CSCI 1 1 57
should be collected against the software TLCSC 5 4 10
development phases as described in DOD-STD- LLCSC 32 21 10
2167. It was determined that the Automated UNITS 216 22 118
Measurement System (AMS) [RAD85] was the
best tool available for use as the fundamental tool
for this analysis. AMS instruments the RADC FIGURE 5- CDR METRICS POPULATION
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Analysis of the metrics yielded the scoring Conclusions at this stage are that the
shown in Figure 6. Several anomalies were concepts are good. Considerable work is
evident. As an example, the reliability score was required on both the questions and the formulas.
a surprise. Subsequent analysis identified The results should be interpreted as grades only.
several problems with the tool and/or its AMS provides more available metrics than are
application. Several questions assumed strict required. Analysis for eliminating some metrics
design rather than Object Oriented Design. and reduction of the question set for others is
Several questions relative to Units were underway.
misapplied at a higher level. Several formulas
were found to be faulty. This tool is less mature than was expected,

DETAILED but the methodology appears to offer long term
IMPORTANCE FACTORS DESIGN SCORE benefits. AMS should become more useful as its

usage by other projects increases. As a scoring
HIGHEST CORRECTNESS 0.92 system, it still lacks a solid baseline against which

VERIFIABILITY 0.72 to interpret the "goodness" or "acceptability" of
RELIABILITY 0.64 results in the achievement of project
USEABILITY 0.99 requirements. It does not replace the need for the
REUSEABILITY 0.72 more conventional quality assurance metrics but
PORTABILITY 0.89 does appear to augment the prospective value of
MAINTAINABILITY 0.79 indicators. Actual values for the factors still need
EFFICIENCY 0.81 to be derived during testing and usage of the
INTEGRITY NIA product.
EXPANDABILITY 0.61
FLEXIBILITY 0.65
INTEROPERABILITY 0.82

LOWEST SURVIVABILITY 0.87 CONCLUSION

FIGURE 6 • CDR QUALITY FACTOR CALCULATION The management of "first" projects
represents some unique and many distinct
challenges. The AWlS software development

The question set was altered and the project is facing those unique challenges head
application adjusted, and the formulas corrected. on. In the area of metrics, a program is well in
Re-evaluation yielded the results shown in Figure place but has only scratched the surface in the
7. Work continues to evaluate the other factors. resolution of this elusive problem. Advances

have been made and set backs have been
encountered. The net thus far has been positive.
Work continues because the cost benefit
potentials are high.

ACCURACY (AC)

- N/A THIS PHASE With all the attention being given the
subject, the availability of global Ada metrics

ANOMOLY (AM) should grow rapidly. In two or three years, a
-AVE(ERRORTOLERANCEJCONTROL-1.0 project such as AWlS will no longer be

HANDLING IMPROPER INPUT DATA - 0.94 categorized as a "firsts" project.
HANDLING COMPUTATIONAL FAILURES- 0.97

-0.97

SIMPLICITY (SI) ACKNOWLEDGMENT

-AVE (DESIGN STRUCTURE - 0.80
STRUCTURED LANGUAGE - 1.00 The authors wish to acknowledge the work
CODING SIMPLICITY-0.95 done by Dr. J. J. Logan and A. Kulkarni, of TRW,
SPECIFICITY -0.97) in establishing and evaluating the productivity

RELIABILITY (RE) metrics. D. DeHaven, of TRW, and D. Norris, of
Harris Corporation, were major contributors to the I

AVE (AC, AM, SI) .0.95 adaptation, implementation, and analysisr
associated with AMS.,.: i

FIGURE 7- REVISED CDR RELIABILITY FACTOR a
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Experience Using an Automated Metrics Framework .1
in the Review of Ada Source for WIS

J. D. Anderson and J. A. Perkins

Dynamics Research Corporation
60 Frontage Road, Andover, MA 01810

ABSTRACT 1. INTRODUCTION

Analysis of the WIS Ada source code Dynamics Research Corporation (DRC) has
involved applying an automated, hier- developed an Ada Measurement and Analysis
archical, Ada-specific software metrics Tool, ADAMAT, designed to use software
framework to approximately 200,000 lines metrics analysis to improve the quality of
of Air Force-supplied Ada source. The Ada software. The metrics in the frame-
purpose of the analysis was to aid the Air work used by ADAMAT are automated, hier-
Force in identification of the char- archical, and Ada-specific. Each low-
acteristics of the code that detract level metric in the framework is:
unnecessarily from reliability, maintain- 1) based on an underlying software quality
ability, and portability. The software principle, 2) defined in terms of specific
was analyzed during the initial phase of features of the Ada language, and
code development to insure that sufficient 3) documented to indicate both the
time would be allotted for the elimination rationale for the metric and the method
of undesired characteristics, for improvement of software when the

quality problem related to the metric is
DRC's Ada metrics framework measures three detected [Keller 85, Perkins 851.
software factors, six software criteria,
and 150 software metric elements, where In previous studies, involving analysis of
each metric element relates a software Ada code developed at DRC (Perkins 86] and
quality principle to the use of specific Ada code supplied by the Naval Underwater
features of the Ada language. System Center [Perkins 87], we illustrated

the usefulness of automated Ada-specific
The analysis of the Air Force-supplied Ada metrics for the detection of quality
source involved: 1) automated calculation problems; the identification of specific
of metric scores for the supplied source, Ada features, indicating where training of
2) human analysis of the metric scores to Ada software personnel is required; and
determine those characteristics that the improvement of quality of Ada
augment or attenuate quality and to software. In this paper, describing DRC's
formulate recommendations on how to metric-based analysis of Ada source
enhance quality, 3) modification of two performed for Air Force Electronic Systems
modules of the supplied source to Division (ESD), we discuss the
illustrate the impact of our recom- effectiveness of metrics as an aid to
mendations, and 4) reporting of the reviewing the quality of large Ada code
findings to the Air Force. segments.

KEYWORDS E

software metrics, software quality, Ada, AD TALL
software principles, software tools COMMAND
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Our work for ESD involved collecting 2. AUTOMATED COLLECTION AND CALCULATION
metric scores for approximately 200,000
text lines of Air Force-supplied Ada Our metric analysis started with receipt
source, analyzing these metric scores to from the Air Force of a tape containing
determine those characteristics of the 335 separate files of compilable Ada
source that augment or attenuate quality, source. Our initial objective was to
and reporting our findings and calculate and report metric scores for
recommendations to the Air Force. This each of these 335 files, for the 75
work was performed during the early stages distinct groupings of these files, and for
of code development to provide ample time the Ada source as a whole (as a "336th
for the Air Force and the software file). The production of the desired 411
contractor to review our report and react metrics reports required three steps: 1)
to the recommendations. This helped to collecting data items for each file, 2)
insure that those characteristics of the calculating metrics scores for each file
source considered by the Air Force as and each group of files, and 3) producing
unnecessarily detracting from reliability, the hard-copy reports for each resulting
maintainability, and portability could be set of metric scores (Figure 2). Each of
eliminated from the software by the these steps was automated using the three
software contractor prior to the start of principal components of ADAMAT - COUNT,
the testing phase. Our analysis was ANALYZE, and REPORT (Figure 1).
limited to a fixed time period in the life
cycle of this source, with no regard to
the previous history of the source.

GOOD TOTAL METRIC NAME

For this study, the meaning of the term * anomaly management
• *u ser_exce ption |_raised"quality" is limited to three software 378 1447 uer_type r

factors: reliability, maintainability, • applicativedeclarations

and portability. These factors are o* conotrainedlvariaiitJrcord* Ioopnormal
measured with respect to the following six 3W 470 constrained-subtype
criteria: • dofault-initialization

o Anomaly Management, •independenceI nd e Mdn e no-implementation deflned_attributes
" Independence, no.pragma-interface
o Modularity, no-implementation-dependeot-pragms

o Self Descriptiveness, 572 34 no componeot_clauoe_for_record-types
S p ct ad nolength-clauoefor storagesize

Simplicity, and • noegthclause_forsize
" System Clarity, 2 10 numeri _type_declarations

where each of these criteria is further * numeric constatdeclarations
defined in terms of low-level metric • no i hpr inda.pack

• * macharthindep~ndeoce

elements. • * nominot
The investigation involved the following no-max-int

se s modularity
steps. •* no-multiple-type-declaration

* *blockdeclarations

o Automated data collection (Section 2.1) • limited-size-profile
and metric score calculation (Section 0 391 no variable declarations-in-specifications

a m userderned operations
2.2) for each of the files constituting 95 W2 private-types

the Ada source, and the reporting of * * self_dascriptivetase
metric scores (Section 2.3) in three 2 3153 no-predefined-worda

num betr_ofommented_declarations
views: for each of the 335 files, for • oumbe-roL ommentedstatments
the 75 distinct higher-level groupings 15 33 number_ofcommentad_bodies

of those files, and for the composition s iumberocommeittdypeciflcations
of all the files, 3707 13347 declarations-contain-literals

* " array.range-explicit
cm d o ot* subtype-declarations_explicit

Recommendations on how to improve the 175 220 array.type-declarations-explicit
quality of the Ada source with respect • * system-clarity
to each of the six software criteria qualified-aggregate• * namd-aggregat
(Section 3.1). na• • .a ,eit,

* * module-endwithnoame
o Analysis to determine those char- 34 2 named-blocks

a te* named-loops
acteristics of the Ada source that • single-object declarstion-lists
enhance these criteria and those that timited-privat* accesstypes
raise quality concerns (Section 3.2), *0 3120 nodefault.modeparameters
and • • forjoops.with_typ.and no-while-loope

x* pressions-areo thesized

o Modification of two selected modules to * non_onegatedboolean_expressions
illustrate the impact of incorporatingillustratc theomp t of ncorpioratinh FIGURE 2 ABBREVIATED METRICS REPORT FOR COMPOSITION
the complete set of recommendations with OF ALL FILES
respect to reliability, maintainability,
and portability. (Section 3.3).
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2.1 COLLECTION OF DATA ITEMS 2.2 CALCULATION OF METRIC SCORES

The first step in the automated portion of The second stage in the automated portion
the metrics analysis is collection of data of metric analysis is calculation of
item counts. "Data item" is the metrics scores. "Metric" is the
classification given to the lowest classification given to all elements in
elements in DRC's metrics hierarchy the metrics hierarchy that occur at any
(Figure 3). COUNT parses a file of level above data items. Metrics are
compilable Ada software to produce a set subdivided into factors, criteria,
of data item counts for that code. Each subcriteria, and metric-elements (See
data item count is an integer value Figure 3). ANALYZE calculates a single
indicating the number of occurrences in set of metric scores from one or more sets
the source of a specific feature of the of data item counts, where each metric
Ada language. The data items are actually score is an ordered pair (good, total) of
collected by module for each file; as a integer values indicating the number of
result, later recommendations may focus on "proper" occurrences and the number of
the specific modules of the software. "total" occurrences of specific features
"Module" is used here to mean the of the Ada language present in the source.
specification or body of a generic or non- This ability to process multiple sets of
generic function, procedure, task, or data item counts allows the calculation of
package. metric scores for a grouping of files

without requiring the files to be composed
at the source level.

SOFTWARE - OIENTED MEASUREMENTS
TERMS Producing the 411 sets of metric scores

required for this work necessitated 411
runs of ANALYZE. The data item counts for
each of the 335 files, the composition of

FACTOR\-CTERION-SSCITeRI. the data item counts for the files of each
of the 75 distinct groupings, and the
composition of data items of all 335 files
were processed to produce the sets of

CRITERION-SUCRTTERION'... metrics scores (Figure 5).

\SRCaITERION - METRIC ELEMENT

FACTOR - CRITERION- SUBCRITERION \ METRIC ELEMENT "INPUT COMPONENT OUTPUT
dl analyze ml, metrics scores for file I
d2 analyze m2, metrics scores for file 2

d335 analyze m335, metrics scores for file 335

dl.. di analyze nI, metrics scores for group I
dj+l .. dk analyze n2 metrics scores for group 2

D x+l .. d335 analyze n75 metrics scores for group 75
DATA ITEM

dl . d335 analyze c, metrics scores for

METRICS 
composition of all files

FRAME ELEMENTS FIGURP 5 CALCUATION OF METRICS SCORES

FIGURE 3 HIERARCHICAL STRUCTURE OF THE METRICS
FRAMEWORK SUPPORTS MEASUREMENT OF
SOFTWARE QUALITY 2.3 PRODUCTION OF HARD-COPY REPORTS

The third stage in the automated portion
Producing the 335 sets of data item counts of metric analysis is production of the
required for this work necessitated 335 hard-copy reports containing the metrics
runs of COUNT; each of the 335 files was scores. REPORT produces a single for-
processed individually (Figure 4). matted, hard-copy, metrics report from one

or more sets of metric scores, and the
corresponding data item counts. The

INPUT COMPONENT OUTPUT ability to process multiple sets of metric

file count dl,setofdataitemcountsforfileI scores allows the comparison of sets of

fil1 2 count d2, setofdataitemcountsforfile2 metric scores in a single report. The
... form and content of the report may be

file335 count 335, set ofdata item counts for file 335 controlled by the user/analyst.

FIGURE 4 COLLECTION OF DATA ITEMS

34 6th National Conference on Ada Technology 1988

I'- D , Z



We chose to report only those metric 3. METRIC-BASED HUMAN ANALYSIS
scores where the number of "proper"
occurrences was less than the number of
"total' occurrences, and not to report the This section discusses how human analysis
individual data item counts. These of the generated metric scores provided a
restrictions allowed the metric-based means of outlining metric-by-metric
human analysis that followed to focus potential non-adherence to accepted
quickly on "improper" occurrences, and software quality principles and of
guaranteed that the size of any report identifying overall characteristics of the
would be independent of the number of code which augment or attenuate quality.
modules in a given file (recall that
although data items are collected on a
module basis, the metric scores are 3.1 METRIC-BY-METRIC ANALYSIS
calculated on a file basis). The infor-
mation lost by omitting the data item
counts from the report is relatively small The metric scores generated for the
since numbers of proper and total composition of an entire set of supplied
occurrences for a metric-element are made files (ALL report) was reviewed, metric-
up of the counts of the associated data element by metric-element. Since each
items. 411 runs of REPORT produced the metric-element of our framework is
411 metric reports required by this work, associated with a software quality
in other words, one run for each set of principle, the metric scores provided a
scores produced by ANALYZE (Figure 6). means of measuring the extent to which the

code adheres to these principles.

INPUT COMPONENT OUTPUT Of the 153 metric-elements examined, 45
MI. report metrics report for filel1 metric scores indicated a level of
m2 report metrics report for file 2 potential non-adherence sufficient to

... ... warrant further analysis. of these, 12
m335 report metrics report for file 335 metric scores, two for each of the six
n1 report metrics report forgroup 1 criteria, have been chosen for discussion

... ... in this paper. Each discussion contains a
n75 report metrics report for group 75 definition of the metric, the rationale

c report metrics report for for the metric, and the actual score the
composition of all flssupplied code achieved.

FIGURE 6 PRODUCTION OF HARDCOPY REPORTS The metric reports for each of the
individual files allowed us to quickly
locate code containing actual examples of
non-adherence. The analysis of these code

To produce comparison reports, for example segments involved trying to determine the
the metric scores for each grouping reason for non-adherence, the negative
compared to the scores of the individual effects of non-adherence if any, and
files in that grouping, would have making sample modifications to the code to
required an additional 76 runs of REPORT; see the actual effects of obtaining
one run for each grouping (Figure 7). adherence to the criteria. Each of the

chosen metric elements are discussed below
according to the criterion with which they

INPUT COMPONENT OUTPUT are associated.
dl, dj, ni compare metrics report for

comparison of group Ito For anomaly management,
rilelI. file j
... ... o user types: the proportion of type or

dn+l d335, n75 compare metrics report for subtype references to user-defined types
comparison of group 75to rte hnpedfndtps
file n+1 .. file 335 rahe thnpedfndtps

c, n1.n75 compare metrics report for the Variables, constants, and parameters
comparison of group I. were declared in terms of system-defined
a woul~te~dsuc types. Declaring objects in terms of

system defined types is not recommended .
FIGURE 7 PRODUCTION OF COMPARISON REPORTS because the effectiveness of strong type

checking and range checking features of
Ada is reduced. The score for this
metric over all files was (13278, 14947)
or 89%.
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o constrained subtypes: the proportion of The presence of multiple types in a
subtype declarations containing a package may indicate that conceptually
constraint. Subtypes were declared different objects are being defined in a
without constraints. In most instances, single package. The need to reference
declaring a subtype without a constraint any of these objects results in the
provides no advantages beyond those ability to access all of these objects
already provided by the base type, in even when such access is not desired.
terms of strong type checking or range The score for this metric was (93,153)
checking. This again reduces the or 61%.
effectiveness of the range checking
features of Ada. o private types: the proportion of types

declared in the non-private part of the
As a related consequence, it should be package specifications that are declared
noted that frequent use of such as private or limited private.
subtyping without range may indicate
that a parent type is being used to Non-private composite types in package
group conceptually different but specifications usually indicate a lack
structurally similar objects, resulting of information hiding. Every user of
in loss of advantages which could be the package is dependent upon the
gained from Ada's type checking. The underlying data structure used to
score for this metric was (366, 470) or represent objects. Consequently, any
78%. changes made in the data structure will

require changes by the users. Score for
this metric was (95, 992) or 10%.

For Independence,

o numeric type declarations: the propor- For SelfDescriptiveness,
tion of numeric type declarations which
are declared without using an associated a no predefined words: the proportion of
explicit type. names for packages, subprograms, types,

subtypes, blocks, loops, constants,
Most of the numeric type declarations variables, numbers, parameters, excep-
reference system-defined types. Refer- tions, enumeration literals, loop
ences to the system defined types force parameters, entries, and components that
the compiler to use system-specific are not predefined names.
representation which may differ from
machine to machine. The score for this The reuse of a system-supplied name is
metric was (2,10) or 20%. The not recommended because the reader of
occurrence of only 10 numeric type dec- the code may be confused'as to whether
larations in a program of this size is the name refers to a user-defined or
an indication that the numeric types system-defined object. Score for this
supplied by package STANDARD are being metr2- was (27068, 28153) or 96%.
overused. In fact, most of the refer-
ences to system types recorded by the a number of commented bodies: the propor-
user-types metric are because of the tion of package Bodies, task bodies,
reliance on type INTEGER. subprogram bodies, subunits, and body

stubs that are commented.
o no component clause for record types:

thi proportTon of- record type declar- Lack of commenting of bodies increases
ations that do not contain a component the difficulty of understanding the
clause. functionality of the software. Score

for this metric was (1463, 2559) or 57%.Component clauses create dependency on

the word-size of the target machine. In
those cases where component clauses are
justified, comments should be added to
indicate the precise reason for their
use. The score for this metric was
(572, 594) or 96%.

For Modularity,

o no multiple type decls in package spec:
thei proport-lon of package-specifications
containing less than two type declar-
ations.
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For Simplicity, Our metrics for anomaly management showed
that the software does not use the PRAGMA

o declarations contain literals: the pro- SUPPRESS, and does use the exception
portion of -referen-ced numeric literals mechanism and type mechanisms of Ada.
referenced in constant declarations and
type declarations The independence metrics indicated that

the software does not use machine code
Using literals in the non-declarative statements, address clauses, alignment
portion of a program reduces clarity and clauses,or floating point or fixed point
increases the likelihood that a change types.

to a literal will not lead to theIappropriate modifications of other The scores for modularity showed that the
occurrences of that literal or that library and package mechanisms are
changes to identical literals may result effectively used, and that subprograms are
in unintended changes to different parameterized.
objects. Score for this metric was
(3707, 13347) or 28%. The self-descriptiveness metrics indicated

that the identifiers have meaningful
o explicit_array types: the proportion of names, and that package specifications are

array type declarations which are non- well-documented.
anonymous.

The simplicity metrics showed that GOTO
An anonymous array type declaration is and ABORT statements are not being used,
of the form: "< identifier list> : and the number of branches and level
array <index -definition> of nesting within subprograms are not
<subtype -indication> .. ". Declaration excessive.
of an implicit array type eliminates the
ability to declare parameters, The system clarity metrics indicated that
constants, and multiple variables of the qualification and naming mechanisms of
that type. Score for this metric was Ada are being used.
(175, 200) or 80%.

ForSysem larty,3.2.2 ATTENUATION OF QUALITY

The following characteristics that
" named -blocks: the proportion of blocks attenuate quality were identified:

that are named.
The software is heavily dependent on the

Lack of block identification results in Ada system-defined integer types. In most
structural, rather than a declared, cases, this dependency seems unjustified.
association of the block BEGIN to block Replacing the use of system-types by user-
END. Score for this metric was defined types is recommended.
(262,776) or 34%.

The software is heavily dependent on
o default mode parameters: the proportion implementation-defined pragmas and

of IN -or default mode parameters to a attributes, and on compiler and machine-
procedure explicitly specified as IN dependent clauses and pragmas. In most
mode. instances, these dependencies seem

justified and are well isolated. However,
The lack of explicit specification of a the occurrences of such features are well
parameter mode increases the likelihood commented to indicate the precise reason
that a parameter, intended to be OUT or for their use.
IN OUT, is defaulted to IN mode. The
score for this metric was (3055,3120) or The software is heavily dependent on pack-
98%. age specifications providing access to

system-supplied operators. In m~any
instances, composite types are not

3.2 IDENTIFICATION OF CHARACTERISTICS declared as PRIVATE. This extensive
dependency of "WITHers" of packages on the

Our analysis of individual metric scores underlying data structures seems
allowed the identification of overall unjustified. Composite types should be
characteristics of the code which augment declared as PRIVATE.
or attenuate quality.

3.2.1 AUGMENTATION OF QUALITY

The following characteristics that augment
quality were identified:
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The software is heavily dependent on a few The other instance of such a change
packages that declare many types, In involved the functions inside a package
general, the declaration of so many types body. As the suggested modifications were
in a single package seems unjustified. added to each of the functions within the
These packages should be decomposed into package body, it became apparent that each
smaller packages. of the functions was of the same general

form, that of performing a search. If the
The software is heavily dependent on search succeeded, an index indicating the
numerical literals in the executable part position of the desired element was
of the software. There seems to be no returned; otherwise an exception was being
justification for this. Constants should raised. The modification consisted of
be declared to represent these literals. creating a generic search function with

two generic parameters. The first
The software is heavily dependent on parameter was the type of the index and
implicit types and subtypes. In general, the second was a function which evaluated
there seems to be no justification for the search condition based on the value of
this situation. Explicit types and the index. All of the original functions
subtypes should be declared, were modified to define a function for the

search condition, to instantiate the
In most instances, the package generic function, and to return the index
specifications and bodies are well value of this instantiated function.
commented. However, there are many
uncommented procedures, functions, and 4. REPORT DELIVERED TO AIR FORCE
tasks. More commenting is recommended.

The recommendations of the metric-based
In general, the delineation of the human analysis and and the hard-copy
structure of the supplied software is not metric reports generated by ADAMAT were
difficult. However, more extensive use of delivered to the Air Force, thereby
qualification, naming of structures, and allowing our findings to be integrated
parenthesized expressions would be into their review process.
beneficial.

The Air Force also received a copy of the
ADAMAT Reference Manual, our guide to the

3.3 MODIFICATION OF SELECTED MODULES interpretation of the metric scores.
Figures 8 and 9 show actual pages from

Two modules of the supplied source were this manual.
modified using the findings of the metric
analysis. The modifications focused on
the 45 metric scores warranting further 4.1 REPORT OF HUMAN ANALYSIS
analysis; however, non-adherence to
principles associated with other metrics The report of the metric-based human
was addressed. analysis of the Ada source contains three

major segments. The first segment
most of the changes were straight-forward summarizes the characteristics of the
and required very little modification to overall code that augment or attenuate
the basic structure of the code. However, quality and the metric scores that support
two of the most interesting changes did these findings. Figures 10, 11, and 2
require structural modification, show abbreviated versions of this summary.

The first instance of such change occurred The second segment contains an explanation
in association with a loop, which contains of each of the metric scores that4
references to 6 variables. one of these contributed to the summarized findings.
variables was accumulating the sum. One The form of these explanations was similar
was used to hold the sign. The other four to that of the reference manual; however,
were assigned values that depended only on the examples were taken directly from the
the current iteration of the loop. The supplied software. Figures 12 and 13 show
original structure of the module required such explanations. %
careful analysis to determine that 1) the
value of the sign was evaluated during the The third segment contains the modified
first iteration of the loop, unchanged versions of the two selected modules. The
during successive iterations, and modifications recommended by the analysis ~ ,
referenced during each iteration and are incorporated into these modules.
2) the current values of the other four These modifications were performed
variables were not in any way effected by specifically to demonstrate the effect IV
their previous values. To enhance that our suggestions would have on the '%'
clarification, the code was modified by code; any actual modifications of theseV.
placing a block inside the loop and modules or any other modules of the
declaring these four non-recurrent supplied software are the responsibility
variables there. of the software contractor.
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CHARACTERISTICS THAT ENHANCE QUALITY
NO MULTIPLE TYPE_DECLARATIONS The software does not suppress the error-detection mechanism of Ad& by

using PRAGMA SUPPRESS.

The proportion of package specifications containing no more than one type u

declaration. The software does use the EXCEPTION mechanism of Ada. Exceptions

In some cases, the presence of multiple type declarations in a package are being declared, raised, and handled.

specification may indicate definition of multiple objects in a single The software does not use machine code statements, address clauses, or
package. The need to reference any of these objects will result in the alignment clauses.
ability to access all of the objects even when such access is not desired.
In other cases, the presence of multiple types may indicate definition of The software does not use floating-point or fixed.point types.
a single object structurally too complex for representation by a single
data type. The object represented may require operators not directly The software does use the PACKAGE mechanism of Ada. Only types,
supported by any type and may not require all thte operators supported by constants, variables, procedures, functions, and tasks relating to the
the types. same high-level conceptual object are encapsulated within a single

P'ACKAGE.
In some cases, multiple type declarations in a package specification
should be replaced by multiple package specifications that each declare The software limits the use of the 'WITH" and "USE' mechanism of
a single type. In other cases, one of the multiple type declarations Ada. Packages are WITHed* only when needed.
should be defined to be private and others should be moved to the private
part of the package specification. The software effectively uses the "TYPE" mechanism of Ada.

Enumeration, array, record, variant record, and access types are used
For this metrnc, the following has a score of (0,1). when required.

package stack-package is Functions and subprograms in the software are parameterized.
type stackrange.type is range I . . maxstack-size;
type stackarraytype is array (stackjrangetype) of The identifiers used in the software are given meaningful names.

element-type;
type stacktype is The PACKAGE specifications in the software are well documented as to
record intent.

stack arrayfid: stackarray-type;
stack-indexsjid: stack-range-type; The software does not use GOTO or ABORT statements.

end record;
The number of branches and the level of nesting within modules of the

The following has a metric score of (1, 0). software are not excessive.

package stack-package is The software does use the qualification and naming mechanisms of a
type stack_type is private; Ada. References to elements in "WITHed" PACKAGES are often
procedure pop-stack qualified; references to components of aggregates are often named.

(stack: in out stack-type;
element: out element_type); FIGURE 10 AUGMENTED QUALITY LIST

procedure push-stack
(stack: in out stack-type;
element: in element-type);

private CHARACTERISTICS THAT RAISE QUALITY CONCERNS
type stack rangetype is range 1 . . max-stacksize; The software is heavily dependent on the Ada system-defined integer types.
type stack arraytype is array (stack.rangetype) of In most cases, this dependency seems unjustified. Replacing system-

element-type; defined types by user-defined types would increase the effectiveness of the
type stacktype is strong type-checking capability of Ada, in the detection of unintended
record transfer of values between conceptually-different objects. User-defined

stack-array fld: stackarraytype; types should be declared to replace these references to system-defined types.
stackjndexnfld: stack-range-type;

end record; The software is heavily dependent on implementation-defined pragmas
and attributes, and on the compiler and machine-dependent clauses and

FIGURE 8 METRICS DEFINITION pragmas. In most cases, these dependencies seem justified and are well
isolated. However, for each occurrence of these features, a comment should
be added justifying the precise reason for its use.

The software is heavily dependent on package specification providing
access to system-supplies operators. In many instances, composite types

NUMERIC-TYPEDECLARATIONS ace not declared as PRIVATE. This extensive dependency of WITHers"of PACKAGEs on the underlying data structures seems unjustified.

The proportion of numeric type declarations which are declared without Composite types should be declared as PRIVATE.
using an associated explicit type:

The software is heavily dependent on a few packages that declare many
The use of an explicit type forces the compiler to use a system types, thereby creating coupling between conceptually-different objects. In
dependent type. When no type is explicitly used a declared object is of general, the declaration of so many types in a single package seems
a universal type. This improves the portability and generality of the unjustified. These packages should be decomposed into smaller packages.
program concerning a declared object.

The software is heavily dependent on numerical literals in the executab!-
part of the software. In most cases, this dependency is unjustified.

Do not use explicit type when declaring a numeric type. Constants should be declared to represent these literals, to that multiple usesof the some literal for different purposes are not confusing.

For this metric, the following has a score of (0,I). The software is heavily dependent on implicit types and subtypes. In most
cases, this dependency is unjustified. Explicit types and subtypes should be

type myinteger is new integer; declared to replace the implicit types and subtypes, so that references to these
types are poosible.

The following has a metric score of (1, 0).
In most instances, the package specifications and bodies are well

type my integer is range -1R6..1 F6; commented. However, there are many uncommented procedures,
functions, and tasks. Moreover, comments concerning the declaration of

FIGURE9 METRICS DEFINITION variables and constants or the reasons for transfer of control are often
lacking.

In general, delineation of the software structure is not difficult; however,
more extensive use of qualification, naming of structures, and
parenthesized exoressions would be beneficial.

FIGURE I I ATTRENUATED QUALITY LIST
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AVOWD MULTIPLE TYPE DECLARATIONS IN PACKAGE 4.2 REPORT OF AUTOMATED ANAL.YSIS
SPECIFICATIONS

There are package specifications that contain many type or subtype
declarations. out or a total ot153 package specifications, there are 93 The report of the automated analysis -

package specifications with not more the one type declaration, consists of the 411 generated metrics
resultinasceof61%. reports. Each of these reports contains

The presence of multiple types in a package may indicate that only those metrics with a score "less than
conceptually different objects are being lefined in a single package. 1". The reports were presented in this
The need to reference any of these objectm resFts in the ability to access

all of these objects even when such access is not desired. manner to allow the Air Force and the

software contractor to isolate those files
EXAMPLE: In X25_Aata containing code having characteristics

package ACP5250OTypes is that unnecessarily detract from quality.

--S... Figure 14 shows such a report.
type SystemControl_RecordType

(Control: ACP5250_ParameterType : = Link Disable;
Length : Octet := ControcRecordLength (LinkDisable) is
record GOOD TOTAL METRIC NAME

type HostCommandType 
anomaly management

type :o=t_ CommandType 22 user~types 6

(Command : Hostl;upernsorCommandTpe : . applicativedeclarations
H -stSystemontrolefault
ByteCount : Octet :=...initialiation

HostSupervisor_Length (HostSystem-Control); 
..independence

ControlCount : ControlCountType .= . . macharithindep

ControlCountType'first)
is

record 
self~descriptiveness

57 62 no.predefined-words
S number o.f_commenteddeclarations

SAMPLE MODIFICATION: S number_of_commented-statements
package system_€oonboI-sackage is 5 6 numberofcommentedbodies

p i number_of_comented-specifications

type SystemControlRecordType siIplicity

(Control : ACP5250_PararnetersType LinkDisable; decisions
Length : Octet := ControlRecordLength (Link-Disable)) is structuredbranchconstructs

record 6 72 declarationo-contain-literals

mman 
arrayraogeexplicit

package host_co0package is subtype declarationsexplicit

type HostCommandType 
o...routines

(Command : Host-superviorCommandType := S system clarity

HostSystem.Control; qualified aggregste
Byte Count : O := cue amedaggregate

HostSuperisorLength (HostSystemControl); 5 named_loops

Control-Count:..typlla Typ :* singleobject_declarationlists
ControlCountType'*rst) forjloops-with-type

i s no.whileloops
record expressions-parenthesized

REFERENCE: ADAMAT Reference Manual, Section 3.82, Page 3-85. non-negated-boolean-expressions

FIGURE 12 METRIC EXPLANATION FROM W'IS REPORT FIGURE 14 ABBREVIATED METRICS REPORT FOR A SINGLE FILE

It'

AVOID NUMERIC TYPE DECLARATIONS THAT REFERENCE
SYSTEM-DEFINED TYPES

Most of the numeric type declarations reference system-derined types.

There are 2 numeric type declarations that do not reference system-

defined types from a total of 10 numeric type declarations, resulting in a

score of 20%.

References to the system-defined types force the compiler to use system
dependent types rather than universal types.

EXAMPLE: In WISNASMessage-Types_

type OneOctetType is NEW INTEGER range 0.. 255;
for OneOctetType'SIZE use 8'

type TwoOctet-Type is NEW INTEGER range 0.. 65535;

for Tho.OctetjType'SIZE use 18;

SAMPLE MODIFICATION:

type One_OctetjType is range 0.. 255;
for OneOctet Type'SIZE use 8; 

0

typ Twoo .t_Tp is range 0.. 65535;
for TwoOctetType'SIZE use 16; %

REFERENCE: ADAMAT Reference Manual, Section 2.27, Page 2.29. %'.

FIGURE 13 METRIC EXPLANATION FROM WIS REPORT 
.
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5. CONCLUSIONS ABOUT THE AUTHORS

Our analysis of Air Force-supplied Ada John Perkins is a member of the Software
source indicates that an automated, hier- Research and Development Group at Dynamics
archical, Ada-specific, software metrics Research Corporation. He has a Bachelor
framework is an effective aid in the of Science degree in Mathematics from
review of the quality of large segments of Purdue University and a Master of Science
Ada code. degree in Mathematics from the University

of Illinois. He has been involved in the
This work demonstrates that software development of translators for
metrics are useful for controlling quality multi-processor scientific computers and
as soon as the first specifications become in the development of an attribute
compilable. Based on the reported metric grammar-based translator-writing system.
findings, the Air Force was able to direct He is currently involved in the definition
the software contractor to eliminate code of a quality metrics framework specific to
characteristics which were deemed by t..e Ada and in the specification of a
Air Force to be unnecessarily detracting rule-based consultant for determining
from quality. The metrics analysis software quality goals.
provided ESD with a means of addressing
quality concerns in the WIS Ada source
before the code became executable and the Jane Anderson is a member of the Software
testing results became available. Research and Development Group at Dynamics

Research Corporation. She has a Bachelor
Proponents of Ada should be encouraged by of Arts degree in Mathematics from Brown
the characteristics actually measured in University and a Master of Science degree
this large segment of Ada software. The in Mathematics from the University of
library, package, type, and exception Lowell. She has written a functional
mechanisms of Ada are, from a software requirements document for a complexity
engineering perspective, being effectively analyzer which analyzes the complexity of
utilized. The analysis indicates that Ada source in terms of the constructs.
this segment of the WIS software employs She has also been involved in testing
the features of the Ada language in a ADAMAT.
manner consistent with the goals,
concepts, and spirit Ada was designed to
support.
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EVALUATION OF EXISTING BENCHMARK SUITES FOR ADA

ARVIND GOEL AND ERWIN WONG

TAMSCO CECOM
Abstract: This paper evaluates some or the existing Developing benchmarks for Ada is different from other
benchmark suites for Ada, namely the Ada Compiler languages because of the RTS which implements
Evaluation Capability (ACEC) test suite, ACM features such as tasking, memory management, interrupt
Performance Issues Working Group (PIWG) handling, exception handling and others. The task of
benchmarks, and the University of Michigan determining what is to be measured and how is not
benchmarks. The benchmarks have been analyzed straightforward. Incorrectly designed benchmarks used
with respect to a) evaluating compilers for for real- to select an Ada compiler for embedded applications
time embedded applications, b) accuracy of the can cause an application to be doomed from the very
measurements, c) preventing unwanted code beginning. Techniques are needed to ensure the
optimizations, and d) portability of the benchmarks. accuracy and relevance of benchmarks. It is the
Areas for which additional benchmarks are needed authors' view that benchmarks that determine the
are identified. implementation characteristics of an Ada RTS are

needed along with benchmarks that measure time and
space utilization [71.

1. Introduction Recent studies that have reported results of running
existing benchmarks [1] have been conducted on self-

The principal goal of Ada is to provide a language hosted compilers where it is difficult to predict the
supporting modem software engineering principles in interference effect from the operating system, paging as
the design and development of real-time embedded well as other sources. In an embedded system, there is

sses software. Unfortunately current Ada no virtual memory paging or system daemons and hence
implementations don't allow the development of real- threl. is to e empsuhaiztrened tha benchmarka
time embedded software reliably and without sacrificing rel. deIneds to mesuemperoae ofa Adancmplrksta
quality and productivity. The reasons for this are aedsge omauepromneo d oplr
manifold but the most important ones are a) lack of for real-time embedded applications are intended to run
certain features in Ada language itself (this issue is on bare targets if meaningful results are to be obtained.
addressed elsewhere [41,[51,[61) and b) implementation Teatoshv enivle ihdvlpn
and size of the Ada Runtime System (RTS) which bechars foha laenguageland wit feauesoin
differs widely from one compiler to another. Real-time bcsidrd ipon for prolagu gadrammng eltime aue
embedded systems are characterized by severe timing embsieded apicats Asr profgtism ning reffrtime
and memory constraints. In traditional real-time exitibenapcarkosuites wer analyzedontoin dern
systems not programmed in Ada), a separate executive teirtn emr suitabiit fore evlaigaacoler sysdtemifo
was responsible for making sure that the various timing tebeddedtaplitoeatns. The test l suitems ayze
and memory constraints were satisfied by different parts emdedapiton.Te es sues nlyd
of an application program. In Ada, the executive is par included the Ada Compiler Evaluation Capability

oftelanguage as the runtime system. (ACEC) suite [8], ACM Performance Issues Working
of theGroup (PIWG) benchmarks, and the University of

Real-time programmers have no control on the design Michigan benchmarks [I]. This paper presents the
and implementation of the RTS except that the RTS results of that analysis. The benchmarks have been
satisfy the requirements listed in the Ada Language analyzed with respect to
Reference Manual (LRM). Due to the effect on -the features that the benchmarks are intended to
program efficiency and reliability of the various runtime measure and usefulness of the benchmarks for
implementation options, simply adopting a compiler that embedded applications. The next section lists the
implements the language as defined in the LRM is Ada language and runtime features considered
insufficient for real-time embedded systems. important for programming real-time embedded
Benchmarks are needed to determine the performance of systems.
various Ada language and runtime features in order to .accuracy and repeatability of results;
assess a compiler's suitability for real-time embedded
system applications. .techniques used for preventing compiler

optimizations;
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and portability of the benchmarks. . Algorithm used when choosing among branches of a
selective wait statement.

The authors intend to run some of the existing as well • Order of evaluation for guard conditions in a
as the newly developed benchmarks under this effort on selective wait.
bare targets, the results of which will be published later.
However, we did run these benchmarks (ACEC, PIWG, - If a low priority task activation could result in a
and U. of Mich.) on an Ada compiler system hosted and very long suspension of a high priority task.
targeted for the MicroVAX II. . Priority of a rendezvous between two tasks without

explicit priorities.

2. Real-time Ada Features • Order of evaluation of task names in an abort
statement.

This section highlights the Ada features that a • Determine which tasking optimizations (e.g.,
benchmarking suite intended for evaluating real-time Habermann-Nassi) are implemented.
embedded systems should address. Within each feature,
there is a brief description of the various aspects of that 2.2 Scheduling and Delay Statement
feature that should be benchmarked. These aspects are
related both to runtime performance as well as
determining implementation characteristics. Of course, Task scheduling is an important consideration for a
this list is by no means exhaustive and further additions multitasking application. Real-time embedded systems
will be made to this list as the work progresses [7]. contain jobs with hard deadlines for their execution.

Failure to meet a deadline reduces the value of the job's
2.1 Tasking execution possibly to the extent of jeopardizing the

system's mission. It is the responsibility of the RTS's
scheduling mechanism to guarantee that the deadlines

There is a significant amount of necessary overhead are met.
inherent in the programming constructs associated with
Ada tasking. Tasking overhead affects the efficiency of Some of the things that we need to know about the
the RTS in both sizing and timing as the RTS contains scheduling mechanism include:
the code that implements the tasking features (entry • Determine if user tasks are pre-emptive. Does a
calls, accepts, selects, .. etc.). The LRM outlines the completed delay interrupt the currently executing
interface to the tasking system from an applications task to allow the scheduler to select the highest
program and a method of communication and ty tasec
synchronization between tasks, but has left a large part priority task.
of the implementation undefined. • Determine the method of sharing the processor

within each priority to prevent the starvation of any
Some of the aspects of tasking that need to be single task (round-robin, time-slicing).
benchmarked include:

Time to activate and terminate tasks. Task 2.3 Memory Allocation/Deallocation
activation and termination times are measured for
task objects of a task type, tasks declared directly, Ada is the first high order language intended for mission
and tasks allocated via the new allocator, critical, real-time applications that requires dynamic

" Determine if task space is deallocated on return memory allocation and deallocation. The Ada language
from a procedure when a task that has been encompasses dynamic objects of unconstrained types,
allocated via the new operator in that procedure objects of access types, workspaces of tasks, compiler
terminates. generated temporary objects for computation, and

subprograms with locally defined data. Dynamic ..
" Determine the maximum number of tasks that can s r h y en

memory allocation and deallocation poses efficiency and
memor, iastmreliability concerns in a real-time embedded system

environment.
" Determine if tasks performing I/O may block an

entire process thus defeating task concurrency. Some of the aspects of memory allocation/deallocation

" Determine the status of tasks declared in library that need to be benchmarked include:
packages on termination of the main program. • Time for allocating storage known at compile time.

• Time required for a) simple rendezvous and b) for • Time for allocating variable amount of storage.
passing different sizes and types of parameters - Memory Allocation via the New Allocator
during rendezvous,

" Default priority of tasks (and of the main program) • Determine STORAGEERROR threshold.
that have no defined priority. • Determine if garbage collection is performed.
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" Determine if UncheckedDeallocation is 2.6 Interrupt Handling
implemented.

" Measure time required for UncheckedDeallocation. In real-time embedded systems, efficient handling of
interrupts is very important. Interrupts are

2.4 Exceptions asynchronous events. They are hardware or software
signals that stop the current processes of the system
under specified conditions and in such a way that the

Real-time embedded systems should be able to handle processes can be resumed. In a real-time embedded
unexpected errors at run-time. Unexpected errors could system, interrupts are critical to the ability of the system
have disastrous consequences if not handled properly. to respond to real-time events and perform its required
Many real-time systems operate for long periods of time functions and it is essential that the system responds to
in stand alone mode and there is a need for efficient and the interrupt in some fixed amount of time.
extensive error-handling for such systems. Benchmarks include:
Benchmarks for exceptions include: * Measure Interrupt Response Time.

* Timing overhead due to exceptions. Measure * Determdie if accept statement executes at the
overhead if a code sequence has an exception priority of the hardware interrupt, and if priority is
handler associated with it, yet no exceptions are reduced once a synchronization point is reached
raised during the execution of that code. following the completion of accept statement.

" Measure exception response time. Exception
Response time is defined as the time when a 2.7 CLOCK Function Overhead, Resolution and Type
exception is raised to the time the execution handler DURATION
starts executing.

" Measure exception propagation time. Exception For real-time embedded systems, the CLOCK function
propagation time is the time between raising an in the package CALENDAR is going to be used
exception in a unit and the time required to extensively. The CLOCK function reads the underlying
propagate the exception by raising the exception at timer provided by the system and returns the value
the point where the unit was invoked. No exception associated with the timer. If the overhead associated
handler is present in the unit where the exception with executing the CLOCK function is high, then real-
was originally raised. time embedded systems will be hesitant to use the

CLOCK function.

2-5 Chapter 13 Benchmarks The Ada type DURATION is not required to have the
same resolution as the clock period. It is required by the ~ -

Ada defines some features which allow a programmer to Ada LRM to be at most 20 milliseconds and that it be
specify the physical representation of an entity, i.e., map no more than 50 microseconds. A real-time embedded
the abstract program entity to physical hardware. Real- system has timing constraints that require response
time embedded systems require Chapter 13 features to within a predetermined time interval. The clock period
interface with physical devices and in specifying the (or time resolution) Or resolution of type DURATION
precise layout of data structures. These features are must support these requirements. Another extensive use
implementation-dependent: an implementation is not of the CLOCK function is for the measurement of time
required to support these features. For real-time in generic benchmarks.
embedded systems, it is necessary to that the Ada LRM Measure CLOCK function overhead.
Chapter 13 features be implemented and made
mandatory. Measure CLOCK resolution. This test measures the

resolution time of the CLOCK function.
Benchmarking Chapter 13 features depends on the Determine implementation of type DURATION.
characteristics listed in package SYSTEM, the hardware Implementation of Type DURATION will determine
and its interface with the peripheral devices. The goal the resolution of the delay expression.

* should be to develop general purpose benchmarks that
*can be easily tailored for a specific implementation. 2.8 Arithmetic For Types TIME And DURATION

* Determine if address clause can be specified for an
object, subprogram, package, task, or single entry of For real-time embedded systems, it is necessary to
a task family. dynamically compute values of type TIME and

- Determine if the length clause, enumeration DURATION I I]. An example of such a computation is
*representation clause . and record representation the difference between a call to the CLOCK function
*clause are implemented. and a calculated TIME value. This value may be used

- Determine the availability of bit packing via pragma as a parameter in the delay statement. If the overhead
PACK for arrays of boolean and measure the involved in this computation is significant, the actual
overhead required for shift, rotate, and bit-wise delay will be longer and this could be disastrous for
boolean operations. ra-iesses
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Measure the overhead associated with a call to and 3. Preventing Code Optimization: Benchmarks
return from the "+" and " functions provided in the should be designed so that compilers cannot
package CALENDAR. distort results by employing optimizing

techniques. The test should be designed so that
2.9 ubprgramOvereadthe feature being measured can be isolated and
2.9 ubprgramOvereadnot removed by the compiler by optimizations.

In dasubrogamsran hih aongproramunis 4. Portability: The benchmarks should be portableIn Aa, ubpogrms ankhighamog pogrm uitsand executable on any Ada compiler system with
from a system structure point of view. Systems designed the minimum of modifications. There are some
and implemented in Ada appear as a collection of benchmarks (like interrupt handling) that are not
packages and subprogram units, each of which maypotbeadeenonhearwebigtse.
have multiple procedures. For real-time programmers topotbeadeenonhearwebigtse.
use good programming techniques and structured system
design methodologies, it is important that subprogram 4. Ada Compiler Evaluation Capability (ACEC)
call mechanism be as efficient as possible.

From our own experience as well as after analyzing The ACEC benchmark suite was put together by the
existing benchmarks, subprogram overhead has to be Institute for Defense Analyses (IDA). The purpose of
measured for inter- and intra-packages as well as ACEC is to provide users with a) an organized suite of
generic and non-generic instantiations of code. In coplrefrmnetsadb)uprtotwe.r
all the tests, various numbers and types of ecmpier perme tests, and b)lctn s pporowaer
parameters are passed with modes in, out, and in execstngs These tests ande collecting pyeo a
out. For intra package calls, all the tests have to be staatics These iaton V tests were colctdbyterAal

exectedwit prama NLIE fo th caled sources. There are around 250 tests in this suite thatprocedure. have been available within the public domain since
March, 1986.

3. Criteria for Benchmark Evaluation
4.1 Features Measured by ACEC Tests

The benchmarks have been analyzed with respect to the
following characteristics: The ACEC tests are divided into the following

I. Features measured by the Benchmarks: The categories:
previous section highlighted some of the aspects 1. Code Efficiency: For the language features
of Ada features that are important for real-time measured, a quantitative measure of its space and
Ada programming. Although this paper time cost is obtained. Each test comprises of two
concentrates on runtime benchmarking, other files: a test version and control version. The test
criteria that are important for a compiler selection version contains the feature under evaluation. The
include compilation speed, development and control version must have exactly the same
debugging tools, documentation, compiler/linker execution time and space requirements except for
options and operation, library management, and the use of the specific language feature. The
configurability and size of the runtime system. memory space usage for an Ada language feature
The size of the runtime system is an important is computed as the space required for the object
consideration for embedded systems as memory is code of the test version minus that required for
at a premium in such systems. The larger the size the control version.
of the RTS the lesser is the memory available for
an application program. Another important The tests measure
criteria is the configurability of the RTS. A
compiler system that loads only those features of -space and time efficiency of simple loops, for%
the RTS that are needed as well as enables a user loop, while loop, if statement, GOTO
to configure the RTS to suit his/her application statement, case statements.
needs is preferred. Timing for Integer. floating point and fixed

In the analysis section of each benchmark suite,ponartmic
there is a general discussion of the features *Timing for procedure call overhead.
measured by that suite. The areas not covered by Timing for reference to global, and uplevel
the benchmarks will also be highlighted, variables of access and non-access type as

2. Accuracy and repeatability of results: Benchmarks well as components of records.
that produce incorrect data can have disastrous *The tasking tests determine overhead in
consequences for a project that uses those context switches between tasks, impact onN
benchmarks to select a compiler system. It is performance of guards on entry statements and
imperative that the feature be isolated and idle tasks, size of passed parameter in entry
measured correctly with sufficient accuracy. calls. The tests also make some attempts to
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determine the algorithm used in select benchmarks are being run has to be entered in one c
statements. the packages. The command files needed for the

• There are some feature tests that measure compilation of the tests have to be tailored for the
optional language features. These tests are system on which the benchmarks are being compiled.
few in number and are limited to testing the
implementation of some pragmas.

" Some commonly used sorting algorithms and 5. PJWG
programs like Whetstone and Dhrystone are
also provided. The PIWG benchmark suite consist of Ada performance

2. Capacity Tests: Capacity tests indicate the tests that were put together and developed by the
limitations imposed by the compiler and the RTS Association of Computing Machinery (ACM) Special
on application developers (e.g. levels of recursion, Interest Group on Ada. There are two versions of the
size of stack). For real-time embedded systems, it PIWG suite available for distribution. They are

is useful to have an idea of the maximum number PIWG'85 released in December 1985 and an enhanced
of tasks that can be elaborated. This is dependent version PIWG'86 released in August 1986. The PIWG
on the amount of memory available to the system. benchmarks comprise a readily available test suite that

measures execution times of individual Ada features.
3. Code Optimization tests: The code optimization

tests check for optimization techniques
implemented by a compiler. The optimization 5.1 Features Measured by PIWG
techniques tested for include loop optimizations,
common subexpression elimination, expression The PIWG tests are divided into three groups.
simplification, strength reduction, constant 1. The first group of files establishes the basic
folding, function call elimination, and others. routines in the program library. It contains PIWGdefined library routines that are needed for the

It is obvious that the features measured by the ACEC execution of other tests. It also contains some
tests are not adequate for selecting a Ada compiler for composite benchmarks (Whetstone, Dhrystone
real-time embedded applications. Recently, there is a etc.).
new effort by Boeing Aerospace Company to develop a 2. The second group consists of runtime tests that
new set of ACEC benchmarks. More information on measure the performance efficiency of individual
this effort is lacking at the present time. features of the Ada language.

- Task creation and termination times are
4.2 Accuracy measured for task obiects of task tvnes and

tasks declared directly in main procedure.
The ACEC tests provide facilities to measure elapsed These tests do not measure task creation and

time as well as cpu time used during execution. The termination times for tasks created via the

accuracy with with a feature can be measured depends NEW allocator.
on the SYSTEM.TICK divided by the number of • Measure the time for dynamic array
iterations of the benchmark 11]. The control and test allocation/deallocation, dynamic record
loops are executed 10000 times regardless of the clock allocation/deallocation.
resolution. If the clock resolution is 10 milliseconds, • Exception handling and propagation timings.
the results can be measured within an accuracy of E
microsecond for 10000 iterations. But if the clock • Coding style tests.
resolution is more (say 100 milliseconds), 10000
iterations will not produce results within an accuracy of Subprogram overhead.
I microsecond. . And task rendezvous times.

4.3 Preventing Code Optimizations 3. The third group consists of tests that measure
compilation speeds. These are the Z tests.

The ACEC benchmarks do a poor job of preventing

unwanted compiler optimizations. For control and test 5.2 Accuracy
loops, the benchmarks contain a for loop with a
constant iteration limit thus enabling the compiler to The PIWG benchmarks use the dual loop strategy to
perform unwarranted optimizations. The tests for determine the performance efficiency of an Ada feature.
integer, floating and fixed point arithmetic can be easily The PIWG tests calculate the number of iterations a
optimized by a compiler resulting in incorrect results, benchmark should be run by first determining the

minimum duration of the test loop a benchmark should
4.4 Portability run. The minimum duration is the maximum of I

second, 100 * SYSTEM.TICK and 100 *
DURATION'SMALL. The PIWG tests then calculate

The CPU clock function for the machine on which the the number of iterations a benchmark should be run by
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starting the iteration count at 1 and increasing it until Measure exception response time and exception
the test duration is greater than the midnimum duration.pragtotie
On a system where SYSTEM.TICK is 1 millisecond,pragtotie
and the desired accuracy is within 1 microsecond, the *Measure CLOCK function overhead and CLOCK
number of iterations should be 1000. Some Ada resolution.
features that take microseconds to execute can be .Measure the overhead associated with a call to and
measured up to an accuracy within I microsecond by return from the "+" and "-" functions provided in the
running for a specific duration, but features that take package CALENDAR.
longer to execute cannot be measured to within an
accuracy of 1 microsecond by this method. - Measure subprogram overhead for inter- and intra-

packages as well as generic and non-generic
The PJWG tests also output a zero value for tests that instantiations of code.
produce negative results. The University of Michigan is the first test suite that has

taken a comprehensive look at determining the
53 Preventing Code Optimizations performance efficiency of Ada features important for

real-time embedded systems. This suite addresses a lot
The PIWG tests do not perform a thorough job of code of issues that are mentioned in Section 2 and is an
optimizations. Some cases were discovered where it is excellent first step towards achieving the goal of a set of
possible for a compiler to perform optimizations causing benchmarks intended for embedded systems.
distortions in the results.

6.2 Accuracy
The PIWG tests provide a set of tests that can be used
for evaluating Ada compiler systems for time-shared As mentioned above the accuracy with which a feature
use. As far as real-time embedded applications are cabemsuddpnsonS TE.IKivedy
concerned, these tests do not address a large number of canhe mbeasre depierains on h benchma.TC dostvfdedb
features as listed in Section 2. Also, the features that thgnumbet of iteration fthubnhaot of 100,atheg
are addressed are not covered extensively, In their Mhianmtest ave cane itertion cu rto 0000, e athg
current form and shape, the PIWG benchmarks are not thie n urcnby hne.yte srt rdch
suitable for measuring the performance of Ada language deidacucy
and runtime features important for embedded systems. The dual loop benchmarks make the assumption that the

overhead in calling the CLOCK function is fixed and
hence this gets filtered out when the test loop and

6. University of Michigan Benchmarks control ioop timings are subtracted. This assumption
may not be true and for each system that has to be

The University of Michigan has developed a suite for benchmarked this assumption has to be verified.
benchmarking specific Ada language and runtime In a recent report published by the Software
features that are important for real-time embedded Engineering Institute (21, and also from the experience
systems I .the author had in running the University of Michigan

benchmarks some negative results were encountered in
6.1 Features Measured by Univ. of Michigan running these benchmarks. If the control loop is a

Benchmarks subset of the test loop, then the timing difference
between the test loop and the control loop has to be

TheUnierityofMichigan benchmarks is a good str positive. But due to factors such as placement of code
therd Univei of etsie o vlain oplr into memory and asymmetrical translation (where the
towrd evtielopingeadest suitoeatng. comilers seunehsfwrmcieod istcin)its

measured by the benchmarks include: possible to get negative results 121,131. H-ence, before
dual loop benchmarks are run on a system, it is

"Time to activate and terminate tasks ( for task necessary to verify that the loop times are similar by
objects of a task type, tasks 'declared directly, and coding identical loops in a procedure and comparing
tasks allocated via the new allocator). Time their execution times.
required for simple rendezvous and for passing
parameters during rendezvous. 6.3 Preventing Code Optimizations

" Determine if user tasks are pre-emptive.

" Time for allocating storage known at compile time, In dual loop benchmarks it is necessary to employ
allocating variable amount of storage and memory techniques that thwart optimizations by a compiler. This
allocation via the new allocator. Determine if can be done by hiding constant variables from view,
garbage collection is performed, if preventing simplification of loop constructs, and by
Unchecked Deallocation is implemented, and arranging the order of compilation for similar purposes.
STORAGEERROR threshold,
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The following paragraph has been stated as is from the [3] N. Altman et al., "Timing Variation in Dual
University of Michigan report [1]. "The key to avoiding Loop Benchmarks" , Technical Report,
code optimization is to not let the compiler see CMU/SEI-87-TR-21, October 1987.
constants or expressions in the loops whose times are
being measured. For example, instead of using a for [4] "Catalogue of Ada Runtime Implementation
loop with a constant iteration limit, a while loop is used Dependencies", ARTEWG Report, November,
with the termination condition being the equality of the 1986.
index variable to an iteration variable. The index 15] "Catalogue of Interface Features and Options for
variable is incremented by a procedure, the body of the Ada Run Time Environment", ARTEWG
which is defined in the body of a separate package. The Report, October, 1986.
iteration variables are declared and initialized in the
specification of a library package. Since the iteration [6] "Technology Insertion For Real-time Embedded
values are kept in variables (not constants), and the Systems", Labtek Inc., July, 1986.
body of the increment procedure is hidden in the body [7] A. Goel, "Real-time Performance Benchmarks
of the package, there is no way the benchmark loops For Ada", TAMSCO Technical Report,
can be removed by optimization as long as the package December, 1987.
specification and body are compiled separately with the
body being compiled after the benchmarking unit. [8] "User's Manual For the Prototype Ada Compiler
Similarly, the compiler must be prevented from Evaluation Capability (ACEC)", Institute For
removing the execution of the feature being tested from Defense Analysis, October, 1985.
the loop or eliminating the loop entirely from the
control loop which does not contain the feature. To About the Authors:
ensure that these problems do not happen, control
functions are inserted into both loops and the feature
being measured is placed in a subprogram called from a I
library unit. Again, if the bodies of these subprograms
are compiled separately, and after the benchmark itself,
there is no way for a compiler to determine enough
information to perform optimization and remove
anything from the control or test loops."

6.4 Portability

The Michigan benchmarks enable the user to specify the
number of iterations the control and test loops can be ARVIND GOEL ERWIN WONG

executed. As discussed before, this number depends on
the accuracy desired. For certain tests like task Arvind Goel received his B. Tech. degree in Electrical
activation/termination, the number of iterations may Engineering from lIT, Kanpur, India in 1980 and MS
have to be reduced (thus reducing the accuracy of the degree in Computer Sciences from the University of
results). Delaware in 1982. Presently, he is a computer scientist

at Technical and Management Services Corporation
7. Conclusions where he is leading an effort to develop benchmarks for

evaluation of Ada compilers intended for real-timeBenchmarking Ada implementations to determine their embedded applications. His interests include

suitability for real-time embedded systems is an programming languages, Ada compiler evaluation,

extremely complex task. This job is made even more APSE research and evaluation, and developing software

difficult due to differing requirements of various real- for embedded applications and distributed targets.

time applications. The University of Michigan Mailing Address: ar

benchmarks are a good start towards developing a TAMSCO, 145 WyckoffRoad

comprehensive set of benchmarks for embedded Eatontown, NJ 07724
applications. In the near future, the authors plan to Etno ,NJ07
develop benchmarks to address the issues raised in this Erwin Wong is an electronics engineer with the Center
paper as well as run those benchmarks on embedded for Software Engineering, US Army CECOM. He'
system compilers. currently oversees the evaluation and development of

Ada compiler performance tests. His research interests

REFERENCES include compiler development, programming languages,
and programming support environments. He holds MS
degrees in Computer Science and Electrical Engineering[I] R.M. Clapp et al., "Towards Real-time from Fairleigh Dickinson University.
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INDUSTRY USE OF A MULTI-LANGUAGE SOFTWARE DEVELOPMENT ENVIRONMENT

BEVERLY J. SCHULTZ

DIGITAL EQUIPMENT CORPORATION

ABSTRACT: This paper will address four topics:

For software developers world-wide, there has 1. The evolution of Digital's
Fr senvironment to its present

been a need to create a usable software devel- state

opment environment which includes more than one 2. The current software development

language. This need has been felt strongly at environment on VAX/VMS and how

Digital Equipment Corporation. Digital's Digital developers use it

response to that need is the substance of this 3. The integration and versatility

paper. Specifically, this paper addresses how of languages and tools to create

a viable environment for use in
Digital's environment has evolved to its large-scale applications

present state, what the present software devel- 4. Directions for the future

opment environment includes, how Digital devel-

opers use it, how the integration and versa-

tility of this environment make it viable for

large-scale applications, and some general

directions that Digital has for the future of

its software development environment.
2 EARLY DECISIONS IN AN EVOLVING

ENVIRONMENT

-I hr [lo~wnrel, dm.rlk of Pigtal cq",Irmenf Corporation VAX
VMS. VIA" DF."IMS. ECIMMS

2.1 History of Digital Compilers

I INTRODUCTION In the late 1960's, software developers were pri-
marily interested in using strong compilers. In

response, Digital concentrated in producing coln-

pilers that were industrial-strength. Digital built

compilers for its PDP-11 series machines, and In

the process learned that as good as our individtal

Engineering software development environments compilers were, there was a strong need for a stan-

for interactive software construction has been dard architecture for passing Information in the

completed in varying degrees by many vendors "environment" that a developer was using. When

and software companies. In addition to providing a new operating system was developed, VAX/VMS,

an adequate environment for customers, vendors much was done to make the operating system itself

like Digital Equipment Corporation ' need strong easy for use in software development. Moreover,

software development environments internally instead of putting many compilers on this new

to produce software required to support their operating system in a random way, a great deal of

hardware and to make software development a thought went into creating a standard architecture

profitable business, for the family of compilers that would reside on

VAX/VMS. Creating a common calling standard

and common passing mechanisms, and including a

One of the exciting developments during the last standard condition handling facility were positive

eight to ten years of business in software at Digital steps toward calling any language from any other.

is the evolution of a very strong software develop- This helped promote reusable code and consistent

ment environment to meet the needs of internal methods of development, and it also meant that

users as well as external customers. The exten- tools and utilities created on VAX/VMS could be

sion of this is that we have learned lessons from multi-lingual. We profited from the common call-

our efforts and these have influenced our further ing standard, and internally have many products

work as we continue to develop languages and written in more than one langvage, even though

tools for a fully integrated software development we have used the BLISS language for the majority

environment, 
of our software development in the last 10 years.

6th National Conference on Ada Technology 1988 49 --

-~ ~~~~~~~~~~~ Y ,",. ~ ~ S,~V~**5% 5
'i~



2.2 History of Digital Tools In 1978, for example, internal developers neededa way to keep track of multiple versions of a
code module, so an automated method of code
management was designed for internal use. It was
enhanced as systems became larger and multiple2.2.1 Debugger with Compilers releases were being made of individual software A

ihe ability to call any language from any other, products. By 1981, this code management system
inevitably meant that the "environment" had to was being used by over one thousand internal
evolve to support multiple languages. Multiple- Digital developers to help automate and control
language support has many, advantages. b'ut it the complexity of managing their sources. This
increses the complexity of software deselotnicilt internal product later was offered externally as
for all of the related tools. In developing an Ada VAX DECICMS, DEC's Code Management System
Programming Support Environment (AISFi), when 131. CMS can handle any ASCII text file, and
finished that APSE must work equally well a, the language that the code is written in does not
a Fortran Programming Support Environment matter.
or a Pascal or Basic or C Programming SUIpp<rIk
Environment. For example, the VAX Soune ('xide How was it decided to make it an external product
Analyzer (SCA), when being queried for all of that customers could use in their own develop-
the COMMON BLOCKS in code hasicalh' written ment environments? First, the internal tool that
in Fortran, must also show the related IrSF('I, had grown to handle many diverse needs was
for those BLISS modules in the syxte,. q'A reworked, Its command line was modified to fit
must understand that different compilers ha the standard command language on the system
different names for similar things, and must %,m 1, and to be consistent with other products that were
generically across the multiple language mndt-. available, It was made much more robust. Error
Tools must be generic while still being effiient. recovery was enhanced, and CMS added the abil-
the VAX Symbolic Debugger uses a symbol table ity to roll back any command that was "stopped"
specification which all languages support but still before completion. Much more testing was added
i, es the debugger the ability to respond rapidly to to insure the integrity of its libraries, even though

the specific needs of individual languages I II. internal people had never Inst code In over 4 years.
The advantage of a multi-language environment The product was compared with other projects
concept was that people used the same tools on that were being worked on for consistency and for
VAXIVMS to meet diverse needs. Users did not cleanness. CMS was finally released as the VAX
have to learn to use a different debugger or editor Code Management System (DECICMS).
when assigned to program with a language other
than the language they are fluent in. The chal- Tuning a good internal tool so that it could he used
lenges continued for the VAX Symbolic Debugger as by customers in their own robust environments
new languages such as VAX Ada tr) were developed was doable. While this work was going on, other
at Digital. When VAX Ada was developed, the functionality was needed for which no tool was
Debugger had to handle things such as tasking. It available. These tools had to he built, and often
would have been easier to develop a specific debug. while they were being built from scratch to satisfyger for Ada, but this would have been impractical the needs of internal software developers, market-
for the user. Designing a debugger to work for 12 ing was putting pressure on the team to already
languages, and to insure the basic needs of each make them external products.
language was met, was a challenge for the Debug-
ger project. More important, for the user trying More and better tools were also not enough. It
to handle multi-language systems, such a set of became obvious that they had to integrate well
debuggers would have been impractical. Incorpo- with each other to take advantage of their power
rating the calling standards and working diligently easily by the user. But integration proved to be
to produce a multi-tanguage Debugger produced a complex to manage and often difficult to do.
very powerful product. For example, several projects began to work lo-

in cases like the VAX API interpreter, which gether to handle one of the most delicate and
Except in enviket, V itrprete goac troublesome problems - that of a common data
has its own environment, Digital pursues the goal base for holding private information. Each prfutt
of a common environment or users, regardless of that was evolving needed some kind of control
which tools they choose to manipulate on VMS. files to hold data that they needed to do their

job. If these were stored as simple files on the
VMS system, the overhead of opening and closing
multiple files was inhibiting. As project teams

2.2.2 CMS and the Debugger with Compilers tried to work together to evolve solutions to the
data storage and retrieval problems, they found

Compilers continue to be enhanced at Digital to that what they wanted to store differed from one
provide new and interesting features. These are project to another. Projects found that creation ot
still undergoing modification to meet evolving their own projecl-specific data bases seemed easier
standards, new hardware, and better technology, than defining and building data bases common to
Strong compilers on VAXIVMS, plus a strong even two products. Digital had sonce of the best
Debugger, were necessary but not sufficient for overall data base products available at the time.
software development being done within Digital. but prototyping databases using DBMS and other
Internal developers found that they needed a commercially available products showed that the
variety of other tools to help them complete their power of these products was more than what was
projects within time constraints with the desired needed for small applications such as tools wanted.,
quality, and carrying around a large database for such a

small job was prohibited by cost and performance.
Strong databases were robust for large applica-
tions and for transaction processing, but the small
amount of storage and retrieval needed by a simrle
tool meant minimizing the oerhead needed to
handle their data. Customers developing toftf ,it-
wanted very fast software deelopmelo to-,k ,, I
weren't willing to actept a ,a it loop i l, iI+,.

were currently required to complete a file ,,pI
command.
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Data storage problems were resolved in the short The VAX language-Sensitive Editor was built as

term by allowing each tool to handle it's own the premier editing environment for Ada users,
manipulation of private data. But when CMS V2 even though it was Just as powerful and useful for

produced a very simple data base to handle data users of Basic, Bliss, C, Cobol, Fortran, Pascal,

storage for its needs, that mechanism of storage and PLII. The real power of an integrated, multi-

was seen as useful and adapted by other projects language environment is apparent to current VMS

to handle private data. Common data held bv one developers at Digital who are now moving toward

tool but needed by another was accessed through doing some, but not all, of their development
b iin Ada. Projects building something like servers

callable interfaces. Callable interfaces and standard may want to use Ada tasking, so they develop

definition of these interfaces became important, those modules in Ada. Their environment hasn't

and was a primary means of sharing data and changed. It has just been extended.
information.

Reusability of code was common within Digital,
but evolved In an informal way. Developers were
accustomed to using to the VAX Run-Time Library. 3 THE CURRENT SOFTWARE
If one team built a module that others would use, DEVELOPMENT ENVIRONMENT

they submitted their routines to the Run-Time

Ubrary. Over time, a Tools Clearinghouse evolved
to accept that developers created for one job and
were willing to share with others. Developers who
need a tool look there first. Those who are about to
implement something are very apt to first consider
if they can take advantage of the work of others,
and share code if that seems useful.

2.2.3 Specific Tools Added to the VMS
Environment

Environment-enhancing tools that are well inte- 3.1 Overview

grated evolved quickly. Internal software devel-
opment became more complex. Customers had a
variety of specific needs, and products like VAX

FMq (forms management), the VAX DEC/SHELL
(a UNIX 1 Bourne Shell), Datatrieve (information
management tool), and VAX DEC/MMS (auto-
mated application system builder) evolved to meet Inside Digital, processing speed on VAX/VMS is
these needs. In many cases, what new features important for developing the software products
were doing was automating software development expected of a vendor. But the effective use of that
by letting the computer do things that users had computer power is paramount for both Digital
done by hand or that users had been required to developers and customers. The VAX/VMS environ-

keep in their heads, ment, as it continues to evolve, isn't a prototype
environment used in research, but it is a real work-

As the offerings of VAX/VMS products, including ing environment for very large scale applications

its "layered products", continued to expand, Digital development. Customers of Digital depend on this

worked hard to insure that the combination rep- development environment because it giveq them

resented a consistent and powerful environment a powerful edge in producing software efficientv.
for software developers. The wealth of third party The core of the components of this environment

applications available for users allowed Digital to include:

concentrate on core tools in software development.
VAX/VMS SOFTWARE DFEVtI"PMrre PUI-T ' a

o VMS .SXSTEM

2.2.4 More Tools Evolve from New Product 
steM SSrv 

Needs -cnxton Pun Time Libi al y
- DcL

The development of Ada spurred Digital to reassess - Special Pur.po. Li h- ie

the direction in which internal software develop- 0 BUNDLED TC, LS
ment was moving. With plans for building an Ada - VAX Symboli T EProcEssigUi

compiler had to come plans for an Ada Program- - VS TRUUOFFy

ming Support Environment that could evolve from - D IIFF)

the Stoneman requirements of the Department of - SORT

Defense. Instead of addressing those requirements o UNBUNDLED TOOLS (si

for Ada alone, the larger challenge was addressed. - LANGUAGES (ADA,BASIC, BLISS, C, COBOL,

When the first version of VAX Ada appeared, users Fortran, LISP, PASCAL, PL/I ...

had, not a new Ada debugger, but the familiar VAX - VAX Language-Sensitive Editor

Symbolic Debugger enhanced to provide lull Ada VAX source Code Analyzer l

suppotc Dbg e 
- PROJECT CONTROL (DEC/CMS,

support 121. DEC/MMS, ... ) 0

- TEST DEVELOPMENT (DEr/

A UNX iTest Manager)
- Software Performance Analysis

(VAX Performance & Coveage Anlyei )

- ALTERNATE COMMAND LANGUAO;E
and UNIX utilities (VAX DEc/Shell

2

- Text processing language (VAX fC ANI

- DATABASES (RDB, DBMS... )

- Cosmon Data Dictionary 
(ODD)-rNFERENCING (VAX Ntes)

- 4th Generation Langlaqes (DATArP1F-.'F,

VAX Cobol Generator) .

,%
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These features constitute the components of a de- Internal users at Digital, like many customers,
velo'ers score software development environment. want to tailor their editing environment in their
They produce a foundation from which developers own wa' to feel fight for them. This need to
can concentrate on the pieces of software unique to modify the editor caused LSE to be built oil tile
their intended application. VAX Text processing Utility (which comes with

VMS) and thus allowed LSE to be completely
The functionality of the products listed above is tailorable as well as programmable. With LSE,enhanced because all of the tools are presented developers can modify their editing environment . ,
in a consistent way to a developer. The general to suit their own desires and needs, a flexibility ' '
VAXIVMS interface, called the Digital Command essential for our programmers.
Language (DCL) provides a command language
Interface used by all of the tools on VMS. Picking
up a new tool is easier because it conforms to the 3.2.2 The VAX Source Code Analyz7er
style of VMS.

Most tools in the environment are flexible enough The VAX Source Code Arralirer ga
to serve multiple functions. Numerous users have additional edge in developing anti i ilitt .if, .,
used DATATRIEVE (information management code. The ability in oterratie rr'xs-ieri-,,,, ,.
tool) and DEC's Code Management System ICMS)
to create a powerful configuration management ALL of the modules in his system through the VAX
tool for their program. Others use DEC's Module Source Code Analyzer (SCA) lets the developer
Management System to control the building of insure the continuity of his work across many files.
documents. CMS provides an audit trail of all that If a developer wants to change the parameters of a
has happened on a project which is used in some routine while in LSE, a simple query (done while in
companies for analysis of project information and LSE but handled by SCA! can show him all of the
for metrics reporting, places that routine was referenced. The Editor can

then take him to the corresponding source modules
It has been difficult to continue to develop new at the location to be modified. This can be done
products and still conform to the multi-language for a few references or for many without the user
foundation of the Digital tools architecture. How- losing the context of his problem.
ever, it is interesting that this concept is enforced
internally at Digital because the VMS operating If a developer, sitting at his terminal and looking at
system as well as many of the layered products on a code module, sees a call referenced on his screen,VAX/VMS are written in more than one language. he can point to that routine, and then go to the
Tools as developed are needed to work within primary declaration of that routine by hitting a sin-

a common environment, or Digital developers gle keystroke. The primary declaration is displayed
an'ommonaenronm ntv o Digital developers in another window quickly and effortlessly. This "
cant be as productiveo Digital developers design gives the developer a strong understanding, not
software tools that customers will use. Since col- only of the module to fix, but of how his fix is go-
leagues will be using them t, toohey had better ing to affect the rest of the code. The developer can
be easy to pick up and they needs to fit well with insure that newly-added changes won't introduce
what developers already have. errors in other modules. Static analysis of code us-

ing call-trees with SCA and checking for references
UNIX -aadeAk (110I LaNor that were read but never written (or written but

never read!) tightens the code and reduces chances
3.2 Examples for error.

Digital developers started using an early prototype
of SCA in 1985, getting used to looking at theirExamples of some of the more rerent extefrons source code has a system and not as individual

to the core VAXf VMS environment qhow the modules. Developers using SCA quickly adjust
power that comes to the user by means (if current to moving around their system asking questions
technology, like "find all of the places this routine was used"

or "find all of the symbols that start with 's".
They easily "gather data" about the implications3.2.1 The VAX Language-Sensitive Editor of a change to code, and are confident that their
modifications have the least impact lor the best
payback!) on the rest of the system. The power of

The Language-Sensitive Editor iLSEI i a niul!i- LSE and SCA together gives users on-line develop-
language advanced text editor enhanced to lets ment at its best. Because the prototype was in use
users quickly and accurately development pro- while the product was being developed, extensive
grams. LSE allows softivare engineers to code ii' internal user feedback was gained to modify the
VAX Ada, VAX Basic, VAX BliSS. VAX C. VAX final product for optimum usability and needd
COBOl., VAX Fortran, VAX LISP, VAX 'a'scal, features.
and VAX P.IA with the aid of language-rpeclfic
templates. expansion of language titructs,
language-specific help for any contrurt, and ex-
tensive review of all code that does not compile
iorrectiv. For VAX C and VAX Ada. IS makes
building a correctly compilable program even easier
because 1. prov ides error -orretion for thir'
rimpilation error,.

I sing t SE has changed soie iot the %vavqi n %%is i
oit iar v'a. d .1e lpfd lt Iigital, Ieselehpt .-. ...

linger it,' hard (py listings: listing ate i'hht i
tern in offites, 'orking tin line t(aeir the iri 

rnDe\loper, begain to -pend Ii timre getting I ha
i ompitationq and Ir' fr.. t..'rildfrg grvxt rI'
r'a clicuitarlr impoirtanti has be-n tlit- obiilt VIt, i nIt's
atti eli resiris rrri and Ili, , abilit; to t rpilh,
read mail and %%sil, isith multiple btlftft-s isithliurt ,
t'siting the tditor
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3.2.3 VAX DEC'C:IS-Code Management Thus. MMS can build a stem etficienlls' using a
System minimum of C'PU time and with consistent reli-

ability. The derendem v file %shich the des sln!s', * -
writes to describe the sstem to NIMkI can he tored

To manage change. de'.eloMers use the Cod, Man- b y baseline in the ('MS library along itlh the to
t
e

agement Svstem (CMS) libraries for their code for that baseline. With this method, deselopers a-

storage. They find that they have a full audit trail ways know what went "ith a baseline or i releiwe

of all of the changes that have occurred over the and exactly how that system was built.
full phase of development. The-," can be fixing
bugs on earlier released versions of the code while Eight hours used to he the norm for an errlit

they are currently in new development. The disk build of a Digital software product. With NMlS.
storage savings using CMS libraries is substantial. produt t builds (orlete in as little as Il huinule.

DECICMS can be used for documents or memos with eight hours being the ,orst tase . and
or any kind of VMS files but it has been optimized happening only with a total rebuild. Mk\1ks is used
for source code and as become essential to project widely for building documents at Digital as well as
development. Creating and "freezing" baselines is executable images.
straightforward with CMS. Being able to go back
and retrieve modules from an old baseline while
continuing with new development is essential. 3.2.6 The VAX DEC/Test Manager

Some of our projects are developing at least three
variant products with a common set of source-, The VAX DEC/Test Manager (DTM) lets a project
and use CMS to make order out of this chaos, team automate regression testing. Many developers
Our VMS documentation group has used CMS for working simultaneously on a software protect
years to keep multiple versions of all of the VMS typically finish specific coding tasks at different
documentation. Hardware groups have used CMS times. They always test their tasks individually,
over the years to store chip layouts, Thotsands (i but If they are using the DEC/Test Manager to
Dietal developers store their sol e (ode in CutS control their tests, they can simply give their

and use it to handle complex develmnlent (,rups groups of tests to the DEC/Test Manager and have
like VMS have put a laser on tor of CMS to handle the Test Manager run these groups of tests for
the complexity of their large scale application, them. Before they consider their task finished,

trrthey may run their tests for that task with one or
two other groups of tests that exercise functionality

3.2.4 The VAX Symbolic Debugger that the task interracts with. Finding bugs and
integrating their software becomes part of the
use of the environment when using the DEC/Test
Manager.

The VAX SYmboelic Debugger is an integral rart

of the VMS environment during implementation. Most projects use the DEC/Test Manager for Inte-
The Debugger allows state-of-the-art debugging gratlon Testing, for insuring product integrity, and
with multiple windows. Debugg;er feattures let the for checking specific fixes. We have made strong
developer to walk through his code and (learlv see use of DTM as our products have become interac-
wshat is causing problems. As with all the VMS tive and screens have had to be tested. The need
tools that work together in a comn i1 language for bit-mapped graphics testing internally has had
and tool environment, the Debugger %irks at ro- DTM developers exploring this area for the past
languages. Wh;ie in the Debugger rot, (an aill the several years.
Language-Sensitive Editor and make t hansge, to

} ~your source code as vote (nttirnue \'mpl debtiggingsession You can ha e acess to the VAX ource Our Software Quality Measurement group uses
soessin Youcanfhasemaceos tote VAXting. Soc DTM to hold regression tests of all layered products
(ode A nalyzer in format ion sshi le editing, an , si

include access to files from DEC' (*MS in tlhe on VMS. They can then run them with each new

process, baseline of the -'MS operationg system to insure
that new features In VMS don't cause massive

Junior rrogrammers tvricallv use the Debugger rework in the layered products. A change can

in a limited way and gradually disover its full he withdrawn before it affects large numbers of

power. Internal Users find the multiple windovs of people and causes large delays and disruptions,
their debigger a particular advantage in debugging since DTM's information can be fed back to the
programs. operating system in time to make corrections.

3.2.5 VAX DEC'MMS-Module 3.2.7 The VAX Performance and Coverage
Management System Analyzer

The (-(de Mar.igenient %sfserm d.t P st. orut the
applir ation toget her r Perlfor ronit'r\ the, The VAX Performance and Coverage Analyzer
on the built %,sstem ht a deeIier . ,, CPCA) is a tool used to analyze the run-time be-

tals Mod dle man"gen 't Ss..te, h€r hi. havior of application programs. It measures test
M.Ntl keeps all of Ihe eetP rper %k 

,
0,oR'.,I coverage and to insure that all paths through the

ri-n sier ,,n the , ,,f software have been tested. It also finds places -

de% ePlps (an ,i.e the fret .,f Ihrii irdrs nt," that are bottlenecks in performance so developers
efiort-s in ,IS librar'e' m, the \ \1h , 'ttr'1 al,4 can concentrate on fixes that will have the biggest

NIMS ran get t.o the1, irer tl \lIS rois oner' - payback instead of trying to optimize every part
esarv operation and allo hr a rrroml tefinritl, of the code. The VAX Performance and Coverage
of the %trutlirt of the s tne heing htsilt Xl'l Analyzer can collect page fault data, data on system
understands %\I'; tiles and VNIS lil'arre'. service calls, 110 data, exact execution counts, and

program counter sampling data. It processes the
data for viewing in tabular displays and histograms.
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l'CA has been used by most Digital software
projects, but for different reasons and to achieve Integration in the VAX Language-Sensitive Editor
different results. We have achieved large gains (LSE) went one step further. Developers can
in performance by spending a small amount of keep the same editor session going for a long
time with PCA, and thereby causing developers to time, editing multiple files and multiple buffers,
focus their time when such time is limited. Some compiling and reviewing compilations and making
projects use it regularly just to monitor some aspect many modifications. This required that the Editor
of performance. Some use it consistently for test be bilit with very strong compiler support and
coverage. PCA came into being in the early l9's that multitool accessibility be seamless to the user.
because Digital needed something to test its Fortran LSE is tightly coupled with SCA and with CMS to
compiler for performance analysis. From that early insure that cross-referencing can be done within
tool, PCA evolved into the product it is today, the editor with little effort. If a piece of source code

has to be pulled from CMS to make modifications
it is done without leaving the editor and without

3.2.8 Other Tools the developer having to esplicitly call for the file.
SCA works tightly with major compilers on VMS to

Digital has added a variety of other tools to its en- insure that its data matches the source. The user
vironment in the past two years. The VAX Cobol doesn't have to contend with the logistics that puts
Generator gives the user the power of a graphical all of this power at his disposal. The functionality
fourth-generation language. This tool converts is available as needed, whatever tool is being used.
graphically-expressed program designs into work-
ing Cobol code for execution. The 1AX Software Integration thus gives the user the sense of one
'roject Manager helps project leaders to success- environment, even though he is making use of
fully manage the process of project completion, multiple tools and compilers. The Language-
scheduling, and tracking tasks. Other products Sensitive Editor can be called from inside the
support endeavors such as system management, Debugger or from inside PCA and lets you modify
office needs, and document building. All can he your source code as you continue your debugging
used by the software developer on VMS as needed, session. From there you can use the Source Code

Analyzer to determine the implications of your
changes on the rest of your code. You can make
those changes, and then return to the Debugger
for your next breakpoint or watchpoint. If you

4 INTEGRATION AND VERSATILITY OF want to, you can run some tests with DTM toLANGUAGES AND TOOLS insure that your changes are good, and then use
the VAX Performance and Coverage Analyzer with
those DTM tests so that you can get performance i" 's" 

"

data as well as regression test results from your . N
With the above products as weil as other language testing. You can do all this in a single session and
and tools available on VAX'VMS, the VMS envi- be assured that you still have your software's good
ronment gives an ideal climate for serious software performance.
development. The main advantages of using the
VAX/VMS environment for software development Integration also means that third party tools as
are integration and versatility, well as Digital tools can interface with each other.

As tools need protocols to communicate with
each other, Digital evolves standards to progress

4.1 Integration of Tools toward a truly common tool environment. For
example, CMS is now callable from 38 entry

The complexity of large softisare projcts requireq points, which helps third-party developers as
that integrated tools work effort lesslv together, well as LSE. LSE has a standard diagnostic file
This has been the area of greatest technical thai- format, and external users with a jovial compiler
lenge in software engineering. When a dep eloper or some other non-Digital compiler can use that
needs a tool, or a featureq, it mot i.- i., ,,;1, format to build the support that they need for
to use when he needs it. This i %%h, l..it-'-, 0, their non-Digital products. LSE is also callable.
generate code that is callable trm ,1I, r -r-, .... and can therefore be used from other third partyIt a Fortran program can call a ' ,.,,,,..i ..... 1 tools. As they become stable tool interfaces and
thus take advantage of existing cod h o 1, toon formats are made available to all users to modify
move more rapidly. this environment for the highest user payback.

Compilers must be closely integrated %ith thi Choosing to use multiple tools on VAXIVMS implieVAX Symbolic Debugger as well. With the ie that the user has much more power using these
debugger used for FORTRAN or C or COBOL m tools in conjunction with each other thai' thev
BASIC. developers get used to its features and can would if all were separate entities. In addition, all
expect them also for Ada or VI., with extensions of the tools use the power of the VMS base. The
to handle such things as tasking in Ada. whole is greater than the sum of its parts.

Integration of tools was particularly necessary in
the testing area. One would not want to leave
the DEC/Test Manager in the middle of reviewing
the results of a large set of tests just to call up the
Performance and Coverage Analyzer to determine
the test coverage of that set of tests. By calling 0
PCA from Inside of the Test Manager when PCA is
needed, the user has common capabilities of bothtools at the same time.
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4.2 Versatility of VAXIVMS Environment Beverly J. Schultz
Digital Equipment Corp.

As developers get used to using VMS and its many 
D iSpit Brook Road

layered products, we find that the run-time library

routines, the standard operating system calls Nashua, NH 03062

and the library calls all become means for our- L
developers to use 'reusable code' and to focus
more attention on unique applications' problems.
We have developed products for use on PDP/i Is,

for TOrS-20 machines, ano for other systems on

VAXIVMS because it makes software development
faster. "Faster" means more reliably, of better

quality, and usually with more ftunctionality. It is
worth our while to provide software engineers with

VMS systems loaded with as many layered produtts

as are useful to them on their primary development Beverly Schultz is a Development Manager with

work stations.BeelScut isaDvlpetMngrw h
Digital Equipment Corporation. She has been
involved with Digital's Languages and Tools group

5 DIRECTIONS FOR THE FUTURE since 1981. She currently manages VAXset products

Digital's software development goals include con- as well as compilers, the VAX Debugger, and tools

tinued enhancement of the current environment to which make up the evolving APSE environment on

enable consistent software development throughout VAX/VMS. Beverly has been active in the fields of

the life cycle of a project. We are pleased with mathematics and computer science since 1965, and

our current offering of software products because holds an M.S. Degree in Computer Science from the

most of them can be used across the lifecycle. We University of Dayton.
can't change our environment radically because
of the great relearning cost to our internal users

as well as our external users. Given the complex-
ity of software development both internally and
externally, our challenge is to continue to evolve
our current environment into one that gives Cell
more automated support to our own people and to
our customers. The current topics being explored
include: change control and consislncY mAnIaae-

ment, formalisms for integrating phases -t 0- 1;i,,
cycle; and software information data 'axes. l-il
prototy.ing methods, requirements spe,ifiratin,
design tools, and automated tonfiirnal i nan-."
ment are also being addressed in the (oiit1\' I Oi'
existing working environment.

The current VAXIVMS system provides a oftiware

development environment that is adequate for
large-scale software development. The directions
that can be taken to make this an even more robust

and automated environment are many, and %%e

are working hard to see what makes our people
more productive. Some areas are in early stages of

research and their worth has yet to be determined.

Enhancements in some areas are already bring

used internally at Digital. As layers continue to be
added to the VMS environment, it is significant
that each new emerging tool has more ties to the
rest of the current base. A more comprehensive

environment will continue to evolve, but the
core exists today for developers to do large scale
applications programming across languages with
current environment tools.
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A Marriage of Convenience: Developing a Practical APSE
for Use with Ada® and DOD-STD-2167

Damon Lease
Strategic Electronic Defense Division

GTE Government Systems Corporation

INTRODUCTION 7. Reduce the necessary learning time when moving

There has been much controversy since the introduction of personnel from one project to another.

the Adat language and the Department of Defense Software
Development Standard (DOD-STD-2167) 2 to the defense Conflicts between Ada, contemporary software development
software engineering community. The biggest problem stems methodologies, and DOD-STD-2167 were resolved to
from apparent incompatibilities between the newer provide an interim, flexible methodology, capable of graceful

methodologies espoused by the Ada community and the evolution. However, this resulted in some compromises to

standard waterfall life cycle and functional decomposition resolve conflicts.

method embraced by DOD-STD-2167. Many of these This paper describes those conflicts and compromises,
incompatibilities are now being addressed by the defense discusses the philosophy behind the development of PSE, the

software community, but no clear consensus has yet evolved, development methods employed, the current environment's
Defense contractors currently developing Ada software must capabilities, including DOD-STD-2167 documentation
decide exactly how Ada should be used with DOD-STD-2167 support, and future directions for the environment.
to properly benefit from their respective advantages.

By late 1984, these problems were quite evident at GTE's

Strategic Electronic Defense Division. There was no clear HISTORY OF PSE
division-wide philosophy on the proper use of Ada, and no When the decision to implement PSE was made, a few high
automated method to support and enforce any methodology level management directives were issued to facilitate the
tatomtemehod to sport andmenrcan method e development effort. In retrospect, these decisions were athat might emerge. Also complicating matters was the mjrrao h S rjc a ens ucsfl h

pending release of DOD-STD-2167. When GTE was major reason the PSE project has been so successful. The

awarded a contract to develop Ada software using a draft most important decisions were:

version of DOD-STD-2167 as a guideline, the division a PSE would be an interdisciplinary project, not just a

decided to develop a near-term Ada Programming Support software project.
Environment (APSE) for the project. It would support the use
of DOD-STD-2167 and generate the required documentation. * High level management would mandate the use of PSE, to

The resulting environment, now known simply as PSE, has guarantee that the tools would be used.

since been adopted for use throughout the entire division. * VAX rm system managers would be included in the PSE
design effort, with the intent of optimizing PSE

The primary goals in developing PSE were to: performance.

1. Provide support for Ada software development, 9 The major thrust of PSE would be to enhance the
incorporating methods used successfully on other GTE capabilities of the operating system (VMS rm) and vendor
projects. software products--use them where possible, and not hide

2. Incorporate DOD-STD-2167, tailoring it to the needs of them from users.

division projects and the proper use of Ada. Therefore, the disciplines of project management, system

3. Automate document generation and other tedious clerical management, software engineering, and the capabilities of

duties, freeing software developers to concentrate on the vendors, were intermixed to achieve a well balanced, well
engineering aspects of the project, thus increasing thought out design.
productivity.
4. Provide support for all phases of the software cycle, not It was also decided that PSE would strive to become practical
just code generation, and provide support for non-software before it became state of the art. This allowed all involved

project personnel, parties to work in an atmosphere where success was quite
projct prsonel.probable, rather than an unlikely dream.

5. Encourage and teach modern software engineering p r

principles. Lastly, the PSE group was given their own VAX system on

6. Incorporate commercial off-the-shelf (COTS) software which to develop the environment. This allowed the group to

whenever reasonable to develop an effective APSE as quickly use system resources that would have been detrimental to any

as possible. other development work being done on the same system.
This dedicated facility was responsible for the quality and

W® Ada is a Registered Trademark of the U.S. Government Ada Joint

Program Office VAX and VMS are trademarks of Digital Equipment ('orporaiion
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rapid availability of some of the more useful PSE tools. The project began with six people with software experience,
none of whom had Ada development experience. The Design
Task Manager (DTM), the Technical Manager (TM), and one

PSE Development Methods additional staff member were experienced software managers.
When actual development of PSE started, the first projects Of the staff later added, several had some development
scheduled for PSE support were under way. This made it experience, and the balance consisted of new personnel,
imperative to deploy at least some portions of the mostly recent college graduates. As such, the mean
environment as soon as possible, ultimately causing a few experience level of the team was less than one year.
compromises in the development process. The intent for PSE staffing is to move people between PSE

First, the PSE group decided that PSE would be a set of supported projects and the PSE group. There are several
stand-alone tools, rather than an integrated environment. This reasons for this:
made it possible to incrementally release PSE to the
supported projects. Second, PSE and the standards and 1. Increase the knowledge base of GTE personnel by allowing
methodologies it was to support were developed people to move between projects, thus transferring
simultaneously. Because of this, early PSE tools did not technology between groups.

follow the current coding standards; the standards simply did 2. Prevent the PSE group from becoming an academic group
not exist at the time the code was developed. Third, there was unconcerned with the needs of its users.
no time to generate formal design documentation for each of 3. Provide the PSE group with input from PSE users, and
the tools. Instead, user guides were written for each of the insight into possible improvements in the tools.
tools, and the actual tool designs were based on the
functionality described in the user guides. Fourth, the tools 4. Provide projects with personnel who know the capabilities
were designed to allow projects to choose their own design and limitations of the tools. These people serve as project
methodology. Finally, the group decided that COTS software specific focal points for PSE help.
would be used, when time and cost effective, to increase the
speed of the development process. DESCRIPTION OF PSE
Other important decisions were made early in the program to Currently PSE consists of GTE-developed tools, COTS
optimally support the development and evolution of PSE. software, online libraries, a documentation set, and user

support and training. The GTE-developed portion of PSE
A tool known as DEPARTS (Development Environment consists of approximately 80,000 lines of Ada code, 20,000
Problem and Report Tracking System) was released. lines of VAX DCL command files, and 2,500 pages of
DEPARTS is a database and tracking tool used by PSE and documentation. There are approximately forty tools in the ,

its supported projects to record complaints, errors, environment. Most of the tools are menu driven and include

suggestions, and bugs found within PSE. online help facilities. A complete PSE Software User's Ki.
Manual exists and the VAX online help facilities have been

Forums were held where PSE users were invited to meet with extensively augmented to include PSE tool descriptions.
PSE development personnel to discuss problems with specific t eie d uprtools and suggest enhancements. These meetings continue to The "Stoneman" document dens Aa supr
this day. environments in terms of a Kernel Ada Programming Support

Environment (KAPSE), a Minimal Ada Programming
The user guides that served as informal requirements Support Environment (MAPSE), and an Ada Programiming
specifications underwent formal reviews. The tool designs Support Environment (APSE). The document lists the
underwent in-progress peer reviews. All code was reviewed requirements for each of these environments:
in code walkthroughs. Also, as tools became available, PSE 1
development personnel became responsible for using the aA KAPSE "provides database, communication and
tools and conforming to all standards they enforced. runtime support functions to enable the execution of an

Ada program (including a MAPSE tool) and which
As PSE development continued, and time and resources presents a machine dependent portability interface.'

became more available, more formalism was introduced. e A MAPSE "Provides a minimal set of tools, written in

Formal test cases and confidence tests for all tools were Ada and supported by the KAPSE, which are both
written. VAX command procedures were written to install necessary and sufficient for the development and
the tool on a given system, ensuring consistency across all continuing support of Ada programs." The minimal

effort has been made to rework the earliest tools so they translator, linkers, loaders, a set-use static analyzer, a
would conform to any standards or methodologies defined cnrlfo ttcaayeadnmcaayi ol

terminal interface routines, a file administrator, a
aftr teirorginl iplmenatin.command interpreter, and a configuration manager.

* An APSE is defined as an extension of a MAPSE,
PSE Development Personnel extended by increasing the toolset. Suggested additions to ,~,s

Since work began on PSE, approximately seventy-five people the toolset include an Ada program editor, a e%

have been involved with the project; twenty-four at its largest documentation system, a project control system, a
point. Currently there are twelve people involved with configuration control1 system, measurement tools, a fault

cniudmitnneand development, report system, requirements specifications tools, design

contnue maitenncetools, verification tools, complex translators, and
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command interpreters. APSE Capabilities S
The APSE tools or toolsets mentioned above are addressed

The following sections describe how PSE satisfies those individually below. The majority of these tools were

requirements. developed at GTE.

Ada Program Editor. A syntax directed editor, tailored to
KAPSE Capabilities GTE coding standards and guidelines is provided.
The KAPSE underlying PSE consists primarily of the
VAX/VMS operating system, its file storage capabilities, and Documentation System. Two major tools contribute to
commercial software products. The database capability is documentation generation. These tools use the syntax directed
provided by many different tools and structures, including editor in conjunction with the Scribe® text formatter to
controlled VAX/VMS file structures, relational databases, provide templates for generating DOD-STD-2167 documents
data dictionaries, and a COTS configuration control tool. File and other documents used by projects. Scribe allows graphics
access is controlled through the use of VAX/VMS Access and text to be merged electronically, so that development
Control Lists (ACLs). Runtime support is provided by the personnel may make their own drawings, including them
operating system (VMS) and Digital's Ada Compilation without cutting and pasting, and the drawing files may be put
System (ACS). ACS provides compilation and linking under control like all other source files. Scribe also allows
capabilities. Communications are handled by VMS, via Ada Ada source code or Ada design language descriptions to be
interfaces to COTS software products, and database included in documents. Thus developers use the same editing
interfaces, and formatting environment for both documents and code.

The Document Builder produces tailored templates for the
The GTE KAPSE was assembled almost totally from COTS following documents:
software because it would not have been cost efficient to
develop an operating system, or an in-house relational e Software Top Level Design Document (STLDD)
database package for PSE. These products are readily * Interface Design Document (IDD)
available, and development costs (money and time) made it
more realistic to acquire them from commercial vendors. * Data Base Design Document (DBDD)

* Software User's Manual (SUM)

MAPSE Capabilities * Software Programmer's Manual (SPM)

The MAPSE extension of the KAPSE also consists mainly of 9 Software Detailed Design Document (SDDD)
COTS software products. It is important to remember that
the great majority of tools defined for a MAPSE are also e Unit Test Cases (UTC) Document
commercially available, and a major emphasis on PSE was * Unit Test Results (UTR) Document
the rapid deployment of an effective environment. The GTE-
developed tools in the MAPSE are the pretty printer, terminal & Integration Test Cases (ITC) Document
interface routines, and portions of the command interpreter * Integration Test Results (ITR) Document
and configuration manager. * Software Product Specification (SPS)

The pretty printer reformats syntactically correct Ada source

code according to project formatting standards. Terminal e Software Test Plan (STP)

interface routines exist in a configuration controlled 9 Software Test Procedures (STPR) Document
VAX/VMS directory. Interfaces are written in Ada, and
provide Ada access to standard system-specific interface * Software Test Report (STR)

utilities. The command interpreter is accomplished through e Version Description Document (VDD)
the use of VAX command procedures, which provide
parameters to Ada programs. The PSE configuration Although PSE is not truly an integrated environment, the
manager is a toolset. The primary tool is the COTS CM tool Document Builder is an exception. It works in conjunction
mentioned above. This tool preserves all data and incremental with other tools and the project database while generating the
changes as project configuration personnel approve releases documentation.
of source files. There are also GTE-developed CM tools
including Release Request, Move Plane Request, Do Release, A second tool, the Software Requirements Specification

Do Baseline, and Move Plane. Release Request is used by Writer's Environment (SRSW) interfaces with the operating

test and development personnel to indicate to CM personnel system and the database to aid in generating the Software

that source files are ready for release. Move Plane Request is Requirements Specification (SRS), Interface Requirements

a high level release request tool which "promotes" an entire Specification (IRS), and System/Segment Specification (SSS)

configuration to its next test or release level. Do Release, Do documents.

Baseline, and Move Plane are used by CM personnel to Project Control System. The Action Item Tracking System
approve and carry out CM requests. (ACTS), the Inventory Tracking System (ITS), the Review

Item Disposition Tracking System (RIDS), and the Software

0 Scribe is a registered trademark of Scribe Systems. Inc.
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Requirements Database (SRD) provide assistance with documents.
project control. These tools provide interactive menu driven
interfaces to the PSE database, where the status of action Design Tools. PSE has not mandated a specific design
items, project inventory, RIDS, and software requirements are methodology, and no specific design tools have been
stored. SRD performs a major function throughout the provided. However, commercially available design tools are
lifecycle of a project. It serves as a central repository of data currently being evaluated, and may be added in the future.
that can be used for preliminary and detailed design, testing, Methodologies being considered include Structured
and integration. Managers have full access to these databases, Development for Real-Time Systems, Object Oriented
allowing them to rapidly retrieve answers to questions Design (OOD), and the Process Abstraction Method for
without impacting programmer performance. Embedded Large Applications (PAMELA).

Configuration Control System. In addition to the CM tools One tool which assists in the detailed design process is the
mentioned previously, the Logical Names tools perform a Body Builder. This tool parses specifications to create null
variety of functions, including some CM functions. The program bodies. These bodies can be modified to contain a
Logical Names toolset performs the following: minimal number of statements, allowing the designer to

easily create stubs or prototype a system and validate control
1. Sets up standard directory structures for each project, flow.
which reflect its design component hierarchy. Within this
structure, there are controlled directories belonging to CM. Complex Translators. Although there are no complex
Developers have read-only access to the controlled translators provided as actual tools, there are Ada libraries
directories. This structure provides a familiar, standard CM that contain a syntax analyzer, some generic hashing
environment, allowing new personnel to quickly understand functions, and a command language interpreter.
how project CM works.

2. Creates VAX/VMS search lists to find appropriate versions Command Interpreters. Other than the basic command
of files, based on the intent of the user. The search lists are language interpreter listed above, no complex command
defined by the DEVELOP and CONTROL commands. The interpreters have been required as part of PSE.
developer uses the DEVELOP command to indicate to the
system that the most recent version of a file should be found Other PSE Capabilities. Other PSE tools and services
for development work, while the CONTROL command is include testing tools, a standards checker, an online project
used by CM personnel to search for the oldest configuration- information database, reusable software libraries, a graphics
controlled version of a file. editor, and a spelling checker.
3. Creates a set of logical names and symbols to quickly
access structures with long, cumbersome names. Six test tools are in use: the Global Area Peeker/Poker

(GAPP), the Input Generator/Output Recorder (IGOR), the
Measurement Tools. Two COTS software packages provide Test Data File Generator (TDFG), the Unit Exerciser, and
performance data and coverage data for program execution, two commercially available test tools. GAPP aids in testing
One is used primarily as a test tool, and is discussed below and debugging programs that access shared global areas.
with test tools. The other collects sizing and timing data IGOR is an interprocess debugging tool that allows recording
based on execution of the code, providing printed reports. In and viewing of messages sent between processes, and also
addition, a software quality metrics tool is currently being provides input to processes. The TDFG uses Ada packages
evaluated for possible inclusion in PSE. and prompts users for input to build test data files for unit

testing. The Unit Exerciser is an interactive tool that
Fault Report System. There are currently four tools devoted generates a compilable Ada program (a driver) which
to fault reporting. These tools are DEPARTS, the Trouble exercises a user-specified procedure. The first commercial
Change Report (TCR) tool, the Trouble Report Summary test tool provides a controlled, repeatable test environment,
tool, and the Trouble Report Impact Summary tool. and is used primarily for regression testing. The second tool,
DEPARTS, as mentioned above, is used to track bugs and mentioned above, provides coverage and performance data
suggested enhancements to PSE. Reports are entered by for a program, including statement coverage on a line by line
development personnel as well as PSE customers. TCR basis. This tool also provides time breakdowns, allowing
tracks Program Trouble Reports (PTR), Software Problem or developers to locate performance bottlenecks.
Change Requests (SPCR), System Trouble Notices (STN), V

and Hardware Trouble Reports (HTR). A separate TCR The standards checker parses compilable Ada code, and
database is maintained for each project where PSE is used. provides a report of the code's conformance to project coding
Trouble Report Summary provides a detailed report, based on standards and guidelines. All source code must be run
queries, of project PTRs or SPCRs, or a DEPARTS summary. through the standards checker.
The Trouble Report Impact Summary operates in conjunction
with CM tools to determine files that have been or may be The online project information is accessed through the
affected by a problem resolution or proposed resolution. Programmer's Handbook. It contains a menu driven interface

to database entries. Users may read or add entries to the
Requirements Specifications Tools. In addition to the SRD database. Most of the entries deal with helpful "tricks" and
and SRSW tools which aid if the writing of specifications, the otherwise undocumented information of general interest.
Clarification Notice Tracking System (CTS), provides a This promotes the sharing of knowledge between developers
communications path between systems engineers, designers, in an informal, convenient manner. It also provides an
and developers to resolve ambiguities in SRS, IRS, or SSS additional online help facility.
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There are also online libraries of reusable software resident well documented.
within PSE. Many of the libraries provide Ada interfaces to *Database and graphics capabilities are supported by
COTS software products, screen management functions, and VAX-specific, non-portable software.
text processing capabilities, among others. There are also
functionally oriented packages such as the syntax analyzer,
hashing functions, math libraries, and signal processing DOD-STD-2167 Incompatibilities with Ada
packages. The following is a summary of perceived incompatibilities

The graphics editor and spelling checker are both between Ada and DOD-STD-2167
4

commercially available software packages. DOD-STD-2167 provides a lot of "how to" information, i.e.,
users are not only told what must be done, but also how to do

INCORPORATION OF DOD-STD-2167 it. This improper "how to" information imposes a standard
INCORPORATION trying toTD26 rsllifecycle, a static program hierarchy, functionally oriented
In trying to resolve the conflicts between Ada and DOD- design methods, informal test requirements, use of a PDL,
STD-2167, GTE encountered the following problems and constraints on reviews. All of these constraints violate
inherent to the defense software industry: DOD Directive 5000.43, the "Acquisition Streamlining"

" The available personnel used to staff the PSE directive.5

development group were largely inexperienced engineers
who had to be trained in Ada and in development DOD-STD-2167 also prevents users from taking full

methodologies, advantage of Ada. In general, advanced design methodologies
such as OOD, PAMELA, and rapid prototyping go against

" There was (and still is) an industry-wide shortage of the methods proposed by DOD-STD-2167. There is also an
experienced, qualified Ada engineers. underlying assumption that all software will be developed

" Managers at all levels were comfortable with functional specifically for the project, i.e., there will be no reuse. There
decomposition and the waterfall lifecycle, and resisted is also no indication that the developers of DOD-STD-2167
changing to newer methodologies, gave any thought to mapping DOD-STD-2167 structures into

" Managers wanted an environment that would be Ada language structures.

compatible with the machine-specific developmentenvironment used on projects (VAX/VMS). There are also problems with the Data Item Descriptions
(DIDs). The DIDs are not Ada oriented, and fail to address

" Proposal and program managers were reluctant to bid a the point that Ada may be used as both a design and
project using an "untested and unproven" methodology, implementation language. They also require the

With these constraints in mind, GTE decided to follow the documentation of information that is redundant or useless.
For example, in the detailed design document, input to and

methodology, structures, and lifecycle of DOD-STD-2167 output from design components must be listed. However, this
closely in the initial development of PSE, with the intention information is already clearly documented by the required
that the environment would evolve as division Ada PDL. Also, the DIDs continue to espouse the default
experience increased. Although many members of the Ada functional decomposition of DOD-STD-2167, and do not
community advised against using DOD-STD-2167 for Ada allow other methodologies to be easily used.
development, there were advantages to the approach,
including:

* A useful, functional APSE was built by relatively PSE Resolutions of Incompatibilities
inexperienced personnel in a short time span. GTE was fortunate in having a customer who did not demand

a literal interpretation of DOD-STD-2167, but rather was
" The training provided through the PSE development supportive of GTE's attempts to tailor DOD-STD-2167 for

effort has created a large pool of people who know the the proper use of Ada. Thus, GTE retained the lifecycle,
syntax and semantics of Ada. Newer personnel have also static hierarchy, terminology, and DIDs described in DOD-
gained important knowledge of project methodology and STD-2167, but adapted them for use with Ada. Throughout

development procedures. this adaptation process, the PSE development group
" An Ada mindset is slowly evolving at GTE. In particular, attempted to provide enough flexibility so all developers

people are beginning to realize that Ada is not just "this would be supported by the environment. The goal was to
week's language," but rather the language they will use support new development methods such as OOD, as well as
for years to come. As this mindset continues to evolve, it traditional functional decomposition methods.
will become easier to persuade managers that they and tit

their personnel need to be trained to use Ada optimally. These areas caused the greatest controversies and required the

There are also disadvantages in the approach used: majority of compromises. The adaptations are described in
the sections below.

" Because DOD-STD-2167 promotes no specific design
methodology, PSE includes very little automated design Adaptations to the Lifecycle. This area required the least

support. modification as most project personnel were already familiar
with the "waterfall" lifecycle. Most of the phases specified in

" Existing code is not nearly as maintainable as it could be. DOD-STD-2167 fit into the project phases used at GTE, and

" Reusable libraries are not very extensive, nor are they are not affected by the use of Ada. The design phases
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(preliminary design, detailed design) are the only areas where processing that is done at instantiation, or contain a
an Ada design method could affect the activities and subprogram too small to be considered a unit on its own. In

documentation required by DOD-STD-2167. these cases, the processing is identified in the design
description as the 'unit processing' part of the CSC.

Some people in the Ada community assert that when using This labeling has been found to help design reviewers in
methods such as rapid prototyping or "code a little, test a understanding the structure of the software design.
little," the distinctions between preliminary design and
detailed design are arbitrary and have little meaning. 5. The PSE supports the use of the static hierarchy by

Nonetheless, using separate design phases and reviews6 has incorporating the hierarchical directory structure of the VMS
been an important management tool at GTE, and they have operating system. As the software system is designed,

directories are created in the environment to match the
been maintained, components of the static hierarchy.

Adaptations to the Static Hierarchy. The problems in In addition to the development directory structure, the PSE
mapping DOD-STD-2167 static hierarchy components (top builds identical directory structures for the use of

level computer software components (TLCSCs), low level configuration management and test and integration personnel.

computer software components (LLCSCs), and units) to Ada Each of these parallel directory structures is called a 'plane.'

programming units are well known in the Ada community. All development work dealing with a component is done in

The only compliant mapping is to allow one or more Ada its corresponding directory in the development plane.

programming units to correspond to a DOD-STD-2167 unit.7  When work on a component for some phase has been
GTE has taken this definition and added other guidelines to completed (the preliminary design, the detailed design,
aid developers in the design of DOD-STD-2167 units: coding, etc.), the source files are 'released' and moved to the

corresponding directory in a release plane. Each project

1. During preliminary design, the software is decomposed defines for itself the number of release planes to be used, who
into a number of TLCSCs, each of which is represented as an owns them, and how they will be used.
Ada package specification. Whether the decomposition is
achieved using OOD (resulting in object TLCSCs) or using The use of VAX/VMS logical names and search lists

functional decomposition (resulting in functional TLCSCs), (automatically created when the directories are created) make

each TLCSC is defined using an Ada package. Major data it easy for project personnel to move to any directory

items identified during preliminary design are also described (component) in the hierarchy to perform their work.

as Ada objects. Adaptations to the DIDs. DOD-STD-2167 describes the
This use of Ada as a design language during preliminary design, test, operation, and management documents that must
design is not required by DOD-STD-2167, but promotes be produced during the life of the software development
consistency of designs, allows preliminary analysis to be project. Each of the documents is described in a DID, giving
performed by compiling the package specifications, andfacilitates eventual translation to Ada code. the exact format and content for each section. PSE automates-.

the generation of documents as much as possible, freeing

2. During detailed design, the software is designed developers to concentrate on the engineering aspects of the
completely to the unit level. Unlike preliminary design, there software development. The PSE also provides guidance in
is no restriction on the type of Ada construct used to represent the type of information to include in the documents.
a TLCSC, LLCSC, or unit. All data items are described as
Ada objects. GTE first followed the tailoring guidelines in DOD-

Care must be exercised that designs do not turn into code. STD-2167 and selected a subset of the DIDs appropriate to

Design descriptions should explain what is to be done, but not the projects. After this tailoring process, the PSE group made

implementation details, selected changes to those DIDs for two reasons: to support
the use of Ada as a design and programming language, and to

management tool throughout the defense software industry. provide a set of design documents that would evolve as the

As a very rough guideline, the following SLOC counts are software system evolved.

used in selecting software components: TLCSCs - 3000 to
5000 SLOC, LLCSCs - 500 to 2000 SLOC, units - 50 to 150 Using Ada as a design language in both preliminary and

SLOC. detailed design made it impossible to use the original format
for the two DOD-STD-2167 design documents: the Software

Due to the fact that a DOD-STD-2167 unit can be represented Top Level Design Document (STLDD) and the Software
by more than one Ada programming unit, these guidelines Detailed Design Document (SDDD). In addition, Ada design
help designers decide when a unit is becoming too large and
should become a LLCSC. It is also important to ensure units language is used to describe the data items during the design

are logically cohesive. The SLOC guidelines will be adjusted phases, so the DIDs for the Interface Design Document (IDD)

as needed according to project experience, and Data Base Design Document (DBDD) had to be changed.

4. DOD-STD-2167 states that units are the only components DOD-STD-2167 calls for the updating of the STLDD and
of the static hierarchy that will be implemented in code. SDDD throughout the life of the project. This involves
Because of the flexibility allowed in using any Ada "backtracking" to make the descriptions of the design
programming unit to represent a CSC in detailed design, this components match the final code. Previous experience has
rule does not hold. Instead, the PSE uses a convention of shown that this requires much effort and is of little use in the
identifying all processing (not all code) as either a unit or as maintenance of the software. Under the PSE, the STLDD and
'unit processing' associated with a CSC. the SDDD are "snapshots" of the software design that are

For example, a CSC implemented as a package may include meaningful to the project only at the time they are produced.
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After preliminary design, the STLDD is out of date and not that the same information not be documented in several
maintained, and after detailed design, the SDDD is out of date different places.
and not maintained. However, the design information in the
STLDD and the SDDD is not lost. It evolves with the The PSE group wrote their own versions of all the DlDs used,
software and is maintained in other places. describing the changes to incorporate the use of Ada and the

software overview. Like the DOD-STD-2 167 DIDs, the PSE
PSE's adaptation of the design documents breaks them into DIDs give the exact format and content of each section, and
two major parts: an overview of the software and descriptions include a complete example of the document.
of the design components (TLCSCs, LLCSCs, and units).
The parts evolve as described below. As mentioned above, the Document Builder toolset supports

generation of these documents in the correct format. It builds
The first part, the overview, describes the functionality of the a skeleton of any of the documents with all the necessary
software and how it fits into the rest of the system, the formatting commands and boilerplate text included. The
requirements allocated to it, the expected execution developers need only edit the files to insert the information
characteristics, and the major data used by it. This provides specific to the project.
important information for a general understanding of the
software as a whole. For design documents, the tool also supports the generation of

the Ada design language descriptions of the components and
After preliminary design, the sections of the STLDD that places those files in the correct directory within the hierarchy.
comprise the software overview are copied, section for When the document is ready to be generated, the tool collects
section, into the SDDD. During the detailed design phase, all the component descriptions from the various directories
they are updated continuously to reflect any changing views and composes the document.
of the software. By the end of detailed design, these sections
are up to date and contain useful information for the
reviewers of the SDDD. TRAINING AND EDUCATION

To ensure that the methodologies and tools provided by the
After detailed design, the sections of the SDDD that comprise PSE group are used correctly, most training is provided by
the software overview are copied, section for section, into the PSE personnel. Training is performed using five methods:
as-built design document, the Software Product Specification classroom instruction, computer assisted instruction (CAI),
(SPS). During the coding, testing and integration phases, videotapes, a user's group, and new project retraining.
these sections are updated continuously to reflect any
changing views of the software. By the time the system is
delivered, these sections are up to date and contain useful Classroom Instruction
information for maintainers of the software. Classroom training consists of Ada-related courses, vendor

courses, and PSE courses. All classes emphasize hands-on
The second major part of the design documents, the detailed experience with the environment.
descriptions of the design components, also evolves with the
system. After preliminary design, the TLCSC descriptions Ada Classes. Ada classes are generally taught within projects
from the STLDD are copied into the SDDD, updated with and are quite often for the benefit of new personnel. These
any design changes, and augmented with LLCSC and unit courses give project managers the opportunity to stress those
descriptions, features of the language or design characteristics that are

especially important to the project. Conceptual Ada classes,
The SDDD may contain textual overview information to aimed specifically at managers, are also given.
describe any large CSCs. This text is in the same format as
the overall software overview. After detailed design, any Vendor Classes. Vendor classes are used to train personnel
important CSC overview material should be copied into the on individual VAX/VMS development tools and other COTS
SPS, in the same manner as the main software overview software. Some vendors also offer more generalized classes
sections, and maintained in the SPS throughout coding, on design techniques. These are used when appropriate for a
testing, integration, and maintenance, particular project.

At the conclusion of detailed design, the design component PSE Classes. The classes taught by the PSE group span a
descriptions are integrated into the code. Because each of the comprehensive range, from management techniques under
design components is described using Ada design language, PSE to software engineering methodologies to tool-specific
their translation into Ada programming units allows the Ada PSE instruction. Classes range in length from four hours to
design language description to be incorporated: the data and two weeks, and are given prior to the applicable project
interfaces become part of the code, while the structured phase. The following is a list of some of the courses that PSE
comments and algorithm description become comments has offered or plans to offer:
within the code.

I. Introduction to Software Engineering Methodology
In this manner, design information is kept up to date and 2. Requirements Analysis
provides useful information during all stages of the software
development, as DOD-STD-2167 requires. In addition, 3. Software Design
designers, coders, and maintainers are not required to update 4. Advanced Software Design
obsolete documents, supporting the DOD-STD-2167 mandate
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5. Ada Library Management complete redesign and implementation of a tool to increase
efficiency. This has been expected, as PSE is still an

6. Introduction to PSE evolving environment.

7. Introduction to PSE for Managers 2. Update all PSE documentation. The SSPM has recently
8. PSE Document Generation undergone major updates and when revision A of DOD-

STD-2167 is issued, a complete new set of documentation

9. PSE Requirements Analysis will need to be tailored.

10. PSE High Level Design 3. Work on filling gaps within PSE. Some areas that could be
better supported include automated design support, quality

11. PSE Detailed Design measurement, graphics packages, management and reporting

12. PSE Coding and Unit Testing metrics support, PDL support. and hardware/finnware
development methodology support. Decisions must continue

13. PSE Integration and Testing to be made between developing new tools internally or

14. PSE Configuration Management acquiring COTS software.

15. PSE Software Test Management 4. Consider integrating the tools into a more cohesive
environment, possibly defining and using an Ada-oriented

These PSE courses cover techniques and usage of tools that command language as the common language for using PSE.

provide automated support of the techniques. 5. Be receptive to the needs of our users. PSE must provide a
toolset that meets its users quality and productivity needs; i.e.,
it must be efficient and effective.

Computer Assisted Instruction
GTE uses a commercially available computer-based Ada
course as an introduction to the language for both new CONCLUSIONS
personnel and persons switching into Ada projects from non- Although there is still a lot of work to be done on PSE, many

Ada projects. The course is usually completed in lessons have already been learned. A few points that may

approximately eighty hours, and introduces engineers to basic save others time and effort are listed below:

Ada concepts and techniques. The course contains
programming exercises on each topic, and is not merely an * There must be system management and hardware support
online textbook. This hands-on approach gives a feeling for for the development effort. Developers need to have a

dedicated system, or at least the authority to use system
Ada and VMS without overwhelming the users, resources that could impact the entire system.

" An APSE should be developed on a system similar to

Videotapes where it will reside. For example, an APSE to reside on a

A set of videotaped Ada lectures is used as an introduction to networked VAX system should not be developed on a

Ada and software engineering concepts. single VAX machine.

" When beginning to build an APSE, clearly define a
methodology and the APSE requirements as soon as

User's Group possible. If portions of a methodology cannot be
The PSE group hosts biweekly user's group meetings. This specified, delay defining all but the most generic tools to
gives the PSE development team a chance to interact with support that area.

users in an informal environment to exchange ideas and * If the APSE is to support DOD-STD-2167(A), develop it
information. The PSE staff provides information on how to following the standard. This will provide development
use new tools, explain changes in existing tools, and field personnel with experience that other projects can later
questions from users. draw on.

e The APSE development team should use their
environment as it becomes available. There is no better

New Project Retraining test environment than real life usage.
The ability of one group to have such large control over
division training and education has an extra added benefit. * Train the APSE development team as early as possible,

As older projects wind down and new projects start, people and include training in software engineering principles

are constantly moving between projects, The use of consistent and the use of DOD-STD-2167.

methodologies and a common tool set can reduce the * If development training must be "on the job," partition the
readjustment period between projects and allow new project developers into teams and attempt to match personnel so
personnel to become productive in a shorter time period. one team member's weakness is another's strength.

* Consider using COTS software whenever an effective and
cost efficient tool exists. If development is on a tight

FUTURE DIRECTIONS schedule, remember that cost efficiency is determined not
The following have been identified as high priority tasks for only by production costs, but by production time as well.
the PSE group:

1. Fix the problems that currently exist in PSE tools. Some of
the tools have major problems in performance, and are not
being fully used. In some cases, this may mean a partial or
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Extensibility in an Ada Programming Support Environment

Stowe Boyd, Mark Marcus, and Kirk Sattley

COMPASS

Abstract • a rule-based query language, oriented toward Ada intermediate

The DAPSE (Distributed Ada Programming Support Environment) representation and library information [6];

project 1 is a research effort developing a technology base for • a family of graphical editors: an Ada structured editor and an
mature Ada programming support environments (APSEs). The Ada library manager based upon grammar-driven graphical
project is jointly funded by Ft. Monmouth (U.S. Army), Rome Air manipulation [7];
Development Center (U.S. Air Force), and the STARS program. * tools used in the development of the editors;
Other reports on this work have been published [1,2,31. * and an integrated configuration control system (CONCON) [2],

This report focusses upon extensibility in APSEs and environments which manages sets of objects; its primitives include
in general, and the direction taken in DAPSE in support of reconciliation (a means to control multiple updates), as well as
extensibility, creation, deletion, and update.

The DAPSE construction methodology is based upon attribute
grammar techniques [8,9] and recursive data structures [10]. The

Inlroduction methodology has been used to generate the prototype environment,
and certain development tools, and is based upon the use of a

Consolidating the results of research on integrated programming common specification language. Other generators - the front end
environments, the DAPSE project applies these results toward the generator, data (object and relationship) management system
prototyping of a precursor mature APSE. The project is focussed generator, and the structured editor generator - may extend the
toward a few, high-payoff areas: semantics of the common specification language into their domains.
. experimentation with a prototype environment and initial set of A report describing the use of a uniform specification language,

tools distributed across a local area network of high- LDO, is in preparation[11].
performance, raster-graphics workstations; Barriers to Extensibility

. investigation of techniques by which a particular DAPSE may
communicate with other environments (DAPSEs or otherwise); The mature, extensible APSE is a significant departure from the

. environment support for development and maintenance of Ada loosely-coupled toolsets currently in use; such an APSE model has
systems, and in particular, distributed Ada systems; been characterized as coherent, or lifecycle-oriented [12]. There are

• and development of a uniform DAPSE construction significant barriers to the development and introduction of
methodology, exploiting high-level specification language technology suited to the production of such environments. In
technology and allied generators to build tool and environment particular, the prevalence of tool-oriented methods and
components automatically. environments, and the costs associated with comprehensive

environment frameworks stand as the principal sociological barriers.
Use of high-level specification languages and allied generators has On the technical side, several fundamental problems block the
yielded components of the prototype DAPSE. An initial DAPSE development of extremely extensible environments:
toolset exists in prototype form, and includes

t the current dichotomy between hierarchical file systems and* a graphical "shell* which channels user interaction; graph-oriented information models,
* a distributed Ada application method and supporting, reusable, * the lack of a wide-spread and sufficiently powerful information

Ada components which encapsulate system services necessary specification language,
for inter-processor communication [4,5]: * and the lack of stable interface standards.

A shared theme of the Common APSE Interface Set (CAIS)
definition [131 and the Portable Common Tool Environment [14] is
"to provide interfaces sufficient to support the use of APSEs for

OAPSE is furded by Ft. Monmouth, US Army CECOM, with support from The wide classes of projects throughout their lifecycles..." [13; § 2.1]:
STARS Program Office, and Rome Air Development Center, US Air Force. this is not a sufficient basis for APSE extensibility. In fact, certain

Authors' Address: COMPASS, 550 Edgewater Drive, Wakefield MA 01880. features of the CAIS and PCTE designs make uniform extensibility i
Telephone: (617)245-9540. unlikely: in particular, the fundamental split between the "coarse-
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grain* information managed by the environment and the "fine-grain" been developed to accept these specifications and automatically
information managed by tools or toolsets. produce environment and tool components. (The status of these

Immature environments may provide support for the range of tools is discussed in more detail in the next section.)
activities involved in the software life-cycle, such as requirements The structure, or schema, of project-specific information managed
analysis, design, deployment, and maintenance. Very few within such an environment is extensible in an analogous way. The
commercial environments have been developed to support definition of environment objects, such as Ada source, documents,
extensibility. However, the need for flexibility, extensibility, and and executables, is described by means of the same specification
modifiability of software support for large-scale systems (>5 million language. Complex relationships between objects can be
source lines of code) introduces requirements which cannot be represented. The user's interaction with the environment is
satisfied by an immature environment: subsequently channeled through the project-specific characterization
" The long lifetime of large-scale systems (over 20 years) of the information managed by the environment.

requires a highly extensible environment framework. The integration mechanism which supports this high-degree of

" Systems of such magnitude may undergo major architectural extensibility is a partitioned user view provided by a consistent
restructuring due to upgrades and the incorporation of new family of editors, as in Gnome [241. The term editor must be taken

technology, in the most general sense, as an interactive mechanism which
provides a user with a view over a well-defined information

*The size and time frame guarantees the need for support of a representation, and means to modify the information content of the
shifting collection of developers, testers, designers, and support domain under examination. An alternative to editor is *view
staff. manager"; given the definition above, it is clear that a wide number ~ -

of interactive systems not commonly considered editors are in fact
To date, most efforts toward extensibility in environments have view managers, such as command interpreters, database query
been based upon the UNIX "filter" concept (15]. As an example, languages, Ada library managers, and job control.
consider the Toolpack/Odin project (16,t1 in which tool fragments Etniiiyi o fotes n h culpoeso xedn
of small capability are composed into tool assemblages in order to Exteniiiisomnt effoless adtatual roesshv o t Ten
carry out specific tasks. Typed information fragments (virtual files anpeniratonmefn wileuormatabmdle don e havened ao cuTe
or sets of files) are associated with tool fragments, and control of spwbecificreationshp ofd anifrattiumoe; cnsier ted toglud
all fragments is centralized in the environment manager. Users are newibjects reaosis an d axml. Ttupribtestinie thel Ad program
provided a specification language with which to describe new tools libral aveampale.ATo suppolrt xsitos - snteraiuchio as
or tool fragments upon their introduction into the environment. This comeraly availablneda comiles o beinthermaiutonf
facility is more or less the equivalent of defining of new views, and thliryhexendvewedsobeihr
the specification of how those views are created [181. This 1) realized in the form of partitioned information models, one
approach suffers from the limitations of a 'firewall" between file associated with the existing tools' view and the other
system and file contents, however. This is similar to the limitations supporting the auxiliary information,
encountered with other systems, such as the IDE environment [19]. 2) or exploited by the existing Ada compilers.

In the Arcturus prototype APSE [20], significant effort was The goal of the DAPSE approach to extensibility is the second
directed toward extensibility in user interaction, primarily in the alternative: mature tools should not be "gasketed" into an
area of user-defined editing presentation and report formatting, environmental information model in a passive manner. In the case of
This approach does not provide sufficient support in those areas an Ada compiler well-suited to a mature APSE, the compiler would
most critical for the management of large-scale software systems. share the schema which defines the structure of a program library,

and would access the information content based upon the model
Extensibility and the Mature APSE described there.

Mature environments provide an adaptable, modifiable structure This discussion leads to the final, and critical subject: the limits of
which supports flexibility within the constraints of certain invariant extensibility. Environments cannot be totally plastic, and the range
principles. The DAPSE project has adopted an approach to of extensibility must be well-defined. There are several constraints
environment extensibility in which specifications of an intended on extensibility, including
environment are used to generate an instance of that environment, .standards, such as the Ada language requirements for library
or to regenerate components of the environment. This approach is management;
quite similar to independent work in the ALMA project [21,22], and . costs associated with information and tool transformation
the direction originally planned for the WIS Software Development caused by modifications in schemata;
and Maintenance Environment [23[. . and configuration management overhead imposed by tracking
Extensibility within a DAPSE takes the following form: layers or environment versions.
components of the environment are specified by a high-level, non- Tels on ersnsteutmt euto
procedural specification language: LDO2. Software generators have "1metaprogramming" approach [25] where software systems are %

____________________treated as data to be manipulated. When the environment is%
extensible, and can change in fundamental ways over the course of _

2 LDO: Language-Derived Objects. a project, the state of the environment must be considered as an
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integral part of the state of the project. Attempting to resurrect a subprogram names surrounded by boxes (a form of elision) which
previous system version - prior to performing the traditional "build" then can be expanded to show the full bodies on a user's request.
of system components - will require the "build" of the environmentbased on the operative schema, followed by the populating of the The goal is to produce, as quickly as possible, capabilities for "l
information model with the system components and supporting graphically presenting and intelligent editing arbitrary entities. Our
materialso current domain comprises data structure- and grammar-based

entities, such as Ada source, Ada libraries, command languages,
Extensibility In the DAPSE: Current Status and program management languages. Our hope is that the

generated editors will provide sufficient performance, and that the
Prototypes of our approach to environment extensibility have been ability to rapidly modify and extend them will offset any apparent
constructed, and reported [1,2,3,41. The DAPSE project is currently productivity loss due to performance.
centered around three major releases of demonstration software. Entity-Attribute-Relationship Data Base
This section reports on the state of the second release.~The DAPSE database system takes as its schema definition
The key to the DAPSE environment technology is information language the same specifications of entities that the structured
modeling. DAPSE's extensibility centers around the support for the editor generator does. In the current version, the entire set of
flow, change, and management of newly specified kinds of specifications are combined into a single, very large specification.
information within a programming support environment. That specification is used to model the attributes and type system
In the current DAPSE prototypes, non-procedural specifications of entities managed by the UNIX file system, as well as
describe the schemata for information that are going to be relationships between these entities: the coarse-grain information.
supported by a particular DAPSE environment (e.g. typeset Currently, the DAPSE ..civity window - a DAPSE-specific shell
documents, Ada code, Ada libraries, designs, specifications, - allows navigation of the database by following relationships
reports, etc. ). These specifications are attribute-grammar based between entities. The activity window provides access to both
and carry syntactic and semantic content; they allow a system DAPSE and foreign tools in terms of operations defined upon the
administrator to specify potential relationships among entities type system associated with entities. When a DAPSE session
stored in the database. For example, a DAPSE might be configured starts, all databasn meta-information is loaded from a set of UNIX
to allow a user to establish a relationship between an Ada files into transient memory.
compilation unit and a document. Besides allowing relationships
between two entities (i.e., coarse grain relationships), fine grain DAPSE 2.0. database supports a single user. The requirements for
relationships are also supported: for example, an Ada source a full, multi-user persistent database have not yet solidified,
statement may be related to the pertinent section of a design although a prototype multi-user system has been devised, based
document. upon a distributed Ada application paradigm [4,5]. Both the single-

and multi-user versions use hand-built code to access a particularThe remainder of this section outlines the specific DAPSE release database schema, and as such has extremely limited extensibility.2.0. mechanisms supporting entvironment extensibility. A variety of prototype systems within DAPSE exploit knowledge

Structured Editor Generators about the structure of entities. All DAPSE editors do so, in effect
The DAPSE release 2.0 structured editor generator takes as its making database queries with respect to the entities' internal
input structures. A prototype query language which allows the user direct
1) a definition of the form of information to be managed by the query access based upon the internal structure of the Ada program

editor library and Ada program structure has been developed, and is being
2) and a mapping which represents the graphical representation of evaluated as a model for related efforts.

the information structure. Our hope is that our research will lead us to a model which can
merge our fast short-term fine-grain storage facilities with a

Multiple editors can be generated for the same entity simply by commercial, persistent, coarse-grain database.creating different mappings.

The structured editor generator currently generates about 50 Configuration Control

percent of the code needed to implement DAPSE editors. With The configuration control facility of DAPSE provides an orthogonal
future releases we plan to reach nearly 100 percent of the code. means of managing the temporal aspect of entities [2,3]. Logically
The generators currently generates code to do syntactic checking related entities are managed as sets which share a common
but not semantic checking. The generated editors take advantage history. Modification of any entity within a set represents a new
of the high resolution raster graphics based Sun workstation 3. instance of the set as a whole 4. The series of states making up the

set history are stored (at the coarse-grain level), and differences
One of the best features of the generators is their hierarchical between branches in the history can be reconciled.
nature, and the consistent editor support for suppression of
unwanted detail. When editing an Ada package body containing
several subprograms, for example, one might first be shown the

4 Note that the physical implementation does not require copying the set as a "'

3 Sun is a trademark of.Sun Microsystems Inc. whole.
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A PORTABLE SYMBOLIC DEBUGGER FOR
DEBUGGING REAL-TIME ADA APPLICATIONS

Elisabeth Broe Christensen

DDC International A/S

Abstractfor other languages could be adapted
The paper addresses the suggested for use with Ada as well.
topic "Ada Life Cycle Environment:
Debuggers". The paper is based on the The opinion of the author is that
experience gained during the DDC-I dedicated Ada debuggers are needed.
Symbolic Cross Debugger Project. The Ada has some facilities, which were
following topics are addressed: Do we not part of the older languages like
need dedicated Ada debuggers, or can Pascal and FORTRAN, for which general
general debuggers be used. Ada fea- debuggers are normally made. These
tures hard to support: Generics and facilities should be supported by the
PRAGMA INLINE - how and to what extent debugger - as well as by any other
are they supported. User friendliness: tool - in order to allow the user to
How this has affected the debugger fully exploit the advantages of Ada.
design. Portability versus minimal in- We have found that the support of
terference with the target system - these features of Ada affects the en-
how this is achieved, tire debugger design.

What are then these special Ada fea-
tures ? The first one to be thought of

Introduction is tasking. The tasking model is an
integrated part of Ada; an Ada debug-

A debugger is an indispensable tool ger should therefore be able to handle
during the test phase of the Life programs with concurrent tasks. This
Cycle for diagnosing program errors. means, that a strategy should be
In particular when developing applica- decided for handling the situation
tions, where program failure may be where several tasks are or may become
caused by faulty or unstable hardware, breaked (i.e. suspended on
a debugger is an invaluable tool for breakpoints); and the control struc-
tracking the cause of errors. ture of the debugger must be prepared

for asynchronous events. Furthermore,
A series of issues considered essen- the debugger should be able to handle
tial for the usefulness of a debugger the task states as defined by Ada. The
for the diagnosis of errors in Ada current state of a task like "caller
programs are addressed in the follo- in rendezvous", "delayed" and "waiting
wing. The paper is based on the for children tasks to complete" and
experience gained during the DDC-I state information like current or ex-
Symbolic Cross Debugger Project, and pected rendezvous partner should be
examples from this project will be available, as well as information

* used. about the task structure like the .
names of the parent and the children
tasks. Furthermore, the debugger
should be able to set breakpoints at

Do We Need Dedicated Ada Debuggers ? task events like task activation, ren-
dezvous, termination, abortion and ll

A continuously ongoing discussion is completion.
whether the use of Ada requires debug-I ,
gers developed especially for Ada, ox Some applications do not use paral- 0
whether general debuggers developed lelism - what about those 7 Well, %
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another important feature of Ada is text statement or declaration cor-
the ability of well-controlled error respond to several different entities
handling - the exception mechanism. In of code, and these different code en-
Ada, the user may define his or her tities should be distinguishable from
own error conditions and associate a the user's point of view
named exception with a given condi-
tion. The debugger should be able to When doing symbolic debugging, the
set a breakpoint on the raise of a most frequent activity is to set
given exception, in order to detect breakpoints at source text positions-
possible error conditions and investi- even the most rudimentary debugger
gate how they are handled; supports that. A source text position
furthermore, it should be possible is referenced by giving a module name,
when using the debugger to explicitly a line number and, in some cases, an
raise an exception in the user program identification of which of several '. I
in order to test the handling of e.g. potential breakpoint positions on that
hardware failures, which may otherwise line you want to break at.

be dffiultto smulte.But how do you reference a source text
Other features which call for dedi- position in a generic instantiation ?
cated Ada debuggers are As module name the name of the instan-

tiation is used - but what about the
- overloading: A resolution strategy line number ? Our choice has been to

for setting breakpoints on an over- use the corresponding line number in
loaded procedure must be chosen the generic declaration. From the

user's point of view, we think this is
- dynamic constraints: This in- the logical thing to do; but it does

fluences the strategy for checking require more care when translating a
values at assignment source text position into a physical

address.
- the package concept: A strategy for

looking at entities which are not For INLINE expanded procedures you
actually visible from the current have a problem with the module name.
point of execution must be The meaning of a PRAGMA INLINE is to
designed, as an erroneous value of make the procedure code become ex-
a variable defined inside some panded into - and thus be part of-
package may affect the system be- the code of the entity containing the
haviour. The strategy must ensure, call. Therefore, the user should be
that the entity is meaningful able to distinguish between different
(elaborated), otherwise inspection expansions of a given procedure. How
must be prohibited do you distinguish between different

calls of the same INLINE expanded pro-
- generics: A way of handling instan- cedure ? Well, you invent a syntax for
tiations must be designed names allowing you to unambiguously

reference a specific call - our choice
- PRAGMA INLINE: A way of debugging is to use the source text position of
programs containing INLINE expanded the call as qualifier for the proce-
procedures must be invented. dure name. Example:

The two latter features: Generics and The command
PRAGMA INLINE, and the problems they
cause, are the subject of the next SET BREAK AT p #12 INLINE q #5
section.

will result in a breakpoint at line
number 5 of procedure q, in that
specific call to q which is located

Generics and PRAGMA INLINE at line 12 of p.

Most Ada debuggers - in fact, to the But this does not solve all problems.
knowledge of the author, all except According to the definition of Ada,
the debugger treated in this paper - INLINE expansion is only to be carried
do not support generics or PRAGMA out when possible - a program is still
INLINE. Why are generics and PRAGMA correct even if some PRAGMA INLINE's3
INLINE difficult from a symbolic have been ignored. This introducesa
debugging point of view ? new set of cases, which must be

checked and a handling strategy
Basically, because the same source chosen. The possible cases are:fo
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1) A debugger command specifying an User Frendlness
INLINE call is given for a proce- In the recent years, many attempts to
dure, which has not been mentioned define user friendliness have been
in a PRAGMA INLINE. made. In a way, most of the subjects

treated in this paper are related to2) A debugger command specifying an ue redies ilnttyt
INLINE call is given for a proce- user friendliness. I will not try to

dur, hih asmetine i acome up with yet another generaldure, which was mentioned in a definition. Instead, I will take a
PRAGMA INLINE - but that particular me pam t ach lok a

cal ha no ben epaned.more pragmatic approach: Look at our
cdesign goals and at the features of

3) A debugger command specifying an our debugger, and extract those that
INLINE call is given for a proce- were not dictated strictly by the
dure whch ws gientiond in a- debugging operations, but which weredure, which was mentioned in a added in order to make the debugger

PRAGMA INLINE - and the call has easy to use.
been expanded.

4) A debugger command specifying the The design goals dictated by user
name of a procedure mentioned in a friendliness are:
PRAGMA INLINE is given, but with no
indication of which call is Goal 1: Minimal User Learning Effort:
referred to, and all calls have The User should be required
been expanded. to learn as little new as

possible in order to use the5) A debugger command specifying the debugger. The User should be
name of a procedure mentioned in a allowed to express things in
PRAGMA INLINE is given, but with no the way he or she is used to.
indication of which call is
referred to; not all calls have Goal 2: Easy Information Access: The
been expanded. many different pieces of in-

formation supplied by a

Our strategy is as follows: in cases debugger should be presented
1,2 and 4 an error is reported. In in a way, which makes it easy
c2ase 3 the breapoin is eote in for the user to find thecase 3 the breakpoint is set in the relevant information.
specified call. In case 5 the break-point is set In the "shared" procedure Goal 3: Efficiency in Use: Frequent

code, i.e. the code executed for non- operations should require
expanded calls. minimal effort.

This is, in our opinion, the best Goal 4: Automation: Work, that may be
solution from a user point of view. done by the computer should
Though from a designer point of view, not be done by the user.
it complicates the debugger structure:
The looking up of names can no longer
be separated from the handling of code The debugger features reflecting these
position information. Whenever a pro- goals are:
cedure name is looked up, it has to be
investigated, whether the name has
been mentioned in a PRAGMA INLINE, and Goal 1: Miniml User Learning effort:
if so, whether inline expansion was The debugger command language may
actually carried out. Th deugrcmadlnaemybe tailored to fit the host system

conventions: Keywords may beWe have chosen to support both PRAGMA changed and new keywords may be in-
INLINE and generics as well as any serted in the debugger commands 'A

combination of the two; this has af-
fected our entire mechanism for - Command parameters are expressed
looking up names and deciding using Ada syntax. In particular,
visibility. We have made this choice expressions are identical to Ada
in order to have a useful and user expressions.
friendly solution. Other aspects of
user friendliness are treated in the When displaying source text defined
next section. entities, the definitions are dis-

played as written by the user,
including comments.
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- Output (e.g. object values) is for- - Files may be used for debugger in-
matted to look like Ada source put and output.
text.

Portability, which is treated in the
- Use of commands and parameters is next section, also contributes to
consistent. achieving Goal 1: "Minimal User

Learning Effort": When the User
switches from one development system

Goal 2: Easy Information Access: to another, using the same tools mini-
mizes the learning effort.

- A set of windows is defined, each
dedicated to a particular kind of
information. A window needs only to
be present on the screen when the Portability Versus Minimal Inter-
commands handling the window infor- ference with the Target
mation are used. The windows may be
moved, closed and have their size Portability of a tool is important,
changed by the user. because it allows the maximum number

of users on various systems to profit
- Display commands have qualifiers from the tool with the minimum amount
indicating the amount of informa- of time and effort. As stated above,
tion to be displayed. the learning overhead is minimized by

using the same tool on different
- Output (e.g. object values) is for- systems; and reuse, which is one of
matted to look like Ada source the key concepts of Ada, is
text. facilitated by portability.

- Default formatting strategies may The Ada compiler system, of which the
be set up by the user. debugger referred to in this paper is

a part, has been ported to a number of
different development systems with

Goal 3: Efficiency in Use: hosts ranging from mainframes to mini
computers and targets ranging from

- Function keys are defined for the bare microprocessors to mainframes.
most frequently used commands. Therefore portability is a key issue

for this debugger project.
- Defaults values are defined for

certain command parameters. Easy portability of a debugger is not
simple to achieve, as a debugger in-

- Cursors may be used for pointing, herently manipulates machine dependent
i.e. cursor position is used as data.
parameter value.

Increased portability of a debugger is
- Subprograms of debugger commands often achieved by relaxing the demands
may be defined, for minimum target system interference

that are put on the debugger. For ex-
- Symbols may be defined, ample, some portable debuggers rely on

calls to a special debugging module to
- A facility for easily traversing be inserted in the code after each

(and displaying) linked lists is statement. This is not acceptable, in
included, particular not in real-time applica-

tions, as the behaviour of the target
program is affected whenever the

Goal 4: Automation: debugger interferes with the target
system. Errors may change, or even

- Expressions may be used in con- disappear, because of such inter-
mands, e.g. when assigning a value ference. The extreme case is when the
to an object or when setting a needs of the debugger cause the target
breakpoint at a physical address. program to grow to a size which makes

it impossible to run on the target

- Subprograms of debugger commands system.
may be defined.S

The debugger referred to in this paper
Control flow constructs like "if" is designed to require minimal inter-
and "loop" are incorporated in the ference with the target: no insertions
debugger command language. in the target code are necessary. How
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is this achieved, and what is meant by -the data structures for information
still stating, that the debugger is to be provided by target dependent
easily portable ?~ parts are defined and prepared to

be filled out, and a portable tool
The requirement, that no insertions in for building address information is
the target code must be relied on, provided
means, that address information has to
be handled on the host, and, if the -the debugger is configurable, al-
debugger is to be easily portable, lowing for different applications
preferably by the portable parts. This and different levels of system
is achieved by defining a set of data debugging support
structures, on which the portable.1
parts operate. These data structures ~~
are built by a portable tool from in-
formation which is generated by the Conclusion
the portable parts of the compiler
(the front end), propagated and ex- Ada offers some facilities, which were
tended with relative address not part of older languages. The
information by the non-portable parts ability to support these facilities
of the compiler (the back end) and affects the entire design of a debug-
finally merged with the information ger for Ada; debuggers designed
about absolute addresses obtained from especially for Ada are therefore
the linker, needed. Some of these facilities are

difficult to support. Two examples,
Information about entity names and namely generics and PRAGMA INLINE,
visibility is obtained from the symbol were presented along with the solu-
table, which is stored in the program tions chosen in the DDC-I debugger
library, project.

The target system interference re- User friendliness and portability are
quired is then basically reduced to other important features of a debug-
read and write operations on target ger; a set of goals as well as
memory and registers, and this is only examples of design decisions con-
done, when the target program is tributing to these goals were
suspended becausa a breakpoint has presented.
been encountered.

Some of the features of the debugger
may, though, require changes in the
run-time system: If the facility of
forcing a task to be suspended, until
explicitly released by the user is
wanted, an additional task state value
may have to be added. But in order to
allow for different user requirements
depending on the application, and for
different levels of system debugging
support, the debugger is configurable:
When implementing the debugger on a
given host/target system, the in-
plementor may choose to implement or
leave out any facility. This is yetz
another aspect of making the debugger
easily portable.

So, to summarize, what is meant by
stating, that the debugger is easily
portable ?

- the maximum amount of debugger
processing is carried out by the
portable parts

- the target (and host) interfaces
are isolated and well-defined
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Abstract The standard object-oriented notation, by itself, is
The graphic design assistant (GODzilIA) is inadequate for the design of large Ada programs. The

a tool that facilitates the design of large in- notation developed for GODzilA supports a hierarchical
formation systems. It enables a designer to object-oriented scheme allowing for large programs to
graphically specify procedural as well as data be manageable and understandable. The system per-
aspects of system design. Procedural design is mits both intemal and external specifications. The inter-
specified using a modification of an object- nal specification is stated using a variety of techniques
oriented notation, whereas the data aspects are including a finite state machine approach. The system
specified using an entity-relationship (ER) generates Ada specifications including an Ada prologue
[CHEN76] notation. The sytem has been and Ada body code from a completed design.
partially Implemented on a Symbolics- Database tools allow the user to rapidly generate
machine and is currently in use at GTE's WIS error-free, well-designed schemas rather than doing
Division in Billerica, Massachusetts. Additional them tediously by hand. This tool allows a user to
features are being incorporated to make the generate fourth normal form (4NF) schemas from an
tool more widely applicable. A notable feature extended ER model. The standard ER model is insuf-
of the system is Its suitability for very large ficient for describing large systems. GODziIA offers
designs. some innovative ideas for the expansion of this model. k

The system generates SQL [DATE86] schemas and
enables the coupling of Ada and SQL programs.

The system has been implemented on a Symbolics
1.0 Introduction LISP machine. The interactive environment and the

large base of graphics primitives provided the ideal en-
This paper discusses a graphic design tool vironment for this rapid protclyping effort. GODziIA is

(GODzilIA) for designing large information systems. currently in use at GTE on the design of two large infor-
Today "programming in the large" is well recognized as mation systems (greater than 100 entities).
a critical issue. The engineering of large information The following sections describe the Ada notation, the
systems is an equally important issue and requires tools database notation and the development of an appli-
to support both the procedural as well as the data cation using GODziIA. We show the graphic design and
aspects of the design. Therefore, GODziIA embodies a the generated code. The paper concludes with our plans
tool to design both large programs in Ada as well as for the future. Actual screen dumps of the system are
databases using the ER model. In addition, the tc.ol included.
ensures consistency between these two aspects of the
design. The focus of this paper is on the description of
the Ada tool. This includes a description of the notation 2.0 Graphic Notation for Ada
developed, the implementation of the tool and how it is
currently used. In 1986 GTE was involved in the design and

implementation of a major local area network (LAN). As
part of the requirements, it was necessary to document
the entire design. Initially we started with a notation de-

® Ada is a registered trademark of the U.S. Department of Defense scribed by Booch in [BOOC86]. While this notation was
(AdS Joint Program Office). sufficient to describe small systems, the notation was in-TmSymlbolics is a registered trademark of Symbolics, Inc. aeut od srb ag ein.D rn htpro

adequate to describe large designs. During that period
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our research produced a graphic notation which re- the procedural design with the database design. The
moved some of the limitations [Poon86]. This notation database design is described in Section 4.
was used successfully to describe the LAN design. Procedure units contain a body and its declared
However, a significant drawback to the notation was units. Packages and tasks contain an external interface
that it was not automated; consequently several which is connected to the appropriate visible units. A
inconsistencies in the design went unnoticed. We also difference between this notation and others is that all
noticed limitations in the new notation . Therefore, we units, both internal units and those units externally
decided both to revise the notation as well as implement visible to other programs, are visible to the designer.
a graphic tool to express designs. This section briefly While internal units are not visible to other programs it is
describes the notation as it is currently implemented. important that the designer have a facility to express to

In designing a notation for expressing himself the need for these internal units; some of these
object-oriented designs, we felt the following capabilities could be units that are included from a library of useful
were essential: units. Connections between units indicate depen-

dencies, not data flow.
a. the ability to represent large designs. One of the drawbacks of notations that have been
b. support for decomposition and abstraction. introduced previously [BOOC86, BUHR84] is the clutter
c. parsimony in expressing designs. they generate f,4,- large designs. This detracts from the

desirability of a graphic notation. One way to reduce this
Figure 1 shows the interface the designer sees is to model all objects including the connections as

when beginning a new design. The palette on the left hierarchical objects which could be exploded further.
displays the various Ada objects that can be repre- Thus to determine details of the dependencies one
sented. Objects that have no real existence at run time merely has to explode the connection. Moreover,
and that are definitional by nature, for example generics associated with each graphic object is a pop-up menu
or types, are expressed using broken line icons; others which displays additional attributes of the object.
are expressed using regular lines. One additional object The body of a procedure or package may also be
that is included in the notation is the entity. Entities exploded to show either the Ada PDL asssociated with
correspond to database items and are used to connect that unit or a finite state machine (FSM) that may have
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Figure 1. Initial State of Ada Designer (GODzIlIA)
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been used to define the behavior of the unit. The FSM is about meetings and another requests meeting rooms.
described using a standard notation for transitions and Additional people can easily be added to the system
states and is described further in Section 3. GODziIA without loss of generality. We will model the three
uses the FSM description to generate the appropriate persons as Ada tasks INFOPERSONONE, INFO_
Ada code. PERSON-TWO, REOUESTINGPERSON (for multiple

persons we could have used task types), within a main
procedure called CONFERENCE as shown in Figure 2.

3.0 Designing an Ada program The conference room scheduler manages the
conference rooms and is therefore modelled as a

This section describes the use of the Ada notation package called CONFERENCEROOM _SCHEDULER.
to describe a simple application. We will first describe Notice all Ada units are numbered sequentially. The
the scenario and then show how the designer might numbering is used for referencing and traceability
create a design using GODziIIA. purposes. At this stage the designer realizes that all

three tasks depend on the CONFERENCEROOM_
3.1 Scenario SCHEDULER and therefore indicates the dependency

by connecting the three tasks to the package as shown
The problem is to model a conference coordinator in Figure 2. Since this is the main procedure, there is no

who will schedule conference rooms as well as give external interface. Moreover, we do not show any
information on the status of the rooms. The information external objects for this design. Figure 2 also shows the
about the rooms is stored in a database. Several initialization that needs to be done. The initialization
attendees may request information simultaneously code is defined by a procedure in our case and is called
about where meetings are being held; others may want from the body. At this level the designer is not concerned
to schedule additional meetings. about how the scheduling is done, but primarily about

what needs to be modelled. However, since people are
3.2 Design asking for information as well updating information, their

requests need to be coordinated.
For simplicity, we will asume there are only three

persons in the system, two of them ask for information

GODzilIA
'o Procedure CY -N.,ECE

ProcedureConf

task5 8.

tOSO typep

Edit Ada design Edt database design Edit default parameters Grid off Grid on Vie. Fi e
entity Generate Ada code Save Design Zoom out

GODui 1A ormnand:
GOD1t118 co1"and!

GOft illn coCCSd:

MIN 3G Mov 2:12:50 Helen Mach"tiPoan CL-USER: User tnut -. FIRE: aci scheduer.ad a B

Figure 2. GODzIlIA representation of Procedure Conference
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The first level of design is complete and the
designer needs to further elaborate the design of the La
package CONFERENCEROOM _SCHEDULER. He RcleaseZ adrs R

does this by placing the cursor on the package and Readers- I Readers = 0
selecting explode. Visually he gets an empty package else Request-Write/Nu l
with a body and an external interface similar to Figure 1. Reading R -
This package provides two external interfaces, namely RequestRead/
GETINFO and REQUESTROOM as shown in Figure 3 Readers : Readers + I Release/Null

Both of these procedures need to access the database RqustRead/ Readrs: Integer := 0

entity CONFERENCEROOM. Parameters for these Readers:= Readers + 1
access calls can be specified by invoking a menu as
shown in Figure 3. For example, procedure REQUEST_
ROOM has five parameters.

Figure 4. FSM for Task Room-Manager

As noted above, it is important that simultaneous
access to the database be prevented. While several Figure 4 models the scheduling using a finite state
requests to get information are allowed, the conference machine technique. Circles depict states and arcs depict
room entity cannot be updated by more than one task. conditions and actions. Conditions can be either
This requires an internal task, called ROOMMANAGER boolean expressions or entry calls initiated by other
to manage the scheduling. Each procedure gets per- units. Initially the ROOMMANAGER task is in the idle
mission from the ROOMMANAGER to either update or state because no requests have been made. Notice in
access the CONFERENCE ROOM entity. When the task this state a read or a write request can be honored with
is completed, the asso,.ciated procedure reliquishes the appropriate transition being made. If a write request
access so others may gain access. Notice Figure 3 does is accepted, the new state is WRITING. For this transition 11
not depict the detp.is of the scheduler. This is expressed there is no additional action. When the update is com- 7
by the design,3; at the next level of detail as shown in pleted, a RELEASE is issued by the calling task and the
Figure 4. state is again IDLE. With a read request, the number of
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6th National conference on Adia Technology 1988 79
i

RoC.ced1,c, ou INTEGERp



readers is incremented and the new state becomes task body ROOMMANAGER is

READING. In this state additional read requests can be type statetype is (Reading, Idle. Writingit
state : statetype Idle;

honored thus accomodating multiple readers. When the Readers :- 0;

reading is completed, once again a RELEASE is issued loop
select

by the reading task and the number of readers is when state = Idle -> accept RequestWrite do

decremented. If there are no more readers, the state :- Writing;

ROOMMANAGER goes into the IDLE state; otherwise end;

he stays in the reading state. Our notation uses a special when state /- Writing -> accept Request Read 1,,

state which allows for "If-Then-Else" transitions. To re- case state is
when Reading => Readers := Readers - 1;

present initialization, a start state is provided whose arcs when Idle -> state :" Reading;

only contain actions leading to the first state. Readers := Readers - 1;

The diagram clearly depicts the asymmetry of the end case;

situation with the readers being favored [Buhr84]. The or

usefulness of the the finite state machine is that requests when state /- Idle .. accept Request Release do 0
case staei 1

can be dynamically simulated. With several such when Readig => Readers :=- Readers - 1;

machines, potential deadlocks can also be detected. if Readers = 0 then

If the designer is satisfied with the design of the stated Idle;A

interface and the body, he can generate code directly when Writing => state := Idle;

from the diagrams as shown in Figures 5 and 6. In end case;

generating code, we strived to make it readable and as or
e

n
d

;

close to what would be written if done manually.The Ada terminate;end select;

prologue is adapted from DOD Standard 2167 for end loop:

software documentation. end RoomManager:

We have shown a segment of the process that a
designer might go through. Other Ada units can be
elaborated similarly. The elaboration of the database is Figure 6. Generated Code for Task Room-Manager
done using an extended ER tool. This process is de-
scribed briefly in the next section. The tool ensures that
the entities defined in the Ada design are also captured 4.0 Database Design
in the database design and vice versa. ,

GODzilA includes a database design tool which
enables the designer to model databases in terms of an
extended ER model. The ER model includes entities

package CONFERENCEROOMSCHEDULER is shown as rectangles and relationships shown as
-A A -diamonds. Relationships may be specified as 1 to 1, 1 to

-- sckand many, or many to many. We have extended the model to
-- This package schedules reading adwriting accesses icuesvrlohrfclte MRB]sc s

to the conference database. include several other facilities [MART82] such as:

--KEYWORDS
--readers, writers a. is-a.

b. exclusive is-a.-- CONTLNTS c. weak entities.
--author: Helen Nachiappan c
-- departmnt: CASE d. areas.
-- created-on: 12/01/87
-- last-revised-on: All entities included in the Ada design are automatically
--purpose: To allow the existence of multiple readers

and writers. included in the database design. The designer may add
-- f-inction: To prevent simultaneous access to the additional entities and associated relationships. Details

database. of the database design tool are given in [POON87].

procedure REQUEST_ROOM(LengthRequired : in :NTEStR: Figure 7 shows the top level system design of the
Room Scheduled : out INTEGE.R: dI e aO
Granted : out BOOLEAN: database. It includes two areas, ORGANIZATION and
Number of Attendees : in : FACILITIES, and one entity PEOPLE. Areas are a
Time_Needed : in STRING): collection of logically related entities. PEOPLE has

procedur GETNFO(Available : out boolean: several binary relationships with ORGANIZATION and
Ti in Integer: FACILITIES. This is indicated by the bold unlabelled %

Room ,in Integer); diamond. The entities within ORGANIZATION have

end cONFEENCEROM-SCHEDULER: several binary relationships with the entities within ,
FACILITIES. To elaborate the areas, the designer
explodes that area. Figure 8 shows the explosion of I -.*

F S. Generated Specification for Package area FACILITIES. The CONFERENCE ROOM entity is
Figure Conerete RoomiSca r part of FACILITIES. Notice HOTEL ROOM,

Conference_Room_Scheduler RESTAURANT and CONFERENCE ROOM are depicted
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as exclusive kinds of rooms, meaning that one room POON87
cannot be used as another. Notice that the housekeeper Poonen, G., Landstrom, S., Nachiappan, H.,
maintains rooms regardless of the function of the room. "GODzilA - A Graphic Object-oriented Design Assistant,"
Thus, we do not have to include three separate submitted for presentation at the 10th Annual
relationships to the individual types of rooms. The International Software Engineering Conference to be
shaded icons represent entities or areas that are defined held in April, 1988.
at the previous level. Since PEOPLE has a binary
relationship with FACILITIES as shown in Figure 7, there
must be a binary relationship with PEOPLE and at least About the authors:
one entity in FACILITIES. In Figure 8, PEOPLE is related
to three other entities in FACILITIES. George Poonen received his

B.S and M.S.E.E. degree from
the Massachussetts Institute of

5.0 Conclusion Technology, Cambridge in 1972.
From 1972 to 1974, he was with

GODziIIA is an operational prototype that was CCA and SOFTECH. He spent
deve:aped as part of an internal research and the next eight years with Digital
development project at GTE's WIS Division. The Equipment Corporation where

are being used in two large information system design and database research. He was
projects. The Ada tools have implemented the facilities an independent consultant for
described above, however, the capability to describe all various aerospace companies
Ada units needs to be included. Currently we have not between 1981 and 1986. Since
implemented types and generic facilites although the then he has been with GTE as a
notation has been defined. We also plan to incorporate senior member of the technical
the notion of libraries to make the system complete. staff.
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ESD Acquisition Support Environment (EASE)

Christopher Byrnes

The MITRE Corporation

added into this environment. EASE has been designed so its
ABSTRACT suite of tools can be broadened with a minimum of effort.

The ESD Acquisition Support Environment (EASE) is an This document defines the reasons that the analysis of Ada
AdaO analysis and development environment that integrates a va- code requires an environment such as EASE and how such an
riety of off-the-shelf tools into a Sun 3 UNIX workstation run- environment should evolve to support future Ada analysis tools.
ning the SunVIEW windowing system. These tools include a In the interest of space, this document will not describe each
Verdix Ada compiler, UNIX textual search utilities and custom- feature of the EASE system. The features of EASE are best seen
ized Ada unit status monitoring tools. Together these tools aid in a demonstration. This document will also outline the future
an analyst in the evaluation of Ada design or code. The analysis plans for EASE. OTS tools can only perform some types of Ada
that can be performed with EASE today includes checking for analysis; MITRE's support work will require much more powerful
strong typing, Ada unit dependencies, initialization and threads analysis tools. EASE will evolve to support these new types of
of control. This analysis could be done as part of an independ- analysis tools.
ent acceptance test of Ada deliverables or as part of internal soft-
ware quality assurance. The types of analysis which can be done 2. OBJECTIVES OF EASE
by EASE are being expanded as more Ada analysis tools are 2.1. FRAMEWORK I WHICH TO DEVELOP TOOLS
developed and integrated into the environment.

Because we wanted to create an environment with a mini-
mum of development effort that could be extensible, the EASE
user itterface was developed through the creation of low-level

1. INTRODUCTION primitives that the higher levels of EASE could be developed on.
These primitives provide a layer which abstracts out the details of

This document describes the ESD Acquisition Support En- the workstation environment chosen to implement EASE on. As
vironment (EASE) that has been developed at The MITRE Cor- more OTS tools are added to EASE, these primitives are reused
poration as an aid to the of analysis of Ada deliverables such as to integrate the new tools.
Ada as a Program Design Language (PDL) and Ada source code.
The growing use of Ada in government software development In addition to abstracting out the workstation dependen-
efforts will lead to a large amount of Ada that should be analyzed cies from the tools, these low-level primitives can be used as the
as part of a formal design review process. Just as software devel- basis to implement higher level programming interfaces. The
opers need automated tools to aid in the creation of Ada soft- current version of EASE allows programmers to create an envi-
ware, so the analysts of Ada software also need tool support. ronment of OTS tools without having to learn the details of the

workstation's conventions. The programmers and maintainers of
EASE was developed as an environment in which to place future versions of EASE will also want to provide sophisticated

Ada analysis tools. The tools that are useful to Ada analysis are Ada analysis without first having to learn the details of the cur-
available from, or under development at, a variety of sources. rent primitive level. This layered approach should make it easier
Some of these tools are Off-The-Shelf (OTS) commercial pack- to implement the advanced Ada analysis capability planned for in
ages while others are specially developed tools. Because the future versions of EASE.
analysis of Ada covers a wide spectrum, there will be many tools
that can be applied to this job. 2.2. CONSISTENT TOOL INTERFACE

The current version of EASE provides an integrated envi- EASE provides a consistent interface to all the OTS and
ronment (running on a UNIXO workstation) into which OTS Ada developed tools used in Ada analysis. Each tool builder had
tools can be placed. As more Ada analysis tools become avail- his/her own conventions for how a user interface should be im-
able or are developed internally within MITRE, they can be plemented. In some cases EASE is using tools that were origi-

nally part of incompatible environments. EASE supplies the
* Ada is a registered trademark of the U.S. Government mechanisms to use these tools without having to learn the inter-

(Ada Joint Program Office) face conventions originally provided.

® UNIX is a trademark of AT&T Bell Laboratories
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The need for a consistent interface is particularly acute for 3.2. ANALYSIS OF ADA PROTOTYPES AND MODELS
Ada analysis groups. An independent Ada analysis group (which
could be an internal group such as Quality Assurance or an exter- In addition to traditional design deliverables such as

nal group such as MITRE) will usually have only a short time to STLDDs and SDDDs, there is growing interest in requiring other
analyze the delivered Ada. These analysts will not have time to executable products which are designed and implemented in
learn or remember the different interfaces of each tool. EASE Ada. The use of prototypes, both as a source selection evalu-

allows these analysts to concentrate their limited amount of time ation aid and as an early mock-up of a delivered system. creates
on actual analysis of Ada deliverables, software to be checked. Software models can be built to analyze

a system's attributes. Ada can be used to write this software
2.3. IMPROVED UNDERSTANDING OF SOFTWARE which needs the same sorts of analysis that were described above.

ENGIEERIG ENIRON ENTS3.3. DEVELOPMENT OF ADA CODE
In addition to analyzing Ada software deliverables,

MITRE must also review other development documents such as MITRE will also develop its own Ada prototypes and mod-
Software Development Plans (SDPs). An important factor in els for its internal use and to support its customers. These pro-
these SDPs is the level of software engineering support provided grammers will need software environments that support both the
by a contractor's host environment. The development and use of development and analysis of Ada codie. As a by-product of sup-
EASE provides insight into what is needed by a software devel- porting acquisition, EASE can also be used as an Ada software
oper to create and analyze Ada code. This additional insight development environment. Ada developers will be under .he
should be reflected in better analysis of proposed SDPs. same tight time constraints as Ada analysts and so will need an

environment that is just as powerful.
3. EASE ROLE IN THE ACQUISITION LIFECYCLE

4. ANALYSIS DONE ON ADA DELIVERABLES
3.1. ANALYSIS OF DESIGN PHASE ADA 41 YECEKN
DELIVERABLES 41 YECEKN

The priary EASE role is to help analyze Ada PDL that is There is a variety of Ada-specific analyses that can be
delivered as part of a preliminary or detailed design. This deliv- done on Ada deliverables. One such analysis is of how well typ-
ered Ada might be part of a Software Requirements Specification ing has been used in the design. Ada is a strongly-typed lan-
(SRS), a Software Top-Level Design Document (STLDD) or a guage; proper use of user-defined data types allows Ada's compi-
Software Detailed Design Document (SDDD). The SRS. lation rules to detect erroneous combinations of data types. op-
STLDD and SDDD are examples of deliverable documents erators and objects. An Ada compiler can be used to see if these
called for in DOD-STD-2167 which are reviewed in conjunction rules have been followed.
with a Preliminary Design Review (PDR) or a Critical Design Re- 42 NTCULN
view (CDR). Recent DoD directives have mandated the use of 42 NTCULN
Ada in both delivered software and as a software design notation. The compilation units that make up an Ada program can
As this mandate is implemented, a greater percentage of deliv- be analyzed to see the coupling between them. How the units
ered designs,,and source code will be in Ada. are coupled will depend on the design methodology being used

Someof he nalsistha canbe erfrme onAda (such as object-oriented or hierarchical) and whether the Ada
Somveabe ofsiiat the analysis d ocnbe pomedtn nal actually conforms to that methodology. Determining the file

dliveabes isosmilato. theuanalysis donac eistng nloatral- compilation (and recompilation) order is a way to determine the

of functionality are examples of the traditional analysis that will copigbtensuefls.Pryculdssemwllea
contnueto e dne n Aa. ut Aa hs te cnstuct to to excessive recompilation and maintenance costs. Such prob-

capture a much broader range of design and implementation de- les sbl eietfe s oni h eelpetccea
cisions than normally found in natural-language documents. posbe

Analysis of early design (as well as code) deliverables allows the 4.3. SYSTEM INITIALIZATION
detection of mistakes (such as non-conforming system perform-
ance) before expensive coding decisions are made. This addi- Proper initialization is as important to software systems as
tional analysis (provided by the use of Ada) requires additional steady-state operations. The Ada language has rules defining
resources such as those provided by an environment like EASE. how Ada units and objects are elaborated (initialized) and the

order in which such elaborations are done. Determining the Ada
All of this analysis (and all the tools that will be a part of unit elaboration and dependency order allows an analyst to see if

EASE) assumes the use of MIL-STD- 181 SA Ada, not some the software will initialize properly.
subset. All of the analysis tools in EASE must use a common
model of semantics and run-time behavior as well as a common 4.4. THREADS OF CONTROL
syntax. Ada provides such a common model; both developer
and analyst can speak the same language. When constrained Analysis of software includes looking at the threads of con-
subsets of Ada are used, important design information may be trol under steady state and exceptional conditions. In addition to
left out. When alternative models of computation are used, ex- the compilation rules that define how executable Ada statements
isting tools (such as EASE's) will not understand the design being can be written. Ada defines the semantic run-time actions of its
analyzed. statements. Ada designs and code can be compiled and exe-

cuted to see how the threads of control work.
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4.5. DESIGN ALTERNATIVES 5.3. ADA WORK MUST BE DONE IN A PARTICULAR
ORDER

During the (long) acquisition lifecycle, evolving require-
ments and improved understanding of target system issues may There are many steps involved in building (and modifying)
lead to a need to investigate design alternatives. An analyst may an executable Ada design or program. Ada units must be edited,
wish to modify a design to see how well it responds to anticipated compiled, linked and executed in a particular order. As prob-
changes. When working with Ada designs and code, the analyst lems inevitably are discovered, the analyst must remember the
will want to modify the Ada and then use the same analysis tech- error messages produced by one tool in order to go back and see
niques described above on the modified Ada to see how well the what might have caused the error. A correction and another
design handled the modification. Ada that has be written for iteration through the tools may be tried.
maintainability will be able to handle these changes with a mini-
mum of effort. Unmaintainable designs will be discovered by the The analyst must keep track of all the steps that have been
analysts as they learn how difficult it is to modify such a design. performed and what the results from each step were, These im-

portant intermediate results often "disappear" off the top of a
5. PROBLEMS WITH MANUAL ANALYSIS glass terminal or they are jotted down on a scrap of paper which

is misplaced. Not keeping track of this intermediate information
5.1. WORKING WITH ADA REQUIRES A "MESSY results in wasted time as analysis steps are rerun.
DESK"

6. EXISTING TOOLS PROVIDE SOME SOLUTIONS
The analysis techniques described above are difficult to

perform on paper or using a standard glass (24 lines by 80 char- 6.1. EXISTING ADA DEVELOPMENT TOOLS CAN BE
acters) terminal. Analyzing Ada requires looking at the specifi- USED
cation and body of a unit. Understanding how Ada software
works requires looking in both subunits and their parents. This is Many of the analysis techniques described earlier can be
in addition looking at where subprograms are defined and called performed with existing OTS tools. For example, a validated
as well as where data types are created and used. The informa- Ada compiler can be used to check the quality of the Ada code
tion allout an Ada design is spread throughout the source code, or PDL. The compiler requires that Ada's rules for strong typing
so understanding the source requires looking in many places at and visibility be followed; so the compiler can check how well
once. these Ada attributes have been followed. An analyst can use the

Ada compiler to automatically check important aspects of a de-
Working with just the paper source listings results in the sign without manual intervention.

analyst constantly flipping back and forth between pages. Using
a glass terminal is only slightly better; without the ability to The Ada library manager must keep track of the compila-
browse through different source files (and positions within a tion and link status of all the Ada source files and units in the
source file) the analyst will be constantly flipping back and forth program library. The analyst can use the library manager to see
between source files. A workstation that provides a "messy if the design can be linked together, an indication that the de-
desk," i.e.. one that allows many simultaneous views into all the sign/code is complete and consistent. The library manager can
Ada source being analyzed, is required. The Smalltalk environ- also keep track of which tools (compilers and linkers) have been
mentjGold83] is an example of a workstation providing multiple run on Ada source so the state of the library can be determined
simultaneous views into the source code. A user of such an envi- as tools are run.
ronment may "browse" through many portions of the source
code at once. An Ada source level debugger can be used to step through

the threads of control. By providing test input files and/or having
S.2. WORKING WITH ADA REQUIRES COORDINATED the debugger modify objects, the analyst can see what the threads
EFFORTS of control are for different circumstances. A good debugger will

also be able to monitor Ada tasking structures and the elabora-
Analyzing Ada deliverahles will involve many separate ac- tion/instantiation work done by Ada source as part of system in-

tivities, some of which will be occurring simultaneously. In addi- itialization.
tion to the multiple views of Ada described above, the analyst
may wish to run one type of analysis on one part of the Ada Other tools useful in the analysis of Ada source include
(perhaps using the compiler to check strong typing) while doing structured editors, textual search utilities and pretty-printers.
another type of analysis (perhaps running through a thread of The UNIX programming environment provides a rich set of
control) on another part. Many of these Ada analysis tools place tools, some of which apply to analyzing Ada. The VERDIX Ada
restrictions on what can and cannot be done simultaneously. Development System (VADSO) provides a set of Ada-specific
Uncoordinated use of these tools can result in the analyst violat- tools that run on top of UNIX, so version 5.41 of
ing these rules. VADSIVERD861 is used as the source for EASE's Ada OTS

tools (such as a compiler and library manager).
In addition to coordination among tools, there must be

coordination among the Ada source. As the analyst builds or 6.2. EXISTING WORKSTATION WINDOWING SYSTEMS
modifies Ada, any changes must be done consistently between CAN BE USED
the specification and the body, parent and child, etc. Ada's
strict interface rules require that any changes must result in re- In order to support the "messy desk" described earlier,

compilation; a lirge Ada system cannot afford to discover im- EASE needed a multi-window interface. The SunVIEW® (ver-

proper updates through trial and error. sion 3.0) interface running on Sun 3/75 workstations* (using ver-
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sion 3.0 of Sun's BSD UNIX operating system) was chosen. tools may have so many options that a user will have difficulty

SunVIEW[Sun86aj provides a fairly standard windowing system remembering them all.

that allows multiple windows to be dynamically created and de-
stroyed on Sun's bit-mapped display. These windows can be Learning all the different command line options is particu-

scrolled, resized, closed into/opened from icons; all from a larly important to the Ada analyst. The OTS Ada tools are or-

three-button mouse. Different types of windows support termi- ented towards the Ada programmer, so the default behavior of

nal emulation, UNIX shells, text editing, graphics and combina- these tools tries to address the needs of the person writing the

tions of all these features. code. The Ada tool builders often provide capabilities useful to
the analyst, but these capabilities are usually placed as obscure

In addition to a standard set of tools that run on Sun- command line options. The Ada analyst needs to be able to

VIEW, Sun has defined a 'C' language interface that allows ap- access these options without having to dig through the back of

plications software to create their own windows and the Ada tool's reference manual.

tools[Sun86bJ. EASE uses this SunVIEW interface as the EASE has developed a set of customized user dialog boxes
mechanism for providing a multi-window Ada analysis environ- for each analysis tool supported. These dialog boxes use Sun-m ent. A bout 13,000 lines of 'C ' code interfaces to SunV IEW ,fo ea h na y i t ol s p red T e e d a og b es se S -

VIEW fields, toggles and sliders to allow the user to fill in the
the VADS tool set and other UNIX utilities such as "grep." choice of how a tool will be run. The analyst retains the option

7. EASE INTEGRATES OTS TOOLS INTO SUNVIEW of running the tool using the EASE default command line pa-

rameters; in that case the analyst does not have to spend any

7.1. CUSTOM WINDOWS MAINTAIN STATUS OF extra time filling in the dialog box.

SOURCE AND UNITS 7.3. OTS TOOLS RUN IN SCROLLABLE WINDOWS

One example of the customized tools developed specifi-
cally for EASE is the windows that maintain the status of Ada Many of the analysis tools used by EASE will produce tex-

source file and compilation units in the program library. The tual output that contains useful information about the Ada source

information about a file's or unit's status is gathered from a vari- file or unit being processed. For example, the Ada compiler will

ety of sources. The program library manager keeps track of report the positions of any errors in the source. A text searching

which units have been compiled, what source file was used to utility such as "grep" will report the positions of the text that

create a unit and what the specification/body and parent/subunit matched the searching criteria. This information is useful to both

relationships are between units. The Ada compiler and linker the analyst and to other EASE tools.

keep track of what source files are currently being compiled/ The analyst will want to read and study this information in
linked and which ones contained errors. The source code editor detail. EASE will capture the textual output from a tool in a
keeps track of which Ada source files are being edited and which scrollable SunVIEW text window, so large amounts of output are
ones have changed (requiring recompilation). not lost off the top of the screen. The analyst may wish to save

Rather than force a user to check with many different part of this output for use in documentation and letters; Sun-

tools to see what the status of the program library is, EASE pro- VIEW allows the text in these windows to be saved into a file

vides several tools that create and manipulate SunVIEW windows and/or cut and pasted into other windows. Because each invoca-

while the analyst is working with the Ada. One window maintains tion of an analysis tool will result in a new EASE window being

the list of Ada source files in a library (which is a UNIX directory created, the analyst can save and then compare the outputs of a

for VADSO) and their status. Another window maintains the list tool on different versions of an Ada source file.

of Ada compilation units, their types (package/subprogram/task, Other EASE tools can use some of this textual informa-
generic/instantiation, parent/subunit, etc.), the associated source tion. An example is the "next error" function provided in
file and the unit's status. The status of a file or unit might be EASE, which works similarly to the EmacsStal86 "next error"
"Being Edited," "Up To Date," "Contains Errors," etc. These function. The user places the cursor in a window with compiler
windows are dynamically updated as the status of a file or unit (or "grep") messages in it and gives the "next error" command.
changes as the result of a tool being run. The "next error" function will parse the textual messages until an

7.2. OTS TOOLS INTERFACED THROUGH error message is found. An editor is started up and automatically

STANDARDIZED INTERFACES scrolled to the source line that contains the error. Using this
mechanism, an analyst can navigate through a large Ada system

The OTS tools that an analyst can use on Ada source are and through all the errors the analysis tools have found.
complex, with many options that define how a user wishes to use
the tool. In following the UNIX convention for defining these 7.4. TILING ALGORITHM MAXIMIZES SCREEN USAGE

options, the tool builders have defined many different command
line options that a user must supply (which options are needed The analyst using EASE will be busy looking at all the
will depend on the circumstances). Naturally different tools from status windows and the source listings of the Ada being analyzed,
different vendors will have their own set of command line op- Having to worry about defining the position and size of all of the
tions. Even within the same vendor's tool set, the many different EASE windows that will be dynamically created will only slow theanalyst down. EASE implements a simple window tiling scheme

that defines the initial size and position of EASE windows.

® SunVIEW and Sun-3 are trademarks of Sun EASE tries to place new windows into currently blank areas of

Microsystems. Incorporated the screen. If all areas are in use, EASE will cover-up the oldest

o VADS is a trademark of the Verdix Corporation
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window. The goal is to maximize screen real estate usage while analyst to intelligently browse through Ada code, looking for
minimizing user interaction. those features or constructs of interest. A DOL proposal de-

scribes how this work will be done in detail.
7.S. HIDDEN DATABASE MAINTAINS WINDOW
RELATIONSHIPS In conjunction with the DQL work, EASE will be used to

create a useful set of metrics for analyzing Ada PDL and code.
The status of all the source files, units and windows under DOL includes the mechanisms for computing metric numbers for

the control of EASE is maintained in a hidden database that Ada constructs. Because DOL will provide access to all of the
automatically runs whenever EASE is running. This database Ada constructs, metrics can be defined and computed that better
allows any tool to query the status of any other tool. The data- reflect the quality of Ada code.
base allows EASE to prevent more than one editor from being
run on the same source file or to prevent a file from being edited The current version of EASE relies on the analyst to form
while it is being compiled. The database automatically shuts judgements based on all of the information provided by the vari-
down when the user leaves EASE. so the user is never aware of ous tools. As new tools (such as DQL) are added to EASE, the
its existence. amount of information available for analysis will grow dramati-

cally. The analyst will need even more powerful mechanisms for
The database also maintains the relationships between managing, displaying and analyzing all this data. Future versions

tools and the windows they are running in. This allows an EASE of EASE must be careful not to bury the analyst with too much
user to find the window where a particular tool (such as the edi- raw data and not enough information.
tor working on a particular source file) is running. The user can
use the custom windows managed by this database to find win- One way for future versions of EASE to manage all this
dows and bring them to the top of the display surface, even if information is through the use of expert system shells. An expert
that window is deeply buried or closed into an icon. This data- system such as the Knowledge Engineering Environment
base brings some organization to the EASE "messy desk." (KEE®)[lnte861 or the Automated Reasoning Tool

(ART®)[Clay85] could gather its facts for its knowledge base
8. EASE STATUS AND PLANS through DQL and then use its reasoning mechanisms to analyze

the Ada code or PDL. The DIANA Query Language Proposal
8.1. CURRENT EASE STATUS discusses how such Lisp-based expert systems could interface

with DQL and EASE. Several expert systems have been ported
Currently Version 1.2 of EASE has been released for in- (or are in the process of being ported) to the Sun 3 workstation

with 8 MB of memory and SunVIEW 3.0) and software (Version so these analysis tools will be available to Sun users soon.

5.41 of VADS) can use EASE. All of the EASE low-level primi- The current version of EASE displays all of its information
tives (as documented in the EASE low-level primitives manual) in textual form. The use of graphical notation would provide a
have been implemented. Experienced UNIX programmers can more concise representation of what is in a program library or an
use these low-level primitives to extend EASE or to implement Ada package. Several computer scientists have defined graphical
their own windowing scheme. These EASE primitives can be notations that can be used to represent the higher levels of Ada
called from any language that can call 'C', so they can be (and code. The Buhr and PAMELA[Cher85] notations are examples
have been) called from Ada programs. of this. Future versions of EASE could add support for these

notations. Buhr's CAEDEIBuhr85 system is currently available
EASEhasbee use wihinMITR todevlop prto- on a Sun 3 workstation and so it could be used as the basis of

type and to evaluate contractor deliverables. It should be noted EaSun gra tin ad otos

that EASE requires the mastery of several important skills before EASE's graphical Ada notation.

its use in analysis work becomes effective. An EASE user must EASE currently uses the SunVIEW windowing system to
know UNIX, SunVIEW, VADS and EASE conventions in order provide the graphics interface. Sun has already announced sup-
to run all the analysis tools. EASE only simplifies and standard- port for SunNeWSO, an improved window support system that
izes all these interfaces, it does not eliminate them. could be used to implement the current SunVIEW interface or to

implement other standard window interfaces such as the new 'X'
8.2. FUTURE PLANS standard [Gett861. As part of the maintenance of EASE, it could

Future plans for EASE include the integration of more be ported to run under SunNeWS[Sun86c] and/or 'X' so EASE
OTS Ada analysis tools as they become available. An example of might be portable to other 'X' based workstations.
such a tool is the ANNotated Ada (ANNA)ILuck841 toolset that EASE currently uses VADS as the source for all Ada-spe-
has already been integrated into EASE. As similar tools (such as cific tools such as compilers, linkers and source debuggers. As
those for the Ada Task Sequencing Language (TSL) [Helm85) other UNIX-based Ada compiler systems become available,
become available to MITRE, they will be integrated into EASE. EASE could be modified to support these compilers as well. The

Currently EASE has only a limited ability to browse current EASE system has tried to abstract out as much of the
through large Ada systems. EASE uses program library informa- compiler dependencies as possible. Part ol the maintenance ef-

tion to allow the user to move between specifications and bodies
as well as parents and subunits. EASE also uses "grep" for sim-
ple browsing; but Ada's scope, renaming and overloading rules 8 KEE is a trademark of IntelliCorp
make simple textual browsers prone to error. Work has already X ART is a trademark of Inference Corporation
begun on a DIANA Query Language (DQL) that will allow an SunNeWS is a trademark of Sun Micrnsystems
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AN ADA* DEPENDENT FAULT TOLERANT graph. The unrestricted communication in a distributed
program and the unpredictable order of execution of the

component processes pose problems. These are compounded
University of Houston by the constraints placed by a language. Thus to achieve

freedom from deadlock requires either an indirection

ABSTRACT methodology or the use of Ada constructs to provide dynamic

A simple, elegant algorithm upon implementation output. A general method employing indirection for
presents innumerable problems. This paper provides insight overcoming deadlock is proposed and implemented using
into the difficulties of implementing a distributed algorithm.
This is followed by a fault tolerant implementation of the Communication Processes (buffers).
Distributed Shortest Path Algorithm. The unrestricted Distributed programs are inherently difficult to
communication in a distributed system produces situations
conducive to deadlock. This is particularly true if verify and even after extensive testing, may have residual
synchronous message passing is used, as processes may wait
indefinitely for each other. To ensure freedom from deadlock design errors. Thus techniques for designing correct
dynamic message sending based on Ada timed out entry calls programs have to be utilized. This particular fault tolerant
is used. The use of an indirection methodology is also
proposed as an alternate to ensure freedom from deadlock, implementation is based on the concept of Communication

Distributed programs are also, by virtue of their Closed Layers [ELRA83], which partitions programs
complexity, difficult to verify. Even after extensive testing
residual design inadequacies may be present. Thus the logically / physically to provide what are called Safe Layers.

concept of Communication Closed Layers is used to design Such a design methodology coupled with the concept of
the program. The Consensus-Global Tester is used to
implement error detection and assist in error recovery. These Consensus-Global Testers [LEE88] provides fault tolerance.
together form Fault Tolerant Layers. In the event of an error, Hence, error detection and recovery are possible.
a Backward error recovery scheme is used thus, computation A Recovery Block [RAND751 type scheme is
can be reinitiated. The provision of fault tolerance has a large
overhead in terms of the number of messages required. A used to implement error detection and recovery. The premise
modification of the algorithm is proposed to reduce the
number of messages, using buffering in conjunction with of a Recovery Block type scheme is that errors will occur,
Ada constructs to achieve this in the implementation. thus "spare" modules must be provided. Hence, at the con-

clusion of a particular computation, if an error is detected the

I. INTRODUCTION "spare" can be used to recompute the values. While the

erroneous values are discarded. The errors are detected
The trend towards distributed processing on through the use of a Tester module which assures that the

computer networks has led to an increase in the number of results are either "acceptable" or erroneous.

distributed algorithms and the development of programming The objective is to maximize concurrency and

languages to exploit the concurrency. But two major issues provide fault tolerance without incurring overheads in

have not yet been addressed. The first issue concerns the time-space. To begin the discussion a brief outline of the

problems associated with the implementation of the Distributed Shortest Path Algorithm and backgrounds on the

algorithms, within the constraints of a language. The second concepts, techniques and methodologies will be given in

issue concerns the assurance of reliability in such a complex section 2. This will be followed in section 3 by a description

software system, as the results depend on the unpredictable of the implementation. Section 4 is devoted to the analysis.

order in which actions from different processes are executed. Finally, in section 5, some concluding remarks are made.

In this paper we consider the problems and drawbacks of The outlines of some tasks are provided in the appendix and

implementing the Distributed Shortest Path Algorithm references are made to the figures in the paper.

[CHAN821 within the constraints placed by a language,

specifically Ada*. We then design and implement a fully Ii. BACKGROUND
distributed, fault tolerant program.

The Distributed Shortest Path Algorithm is an In this section we provide the conceptual

elegant distributed solution to compute the shortest path from background of the techniques which form the basis for this

a special vertex vi to all other vertices of a weighted, directed paper. These are firstly, the concept of fault tolerance

*Ada is a registered trademark of the U.S. Govt., AJPO.
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followed by the Safe Layering design methodology. Then a the available knowledge correct the system state to provide
consideration of the problems and difficulties of continued service. An example of such an approach is
implementing a distributed program are provided. Finally, an N-Version Programming. In contrast, backward error
overview of the distributed algorithm is given, recovery manipulates the system state so as to achieve a

Concurrent programs may be executed in several "reversal of time". That is, to a state prior to the erroneous
different environments, depending basically on the one without regard for the current state. Thus previous states
availability of processors and their interconnections. The first are saved on a stable medium, to be recalled if the need ever
method allows processes to share one or more processors arises.
and is referred to as, multiprogramming. If each process is The recovery block scheme [RAND75] is an
executed on a single processor, but all processors share a example of a backward error recovery technique and like all
common memory, it is referred to as multiprocessing. fault tolerant schemes relies on redundancy. It consists of
Finally, the execution of processes on dedicated processors three distinct parts: a recovery point, execution modules and
connected by a network is called distributed processing. an acceptance test point. The first of these is a point in the
Since no memory is shared cooperation is achieved through execution of a program when the important variables are
message passing or remote procedure calls. Thus a saved. This occurs prior to entering a recovery block. The
distributed program consists of a collection of processes or second part consists of a primary module, which is executed
tasks executed in a distributed processing environment. first upon entering a recovery block. Upon completion the

In what follows, the terms task and process are process must pass an acceptance test to ensure the reliability
interchangable and refer to self sufficient execution units of its results. If the test is passed, then the process proceeds.
which conmmunicate via messages. But if the test is failed the process state is restored to its

original version (saved on entering the recovery block). Then
2.1 Software Fault Tolerance an alternate module of the program is executed, in the hopes

that the alternate will not have the residual design

The need to provide increased reliability in inadequacies present in the primary.
computer system led to the approach of achieving this goal The alternate blocks / modules may be of differing
through the use of fault prevention. Reliance is placed on design, algorithms, languages or a combination thereof. The
tools and techniques such as verification, documentation, premise is that residual design inadequacies present in one
testing, etc. Such techniques assume that all possible causes module will not be present in another. Any number of
of unreliability can be removed prior to delivery and reliance alternates may be used as long as they provide a measure of
will not be placed on a system until all "bugs" have been fault tolerance within acceptable costs. For example, if four
removed. This approach fails to account for faults which algorithms to solve a particular problem are available and
were unanticipated and thus not weeded out during the design their time complexities are n log n, n2, n3 and n12, then the
and testing of the system. it is reasonable to assume faults last version even though it provides redundancy, may be too
may be present in a system and will have to be tolerated, expensive to employ especially in a time constrained
Thus the concept of fault tolerance uses redundancy of design application.

as a means to provide error detection and recovery from The acceptance test is a last moment check to
residual design inadequacies. This ensures uninterrupted ensure the reasonableness of the output and is by no means a
service even in the event of faults. To achieve this objective, test for absolute correctness. This acceptance test is over and
fault tolerant systems must detect errors, assess the damage, above the usual interface checks provided by the system -

try to recover and provide continuous service, which lead to exceptions, etc. Thus if no exception has been
Two complementary approaches for providing raised and the output of the module meets the acceptance

fault tolerance in software have evolved. These are forward criteria it is assumed that no fault occurred.

error recovery and backward error recovery. The aim of
forward error recovery is to identify the error and based on 2.2 Sare Layering
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Te Sequential Composition (denoted by ";") of a
Distributed programs, by virtue of their concurrent program P is

complexity, are very difficult to verify formally. Even after [ Layer 1, Layerd ]
extensive testing and debugging residual design inadequacies This allows a concurrent program to be viewed as a collection
may be present. This coupled with the unrestricted of sequential layers. But gives up some concurrency and
communication between concurrent processes could cause the requires a global synchronization scheme, as commands in a
propagation of erroneous values. Ultimately leading to following layer are not available until the previous layer has
erroneous results or a crash of the software system. Thus terminated.
there is a need for methodologies to design reliable programs The Distributed Composition (denoted by ":") of
and for techniques to detect and recover from faults. One a concurrent program P is:
such design method, based on the concept of [ Layer1 

. :Layerd]
Communication-Closed Layers proposed in [ELRA83], and is exactly equivalent to:
provides a means to design reliable distributed programs in [ pll; -.. ; pl d 11 ..... 11 Pnl; ..... ; pnd ]
what are termed Safe Layers. This in conjunction with the Twc---
Consensus-Global Tester [LEE88] provides error detection Thus allowing a process to execute at its own pace without
and recoverability through Fault Tolerant Layers. The any global synchronization and ignoring layer boundaries.
provision of fault tolerance based on these techniques does The equivalence of the two compositions can benot iveup ny egre o cocurrncy alowig cmpoent provided by assuming for all layers, that Layerk is
not give up any degree of concurrency, allowing component Communication Closed. That is, in any communication both

members must belong to the same layer. Thus if inter-layer
2.2.1 Safe Layers communication is disallowed, across layer boundaries, each

of the layers is communication closed and such layers are
Distributed programs can be viewed as having a called Safe Layers. These Safe Layers can be used as units of

two dimensional data-flow. That is, sequential within the modularity with layer boundaries serving as synchronization
process and parallel between processes. Thus, in order to points [LEE88], [ELRA83], [GERT86], [MOIT83].
design a distributed program we must consider the sequential The Distributed Shortest Path Algorithm (DSPA)
behaviour within each process and manage synchronization / is implemented in two layers corresponding to the two phases
communication between the processes. The concept of Safe of the algorithm, described in section 2.4.
Layering allows such a consideration. The basic idea is to
view distributed programs as a sequential composition of 2.2.2 Consensus-Global Tester

concurrent Layers. For example, a concurrent program P
consisting of interacting processes P; P2 ;.;Pn is The efficacy of fault tolerance depends to a largeextent on the ability to detect errors and consequently have adefined in CSP [HOAR78] syntax as : chance to correct the errors. Thus error detection is an

P:: I P1 I P2 II ..... I Pn extremely important phase in computation and relies heavily
Furthermore, each component process can be subdivided into on the ability of the tester to "catch" the errors. In sequential
d logical / physical segments. Thus each process (Pi) may be programs the errors are isolated within single programs

defined as: which are not affected by outside influences. But in a

Pi:: [ il; i i distributed system, where many processes may be running
Thus, in general, process segments can be defined as : concurrently and interacting, errors outside the module canaffect the outcome. Some errors may be localized but,piseg { i = l..n , seg = 1..d) through interactions, have tainted parts of the program which

and a Layerk is : appear to be fine.

Pi k  2 k  . pnkJ A tester for a sequential program is required to
ensure that specifications for a particular program are met. In
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the case of distributed programs, the tester must ensure the may try to send a message to Pi. This circular wait situation

correctness of the results for the entire computation. This is is unresolvable as both processes would wait indefinitely for
made more difficult since the order of execution, of the the other to receive its message. There are two basic solutions
actions of the interacting processes, are unpredictable. Thus, to this problem, either deadlock avoidance or deadlock
so are the results. detection and arbitration. The latter is much more costlier in

The Consensus-Global Tester [LEE88] based on terms of the overhead of monitoring and is almost impossible
the premise that there are interactions amongst processes to achieve, in general, for distributed programs. The
provides error detection for all the component processes. avoidance of deadlock is relatively easier to achieve through
This is achieved by providing a global specification, which careful structuring and design of the program [LEE87I.
can test the correctness of the results of all the interacting A less serious but equally important issue
processes. In the event of a global error all tasks are required concerns unnecessary blockage / waiting. A process blocked
to rollback. Ifadsrbtdipeetto a epriind for communication / synchronization must not have to wait

inf rgo s raydistri ud wa i pe ntatro ca de atitioned too long. This issue gains significance if it is realized that the

iore ioycns or loa e insuheaw thaonet err o a ete tionan speeds of execution of processes are arbitrary and therefore

reeycan be l oecalzd Te the onepto gobal teters unpredictable. Thus a faster executing process may have to

detection and recovery, without having an adverse effect on complete a clommuprnic t ffc ynhoiation atep.Frexmli rs

the other regions. Thus, errors can be detected and recovery co1 pattet t communicat emt with alei a processP2 adfnsP

initiated only in those particular regions. In the event of anPIatmstoc muitewhapresP2ndfds2

error, rollback and recovery occur within the region. But if busy. P1 should not be required to wait for P2, instead P1

no regional errors are detected the results are sent to the may delay a short time and thereafter proceed on its own,

Global Tester for consensus-global testing. That is, to ensure subsequently returning to reattempt a rendezvous.

that all regions meet the specification as a whole. Since processes are executed on systems which
In the program to be implemented the concept of a could be geographically separated and no sharing of memory

single Consensus-global Tester for each phase of the occurs, the only means of communications are remote

computation is used. This tester should verify that the global procedure calls or message passing. In the algorithm and the

assertions hold in all cases. implementation language, message passing is assumed and

thus only the latter is considered. It is apparent that
2.3 Problems and Difficulties communication through messages has a substantial overhead

in terms of the delay, the amount of memory required to
The concept of distribiir:ng processing is a buffer message and the number of messages propagated.

powerful and useful one, but must be utilized with extreme Aside from the number of messages, under

care. Several problems are faced in the effort to implement a certain circumstances, the number of processes may be quiet

distributed program, and these issues have to be resolved to high. These processes may be needed for secondary
profit from the enormous potential of distributed processing. purposes, such as buffering. They should be kept to a

These issues include the danger of deadlock, unnecessary minimum, or eliminated altogether if possible. Since the
blockage, overheads of messages and processes, language overhead lies not only in the number of processes but also for

constraints, reliability, and a fully distributed implementation, inter-process communication. The inefficiency inherent in a
When addressing these issues compromises have to be made, system using a large number of processes and f or messages

which ultimately affect the implementation and its efficiency. is a drain on the system. This ultimately affects performance

In distributed solutions, the unrestricted and throughput of the system is reduced.

inter-process communication produces situations conducive Until the recent development of general purpose

to deadlock. For example, some arbitrary process Pi attempts programming languages, which incorporate multitasking and

to communicate with another process P j: simultaneously P constructs for concurrency as primitives, most languages did
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not provide for such concepts. But the provision of such above, but it is prone to bottlenecks and intolerant to faults.

capabilities in the new languages is by no means complete, as The loss of the central node can cause a crash of the entire

they are still not powerful or expressive enough to allow all system. Such an implementation would also sequentialize a

types of implementations. In the event that a construct is not distributed algorithm, making it no better than a sequential

directly available to the programmer, the flexibility of a program given time slices on a single processor. Thus all

language plays an important role in allowing solutions distributed programs must allow unrestricted communication

without incurring unacceptable overheads. An example is the without any host or controller process and use the advantages

timed out entry call in Ada, without which nondeterminism provided by the language, the algorithm and the system.

for output messages would not be possible.The inventors of

distributed algorithms usually do not consider specific 2.4 Distributed Shortest Path Algorithm

languages to implement their algorithms. Therefore, these

algorithms are not always amenable to implementation within In this section we provide the background and

the constraints of a language. The tools provided by a highlights of the Distributed Shortest Path Algorithm. The

language, either directly or indirectly, may be utilized by a complete algorithm can be found in [CHAN82].

programmer in cases where regular constructs are too The algorithm implemented is an elegant,

confining or inadequate. distributed solution to compute the shortest path from a

There are two types of correctness properties vertex to all other vertices of a weighted, directed graph in the

which all programs must possess - Safety and Liveness. presence of negative cycles. A directed graph G = (V,E)

Safety properties are the static portion of the specifications consists of 2 sets. V is a set of vertices and E is a set of

and are explicitly stated. An example is mutual exclusion, edges. If an edge <vi,vj> is incident to vertices vi and vj,

Liveness deals with the dynamic properties and ensures that then a path exists from vi to vj. The vertex vi is called the

an event will eventually happen. Deadlock is an example of a

breach of liveness. These issues are extremely important in predecessor of vj and vj is the successor of vi . Each edge has

concurrent programs as the results of the execution of several associated with it a length lij corresponding to the distance

processes depends on the order in which actions from

different processes are executed. The complexity of the from vi to vj. In the event a length lij is negative, a cycle of

situation greatly increases the probability that the programmer negative length may exist. Consequently, all vertices

will make mistakes and that errors will not be detected during reachable from the negative cycle will have lij equal to -o-. An

testing. Such design errors would ultimately lead to the example of such a graph is shown in figure 1.

violation of the correctness properties and either incorrect In this algorithm processes communicate through

results or, failure of the software system. Until reliable messages and the presence of message buffers is assumed.

proofs of correctness which cover implementation details are The computation is done in two phases. The first phase

available for realistic software, reliance has to be placed on computes the minimum distance from vertex v1 to all other

design methodologies and software fault tolerance. , I t

It is obvious that a distributed program must be vertices. If there is a negative cycle a vertex will have a

exactly that, distributed. Since the quality, speed and distance of _o . The second phase is used to inform the

efficiency all stem from the distributed environment which vertices that they are at a distance of --. In phase I the path
lengths are propagated using a length message and

allows various parts of a concurrent program to execute at legths repr g using a le nt message and
their own pace. It is possible to implement distributed successors reply using an acknowledgement message.Where 

algorithms using a host or controller process to restrict there is no ambiguity the terms vertex and node will be used

communication . But this reduces concurrency and has a interchangably.

detremental effect on the speed, efficiency and ultimately the Process P1 at Node vI initiates Phase I by using

quality of the program. A centralized model using a single length messages to inform its successors of its distance from

controlling process is infeasible, not only for the reasons them. The successors upon receiving this value add the
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distances to their respective successors (to the received value) of the computation. The first layer consists of the Primary

and pass on the new value. version and an Alternate for each node of the graph. There is

This iterates until all successors receive their one Tester for each version of each phase which performs

respective length messages. Upon the receipt of a length error detection and controls the computation, sending the

message each process updates its local value for the shortest initialization values for each task and receiving the results.

path received thus far from a predecessor and propagates the The computation is initiated at node1, with each node in the

message. An acknowledgement sent in response to a length system executing its primary version first. At the conclusion

message is used to terminate phase I. of computation which corresponds to the end of phase I.

Phase II, again initiated at node v1, employs two each of the nodes send its final result (obtained by the

types of messages. Namely the over- and over? messages. execution of the primary version) to the Tester. The Tester

An over- message is sent if it is determined that a negative verifies that the results are in compliance with the

cycle exists, i.e. shortest path distance is -*. The receipt of specifications and if no errors are found, the second phase of

an over- message requires a successor to set distance to -- , the computation is started. On the other hand, if the results

unless it already has distance equal to --o. The over- message are found to be erroneous, rollback occurs and recovery is

is then propagated. The second message type, an over?, is initiated. These correspond to discarding the current values

sent if it has not been determined whether distance is -eo. In and invoking the alternate version. When the Alternate at each

the event that there are no outstanding acknowledgements the node completes computation, it sends the final values to the

successor propagates the over?. But, if some length Tester for validation. Once again compliance with the

messages remain to be acknowledged, an over- is sent. specifications is checked and if no errors are detected, the

The algorithm assumes each process has a second phase is initiated. Otherwise the computation is

queue-like input buffer, to which messages from its aborted, unless more alternate versions are available.

neighbors are appended. Since Ada does not support such a The second phase corresponding to layer 2

capability, one implementation buffers outgoing messages at consists of two versions, a Primary and an Alternate.

the source of the communication. The other uses variants of Computation is initiated at node i, with each node executing

Ada constructs to provide nondeterminism on output. its primary version for phase II. The sequence of execution

Iand testing is similar to that for phase I. A pictorial
representation of the overall structure is shown in figure 2.

BEGIN Alril

Phase Ie
26Layer I Pblia e I

I' r4. 

E;Z:

6 Phu.e11 *00

Layer 2

Fig 1. A weighted, directed graph with negative cycle Lyr

[CHAN82].

END4
Ill. IMPLEMENTATION Fig 2. Overall structure of implementation (Layer and Tester)

The fault tolerant version of the DSPA program is Each phase / layer consists of a procedure with

implemented in two layers corresponding to phases I and II
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nested tasks to perform the actual computation. An outline of figure C.

the overall structure of procedure DSPA is as follows: (2) Layer2Primary :: primary version for phase H / layer 2

PROCEDURE DSPA IS (a) Task L2PI :: computation task for node 1. See

appendix figure D.

PROCEDURE LayerlPrimary IS (b) Task L2P(i) :: computation tasks for nodes 2..N

BEGIN See appendix figure E.
-- layer I primary module (c) Task Tester:: Tester for phase II. See appendix

END; figure F.

A task LIP(i) corresponding to node vi implements phase I
PROCEDURE Layer2Primary IS of the algorithm and computes the minimum distance. The

BEGIN
-- layer 2 primary module shortest path computation is initiated by task LI P] at node v1

END; which sends length messages to its immediate successors and

then loops, only accepting messages, until the number of

PROCEDURE LayerlSecond IS outstanding acknowledgements becomes zero or a length

BEGIN message of less than 0 is received. At which time* it sends a

-- layer I alternate module stop message to all its successors. The tasks LIP(i) for all

END; other nodes accept and send messages until they receive the

stop message. Each task upon receiving the stop message

PROCEDURE Layer2Second IS propagates it until all nodes receive such a message from each

BEGIN of its predecessors. Then all tasks send a copy of their final

-- layer 2 alternate module values for d, pred, num (path, predecessor and outstanding

acknowledgements, respectively) to the Tester and complete
END;

execution.

BEGIN The Tester checks compliance with the

specifications it is provided. If no errors are found, Phase 11

END DSPA; is initiated. This involves invoking procedure

The outline of the code for procedure DSPA is Layer2Primary, with task L2PI initiating the computation

shown in figure L of the appendix. An overview of the upon receiving the initialization values from the Tester.

primary and alternate versions is provided in the following All primary tasks for phase I (LIP(i)) use three

sections. types of messages for communicating amongst themselves.

The first, a length message, is a triplet (s,Pi,ack) where s is

3.1 Primary Version the path length, Pi the source address and ack the

acknowledgement for previous length messages. The second

The primary version is implemented in two is an entry call to entry point STOP, which is used to inform

phases similar to the algorithm in [CHAN82]. Each phase the nodes that phase I has ended. The third is an

consists of a procedure with nested tasks for each node of the acknowledgement message (ack) used only to send

graph. These are : acknowledgements to the task for node 1 (LIP1).

(1) LayerlPrimary :: primary version for phase I / layer I. All tasks upon receiving a length message check

(a) Task LIPI :: computation task for nodel. See whether the path length (s) is shorter than the current shortest

appendix figure A. path. If so, the tasks compute the values for propagating the

(b) Task LIP(i) :: computation task for nodes 2..N message and then buffer them in the Table. The buffering of

See appendix figure B. the shortest path continues until no more tasks are waiting for

(c) Task Tester:: Tester for phase I. See appendix a rendezvous. At which time the new shortest path is
propagated using length messages. If an even shorter path is
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subsequently received, it is written over the previous shortest (d) Task Tester:: Tester for phase 1.

path. The use of buffers ensures that only the most minimum (2) Layer2Second :: alternate version for Phase II / Layer 2.

of the length messages (of that particular round of messages) (a) Task L2S I :: alternate for layer 2 node 1. See
will be propagated and requires a buffer size of N - I in the appendix, figure J.

worst case. Though a buffer of size N is convenient to (b) Task L2S(i):: alternates for layer 2 nodes 2..N

declare and use. See appendix, figure K.

During a rendezvous, tasks take the opportunity (c) Task CP(i) :: communication / buffer process.
to return any acknowledgements which may still be owed to (d) Task Tester:: Tester for phase 11.
the calling task. This is achieved by the use of IN OUT Initialization is controlled by the Tester. The task

parameters to exchange data. Thus while accepting a length L1S(i) corresponding to node vi implements phase I of the
message tasks also return acknowledgements which were algorithm and computes the minimum distance. The tasks

buffered along with the previous length messages. L2S(i) implement the second phase and ensure that all over
All Phase I1 tasks, L2P(i), use one type of messages are propagated.

message with two input parameters consisting of the message Upon receiving the initialization values from the

type and the task id for communicating among themselves. A Tester, LIS I initiates the graph computation sending length
message value of 3 signifies an over-, whereas an over? is messages destined for its successors to its CP1. The

denoted by a message value of 4. Each task (after receiving

the initialization values from the Tester) waits for the initial Communication Process (CP1 ) in turn redirects them to the

message from a predecessor at which point it enters a loop destination tasks. If the path received is shorter than the
which either accepts an over- / over? message, or propagates previous one, it is immediately propagated via CP. Otherwise

them. Computation for phase II tasks concludes when over an acknowledgement is sent to the calling task. The
messages from all successors have been received and computation proceeds similarly to that described for the

propagated. At the end of phase I1 the values for d and over, primary version with the exception that no buffering of

corresponding to the shortest path and over message, are sent messages occurs and all inter-task communication is via the

to the Tester for validation. In the event of an error, the buffer processes (CP). A pictorial representation of the

Alternate for phase II is invoked under the assumption that relationship between processes and their CPs is given in

phase I is correct. This can be safely assumed because the figure 3.

Tester "passed" the phase I results.

3.2 Alternate Version

The alternate version, invoked in the event of an

error by the primary, is implemented as two procedures

corresponding to each Phase / Layer. Each procedure

consists of three concurrently executing tasks for each vertex

vi of the graph and a Tester. These are: Figure 3. Relationship pathways for processes.

(1) Layerl Second :: alternate version for Phase I / Layer 1.

(a) Task LISI :: alternate for layer I node I. See A message from any computation task to its
appendix, figure t1. corresponding CP is a 3-tuple (to.nrtypew) which provide -

(b) Task LIS(i) :: alternate for layer I nodes 2..N the destination address, message type and path length. The

See appendix. figure 1. CP for phase I tasks can differentiate three types of
(c) Task CP(i) communication / buffer process. computation messages depending on the parameter, mtype:

See appendix, figure G. I ': lenth messaie
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2: acknowledgement message variable status). T'hus, the Alternate for that particular phase
5 :stop message. can be invoked. If all specifications are met the next phase is

Whereas CP for phase 11 tasks can differentiate two types of initiated or, if it is the last phase, computation successfully
messages, based on the parameter mtype: completes.

3 over- message The initialization values for Phase I tasks are:
4: over? message (1) A boolean list of successors.

When a mtype I is received the CP redirects it to the (2) A list of lengths to the successors.
destination as a length message 2-tuple (s,Pi) which are the (3) The id number of each task (except node 1)
path length and source address, respectively. Upon receiving (4) The number of predecessors.
a mtype 2, an acknowledgement message is sent to the The initialization values for Phase II tasks are:
destination. The message types 3 and 4 are used during phase (1) The shortest path.
II and correspond to an over- and over?. The final mtype i.e. (2) The number of outstanding

5 is sent as a stop message to indicate the termination of acknowledgements.
Phase I computation. It must be noted that all tasks (3) A list of successors.
communicate directly with the Tester, to receive the (4) A list of predecessors.
initialization values and send the final results, thus ensuring (5) The id number of each task (except node 1)
reliability. After ensuring that all the computation tasks have

The layer 2 tasks use one type of message to received their initialization values, the Tester waits at an
communicate with each other, that is : Accept statement for the final values for d, pred, num (path

over :: consists of two parameters, mtype and id. A length, predecessor and acknowledgements) from all the
value of 3 for mtype denotes an over- and phase I computation tasks. It then performs the verification
4 corresponds to an over?.The id corresponds test and sets the variable status accordingly. A status of OK

to the task id. signifies that all tasks passed the test, whereas if status =GE
Each phase 11 / layer 2 task receives its initialization message (Global Error) the Alternate will have to be invoked.
from the Tester and is then ready to compute, waiting for task A Tester for phase 11 computations uses a similar
L2S1I (phase 11 node 1) to initiate the computation. Each task strategy to detect errors for phase II tasks. First initializing
propagates messages until all its successors are notified and the tasks and subsequently waiting to receive the values, for

then exits the processing loop. Subsequently sending its final the path length and the over message.
values for d and the over message type to the Tester. The inputs P, to the Tester at end of phase I:

In this particular case there are two versions for For all node :
each phase, but we are not restricted to this. For example, areiv(dA U APd Ad)

design similar to the alternate (Second,) but with buffering of

messages at the destination can be used as a third version. The inputs PI, to the Tester at end of phase 11:
Another alternative is the use of different programmers.

For all node

3.3 Tester receive (di A oveni A idi)

At the end of phase 1, a Tester checks whether
The Tester for each version is implemented as an three assertions are met. These are: if the computation --

Ada task and controls the computation by sending the successfully concluded. Secondly, if any negative values for
initialization values to each task. It then receives the results the shortest path are present. If so, either the predecessors

from the computation tasks. When all tasks have responded shortest path must be negative or the path length must be
by sending their final results, the Tester initiates its testing negative. Finally, whether the shortest path (d) of a nodei is
phase which ensures that all specifications are met. If an error equal to the shortest path of its predecessor plus the length
is detected the Tester informs the procedure DSPA (using the
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from the predecessor to node i .  predetermined that a task will have to wait for its partner in a

(1) For node1  num = 0 s = 0. communication. It may execute alternate statements and at a

later time, retry. The timed out entry call allows a sequence of
(2) For node i : di < 0 --> dpred < 0 v lpred,i < 0 statements to be executed alternatively if an entry call is not

(3) For nodei :d i dpred + Wpredi. accepted within the specified duration. Thus

At the end of phase II, the Tester checks whether SELECT

the path length and over message correspond. That is: Pl.message("entry call");

(1) For nodei : di < 0 --> over- message. OR
DELAY X;

If the conditions are not met then an error is assumed and -- statements

error recovery is initiated. END SELECT;

will execute statements following the DELAY, if P1 does notIV. ANALYSIS accept the call within X seconds. Consequently, tasks do not
need to wait indefinitely for each other. It is worthy to note
that the message passing is still synchronous i.e. the called

problems alluded to in section II will be addressed within the task must respond. There is no message buffering capability.
context of the construct or methodology used to overcome If a rendezvous is unsuccessful it can be attempted later. This
them. Thus certain issues may be referred to several times, allows two-way communication between tasks without
each will provide the technique, construct or methodology resorting to the use of an intermediary process. Thus each
used to overcome the problem. The issue of reliability is phase requires only N + 1 (N tasks + Tester) tasks for a
treated separately. graph of N nodes and a single message suffices for each

4.1 Implementation Issues communication attempt. The problem of deadlocking due to a

circular wait situation is no longer an issue. The overhead of

The bidirectional inter-nodal communication such a scheme is the delay incurred in waiting for a task,

inevitably leads to deadlock in distributed solutions, whereas especially if the rendezvous is unsuccessful. Aside from the

centralized implementations are too restrictive and intolerant benefit of freedom from deadlock, a programmer can specify

to faults. Reliance was placed on two techniques to overcome the time interval to wait for another task.

the problem of deadlock, these were: the use of an In Ada, communication is through an entry call

intermediary process (CP) in the alternate version and the use made to the called task, which has a corresponding ACCEPT

of Ada timed out entry call to provide dynamic output in the statement. The use of parameters in an entry call allows

primary. The intermediate / buffer process technique avoids information to be exchanged by reference or value. The

deadlock by providing indirection. But poses two major benefit of such a two-way scheme is the ability to exchange

drawbacks, in that, each phase of the implementation requires length messages and acknowledgements in the same

2N + 1 (2N tasks + Tester) concurrently executing processes communication. Thus circumventing the need for a task to

for a graph of N nodes. Secondly, the number of messages explicitly send acknowledgements to its predecessors. This

also doubles. One message is required from task Ti to the was effectively used in the primary version of the
implementation, which buffers acknowledgements until the

corresponding CPi and a second from CPi to the task T particular task calls with another length message. At which

Though these drawbacks are associated with the use of time the acknowledgements are exchanged with the length
intermediary processes, they stem from the constraints placed message. The obvious drawback of this scheme is that

by the language, which would not allow another deadlock acknowledgements are always delayed until the predecessor
free implementation with such a high degree of parallelism, attempts to communicate. Thus predecessor tasks are always

Dynamic Sending is the capability for a task to a little "behind" in the information they possess. This is

execute an alternate sequence of statements if the called task especially true if the task owed the acknowledgements does
does not respond to a rendezvous. That is, it is not
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not communicate again and when computation concludes, the

number of outstanding acknowledgements may have an effect Distributed programs as indicated above are

on the eventual outcome. difficult to implement and in contrast to sequential programs

The number of messages propagated in the require the satisfaction of both the safety and liveness

Alternate implementation is very large. In the worst case N properties. Therefore requiring care in the implementation.

(N - 1 messages + 1 EOT) messages are sent from a task to But this still does not guarantee a correct solution, thus fault

its CP and the CP propagates N - 1 of those, thus tolerant techniques are required to provide some measure of

approximately 2N 2 messages are used for N nodes. The reliability. This reliability can be achieved through careful

number of messages is large not only for the reason stated structuring and design of the program and the use of error

above, but also because length messages are propagated even detection and recovery techniques. In the implementation of

though a following message may provide a shorter path. In the Distributed Shortest Path Algorithm, the concept of

the Primary version the use of the COUNT Attribute Communication-Closed Layers is used to provide Safe

indirectly provides the capability to reduce the number of Layers. This was then extended by the use of a

messages. The syntax is, P'COUNT, which provides the Consensus-Global Tester to provide error detection and

number of tasks waiting at entry point P and allows the recovery capabilities.

implementation of priorities at a very crude level. Thus tasks The use of fault prevention techniques, such as

can prioritize messages, with in-coming messages having testing, reduce errors but residual design inadequacies may

first preference. Outgoing messages are buffered until no still be present. One method to design programs and provide

tasks are waiting to rendezvous. That is, P'COUNT is equal fault tolerance is the technique of Safe Layering. As

to 0. This ensures that the shortest path will be propagated described previously, the objective is to partition concurrent

after a round of messages and the others will be discarded. In programs into concurrently executing segments and to allow

the primary version use of the COUNT Attribute coupled communication only within the layers thus created. The

with the modification to buffer messages is instrumental in Distributed Shortest Path Algorithm by its nature provided an

reducing the number of length messages which are extremely good opportunity to partition it into two layers,'

propagated. Considering, that in the worst case, the primary corresponding to the two phases of the computation. The

propagates N2 messages ( N nodes each sending N- 1 logical separation is extended to the physical program, with

messages) any reduction is a help. the provision of two versions for each phase. Error detection

The use of the Communication / Buffer Process is provided through the use of Testers.

(CP) scheme provides an arbitrarily greater degree of The major strength of the DSPA program is its

concurrency when compared to the primary version. Since ability to continue processing even in the event of faults. The

tasks, using timed out entry calls, need to delay for a reliability inherent in fault tolerant software is based on useful

message to get through they are unable to do any thing else. redundancy. If the Primary fails each successive alternate

Whereas the CP (Alternate) version sends its messages and version provides continued service but at a degraded level of

can then continue processing. It essentially frees up the task efficiency or output. The handling of the faults, rollback and

to do something else. In the Primary, the task must itself wait recovery, are transparent to the user.

and synchronize with the called task. Fault tolerant applications are inherently more

The Attribute CALLABLE which returns true if a inefficient than non-fault tolerant ones. In the case of the

task is not aborted, terminated or in an abnormal state, was DSPA program, the overhead comes from the extra number

used to aid in message sending. It essentially provided the of messages required to communicate with a Tester. The

capability to check a tasks ability to accept messages. Though initialization for each phase requires N messages and N

care must be taken in its use, as a task may infact terminate replies are sent to the Tester at the conclusion. If an error is

between the time of the check and the actual message. detected the Alternate needs to be initialized, thus N more

messages are sent and N received. Consequently, in the

4.2 Reliability Issues worst case 8N messages would be needed and in the best
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case 4N. This does not take into account the overhead of N trying to maintain a high level of concurrent activity.

messages (minimal) for the stop messages during phase I. In the case of distributed algorithms where the

But the advantages of fault tolerance are far greater than the problem of deadlock looms large we can either depend on the

drawbacks. For example, fault tolerant software provides programmer and the languages flexibility, or use indirection

continued service, even in the event of faults. In the DSPA (as shown by the use of CP in the Alternate implementation).

program continued service is provided through the use of the The drawbacks of both are evident. Two methods which

Alternate, which will be invoked in the event that the Primary would serve better are the extension of the language to

fails to meet its specifications. provide the necessary features, or deadlock detection

An advantage of the Safe Layering technique is followed by arbitration. Since the latter is considerably harder

that errors caught, lead to a rollback of only that particular to achieve, a language must provide either the capability to

layer. Thus valuable time is not lost reinitiating the entire buffer messages implicitly or the ability to send messages

computation. A second advantage is that errors are caught as nondeterministically. In the event of an inability to implement

early as possible in the computation. That is, a fine a deadlock free solution within the constraints of a language,

partitioning allows errors to be detected at the earliest. In the the use of the Indirection methodology is suggested. That is,

DSPA case, an error detected in phase 2 need only cause a the use of CP type tasks to ensure freedom from deadlock.

rollback to the begining of layer 2. Secondly, if a fault occurs This technique will be invaluable in providing a quick and

in phase I it is detected prior to the initiation of phase II. easy solution, while a more elegant one is thought out.

Without Safe Layering the error would be detected at the Distributed programs by virtue of their complexity

conclusion of computation, when the test would be are extremely difficult to verify formally. This is due to the

performed. It should be noted that the analysis concerning unrestricted communication between interacting processes

message overheads takes the propagation of a length message with unpredictable orders of execution. Thus fault prevention

into account, not the overall computation. methods are insufficient and reliance must be placed on
software fault tolerance, under the assumption that residual

V. CONCLUSION design inadequacies are present and may mainfest themselves
at some later time.

It is apparent that distributed algorithms are The use of fault tolerant techniques and the

difficult to implement and are affected by the constraints provision of fault tolerance in software provides reliability

inherent in the constructs for concurrency provided by Ada. but at an increased cost, in terms of the messages. But the

Situations leading to deadlock are pervasive as overhead is minimal compared to the provision of continued

communication is unrestricted. Whereas, attempts to solve service, reliability and the ability to design safe programs,

the deadlock problem have tremendous overheads in terms of detect errors and correct them.

the number of messages required and the number of

processes running concurrently. In addition to the deadlock

problem, issues such as memory usage, amount of

concurrency and the number of processes executing

simultaneously have to be addressed. The solutions to these

problems are not easy to find. This puts the burden on the

programmer who, as the complexity of the algorithm

increases, is more likely to make errors in converting the

algorithm to code. His choices will ultimately affect the

overall outcome. Incorrect choices may have adverse effects,
not only decreasing performance but ultimately leading to

problems. Such problems are hard to detect and harder to

correct within the confines of the language, especially when
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APPENDIX

REFERENCES
ACCEPT Start ( initial message from Tester)
Send length messages to successors

ANDES1 Anderson, T. and P.A. Lee, "Fault-Tolerance, LOOP
Principles and Practice," Prentice-Hall Int., SELECT
Englewood Cliffs NJ, 1981. ACCEPT len-msg (length message)

process length message
CHAN82 Chandy, K.M. and J. Misra, "Distributed if path received is < 0 then done = true

Computations on Graphs: Shortest Path OR
Algorithms," Comm. of ACM,Nov. 1982. ACCEPT get-ack (acknowledgement message)
vol.25,No.l 1, pp. 833-837. process ack message

if number of acks = 0 then done = true
ELRA83 Elrad, T. and N. Francez, "Decomposition of OR

Distributed Programs into Communication- ACCEPT stop (stop message)
Closed Layers," The Science of Computer decrement count of predecessors
Programming, No. 2, 1983, pp. 155-173. OR

WHEN done =>
ELRA84 Elrad, T.,"A Practical Software Development for send stop messages to successors

Dynamic Testing of Distributed Programs," if count of predecessors = 0 and all stops sent
IEEE Proceedings of the International Conf. then EXIT
on Parallel Processing, Bellaire, MI, Aug. 1984, END SELECT
pp. 388-392. END LOOP

send final values to Tester
GERT86 Gerth, R. and L. Shrira," Proving Noninteraction

: An Optimize Approach," submitted to ICACP, Figure A. Outline of Task Primary I (node 1, phase 1)
19 86 . - -------------------------------------------------------------

HOAR78 Hoare, C. A. R.,"Communicating Sequential ACCEPT Start (initial message from Tester)
Processes,"CACM, August 1978, Vol. 21, No. initialize values
8, pp.666-677. LOOP

SELECT
LEE87 Lee, P. and C. Malik, "Distributed Shortest Path ACCEPT len-msg (length message)

Algorithm: Constraints and Efficiency Issues in process length message
CSP and Ada," To appear ACM South Central buffer in Table
Regional Conf, Lafayette, La. Nov 19-2, 1987. OR

WHEN lenmsg'COUNT = 0 =>
LEE88 Lee, Pen-Nan,"Violation Detection and Recovery send messages to successors

of Distributed Programs' Safety Properties," To OR
appear 7th Annual IEEE Phoenix Conf. on ACCEPT stop message
Computers and Communications, March 16-18, decrement count of predecessors; done = true
1988. OR

WHEN done =>
MOIT83 Moitra, A.,"Synthesis of Communicating send stop messages to successors

Processes," Proceedings of the Second Annual if count of predecessors = 0 and all stops sent
ACM Symp. on Principles of Dist. Comp., EXIT
Montreal, Canada, Aug. 1983, pp. 123-130. END SELECT

END LOOP
RAND75 Randell, Brian , "System Structure for Software send final values to Tester

Fault Tolerance," IEEE Trans. on Software
Engin., June 1975, Vol. SE-I, No. 2, Figure B. Outline of Task Primary (node i=2..N, phase I)
p p .2 2 0 -2 3 2 .. ...................................................................- -

USDD81 U.S. Department of Defense, "Programming initialize values
Language Ada: Reference Manual," Vol. 106, send initialization values to all phase I (primary) tasks
Lecture Notes in Computer Science, ACCEPT message0 (message from Task Primary 1)
Springer-Verlag, New York, 1981. save reply

ACCEPT message I (message from Task Primary(i) i=2..N)
If assertion I then status = OK else status = GE

Figure C. Outline of Task GlobalTester (phase 1)

ACCEPT start (initial message from Tester)
initialize values

if shortest path < 0 then msg = over- else msg = over?
LOOP

SELECT
send over messages if change in message type

OR
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WHEN over'COUNT > 0 => send CP its id number
ACCEPT over (over- or over? message) send length messages to CP which redirects to successors

if message type changes from previous send end of transmission to CP
change = true LOOP

OR SELECT
if ro change and all over messages received ACCEPT len msg (length message)
EXIT process length message

END SELECT if path received is < r) then done = true
END LOOP if ack to sent then send to CP
send final values to Tester OR

Figure D. Outline of Task Primaryll I (node 1, phase II) process ack message

--------------------------------------------------------------- if num ber of acks = 0 then done = true
OR

ACCEPT start (initial message from Tester) ACCEPT stop (stop message)
initialize values decrement count of predecessors

ACCEPT over (initial over message) OR
initialize message type WHEN done =>

LOOP send stop messages to successors
SELECT if count of predecessors = 0

WHEN over'COUNT > 0 => then EXIT
ACCEPT over (over- or over? message) END SELECT

if message type changes from previous END LOOP
change = true send final values to Tester

OR
send over messages if change in message type Figure H. Outline of Task Second 1 (node 1, phase 1)

O R ...............................................................
if no change and all over messages received

EXIT ACCEPT Start (initial message from Tester)
END SELECT initialize values

END LOOP send CP its id number
send final values to Tester LOOP

SELECT
Figure E. Outline of Task Primaryll (node i=2..N. phase II) ACCEPT len msg (lcngth message)
--.-.--------.I.-.--------------------------------------------------------process lenath m essa ,e

initialize values send length and ack messages to all
send initialization values to all phase II tasks send end of transmission to CP
ACCEPT message2 (message from all Tasks Primaryll) OR
If assertion2 then status = OK else status = GE ACCEPT ackmsg (acknowledgement message)

decrement outstanding acks
Figure F. Outline of Task GlobalTester (phase II) if outstanding acks = 0 send ack to predecessor
.. ..................................................... .O R

ACCEPT stop message
initialize decrement count of predecessors; done = true
ACCEPT idself (id of self from corresponding task i) OR
LOOP WHEN done =>
SELECT send stop messages for successors to CP

ACCEPT msg (from Task i) send end of transmission to CP
save in Table if count of predecessors = 0

LOOP EXIT
EXIT WHEN end of transmission END SELECT
ACCEPT msg (from Task i) END LOOP

save in Table send final values to Tester
END LOOP

OR Figure 1. Outline of Task Second (node i=2..N, phase I)
W HEN TRUE => ....................................................................

WHILE more messages buffered
send messages

compact Table if some messages remain ACCEPT start (initial message from Tester)
OR initialize values

ACCEPT die (terminate message from Task i) send CP its id number
EXIT if shortest path < 0 then msg = over- else msg = over?

END SELECT LOOP
END LOOP SELECT

send over messages if change in message type
Figure G. Outline of Task CP(i) (node i=l..N .phase I) OR
..................................................................-W H EN over'CO U NT > 0 =>

ACCEPT over (over- or over? message)
ACCEPT start (initial message from Tester) if message type changes from previous

change = true
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OR
if no change and all over messages received

EXIT
END SELECT

END LOOP
send final values to Tester

Figure J. Outline of Task SecondIII (node 1, phase II)
--.-.---------------------------------------------------------------

ACCEPT start (initial message from Tester)
initialize values

send CP its id number
if shortest path < 0 then msg = over- else msg = over?
LOOP

SELECT
WHEN over'COUNT > 0 =>

ACCEPT over (over- or over? message)
if message type changes from previous

change = true
OR

send over messages if change in message type
send end of transmission to CP

OR
if no change and all over messages received

EXIT
END SELECT

END LOOP
send final values to Tester

Figure K. Outline of Task Secondll (node i=2..N, phase I)
--.-.-------------------------------------------------------------------

status = NR (No Reply)
Layerl Primary
IF status = GE THEN

status = NR
Layerl Second

END IF
IF status = OK THEN

status = NR
Layer2Primary
IF status = GE THEN

status = NR
Layer2Second

END IF
END IF
IF status = GE THEN

Global Error-and-abort
END IF .

Figure L. Outline of Procedure DSPA
-t National.Con.e.enc..onAda.Technology.1.88.1
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AUTOMATED INCORPORATION OF
UPSET DETECTION MECHANISMS IN DISTRIBUTED ADA SYSTEMS

Elisa K. Heironimus
Joseph G. Tront

The Bradley Department of Electrical Engineering
Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061

ABSTRACT

This paper presents an automated approach to developing This technique is particularly targeted for microprocessor-
software that performs single event upset (SEU) detection in based satellite control systems that have weight and power
distributed Ada systems. SEUs may cause data corruption, limitations imposed upon them. For this reason, it is impor-
leading to a change in program flow or causing a program to tant that any upset detection technique not incur extensive,
execute an infinite loop. Two techniques that detect the if any, hardware overhead.
presence of these upsets are described. The implementation
of these techniques is discussed in relation to the structure
of Ada software systems. The block structure of Ada lends 2.0 INCORPORATION OF UPSET DETECTION TECHNIQUES
itself to the implementation of the detection techniques.
A program, Software Modifier for Upset Detection (SMUD), During execution of real-time software, a processor contin-has been written to automatically modify Ada application uously executes a defined software block. A transient fault

software and insert these upset detection mechanisms. The in a control register of a processor may cause the program
mechanisms have been incorporated into a system model flow to deviate from the normal path and resume execution
that employs the MIL-STD-1553B communications protocol, in another block of software (Figure 1).
This system model is used as a testbed for determining lt-i To detect this deviation, block checking constructs are in-
effectiveness of the detection mechanisms. Ada is used for serted into the application software. This requires the appli-
creating the simulation environment to exercise and verify cation sottware to be defined in terms of blocks, with a block
the protocol. The program, SMUD, is described along with a constituting a logically bound set of instructions around
discussion on the simulation environment and the 1553B pie- which the block checking modifications are to be inserted.
tocol. The detection techniques have been tested and veit- The constructs consist of TAG initializations, TAG checking,
tied at the high level using computer simulations. The testing and TAG resetting. The placement ot the block checking
methodology and performance measures are presented. constructs is shown in Figure 2.

To insure detection of deviated program flow, a hardware
watchdog timer is also set upon correct entry to a block. A
watchdog timer that is not reset before its terminal count is

1.0 INTRODUCTION reached will signal an error. The watchdog timer will detect
infinite loops and reduce error detection latency. Figure 3

This paper presents an automated approach to developing illustrates the flow diagrams for both the unmodified and
software that performs single event upset (SEU) detection in modified blocks.
distributed Ada systems. Upsets considered are those that
fall in the transient upset category. i.e.. faults that cause no 2.1 Incorporation of the Block Checking Structure
permanent damage to the circuit, but rather cause a pertur-
bation of data or control information. Transient upsets may This approach to inserting upset detection mechanisms in
cause information corruption, leading to a change in program pre-existing Ada software requires block boundaries to be
flow or causing a program to execute an inlinite loop. Two defined. Definition of these boundaries is not too dilficult
techniques that detect these undesirable events are do- since Ada is a block structured language. The entities that
scribed in this paper. The implementation of these tech- are defined to be blocks are procedures, functions, and
niques is discussed in relation to the structure of Ada tasks. Each block is assigned a unique identifying value.
software systems. Upon correct entry into a block, the ID of the block is as-

signed to a TAG variable. The TAG retains this ID value untilThe focus of this research is tihe development of a program the end of the block is reached. The TAG is then checked for
that processes application software written in Arfa, inserting the block ID value and, if correct, is reset to the value zero. -F
sef checking onstructs into the overall software package. If the TAG does not contain the correct value, an error is
The self checking constructs are designed to detect single signaled.
nvent upsets that cause deviationis in program flow.

The insertion of the block checking constructs into software
is divided into two parts. Tire first part is the initialization of
the TAG; the second part is the resetting of the TAG. Addi-

This work has been partially sponsored by ltne Naval Re- tional checks are inserted if the body of the block is lengthy
search Laboratory under contract FE238311. and/or loop structures are present.
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The internal structure of a block may contain code that is ei- value of a loop control variable, a TAG check should always
ther executed once or many times, as in a loop structure. be incorporated into the loop structure when possible.
For long code blocks that do not contain loop structures, ad-
ditional block checks are inserted after a certain number of 2.2 Watchdog Tinier Mechanism
statements to minimize latency in detecting faults following
an incorrect block entry. For example, consider a program Although the insertion of block checking constructs into ap-
unit in which the TAG value is checked only at the entry and plication software is an effective means of detecting devi-
exit points. If an SEU causes a program flow deviation into ations from normal program flow, some deviations will go
this block past the TAG initialization at the start, upset de- undetected by this method. These deviations cause program
tection will not occur until the TAG check at the end of the flow to resume in the same block while skipping statements.
block. Depending on the block length and point of entry, a modified
long latency period may occur. The insertion of a TAG check unmodifteo block

at some point within that biock would minimize the detection block s

latency period.

Code blocks that contain loop structures present another C)
possibility of a long detection latency period. In Ada, loop ta ta - raeon

structures occur in three forms: basic loops, while loops, and yes
for loops. The basic loop allows a sequence of statements set tag

to be executed until a certain condition is met. The state- body & timer
ments of a while loop are executed while a certain condition

remains TRUE. and a for loop is executed once for each value end

Rbody

P1TIO.E INITIRLLY tag"4 ra
STRIKIN~G F c -~EXECUTING IN I BLOCK I id nTHIs BOO<,.

PC T LOC B yes t
EXECUTION Qt BLOCK2

SE U I -~S TO RESUMEta
IN THIS BLOCK

Fig. 1. Effect of Single Event Upset Fig. 3. Block Modification

in the discrete range of the control variable. Both of the latter If program flow resumes within a loop structure, certain loop
loop structures may contain an exit statement to allow a variables may fail to be initialized, possibly resulting in an

premature exit. infinite loop. A hardware watchdog timer is a simple and in-
expensive means of detecting these infinite loops and re-

Block checks may be included within the loop structure to ducing upset detection latency. The timers are loaded with

minimize upset detection latency. If an SEU causes exe- values at pre-established checkpoints in the software. The

cution to resume within a loop structure not containing any timer counts down and is reset before the next checkpoint is
reached. If the timer is not reset before it expires, the cor-

TAG checks, a long detection latency period may follow. de- responding process has probably failed in some way and the
pending upon the length of the loop structure and the number timer signals the processor of the error.
of iterations to be performed. Inserting a block check within
the loop structure will prevent the statements from being Implementing a block checking structure and watchdog timer
executed more than once before the upset deviation is de- mechanism requires that a programmer explicitly incorporate
tected. The additional memory and execution time overhead tile upset detection mechanisms into the software at the time

will be of greater proportion for loops that contain a few lines of development. The next section discusses the program

than for loops that contain a much greater number of state- that was developed to automatically insert the block checking

ments. Since there is no way of always determining the constructs and watchdog timer mechanisms into Ada appli-
cation software.

procedure p3.0 SOFTWARE MODIFIER FOR UPSET DETECTION (SMUPI

begin begin An automated approach to incorporate upset detection
. 1-4 1NTVIm.Zmtm mechanisms into software would free the programmer from

rXECUTFOLE Fthe task of having to do this manually. In addition, the auto-
orEEs L mated approach requires that a programmer have only a su-

COD] perficial knowledge of self checking techniques. Automation
0 also provides for uniformity of code. While incorporating a

M oM self checking structure manually allows each software sys-
end and tem to be tailored individually, large software systems would

benefit from the development time savings produced by an
automated modifying procedure.

A program to pre-process Ada application software has been
Fig. 2. Placement of Block Checking Conetructs developed to automatically insert block checking constructs
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and a watchdog timer mechanism into the software. struc- 2. Physical memory mapped address of watchdog timers
ture of the application software. The program, Software 3. The base in which the timer address is represented
Modifier for Upset Detectioii (SMUD). has been developed (i.e. binary, hexadecimal, etc.)
using Ada and is designed to modify Ada application soft-
ware. Directives are available that instruct SMUD as to the Procedure PASSONE is called to gather information about
placement of these detection mechanisms. These directives each program unit. Each program unit is assigned a record
allow a programmer to tailor a program unit to omit or insert structure that contains the following information:
additional statements into the code. SMUD can be modified
to handle other high level languages that are block struc- type check is (place, show,omit);
tured. The modifications mainly involve routines affected by
keywords defined by the particular language, type programunit Is

record

3.1 Modification Procedure kind : string (1..9); -program unit type
name : string (1..max length); -name of unit
len : integer; -string length of nameThe procedure of inserting block checking constructs into id : Integer := 0; -block ID

existing software relies on the use of certain keywords de- num lines : integer := 0: -no. executable statements
fined in Ada. Since the executable body of each program unit watchdog : integer := 0; -watchdog timer ID
is bounded by the keywords begin and end, a block boundary block : check; --type indicates option
is easily recognized. When either of these keywords is en- WDT : check; -type indicates option
countered, a TAG initialization construct (after keyword TAG name : string(l..4); -TAG variable name
begin) and TAG reset construct (before keyword end) is in- end record;
serted into the source file. The instruction for initialization After PASS ONE has processed each program unit and re-
of a watchdog timer is placed after the initialization of the
TAG. corded theinformation, PASS TWO is then called to reproc-

ess each program unit. Procedure PASSTWO implements
As shown in Figure 4, SMUD processes the application soft- the upset detection mechanisms according to the information
ware and inserts, the upset detection mechanisms, obtained in procedure PASS ONE. The information stored in

the record structure of each program unit is examined before
insertion of any block checking constructs or timer activation
instructions. PASSONE merely gathers information about
the program units whereas PASSTWO actually modifies
them.

The number of watchdog timers necessary for each node is
INPUT OUTPUT defined by the number of program units that may run con-

currently on a single processor. In addition to the main pro-
gram, there may be tasks defined within the node. Since

CODE CODE these tasks may run asynchronously, each task requires a
WITHOUT WITH watchdog tinier different from those used by other tasks. If

UPSET SMUE UPSET separate timers are not provided foi each task *he tinier be-
DETECT ION DETECTION ing accessed simultaneously by the tasks will be reset at
MECHRNISMS MECHRNISMS improper times. Each procedure and function contained

within the scope of a task unit or the main procedure ac-
cesses the same watchdog timer as its parent task unit. This
configuration does not present a problem of conflicting set-
tings of watchdog timers since each parent task unit may be

Fig. 4. Block Diagram of SMUD

To keep the original software Intact, the modified version is STFT

output to a different file, as shown below: GITHERS INFORRTION

filel.ada -- > SMUD --> UDM, ilel.ada R'S AW SUCH AS:

f TYPE: OF UPSET DETECTIONexecutable self checking code <-- compler -- , TYPE OF" PR UNITS

The modification procedure requires that the application FIRST MEC-RNISM TO IM'PLEMENT
software be partitioned into virtual nodes. A virtual node is
defined as a set of program units that execute on the same
processor. Assuming that the application software to be
modified has been partitioned into virtual nodes by the pro- SECOND
grammer, SMUD first prompts for the number of nodes con- PASS
tained within the entire system. SMUD processes each U

program unit contained within a node before processing an- USES INFORMRTION
;:%,1CDOBTRINED FROM FIRSTother node. The modification process consists of two passes PSS TO INSERT LPSET

(PASSONE and PASSTWO) through earh program unit. DETECTION MEmc)-ISMS *

This is illustrated in Figure 5. A brief description of the 4 "
modification process for a virtual node is described. Listed
below is the interactive information required from the pro- C .
grammer for each node:

1. Names of program units contained within the node Fig. S. Modification Process
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viewed as a process running sequentially executed program 4.1 The MIL-STD-1553B Communications Protocol
units.

The MIL-STD-1553B defines a three layered communication
Two additional files result from the processing of each node: protocol that includes the physical layer, the medium access
Data.Ada and Upset..Detection.Ada. These files are created control layer, and the logical link layer. The physical layer
after each program unit has been processed by PASSONE. and the medium access control layer, which are modeled as
The first file, Data.Ada, provides documentation of the mod-
ifications in the application software. The data includes the a portion of the simulation environment define the interface
block ID of each program unit and the directives that were between each subsystem and the 1553B bus. The logical link
encountered in the parsing of each unit. layer. which manages the protocol at a higher level, consists

of the software that has been implemented in Ada.
The second file, Upset Detectlon.Ada, is a package unit that
must be made accessible to the application software by us- Each subsystem shown in Figure 6 contains an application
ing the with clause. The declaration for the watchdog timers processor and an electronic module, called a BIU, that inter-
and the user defined exception is placed within this package. faces a serial data bus to the subsystem. Each BIU in the
The exception handler for the user-defined exception, system can take on one of two roles: Bus Controller (BC) or
INCORRECTTAG, is also contained within the package body Remote Terminal (RT). A third role for the BIU is described
UPSETDETECTION. It is by means of this exception handler in the original protocol definition as a Bus Monitor. This
that a recovery sequence may be initiated. For purposes of module is not simulated since active information transfers
testing the upset detection mechanisms in the simulation, the only occur between BCs and RTs while a Bus Monitor re-
handler displays an error message each time a deviation in ceives selected data to be used at a later time. A BC is a
program flow is detected. system component that is responsible for initiation of any in-

3.2 Directives formation transfer. An RT is incapable of initiating informa-
tion transfers and responds to command words sent out by

A directive is defined as an instruction to SMUD concerning the BC. Each RT responds to its own unique address as wellplacement of the two upset detection mechanisms. Therni as a common broadcast address.

pose of providing directives is to allow a programmer to dic- There are four types of information transfers that are used in
tate what modifications should occur in each program unit.
These directives are placed in the application software prior the communication protocol operation [12]:to executing SMUD. When any or these directives are en-
countered within defined block boundaries during procedure 1. Bus Controller to Remote Terminal (BC to RT)
PASSONE, the information is stored in the record file of the 2. Remote Terminal to Bus Controller (RT to BC)
program unit. In the absence of any directives, the program 3. Remote Terminal to Remote Terminal (RT to RT)
will insert block checks and initialize watchdog timers in the 4. Mode Command
unit according to the techniques outlined in the previous Mode commands are usx"d irn managing the information flow
sections. A list of the available directives and their functions of the communication system and detecting possible errors
is given below: having occurred in the form of data corruption. There are ,-
omit.blk omit insertion of block checking constructs in program three types of words that are translered during informationo b unit transactions: command words, status words, and data

words. The command word defines what type of information
omit-wdt omit insertion of watchdog timer instructions in program transfer is to occur. The status word is transmitted from each

unit RT during an information transfer unless an error occurred

show-blk instructs SMUD to indicate locations where block during the transfer or the command was sent in broadcast
checking constructs would appear. The locations are mode. The three data transfer types allow data words to be
shown by commented statements that are inserted into transferred between the BC and an RT or between any two
the application software. RTs.

show wdt instructs SMUD to indicate the default locations of plac-
ing the reset instruction of the watchdog timer.

blk instructs SMUD to insert a TAG check into the applica- SUBSYSTEMI SUBSYSTEM 2 SUBSYSTEM 3
tion software wherever this directive appears rr,

wdt instructs SMUD to insert the instruction to reset a
watchdog timer wherever this directive appears

omittag instructs SMUD to forego inserting a TAG check into a 15535 BUS
loop structure. This directive must be placed on the

same line as the word loop

N.ITERBU

4.0 SYSTEM MODEL

In order to test the effectiveness of SMUD, a system model ,j, REMOTE

has been developed (Figure 6). As previously mentioned, the INTEWMc p,.,22j
system implements the MIL-STD-1553B communications
protocol [12], which defines the modes of operation between
satellite subsystems. The system model was developed in
Ada with DEC's VAX 11/7flj acting as the host. Fig. 6. System Model
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In a BC to RT data transfer, the BC sends out a command MODE COMMAND is called to further decode the command
containing an RT's address (or the binary address 11111 in word. There are two types of mode commands: those that
the case of a broadcast command) and the number of data have an associated data word and those that do not. A data
words to be transferred. Once all the data words have been word that needs to be received/sent from/to the remote BIU
transferred, the receiving RT sends the BC its status word is stored or read from the buffer. If the information transfer
(except in the broadcast mode). The BC verifies the status is a data transfer, the procedure DATA TRANSFER is called.
word to determine whether or not any data corruption has T f
occurred. The command word passed into the procedure is checked for

the type of data transfer and calls an appropriate procedure
The RT to BC data transfer follows the same procedure as the to carry out the data transfer.
BC to RT data transfer. Once the BC issues a command in-
dicating that an RT to BC data transfer should occur, the BC Each BIU that is configured as an RT calls the procedure
first waits for the transmitting RT to send back its status REMOTETERMINAL to determine whether or not it should
word. After sending its status word, the RT proceeds to send respond to the data on the bus lines. If the data is a com-
the required number of data words. mand word, the RT whose address is indicated in the com-

mand word further decodes the word. One of twoIn an RT to RT data transfer, the BC sends out two command rocedures PROCESS MODE COMMAND or PROCESS DATA
words. The first command word indicates which RT will be p
receiving the data while the second indicates which RT will
be transmitting the data. The BC waits for the transmitting
RT to send its status word. After the correct number of words --.RO.N UP HOST
have been transferred, the receiving RT sends the BC its PROCESO C

status word where it is checked to determine the success of
the information transfer.

4.2 Simulation Environment eI

The simulation environment has been developed in Ada us- rTASKT PRCR SUBSYSTEM
ing packages to encapsulate the components of the subsys- P -IsSoC .LRYER 

.
tern. Each subsystem consists of an application processor, INTE CE
a BIU, a DMA controller, and a host memory (Figure 6). . 155 Ks

These components are modeled at the functional level using
task units, with the exception of the host memory which is
modeled as a 2-D array. The BIU consists of a memory
buffer, a controller, and a physical layer interface. The Fig. 7. Components of Simulation Environment
memory buffer is modeled as an array of words with each
word consisting of 16 bits (elements). TRANSFER is called to complete the required information

transfer.
4.3 Software Model

SMUD modifies that part of the simulation environment which 5.0 TESTING AND RESULTS
is responsible for exercising the 1553B protocol. The proto-
col software resides in the controller element which forms a This section will discuss time and memory overheads in-
part of the BIU. The protocol model consists of a main task- curred by the incorporation of a block checking structure and
ing unit and fourteen subroutines. Each subsystem is identi- watchdog timer mechanism. The testing methodology and
cal in code, with the exception of the BIU addresses and the performance measures are presented here.
application processor software. 5.1 Testingi

Each BIU is assigned a unique address. (e.g. BIU_1 is as-

signed the binary address 00001 while BIU 2 and BIU 3 have Testing of the upset detection mechanisms involved simulat-
the binary addresses 00010 and 00011, respectively). This ing the effects of SEUs causing a deviation from normal pro-
software model can easily be extended to include up to 31 gram flow. To simulate this type of upset, the application
BIUs (addresses 0-30). Binary address 11111 is reserved for model containing the detection mechanisms was once again
the BC to communicate in broadcast mode with selected RTs altered. This simulation consisted of modifying the applica-
simultaneously. Since each BIU may have the capability of tion software to contain several entry points (Figure 8).
being either a bus controller or a remote terminal, two These entry points would be activated to simulate the result
boolean flags that indicate its current configuration are in- of an erroneous jump by the program counter. The following
corporated. The two flags, BUS CONTROLLER MODE and sample program serves to illustrate how each procedure and
REMOTE TERMINALMODE, are initialized in the declarative function in the application software was altered for testing
section of each BIU model. Only one BIU model has purposes. The sample program consists of four output
BUSCONTROLLER_MODE assigned the value of TRUE at statements to show the execution flow.
any given instant, while the other BIUs have
REMOTETERMINALMODE assigned the value of TRUE. The output shown below is the result of (a) and (b) and shows

the proper output sequence for a correctly executed set of
Each task BIU has two procedures that are executed accord- instructions.
ing to the configuration type: BUS_CONTROLLER and
REMOTE TERMINAL. For the BIU model that is designated statement 1
the Bus Controller, the procedure BUS CONTROLLER_ 1 de- slatement 2
termines whether the information transfer type is a mode statement 3
command or a data transfer. Another procedure named statement 4
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The modified test code will output the same sequence of Upon reaching the TAG check at the end of the test program
statements provided cach entry point is accessed succes- unit, the TAG is checked for the identilying value of the block.

Since the TAG was not reset at the start, the value is incor-
(a) (b) rect and the exception INCORRECT TAG is raised. The ex-

ception handler displays a statement indicating an incorrect
procedure test is task body test is block entry has occurred. Similar modifications have been

incorporated into each subprogram unit of the application
TAGI : integer: = 0; TAG : integer := 0; software.

begin begin The previous example served to illustrate a program flow

if TAGI 0 then loop deviation into another block. However, SEUs that cause ex-

TAG1 1; select ecution to continue in the same block, though skippitg se-

else accept ONE; veral instructions, will not be detected by the block chocking
raise INCORRECTTAG; i, TAG1 = 0 then structure. For example, consider the following driver se-

end if; TAGI 1; quence:
WDT1 : 255; else
PUT LINE("statement 1"); raise INCORRECT TAG; procedure driver is
PUT-LINEistalement 2"): end if:
PUT_LINE("statement 3"); WDT1 255: begin Output from test program
PUT_ LINE("statement 41") PUT LINE("statement 1"):
if TAG1 1 then or accept TWO: TESTONE; statement 1

TAGI 0: PUT_LINE("statement 2"); TEST.FOUR; statement 4
else or accept THREE;

raise INCORRECTTAG; PUT LINE("statement 3");
end if. or accept FOUR; end;

PUTLINE("statement 4"):end testU if TA-G = 1 then The driver accesses the first entry point, initializing the TAG

TAGI = 0; to the identifying value of the block. The second and third
else entry points have been omitted, simulating a prograir flow

raise INCORRECT-TAG; deviation. Upon reaching the end of the block, the TAG is
end if: checked for the ID value. Since the TAG was initialized
exit; properly, the deviation is not detected.end select;

end loop: Detection of this type of program flow deviation depends on
the location where execution resumes in the block. As dis-

end lest: c:ussed earlier, a block containing a loop structure poses a
Fig. 8. Modifications for Testing Purposes potential infinite loop situation. A deviation near or into a

sively. A driver routine was required to invoke the entry calls loop structure may prevent the settiig of necessary loop
of the modified block. In the application model, every pio- variables, thereby leading to the possibility of an infinite loop.
gram unit behaves as a driver to each program unit con- The failure of the watchdog timer to be set would cause the
tained within its scope. timer to signal an error.

The driver routine shown below accesses each entry point in
succession. The output resulting from the execution is iden- 5.2 Results
tical to that of the original test program. The upset detection mechanisms yielded a 91 percent de-

procedure driver is tection rate. The undetected errors were due to those pro-
gram flow deviations that were contained within the block.

begin
5.3 Time and Memory Overheads

TEST.ONE:
TEST.TWO; The unmodified and modified system models were compiled
TEST.THREE; using DEC's VAX Ada compiler. The memory oveliead in-
TEST.FOUR; curred by inserting the block checking constructs and
end; watchdog timer mechanism into the application soltware

model was 10.44 percent.
Since the altered software provides the means for selection
of any four output statements, a program flow deviation can Two time overheads were obtained: the compilation time and
be simulated by eliminating an entry call and successively the execution time. The compilation time represents a one-
invoking the remaining entry calls. In order to simulate an time overhead while the execution time overhead is incurred
SEU in the program counter, the driver routine bypasses the continuously as the modified application program is exe-
first entry point. This causes omission of the TAG initializa- cuted. The compilation time for the unmodified and modified
tion. As a further example, consider the driver routine shown application models was dependent on the load of the host
below: computer. Similarly, the execution times varied according to

prp ethe load and the non determinism of task selection. Further

begin statement 3 studies of the overhead is underway,and is reported in [13].
statement 4

TEST.THREE: incorrect block entry
TEST.FOUR:
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6.0 CONCLUSION 13. Heironimus, E., Automated Incorporation of Upset
Detection Mechanisms in Distributed Ada

This paper has presented two techniques for detecting single Systems,Master's Thesis in Preparation. Department

event upsets that cause a deviation from normal program of Electrical Engineering, Virginia Polytechnic Insti- -.

flow. These upset detection techniques consist of block tute & State University, 1987.

checking constructs inserted into the application software
and a hardware watchdog timer mechanism. A program has
been written to automatically modify Ada application soft-
ware to contain these mechanisms.

A system model that employs the 1553B bus communications
protocol has been used to verify proper operation of the au-
tomated modification. The effectiveness of the upset de-
tection techniques was determined through computer
simulations.
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Research on the Ada Conversion of a Distributed,
Fast Control Loop System

Eric N. Schacht

Computer Sciences Corporation

navigator, digital map generator, on-board sensor, and
AbstrCt. fire control processor. Other processors in the system

This paper discusses the experiences of a research ef- are called autopilot processors - there is one for each
fort to support the conversion of software written in missile which is in flight at the same time. The execu-
PLfM-86 to Ada for a DoD missile system employing tive and the autopilot processors have the same comn-
fiber optic technology. The hardware and software ar- putational capabilities but different input/output and
chitecture of this embedded, distributed real-time (60 memory requirements.
hertz control loop) system is examined, with emphasis The gunner station computer must meet demanding
on the special functional and performance requirements performance requirements. It must accomodate a 60
of this and other such applications. Ada programming hertz data transmission rate from the missile to the com-
techniques developed and benchmark tests conducted puter and back to the missile, and to and from an
during this research effort are presented. The real-time autotracker. Each autopilot processor must in 16.667
programming techniques explained provide practical ap- milliseconds receive 35 bytes of data from the missile,
proaches to the implementation of Ada in an em- perform all guidance calculations, and return 15 bytes
bedded, distributed real-time environment, and high- of data to the missile. The executive processor must in
light certain critical capabilities required by an Ada 16.667 milliseconds receive from, process, and send
compiler used in such environments. Results of the data to an autotracker, while simultaneously receiving
benchmark tests reveal the practical functional and per- from, processing, and sending data to the gunner's con-
formance concerns encountered by applications of this sole, digital area correlator, fire control processor, land
type, and further help to identifyi the vital qualities re- navigator, and digital map generator.
quired by the supporting Ada compiler. Finally, Ada's
ability to support the demanding requirements of a per- Techniques for communication across
formance critical embedded application is evaluated in processors.
fight of the experiences and lessons learned from this re- In the current PL/M-86 based system, the applica-
search effort. Practical suggestions are offered for com- tions software is partitioned to run on a multiprocessor
piler capabilities beyond the existing Ada language system based on a shared system bus. The microproces-
standard which are essential for the successful applica- sors in the system interact with one another over the sys-
tion of Ada to real-time distributed systems. temn bus through the use of data structures residing in

shared memory. These data structures may have a local
CPU address and a bus address for access by other

Architecture and environment overview. CPUs. The local CPU addresses of the shared data
The tactical gunner station computer for this weapon structures are kept in pointers which reside at fixed, pre-

system provides various mission planning, communica- determined locations. If a program executing on one
tions, and navigational support for the vehicle in which CPU has a need to communicate with a program run-
it resides, and launch and flight control for a salvo of ning on another CPU through a particular data struc-
missiles. This gunner station computer consists of multi- ture, then it is programmed with the knowledge of
ple, intercommunicating Intel 80186 microprocessors. where the pointer to this data structure resides in physi-
These microprocessors communicate with one another cal memory. Strict memory and speed constraints drive
over an IEEE-796 muitibus. Each processor in the sys- the need for this kind of strategy where different ap-
tern can read or write into every other processor's dual plications running across multiple processors communi-
port random access memory. The applications software cate through common memory structures. This is a typi-
is primarily written in PL/M-86. There is a small cal architecture for a distributed, embedded real-time
amount of ASM86 code used to manage communica- process control system.
tions over a fiber optic data link. No operating system There is another reason for this kind of programming
is used. strategy. During software development, the starting ad-

One of the system's microprocessors is called the ex- dresses of data structures used for inter-processor coin-
ecutive processor. It manages all communication be- munications often change simply because of changes to
tween and data processing for the computer and gunner the evolving program itself. But for the purposes of
station console, digital area correlator, autotracker, land other programs on other processors needing to
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reference such a data structure, only the value of the Step 1. Define an access type which designates
pointer to the data structure needs to change. The ad- (points to) the type of the data structure of interest.
vantage of this kind of programming practice is that (Refer to this as a level 2 pointer type).
changes to data structure size, composition, and starting Step 2. Define an access type which designates
addresses may occur without necessarily affecting, and (points to) an object of the access type defined in step - .
thus forcing recompilation of, other programs depend- 1. (Refer to this as a level 1 pointer type).
ent on these structures. Again, this is a typical kind of Step 3. Instantiate the generic function UNCHECK-
programming practice for a distributed, embedded sys- EDCONVERSION to allow placement of the level 2
tem. pointer at an absolute address by assigning an address

The question now arises as to how to provide inter- value contained in an object of type LONGINTEGER
processor communications in an Ada conversion of this to the level I pointer.
system. Several factors are at work which will influence Step 4. Instantiate the generic function UNCHECK-
the outcome of the final approach taken. ED CONVERSION to allow assignment of the address

Consider the factor of extremely demanding real- of the data structure of interest to the level 2 pointer
world cost and schedule constraints for a possible Ada (this can be overloaded with the above).
conversion. This pressure would dictate that the exist- Step 5. Assign the absolute location value for the
ing hardware and software scheme used for the gunner level 2 pointer to an object of type LONG INTEGER.
station computer system be preserved as much as pos- For the gunner station software conversion, this value
sible. A significant and costly re-design effort would be must be an Intel segment:offset value equivalent to the
required to make the system conform to a scheme absolute address.
which embodies practices associated with "good Ada" Step 6. Declare the level 1 pointer object, assigning it
design. the address value above using the instantiated type con-

The Ada purist would likely argue for the elimination version function. The effect of this object declaration is
of the use of common data structures on the grounds to locate the level 2 pointer at the specified address.
that it is bad software engineering practice. A pure The object of interest, regardless of type, may now be
Ada approach might advocate the use of interprocessor addressed through this pointer.
task communications as an alternative which offers a Step 7. Link the level 2 pointer to the data structure
more sound design approach. But at the time of this of interest by assigning it the address of the data struc-
writing, there is not exactly a plethora of validated Ada ture using the type conversion function as in step 6.
compilers which provide tasking across a configuration The level 2 pointer now resides at the desired memory
of bare Intel microprocessors. The same is true for location, and points to the data structure of interest.
compilers that support pragma SHARED in a dis-
tributed environment. This is a pragma which can be The following Ada program code demonstrates the
used as a means to synchronize the reading or updating use of this technique. An access type object
of a variable. Another practical concern is that pragma DNLINK ADDR PTR is declared which positions a
SHARED can be applied only to objects whose type is level 2 pointer at an absolute memory location. This ob-
a scalar or access type. Most of the current system ject is used to access (point to) another common
shared data structures used in interprocessor com- memory area called DOWNLINK TABLE of type
munications have heterogeneous data elements, i.e., DOWNLINKSTRUCTURE, the ultimate data struc-
they are record type structures. ture of interest.

Given the current state of the world of Ada com-
pilers targeting to bare Intel microprocessors, this re- -- PL/M-O0 statement:
search effort focused on developing Ada methods which
parallel the current strategy for interprocessor com- DECLARE NLINK.-ADDRPTR AT (IIE44);
munication. The Ada compiler used in the research to
develop these methods did not support address clauses, -- Ada equivalent:
which is not at all an uncommon characteristic for a
lower cost Ada compiler. iyp ONLINKLEV2 is access DOWNLIIKSTPUCTUIt

Given this framework as a starting point, two basic t ONLINK.AEI is accss DNLIK-TEUCT,
questions must be addressed. These are: tIpe DNLINKLEIU Rs access DNLINKL.UisI unction CONUERT...P I~E5S.LJLUE' is rwu

* How can pointers be established at fixed addres- LICHECKED.CIDNVESIN (SURCE * LlNG.IjE C,
ses without the use of address clauses? TARGET = LLINKLEUI);

* Once a pointer is established at a fixed address, fLnc Iion CONUERT.-A0;RESS-ALUE ig now
how do you access the data structure it points to from a UNCHECKED.CCN E S3I0 SDLUCE *AO$ESS,
program running on another processor? 7ARGET *0NLlNgLEU2):

To solve the first problem, the following seven step IL!N(.,OAP t INK.LEI t-lgf 3lU~lUlg{O )
method was developed to declare an Ada access type
object at an absolute memory location, and to link it to Note that the above statements may be used in the
a data structure of interest. declarative part of a subprogram body or in a package

specification. The final step is to link the level 2 pointer
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to the target data structure. This can be accomplished que described above for declaration of an access type
as seen below: object at a predetermined location, an access type ob-

ject could be "overlayed" on the local pointer, since its
DOWN LINK ADDR 'iRall := system address is known by the program seeking access

CONVRT ADDIESS VALUE to a data area. The value within this access type object
(DOWNLINKTABLE'ADDRESS); could be retrieved, and adjusted as described above to .

arrive at the system address of the data structure of in-
Now the question arises as to how to reference the terest. With this information, the data structure may

pointer at the fixed location and then reference the data now be accessed through an access type object which
structure it points to from another processor. The contains this system address. It is the application of the
method used by the current PL/M-86 based system to generic function UNCHECKEDCONVERSION
accomplish this is described below. Next, an Ada tech- which makes this possible.
nique is presented which parallels the method used by Now that a means to reference common data areas
the current system. across processors has been established, the problem

To explain how public data structures located on remains of ensuring that processes competing for access
other processor boards across the system bus are to that area do not cause corruption of that area due to
referenced, one of the autopilot processors will be used simultaneous access. The pragma SHARED can be
as an example. This processor's 32K bytes of dual port used to solve this problem. If pragma SHARED is not
memory space resides in system memory space 60000H supported, as was the case with the compiler used in
to 67FFFH. 60000H is the base address. If the execu- the research, then a standard approach which relies on
tive processor needs to reference data from the a hardware supported test and set mechanism can be
autopilot processor board, it can access this system used.
memory space to obtain it. But to the autopilot proces- PLIM-86 provides the LOCKSET function for
sor itself, this same system memory is local memory shared memory synchronization between processes. It
with an address space range of 00000H to 07FFFH. is used to test the value of, install, or remove a software

As previously described, to enable message passing lock for a shared memory location used as a flag which
between processes, common data structures are used. permits or denies access to a shared system resource.
Programs across all processors are built with the This function is implemented through an assert bus lock
knowledge of where pointers to these structures reside instruction which causes the microprocessor to assert its
in a particular processor's local memory space. At sys- bus lock signal for the duration of the operation (i.e.,
tem initialization, the program which declares the testing of the lock value and installation or removal of
pointer at a fixed address places the address value of the lock). When any external hardware receives this sig-
the structure it points to within the pointer. This ad- nal, bus access by other bus masters is prohibited as
dress value is the local address value with respect to the long as the signal is asserted. In this way, controlled ac-
processor the program is running on. cess to shared resources can be enforced. For the re-

Assume the software on the autopilot processor search effort, an interfaced assembly language program
declares a pointer at O1DOH. From the standpoint of was developed which provided the functional equivalent
the executive processor, this same pointer is located at of the LOCKSET function.
the absolute address of 601130H. Thus, both the con-
sole processor software and the autopilot processor Benchmark tests of floating point arithmetic.
software know where the pointer is located. The Each autopilot processor executes a program which
autopilot processor software enters the pointer value at performs a lengthy series of floating point arithmetic
this location. This value corresponds to the autopilot equations to provide the function of missile guidance.
processor local address space. Equivalent PLIM-86 and Ada benchmark programs

The executive processor software is now able to ac- were developed which contained numerous floating
cess the data structure of interest on the autopilot point arithmetic equations from this program. A test
processor's memory space through the following with runtime error checking enabled for the Ada
process. First, it declares a pointer which resides at the program showed that the PL/M-86 program was 74%
system address of 601130H. It then retrieves the value faster than the Ada program. This clearly
at this location, which is the local starting address of the demonstrated that runtime error checking is not
data structure of interest. Next, it converts this value to feasible in the final system.
a system address by using various PL/M-86 built-in func- With runtime error checking suppressed, test results
tions to obtain the segment:offset values (Intel format), showed that the PL/M-86 program was approximately
adding the system base value (60000H) for the autopilot 18% faster. Analysis of the object code produced by
processor to the local base value, and then reconstruct- both compilers showed that the PL/M-86 compiler used
ing the new segment:offset values into the final system short real (32 bits) representation for real number data
address value. It is now able to access the data struc- and instructions, whereas the Ada compiler used long
ture on the autopilot processor. real representation (64 bits). The compiler used for re-

An Ada technique for a program on one processor search did not allow control over real number repre-
to obtain access to the memory space of a program run- sentation. To help identify the cause of the perfor-
ning on another processor would basically follow the mance difference, the compiler vendor ran a similar
same process as described above. Using the Ada techni- benchmark program using both the compiler without
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real number representation control and an under- these functions. (The Ada compiler used does not sup-
development compiler which does provide real number port pragma INLINE).
representation control. The performance difference be- Furthermore, the assembly procedure call generated
tween the program compiled using short real repre- by the Ada compiler was a FAR procedure call, rather
sentation versus the program compiled using long real than a more optimal NEAR procedure call. The re-
representation was approximately 18%. This verified search compiler does not allow control over the com-
that real number representation differences accounted pilation model used, and an interfaced assembly lan-
for the performance difference. guage procedure must always carry a FAR label. When

It is important to note that an 18% performance the ASM86 assembler encounters the control transfer in-
degradation would be considered intolerable given the structions (JMP, CALL, RET, etc.), it uses the label of
current hardware configuration. Therefore, a compiler the called procedure (NEAR or FAR) to determine
used in any future Ada conversion effort would have to whether to produce an opcode that changes only IP
offer control over real number representation. (the instruction pointer register), or an opcode that

A further note on these benchmark tests has to do changes both CS (the code segment register) and IP.
with one equation which performed a square root cal- This determines whether a one word or two word ad-
culation. As Ada provides no built in square root func- dress is pushed on the stack when control is transferred
tion and does not allow exponentiation using real num- to an interfaced assembly language procedure. The les-
bers as exponents, a square root function using New- son from this experience is that for an Intel
ton's Method was developed. This function was found microprocessor based system, compilation model con-
to be slightly more speed efficient than an Intel sup- trol is an important factor when trying to optimize an in-
plied library routine used by the PL/M-86 program for terface to an assembly language routine.
square root calculation. This 45% speed differential was still deemed unac-

ceptable. Closer examination of the program module
Benchmark tests of shift and rotate and bit-wise which processes autotracker data revealed that most of
Boolean operations, the equations using logical and shift and rotate

There is a program module which processes operators were concentrated in mainly two areas of the
autotracker data and runs on the executive processor. program. To achieve an acceptable performance level,
It contains numerous equations which perform shift and those parts of the equations from the two areas which
rotate and bit-wise Boolean operations. Various equa- use the shift and rotate and bit-wise Boolean operators
tions were taken from this module, rewritten in Ada, were simply moved to two assembly language routines
and tested for speed performance against the equivalent and interfaced to the Ada benchmark program. This
PL/M-86 program. Several approaches for providing approach brought the PL/M-86 vs. Ada performance dif-
these programming functions were tried until a satisfac- ferential down to 15%.
tory solution was found. A new technique was then used to make parameter

In the first approach tried, bit-wise logical operators passing from the Ada program to the assembly language
from a special compiler specific package were used. Bit program as efficient as possible. All Ada objects to be
shift and rotate operators were built in Ada which used manipulated by the assembly language program were ar-
bit-masks to analyze operands bit-by-bit and then set ranged into a single record structure. The only param-
the result in a bit-by-bit fashion. Benchmark tests ter passed to the assembly language program was the
showed this approach to be terribly inefficient, with the starting address of this record. The interfaced assembly
Ada programs being 30 - 50 times slower, language program itself was built with the knowledge of

In the second approach, the Ada algorithms were this record structure. The speed efficiency of this ap-
rewritten so that shift and rotate operations were ac- proach is due to the fact that only the starting address
complished through multiplication or division by some of the record structure is pushed on the stack prior to
power of two. Constraint checking must be suppressed the call of the assembly language procedure, rather than
for this approach to work. This approach improved the all of the Ada variables to be used in processing by the
performance of the Ada benchmark programs sig- assembly language routine. This approach dropped the
nificantly, but they were still orders of magnitude slower speed performance difference between the PL/M-86
than their PL/M- 86 counterparts. and Ada test programs to only 5%. This difference is

For the next test, the shift and rotate operators were explained by the cost of the FAR procedure call.
built in interfaced assembly language programs. Shift
and rotate function calls were linked to assembly lan- Least significant (rightmost) bit tests.
guage procedures. Benchmark test comparisons im- There are numerous program statements in the mis-
proved, but the Ada program was still 45% slower than sile guidance software which test the value of flag type
its PL/M-86 counterpart. variables before executing some process. PL/M-86 of-

Analysis of the object code produced by the Ada fers an efficient facility to do this through an IF state-
compiler versus the PL/M-86 compiler revealed the ment which takes the form:
reasons for the performance difference. The PL/M-86
compiler generated inline instructions for the logical IF expression THEN statement-a;
operators and the shift and rotate operators. The Ada ELSE statement-b; /* ELSE is optional */
compiler generated procedure calls to gain access to where statement-a is executed if the value of

.expression" has a rightmost bit of 1.
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Ada language standard does not force an implementa-
A method was developed to provide an equivalent tion to providc this level of control.

facility to the PL/M-86 IF statement using Ada. This Severe performance degradation was experienced in
method works by simply instantiating UNCHECK- benchmark tests of various Ada techniques used to per-
ED-CONVERSION to transform a byte or a word type form bit shift and rotate operations and bit-wise
object to a Boolean object. The following code ii- Boolean operations. In many real-time embedded sys-
lustrates this method (the type BYTE was supplied by a terns, numerous "black-boxes" communicate with a
compiler specific package). processor, sending and receiving data in various and in-

consistent formats. These systems are required to trans-
with UNSIGNED; use UNSIGNED; form and process this data in an efficient a manner as
procedure IF_-TEST is possible, and hopefully, the underlying programming
A: BYTE:= 1; language on which such systems are based will provide
function TO BOOLEAN is new easy to use facilities to accomplish these tasks. The

UNCHiECKEDCONVERSION Ada language standard, however, does not require the
(BYTE,BOOLEAN); provision of such critical facilities. Another factor sur-

faccd in these tests is the need for compilation model
begin control for an interfaced assembly language program
if TOBOOLEAN(A) then (for an Intel environment). This is a "down in the dirt"

level performance consideration, one which is not ad-
else dressed by the Ada language standard. Nevertheless, it

is a practical, real world need.
end if; For a conversion effort, the luxury of a major system
end IF-TEST; redesign to become more "Ada like" in character may

not be practical due to hard cost and schedule con-
When the TO_-BOOLEAN function is used within an strairts, as is the case with this system. Likewise, exist-

Ada IF statement as seen above, it performs exactly as ing investments in system hardware may prohibit
the PL/M-86 IF statement does. If the operand passed upgrades to overcome performance deficiencies arising
to TOBOOLEAN contains a rightmost bit with a value from the use of Ada. Therefore, solutions which paral-
of 1, the THEN portion of the statement is executed. If Iel traditional programming approaches seen in em-
the operand contains a rightmost bit with a value of 0, bedded real-time systems are important.
the ELSE part is executed. When easy to understand, easy to use, and easy to

The Ada compiler generated more efficient machine maintain facilities are not available to meet the needs of
instructions than did the PL/M-86 compiler. a distributed, embedded real-time application, the life
Benchmark tests showed that the Ada program using cycle costs of the system are adversely impacted. Main-
this technique was about 40% more speed efficient than tainability falls in certain critical program areas. Vul-
the PLIM-86 IF statement. nerability to errors when program changes occur is

greater. The skill level in personnel developing and
Lessons learned, maintaining the system must be higher, and thus more

The experiences recounted in this paper confirm the costly.
shortcomings of Ada which are becoming more and The Ada implementation which is successful at meet-
more recognized in the embedded systems community. ing the challenging needs of distributed, embedded real-
Very simply, the existing Ada language standard is not time environments must be based on a thorough under-
enough to ensure that an Ada implementation will une- standing and appreciation of these needs. Moreover, it
quivocally meet the special needs of an embedded real- must provide more than is required by the current Ada
time system. The needs of a distributed, embedded real- language standard.
time system bring even further challenges, as this paper
has shown.

There is a common theme which arises when analyz-
ing the experiences of this research. All the experien-
ces point to the need for easy to understand, easy to im-
plement, and easy to maintain facilities for lower level 1

representation and manipulation of system data ele-
ments.

The technique described to allow communication
across processors is much more complex and "messy"
than its PL/M-86 counterpart. The lack of a shared
memory synchronization facility forced an assembly lan-
guage procedure interface which does not exist in the
current system.

The benchmark test of floating point arithmetic per-
formance shows the importance of low level control
over the internal representation of real numbers. The
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Implementing Distributed Ada* Tasking by Emulating the Rendezvous

by
James E. Tomayko, Minlh Leo Pham, and Wang Wei,

The Wichita State University

and James E. Kroening,
Boeing Military Airplane Company

Abstract result in compilation units smaller than
the available memories. Unfortunately, no
off-the-shelf Ada compiler and associated

Ada was designed to assist in the run time system fully supports distributed
implementation of concurrency on tasking. Ada users who wish to achieve
distributed processors. To date, no distribution are forced to develop
effective compiler that supports Ada for application-specific operating system and
distributed targets is available. One run-time support for processes.
method of task distribution without direct
compiler support is to translate an Ada Most current ad hoc solutions to the
tasking program into one that achieves the distribution problem run counter to the
rendezvous using a communications package intent of the design of the Ada language.
suitable for the target architecture. The Ada's features that help in data
use of this translator allows applications abstraction, information hiding, and
programmers to retain the advantages of strong typing are less effective when
developing a system using strong typing, applied to a local program that is using
data abstraction and information hiding, some communications package to couple to a
which are lost if the application is in process on a different machine. Creating
the form of separate communicating a distributable tasking program to
programs. This paper presents the implement an application helps promote
specification, design, and implementation good software engineering practice and the
of the Ada Rendezvous Emulation Tool correct use of the language. In the
(ARET) that accomplishes the translation absence of tools to fully implement6
and creates compilation units suitable for distributed tasking and the rendezvous, a
distribution on multiprocessors. The tool to take an Ada tasking application
integration of the communications package program and translate it into a collection
with the tool, the difficulties of distributable processes that
encountered in emulating features of the communicate through the emulation of the
rendezvous, and the effectiveness of the rendezvous can serve as an interim
concept are also discussed, solution.

Models of the Distribution of Software

Rationale for Emulation Background

of the Ada Rendezvous
The development of multiprocessor systems

Embededrealtim sofwar sysemsare and the Ada(*) language both grew out of
Ebedngdeseaie oftre systemsltare the improved understanding of the nature

beig dsiged o rn i a ultple of software that began to have effect in
processor environment, the environment the early 1970s. one original impetus for
envisioned by the designers of Ada the development of multiprocessor systems

taskng. Theproessrs sed in uch was the idea of parallel execution. If a
systems often have small memories, in the rga ol e sprtd it
64 to 256 kiloword class. In the case of Prga col be spatd io
relatively large systems, this independent parts, or if a system could be

functionally distributed, then having
characteristic presents a serious problem multiple processors available logically
in the distribution of software. A shortens the time it takes to complete a
natural solution is to design the software run, or increases the speed of a
in functional units implemented as tasks, continuously executing system. An
with the tasks distributed on the additional reason for multiprocessors is
processors and communicating via the to support the concepts of modularity and
rendezvous. Such designs would qenerally data abstraction. Parnas' seminal work on

decomposition, Shaw's interest in data
*Adais reistred radmar of abstraction, and Wulf's development of an
'Ada is reistred radmar of experimental multiprocessor occurred in

the U.S. Department of Defense. the same place and time and were mutually
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reinforcing. The software concepts and The concurrent specification and
the hardware architecture go hand-in-hand, development of a design for Ada tried to

exploit both the newly formalized software
Two types of multiprocessor architectures engineering principles and the
are presently dominant: shared memory and possibilities of multiprocessors such as
local memory. In the 1970s, Carnegie Cm*. It has been recognized that Cm*
Mellon built one of each type. The shared provided support for object oriented
memory system was called C.mmp and is designs and software [Buzzard85]. Object
documented in Wulf8l. The local memory oriented design methods facilitate, in
system was Cm* and is described in Jones78 turn, the partitioning of software for
and Siewiorek78. Both systems were built multiprocessing [Armitage85J. Ada has
using LSI-11 or PDP-11 processors. constructs that explicitly aid in both the
(Ironically for those saddled with the implementation of object oriented designs
1750A, Wulf commented that his team would and distribution on multiprocessors
never have chosen a 16 bit machine in the [DoD83, Booch86]. However, some feel that
first place, but that their commitment to neither the syntax nor the semantics of
off-the-shelf hardware precluded other
choices in 1972.) the language properly define task

distribution (Knight87].

One result of the C.mmp experiment is the
discovery that "large applications almost The ideal model of task distribution is

invariably want to address large amounts one task/one processor. Greater
of data, even when they are decomposed for understanding of the concepts of coupling
a multiprocessor." [Wulf8l) This and cohesion in the design of modules and

influenced Cm* somewhat. The local objects indicated that properly designed
directly addressable space of 64K words on tasks would be able to achieve all needed
each processor node was augmented by a communication through rendezvous, thus
virtual memory system that enabled a simplifying interprocessor coupling.
processor to access other nodes in a Unfortunately, the requirement for a
cluster or other clusters. The Cm* "parent" with a procedure name and at
designers added a microcoded routing least a null statement in its body early
device similar to a bus controller to eliminated the notion that all tasks were
speed up communication (the Kmap, see equal, and complicated the development of
Fisure u). The relative time cost of distributed tasking. Since distributed

tasking is currently not supported by a
accessing memory was 1:3:8 for local, validated compiler (though several efforts
intracluster, and intercluster are underway, some promising results by
communication. All memories were divided the second quarter of 1988), other methods
into 4K blocks, with addresses made using of distribution are being explored. Many
simple offsets and translation done by the of these methods are not limited to task
routing device. constructs only.

Methods of Distributing Software

Previous experiences with distributed
l.'.,ut, r, systems reveal a number of software

6.... Sdistribution schemes, each of which has

... .. , K-o advantages and disadvantages. These are

. ,--now evaluated assuming an architecture
l r e -,' similar to that in Figure 1 and Ada

P-5-M P-S-M P-S- -M P-S-u P5M P-S-MP<- P-S-.P-Mac ,,o , .,, ,,,: .. L . .software.

Separate programs: The most obvious
_ imehod~ of distributing software on

multiprocessors is to place a single,
- - .-------- self-contained piece of software on eachprocessor, and use standard

Figure 1: Cm* Architecture. Note the prcso,"ns sadr
iilrIt to Pave. Pilarlie message-passing schemes for inter-process
similarity to Pave Pillar-like communication. The advantage of this

method is that it is simple to implement
fault-tolerance. A spare processor, when
loaded with another copy of the software, L
informed of critical data values, and
assigned the logical address of the failed
computer, completely replaces a faulty
machine in the system. Another advantage

Cm*'s operating system, StarOS, supported is that exception handling is kept local
the division of software into "task to the processor.
forces." User-defined relocation tables
placed the tasks on the system. Unlike The disadvantage of this method is that
the later Ada tasks, StarOS did not block the hardware architecture forces the
processes when messages were sent. software design to be done in a highly
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constrained manner. It is much simpler to Access types, specifically access task
view a real time embedded system as a types, can be used as a method of implicit
single program in order to make it distribution. The run time system can
possible to use abstraction correctly place the new tasks on any processor. -u
[Volz85). Also, as the development life However, the newly instantiated tasks must
cycle progresses, it becomes increasingly be of the same type as the primary task,
difficult to reallocate functions when thus severely restricting the software
changes to the requirements occur developers (Knight87].
[Armitage85]. Changes after initial
operational capability have the potential Dynamic Distribution: V. Santhanam
to cause havoc. Because of these suggested a method of distribution in
concerns, both GTE and Honeywell rejected which the minimum software necessary to
this approach in their distribution instantiate the system is loaded on the
systems [Armitage85; Eisenhauer861. GTE processors, then procedure and function
develops and tests real time programs on calls cause additional software to be
the APSE first, then distributes the loaded when needed.
software. Honeywell emphasizes that the
functional specification should be kept To visualize this suggestion, imagine a
separate from the mapping to the large bushel of apples representing code
underlying system. Portability is thus units in non-volatile memory. A series of
enhanced. It is better to treat the Ada smaller baskets represent the individual
software as a coherent whole, and postpone processor memories. To begin, one apple
distribution until the software is is thrown from the big bushel into each
functioning correctly. smaller basket. When a procedure call,

instantiation of a task, function call,
Automated distribution: The first package, or any other such unit is needed
consideration in specifying an automated by a process, then it is loaded ("throw
distribution system is the question of the another apple into the basket"). If any
granularity of the distributed units, individual basket gets full, then a needed
Tasks seem like logical units, but "the apple is put into an emptier basket and
Ada task is a construction for expressing required communications are set up to its
concurrency and not modularity parent process. If all the baskets fill,
(Cornhill83]." Also, it has been found in then the least needed apple is tossed out,
practice that restricting the software to and its place taken by the new apple.
tasks only does not necessarily simplify Virtual memory developers have determined
the run time support necessary algorithms for figuring out which software
(Eisenhauer86]. to swap.

Given that it is not essential to make the This method is very powerful, but equally
restriction to tasks, several options are complex. It requires a total rethinking
available. A team at the University of of the current distribution schemes. It
Michigan uses library subprograms and also would require the development of a
library packages as the unit of complicated run time system. On the
distribution, with task objects never positive side, it would provide robust
moving from the allocating unit [VolzFC]. fault tolerance capability.
Honeywell's system makes all units
distributable (Eisenhauer86]. Both of Task distribution us in simulated
these systems use a form of -e----ezvous: Given the absence of a
pre-translation to decompose the original compiler and run time system for
Ada program. Michigan's translator looks distributed tasking, the Ada rendezvous
for a pragma SITE in the units to can be simulated using more conventional
determine where to place them. message passing techniques. A
Honeywell's is more robust, with its own communications package developed by
Ada-like language for program co-author James E. Kroening for a system
partitioning. GTE's is similarly using the "separate programs" concept
powerful. Since these partitioning includes procedures that can be used as
systems operate prior to compilation, it simulations of the entry call and accept
is possible to have heterogenous statement in Ada. The availability of
multiprocessors as a target. Also, this package makes possible a translation
exception handling can be artificially tool that can take Ada source and replace
"localized" by the translation, the appropriate statements with the

correct procedure calls, and include the
Access types: This method and the next communications package. The resulting
one attempt to take into account the code can then be compiled and distributed
possibility of primary memory overruns, using the operating system allocation
These may occur due to the inclusion of an algorithms already in place. ef
excessive number of functions in the
software, or due to reconfiguration after 1. %

hardware failures.
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A Communications Pacag Logical Addressees
for Emulating the Rendezvous' " sLogical addressing is a method by which

one Ada task can communicate with another
(or even itself) without an awareness of

The approach implemented to provide the physical location of its communicating
communications between distributed partner. The communicating tasks may be
processors running Ada applications is in the same processor, in different
called Logical Addressing. A "single Ada processors on a local data bus, or even in
program per processor" approach is used to different processors in a more complex
partition the software, but the use of network. The task initiating the
Logical Addressing is not limited to such communications transaction will be
an environment. The basic philosophy can referred to as the active side, and the
be applied to a single program on a single remote or non-initiating partner will be
CPU, a single program on distributed CPUs, referred to as the passive side.
or multiple programs on distributed CPUs.
Discussion of the method, however, will be The fundamental underlying concept to the

in the context of the single program per Logical Addressing method is that of the
disribtedproessr evirnmet.logical addressee. The logical addressee

distributed processor environment, is a system-unique identifier for a data

Architecture Overview area on the passive side of a transaction.
When a task needs to get data from or send

The architecture for which the data to another task with which there is
no guarantee of co-location on the same

communications system is implemented is processor, it uses the logical addressee
presented in Figure 2. Multiple to specify the remote source or
processors are linked by a local data bus destination of the data transfer. The
to form processor subsystems. One of the communications system is responsible for
processors in each subsystem is a node on determination of the steps necessary to
the system data bus. Communications effect the data transfer.
between processors in the same subsystem
can take place entirely over their local Binding of the logical addressee value to
bus, but communications between processors a specific location can be done at load
in different subsystems involve at least time or in a dynamic fashion at run time.
one transaction over each of their Load time binding requires a component of
respective local buses as well as at least the loader to be aware of the
one transaction over the system bus. communications needs: the values of

Processors on the local bus vie for logical addressees associated with the
temporary control of the bus, and direct code segment being loaded as well as the
memory access is employed for data associated physical location. Run-time
transfer. Failures of single elements on binding requires the declaration of the
either bus (local or system) do not cause logical addressee value and its bound
failure of the entire bus. location by a task with visibility to the

data object(s) to which the logical
addressee is bound. Run-time binding, the
method employed in this implementation, is
more flexible in that logic can easily be
applied to declare unique logical
addressees for the same code in different
circumstances. An example of the
usefulness of this technique is when

Subsystem Processor Local Bus

System Bus System Bus
I/F Processor

Figure 2: Basic System Architecture
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common code is loaded in several completed for later consultation by the
processors with the need to communicate requesting task. The result flag is of an
with each instantiation separately. Load enumerated data type with values FAILED,
time binding has the advantage of less

reqirmetson the user at run-time to SUCCESSFUL, PENDING, and LA NOT DECLARED
enable communications - a more automated (logical addressee not declared). The

apprach.LA NOT DECLARED result is returned when
the logical addressee value specified in a

The lloatin oflogcaladdrsse vaues request is not known to the communications
is done at design time in a manner that system.
guarantees uniqueness of values used by Ohratv iesrie nlddi h
different applications. Using integer Ohratv iesrie nlddi h
values gives the capability of up to 65536 specification but not implemented in this
unique logical addressee values in a version of the communications system are
system (with a 16-bit integer), so th at GET CYCLIC and PUTCYCLIC. These
reasonably large ranges of values can be procEedures allow users- to request the
allocated to different communications periodic initiation of a transaction
users which will satisfy their needs without further intervention.
without requiring unnecessarily detailed The passive side services provide tasks
attention to the allocation, with the capability to bind logical
When the communications system becomes addressee values to specific locations of
aware of the emergence of new logical data objects, and to control task
addressees (at load time or run-time), the execution based on the passive sending o r
appropriate information about the logical receipt of data. Procedure
addressees is disseminated among the DECLARELOGICAL ADDRESSEE orovides the
distributed databases. The information binding- function, and procedures SEND and
that is distributed allows the path of RECEIVE provide the passive side task
remotely-initiated messages to be control.
determined in an efficient manner.

UserIntefaceCalls to DECLARE-LOGICAL -ADDRESSEE are
U~erIntefaceusually made as tasks are initializing,

but the timing of the
The utilities provided by the DECLARE LOGICAL ADDRESSEE call can be used
communications system are classified as to inhibit transactions until some desired
either active side o r passive side processing has completed. once a logical
services. The active side services addressee has been declared, it is bound
provide a task the capability to initiate to its associated location until the
communication with some remote partner. software responsible for its declaration
Procedures PUT and GET allow a task to is deallocated or moved for some reason.
request the "push" or "pull" of data to or Parameters to a DECLARELOGICALADDRESSEE
from a location designated by a logical call are:_
addressee, and continue processing without
waiting for the completion of the actual - the logical addressee value
transaction. Procedures PUT AND WAIT and
GETANDWAIT provide for the -initiation of - the associated physical location, and
the same transactions while preventing
further execution by the requesting task - the scope of the declaration.
until the transaction has been completed
(successfully or unsuccessfully). The visibility of each declaration can be

specified as PROCESSOR ONLY,
The parameters required for active side SUBSYSTEM ONLY, or GLOBAL. It is le-ft to

* service requests are: the user Ts discretion to determine which
is the most suitable scope for the a

- the logical addressee value declaration. If he or she has little idea
designating the remote end of the of how software will be partitioned on the

*transaction, system, exclusive use of GLOBAL might be
required. If, however, he or she is well

- the physical address of the local data aware of the Dartitioninq for certain
area to be sent from or received to, software elements, the use of

theamont f dtato e tanserrd, PROCESSOR ONLY or SUBSYSTEM-ONLY might- teaonofdttobtrnfre, simplify ithe software design (especially
in the case of multiple instantiations of- a transaction priority value, and common code).

- the result flag. Procedures SEND and RECEIVE allow a task

to delay further execution until at least 7
The esut pramter s psse by one of the logical addressees passed as aT h e e s u l p a r m e t e i s a s s e b y p a r a m e t e r t o t h e c a l l i s i n v o l v e d i n areference in the cases of PUT and GET , and transaction. Up to ten logical addresseesby value in the other two cases. In this can be s pe c if ied ( th is is an arbitraryway, the communications service can update limit), and the one that was involved in athe flag when the transaction has
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transaction is returned as an output Transaction Examples
parameter. Also included is the
capability to specify a timeout value, When an active side request to initiate a
which is the amount of time after which transaction is made to the communications
the requesting task wants to continue services, the processor-level database is
execution, even if the logical consulted for information about the
addressee(s) specified are not involved in logical addressee specified in the
a transaction. This implementation of the request. If information is found, the
communications system only remembers transaction is initiated by performing a
whether or not a logical addressee has memory-to-memory move if the logical
been involved in a transaction, and not addressee is in the same processor as the
the number of transactions if more than active requestor, or by performing the 1/O
one has occurred. Once a task is on the local bus otherwise.
activated by virtue of a certain logical
addressee having been involved in a If no information about the logical
transaction, no further tasks can be addressee is found in the processor-level
activated for the same logical addressee database, a request block (and any
until another transaction with it has associated data) is sent over the local
occurred, bus to the interface processor on the

system bus. The communications software
Use of an active/passive pair like in the interface processor consults the
PUT AND WAIT and RECEIVE can accomplish subsystem-level database to determine the
not-only a transfer of data but also a subsystem location o f the specified
process synchronization. A common use of logical addressee. If no such information
such a pair by other operating system exists, then the logical addressee has not
functions in this implementation is as a been declared to the system. and an
semaphore. appropriate message is sent back to the

requesting processor so that the
Database Issues requesting task can be notified.

Otherwise, the interface processor
The overriding concerns in the design of initiates a transaction on the system bus
the communications system database are the to the subsystem in which the logical
conservation o f memory and the addressee resides. Upon receipt of the
maximization o f speed. The philosophy system bus transaction by the interface
adopted was that each processor's database processor on the remote subsystem, the
would contain enough information to resident communications software consults
initiate the 'next step" of an its processor-level database to determine
interprocessor transaction. Two types of the last leg of the outgoing transmission.
databases were defined - the Again, if no information. is found about
processor-level database and the the logical addressee (due to a recent
subsystem-level database. deallocation, for instance), an
The processor-level database, resident in appropriate message is propagated back to
each processor, contains information about the requesting processor. Otherwise, a
each logical addressee that has been local bus transaction is initiated on the
declared in the subsystem with a scope of remote subsystem, in which the required
SUBSYSTEM -ONLY or GLOBAL. Additionally, data is sent to or read from the processor
information about each logical addressee in which the logical addressee was
declared as PROCESSORIONLY is contained declared. Results (and data, if
only in the processor in which the logical necessary) are then propagated back to the
addressee was declared. The information requesting processor over the same path as
contained in the processor-level database the outgoing request.
is sufficient to fully complete
transactions involving logical addressees Fault-Tolerance
in the subsystem. The processor-level
database contains no information about In order to ensure that an active side
logical addressees declared in other requestor always receives a result other
subsystems. than PENDING in a finite amount of time

when inter-subsystem messages are
The subsystem-level database, resident initiated, a communications task monitors
only in processors having interfaces to f or the timely completion of the
the system bus, contains information about transaction. When no response is received
each logical addressee that has been after a certain amount of time, the
declared in other subsystems with GLOBAL requestor's result flag is set to FAILED.
scope. The information contained for each This sort of monitor philosophy is also "4

such logical addressee is simply that employed at the system bus interface
which is required to forward a message level, where, after certain timeouts,
across the system bus to the interface attempts are made to propagate failure
element o f the subsystem on which the messages back to the initiating processor.
logical addressee resides. '

AS far as processor or subsystem failures
are concerned, the focal points of
fault-tolerance are the system bus
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interface processors in each subsystem. system. Users are responsible for
When a processor in a subsystem is ensuring that objects required to be
starting or restarting for any reason, the passed through the communications system
interface processor in its subsystem is are contained on word boundaries in their
consulted for current processor-level representations.
database updates, so that the initializing
processor can be aware of logical Another limitation is that non-contiguous
addressees declared in its absence. This data cannot be transferred in the same
implies that the interface processor transaction. An implementation that

itsef mst b falt-tlernt. lthugh buffers the data can collect it and then
tisl immus entto faulttleat cmuatogh transfer it over the bus. Additionally,
sythis impemenationcont communcration in the case of PUT, the communications
sycste oes nal-ot eacnt f or interface system is unusable with dynamically
proceso fauit-erace (foesor cassti declared data that might not be present a

whichrthe iterfaqes procso mus short time after the call to the

rmpestart, g eciqules exlthading f communications service is made. Again,

course, hard failures of the interface bfeigtedt hnterqeti
processor will cause isolation of the made would prevent this limitation.

subsystem in either case, but isoft Expandabilit to Rendezvous-like
(recoverable) failures or power transients Cntut
could be handled by employing techniques Cntut
such as critical data buffering in a The Logical Addressing communications
non-volatile memory module within the system provides services which could be
subsystem or on the interface processor. used as primitives to build a system that

provides rendezvous-like constructs for
The communications system depends on other Use between distributed tasks or
parts of the operating system to inform it distributed Ada programs. Implementations
of the loss of some system component (a similar to McDermid's rendezvous methods
processor or entire subsystem) or of the (McDermid82l or Wellings distributed Ada
deallocation of some software elements and program communication (Wellings841 are
their associated logical addressees. Once fairly well supported by the constructs
notified, the communications system provided in the current implementation.
disseminates the deallocation information Adpigscasytmnlueicrig
across its distributed database, much as Adpig scasytm nlue icrig
is done in the case of logical addressee the penalty of the associated overhead,
declarations. Because of the database and a trade study analysis of the

structure, loss ( or deallocation) of a Comparative virtues of different levels of
processor or subsystem only affects the implementation would have to be conducted

subsystem-level databases in the remote to determine the best approach.
system bus interface processors, and the Reurnalitr-ocsr

procssorleve daabass in the communications to use such constructs in
processors in the subsystem on which the an embedded system with time-critical

lossoccured.operations could prove to be disastrous

Implementation Issues for certain applications. The aesthetic,
maintainability, and correctness rewards

An aspect of the architecture that had to be gained are well-documented, but

some influence on the design of the unless a system can meet its performance '
communications service was the type of requirements such rewards are meaningless.
local bus employed. Since the local bus
has direct memory access capability and Major Weaknesses
speed of transactions was of significant
concern, an approach was developed to use Other than the limitations discussed in
direct memory access to read and write the Implementation Issues subsection, this
directly from and to the users' databases communications approach contains at least
with the local bus. This has the two other weaknesses that merit
advantages of saving large amounts of time discussion. The first and most
and space that would be spent buffering significant weakness is that the Ada
data at each end of a transaction but checking mechanisms are totally
introduces certain weaknesses to the circumvented when data is moved directly
overall communications system (which are to a database via direct memory access
discussed in a subsequent subsection), as techniques. No type- or range-checking is
well as certain limitations, conducted, so all data obtained through

one limitation is that the granularity of the communications system must be regarded
the size of data passed by the as "unsafe data", and such security must
communications system is dictated by that be provided by the users. In military
of the local bus itself . In this avionics mission computer systems,

implementation, the bus works with 16-bit however, such direct memory accessp
words (up to 4096 at a time), so that no techniques are not only commonplace, but
data object smaller than one word can be essential f rom a performance viewpoint.

separately moved by the communications
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Even though run time checking is disabled, a kind of preprocessor for Ada source code
compilation time checking still exists, so which replaces entry calls and accept
the integrity of the source code is statements in Ada source code by some
maintained, specific procedure calls. These procedure

calls can perform the rendezvous that the
Another weakness is the violation of the original entry calls and accept statements
Ada task data sharing principles. When intended to do.
the communications system asynchronously
updates the result flag provided by a Fundamental considerations
requestor (as can be the case with PUT and
GET) or any data area designated in a What an Ada rendezvous does: Ada supports
request, the assumption stipulated by the concurrent r-e--aT time processing by its
Ada Reference Manual [DOD83] in section program units of tasks. The
9.11 that a shared variable is not updated synchronization (rendezvous) between two
by some task when another task reads it tasks is achieved by a hand shake of an
between synchronization points is entry call and an accept statement in the
violated. The effect of such an two tasks respectively. Not only can the

assumption allows Ada compiler synchronization be achieved by means of
implementations to retain shared variable the rendezvous, but also data transfer A'
values in processor registers between Ada between the two concurrent running tasks.
synchronization points, creating a case in The parameters of the entry call and
which a task may not realize when a result accept statement serve as the vehicle of

flag has been updated in memory. The the data transfer.
communications system attempts to
accommodate this possibility by the Purpose of ARET: Since up to now no

inclusion of a function to access result e Etve comp-l-rer that supports Ada for

flags that guarantees access to memory for distributed targets is available, a way of

its evaluation. Elimination of the PUT achieving distribution without direct

and GET utilities (leaving PUT AND WAIT compiler support is desired. ARET is

and GET AND WAIT) would alleviate - the designed to do this by:
shared -variable problems with result
flags, but at the expense of causing tasks Eliminating all entry definitions,

to wait for the completion of I/O in every entry calls and accept statements from

request. the Ada source code.

Major Strengths Using calls of procedures from the
communications package to do exactly

The major strengths of the Logical what the eliminated entry calls and

Addressing approach to Ada program accept statements should do, that is,

communication are as follows, the rendezvous between two concurrent
running tasks would be achieved by the

1. An off-the-shelf Ada compiler for a procedure calls.

single program per processor
implementation is all that is required
to support the communications. This Critical Matters in Rendezvous Emulation:

is especially important with the Two critica-ritems were considered in

current lack of maturity in Ada designing the rendezvous emulation:
compilers for embedded systems. 1. Means -- by what means can we achieve

2. The system is reconfigurable and the emulation? A combination of calls of

flexible to run-time changes in the two procedures, PUT AND WAIT and RECEIVE,

processing environment. Future from the communications package is used to

enhancements to embedded systems accomplish the emulation. Figures 3a and

approaches such as task-level 3b show the working rationale.

allocation and deallocation are 2. Place -- where does the emulation
supported by the communications rendezvous occur? An Ada rendezvous has
approach. an asymmetrical structure. That is, the

3. The communications system specified task making entry call knows in which task

meets the requirements given in the the called entry is, while the called

first section of this paper, and is entry does not know which other task is

thus useful in an embedded avionics calling it.

environment. We do not normally care how an Ada
compiler arranges for a rendezvous

The Ada Rendezvous Emulation Tool achieved by entry call and accept
Emulationstatements. However, when we want to

replace entry call and accept statements
by procedure calls to achieve a

We developed a tool to take advantage of rendezvous, we have to create a place
the communications package features to where the rendezvous can occur. The
implement distributed tasking. ARET, the reason is that when a call of a procedure

Ada Rendezvous Emulation Tool, is actually is made, the actual parameters are given
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Figure 3a: The Original Rendezvous

ORIGINAL RENDEZVOUS:

TASK A TASK B

I concurrently running

------------ stop here for stop here for-------------
call for I the response the call from accept call]
entry b I of TASK B other TASK for entry bf
of TASK BI

I - ------------------------- I
I when both ready, the I I

....->1 rendezvous is made I< ------ I
------------------ ------------------------ -------------I

I continuing concurrently running

Figure 3b: The Emulated Rendezvous

TASK A TASK B

I concurrently running

call PUT AND WAITI Icall RECEIVE to wait for
]to transler Uata I-------------------------- >data transferred from
Ito TASK B I other TASK

I

Icall RECEIVE to waitl Icall PUT AND WAIT tc
Ifor response from 1< -------------------- transfer infOrmation
[TASK B I !back to calling TASF

I continuing concurrently running

explicitly by their names which also Implementation
brings information about their types,
their origins, and so on. Obviously, the According to the concepts described, we
asymmetrical structure of the rendezvous can divide the description of the
prevents us from using procedure calls to implementation of ARET into three parts:
respond to another task's call directly. Setting up the DATA STATION, emulating the
For that reason, we create a place called entry call, and emulating the accept
DATA STATION. The procedure calls of statement.
PUT AND WAIT and RECEIVE from the calling
tasV will send and get data and other Settin up the DATA STATION: We define
rendezvous information from the the DATA STATION as a pac~kge and set up
DATA STATION, while the procedure calls of data structures corresponding to each
RECEIVE and PUT AND WAIT from the called entry in the DATA STATION. Since any
task will also get and send data and other entry is defined in a task specification,
rendezvous information from the actually this part of the tool
DATA STATION. Figures 4a and 4b shows the preprocesses task specifications in the
difference between the original rendezvous source code. As soon as the data
and the emulation rendezvous, structures for an entry are set up in the

DATA STATION, the entry definition is
eliminated from the source code by adding
a comment sign (--) before it.
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Figure 4a: A rendezvous achieved by entry
call and accept statement

TASK A TASK B
data and requiring rendezvous
information is sent to TASK B

I I -------------------------------------- >1 I
IENTRY CALL I I ACCEPT STATEMENT1
I 1< ------------------- I I

somehow, data and answering
rendezvous information is given
back to TASK A

Figure 4b: An emulated rendezvous
achieved by procedure calls of

PUTANDWAIT and RECEIVE.

TASK A TASK B

IPROCEDURE CALL OFI IPROCEDURE CALL OFI
I PUT AND WAIT I I RECEIVE !< ----
I -- I----------------
[PROCEDURE CALL OFI IPROCEDURE CALL OFi

-- >I RECEIVE I I PUTANDWAIT I

get answering rendezvous data and answering
information and data ---------------- rendezvous information
from DATA STATION I are sent to DATASTATION!

I ---------- :---------------I<I------------------------I0
I DATA_STATION I

-------------------------------------------------------------
data and requiring rendezvous I get requiring rendezvous
are sent to DATASTATION ---------------- information from DATASTATION

The data structures for each entry are set communications - package, and this
up according to the needs of the procedure procedure is called in the package

calls of PUTAND WAIT and RECEIVE, and the body of DATA STATION. Figure 5 shows

types of these data structures are how the data -structures are devised

imported from the communications package. for an entry.

The data structures for each entry

include: -An object that represents the amount ....

-A sequence of object declarations: of data to be transferred by the

Each object corresponds to one of that entry: According to the requirements

entry's form parameters. These of the PUT AND WAIT procedure, this

objects will be used to contain data object should be-WORD COUNT TYPE whichtransferred from other tasks. is defined in the comiunications

package. The value of that object is

-A sequence of object logical addressee evaluated in DATA STATION by

declarations: Each accumulating the size -of all the

object logical addressee declaration parameters of that entry. The program

corresponds to an object which is in segment in Figure 6 shows how that
turn corresponding to a form parameter object is devised.

of that entry. The reason for setting

up this data structure is that the

PUT AND WAIT procedure will transfer
the data to a physical address through
its logical address. The connection
of a physical address to its logical

address is achieved by the procedure

DECLARE LOGICAL ADDRESSEE of the
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Figure 5

entry A (X1: integer; with COMMUNICATIONr
X2: boolean); use COMIIUNICATION-.

package DATASTATIO4 is

A X1 integer;
A X2 boolean;
A X1i LA: LOGICAL_ADDRESSEE_-TYPE:-1;
A7X2_LA: LOGICALADDRESSEE TYPE:-2;

end DATA_STATION;

package body DATA-STATION is

DECLARELOGICALADDRESSEE(A Xl LA,
A XI'ADDRESS);

DECLARE LOGICAL ADDRESSfEA X1 LA,
A X2'ADDRESS);

Figure 6

with COMMUNICATIONS;
use COMMUNICATIONS;
package DATASTATION is

WORDSIZE A: WORD SIZE TYPE;

end DATASTATION;

package body DATA STAION is

WORD SIZEA:-O;
WORDSIZE A:-WORD SIZE A +

WORD -COUN'T_TYPE(AXl'SIZE/WORDSIZE);
WORDSIZE A:-WORD SIZE A +

- WORD OCUNT_TYPE(AX2'SIZE/WORDSIZE);
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Figure 7: DATASTATION Queues

QUEUE 1: monitor the QUEUE 2: monitor the

calling tasks called task

--AS--------------- ----ASK---TASK Al - ----- TASK B

---------- I--------
TASK A2 - ---------- TASK B

---------- I--------

--- -------------
TASK An - - - - - - - - - - - TASK B

------------------- ----A-----

-Two logical address arrays: These are 2. Form a procedure call of PUT AND WAIT
used as queues to solve the situation which will transfer the data in tFie result
of multiple tasks calling an entry of (1) to the corresponding data
simultaneously. Each task calling the structures of the called entry in the
entry will have its first actual DATA STATION. As soon as the transfer is
parameter's logical address put into finished, this procedure call will set a
the queue used to monitor the calling flag for the logical address on which the

tasks, while the called entry's first data is transferred.
form parameter's logical address will

be put into the corresponding position 3. Form a procedure call of RECEIVE which
in another queue used to monitor the is used to wait for a flag given by the

called task. Figure 7 shows the two called task. When that called task gets
queuesc the data transferred from the calling

-An object ot logical address type, for task, that flag will be given by areference, we call it procedure call of PUT AND WAIT in the

ACTIVATED REASON: ACTIVATED REASON is called task which is usea to- emulate the

used as actual parameter of RECEIVE to called w c ssatem uae t

get a logical adiress value which corresponding accept statement.
shows the transferred data reaching Emulatinq the accept statement: Emulating
that logical address. Hence, weaccep statement is-very similar to
determine whether the rendezvous be emulating the entry call, but there are
successful by ACTIVATED REASON's only two steps.
value.

1. Form a procedure call of RECEIVE which
will scan the queue used to monitor the

called task. As soon as some data is

transferred to the called task, the

Pai of the entry call: We may use a RECEIVE procedure will capture the logical
and RECEIVE, combined with some lop,casefrom which the data is transferred

and if statements, to emulate what the and put that logical address into its
entry call should do. The kernel is actual parameter ACTIVATEDREASON.

formed from the procedure calls of 2. Form a procedure call of PUT AND WAIT.

PUT AND WAIT and RECEIVE. The detailed According to the logical addresi found in
implementation can be divided into three (1)rin To the PUT AND WAITstp:(1) in ACTIVATED REASON, the PUTANDWAIT ,
steps: will send back data to that- logical

1. Set up data structures for each actual address to inform the calling task that

parameter of that entry call in the transferred data is received. "Y
DATA STATION, and form a sequence of
assign statements which transfer the Implementation Problems
values of actual parameters to their

corresponding data structures in The idea of ARET is easy to understand,

DATA STATION. This is done because the while the implementation of ARET is far

procedure call PUTAND WAIT can only from easy to achieve. Since Ada is one of

transfer data in consecutive locations,
while the actual parameters may be defined the most complicated programming

in different places. Therefore, before languages, it seems impossible to
the procedure call PUT AND WAIT, we should implement ARET without making constraints

- pameters into on the use of the language, a situation
copy the actual pa that has already attracted negative

consecutive locations in DATA_STATION.
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attention from researchers in this field -A procedure call,
(see VolzFC). When entry definitions are DECLARE LOGICAL ADDRESSEE, is set up
eliminated from the source code, for for eacF pair of logical and physical

example, how can the entry's attributes addresses that are declared.
and representation clause be used? We
still face some other problems such as the
processing of nested tasks, the processing In other words, if an entry has n
of renamed tasks and entries, the parameters then there would be at least 2
processing of task objects created by an * 2 * n + ( 2 * n ) * ( procedure calls ).
allocator, the processing of family
entries, and so on. The most difficult For each accept statement there will be...
problem is the type problem, not only in
the sense of task types, but also the -Two declarations of type
entrv parameter's type. LOGICAL ADDRESSEE ARRAY TYPE which

One of the key jobs of ARET is to create hold the logical address of an entry.

DATA STATION and set up data structures
for intry parameters. If the parameters -One signal to ACTIVATED-REASON.

are of predefined types, things are
straightforward. But if the parameters
are of user defined types, then we should For emulating the rendez-vous there will

recognize them and copy them to be...

DATA STATION. If the parameter's type
defiiiitions are derived through multiple -One declaration for the result of

levels of user defined type definitions, PUTANDWAIT.

then we should look back upon each level
of user type definition until we reach the -The declarations of the total word

base type and copy all the related type size of the data that needs to be

definitions to DATA STATION. If the types transfered every time the entry call

of entry parameters are derived from with is made.

clauses and use clauses, then the
situation gets even much more complicated. For each entry call and accept statement

Facing these problems, we have three which occur as a rendezvous, then thereFaigteepoles' ehv he will be a "mirror" pair of procedures
choices: making ARET more complicated so calle P ANDrWAIT and RE nd

that ARET can process these problems, called: PUT-AND-WAIT and RECEIVE and

giving more constraints on the use of the RECEIVE and PUT AND WAIT. This will

language, or, the third choice which is a include the lines where the the formal or

trade off between choice one and choice actual parameters are copied.

two in that some more sophistication is
added to the tool to reduce, but not Consider the example of emulating a one

eliminate, the constraints, line entry call in Figure 8:

Other problems develop due to the simple
fact that the tool creates code that
emulates, rather than directly
accomplishes the rendezvous.
Specifically, the size of the resultant
source increases, the rendezvous
synchronization mechanism does not work as
expected, and renaming of entries can not
be done.

Increased size of source code: With the
tools from the communications package,
several procedures are used for each entry
and accept statment in the source file to
implement the rendezvous. Consider the
following for an entry and the
corresponding accept statement.

A. For each entry declaration and each
parameter in each entry, there will be...

-One formal and one actual declaration
for each parameter to hold the
physical address.

-Two logical address variables are
declared, one for each formal and
actual parameter.
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Figure 8

It is obvious that even a single entry
results in a fair increase in source:

Original Ping.enterping ( signal ); -- one line entry call.

Emulation

Entryenter_pingalpa :- signal; -- copy actual parameter
loop
PutandWait ( Entryenterping_flla, -- formal parameter.

Entry enter ping al pa'address, -- actual parameter.
Wordsizeenterping, -- total wordsize.
1, -- priority.
Enter ping result ); -- result.

Case Enter ping result is
when Successful -> exit;
when others => null;

end case;
end loop;
loop

receive ( Entryenterping out la,
1.0,
enterping activated reason );

if enter ping activated reason-- entry enter ping out la(l) then
Signal :- entryenter-pingalpa; -- copy Back the value.
exit;

else
null;

end if;
end loop;

and the declarations will be

Entry_enterping fl la : LOGICAL ADDRESSEETYPE 1;
Entry enter ping fl-pa boolean7
Entry-enter-ping-al -la LOGICALADDRESSEETYPE 2;
Entry enter ping al pa : boolean;
Entryping activateJ reason : LOGICAL ADDRESSEE TYPE;
Entry-ping-out la 'LOGICAL ADDRESSEE ARRAY TYPE(l..I);
Entry ping-in Ta LOGICAL-ADDRESSEE-ARRAY-TYPE(l..l);
Word size enter ping : Word-count type;
Enter pingresult : Result type;
DECLARELOGICALADDRESSEE T entryenterpingflla,

entry enter ping fl pa'address );
DECLARELOGICALADDRESSEE ( entry-enter-ping-al-la,

entryenter ping al pa'aedress );
Wordsize enter ping : word count-type T ent'y -enter pine I pa's:p

- -word size !
entry_enterpinginla(l) := entry enter pin_ Uf _3;
entry enterpingout_la(l) entry_enterpinc_ alla;

Differences in synchronization: Consider case 1: ( they meet

t-e -I--Tam-in Figu6re 9 which shows the
nature of the "passive side" and "active We can see that in the emulation task A

side" services of the communications always waits for task B to call it,

package used in the rendezvous. otherwise task A cannot continue. On the
other hand, task B will not stop even
though it is ready to start the

rendezvous .

Problems arise in two areas, the beginning case 2: ( they leave )
and the ending of the rendezvous:

As opposite to when they meet, task A is
left before task B is waiting and receives
the message to leave after task A is on
its way to being active again.
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Figure 9

Ada rendezvous:

task body A is task body B is

accept AE do A.AE;

end A; end B;

end A;

Emulated rendezvous:

task A; task B;

RECEIVE PUTANDWAIT

PUTANDWAIT RECEIVE

end task A; end task B;

Figure 10

activated receive put
task A - [-------- ---------------------------

I rendezvous I
activated I

task B - - - - -------------------------------
put receive

This follows the timing diagram in Figure there must be an entry name but since
10. entry names are discarded then the feature

of renaming is lost. Also because entry
names are discarded, overloading entry

The reason that the rendezvous timing is names is, too, a problem. Procedure calls
off is because the put never waits while and entry calls are made in the same
the receive has to receive the information structure, therefore the ambiguity will

* and copy back the values, arise in cases such as default value

Sa is uni e tb According to parameters. For instance:
'~~~ Re a in s n mleme table: A c r i g t

D task "...entries may be procedure AAA ( X : TI;

overloaded both with each other and with Y: T2;
subprograms." However, in ARET, entry Z : boolean :- false );
names are discarded and logical addresses entry AAA ( X : Tl; Y : T2 );
are introduced instead. Every entry call
uses the same two procedures, and the only if the call is made such that
difference between two entries is the
logical addresses that are passed in the AAA ( Xl, Y1 ); where Xl, Yl are of type
parameters. Therefore, rename an entry, TI, T2, respectively.
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Currently ARET works within the [Gehani84b]
constraints outlined in this section. The
continuation of ARET's development is to Narain Gehani and T. A. Cargill,
conduct case studies of the use of the "Concurrent Programming in the Ada
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DISTRIBUTED ADA: EXTENDING THE RUNTIME ENVIRONMENT
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Abstract application code via the RTSE. Unlike the components of

the RTL and XRTL which are designed and developed in

NASA's Space Station will be the largest distributed Ada, execution speed requirements and hardware

system ever undertaken. For the project NASA h., selected dependencies for the RTK will require unique, processor-

Ada as its programming language. We are investigating the dependent optimizations of each RTK.

use of Ada for distributed programming as it will be required The RTL is responsible for the minimal set of runtime
for the Space Station. As a framework for this work we are
using the Clear Lake Model for Runtime Support support required by the Ada Language Reference Manual,

Environments. ANSI Mil-Std-1815A. In contrast, the XRTL routines
provide functionality beyond that defined in the Reference
Manual. It consists of runtime support modules specifically
tailored to the requirements of the applications and systems
software. For example, a particular scheduler may be needed

I. Introduction for one subsystem, while another subsystem may require
multi-level security. Some of these subsystems may need

Distributed processing is a major concern for the performance monitors and diagnostic aids. To provide
Space Station Program (SSP) because of its multitude of selectability and configurability, some library functions will
ground and space based, interconnected systems. The NASA ha-.'e multiple implementations. Some of these functions are
Johnson Space Center (JSC) is investigating the Clear Lake for utilization on different processors. Others simply have
Model for Ada Runtime Environments as a framework for the diverse operational requirements and constraints In spite of
SSP. The University of Houston -Clear Lake (UH-CL) High these different requirements, most of these RTSE services
Technologies Lab and GIIG Corporation are researching the should be transparent to the applications code.
model and developing a proof-of-concept prototype on the
JSC Distributed Ada Testbed. 2.2 Clear Lake Model

This project is based on findings of the Joint The Clear Lake Model for RTSEs addresses the
NASA/JSC UII-CL APSE Beta Test Site team while studying distribution of any Ada entity (tasks, variables, procedure,
the issues of applying and evolving the toolset for the Minimal etc.) over geographically dispersed systems IRandall). Using
Ada Programming Support Environment (MAPSE) to large, the XRTL approach, the language is "extended", as
complex, nonstop, distributed applications like the SSP. prescribed in the Language Reference Manual, by creating

services and resources to provide the necessary additional
2. Background functionality, specifically for distributed processing.

Recognizing the lack of definition of an Ada Runtime The context of execution for distributed Ada programs
Support Environment (RTSE). the Beta test site team will include execution on machines that are geographically
developed a conceptual model, the Clear Lake Model for Ada dispersed, such that communication can not be via shared
Runtime Support Environments. defining an extensible Ada memory or a shared bus. This situation implies the need for a
RTSE that can be used for single processor, multiprocessor, model that supports distribution of entities over the entire
and networking targets. The model proposes an interface to a distribution spectrum in as uniform a manner as possible.
virtual Ada machine for the object code of the applications based on cooperating runtime systems that communicate by
oftiare and the command language. messages. In the Clear Lake Model, this support is provided

by 'surrogates". Surrogates are independent "processes" within
2 I Runtime Support Environment each runtime system that reside on each of the distributed

processors in the target environment. They manage the
In the Clear Lake Model, between the interface to the cooperation required by the distributed programs. Activities

sirtual Ada machine, the processor, and the associated that require remote access go through these surrogates in a
hardware resources. are the following three types of RTSE manner transparent to the applications program. These
software resources: the runtime kernel ,RTK), the runtime remote accesses range from references to individual program
hbrar. IRTi. and the extended runtime lilrary (XRTI.). variables that are located on another machine, to library unit

references that are likewise remotely located, The surrogate-
The RTK masks the idiosyncrasies. i.e.. the machine based approach handles the entire range, in a consistent

dependencies. of the particular processors from the RTL. and manner.
XRTI. The RTK is also responsible for sequential
management activities that permit the processor to service the
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For instance, a reference to a remote]ly-located memory/processor organization, binding time (i e. , whether
variable requires message to be sent to the RTSE of that it occurs at compile time, between the front end and back end
remote machine. That RTSE has its own surrogate process, of compilation, at link time, or at runtime), and the degree
which receives and "parses" the incoming message. Once of homogeneity/heterogeneity, of the processors in the system.
parsing is complete, the local surrogate process dedicates a Consideration of these along with the needs of the SSP leads to
local agent to perform the action indicated in the message, for the following conclusions. Due to its many and highly
example "get the current value of variable X". This local dispersed subsystems, the idea of shared memory is
agent is scheduled for execution like any local task, and when impractical for the SSP and thus it will be a loosely coupled
dispatched, performs whatever steps are necessary to fulfill system. We envision using DIANA, the "standard"
the request. Such activities include determining the location intermediate language for Ada, as the princtple mechanism
of X (e.g. , what package it is in), getting the current value, for implementing the distribution scheme. Therefore most of
and sending a message to the originating RTSE containing binding time will occur between the front end and the back
that value. Once the agent has finished, it is returned to a end of the compilation when the DIANA becomes available.
pool for further use at a later time. Regarding the last of these dimensions, the SSP consists of

many different subsystems and will have a high degree of
At the other end of the distribution spectrum, the processor heterogeneity. During its exisience of thirty years,

Surrogate approach still applies (thus the consistency and probably longer, the SSP will need to add new and/or
mentioned earlier). For example, a call to a remote different hardware technology to acc ommodate evolving
subprogram can be supported in the same manner as a remote needs. This is one of the main assumptions upon which the
variable reference: a message is sent to the remote RTSE, the Clear Lake Model is based.
surrogate manager dedicates a local agent to make the
subprogram call and, upon return from the call, a message to In addition to the above three items, there are several
the originating RTSE is returned to allow the caller to other matters relevant to any discussion of distributed systems
continue. Buffering of parameters would be done in a [McKay]. The first of these is the perception of time. The
manner commensurate with the semantics specified by the tssue of time involves more than the minimal set of guarantees
Reference Manual. This would require more messages, but that Ada provides for time or that Ada has no requirements
would not require additional functionality orthogonal to the on upper bounds for time. The main concern here is that it is
surrogate-based approach. Note that the activities of a not possible to guarantee that all of the spatially dispersed
"local" agent may in turn generate further messages to points within the system will be synchronized. Time will have
remote- sites, in order to execute the current request. This to be approached from totally different control perspective, It

may continue indefinitely, until all references are satisfied, is assumed here that the underly'ing network system will take
care of most of the time synchronization problem, but still

4A surrogate is implemented as a task of a Particular the designers of any affected application programs will have to
Ada language task type on each of the distributed processors be aware of the problem and the constraints it may cause.

* that manage the remote references. A network is assumed for
communications since the machines involved may be Another issue is the reliability of communications.
geographically separate (e.g. , in orbit and on the ground). Again the network is assumed to provide adequate
The pseudocode for the surrogate task type Follows: communications and related status information. The designer

in this case can then proceed knowing that either any required
begin communications will be carried out or that notification of its

loop failure or inability to complete will be indicated. Although
sel ect the ISO/OSI model will sufficiently handle most of these

accert a request to send a network communication services, it is recommended that the
message to a remote cite Ada rendezvous be added for the purpose of fault tolerance.
this may -cme from in

rorm a io"i" In considering what the network will provide, we have
agent a110oated to Fervi-e a tried not to make over-simplifying assumptions. The
remote reques t assumptions are driven by what we feel are reasonable beiefs

or about what network can and should provide. At the same
accept an Incominiz message from a time we have tried not to circumvent any of the hard issues b%

remote site the use of judicious, unrealistic assumptions. Such an
dedicate a local agent to servic'e example is the notion of a fail-stop processor. A processor

the request does not fail/stop nicely in a critical situation. It fails in a
end selecO flaky way. It does not surrender buses voluntarily or act in

end loop any other desirable manner. The design therefore must
end Surrogate encapsulate any such critical situation. It must provide

firewalling in such a situation so that the processor involved
can be forced off the bus if that is the desired affect. We 1

3. Distributed Systems and Processing consider the above network systems assumptions to be
consistent with those of the SSP.

There are several issues involved when considering
distributed systems. Some of these are unique to distributed Safety and security are another important aspect of
systems. But others are derived from network systems, which any distributed system (or for that matter any system upon
are a restricted form of distributed systems It is assumed which life and property depend). The system must guard
that the SSP will have an underlying network system itself against any action, intentional or accidental, that
connecting the many different interactiing subsystems. attempts to compromise its integrity. This includes

considering safety and security requirements at each point of
The following items have been noted as three the system's lifetime. A safe system is able to monitor its

dimensions that paramleterize distributed system lVolzl situation and detect faults that enter the system state vectors
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as soon as possible, firewall their propagation, analyze their wshich accommodate most of the hardware specific design
effects, and recover safely. The use of Ada and a well decisions. The disadvantages include increased overhead
designed RTSE provide exceptional assistance towards this where ever distribution is a possibility and no way (or at best a
goal. very limited way) to specify how a program can provide safe

or degraded service following a processor failure.
An additional item concerning Ada and distributed

systems is that Ada does not need to be modified for use with In the second approach, the programmer specifies
distributed systems. It is not that there are somec everything concerning distribution within the program
enhancements or improvements that we would like to have. [K night]. Thus the visible (or programmer-control led or non-
But we have not found anything fundamentally wrong with transparent) approach makes distribution totally the
using the current version of Ada for distributed systems. responsibility of the programmer. Within the program, there
Basically we feel that the RISE concerns are more important is code to address all of the distribution concerns, especially
than the language issues. those regarding recon figuration. The advantage of this

approach is the minimal overhead, and then only where it is
One assumption we do make is that the current necessary. Also services provided after a failure need not be

version of the Ada language need not be modified for use in the same as those provided had no failure occurred. Thus 'k
distributed systems. It is not that there is no room for degraded service can be accommodated. The disadvantages are
improvement for the language in this area, but we have not that the programmer must provide for all the possible
found anything fundamentally wrong or too cumbersome with distributions or assume the system can handle whatever is not
the use of Ada for distributed programming. specified. Also, the code generated will probably be machineS

specific, thus possibly limiting its use.
4. Methods of Distribution

The Clear Lake Model strives to combine the merits of
For any system there are services and resources both approaches. Those services and resources required of the

provided for use within the system. These constitute two distribution scheme that are not unique to any application
different aspects of the same thing, i.e. , the available program are handled by the system, i.e. , the RrSE. This is
facilities. Services are the active element (e.g.., timing the situation for which the Honeywell approach is
functions) nod resources the passive element (eg. . memory), appropriate. And those distribution services and resources
If a set of these services and resources arc to be shared by that are specific to any one application program, e.g. , ~
more than one application program then access to them shouldI providing its own unique degraded service, are handled from
be provided through the system software. If on the other within that application program. This is the situation for
hand, only one application program needs a set of services which Knight's approach is appropriate. If a programmer is
and resources, then that application should provide access to concerned about how to distribute ihe program, what
those services and resources. Shared resources and services response to make to certain failure, or that the default%
then are provided via the system, unique resources and distribution and its associated overhead do not meet
services are handled within the application making use of requirements, then providing for distribution becomes part of
them. the program implementation. Otherwise the program is

implemented without regard to distribution.
4. 1 Distribution Visibility

The difference between Knight's approach and that of
Under the Clear Lake Model, distributed processing is the Gear Lake Model is that Knight essentially uses

provided through a set of services and resources. Again, that dynamically allocated Ada tasks as the means of expressing
part of the distribution that is unique to the application responses to failures. By "dynamically allocated", we mean
should be prov ided by the application while that part of the that the predefined constructs for dynamic allocation (i.e. ,
distribution that is shamable. should be provided by the system. "new type mark") are used. In contrast, the Clear Lake
in this case the runtiime support environnment. Model makes direct use of the underlying runtime system

(RTS) to interrogate the state of individual program
There have been two basic approaches to the interface components and the system as a whole, as well as to direct the

be-tween application programs and the system in respect to specific response. The access to the RTS is provided by Ada
distribution. We call this distribution %isibility based on packages that are imported from the XRTL. These RTS
'shether a program knows internally the distribution scheme. supported fault tolerance capabilities are required, regardlessa
The first approach, taken by Honeywell lCornhill] lKamradl, of the approach advocated, since the application program

* ~assumes that the program is unaware of any distribution, cannot be expected to provide them. The Clear Lake Model ~ A'
*especially in light of' fault tolerant reconfiguration. This is merely makes them available to application programs.

transparent distribution because the system handles all aspects
of the distribution, reconfiguration, etc. and the program is Additional, Knight's approach does not address those t '

not aware of any of the distribution. The Honeywell approach situations when the user specified distribution can not be
does allow for some limited control (non-functional) over some allowed. In some situations, when the application
aspects of the distribution through their specification written programmer has specified the distribution scheme, system
in the Ada Program Partitioning Language (APPI.). The requirements and responsibilities may overrule those 0
advantages are that the software can be designed and specifications. When issues such as safety and security are
implemented without regard to distribution, thus providing involved, the system may have to cancel, or limit, the
greater system flexibility. The functional requirements of the programmer's control over distribution.
program are handled separately from the non-functional ones.
One benefit of this is obvious when the software is later Iloneywell's partitioning is deseribed by a specification
moved to another system. Because the design was done in written in APPI.. The .APPL, specification indicates which
separate stages, the functional requirements design portion of portions of the program should be partitioned onto which
the development should be minimally impacted and most distributed processors. I loney.well feels thai the APPL
changes should affect only the distributed specification, approach is better than specifying partitioning through the
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PRAGMA construct for two reasons. First, the PRAGMAs other hand, the larger the unit of distribution, the smaller
are embedded in the source and thus must be scattered the opportunity to fully exploit distributed processing which,
through out the program. This makes library unit sharing for example, affects performance. The question then becomes
very inconvenient. The APPL specification would be centrally whether the overhead is worth the benefit gained. The answer
located, making it easier to find and form a global picture of depends upon the application, only the designer/programmer
the system. Secondly, there is some concern over whether is in position to judge.
PRAGMAs are extensible to the specification of non-
functional requirements, i.e. , for reconfiguration and fault The obvious unit choice is the task.- The Language
tolerance. Reference Manual [DOD] makes references to distributing

tasks to different processors. Using this approach, anything
While we agree that PRAGMAs are not the way to that needs to be distributed is encapsulated within a task.

approach the problem of specifying distribution, we do not Individual tasks are then distributed to separate processors
use APPL. We feet that APPL does not allow a took outside through commands via pragmas or representation
the software world. Instead something else is needed to specifications ICornhilll. Others [Knight) have suggested using
represent such things as the non-functional requirements tasks but that Ada does not provide enough support for their
involving hardware and operating systems in a manner distribution. One problem with this approach is the forced
consistent with the EA/RA (entity attribute/relationship encapsulation of the desired distribution element within a task
attribute) model. We Purpose the use of DIANA and even when a task does not meet the true semantics of the
extending it by adding attributes representing non-functional situation.
requirements. The non-functional requirements would be
given in a separate specification and/or through the Another choice is that of library subprograms and
interaction with specification tools. library packages [Mudge]. At this level, the only visible

entities are library unit identifiers, subprogram parameters
After the program has been completely tested in the for library unit subprograms, and library unit packages'

host environment it is ready to begin the distribution process. visible declarations. This offers a reasoniable, but limited,
Its DIANA representation is used in this phase. DIANA is level of granularity without too much overhead which is
used because its EA/RA structure allows it to be easily relatively easy to distribute. In addition, if tasks need to be
modified by tools for distribution. Specifically this is done by distributed, then they can be encapsulated within packages
adding attributes, in this case ones representing the non- with very little semantic loss.

k 14 functional requirements, to the DIANA tree. The first of the
tools is the Partitioning and Allocation Tool. Taking the non- We have chosen to go beyond these, choosing anyit .

functional information, it maps each of the entities that the reasonable Ada entity as the unit of distribution [Rogers].
Programmer has marked as distributable to its symbolic Although there can be great overhead in allowing such a fine
location, adding this information also to the DIANA tree. resolution of distribution, the programmer has control over
When it is time to build the actual distributed system, what is to be distributed and thus can decide whether the
another tool takes the information in the DIANA tice, notes overhead incurred is worth the gains made through
the target machine resources such as the the machine distribution.
instruction set architectures, pulls in the necessary routines
from the runtime libraries and builds the load modules for While this choice requires a great deal of work from
each of the processors in the particular distribution scheme. the XRTL, we feel that if we can provide the user with this

fine a control over distribution, then he can easily scale-down
4.2 Level of Distribution to the level that the others above have suggested for the unit

of distribution. This is the so called scaling direction problem
[Haying established distribution visibility, the next [McKay). Too many times in the past, researchers and

question is at what level does distribution occur? That is, is it developers have taken the easy or most general approach to a
best to have a Separate program per processor or a single problem. Later when they attempted to move to the more
program distributed over the different processors. The difficult issues and tried to scale up their previous solutions,
separate program approach represents the old way of doing they found it difficult or impossible to proceed with their
things. Although this approach is the easier, at least in the initial assumptions and work. By tackling the difficult or
short term, with the advent of the Ada programming most all cnicompassing problems first, then it is easy to scale
language it becomes highly undesirable. Use of a single down to these easy or general approaches. A subset of the
program, specifically one written in Ada, allows for a greater effort necessary to distribute a single variable should take care
assurance of boundary/interface consistency through compile of distributing a package or task.
time checks, strong typing of variables, communications
between processors is hidden resulting in a less complex 6. Research
program, and a greater control over parallel execution isOufisstpnthdelom tofarttyeo
provided. For the SSP both levels will have to be used. Orfrtse ntedvlpeto rttp o~'~

demonstrate the Clear Lake Model was to develop a Program
5. Unit of Distribution to study the steps required for interprocessor communications

and fundamental distributed programming. The prograni is a

between processors, then the obvious question becomes which screen travels in a straight line until it encounters one of the

parts to distribute. There are trade-offs to be considered with screen's sides; there it either bounces off or is passed to I ,1
any unit of distribution. In some cases the overhead is too another screen). The Program runs between different andgreat and/or there is no possible benefit from the distribution, physically separate machines and thus different processors.
e.g., distributing individual statements. In general the The bouncing ball idea was chosen for its graphical appeal. It
smaller the unit of distribution, the greater the overhead easily conveys the notion of communications between the
required. The amount of overhead must not be so high as to processors by following the ball. For the project we are using
negatively impact the performance of the software. On the the JSC Distributed Ada Testbed, which consists of one D~ata
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General MV/8000 and three Data General MV/20W0s. The this work.
machines are interconnected via an Ethernet connection using
Data General's Internet (TCP/IP) network software.- We have begun work on the testbed with the Data

General system by looking into their system software and
The identical program executes for this demonstration their general approach to software development. The

on each of the machines in the system. A front end to the prototype will build upon the software they already have in
program allows the user to identify on which machine the place. One of our goals is to minimize any altering of the
program is executing. The user is also asked to identify which existing system software. Instead we envision augmenting the
of the display terminals to associate with the machine in software by the addition of XRTL routines and RTSE tools
question. Each machine has one terminal. Additional those specific to distribution.
terminals are given an placement order, i.e. , which one is on
the left end, right end,* or in the middle. This provides the In addition to developing the prototype we are also
program with the information it needs when the ball investigating the means and requirements for adding
encounters one of the terminal sides. Appropriately, if the performance monitoring/analysis to the system. By making
ball is at the left side of the left end terminal or the right side use of distributed resources, much of this monitoring/analysis
of the right end terminal, the ball bounces back from that can be supported solely through software without impacting
side. Otherwise the ball is passed to the next machine. More the normal performance of an application. The Clear Lake
accurately, information representing the ball is passed to the Model envisions adding these in a manner similar to Providing
Correct machine, the distribution scheme, via calls to routines within the

XRTL. Under test situations, these routines would record the
The program was built in several layers. The lowest appropriate data for use in monitoring/analysis. The routine

layer provides the interface to the communications and may also determine that to meet the extra load, extra
network software. The next layer over this one is the processing power is necessary and take the appropriate
important one for this research. It serves as an interface actions. Under non-test conditions the same routine would be
between the normal functions of the application code and the utilized but the routine would recognize the non-test situation
underlying distribution scheme. It is the equivalent of the and none of the extra activities would occur. Thus to the
virtual Ada machine for this demonstration. Calls are made to user, the same interface, i.e. , calling the same routine,
the routines in this layer for any services or resources applies in both situations.
associated with distribution. Under the scheme planned for
the prototype, these routines would be the in the XRTL. At a 7. Conclusions
high level, each of these routines does the same thing. It
takes a request and determines which processor in the system This paper has presented the objectives of our research
can best handle the service or request. into having the Clear Lake Model serve as the framework for

distributed programming for the SSP, the design decisions
Several consequences of this experience should be involved in developing the Clear Lake Model proof-of-concept

noted. We were able to prove that it is relatively trivial to prototype, and our experiences with the prototype
create routines which can call other routines on the same implementation. Although there remain many questions
processor or different processor depending upon the prevailing about the correct way to handle distributed programming,
distribution conditions if they are designed and implemented especially in relation to Ada, we believe that using the RTSE -

with some forethought. Using layers, instead of levels (as in as prescribed by the Clear Lake Model is the best current
Unix), leads to a more consistent and safe system.- By creating means for the SSP.
a hierarchy of interfaces that enforces access via the
interfaces, individual applications are prevented from using
the system services and resources in a current-machine-and-
configuration dependent way. The result is a system of
greater integrity that is easier to test, enhance, and extend. RE RNC
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Beyond Ada® Validation
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that all the features of the language are
ABSTRACT functional, but they do not test the usability

Currently, there are many Ada of these features. There are some
compilers available that have passed versions inplementations of the Ada Language that
of the Ada Validation Suite, however, we have passed validation but are not useful for
have found that this does not guarantee that implementing real-time embedded
the code generated by these compilers meets applications or large real-time systems.
the needs of real-tine applications. There are
some implementations of the Ada Language For a design project in the Software
that have passed validation but are not useful Engineering curriculum at Monmouth
for implementing embedded real-time egee cuiculu a Mona uTh
applications or large real-tne systems. This College, we designed a 3-D Radar Tracker
paper discusses three parameters beyond Ada using Ada as the design language. This radar
validation considerations that we feel are tracker had stringent timing and performance
important for a "usable" Ada compiler. We requirements and was targeted for a
define "usable" as providing the ability to multiprocessor shared memory hardware
implement a class of problems for which Ada configuration. Our design made extensive use
was intended, real-time applications, of tasking, using a separate task to track each

object in the radars' coverage. This is similar
1. Introduction to the model given in the Ada Rationale")1 for

Currently, all Ada compilers must pass the use of packages and tasks. In

the Ada Validation Suite to be eligible for investigating the functionality of Ada
use on DOD contracts. The test programs compilers available to us, we found soen
contained in the Validation Suite do ensure

application from being implemented as
designed, or from running in "real-time", as
designed. This paper discusses three of the

® Ada is a registered trademark of the U.S. problems we encountered with the Ada
Government (AJPO)lagaeadteAarnim evro etlanguage and the Ada run-thne environment

inplementation, and their impact on the use
of Ada for the implementation of embedded
real-time systems.
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Three areas that are beyond the scope While the syntax of the program denotes

of Ada validation but which we feel are concurrent processing, the implementation is
critical for real-time applications are task sequential. Designing a real-time system that
scheduling, support of shared memory, and will be implemented using this compiler

executable program sizes. This paper would require that each task poll the system

describes how the implementation of these to check to see if a process with a higher

aspects may prevent a truly usable Ada priority was waiting to execute, or that each
Language implementation for embedded real- task perform its own quantum checking. This

time applications. We define a "usable" puts a heavy load on tasks.
compiler as one providing the ability to The coroutine approach is even more

implement one class of problems for which t he the approch is ee mor
restricting when the application is targeted forAda was intended, real-time applications. a multiprocessor system. In this environment

there is the opportunity for true concurrency,

2. Tasking but the effect is that the application runs as a

single process on a single processor
One of the features of the Ada language regardless of the additional available

is support of concurrency through tasking. processors.

This gives the programmer the ability to Many embedded real-time applications

specify that several threads of the program
can proceed at the same time. The require that "true tasking" be supported at the

rendezvous provides a method for system level, such that each Ada task is a

separate OS process and therefore schedulablesynchronizing independent or cooperating o utpepoesr.Tecmie ol
tasks an(] for transferring data between them. on multiple processors. The compiler could
Taskinis ad faortranern ta b nte. provide the interface to the system calls for

Tasking is a backbone of the Ada language. creating and controlling each task rather than

Many compilers do not implement providing its own scheduler. This would
"true-tasking" in that each Ada task is not a enable tasks to be separate identifiable and

separate task at the system control level. This dispatchable units to the system control

can prevent true parallel execution and the software, and therefore allow the application

use of multiple processors. We found that to make use of a multiprocessor hardware

our validated compiler had implemented configuration. This does however require that ."

tasking via coroutines. In this environment a any system upon which a real-time Ada
task must explicitly yield control of the system is based support creation, scheduling,

system to allow another task to proceed. This and communications between tasks at an

also prevents pre-emption by a process with a operating system level. There would also

higher priority. A new "thread of control" is have to be support for communicating urn

not really created since the caller is between tasks that are running on different
suspended until the callee returns control. processors.
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Alternatively, the task scheduling be expanded to include the sharing of
provided by the Ada run-time environment memory between tasks even if they are
should support at least pre-emptive priority started from different programs. Shared
scheduling in order to support the demands of memory should also be implemented at the
embedded real-time applications. system level with the compiler providing the

There is also a need for the ability of Interface to the system calls.

tasks created by separate programs to Shared memory support should also
communicate with each other. This allows provide access and synchronization
greater flexibility in the design of systems mechanisms that would allow some tasks to
and is closely related to the shared memory have write privileges and some tasks to have
issue. read privileges. This mechanism would have

to perform arbitration and synchronization so
that a task has exclusive access to the shared

3. Shared Memory memory. That would allow a segment of

The ainpurpse or hare meory shared memory to be updated with exclusive

in da eem tobe relacmen fo glbal access and relieve the programmer of the
viAaes to a repglae form globa need to write their own semaphores to

varible in sigle rogam, ith provide this service.
synchronization of access to these variables
for multiple tasks. Shared memory support
should also provide the ability for sharing 4. Program Size
memory between separate programs or
applications, since many embedded real-time The third concern we had was the size
control systems require two or more programs of the executable that is generated by the
to concurrently access the same data. Shared compiler. Program size is very important to
memory between separately compiled Ada embedded systems, since memory size
programs is not addressed by the language restrictions often require that the executable
standard at all. We see this as a major code be as small as possible. The size of an
deficiency in the Ada language. executable Ada program image may be

Currently, Ada requires a system to be needlessly large because of the inclusion of .

unreferenced library routines, runtimne support
built as a single large program. There are modules, or large default stack and heap
many applications in the real-time arena sizes.
where the programmer must design a program
to communicate with and to read data from Real-time systemns consisting of many

an existing system, without rewriting, tasks also require reasonably-sized I
recompiling, or even relinking the existing executables. If tasks are very large, the
system. The idea of shared memory should operating system may spend a considerable
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amount of time swapping tasks in and out of 5. Conclusion
memory. This CPU time would be better Clearly, more than the current Ada
spent executing the application, validation procedures are needed to insure a

The tests we conducted on our compiler provides a usable implementation of
validated Ada compiler revealed a minimum Ada for embedded real-time applications.
task size of I megabyte. This is unacceptable The run-time environment must support
for embedded applications with strict memory efficient concurrent processing without large
requirements as well as for many multi- memory requirements. The Ada Compiler
tasking real-time applications executing on Evaluation Capability (ACEC) is a step in
shared memory multi-processor hardware this direction but the suite should be
configurations. Although our machine had 16 expanded to thoroughly test the
megabytes of memory, because of the large implementation of tasking.
task sizes, an application using more than 15 In addition, more thought should be
tasks required support for paging or virtual given to language support of shared memory.
memory in the underlying operating system. Ada is missing a standard interface for this

A good compiler and linker should be valuable feature.
able to produce an executable that contains
only those library functions that are REFERENCES
referenced. Any routine or object that is not
referenced by the program whether direct or 1. Rationale for the Design of the Ada

indirect should not be included in the final Programming Language, SigPlan

result. The main thrust of optimizing Notices, June 1979.
compilers to generate compact efficient code
can be totally wasted when a program of 2. Reference Manual for the Ada Programming

small size requires a large amount of memory U.S. Department of Defense, 1983.

for routines that will never be called.

Stack space and additional data areas
should also be allocated minimally. Usually,
producing a minimal image size results in
longer link time. This tradeoff between link
tune and image size should be available to

the user. An Ada environment should at least
give the user a link or load time option to
increase or decrease the default stack size and
allow building minimal size tasks when
memory limits are critical.
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Abstract 2.1 Design Basis
In this report, we evaluate a few languages claiming to sup-

port design activity ultimately leading to implementations 10 All designs rest on a body of knowledge. Software models the objects of
Ada. Such languages are known as Ada oriented Design Lan- the real world in a symbolic form. A precise description of the models of
guage (ADLs). The following languages are included in this eval- objects, and perhaps an informal description of how the model relates
uation: ANNA, Ada/SDP, PDL/si, PDL/Ada, Arcturus PDL, to the real world object should appear under this heading. We also
and Byron. expect to see a list of their properties. A design language should not

Our evaluation procedure started with a careful study of all only permit but should be so natural that it encourages the expression
available information on each language in the above list. The of these "principles of operation."
next step was to rewrite two common examples of "design" in In general, this necessitates the importation into the design lan-
each of the languages. As a result, we (often) revised our opin- guage of new notations appropriate to the domain of the software.
ions about the languages.

When the evaluation process was complete for all the lan-
guages we chose, we rated each language based on a number of 2.2 Architecture
different criteria. These criteria included many areas, such as: All designs are compositions of parts. Architecture deals with the ele-
design expressibility, design mapping, rapid prototyping, formal a l designs are compositions as wh the
syntax and semantics, understandability, and how well the Ian- gance and technical properties of different compositions as well as the
guage's constructs related to Ada. The complete set of criteria nature of the components. All designs, regardless of the methodology
and ratings is included in tabular form in the report. followed in arriving at them, can be described, perhaps a posteriori, as

a series of (i) details, (ii) alternatives considered, and (iii) the reasons
for the final choice made.

1 Introduction

This report is a survey of a few languages claiming to support design 2.3 Detailed Design
activity ultimately leading to implementations in Ada. Such languages The detailed design of an object is only a few steps away from a concrete
are known as Ada oriented Design Languages (ADLs). implementation of the object. A competent software engineer should be

Our evaluation procedure was as follows. We would carefully study able to "translate" a detailed design into a given programming language
all available information on a given language. We would then ask almost mechanically, and following some guidelines.
ourselves such questions as: Is this a design language? What aspects A detailed design of software has the appearance of a program but
of design does it express well? Is it Ada-oriented? Keeping preliminary with (very) high level data types and control structures. These types
answers to these in mind, we rewrote two running examples of "design" and control structures are such that standard, although inefficient, ways
in each of the languages. As a result, we (often) revised our opinions of implementing them are known. Is
about the languages.

Section 2 describes what one can realistically expect of present day 2.4 Machine Processibility
ADLs. It is by these criteria that we evaluated the ADLs. Section
3 presents a capsule description of each of the languages. Section 4 We take it for granted that generation of other documents (such as crows
contains a table of comparisons along with our explanation of wbat the references, data dictionaries, and lists of items yet to be completed)
ratings mean and what the criteria were. is possible from ADL designs. Detailed designs, as described sbove,

should be executable, if inefficiently. Rapid prototyping at higher levels

2 What can be expected of an Ada De- of abstraction of design is perhaps beyond the present state of the art. 1,
It should be possible to inquire about the consistency among the ', a

sign Language several levels of architectural designs, and detailed designs. The design
language should have a sound enough foundation that it is possible

In this section, we list expectations that are realistic and feasible to- to state the consistency problem, limited to the functionality ignoring
day, without requiring major breakthroughs. There are two other such other aspects such as real-time performance, as a purely mathematical .,
compilations of requirements of ADLs: IEEE Std [9], and the NAC logic statement to be proven. We do not expect these to be routinely or,%_o
(5]. These two reports cover mostly documentation oriented issues and proven either by humans or automated systems.
seem to be driven by the DoD-STD-2167 [7]. 10 'f

Work supported by IBM Shared University Research Program. a
1
Nams.n are alphabetically listed.
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2.5 Ada Orientation 0
.text name interYsectioni

Beyond the expressiveness of Pascal-clas of programming languages. This procedure takes as input two files with
Ada has the following notions that are so significant that every design names and produces as output another file which

language claiming to be "Ada oriented" must support them at the consists of names which occur in both the files.

design level: packages, generics, exception handling, and tasks. 5 end text

It should be clear, because of the context of this report, that we
are considering design languages conducive to von Neumann machine separate(name intersection.name intersect filel with

architectures, and to the imperative style of programming. These two file3.build name set from file )
qualities of the primitives of implementation are well-captured by the procelure get a nword from the Sinput files

Pascal-class of programming languages. Assuming that a design lan- 10 Sword :string$

guage supports the Pascal-class, the Ada orientation of it can be judged $input file : file types
from how well supported are Ada specific constructs such as exceptions,
generics, tasks, and packages. fuction $character$ is a letter return boolean

3 Capsule Descriptions of a few ADLs 1S begin
end got a $word$ from the $input files

This section is a compendium of the design languages we studied. For
each language, we give an objective overview of the particular language.
and offer a subjective opinion of it. Figure 1: Ada/SDP

3.1 ADA/SDP ADA/SDP allows the use of text segments to present additional

A.DA/SDP is based on a design tool called the Software Development information about any design module. They are enclosed within key-
Processor(SDP) developed by Linden [11] at UCLA. The language used words text and endtaxt and usually appear at the beginning of a
for software designs in this tool came to be known as SDP. ADA/SDP module description as shown in lines I - 5 in Figure 1.
is an extension of this language to allow use of Ada constructs like ADA/SDP simplifies Ada syntax for ease of expression. A number
packages, generics, tasks, etc. and was developed at Mayda Software of visibility rules have been simplified. ADA/SDP does not have the
Engineering, Israel [1]. The major goal of this language has been to use USE construct of Ada and treats the WITH construct as being equiv-
programming language constructs with relaxed syntax thus increasing alent to it. The name of an entry is visible if the task name is visible.
ease of expression and readability but at the same time providing some It does not require the body stub for a packages visible subprograms
degree of formality, even though the bodies are defined SEPARATE.

A design in ADA/SDP is composed of modules which are subpro- ADA/SDP allows incompleteness in designs. Undeclared items can
grams, packages, tasks and their bodies. Module specification is always be used, type declarations can be omitted, module bodies can be ab-
separated from the body by the use of the SEPARATE construct. Its sent, etc., e.g. lines 7 - 16 in Figure 1 form an incomplete procedure
use is similar to that in Ada except that they do not imply separate declaration.
compilation units but are used as means to defer implementation de- The ADA/SDP processor can generate various documentations, like
tails. This allows the designer to describe the software architecture listings of design modules, call tree, data dictionary and cross-reference
first, by specifying the modules, the external modules that they use, tables.
and their interaction and then give their implementation in the corre-
sponding bodies. 3.2 Anna

ADA/SDP allows stylized English text(pseudo code) at any place
where an Ada statement or expression can appear. If pseudo code is Anna (ANNotated Ada) is a language extension made to Ada to pro-
written in a restricted way, some basic consistency checks of the design vide a means for formally specifying the intended behavior of Ada
become possible, e.g. procedure interface, parameter types, etc.. 8., programs and support the various phases - specification, design, im-
unparameterized item in ADA/SI)P can consist of one or more words. plementation, verification, testing, debugging, and maintenance - of

e g. their life cycle 113]. The design of Anna was initiated in 1980 by Bernd

set of words Krieg-Bruckner and David Luckham [10]. The version described here
is an improvement on the 1980 version and was undertaken over the

input file period 1981 - 1984 as part of the research project of the Program Anal-
ysis and Verification Group at Stanford University. It corresponds to

are valid names for items. Parameterized items like subprograms, pack- the Ada language released under MIL-STD 1815A 16]. -

ages, tasks and generics, can consist of one or more words with the An Anna program consists of an Ada program interspersed with

parameters embedded in the name of the item. Formal parameters are "formal comments", which constitute the actual Anna text. There are % :
enclosed within "", e.g. line 9 in Figure I is the header of a procedure two types of "formal comments": .

which has two formal parameters - word and input file. Any text in ' "

the design description which matches the words other than the formal I. annotations with a leading "--I" consist of sequences of logical

parameters is considered an application of the procedure. Types of the clauses expressing constraints over some program state compo- ,

parameters can also be specified in lines following the procedure header nents, the values of a data type, or the values of a variable of the

declaration as shown in lines 9 - 12 in Figure 1. underlying Ada text, and

An application of a subprogram is performed by writing the name 2. virtual text with a leading "--:" defines a variable, a data type, a=
of the subprogram with the formal parameters replaced by relevant or a function for use in the annotations.
text representing parameter values, e.g.

With respect to the underlying Ada text, and except for exception
get a name from the source file annotations, "formal comments" must be side effect-free and compat-

is a call to the procedure declared as above with name and source ible with the lexical and scope rules; that is, if the leading comment %
file as the actual values. As mentioned earlier, argument vat , ce start sequence is removed from a "formal comment", the underlying
oleisthofoe actual vews. AsmntineAda text should be syntactically correct in its context. The scope of

consist of one or more words. a "formal comment" is that of the entity it annotates. Stand-alone
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0 
package SYNTAB is

-- I I < IUFFERSIZE and not EndOfFile(F); ...

while ISLETTER(C) loop
I I:.I +1; --1 axiom
BUFFERCII := C; --I for all SS : SYNTAB'TYPE; S, T STRING; I TOKEN =>

-- I I1 I > BUFFERSIZE => raise OVERFLOW; -- I SYNTAB'INITIALLEAVEBLOCK] SYNTAB'INITIAL.

EXIT WHEN End-OfFile(F); --I SYNTAB'IINITIAL.INBLOCK(S) FALSE,

Get(F. C); -- I SSEENTERBLOCK; LEAVEBLOCK = SS.

end loop; --I SSIENTERBLOCK.I#_BLOCK(S) = FALSE.
--[ SSEEITERBLOCKJ.LOOKUP(S) = SS.LOOKUP(S),
-- I SS[INSERT(S, I); LEAVEBLOCK] = SS[LEAVEBLOCKI.

Figure 2 Loop ivariant annotation in -- SSCINSERT(S. I) .INBLOCK(T)
--I if S = T then TRUE else SS.INBLOCK(T) end if,

-formal comments" have the scope that they would have if considered --I SSCINSERT(S. I)] .LOOKUP(T) =

as part of the underlying Ada text --I if S = T then I else SS.LOOKUP(T) end if;

The semantics of annotations is defined by means of a transforma-
tion that reduces Anna text to Anna kernel, a subset of Anna in which end SYNTAB;

most annotations are loare assertions. For annotations that are not
reduced to assertions, a system of axioms and proof rules based ol
-weak" logic makes it possible to perform formal proofs [14]. kirire 3 Ane asmoiat - ... ril,

Data Type and Variable Annotation instance, the annotation at line 5 of Figure 2 expresses that when-

ever execution reaches the preceding statement, if the condition "I >

The constraints expressed by a type annotation apply to all variables of BUFFERSIZE" is true, the exception "OVERFLO\V must be props-

that type declared in the scope of the annotation. Such an annotation gated.

immediately follows the type declaration (see below). A variable can Annotations constitute a set primitives which when combined with
be annotated the same way. the Ada private type facility makes Anna a powerful language for spec-

ifying abstract data types by the algebraic method. Anua may be the
type NAME is Access String; basis of a program verification and debugging environment provided

-- I whore that the appropriate tools are constructed to make use of its concepts
-- I for all N NAME; I : positive range 1 .. length(N) => such as package states and annotations. Ali Anna specification can be
--I N.ALL / and ISLETTER(N[I]); executed to check that the design neets it. It can also be run against

the Ada program to detect departures from its expected behavior.

Statement Annotation

A statement annotation constrains the values of the state coniponents 3.3 Arcturus PDL

referenced by the statement, The scope of such an annotation is teiited Arcturus is an Ada-based programming environmtent developed at the
to the statement. The constraints are applicable before and/or after the University of California at Irvine. One of the components of tills en-

execution of the annotated statement depending on whether they are vironment is an interpreter which supports an Ada-based PDL and a

modified by IN or OUT. Loop invariants are expressed in this manner Rapid Prototyping Language(RPL) [17].
(see line I in Figure 2). The Arcturus PDL uses Ada constructs and also allows deferring

detailed design decisions via text and descript ions. 'he text is enclosed

fitnction and Procediure Annotation within braces. They are treated as PDL comments by the interpreter. -

A function annotation appears immediately after the interface specifi- Programs with the PDL text can be interpreted normally as long as

cation of a function. It expresses constraints on the parameters and/,,, control does not reach any PDL text. When it does, a break proce-

return value. Procedures can be similarly annotated. dure is invoked and execution is not continued. The HPil. provides a
macro expansion facility by which a PDL text can be refined to AI

Package and Generic Annotation code and/or other PI)L texts, thus allowing stepwise refinements and
multiple levels of design. A program becomes fully executable when all

All the annotations described above and their scope and lexical rul- such PDL texts can be expanded to Ada code.

are applicable to package interface specifications, package body 0- - The Ada constructs which call be replaced by text are.
initions, and formal parameters of generics. In addition, axioruati-

annotations only apply to packages and generics. # declarations e.g., { (namneset) is a tree of natues

An Anna package is viewed as a composite object of some new type.
Each package, and each instantiation of a generic package introduces & expressions e g., { maximutmi of (a) and (c) }

a new type. The state of a package is strictly composed of the values & names e.g., { array of words I
of objects local to the package body. Axioms in the private part of the
interface specification or in the body of a package constrain the state e statements e.g. { insert node, (a) to tre,- (1)
of the package. In the visible part of a package axioms are protoi..s,
which client programs can assume to hold. An example of axiornatic e types e.g.. type syntab is tall (f syrnl,ols

annotation is given in Figure 3. The annotations of a generic also lhe Pi)n. text is a sequence of alid Ada identifiers Any of the

apply to its instances. In addition, any constraints applied to an ac- r

tual parameter before the instantiation of a generic also apply to tile rrved words of Ata call l- t uso,d, except begin, end and deleare
It can also containl larentiesiued lists of ..da ,expressions se.parated

" instance. '
intc byI n commas. As can b e seen frou the examples. PI). t, xts cart be

comnbhined with anN' of the Ada constructs (refer to line in examphl) ',
Exception annotation The nacro definition of llL is iisel to refine a I'lI. text to Ada

The purposte of these annotat ions is to specify conditions under which code atud/or ot her P1)1. texts A l )1. text so used is called a calling

a handler expects an exception, an exception is raised locally. or .. n. frin The text of the calling form identifies the macro which is h, ,.

ditions under which a subprogran must propagate ant exception. For us,., for expansion 'h ew parvnthesz,,d xp'ression list fri thue van.i,.
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0a macro package definition for refining the calling forms used in the

function program. If the macro definitions need to share information among
oLOKUP(S :STIG) return TOKEN is themselves, they can do so by variables declared in the package.

A macro expansion occurs when control reaches a calling form. The 7_
I : IlIDEXRIIGE; sub-tree returned by a macro is attached to the program parse tree and
begin execution continues normally. Macros can also be expanded Ly the use

, ec if interpreter function expand. The use of expand results in actualc k sol ab in erse f txt replacements in the program, The interpreter also provides aand for each entry do funchi.n mmlexpanil whirh res the. oriinal program text
* begin

{ if symbol is (S) then return token }; The Arcturus PDL together with RPL provides a very convenient
10 end environment for design. Designs can be expressed at a very abstract

}; level and can gradually be refined to capture a more detailed design
raise NOT_FOUND; with the use of the macros. At any stage it is possible to see how a

end LOOKUP; higher level of design gets refined to a more detailed, lower level of de-
sign. It is possible to have multiple design representations - a different
set of macro expansions can represent some other way of refining the
design. Even though the idea of the design process is well captured.

Figure 4I Calling forms in Arct:ris RPL's syntax is often cumbersome as can be seen from the examples.
The mechanism of use of the macros is dependent on the internal rep-

-- Macro definitions for PDL calling forms. resentation of programs in the interpreter. Constructs like "refines to"
is a more natural way of specifying the refinement process. Because of

package syutab-aacros is its Ada orientation, Arcturus PDIL is definitely very useful as an Ada
PDL.

macro { symbol info record I return typenode;
macro { storage of (maxsize) size for (element) 3.4 BYRON

records I return typenods; Byron is an Ada based PDL developed at Intermetrics, Inc. 18]. It

end symtab~macros; was introduced in the year 1983. The Byron PDL consists of informal
English language sentences(Byron constructs) interspersed with Ada

macro syntab-sacros body is code. Byron constructs appear as legal Ada comments to the compiler '-;,"
and so Byron is fully compilable by any Ada compiler. However, Byron
constructs can be differentiated from regular Ada comments. Their

macro { symbol info record I return typenode is general form is
begin

return gentype( --I <key-word> : <text>
"record" A
"LEVEL NATURAL;" A The <text> part is made up of arbitrary English sentences and may
"EMBER STRING ;" a span over more than one line, each line beginning with the Byron prefix
"TOK TOKEN;" I"--I". The purpose of the text is to informally specify different parts

"end record;"); of the design/code. Utilities/tools are provided in the environment
end; which extract the text and produce documentation for the design/code

according to certain documentation standards.

macro ( storage of (maxeize) size Since Byron does not support formal representations of the text, no

for (element) records type can directly be associated with the text. The <keyword> part of li

return typenode is the Byron construct indicates the type of text that follows it. For the -

begin same reason, no checking can be done by the processor to verify whether

return gentype("array (I .. $maxsize) of $element"); the content of the text is meaningful under the specified keyword or

end; not.
The keywords can be of two types -

I. Byron flags: The flags are used to guide the processor in format-
Fir,,re .\rct or,,s macros ting the document. There are flags which mark a block of code

to he extracted for use in documentation by the Byron processor.
part of the calling form and is referred to as the argument list. A calling ta

form can also contain an argument list of statements. A statement 2. Byron directives: The directives are based on a classification of
argument list is delimited by the reserved words begin and end, (.o , the different types of design information needed to specify a sec-
e.g. line 6 of Figure 4). Calling forms can also be nested as shown in tion of the code. They can be one of Algorithm, Effects, I',,r .
line 9 of Figure 4. Invariants, .Modifies. Notes. Overview. References. Repir,. s4

M acros are syntactically sim ilar to functions but unlike regular tf .i. .. 'SL P -r[i r,' .? t t "r, ,'u r . , il l-III I.
functions they are used to return only one type of value - a node it) thL of some of the directives. With the help of these directives theparse tree (Ada prograr s are represented p a- ne int- designer can informally specify the relevant aspects of a subpro-

pars tre (Aa prgras ar reresetedas parse trees in the inter- einrcnifral pcf h eeatapcso upo
preter) The type of nodes that a macro can return are declarations gram. As suggested by the names of the keywords , there aretypes. expressiot,s, statements an t 

naniesthe Ada constricts that can directives to indicate the algorithm of a subprogram, the vari-
be replaced by a calling form The type of node determines whether a ables it can modify, the exceptions it raises, its requirements, its
calling form which invoked the macro call be used legally, e.g. a decla- data structure representations, etc. All Ad constructs - func-
ration node is only valid where a declaration is valid in Ada. Funrtions tions, procedures, packages. tasks, etc., can he described using %

like gendecl. genexpr. gennatue. genstiit and gentype are provided to the Byron directives.

construct the nodes
Macro definitions are valid wherever a procedure or function is valid

The scope of a macro definition is determined by the scope in which
it is ,efined Packages of macros can be definel. e g Figure 5 uses
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package SYNTAN is A descriptive id usually contains several words. Here is a list of key-

... words: TEXT, PROCEDURE, FUNCTION, TASK BODY, and SPEC-

procedure INSERT(S STRING; --I symbol to be inserted IFICATION.
I TOKEN --I tokn of the symbol

-- I raises OVERFLOW Text

-- I Overview An unformatted text segment is ititroduced by the command

-- I Inserts a now symbol in the symbol table with string %TEXT Introduction

-- I S and token information I and the current lox level. The program processes input word stream from

two files that...

-- If INDEX not equal to MAX then INDEX and TABLE(INDEX). where 'Introduction" is the title of the text "segment" and the body

--I aiss OVRFLW ifINDX = AI.of the segment is describing something.

Specification
end SYITAB;

SPECIFICATION segment is a collection of named data items and

package body SYNTAB is fl, r ,s-reptn F r

-- I Overview
--I This package provides operations on a symbol %SPECIFICATIOI data definition

--I table. The table is representd by an array of

-- I records. The operations can insert new symbol word is a sequence of characters

-- I and lookup the symbol table for a symbol text is a sequence of words
--I at different lexical levels. In the above, "data definition" is the name of this segment. The first

word in each line of the body, word and text, are explicitly declared
type ELEJ is record to be data items. The rest of the line is taken as commentary, and can,

LEVEL : NATURAL; in general, be an arbitrary sequence of characters for description.
MEMBER STRING;

TOK TOKEN; Procedure, Function, and Task Body
and record;

type STORE is array (1 .. MAX) of ELEM; All these segments are used to express the functional decomposition of

subtype INfDEX. RANGE is NATURAL range 0 .. MAX; a design. A line such as

TABLE STORE; %PROCEDURE form-a-set (setS. fileF)

LEXLEVEL NATURAL :=0;

INDEX INDEXRANGE := 0; introduces a procedure segment named "form-a.set". Its body can be

elaborated, as e.g. in

procedure INS9RT(S :STRING; I : TOKEN) is create an empty set

-- I Algorithm WHILE get-a.uord(wordWfileF) is success

--I If current index equal to MAX then the exception LOOP

-- I OVERFLOW is raised else increments the index and add-word-to-set(word_.,setS)

--I assigns the indexed position in the table with END LOOP
-- I LEILEVEL. symbol string and the token value. close (file3)

begin
if INDEX * MAX then raise OVERFLOW; The statements included in the body of a procedure segment are of

else two kinds: "control statements" and "descriptive statements." ('on-

INDEX INDEX + 1; trol statements are Ada control structures with a boolean expression

TABLE(INDEX) := ELEM'(LEXLEVEL. S, I); replaced by a sequence of words. Descriptive statements are arbitrary

end if; sequences of words. However, words that begin a statement have spe-

end INSERT; cial meaning, e.g., SET x to 1, means assign value I to data item x.

4 Apart from this, no formal syntax is implied in the statements. So one

end SYNTAB; can write, in English prose, a description of the intended action.

Figure 6: Byron example 3.6 PDL/Ada

The Process Design Language/Ada-2 (PDL/Ada-2) [2] is a product of

3.5 PDL/81 the Ada Steering Group of IBNI Federal Systems Division. The current

version is an upgrade of PDL/Ada developed by the same group in 1981
PDL/81 is from the group [3] that brought attention to the concept of [16]. The original version of PDL/Ada was based on the ideas of PDL

"design language" in the mid 70's. It is designed for the production by Linger [12).
of structured designs in a top-down manner. PDL/81 (41 is a "pidgin" PDL/Ada-2 supports full Ada The features that PDL/Ada-2 adds

language in that it uses stylized English language and the constructs to those available in Ada are "function abstraction" and ",iats ab-

of a structured programming language, such as Ada. straction." Design expressions are presented as Ada comments and 5,

PDL/81 is not presented by its vendor as a "design language", but thus PDL/Ada-2 is fully compilallc by an Ada compiler Ada con-

rather M a set of tools to help design. Input of the PDL/Ml processor trol structures. mathematical notations, and English statements can

consists of several "segments" which are: TEXT. SPE('IFICATION. be used to present designs Designs in I'I)l./Ada-2 are represented
PROCEDURE, FUNCTION, and TASK BODY segments The OUti, ti at %various levels of abstraction Each abstract level to then rv.fin-,, 1,"

is a "design document." Each segment begins with a line such as low,'r levels of abstractions or concrete u1rinplementations.

%.keyword descriptive id
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Function Abstraction 2. Intended Functions

Function abstractions in PDL/Ada-2 are expressions of behavior that Intended functions are English descriptions used prior to statements

are expressed using a special form of Ada comment. They are used beginning with the keywords procedure, function, or accept. It

to specify the behavior of a segment of design, a procedure call, a states the intended purpose of a design unit, e.g.,
single control structure, a procedure, or an entire system or subsystem.
Function abstractions are presented in PDL/Ada-2 in the following < return a set which is the intersection of two sets. >

ways: function INTERSECTION(1l. 12 : AMESET) return NAME-SET

1. Behavior Specification Data Abstraction

Behavior specifications in PDL/Ada-2 are surrounded by either <, > or Data abstractions are expressed in PDL/Ada-2 by modules. PDL/Ada-

[, ]. They specify the behavior (or function) of a design component. 2 uses Ada packages to construct two kinds of Data abstraction mod-

They appear as ules: Abstract Data Types (ADTs) and Abstract Data Objects (ADOs).
In PDL/Ada-2 ADT and ADO packages include additional informa-

-- Behavior Specification tion, in the form of special comments, to express aspects of the data

-- -abstraction.
The module specification includes two parts:

-- < behavior Specification
-- > 1. State Section: The Model describes the name of the abstract

model. The Constraint specifies the restriction of the abstract
The text that goes between the brackets can be one of the following data model. The Initial gives the initialization of the data model.
types of statements:

2. Transition Section: It consists of subprogram specifications
" Simple assignment statement: shows the change in value of whose behavior specifications are expressed in terms of operations

a single variable. on the abstract data models.

" Multiple assignment statement: shows the changes in value I K'l of the module includes two parts:
of multiple variables.

" Concurrent assignment statement: indicates multiple data
transformations, as in: I. State Section: This appears in the package body for ADOs ai.ji

in the private part of the package specification for ADTs.
--< (SYTAS.EXLVEL = ), (Y~qAB. NDE : =0))• ;The Representation is the description of lower level data abst rac-

" Conditional assignment statement: represents a sequential tions or primitive data types. The Constraint specifies the re- ,

guarded command, e.g., strictions on the data representation. The Initial describes ini-
tialization of the data representation. The Mapping shows the

SYTAB -IDENTITY relationship of the data representation to the data model.

-- I TRUE -> E LASTB := (I in DOMAIN(SYNTAB) 2. Transition Section: In this section, the behavior specifications
-- (for all J in DOMAIN(SYHTAB) I >= J)) of the data operations in the module specification are restated in

-- in SYNTAB(LASTB) := UIDEFINED ] > terms of the data representation.

The stylized comments in the specification part provides informa-

Expressions in the statements represent a value to be assigned to tion about the data model - the properties of and the operations on

the corresponding variable. Expressions can be written as Ada the data model. The module body (package body) contains the details

expressions, English statements or in mathematical notations. of the data model or the implementations of the module specification.
In designs, the keyword CONDITION is used to indicate the use of

. Identity statement: indicate's that no data transformations an abstract predicate. It is followed by the abstract predicate expressed A

tak,' place: no vari'.t,1cs chbmu-, -hi , th, fiti !', i th" as an Ada comment:
rod for the co,,dit . ,i .-- ,,..,,. I .. 'tl, 1, i t

if
" Textual assignment stat,'ment: repres.itm assignment usinW CONDITION --< SYNTAB.TABLE(I).LEVEL < SYNTAB.LEXLEVEL >;

English text or mat h, itatical notations. i.e., then
return FALSE;

-- < Return value := the intersection of 11 and 12 > elsif
CONDITIDN -- < SYMTAB.TABLE(I).NENBER = S >;

When a behavior specification represents the lowest level of stepwise then - S A B(,=S

refinement of a function abstraction, it is terminated by a semicolon, return TUE;

Such a specification can then be refined to a concrete implementation end if;
in Ada. When this is done, the semicolon from the behavior specifica-

tion statement is converted into an "is" keyword followed by the Ads PDL/Ada-2 has a "Design Support Package" that provides pre-
statements, to indicate the "refinement." For example: dctined abstract types, such as set, sequence, stack, and queue;

swap x and y>; TIID type-definition, e.g. TlD_TYPE: pre-defined boolean data oh-
jects. e.g. CONDITION, CD; and dummy statement, e.g ST (sequence

becomes 
of statements), procedureTiD.

-- ( swap x and y > is ' 4's
t := y;

y :s t;
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4 Table of Comparisons 4.3 Design Mapping

Section 2 presented a general discussion of what we expect of an ADL. The rating under this column is based on the capabilities of the ADL
In this section we assign ratings to the ADLs under specific criteria, in relating designs. If an ADL provides a way of relating designs, a
We present our interpretation of each criterion and also explain how minimum of I point is given to it. The remaining points are awarded
we will proceed to rate a language under that criterion. The rates are based on how checkable the validity of the relations is, because of the
given on a scale of I to 10. A 0 rating is given if the language does not nature of the ADL. For instance, an ADL that relates designs by means
support a criterion in any way. of English comments is assigned a total rating of 1; this also holds for

formal ADL's relating designs in such a way that no checking procedure

4.1 Design Expressibility is likely to be devised. The highest ratings are given to ADL's that
relate designs in some way for which a checking procedure exists, or

W,, ,xamine Pah deien lan.uace t see how it stipports- for which we are sure of the possibility of devising one.

1. Describing data structures: formal definition, constraints of
values, operation allowed on objects. 4.4 Rapid Prototyping

2. Expressing algorithm designs: precise, formal, and rigorous. A prototype is used to assist in the evaluation of functional require-
ments. There are two major approaches to rapid prototyping: reusable

3. Describing the behavior of components: execution order, code and executable specifications. If the design language is an exe-
data flow, exceptions, and error conditions. cutlath, specification then it will be graded no less than 5. Reu,,,I.. I,"

Thi.. criterion evaluates the expressive power of each language. Some t- ..3lieve prototyping will compete by its flexibility and reu-1.,:
languages, e.g. PDL/81, tend to be informal and flexible enough to, 4.5 Consistency Checking
permit the use of natural language and will thus get high points in
expressibility but low points in formal and precise algorithm design. This relates to the feasibility of writing a tool to perform consistency

checks of the design written in the language under consideration. The

4.2 Design Hierarchy consistency checks in question are:

Three criteria account for the rating assigned to an ADL under this e module interface checks,
column: - right number of arguments used for an application of a de-

l. the degree of support the language provides for organizing the fined module,
static structure of a design in hierarchical manner, - correct types of arguments,

2. the expressive power of the ADL in describing the "uses" rela-
tionship [Parnas 79] among design components, and * consistent use of declared variables with respect to their types,

3. the levels of abstractions attainable in using the ADL. * consistent use of values returned by functions.

An ADL that uses nothing more than Ada constructs is given a Languages for which such tools can be built, are rated according to a
zero rating, even though some abstraction is in this sense achievable the extent to which such checkings can be done correctly. Consistency
with Ada. The higher the level of the data types and control constructs checks are possible with languages with formal syntax and semantics.
provided by an ADL than those of Ada, the higher its rating, provided For languages like Byron, where a design is described by informal En-
it also meets the other criteria. glish language text, no consistency checker can be built and should

thus be given a rating of 0 under this heading.

Evaluation Table

Criterion Anna SDP PDL/81 Byron 1't)./Ada Arcturos

Design expressibility
1. data structure 4 1 1 1 2 1
2. algorithms 2 1 1 1 1 3
3. Behavior 6 0 0 0 2 0
Design hierarchy 2 1 1 0 1 4

Design mapping I I 1 1 2 3

Prototyping 6 0 0 0 0 5

Consistency 8 3 1 0 2 4
checking

Formal syntax 8 2 1 1 4 5

Formal semantics 8 I 0 1 4 3

Completeness check- I I I I I I
ability
Understandability I 3 4 7 5 4

Constructs related 7 1 2 1 2 1
to Ada
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4.6 Formal Syntax and Semantics References

Perhaps because of the requirements of DoD-STD-2167, most of the
Ada design languages express their legitimate syntactic constructs, as [1] Ada/SDP Introductory Guide, Mayda Software Engineering. Is-
well as design comments, in the double-hyphen Ada comments. By rael, (1985).
definition, we consider any language permitting arbitrary sequences of [2] Ada Steering Group, "Ada-Based Process Design Language
"words", except in these so-called design comments, to have no formal (PDL/Ada-2)," IBM Federal System Division, 6600 Rockledge
syntax. drive, Bethesda, Maryland 20817, (December 1986).
4.7 Completeness Checkability [3] Caine, S. and Gordon, K., "PDL - A Tool for Software Design," in

Proceedings of the National Computer Conference. AFIPS Press,

This relates to the feasibility of the tool to examine the design objects pp. 217-276, (1975).
for the detection of deferred design (incompleteness). Languages for
which completeness is checkable, are rated according to the checkings [4] CFG Inc., "PDL/81 A tool for Software Design, An Introduction,
that can be done correctly. Caine, Farber & Gordon, Inc., 2nd Edition Pasadena, California,

(1985).

4.8 Understandibility [5] Computer Technology Associates and Advanced Software Meth-

The understandibility criterion relates to the ease of understanding ods, "Survey of Ada-based PDLs," TP-598, Contract N00163-84C-
the object that is being described as opposed to understanding the 0300, Naval Avionics Center, Indianapolis, Indiana, pp. vi, (Jan-
language itself. Understanding an object is often influenced by the uary 1985).

style of presentation, and the complexity of the object itself. We do [6] U.S. Department of Defense, AdaJoint Program Office, "Ada Lan-
ivt consider these issues in rating a design language. Readabilityoft' guage Reference Manual," MIL-STD-1815A, (January 1983).
language plays a very important role in the understanding of d,.c -
,nc.e there are no metrics by which this -an be measured, we d, z, [7) U.S. Department of Defense, Military Standard, Defense System

it -,r rnsidlratin% ar' totallv sitijective. Software Development, DoD-STD-2167, pp. 28, (4 June 1985).
4.9 Constructs Related to Ada - (;ordon, NI,, "The Byron Program Design Language," 4 di ,./

I f r . \ ' ,, 2 . N o . * . lo 7I , 8 3 ( 19 8 3 1 .
In order to make the transition from the design phase to the implemen-
tation easier, it is often helpful to have DLs support constructs defined [9] IEEE, "Standard: 990-1987 Ada as a Design Language," IEEE .\F.
in the target implementation language. The DLs need not use the Ada as a PDL Working Group Recommended Practice, IEEE
constructs implicitly but should have well defined mappings to them. Computer Society, (1987).
The ease with which such mappings can be defined is the criterion for
rating DLs under this heading. For DLs which use Ada constructs [10] Krieg-Bruckner, B. and Luckham, D.C., "Anna: Towards a Lan-
diroctly, this mapping becomes trivial. We thus consider language con guage for Annotating Ada Programs," Proceedings of the A CM.
stricts over and beyond Ada 'onsirirts in rating the language ,iit, SIGPIan Symposium on the Ada Programming Language, Vol. 15.
' ,,- "rt ,'r ti. No. 11, pp. 128-138, (November 1980).

[11] Linden, N.. "Software Design Processor: A Tool for Program De-
5 Conclusions sign," M.S. Thesis, UCLA, (June 1975).

A great deal of effort has been dedicated to the design of ADLs since [12] Linger, R. C., If. D. Mills. B. I. Witt, "Structured Programming:
the Ada language was released in 1980. Still, most ADLs are nothing Theory and Practice," Addison-Wesley, (1979).
but a reincarnation of the earlier idea of using pseudo-code to design [13] Luckham, D.C.. Von Henke, F.W., Krieg-Bruckner, B., and Owe,
software. Such ADLs are informal in the sense that they do not have a 0 "Ana a Lang e f A o ig- rogr, Thni-
frmal% de.fined syntax. I-s do they hay, ftirmally defined semantics ., "Anna a Language for Annotating Ada Programs," Techni-

It s,',",,, ., I '- ... .€ ,|,,, . . t,* oak' it y,..... it,i, cal Report No. CSL-84-261, Stanford University, California. (July
g, uwrate various documents about th-? design being constructAed rat lr 1984).
than to directly support its construction. Tools for producing cross- [141 Owe, 0., Krieg-Bruckner, B., Von ilenke, FAW., and Luckham,
references, call-trees, data dictionaries and so forth are associated wit It D.C., "Axiomatic Semantics of Anna," Program .4aalsis and Ver-
almost every ADL. On the other hand, almost none of these ADLs pro- ficaion Group Report, Stanford University. California, (194).
vides direct support for the descriptions of designs of Ada programs
direct support for Ada notions such as generics, derived types, pack- [15] Parnas, D.L., "Designing Sotware for Ease of Extension and Con-
ages, and tasks is skimpy traction." IEEE Transaction on Software Engineering. Vol. SE-5.

However, from this crowd of ADLs. Anna stands out with its for- No. 2. pp. 128-137, (March 1979).
mally defined syntax and rigorously described semantics. Its founda-
tion is in mathematical logic and discrete mathematics. It is certainly [16] Sammet, JE., Waugh, D.W., and Reiter Jr, R.W.. "PDL/Ada -
true that this AI)L is not readily accessible by the average programmer A Design Language Based on Ada," Ada Letters, Vol. 2, No. 3,
without considerable training; but, tools based on formal languages are pp. 19-31, (November/l)ecember 1982).
more likely to be capable of directly assisting software designers in their [17] Tadman, F.P., "The Arcturus Programming Environment, Pro-
effort of constructing designs. In contrast, not much processing can be Pro ganguanvironment.mPro-
performed to actually assist informal ADL users. If informal ADLs are grment Pro to Cania, Prgram 4ing
being so widely used for the sake of human readability, AI)L design- Environment Project University of California, (25 January 1984).
.rs must find a means of providing both readability and formalism for
th15 languages.
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FORMAL CONCURRENT TASKING PARADIGMS IN TIlE DESIGN OF ADA PROGRAMS

Ronald J. Leach
Darlene Bond

Department of Systems & Computer Science
School of Engineering

Howard University
Washington, D.C. 20059

ABSTRACT Abstraction and information hiding are

A major feature in the design of Ada was major techniques of software engineering that

the high level support of concurrent tasks. Con- are used to address some of the problems with

current tasking is an essential feature of embed- software. Indeed, the relative ease in which

ded systems in most environments. In this information hiding and abstraction of data are

paper we examine the state of Ada education in implemented in the Ada language is a major

the support of concurrent tasking. The tasking reason for the success of Ada. It is clear from

examples are compared to formal models in the success of these language features that there

C.A.R. Hoare's CSP (Communicating Sequential is a need for formalism in the area of concurrent

Processes) system. The resulting information is programming in Ada.

compared with actual use of tasking programs in Perhaps the most common paradigm for
the Ada literature and in industry and govern- design of programs involving concurrent tasks is
menL Particular attention is paid to the treat- C. A. R. Hoare's Communicating Sequential
ment of non-determinism in tasking programs Processes (CSP). It is reasonable to ask if
and in formal models. Hoare's abstract models of CSP involving con-

currency are applicable and effective tools in
program design. Ada was originally intended
for use with embedded systems and concurrent

INTRODUCTION tasking and to incorporate principles of good

In order to maximize the effectiveness and software engineering; it is appropriate at this

efficiency of a program, a programmer must point to examine how these two ideas work

begin the program development with a good together in practice. This research was con-

program design structure. Programs are made ducted to see if the current state of use of

up of several types of building blocks. Pro- abstract models of Ada programs involving con-

grams without concurrent execution of tasks use current tasking is sufficiently well-understood to "

the standard sequential building blocks of pro- be used in providing a basis for Ada program

cedures, functions, and modules. Programs design. Thus this research represents an assess-

involving concurrent execution use these build- ment of how well the use of tasking and formal

ing blocks and the additional block of a task models is supported in the existing Ada educa-

which is usually a collection of the sequential tional community.

building blocks. The use of concurrent tasking The first step in approaching this problem
in programs greatly increases the potential for was to collect data. The data was initially col-
error in programs and thus causes great lected from the published literature of Ada pro-
difficulty during all phases of the software life grams including textbooks, lecture notes, and
cycle. Errors which occur at many phases of conference proceedings. We chose 17 texts
the software life cycle and costs which increase from the library; the selection criterion was
exponentially are major features of the actually having the book on the shelf and not in
"software crisis". It is clear that the current circulation at the time that the data was gath-
"software crisis" will get even worse since most ered. We feel that this is a representative sam-
of the existing problems have been with systems pie of the use of tasking in the existing Ada
which do not involve much concurrent execu- textbook literature. Programs which involved
Lion. tasking were extracted and examined to see .
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ered. We feel that this is a representative sam- such programs. A preliminary experiment
pie of the use of tasking in the existing Ada involving the examination of 12 student pro-
textbook literature. Programs which involved grams using concurrency indicated that the
tasking were extracted and examined to see sequential execution of tasks predominated, with
which, if any, of Hoare's models could be 8 uses of the P;Q model of sequential non-
applied to the programmers' method of execut- communicating tasks, 2 with parallel execution
ing the task or tasks. The results were tabulated of non-communicating tasks (PIIQ), one with the
to see which models were applied in these pro- (*(*(*P;Q))) model of repeated sequential tasks,
grams. and one with the P;*Q model of task followed

The textbooks examined fall into two by repetition of a sequential task. Some of the
categories: limited amounts of tasking (includ- programs obtained from students followed the

ing oneat ll)andconsderbleempasi. A P;Q model which describes the execution of two
total of 819 programs from all textbooks were prll. oese osasktwichs arebxoutedifficutes-
examined, with only 114 or 13.9% having any tal.Sm bevtosaottedfiute
concurrent tasks. We note that most of the pro- encountered by students in the development and
grams involving tasking (36) were found in a execution of these programs was made in [14].
single reference [7]. Of the programming sam- An additional data set was obtained from
ples obtained from textbooks in the first the existing published non-textbook literature.
category, there were only 32 programs involving This data was obtained from the newsletter
taskcing out of a total of 730 or 4.3%. The PIIQ AdaLetters (including its predecessor), proceed-
model of concurrent execution of tasks with no ings of several Ada conferences, the Journal of
communication between the tasks was found Pascal, Ada, and Modula-2, materials from a
most often, with a total of 14 instances, of variety of Ada short courses, and the Ada Repo-
which 12 involved only two tasks. The repeti- sitory. Again in this case, few of the sample
tion of tasks, which is denoted abstractly as *P, programs supported the more complex models.
was the next most frequently found, with seven The most common example of Ada task-
instances. The next most frequent model occur- ing programs was the consumer-producer prob-
ring is the P;Q model in which the tasks actu- lem which was presented in various forms.
ally are executed in order, a total of 6 instances. Many texts, especially [7], gave several different
Hoare distinguishes 29 distinct models for task- solutions to this problem. In some instances,
ing involving two tasks; only 8 of them or there were two relatively different coding solu-
27.5% are represented in the texts. In table I tions to the same abstract model, even though
below, we summarize our search of the the text- the two models appeared to have the same CSP
book literature, some examples of student pro- representation. We intend to pursue this subject
grams, and sample programs that are available in future work.
in the non-textbook Ada literature. Note that The remaining data was collected from a
we show the number of tasks in each example smlseofpgrsaculysdinnuty
and therefore do not quite agree with all of smlseofpgrsaculysdinnuty
Hoare's categories, since Hoare only lists the and government. Some of these programs make
possibilities for the execution of two concurrent elaborate and extensive use of tasking while of

tass i hi exlict lstig o posiblites.course others do not. The data collected is
task inhis xplcitlistng f pssiblitesincomplete at this point because of the difficulty

The textbooks [5] and [7] had much more in obtaining samples of actual proprietary code.
emphasis on concurrent programming as the We do not expect that this data will ever be
titles "Concurrent Programming in Ada" and complete or that it will represent the precise 4
"Parallel Programming in ANSI Standard Ada" percentages of use of Ada tasking in Ada pro-
would indicate. There were a total of 89 pro- grams. Instead, we consider it as an example of
grams presented with tasking evident in 42 or how Ada tasking paradigms are used in a few
51.7%. Here the range of programs is much hopefully representative Ada applications.
wider including examples of (PiIQ)*, $S(P sub I
11P sub 2 J.IP sub n )* $5, PII1Q with Q of the
form R1IS;T and several other models.

The next set of data was obtained from 1

student programs. The intention here was to
measure the level in which tasking is used in
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TABLE 1: READILY AVAILABLE INFORMATION ON TASKING. NOTE THAT SOME OF
THE DATA COULD ALSO BE CONSIDERED AS MORE COMPLICATED CSP MODELS

CSP MODEL NUMBER OF OCCURRENCES
BOOKS BOOKS WITH TASKING STUDENT PROGRAMS LITERATURE

PllQ 12 18 2 8
P11 Q I
*P 7

P;Q 2 2 7

b*P I

PI/Q 1 3
x:A->P(x) 1
A->P 1 2
*P;Q I

PIIQIIR 2 8 3
P;Q;R I

P/QIIR 1 1
P[]QQR 1
PIIQI1RIIS 1 2 4
P,*Q 1
(((P;Q)*)*)*1,,

(PIIQIIR)* 1
(PIIQ)* 3

Pl .. Pn 2

(Pl .. Pn)* I

((Q//Pi )T..II(QI/Pn))* 2 "_

TIMED TASKS 12

SUMMARY AND CONCLUSION gramming must be increased. This
It is clear that the quality of information instruction should be done over a variety

available to beginning and intermediate Ada of courses so that students see these ideas
programmers and designers about tasking is in a number of contexts.
quite limited and does not address the full range 2. Textbooks in the language Ada must
of potential tasking uses. The actual problem is include a wider variety of tasking pro-
much worse than this because Hoare's CSP grams including more of Hoare's CSP
models do not allow for time constraints such as models. While the amount of tasking
delays and fixed waits. Such factors are criti- information need not be as much as in [7],
cally important in situations such as the FAA it must be increased in order to make
control system or indeed in any system that sophisticated knowledge of Ada tasking e
must perform in real time. available to as many students as possible.

It is well-known that even experienced 3. Continuing education for the profes-
programmers have considerable difficulty in sional should include a comprehensive
writing programs which involve any degree of study of tasking in Ada. This is not
concurrency. We recommend the following appropriate for the first introduction,
solutions. which should be limited to the fundamen-

1. At the preliminary level of education; tal features of the language and Ada f, 4$.

that is, in the undergraduate and graduate software engineering with only a brief

programs of colleges and universities, the introduction to tasking. Second courses

amount of instruction in concurrent pro- should give views of many abstract
models of tasking by means of many
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different examples. We note that this is 12. C.A.R. Hoarc, Communicating Sequential
being done at Pennsylvania State Univer- Processes, Prentice-Hall, 1985.
sity (Capitol Campus) and at Computer 13. Katzan, H.Jr., Invitation to Ada, Petrocelli
Science Corporation (Moorestown). Books, New York, 1984.

4. In the absence of high quality educa- 14. Leach, R., Experiences Teaching Con-
tional opportunities or having existing per- currency in Ada, AdaLetters, 1987.
sonnel already well trained in Ada task- 15. Mohnkern. G.L. and B. Mohnkern, Applied
ing, management must choose between 15. M o e n l and Refeene Books,
using special expertise from outside the Ada, Tab Professional and Reference Books,
organization and restricting the tasking to Blue Ridge Summit, Pennsylvania. 1986.
the simple models supported by most of 16. Pyle, I.C., The Ada Programming Language,
the existing texts. Prentice-Hall, Englewood Cliffs, New Jersey,

1981.
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Ada Projects for an Advanced Course Which Emphasize
Machine Specific Aspects of the Language

Claus P. Janota

ARL Penn State
P1. 0. Box 30

State College. PA 16804

ABSTRACT: practical application. The projects are intended
to he of sufficiently large scope that a single

When teaching an advanced Ada course it is a student could not complete the work in the time
challenge to assign student projects which are allotted.
meaningful but which can be accomplished in the
limited time available. The instructor needs to
take into account the range, and sometimes con- Hethod
flicting, requirements of a mix of students with
various backgrounds and educational objectives.

At the second lecture, high level specifica-
The projects described in this paper are some tiro. are presented for the various projects which

which the students can choose to complete in about t1., instructor offers as a list of possible
seven weeks. In all cases, several students work c adidates to work on. The list of suggested
together to design and implement Ada software which student undertakings is shown in Table 1. The fact
emph sizes the advanced features of the language. that students will be expected to work in teams of
Students present their chosen projects to the class two to four is explained and the rationale for that
initially, give a status report, and then approach is detailed. Because of student class
participate in a structured walk through of the s;chldules, work commitments, and the sometimes wide
code near the end of the course. The other members gFographic separation of the students, the prospect
of the class serve as the customers to critique the f havinF, to work together is at first often
development and to provide feedback to the team resisted. But the students are required to read
members. OV,.r the material and to be prepared to form

working groups a week later. Where practical,
students with similar interests or co workers are

Intent of the Course accommodated. But an effort is made to form teams
with a wide range of experience.

The advanced Ada course, as thought at The
Pennsylvania State University. is the third of a All of the students are given computer
series which comprise a Continuing Education accounts at the Ada Development Facility, which is
cert ificate program in the Ada programming collocated with the Acoustics Department of the
language. The course also carries college credits university. A tree structure for accounts is
and is listed as a special topics offering in ,stablished with students working together sharing
Computer Science. The first course in the series a common "group" library and having access to an
is ore on Software Engineering Principles and the Ad.i library maintained by the instructor for all
sccond one is an introduction to Ada which stresses strients. The class library contains a wide range
th,. sYtax and semantics of the language. af compilation units which the students may find

uv ful during the early development and testing of
The students entering the advanced Ada course Ad,, components. Included are run-time profilers, - ,.

ar. therefore expected to be reasonably conversant instant iated input/output packages, facilities for
with the structure arid intent of Ada. And the loi',ing terminal session activity, and example
design of the third course attempts to tie together programs for controlling the graphics devices
the material presented in the prerequisite courses. provided at the facility. This system is also used
The projects the students work on are intended to by the instructor to post messages and test scores. .,\

reinforce an appreciation of the major advantages This svstem is intended fSo serve as the primary
of Ada; modularity, transportability, and flexibil- means for developing arid testing routines early on.
it'.. In fact, the projects also serve to sensitize And some of the projects make use of the

* the participants to the lack of uniformity in pi r ipherals provided. Table 2 summarizes the major
compiler treatment of low-level features and to .ispcts of the various projects and those will be
hlzes to be aware of in the application of Ada to expanded on in what follows.

"rail" problems.

'rt'ident are set tie goai of designing a
deilanirl Tig pro Jc t and implement ing that in a
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Table 1. Topics for Advanced Ada Course Projects

DESCRIPTION SYSTEM NO.STUDENTS

Digital terrain radar simulation Mainframe with 3 to 4
for central Pa. Allegheny ridge color pixel

system addressable
display

Elevation contour mappirig using Mainframe with 2 to 3
Ada GKS (Craphics Kernel System) graphics

Pa. political boundary plotting Mainframe with 2
using FORTRAN coded plot personal computer
packages for graphics

display

Terminal support aids for the Personal computer with 2 to 3
visually handicapped a commercial speech

synthesis system

High speed access to large data Personal computer with 2
base commercial WORM device

(Write Once, Read Many)

Data acquisition and signal Personal computer 2 to 3
processing system with commercial

analog I/O system

Al in Ada implementing Earley's Mainframe 2
algorithm in parallel

Signal processing tools using Mainframe or personal 2
residue arithmetic computer

Once the students have formed into teams, each principal items stressed at that time is what, if -P
team is required to present its understanding of any, simplifications the effort requires for
the project to the rest of the class. That serves successful completion by the end of the course. By
to refine the definition of what is to be done this time the group members have probably en-
since the class members serve as the customer for countered peculiarities which have impacted the way
the software, It is intended that these presenta- the project is implemented.
tions serve as a forum for discussion and as a
mearis for everyone to begin to understand what the Near the end of the course, the teams present
project is to accomplish. This is also a time for a structured walk-through of the code to accomplish
the team to present the breakdown of efforts and the chosen task. Successful completion of the
schedule for the completion of components parts. project plays a large part in the final grade. And

each student's contribution is evaluated along with

Most of the projects also require access to the overall success of the team to accomplish what
other systems and this is handled by using personal it set out to do. Students each prepare a summary
computers for interfacing. These PCs serve to report of that portion of the effort they ac-
transfer files between the Ada Development Facility complished, and the team as a whole is responsible
and an IBM mainframe running IBM Ada under CMS. for preparing a final written report detailing the
The PC is also used with this mainframe for work. The instructor participates in a demonstra-
Pra~hics output. Or, the PCs are used directly to tion of the programmed effort for each team. It is
conirol a speech synthesizer, laser disk record not practical, however, for all of the class

s'stem or analog to digital converter. Terminal inembers to witness each effort's product. So the

emulation software is provided and those students finil walk-through also serves as a forum for
who use the IBM mainframe are granted access to describing user interfaces, means for testing the

data files prepared bv the instructor.c ssoftware, and expected behavior when exceptional

Each team gives a status report about three

weeks after the initial presentation. One of the
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Table 2. Principle Features of the Projects

PROJECT FEATURE

Digital terrain radar Low-level control of color graphics device
simulation High efficiency search strategy

for large data base
Efficient reflectivitely, shadowing
computations

Minimal display updating using

algorithm to determine changes

Elevation contour Efficient data base search to trace
mapping closed boundaries

GKS interfaces for polyline
plotting and labeling

Interactive setup for user selection

Political boundary Inter-language interfaces with
plotting commercial plotting product

Operator interfaces for setup to

include text pattern matching
Interfacing with personal computer

for graphics display

Aids for visually Low-level setup for speech synthesis
handicapped system (i.e. mode control)

Reactive keyboard input and
background output

Efficient dictionary search for

improved intelligibility

High speed data base Low-level initialization and control
access of SCSI device interface

Use of Calendar package for timing
and file selection processing

Optimized use of defect mapping for

expeditious data transfer

Data acquisition and Low-level initialization and control t

signal processing of device
Pixel mapped graphics for display of data
Optimized data processing algorithm:

Al in Ada, Earley's Definition of algorithm in parallel
algorithm Arrays of task objects, recursion

and generic facilities

Residue arithmetic Napping of residue arithmetie types
to Ada constructs

Generic numeric packages with
user defined operators

Use of run-time profiling or Calendar
package for timing comparisons

An Overview of the Projects ircralt at right angles t-/W) to the elevation
st I ip, . And at t he range whore t he radar

recf ILect ion occurs, one can t reait t it, poitts i it on.
The most ambit ionus project consists of a ;tripe as beiir, ii luin.t , it tfin same t ime

s imulatiot of digital terrain radar mounted on a Li ix., i tin- down-range aid crollss - ita , el.'nttiOll

low speed aircraft and flvinig, over the ridge system datu -, it is quite simpl- to cimp t.v ti.
of central Ptennsvlvania (Figure 1 ). The data base i',i 1 .ct ivitv iom the lot .1 slop- ild radar tean,
consists of in excess of twenty million elevation :utn.lu from the holiiontal Note that this is a
poitnts organiztd in South-North slices. One of the si iific;rut 5;implitieation lou-jose trIi- radar
major difficulties is locating a specific terrain refl-ctivitv dupends on the grond cover .s Well as
entity which is swept bv tie radar heam. So a the li p-, But the data tast do(ts ." ot ii)(ni]ile
first stu p in processing the data is to fly the ini!orlrit iol ahout tlhe t;'pe of P't Iind -vi tr
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5,Ad

SI Ii ll I

i; ,.v I Perspective Plot of the Ridge Svstem of

r, Pennsyl s'ania This is part of the data

h,,v u,;ed for t wo of the student projects

I:, tl ; tli ft l. v is that ot shadowing. Hi gh alorg one contour line In general many closed

1r -ietn *he aircraft and the terrain slice irv.s are nleedd to define the elevation contours

'I", di spii. .'d can lead to regions which are in a 'ithii a display region. The students need to use

!, ti: o. The ref lecttid ener';g determines the !1,i I I i t i es of the ;KS to draw the contours and

"I 'I ,f . pixe I on a color displav. In practice. o Iel the result. Wlhen more students form the

of the aircraft is limited biy the rat., at v, p,,, workiig on this project, the, are also

i.; , *h,.- displav can be updated And so it Is (,:"cted to support zoom and pan fuoct iOnts
v,l o, b that onll those pixels which change color

, i.rd Fven so. real - tie simulat ion is In another project, the team must process a

if' i, ,, unless the program is highlv optimized n:itO' data base which consists ot 'ht. coordinates

i . , [ :l i t....r computer is I ightlv loaded iih dhifia .. T t hle outl I 1 ine oIf po litical region% in
I', ... 'l.ani, The boundary is to be plotted using

I. s (.'nd pro jec t iss the same ,it a base( to t 1 ;*c rI'il I,, interfacing to FORTRAN coded @ q I, 16
' ," t t 1 ines The levat in I of the dt i Ied 1i ; i cs ro'ut ines m, i nt a intd bv the 'ni vers it v

I inno is iput a is , theL region t o b.- izit ion Cetiti r But the principal challenge is

t , i .: A , .iph 'irs Ytril.,- S.sein pror;raminI. in, ,ccp it rp,it which Imav i c i ssp.-1 led or ot her -

Ad. i ,i d lu.i plot tI fg . ont ou(il lines FiIs 1.', in TirrpI, te and to selIct plalsible aliirna

t i it, implfi rint at ion of rout i ns firm the Ada 'i..- frim whi, h the utser call boose Also, tie

-ii , fr i spec if it graphics tutminal atld tor 1-it pints o,it the uviquv problemsl po, ed bv Ada

I f I t hid plit tel The -iVS is provided to thf et ch rite reii-siti:tat ion in a TOT- hir( which

<. !,t yh '> I I ibrar;v of Ad. e t i t it s The contour I cntIv hand ir %. s ha rac t t Ir s repre seut 4d in

I')t* i t:,, is" Oroi- t dlifficul1t thaln it seems One must ! iFl This mismatch in th I lanvuige aid tire

fin,! ,I ithose re Fions which are at the same e levat in qn to nit Tt sifit, a, is soon is the Ada program
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attempts to ship the escape sequence to shift the The inputting of digitized signal data via an
terminal emulation software into graphics mode. An analog to digital converter using a PC based
ASCII '[' simply cannot be output from the Ada conversion system is another application which
program! requires low-level control of hardware. In this 7-

case the Ada programs need to be interfaced with
The fourth project uses a personal computer to assembly code to allow access to processor ports.

which is interfaced a commercial speech synthesis Another aspect of this project is the mapping of
system. A PC based Ada compiler is used for this data to graphics pixels for the purpose of display-
and other projects which need to be run on personal ing portions of the input data. Signal processing
computers. The software, which has been tested algorithms need to be developed to do spectral
with a mainframe compiler, is down-loaded and analysis and the spectra are also subject to
low-level interfaces are added to control the plotting. The type of signal processing which is
hardware. To be useful for the visually supported depends on the number of students working
handicapped, the speech synthesis system needs to together. And they can choose to implemer,
be able to echo character for character what is analysis or digital filtering programs. Good
typed on the keyboard. But information received software engineering practice requires localizing
via serial ports, or output by a running program is all of the low level features in concisely written
enunciated as words. The synthesizer uses hardware and documented packages.
to perform the text to speech conversion but it
does so in a limited way. Often words need to be The last two projects are more experimental in
purposefully misspelled to be pronounced intel- nature and are suggested to those students who wish
ligibly. So the project needs to include a high to attempt Ada developments which have not
speed dictionary search which adds features to previously been reported. The first of these
.mprove the quality of the conversion to speech. A consists of an implementation of Earley's algorithm
binary search through a dynamically varying list is for string parsing (with Al application) using
one possibility. The dictionary needs to be easily parallel processing (Reeker, Kreuter and Wauchope,
revised by the user to add new words as they occur. 198)). In this effort, the rewrite rules are
Also. low-level features need to be added to allow maintained in matrix form and the string to be
user keyboard input on a priority basis. The PC parsed is processed in parallel one symbol at a
based compiler has packages for interfacing with time and the parse proceeds by recursive
,he operiting system and those can be used to application of these rules. The programming effort
advantage by the students, will result in generic packages which include

arrays of tasks to handle the concurrency. A
Another personal computer based project makes chall-ge to the students is to present the effort

use of a Laser Disk system (WORM, Write Once. Read in an understandable way and to develop tests which
Msnv The low leve I interfaces are used to will dtmonst rate the parse algorithms for represen.-
ctntrol a resident driver which handles reading. tative Al constructs.
The (liskette sized disk stores over 100 million

ytevs and high speed data transfer requires careful An even more problematic undertaking is the 
%

attention to the unique features of this sort of implementat ion of signal processing routines using
d.ice (Figure 2), As many as fifteen percent of residue arithmetic. Ada provides numeric types and
the sectors can be bad ano these are marked as such operations on those types (fixed point numbers)
.h,n thte disk is formatted prior to sale. Vhen which are potentially usable with residue arith-
.e. ,ling. ,nlv cont iguous good sectors can be metic ttchniques (Szobo and Tanaka. 1967) This
pressed in one read request. Efficient reading project is not to build a simulation of a residue
reutires that a map of unusable sectors be created ar itetic computer, but to develop algorithms
,rid referenced when accessing data in the files, which in fact exploit the speed potential of this
With cart-, it is possible to achieve data transfers mathematical approach. For example, a digital
whih in rost cases waste no disk revolutions. correlator using residue techniques may be imple-

mented using table lookup. The students who work
on this project need to be well versed in numeric

~ch i quets

Conclusions

Tht. ran ge of projects which we use in the
idvanced Ada course is designed to interest a large

..- range of students while at the same time requiring
development of demanding software applications
And because of the variety of experiences the
"' udent s encounter, and share wit II tt-ir

l,,ssmat , s, the- gain an appreciation of Ada inN .
various realistic settings. Sometimes they find
that Ada does not live up to expectat ions because

.f diferences imposed h the machine environment. A
i'lre 'WORM (Wlite Once, Read Many) laset Disk The', aliso come to appreciate that Ada can be used U

Data Car ridge Shown wirh a five inch diskette in applications which have traditionally been done
for size comparisonh a e o 98 6t'
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in machine languages. At least, the students learn
about working together in an Ada environment to
achieve a difficult goal.

References

Reeker, L. H., J. Kreuter and K. Wauchope,
"Artificial Intelligence in Ada:
Pat tern-Directed Processing." Tulane Universitv
Report 85-12, May 1985.

Szaho, N. S. and T. I. Tanaka, "Residue Arithmetic
and its Applications to Computer Technology."
Mctraw Hill. 196.

.i ' ,:l ti. l i I) l t

1 PA 1 f.80,

i i Ii (t A, ou i,

D .. t fl, p I i - .t. h a drcl
f I Iv ziuP x 'I j "" i ia S t v.9

;i, A' . ''" , .m i-T t . VI f the r a~ t c

* ,i i n , i ',. lpiu I . ill hi .',

. I ' v hill , tI I, i-

d f 11:':. . i I [ t, I ,t h o 1
S.1I } Ill. f I reetl" vil I t 1s itll

L' i ., ',i , s:, I ! -'l *h * h.' -a 'liem-

,{ i i , i * , d IT1 i i t ' t,1 l O ' i o t ! .

9to

162 6th~ National Conference on Ada Technology 1988

V.. 0. , h. v N h -N % IN



QUEUEING NETWORK MODELING AND
SIMULATION

Orkun Hasekiollu

General Electric Company

Abstract The specific parameters of these components are defined through
Queueing networks have been extensively used in modeling and an- their attribute tables (Figure 2). These tables contain all the nec-

alysiag communication networks sad operating systems. QNETSIM essary information to construct any queueing network using the
is an object oriented queueing network simulation tool. In QNETSIM five basic queueing network components mentioned above. The
queseing networks are composed of five primitive components: gen- packets (jobs) processed inside the network are also defined by
eratas, absorber, servers, router sad queues. The following perfor- certain attributes. Although these attributes can be expanded
masce measures of as arbitrary queueing network can be simulated: based on other needs, it is considered to be appropriate to in-
que e length statistics; packet delay statistics; utilization of servers, clude the following attributes:
routers and absorbers; network throughput. Examples from the comu-
axatimos network problems include a ring network, static routing and Packet length is the processing time for a particular job.
ieritbsk glow control In communication network simulation packet length usu-

ally denotes the tranmission time of a packet. This is de-

termined by the generator process, based on sampling a
predetermined statistical distribution. 01

- Packet priority field is utilized to process packets in a pri-
Simulation is the ultimate tool for developing and analyzing ex- ority order, if necessary.
pensive and large dedicated systems that are difficult to modify
for experimental purposes. A communication network is a typ- - Total packet delay field is updated each time a packet en-
ical example of this. In many cases, it is desirable to predict counters a delay and it is used to generate statistical per-
the system performance and needed to optimize various design formance measures on packet delay.
parameters before constructing the system. Packet serial number: each packet departing from a gen-

Queueing networks have been extensively used to model and - P acket serial number tdat ro a en-

analyze the performance of different multiprogrammed computer trace a particular job through the network.
systems, operating systems and communication systems 1,2,31.

In the sequel, a queueing network simulation approach using Packet type: In coununication systems simulation, for ex-
process interaction view of simulation is described. The mod- ample, generated packets have certain types, as required
eling applications of queueing networks are so widespread that by the communication protocol, e. g. , acknowledgement,
QNETSIM can be used for many other purposes, including man- information etc..
ufacturing system assembly line simulation.

Following the general description of QNETSIM, the basic The input to QNETSIM can be either interactive, or through
components of QNETSIM are introduced. The applications are a configuration file that contains the structural information on
demonstrated by several examples, including a ring network, flow the queueing network. Similarly, statistical results of the simula-
control and routing examples. tion are either directed to the terminal or to a data file that can

further be used for evaluation or animation processes.
2 General Description of QNETSIM",'

3 Performance Measures Considered A+

QNETSIM is an Ada based queueing network simulation pack-
age, so that powerful programming language capabilities of Ada QNETSIM produces statistical results on all major widely ac-
can be utilized. cepted performance criteria in queueing network analysis. These0

In QNETSIM a queueing network is considered to be com- include the statistics on queue (buffer) sizes, utilization (busy
ponsed of five components: generator, absorber, queue, server and probability) of packet processors, i. e. , absorbers, servers and
router (Figure 1). The detailed functionalities of these compo- routers, statistics on packet delay at any absorber, input/output
nents are described later. The generators, absorbers, servers and rates of packet arrivals and departures to and from the networks.
routers are treated as active processes in the process oriented The performance results also include the throughput of the net- V,
simulation approach. On the other hand the queues are passive work, defined as the ratio of the number of packets leaving the
conaructe. Packets or jobs are stored in the queues. Deleted from network to the number of packets entering the network.
the queues and processed by the active components.
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4 Queueing Network Modeling Components 4.3 Absorber

Queueing network models consist of five primitive components: Absorbers are the entities where the packets exit the queueing

generator, absorber, queue, server, router. Simulation models network. Absorbers connected to the queues delete the packets
should be composed of these five elements. Here, we describe the from the queue and process the packets based on the information

specified in the attribute fields of the packets. Each absorber has
functionalities of these components or processes, an identification number and a specified queue number that the

packets are deleted from. In a practical case, an absorber may

4.1 Generator represent a receiver that deletes the packets from the receiver

Generators are the external sources that generate packets to be buffer.

transmitted through the network. Based on the statistical pa-

rameters specified in the generator attributes table, it produces 4.4 Server

packets. For identification purposes, each generator is assigned Spua number. The attributes of a generator are the following: Servers delete the packets from the queue they are connected
1Packet num er. Theiat tribut ion nerato e dthe foltialoto, delay for the period of time specified in the packet length

1. Packet interarrival distribution type nd the statistical ps- attribute field and insert the packet again to a specified queue.
rameters of the distribution. The in~rarrival time distri- Therefore, the identification numbers of the queues from which
bution may be any one of exponential, gaussian, erlang, the server deletes the packets and to which the server inserta
uniform or constant. The statistical parameters related to the packets have to be specified. In a communication network
the packet interarrival distribution have to be specified, e. simulation model, servers may represent the delay caused by the
g. , mean, variance, erlang parameter etc. transmission time of a packet.

2. Packet length distribution type and the statistical param-

eters of the distribution. Packet length distribution types 4.5 Router

and the related statistical parameters are the same as the Basically routers have the same functionalities as the servers,
ones for the packet interarrival distribution, except that it can insert the packets to more than one queue

3. Priority. As the packets are generated they are assigned based on a routing policy associated with it. The routing policy

a specific priority by the generator. The priority of the specifies the probability of branching to a particular queue.

packets can be utilized to implement different scheduling Examples are given to illustrate the way these simulation

procedures for the processing of packets. model building components are utilized in real world situations.

The identifying number of the queue that the generator in-
serts the packets is to be specified as well. Generators also keep 5 Examples
track of the total number of packets generated during the simu- 1
lation time, in order to be able to calculate some of the perfor- 1. A ring network:

mance measures. Any number of generators can be connected to Each node consists of a packet generator (transmitter), an
a queue. In a physical situation, depending on the application, a absorber (receiver), a router, receive and transmit buffers.

generator may represent a transmitter. Packets are circulated around the ring network. With a cer-
tain probability the packet is retained in a node and with

4.2 Queue another probability it is transmitted to the next node. Sam-
ple input configuration file and output statistical results'.

Queues are the entities where the packets are stored and then pro- files are given (Figure 4,5).

cessed, based on the queueing discipline specified. The generators Figure 3 illustrates a 4node ring network. Each of the
connected to the queue, insert the packets to the queue. Each
queue is assigned a number for identification. The attributes of absorbers, generators, routers and queues are identified by
a queue are the following: an integer identification number. The two queues in each

of the nodes represent the input and output buffers. Ab-

I. Queue length is the maximum number of packets that can sorbers correspond to receivers and generators correspond
be stored in the queue simultaneously. If not specified, it to transmitters. Figure 4 is a sample input file for a partic-

is considered to be infinite. ular set of parameters. For each transmitter (generator),
the corresponding transmitting buffer, statistical informa-

2. Queueing discipline, is the scheduling discipline that the tion on the packet lengths and interarrival time and their

stored packets are processed. It can be first-come-firn identification numbers are supplied. The required infor- -'\,i
serve (FIFO), last-in-first-out (LIFO) or priority where the mation for the receivers (absorbers) are their identification " .

packets are processed in the order of their priorities. High numbers and the asociated receiving buffers. As part of the

priority packet. are processed first, link information the branching probabilities are supplied.

In a practical situation, a queue may be used to model a buffer Finally, the simulation length in the units of time and the
or an abstract feature of a communications protocol. number of independent trials of the simulation experiment

are given. The simulation program is repeated each time
with the same parameters with new random seeds for the

random number generators.
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The output statistical results (Figure 5) include the statis- References
tics on the buffer sizes, utilization of the transmitters, re-
ceivers and links, statistics on packet delay, the input and III C. H. Sauer and E. A. MacNair, Simulation of Computer
output rates of packets and the throughput. Throughput is Communication System#a. Prentice-Hall, 1983.
defined as the percentage of the packets that exit the net-
work. These are the mast commonly referred performance 121 M. Schwartz, Telecommunication Networks, Protocols, Mod-
parameters in the analysis of queueing system. We note eling and Analyis. Addison-Wesley, 1987.
that the system is still in the transient phase of the end of 3H.IoeDitaIngredCmuctosSyes.U-
100.0 simulation time units. Many of the packets have not versH.tynoe iTaly Pnrte Comuiato79.te. U
reached the receiving buffers, yet. We can observe this byvestofTkoPs,19.
comparing the input and output rates, and from the queue
length statistics.

2. Routing:

A static routing procedure, where every node has a constant
routing table indicating the manner the incoming traffic is
distributed to the adjacent nodes can be identified by the
routing policy and a traffic distribution matrix. Each ele-
ment, (i, 3 ), of the NXN traffic distribution matrix, where GENERATOR DUEJJIU
N is the number of nodes, indicates the external traffic
arrival rate from node i to node j. The routing policy at-

tributed to each router element specifies the probabilistic - 3 fl )
distribution of the packets to the adjacent nodes. The de-
lay and queue sizes can be optimized by varying the routing
procedure until the optimum desired results are achieved.
In this example (Figure 6), the nodes have the identical SRE
queueing structure as in the ring network example. SEVRROUTER

3. lsarithmic Flow Control: In isarithmic flow control (Fig-
ure 7), an external packet arriving at a node of the net-
work is permitted to enter the network, if the node has a
permit (31. If not, the packet must wait until the node gets
a permit packet from another node. This way the max-
imum total number of transmitted packets waiting in the
network is limited by the total number of permit packets in
the network. This situation is usually modeled as a double
ended queue typically observed at a taxi stand. Therefore, Figure 1: Queueing networks are composed of the five primitive
transmission occurs only if there is a permit packet in the elements.
perm-it queue and in the external packet queue simultane-
ously. If an external packet can not find any permit packet
in the permnit queue, it delays its transmission until a per-
mit packet arrives.

6 Overview and Future Improvements

QNETSIM is developed as a multipurpose queueing network sim-
ulation package base on Ada. and process oriented simulation
techniques. It is capable of simulating many srenarios encoun-
tered in the modeling of communication systems where queueing 4

networks are utilized. Nevertheless, some of the communication
protocol modeling problems are not directly representable in the
form of queueing networks. In such case, the resulting queueing
models may represent oversimplified versions of the original pro-
tocol, so that reliable simulation results are difficult to generate.
To overcome such problems a new approach is being developed
where queueing network simulation is incorparated with formalW
protocol representation techniques, such as, formal programming
language description and finite state machine representations of
communication protocols.
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ABSORBER ATRRIBUTES:
QUEUE ATTRIBUTES: Absorber number

Queue number The number of the queue served
Queue Length Total number of exiting packou

Queeig Discipline MICS. LIFOtc.)

PACKET ATTRIBUTES:

Packet Length
GENERATOR ATTRIBUTES: Packet Priorit

Generator number Total Packet Delay

Inter-arrivul Distribution Packet serial number
Average inter-arrivs3 time Packet Type

Packet Length Distribution
Average Packet Length
Priority
Number of the queue to insert the packets Figure 2: Attributes of the entities in a queueing network.
Totl number of packets generated

ROUTER ATTRIBUTES:

Router number
Total number of Branches
Probability of Routing to each Branch
The number of the Queue each Branch is connected to
The number of the queue the Rouier serves

SERVER ATTRIBUTES:

Server number
The number of the queue served
The number of the queue the packets are inserted to

A G2

oor

Figure 3: A 4-node ring network.
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NUMBER of stUFIERS a

NUMBER OF TRANSMITTERS: 4 STATISTICAL RESULTS

TRANSMITTER 1
TRANSMIT BUFFER S The AVERAGE LENGTH of BUFFER 1 L 1.94214E-03
PACKET LENGTH DISTR exponential
INTERARRIVAL DISTR exponential The MAX LENGTH of BUFFER 1. 1
AVG. PACKET LENGTH 0.5
AVG. INTERARRIVAL 1.0 The KIMN LENGTH of BUFFER Is 0
TRANSMIT TO 1
TRANSMITTER 2
TRANSMIT BUFFER 4 The AVERAGE LENGTH of BUFFER 2 is 1.469811-02
PACKET LENGTH DISTR exponential
INTERARRIVAL DISTR exponential The MAX LENGTH of BUFFER 2 is 2
AVG. PACKET LENGTH 0.4
AVG. INTERARIVAL 0.9 The MIH LENGTH of BUFFER 2 is 0
TRANSMIT TO 2
TRANSMITTER 3
TRANSMIT BUFFER I The AVERAGE LENGTH of BUFFER 3 is 2.91321E-O3
PACKET LENGTH IJSTR exponential
INTERARRIVAL DISTR exponential The MAX LENGTH of BUFFER 3 is I
AVG. PACKET LENGTH 0.3
AVG. INTERARRIVAL 0.6 The MEN LENGTH Of BUFFER 3 15 0
TRANSMIT TO 3
TRANSMITTER 4
TRANSMIT BUFFER S The AVERAGE LENGTH of BUFFER 4 is 5.90820X-04
PACKET LENGTH DISTR exponential
INTERARRIVAL DISTR exponential The MAX LENGTH of BUFFER 4 is 1
AVG. PACKET LENGTH 0.6
AVG. INTERARRIVAL 0.8 The MIN LENGTH of BUFFER 4 is 0
TRANSMIT TO 4

NUMBER OF SERVERS 0 The AVERAGE LENGTH of BUFFER S is 1.41775E-01

NUMBER OF RECEIVERS 4 The MAX LENGTH of BUFFER 5 is 4

RECEIVER I The MIN LENGTH Of BUFFER 5 is 0
RECEIVE BUFFER 1
RECEIVER 2
RECEIVE BUFFER 2 The AVERAGE LENGTH of BUFFER 6 is 3.7513SE-01
RECEIVER 3
RECEIVE BUFFER 3 The MAX LENGTH of BUFFER 6 is 4
RECEIVER 4
RECEIVE BUFFER 4 The HIH LENGTH of BUFFER 6 is 0

NUMBER OF LINKS 4

LINK I The AVERAGE LENGTH of BUFFER ' Is 3.4g25E.E+OO
RANSHIT BUFFER 5 The MAX LENGTH Of BUFFER 7 is 8

NUMBER OF BRANCHES 2
BRANCH I The MIH LENGTH of BUFFER 7 is 0

BRANCH PR. 0.2
BUFFER e 2

BRANCH 2 The AVERAGE LENGTH of BUFFER S is 3.20127E-01
BRANCH PR. 0.8
BUFFER * 6 The MAX LENGTH of BUFFER 8 is 4

LINK 3 The MIH LENGTH of bUFFER a is 0
TRANSMIT BUFFER 7
NUMBER OF BRANCHES 2

BRANCH I
BRANCH PR. O.S The utilization of the ABSORBER I I* 1.94214X-03
BUFFER 4 4

BRANCH 2
BRANCH PR. 0.2 The utilization of the ABSORBER 2 is 1.24152Z-02
BUFFER 1 0

LINK 4 The utilization of the ABSORBER 3 IN 3.142701-03
TRANSMIT BUFFER 8
NUMBER OF BRANCHES 2

BRANCH I The utilization of the ABSORBER 4 is 5.901201-04
BRANCH PR. 0.6
BUFFER I 1

BRANCH 2 The utilization of LINK 1 is 3.69175Z-0l
BRANCH PR. 0.4
BUFFER 5 The utilization of LINK 2 Is 4.83719Z-01

SIMULATION TIME 100.0
NUMBER OF TRIALS 1 The utilization of LINK 3 Is 8.13851E-01

Figure I A sop pIe input network configuratIon f ile The utilization of LINK 4 is 
4
.74684E-01

for the 4-node ring network.
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ABSORIER 2

The AVERAGE DELAY of the packets leaving the network is 9.12421-02

The MAX DELAY of the packets leaving the network is 2.73726-01

The HIM DELAY of the packets leaving the network is 1.56432E-02

ABSORBER 3 :

The AVERAGE DELAY of the packets leaving the network is 5.94474E-02

The MAX DELAY of the packets leaving the network is 1.72342E-01

The HI DLLAY of the packets leaving the network is 1.78453E-02

The output rate through the A OS S I s 3.00000Z-02 packets/unit time

The output rate through the ABSORBIR 2 Is 3.000001-02 packets/unit time

The output rate through the ABSORBER 3 is 3.000OOZ-02 packets/unit time

The output rate through the ASORbE 4 Is 3.00000E-02 packets/unit time

The input rate through the GENERATOR 1 Is 1.02000E+00 packets/unit time

The input rate through the GENERATOR 2 Is 1.14000E+00 packets/unit time

The input rate through the GENERATOR 3 is 1.7000E1.00 packets/unit time

The input rate through the GENERATOR 4 is 1.27000O400 packets/unit time

The THROUGHPUT of the network Is 3.20000E-02

Figure S Statistical results for the configuration
file given in Figure 4.

Permit queue

1Pocket queue

Figure 7: Queueing model for isarithmric flow control in commu-

Figure 6: Graphical simulation model for the static routing ex- nication networks.

ample in a communication network.
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The Suitability of Ads. for Communications Protocols

Robert H. Poilack and David J. Campbell

Unisys Defense Systems
System Development Group

Paoli Research Center

YA

Abstract implementor will seldom be the same person or even%

communicate with one another. A protocol standard is a
Commxunications protocol implementations are a software design which must speak entirely for itself.

clas of software with unusual requirements. These The second requirement of protocol implementations is
programs must not only perform well in real time, that they perform well in real time. This requirement arises
but must also satisfy rigid formal specifications. In from two considerations. First, most protocol
the past, protocols have chiefly been implemented in implementations are "utility" software, i.e., software that is
C or assembly language. In this paper, the authors run repeatedly or continuously, as opposed to programs that
present the results of a study of protocol are run infrequently. Second, individual protocol standards
implementations in Ad&*. The influence of several may have specific real-time requirements, e.g., they may
Ada language features on protocol performance is require that a network node respond to a certain request
measured in two ways, first by "standard" within a given number of seconds or even within
benchmarks, and second by varying the use of these milliseconds. This second requirement of protocol software
features in an Ada protocol implementation. Finally, is shared by embedded systems; indeed, many protocol
the authors compare the performance of Ada and C implementations are themselves embedded systems or are
implementations of the same protocols, concluding part of embedded systems.
that the protocol community can take advantage ofThstwreuemnsopooclofaeaeotn

wAthou soacrityn pefan ce.trcin ehaim perceived to be in conflict, particularly in determining a
withut acrficng erfrmace.suitable implementation language. On one hand,

conforming to abstract formal standards suggests an

31. Communications Protocol Software implementation language that permits a high degree of
abstraction, and one which contains mechanisms for

The implementation of communications protocol insuring that these abstractions are used consistently. On
software has requirements that are not shared by the bulk the other hand, the requirement for effective real-time
of data-processing or scientific programs. These performance suggests a language that is "close to the
implementations differ from most other software in requiring machine."
both conformance to standards and in performanceThspereotsnteefcivesofAan
constraints.Thspprrprso th efetvnsofAai

In the first place, protocol software must often conform meeting both of these goals.

to rigid formal specifications. This is particularly true of 2. Overall Approach
implementations of standard protocols, such as thoseIntepsilmnaiocaryadcnfmne
specified by the Department of Defense or the InternationalIntepsilmnaio caryadcnfmne
Standards Organization. It is only complete conformance to to standards have usually taken second place to

standards that makes it possible for different performance requirements. Hence, most protocol

implementations to communicate at all, implementations have been in assembly languages or in C.
While the use of such languages have provided the requisite

It is worth pointing out that conformance to protocol performance, the resulting implementations leave much to
standards differs significantly from the conformance to be desired in the areas of portability, maintainability, and
design that is required by all software implementations. interoperability.
Unlike most software designs, a protocol standard will
seldom change during the implementation phase; even if It was exactly these difficulties in embedded systems

design changes occur, they will never be under the control of that triggered the development of Ada lBarnes84k.

the implementor. In addition, the designer and the Moreover, Ada offers abstraction mechanisms that closely
correspond to those used in protocol specifications (see, for

Ada is a registered ttademstk or the U.S. Government, Ads Joint Pro- example, [CastanetS61l. The most significant remaining ~
gram Office qetoteeoe swehreitn d oplr a

The work described herein was performed under Defense Communications qesnateesuforiet is o whethe eitin Ada t coprstocan
Agency costract number DCA-iOO-53-C-0064. gnrt ufcety go oe t etpooo
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performance requirements. The work described here shows
the results of a study commissioned by the Defense the Hughes Aircraft Company Ada Benchmark Suite

Communications Engineering Center (DCEC) of the United [Hughes861" V9

States Defense Communications Agency (DCA) to
investigate the performance of protocol implementations 3.2. Benchmark Results

written in Ada. The benchmarks were run on two VAX 11/785s, one

Our overall approach considered the problem on running 4.3 BSD UNIX, and the other VAX VMS. Each

several independent axes. The first was a comparison of system was free of other programs during the benchmark

three different Ada compilation systems with respect to the runs. The results given below are based on the best

performance of those Ada features which both DCEC and performance of at least three samples of eac'i test. Each

the authors regarded as important in the protocol domain, test was compiled with all Ada run-time checks suppressed

Second, we attempted to determine the influence of various and with full optimization.

Ada features on the performance of an Ada implementation To aid in comparison, we express most of our results as
of the DoD protocols TCP and IP. Finally, we compared ratios. In each test, we arbitrarily define the performance
the performance of this Ada implementation to one written of the Verdix compiler as 1.0, and express the other
in C. measurements as multiples of this measurement, i.e., we

The test environment consisted of two VAX' 11/785s, normalize all measurements with respect to VADS. The
Te es Beniroment conisd ofe twoer VM. Ts results given in this section are all normalized except where

one under Berkeley UNIX and one under VMS. The otherwise indicated. Moreover, the normalized results in

compilation systems studied were this section are the ratios of time; that is, a normalized

* the Verdix Ada Development System (VADS) result of, say, 2.0 for a given test means that that test took

[Verdix86], version 5.41(e), under UNIX 4.3 BSD twice as long to run as the same test under VADS. The

* Digital Equipment Corporation's VAX Ada (DEC Ada) reader should also be aware that all of our measurements,

[DEC85], version V1.3-24, under VMS V4.5 whether normalized or not, are measurements of ezecution

* the Ada Language System/Navy (ALS/N ADAVAX) time only, not compilation time.

[ALSN871, version 3.99, under VMS V4.5 Although we collected both CPU time and elapsed time
for all tests, the measurements below are based on CPU

3. Compiler Benchmarks time. We found that for nearly all our samples, these two
measurements were extremely close (within 1% of each

Each of the compilers described above was other). Elapsed time, however, was occasionally larger than
benchmarked using a specially tailored benchmark suite, CPU time. Since this effect appears to be random, we
designed to test Ada features important in protocol believe that it is due to operating system interference, and
implementations. The purpose of this benchmark suite was therefore regard CPU time as the more reliable
to permit the performance of each compilation system to be measurement.
analyzed at the individual feature level.

3.1. Benchmark Suite Design Tasking

Several different benchmarks were used to evaluate the
Based on the special requirements of protocol software, run-time systems with respect to tasking. These included

the authors developed a set of specific criteria by which Ada the Hughes tasking paradigm benchmarks and a group of

compilation systems would be evaluated. These criteria ACEC benchmarks in the tasking area. Figure 1
included measurements of execution speed in the areas of summarizes the results of these benchmarks.
tasking, exceptions, and the speed of basic constructs, such
as procedure calls, storage allocation, array and record
component references, and simple integer arithmetic Compiler

operations. The suite omitted measurements of features not Benchmark ALS/N DEC Ada VADS
frequently used by communications protocols, such as ADAVAX .

floating point arithmetic. Hughes 5.7 2.1 1.0

The benchmarks were taken from three public-domain ACEC Run-Time 4.3 2.0 1.0

benchmark suites: Figure 1. Tasking Benchmarks

" the Prototype Ada Compiler Evaluation Capability (normalized)

(ACEC) [Hook85]

* the PIWG benchmark suite, developed by the The first row of this table shows the mean result of five

Performance Issues Working Group of the ACM tests from the Hughes benchmark suite which measure the

[Squire851 performance of various interactions between producer and
consumer tasks, ranging from a simple interaction to more

t VAX is a trademark of Digital Equipment Corporation
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complex inter-task communication involving buffering and The tests chosen from the ACEC suite included
transporter tasks. The second row shows the mean result of measurements of the speed of for loops, case statements,
ten ACEC tests which measure the efficiency of the run-time variable reference, parameter reference, and integer
system's task handling. This group includes the ACEC task arithmetic. The set of tests taken from this suite consisted
chaining tests and the select and guard tests, of 34 test pairs, each pair consisting of a control test and

feature test. The final result for each test was considered to
The authors also developed their own test to measure be the minimum CPU time achieved in a group of at least

the number of small tasks that each run-time system could three samples. Figure 4 shows the mean of the normalized
support. This test consisted of simply starting as many differences of the 34 test pairs.
small tasks as possible. We found that all three systems
reach a point at which they no longer will initiate new It can be seen from this figure that VADS and DEC
tasks, but that no system raises an Ada exception when this Ada execute our chosen tests in about the same time, while
point is reached. Note that the ALS/N ADAVAX was able the ALS/N ADAVAX executes about 15% faster.
to initiate more than twice as many tasks as either of the
other systems. Figure 2 shows the observed task capacity of Compiler
each compilation system, to the nearest 100 tasks. Benchmark ALS/N DEC Ada VADS

ADAVAX

Compiler ACEC mean 0.85 0.97 1.00
Benchmark ALS/N DEC Ada VADS Figure 4. ACEC Execution Tests

ADAVAX (normalized)
Tasks 1900 800 900

Figure 2. Task Capacity Figure 5 shows the results of a set of PIWG
(number of tasks) benchmarks which measure the cost of allocating dynamic-

sized structures during elaboration and deallocating them
on subprogram exit. Since the significance of these
measurements depends on comparing different rows of the

Exception Processing table, we present the raw results, in microseconds of CPU
The time to raise and propagate an exception in time.

various situations was measured using three PIWG
exception-handling tests. Figure 3 shows the mean of the Compiler
normalized results of these tests. Benchmark ALS/N DEC Ada VADS

ADAVAX
Compiler D000001 438.3 4.4 11.7

Benchmark ALS/N DEC Ada VADS D000002 7775.0 3328.1 2072.9
ADAVAX D000003 449.6 8.1 1006.5

PIWG Exceptions 0.05 1 0.07 r 1.00 D000004 12612.5 4787.5 3322.9

Figure 3. PIW G Exception Handling Tests Figure 5. Dynamic Allocation (psec)

(normalized)

The results of these tests show that dynamic allocation

General Execution Speed can have a considerable influence on the performance of
actual programs. They show that each of the compilers

The execution efficiency of basic constructs was has a choice of two different allocation strategies.
measured by a large set of benchmark programs taken from Moreover, in a given situation, the three compilers do not
the ACEC benchmark suite. This set consists of ly tests in all choose the same allocation strategy. Test D000001
the ACEC suite which are designed to measure only the measures the time to allocate a dynamic-sized array of
speed of basic constructs, common to all programming integers. Test D000002 is the same as D000001, but
languages. The ACEC tests which measure the performance initializes the array with an others clause. Tests D000003
of constructs found only in Ada, such as tasking and and D000004 are the same as D000001 and D000002,
exceptions, are discussed elsewhere in this paper. In respectively, except that the array is a field of a

sset, eused four PI benchmarks, discriminated record. The two allocation strategies are
described below. We also measured execution speed with illustrated by tests D000001 and D000003. One of these
the well-known Dhrystone test. We discuss each of these strategies takes on the order of 10 psec, while the other
results separately below. takes several thousand pIsec. We believe that the first

operation consists of simply expanding the program stack, ya
while second involves allocation from a global heap.

t UNIX is a trademark of AT&T Bell Laboratories
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As the table shows, the DEC compiler chooses stack 3.2.1. Benchmark Summary
expansion for both kinds of uninitialized objects, the ALS/N The execution speed of "ordinary" constructs, as
ADAVAX chooses global allocation for both, while the measured by the ACEC suite, was best with the the ALS/N
Verdix compiler uses stack expansion for the array and ADAVAX compiler; VADS and DEC Ada showed about
global allocation for the record. Thus, the programmer's equal performance. In the tasking area, the results show
choice of data structures can be seen to have a potentially that the VADS run-time system's support of tasking
great influence on performance when moving from one Ada performs about twice as fast as DEC's and four to six times
compiler to another. as fast as that of the ALS/N ADAVAX. The results of our

Figure 6 shows the results of the Dhrystone exception-handling tests show that the ALS/N ADAVAX
benchmarks, once again normalized to VADS. Dhrystone is offers the fastest implementation, while VADS is by far the
a composite benchmark that represents a "typical" slowest.
program. Dhrystone uses a special mix of statement types The results of the Dhrystone benchmark show that
and data types, constructed from a statistical analysis of a DEC offers the fastest performance, followed by VADS and
large number of "real" programs [Weicker84]. The results the ALS/N ADAVAX. This result is somewhat surprising,
in Figure 6 were measured with all of Ada's run-time checks since the ACEC suite shows these two compilers to be about
enabled; the influence of these checks on performance is equal in performance. One possible explanation is the
discussed below. difference in dynamic record allocation strategies between

these two compilers, which we have discussed above. It is
Compiler also possible that some of the features measured by the

Benchmark ALS/N DEC Ada VADS ACEC tests play a stronger role in programs than others, a
ADAVAX fact which is not reflected by the simple mean of all these

Dhrystone 2.0 0.6 1.0 tests.

Figure 6. Dhrystone Results It is worth noting that the Dhry~tone results provide a
(normalized) fairly good approximation of the results we obtained in ournprotocol performance measurements, described below. Thus,

our protocol programs proved to be "typical", according to

Suppress Pragma the Dhrystone criteria.

In addition to measuring execution speed of the
features described above, we also wished to determine the 4. Ada Protocol Design
cost of Ada's many run-time checks. The effect of One of the fundamental concepts in protocol design is
suppressing all run-time checks was measured by running that of layered network architecture. In such an
Dhrystone with all checks on and all checks suppressed. architecture, entities at a particular level or layer
The latter effect can be achieved by using the Ada SUPPRESS communicate with one another by using the services
pragma, but all of the compilation systems also permit this provided by the layer directly beneath. These entities, in
effect to be achieved by a compile-time option. Dhrystone turn, provide a well-defined set of services to the layer
was also used for this test because it reflects the number of above. The services that must provided by each layer

checks that would have to be performed during the comprise the reference model for a particular architecture;
execution of a typical program. Figure 7 shows the time in two well-known reference models are the ISO Open Systems

milliseconds for a single Dhrystone execution, both with and Interconnection (OSI) Model [ISO831 and the DoD Protocol

without checks. The table also shows the benefit of Reference Model [DCA8 2 .

suppressing these checks, expressed as a percentage of the TCP and IP are protocols at consecutive layers in a
execution time with checks enabled, layered network architecture, with TCP running at a level

corresponding roughly to the ISO transport layer and IP
Compiler running beneath it at the network level. The two protocols

Test ALS/N DEC Ada VADS are almost always used together, and, in particular, are
ADAVAX used together in the ARPANET. Following the terminology

checks 1.48 0.45 0.75 of the IP standard [DoD83c], we refer to the data link

no checks 1.25 0.32 0.52 protocol beneath IP as the subnetwork protocol, or SNP. In
_this paper, we refer to any protocol running above TCP as

% change +16% +29% +31% the upper.layer protocol, or ULP. For more detail on

Figure 7. Effect of Suppressing Checks protocol reference models or TCP/IP, the reader should

on Dhrystone (msec) consult any standard work on computer networks; a good
comparison of the ISO and DoD reference models may be
found in [Tanenbaum8l].

The performance measurement task whose results are
described here was part of a larger contract, which also
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included the creation of complete Ada implementations or
the DoD Transmission Control Protocol (TCP) [DoD83al
and the Internet Protocol (IP) [DoD83c]. The design and
coding of the Ada version of TCP/IP were carried out by . .. LP taks
Unisys personnel at the SDG West Coast Research Center.
We present a brief overview of this design below.

Both the TCP and IP standards are specified in an
Ada PDL. Accordingly, one of the principal design o n mr
considerations was to use these standards as the
implementation model, wherever possible. Following the
TCP specification, the communicating TCP entities are TCP state machines
implemented as finite state machines (FSMs), with each
FSM provided with a means of communicating with the TCP
ULP and with IP. The data structures and subprograms in IP iaent, tasJ !oPbek_ IP nputtask
this implementation are those used in the military standard
specifications.

The design also stresses portability. Portability is IP output logic E reasJembly task

achieved in a number of ways. First, all data types are, as
much as possible, explicitly defined. That is, the use of Ioopbaek

implementation-dependent Ada types, such as INTEGER, is . . . task
avoided; instead, explicit ranges and storage sizes are given
for numeric types. Second, each type is made as
constrained as possible. For example, internet addresses are outgoing incoming
described as arrays of eight-bit characters rather than as mesage message
32-bit integers, to avoid problems with Ada implementations
that do not support 32-bit arithmetic types. Finally, Figure 8. Ada TCP/IP Message Paths

constructs that are non-portable, or areas where
performance may be improved by the use of non-portable single-node loopback paths. Since the reader should have an
constructs, are isolated, using the Ada package mechanism. understanding of the task structure of the Ada

The design takes good advantage of Ada modularity by implementation to understand what follows, we will briefly

isolating each of the two protocols, TCP and IP, to its own erplain the major elements of the figure.
set of packages. Each inter-layer interface is defined in its The interface between the ULP and the TCP state
own package, with the implementation details of the machines (FSMs) is through a package known as the
interface hidden from the interface user. We found that connection manager, which actually performs the rendezvous
this feature of the design made the protocol implementation with the state machines. The operation of a given FSM is
extremely easy to modify, in ways that are described below, self-contained and the FSM is uniquely associated with a

All concurrency required by the implementation is particular ULP task. Thus, no synchronization is required

expressed by Ada tasks. This frees the implementation from between the connection manager and the FSMs except

any dependency on particular operating systems. during the establishment and disestablishment of this

Communication between the protocols, as well as association; when needed, this synchronization is provided

communication to the upper and lower layers, is by another task not shown in the figure.

accomplished by means of generic queueing routines. Outgoing IP messages (known, at this level, as
datagrams) require a unique identification number. This

5. Ada Protocol Testing Results number is provided by the IP identification task. All

In order to provide performance measurements that incoming IP datagrams are processed by a single reassembly

were independent of I/O devices and as independent as task, which stores these messages in a single queue for

possible of the operating system, the Ada protocol delivery to TCP. The IP input task provides

implementation was modified to provide for single-node synchronization of operations on this queue between IP and

operation. Figure 8 shows a rough overview of the structure the TCP state machines.

of the Ada implementation, and indicates the modifications In our throughput measurements, only one ULP task
made for performance measurements. In the figure, tasks was provided, which controlled both the input and output
are represented by circles and some important packages are message traffic; we refer to this task as the driver. The use
represented by squares. The figure by no means shows all of of the TCP and IP loopback paths was entirely under the %
the tasks in the implementation, but shows which tasks control of the driver, making it possible to measure the
figure prominently in the processing of both input and performance of each protocol independently of the other.
output messages, and which tasks are bypassed by the
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For the sake of brevity, we limit the measurements 6.1. Baseline Version Performance
discussed in this paper to those which we believe will be of By the baseline version, we mean the original Ada
most interest to the protocol community. These are the implementation as reported in jBiggar87], unmodified except
following: for the inclusion of the single-node loopback paths. The
s The connect/disconnect time of TCP state machines. results given in this and subsequent sections do not include

The measurements shown here were obtained through any measurements for the ALS/N ADAVAX because this
the TCP loopback path, and represent the compiler (ALS/N ADAVAX Version 3.99) was unable to
performance of the bulk of the TCP code. compile some of the packages in the baseline version. This
While most of the TCP code is concerned with problem has been reported to the ALS/N support
Wstablishileandbreakingcon , most of the i organization, which is currently developing a solution; this

establishing and breaking connections, most of the time has been identified as a problem with generics, whose fix, at Y
spent by a TCP/IP implementation is spent transferring the time of this writing, is scheduled for the December 1987
data with the connections fully established. Accordingly, release.
the following measurements are also of considerable interest: ra

" The data transfer rate of TCP and IP. These Simultaneous Connections
measurements were made through the IP loopback Compiler 1 3 5
path. They were obtained by exchanging messages DEC Ada 5.8 5.4
between pairs of TCP state machines, and so represent I -
the overhead of both sending and receiving messages. VADS 4.2 4.1 4.2
In this measurement, the size of each message was the Figure 9. Parallel Connection Rate
largest that could be sent on a subnetwork whose (connections/se)
maximum message size is 1024 characters, a typical
value for actual store-and-forward networks. The Figure 9 shows the connect/disconnect rate for each of
actual data size of each message was 904 characters, the compilers under test. Since the baseline Ada
to allow for TCP and IP message headers, and the implementation represents each FSM as a separate task, we
transfer rates shown are based on this number, include a measurement of how the management of

" The message transfer rate of TCP and IP. Protocol concurrent tasks affects the connection rate. In Figure 9,
implementations are often compared by the number of we show the results of this measurement. In this test, the
messages they can process per unit time. To facilitate driver opens a number of connections before closing any of
such comparisons, we present measurements of the them; during the connection establishment and
number of short messages that could be exchanged disestablishment, therefore, a number of FSMs are operating
through the IP loopback path. In addition to the TCP simultaneously. Note that each connection in Figure 9 ,,,
and IP message headers, each message contained only represents two FSM tasks.
one character of user data. The case of five simultaneous connections for the DEC

A number of variations were made to the Ada protocol compiler is excluded, because nearly all samples of this case
to establish the effect of Ada features on protocol involved protocol timeouts.
performance. These variations were in the areas of tasking,
timer management, and message formatting. The results of Simultaneous Connections
these variations are reported and discussed below. Compiler 1 3 5

The measurements presented in this section are based DEC Ada 14.2 13.9 13.6
on elapsed time, on systems that were free of nther users. VADS 8.4 8.6 8.6
Each reported measurement is the mean of a group o)
samples, from which we selected only those results in which Figure 10. Effect of Parallelism on Data Throughput
CPU usage, as reported by the operating system, was at (Kilobytes/see)
least 97% of the elapsed time; the resulting groups each
contain at least five samples. We also exclude every result ___

in which a protocol timer expired, since expiration of these Compiler Simultaneous Connections
timers causes retransmission after arbitrary intervals. 1 3 5 %

The largest standard deviation in any group was less DEC Ada 17.9 17.4 Z 17.1
than 2.5%; the maximum deviation from the mean was no VADS 12.0 12.3 12.3
more than 4.0%. This variability is of about the same F 1 f o an geh
magnitude as that reported for other computer performance Figure 11. Effeet of Parallelism on Message Throughput
tests, such as those reported in [Landherr86]. Note, also, (messages/see)

that the measurements in this section have all been
converted to appropriate performance rates. Figures 10 and 11 show the data throughput rate andmessage handling rate of the baseline implementation. Each

figure was obtained by sending and receiving 150 messages,
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of the two sizes mentioned above, divided among differing 5.2. Task Elimination
numbers of simultaneous connections. In this variation, as many tasks as possible were

Our main use of the baseline performance eliminated from the baseline implementation. Our goal was
measurements was to evaluate the effect of the variations to eliminate as many rendezvous as possible from message
described below. There are a few other points brought out processing, in order to determine the effect of rendezvous on
by these measurements, however, throughput.

First, it is clear that the code generated by the DEC All TCP state machines and all IP logic were combined
compiler outperformed that of the Verdix compiler. Part of into a single task. This single task also included the ULP.
this result is due to different compile-time options. In Thus, nearly all of the code was combined into this single
compiling under DEC Ada, we used an option that main task. Some other tasks were also eliminated. For
suppresses all of Ada's run-time checks. While VADS has a example, the connection manager's synchronization task was
similar option, we found that using it caused the compiler to eliminated, as was the IP identification task. Another IP
generate incorrect code; this problem has been reported to task, which served to monitor incomplete message fragments
Verdix. Accordingly, the VADS code was measured with all for timeout action (i.e., essentially an IP garbage collector), .a

run-time checks in place. For both compilers, we used as was also eliminated. Overall, the number of rendezvous
much optimization as the compilation systems provided, required to send and receive a single message over the IP
Our choice of options was governed by our desire to provide loopback path was reduced from six to two.
the fastest performance of which each compiler was capable. The elimination of much of the tasking logic was

To estimate the effect that the suppression of run-time facilitated by the modular design of both the protocol
checks has on performance, the reader may compare the specifications and of this implementation of them. For
results of the Dhrystone benchmarks, reported above. Also, example, all of the data required by a TCP state machine is
Figure 12 shows a comparison of the performance of DEC specified as belonging to a single data structure called the
Ads with run-time checks, DEC Ada without such checks, state vector. It did not prove possible, however, to
and VADS with the checks. The measurements shown in eliminate all tasks without changing the interface
this figure are those of serial connection rate and of requirements between TCP/IP and its upper and lower
throughput of 150 messages over a single connection, layers. An important lesson we learned from this effort is

that once a top-level design has expressed concurrency in

Connection Data Message terms of tasks, that decision becomes very hard to undo.

Compiler Rate Rate Rate
(conn/secl 'Kbytes/secl m secl Compiler/ Simultaneous Connections

DEC (no checks) 5.8 14.2 17.9 variation 1 3 5

DEC (checks) 5.2 11.6 15.6 DEC/baseline 5.8 5.3 -

VADS (checks) 4.2 8.4 - 12.0 DEC/taskless 8.1 7.7 -

% change +40% +45% -
Figure 12. Effect of Run-Time Checks VADS/baseline 4.2 4.1 4.2

Another observation that may be made from the above VADS/taskless 5.4 5.0 5.3

data is that the use of simultaneous connections, i.e., %chan +29% +22% +26%

simultaneous tasks, has little influence on performance. Figure 13(a). Connection Rate,
This observation must be used with care, however. For one "Taskless" Variation (connections/sec)
thing, the above measurements do not include the overhead
of creating and destroying tasks; our benchmark experience
indicates that this time can be considerable. Compiler/ Simultaneous Connections

Another piece of information not shown by these data variation 1 3 5
is that the total number of tasks needed to be kept rather DEC/baseline 14.2 13.9 13.6
small. When the number of tasks was increased to, say, 50 DEC/taskless 18.5 18.8 18.6
or 100, as opposed to the numbers shown above, we % change +30 % +35 % +37 %
experienced difficulties with the Ada run-time systems. VADS/baseline 8.4 8.6 8.6
These difficulties were experienced with both DEC Ada and VADS/taskless 10.0 10.0 10.0
VADS, and took the form of the test scenarios' failing to % change +19 % +16 % +16 %
run to completion. In both run-time systems, even when
run-time checks were enabled and when every task was Figure 13(b). Data Throughput,
given an exception handler, the errors took the form of "Taskless" Variation (Kilobytes/see)
failure to make progress; neither system raised an Ada
tasking exception, or, indeed, any other exception.
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portability.
Compiler/ Simultaneous Connections As might be expected, record re.resentation had a
variation 1 - 3 - negligible influence on connection speed, because these

DEC/baseline 17.9 17.4 17.1 measurements do not include any IP formatting, which is
DEC/taskless 24.1 24.3 24.3 the bulk of the formatting effort in the TCP/IP suite. The

% chanie +35 % +40% -42 . measurements for data handling are shown in Figure 14.
VADS/baseline 12.0 12.3 12.3
VADS/taskless 15.0 15.1 15.0 Compiler/ Simultaneous Connections

% change +25 % +23 % +22 % variation I 3 5
DEC/baseline 14.2 13.9 13.6 .0.1

Figure 13(c). Message Throughput, DEC/belie. 14.2 13.9 13.1 I.

"Taskless" Variation (messages/see) DEC/rec. rep. 14.9 14.5 14.1
% chanze - ±5 % +4~ 4 %

As can be seen from the measurements, the elimination VADS/baseline 8.4 8.6 8.6

of tasks has a profound effect on protocol performance. In VADS/rec. rep. 8.9 9.0 9.0

fact, this variation had the largest effect of any of our % change +6 % +5 % +5 % "
experiments. The inference to be made from these Figure 14(a). Data Throughput,
measurements is that, at least for the compilation systems Record Representation Variation (Kilobytes/see)
investigated here, tasks should be used sparingly when high
performance is required.

Comparisons of the two compilers based on these data Compiler/ Simultaneous Connections
should be made with caution. Note that the fact that one variation 1 3 5
compiler shows more improvement than the other does not DEC/baseline 17.9 17.4 17.1
indicate that it offers better performance in this area. It DEC /rec. rep. 19.1 18.1 18.1
shows, instead, that the run-time system is less efficient intask anageent.% change +7 % %4% + ; ,
task management. VADS/baseline 12.0 12.3 12.3 .' s

5.3. Record Representation VADS/reI. rep. 12.7 13.1 13.1
A significant aspect of protocol standards is the exact :4hne+ 7 7%

format of messages as they appear on external media, i.e Figure 14(b). Message Throughput,
communication lines. Message formats must be very Record Representation Variation (messages/sec)
carefully specified to preserve the interoperability of
different implementations of the protocol. In our baseline As can be seen from these data, the performance
version of TCP/IP, arithmetic constructs are used to advantage gained by record representation clauses is only
convert, back and forth, between the external media format slight. It would therefore seem that they should be avoided,
of messages and the internal data structures used by the at least in code that is intended for use on heterogeneous
protocol code. These constructs have the advantage of systems. The remaining reason to use these clauses is that
beitg highly portable, but they have the disadvantage of they offer greater conceptual clarity than arithmetic
generating relatively expensive code, compared to the bit- constructs. That is, the actual message layout can be seen
manipulation operators available on most computers. as a static declaration, rather than inferred from dynamic

This variation uses Ada record representation clauses code. This is partially offset by the fact that different "1 .

to express the format of messages as they appear on compilers number bits differently.

external media. Such clauses are included in the Ada
language to handle exactly the sort of problem posed by 5.4. Timer Tasks

protocol interoperability, and so are well suited to this job. In most protocol specifications (e I1 t

Unfortunately, however, these constructs are not (DoD83al, [NBSSII), timers are represented a..t,-'.

portable. The Ada standard permits Ada compilers objects with the following properties4

considerable freedom in choosing the semantics of record a They may be set to a cein .t ,
representation (see [DoD83b, § 13.4]), with the result that
record representation clauses do not have the same meaning They signal when that ( ,ie h ,':..
from one compiler to another, arbitrary value (i.e. . ..

Since we had little doubt that record representation * They may be ranceded

clauses would lead to a performance improvement, the Most protocol -;-t t

purpose of this experiment was to quantify the number of such ,b-, %N
improvement. Our goal was to understand the size of the handful of tin.r. .,

tradeoff between improved performance and lower 11irea'] of ''." "
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hundreds. It has been pointed out [CastanetS6l that Ada of these branches effectively cancels the waits on all the
tasks can model such objects very well. This is a relatively others. This is suitable for protocol specifications in which
expensive way of managing time in Ada, however. A more all pending timers are cancelled when any one of them
natural way is to use timed entry calls [DoD83b, § 9.7.31 or expires, but it may not be well suited to protocols in which
selective waits [DoD83b, § 9.7.11; our baseline this is not done.
implementation uses the latter. This variation measures Once again, it can be seen that one compiler is more
the tradeoff between this method and the more flexible profoundly affected by the number of running tasks than the
method provided by timer tasks. other. This corresponds to the results noted for the task

elimination variation, described above.

Compiler/ Simultaneous Connections
variation 1 3 5 S. Comparison of Ada and C Implementations

DEC/baseline 5.8 5.4 - Part of our overall evaluation of the suitability of Ada
DEC/timers 5.1 4.3 - as a protocol implementation language was to compare a
% chane -12 % -20 % - protocol implementation written in Ada to the same
VADS/baseline 4.2 4.1 4.2 protocol implemented in C. The C implementation we chose
VADS/timers 4.1 3.8 3.9 to measure was written by Michael Wingfield and Tom

change -2 1 -7 % 1 7 % Blumer of Bolt, Beranek, and Newman (BBN) in 1980, under
contract to the DCA [Wingfield80]. This implementation is

Figure 15(a). Connection Rate, currently used by several ARPANET hosts.
Timing Tasks Variation (connections/see) The reader should be aware, however, that the BBN

implementation does not conform to the full military
CC standard TCP and IP. The BBN implementation is written

Compiler/ Simultaneous Connections to conform only to preliminary standards for these protocols
variation 1 3 5 [Postel80b, PoetelSOal, which contain fewer state transitions

DEC/baseline 14.2 13.9 13.6 than in the current standards. The Ada implementation, on
DEC/timers 12.7 12.2 12.1 the other hand, conforms completely to the current
% change -11 o7 -12 % -11 % standards. This has been confirmed by subjecting this
VADS/baseline 8.4 8.6 8.6 implementation to the DCA's protocol validation test suite
VADS/timers 8.1 8.3 8.3 [Mankin87, Griffin86].
% change -4 % -3 % -3 %

6.1. Structure of C Implementation
Figure 15(b). Data Throughput, Our comparative measurements were made with the

Timing Tasks Variation (Kilobytes/see) BBN implementation relatively intact, that is, with only the

changes necessary to introduce the single-node loopback
Ccapability. Since the overall structure of the BBN

Compiler/ Simultaneous Connections implementation differs markedly from that of our Ada

DEC/baseline 17.9 17.4 17.1 implementation, we shall outline the BBN approach below.

DEC/timers 15.6 15.1 15.0 The BBN implementation is designed to be a stand-
Change -13 15 1 2 1.0 alone, continuously running protocol server which accepts

% change 9__ -commands from other programs under the control of the
VADS/baseline 12.0 12.3 12.3 UNIX operating system. This program makes use of an
VADS/timers 11.4 11.7 11.7 interprocess communication (IPC) mechanism known as

% change -5 % 1-5 % 1 -5 % "Rand" ports [Sunshine77, Zucher77], an extension to UNIX
Throughput, developed by the Rand Corporation and BBN. This IPC

Figure 16(c). Message Throughput, facility is not available at most UNIX sites. Berkeley
Timing Tasks Variation (messagesi/see) UNIX, however, now offers an IPC facility with the same

Figure 15 shows the results of this experiment. It can functionality as the Rand ports. Accordingly, we

be seen that the overhead for timer tasks was relatively augmented the BBN implementation with a set of library

high, at least for one of the compilers, leading to the routines that convert the Rand port calls to the appropriate

tentative conclusion that this method of time management Berkeley UNIX calls.

should be avoided. To drive the BBN implementation, we used the same

It should be kept in mind, however, that Ada selective Ada driver package that we used in our other tests. This

waits implement a slightly different timer model than the package was modified to be a separate program, by

one described above. Although an Ada selective wait can replacing the connection manager package with a set ofone escibe aboe. lthugh n Aa slectve aitcan calls on an interface library to send and receive IPC

have m ore than one delay branch, the expiration of any one c all s o an i rorfhe er r t o ga nd Tee iv e rfac
messages to and from the server program. The interface
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library is supplied as part of the BBN implementation of
TCP/IP. Since we ran the BBN implementation in a UNIX Compiler/ Simultaneous Connections
environment, the driver program was compiled with the variation 1 3 5
VADS compiler. DEC/baseline 14.2 13.9 13.6

VADS/baseline 8.4 8.6 8.6
6.2. Comparison Results DEC/taskless 18.5 18.8 18.6

The most difficult part of comparing the BBN VADS/taskless 10.0 10.0 10.0
implementation to the Ada implementation is to avoid BBN (elapsed) 7.2 7.1 -
including any differences that are due only to the radical BBN (CPU) 10.3 10.2 -
difference in their overall architecture. In order to take this Figure 17. Data Throughput,
difference into account, we present two measurements for BBN C Implementation (Kilobyte/ec)
each test of the BBN implementation.

First, we present performance rates based on the mean In this test, the performance of the BBN
value of total elapsed time. The reliability of these implementation is also in the neighborhood of most of the
measurements is about the same as those in the previous Ada implementations. It is worth noting, however, that the
section, with all standard deviations less than 5%. Second, best Ada implementations clearly outperform the BBN
we present performance rates with IPC time excluded, implementation, even when IPC time is excluded. (The
These rates are based on CPU usage, excluding any time measurement for the BBN implementation with five
spent in the IPC library routines. This measurement has a simultaneous connections is missing from this table because
greater statistical fluctuation, with some standard the limitations of the 4.3 BSD IPC system did not permit
deviations as high as 18%. this test to be run.)

Each measurement presented in this section was
obtained on systems that were free of other users, and is Compiler/ Simultaneous Connections
based on at least five samples. variation 1 3 5

DEC/baseline 17.9 17.4 17.1
Compiler/ Simultaneous Connections VADS/baseline 12.0 12.3 12.3
variation 1 3 5 DEC/taskless 24.1 24.3 24.3
DEC Ada 5.8 5.4 - VADS/taskless 15.0 15.1 15.0
VADS 4.2 4.1 4.2 BBN (elapsed) 15.1 14.5 14.3

DEC/taskless 8.1 7.7 - BBN (CPU) 31.1 32.6 30.1
VADS/taskless 5.4 5.0 5.3

BBN (elapsed) 2.3 2.7 2.5 Figure 18. Message Throughput,

BBN (CPU) 7.6 7.5 7.5 BBN C Implementation (messages/see)

Figure 16. Connection Rate, Finally, in our test of message handling rate, in which
BBN C Implementation (connections/see) the messages contain only one character of user data, the

performance of the BBN implementation is less than that of
Figure 16 shows the connection establishment and the best Ada implementations. When IPC time is excluded,

disestablishment time for the BBN implementation. For the BBN performance is greater than that of any Ada
ease of comparison, the figure also shows the performance of implementation. Note that almost all of the data
the Ada baseline versions and the Ada reduced-task exchanged in this test consists of message headers.
variations. It can be seen that performance of the C Overall, the measurements shown above show that an
implementation is in the same neighborhood as that of the interactive user of these protocols would find the Ada
Ada implementations. performance at lJast as good as that of the C

implementation. For applications where the message size is
large, such as file transfer or electronic mail, the Ada
performance, under some Ada compilers, would be far
better.

Our experience with porting the BBN implementation
to the VAX from its original host machine, a DEC PDP-11,
illustrates an important aspect of this implementation other
than simple execution speed. The B3N implementation
proved to be extremely machine-dependent. Its principal
machine dependency was the assumption oJf a 16-bit integer
size. It had many other machine dependencies, however,

including many places in which the size of data structures in
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bytes was included explicitly, even where the C szeof [Biggar87] J. Biggar, "The DoD TCP/IP Protocol
operator could have been used. It also included assumptions Suite in Ada," Proc. 1987 Unisya Software
about field alignment within records that, we discovered, Engineering Symp., McLean, Virginia,
are not common to all C compilers. September 1987.

This contrasts markedly with the high portability of tCastanet861 R. Castanet, A. Dupeux, and P. Guitton,
the Ada implementation, which was ported without changes "Ada a Well Suited Language for
to two different hosts (VAX and Sun) and two different Specification and Implementation of
operating systems (Berkeley UNIX, and VMS). Much of this Protocols," in Protocol Specification,
portability is due to good Ada design, and, in particular, to Testing, and Verification, V, M. Diaz
the avoidance of system-defined types, such as INTEGER. (editor), North-Holland, New York, NY,
Note, however, that the Ada language offers the 1986.
implementor much more opportunity to achieve portability [DCA821 DoD Protocol Reference Model, System
than does C. Development Corporation, Santa Monica,

California, 30 September 1982. (DCA
7. Conclusions Contract No. DCA100-82-C-0036).

Our most important conclusion is that protocol [DEC851 VAX Ada Language Reference Manual,
implementations in Ada can offer performance that is Digital Equipment Corporation, Maynard,
comparable to implementations written in C. We therefore Massachusetts, 19S5. (VAX/VMS Version
conclude that Ada has demonstrated its capability to 1.0).
handle real-time applications. jDoD83a] Military Standard Transmission Control

Our experience does show that there is wide variation Protocol, United States Department of
in the performance offered by different Ada compilers. We Defense, 12 August 1983. (MIL-STD-1778).
notice, however, that the difference in protocol performance
is not necessarily reflected by our benchmarks of individual 1DoD83b] Reference Manual for the Ada Programming

features. This indicates that all language constructs do not Language, United States Department of

contribute equally to overall program performance. We Defense, 17 February 1983.

would therefore suggest that the vendors of Ada compilers (ANSI/MIL-STD-1815A).

concentrate on applications-oriented benchmarks when [DoD83c Military Standard Internet Protocol, United
attempting to improve performance, rather than on single- States Department of Defense, 12 August
feature benchmarks. 1983. (MIL-STD-1777).

Our Ada protocol tests show that the run-time systems [Griffin861 B. Griffin, "DCEC Protocol Laboratory
offered by current Ada compilers can handle only limited Internet Protocol Certification Test Index,"
concurrency. To meet the needs of the communication Unisys Report No. TM-8801/101/00, 6
protocol domain, the robustness of these systems will need November 1986.
improvement. lllook5': A. A. Hook, G. A. Riccardi, M. Vilot, and

The Department of Defense is in the process of S. Welke, Ada Compiler Evaluation Criteria,
requiring the use of Ada in all future software. Some have Institute of Defense Analyses, October
held, however, that Ada's performance was unsuited to 1985.
real-time applications, such as communications protocols. llughes86l Ada Benchmark Suite, Tasking Section,
We have shown that this is no longer the case. Existing, Hughes Aircraft Company, Ground Systems
commercial Ada compilers can offer performance which Group, Software Engineering Division, San
competes with that of C in implementing DoD protocols. Diego Software Engineering Laboratory,
We therefore believe that the use of Ada in future protocol Command and Control Software
implementations should be encouraged by the Department Department, 29 August 1986.of Defense.
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ADA IFOOLS FOR THI: DESCRIFP'rlON AND SIMULATION
OF' IGI IAI. SIG;NAL. PRfxRSslNG SYSTEMS

Mlark I). Hiappe-l Brian F. Pet rasko

Noir thern Tel Iecom In IEES Dlepartmnent
Research 'l'iiangli' Pa~rk Un iversifty of Central lor idit

Northi Carol Ina Orlanfo, Hlorda

Towa rd a Common Lanrg ua ge
ABSTRACF

Unforrtuinate'ly, lit ili/ati lo I thvi('i dll'lipI-
Ill i I e spe'{ a tI I h- ardware dest r ipi on i)f ln- iL e languagieq )as been hampered by the lack of a

guages at low Ifor max Imum IcapabiIi ty vand I' I f ic Ienc y I ea I stiiil r ( Maniy oif the languages havye re-
in at design aut omat ion system, thle uIse Of at gen- ma ined in purely academi i p dli)Iicat ions, wh I I the
era I pur pose language in the same role can milke, rema i oiler t end to be thle property of a irt it ula r
the sYstem mure Oaailable or more pract ical I ot a matiufacturer anil not available1 to compainies with-
larger set of users. This project (lemonst rIatel; out Ithe resources to dfevelop their own software
the, use of ADA'- for the desc ript i 00and1 simlulatio 10) ools. W orse , t he lack of at sitandard places it
of small digital signal prcssn Systems . severe I imitat-ion of the i nteropevrahi Iity of var-
Bu ildinrg on convent ions and prim itiyes proposed by ious computer aided etng ineer inrg t ool s arid env irun-
lienyer andf RenshOW , a simple' SUisystV emwas Ifce- ment~s (Dewey anid lidient I YHO).
sir I bed ini Al)A oaf then tested wit Ifi small s imu-
lator also wr itte tiliDA In response to the lack of sta ndarids, Lhe

Department of Ileferise (DOXD) has uinder taken a pio-
jet Ito dlevelfop a standariz edf fardwart' desc t i p-
ion language as at part of Its very fii gfi speed

INIOWCFI( inotegrat ed ci rcu it (VHISIC) program. Tfis language
N I I 111 '(I INha s beeni named VH1)1., for VhS IC fiatrdwa re de sCr ip

I n orilci l it h'I ri fe vp f)fvI t ion language (kaxmian 1986) . The VIDL. language is
foci ~ ~ ~ ~ ~ ~ ~ Ik 11o1g iei i ith opei YPolmbt an cextension irid a subset of the generalII ci 1 itivt- ('I i rcu it and systml dfesi gners prpose programming language ADA,' (WalIlacec 1980),

stLructulrcf dit n 1 m,1 erlvhollolIotty ainf ptrI(, il ( ill a , i language dfeve'loped (furifog the 1i970s anf early
nlow being dIPP1i el to el c tron ic ifes i go. C( 'il i it 'Ifsb h eatetofDfnea 1ad l
Of mofulir ii V bIlit k-st ructur itg, sysi mn h irr 190iyieDpr-et o ees t tn

h i 1s and1 Strututi'd discr ipt i ve t rcfi(iii tha language for t hi' programmi ne of embeddef clmput er

fiavi' fiee lit i I i/c(1 in lacge progrrimmin prjc s~O ~ sscm (onl~)
1aef9M)) lesfl vapI ift lIiisgi(i One of t he most controversial aspects of VHDl.

11181).is tfie e'xtent of thc' similarity bcetween '11101. and

I'lie mlilliert in Whih ii ti1 llgicl( I' oll AIIA. Dluritig reviews of thle 'IIIDI stanifard,* some

are represent ill his fain st rog I ue i e b have argued for the fullI itic lus ion of AI)A iti V1Ill.,
t l,( tru ue e nIoIS riiig I ii'O ('5sI while an equal number have fought against too much

f-ed ' st u ili 1~ fis Igri toll . not a In 3 1 I h 1' sim ilarity . Those' arguing for th e' inclusi oin of

IrasIu five Ilill acquonli Ptig'itl Outem it in Ij tcr Ai DA madi nLt i eif tfat "'since VHDl. wil I I 'b imple-
tilis know ii, alliei nil g I strystleli t lianfuag- meLi'i i n AI)A and the behavioral compone~nt will1

cami rowl 'In a u' i 19t5 and ha risl I illii~ des beir hIS i'e befiacion, ADIA seems hel( simlplest_ 011 most

cxlnet Ito inifma f tle numbe) o0fia ha Oil bIfi robust meains to provide st ructuirced fhardfware lde-

ware dfe.i cipt ion Ilngligis. 'Ufir ha.~. rdar ld. I - sign'". Thlose ar guinog aga inst the inc I usiun oif Al)A
i on 00nuge w Ii I, I it tilfl i ii s i nil VIDl. i s a hitlf wa re ifesc:r ipt ion

av atgiig' labl I i I fir wi dfe' Ill11 latiguage iind not at generalI prugrimmintg I anguagc',
Sytit aX, fit tis and I apab i itI i es ( Av l ot, kaixmn
anid S ra t 18 Oan tre sdp' ia I v t0 I itl o- ti'he iliti olf ADA wouldl over-I impl icat t fte

v carat I u(8tire 'doll; r ionsi oif ardwtin to11 VIID anguiage, making learn in tlIhi' languige loverl

all lo1w for the' I omputic simullat Ionl Of t lii (lest r ip- I( sIl t (ils' and1 ,l('liiIsic~l i/i 198Idfeei

t iin Iii orider I o I iiii i rm I t(' inOtendelfd behaiv iir ofill he p tn o s-na d / o fee

tfhe I ircol t ait viit iollis levels (I 1f6tmeyer ol I)ili'1 li v '111)1 -Inl Sii lfar if flit Is, it 15 qulite' likely
1973)) I flat 1h I ill)llI olent t iIon III a1 s ngl' t Ill Stan-

.0 appli il Ion1 arias 51111Ifl~lt In' b expei ll aoy-

Depirt mintI of Ii inse - AOA' loint Itogrial i tIl I it( tli 1 11 ll 1li 14) be i 111('lntcit in l l 111 systemls I flatoA 111). deilI w tIll 1 1111 Ipl i 1111 'it a ill part i iI or
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Digital signal processing has been a popular The final project step was to create the

applications area among design automation devel- description of a modest digital signal processine
opers. Due to the highly specialized, complex subsystem to exercise th(e primitive and simulation

algorithms and high data throughput rate-s, custom routines. As an initial example, a complex number
ICs have become a necessity in signal processing to magnitude conversion unit was chosen. This

applications (DeMan 1986). A notable example of particular example has been demonstrated by Denver

work in this area is the system developed by and Renshaw using their specialized hardware de,-
Denyer and Rfenshaw (1985) of the University of scrition language. and therefore, made an inter-
Edinburgh. This system, a so-called silicun tom- ('sting case study for the use of ADA (Denver aInd
pi ler, takes a descript ion of the desired behavior Renshtaw 1985).
of the circuit and produces as output the var rous

masks required for chip fabrication. lhe svst elI AL;ORJ TFN IC 11.51 IWSI;IN

also provid', -.r verification of the deLsign VtId

simulation 0, ., hehav tora I desr i Pt ion. A% FBu ilding lokApproat I

The Denyer and Renshaw pro ject (It I I I/ .'s a In I1980, a Itext wats pobl) i shed ( Mead and

special purpose language ,pec( ifi call' de-velopetd Conway 1980)) that has had at si gnrif i aft imnac It on

for that system. 'iis lan1guage, 'l V, (Denyer bothl the pro selit anid futuare of VL-SI des ign . I n

anti Renshaw 1985) has been developecd f rom t he I I]I s Itext , Mead Ind Conway advocate a VI-SI design

ground up with haordware description tit minid. Some 11thf,11tili oF funlct ional blocks ite-rconnected to

des igniers oft hardware descript ion I anguaiges feel F orm Latger syst ems ( Lea 1918,). I At h of t hese

t hat t he similarity oif ten observed bet ween I UitI ilt InaItbIo( ks c an ItoI ilv itlua IIy designed as

programming languages, allt dt's r I pt ion ltutgaages Is I1 sepal it I, ( I ria t antd vent ua I Iv redouced into

unfortunate and t he resulIt of thte l esser evol tth n IIt egrat I Ion masks. 01)i1t t the c irc u it , or "leaf-

of descri Pt ion Fangliages compared with t hat (it celI . c orrespanlling to a t tci onal block has

programmi ng languages (Dietmeyer and ltulci 1975). bee-n tdesignedi. it carit tbe used as a building block,
withi motre complex Integrated circuits being formed

An Alternate Anpproach by the interconnettion of the leaf-cells. Differ-
ent VLSI chips cart be develFoped by Interconnect ing

While snecial rlurnaose languages cart be Opti- various standard leal-cells, without requiring the

mized for art individual task or set of tasks, they redes ign of the leal-cells themselves (Mead and

also present inherent disadvantages. In artier to Conway 1980).

use a new description language, one must obviously This design style for VLSI chips has been

become familiar with it. Perhaps not as obvious labelled tire "simplified full-custom leaf-cell

is the needl for proper support for this language design style" (Lea 1986) and has led to the devel-

-- toimvi Fers. debugger s, development totols. etc. opmen ( of s tanda rd cell blIock S. The approach

Ibis addititonal required support adds to the total sacrif ices the efficiency (in terms of silicon

vol tware overhead of any, irojet , * atil( may prevent area and performant e) ol a fu I F optimized design

the use of other tools or soft ware suppor t not in favor ot a more structured hierarchical ap-

written for that special purpose lativtiage. prrsich. This structured approach, similar to the
top-down design methodology popular in large soft-

There has been interest itt and study tof r ite ware projects (Fairley 1985) reduces the design

use oi general purpose programming languages toi complexity oi large systems to a manageable level

(Jest r ibe arid simulate hardware. It has beent slig- by al lowing the designer to concent rate his ef-

vested that stronrg typing, automatic memory man- forts on one set oi problems at a time, omitting

agement anti polymorphic operators be features of complicating details of lower hierarchical levels.

lanituages to be used in this role (Ayres 1979). Pie similarity to software e'ngineering methodology

Certainly, the power arid versatility o1 recent has made this approach popular among developers oif

programming I anscuages could trov u"''~ seftil for hard- silicon compilers (Lea 1986).

ware tdescri pt ittn.
TheL Deriyer and Renishaw ProjectL

It is this standard (ellF approach thfat has

Tite par post tf thftis work was t o t-x;imni ne t been adttpt d biv lenyer attd Renshaw for their siIi -

potent ial ofi the, AIIA pray amminig 1 atigutgo fotr the- con co(mptilet research, Fi tis case, the st andard

destri pt io anrid substtqiret simulit ion of lit- c tl I is a generic bit -serial proce-ssin:, veIemert.

serial digitil signail prIOLCt-Sing art hitect uri~s. Thte use of hit -serial I ommunicat ions bietwttei t he

ADA wi.s ( otstn Itor exami nat ituoi due t oit , t e I Is permitIs s Impl Ii t at ion of til Itienu wor ks t on -

versat i I It v ,t tiat (Ii tat itt ont nd([111 sponsttrsil). [utt i ng t hte tel Is, a potitnI ialt proil em it it t Itt p1

*1it is wtrk was cart itd out by entoi iri in ADIA Ilayout (Denver intd Retisiiw I1985).

several of the funtdamentalI architcctuoral ii otiks.

or "primit ive's," selected by Denvyer and Renshaw. i'I i e hit(I- t iv tiscdtf il t Ii s 1) to let I i s shitwnt

()ice encodled , te( prIini i Ives were cIIco etted . alIong it Fi1-1gutre I. All dtsrIgtt lvel s ttloI ttt It(-IcifI-

with import I nt s imul at ion rtout i nt-s, into tia ADA t tI I lcvelI hive tet iltimatett I ttt oti , silII ittn

p)t1 kage. A simple simultotr was writ ten to ver i v t otnittltr till ire, thelt frt, not (if tottit in tot

a destcriptitn ort it S alIgoithIm tin terms toi D)51

pt imitives intl tlit hitrari hitil itltitks.
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designer specifying a digital signal processing System
system. The DSP designer can view the leaf-cells
as functional "black boxes." Chip

A base set of leaf-cells for DSP, called Operator
primitives, was developed by Denyer and Renshaw.
A description of a DSP system written in terms of Primitive
these primitives is input to a silicon compiler (Leaf-cell)
which would produce as output the masks for making Specified by DSP
integrated circuit chips to perform the DSP func- Designer
tion. When processing the description, the sili-
con compiler calls routines corresponding to the
individual primitives involved and mask sections Automated-
for the leaf-cells in appropriate areas of the Implemented by
chip are produced. Register-Transfer Silicon Compiler

Circuits
In order to check the description before the

time and expense of silicon compilation, the de- Gate-Level Circuits
scription should first be processed by a behav-
ioral simulator. As with the silicon compiler, Semiconductor Devices
the simulator calls routines corresponding to the
description primitives. However, in this case, Integration Masks
the routines simulate the behavior of the primi-
tives by processing sample test data and simu-
lating propagation delays through the system. By Figure 1. Digital Signal Processing Hierarchy.
comparing the simulation data with the desired
output, design flaws can be detected prior to A SAMPLE ALGORITHM
silicon implementation.

The algorithm chosen to exercise the ADA
This paper concerns the simulation of the DSP behavioral description capabilities, as well as

system descriptions. The DSP descriptions have the operation of the accompanying simulator, is a
been developed to be consistent with Denyer and relationship that approximates the magnitude of a
Renshaw's format and timing conventions (Denyer complex number. This function, called the "four
and Renshaw 1985). Specifically: region approximation," calculates the magnitude,

M, of a complex number, I + jQ, by (Filip 1976):I. Data is fixed point, blt-serial, LSB

first. ( (I)

2. The primitives are operated synchronously M = MAX ((7/8) 1 + (1/2) Q
from a master two-phase clock.

((1/2) I + (7/8) Q
3. Control signals are delayed by an integer

number of (lock cycles via an associated ( ( Q
control network to provide primitive
synchronization.

Denyer and Renshaw proposed the following
4. Each operator possesses a fixed latency restatement of the four region approximation to

(propagation delay from input to output) improve its structure for implementation as:
which is also an integer number of clock
cycles. (Sin(e operation is bit-serial, M = MAX ( G
with one bit of data entering or leaving ((7/8)G + (1/2)L)
A primitive (luring each clock cycle, the
terms "bit" and "clock cycle" will be where G = max (I, Q) and L = min (I, Q) (Denyer
used interchangeably when referring to and kenshaw).
timing considerations.i

5. Each primitive operator has an optional. A flow graph based on the above algorithm is
one bit input pre-delay in order to re- shown in Figure 2. Note that the numbers within
duce the number of single bit delay leaf- circles represent delay times for synchronization
cells thait might otherwise be required to of data and control signals. The control signal
ensure that all necessary input data CI arrives simultaneously with the LSBs of the
arrives simultaneously), real and imaginary input data words. The notation

Cl-X refers to the Cl control signal delayed by X
bits.
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The arcs interconnecting the primitives are shift registers and complementing logic (Denyer
designated by an ID number in parentheses. Labels and Renshaw 1985), the description here implies
are also used where appropriate. The latency asso- virtually nothing about the actual structure. The
ciated with each primitive is shown in brackets only clue to the nature of the hardware lies in
below the primitive name, the calculation of latency as the sum of a con-

stant plus the system word length, implying inter-
Note that "seven-eighths" is not a primitive nal temporary storage of the incoming serial bits,

as such, but is actually an operator made up of as well as an additional processing delay. If it
primitives in accordance with the hierarchy shown were not for the need to include numerous simula-
in Figure 1. tion details within the primitive, the function of

the unit would be quite obvious.
BEHAVIORAL DESCRIPTION IN ADA

Operator Description Level
Descriptive Levels and Abstraction

The level of abstraction is reduced somewhat
The intent behind digital hardware descrip- in the next hierarchical level which involves the

tion in a high level language is to permit the description of the complex-to-magnitude operator.
precise specification of the intended structure, This is the lowest level which the designer need
capabilities, and/or functions of the system being deal with, as the primitives have been provided
described. This description could be an abstract for him as part of the package "SIMPKG." The
algorithmic specification with no implication of level of involvement with the simulator has been
actual hardware structure, a detailed gate-level minimized to just a requirement to place the ac-
description that obscures the system behavior, or tual description within a case statement, allowing
something in between these two extremes. In addi- conditional execution of primitive routines.
tion, different hierarchies are possible, with
higher levels using more powerful building blocks The description at this level consists prima-
like adders and multipliers instead of the lower rily of procedure calls to various primitive sub-
levels' combinatorial logic gates. routines. This is similar to the syntax of sev-

eral descriptive languages such as Denyer and
For the purpose of this project, it was de- Renshaw's FIRST, where the routines are behavioral

cided to limit the description to levels at or primitives (Denyer and Renshaw 1985) and Hill and
above the primitive level of the hierarchy shown Peterson's AHPL, where the routines are general
in Figure 1, with a fair degree of abstraction, purpose MSI integrated circuits (Hill and Peterson
The ultimate intent of a system such as this is to 1981). In AHPL, the use of hardware primitives
allow a system designer to specify an algorithmic keeps the level of abstraction in a system de-
description of the system in terms of primitives scripuion low, while the behavioral primitives of
like multiply and absolute value, leaving the this paper maintain a fairly abstract operator
development of the details of lower levels to the description.
automated silicon compilation process and thus
treeing the DSP designer from the unnecessary Nevertheless, there is more structure implied
details of low level digital synthesis. Thus, the at the operator level than at the primitive level.
designer can concentrate on the intended behavior While the description can be ;-"c.arded as a struc-
and need not be a skilled digital designer or MOS tured verbal specification of the complex to mag-
circuit designer. nitude algorithm flow graph, it also tends to

imply a physical communication network between the
It is also true that the strong data-typing primitive "black boxes."

and verbosity that makes ADA and similar struc-
tured languages more readable and easily docu- It should be noted that the verbosity of ADA
mented than unstructured langt~ages also tends to so useful for software readability can be used to
clarify behavioral descriptions while lengthening improve hardware description. In this case, a
and perhaps overly complicating structural feature known as named association, which binds
descriptions. It has been noted that while the subroutine formal parameters with the calling
ADA-derived VHDL has been designed for use at routine's actual parameters via the syntax (De-
various levels of behavioral abstraction, it has partment of Defense 1983):
proven much more successful at behavioral descrip-
tion than at structural description (Nash and Formal Parameter => Actual Parameter
Saunders 1986).

allows the description:
Primitive or Simulation Package Level

Subtract (minuend => 9, subtrahend => 8,
The abstraction of the description is strong- difference ->12, Latency => I,

est within the primitive themselves. For example, Ctrl => Cl(12));
consider the statement:

instead of the shorter but less revealing
ARC (OUTPUT).DATA :- ABS(ARC(INPUT).DATA) descript ion:

which takes the absolute value of the input signal Subtract (9, 8, 12, 1, Cl(12));
arc and assigns it to the output signal arc.
While this could be accomplished in hardware with
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which requires examination of the primitive de- of AI)A des(riptions. It is felt that only minor
scription or documentation to reveal the actual changes would be necessary ti the present simula-
interconnections. The first three parameters (9, tor and primitives to allow for multiple chip
8 and 12) are the numerical designations of the systeCms.
input and output arcs (type ARCNO) satisfying the
formal procedure specification: Simulator Structure

Procedure Subtract (MINUEND, SUBTRAHENI), Compared to the effort required to establish
DIFFERENCE: ARC NO; convent ions for hardware description in ADA, the
CTRL: NATURAL; ( onst ruct ion of a simulator for the ADA descrip-
LATENCY: POSITIVE: = 1; t ion proved a mueh more formidable aind t ime-. on-
DEI, DEL2lI BIT: = 0); slmi ng task. The problem was to dove lop a simula-

tor, part of which would be a descriptive routine
Significantly, the use of named assoc iat ion is (the "ch ip" d.sr ri pt ion) thait ideally would (on-
also an optional (but recommended) feature of Vrlll). ti i Ii t I t or no direct reference to simulation
(Lipsett, Iarschner and Shahdad 1960). i riables or reqairements in order not to burden

tihe desi gner with simulation details, and yet
Also, in keeping with another VI)L examp Ic, st ill be ef I i c ient enough to per form its func t ions

defaults are provided for some of the parameters in a reasonable t ime with reasonable resources.
in the primitive routines. This frees the de- Although the simulator finally developed is rather
signer from specifying connections to seldom used limited and perhaps somewhat simplistic, the limi-
inputs or features, like the optional input pre- tations were a result of the scope of the project
delay. While this is provided to hide unnecessary and, it is believed, could be expanded to a more
detail and streamline the description, it is re- sophisticated system without changing its basic
commended that it be used with caution as unin- structure or that of the hardware description
tended omission of parameter specifications may discussed previously.
result in operation other than that intended, with The simulator consists of a main routine
the root cause difficult to detect. "SIMULATE", which cal Is the descript ion "SYSTEM"

as a subroutine. [he "SIMULAFE" routine is actu-
A useful feature of the description method ally little more than a user l/0 interface, an

developed here is that operators can be used as initialization section and a loop containing the
building blocks for more complex operators. hus, system description and a simulation time advance-
a frequently occurring or useful operator, like ment routine. The "SYSTEM" routine is compiled
complex-to-magnitude, may be used as a bui Iding separatel. and linked at run time, permi t tig the
block of an operator at the next higher hierar- compiling and linking of different "systes" at
chical level, once again managing complexity by run time without requiring recompilation of the
abstraction -- in this case, the inner workings of main simulator routine. This maintains the gen-
the complex-to-magnitude operator. Although it eral nature of the simulator.
complicates the simulation somewhat , the added
power of descript ion was deemed well worth the Scope of Simulation Variables
additional trouble.

As mentioned previously, it was considered
It should be noted that the ontrol portion desirable that as many simulation tasks to be

of the ope.rator is separated from th data ptoces- performed by the system as possible. This led to
sing portion in keeping with the popular register many details being buried within the primitive
transfer sequential machine model I (lit I I and rout i n.s that are cal led by the descript ion rou-
Peterson 191I ). lI I sparat ion is emphas i zed lieV, i . As t hose primit iyes are provided to the
use of I btI ok d,,c rat ion fort itl i lt nlro an, it user via the package "S lMPK(, " the user is sparred
separate bloi k deClarat ion for tile hiMA unit. f roui similat ion tei-hnii al it ies. Unfort unately,
li t i bloi k structures are provided s(l-v to the placementit of the descr ipt ion rout i ie on a

I larifv tirhe dos( r i pt ion and serve no us( it lI pit so ftware level afb wv, t he prTit ti v rout ine level
pose I, fat ,S 5 imulat ion is concitneld , I though but lIlow the simulator level made it implacti(af
t hey m, y prove isr'ful to lraf-cl I or f looi lit io pass simulat ion var iItblfs, suI as simulat ion
ompit ,rs operat ng ,n the same des( ript io. I iime and data st ru tur(s, via spec i lIed formal

faramet ,r' 
, 
sin( r II simulat ion variables woulIf

LI.U level have ti ho p piI it I y named in t re parameter lists
of1i li ' " % st'm t I I I in t he 'sim llate' main rou-

ht hithist livel of (fis( ripi in in the fr,- t nI T i :od th( pr imit II' ( al Is in th,, system d -
,.rnt prnit,( I is the ( hip le vel , t,pr (,nli I s( ript i,. This I ruIt I at ijun could Oinlv he over(ini
Singll, ..Sl ihip. TiTis hip IiI sj:ts of th is-- b ixtensiv( use ,It gloal parameters, A pri (ti(e
,I it eld rpl It ors, is well as a malst e , out riol d s( iuraguid iy sotlt ware engineers due Iii sus(ept I -
Xoneratlr for overall signal flow ( otdi tlal iin ,ind lilitg to A(t iderital modilt i( i n of vat iables or
the Input and output pailds and flutl , fi-i rcessItr to unfores'in stide ofle(ls ("i rliv 19,83). AM. pra(-
route dat a t o ind from t ti (hip. I hii to tiVt, Il IrYt I it ion rs iirn of o1111 ur ufd intormat ion passing tnld
and Ri.nshaw svst em has a higher, muit i-(hip 'rtv so t w;re i;unrt''na( i it I i(u" t i,1s ((Oiin I')*)
hiirarrhv ()lriuvir a id Renshiaw 1i9S)). A, nov in iDc T ,'spitc to ti r walning., lit- use of globil I

iurr' I. I mI ing tils prh rr ,': ilis1 r lipt ion I i tiilitIts in his case appears; %irur teild I)v ilc
single ohips rnly was dtr to limit th, -(op,. i l bri t of ,l)lowing lie, system drsign r to ignore
this work .ni i d lt pIrl nolt.i to br , limitat iuHn
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the communication of simulation information be- The Event Queue
tween the simulator and the primitives. It is

interesting to note that VIIDL. has been criticized Due to the pipelined architectures of the

for forcing the current simulator time to be signal processing systems under study, where new
passed via port (parametric) interconnections, input data enters the system before the previous
hampering high level behavioral models that would data has been completely processed in order to
profit from internal access to a global simulation improve throughput, the arc array proved unsatis-
time (Nash and Saunders 1986). factory as the sole means of storing the data on

the arcs. Evaluation of timing diagrams for the

Data Structures system revealed that output data could be over-
written by later outputs before being input to the

The fundamental data type in this project is following primitive if the preceding primitive had
a type defined in "SIMIKG" as type "signal.'lb is a latency greater than one word length. The use
is a record consisting of a floating-point dat a of multiple art arrays and status bits was di s-
variable and an integer time variable. Thus, a carded as too (:umbersome.
signal becomes a two-dimensional vector tying

sample data and time of occurrence. This is simi- In order to solve the data overwriting prob-
lar to the basic construction of another digital lem, it was decided to load the output data, the
signal processing descriptive language, utilized output time (equal to input time + pre-delay +
in the Cathedral-Il Si I icon Compiler Project latency) and the arc index (identifying the arc)

(DeMan et al. 1986). onto a queue whenever a primitive completes its
operations on a signal. The arc index-output

The type signal is used to define a global data-output time vetor can now be referred to as
array of signal-type variables that is called the an event. Events are stored it the queue in order
arc array. This is a listing of signals passing of increasing event time with the earliest occur-

between primitives (nodes of a signal flow graph). ring event at the head of the queue. When it is
By passing the index numbers of different elements time for a primitive to process a data sample, it

of the arc array to the primitives as parameters locates the data in the queue by locating the

of the primitive calls (in the hardware iescrip- desired input arc index and event time and then
tion), the arc array can le used as a source of loading the corresponding data into the proper
input data for primitives as well as storage for location in the arc array. Taus, each primitive is
output data. By specifying the same index to one assured of valid input data and the overwriting of
primitive as output and another primitive as in- data of the arc array is immaterial. Indeed, the

put, the two primitives are effectively joined arc array now becomes more of a communications
together just as the nodes of a signal flow graph path and less of a storage facility, with the

are joined by arcs. latter role now being performed by the queue.
Overwriting in the queue is avoided by defining a

Simulat ion Abstra I ions new record for every new event, discarding it only

after loading it back into the arc array on the
It must be noted that some abstrattions havi request of a primitive routine.

beetn introduced into t tie s imu ]at ion to imptove 0

throughput. Most significantly, the simulat ion The queue is implemented as a global

primitives operate on parallel words (not hit- rectursive-style linked list . l:vent records are
serial as in the actual hardware) that occur at dvnami(ally allocated during run-time and linked
the same time as the earliest (least significant) via access types (similar to pointers in C or

hit of the serial data word. By using parallel PASCAL) to other event records alreadv in

data in this fashion instead of one serial bit at existence. Event s are loaded onto the queue b'

eac h c lock t ime, the primitlive (an process the the SI MPKC procedute "",N(IIt'lE, " returned to the
entire word during the same ilocik (si mu lati on ) arc array by tht, procedure "RFTRI EVI," and deleted
time and iliminate the need to (all the pr i t iti I rom the queue by the procedure "EITF."
rout ine at ,very i(liuk of the simulat ion t lIoi k.
Bv adding adlustments to the primit ive' s i tit ,rna I Advam ing Simulat ion lime
algorithmic desi ri pt ion, the same bit-I idel it v as
the t uia1 bI t-serial ,approach tin be' ma i nta ined I he st oragi' of data on the ilnue svrvo's ,I

while providing I sgniti(alit iW rease, III simuli- mU h more Useful purpose than just ensuring t lie
tor throughput ([(,river and Renshaw 1987 )). v;ilidity of primit ivie input ita. Sinci' tli, event,

in tli, qlnUo' are ordered lv in( reising timle, I Ic,.
Another dtviat ion t rum I ht ;i( tal Ihjit w rt, evinl at tie head ol t the quei' wi I I b' the next

( invent Icoil was the use of float Ing-poi nt var ililt ,- vent tiio o tir in the sim jltat ion. II tiho' t im' of

hor t hi' svstem data instead o' th tIe I i x i I tittIt is turrn-' eof the next event is grlatir than tii'

data in the a(tual hardwari. tire, f loat ing-polnl urrnlt simulat Iin t ime (I.e., the next eventl

vairi.ililes wire used due to the ease wi IIt whirhI AIA' itars tit some t ime in the ot urei), it would tic'
iprati's in f loat ing-poi nt variahlvs (iimpired to pint less Iio i tivoke alnt new pr imit i vi', as ie new ,

I xed-poni quant it ies. Furt her work alonig the data would e available lor proessing. h'hl sImev
lnis ot this pr'ole t should te, eix ld-point dlail I wo ld hold true for Ill simulal ion t lines oar I ile

ti o re i i irat-I v moIeI t i,- I itIa t onils o I ft' than t he nixI ivi'nt t irae. Obviouslv, tie' -Itmula-

hurdw,ire, t huigh for this prol o t it i, not hu- ti in (,t u k sh ul d sk i1  al,,ud t o tIl. I m line of thii'
I irved tlat I li Ilu' l I liutI lltig p Illt faiti lignl i xt i l, g lirtng III iieuiale i lot v is.
f(ant ly ciuttminuted ior invil ldat d i t res.ults.
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This results in an event-driven simulation and a lowing hardware description languages to besignificant improvement in simulator throughput, strongly influenced by general purpose programmingIt is similar, in fact, to Denyer and Renshaw's languages (Dietmeyer and Duley 1975). It shouldevent-driven behavioral simulator (Denyer and be noted that this was written prior to the cur-Renshaw (1985). rent emphasis on top-down design of digital sys-
tems. That same ten years has seen programmingControl Considerations languages become ever more powerful and versatile,
with an emphasis on strong type checking, read-Control signals are generated in a chip de- ability, maintainability, structuring and stan-scription by delaying the outputs of the chip's dardization that was the exception rather than the"control generator" primitive. The delays are rule in 1975. If present hardware descriptionaccomplished by the "CBITDELAY" primitive, which languages are only now evolving to the level ofdelays the original control signal by a user- the 1950s programming languages, it seems reason-specified latency. There are three possible con- able to assume that a powerful language like ADAtrol signals from the control generator, coin- would be far enough advanced to perform adequatelyciding with the first bit of a word, the first in the same role as lesser developed descriptionword of a group of words, and the first group of a languages.

block of groups of words, respectively, and label-led CI, C2 and C3. Simulation of these control 2. ADA is not difficult to learn and wellsignals is accomplished by loading the first ele- worth the effort. It appears that anyone familiarment of three global arrays named Cl, C2 and C3 with C or PASCAL can adapt to ADA with littlewith the simulation time of the most recent occur- additional effort. Despite concerns of those whorence of Cl, C2 and C3. The "CBITDELAY" primi- argued against full ADA inclusion in VHDL on thetives are now used to fill out the rest of the grounds that training designers in ADA and VHDLarrays with the corresponding delayed signal oc- would be too difficult (Nash and Saunders 1986),currence time. it is believed that the added power of a full ADA
implementation in VHDL would justify any addi-When invoked by the occurrence of an event on tional training effort.

a data arc, a primitive will compare the present(simulation) time to the time of its control sig- 3. Although not originally intended for thenal. If the times are not identical, the simula- role, ADA is a good choice for hardware descrip-tor will issue a warning message and commence a tion due to its ready availability and support.diagnostics routine to assist the designer in By 1990, software costs are expected to amount tolocating the missing control signal. A weakness 90% of all computing costs (Fairley 1986). Orga-of this arrangement is that extra control signals nizations without a presently available designwill not be detected by the simulator but would automation system might profit more from ADA de-cause erroneous operation in the actual hardware velopment with its base of existing software sup-system. This feature should be added in future port than from starting from scratch with aversions of this simulation, special purpose language.

CCNC!USIONS 4. Further research is justified. Future
work should concentrate on silicon compilationThe purpose of this research was to from ADA behavioral descriptions, automatic testinvestigate the possibility of using ADA as a vector generation for the simulation, improvementmeans of des, ribing digital hardware and per- in the simulation tools and additional operatorsforming subsequent simulation of the description. for use by large systems.

[hat goal was accomplished with the behavioral
description and simulation of a complex-to-magni-
tude digital signal processing algorithm implemen- REFENCES
tat Ion.

In theory, almost any task that is within the
capabilities of one programming language can be
accomplished by another language as well, given Aylor, ... ; l'axman, R.; and Scarralti, C. "VHDL -sufficient time and resources. flow well the and trest o Computeis (Apri s. 1986): 17-27.second language accomplishes the task compared to
the first is to a large extent subjective. Pro- Avres, Ron. "IC. Spc ili cation Language." Ingramming languages and styles tend to vary in VLSI: The Coming Revolut ion in Applicat ions andpopularity as a matter of personal preference as D . New York: lust itate of He t rical andmuch as with any true measure of their capabil- l lectroni, Engineors,. !nc., 19801.
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1. General purpose languages are useful for theMan, II.; Rahaey, I'. ,ix; and CIlaesen, L.hardware description. As previously noted, "(Cithedri-I I: A Silicon Compiler for DigitalI)ietmeyer and Duley questioned the wisdom of aI- Signal Profess ng." IEEE Desilri and lest of
(omput ers ( D , ,,mt-i 1q8 ) : 1 (-3. 1-2
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DATA: declaresep. r-at ?( SlIMutATE )

begin

KEY_IN(2,cl(O));
, N 1DF:t NEIPW[jf id PADIN(1,1,cl(0));

PADIN(2,2,cl(0));

case EVENT is
(: EEAY (, c: 1,c 6) when 1..13 =>

I DELAY ._(7.t.cI6); COMPLEX _TOMAGNITUDE;

A.' iL, L.L.'c! (tB .L..12 ,b); when 14 =>

l 1DEL.Y'cl 12) -cy (1IT , 1): PADOUT(14,I,cl(17));
-t! T14LN (~c1 (14) .c! .14PRINT _OUT(1,c1(17));

when others =>

DIAGNOSTICS;
.A L~t .JTW1R! . end case;

:. ,, : 'tC!1FLEX T;3 MAGNITUDE i
-~E Iend DATA;

end SYSTEM;

Figure 3. System Description of

Complex-to-Magnitude

A(SOLU1E(input= 1,output=>3,swl=>16,
ctrl= cl (0)5;1

when 2=, Mark Hanoel is a senior test engineer with

ABSOLUTE(nput= 2,output=>4,swl=>lb, the DMS-1O Division of Northern Telecom Inc.,

ctrl =-cl(o) ; where he is involved with gate-level simulation
and functional test programming of ATE equipment.

when 2:4=. Prior to this, he served as an officer in the U.S.

RDEl., in2=,4,ma=>:=;.6,min=>5, Navy. Happel received his B.S.E.E. from the U.S.

l= ~i16.ctr1= c1(3)); Naval Academy in 1980 and his M.S.E. in Electrical

Engineering from the University of Central Florida
when in 1987. His interests include design automation

DSHII I :rnput=.5,output=>7,power2=>1, and artificial intelligence. lie can be reached at

ctrl=;cl(6)); Northern Telecom Inc., NTP Dept. 2634, P.O. Box
13010, Research Triangle Park, NC 27709.

wheti 6.. 9-.
SEV'EN EIGHiHS(6,cI(6),cl(12)); Dr. Brian Petrasko is an associate professor

in Electrical Engineering at the University of

when 10 1 = Central Florida, Orlando, Florida. lie received

ORDER(inl=>l0.in2=>13,max=>14,min=>NC, the B.E.E., M.E and D. Eng. (1973), all in elec-

swl=>16,ctrl=>cl(14),delI=>I); trical engineering, at the University of Detroit.

Dr. Petrasko's interests include design automation

when 11:12=> and digital signal processing.
ADD(addendl= 1 , addend2=>12,sum=>13,

I t. nc, .ctri= ci(1.)); 1

p t (eLvnt

. ':f _ I t) MAGN I TUDE;

314 T IfUL dec I are

'I h,',

(CONTOL_GENEPATOR(Ib). ; ,. ,

CONTROL. NETWORIt;

er,d LONTRUL;
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K-MARS - MBEDDED ULTI-PROCESSING ADA* RUN-TIME SUPPORT

J. Fuhrer, K. Tupper, M. Levitz, J. Golowner, J. Hetzron

Unisys, Shipboard and Ground Systems Group
M.S. H-3

Great Neck, NY 11020
516-574-3606

ABSTRACT - Determining what must be added to an Ada
run-time support system to satisfy the

Previous experience in the development of real- needs of a real-time application
time systems for military applications has - Defining policies for "implementation
demonstrated the need for application support dependent" run-time issues
systems to satisfy stringent real-time - Evaluating the methodologies and tools
constraints. This paper presents a software employed during the course of Ada program
model, under development by the authors, that is development
to serve as an example of an Ada run-time - Establishing metrics for Ada program
support system targeted to satisfy rigid development that is in compliance with DoD-
performance constraints. As such, it can serve STD-2167.

as a basis for:
E-MARS will be developed in compliance with DoD-

- Incorporating basic operating system STD-2167. The E-MARS development process, as

functions into an Ada run-time support illustrated in Figure 2, will evaluate the
system following set of software development

- Defining a standard Ada compilation methodologies and tools.
interface to this system.

- Structured Analysis techniques with real-

1. INTRODUCTION time extensions for development of the
software requirements

The model is identified as the Embedded Multi- - The Process Abstraction Methodology for
Processing Ada Run-Time Support (E-MARS). The Embedded Large Applications (PAMELA) and
purpose of E-MARS is to define an Ada run-time its supporting tool, AdaGraph, to develop
system that can execute with no underlying software design requirements.
operating system while supporting up to two
independent Ada applications in a dual-CPU 2.0 H-MAS MODEL
shared-memory environment. Due to the lack of
an Ada Compiler for E-MARS and its target The E-MARS Model consists of the following:
computer, the following simulations must be
supplied: (1) A simulation function (Perform Simulation

Functions) which performs all processing

(1) The interface between E-MARS and the Ada necessary to create and execute up to two
application Ada applications based on user-directed
(2) The interface between E-MARS and its target inputs
computer. (2) A run-time function (Perform Run-Time

System Functions) which performs all the
Both these simulations are incorporated within processing necessary to support the
the E-MARS prototype model. As illustrated in execution of an Ada application
Figure 1, E-(ARS is currently being developed on (3) A support library (E-MARS Support Library)
a Micro-Vax II Workstation under the auspices of which includes predefined program units for
the Vax Ada System. data types, time functions, configuration

dependent characteristics, input/out, and

E-MARS is an Ada Pilot Project that is expected attributes to support the Ada application

to assist in: simulation.

Identifying potential difficulties in The context diagram for the E-MARS model is
satisfying stringent real-time performance defined in Figure 3. It describes the boundary
constraints when using Ada that separates the E-MARS model from its

environment. In addition, it defines the

*Ada is a registered trademark of the U.S. Government (Ada Joint Program

Office)
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external interfaces and data flows between the 2.1.2 POCESS USSR INPUT
proposed system and its environment. E-MARS is
represented as the single transformation called This function processes the user's inputs which
"E-MARS Model". are generated at the keyboard. User input data '

consists of either a start command,
The E-MARS level 0 data flow diagram (DFD) is configuration data, execution control data or
defined in Figure 4. It depicts the following simulation commands. The user responds to
two transformations and their interfaces: displayed menus which require the user to select

from a list of options or to enter specified
(1) Perform Simulation Functions data. The Process User Input function
(2) Perform Run-time System Functions. determines if the user's input is valid for the

menu currently displayed. If valid, the input

The Interface between the E-MARS Support Library data is passed to the appropriate function
and (1) the other components of the E-MARS (Process Configuration Control, Process
model, and (2) the host environment is defined Execution Control, or Process Data Storage
in Figure 1. Control) for further processing. If the input

data is invalid, an error message is issued.

The Perform Simulation Functions, the Perform
Run-Time System Functions, and the E-MARS 2.1.3 PROCESS CONFICURATION CONTROL
Support Library are described below.

The Process Configuration Control function is
2.1 PERFORM SIMULATION FUNCTIONS responsible for creating Ada program templates

from user inputs and storing corresponding data

Perform Simulation Functions is responsible for structures for future execution. This function
all processing necessary to create and execute is also responsible for incorporating packages
up to two independent Ada applications. An Ada included in a "with" clause for the structure
application is created by the user by means of a being created.
menu-driven interface. The user specifies the
Ada Program structure which includes packages, 2.1.4 UPDATE STATUS
tasks, procedures, functions, exception
handlers, and blocks. Once created, these The Update Status function is activated upon
structures are stored for future access by both receipt of an Update Status Request from Perform
this function and Perform Run-Time System Real-Time System Functions. The Update Status
Functions. The user then has the option of Request is issued upon completion of an event
saving the configuration on a disk file. including:

The user controls the execution of the - Program unit elaboration
application through menu directives. The - Conclusion of exception handling processing
simulation function interprets these directives, - Entry, exit, and suspension of a program
and translates them to corresponding E-MARS Run- frame.
Time System Function Calls consisting of either
execution commands or simulated interrupts. This function updates a Status Window on the
Perform Run-Time System Functions, after screen, describing the current state of each
processing the command, will issue an Update program unit.
Status Request to Perform Simulation
Functions. Perform Simulation Functions will 2.1.5 PROCESS EXECUTION CONTROL
then update the user menus to reflect the
current execution status of the Ada Program. Based on dynamic user directives, the Process
The process repeats upon receipt of the next Execution Control function formats and issues
user request. calls to Perform Run-Time System Functions.

Capability is provided for the user to issue
Perform Simulation Functions processing, as commands to control elaboration, interrupt
illustrated in the Figure 5 data flow diagram, generation, task execution including rendezvous,
is described below. entering and exiting from blocks, and subprogram

calls and returns.
2.1.1 CENERATE MENUS

2.1.6 PROCESS DATA STORACE CONTROL
The Cenerate Menus function provides the user
with the capability to create and/or execute This function interfaces with a disk file to
models of Ada applications. In response to a save and retrieve application configuration
user request made via the keyboard, the Generate data.
Menus function creates and displays menus and
prompts which lead the user through a logical 2.2 PERFORM RUN-TIME SYSTEM FUNCTIONS
sequence to create and/or execute the desired
Ada applications. Figures 8 through 10 contain Perform Run-Time System Functions is responsible
samples of these menus, for performing both basic operating system

functions and those functions necessary to
support the Ada language as defined in ANSI/NIL-
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STD-1815A-1983, but which are characteristic of 2.2.4 TASK MANAGEENT
operating system functions. Perform Run-Time
System Functions processing, as illustrated in The Task Management function performs all task-
the Figure 6 data flow diagram, is described related support functions. These functions
below, refer to controlling tasks across two processors

and the processing of task execution statements
2.2.1 PERORM 3-EARS START-UP such as select statements, entry calls, accept

statements, etc. Task Management processing, as
This function performs elaboration of E-MARS illustrated in the Figure 7 data flow diagram,
Support Library Packages, and initiates both the is described below.
time management and time-slicing functions.

Process Entry Evaluates the called task
2.2.2 hI.ABORATE PIOGRAM UNIT Call environment to determine if a

rendezvous is possible.
This function elaborates declarative items Processing functions are
within application program unit structures, provided to support simple,
Elaboration is the process by which a timed and conditioned entry
declaration achieves its effect. The E-MARS calls, and to perform the
Model will create an associated control block rendezvous.
for the particular declarative object and
allocate the required storage. During this Rendezvous End Restores the proper execution
process, a list of tasks that are to be of the called task, if
activated is created. The Frame Management necessary, and re-schedules
Function will initiate the activation the caller. If a Rendezvous
elaboration. If an exception is raised during End occurs with a pending
elaboration, the execution is abandoned, and the exception, Process Exception
processing is as defined in Process Exception. is invoked to propagate the
When the last declaration within a declarative exception.
part is elaborated, a "Frame Body Entry Command"
is issued to the Frame Management Function. Task Control Performs all functions

related to time-slicing
2.2.3 PROCESS EXCEPTION scheduling and context

switching.
This function supports and provides identical
response in accordance to ANSI/MIL-STD-1815A- Process Abort Performs actions
1983 for both predefined and application defined Statement corresponding to the state of
exceptions. The predefined exceptions supported the task to be aborted. The
by the E-MARS Model include: task will become "completed"

if suspended at an accept,
CONSTRAINT ERROR select or delay statement.
PROGRAM ERROR If not completed, the task is
NUMERIC ERROR designated "abnormal".
STORAGE ERROR Process Accept If there are no callers, the
TASKING-ERROR Satement state of the task is changed

to "waiting at an accept".
The Process Exception function accepts an If the entry was called, the
"Exception Command" generated by Perform caller will be removed from
Simulation Functions, and transfers control to the entry queue and the
the corresponding exception handler. The data accept statement executed at
structures associating program frames and the priority of the higher of
exception handling are considered to be a the two tasks in the
compiler interface function. As such, rendezvous.
application program data structures for
exception handling, which were created by the Process Selective Considers all open accept
user during Perform Simulation Functions, are Wait statements within the select
now utilized, statement. If one or more

exists, one is arbitarily
The E-MARS response depends upon the state of selected. If no rendezvous
the frame in which the exception was raised and is immediately possible, and
whether or not a corresponding handler is an open else part exists, it
defined for that frame. Once the corresponding is executed. If no immediate
exception handler is chosen and action taken in rendezvous is possible and a
accordance with ANSI/MIL-STD-1815, the Process delay statement exists, the
Exception function will appropriately update the state of the task is changed
status of all affected program units, to "suspended at a selective

wait" and delay processing is
executed. The open terminate
will be selected if all
terminate conditions are met.
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Process Delay Performs delay processing 2.2.7 NIORY NAMGEMENT
Satement and updates the task status

to "suspended at a delay This function allocates and deallocares storage
statement". at run time.

Terminate a Task Determines if all dependent 2.2.8 TINE MANAGEMENT
tasks have terminated or are
waiting on an open terminate This function monitors, synchronizes, and
alternative. If these adjusts the accuracy of the Real Time Clocks.
conditions are true, the
state of the task is changed 2.3 B-MARS SUPPORT LIBRARY
to "terminated", and a
request is made to the Memory The E-MARS Support Library packages include:
Management function to
deallocate storage associated Package Standard
with this task. Otherwise, Package System
the state of the task is Package Calendar
changed to "waiting for Package Text 10
termination". Package Low_level 10

Package Attribute.
2.2.5 INTERRUPT MANAGEMENT

The implementation dependent features of these
The Interrupt Management function serves as an packages are defined for the target computer.
intermediary between asynchronous hardware The Host Ada Support Library packages will be
interrupts and various other parts of the Ada used to support execution of the E-MARS Mode.
run-time support environment. Interrupts are
actually traps which signal conditions that are 2.3.1 PACKAGE STANDARD
handled immediately and are transparent to the
Ada System or signal conditions that require Package STANDARD is normally provided as an
extended processing by other parts of the integral part of the Ada Compiler
system, implementation. Package STANDARD contains

declarations of those identifiers predefined in
The target computer hardware interrupt the language and their applicable operations.
generation is simulated by Perform Simulation For this simulation, the data types and their
Functions. In response to a user request, operations as described in Appendix C of
Perform Simulation Functions generates an E-MARS ANSIIMIL-STD-18115A-1983 are provided.
Run-Time System Function Call denoting the type
of interrupt to be handled. Perform Run-Time In this context, type DURATION is defined as:
System Function's Interrupt Management function
is then invoked to process the interrupt, type DURATION is delta O.001 range (-86400.0
Interrupts which correspond to predefined Ada ,. 86400.0);
exceptions are passed to the Task Management
function. The interrupt corresponding to the 2.3.2 PACKAGE SYSTEM
conclusion of a timing interval is passed to the
Process Timer Request function. Other Package System contains implementation dependent
interrupts such as those indicating conclusion characteristics. For this simulation a sample
of an I/0 request, hardware fault or of some of the parameters included in the
interprocessor communication are passed to visible portion of the specification is as
associated processing functions. follows:

type ADDRESS is integer range (0..524288);
2.2.6 FRAME MANiAGEMNT type NAME is (E-MARS, E-MARSSINCLE, E-MARS

This function provides support for entering and DUAL);

leaving a new program scope. Upon entry into a SYSTEM NAME :constant NAME := E-MARS;
frame, Frame Management will place a MEMORY-SIZE :constant : 524288;
corresponding Frame ID on the Frame Execution 512K locations
Stack, and issue an Elaboration Request for the MIN INT :constant := 2E31;
declarations within the frame. Upon exit, the MAX-INT :constant : 2E31 -1;
Frame ID is removed from the stack. If an MAX-DIGITS :constant := 15;
exception was raised during execution of the MAX-MANTISSA :constant := 16;
frame, the Process Exception function is invoked FINE DELTA :constant :2.OE - 31;
to process the exception. TICK- :constant :l0.OE -2;

subtype PRIORITY is integer range (1..10);

2.3.3 PACKAGE CALENDAR

All procedures and functions as described in
paragraph 9.6 of ANSI/MIL-STD-1815A-1983 will be
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provided. Each of these procedures and RFEREKCRS
functions viii provide identical parameters when
accessed concurrently by each CPU. [11 Reference Manual for the Ads Programming

Language, ANSI/MIL-STD-I81SA-1983
2.3.4 ?AcKAG TlrY 10

[2] S. Mellor and P. Ward, "Structured

The 3-MARS model makes direct use of the Development for Real-Time Systems", Yourdon
underlying Ada support system for implementation Press Computing Series, 1986
of this package.

(3) C. Cherry, "Pamela Designers Handbook",

2.3.5 PAaOKA L IW-LVEL JO Analytical Sciences Corporation, 1986

The 3-WARS model will provide SEND_-CONTROL and [41 Department of Defense, "DoD-STD-2167", June
RECEIVE CONTROL procedures for a single 1985
fictitio-s device.

2.3.6 PACKAK ATTRIBIUT

This package contains both language-defined
attributes that are supported by E-MARS and E-
MARS-defined attributes. Attributes are basic
characteristics of Ada data types and data
objects. An attribute denotes a basic operation
such as a function, type or range. The
predefined language attributes, as defined in
ANSI/NIL-STD-1815A-1983, that are supported by

E-MARS are as follows:

P'ADDRESS
P'CALLABLE
P'COUNT
P'TERMINATED.

The E-MARS attributes defined for tasks are as
follows:

P'SCHEDULED Yields the value false when the
task P is not in a scheduling
queue (it is either completed,
terminated, in a delay or running)

P'RUNNING Yields the value false if the task
P is not the Current Task in
either CPU

P'DELAYED Yields the value false if task P
it rot in a time delay.

3.0 STATUS OF THE PROJECT

The requirements for the E-MARS Model have been
generated using Structured Analysis with real-
time extensions. The Software Requirements
Specification has been completed and is under
review. This document is in compliance with
DoD-STD-2167.

SUINKTY

This paper describes an Ada Pilot Project, the
objectives of which are to gain expertise in
both Ada Technology and complementary
development methodologies, to understand their
limitations, and to provide solutions for these
limitations.
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START-UP PROGRAM BASIC DECLARATIONMlENU

1. CREATE PROGRAM 1.* PROCEDURE
2. EXECUTE PROGRAM 2. FUNCTION
3. RETRIEVE PROGRAM 3. TASK TYPE
4. SAVE PROGRAM 4. TASK

5. EXCEPTION
ENTER SELECTION: 6. PACKAGE

7. END DECLARATIVE PART

ENTER SELECTION:

Sample Menus
Figure 8

EXCEPTION HANMLER CHOICE MENU FRAME EXECUTION MENU1

I. NERIC ERROR 1. SELECT A TASK
2. PROGRAM ERROR 2. CALL STATEMENIT
3. CONSTANIT ERROR 3. RA ISE STATET
4. STORAGE ERROR 4. BOCK STATEMENT
5. TASK ING ERROR 5. GENERATE AN INTERRUPT
6. OTHERS
7. USER EXCEPTION EMTE R SELECTION:
8. ElD HANDLER DECLARATION

ENTER SELECTION:

Sample Menus

Figure 9

TASK EXECUTION ME1W-TASK OMMAND ENTRY CALL MENU

1.* ACCEPT STATEMENT 1. SIMPLE ENTRY CALL
2. EINTRY CALL STATEMENT 2. CONDITIONAL ENTRY CALL
3. SUPROGRAM CALL, 3. TIMED ENTRY CALL
4. SELECTIVE WAIT
5. ABORT STATEMENT ENTER SELECTION:
6. DELAY STATEMENT
7. 31.0C STATEMENT
8. SELECT A TASK
9. COMPLETE A TASK

ENTER SELECTION:

Sample Menus
Figure 10
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AN ADA IMPLEMENTATION OF AN ITERATOR FOR QUADCODES

Larry Latour
Assistant Professor of Computer Science

University of Maine

Orono, ME 04469

Abstract Such codes are useful for representing
two-dimensional objects in a plane, and

An iterator is a useful mechanism for have applications in computer graphics and
traversing through an abstract collection image processing. Shu-Xiang and Loew
of objects. In some cases the describe the properties of quadcodes in
implementation of the iterator is two related papers [7,8] and Samet
straightforward, in some cases not. In presents a thorough survey of a related
this paper one such case of the latter, an approach, quadtrees [10]. An
iterator for quadcodes, is considered, implementation of such a quadcode iterator
Such codes are useful for representing is being used as part of the object
two-dimensional objects in a plane, and storage and retrieval subsystem of
have applications in computer graphics and SeeGraph, a graphical tool developed in
image processing. An iterator the University of Maine Computer Science
implementation for a binary tree structure Advanced Projects Lab [5,6].
using Ada tasks is first presented, and
the general implementation design is then The paper is organized as follows.
applied to the implementation of a Two alternate implementations of a simple
quadcode iterator. In addition, problems symbol table are first presented and
arising due to the asymmetric nature of discussed, one using a singly linked list
the rendezvous and syntactical and the other using a binary tree
restrictions on the placement of accept structure. After an iterator
statements are discussed. implementation for the binary tree

structure is presented using Ada tasks,
the general implementation design is then
applied to a quadcode iterator. In the

I. Introduction process of implementing these iterators a
number of interesting problems arising due

The iteration abstraction, or to the asymmetric nature of the rendezvous
iterator, is a useful mechanism for and syntactical restrictions on the
traversing through an abstract collection placement of accept statements are
of objects, and has been widely discussed discussed.
in the literature [1,4,11,12]. It
typically consists of two operations FIRST
and NEXT, with FIRST returning the "first" II. Two Alternate Implementations of A
object in the collection and repeated Symbol Table Iterator
calls to NEXT returning subsequent objects
in the collection. One use of an iterator Consider the implementation of an
might be to search for the existence of a iterator for a symbol table, i.e., a table
particular element in a set. Iterators consisting of a collection of
for ordered sets, stacks, queues, trees, (symbol,information) pairs with store and
etc., are also common. For a wide range retrieve operations. We assume that the
of examples, see Booch [2]. iterator part of the specification is

represented by two operations:
In Ada, the structure of an abstract GET FIRST(SYMBOL,INFO) and

collection of objects is typically GETNEXT(SYMBOL,INFO).
encapsulated in a package body and the
iterator in the form of its FIRST/NEXT If the symbol table is implemented
operations is available to the user in the using a singly linked list of pairs, the
package specification. In some cases the current state of the iterator is simply an
implementation of the iterator is access object to the current pair in the
straightforward, in some cases not. In list. This "state" pointer is then
this paper one such example of the latter, updated as a side-effect of each call to
an iterator for quadcodes, is considered. GETFIRST/GET_NEXT (See figure 1).
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CURRENT : a pointer to the current with the iterator task incrementally
state of the iteration executing as each pair is requested. The

state of the iterator is embedded within
the implicit run-time stack of the
iterator task. The details of this
implementation are presented in the

v following paragraphs.

->Symbol -- > Symbol ->Symbol ->As suggested, a partial specification

InfoInfoInfoof the symbol table looks like:
-- -- -- -- ------ I1I ...... _

package SYMBOLTABLE is

type SYMBOLTYPE is STRING;
figure I type INFOTYPE is STRING;

-- Iterator operations and exceptions
Consider an alternate symbol table

implementation, one using a binary tree procedure GETFIRST(SYM: out SYMBOLTYPE;
structure in such a way that an inorder INFO: out INFOTYPE);
traversal of the tree yields the list of procedure GETNEXT(SYM: out SYMBOLTYPE;
pairs in alphabetical order by SYMBOL. In INFO: out INFOTYPE);
order to implement the GETFIRST/GETNEXT
operations, we must manage and save the END OF ITERATION,
state of the inorder tree walk between UNINITIALIZEDITERATOR: exception;
calls to the iterator operations. As an
example, consider the symbol table of end SYMBOLTABLE;
program variable names in figure 2.

The data structure of the symbol
K table is a tree of dynamically allocated

f"Info" nodes, defined below:
/ \
/\

COUNT VALUE package body SYMBOLTABLE is
"Info" "Info" type NODEINFO;

/ type NODE is access NODEINFO;
/ type NODEINFO is record

CURRENT ----------- > I POS SYM: SYMBOLTYPE;
pointer to the "Info" "Info" INFO: INFOTYPE;
current state of / \ LEFT,RIGHT: NODE;
the "iteration" / end record;

DECR J
"Info" "Info" ROOT: NODE;

figure 2

Since CURRENT points to the tree node As suggested, the iterator is
containing the symbol I, a subsequent call implemented using a task to manage theto GET NEXT will update CURRENT to point current state of the iterator. The task

to the tree node containing J. and the user program act much like "co-
routines", with the additional feature

An interesting implementation for that the task can "look ahead" and
this iterator comes to mind when we retrieve the next element in the iteration
consider how an inorder traversal of a while the user program is processing the
binary tree is typically implemented, current element. We first present the
i.e., recursively. We can implement the Buhr diagrams (3] in figure 3, and follow
iterator operations with an Ada task that these with Ada implementations for both
performs a recursive inorder traversal of the task specification and the procedures
the symbol table, rendezvousing with the GET FIRST and GET NEXT encapsulating the
user program through a GET_FIRST/GETNEXT task access protocol.
procedural interface. The user process
and the iterator task act as co-routines,
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if EOF then
raise END OFITERATION;

User Application end if;
Package SYM:. S;

INFO:- 1;

end GETNEXT;
v v

package body SYMBOLTABLE
We now consider the implementation of

the ITERATORMANAGER task. To aid us in
GETFIRST GETNEXT understanding this implementation, we

first view the abstract execution of this
" [ task as a finite state machine (FSM)

-- ! pictured in figure 4.

/ / task body / Task
--> / INIT / ITERATOR / Init NEXT (VALIDNEXT

/ / MANAGE / = FALSE)

> /_ v
I>/ NEXT / l
->/ ------- > Uninitialized < ----------/ /

_INIT NEXT
--------- (END OF ITER=I TRUE)

figure 3 v_
Before
First NEXT First NEXT NEXT Last

task ITERATORMANAGER is Elem --- > Elem --- > * -- Flm
entry INIT; _____I

entry NEXT(S: out SYMBOLTYPE; -
I: out INFOTYPE; INIT
VALID NEXT: out BOOLEAN; - - -- - <-... INIT7

END OF-ITER: out BOOLEAN); < ..............
end ITERATORMANAGER;

figure 4
procedure GETFIRST(SYM: out SYMBOLTYPE;

INFO: out INFOTYPE) is
S: SYMBOLTYPE; The diagram in figure 4 describes the
1: INFOTYPE; following behavior:
VALID: BOOLEAN;
EOF: BOOLEAN; 1. The INIT operation is always legal and

begin will always put the FSM into the state
ITERATORMANAGER.INIT; "Before First Elem".
ITERATORMANAGER.NEXT(S,I,VALID,EOF);
if EOF then 2. The behavior of the NEXT operation will

raise ENDOFITERATION; vary depending on the state of the FSM:
end if; it will normally cause a transition to
SYM:- S; the next element in the iteration,
INFO:- 1; except when either there is no next

end GET_FIRST; element or the iteration has not been
initialized with an INIT.

procedure GETNEXT(SYM: out SYMBOLTYPE; Our first attempt at an
INFO: out INFOTYPE) is implementation of the ITERATOR MANAGER is

S: SYMBOLTYPE; presented next. Notice that the task
I: INFOTYPE; utilizes an embedded recursive routine
VALID: BOOLEAN; ITERATE, which will perform the required
EOF: BOOLEAN; tree traversal and rendezvousing.

begin
ITERATORMANAGER.NEXT(S,I,VALTD,EOF); task body ITERATOR MANAGER is
if not VALID then NORMAL: BOOLEAN:= TRUE;

raise UNINITIALIZEDITERATOR; INITIALIZED: BOOLEAN:- FALSE;
end if; BREAKOUT: exception;
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procedure ITERATE(N: in NODE) is Unfortunately there are syntactic
begin problems with this implementation. Before

if N /- null then dealing with these, consider the
[TERATE(N.LEFT); relationship between exception propagation

and recursive algorithms. Notice the
select interaction between the boolean state

accept INIT do variable NORMAL and the exception
NORMAL:- FALSE; END OF ITER. NORMAL is always true unless

end INIT; an IVIT entry is processed before an
or iteration (tree traversal) is completed.

accept NEXT(S: out SYMBOLTYPE; As soon as NORMAL is set to false the
I: out INFOTYPE; exception BREAKOUT is raised which
VALID NEXT: out BOOLEAN; propogates completely back through the
END OF ITER: out BOOLEAN; recursive calls to ITERATE. This use of

S:= N.SYMBOL; exceptions provides a clean way to "short-
I:- N.INFO; circuit" and "clean up" recursive
VALID NEXT:- TRUE; algorithms and is very useful in
END OF ITER:- FALSE; applications such as recursive descent

end NEXT; parser error handling.
end select;

if not NORMAL then III. Syntactic Problems with the
raise BREAKOUT; Implementation of Section II

end if;
As stated in the previous section,

ITERATE(N.RIG7T); the astute Ada programmer should recognize
end if; problems with the Ada implementation of

end ITERATE; the ITERATOR MANAGER. One relatively
minor problem is that a formal parameter

begin -- BODY OF ITERATORMANAGER of mode "out" must be assigned a value
loop somewhere in the body of its procedure or

while not INITIALIZED loop accept block. In the case of the
select ITERATORMANAGER, "accept NEXT" appears a

accept INIT do number of times, in some cases with
INITIALIZED:= TRUE; "dummy" out parameters that have not been

end INIT; assigned a value. A simple solution here
or would simply be to assign these dummy

accept NEXT(S: out SYMBOLTYPE; parameters dummy values.
I: out INFOTYPE;
VALID NEXT: out BOOLEAN; Unfortunately another, more complex
END OF ITER: out BOOLEAN) do problem exists. Consider the following

VALID_NEXT:= FALSE; excerpt from the Ada reference manual,
end NEXT; section 9.5, paragraph 8:

end select;
end loop; "An accept statement for an entry of a
begin given task is only allowed within the

ITERATE(ROOT); corresponding task body; excluding
exception within the body of any program unit

when BREAKOUT => null; that is, itself, inner to the task
end; body; ..

if NORMAL then It is illegal to have an accept
select statement within the embedded recursive

accept INIT; procedure ITERATE! rhis seems like a
or major problem until one realizes that the

accept NEXT(S: out SYMBOLTYPE; rendezvous between two tasks has an
I: out INFOTYPE; asymmetric structure. Indeed it is
VALID NEXT: out BOOLEAN; illegal to have an accept statement in a
END 0 ITER: out BOOLEAN) do procedure nested within a task, but it is

VALID NEXT:= TRUE; certainly legal to have an entry call
END Of ITER:- TRUE; inside the same nested procedure! We now
INITIALIZED:- FALSE; consider this slightly altered

end NEXT; implementation of the iterator, which
end select; leads us to a correct, if slightly

else sloppier solution.
NORMAL:- TRUE;

end if; In considering the use of entry
eni loop; rather than accept statements we realize

end ITERATORMANAGER; that there is no corresponding
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nondeterministic choice operator for the type COMMAND is (INITCOM,NEXTCOM);
entry call as there is for the accept
statement (i.e.. the selective accept), task MIDDLEMAN is
We are faced with the problem of how to
choose between an INIT request and a NEXT -- Interface to GET FIRST and
request while recursively traversing -- GET-NEXT
through the tree. We solve this as entry INIT;
follows: the ITERATOR MANAGER (and its entry NEXT(S: out SYMBOLTYPE;
embedded recursive ITERATE procedure) I: out INFOTYPE;
will, at each step in the tree traversal, VALID NEXT: out BOOLEAN;
first find the next element and then call ENDOFITER: out BOOLEAN);
a middleman task to ask whether or not the
element is wanted. If the element is -- Interface to ITERATOR MANAGER
wanted, the middleman is called again with entry INQUIRE(C: out COMMAND);
the information. In either case, the entry SEND NEXT
ITERATOR MANAGER is then free to find the (SEND S: in SYMBOLTYPE;
next element or raise an exception to back SEND-I: in INFOTYPE;
out of the recursion. The middleman SENDVALIDNEXT: in BOOLEAN;
meanwhile presents to the user the SEND_0ENDOITER: in BOOLEAN);
abstraction described by the finite state end MIDDLEMAN;
machine in figure 4. A Buhr diagram of
components is shown in figure 5.

The GETFIRST and GETNEXT user
interface procedures are identical to
those in the previous implementation

package body SYMBOLTABLE except that they call MIDDLEMAN.INIT and
MIDDLEMAN.NEXT instead of
ITERATORGENERATOR.INIT and ITERATOR.NEXT.

GETIRST GETEXTThe task body of MIDDLEMAN and the
~ ~ new task specification and body for the

--- ITERATOR_-MANAGER are presented next.
______________________ Note that since the ITERATORMANAGER is

/ now making entry calls rather than
MIDDLEMAN task accepting them, its specification contains

I/ no entry specifications.
-- > INIT - 7 INQUIRE /< -/ / / /

/ / task body MIDDLEMAN is
-- -> / NEXT / /SENDINFO <- begin

->1/ / I / loop
/ I select

--------- > -accept INIT;
accept INQUIRE(C: out COMMAND) do

_______ ______________C:= INITCOM;
/ end INQUIRE;-

/ / or
/ Procedure / accept NEXT(S: out SYMBOLTYPE;

/ jITERATE / I: out INFOTYPE;
/ _/ VALID NEXT: out BOOLEAN;

I / END Of ITER: out BOOLEAN) do
/ ITERATORMANAGER task / accept INQUIRE(C: out COMMAND) do
/ -/ C:- NEXT COM;

end INQUIRE;

accept SENDNEXT
figure 5 (SEND S: in SYMBOLTYPE;

SENDI: in INFOTYPE;
SENDVALIDNEXT: in BOOLEAN;

The following is a specification of SENDENDOFITER: in BOOLEAN) do
the middleman task. The finite state S:= SENDS;
machine of figure 4 is now embodied in the I:- SENDI;
INIT and NEXT entries of this task. Note VALID NEXT:- SEND VALID NEXT;
that a new type is introduced, COMMAND, END OF ITER:-SEND-ENDOITER;
that is used to communicate the user end SEND_NEXT;
request (INIT or NEXT) through the INQUIRE end NEXT;
entry. end select;

end loop;
end MIDDLEMAN;
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task ITERATOR MANAGER is symbol table iterator, consider the
end ITERATORMANAGER; problem at hand: the organization of

objects in a plane in such a way that an

task body [TERATOR MANAGER is object can be efficiently retrieved by
NORMAL: BOOLEAN:. TRUE; specifying a single coordinate point
INITIALIZED: BOOLEAN:- FALSE; "within" the object. One way to do this
BREAKOUT: exception; is by recursively splitting the (bounded)
C: COMMAND; plane into a collection of rectangles,

assigning each rectangle a "quadcode", and

procedure ITERATE(N: in NODE) is representing an object as a subset of
begin these quadcodes. We can then specify a

if N /. null then single coordinate (usually through a
ITERATE(N.LEFT); mouse-pick), generate its quadcode, and
MIDDLFMAN.INQUIRE(C); check if this quadcode is in an object
if C = INIT CON then quadcode subset.

NORMAL:- FALSE;
raise BREAKOUT; More specifically, quadcodes are

else -- C - NEXT CON assigned in the following manner. A
MIDDLEMAN.SEND_NEXT(N.SYMBOL, rectangle is split into quadrants with

N.INFO, each quadrant given a code from 0 to 3
TRUE, clockwise from the upper left. Each
FALSE); quadrant in turn is split into quadrants,

end if; with digits 0 to 3 appended again
ITERATE(N.RIGHT); clockwise from the upper left. The

end if; splitting process can be arbitrarily deep,
end ITERATE; with the number of digits in each quadcode

corresponding to the number of times the
begin -- BODY OF ITERATORMANAGER rectangle is split. Figure 6 shows a

loop rectangle split twice, with quadcodes of
while not INITIALIZED loop length 2.

MIDDLEMAN.INQUIRE(C);
if C = INIT CON then 0 1

INITIALIZED:- TRUE;
else -- C = NEXT CON

MIDDLEMAN.SENDNEXT("",
CC% 3 2

FALSE,
TRUE);

end if;
end loop;

begin 00 01 10 11
ITERATE(ROOT);

except ion 03 02 13 12
when BREAKOUT -> null;

end; 303 20 21

if NORMAL then 33 T2 22
MIDDLEMAN.INQUIRE(C);
if C = NEXT CON then

MIDDLEMAn.SENDNEXT("" figure 6

TRUE;
TRUE); Now, consider the following two rectang

INITIALIZED:- FALSE;
end if; 1. A world with lower left xy coordinates

else 0,0 and upper right x,y coordinates
NORMAL:- TRUE; 40,40, and

end if;
end loop; 2. A source rectangle in the world with

end ITERATORMANAGER; lower left x,y coordinates 7.5,27.5 and
upper right x,y coordinates 17.5,37.5.

A diagram of these two rectangles
appears in figure 7.

IV. The Quadcode Iterator

Now that we have explored the use of
tasking to implement a tree structured
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(40,40) Let us first assume that the
following RECTANGLES package is available:

f 17.5,37.5)
Source package RECTANGLES is

type RECTANGLE is private;

(7.5,27.5)
type QUADRANT is (UPPERLEFT,

UPPERRIGHT,
World LOWERRIGHT,

LOWERLEFT);
function QUADRANTOF(R: RECTANGLE;

C: QUADRANT)
return RECTANGLE;

function IS_IN(R1,R2: RECTANGLE)
return BOOLEAN;

(0,0) private
figure 7 (type RECTANGLES is implementation

dependent)
If we recursively split the world end RECTANGLES;

into quadrants and assign the
corresponding quadcodes, we derive the
diagram in figure 8. We now present the specification of

the QUAD CODE iterator package. Notice
(40,40) that since the initialization step of the

iterator must be provided with three
O00100110101O111 parameters, i.e., the source, world, and

I I - depth of resulting quadcodes, we will not
provide a GET FIRST operator. As long as

I -INITIALIZE ITERATOR has been called, the
6313110202l--- first call-to NEXTQC will perform the

GETFIRST operation.

0533510_32 10 235106221 - - - -

-I -F- -F -I with RECTANGLES;
use RECTANGLES;
package QUAD-CODES is

procedure INITIALIZE ITERATOR
(MAX: in POSITIVE;
SOURCE: in RECTANGLE;
WORLD: in RECTANGLE);

(0,0)
figure 8 DEPTH OVERFLOW: exception;

Notice that the source rectangle function NEXTQC return NATURAL;
overlaps a number of quadrants.
Specifically, it's overlapped quadrant UNINITIALIZEDITERATOR,
set, represented by a set of quadcodes, ENDOFITERATION: exception;
is:

end QUADCODES;
001, 002, 010, 011, 012, 013, 020, 021,

031 }
A code segment to generate all 4

We use an iterator to generate a digit quadcodes of a rectangle SOURCE in a
subset of quadcodes representing an object rectangle WORLD might be implementpd as
such as the one in the previous example follows:
(i.e., source), storing these quadcodes in Jft
a B-tree index for subsequent look-up.
Since quadcodes can be determined by a begin
recursive splitting algorithm, we use this INITIALIZE_ITERATOR(4,SOURCE,WORLD);
algorithm as the basis for our iterator, loop
just as we used the recursive in-order QUAD_CODE:- NEXTQC;
traversal algorithm for the symbol table
Iterator. -- process this QUADCODE

end loop;
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exception entry SEND NEXT
when END OF ITERATIDN -> (SENDQC: in NATURAL;

-- end of QUADCODE processing SEND VALID NEXT: in BOOLEAN;
end; SENDENDOFITER: in BOOLEAN);

end MIDDLEMAN;

Now for the implementation of the
QUAD CODES package. The interface task body MIDDLEMAN is
operations INITIALIZE ITERATOR (procedure) begin
and NEXT_QC (functionT are similar in loop
structure to the GET FIRST and GETNEXT select
operations in the previous section and are accept INIT(MAX: in POSITIVE;
presented below. SOURCE: in RECTANGLE;

WORLD: in RECTANGLE) do
accept INQUIRE(C: out COMMAND) do

procedure INITIALIZE ITERATOR C:- INITCOM;
(M-AX: in POSITIVE; end INQUIRE;
SOURCE: in RECTANGLE; accept GETINIT
WORLD: in RECTANGLE) is (SEND MAX: out POSITIVE;

begin SEND SOURCE: out RECTANGLE;
if MAX > 9 then SEND-WORLD: out RECTANGLE) do

raise DEPTHOVERFLOW; SENDMAX:- MAX;
end if; SENDSOURCE:. SOURCE;
MIDDLEMAN.INIT(MAX,SOURCEWORLD); SEND WORLD:- WORLD;

end INITIALIZEITERATOR; end GETINIT;
end INIT;

function NEXTQC return NATURAL is or
QC: NATURAL; accept NEXT
VALID: BOOLEAN; (QC: out NATURAL;
EOF: BOOLEAN; VALID NEXT: out BOOLEAN;

begin END OF ITER: out BOOLEAN) do
MIDDLEMAN.NEXT(QC,VALID,EOF); accept INQUIRE(C: out COMMAND) do
if not VALID then C:= NEXTCOM;

raise UNINITIALIZED_ITERATOR; end INQUIRE;
end if; accept SENDNEXT
if EOF then (SENDQC in NATURAL;

raise ENDOFITERATION; SEND VALID NEXT: in BOOLEAN;
end if; SEND-END OF ITER: in BOOLEAN) do
return QC; QC:=-SEND_QC;

end NEXTQC; VALIDNEXT:= SEND VALID NEXT;
ENDOF ITER:=SEND-ENDOFITER;

end SEND NEXT;
The remainder of the implementation, end NEXT;

the MIDDLEMAN and ITERATORMANAGER task end select;
specifications and bodies, are presented end loop;
next. end MIDDLEMAN;

type COMMAND is (INITCOM,NEXTCOM); task ITERATORMANAGER is
end ITERATORMANAGER;

task MIDDLEMAN is

-- Interface to GET FIRST and task body ITERATORMANAGER is
-- GETNEXT NORMAL: BOOLEAN:- TRUE;
entry INIT(MAX: in POSITIVE; INITIALIZED: BOOLEAN:= FALSE;

SOURCE: in RECTANGLE; BREAKOUT: exception;
WORLD: in RECTANGLE); C: COMMAND;

entry NEXT(QC: out NATURAL;
VALID NEXT: out BOOLEAN; MAX DEPTH: POSITIVE;
ENDOFITER: out BOOLEAN); SOURCE,WORLD: RECTANGLE;

-- Interface to ITERATOR MANAGER procedure ITERATE(QUAD: RECTANGLE;
entry INQUIRE(C: out COMMAND); QUAD_DEPTH: POSITIVE;
entry GET INIT CURQC: NATURAL) is

(SEND_MAX: out POSITIVE; begin
SENDSOURCE: out RECTANGLE; if QUADDEPTJ > MAXDEPTH then
SENDWORLD: out RECTANGLE); MIDDLEMAN.INQUIRE(C);
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if C - INIT COM then dependent and not necessarily a property
MIDDLEMAN.GETINI'r(MAXDEPTH, of the abstraction. In fact, no

SOURCE, information is given in the Ada package
WORLD); specification to clarify this point. If

NORMAL:- FALSE; an alphabetical ordering was indeed
raise BREAKOUT; desired, the following addition to the

else specification would be in order.
MIDDLEMAN.SENDNEXT(CURQC,

TRUE,
FALSE); package SY4BOL_TABLE is

end if;
else

for Q in QUADRANT loop
LOWER QUAD:- QUADRANTOF(QUAD,Q); -- Iterator operations and exceptions:
if ISIN(SOURCELOWER_QUAD) then -- this iterator will return

ITERATE(LOWER_QUAD, -- symbols of the table in
QUAD_DEPTH+l, -- alphabetical order
CUR_QC*lO +
QUADRANT'POS(Q)); procedure GETFIRST(SYM: out SYMBOLTYPE;

end if; INFO: out INFOTYPE);
end loop; procedure GETNEXT(SY4: out SYMBOLTYPE;

end if; INFO: out INFOTYPE);
end ITERATE; END OF ITERATION,

UNINITIALIZEDITERATOR: exception;
begin -- BODY OF ITERATORMANAGER

loop end SYMBOLTABLE;
while not INITIALIZED loop

MIDDLEMAN. INQUIREC C);
if C - INITCOM then Consider now the way that the

INITIALIZED:- TRUE; implementation described in section two
MEDDLEMAN.GET_IWIT(MAXDEPTH, utilizes the tree structure.

SOURCE, Implementation details of the tree
WORLD); structure (a dynamically allocated

else -- C - NEXT COM structure of nodes) are directly visible
MIDDLEMAN.SENDNEXT(O, within the package body of SYMBOLTABLE.

FALSE, Suppose on the other hand that a tree
TRUE); abstraction was first implemented and then

end if; used to implement the symbol table body.
end loop; A number of choices then exist for

implementing the symbol table iterator.
begin

ITERATE(WORLD,1,O); 1. The symbol table iterator could be
exception implemented on top of the tree

when BREAKOUT -> null; abstraction, or
end;

2. An iterator could be provided by the
if NORMAL then tree abstraction itself, with the

MIDDLEMAN.INQUIRE(C); symbol table iterator simply a renaming
if C - NEXT COM then of the tree iterator operations.

MIDDLEMAN.SENDNEXT(O,
TRUE; In the latter case, a number of
TRUE); iterators could be provided by the tree

INITIALIZED:- FALSE; abstraction: an inorder iterator, a pre-
end if; order iterator, a post-order iterator, an

else iterator that returns nodes in arbitrary
NORMAL:- TRUE; order, etc. One reason why an iterator

end if; that returns nodes in arbitrary order
end loop; might be useful is that the user might be

end ITERATORMANAGER; concerned solely with the collection of
nodes, and not with the parent/child
relationships between the nodes. The
implementor of the tree would then be free

V. Further Notes on Iterators to take advantage of this arbitrary ,
ordering (and would be expected to do so)

Notice that in the tree structured to return nodes in a more efficient manner -. V
SYMBOL TABLE iterator the order in which than could be done by traversing the tree
the symbols were retrieved was in a structured way.
alphabetical. It is important to note
here that this order is implementation
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VI. Summary and Conclusions 6. Latour, Larry, and Johnson, Elizabeth,
"SeeGraph: A Description of a Graphic

We have presented what we feel to be Based Knowledge Representation
an interesting implementation of an System", Internal Report, University
iterator for data structures that can be of Maine Computer Science Dept.,
most neatly expressed using recursion. Orono, ME., 1987.
The questions of the efficiency of both
the embedded recursive ITERATE procedure 7. Li, Shu-Xiang, and Loew, Murray H.,
and the multi-tasking implementation "Adjacency Detection Using Quadcodes",
(requiring two additional tasks for each Communications of the ACM, Vol. 30,
iterator) were not of primary concern to No. 7, July, 1987.
us, since other bottlenecks in our system
overshadowed any slowdowns due to the 8. Li, Shu-Xiang, and Loew, Murray H.,
iterator. If task and recursion overhead "The Quadcode and Its Arithmetic",
were indeed a problem, two alternate ways Communications of the ACM, Vol. 30,
to implement the iterators presented would No. 7, July, 1987.
be to either provide a threaded tree or
explicit run-time stack, and write 9. Reference Manual for the Ada
iterative procedures for tree traversal. Programming Language, ANSI/MIL-STD-
The state of the iteration could then be 1815 A, United States Department of
saved between each call to the iterator. Defense, 1983.

This work has grown, as has our work 10. Samet, Hanan., "The Quadtree and
on type management schemes in last year's Related Hierarchical Data Structures",
conference, out of the work of our ACM Computing Surveys, Vol. 16, No. 2,
Computer Science Department Advanced June, 1984.
Projects Lab. We are developing SEE, a
learning environment toolset (IEEE Conf. 11. Shaw, Mary (editor), Alphard: Form and
on Ada Applications and Environments, Content, Springer-Verlag New York,
April, 1986), of which SeeGraph is a part. Inc., 1981.
A word of acknowledgment is in order for
Ms. Elizabeth Johnson, who spent long 12. Shaw, Mary, Wulf, Wm. A., and London,
hours on SeeGraph and who has been kind Ralph L., "Abstraction and
enough to test the code presented in this Verification in Alphard: Iteration and
paper. Generators", Carnegie-Mellon

University and USC Information
Sciences Institute Technical Reports,
1976.
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Programming with Streams in Ada

Reginald N. Meeson, Jr.

Institute for Defense Analyses
1801 N. Beauregard Street

Alexandria, VA 22311
(703) 845-3541

Abstract Since streams, typically, will be too large to be produced in
their entirety and held in program memory, stream elements

Streams are abstract datatypes that generalize the concept of must be produced incrementally. This allows stream elements
sequential data structures such as arrays, linked lists, sequential to be generated on demand as they are needed, which is a form
files, and communications between tasks. Streams of "lazy evaluation" [7). Lazy evaluation can be emulated in
significantly enhance the modularity and reusability of Ada Ada by providing procedures to advance streams and produce
program components. Programs constructed using streams can their consecutive elements. In the approach I have taken,
be easily reconfigured for new applications and for testing by therefore, streams are not really data structures, they are
substituting stream sources, by exchanging processing procedures.
modules, or by rerouting stream flows. Streams support Ideally, I would like to be able to create streams and pass
"programming in the large" by hiding the details of procedural them between program units like data objects. This would
control flow and by highlighting the data that flows between allow me to directly implement high-level designs. The
system components. This paper briefly describes a collection approach I have taken provides most of the desirable features of
of generic packages that have been built to support stream streams, even though Ada does not support creating and
declarations and processing. The complete set of these passing procedures as data. Hence, I will continue to describe
packages itchdes primitive operations, utility functions, and streams as objects that can be passed between and operated on
higher-level generic operators that combine to form a powerful by program units, and I will use the terms "stream objects" and
program development technique. "stream types" as metaphors.

When I speak of creating a new stream object, I mean I am
defining its generating procedure. Similarly, when I refer to

Introduction stream types, I mean the class of procedures that generate
streams with elements of a particular type. Ada's generics

Streams are sequential data structures of arbitrary length. support these metaphors. Below I give examples of how new
They arise naturally from many sources. For example, streams can be created by generic package instantiations and
sequential input and output are common forms of streams. how complete programs can he constructed from component
Many iterative processes can be thought of as operating on parts.
streams of data. Programming with streams has been described
for other environments [1-41. This is the first treatment I am Primitive Stream Operations
aware of for Ada.

Streams are key components in popular design techniques The fundamental primitive operation on a stream object is
such as data flow design [5]. Data flows that carry multiple its generating procedure. The key information that this
instances of data objects are typically interpreted as streams. procedure must produce is an end-of-stream indicator and the
Streams are more like files than they are like arrays or linked next stream element (if there is one). There is also an optional
lists, since they can be much larger than ordinary program data input parameter that allows a stream-consuming process to
objects. Unlike files, though, which are external data objects, signal the generator when no more stream elements will be
streams are internal objects that are used to transfer data requested. The canonical stream generating procedure,
between program components. therefore, looks like this:

A model for how streams can be used in developing large
software systems is provided by the Unix pipe [6. Pipes in procedure ADVANCE (EOS: out BOOLEAN;
Unix allow programs to communicate with each other through NEXT: out STREAMELEMENT;
standard sequential file interfaces. Simple programs can easily MORE: in BOOLEAN :=TRUE);
be connected together to perform more complex and useful
functions using pipes. The separate component programs am By convention, stream-generating prcedures are
ompletely' i t. They do not rely on any knowledge encapsulated in packages. This provides a mechanism for
about the existence or operation of other programs with which naming streams (the package name) and provides storage for
they might be combined. Their interaction is set up and essential stream state data that must be retained between
controlled entirely by the pipe mechanism. Streams in Ada procedure calls.
provide similar advantages for constructing programs from
reusable components. In addition, Ada provides streams of
complex objects (pipes are limited to byte streams) and
complete type checking.
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Utility Operations Only one call to an output driver is required to produce the
entire output file. This is consistent with our objective of

Beyond primitive stream-generating procedures, there are a creating high-level operations that operate on entire streams.
number of convenient utility operations on streams. These
include: concatenating streams, merging streams, and A Sample Stream Program
converting sequential files into streams and back again. Stream
concatenation, for example, can be implemented by defining a The stream operations described so far can be used to create
new generating procedure that operates by: a very simple example that demonstrates the concept of

(1) Advancing the first input stream and reproducing constructing stream programs. Below is an outline of a
its results until it ends, and then program that concatenates two sequential files.

(2) Switching to the second input stream and
reproducing its results. procedure SAMPLE_STREAM_PROGRAM is

The process that consumes the concatenated stream is entirely type SAMPLEELEMENT is ...
independent of this activity and will not recognize when the type SAMPLESEQJFILE is ...
transition occurs. I have generalized this process so that two FILEA, FILEB, FILEC: SAMPLESEQFILE;
streams can be concatenated by instantiating a single generic
stream package. The specification for this package is: package STREAMA is new

INPUTSTREAM( SAMPLEELEMENT,
generic SAMPLESEQFILE, FILE._A);

type STREAMELEMENT is private; package STREAM B is new
with procedure FIRSTADVANCE ( INPUT_STREAM( SAMPLE ELEMENT,

EOS: out BOOLEAN; SAMPLE SE FILE, FIEL );
NEXT: out STREAM ELEMENT; AE E F
MORE: in BOOLEAN-:= TRUE); package STREAM_C is new

with procedure SECOND ADVANCE ( CONCATENATION( SAMPLE.ELEMENT,
EOS: out BOOLEAN; STREAMA.ADVANCE,
NEXT: out STREAMELEMENT; STREAM_B.ADVANCE);
MORE: in BOOLEAN := TRUE); procedure PRODUCE is new

package CONCATENATION is OUTPUT DRIVER( SAMPLE ELEMENT,
procedure ADVANCE (EOS: out BOOLEAN; SAMPLESEQ FILE);

NEXT: out STREAM-ELEMENT; begin
MORE: in BOOLEAN :=TRUE); OPEN( FILE AA,...);

end CONCATENATION; OPEN( FILE-B,...);
CREATE( FILEC,...);

Input and output of streams as sequential files are natural PRODUCE( FILEC);
conversions between internal and external forms of the same end SAMPLESTREAMPROGRAM;
objects. The following declaration specifies a generic
sequential file input handler that converts a file into a stream. As you can see, the program consists almost entirely of
Each time one of these streams is advanced, another element is declarations and generic instantiations. The only variables
read from the file and returned. declared are for the three files. All of the other necessary

variables are hidden within the generic units. The first two
goeneric generic package instantiations create the input streams and the

type STREAMELEMENT is private; third creates the concatenated output stream. The generic
type SEQUENTIAL FILE is limited private; procedure instantiation creates the procedure that produces the
INPUT: in out SEQUENTIAL__FILE; output file.

package INPUTSTREAM is
procedure ADVANCE (EOS: out BOOLEAN;

NEXT: out STREAMELEMENT; Higher-Level Stream Operations
MORE: in BOOLEAN := TRUE );MO NPTS RE:nLA -TU) In addition to utility functions, there are a number of useful,

ehigher-level operations that perform more substantive stream

transformations. The first example, called "mapping," applies
The complement of this package is an output driver that a function to each element of an input stream and produces a

consumes a stream and produces a sequential output file. The new stream containing the function's results. There are
specification for a generic procedure that converts a stream into numerous applications for this operation. One very simple
a sequential file is: examuls is to convert an input stream of EBCDIC characters

into An ASCII character stream. The distinguishing
generic characteristics of mappings are that they produce one-to-one

type STREAM ELEMENT is private; images of their input streams, and that each output element
type SEQUENTIAL FILE is limited private; depends only on the value of the corresponding input element.

procedure OUTPUT_DRIVER ( The specification for the stream mapping package is: r,%

OUTPUT: in out SEQUENTIALFILE );
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generic package TRANSDUCER is
type INPUTELEMENT is private; procedure ADVANCE (EOS: out BOOLEAN;
type OUTPUT_ELEMENT is private; NEXT: out MACHINESTATE;
with function F ( X: in INPUT ELEMENT) MORE: in BOOLEAN := TRUE);

return OUTPUTELEMENT; end TRANSDUCER;
with procedure INPUTADVANCE (

EOS: out BOOLEAN; There are many variations of finite-state machine processes
NEXT: out INPUT-ELEMENT; that consume inputs and produce outputs at different rates. A
MORE: in BOOLEAN :=TRUE); simple example is a text formatter that turns a stream of strings

package MAPPING is and formatting commands into a stream of characters for
procedure ADVANCE ( EOS: out BOOLEAN; printing. Sorting is another example. For sorting, the entire

NEXT: out OUTPUTELEMENT; input stream must be consumed before the first output element
MORE: in BOOLEAN :=TRUE); can be produced.

end MAPPING; A variation of a finite-state machine process that returns
only its final state value is called a "reduction." A simple

Another common high-level stream operation is called example of a reduction is a process that forms the sum of a
"filtering." Filters require a Boolean test function that can be stream of numbers. The specification for the generic reduction
applied to each element of an input stream. If an element procedure is:
passes the test, it is returned as the next output element. If it
fails, it is thrown away and another element is drawn from the generic
input stream and tested. The output stream, therefore, contains type STREAMELEMENT is private;
only those input elements that pass the test. The specification type MACHINESTATE is private;
for the stream filtering package is: INITIALSTATE: MACHINE_ STATE;
gwith procedure UPDATE (
generic INPUT: in STREAM ELEMENT;

type STREAM-ELEMENT is private; CURRENT STATE: in out
with function TEST (X: in STREAM ELEMENT) MACHINE STATE );

return BOOLEAN; with procedure INPUT_ADVANCE (
with procedure INPUTADVANCE ( EOS: out BOOLEAN;

EOS: out BOOLEAN; NEXT: out INPUT ELEMENT;
NEXT: out STREAMELEMENT; MORE: in BOOLEAN :=TRUE);
MORE: in BOOLEAN := TRUE); procedure REDUCTION (

package FILTERING is FINALSTATE: out MACHINE STATE);
procedure ADVANCE (EOS: out BOOLEAN; N o

NEXT: out STREAM-ELEMENT; Another variation of a finite-state machine process is one
MORE: in BOOLEAN :=TRUE); that produces an infinite sequence of self-generated states. An

end FILTERING; example of such a process is a random number generator that
produces an infinite stream of (pseudo)random numbers. The

In addition to mapping and filtering operations, there are initial state is the "seed" for the numbers generated and the
several common types of finite-state machine processes that update procedure determines the distribution of random values
operate on streams. One example, which is called a produced. The specification for the stream generator package
"transducer" emits the stream of states that it passes through as is:
it consumes its input stream. The first output element produced
is the machine's initial state. Then, as each successive output generic
element is requested, a new input element is fetched and the type MACHINE_STATE is private;
current state is updated to form a new state. Each new state is INITIAL STATE: MACHINESTATE;
returned as an output stream element. Examples of transducers with procedure UPDATE (
include Kalman filters and other signal processing applications. CURRENT STATE: in out
The specification for the stream transducer package is: MACHINESTATE

package GENERATOR is
tyegeneric procedure ADVANCE (EOS: out BOOLEAN;
type INPUT-ELEMENT is private; NEXT: out MACHINE STATE;
type MACHINE.STATE is private; MORE: in BOOLEAN:-TRUE);
INITIALSTATE: MACHINE STATE; end GENERATOR;
with procedure UPDATE ( GENERATOR

INPUT: in INPUTELEMENT;
CURRENT STATE: in out

MACHINESTATE ); Shared Streams and Side Effects
with procedure INPUT ADVANCE (

EOS- out BOOLEAN; Common object-oriented data flow design techniques
NEXT: out INPUT,_ELEMENT; assume that streams can be freely split or shared between
MORE: In BOOLEAN :TRUE ); consuming processes. This is highly desirable, but there are

several interpretations of what splitting a stream means. If
multiple processes invoke one of the stream-generating
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II,

procedures I have described, each will receive only a subset of 3. Goldberg, A. and D. Robson, Smaltalk-80: The Language
the stream's elements, not a complete copy of the stream. A and its Implementation, Addison-Wesley, 1983.
stream of numbers shared between a counting process and a 4. Ida, T. and J. Tanaka, "Functional Programming with
summing process that combine their results to compute an Streams," Proc. IFIP '83, North-Holland, 1983.
average, for example, would not produce correct results. 5T S r ly

Stream-sharing processes must be able to synchronize their Specification, Prentice-Hall, 1979.
"advance" operations to avoid the destructive side effects
caused by generating the next input stream element. Our 6. Ritchie, D. and K. Thompson, "The UNIX Time-Sharing
solution to this is to create a task with two entries (for a two- System," Comm. ACM, 17, 7, July 1974, pp. 365-375.
way split) that look exactly like stream-generating procedures. 7. Henderson, P. and J. H. Morris, "A Lazy Evaluator,"
The task's job is to control the progress of the two consuming Proc. 3rd ACM Symp. on Principles of Programming
processes and to distribute copies of the input stream elements Languages, 1976, pp. 95-103.
appropriately. The task may also buffer a number of input
elements. If one consuming process decides that it will not
need any more stream elements, it is required to notify the task
(by setting its "more" parameter to "false") so that the other
process can be allowed to continue without further interference.
The specification for this stream-sharing task is:

generic 0
type STREAMELEMENT is private;
BUFFERSIZE: INTEGER;
with procedure INPUTADVANCE

EOS: out BOOLEAN;
NEXT: out STREAMELEMENT;
MORE: in BOOLEAN := TRUE);

package SHARE is
task ADVANCE is

entry COPY_1 (EOS: out BOOLEAN;
NEXT: out STREAMELEMENT;
MORE: in BOOLEAN := TRUE);

entry COPY_2 (EOS: out BOOLEAN;
NEXT: out STREAMELEMENT;
MORE: in BOOLEAN:- TRUE);

end ADVANCE;
end SHARE;

Conclusion

I have introduced the concept of stream datatypes and
briefly described a collection of generic operations on streams.
Using these operations as program construction tools, program
components can be created and tested quickly, and easily
integrated into complete programs. Stream programs can be
easily reconfigured for new applications and for testing by
substituting stream sources, by exchanging processing
modules, or by rerouting stream flows.

The generic stream packages described above have been
implemented on a VAX 8600 using the DEC Ada compiler, and
have been ported to a Sun 3/50 using the Verdix Ada compiler. ,
The tasking overhead for shared streams is tolerable for rapid
prototyping applications and for exercising executable %
specifications. I expect performance can be improved to enable ,'.
the use of streams in general (i.e., non-time-critical) "
applications.
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LESSONS LEARNED IN ADA' TRAINING

ELIZABETH A. KENNEDY

ROCKWELL INTERNATIONAL, STSD

ABSTRACT "train the trainers"t program. The

In 1985, Rockwell Divisions in initial activity was completed in two

Southern California initiated an Ada inesrctoalte regimen for the
training program. While the develop-intu ioa remn fr th

ment of the Ada training program was engineering staff was developed.
a cooperative effort among the The STSD in-house class structure was
divisions each division conducted its half lecture, and half lab, two hours
own Ada training program. A total of ec. Te rsosblt o h
393 Rockwell engineers including 125 teh. fThe responssib i tfribted
from the Space Transportation Systems twenty-fivera iectrstws distrite
Division (STSD) have completed this eaon evtuer tinstrtoprr aevewn
program. The program was rated as eachz ectre time tob prsgepre reiew
excellent by the California Statequz adiond r lab or assignments.i

Emlomntrevopet fied Toe An informal survey of one class
STSD program is now being reie oshowed that many students liked the
incorporate the experience gained in variety of lecturers. The materials
teaching Ada over the past two years.usd urn th tw horlbee
In the paper that follows, the ussdgdurngs theltoo urd b we
recommendations for the STSD program ainmenutsr adevelod te by ated
are presented to assist persons instructo nd aCI romuter bsedCB

invoved in da nd oftareproduct allowed the student to work
Engineering training programs. independently. The assignments

insured that the students learned how
to use the Ada development tools.
During lab, the 30 students worked in

THE FIRST GENERATION TRAINING pairs, each pair working at its own
PROGRAM pace with two to three lab assistants

available to answer questions.
The Rockwell Ada instructional Fifteen terminals in one room were
program was initiated in 1985 by dedicated to the students. The more
establishing a "train the trainers" advanced students completed all CBI
activity. A limited number (20) of assignments, deriving several
employees attended the class different solutions to each problem
conducted by a professional Ada as they experimented with the
training company. The contract language. The beginning students were
provided not only for the initial able to spend more time on each
instruction but also for Rockwell's assignment without necessarily
right to subsequently use the completing all assignments. They used
presented material. The 80 hour the time to ask questions of the lab
course had a 10 to 1 student t-, instructors and review the subjects
teacher ratio. The students, knowing covered in lecture. Students who
that they were to be teacheLs, were failed to attend lecture or lab were
highly motivated. In addition, the expected to make up the time by
well prepared vendor and the the watching video tapes, reading Ada
commitment of Rockwell in putting text books or by working lab
twenty of its employees on temporary assignments. Exams were given at
full time training assignment midterm and at the end of class. The
contributed to producing a successful examinations provided the students a
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quantitative measure of thei r bringing contracts into southern
progress as well as notifying the California, providing more jobs.

traiing taf of nstuctinalState auditors visited the Ada class
trinin tff inute n rbesstutinal twice each term; they were shown the

were experiencing. Letter grades wereatednend sigm tchr ,te
assigned to these exams as a lecture material and demonstrations
motivation factor. The students of the CBI tool. They interviewed
realized that those receiving the several students from each class and
highest grades were most likely to then discussed with the lead trainer
receive Ada prgamn sinet.suggestions for improving the class.

progammig asignmnts.State funding has contributed to the
Support from several levels of longevity of this in-house training
management was a major factor in the program.
success of the Ada training program.
The Training Department was THE SECOND GENERATION TRAINING
responsible for contracts with thePRGA
State of California and vendors. ItPOGA

alo baie fnin otherl As the STSD Ada training program ismaterials and coordinated with ohrrevised to bring it up to date with
Rockwell divisions. Each Systems today's experience and technology,
Engineering Director provided a changes are being made to eliminate
representative to a training unsuccessful approaches.
committee which provides a focal
point in formulating requirements for Distributing the teaching responsi-
technical enhancement training needs.bity aog oomn pe lecudThis committee served as a central bilmuicamion trolmny people casoecommunication point for establishing comuntioenjob e vahiet soestudent rosters, performing student setuesejo ther vasa retya ofadministrative functions, supporting efotrsenthr was aoo grato dealeof
teachers in the resolution of tefr p inst cordinab aibtaents
problems, class scheduling, obtaining Muthe l intrctorrsa ssditntls.
resources and coordinating the Mulcoti uite le tue s reutins los
graduation ceremonies. The Assistant of continuity; prsuentedsuestonsuon
Chief Engineer of Systems Engineering aopreviousl reswented subisectouild
attended opening day of each class to snt alayhe swre satisfhactorily
inform students and their management sincehth subec wol haveren beenucor
of the importance of Ada totagt b a difrn isruo.
Rockwell's new business pursuits. He Each lecture stood alone so there
was also present at graduation to were not enough connecting bridges
personally congratulate each student. between the subject matter covered
Each of the directors, managers and which would have made Ada easier to
supervision of the students also learn. The next Ada class will have
attended opening day and graduation. only four instructors. These

Line manaemen suport kepttheinstructors have a wide variety in
Lranigmanagementsupporta eptiothe work experience and more importantly
taininhe projects at d thesn ed init their involvement in the Ada training
asw obthe s projet and rsultedin a class covers the full range from the
lowabeseneimrt.orsuet n first "train the trainers" to the -

most recent class. The teaching task
Rockwell obtained California state being a larger percentage (25%) of

supprt or te tainig pogra ineach employee's total work task will
the amount of 2000 dollars per poie mr fa fcso h
student. The California State training task. 1
Employment Development Office usesTh deiont gru suets fal
its funds to pay for training thatTh deiontgru suets fal
will help people keep their jobs. experience levels together in the

Commrcia buineses ave eenfirst generation classes was based on
involved in this program for some tuentssinp clas would haimprodventhe
time, however aerospace had notstdnsi cl swodimrv th
participated prior to 1985. Rockweli quality of instruction. The
was able to show the state that Ada experienced students would be likely
would play an important part in to provide creative solutions to
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assignments that could be shared with the scope of the class is being
o f.her students. They would also reduced in scope to a specific Ada
contribute by expressing alterndte programming class. The objective of
explanations of concepts. While many the class is "to graduate students
benefits accrued to the class as who shall be able to write, edit,
expected, some students had trouble compile and debug modular Ada
throughout the class becaiuse they did programs and small systems that can
not understand the basic concepts and be merged into any larger Ada project
the advanced students were not always required by management".
stimulated by the presented material.
The difficulties encountered by a
"beginner" student were sometimes CONCLUSION
masked by the more experienced lab
partner. During development of the The problems encountered in the Ada
second generation training program, training program are not unique to
the aim will be to produce a program Ada. They exist in any training
that can be either a self study program for a new technology. The
program or lecture program depending most essential element to a
on the need of the student. successful program is management
Assignments will be developed which support in providing resources.
have beginning and advanced levels so Keeping ideas that have proven
that each type of student will be successful, while incorporating new
challenged rather than overwhelmed or ideas, will result in the desired
bored. As the material for each "new and improved" Ada training
lecture is completed the lecture will program. The Ada training program is
be video taped in a studio. Review a significant part of Rockwell's
and revision is scheduled to assure a continued efforts to upgrade skills
quality video. Another CBI product is and stay current in technological
being purchased to organize and advances. The Ada experience level
maintain all assignments and subject has increased dramatically in the
outlines developed by the past three years allowing STSD to
instructors. This will standardize pursue major Ada contracts.
the format of the class material and
will provide an efficient technique
for electronic storage and retrieval *Ada is a registered trademark of the
of the class material. The tool will U.S. Government, Ada Joint Prtram
help consolidate teaching material office (AJPO)
and allow it to be easily retained as
instructors change. The video tape
and CBI tool material will provide BIOGRAPHY
some of the major materials needed
for a self study program. Ms. Kennedy has participated in

Rockwell's Space Transportation
Examples and assignments used during Systems Division's (STSD) Ada
the original classes were academic or Training Program since its inception
commercial in nature. Students in 1984. She is currently responsible
objected to working problems which for establishing efficient software
did not directly relate to Rockwell's development methods within STSD'S
business base. In revising the class, Software Engineering Department.
emphasis is being placed on Since 1977 she has been involved in
developing examples and lab the Space Shuttle Program by
assignments that reinforce the point supporting launch operations at
of the examples. Class assignments Kennedy Space Center and the Backup

that produce code used in projects Flight system in Downey, California.
outside the class are being Ms. Kennedy graduated from Florida
considered. These projects will be Southern College in Lakeland, Fla.
presented to a group of project with a B.S. in Math in 1977.
leaders to ensure that the
assignments given in class correspond Elizabeth A. Kennedy

to tasks that project leads want Rockwell International
their employees to be able to Space Transportation Systems Division
perform. To improve the practical 12214 Lakewood Blvd.,
skill level of the Ada class graduate Downey, Calif. 90241

(213) 922-5573
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Lessons Learned Teaching Ada in the Context of Software Engineering

by

James E. Tomayko
The Wichita State University

reuse through generics, are all achievable at an
Abstract earlier point in the curriculum if Ada is the first

language taught.
Educators across the country are struggling with
difficult issues in to the teaching of Adatm and The dilemma is a mirror of the opportunities:
its relationship to the Computer Science should such things as packages, tasks, and
Curriculum. By design, the language supports generics be introduced at an early stage in the
software engineering principles. Therefore, it teaching of computer science? Some educators
would seem that the "natural" place for teaching feel that the application of the fundamental
Ada is within the context of software concepts of structured programming, the
engineering. This paper reports on the author's sequence, selection, and iterative structures, are
and his students' experiences in learning and enough to concentrate on during the first
using Ada in different settings, including a semester of language study. Others feel that
software engineering project course and a course more emphasis on formal methods, the proving
centered on Ada and its use. of correctness, should pervade a curriculum that

is now nearly devoid of such topics.'
The Place of Ada in the Curriculum

This attention to fundamentals, though sound
Ada is unique in that it was designed to embody pedagogically, would tend to reinforce the
software engineering principles in a language tendency of the undergraduate computer science
aimed at a wide variety of applications domains, curriculum to reflect the techniques and tools of
As such, it provides both an opportunity and a programming-in-the-small, and thus teach the
dilemma for educators. The opportunity is to unrealistic world-view that most software
take advantage of Ada's intent by introducing engineering curricula later have to correct. For-
software engineering at an earlier stage of the instance, discussions of modularity at the lower
curriculum. Obviously, Ada has all the levels of the curriculum still concentrate on its -"
advantages of Pascal or Modula II as a beginning use as a means of decomposition or of avoiding
language: structure, modularity, and few strange "repeating code" a la subroutines, without
syntactic conventions. Anyone who has seen introducing the ideas of coupling and cohesion
Booch's Vriare Cmponens with Ai which are so important to the verification and
[Booch87] realizes that Ada is a suitable vehicle reuse of software parts. Therefore, it is worth
for teaching the essential data structures and considering the inclusion of basic software
algorithms found in the ACM Curriculum CS2 engineering principles in the early computer
course. In addition to these traditional topics, science curriculum, with Ada as the vehicle. This
the introduction of the concept of objects, the
extension of modularity to packages, the * David Gries is the leading American advocate of this
principle of exception handling, and introducing position His Science of Programming(Springer. 1981)

and Shaw. et al's Fundamentl Structures ol' Computer
Science (Addison-Wesley. 1980). which is used in

tN Ada is a registered trademark of the U S. teaching beginning programmers at Carnegie Mellon.
Government. Ada Joint Program Office (AJPO) both contain information on mathematical methods

absent from the majority of introductory texts
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means that we must face the fact that the students at Carnegie Mellon University. The full
traditional one-semester introduction to both story of the course as a case study is in
programming and a language may not be enough Tomayko87. Here we concentrate on the effects
time. Perhaps it was in the Fortran days when of using Ada.
all you needed to know could be taught in that
amount of time. but we know a lot more now. The project chosen for the course was to develop
and we need more time to present it. a mission planning and simulation tool for a

manned research station on the planet Mars.
Some institutions have been taking the time. For Fundamentally, the simulator was a batch run
example. The Wichita State University for nearly that calculated resource usage, equipment
a decade has required a two-credit-hour course scheduling, and crew duties for different mixes
/rd=1.49.7 /0 ProgrVMM,1g that precedes of time, personnel, and m.%iteriel. System
language study. The topics in that course include analysis. requirements definition, specification.
f undamental structures, modularity, and and design using an object-oriented approach
documentation techniques often left to much were completed prior to turning the design over
later in the curriculum. The results of this to two teams: an Ada implementation team of
emphasis appear to be excellent, in that five persons and a single Pascal coder. The high
potential majors get an early introduction to the level and detailed design used an Ada program
facts that programming does not equal hacking, design language, and both teams very quickly
and that mathematics and English are important, created code. Quantitatively, the result was
allowing the later courses to make use of 16,000 lines of Ada and 8,000 lines of Pascal.
extensive documentation techniques and
continue the software engineering approach. In Since the object of the course was to teach
fact, Ada is one of the languages a student can software engineering, there was no formal Ada
study immedialely afterward. instruction. The class was divided up into

requirements analysis, design, code,
Still, for some time in the future in most schools configuration management, quality assurance.
Ada is likely to appear much later in the management, and verification teams early in the
curriculum. Again a dichotomy presents itself: semester and specialized in their fields.
should we teach Ada in context of software Therefore, the Ada coders had nearly two
engineering, or Ada as a vehicle to teach months for "training" prior to receiving the
software engineering? In the last two years I design for coding. During that time they worked
taught courses with both approaches. The on a graduated series of problems to hone their
remainder of this paper contains "lessons skills. They used no one text or training course.
learned" that hopefully provide insight into the but succeeded in learning the language well.
dangers and rewards of each route.

The addition of two "language lawyers 'helped
enormously. These were a pair of European

Ada as a Tool in Teaching Software Engineering visiting students that became available after the
semester began. They each had a year's Ada

It seems logical that a software engineering programming experience and influenced the
course should use good tools. Since Ada is coding team's work to a significant extent. In
considered the best programming tool for many fact, during the class' final presentation of the
domains, then Ada should be used as the project, given at the Software Engineering
language of choice when teaching the subject of Institute, several experienced Ada praclioners
software engineering. In the fall of 1986 1 used remarked on its quality.
Ada for the first time in an offering of an
introduction to software engineering course The design team used an object-oriented
aimed at seniors and first-year graduate method, based on research they had done in the
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available journal literature. Their decision to use In the fall of 1987, 1 taught a course entitled
Ada-like syntax to express the design Ads sd Softw'Are £agioeeriBgwhich has been in
accelerated the coding process tremendously. The Wichita State University curriculum for
The use of the method resulted in an easily several years. Whereas the purpose of the
understood separation of function, high cohesion, course described above is to teach software
and minimal coupling, which aided in testing the engineering and demonstrate Ada's use as a tool
code later. in implementing software engineering

principles, this course has the objective of
There were several lessons learned from using teaching how Ada directly supports the
Ada in this course. One is that good discipline of software engineering. The students
programmers can learn to write good Ada fairly in the former course are generally either
quickly. Packaging and generic concepts, limited inexperienced or modestly experienced. Those in
and private types, all seemed to be internalized the latter course are largely graduate students
quite well. Tasking was not needed, so no who have actual software engineering
information about the use of that construct was experience and are making, or want to make, the
gained. Object oriented methods appeared to transition to Ada.
work sufficiently well for a system of this size.
And again, students picked this up quickly. This course made use of a variety of readings

and projects. Booch86 was the primary text.
The disadvantages of using Ada in the course though not read in order, and several
arose from the development environment. The supplementary readings on environments and
early coding was done on MicroVax workstations the design of real time systems using Ada were
which were shared with other members of the given. Individual projects included a design and
Computer Science Department doing implementation Of software to control a fairly
experimental changes to the operating system. complex vending machine, a simple line-
This led to an unstable environment that often oriented text editor to demonstrate access types,
made the compiler unavailable. The compilations and a task-based system to monitor and control
were very slow in execution. It took an average a rocket engine. But I wanted to also
of an hour to recompile the developed system. demonstrate the use of Ada in a larger project,
An opportunity arose to move the system to a so again the introduction to sof tware
Vax 8600 and a different compiler, and when engineering course provided one of sufficient
this was done and recompilation started we scope.
found numerous inconsistencies between the
two compilers and spent a lot of time correcting I was teaching both the Ada course and the
'.errors" that simply did not exist under the software engineering course at the same time, so
original system. I decided to have the software engineering

students do the requirements analysis,
In general, the use of Ada in this case was a specification, high level design and verificdtion
positive experience. The students applied their of a large chunk of software, and have the Ada
classroom knowledge of software engineering to class do the detailed design using an Ada
a realistic project and found Ada to be a useful program design language and the code itself. The -
vehicle for implementation. The Pascal version project was a simulation of command computer
of the code did not perform any better, and was software for an unmanned, autonomous Mars
much more difficult to read. rover.

The results of this experiment provided some
Software Engineering as a Tool in Teaching Ada new insights. It was much better to present Ada

in the context of software engineering than to
teach Ada in a beginning class or strictly as a
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tool. The emphasis on showing exactly how Ada start a movement toward Ada because he
is designed to implement date abstraction, "couldn't think in any other language any more.-
principles associated with modularity, and other I feel that what he was really saying is that he
concepts made it quite easy for the students to can not think as a programmer any more, that
understand the proper use of the language. he now thinks like a software engineer and he
When the time came to do the large project, I knows that the best implementation of software
divided the students into two competing teams engineering is Ada.
(named Deimos and Phobos, of course) to
implement the design given them by the other
class. The report of the verification and Acknowledgement
validation team showed that the two teams had
nearly identical performance, and that 40 per My knowledge of Ada was gained most
cent of all the requirements were correctly effectively by my participation with my
implemented. This figure is amazing considering students in these classes and in other learning
that the software engineering class delivered situations. I want to thank them for their active
what was quite frankly a poor design, forcing interest and their difficult questions.
the Ada class to go back to the requirements
level to make sure that their detailed design References
included what was needed. Also, they had less
than three weeks for detailed design, code, and [Booch86] Grady Booch, Ada ad Wltware
unit and integration test. Engineering 2nd Edition (Benjamin Cummings,

1986).
One thing that really stood out in this experience
is that the persons involved in design of an Ada [Booch87] --- Software Components with Adai
program should have knowledge of Ada. The (Benjamin Cummings, 1987).
high level design delivered to the Ada class used
primitive applications of software engineering [Tomayko87] James E. Tomayko, Teaching i
principles simply because the designers could Prolect-Intensive Introduction to Software
not imagine anything else. The Ada class fngineerng Software Engineering Institute
"bootlegged" use of data abstraction and other Technical Report SEI-TR-20. October. 1987.
principles after they saw how poor the design
was --- a situation common in "real life" but by James E. Tomayko is an Associate Professor and
no means optimal. Director of the Software Engineering Program in

The Wichita State University Computer Science
Conclusion Department. He spent 1986-1987 as a Senior

Computer Scientist at the Software Engineering
My experience with these courses and in Institute. Dr. Tomayko has done contract work
discussions of how best to teach and use Ada in for NASA and the Boeing Military Airplane
academic environments lead me to firmly Company.
believe that Ada and software engineering are
inseparable. Ada should be taught in the context
of software engineering and the concept of the
programmer" should be dead, if it is not

functionally dead already. The days of "Fortran
for Engineers" courses must end. One of the
students in the Ada and Software Engineering
course was discussing his work at a local power I
company with me after the semester and said
that he was trying to convince his co-workers to
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CHANGING THE STUDENT'S PERCEPTION OF SOFTWARE LIFE CYCLE

M. Susan Richman, Ph.D.

The Pennsylvania State University at Harrisburg

Abstract

The life cycle of a student's program written tern, but in several systems. Students modify their
in a typical programming course consists of the own code to meet new requirements, and they modify
following stages: (1) write the program, (2) debug other students' code (and critique the code they
the code, (3) execute the program, (4) turn in for must maintain.) They applaud readable and under-
grading, (5) glance at the graded program, and standable code, and are appropriately frustrated by
(6) discard. someone else's AdaTRAN which they must decipher in

the course of this assignment. Through modifying
This paper describes the experiences of one code, they also recognize the value of modular

instructor in trying to instill, through program- program units that diminish the ripple effect of
ming assignments, an appreciation of the value of changes. In the course of enduring these experi-
designing and coding for understandability, modi- ences, during which students become exasperated by
fiability, reusability, and reliability. Thanks to poorly designed code and are correspondingly grati-
various features of Ada, especially packages and fied when able to work with well designed systems,

*the facility for the separate compilation of pro- they develop a new appreciation for the value of
gram units, the student can experience, in the Ada's support for software engineering and a more
confines of a one-semester course, some of the realistic view of the software life cycle.
concerns and difficulties of members of a develop-
ment team and maintenance programmers. Basic Course Information

Introduction The course, COMP 408, Introduction to the Ada

In many introductory programming courses, the Programming Language, is taught at Penn State,
only reason a student modifies code is in order to Harrisburg, an upper-division and graduate school.
debug it. Often the student has had no experience As such, there are no freshman or sophomores in
in trying to understand or maintain code written by the course. COMP 408 is a three-credit, one-semes-
someone else, or by himself or herself after seve- ter course with a prerequisite of at least three
ral months have elapsed and the familiarity has credits of high-level programming language. Most
faded. Furthermore, the code written is seldom students taking the course have previously studied
useful enough to be used in more than one program. Pascal. The computer used is a Data General
As such, although the instructor may stress the Eclipse MV/lOOOO and the coanpiler is the Data
importance of the principles of software engineer- General/Rolm compiler with the Ada Development

ing, the student generally has little practical Environment.
appreciation for the benefits derived and has an
artificial and misleading perception of the soft- Programming Assignments
ware life cycle. =>The first programming assignment is designed to

At the same time, the instructor may have assist the student in becoming familiar with the
difficulty in designing programming projects that system, the Ada environment, and the basic struc-
are of significant size and yet might reasonably be ture of an Ada program. Through part 4 of the
assigned to the students who, the instructor is not assignment, they learn how to read from, and send
permitted to forget, typically have the demands of output to files.
four or five additional courses placed upon them Assignment 1
during that same semester. Ada, by providing the CHECKC PARENTHESES PROGRAMS
modularity through which large systems are build
from simpler software components, assists in coping 1. Following the instructions in the "Beginning
with both these difficulties. ADE Users' Guide' create a Program Root Directory.

In this directory, or in a sub-directory, if you
The student, starting very early in the wish, type the procedure Check -Parentheses listed

course, is required to build software components in 1-2 of the Class Notes. compile, link, and
which later are used, not only in one larger sys- execute this program. [The input for this procedure

is to be entered from the terminal.]
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2. Compile, link, and execute procedure Match Next modify this program with the following
Parentheses in 1-4 of the Class Notes. The input changes:
for this procedure is to be entered from the
terminal. (1) Use the integers 0-5 instead of 0-10;

(2) Put 10 blank spaces between the numbers.

3. Compile the package Parentheses in 1-9 
of the

Class Notes. Write a program (as a main procedure) You are encouraged to make minor changes in your
to utilize this package to accomplish the actions original program, if necessary, so that your pro-
of procedure Match Parentheses. gram would be easily modifiable. Aim for easily

modifiable programs by using appropriate Ada fea-
This program should accomplish the results by tures.

following the general form of Match Parentheses but

calling the facilities of the package:
procedure TallyUnmatched Left ==> Assignment 3 modifies the procedure from
function HaveUnmatchedRight Assignment 2 and accesses a function provided by a
function Have Unmatched Left system library, Math Lib.

in place of the appropriate algorithms within the
body of Match Parentheses. Compile, link, and Assignment 3
execute this procedure. SQUARE-ROOT TABLE USING MATH LIB

4. Match Parentheses received its input from the Modify your Factorial Program to print a table of
keyboard and outputs the result to the terminal square roots of the floating point equivalents of
screen. The procedure in Class Notes (1-3) uses the first 10 integers, using the function Square
Ada statements to create and send output to a file. Root found in the Ada Development Environment
Use this procedure to create a file called package Math Lib.
INPUT.DAT. After creating this file, use an editor
to insert text in this file. Be sure to include an In order to use this package containing mathema-
assortment of left-parentheses and right-parenthe- tical subprograms you will need to change the
ses in this text so that you can use your Ada Library Search List for your project Root Directory
program to check for matching left- and right- to include the Math Library. The instructions for
parentheses. Be careful not to interfere with the doing this are found on page 18 of Beginning ADE
End Of File mark that the Ada program has placed. User's Guide.

The procedure in Class Notes 1-5 shows how to read

characters from an Input File rather than from the ==> Once composite data types are introduced,
keyboard. library packages are designed to define and perform

I/O on them.
Modify your procedure from Part 3 (above) to read
the text from your file INPUT.DAT and check for Assignment 4
matched or unmatched parentheses. ARRAY 10 PACKAGE

Write a package providing the facilities [Get and
==> With the second assignment they begin to write Put] you need to perform Input/Output on an array
and to use separately compiled library units. of integer components. For the procedure Get, the

components will be read one at a time, and for the
Assignment 2 procedure Put, written one at a time, in tabular

FACTORIAL TABLE PROGRAM form with the index value in the left column and

the corresponding component value in the right
Write an Ada procedure that prints a table of column.
factorials for the integers from 0 to 10. You will
need a function Factorial that computes N! Write Give attention to making the procedures easily
it as a separately compiled library unit. Using modifiable. [This won't be the last time you will

the fact that N! 
= 

N*(N-I)!, write Factorial as a see your package.]
recursive function. The specification of Factorial
will look like: RECORD 10 PACKAGE
function Factorial (N : Natural) return Natural: Write a package providing the facilities needed to -

maintain records for a car dealership. This pack-
Your output should look similar to: age should include:

n Factorial (n) (I)A type definition for Car RecordType which, p

contains information such as:
0 1 Make (choose just a few possibilities):
1 1 Year
2 2 Miles Per Gallon --a floating point type
3 6 Miles tra;elled --an integer type
4 24 Price --a fixed point type

etc.

(15 spaces between the columns]
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(2) A procedure to Get a car record: Surname (a string length Max Length)
(3) A procedure to Put a car record. Length of Surname (actual length)

Birthday (a record type)
Incorporate File IO to Get input from a file (pre- Social Security Number (an array of digits)

viously created using the editor) and to Put output Insurance Carrier (an enumerated type)
to a file created by the Ada program.

(2) A procedure to Get a person record:
WHILE YOU SHOULD TEST THESE PACKAGES WITH DRIVERS
[FOR YOUR OWN SECURITY], THESE ASSIGNMENTS NEED NOT (3) A procedure to Put a person record.
BE TURNED IN AT THIS TIME. YOU WILL NEED THE
PACKAGE ARRAY 10 FOR THE NEXT ASSIGNMENT AND THE Incorporate File 10 to get input from a file (pre-
ARRAY 10 CODE SHOULD BE TURNED IN WITH THAT viously created using the editor) and to put output
PROGRAM. RECORD 10 WILL BE USED LATER. to a file created by the Ada program.

Compile the package body separately from the pack-
>The next assignment involves modifying Factorial age specification. Write the procedure bodies of

Get and Put as subunits, compiling them separately
to incorporate arrays, writing a new procedure from the package.
Fibonacci, enclosing both procedures in a library
package, and writing a driver to use this package (1) Two procedures to Get a person--one from
and Array 1O. the keyboard and one from a file; [Use GetLine to

Assignment 5 read the person's surname.]

(3) Two procedures to Put a person--one to
FIBONACCI FACTORIAL PROGRAMS the screen and one to a file.

Write an Ada procedure Fibonacci that computes and Compile the package body separately from the
stores in an array the sequence of the first N package body sep re odieFibonacci numbers. The value of N should be an in package specification. Write the procedure bodies
Fibnareter anm The value of N shoulde an in pof Get and Put as subunits, compiling them separ-
parameter and the value of the array an out parame- ately from the pr.ckage.
ter. The value of N should be input from the
terminal to the driver. The sequence of Fibonacci

numbers follows the pattern => The next assignment creates a more elaborate

1, 1, 2, 3, 5, 8, 13 ... structure of car records, a linked list.

so that, after the first two Fibonacci numbers, Assignment 7

each is the sum of the two previous values. [LINKED LIST]

Redesign the function Factorial into a procedure

that computes and stores in an array the sequence Implement a linked list of Car Type to maintain an
of the first N factorials. The value of N should auto inventory. Each cell in The linked list
be an in parameter and the value of the array an
out parameter. The value of N should be input from an access value pointing to the next cell in thelist.
the terminal to the driver. Do not have the proce- l

dure Factorial use the previously written recursive Use Car Package for the definition of the CarType
function Factorial. Compute each factorial value and for the 10 facilities. The linked list package

using the previously stored value in the array. should contain:

Write a package which incorporates both procedures (1) a ListType containing two variable values,
WritnaccI and Factorial. Write and separately Head, and Tail, indicating the beginning and end of

compile a driver which uses these procedures and the list.
then the Array 10 to output the arrays. (?) n procedure Insert to add a Car record to the

list, in order by Make,

=> A Person Package is designed to deal with a (3) a procedure Remove to delete a Car Cell fromvariant record. ()apoeueRmv odlt a elfo
Assignment 6 the list

PERSON RECORD 10 (4) a function IsEmpty to report when there are no
[DISCRIMINATED RECORD] records in the list.

Write a Person-Recordakg providing the facili-
titneeded to n dPackage pr a t 1 (5) a procedure to Write the contents of the list
ties e omaintain records for a hospital. (without the access values) to an output file. Car
This package should include: records should be read from a file.

(l)A type definition for PersonRecord.Type [a 1sa
discriminated record with discriminant Max Length Compiepte Wrte the bodies of Insert,- ~body separately. WritethboisfIne, =
of subtype positive, default value 20] which con- Remove, and Found as subunits and compile them
tains information such as: separately.
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An appropriate exception should be raised (and two Elements and return the one judged to be the
handled) upon an attempt to Remove from an empty Better of the two,
list.

(c) an access type which accesses objects of " 7"
Use UncheckedDeallocation to release the memory ElementType
used for each element after it has been Removed.

(d) a private type List_Type containing a pointer
Write a driver to test the facilities of the pack- to the Head of the List
age.

(e) a function Is_Empty to return the value True if
the list is empty

= The next assignment provides the facility to (f) a function Found which searches through the
search through the linked list in Assignment 7. list for a given element (passed to Found as a
Each student modifies a classmate's code as well as parameter) and returns the value True if the ele-
his or her own. ment is found. The function will compare the given

Assignment 8 element only with the data item of each cell; it
SEARCH THROUGH LINKED LIST will not take the access value(s) into account when
[MODIFY CLASSMATE'S CODE] testing for equality.

(h) a function "<" to compare two elements and
This assignment will give you experience in main- return the Boolean value True if the first is less
taining code written by someone else. You will be than the second,
assigned a classmate with whom you will exchange
the code from Assignment 7. This code is to be (i) a procedure Insert to insert an Element in the
modified as described below. Make the modifica- list, after using a "<" to locate the appropriate
tions described below on your classmate's code and position in the list
on your own. Compare and contrast the experiences.

(j) a function Best to search through the list and,
(1) Incorporate in the package LinkedList a func- using a generic parameter function Better, return
tion Found which searches through the array for a the Element judged to be the Best of the list,
given car record (passed to Found as a parameter)
and returns the value True if it is found. The (k) a procedure Remove to remove an element from
function will compare the given record only with the list.
the data item of each cell, not the access value(s)
into account when testing for equality. (1) a procedure to Write the contents of the list

(without the access values) to an output file.
(2) Modify the procedure Insert so that a new cell
is inserted only after function Found indicates After compiling the generic list package,
that the data item is not already listed in the modify your driver for the Car list package to
inventory, instantiate the generic list package for Car

records. The driver should then call upon the
(6) a function MoreEfficient to compare two Car facilities of the list package (the instantiation,
records and return the one with the greater number not the generic package) to create a list, to
of Miles PerGallon, insert the records in order by Make after the

driver reads the records from an input file, to
(7) a function Most Efficient to search through the remove a record from the list, to search through
list and, using More_Efficient, return the Car with the list and return the car with the highest
the highest MilesPer_Gallon rating. MilesPerGallon, and to write the contents to an

output file.
Write a driver to test these facilities. ---------------------------------------------------

The final project is to write a generic linked N. Susan Richman has been teaching Ada at the
list, based upon the results of the previous two Peassignments. Pennsylvania State University, Harrisburg, since' i'$-
assignments. 1984 and has been Director of the Ada Education

GNEROCTASSIGNMT Center at Penn State Harrisburg since 1985. She
GENERIC LINKED LIST is a graduate of the University of California,

Modify your List Package to acquire a generic Berkeley, and received the Ph.D. in Mathematics

package providing dynamically allocated linked list from the University of Aberdeen, Scotland.structures.
Tsructues. i M. Susan Richman, Director
This Generic-List Package should provide: Ada Education Center

(a) a generic parameter, ElementType which will Penn State Harrisburg
play the role of Car Type w iMiddletown, PA 17057
pC Phone: (717)948-6082

(b) a generic parameter, function Better to compare
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Examination of Some non-Ada Software fr-om the Pespective of Software

Engineering Principles, Processes, and Goals.

Jagdish C. Agrawal
Professor and Chairman,

Embry-Riddle Aeronautical University,
Computer Science Department
Daytona Beach, FL 32014

A nuberof sftwre roduts ere thesis that "Four properties that are

eamineder o soetwrpce podfcSofware sufficiently general to be accepted as

Engineering Principles, Processes, and sofar fte engieeinire difiaility.

Goals (how well the principles were sotae ngerig remdfblty

implemented, what specific processes and efficiency, reliability, and

tools were used, and how far the goals understandability.- Recently, to0 these

were achieved). An attempt was made to four goals, Agrawal and Manickam (2] added
also examine whether the use of Ada would a fifth goal of portability. Thus, for

have madethe iffeence For some the study of several software products, I

software products, the language did seem slightly modified the Ross, Goodenough.

to make the difference. For example, and Irvine model for the Pr-ocess,

COBOL allowed little or no information Principles, and Goals of Software

hiding, and left everything quite visible. Engineering Ell. rhis modified PPG-model
is described in the next section.

2.Mod if ied PPG ModelI

I. InrodutionThere are five goals in the modified PPG

The SO called software crisis is model used for this work.

characterized by the issues of cost.

*efficiency, modifiability, reliability,

transportability, and understandability. . Modifiability
Even if the software system meets its .Efficiency

*initial functional requirements% its .Reliability 1
efficiency, modifiability, reliability, .Understandability

transportability, and understandability -Portability

can have a major impact on its usability

and its life-cycle cost. Therefore, it The first four in the above list are

may be useful t o study some of the defined and discussed in detail by Booch

existing software from the perspective of (2, pp. 28-311. Rapid technological

characteristics it possesses from the developments and sharp drop in the cost of

above list, and the factors that hardware has motivated users to upgrade

contributed to missing the characteristics and proliferation in their hardware and

it does not possess. This belief became support environments. This has made

the motivation for this research, portability an important goal. Software
* portability across various hardware and

*The approach for the research, described Support environments also has an impact on

in section 3, was to examine each of the reducing the time and cost of learning

selected software and identify what curve for the staff. We can call this

software engineering processes were used, reduction in the time and cost of learning

what software engineering principles were curve for the staff as "staff .

followed and implemented, and what portability.' For this research, we

software engineering goals were actually viewed both the software portability and

achieved. An attempt was made to identify the staff portability important enough to
whether the use of Ada would have made a include the general term portability in

difference. the list of Our software eng ineer ing
goals.

For this research, a model of the Process,

Principles and Goals (PPG model) of The seven principles of software

Software Engineering was needed. I engineering proposed by Ross, Goodenough,

started with the PPG model of Ross, and Irvine [l) were adopted withouti

Goodenough and Irvine [1] based on their modification:
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Astraction: Extracting essential and I further examined each software for
properties while omitting inessential two issues:
details.

a. Goals that were not achieved, and

Completeness: Ensuring that all of the

important details are present. b. Will the use of Ada have made any
difference.

Confirmability: Explicit statement of the
information needed to verify correctness. The material used for the evaluation

included source code where available,
Hiding: Making inessential information documentation, information on system
inaccessible. change requests and results where

available, interviews with users and

Modularity: Purposeful structuring into developers, and available documentation on
relatively independent parts to easily documented complaints with the system.
achieve some purpose. Not all of these were available for each

software available, and therefore the
Localization: Bringing related things evaluation lacks uniformity and
together into physical proximity, consistency. However, we believe that

studies of this type are very valuable for h
Uniformity: Using consistent notation large system developers.

among all modules to directly support the
goal of understandability. 4. Summary of Results

For the software engineering processes in
the PPF-model used, we adopted the Results are summarized below separately
fo ,'wing version of the five processes for each software considered. For brevity
used in the Ross, Goodenough and Irvine in the paper, I have omitted the details

model: about the principles that were followed
and the goals that were met in each

Purpose: The requirements of a system. software. Only the shortcomings are
pointed out. Also omitted are the

Concept: The architecture of a software specific details that were necessary to
system to satisfy these requirements and arrive at the conclusion that a principle

specify the modules that constitute the was followed or not followed, and a goal

system. was met or not met. The documentation on
such matter is quite bulky to reproduce

Mechanism: The hardware and support and is now the property of Embry-Riddle

environment in which the software runs. Aeronautical University.

Notation: The programming language for (i) Applications Software for Creatin
implementation of the software. Shapes

Usace: How the software system is Purpose, concept, mechanism, and usage is

controlled (e.g., User's manual), identified in related documentation [4,
pp. 206-234].

3. Evaluation of the Software agjainst
the modified PPG Model Notation: Applesoft BASIC.

A large research team participated in this Principles not implemented with reasons:
project. Senior and advanced junior
students in my Software Engineering class Hiding: Since the language of

were first given the Software Engineering implementation does not support hiding,

background equivalent to chapters one the principle of hiding was not and could
through nine, and chapters 22 through 24 not be followed. Use of Ada certainly
of Software Engineering with Ada by Grady would have helped in this area.

Booch [I] and also introduced to "Software
Engineering: Process, Principles, and Goals not met with reasons:

Goals," by Ross, Goodenough, and Irvine
1l]. They were also asked to read a While relative independence of the

number of books and papers on this subject modules, and strong documentation on
that were placed in the reserve section of purpose, concept, mechanism, notation, and
the university library. Then they were usage made the software easily modifiable
asked to individually select a software of with regard to new requirements, the
their choice and examine it from the portability was severely restricted by the
perspective of my modified PPG model of mechanism and notation used. If the
software engineering. Technical research requirements on the mechanism changed to
reports of the students summarizing their include hardware other than a 6502
findings were critically examined by me processor and resulted in change in the
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operating system, then Portability will designi/implemenltation compromised any

become very important. Uniform language efforts to achieve localization.
standard of Ada regardless of the hardware
is an important feature that helps The goals of software engineering were
portability of at least the source code, achieved although the source code would

still require reimplementation effort

(ii,) Bulletin Board System (BBS) before porting it to another environment.

Notation: BASIC and Assembler Use of Ada for initial implementation is
unlikely to have produced any better or

Mechanism: Atari any worse results.

Purpose and Concept: The Bulletin Board (iv) LAB ASSIST
System BBS was developed by Optimize
Systems, Inc. for telecommunications use This is an in-house developed program for
of Atari Computer users. Source code was scheduling of laboratory hours and
not a-eailable for this proprietory assistants.

product.
Mechanism: IBM PC and PC DOS

The developer claimed having implemented Notation: BASIC

all the principles of software

engineering. However, in my opinion, There is a high interdependence among

conformability was substituted with hybrid modules and it is strongly recommended

prototyping by using controlled user that at the redesign time, developer

bfeedback for about six months on initial ensure that only the interfaces of the

versions of the software to develop the modules be defined and visible.

first commercial version. Also, Abstraction is lacking and for any

uniformity was some what lacking resulting redesign effort, it is recommended that

from a mixture of Assembler with BASIC- the redesign plate a high value on
abstraction. Localization is also

The goal of portability was difficult to lacking. The goals of modifiability and

enforce, because the user did not have the portability will benefit from a major

source code. Even for the developer, to redesign as recommended earlier.

port the software to a different hardware

and support environment would have ipeetto fterdsg nAawl
resulted into several man-months of Imemeantyain if the tedeinin Aa will
effort, Use of Ada would have helped the cerainly Aasis indeattnining allsithe
portability at the source code level, but goals.nato A n majo redsin withcssibl

'I' the machine dependent features of BBS ipeetto nAai npoes

would have restricted the ability of even (v) Grading Program
Ada to produce a portable product.

(iii Tet sorerproramMuch like the Test Scorer Program, this
(iii) Test ____too is an in-house developed program with-

Thi i aninhoue roramdeeloedto the functional requirements somewhat

stisf itani-ue prds ogra develaoped to0 different from that of the Test Scorer

instructors who could use it for machine Program.

scoring of their class tests. In a Mechanism: PRIME 400 (later ported to IBM
university environment, such programs PC with Turbo Pascal)
Improve the productivity of a professor
and free up some of his time for research Notation: Pascal
that would otherwise have gone into manual
grading of the tests, It has gone through All the principles were reasonably

- ~ several System Change Requests over the followed.
last several years of its use. Thus
modifiability has abundantly been Lack of detailed documentation became an

demonstrated, obstacle to achieving modifiability.

Source code availability did not help much%

Notaion:Turo Pacalin the requirements of porting from PRIME

4.00 / Pascal to IBM PC / Turbo Pascal.
Mechanism: IRM PC and scan-tron machine Use of Ada would have certainly helped in

Themodleswer no enirey idepiidnt both. This seems to be a case where a

ofeac ootlshere o niey neeiln simple translation into Ada would be
ofeah thrand control through GOTOs acceptable until such time that huge

and interrupts made the implementation of changes in the requirements make a major
9.modularity weak. The principle of hiding redesign necessary.

was not practiced and the language of
implementation made it somewhat difficult
to enforce hiding. The GOTO dependent
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(vi) EASYNAV (x) Automatic Acquisition System

The system EASYNAV is a flight management This is a Columbia University developed
system that was designed in-house for use system that provides sophisticated records
by pilots in performing preflight and control for all in-process and fiscal
computations. it is a first step functions of library acquisitions. It is
prototype towards a real-time embedded operating with efficiency and economy and
automatic flight control system which satisfies the goals and principles of
would require porting the software system so~ftware engineering. Implementation of
to a system different from the one on the system in Ada would certainly enhance
which it has been developed, portability.

This is another example where we felt that (xi) Interior Designer System
the tasking capabilities of Ada for its
real-time embedded system use will make it The system was developed by a commercial
an excellent candidate for implementation developer for an Interior Designer Company
in Ada. in Florida.

(vii) Propeler Performance Evaluation
SystemNotation: Turbo Pascal

inhouse developed software for use in our Mechanism: IBM PC with Graphics
Aeronautical Engineering Department to

evauae roelerperformance and loading Intended for use by an interior designer

in uniform and non-uniform fields.fo siuae rtypn of neir
design and its enhancement with the

Mechanism: PRIME 4.00 customer participation.

Notation: FORTRAN 77 Although the system did not entirely
follow the principles of abstraction,

The software is intended for use by hiding, modularity, and localization and

aerospace engineers who are working on the did not completely achieve the goals of

performance of propeller flowfields. portability, efficiency, and and
modifiability, it is important to note

All the principles were followed and goals that the user was happy with the system.

achieved. Use of Ada is unlikely to bring Implementation in Ada would have had a
any new benefits to the current higb front end cost that user perhaps
implementation. would not have considered reasonable.

(viii) Data Item Attribute Load (DIAL)- (xii) Institutional Advancement. Syte

The program was developed in 1986 for use This is a proprietory, in-house developed
ba large aircraft company. system for use by the Embry-Riddle

byAeronautical University's University

Followed all principles and met all goals. Relations Department. The use of the
Use of Ada is unlikely to improve software is related to the fund-raising

anything. activities of the university.

(ix) Accounting Partner II The software engineering principles were
followed, although a large turnover of the

Product of Star Software Systems. developer's staff during the development
phases made the documentation insufficient

Notation: Compiler BASIC CB-86 and understandability weak. Modular
independence through Ada's packaging

Mechanism: 16-bit microcomputer that concept would have overcome this weakness.
supports CB-86 (xiii) Structural Analysis Program

The manuals are clear, concise and truly (STRUXR)

use-frendy.This system was developed under the

Modularity was weak in the system, leadership of Aeronautical Engineering
primarily due to the limitations of the Professor, Dr. Howard Curtis for

language of implementation. CB-86 also Structural Analysis. It required one-man
made hiding, abstraction, and localization year effort for the design and
difficult to achieve. As a result, the implementation phase after the
goal of modifiability was not fully requirements and specifications were.1

achieved. Portability of this software developed on the basis of several years of
will be substantially enhanced by Ada. experience by Professor Curtis.
Efficiency was traded off for file
retrieving capabilities.
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Notation: FORTRAN (xvi) Data Entry Keyboard Indicator

Mechanism: HP 1000 (DEKI)

The purpose is to enter data and convert
There are thirty five modules relatively discrete information for transfer to the
independent of each other. The only F-14D and A-6F aircraft. Communication
principle not followed is hiding and that with the aircraft system is via a dual
is because the language of implementation standby, multiplex MIL-STD-1553 Data Bus.
does not permit one to. The goal not DEKI assumes the role of a remote
achieved well is portability and a major terminal. The mechanism includes a 20
effort to port the system to FORTRAN 77 in push-button scratchpad and a 80186
the IBM 4361's IX-370 environment (IBM's processor. While the principles were
Unix System V, hosted within VM) is practiced and goals achieved to a large
currently in progress. Unfortunately, we degree, implementation in Ada is
have not acquired Ada on IBM 4361 because recommended for the type of use that may
of its cost, and that has been the major need portability across multiple hardware
reason why a redesign and reimplementation and support environments.
in Ada has not been attempted.

(xvii) Math and English Placement Test(xiv) FASTRAC SfijrSoftware

FASTRAC is a copyrighted system created by This is an in-house developed software for
Dyer Wells L Associates in 1985 and grading, and analyzing Math and English
adopted and installed by Special Agents tests of incoming freshmen and for report
Mutual Benefit Association (SAMBA) in generation. It has been successfully used
1986. It is used to process claims for since 1981.
medical, dental, disability, major-medical
benefits etc., generation of checks, Notation: COBOL
reports, and keeping a record of claims
processed etc. Mechanism: HP 3000, HP 2621 terminal, A

and SCAN-TRON 2012.One of the student researchers was able to A hardware upgrade in 1986 from HP 3000 to
examine some documentation on the software IBM 4361 placed requirements for porting
system to make the evaluations. COBOL was the software. The porting effort has been
used as implementation language. large and not entirely a grand success.

All principles were followed to varying This is enough to say that the language of
degrinipse were thled sytm vidnt implementation initially was not ideal fordegrees. However, the system did not portability and the software did not meetachieve the goal of modifiability the goal of portability. Confirmability

satisfactorily. This was primarily due to principle was not strictly enforced.
the fact that COBOL does not permit hiding
and as a result modules are not totally If the university decides to continue
independent. A small change in one using English and Math Placement Exams, my
location tends to have an impact at recommendation will be to redesign this
several other places within several software and reimplement it in Ada, so
modules. Use of Ada would certainly help that future hardware upgrades will not
in such an application, impact it as harshly as was the case

(xv) Student Evaluation Software recently.

This is an in-house developed system to (xviii) CADcompiler
analyze student evaluations of their This system was designed by a group of
instructors and courses and producing design engineers for use on a personal

computer. All principles were followed
Notation: Turbo Pascal and goals met. Not enough information was

available to make any judgments onMechanism: 1911 PC desirability of reimplementation in Ada.

This is a relatively small applications (xix) Labor Trackinq System
software. All the principles were
followed and all the goals were achieved, This software was developed by a large 0I
including the goal of portability. Unless aircraft company and currently in use at a 0-;
reuse of this software was planned in large corporation's Simulation and Control
other applications, reimplementation of it Systems Department.-N
in Ada does not make sense. Even in case
of planned reuse, one could use pragma Notation: FORTRAN (somewhat antiquated
interfaces to this software, rather than version)
absorbing high expense of reimplementation
of this software in Ada.
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Most of the software engineering and evaluated. Of these, four did not
principles were followed well, yet not all apply all the evaluation criteria and they
goals are achieved. The language of were not included in this paper. The
implementation and software complexity paper summarizes the findings in twenty-
introduced through revisions done in the one evaluations. It is clear that Ada may
maintenance phase have made modifiability, not be the solution for every software
understandability and portability very problem, as has been pointed out in some
weak. This seems like an ideal candidate cases above from the points of view of
for a major redesign and implementation in cost, effort and use, in a majority of
Ada. cases, whenever there is a redesign, and

the principles of hiding, localization,
(xx) Medical Management System and abstraction need to be enforced

strictly, use of Ada should be seriously
This system is used by medical agencies considered. Good use of Ada can also .,/
for billing Medicare, HMO's, and other enhance portability and modifiability.
private insurance companies. Relative independence of modules and Ada

can help enhance the understandability of
Notation: COBOL each module. j0t

Mechanism: Microcomputers that support Use of this methodology for evaluation of j
COBOL. a large system against a PPG-model of

software engineering before the system
The system performs book keeping, goes for a major maintenance or for a
accounting, and record keeping functions, complete redesign is very useful because
and provides comprehensive statistics, the results of the evaluation can produce
electronic billing, etc. useful recommendations for a

redesign/maintenance effort. LAB ASSIST
Although the system is modularized, there and MATH AND ENGLISH PLACEMENT TEST
is little localization, hiding and SOFTWARE discussed above, have benefited
abstraction. Portability and from the evaluation. Large software
Modifiability can be improved with Ada. houses will enhance quality in redesigned

products by evaluation of the product
(xxi) Radar System for the F-lb F t ready for redesign.

Simulator

Designed by a large corporation under a 6. Acknowledgments
government contract for Air Force, this
system is serves to display to a training The entire research team that participated

F-16 pilot the various patterns of the in the research project deserves part of
area he will be flying over for a the credit for this work. First,

particular mission, and familiarizes the Professor Steve Glassman of the English
pilot with all necessary procedures to be Department read each report and made
carried out prior to the real flight. It comments from the perspectives of a
is useful in reducing pilot error, and user/manager who may not be a software
cost. engineer but needs to know the results.

Professor Glassman's contributions were
Notation: 450,000+ lines of FORTRAN 77 found to be very valuable by me as well as

by every member of my research team. All
All principles were practiced, although it members of the research team also deserve
was difficult to enforce hiding and acknowledgment and recognition for their
localization with the limitations of contributions to this rather large

FORTRAN 77. While the goals were achieved project. These members are: Hassan AL-
to varying degrees, use of Ada will Mousawi, 3. Alcaide, George Arroyo, Peter
certainly enhance modifiability and Bauert, Don Burke, Charles Carey, Andre
portability. Understandability of each Charron, Bryan Collier, Reginald Davis,
module will also increase due to stricter Greg DiPenta, Danette Gracia-Moorhead, E.
localization. K. Guruvadoo, C. Malva Ketter, Jeffrey

Limback, Raynard Logan, Richard Manuel, .
Emerick Martin, John Martin, Michael

5. Conclusions Panciroli, Richard Phinney, Margaret

Poteat, Kirk Poulson, Patricia Renwick,
Initially, the project started out with Cary Rotter, Glen Shelley, Asoka
forty five participant student Rabindra Singh, and Marcos Yanes. There
researchers, each of whom was to find a wre seventeen others who started the %
software product of his/her choice for evaluation but either never finished it or .
evaluation. About half of them dropped did not submit a written report on the
out, perhaps due to the severe time evaluation.
requirements in the project. As a result,
only 25 software products were examined
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An AdalTraining Life Cycle Curriculum

Daniel J. Connolly

GTE Government Systems

1 Abstract Early efforts in bringing in training vendors for Ada proved dis-

This paper describes the Ada software engineering methodology, appointing for three significant reasons.
A. Schedule - The training courses attempted, and failed,

and the Ada life-cycle training curriculum based upon that methodol- to prepare Ada developers within a short period of
time, usually one or two weeks. This period was in-ogy that is being implemented at GTE Government Systems in Rock- adequate, considering the complexity of the Ada lan-

ville, Maryland. The paper also discusses how decisions regarding guage, the need for practice time, and the lack of Ada
experienced software engineers.

the content, organization, timing, and method of presentation for the B. Content - The training courses were focused primarily

curriculum are made. Finally, it presents an assessment of the train- on syntax and semantics, and did not suggest a
software development methodology, nor were they

ing curriculum to date. sensitive to our in-house methodology. They were too
general in content, so that they were inadequate for
any particular audience, such as technical managers.
They were designed more for ease of presentation,

2 Introduction and less for promotion of learning.
C. Cost - The training courses were too expensive, and

The Ada training curriculum described in this paper is an ambitious considering the limited benefit were not cost-effective.

attempt to prepare over 170 software engineers with the necessary

skills to develop large, (greater than 200,000 source lines of code) To address these problems, and the needs of the software develop-

real-time, distributed systems in a DoD contracting environment. ment organization, an Ada training curriculum was designed with the

This software engineering organization was originally established to following characteristics. This curriculum:
Tsppotwaare roectneering whgnic was originally abed to A. Begins with an intensive, three week Ada language
support a large project which was originally bid to use *C" as the course, which covers the entire language and its fea-

implementation language. Early in 1986 during the software require- tures.

B. Includes a series of Ada software development
ments analysis phase, a decision was made to use Ada as the ir- methodology courses focusing on the transition be-

tween each of the major phases of Ada softwareplementation language. The lack of experienced Ada software en- development as defined in our software engineering
gineers (less than fifteen percent of having greater than six months methodology.

Ada experience), the use of a new methodology, and a new lan- C. Includes a course specifically tailored to the needs of
technical managers.

guage within a new organization made it imperative that the training D. Emphasizes the principles of software engineering,

program be effective in assimilating software engineers into the and the philosophy of Ada software development.

development environment. This meant providing instruction not only E. Is cost-effective for training over 170 software en-
gineers over two years.

in the Ada language, but also in the philosophy of Ada software F. The courses within the curriculum present information

development, the activities associated with the development effort, in a manner that promotes understanding by the stu-
dent through careful organization and relevant ex-

the products of software development, the standards for those amples and exercises.
products, and the software tool environment. -. .. "

In order to provide a context for discussion of the training curriculum,

a discussion of the software engineering methodology will be

'Ada is a trademark of the U.S. Government (Ada Joint presented. This will be followed by a discussion of each course in
Program Office) the curriculum, and an assessment of the training program as of

December. 1987.
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3 Methodology diagrams, and data dictionary.

The Ada software engineering methodology entails three areas: theTheAd sotwre ngneein mahooloy ntaisthre rea: he Software requirements were allocated to computer programs for U 1

phases of software development and their associated activities and

products, the software component structure, and the documentation management and documentation purposes.

requirements. Resulting from the analysis was a rigid description of the software

3.1 Impact of Ada requirements documented within Software Requirement Specifica-

The GTE Ada software development methodology is a refinement of tions, and data definitions documented in the Data Dictionary Docu-

a standard DoD life-cycle model. This model identifies five phases of ment.

software development: software requirements analysis, software There was no change made to this phase as a result of using Ada as

preliminary design, software detailed design, software implemen- an implementation language.

tation, and software integration and test. In order to address Ada

software development issues, refinement of certain life-cycle phases 3.1.2 Software Preliminary Design Phase

into subphases was necessary. Also, modifications were made to

the standard products associated with each phase in order to ac- Traditionally, software preliminary design would result in a program

comodate Ada. structure usually in the form of a structure chart, showing the

modules, calling relationships, and interface definitions. Ada impacts

The DoD life-cycle model identifies a component structure which this phase because of its more network-like structure, containment

provides guidance for how the software development products are to capabilities, tasking, and separation of specification and bodies.

be organized and managed. These components are: computer

program, computer program component, unit, and routine. Ada Modifications were made in three areas: the activities, and products

development requires a modification to this component structure, resulting from the activities associated with software preliminary

and the mapping of the structure to the life-cycle phases. design, the component structure, and the deliverable documents.

The DoD standard requires certain deliverable documents for each The software preliminary design phase was split into two sub-

phase of software development. The combination of the in- phases: software architecture modeling, and computer program com-

applicability of the component structure, the static, functional nature ponent modeling. The major products of software preliminary design

of the document organization, and the inevitable redundancy of infor- were changed from a hierarchy chart to diagrams representing run-

mation forced a revision to the standard documentation, time environments, package withing, and task relationships. Com-

piled package specifications became the main design product.
The traditional software life-cycle phases, based mainly on functional

decomposition methods of software design, and a baseline-oriented The original component structure would have resulted In computer

approach towards documentation, are significantly incompatible with programs being decomposed into computer program components,

common approaches to Ada software development. Modifications then units, and finally routines. To address Ada, units and routines

made to the phases, activities, products, component structure, and were both replaced by the Ada program component. This new com-

documentation are discussed by phase. ponent was defined as any package, task or subprogram. Ada

3.1.1 Software Requirements Analysis Phase program components may contain or be composed of other Ada

program components. Documentation and modeling products would
The software requirements analysis phase focuses on analysis of be organized by Ada program component. Although this organiza-
system functional requirements to determine software requirements. tions alleviates the problem of mapping Ada program units to either a " '
This analysis was performed through structured analysis techniques unit or routine, the problems associated with potential redundancy of,"

as described by Ward and Mellor. Analysis products included data- information within the document are difficult to overcome.

flow diagrams. events lists, state-transition tables, entity-relationship,
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The standard documents, Software System/Subsystem Specifica- Sections of the Software Subsystem Design and Maintenance

tion. Program Design Specification, and Program Maintenance Specification corresponding to computer program components and

Manual, were replaced by a single document, the Software Subsys- Ada program components are completed.

temn Design and Maintenance Specification. This document would

have a chapter organization patterned after the component structure. 3.1.3 Detailed Design Phase

3.1.2.1 Software Architecture Modeling The inputs to this phase would traditionally be callable modules and
interface information, but due to the modifications resulting from Ada,

The main purpose of software architecture modeling is to identify all there is a certain amount of preliminary design effort that was
computer program components, and the physical interfaces between postponed to this phase. Up to now, only visible subprograms have
those components. In most cases, the computer program corn- been identified, and no calling structure has been described. This
ponents were the executable Ada programs, but the definition was prompted a modification to the detailed design phase where a sub-
expanded to include commercial off-the-shelf software executables, phase called software hierarchy modeling was added to the normal
databases, (including the data, schema, and access software), and logic specification activity. These two subphases are not necessarily

majo litaris ofsubrogrms.sequential activities, for often Itlls not until a certain amount of logic

Because of stringent security requirements, the number of computer seiiainhsbe tepe htalhde uporm r

identified.
program components was large, resulting in relatively small Ada 3.1.3.1 Software Hierarchy Modeling

programs. A number of computer program components were iden-

tified as common to several subsystems. The purpose of software hierarchy modeling is to completely design ~
the structure of each package, showing all the subprograms and

The products of this phase were data flow diagrams representing the tasks, and the calling relationships between them. The main

run-time relationships among the executable computer program products from this activity are structure charts for each package.

components, interface descriptions, identification of major databases main subprogram, or stand-alone subprogram, and refinement of

and libranies. Sections of the Software Subsystem Design and Main- specifications, as well as the addition of body stubs for every known

tenance Specification corresponding to computer program, and com- Adla program component.

puter program component-level information were completed.
Information is added to the Ada program component sections of the

3.1.2.2 Computer Program Component Modeling Software Subsystem Design and Maintenance Specifications during

Once Ada executables; have been identified, the next phase defines ti ciiy

the structure of the individual Ada programs. Each computer 3.1.3.2 Logic Specification
program component has its own main procedure, multitasking and

package structure. The purpose of computer program component The purpose of logic specification is to design the algorithms within

modeling is to design these structures. The methodology indicates the Ada program component bodies. Ada is used with certain

the need to identify all packages, tasks, and visible subprograms, but restriction as a design language for logic specification. The intent

allows a great deal of freedom as to the techniques used to help in being to use Ada to describe as much of the body to enable Im-

the identification process. This is important due to the diverse nature plementation. All bodies should then be compiled.

of the computer program components. it does specify that the

products of this activity include a package withing diagram, for Information is added to the Software Subsystem Design and Main-

representing withing relationships and compilation dependencies, tenance Specification for each Ada program component.

and a task relationship diagram. for representing the calling relation- 3.4SotaeipmnainPhs
ships among tasks. Both diagrams resemble a structure chart. Ada

specifications are written and compiled for all Ada program cam- During the software implementation phase, all coding Is completed,

ponents except for hidden subprograms. and each Ada program component is tested at the package level.
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The code is debugged, and prepared for integration within each com- attempt the exercises. Students present their exercise solutions to

puter program component. the class to promote discussion and exchange of ideas.

4 Curriculum
4.2 Ada Project Management

The Ada life-cycle training curriculum was designed specifically to Technical managers require a good understanding of Ada, but the

provide:
A. Information in a meaningful order, such that whatever level of detail provided in the Introduction to Ada course may be

knowledge is required to understand a concept has inappropriate. The intent of the Ada Project Management course is
been previously presented.

B. Information based on the life-cycle phase activities as to focus on providing technical managers with Ada knowledge
described in the GTE Ada development methodology, specifically tailored to a managers needs. These needs fall into

C. Hands-on experience with the techniques required to three areas: the Ada language, Ada development methodology, and
successfully perform life-cycle activities.

D. Hands-on experience with the GTE Ada Program Sup- project management and supervisory skills. The course is organized
port Environment tools required to successfully perform into three modules to correspond to these areas.
life-cycle activities.

E. Courses tailored for a particular audience. Module one is a one day overview of the language, focusing on

To satisfy these requirements, the following courses have either providing technical managers with sufficient knowledge to be able to

been developed or planned: read and understand Ada specifications. In addition, information

A. Introduction to Ada regarding why software development using Ada is significantly dif-

B. Ada Project Management terent than with other languages, and what areas of development are

C. Software Architecture Modeling impacted by the use of Ada. These areas include methodology, en-

D. Ada Design vironment, testing, configuration management, and documentation.

E. Ada as a Program Design Language
F. Ada Implementation/Test Module two is a two day walkthrough of the Ada software develop-

ment methodology from software requirements analysis through
The characteristics of each of these courses are described in greater software integration and test. A detailed view of the methodology,

detail in the following paragraphs. standards, practices, tools, techniques, modeling products, and

documents is presented with an emphasis on that information most
4.1 Introduction to Ada applicable to the technical manager. Hands-on workshops that focus

This course covers the entire syntax of the Ada language. Ada is not on understanding development products well enough to evaluate

compared with other languages formally within the course. The deci- their quality are provided.

sion was made to start with a syntax course because of the need to

prepare a number of software engineers for coding tools and Module three is also two days in duration, and covers the administra-

prototypes early in the program. tive aspects of the technical manager role. Topics include planning,

schedule and cost control, metrics, organization, supervision, and
The Introduction to Ada course is presented for four hours every reporting. There are hands-on workshops relating to planning Ada

other day over a three week period, and organized to promote under- software projects, reporting status, and supervisory skills.

standing by presenting an entire overview of the language and its

features on the first day. The next five days are organized so that 4.3 Software Architecture Modeling Ni'

each successive day presents a more advanced concept relating to
The Software Architecture Modeling course is eight-hours in dura-

types, statements, and program units. Exercises are assigned to em- t,tion, and presents information rgrigAatsig ytmsr

phasize the concepts covered for a particular day, The last three
vices, security, and modeling standards and practices to support the

days are concerned with some of the advanced features of Ada, in-

cluding tasks, exception handling, generics, pragmas, and represen- design. The focus of the course is to define the oomputer program

tation specifications. The three-week format allows students time to
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component and criteria for their identification. In addition, infor- understanding of how to develop Ada software from beginning to

mation is presented regarding definition of run-time interfaces be- end.

tween computer program comoponents.

4.4 Ada Design 5 Assessment of Training

This three day course is intended to provide the software engineer The intent of this section is to record observations and feedback from

with an understanding of the activities associated with computer the training curriculum received up to December, 1987. At this time,

program component modeling subphase through a discussion of Ada the Introduction to Ada course has so far been presented nine times

design philosophy, software engineering principles, Ada design to a total of 168 software engineers. The Software Architecture

techiques, and how those techniques map to the Ada development Modeling course has been presented five times to a total of 90

methodology being used. These techniques include object-oriented, software engineers. The Ada Design course has been presented

function-oriented, data structure-oriented, and process-oriented tech- seven times to a total of 105 software engineers. The Ada as a

niques. Examples of package, subprogram, generic, and task uses Program Design Language course has been presented three out of a

are presented. Hands-on, design team workshops are used to scheduled six times to a total of 48 software engineers. The Ada

provide practice in use of the design techniques. Reviews of the Project Management course is scheduled to be presented starting in

team designs are performed using software engineering principals as December, 1987 and the Ada Implementation/Test course is

evaluation criteria. Design documentation is also discussed. scheduled for development starting in January, 1988.

4.5 Ada as a Program Design Language The Introduction to Ada course has proven to be very effective in

preparing software engineers with the mechanics of writing Ada
This two day course is geared towards providing the necessary skills code. Completion of the exercises is essential for gaining this under-

to perform activities associated with ther subphases of software standing. To promote this, certificates of completion are awarded

detailed design. This includes software hierarchy modeling, and logic only to those students who complete all exercises. Students are not

specification using the Ada language as a program design language. required to complete the exercises by the end of the course, and

The focus of this course is to provide information regarding modeling they may elect to submit exercises any time after the course is over.

techniques for designing the structure of each package in terms of The organization of the course has generally been very helpful to

the calling relationships between the subprograms and tasks within a
most students. And most students concur that the Introduction to

package, and the logic within the bodies of these Ada program com- Ada course is a necessary prerequisite for the design course.

ponents. Hands-on workshops relating to each of these activities are

provided. The Software Architecture Modeling course was effective at present-

4.6 Ada implementation and Test ing necessary information to help experienced software architects

make sound architecture decisions based on the tasking capabilities

This two-day course covers the activities relating to the software im- of Ada, the limitations of the operating system, and the restrictions of

plementation phase. Topics covered include information necessary the security requirements. it also helped to inform them about

to complete implementation of all Ada program components, and the modeling standards and practices. Unfortunately, only ten percent of

testing of those components. Development of test software, execu- the course attendees were experienced enough to benefit ade-

tion of tests, and use of the debugger are also discussed. Hands-on quately from the course.

workshops supporting these activities are provided.

The course was not intended to provide The Ada Design course is
In order to enhance understanding, a common workshop example is informative, but it has not proven to be an adequate substitute for

used for all courses except the Introduction to Ada course. In this design experience. Unfortunately the more design experience that a

way, software development can be followed throughout the life-cycle, software engineer has in another language, the more difficult, that

thus providing a necessary sense of cohesiveness to the students student seems to have adapting to the Ada design philosophy,
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Software engineers with less than two years software development Ada training efforts is to help establish a software engineering culture

experience appear more receptive, but are often unable to relate to that fosters understanding and cooperation for Ada software

abstract concepts of high-level design as a result of their in- development efforts.

experience. The inadequacies of design techiques and

methodologies create confusion that is difficult to avoid when most 6 References

software engineers are seeking a clear-cut method for making

design decisions. This training would be more effective if more in- Mellor, Stephen J. and Ward, Paul T. Structured Development for

struction time were provided and there were a substantial increase in Real Time Systems Vol. 1, Yourdon Press, New York, 1985

hands-on workshop time.
GTE Software Engineering Methodology 1987

The Ada Project Management course should have been the first
GTE Software Standards and Practices Manual 1987

course completed and delivered. An understanding and acceptance

of Ada by management is crucial to the success of a project. A lack

of this understanding and acceptance creates an atmosphere of con-

fusion, inverted authority, (where management is not as knowledge-

able as the software engineers), and resistance. Managers have the

least time, yet require the greatest amount of training and infor-

mation. a

The life-cycle approach itself has generally been well received and

effective. The apppropriateness of the information, coupled with the About the author: Daniel J. Connolly has performed as Manager,

timing of its delivery takes advantage of both the timely need of the Software Engineering Training at GTE Government Systems in

student and the limitations of the student to retain information that is Rockville, Maryland since July, 1985. There he is responsible for

not essential to the task at hand. We have been very fortunate in designing and implementing the Ada software engineering training

locating skilled trainers with development experience to teach these curriculum, and the coordination of all other training activities for the

courses. Without them, the training would not be nearly as effective. software engineering organization. Prior to this, he was a training

We have also attempted to respond to unexpected training needs in specialist for General Electric Information Services Company, where

the following ways: he taught software engineering to the software organization. He

A. Deliver briefings on specific topics when needed received a B.A. in mathematics from Hofstra University, and a
beyond the information covered by the curriculum.

B. Provide consultation to the software development or-

ganization to help resolve problems when they occur.

C. Provide self-paced Ada instruction to relieve the dif-
ficulties caused by the inability to provide the syntax
training in close proximity to the coding effort.

In conclusion, an effective Ada training program needs to be based

on the requirements and constraints of the intended audience. This

program is very appropriate for a large project, where strict ad-

herence to a methodology and set of standards is essential to ach-

ieve a onsistent level of quality. Also, training must be tailored to

meet specific needs of the development organization, particularly in

the areas of methodology, standards, environment, and manage- V,

ment. Finally, Ada language training by itself is an inadequate

preparation for serious Ada development. The greatest challenge to
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A College Credit Certificate Program in

the Ada* Programming Language

Fred L. Bierly

The Pennsylvania State University

Abstract The two course sequence consisted of a course covering

software engineering concepts with beginning Ada fol-
lowed by a couse on advanced Ada concepts. Each course

A college credit Certificate Program in the Ada program- met twice a week in the early evening hours. Upon suc-
ming language was established at the Pennsylvania State cessful completion of both courses, each student was given
University through the Office of Continuing Education in a certificate of completion from Penn State through the
the Fall of 1984. The program consists of a three course Continuing Education office. The Ada program committee,
sequence in Software Design Methods, Introduction to Ada, previously mentioned, reviewed this initial effort during the
and Advanced Ada. Students are awarded a certificate of summer of 1984 and decided to offer a three course
completion upon successfully satisfying the requirements of sequence the following year. Each course would last 10
the three course sequence. weeks and meet twice each week in late afternoon or early

evening. Also, by the fall of 1984, the Applied Research
Laboratory had received an equipment grant with a vali-

After all of the interest being generated about Ada since its dated Ada compiler. This equipment was used to offer the
initial announcement there still are not a great many educa- Ada portion of the three course sequence. (This year we
tional institutions providing the opportunity to learn the also have a validated compiler at the Computation Center
language and its application. The Software Engineering on one of our mainframes.) The program was also opened
Institute (SEI) at Carnegie Mellon University has provided to all local industries and received enthusiastic support
four faculty development workshops to develop curriculum from them. The program consists of a nine credit, three

in software engineering. A part of this effort is to consider course sequence in Software Design Methods, Introduction
Ada as an appropriate language to implement software, to Ada, and Advanced Ada. It has received an award for
However, as of October, 1987, there were only two educa- new programs in continuing education by the National
tional institutions [2] participating in using Ada in the University Continuing Education Association.
undergraduate curriculum. A serious problem associated The program is designed for individuals who want to
with its use is finding, in the 137 validated compilers [11, understand the concepts of higher order languages and to

learn the Ada language. It is recommended for program-

Because of the lack of existing curricula, four years ago the mers, software engineers, design consultants, system
Pennsyliaus o te nifesitg trrioul, turgg so the integration engineers and real-time system architects. Stu-Pennsylvania State University, through the urging of the dents enrolling in the program must have a baccalaureate

Ada coordinator of a local defense contractor, initiated a degree n he programm ust have a sate
college credit certificate program in the Ada programming degree and some programming experience. Upon satisfac-
language. The University Office of Continuing Education tory completion of the three course sequence, each student
contacted me to determine if the Computer Science Depart- is awarded a certificate by the University. Enrollment
ment was interested in conducting such a program since our figures for the past three years are noted in figure 1.
department was already offering a certificate in computer
applications through their office. After a number of meet-
ings with John Cupak, the Ada coordinator from industry, Semester Course Enrollment Certificates
Susan Richman. a Professor from our Harrisburg campus, Fail 1985 Software Design 25 12
Len Holiday, from our Applied Research Laboratory, and I, Intro to Ada 37Advanced Ada II
an initial two course sequence was developed and offered Spring 1986 Advanced Ada 12 6
for persons at the defense contractors site. There were Fall 1986 Software Design 21 I
approximately 25 students enrolled in this initial effort. Intro to Ada 24 L

S 1987 Advanced Ada 21 14

Fall 1987 Software Design 9
____ Intro to Ada 1 5 __-

* Ada is a registered trademark of the United State Govern- Figure I.

ment (Ada Joint Program Office.)
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of the program objectives by students' who are working at 3) Software Development
local industries during the day but wish to further their edu- a prahst rgamn
cation. This typically means providing a more informal a prahst rgamn
and relaxed atmosphere in the classroom and allowing for b) Programming language features
those persons who have to miss class to take trips for their c) Software tools
company an opportunity to make up the class work. There d) Module development
may also be instances of on-the-job deadlines which can
interfere with classwork and should be allowed for. That is
not to say the students aren't getting a first class education 4) Software Testing
because we feel that they are. We just want to give them a) Module test
an opportunity to participate in the program and make rea- b) Program test
sonable allowances for them to do so. c) System test

In the three credit Software Design Methods course, stu-
dents are expected to establish specifications describing 5) Software Maintenance
what a software product is to do; use appropriate tools and a) Documentation
techniques for software design to meet software req1uire- b) Preparing for design
ments of a system; develop a software product using stra-
tegies as determined by current practice; provide for c) Source-code metrics
efficient and effective testing of a software product; con-
sider, as part of the implementation, requirements for 6) Software Management
maintenance of a software product; and establish techniques a) Cost estimation
appropriate for the management of the software life cycle. b) Managing design
Although Ada is not used in this course there is a brief dis-
cussion of the language as it relates to the design process. c) Quality assurance
Figure 2 is an example of the syllabus used in the Software d) Managing development
Design Methods course. e) Managing implementation

CMPSC 497A Software Design Methods

Description. Application of scientific knowledge andFiue2

methods in the design and construction of computer
software systems with associated documentation.

The first three credit Ada course, Introduction to Ada,
Textbook. Fairley, Software Engineering Concepts, uses a fully validated compiler on a mainframe.
McGraw-Hill, 1985. Emphasis is on developing well-structured and read-

able programs that are examples of application from
Coure Ojectves To repre tudets o aply omevarious disciplines. The concepts of modularity, tran- -

bas Oenies: moethod uens to hel devlo meo sportability, and separate compilation are stressed. Tobasi enineeingmetods o te dvelomen ofillustrate the appropriate use of Ada's features to
software systems as well as become aware of current ehneraaiiyadmdfaiiy tdnsmdf

tendsi aed nthriertrncnegn.ofwr their own code and the code of other students to meet
engineringchanges in the requirements. Upon completion of this

first Course, students will be able to code "medium-
sized" programs using all the features of Ada with the
exception of tasking and low-level I/O. Figure 3 is an

Outline example of the syllabus used in the Introduction to
Ada course.

1) Introduction to Software Engineering
a) DfiniionsCMPSC 497B INTRODUCTION TO ADA

b) Problems with software Description: Fundamental characteristics of the Ada
c) Maageral isueslanguage including a historical overview of the

language's development. Software development
2) Software Design methodologies to system design with Ada are

a) Design concepts presented.

b) Design representations Textbook: Barnes, Programming in Ada, 2nd ed.,
c) Design techniques Addison-Wesley, 1985.
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Course Objectives: To expose students to the syntax CMPSC 497C ADVANCED ADA
and semantics of the Ada programming language; to Description: Advanced features of Ada including
develop proficiency in programming simple applica- tasking models, buffer tasks, transport tasks, and guard
tions in Ada stressing hands-on experience through tasks. Representation specification as applied to the
programming assignments. underlying machine is also presented.

Outline Textbook: Barnes, Programming in Ada, 2nd ed.,Addison-Wesley, 1986.

1) Basics of Ada programs Course Objectives: To introduce students to the
a) Simple types advanced features of the Ada programming language;
b) Introduction to the operating system to develop proficiency in working in a team to pro-

gram an actual Ada system to include design of such
2) Overall Ada Structure and demonstrations to "users." To bring to the stu-) Operatr Aand trutres dents' attention the practicalities of Ada compiler sys-
a) Operators and attributes tems on various machines.
b) Type character
c) Resolution of ambiguities Outline

3) Ada Control Structures 1) Review of Visibility
a) If ... then ...a) Loo ... a) Separate compilationb) Loop ... b) Generic instantiation

c) Case..
d) Exit and goto 2) Encapsulation

4) More Control Structures 3) Tasking for concurrency

5) Functions and Procedures 4) Tasking constructs
a) Ada tools a) Task initiation
b) Libmanager b) Task scope V

c) Pretty printer c) Task rendezvous
d) Interactive debugger

5) Task Types
6) Implementation Considerations a) Access variables for tasks

a) Pragmas b) Arrays of tasks

7) Introduction to Access Types c) Task attributesd) Task size control

8) Introduction to Tasking and Concurrency 6) Introduction to Advanced Types

a) Discriminants and customizing records
Figure 3. b) Access types

c) Private types and constraints

d) Derived types
Continuing with the three credit Advanced Ada e) Numeric types
course, the students emphasize concurrent program-
ming topics and the use of Ada in the software
development life cycle. At the end of the course, stu- Figure 4.
dents should be able to design systems that require
concurrency and make design decisions with respect to
time and space restrictions on an embedded real-time
processor. Figure 4 is an example of the syllabus There are some problems with offering this sequence
used in the Advanced Ada course. in this environment. Doing a three course sequence
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on a two semester basis creates some scheduling prob-
lems. This is especially true for students during the
second course which is scheduled over the regular
Christmas break. Providing this opportunity for per-
sons in industry also creates some conflict with work
assignments. Students may have to take a trip which
causes them to miss class or perhaps drop the course
or they have a major project deadline to meet at work
and can't find the time to complete their studies over a
short period of time. But overall, we feel the program
has been well received by the majority of the stueents.
We also feel this certificate program has been success-
fully received by industry as meeting the needs of

% employees involved with defense contracting and zhose
* who wish to prepare for the future of higher order
* languages. The three course sequence also provides

the students an opportunity to learn the material
required of the courses as well as meet their commit-
ments on the job.
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Topics of the Data Analysis Softvare System Design in Ada*

David S. Galvin

Hughes Aircraft Company, Radar Systems Group

Abstract approximately 15 functions are currently in the
test stage. The Ada Design Team consists of seven

This paper describes several design topics of the software personnel, including the author of this
paper. The completed source code is estimated to

Data Analysis Software System (DASS) being written be 50,000 Ada-containing lines, not including

in Ada at Hughes Aircraft Company to support F-14 comments.

Radar Set flight test and laboratory tasks. The
DASS, hosted on a DEC VAXstation II/GPX

topics covered consist of an Ada Detailed Design workstation, is designed to process sampled and

Document standard taken from a tailored adaptation partially formatted test data from TK50 tape

of the classical waterfall model for software cartridges for interactive analysis, simulation,
and statistical functions, thereby allowing the

development; the implementation of multiwindowing diagnosis of complex problems. High speed data
from Radar interfaces and processors is generated

by the Executive Tasking Model; and other issues from in-flight Radar performance testing,
such as task uncoupling, concurrent memory accumulated on analog tape for sampling by a DEC
management and sharable code in a multitasking 8600, and then stored on cartridges for DASS

m consumption. Using several specifically designed

environment. languages to produce tabular and plot output
formats, DASS provides the data analyst with a
means of assessing the quality of the radar flight
and laboratory test data acquired during test

scenarios. DASS will be used by radar analysts* 1. Introduction
DAS i curetl bengdevloedusig he from the U.S. Navy and Hughes Aircraft Company.DASS is currently being developed using the _

DEC Ada compiler version 1.3 on a DEC MicroVAX II
that runs the MicroVMS operating system version 2. Ada Detailed Design Document Standard
4.5, and is a turnkey, menu input,
interrupt-driven system with interleaved windowing DASS represents the first major Ada project
supported by the User Interface Service (UIS) for the Hughes Weapons System Evaluation
workstation graphics software. The system accepts Laboratory at Point Mugu, California, and is
keyboard or mouse input, and allows multiple therefore providing the team with the unusual
windows of analysis functions to run concurrently opportunity to author their own System Development
via the Ada tasking model. The development of the Methodology in the form of an Ada Detailed Design
system is following an adaptation of the classical Document standard. Because the detailed design
waterfall model of functional requirements, phase for a software module is of such crucial
design, code and test. One-third of the importance in the creation of a software system,

and because of the ongoing discussion of Ada as a
Program Design Language (PDL) in the Ada

Ada is reistered tradmr3 of thf us. Gocrnment fAd. Joint community, the results of the detailed design
Progra. Office, standard are worthy of discussion.

.
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The issue of a compilable Ada PDL was of be adjusted to incorporate the additional
significant importance during the original requirements from the newly related functional
conception of the standard, as it was one of the requirement document.
primary concerns of the team. Another subject
that greatly influenced the project's standard was For these reasons, a more dynamic (Abb86r
the team's goal to produce detailed design detailed design standard was used; specifically,
documents that could facilitate the essential one that permits some degree of alteration as the
communication between team members during the project progresses. The standard considers minor
design phase. There was also a desire to write modifications of an initial design to be part of
these documents so that they could eventually the design phase, and therefore the documents do
augment comments in the final source code, thereby not explicitly preserve the design transformation,
resulting in a partially automatic generation of as is more formally described in [Wil83].
maintenance manuals. By incorporating these ideas Substantial modifications in the design stage are
with a considerable amount of refinement, the team treated as a re-design, and therefore remain in
developed a standard that is now considered to be documented form unless the author of the design
productive and fairly mature. considers the modification to be unimportant to

the overall understanding of the design.
The final Ada Detailed Design Document

standard calls for a near-compilable Ada PDL that 2.2 The Ada PDL
is prefaced by an English non-procedural
description. The standard takes a real-world The decision to use Ada as the base language
approach by allowing minor modifications to be for the design document standard's PDL was not
made to the PDL while the code develops, but aims difficult, because of the large amount of praise
to forbid the alteration of the non-procedural the language has received from the community. Ada
English description. This procedure, for the most has been successful when used as a PDL for Ada
part, preserves the original design, and at the projects and, equally so, for non-Ada
same time produces a document that can be used at developments*.
a later date in a maintenance environment.

The use of a compilable PDL was not as

2.1 The Waterfall Adaptation obvious. Compilable PDLs have met with differing
opinions, as they provide definite advantages,

The classic waterfall method in its original though not without some documented disadvantages.
form states that the evolution of a system should The deciding argument was that a strictly
proceed from a functional requirement to a compilable PDL, while containing advantages
detailed design, and then from code to testing. through the liberal use of routine stubs, can also
It further states that no reversing of this lose some flexibility as a result of the lack of
sequence of events should take place, hence the natural language English statements [Ber85J. It
term "waterfall", implying an obviously was decided that requiring a near-compilable PDL %
irreversible procedure. Much of the discussion would enforce a well-known overall structure, and
concerning system development methodologies has that comments within the PDL should be permissible . ,J
been that the waterfall mechanism is perhaps too to allow the use of psuedo-Ada-English statements
overly restrictive, and that a slight relaxing of in areas where a routine call would otherwise be
the procedure would be an appropriate method for too restrictive.
developmental guidelines.

It can be argued that allowing comments
The Ada Detailed Design Document standard within the PDL could cause an entire psuedo-code S

agrees with this view and additionally recognizes design to pass through the compiler unscathed.
that although desirable, it is not always possible Such is an extreme case. The more typical PDL
to have 100 percent of the functional level mapped takes advantage of Ada flow control constructs,
out, particularly in an environment where the and employs commented psuedo-code when it is felt
authors of the detailed designs are not that the extra flexibility present in natural
necessarily the authors of the functional language is necessary.
requirements.

Although it is too early to draw conclusions,
There are also occasions where functional it is believed that the format of the PDL can be

requirements that were originally intended to be
unrelated become related by some outside factor. -____
If a detailed design stage is in progress and is Good results wre obtained from an earlier roRTWAN project at the

following one of the above functional Weapons System Evaluation Laboratory that utilized Ads as the

requirements, then the detailed design may have to project's PDL.-

% %s

00

s
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beneficial during the maintenance stage by is capable of expressing one of several possible
"matching" final source code to the PDL in the implementations satisfying the requirements of the
design document. The code and PDL should specification. This is not at all a bad way to
synchronize at the flow control statements, with view a detailed design. This scheme not only
the PDL giving a high level insight into the provides the much needed interface between team
corresponding blocks of statements in the code. members, but also maintains local integrity within

the individual components of the designer's module

2.3 Prefacing the Ada PDL vith Non-Procedural when a similar approach is applied.

English Text

A widely held belief regarding software 3. Executive Tasking Model and Concurrency Topics

development is that the communication between The requirement that DASS should be a
designers during the design stage is very possibly multiwindowing, multitasking system resulted in
the most important part of the process. The the extensive use of the Ada tasking model.
essential exchange of ideas very often occurs Because DASS is required to have a reasonable
through the composition and review of detailed interactive response along with a concurrent high
design documentation. performance of intensive test data analysis

functions, the implementation of this unusual
This universally accepted regard for good combination is especially noteworthy.

communication of ideas established a need for the
Detailed Design Document standard to include DASS consists of functions that use pairs of
English text that describes, in a fairly formal windows for interactive control and for data
non-procedural manner, the mechanics of the PDL. analysis processing and subsequent output. The
This description, if complete, should be capable functions are managed by a single master function
of allowing an implementation to follow directly known as the Executive. It is the Executive's
from the text. responsibility to create, monitor, suspend, and

abort all of the system's functions. The method
A non-precise definition of non-procedural of communication, as alluded to earlier, is via

text, taken loosely from database principles the Ada tasking rendezvous mechanism. The ,,/
IRis86J, is to describe an operation by means that Executive is implemented as a task that starts,
do not state the explicit ordered steps needed to and that is subsequently interrupted by, analysis
achieve the operation. The intent of a functions also implemented as tasks. As new
non-procedural introduction for each module in the functions are requested or when a condition
design document is to direct the focus on the changes, DASS functions are therefore permitted to
routine's desired behavior without making detailed notify the Executive of their status through the
and structured statements about how the results rendezvous.
are to be achieved. As an example, the typical

Astatement about the initialization of an array Additional communication must exist between
need not mention the order of the individual cell the Executive and the analysis functions due to

*initializations, provie the described algorithm the fact that a completely occluded window is a
does not depend on this particular order, common occurrence, as DASS can support many layers
Although an array is a trivial example, most of windows. one of the possible rendezvous with
complicated algorithms can be described non- an analysis function must be a request for the
procedurally, and require a significant amount of window to make itself completely visible. This
well-spent effort and thought. Much of the communication is necessary to provide the
English language is inherently non-procedural, Executive with control over the presence of an
however, the added restriction that no procedural analysis window, and possibly some control over
text must be present in the description helps to other sub-windows created by the analysis
ensure that the introductory text does not start function.
to describe itself in procedural terms, thereby ~-
repeating the approach to the solution that can be Analogous to the considerations of the-
round in the PDL. system's communication for its analysis functions

is a set of relatively low-level Ada packages that
This format consisting of a procedural Ada manage interactive window input. These are

PDL with a non-procedural introduction, has a generic packages that act as interfaces between
striking resemblance to the concept of the keyboard asynchronous system traps and interactive ,

Specification and corresponding Body of an Ada windows, and cause routines to be notified (via
unit. The similarity is not surprising: te the rendezvous mechanism) when input for a
specification part of an Ada unit is considered particular window is present. The overhead of
its "contract" with its surroundings, and its body using tasking facilities for interactive character

.
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processing was not found to be a problem for the for a sequential procedure to process a large
windows on an individual basis, and did not amount of data per each call.
significantly burden the rest of the system.

The Executive Tasking Model proved to be 3.2 Concurrent Memory Management

ideal for this application and is used as a The desired high degree of parallel operation
template by some functions that need to control in DASS involves some aspects of memory
certain sub-functions. However, the incorporation management. The implementation of the system
of tasking adds a significant amount of complexity relies on a considerable amount of dynamic memory
to the overall system. Several relevant topics of allocation and subsequent de-allocation. The
interest follow. VAXAda compiler does not implement automatic

system "garbage collection"; the Ada Language
3.1 Task Coupling Reference Manual (Ref831 states that an

implementation need not perform its own
In order for the DASS analysis functions and reclamation of objects that are no longer

the rest of the necessary system tasks to operate referenced. However, the generic procedure
cooperatively in a concurrent environment, a high uncheckeddeallocation is available, and is
degree of asynchronous execution must exist for therefore used to occasionally return large
data retrieval and other related operations. It amounts of unwantzd memory to the system for
is obviously unacceptable for one function to be probable re-use.
forced to wait for its requested data until
another function has received all of its desired (As an aside, some information that pertains
data. Furthermore, it is also usually undesirable to memory management is worth introducing,
for an individual function to have to wait, for although the remainder Is not within the scope of
even short periods of time, for its own possibly this paper. Not all compiler vendors implement
synchronous data collection. Ideally, some unchecked deallocation; those that do, exhibit
portion of the anticipated data should be significant differences. One might at first
(virtually) immediately available per request. assume that memory is allocated from and returned

to some kind of central pool of storage space.
This type of desired behavior necessarily Although this is the case for some compilers,

implies a loose amount of coupling between tasks others, including VAXAda, have incorporated a
in order to maximize the amount of asynchronous "typed-based" storage scheme in which memory is
operation. Uncoupling can be achieved through the only de-allocated back to storage pools belonging
use intermediary tasks INie86] to provide the to a specific type. In other words, memory once
appropriate minimal amoun, of synchronous allocated to an object of type T, when
operation. subsequently de-allocated, will only be made

available to further allocations for objects of
An appropriate example of task uncoupling is type T. This has some interesting properties that

the use of a task to act as a buffer between the will not be discussed further*.)
data gathering tasks and the analysis functions.
This can be viewed as the traditional Because the number of dynamically allocated
producer-consumer situation. An intermediate task blocks of memory can be significant, the amount of
is employed to uncouple both the consumer and time spent de-allocating the space should be
producer and to provide the necessary mutual considered, particularly when the blocks are

exclusion to alleviate the contention problems arranged In the common linked- list format. The
that can arise with asynchronous producer-consumer process of de-allocating memory is traditionally a
operations. Because the Ada rendezvous is the sequential activity, and is therefore a prime
primary means of task synchronization and candidate for the de-allocation of memory in a
communication, it is the ideal mechanism to ensure concurrent fashion, which would once again reduce
only synchronous operations from both the producer the amount of coupling in the system.
and consumer. It also provides the sufficient
isolation (buffering) to cause a low degree of The concurrent solution is the use of a task
task coupling, thus reducing the system's overall that accepts a list of blocks of memory and
synchronous execution. performs de-allocation on the blocks without e

There is added overhead with this scheme _

IBur87. However, it is clearly acceptable when o currently the author and oth.r are inv.stigating the possibility 0,

one considers that the concurrent buffering and and b.nfits of implementing the central-pool approach of *a

storing of data allows functions to simply post a dacallocation that avoids the limxtation of type-based d*-allocation ,.'

rendezvous to receive data, as opposed to waiting through the use of a generic meory management package.
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further communication with the routine that individual copy. However, packages do not
initiated the request. An entry is provided so necessarily have the protection of reentrancy;
that additional amounts of memory can be appended routines that are declared in the specification
to the existing list of blocks, in the event that and/or body are individually reentrant, although
more unwanted memory arrives before all of the their usage may not be sharable when used in the
original blocks are de-allocated. The process of context of a package that employs persistent data.
initiating the de- allocation of blocks of memory
is a single rendezvous to transfer the beginning It is not uncommon for the implementation of
address of the unwanted memory to the task. a package to rely on data that retains its value

between successive calls to one or more of its
Obviously some discretion must be used before routines. (The idea of persistent data in

this utility task is used. The time required for subroutines was first explicitly addressed by
a rendezvous is a non-zero amount. It is probable Algol 60 [Ran641, [Coh85J, through a type of
that for small amounts of memory, the added variable known as ovn). Persistent data is
overhead of the rendezvous will make regular typically implemented as object declarations
sequential de-allocation the preferable choice. residing in the package body, thereby allowing the
However, for larger quantities of memory, the task logical scope of the identifiers to exist between *
de-allocation method has definite benefits. calls to the package. This method for packages ,. L

can be appropriate only when it is used in a
An enhancement that can be made to the above non-multitasking situation. Asynchronous access

algorithm is the inclusion of the priority pragma to an unsuspecting package in a tasking
within the dc-allocating task to cause the task to environment can produce erroneous results.
execute with a lower priority. The motivation
depends on the assumption that in many cases Many solutions in the literature include
memory de-allocation does not need immediate discussions of sharable packages that provide
attention and can be accomplished at a slower multiple access protection for the same
rate, thereby giving additional central processing information. An example are processes executing
unit time to more deserving tasks, in parallel that want timely access to a single

queue or stack, etc. The incorporation of a task
The use of different priorities is currently inside a package can facilitate the necessary

under consideration. There exists the possibility mutual exclusion of the routines operating on a
of "priority inversion" [Sha871, in which tasks of shared resource by limiting the access to the
differing priorities can have their priorities routines through a rendezvous. A package of this
effectively switched due to the current language kind is known as a "monitor" 1Coh851, and contains
implementation of the rendezvous. A a task that places each of the package's routines
recommendation has been made to propose a inside an accept block, so that only synchronous
"priority inheritance" scheme tor the upcoming 9X access to a package routine is possible.
revision of the Ada language tCor87]. As
mentioned earlier, the possible consolidation of Little is said about utility packages that do
memory pools is under current investigation. This not want to use data structures common to other
consolidation might discourage a reduced rate a-i-ling routines, and that need to provide a
scheme for memory din-allocation, because service that is completely independent and
reclaimable space from a central shared area is isolated from all other areas of the program. The
likely to be in more urgent demand, need for packages of this latter variety emerged

in DASS because of the concurrency present through
Taking the above issues under consideration, the use of the Executive Tasking Model and from

the priority enhancement appears premature at this the use of utility data gathering routines.
time. However, the use of the original de-
allocating task can still be utilized to add some The solution used here is known as a "type
degree of parallelism to the frequent operation of manager" uInti. A type manager is a package that
memory de-allocation, and provide lower task declares no storage space for objects in its
coupling throughout the system. specification or in its body, and instead only has

declarations for types, subtypes, routines, and

3.3 Sharable Code objects declared as constant. The package
specification also includes the type declaration

The Ada reference manual states that of a single record structure that is capable of
procedures and functions are to be reentrant. It holding all the necessary persistent data inside
follows that no side effects can occur when such a fields of the record. It is with this structure
routine is invoked by multiple processes that all needed persistent data is transmitted
simultaneously, as each invocation operates on an into and out of the package routines by including
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Standard Ada* and Organizational Dialects

Cynthia P. Baehr

GTE Government Systems Corporation, WIS Division

ABSTRACT provided to the programmers, and the
factors of portability and efficiency

Members of distinct organizations desired by the organization.
tend to develop different views of how
best to use Ada. Software engineering 1.. Design Methods
groups develop their own coding standards
and design methods, which resul~t in Different organizations use
distinct dialects of Ada. different methods when designing software

Thispapr dscusesvarousway insystems. These may include structural
Thi paer isusss vrius aysinmethods, object-oriented design, and

which Ada code may differ, showing functional decomposition among others.
examples of a system that was designed Each method will produce a different
and coded by engineers using three design which will be packaged and
different methods of design and implemented differently. A top-down
implementation. These examples are structural approach will tend to result
compared to show how the different coding in tighter, less reusable code. An
standards and design methods can result object-oriented approach will tend to
in the development of different Ada result in reusable, though somewhat
dialects. Documentation is proposed to verbose, code. Functional decomposition
include these guidelines and methods, so is a well known approach and will offer
that an engineer from a different some reusability.
organization may better understand the
dialect used. 2. Coding Standards and Guidelines

1. INTRODUCTION The guidelines of an organization
reflect its philosophy on the use of Ada

Ada syntax is very strictly with respect to concepts such as
s tandardized, and valid Ada compiles on reusability, efficiency, or portability.
any validated compiler. This allows Ada They are also influenced by the
to be reusable and portable, in order to customer's requirements, the size of the
reduce duplication and software costs. computer system being used, and the

software system being developed. These
Nevertheless different organizations guidelines may be thoroughly spelled out I

write distinctive Ada. Different i aul rmyeit yclua

constructs are favoured, pragmas are used feedback. They are enforced by
differently, and the code is derived from supervisors and by peer review, and the
different architectural approaches. As a stricter the enforcement, the more
result, it becomes difficult for members homogeneous the dialect.
of other organizations to understand
off-the-shelf Ada code and for itinerant 3. Emphasis on Portability
programmers to get up to speed on Ada
systems, even after several years of Ada Most Ada is portable due to the
experi.ence. standardization of the language, but the

availability of various pragmas,
11. ORGANIZATIONAL DIALECTS unchecked conversion, and unchecked

deallocation can change from compiler to

A. Reasons for Dialectal compiler. The importance of portability

Differences to an organization (or its customer in a
given instance) depends upon the future

The driving forces towards uses of an entire system or the

development of dialects include the reusability of specific library units.
design methods used by an organization, The portability of a unit depends upon 1

the coding standards and guidelines how close the functionality is to the
hardware.

*Ada is a registered trademark of
the US Government (Ada Joint Program
Office).
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4. Efficiency quite different depending upon the

Various needs for efficiency will

change a design. To save space, 2. Packages
libraries of utilities and generics may
be used by different systems. If this is While packaging in Ada allows for
not a problem, the code may be designed orderly grouping of system code, the
to be verbose and therefore more standard for Ada offers no requirements
readable, which may improve as to the method of grouping used.
maintainability in the future, but may Depending upon the design method used and
take longer to implement. A need for the recommended guidelines, the packaging
runtime speed will also affect the method of a system may vary widely. One group
used, as the designer may try to cut down may choose to use one package for all
on the number of subroutine calls, global types, data structures and

variables, while another may require that
5. Local Character each package contains no more than one

type. The nesting of packages is allowed
Beyond the printed guidelines, a in Ada, but some groups feel that they

local character develops due to the cause confusion, so may restrict their
choice of text for learning the Ada use.
language, the functionality of the
available compiler, or the desire within 3. Generics
a group to keep the code as portable and
as reusable as posible. As a group of Different outlooks on the use of
engineers develops various systems in generics can affect the way a system is
Ada, they help one another by reviewing designed. One may push towards a
the design and code. By doing so, they universal utility for generic packages,
learn from one another, and start to use while others choose to use them in a more
the same constructs within their code. localized setting by incorporating
So a group will start with a common generic subprograms within non-generic
philosophy, members will learn common packages.
constructs and usages from one another,
and slowly a dialect will develop. 4. Tasking

B. Use of Constructs The various methods of setting up
the tasking within a system can change

The richness of features in Ada the way it is structured. For example,
allow the same algorithm to be one group may choose to set up several
implemented using a wide variety of different tasks, while another uses %
different structures. So, if a group several entries into a single task.
focuses on the ability to hide Tasks may be started within the main
information by using private types, their procedure of a program, or started at
specifications may look quite different elaboration time. Other practices which
from those written by a group which will affect the way a system is packaged,
focuses on generics. Once a system is and how it runs, include the tightness of
packaged, the engineer must decide which the rendezvous code, the use of
packages need to be 'with'ed, and whether semaphoring, and how hardware interupts
or not to include 'use' statements. are serviced.
Should the types be private? Could a
particular package be used as a generic? 5. Private Types
What is the preferred frequency and
manner of using the various primitive Ada An organization's philosophy of Ada
constructs (e.g., goto, named exceptions, influences the frequency of use of
end labels, subtypes)? Each of these and private types. The extensive use of
similar questions could be answered private types allows the protection of
differently depending upon the guidelines data integrity, but it restricts the way
and coding standards set up by the group. the data is accessed, thereby changing

the code produced. Selective use may
1. Conventions loosen the protection of the data, but

may increase modifiability.
Among the aspects covered in a set

of guidelines, naming conventions and 6. Pragmas
pretty printing are likely to be
prominent. Naming conventions change Different pragmas are available for
readability. Some organizational different compilers, and therefore their
guidelines give specific rules of use will affect the code. Some groups
capitalization and abbreviation while may choose to use pragma in line for
others leave such things up to the added speed. If a group has an extensive
implementer. Pretty printers may be used library of code written in other
to unify the readability of all code languages, they will use pragma interface
within a organization, but these vary to extensively.
the extent that identical code may look
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7. Exception Handlers 3, Always use end labels on packages,
tasks, and subprograms.

Some groups use exception handlers
only for serious errors, while some 4. Limit the number of arguments to a
insist that all exceptions be handled or subprogram. Four arguments is about
reraised. They have even been used as the maximum most people can
'if' statements and as a means of exiting comprehend.
a loop. One group will raise an
exception in a situation where another 5. Follow the indenting rules in the Ada
group would pass a flag. Other Language Reference Manual, with 2 as
differences will arise from choices of the unit of indentation.
named exceptions and the level at which
exceptions are handled. 6. The first letter of each word in a

name should be capitalized (i.e.,
8. Optional Constructs FamilyTreel) .

Certain constructs in Ada can be 7. Avoid abbreviations. Document and be -

used explicitly or implicitly. These consistent for the few words
include such things as 'in', 'other', end abbreviated.
labels, dot notation (even with use
clauses), and renaming. The choice on 8. Use 'renames' to simplify long
use of these constructs differs from dot-selected names.
organization to organization.

ill.EXAMLESThe guidelines explain the initial
Consider three organizations method used and describes the packaging

tackling the same problem, in this case a of the system. The narrow focus on the
system to create a family tree. Each software to produce family trees led the
group used the same input file and engineer to use a simple top-down
produced the same output, but each used approach. Since the system was not
its own design method, coding standards, expected to be used for any other
and guidelines. The input is a file of purpose, this was the most efficient
records with four data elements each method to use so to save time and money.
(Appendix I.A.). The output was Example 1 would be portable, but would
specified to be an indents-d tabulation of not offer any reusability. The code is
descendants (Appendix I.B.). The written to produce a specific type of
specifications for each of the three family tree.
systems may be found in Appendix Il. The
major differences among the B. Object-Oriented Design
implementations derive from the design
approaches used. The coding standards Example 2 was written using an
and guidelines reflect the design object-oriented approach. The customer
approach as well as the rest of the wanted software to produce a family tree,
organizations' Ada cultures. but was also interested in building up a

library of software that could be used
A. Structural Approach for other applications using personal

information. The designers determined
Example 1 was written using a that three different objects were

structural approach and top down design necessary, and the packages reflect these
of the necessary functionality. The objects: information, family member, and
customer wanted software to produce family tree. Each package exports a type
family trees and was not interested in corresponding to one of the objects and
other applications. As a result the subprograms which allow manipulation of
design consists of one package exporting the objects.
a record type which contains all of the
information needed to implement the ----------------------
system, and two procedures to perform the Table 2: Coding Guideline Features for
necessary actions. Key features of the Object-Oriented Design Organization
organization's coding guidelines are
listed in Table 1.

1. There shall be at most one visible
---- --- ---- --- --- ---- --- ---- --- --- type defined per package.

Table 1: Coding Guideline Features for
Structural Approach Organization 2. All visible types shall be private,

with the exception of enumerated
I. Packages may be nested. Procedure types.

and function nesting should be
avoided. 3. No use clauses shall appear in any

code.
2. Each variable, block, subprogram,

etc., should serve a single, simple 4. There shall be no nested packages.
purpose.
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5. Named parameter associations shall be 5. Limit use clauses to one or two per
used for all subprogram calls, package. Apply use clauses only on

packages that should be globally
6. User-defined Ada identifiers shall understandable (e.g., Text_10), not

appear in mixed case, with the first to special packages.
letter of each word capitalized.
Identifiers formed with more than one 6. Give use clauses for expression
word shall be connected by evaluation on the smallest possible
underscores, scope, through use of declare-end

blocks.
7. All identifiers which are meant to be

valid English words should be spelled
correctly. The designer was told that the

generic package SingleUnbounded List was
available. Since all of the requirements

Because an object-oriented method for the final applications were not yet
was used, the program is separated into ready, the system was liable to
several packages, and it offers some significantly change. For this reason,
reusablity. There are now three packages it was not designed with reentrant code
which can be used in other systems. For (see Make Tree3 in Appendix IIC), but
instance, package Information could serve rather with very few dependencies among
as a template for use in other the various specifications. Example 3,
applications which need to store the with its generic package, is oriented
information associated with a person, towards reusability.
such as to keep information for a
doctor's records or a school system which D. Stylistic Differences
wanted to be able to reach a child's
parents. However, because of the number Figure 1 shows samples of code from
of lines of code needed to implement the three examples.
three packages, this approach is more The code in figures l.a and l.b was
costly in storage space, written by the same engineer, using the

C. Functional Decomposition guidelines for the structural approach
organization and the object-oriented

Example 3 was designed with a organization respectively. Structurally,
top-down functional decomposition method it is virtually identical, but the

topdon untina dcopoitondifferent guidelines for each have
The design consists of a generic package chanede wa it lo ecode infromtheorgniztio's ibrrywit an changed the way it looks. The code in
from the organization's library, with an 1. was written by another engineer using
instantiation of that package, and two t cnew packages. One of these contains a guidelines for the functional

record for the person's data and the decomposition organization. The
necessary functionality as described in implementation and the style have

the requirements. The second package changed.

contains the subprograms necessary to
perform the operations of the system.
This was designed as a prototype, without
all of the requirements for the final
applications.

Table 3: Coding Guidelines for Functional
Decomposition Organization

1. Minimize and localize dependencies,
especially in specifications.

2. Ensure data integrity through use of
record private types and routines to
return the values of each field of
the record.

3. In naming a generic package, describe
the limitations and characteristics
of the implementation in the name
(e.g., "SingleUnboundedList"
instead of "List").

4. Use standardized abbreviations for
package renames for clarity. Use the
same abbreviations everywhere within
the system.
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with Text_10; tUS* TextSC; with Text-10;

procedure Search(Parent :FamilyflemberPtr) procedure SearchiParent member List) is
is -- searches for the descendants Bf
-this procedure searches the member -- the parent

-list for the descendants of the7K
-given parent. Member :member -List

:TheFasily_Tree.Firit _Member;
Member : familyfleaberPtr :-FirstMember;bei

bbegin
-- indent the descendants Print Column
Printcol :- PrintCol . 2; Text I0."4.")Print_'fColumn,
-check all the meabers to find the Indent-Count);

-children of the given parenta
while Member /- null loop while Member /- null loop

if Member.Mother -Parent or
if Meaber.Mother - Parent Member.Father P Parent then
or Meinber.Father - Parent then mbrCln PitCou;
if Member.Searched then if Member.Searched thei

-- if we have found this member Pri nt (member -> member);
--before, print the information else
Print(Member); Member.Searched :- true;

else Print (Member ->member);

-print the information. Search(Parent ~)member);
-and search for the children end if;

PrintiMember);
Member.Searched :- true; end if;
Search)Member);

end if; Member :- Member.Next;
end if;end loop;

Member Member.Next; Print Column
end loop; TextX0."-")Print Column,

IndeniCount);
PrintCol ;-PrintCol -2; end Search;

end Sarch;b. With extended dot names and explicit
a. with use clauses and implied parameter paraEir sssgciati~ni.
asso'TEIaions.--

packg pd renames person _data;
package pel renames person element_ list;

procedure get descendants (person :pd.person eeet
indent :integer) is

child element pd.person element;
loca -handle pel.handli;

begin
local handle pel.nextbeginning of list);k
while not pel.at end of list~local-ha~dle) loop

chil1d element I- pil.4et elementflocal handle);
if - p d.ha-sparent(Eh ild element;T
and then )pd.get -mother~child element) - pd.get name~person
or else pd.get-father~child-element; - pd.get-name'personl;
then

for i in I..indent loop
put."")

end loop;
put line )pd.get namechild element);
for i i n 1..indejit loop
put)''");

end loop;
put (" b.
put line 'pd~get dobtchild-element));
get descendan tsTchi id element, indent-41;
local handle :-pel.nixt~local _handle);

else
local handle :-pel.nextilocalhandle);

end if--
end l oop;

end get descendants;

c. With different imlplementation of similar
algo Rim.I

Figure 1. Stylistic Differences in Code.
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IV. DOCUMENTATION AS A SOLUTION with the original developer's
philosophies and coding guidelines, he

As more software is written in Ada, may not be able to understand the
one would like to be able to port and specifications or the code, and he may-
reuse existing Ada code to help reduce choose not to reuse it in a new system.
the time and resources necessary to
create new software systems. Because of One way to make systems and
the different methods being used by compilation units more understandable is
various groups when writing Ada code, to provide documentation to allow the
this task is becoming more difficult, user more insight into the original
Each group is producing valid Ada code, designer's approach. It has always been
but another group with a different focus recognized that the documentation of code
may not necessarily understand it. through comments is important for

The oluton o ths isnotsoftware readability, but with knowledge
Th ouint hsproblem isntof the original requirements and the

to standardize on a single design design method used, the software is more
methodology or single set of guidelines, likely to be appreciated and used.
Any standardization beyond the language
standard may reduce Ada's versatility. V. ACKNOWLEDGEMENTS
Even within a given organization's set of
guidelines there is room for differences The author is grateful to the CASE
in style, and that should be maintained Department at the GTE WIS Division for
to allow for each engineer's individual their support on this project, especially
creativity. The solution to facilitating to Kathy Kroenert for her encouragement.
reuse while maintaining the flexibility The author is also grateful to Rachel
in the use of Ada appears to lie in Silber who helped develop the different
strong documentation. Documents that solutions to the example system.
describe the organization's philosophical
approach to Ada, to design methodology, VI. BIOGRAPHY
and to the overall design goals of a
part icular system can profoundly Cynthia P. Baehr it a Member of the

* influence the engineer's ability to Technical Staff at GTE WIS Division in
assimilate into a new project Billerica, MA, where she is working with
environment. the Computer Aided Software Engineering

Department. She has been working a wide
Even the small amount of range of Ada projects for the past five

documentation shown here can be helpful years. Ms. Baehr received her B.A.
in understanding 'these designs. For a degree in mathematics from Wellesley
larger system, each subsystem could have College.
its own document to lead the reader along GTE, WIS Division

in his understanding. The aocuments 1FdrlSre
should also mention the system used for Billerica, MA 01821
development and the target system, if
applicable, either of which may have
added constraints to the way that the
language was used. Any information which
could aid the user in understanding the
reasoning behind the design and
implementation can make the system more
understandable and will, therefore, help
the user to determine whether this is the
system he wants to use in his
application.

SUMM~hARY

Even an ex.perienced Ada user, when
he changes org anizations, may have
trouble understandling the software
previously developed on his new project.
Conversely, users trying to incorporate '*

software written in another organization
may have similar difficulties. Ada code
written by one group may differ

* considerably from code with the same
functionality written by a different
group. Each software house has different
design methodologies, different coding
standards, and even different ways of
utilizing Ada constructs. Syntactically
correct Ada c:ode compiles on all Ada
compilers, but if the user is unfamiliar
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Appendix I

A. Input File B. Output File

The input file consists of infor- The output was was the asme for each
mation about the family members. Each system. This output shows each family
member has four pieces of information: member and his decendents. Formatting
his name, his date of birth, his mother's for the output is controlled by the
name and his father's name. If the bodies of the FamilyTree packages.
information is not known, a question mark
is used. Charles

b. 04-14-25
Megan Cindi
03-17-85 b. 09-19-57
Cindi Megan
Tom b. 03-17-85
Cindi Martha
09-19-57 b. 10-29-54
Jeanne Frank
Charles b. 06-14-82
Charles Edward
04-14-25 b. 06-18-84
?' Karen
? b. 12-08-55
Jeanne Erica
03-28-27 b. 05-20-81
? Joanne
? b. 05-06-84
Martha Andy
10-29-54 b. 11-06-57
Jeanne Jeanne
Charles b. 03-28-27
Karen Cindi
12-08-55 b. 09-19-57
Jeanne Martha
Charles b. 10-29-54
Erica Karen
05-20-81 b. 12-08-55
Karen Andy
Dana b. 11-06-57
frank
06-14-82
Martha
Jerry
Edward
06-18-84
Martha
Jerry
Andy
11-06-57
Jeanne
Charles
Joanne
05-06-84
Karen
Dana
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Appendix II. Package Specifications

A. Specification for Example 1

package FamilyTreel is 7

subtype Date is String (1..8);
subtype NameString is String (1..25);

NullName NameString := (others => '
NullDate Date := (others => '

type FamilyMemberType;
type FamilyMemberPtr is access FamilyMemberType;
type FamilyMemberType is

-- this record holds the information
-- for each family member.
record
Name : NameString := NullName;
DateOfBirth : Date := NullDate;
MotherName NameString NullName;
FatherName NameString NullName;
Mother FamilyMemberPtr null;
Father FamilyMemberPtr null;
Searched : Boolean := FALSE;
Last FamilyMemberPtr null;
Next FamilyMemberPtr null;

end record;

procedure ReadFamilylnformationFile;
-- this procedure will ask the user for an input file name, and
-- read the family information from the given input file.

procedure ProcessAndReport;
-- this procedure will sort the information, ask
-- for an output file name, and print the Family
-- tree in the given output file.

end FamilyTreel; N

with FamilyTreel;
procedure MakeTreel is

-- This is the driver procedure for the Family Tree version 1.

begin
-- read the information from the input file
FamilyTreel.ReadFamilyInformationFile;

-- process the information and produce the report
FamilyTreel.ProcessAndReport;

end MakeTreel;

B. Specification for Example 2

package Information is

type Information-Type is private;

procedure Open Information File;
-- Gets the name of the Input file,
-- and opens the given file.

function End Of File return Boolean;
-- Returns true if the input
-- file is at the end of file.
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function Get return Information Type;
-- Reads input from the file and returns the
-- information in an Information Type

function Name (TheInformation : in InformationType)
return String;

-- Returns the name associated with the Information.

function Mothers Name (TheInformation : in Informar.ionType)
return StringI

-- Returns the Mother's name associated with the Information.

function Fathers Name (TheInformation : in Information_Type)
return String;

-- Returns the father's name associated with the Information.

function Date Of Birth (TheInformation : in Information Type)
return StrTingT--

-- Returns the date of birth associated with the Information.

function Null Date return String;
-- Returns a null date.

private

Null Name : String (1..25) := (others => '

NullDate_String : String (1..8) :- (others => '

type Information_Type is
record

Name : String (1..25) := NullName;
Date Of Birth String (1..8) NullDate_String;
MothersName String (1..25) Null Name;
FathersName String (1..25) Null-Name;

end record;

end Information;

with Information;
package Family_Member is

type FamilyMemberType is private;

function Null Member return FamilyMemberType;
-- Returns a null member

procedure Clear (The FamilyMember : in out FamilyMember Type);
-- Sets the Family member to the default values

procedure Put (TheInformation : in Information.Information Type;
The Family Member : in out Family Member Type);

-- Puts the given Tnforma~ion into the family member

function Info (The Family Member : in Family Member Type)
return Informati'n.Information Type; m Tp

-- returns the information associated with the family member

private

type Family Member Record is
record

Info Information.InformationType;
end record;

type FamilyMemberType is access FamilyMemberRecord; %

end Family-Member;

-------------------------------------------------------------------
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with Family Member;

package FamilyTree2 is

type FamilyTreeType is private;

procedure Put
(TheFamilyMember : in Family Member.Family Member Type;
The Family Tree in out Family Tree Type);

-- puts the given family member onto the family tree

procedure Sort and Report (The FamilyTree : in FamilyTreeType);
-- Sorts the family tree and produces a report

private

type Member ListRecord;
type MemberList is access MemberListRecord;

type FamilyTreeType is
record

Current Member: Member List :=null;
First Member : Member-List := null;

end record;

end Family_Tree2;

with Information;
with FamilyMember;
with FamilyTree2;

procedure MakeTree2 is

-- This is the driver procedure for the Family Tree version 2.

TheFamily Member : FamilyMember.Family MemberType;
The amily-Tree FamilyTree2.FamilyTreeType;

-- open the input file

Information.Open_InformationFile;

-- While there is more information, get the information, put it in
-- the family member, and add the family member to the Family Tree.
while not Information End ofFile loop

Family_Member.Clear (The Family Member => TheFaft'ly_Member);
FamilyMember.Put (The_Information => Information.Get,

TheFamilyMember => The FamilyMember);
Family_Tree2.Put (TheFamilyMember => TheFamilyMember,

TheFamilyTree => TheFamilyTree);
end loop;

-- process the information and produce the Family Tree report
FamilyTree2.SortandReport (TheFamilyTree => TheFamily Tree);

end MakeTree2;

C. Specification for Example 3

generic
type List_Element is private;

package Single Unbounded List is
type Handle Is private;
type List is private;

No Element Found : exception;
En3 of List : exception;
NotAtEndofList : exception;
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function CreateList return Handle;

function Get Element (At Position : Handle)
return ListElement;

function Next(From : Handle) return Handle;

procedure Append (New Element in list element;
AtPosition in out handle);

procedure Insert (New Element in List Element;
At_Position : in out Handle);

function AtEnd ofList (This List : in Handle)

return boolean;

private
type List is

record
Data List Element;
Link Handle;

end record;
type Handle is access List;

end SingleUnboundedList;

-- package spec person-data

package person data is

type personelement is private;

function makelistelement return person_element;

procedure set-name (person : in out personelement;
name string;
last : natural);

function get name (person person element)
return string;

procedure setdob (person in out personelement;
dob : string;
last natural);

function get dob (person person-element)
return string;

procedure setmother (person : in out person-element;
mothers name : string;
last : natural);

function get mother (person : personelement)
return strfng;

procedure set-father (person : in out person element;
fathers name : string;
last: natural);

function get father (person : personelement) ...
return string;

function hasparent (person : personelement)
return boolean;

function element isprinted (person : personelement)
return boolean;

procedure markperson as printed
(person : in out person_element);
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private
type person_element is

record
name string(l..20);
dob string(l..8);
mother string(l..20);
father string(l..20);
isprinted : boolean;

end record;

end person_data;

-- package instantiation for personelementlist

with singleunbounded list;
with person data;

package person element list is new
singleunboundedligt (listelement => persondata.personelement);

-- package spec for Family Tree
-- postpone all with clauses to body, as
-- this is possible

package family tree3 is

procedure input family tree(from file : string);
-- Handle for the list is saved In a global
-- variable in the package body

procedure output family tree (to file : string);
-- Handle for the list Is retrieved from global
-- variable in the package body

end familytree3;

-- Assuming that this is a single user program,
-- it is not designed with reentrant code, but on
-- the other hand, very few dependendencies are
-- created between the specs. This is appropriate
-- for a prototyping mode, but might be redone
-- for a production version of the program.

with FamilyTree3;
procedure Make Tree3 is

data-file : constant string := "INPUT.TXT";

output_File : constant string := "TREE3.OUT";
begin

Family Tree3.input Family Tree(DataFile);
Family-Tree3.outpu FamilyTree(OutputFile);

end Make Tree3;

6th National Conference on Ada Technology 1988 265 'N~,*~



Genenc Target Acquisition Device

Chuck L Carpenter

Telos Federal Systems

Lawton, Oklahoma

ABSTRACT THE GTAD OPERATIONAL ENVIRONMENT

The Generic Target Acquisition Device (GTAD) is a The code for the GTAD system is being developed on
communications device which has been designed and four desktop microcomputers. The target machines that
developed in Ada for the US Army. The primary are to be utilized for the FDTE are three portable
objective of GTAD is to simulate the devices used in the microcomputers with special tactical modems. The
Force Development Test and Experimentation (FDTE) tactical modems were designed on printed circuit
by accepting messages addressed to GTAD and boards to fit in the expansion slots of the
transmitting messages normally generated by target microcomputers allowing GTAD to communicate with
acquisition devices. Ada's powerful tasking mechanism other tactical equipment utilizing the standard Army
was used extensively in the communications processing combat radio net.
of GTAD to achieve a multi-tasking environment
allowing the user to receive and transmit messages in COMMUNICATIONS PROCESSING
the background while performing other system functions
in the foreground. In addition to providing A powerful attribute of GTAD is its ability to simulate the
communications processing, GTAD provides a unique message formats of many devices at the same time.
"authoring capability" which allows the user to create any This allows GTAD to be utilized in the FDTE as a single
message according to a predefined message syntax source for target acquisition devices. One GTAD may be
structure as well as transactions journals which monitor used to replace all target acquisition devices that would
message traffic across the tactical nets. normally have to be present at the FDTE. GTAD

maintains a device table which indicates the devices
GTAD is currently simulating. If a message transmitted
on the net is addressed to one of the GTAD devices, then

INTRODUCTION GTAD will respond with an appropriate response and
place the message into one of its queues for user

GTAD was designed in an effort to provide the US Army viewing.

with a cost effective device that would simulate the
message formats output by target acquisition devices The communications drivers of GTAD consist of sixthat would not be present for the FDTE. GTAD's tasks which are activated whenever a message is either -
objetie nlud te auesentfoma transmissio antransmitted or received on one of the communications
objectives include the automatic transmission and channels. The modem sends a special "end of message"
reception of messages through a sophisticated scenario code to indicate the end of the message on a received
driver, the monitoring of all message traffic across the
tactical nets, and the unique ability for the user to determine if the message was sent from a valid
generate new messages according to a predefined subscriber and is correctly serialized. GTAD will
message syntax structure. The message syntax respond to the subscriber immediately with either a
structure developed for GTAD had to be flexible enough positive or negative acknowledgement to the originator
to allow the user to change any existing message during of the message. The processing of the message and the
FDTE as well as define entirely new messages for the appropriate response to that message are completely
test. The communications drivers for GTAD were ansprete use o th e Ar ys te
designed to be as reliable as possible so that any transparent to the user of the GTAD system.
messages processed by GTAD would not crash the GTAD maintains three queues that are used for all
system. message traffic. Messages that are transmitted

The use of Ada will allow GTAD to become a very manually by the user or automatically from a predefined
sophisticated and reliable device. GTAD makes wide use scenario are placed into the transmit queue for thatsophstiate an relabl deice GTA maes ideusechannel. Messages received with no errors from a
of Ada's access, record, and array constructs to

implement the message syntax structure. Because of the subscriber are placed into the receive queue while

real time nature of GTAD's communications drivers, messages received with errors are placed into the error
taskng as xtesivey ued.Thi papr dscusesthequeue with an appropriate error attached to the end oftasking was extensively used. This paper discusses the the message. The user may view or delete any message

objectives and characteristics of GTAD's operational
environment and concludes with a section on how Ada is by selecting a message from the appropriate queue. The
used to achieve these objectives. message may be viewed in a hex or octal dump format

for debugging purposes or viewed as a normnl ASCII

character stream.

266 6th National Conference on Ada Technology 1988

. . ; . . .. , ,. V . ....



SCENARIO PROCESSING TRANSACTION [OURNAL PROCESSING

One of the more sophisticated features of GTAD is the The transaction journals are used to monitor all
scenario driver which allows the user to automatically messages transmitted and received on the tactical nets.
transmit and receive messages without any user GTAD maintains two transaction journals. The net
intervention. The user creates a scenario which transaction journal records all messages transmitted by
consists of predefined messages that are saved on the any device on the net. The GTAD transaction journal is a
hard disk. The scenario file contains the names of subset of the net transaction journal and records only
messages which are stored as files on the hard disk as messages transmitted to GTAD. The transaction
well as a delta time for each message. The delta time journals contain information such as the originator of the
specifies the time for GTAD to wait between the message, the date and time the message was received
transmission of each message. The scenario processor or transmitted, and the message category and type. Any
allows the user to start a scenario automatically at a errors associated with the message will he annotated to
specified time. The scenario file also contains a position the side of the message.
number which refers to the current line number in the
scenario file so that the user knows exactly where the GTAD DESIGN GOALS
scenario is executing at any given time. The user may
also insert comments into the scenario file which will This section discusses the design elements of Ada that
appear to the user during the execution of the scenario, were used to achieve the operational environment
The scenario file may also contain pause statements so described above. These elements include tasking,
that the scenario may be temporarily suspended until the access types, and exception handling. Of primary
user resumes scenario execution again, concern during the development of the GTAD system

was that the target code would have to run on a portable
MESSAGE SYNTAX STRUCTURE microcomputer. Because of memory limitations and

CPU speed, special attention was given in the use of
GTAD provides a unique "authoring capability" which tasking and access types.
allows the user to create any message according to a
predefined message syntax structure. This message TASKING
syntax structure defines all the information needed to bit
compress or expand a message for transmission or GTAD is comprised of seven tasks, six of which control
reception. One of the requirements for the GTAD system the communications channels of the GTAD system.
was the ability for the user to define or change any These tasks are the Channel 1 and 2 Receive Tasks,
message structure without a recompilation of the Channel 1 and 2 Transmit Tasks, Net Timer Task, Queue
system. As new tactical devices come into existence, Task, and Clock Task.
the GTAD system can be used to simulate the message
formats output by these devices. The proposed message The transmit and receive tasks are extremely time
outputs from these new devices may be completely critical since the data is received and transmitted to the
tested before the actual tactical device is developed, tactical modems at 4800 baud. Once a message is
This allows tactical devices that must interface with the received by GTAD, the proper response must be sent to
new device to test their software before the device being the originator of the message within 500 milliseconds.
developed is completed. GTAD must then place the message into the appropriate

queue. This processing of messages is completely
The message syntax structures are stored as ASCII files transparent to the user of the GTAD system.
on the GTAD system allowing the user to create or
modify any syntax file with the editor of his choice. The The queue task acts as a server task in that it is
user may annotate comments into the syntax structure responsible for acting as a rendezvous point for the
so that the syntax file is easier to modify and transmit and receive tasks. Since the two nets utilize the
comprehend. Comments are enclosed between the left same receive queue, an error could occur if both receive
and right braces (I ... }"). The syntax structure not tasks were to add a message to the receive queue at the
only defines the compression technique used to same time. By utilizing the Ada rendezvous mechanism,
compress and expand the file, but also the display format one task will be blocked until the first task finishes
that the user will see on the screen. The GTAD editor adding the message to the receive queue.
also uses this syntax structure to protect certain fields
from the user and checks the validity of data entered into The net timer task is also a server task which is called
these fields as well. The syntax description also by the transmit and receive tasks to determine the
contains information on all the fields in the message. If duration of time that the net has been free. GTAD cannot
the fields are mandatory for entry, then the GTAD editor transmit a message until the proper "time window" is
will require the field to be filled out before the message available. This precludes other systems on the net from
can be transmitted. The syntax description contains transmitting at the same time.
information for the data type of each field and the
number of bits to use to compress each field. The clock task is an independent task which is used to

update the real time clock at the bottom of the GTAD
user screen.
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The tasking mechanisms provided by Ada has
significantly reduced the overall coding and design of the
GTAD project. The background communications tasks of
GTAD can process messages in the background while
the user is left to execute other system functions in the
foreground.

DYNAMIC ALLOCATION

Access types were extensively used by the GTAD
system since a typical message syntax structure
occupies as much as 70K of memory. The GTAD system
image occupies 450K of memory. Since there is a great
deal of data structures to deal with, almost all of the
large data structures are allocated on the heap to
conserve memory. To free memory, the data structures
are immediately deallocated when no longer needed
through the Ada mechanism of Unchecked Deallocation.
Special attention was given when deallocating an object
since there was no automatic garbage collection
associated with our version of the compiler.

EXCEPTION HANDLING CHUCK L CARPENTER is a software engineer at Telos
Federal Systems in Lawton Oklahoma. He received his

Since GTAD is to be used as a test tool for testing B.S. in Computer Science from Kearney State College in
electronic warfare equipment, it was imperative to 1984. At Telos Federal Systems, he has been involved in
design reliability in from the start. The use of Ada's the design and coding of a debugger as well as real time
exception handling has allowed GTAD to become a very communication drivers for the Battery Computer
reliable system. For example, if a new message is System. Currently he is involved in the development of
received by the communications handlers with a bit the GTAD project.
stream that GTAD can not recognize, an exception
handler is invoked that will place the message into the
error queue with an appropriate error message
attached.

CONCLUSION

GTAD has become an extremely versatile and reliable
test tool through the use of the Ada language. GTAD is a
system that can be easily modified for future capabilities
because of the package nature of Ada. The interface
between new tactical systems may now be tested with
existing systems by utilizing the capabilities of the GTAD
message syntax structure.

The fact that Ada has built in support for tasking has
allowed for the communications handlers of GTAD to
process messages in the background while the user
performs other system functions in the foreground. The
total throughput of the system is further enhanced by
utilizing the tasking mechanisms of Ada.

The extensive use of Ada's exception handlers has
allowed GTAD to become a very reliable system
pinpointing errors that can occur in new message
formats that are introduced into the GTAD system.
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ADVANCED ADA TASKING TECHNIQUES FOR MOTOR SIMULATION AND CONTROL

ILT Leonard S. Kim

University of California at Berkeley
Department of Mechanical Engineering

ABSTRACT as many such systems operating in parallel as
there are motors in the overall simulation.

This project illustrates techniques for task
organization and communication for motor MOTOR SIMULATION
control and simulation. A package containing
tasks for motor plant simulation is derived. The first objective is to create a single
Controller packages utilizing simple task type that serves as a digital simulation
proportional, integral and derivative of the motor. The preferred method in Ada is
algorithms are then deve loped. A short example to create task types embedded in packages
with a single plant and single controller is rather than writing new tasks for each
presented to illustrate the use of the two application. This approach which serves to
packages. In order to increase the number of reduce the amount of code written1 implicitly
tasks involved and monitor the behavior of requires that these task type definitions be
these multiple tasks several modifications are flexible. Ada allows for the definition of
made to the control package using advanced Ada access types to objects. Since a task type can
tasking techniques. Applications for controller be used to define an object, access variables
evaluation using these unique abilities in Ada to tasks are allowed. In addition, arrays of
are discussed. access variables can oe created to represent

The programs presented in this paper serve arrays of concurrent tasks.
to introduce and illustrate the rendezvous A more sophisticated approach to
mechanism, scheduling, task activation, and simulation might include a continuous model of
task termination all within the context of DC the motor using some type of Runga-Kutta
motor control. All motor plant simulations rely integration scheme, but for our purposes a
on a matrix representation of the dynamic discrete time model will be simpler.
system which serves to demonstrate the A general representation of a continuous
advantages and limitations of Ada's matrix time DC motor model might be:
handling capabilities. Km

G(s) = ------

s (Tm*s + 1)

INTRODUCTION which defines the second order open loop
transfer function. Km is referred to as the

Ada is unique among general purpose motor gain constant and Tm is time constant.
languages because all the constructs for real Digital domain transfer is applied to the open
time event scheduling, multi-tasking and low loop equation assuming a zero-order-hold
level I/0 are included within the syntax of the sampling of tho system. The general
languagel. It was designed with real time representation of the digital model:
systems in mind. Modular construction is
supported through the concept of an Ada Package bl*z + b2
where all logically related entities are G(z) =----- --
encapsulated into one program unit. Ada's z**2 + al*z + a2
multi-tasking ability eliminates the need for
non-portable hardware-dependent or operating where al, a2, bl, and b2 are referred to as the
system based real time schedulers, transfer function coefficients and are some

The objective is control a series of DC function of the motor gain, time constant and
motors running concurrently. One separate task sampling time. This transfer function can then
unit is responsible for the control of each be easily represented in the familiar
motor. In simulation independent tasks model difference equation format:
the dynamic behavior of these motors. In actual
implementation. data acquisition and actuation y(k+l) = bl * u(k) + b2 * u(k-1) - al * y(k)
software would replace these tasks. Controlling a2 * y(k-1)
input signals and system feedback are exchange
via rendezvous. These examples illustrate many where y(k) represents the motor position output
of the strong and weak points of the Ada at time step k and u(k) represent the input to
tasking mechanism, the system at time step k. A more compact and

The overall system is represented below: powerful representation can be made by
rewriting the coefficients and variables in

p e u vector notation:

y(k+l) = Thetat * Phi

where Thetat represents the transpose of a
column vector of length n (n = 4 in this case)
containing the motor plant coefficients al, a2

Position output (x) of each motor is fed bl, and b2. Phi is also a column vector of
back to calculate position error (e). The each lenqth n containing the values -y(k), -y(k-l),
controller task (H) uses this error to u(k I, and u(k-l).
determine the new actuation (u). The each motor This formulation can be used to describe
task takes this value, simulates dynamics of any n-th order linear system. It will be used
the motor and produces a new output. There are here to perform a digital simulation of a motor
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plant. The specification of the desired task would remain hidden and unaccessible.
type is located in the specification of the The column vector PHI defined above must
package PLANT: be updated during each iteration of the

simulation. The procedure takes three input
with MATFLOAT;use MATFLOAT; values: PHIUkI, and Ykl and returns the

modified value of vector P1HI. The pointer PHI
package PLANT is inside the procedure is a different local

version of the pointer PHI defined inside thetask type MOTOR TASK is task body. The use of a different name inside
entry PARAMETERS(T : in COL POINTER); the procedure might clear this confusion but
entry COMMAND(U in M ELEMENT); also would reduce the readability of the update
entry SAMPLE( Y out M-ELEMENT); process. The compiler should have no problem

end MOTORTASK; distinguishing the two.

type MOTOR POINTER is access MOTOR TASK; task body MOTOR TASK is
type MOTOR-ARRAY is array(POSITIVE-range 0) THETA TRANSPOSE ROW POINTER;

PHI - COL-POINTER;
of MOTOR POINTER; YklUkl : M ELEMENT :7 0.0;

end PLANT; begin
accept PARAMETERS(T : in COL POINTER) do

This Mackage makes use of an external THETA TRANSPOSE := TRANS(T)Tpackage MT FLOAT which is general purpose end PARAMETERS;
matrix manipalation package that allows access PHI := new COL VECTOR'(
variables to refer to vectors and matrices. The THETA TRANSPOSE'RANGE => 0.0);
types COL POINTER, ROW POINTER, and loop
MATRIX POINTER are made available in this select
packag. accept SAMPLE(Y: out MELEMENT) doThis package specification contains one Y:= Yk: o
task type defini t ion MOTOR TASK and two normal end SAMPLe;
type definitions. Tasks of-type MOTOR TASK have or
three entry points each with an input or an terminate; -- closed until master done
output parameter: the first entr yPARAMETERS end select;
receives a pointer to a co1umn vecto,
containing the coefficients of the plant accept COMMAND( U : in M ELEMENT) do
transfer function (theta), the second entry Ukl := U-
COMMAND receives the motor input U(k) and the end COMMAND;
SAMPLE entry provides the motor output position
Y(k). Recall that M ELEMENT is a subtype of UPDATE PHI(PHI UKI YKI);
float. Ykl := THETA TRANSPOSE * PHI;

The type MOTOR POINTER is an access -- simulate process
variable type to any object of type MOTOR TYPE. end loop;
Any variab e of this tye Points to atask, end MOTOR TASK;
Similarly the type MOT ARRAY allows for the
creation of a array of pointers to tasks. Any The body of the task type MOTOR TYPE
variable of this type points is an array begins with a simple accept statement for 5]ant
containing a bank of pointers to concurrently parameters. After the start of execution, tasks
executing MOTORTASKS. of this type will suspend at the accept

statement until rendezvous is accomplished.
package body PLANT is When a task or subprogram makes the entry call,

a pointer to the plant coefficients is passedprocedure UPDATE PHI(PHI:in out COL POINTER; through the parameter T and copied to the task
UKIYKI:in MELEMENT) is body local version of the pointer

THETATRANSPOSE. Upon completion of rendezvous
ORDER : INTEGER; a vector to hold the contents of phi is
begin created.

ORDER := PHI'LENGTH / 2; PHI := new COL VECTOR'(
- THETA TRANSPOSE'RANGE => 0.0);for I in I..(ORDER-l) loop Recall that PHI is- a pointer to a column

PHI(ORDER + I + I) := PHI(ORDER+I); vector, new is an allocator which serves
PHI(I + 1) PHI(1); essentially the same roles as the functions

end loop; malloc() or alloc() serve in the C language.
An allocator creates an object and yields anPHI1) := -1.0 * Ykl" access variable to that object. In this case

PHI(ORDER + 1) Uki; the object, a column vector, is initialized to
end UPDATE-PHI; have all zeroes and has the same dimensions as

the vector pointed to by THETA TRANSPOSE. Now
task body MOTORTASK is with a plant model and - appropriately

-- s einitialized vectors the simulation begins upon
see below for task listing entering the loop.

Inside the loop is an example of a select
end MOTOR TASK; statement with a terminate alternative:

selectend PLANT; accept SAMPLE( Y : out M ELEMENT) do
Y:= Ykl;

The body of the package PLANT contains a end SAMPLE;
procedure definition and the body of the task or
type MOTOR TYPE. Notice that the procedure is terminate; --closed until master is done
not mentioned in the specification of the end select;
package. The procedure UPDATE PHI is intended
to be used only by tasks of type MOTOR TYPE. By The task will suspend at the SAMPLE accept
placing it in the body of the package, this statement awaiting rendezvous on each iteration
procedure is visible only to the members of the of the loop unless the terminate alternative is
package following its definition. If a program open. The terminate is open only if allwere to with PLANT;use PLANT; it would gain dependent task are terminated or themselves
access to the type definitions presented in the waiting to terminate, and the master of the
specification, but, the procedure UPDATE-PHI task is finished execution and waiting to
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terminate.
Next, the command input is received via The body of the task has two preliminary

rendezvous, PHI is updated, and finally to entries to receive the name of the motor to
complete the iteration the plant is simulated control and the appropriate gains to use.
one more time period using some very convenient Inside the loop is another example of a select
notaticn. statement for the entry REFERENCE:
Construction of a Control Type Task select

accept REFERENCE(R : in M ELEMENT) do
A control task type PID CONTROL TASK is SET POINT :=R -- reciive new set point

defined inside a new package CONTROL PAC. Tasks end REFERENCE;
of this type execute a simple-minaed control else
algorithm using proportional, integral, and null;
derivative error terms. The specification of end select;
the package contains the specification of the
task. In this case the else alternative is null. On

each iteration the task will check for any
with TEXT 10,MAT FLOAT PLANT- entry calls to AEFERENCE. If none are in queue,
use TEXT LFLOAT,ANT; the task will simple fly by this entry by - DMA- selecting the else alternative which does

package CONTROL PAC is nothing. The same effect could be achieved
task type P11 CONTROL TASK is using a delay alternative with zero delay. In

entry MOTOR NAME(M : in MOTOR POINTER); between issuing entry calls to sample motor
entry GAINSTPID : in COL POINTER); data and to send motor command values the task
entry REFERENCE( R : in M ELEMENTI; executes the control algorithm. At ihe end of

end PID CONTROLTASK; E Neach iteration, the task delays a finite period
of time, 100ms in this case, as it would in

type PIP POINTER is access PIDCONTROL TASK; real time implementation.
With these two packages, one can now write

end CONTROL PAC; a simple procedure to simulate the control of
one motor with one controller.

The package makes use of definitions found
in TEXT 10, MAT FLOAT and the new package Single Motor Simulation
PLANT. - The task type PID CONTROL TYPE has
three entry points: MOTOR NAME to Feceive a The procedure SIMU1 is a simple program
pointer to the appropriate motor task, GAINS to that will act as master for our two tasks:
receive controller gains, and finally REFERENCE
to receive setpoint information from master with MAT FLOAT.PLANT.CONTROL PAC;
tasks. The type PI0 POINTER, like use MAT FLOATALANT,6ONTROLPAC;
MOTOR POINTER is an access variible to a task,in th~s case tasks of type PIDCONTROLTASK. procedure SIMU1 ise C O TMOTOR A MOTOR POINTER; -- to motor task

package body CONTROL PAC is CONTROL PID POINTER: -- to control task
TRANSFER Fcn 7 COL P6INTER := new

task bodv PID CONTROL TASK is COL VECTOR' (-1 66 0.6,0.002,0.001);
SET POINT 7 M ELEMENT := MELEMENT(O); GAINS VEC : COL POINTER := new
MOTOR : MOTOR POINTER; COL VECTOR'T150.O,10.0,140.0); 'V

Yk,Uk,KpKi,Kd, ERROR : M ELEMENT begin
M ELEMENT(O); MOTOR A : new MOTOR TASK; -- make motor task

LAST ERROR, ERROR SUM : M ELEMENT CONTROL new PID CONTROL TASK; '
= RELEMENT(O); - -- make control task

begin MOTOR A.PARAMETERS(TRANSFER Fcn):
accept MOTOR NAME(M in -- end 1ransfer fcn.

OTOR POINTER) do CONTROL.MOTOR NAME(MOTOR A);
MOTOR 7= M- -- send motor name

end MOTORNAME; CONTROL.GAINS(GAINS VEC); -- send gains
CONTROL.REFERENCE(OI); -- give it a step

accept GAINS( PID : in COL POINTER) do delay 30 0; -- simulate for 30 seconds
Kp PID(1); abort CONTAOL.all,MOTORA.all;
Ki : PID(2); end SIMUl;
Kd :=PID(3);end GAINS; Two access variables MOTOR A and CONTROL are

loop first defined to represent the two operating
select tasks. Vectors containing transfer function

accept REFERENCE(R : in coefficients and controller gains are declared
M ELEMENT) do and created, initialized and assigned to

SET POINT :: R; appropriately named access variables.
end REFERENCE; As the procedure begins, two tasks are

else created and begin execution. Recall that both
null; task types immediately suspend execution

end select; awaiting some type of information. The first
entry in MOTOR A, PARAMETERS, is called and

MOTOR.SAMPLE(Yk); transfer function coefficients are passed. The
task MOTOR A would then continue execution

ERROR := SET POINT - YK; entering it real time loop. The next two entry
Uk := Kp*ERROR + calls to CONTROL pass the name of the motor and

Kd*(ERROR-LAST ERROR)+ the control gains vector via rendezvous with
Ki*ERROR SUM; that task. At this point both tasks,

MOTOR.COMMAND(Ok); conceptually, are running through their
simulation loops.

ERROR SUM ERROR SUM + ERROR; CONTROL.REFERENCE is called and passed aLAST ERROR :=ERROR setpoint of 0.1 during rendezvous. SIMUl thendelaE 0.1; suspends for 30 seconds while the motor and
end loop; control tasks execute. If desired, PUT

statements could be placed inside the control

end PIP CONTROL TASK; task to monitor input values and response.
end CONTROL PAC; Finally the abort command forces a termination
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of the two tasks before the procedure ends can be loaOed into the proper ASCII escape
execution. sequence. The language defined

attribute/functions CHARACTER'VAL and
Multiple Motor and Control Simulation CHARACTER'POS are used to load the correct

character representation of the id number into
In order to increase the number of tasks SCREEN ROW. The statement:

involved and monitor the behavior of these PUT(SCREEN ROW L "TASK 
"

.
multiple tasks several modifications are made INTEGER'IMAGE(ID NUM) &
to the control package which is now called places the wora "TASK followed by the ID
CONTROL PAC2. First two type definitions are number of the task on the screen row that is
added t6 the package specification. ID TYPE is the id number. Following that a PUT defined in
an integer subtype ranging between I and 9. 10 FLOAT is executed to report the position
This will be used to identify nameless, output of the control task's motor.
concurrently executing tasks and place system A new procedure SIMU2 is present to
information on the screen'. The type demonstrate the use of this new package. SIMU2
CONTROL ARRAY is defined to hold a series of will dynamically create five motor task and
pointers to control tasks, five controllers while providing each of the

Finally the entry MOTOR NAME is modified ten tasks starting information on the fly:
to accept an id number in addition to a motor
task pointer. The p ackage specification: with TEXT IO,MATFLOATPLANT,CONTROL PAC2;
with TEXT IO,MAT FLOATPLANT use TEXT-IOMAT-FLOATPLANT,CONTROL-PAC2;
use TEXTTO,MATFLOAT,kANT; uMC .

package CONTROL PAC2 is procedure SIMU2 is -- multiple task simulation

subtype ID TYPE is INTEGER range 1..9; subtype MOTOR NUMBERS is INTEGER range 1..5;
task type-PID CONTROL TASK is -- 5 motors and controllers

entry MOTOR NAME(M-: in MOTOR POINTER; PROCESS : MOTOR ARRAY(MOTOR NUMBERS)-
ID : in ID TYPE); CONTROL CONTROL ARRAY(MOTOR NUMBER );

entry GAINS(PID : in COL POIRTER) TRANSFER ARRAY
entry REFERENCE( R : in-M ELEMENT); array(MOTOR NUMBERS) of COL POINTER :(

end PICONTROLTASK; -new COL VECTOR'(-I.66,0.6,0002,0.O01),
new COL-VECTOR'(-1.66,O.6,0.002,0.O01),

type PID POINTER is access PID CONTROL TASK; new COL-VECTOR'(-I.6b,O.6,0.O02,0.001),
type CONTROLARRAY is array(POSITIVE - new COL-VECTOR'(-1.b6,0.6,0.002,0.O01)

end CNRLPC; range 0)1 of PIDPOINTER; new COLVVECTOR(-.6,0 .60002,0:001~l

GAIN ARRAY:
The body of CONTROL PAC2 is essentially the arFav(MOTOR NUMBERS) of COL POINTER :=(

same as CONTROL PAC_ except for a few new COL VECTOR'(150.O,10.0,T40.0),
enhancements that will allow individual control new COL-VECTOR(100.0, 5.0, 98.0),
tasks to be monitored during execution. ANSI new COL-VECTOR'( 80.0, 8.0, 50.0),
full screen terminal displays are used so that new COL-VECTOR( 10.0, 0.1 9 0),
outputs can be sent to any position on the new COLVECTOR'( 1.0, 0.01, 0.9));
screen. For example "[;IH" will place the

cursor on the x-th row and first column. This CLEAR SCREEN :
will work on VT-1O0 compatible terminals or on STRTNG(1..4) := ASCII.ESC L "[2J";
an IBM PC compatible with ANSI.SYS placed in
the CONFIG.SYS file. begin
package body CONTROL PAC2 is

PUT LINE(CLEAR SCREEN);
task body PID_CONTROL TASK is for-I in MOTOR-NUMBERS loop

PROCESS(I) new MOTOR TASK-
-- all previous variable definitions .... create tasks
-- in CONTROL_PAC are repeated here -- CONTROL( ) := new PIDCONTROL TASK;

ID NUM : ID TYPE- PROCESS( I).PARAMETERS(TRANSFER ARRAY(I));
SCREEN ROW 7 STRING(I..6) -- send tr fEn

:= ASCII.ESC & "[Ix;IH'; CONTROL(I).MOTOR NAME(PROCESS(),I);
package 10 FLOAT is new FLOAT IO(MELEMENT); -- send name & id
use IO FLOAT; CONTROL( I.GAINS(GAIN ARRAY(1));

-- send cntrl gains
beginCONTROL().REFERENCE(1);

accept MOTORNAME(M : in MOTOR POINTER; -- st reference
ID : in IDTYPE) do end loop;

MOTOR M-
ID NUM :ID delay 30.0; -- simulate for 30 seconds

end MOTOR-NAME;
for I in MOTOR NUMBERS loop "

SCREEN ROW(3) := CHARACTER'VAL( abort CONTROL(I).all,PROCESS(I).all;
CHARACTER'POS('O')+ID NUM); end loo Ec

-- GAINS entry same as before -- PUT INE(CLEARSCREEN); -- clear screen
loop REFERENCE entry same as before -- end SIMU2; -

control calculations are same The arrays PROCESS and CONTROL are defined
MOTOR.COMMAND(Uk); -- send uk to be of type MOTOR ARRAY and CONTROL ARRAY

respectivey. wo new Variables TRANSFER-ARRAY
PUT(SCREEN ROW & "TASK and GAIN ARRAY are arrays of pointers to

INTEGER'IMAGE(ID NUM) & .) vectors containing transfer function and '
PUT(ITEM =>Yk, FORE =>5; EXP =0); control gain information respectively. In this
new line; case the same motor transfer function is
-- error calculation is same -- entered for each task. This will allow for a
delay 0.1; nice comparison of control performance.

end Ip Different transfer functions describing several
end PIO CONTROL TASK different systems of differing order could just

end CONTROC PAC2;- as easily been used. The gain array contains 5
A string type variable SCREEN ROW is created so sets of D gains chosen for comparison.
that the id number of each task once received, As execution begins an ASCII sequence is
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used to clear the screen. Then five Iterations Bergman, Bruce, et. al. "Ada Compilers: Mission
of creating control and motor task are car-led - Critical Software for the PC." in
out. Each control task is provided with a moto- Cor uter Languae, 3:12 and 4:1 December
name and motor id number in addition to T98 , anuary l987, Parts I & II
controller gains. Each motor/controller system
is giver a 0.1 step input. The simulation Booch, Grady. Software En ineerinq with Ada,
continues for 30.0 seconds. The screen output Benjamin/Cummings Publishing Co., Menlo

would appear something like this: Park, CA., 1983.
TASK 1 0.10000
TASK 2 0.10020 Burns, Alan. Concurrent Programming in Ada,
TASK 3 0.17233 CambridgeTh-n9 rsity Press, Cambridge,

TASK 4 24.03340 1985.
TASK 5 88.15968

Condiz, Marin. Packages: Ada's Integrated
where the number following the task number is Circuit." in Computer Language, 3:12,

the motor position. All five motors run to the December 1986.
end of the 30.0 second delay period then are
killed using the abort command. Gehani, Narain, Ada, An Advanced Introduction,

Prentice-H T Y? T. Englewood Cliff,
Conc lusions N.J., 1983.

Use of the Ada language in control kim, Leonard. "Influence Diagram Based Expert
applications of real time systems was surveyed System Tool Developed in Ada."
in depth. The language in general is extremely unpublished, 1997.
well suited for such systems and carries an
inherent propensity to enforce good software Norton. Peter, Prorammer's Guide to the IBM
engineering principles such as modular PC, Microso " Press, Bellevue, WA., 1985.
p-cgramsing, encapsulation of data, stringent
typing and information hiding. A reduced amount Reference Manual for the Ada Programming
of time was spent debugging programs because Lanuae, U.S. Department of Defense,
entities are so carefully structured. The Ad Januar 1983.
rendezvous represents a significant improvement
over standard real time operating system Tomizuka, Masyoshi. "Advanced Control Systems-
constructs because it is much easier to use and ME 232 Class Notes." Unpublished 1986.
less prone to mistakes. These effects can
cimbine to produce a software product that is
reasonably dependable, maintainable, and
reuseable over time.

The designers of Ada have created a
language for large-scale and real time embedded
systems. I have tried to show that for low
level control applications,' this high level
language is extremely well equipped. The power
of flexible object types, the overloading of
operitors for matrix manipulation and
definition of real time tasking constructs
within the syntax of the language make Ada an i
extremely attractive choice for large real time
control systems.
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Sl.Other high level languages such as MODULA2 also have these
types of features, however, no other language can boast the same pS% I
level of enforced standardization.,Z 41

2.This method of task identification and screen control was
presented in "The Road to Ada Tasking" by Avram Tetewsky,
COMPUTER LANGUAGE, Vol. 4, #B, August 1987.
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Adaptive Robotic Control in Ada -

ILT Leonard S. Kim

Department of Mechanical Engineering
University of California at Berkeley

controller is tuned in real time based
ABSTRACT upon the most current estimates of the

plant. This approach to control is
This paper covers the development of useful because standard controllers are

an advanced robotic controller written usually based on one model. In cases
in Ada. The objective of the project is where the parameters of the model may
to evaluate the applicability of Ada for vary significantly, such as large
complex control systems. Most of the mechanical systems that encounter
advanced features of the Ada tasking changing loads, these standard
model are utilized to illustrate their controllers may not perform acceptably.
power and limitations. Controllers are This scheme is a particularly
implemented in Ada using the same attractive Ada tasking application
convenient matrix notation commonly used because the roles of identification and
to development the algorithms. Three control are completely separate.
Concurrent task types are developed to Applications in which the partitioning
handle plant simulation, system of tasks is clearly defined are ideal
identification and actuator control, for multi-processing environments. By
They provide good examples of an Ada developing applications in Ada, the
tasking program in a practical benefits of multi-processing systems,
application. Use of the Ada rendezvous when they become affordablev will be
mechanism and some of its limitations easily reaped without changes to the
are addressed. The results of simulation software. An example of such a system
as well as the details of system is a robotic manipulator where the
organization are presented. partitioning of tasks is well defined

at both the system level and the joint
level.

The PLANT
INTRODUCTION The plant model formulation is

based on the familiar difference
Control of robotic manipulators at the equation format. For a linear second

joint level is especially difficult order discrete time system:
because systems often encounter changing
inertial loads due to manipulator y(k+l) = bl*u(k)+b2*u(k-1)
configuration and payload changes. -al*y(k)-a2*y(k-1)
Classical control approaches with
stationary control gains are accurate where y(k) and u(k) represent system
only inside limited load ranges. outputs and inputs respectively at time
Adaptive controllers attempt to vary step k. al, a2' bl and b2 are
these feedback control gains in real coefficients to the system transfer
time based upon estimates of the present function. Our formulation is given in
configuration of the system. The Ada vector notation:
tasking model is shown to be extremely
useful for these types of complex Ykl = Thetat * Phi
robotic control schemes.

A self-tuning controller is the most where Ykl is the system output at
intuitive approach to adaptive control, discrete time step k + 1, Thetat is the
It involves the use of an identifier to transpose of a column vector of length
make estimates of plant parameters in n containing the coefficients of the
real time. Using these estimates any one discrete time transfer function, and
of a number of standard controller Phi is a column vector of length n
designs can be used to pick the gains, containing present and previous system
In this case a standard pole placement input and output values.
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A motor task defined in a package
PLANT will be used to simulate the using P for Phi and T for the transpose

motor. Two select accept statements are operator in the last equation. Lamdal

used inside this task; one at the (LI) and Lamda2 (L2) represent
beginning of the task body to receive forgetting factors. F is an nxn matrix

the initial system transfer function and referred to as the adaptation gain

one placed inside the simulation loop so matrix. For the purposes of this paper

that plant parameters can be changed it is only important to understand that

during operation. the theory is developed using this sort

Ada allows more than one accept of notation. The overloading of

statement for each entry. The first operators for matrices and vectors in

entry PARAMETERS serves to hold the task Ada allows the control engineer to

at the beginning of execution until it preserve the structure of the

receives a plant. The second select theoretical derivation minimizing
statement has a null alternative meaning mistakes and significantly speeding up
that the task will simply fly by this the coding process. The same algorithm

statement unless some other task wants as it might be done in Ada:

to change the parameters.
NUMERATOR := F - (F*PHI*TRANS(PHI)*F);

IDENTIFICATION
DENOMINATOR := LAMDAI OVERLAMDA2 +

The objective of identification is TRANS(PHI) * F * PHI;
to come up with an estimate of Theta,
call it Thetahat, using the information F := ONEOVERLAMDAl *

contained in Phi, without knowing Theta NUMERATOR/DENOMINATOR;

a priori. Hence the objective is to
determine an estimate of the plant THETA-HAT := THETA-HAT + F*PHI*Error;

behavior:
Ykl _hat = TRANS(Theta hat) * Phi where LAMDAIOVERLAMDA2 and

such that the error: ONE OVER LAMDAl are predefined

error = Ykl - Yklhat constants.
is driven to zero. In this application a On the transient, it is entirely
recursive form of a least squares possible that the value for denominator
regression will be used to drive the becomes zero. This provides an

error to zero. The purpose of this excellent application to display use of
section is present a good tasking an local block statement with an

control example using a complex control exception handler. When division by

algorithm. The theoretical basis for zero occurs, the language raises a
this form of control is extremely NUMERIC-ERROR - one of the several
involved and requires separate treatment predefined language exceptions. This

[Landau, 1979). For our purposes suffice error can easily be handled inside a
to say that the least square estimate local block:

uses the derivative of the summation of
the squared prediction error. By setting begin
the partial derivative of this sum to F := ONEOVERLAMDA1 *

zero a formula for the estimate, NUMERATOR/DENOMINATOR;
Thetahat, can be derived using only the exception
error, Phi and values of the previous when NUMERICERROR =>
estimates. One consequence of this F := ONEOVERLAMDAI *

approach is that the estimate gains NUMERATOR/O.O001;
converge exponentially to zero. In end;
situations where the plant parameters
are time varying, forgetting factors are The NUMERIC ERROR exception is handled
introduced into the formulation to inside the block by replacing the
prevent the estimate gains from denominator with a very small number.
converging to zero. The final Ada exception rules state that when an
formulation for the new estimates: exception occurs control can be

transferred to a user-provided
Theta hat(k+l) : Theta(k) + F(k) * exception handler at the end of a block

Phi(k) * Error(k+l); statement or program unit. If no
handler exists, specific rules govern

where F(k) := I/Li * how that error will be propagated to
upper level program units.

(F(k-I)-(F(k-I)*P(k)*T(P(k))*F(k-I))) With this background, an
identifier task type can be presented

LI/L2 + T(P(k)) * F(k-1) * P(k) inside thp parnpa IDENTIFICATION!
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loop
with PLANTMATFLOAT; UPDATE_PHI(PHI,Ukl,Ykl);
use PLANT,MATFLOAT; select

package IDENTIFICATION is accept DATAIN( CONTROL_INPUT,
PLANT-OUTPUT t in MELEMENT) do

task type IDENTIFIER is Ukl to CONTROL-INPUT;
YKI t- PLANTOUTPUT;

entry SYSTEMORDER(DEGREE i end DATA_IN;

in INTEGER); or

entry DATAIN( CONTROLINPUT, terminate;

PLANT OUTPUT : in MELEMENT); end select;

entry PARAMETERSOUT(
PLANT-PARAMETERS : Ykl-hat := TRANS(THETAHAT) * PHI;

out COLPOINTER); ERROR am Ykl - Yklhat;

end IDENTIFIER; TEMP a TRANS(PHI) * F;

end IDENTIFICATION; DENOMINATOR I- LAMDAIOVERLAMDA2
+ TEMP * PHI;

package body IDENTIFICATION is begin -- watch division by zero
F 2= ONE OVER LAMDAI*(F-(F

BETA : constant M_ELEMENT := 1000.0; *PHI*TEMP)/DENOMINATOR);

LAMDA1 : constant MELEMENT 0.9; exception

LAMDA2 : constant M_ELEMENT := 1.0; when NUMERIC-ERROR w>

ONEOVERLAMDA1 : F := ONEOVERLAMDAI*(F-
constant MELEMENT := 1.0/LAMDA1; (F*PHI*TEMP)/0.00001);

LAMDA1_OVER_LAMDA2 : constant end;

MELEMENT := LAMDA1/LAMDA2; THETA-HAT := THETAHAT+F*PHI*ERROR;
task body IDENTIFIER is separate;

end IDENTIFICATION; accept PARAMETERSOUT(
PLANTPARAMETERS t

This package describes a task type that out COLPOINTER) do
is a generalized identification routine PLANTPARAMETERS i= THETA_HATI

for a linear system of any order. Note end PARAMETERS-OUT;

that the task type has three entry end loop;

points: one for the order of the system end IDENTIFIER;

to be identified; one for the system
inputs and outputs; and a third for the The actual implementation of the least

estimated parameters to be passed out. squares follows almost exactly from the

Inside the package body, several example presented above. Slight

ccnstants for the identification are modifications have been added to reduce

defined. The task body is contained in a duplication of terms and improve real

separately compiled unit as indicated by time performance.

the statement:
task body IDENTIFIER is separate; CONTROLLER
The body of the task type IDENTIFIER: The control task makes use of a

standard pole placement algorithm. The

separate(IDENTIFICATION) objective in such an approach is to
achieve a certain type of dynamic

task body IDENTIFIER is response by dictating the poles of the
PHI : COLPOINTER; closed loop system. Using these desired
THETA-HAT a COLPOINTER; poles and an estimate of the Plant

F : MATRIXPOINTER; provided by IDENTIFIER the appropriate
TEMP a ROW POINTER; feedback gains can be calculated. For

DENOMINATOR a M_ELEMENT a 0.0; simplicity a plant with stable zeros is
ERROR a MELEMENT = 0.0; chosen so that issues dealing with
Ykl,Yklhat,Ukl a MELEMENT = 0.0; unstable pole-zero cancellation can be

N a INTEGER; foregone. In actual implementation
these stability issues must be dealt

begin with more rigorously. The control task

accept SYSTEMORDER(DEGREE a in type is similar to the task types
INTEGER) do presented earlier:

N a 2 * DEGREE; with
end SYSTEM ORDER; TEXT_1O,MATFLOAT,PLANT,IDENTIFICATION;
F t- BETA * IDENTITY(N); use
PHI 3= new COLVECTOR'(I..N => 0.0); TEXT_1,MATFLOAT,PLANT,IDENTIFICATION;
THETA HAT za new COLVECTOR'(I..N >

0.0); package CONTROL PAC3 is
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task type CONTROLLER TASK is This procedure creates the control and

entry MOTOR NAME(M : in plant tasks (the identifier task is

MOTORPOINTER); created inside the controller), and

entry GAINS(POLES :in ROWPOINTER); initializes all the system parameters.

entry REFERENCE( R t in MELEMENT); The system is given a step input of

end CONTROLLER TASK; 1.5. Then after 15.0 seconds a new
transfer function is injected along

type CONTROLLER-POINTER is access with a reference position value of 0.0.

CONTROLLER_TASK; Finally the old transfer function is

end CONTROL PAC3; restored and a reference of 1.0 is
requested.

Note that the entry GAINS accepts In a real application this might

coefficients of the characteristic correspond to a robot picking up a

equation that defines the desired load, moving to another position,

closed loop poles. The body of the setting it down and then moving to

package CONTROLPAC3 and the task type another position. The controller is

CONTROLLER-TASK are provided at the end sent discrete time poles that

of this section. Consider now the main correspond to continuous poles at 10 +/

procedure that utilizes these packages 10i discretized at 0.05 seconds. The

and actually conducts the simulation. job of the identifier is to determine
the transfer function parameters each

SIMULATION time one is injected. The control has

The main procedure is SIMU3: the responsibility of regulating the
system about the reference point.

with The results are shown in the

CALENDAR,MATFLOATPLANTCONTROLPAC3; following graphs. Notice that control

use response is well behaved despite the

CALENDAR,MATFLOAT,PLANT,CONTROLPAC3; changes in plant. This means that the
desired closed loop system is at work.

procedure SIMU3 is The parameters al and a2 converge

ORDER s constant INTEGER : 2; nicely to their respective values

N a constant INTEGER 41 exponentially. Once there they lock on

PROCESS : MOTORPOINTER 2- new to their values and hold until the

MOTOR TASK; plant is changed again. The parameters

CONTROLLER t CONTROLLERPOINTER t= bl and b2 are not as well behaved but

new CONTROLLERTASK; do eventually lock onto the correct
D ROW-POINTER :- now values. The wild transient behavior of

ROW_VECTOR'(1.0,-1.066,0.3688); these parameter is not as significant

-- pole placement transfer fnc. when the range of actual values is
considered. Of course this is

-- system transfer functions simulation, results in a stochastic

NO LOAD : COL POINTER := new environment would not be as impressive.

COLVECTOR'(-1.6,0.6,0.002,0.O01); The controlling input contains slight

WITH LOAD t COL POINTER s- new oscillations but is well behaved

COLVECTOR'(-1.8,0.8,0.003,0.002); overall.

begin For completeness the main loop of the

PROCESS.PARAMETERS(NOLOAD); controller is shown below:

CONTROLLER. MO! OR T AME(CPROCESS1
CONTROLLER.GAINS(POLES => D); package body CONTROL_PAC3 is

CONTROLLER.REFERENCE(I.5); task body CONTROLLER_TASK is
ORDER t constant INTEGER := 2;

delay 15.01 THETAHAT t COLPOINTER;
Yk :COL POINTER :- new

PROCESS.PARAMETERS(WITHLOAD); COLVECTOR (1..ORDER -> 0.0);

CONTROLLER.REFERENCE(O.O); Ym aCOLPOINTER :- new COLVECTOR'
(1..(ORDER+I) => 0.0);

delay 15.0; D i ROWPOINTER;
al,ae,bl,b2 : M_ELEMENT to 0.0;

PROCESS.PARAMETERS(NOLOAD); NUMERATOR s MELEMENT t- 0.0;

CONTROLLER.REFERENCE(I.0); Yk1,Ukl M_ELEMENT s= 0.0;
IDENT : IDENTIFIER;

delay 15.0; MOTOR : MOTORPOINTER;

abort CONTROLLER.all,PROCESS.all; begin

end SIMU3; accept MOTORNAME(M a in
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MOTOR POINTER) do over standard real time operating
MOTOR :- M; system constructs because it is much

end MOTORNAME; easier to use and less prone to
mistakes. These effects can combine to

accept GAINS(POLES : in produce a software product that is

ROW-POINTER) do reasonably dependable, maintainable,
D :- POLES; and reuseable over time.

end GAINS; The language does have several

IDENT.SYSTEMORDER(ORDER); drawbacks. One is the lack of any

loop mechanism to provide for quick task

select context switching. Slices, although

accept REFERENCE( R a in defined within the language as one-

MELEMENT) do dimensional arrays formed as a sequence

Ym.all := (Ym'RANGE -> R); of consecutive components of another
end REFERENCE; one-dimensional array slices, do not

else allow for the use of slices within

null; arithmetic expressions. This severely

end select; limits the usefulness of the convenient
matrix and vector notation possible

IDENT.DATA_ IN(Ukl,Ykl); within the language since ranges within

delay 0.05; -- sample delay an array can not be used. Strong typing
IDENT.PARAMETERSOUT(THETAHAT); for the programmer is a mixed blessing

that sometimes saves a program, but,
al 2= THETA HAT(l); often serves as nuisance. There is no

a2 : THETAHAT(2); ability to define procedure types as
bl THETA HAT(3); there is in MODULA2. Ada programs tend

b2 2= THETA HAT(4); to be larger than similar programs
MOTOR.SAMPLE(Ykl); developed in other languages. Finally

the large size and the complexities of

Yk(2) := Yk(l); the language make Ada compilers

Yk(l) = Ykl; extremely slow and expensive at the
present time.

NUMERATOR := D*Ym-(D(2)-a1)* Despite this long list of
Yk(1)-(D(3)-a2)*Yk(2)- b2*Ukl; complaints, many of which have quick

fixes or will be addressed in time, the

begin -- check for bl = 0.0 designers of the language seem to have

Ukl := NUMERATOR / bl; achieved what they set out to do:
exception design a language for large-scale and

when NUMERIC-ERROR => real time embedded systems. I have

Ukl I= NUMERATOR / 0.0001; tried to show that for complex control
end; applications, this high level language

is extremely well equipped. The power

if UKI > 10.0 then UK1 : 10.0; of flexible object types, the
elsif UK1 < -10.0 overloading of operators for matrix

then UK1 : -10.0; manipulation and definition of real
end if; time tasking constructs within the

MOTOR.COMMAND(Ukl); syntax of the language make Ada an

end loop; extremely attractive choice for large

end CONTROLLERTASK; real time control systems.
end CONTROLPAC3;

CONCLUSIONS

An adaptive self tuning controller
useful for robotic applications was
presented. The exercise has shown that

Ada is extremely suitable for complex
control algorithms. The overloading of
operators for matrices and vectors
allows engineers to preserve the
structure of the theoretical derivation
minimizing mistakes and significantly

speeding up the coding process.
From a tasking standpoint, the Ada

rendezvous represents a real improvement
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A GRAPHICS ORIENTED DESIGN METHODOLOGY FOR
REAL TIME CONTROL SYSTEMS USING ADA

Geoffrey C. Hingle
Steven L. Gilbert
Murat M. Tanik

Southern Methodist University
Dallas, TX 75275

Abstact five months in 1965 to 100 months for a typical

Current graphical system design methodologies Thercais arobasictflaw) inth2 de]ha.nc

do not support documentation of real-time systemThrisabicfwintedatatoea
level design decisions such as the rate of data large software based system is delivered to the
computation and the rate of inter-subsystem customer, the software in that system is an ffoff the
transmissions. We suggest extensions to a popular shelf part' that does not have further life cycle
existing graphics notation for the Ada programming costs. One is inclined to think that once the
language (Buhr diagrams [11), and demonstrate our software is built, it will always perform the same
notation's ability to clearly document data function; therefore, the only costs for a piece of
calculation and transmission rates. In addition, we software are its development costs. It is true that
extend the Buhr diagrams to include an Ada data for a particular piece of software there are no
dictionary that documents the structure of the recurring costs for maintaining the physical software
interface between two objects. The format of the package whereas hardware needs to have
data dictionary lends itself to subsystem interface components replaced when they fail. However, a
definition and coordination, which in large systems large software based system goes through many
can involve more than one corporation. TWO stages of maturity and its software has a usefulness
examples are included, the first models a cruise life time. Just like a battery in a hardware system,
control system using an original Buhr diagram, and when the system software no longer meets the needs
the second models a hypothetical radar detection of the system (changing customer requirements), it
system using our extended notation, too like a discharged battery must be replaced or

recharged.

Key Words Impressive statistics have been gathered on the
increasing costs for fixing (recharging) software

Ada, Object-Oriented Design, Computer oriented system problems throughout the system's
Aided System Design, Knowledge Based Systems life time (period of usefulness) 13,4]. This is the

classical maintenance problem and it is many times
Introduction more expensive to correct a problem after the

system is delivered. Accordingly, the thrust of
As software based systems grow in size and today's structured design methodologies as a whole

complexity, software quality and trustworthiness is the front end of the project (i. e., putting as
problems become increasingly difficult to manage. much work as possible into getting the requirements
Overruns in cost and schedule by factors of two, established before starting the design), thus taking
three, or more over original estimates are common. advantage of the tremendous cost leverage of
Serious problems can arise after the delivery of a finding problems early. However, this approach
product which are undetected during development, does not protect against changing customer
When changes to the software are required, further requirements [5].
problems arise as features unrelated to the ones
changed are inadvertently affected. Based on The software engineer and system designer need
industry estimates, DoD mission-critical software system-oriented design tools that can be used in
costs will exceed $32 billion annually by 1990, the original development as well as during the
constituting more than 10% of the annual defense maturing phases of a system's life time. These tools
budget. The current DoD trend is toward must be relatively standardized because often the
mission-critical systems that require large amounts people that did the original design of the system are
of increasingly complex software in order to meet not the people who have to upgrade/maintain these
their performance criteria. This is evident in large software based systems [6]. Formalized system
lengthening software development lead times (from design methods that lower the overall development
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cost of software based systems would serve to lessen specifications, develop code, synthesiz
the impact of changing customer requirements. prototypes, perform dynamic assessment, and
These design methods should provide a structure manage projects. When used as part of the
for the representation of system level design integrated development environment, these
requirements and coding techniques such that it is tool sets will enable engineers to create and
relatively easy to detect errors. In addition, a use libraries of reconfigurable software in
formalized design methodology would make changes the preparation of domain and application
to a software system late in its lire cycle easier and specific programs and systems. The
reduce the risk of disrupting the system operation, information processing system libraries will

be use to automatically generate requirement
In addition to the lack of system-oriented specifications and design code in specific

design tools, there is also a shortfall of between interest areas, initially process control
50,000 and 100,000 software professionals today. systems.
According to one estimate, if nothing is done to
improve the current 4% annual incremental Considering this existing state of the art in
increase in software productivity, by 1990 the developing large-scale software, we developed a set
shortfall will be nearly one million [2). of requirements for a graphics and object oriented

The severity of the software productivity sse einmtoooy
problem has become so obvious that twelve of the Requirements for a Graphics and Object Oriented
largest defense contractors in the United States have System Design Methodology
formed the Software Productivity Consortium as a
centralized research facility to develop aerospace Carpenters use nails, wood, brick, steel, etc.,
software technology. The Consortium became a to build houses. Mechanics rebuild motors using
corporation and limited partnership in September standard parts. Electrical engineers build
1985. The companies that form the Consortium microcomputers using standard chip sets.
are: Allied-Signal (Bendix Aerospace), Boeing, Mathematicians build proofs out of theorems,
Ford Aerospace, General Dynamics, Grumman, corollaries, and lemmas. These system architects all
Harris, Lockheed, Martin Marietta, McDonnel have one thing in common, that is, they build a
Douglass, Northrop, Science Applications system out of standardized parts using the tools of
International, TRW, United Technologies, and their trade. These standardized parts may have to
Vitro. be slightly modified using the tools of the trade for

each application or design. But, the common threadThe Consortium was established to create a in all of these approaches is the existence of a set
basis for a dramatic increase in software of domain specific reusable components (i.e., nails,
productivity. The products produced by the ICs, theorems), and tools for the manipulation and
consortium will exploit the following key concepts: modification of these components. The

domain-expert designer needs automated tools that
* ProtoIyning - The software prototyping tools support at least the following:

and techniques will allow the software
engineer to understand the needs of the * The entire life-cycle for development and
customer and system. The software engineer maintenance

4 will then develop solutions to these needs
with the speed and precision offered by * Communication among all levels of the
advanced automation, design/programmer/test team members

* Reusable Software - Reusable software * Guidance and help in problem analysis
involves the construction of a system from
pre-existing software components. 0 Top-down and bottom-up development

* Knowledge; Base Systemis -0 Software, hardware, and system
Knowledge- based systems capture expertise analysis/evaluation
in a series of rules. The Consortium will use
this technique to provide advanced 0 System evolution
automated assistance in project management,
requirements definition, and software Graphical systemn design notations which are
development, intended to map directly to Ada constructs are

0 Sotwae fo Sytem n~ieerig -The discussed in literature 11,31. System description
Consortium~~ ilalobid nfrtIon techniques using these notations are loosely called

procssring syste lobraiesls illabeo system design methodologies, and are intended toprocssig sstemlibaris. Tolswil be be applicable for large real-time system design. Itused to build requirements and design is important to note that in reality system design is
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far removed from the programming of a system, and A Design Methodology for Large Systems
hence the programming language. Design decisions
made at the system level require hardware, From the Strategic Defense Initiative to
software, budget, and time tradeoffs. In addition, applications as mundane as dishwasher timing logic,
the system designer must coordinate concurrent computers are used as control units for systems
designs of subsystems with multiple contractors in which interact with their environment. These
an effort to construct a deterministic (testable) systems are generally called real-time systems
system. Therefore, when considering a graphical because they are required to interact with their
system design notation it is unreasonable to restrict environments at precise times [10]. There are,
the notation to only constructs that are directly however, unique difficulties surrounding this new
relatable to programming language constructs, application of technology. Failure in sensors or
unless the program language is a true distributed actuators, devices which carry out physical tasks,
system design language. For example, time-slicing must be predicted and accounted for in the program
design is commonly employed in large real-time controlling these devices. Traditional design
systems during which data transfers (rendezvous) programming methods should be expanded and new
must take place deterministically [4,7]. This type of methods must be developed to handle the greater
requirement specification is not considered by complexity involved with real-time systems.
current graphical design notations. In order to Currently, most embedded systems are composed of
develop extensions to the graphical system design separate subsystems (i.e., embedded computing
notations suggested in [I] and [3], one needs a machines) that are controlled by a sequential
basic understanding of the constraints imposed by operational program. This sequential program
real-time systems. outputs required data to a double buffering system

The real world is very dynamic, and therefore through which the data is then transmitted to other
quite different from the environment in which subsystems at a specified transmission rate [7].

compter evlve. I aditio, ral imesysemsTherefore, data that is to be transmitted at a certain

generally have to perform several tasks at once [8]. ransissonl rauate. With esuc as protocl ash
The cruise control system in an automobile is a dtrminsicn (tebe sytem scha berdeveloped
common example of a real-time system which candeemnsi(ttal)ytmcnbeevop.
illustrate the problems associated with real-time Considering the characteristics of Ada and the
system development. Table 1 defines the I/0 defense department's requirements for the use of
requirements of a cruise control system, and Figure Ada, the basic structure of these deterministic
1 shows a data flow diagram of the system [91. The systems is likely to continue. That is, a double
Buhr diagram of this system is shown in Figure 2. buffering protocol for data to be transmitted across
It should be noticed that on this Buhr diagram subsystem boundaries will most likely be used in
timing constraints and detailed data structure are Aasses ti nieyta ietts
not incorporated (this is not currently part of the Adamusystms. Itisl ounikelytats diec tsk
notation suggested by Buhr).comncto wil curbase fth

TABLE 1 110 Requirements for a Cruise Control System

INPUTS
System on/off When on cruise control system should maintain

the speed of the car.
Engine on/off one pulse per revolution
Wheel pulse Cruise control can only function when the

engine is on.
Accelerator How far the accelerator has been pressed.
Brake Revert to manual if brake is on.
Increase/Decrease Increase or decrease speed as requested by

driver
Resume Revert from manual state to last maintained

speed.
Clock Timing pulse at a fixed interval .~

OUTPUT
Throttle Digital value for the fuel supply system.il
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non-deterministic nature of the rendezvous, and the Naviation - One subsystem will be assigned the
complications that arise when attempting to of tracking One susyst wion b s the
distribute a single program across several machines task of tracking the current location of the system.
(which is required for an inter-subsystem This subsystem will be responsible for supplying the
rendezvous). However, even if sequential program system with current positional data in a fixed
units and double buffering are used when designing format (say latitude and longitude accurate to
embedded Ada systems, each of the individual within a foot). Since most military applications
subsystems can be logically modeled as an Ada task require very fast and accurate positional
when designing large distributed systems. If such a information, this subsystem is required to transmit
model is chosen, an existing graphic design the current position 100 times per second (100
approach (i.e., Buhr) can be utilized at the system Hz). This unit will not require any input data from
design level when designing a system. This system the rest of the s.stem. P.,
model can then be directly passed to the next level Detection - One subsystem will be assigned the
of design, subsystem design, with all the task o One yem will siged theabstactonsmad atthesystm lvelincude intask of detecting the enemy radar site. This
abstractions made at the system level included in subsystem will be equipped with a sensor tunable in

the enemy radar frequency spectrum. This
Although Buhr's notation for system design can subsystem will receive positional data from the

readily be applied to the subsystem level of design, navigation unit, and if a site is detected, use this
it cannot be applied to the distributed system data to determine the location (latitude and
design that requires data calculation timing longitude) of the enemy radar. This data is required
requirements. In addition, knowledge of the at 50 Hz. In addition, this unit will receive control
structure and format of the interface is necessary. data (for frequency tuning) from the system
Therefore, we will introduce two extensions to controller at 25 Hz.
Buhr's notation to provide this necessary system - One subsystem will be assignedinformation: ggl.Cdt -Oesbytmwl easge

the task of system control, coordination, and
0 Mandatory Rendezvous Rate - this notation control of the human user interfaces. This

(see Figure 3) will be used to document the subsystem will detect subsystem failures, handle
frequency at which a subsystem, logically inter-subsystem communication, process human
modeled as an Ada task, must rendezvous at operator requests to change system parameters
a defined task interface. In effect, this (e.g., the frequency of the radar detector), and
notation will be used to indicate the desired drive the system display. Display control data from
frequency at which the data transmitted in this subsystem will be transmitted at 50 Hz.
the logical rendezvous must be updated and Detector control data will be transmitted at 25 Hz.
stored in the transmission bus buffers. The User request data from the display unit will be
requirements imposed by this notation received and processed at 25 Hz.

cannot be directly mapped to an Ada
construct, instead, these are system design D a~ &.CmtwI - One subsystem will drive a video
requirements that must be met by the display which provides the operator a window to
implementation of the entire subsystem the system. It will receive data from the detector,

the system controller, the weapon controller, andoperational program. the navigation unit to construct a dynamic display

necessary to provide the operator with sufficient
0 Ada Data Dictionary - The data dictionary situational awareness. In addition, the operator will

concept is used in methodologies that have interface with the system via this display.
been automated [111. The Ada data
dictionary (see Figure 4) is used to Wan nrol - Finally, one subsystem will be
document the contents of the interface, and assigned the task of controlling any weapons that
in our system, will also document the will be used to destroy detected radar sites. Data
structure and format of the interface Ada received from the system controller or directly form P%
types. In addition, the address of the data the navigation and detection subsystems will be
can be specified using an Ada address used to aim the weapons correctly. In addition, this
clause, and thus the data dictionary can be unit will deliver the ordinance when proper
used as the configuration control document conditions (including operator consent) are met.
for the system interface. Data transmitted to the weapon will be at 25 Hz - 6

also.
To illustrate how these two extensions can be

utilized to document system design level In this relatively complex example, the following
requirements, consider the following system that is design decisions are necessary:
used for detecting an enemy radar site and directing
a missile to that site. It is partitioned as follows:
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Called tak 'wet provide
new data every 20 Mec

new data every 20 neec

NOTE: Caller task cannot force a rendevous to occur
faster then than specified rate.

Figure 3 Mandatory Rendezvous Rate

DATA

Data Dictionary Name
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package POSITINAL -DTA is
type coordinate IS..

11 r x use at a1OYLj.
fr y use at #10263:

frz use at #l0
2
8;

end package POSITIONIPLRTIP;

Figure 4 Ada Data Dictionary
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RACE CONTROL FOR THE VALIDATION AND VERIFICATION

OF ADA MULTITASKING PROGRAMS

by

Tzilla Elrad:: Illinois Institute of Technology

Fred Maymir-Ducharme A T & T Bell Laboratories

ABSTRACT: 1. LNTRODUC(TION:

Parallel processing h:s increased the efficieney of Distributed computing environments have led to the need
concurrent programming and the conplexitv of software for nondeterministic language constructs to exploit the
analysis; but these ben.fits have cost us the luxury of available parallelism. The need then arose to control
reliably testing and debugging programs that predictably nondeterminism to increase expressive programming power.
behaved deterministicallv and sequentially. The repeated In 1] we classified these controls atnd t introduced tle

execution of a sequential program using the same input will preference control construct to further control
invariably traverse the same legs of code in the program and nondeterminisni in Ada. Parallel processing can result ii
therefore consistently produce the same results every time. programs that nondeterministically follow many different
Whereas. a concurrent program may be repeatedly run with computation paths. Tools are needed to thoroughly test
the same input and never traverse the same legs of code, and debug concurrent Ada programs. These tools must
producing different results. The additional complexity is allow users the ability to reproduce specific computation
due to the introduction of nondeterminism and parallelism, paths for debugging purposes and the reverification of
Controlling the nondeterminism in concurrent programs is results associated with tile specific set of compintation
essential in order to test and debug Ada programs. path-. Nondeterminisin make.s it virtually itnpooil,

Testing and debugging real-time systems in Ada. using efficiently tests all of the possible cot)putation piath
supplementary tools, can be very difficult and tedious. This without altering tile semantics of the prograu: in fact.
process can be greatly simplified and facilitated by the without a tool to control nondetermini-in, one cannot be
enhancement of the Ada language feature set to support assured that all possible execution paths will be computed.
testing and debugging. The preference control construct.a regardless of the number of test runs.
proposed Ada feature, can be utilized as a tool for the
testing and debugging of Ada programs. Using preference Various schemes have been proposed to deal with this
control as a testing tool to control the race amongst unpredictable program behavior. One solution entails
alternatives within a task has several advantages over some controlling the scheduler via interrupts, delays, process
of the previously suggested testing and debugging tooK priority and ordering processes in the ready queue 1.1.171 is
Preference control will have very little interference mith the very complex and requires an intimate knowledge of the
normial environnuent during testing, unlike separate testing operating system and its internals. The timing overhead
processes, clock, or monitors that 1ul51 be added to tl involved with the "alarmclock monitor" or process [19].
envirotnent and may cause bottle necks and unnecessary another proposed solution, limits its application to virtual-
timing anomalies. Our solution insures that tlie semant ii time environments; this is clearly unacceptable for real-time
of tle program are preserved and that the environment is applications which must consider real-time constraints
not disruptively altered for testing. Various situations exist %%hich are part of the decision making process. Another
that require that the testing not interfere with additional strategy consists of controlling the execution sequence of
timing constraints. The preference control construct entry calls using a monitor as a buffer 1.5]. this removes all
requires very little time overhead as a language construct. nondeterminacy. since all events with a monitor are
The possible automation of testing and debugging determiniistic: this scheme, therefore, cannot be applied to a
techniques in Ada using this construct is described and select statement with more than one accept alternative.
analyzed. Reproducing rendezvous sequences by only allowing each

entry call to be issued after the previous call has been
INDEX TERMS : distributed computing, parallel acecl,t#,d 120] also uses a atn additional task as a buffer; this
processing. Ada. multitasking, concurrent programming solution %%ill not cover the ase, when the program requires
languages. nondeterminism. preference control, race control, t%,) ( o i)r cruri\vals of' #.t r. c:lls b.t ween tmo w ol,eculti'e
availability control, testing and debugging tools. rh \'-.

I 'siut preference conrtol as a testing tool to control the rare
amugst alternatives within a task has several advantages
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over some of the previously suggested testing and debugging 2 1 1 PRI VA TE CONTROL
tools 116,22,231. Race control does not bear a significant Private control: Nondeterminism restricted by conditions
timing overhead. Preference control does not have any over variables local to the task. Private control is
effects on the runtime execution f tasks and the additional considered open if the condition is true; otherwise it is
time overhead is insignificant when compared to the closed. Private control was not intended to be allowed in
overhead associated with the addition of a monitor or
separate synchronization process; this is necessary to avoid Ada (but it can be implemented in Ada using a combination

y pof the "when" and the "delay" primitives within the selectthe maskil ; of possible -synchronization problems. Race statement.) When private control is specified for ancontrol does not restrict existing synchronization 1y alternative, it can only be chosen if it is open. Private
ignoring other entry calls, or not allowing them during control restricts the nondeterministic choice by not
testing. There are two basic approaches to controlling considering alternatives with closed private control.
nondeterminism during testing. One strategy is to control
the availability of each entry ( hereafter referred to as
availability control) . and the other strategy is to control 2 1 2 CONSENSUS CONTROL Consensus control:
the race between different entries within the same nondeterminism restricted by
nondeterministic construct (henceforth referred to a., race environmental/communication constraints. The
control.) Preference control is used to manipulate the race alternatives are restricted to only those for which the
control. communication is available from the rest of the system.

Consensus control is considered established if theWe begin with a summary of the classification of rendezvous can be established. This control can be attained
nondeterinism controls and the preference control in Ada by the use of the "accept" primitive within theconstruct. The uses of preference control construct as a secttamn.

testing and debugging tool to manipulate race control and select statement.

availability control for a distributed environment are then
described and compared to other suggested tools. A An alternative is ready if all of the controls have been
Concurrent Readers & Writers example is used to illustrate satisfied: that is. if the private control is open and/or if the
how preference control can be utilized. The automation of consensus control is established. The nondeterniinistic
testing and debugging using the preference control construct will check all of the controls in each alternative
construct is later covered, and then choose one of the ready alternatives. In many

cases, the use of the nondeterministic construct includes

2. MANIPULATING RACE AND A VAIL.4BILITY using a combination of these controls,
CONTROL FOR TESTING PURPOSES

22 RA CE CONTROL ON THE SELECTION PROCESS
Pure Nondetermnisi: an unconstrained choice from a INAD. -
finite number of alternatives. Pure nondeterministic
constructs are not sufficiently structured for todays Beyond Availabillity Control, there exists other races
concurrent programming language needs. The classification between different groups of entities and at different levels.
of controls on nondeterminism facilitates the learning and Priorities are managed and supported at the operating
understanding of nondeterministic constructs. A better system level. Other controls are exercised at the
understanding of these controls allows the programmer to programming language level. We will classify the following
become more efficient in controlling nondeterminism and controls at different levels as follows:
thereby exploiting the available parallelism to a larger I. PRIORITY CONTROL
degrees. The classifications of controls on nondetel-minism
also aids in testing and debugging by allowing the tester to Controls tie race amongst different tasks at the
explicitly specify the different execution paths desired, operating system level. In Ada. if two of more tasksusing the different controls. with different priorities are ini the ready state. thetask with the highest priority will be selected for
2 1 A AIL.4BILITY CONTROLS O.N TIlE SELECTION running.13]

PROCESS 2. PREFERENCE CONTROL
Controls the race amongst different alternatives

Iloare uses the notion of guards to denote the availability of within a task. We have classified preference control as
an alternative for selection. If all of the guards for each nondeterminism restricted by a preferential order:
alt,.ri:jie holl tirue. then one alternative i' selected preference control gives the programmer the power to
nondeteriniilstically: otherise. only the alternatives with assign preferences to the alternatives within the
true guard, are con'idered for selection. We ,,ill classifY nondeterministic construct. Each alternative inside a
this selection criteria amongst alternatives, controlled by nondeterministic construct may (but need not) have a
the state of the alternative's guard, as Availability preference value. A lower value indicates a lower
Control. Availability Control is the mechanism used to degree of urgency; the range of preferences is
enable or dis.qable each alternative's guard. thereby implementation defined. (i.e. a ready entry with a
controlling the. domain of alternatives available for selection, preference = 2 is chosen before a ready entry of
Availability Control can he further sub-divided into the preference = 1). Preference control gives
foll,,\sin2 categori-': nondeterminism a defined relational order between

alternatives.
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prof <con'tant> when <condition> -> accept <entry> ... The added complexity of testing concurrent programs is a
result of the new semantics introduced by concurrent

Figure 1. SUGGESTED SYNTAX OF THE programs. Let SEQ denote a sequential deterministic
PREFERENCE CONTROL program. The denotational semantics of SEQ is a function

CONSTRUCT IN ADA from an initial state and environment to a unique final state
and environment.

select
pref 3 when BI => accept entryl(...) Al [ SEQ Si, Ei Sf, Ef

do SI; end entryl
or WHERE:

pref 2 when B2 = > accept entry2(...)
do S2; end entry2 M is the symbol for the denotational semantics function.

or
pref 2 when B3 => accept entry3( ...) ( Si. Ei ) is the initial state and environment.

do S3; end entry3
or ( Sf. Ef ) is the final state and environment.

pref I when B4 => accept entry4(...) \Vith respect to testing and debugging SEQ. the
do S4; end entry4 denotational semantics imply that given a specific input.

end select;

Figure 2. THE PREFERENCE CONTROL I Burns 16: suggests an enhanced select statement called priority
CONSTRUCT IN A SELECT STATEMENT sl., wIch is static, but can allow the assignment of the same

preference to several alterna:ies by nesting select statements
within priority select statentents

All of the nondeterminism constraints are listed before the
entry call: first, the preference control (pref constant); the execution of SEQ will always result with same output.
followed by the private control (when < condition > =>);
and finally, the consensus control (accept <entry>). If a Let DIS denote a concurrent program. The denotational
preference is not specified, it should default to the lowest semantics of DIS is a function from an initial state and
value ( ie. if negative values for preferences are not allowed, environment to a set of final states and environments.
then default to 0 ). The same value preference can be
assigned to different entries within the same select M1[[ DIS H ( Si. Ei ) - { Sx. Ex : x = 1 ... n }
statement to allow a greater amount of nondeterminism.

\VItERE-_

There are some similar language constructs in existence.
The "cell" concept [18] allows explicit preference control { Sx, Ex : x = 1 ... n } is the set of possible final states
amongst the entries within the select statement by and environments.
attaching labels to entries and ordering the labels statically. With respect to testing and debugging DIS. the
And Occum [17] has a construct called PRI ALT, ( stands denotational semantics imply that given a specific input for
for priority alternatives ) which implements implicit static a concurrent program, the execution of DIS may have many
preference control by allowing alternative processes to be different results. Parallel processing is asynchronous and
prioritised in the order they are listed within the PRI therefore the order of actions can be different every time
ALT construct. Both Occum and Cell contain a construct the program is executed. Another reason we can expect
for static preference control, which do not allow the different results is that if nondeterministic constructs are
assignment of the same preference to more than one used, a different set of alternatives can be
alternative.' This paper specifically deals with static nondeterministically chosen each time the program is
preference control to ensure reproduceability by not executed. Multi-tasking can result in a nonpolynomial
allowing the changing of the preferencial orderings during order of different results; therefore, testing cannot be
runtime. Dynamic preference control is more applicable complete until all possible results are tested. Because of the
and powerful in the programming arena 10.10 . There exist parallelism and asynchronicity of concurrent programming
some situations in which dynamic preference control can languages, it may be impossible to produce all possible
benefit testing andt debugging: these are out of the scope of results.
this paper.

Another testing issue is that of reproducibility. If an error

8 TESTING AND DEBUGGING I..4D.4 'S is found during a run, one must be able to reproduce the

DISTRIBUTED ENVIRONMENT same error by running the exact same sequence of actions
and interaction of tasks.

Testing and debugging sequential programs is a complex
issue. Concurrent programs naturally have similar Debugging a parallel program is also more complex when
difficulties: these difficulties are out of the scope of tI6 alternatives are chosen nondeterministicall. One may wish
paper. The intent of this paper is to address some of the to debug one sequence of multi-task rendezvous and not be
specific issues which result from the added nondeterininism able to reproduce it consistently. If one is unable to "step"
and parallelism to concurrent programs. These issues ar, through the program sequentially and deterministically.
unique to concurrent programming in a distributed debugging will be nearly impossible.• : environment.
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4. TIlE TESTING AND DEBUGGING TOOL FOR ADA begin
PROJECTS loop

aelect
The repeated execution of a sequential program using the when not WRITERPRESENT =>
same input will invariably traverse the same computational accept START READ;
path in the program and therefore consistently produce the NOREADERS:- NO-READERS + 1;
same results every time. Whereas. in an ADA concurrent or
program, one may make repeated runs with the same input accept ENDREAD;
and never traverse the execution path, producing different NOREADERS:= NOREADERS - 1;
results. The additional complexity is due to the or
introduction of nondeterminism. Controlling the when not WNRITERPRESENT and
nondeterminism in ADA tasking is essential in order to test NOREADERS - 0 -=>
and debug these programs. The preference construct can accept START WRITE;
be utilized to control this race by assigning appropriate WRITER PRESENT TRUE:
values to the alternatives involved in the desired or
compiltational paths. This will not necessarily "force" the accept ENDWRITE:
desired path. but it will give it a much higher probability. WRITERPRESENT := FALSE;
The other factors that must be taken into account are end select;
environmental: they include availability controls and end loop;
synchronization. For example, assume the desired path to end RW;
be tested required that alternativee be selected from a select
alternative with : alternativel, alternative2, alternative3 package body RESOURCE is
and alternative4. Giving alternative the highest preference
would only ensure that it would be chosen if its private S: SHAREDDATA -- the shared data.
control was open and its consensus control established;
otherwise, another ready alternative would be chosen. -- the specification of task RW comes here.
Ignoring other alternatives and "forcing" alternative2 to be -- the body of task RW comes here.
chosen via a separate monitor or task is not a suggested
practice: it does not adhere to software engineering procedure READ(X: out SHAREDDATA) is
principles. Manipulating race control does not change the begin
semantics of the program: it changes the probabilities to R\V.START READ;
allow more efficient and controlled testing and debugging. X :_ S;

The preference control construct will also allow the RW.ENDREAD;
manipulation of the availability control: therefore allowing end READ:
the "forcing" the selection of specific alternatives. This is
accomplished through the assignment of pref 0 to the
alternatives other than the desired alternative. The procedure \\'RITE(X: in SHARED-DATA) is
selection of alternative2 in the latter example could have begin
been forced by assigning alternativel, alternative3 and RWV.START_WRITE;
alternativel a value of "0" preference: this instructs the S :=X:
compiler not to consider those alternatives for selection. RW.ENDWRITE;
Pref 0I has a much wider and powerrul application uthen end WRITE;
used in dynamic prference control. 10] end RESOURCE;

4 1 .4 SIMPLE EXAMPLE TESTING AND DEBUGGING
SCEN4RIO Figure 3. RW WITHOUT RACE CONTROL

Lets assume that we would like to test the following well Example 4 below has modified the body of task RW to
known example of the Readers - Writers Solution, which is illustrate the use of preference control as a testing
implemented in Ada II], mechanism.

task R\V is task body R\V wPREF is
entry START_READ;
entry ENDREAD: NO READERS: NATURAL := 0:
entry STARTWRITE: WRIITERPRESENT: BOOLEAN := FALSE:
entry ENDWRITE:

end R\: -- ADDING PRE.ERENCE CONTROL FOR TESTING

task body R\V is begin
loop

NO _EADER': NATURAL := 0: select
\\RITERPRESENT: BOOLEAN : FALSE: prelf-> a: when not WRITERPRESENT =>

accept START REA.D:
NO_READER.s NOREADERS + I:
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or I. STEP 1: Assign a preference control to each
pref-> b: alternative within the nondeterministic construct.

accept ENDREAD; 2. STEP 2: For constructs with k alternatives, the

or NOREAERS:i NO-READERS - I; preprocessor will output k! permutations of differcnt

pref-> c: when not WRITER PRESENT and preferences for the different alternatives. This should

NO-READERS - 0 -> not be an unacceptable number of permutations, since
accept STARTWRITE; k is in most cases of order three or four.

WRITERPRESENT :- TRUE; 3. STEP 3: Assign preferences to all of the necessary
or alternatives of each task one at a time, leaving the

accept END-WRITE; other tasks unchanged. This will allow better control
\WRITERPRESENT := FALSE; of the flow of the program.

end select;
end loop; 4. STEP 4: Assign preferences to all the pertinent

end RW; alternatives in each task simultaneously. This may
cause an explosion of all the possible cases. ( ie. if we

Figure 4. RW WITH RACE CONTROL have ki alternatives in task ti for i - I ... 5. we will
have ki! * k2! * k3! * k4! * k5! different sets to test.

The body of RW in example 3 was modified in example 4 to
include preference control. We assigned a preference of "a" OPTIMIZATION TECHNIQUES:

to START READ., a preference of "b" to ENDREAD, and Consider task RW in the Readers - Writers problem. The
a preference of "c" to STARTW-NRITE. You will notice semantics of the task implies that RW will never be in a
that no preference was assigned to END_\WRITE; the state in which the END WRITE alternative is ready and
justification of this decision is described in section 6. any of the other three alternatives is also ready. In other

words, END WRITE never competes with the other

4.2 RESULTS OF USING PREFERENCE AS A TESTING alternatives within the nondeterministic construct; hence,

TOOL the use of preference control on the END WRITE
alternative would not have any impact on the

The Readers - Writers Problem is very well known and has nondeterministic decision. In general, when the semantics
been studied for quite some time; therefore, the results of of a nondeterministic construct denotes that two or more
testing are also well known. We chose this example to alternatives are never ready simultaneously and therefore
demonstrate the power of using preference control as a never have to compete with each other, there is no need to
testing mechanism to reach the same results. assign preference control to those alternatives.

There are two separate problems that arise in this example:

1. CASE 1 - Starvation of the writers can occur when the 6 SEMANTIC ISSUES

readers are continuously serviced. A set of runs with One of the major difficulties of testing concurrent software
the assignment of : is that the testing procedure may itself change the
"a - 3. b - 2. c = 1" will greatly increase the semantics of the software being tested. The results then.

likelyhood of starving the writers by giving a higher may not be valid since a new variable was introduced i-tc
preference to the serving of readers, the execution of the program. Adding a special t,

2. CASE 2 - Starvation of the readers can occur when processor as a tester or a monitor must be very ca

the writers are continuously serviced. A set of runs designed so as not to interfere with the original

with the assignment of : "a = 1. b = 2. c = 3" will synchronization. The addition of preference controi
greatly increase the likelyhood of starving the readers increase the control on the nondeterministic choice
by giving a higher preference to the serving of writers, alternatives does not affect the denotational semantics of

As previously mentioned, the use of preference control will concurrent programs.

not guarantee the choosing of one alternative over the Let DIS be a concurrent program and let EXTENDED-
other; this is due to the nature of nondeterminism and the DIS be its extension with the assignment of preference
use of the other controls of nondeterminism. In this case. control for testing.
preference control was used to test different scenarios to
surface problems that may have taken many more runs to
find without the use of preference control. Ai DIS ] ( Si. Ei

5 AUTOMATING THE TESTING PROCESS M EXTENDED DIS ]]( Si. Ei) =

A preprocessor can be implemented to automate the testing S\. E\ = I ... ii

process by adding preference control to the program that is
to be tested. The preprocessor should follow the folloNsing
steps for each of the nondeterministic constructs included
in the program:
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The effect of adding preference control to a program [51 Brinch Hansen, P., "Reproducible Testing of
increases the probability of a specific result. Dynamically Monitors," Software-Practice and Experience, Vol.8,
changing the preference control will allow the programmer 1978, 721-729.
to systematically increase the probability of deriving each of
the possible results. Moreover, when an error is detected in 161 A. Burns, "Using Large Families for Handling Priority
the output of a run with a specific set of defined Requests." Ada LETTERS January, February 1987
preference,. the tester can use preference control for Vol. VII, No. 1.
debugging purposes. In this case, the tester would simply 171 T. Elrad, F. Maymir-Ducharme, "Distributed
use the same set of preferences to increase the probability of Language Design: Constructs for Controlling
traversing the same computational paths that produced the Preferences" Proceedings of the 1986 International
error. This would also allow the tester to better understand Conference on Parallel Processing, August 19 - 22,
and trace the computational paths executed during 1986.
debugging. 18] T. Elrad, F. Maymir-Ducharme "Introducing the

Executing a set of tests with the same preferences is very Preference Control Primitive: Experience with
likely to reproduce the same error during each run. This Controlling Nondeterminism in Ada", Proceedings of
can be a very powerful tool for testing and debugging. In a the 1986 Washington Ada Symposium.
distributed environment, preference control is simple, free
of side effects and a very powerful tool for the testing and [] T. Elrad, F. Maymir-Ducharme "Efficiently
debugging of parallel programs. Controlling Communication in Ada Using Preference

Control" Proceedings of the 1986 IEEE Military

Communications Conference, October 5 - 9. 1986.
7 CON CL lONV: [101 T. Elrad. F. Maymir-Ducharme "Preference Control:

Nondeterminism is a central concept and issue in modern A Language Feature for AIDA Applications."
concurrent programming languages that exploits explicit Proceedings of the 1087 Third Annual Conference on
parallelism. Controlling nondeterministism and parallelism Artificial Intelligence &- Ada, George Mason
without changing the semantics or the environment of the University, VA. October 1. - 15, 1087.
program is essential for the validation and verification ofmultitasking ADA programs. III] T. Eli-ad and N. Francez, "A Weakest Precondition

Semantics for Communicating Processes", Lecture

Simple and efficient testing and debugging tools for today's Notes in Computer Science, 13, 7 Springer-Verlag.
distributed environments are essential. The added 1982.
complexity and difficulty in testing and debugging.
introduced by concurrent programming languages, requires [12] T. Elrad, "A Practical Software Development for
nem testing tools and mcthodologie,. We suggest the Dynamic Testing of Distributed Programs".

addition of preference control to the Ada language feature Proceedings of the 1084 International Conference on

set to allow race control as a testing and debugging tool for Parallel Processing, August 1984.

distributed environments. Compared to other testing and 13] T. Elrad. "Data Dependencieq Within Distribije,
debugging tools. ra.re control appears to be the simplest and Programs". Proceedings of the Hawaii International
mcst powerful choice for testing nondeterminism. Unlike Conference on System Sciences, January 2. 1985.
other solutions, preference control does not alter the
environment by introducing a separate process for testing [141 N. Gehani. "Ada: Concurrent Programming".

and it does not change the semantics of the program. Prentice Hall. 1984.
There is no significant 'ime overhead associated with race 1151 N. (;ehani. W. Roome "Concurrent ('" ATk'T Bell
control. And race control does not restrict the system Laboratories. Mmrray lull. Ne'\\ Jersey 07.7-1, 1985.
synchronization or the state of other conditions (ie.
availability controls.) We have implemented preference P16 D rimbol, I .Lu.iai. "Debuaging Ala Tasking
control in Concurrent C. which is very similar to Ada: this Program". IEEE oftwarc, March 19,5 (Vol.2. #2)
will be covered in our next paper. An ADA pre-processor [17] D.Ileibold. D.Luckham. S.erman "Monitoring for

for adding preferences is also available. Deadlocks in Ada Tasking" Comm. ACM vol.7, 1982.
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A Monoprogramming Approach to fiost-Dased Systems

Andrea Di Maio

TXT S.p.A., Milano (Italy)

Abstract - Parallelism : the most natural way to

Two different development approaches for model them is by using concurrency;

soft real-time non-embedded Ada applica- - Size : hundreds of thousands source
tions are compared: the multiprogramming code lines, large development teams.
and the monoprogramming ones. A particular
monoprogramming design method is - Host-based : such applications can be
presented, which is based upon the Virtual regarded as embedded, but the target
Node concept and describes the system as a machines are more powerful than sim-
single Ada program. The method provides ple microprocessor-based boards. Gen-
high flexibility thanks to separation of erally they provde mass storage

design and configuration phases, and it is (disks, tapes), a general-purpose
viable for distributed systems. The operating system, and some software
approach and the support tools are briefly tools. In other words they are much

outlined, and a factory automation appli- more similar to hosts than to embed-
cation is presented. ded systems.

- Distribution : such systems are often
distributed for both reliability and

I. Introduction application-specific purposes (e.g. a
plant control system performing both

Since the very beginning, Ada was con- special device handling and statisti-
tceved for embedded real-time applca- cal report generation could use dif-

tions, typical of military environments. ferent machines to monitor special
The kind of applications Ada designers had devices and to perform statistical
in rind involved masslive software develop- computations and report generations).

mer ts and hard real-time constraints, Even if the target system is not phy-

needing both sound software engineering sically distributed, the life-spans
methodologies and run-time efficiency and of subsystems are logically different
reliability. (both batch and on-line activities

"% coex ist ).

NOw many potent ial Add users are a bit

Worried by the performances )f current Ada Potential for reuse : more than one
run-t ie systems and the language suppoirt application of the same "class" are--
_o, real-tin itself. Ada provides a par- likely to be developed; therefore
t i-'lar concurrency model based upon task- maior code reuse should be enforced.
mni|, with fi xed scheduling policies which
do seriously iffect r,-al-time constraints Many interesting examples of such applica-

handl ing. Recently such issues have been tions can be found in military and indus-
brought to light in order to, suggest to, trial environments: command, control, com-
address then during future language munication and intelligence (C31) systems,
reviews 1WRTAI 871. factory automation systems, power control

Neve~rthele.ss ther,' is a wide variety if systeris. Since the target machine confi-

adl i(ations which ran be cost -effectlVel gurat ions used for these applications are

developed in Ada. The riain features of qut e complex and powerful (as said
above), we will refer to them as host-

such applicat ion% are: based systems.

- Soft real-time const raints : they are-
rca I-t re app) i -at ions, but t he mo)st

t ime co)nstants are relat ively high.

298 6th National Conference on Ada Technology 1968



2. Development approaches Nevertheless, the most Ada compilers for
host-based systems map the whole Add pro-

While a real-time embedded application can gram onto a single O.S. process, which
be designed using a monoprogramming does not solve the problems mentioned
approach, i.e. as a single concurrent pro- above. Therefore both a design methodology
gram, using the underlying run-time sup- and proper tools are needed to support
port provided by the language, host-based monoprogramming for host-based systems.
systems are usually implemented as sets of
communicating programs, each one mapped
onto a single operating system process, 3. Virtual Nodes
which we will call Physical Node (PN).
This approach is known as multiprogram- Previous research projects on distributed
ming. system programming in Ada [Tedd et al. 84,

Dapra et al. 84] recognised that in order
The disadvantages of this approach are to develop a system which could be split
evident, into separate, possibly distributed, Com-
First of all, interface checking between municating components with the needed
different subsystems enforced by high- flexibility and efficiency, it is neces-
level languages (and in particular by Ada) sary to reflect the logical structure tf
Is lost if they communicate using operat- the distributed target at the design
ing system primitives and buffers. level.
The problem does not simply concern syn- This is particularly true for the systems
tactical aspects, but especially the we have in mind, where, from the require-
semantic of communications between subsys- ments specification phase, it is possible
tems. Typical operating systems provide a to identify different "functional nodes"
wide range of communication and synchroni- with potentially different requirements in
zation primitives: synchronous, asynchro- terms of computing resources, life-span,
nous, blocking, non-blocking, etc. This etc. In order to consider these disjoint
mainly requires a considerable initial nodes at the programming level, an
effort in defining a subset of these prim- abstraction of such nodes has to be
itives to be used within the project, defined, featuring high internal cohesion
whose output is an interface definition and low node coupling.
which strictly depends on the features of This abstraction has been defined
the basic available primitives. Moreover, Virtual Node (VN) [Tedd et al. 84, Gold-
some developers can easily overcome this sack et al. 87).
interface, by using different OS primi- VNs are not to be confused with physical
tives that are more convenient for their nodes (PN), that are target processors or
specific needs. operating system processes constituting

the running system. Mx
A major problem of the multiprogramming
approach is -low configuration flexibility. The basic idea is to allow full Ada within
The allocation of (part of) subsystems to the boundaries of virtual nodes, and to
(Ada) programs (i.e. O.S. tasks) is made constrain the communications between dif-
too early during the design process, ferent virtual nodes to follow a single
whereas it would be useful to guarantee a precise scheme.
certain degree of flexibility, in order to This attitude results into both a strut-
allow cheap reconfiguration of subsystems, turing entity at the design stage and a
due to load balancing, functional changes, quite efficient solution which reasonably
etc. bounds the overheads due to inter-node
Another consequence is decreased portabil- communication. The advantages are part ict-
ity: if the system is to be ported on dif- larIy evident for distributed systems,
ferent machines, major parts have to be where communications between remote target
reimplemented. machines are far less efficient than cor-

munications between Ada tasks running on
This influences both technical and the same machine, as they concern lower- %
managerial aspects of the project: test- speed communication means like serial
ing, quality assurance and configuratio n lines. Nevertheless this is also true for
management are affected and the overall non-distributed host-based applications of
development times and costs incrase. the kind described above: in this case

there are intra-node ,ommunications within
In order to avoid such drawbacks, the each PN belonging to the system, which are
adoption of a monoprogramming approach for handled by the Ada run-time system, arid
enginbse conct n pwr ul e r stering omtencabrtion a
host-based applications should be inter-node communications which are per- %
enforced. At present Ada is the best ,-an- formed using the primitives provided bydidate to provide all the needed features the underlying operating system. ke

(support to concurrency, softwareengineering concepts, powerful environ- Starting from the VN abstration, I t Is

ments) for monoprogramming developments. possible to define a design methodolgy
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using VNs as basic components. Since a VN b) by the application program.
is a functional abstraction, it has not to
be immediately mapped onto a PN, but this In the first case, the RTS should recog-
configuration activity can be delayed nize whether a rendezvous is remote or not
until the design of all VNs has been com- and invoke the proper operating system
pleted. Obviously it is unrealistic to primitives. This would require an integra-
assume a complete independence of the tion between the compiler and operating
iN design phase and of the configuration system greater than the most compilers
phase, as some configuration constraints provide. Furthermore, this solution is all
will often influence the design phase: for but portable.
instance a VN responsible for graphic
screen management will run on a worksta- In the second case, parts of the applica-
tion and will have visibility of the bit- tion program must be changed at both sides
mapped screen as a device, while a disk of a remote rendezvous, in order to invoke
manager VN is not likely to run on a disk- the operating system primitives. Such
less machine, and so on. changes would strictly depend on what the

OS provides, and the advantages of the
Nevertheless to enforce the separation of virtual node approach (configuration flex-
the two phases can meaningfully improve ibility, portability) would be partially
the whole development, lost.

In order to meet the requirements of The only way to achieve the objectives of
host-based systems VNs must possess cer- flexibility and portability (with respect
tain fundamental properties, like complete to both compiler and operating system)
encapsulation of their internal state requires:
(that can be only accessed through a
proper interface), lack of reference to 1) the definition of a standard communi-
shared objects, own thread of control. it cation interface (SCI) to be imple-
Is interesting to note that many of these mented for different target operating
properties are required by the object- systems;
oriented design method, which therefore is
a good candidate for VN-based develop- 2) the definition of a source-level
ments. transformation which transform each

PN (i.e. a collection of VN after the
One of the interesting features of a VN is configuration phase) into a different
that it can be completely defined in terms Ada program using SCI primitives;
of Ada concepts. In the most general case
it is the transitive closure of a pro- 3) the development of automatic tools Z
cedure in an Ada library: the units of supporting VN definition and
such closure must be compliant with a set transformation.
of composition rules which provide the VN
%ith the required properties. The first requirement consists of identi-

fying which parts of an application pro-
The composition rules are thoroughly gram are directly influenced by the under-
explained in (Goldsack et al. 871. lying operating system primitives. Surely

the non-portable part of host-based appli-
Communications between VNs are constrained cations are those concerning intern-PN
to happen via remote entrycalls. communication. The SCI should be an Ada
The interface a VN provides to other VNs package with fixed interface and semantic,
consist of an interface package containing whose body would be re-implemented for
a task which exports a set of entry calls. each different operating system.
Such entry -alls can be remotely called by eng
other VNs if the interface package is The second requirement aims to a multipro-
visible to them ("with clause,"). gramming system organization (i.e. one Ada

program for each physical node) from theThe whole application is a single Ada pro- monoprogramming one.

Wram made of many communicating 
VNs.

Nevertheless at the design stage the The third requirement is a consequence of
developer is unaware of which remote entry the previous two: if the source transfor-
calls will rely upon the operating system mation is based on a fixed interface, it
inter-process mechanisms: all he has to is likely to be automatable, which means
consider are VNs. that the final multiprogram solution is

completely invisible to the developer and
Remote rendezvous can be handled at two acts as a sort of low-level implementation
different levels: of the concepts used at the design and

configuration phase.
a) by the Ada RTS or

This approach to remote communication can
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be easily mapped onto the ISO/OSI layering
scheme: source level transformations pro-
vide the presentation and session layers,
the SCI provide the transport layer, while P1, ,, STA'NDAHD COMM -INTERFACE is

the rest is assumed to be available from I, V I-TUIIN ADDR.SS is prte;

the operating system. type HEADER TYPE is private;

I N I -N ID;

p- kai;I; CALLER IS
4. The standard interface tCr

type CAL.L PACKET is private;

type ANSWER PACKET is private;

The main requirements of the SCI are: sup- i1okage PRIMITIVES is
port for dynamic creation of ports as com- type R.F (ALLPACKET is access CALL. PACKET;

lyp, lit F-ANSWER PACKET is access ANSWERPACKET;

munication end-points, use of system- pro.,1,r,; ALLOiCATE IA: out REF CALL PACKETI;
independent names, asynchronous send and ,rocertie iEALLOCATE (A: in out REF_-ANSWER_PACKETI;

pro,.dire SEND (A: in REF CALL PACKEIl;
synchronous receive primitives, support HiI. i.,o RECEIVE IA: oiRt-SK ANSWER PACKETI;

for exceptions due to communication ,nd PRIMITIVES;
'I lLr; COSE;

failures. I ;a.Lt.r;

This requirements allows the SCI to be - AN ID;

1vj. REMITEENTRIES is 1,

a) independent of the underlying system 1%1,,. CALL PAcKET is private;

ty(C AN;WEN_ PACKET 1R: RHE.OTEFNTR1ES) is private;
b) implementable on different systems p.a,-ie CALEKE to

I . REF CALL PACKET Is ac,-ess CALL PACKET;
;;1,' RlF ANSWER PIACKET IS dCCebs ANSWER PACKET;

The SCI is presented in figure 1. It is p,'-du,-r ALLOCATE IA: out REF ANSWER _PACKE'r;

worth noting that a quite elegant object- R; in RE7)TE ENTRIESI;
rrand system-independent Ada rdi- DEALLOCATE IA; ii out REFCAI.LPACKETI;

oriented and syst m-n A,'.d.i- SEN[I (A: in REFANSWER PACKET);

representation of ports is given (a gen- ,,'.'d , RECEIVE (A: -it-EE _CALLIACNET);

eric package instance is associated to ... dur,- CL;.SE;

each port) and that the private 
part con-

tains system-dependent features (like the I yI., RTURN ADDRESS is new ADDRESSSTRCT:
address structure enforced by the operat- 17[. H.KA, ;I. l ni.- NATURAl.;

ing system). 1-1 TANAII COMM I NTERACF;

Primitives for buffer allocation and deal-
location are provided, together with non-
blocking SEND and blocking RECEIVE. Their Fig. 1: Standard Communication Interface
parameters are of generic types and are
instantiated according to the parameters In doing this, it recognizes which entry
involved in each particular transaction. calls are really r. mote after the VN-to-PN

mapping, and transforms them according to
The SCI package is relatively easy to the defined protocol.
port: it has been implemented first for The implementation of remote rendezvous is
Unix 4.2, using sockets as basic communi- very similar to that of remote procedure
cation mechanisms, and it has been ported calls (Nelson 811.
on VAX/VMS with approx. 1 man-day effort. Each callee PN is provided with an entry

port task, managing incoming calls for the
interface tasks of the VNs allocated onto

5. Tools the PN. Such task routes the call (i.e.
the operating system message) to the right

First of all, support tools are needed at addressee, by dynamically instantiating
the design stage. Since VNs are defined local agents performing the local rendez-

in Ada terms according to certain composi- vous and send the parameters back to

tion rules, it is necessary to check remote callers.

whether a given closure is a legal VN or Each remote entry call at the caller side

not. Such checks can only be performed on is transformed into a call to a procedure
correct Ada units and need a classifica- which prepares and sends the message to
tion of such units which is not provided the remote callee PN and waits for the
by the compiler. Therefore two tools, a answer (out parameters, time-out, pro-
classifier and a checker are needed [More- pagated exceptions). .'-* ,
ton 871. The first one classifies correct
Ada sources along a set of properties All data types, procedures and tasks sup-
(whether a unit declares objects, provides porting the remote rendezvous protocol are
entries in its interface, etc.). Informa- introduced by the automatic transformation
tion collected by the classifier are then tool, and rely upon the Sc. r

used by the checker that validates VNs.

The tools have been implemented in Ada and
The main role of the transformer [Moreton can be ported with limited effort: there
871 is to process source code in order to are minor well-identified portions which
create an Ada program for each PN. depend on the compiler or operating system
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features (Ada library organization, file relatively unconstrained monthly pro-
system structure). duction plans taking due dates and

plant capacity as inputs;

6. FMS: a came study - tactical planning VN: it produces
daily plans starting from the monthly

The described methodology and tools have plan and validates it using feedbacks
been developed within the DIADEM MAP pro- coming from the operation management
ject, partially funded by the Commission level (unit status, fulfillment of
of European Communities. Teatbed applica- daily plan);
tions were developed, aiming to evaluate
the effectiveness of the approach for dis- - dispatching VN: it decides when and
tributed systems. which pieces to introduce into the

More recently, the VN approach has been patacrigt h al ln

used for a real-world case study, concern- - mission manager VN: it is responsible
ing the development of a Flexible Manufac- for tool replacement on machining
turing System (FMS) software control sys- centers;
ten.

- machine handler VN: a generic VN
An FMS requires the coordination of soft- representing an abstraction of a
real tine activities performed in dif- machine (e.g. machining center, wash-
ferent cells and the implementation of ing machine, tester, warehouse, tool
optimization strategies at different 1ev- room, automatically guided vehicles)
els. Different activities are grouped and coordinating its activities
into: according to predefined policies (it

interacts with the special purpose
- a planning level, responsible for process control subsystems);

production planning and scheduling;
- task pallet VNTs: it describes the

- an operation management level, technological route of a particular
responsible for the coordination and pallet (a pallet carries either
monitoring of the whole plant in pieces which have to be processed in
order to meet production require- the same way or tools to be delivered
ments; to a given machine);

- a process control level, which is - process monitor VN: it performs plant
related to data collection and con- real-time monitoring;
trol of single production units (and
where real-time constraints can be - system monitor VN: it performs off-
considerably harder). line statistics and reports;

The case study started from the assumption - database manager VN: a database is
that at least the first two levels could needed to store all relevant informa-
meaningfully benefit by an Ada implementa- tion on the plant status;
tion, whereas the lowest level is left to
typical special-purpose machines (Pro- - user interface VN: it manages all
grammable Logic Controllers). Neverthe- user interfaces (different user lev-
less, the use of different machines (e.g. els exist from the line director to
single-board computers) could suggest the operators, each having a different
use of Ada for this level too. "view" of the controlled plant);

The case study was chosen amongst on-going The hardware system is made of four ident- ",..

developments based on the so-called FMOS ical computers, in two pairs for
(Flexible Manufacturing Operating System) reliability purposes, one essentially
approach [Corti et al. 871, that models devoted to planning activities and the
the operation management level as an other responsible for the operatLio(n
operating system, considering machines as management activities. A workstat ion or a
resources, the dispatcher as an OS personal computer can be used for graph ic
scheduler, and the pieces to be worked as 1/0.
jobs, each requiring a certain amount of
resources, described in its so-called The life-spans of all these VNs are quite
"technological route", different. User interface, machine

handlers, database manager, process mnr V
Therefore the design of the FMS resulted tor and dispatcher are always running,
into the main following VNs: whereas planning cdsse mntrrna

- strateqic planning VN: it produces spcfctm.ansyemoiorunt
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Fig. 2 Examples of VNs and PNs from the FMS case study

In the Ada VN solution, each machine "batch" VNs are assigned to different

handler VN contains an interface package PNs, in order to allow separate

providing the typical FMOS operations as activation.

entries:
- Some of the on-line VNs could be

- RESERVE: declares the need for the changed during the system lifetime:

resource; they must be designed as VNTs and
mapped onto separate PN to allow

- LOAD: asks the machine to load the their reconfiguration.
pallet carrying the piece;

- new or modified technological routes

- UNLOAD: asks the machine to unload are likely in the future: each

the pallet; task pallet VNT instance will
correspond to a a different PN, with

- WORK: asks the machine to process the lots of remote communication.
pallet;

Figure 2 shows some V~s and their interac-

- RELEASE: cancels a reservation. tions (tool management is not considered).
The dotted lines identify some PNs of a

The code of a task~pallet describes the Possible configuration: all inter-VN ('om-

technological route in terms of calls to munications representedl by arrows which

the above operations (entries), cr~oss PN boundaries are processed by the

* Different configurations are possible: 
tasomr

- Th sytemis rlatvel staic:all The Ada implementation is going to be c'om-

on-The yte s arelativpely sntoai gll pleted in a few months, but some results

on-lne ~s re roupd ito sigle can already be compared with the parallel

PN, ensuring the efficiency of industrial development (which adopts the

inter-VN communication (that would be multiprogramming approach with Pascal).

performed as local rendezvous), while
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The monoprogramming approach has improved future improvements and assessments of the
the development a lot, by providing much VN approach, supporting multiple program-
stronger interface checking, allowing a ming paradigms (including Al techniques),
more natural modelling of the whole sys- could move the break-even point ahead.
tem, giving enough flexibility to delay
many critical design decisions (like sub-
system allocation). Moreover, although 8. Acknowledgements
FMOS was already a reuse-oriented technol-
ogy, the production of reusable code has The DIADEM project provided the
been meaningfully improved, inspiration and the most material for this
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7. Conclusions [Dapra et al. 84]
A.Dapra', S.Gatti, S.Crespi-Reghizzi,

Our assumption that a monoprogramminq A.Dapra', F.Maderna, D.Belcredi, A.Natali,
approach is very effective one for host- R.A.Stammers, M.D.Tedd, "Using Ada and
based systems has been confirmed by the APSE to Support Distributed Multimicropro-
presented case study. cessor Targets, Ada Letters 111(6),

pp.57-65.
This methodology, that was originally
developed for embedded distributed system lGoldsack et al. 871
programming, turns to be a potential key S.J.Goldsack, C.Atkinson, A.Natali, A.Di
point for major improvements in future Maio, F.Maderna, T.Moreton, "Ada for Dis-
host-based developments. tributed Systems - A Library of Virtual

Nodes", Proc. Ada-Europe Conf., Stock-
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ments. First of all, the VN approach has University Press, 1987, pp. 253-265.
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OOD methods. Furthermore, the approach C.Atkinson, A.Di Maio, "Tools for the
proved to be too flat: it should be possi- Building of Distributed Ada Programs",
ble to define VN hierarchies in order to Proc. Ada-Europe Conf., Stockholm, The Ada
achieve a better structuring. Companion Series, Cambridge University
The tools are at a prototype stage, even Press, 1987, pp.266-278.
if they have been partially engineered
during the case study, and a need for [Nelson 811
stronger integration with other APSE tools B.J.Nelson, Remote Procedure Call, PhD
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been perceived by the programmers. Carnagie-Mellon University, May 1981.

There is also a more substantial objection [Tedd et al. 841
to the monoprogramming approach. Is it M.D.Tedd, S.Crespi-Reghizzi, A.Natali, Ada
really cost-effective to constrain a huge for Multi-microprocessors, The Ada Compan-
software system to be developed as a sin- ion, Series, Cambridge University Press,
gle Ada program? Actually we feel that a 1984.
break-even point exists over which the
multiprogramming approach is mandatory. [WRTAI 871
The convenience essentially depends on the "Proc. of International Workshop on Real-
nature of the system: huge, highly hetero- Time Ada Issues", Ada Letters VII(6), Fall
geneous systems are likely to require mu)- 1987.
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implementation languages for different
subsystems, whereas more integrated sys-
tems can be more effectively managed in a
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CONCURRENT PROCESSING TECHNIQUES APPLIED TO SIMPLE LINE DRAWINGS

Reginald L. Walker

Hampton University

Hampton, Virginia 23668

ABSTRACT OBJECTIVE AND GENERAL IMPLEMENTATION

Concurrent programming may change In this research, the main goal is
the underlying structure of many pro- to study the structure of the under-
gramming applications. The algorithms lying routines of several graphics pack-
are being restructured to incorporate ages and develop concurrent algorithms
the new concurrent programming tech- for selected graphics applications. The
niques. These new algorithms are initial implementation of each general
being developed by examining the se- algorithm incorporates a study of the
guence of execution for a particular subprograms that are necessary for the
application and enhancing these exe- generation of graphical images. The pro-
cution sequences by applying concur- cess is iterative and consists of the
rent programming techniques. implementation, testing, recording result-

ing execution times, and restructuring of
the programming code. The process con-
tinues until optimal execution times are
obtained for each general algorithm.

Several unique features of the Ada
language were used in the generation of
code for algorithms and device drivers.
The "package" feature was used to create
modular code and to minimize the amount
of code requiring recompliation during

INTRODUCTION the iterative search for an optimal
sequential implementation. Run-time errors

The application area chosen for were minimized through the use of the

this researchl is graphics processing; range constraint feature provided by the

in particular, the generation of line language.

drawings. This area consists of several Another feature of the Ada language
dependent and independent tasks that are used in this study was t pragma. The
used to generate different graphical used t crea t a se
images, such as the algorithms which INLINE pragma was used to create a me-
are used to generate xy-coordinates for quential program with a limited numberof external function and procedure calls.
line drawings, object transformations, This pragma causes executable file sizes
computer simulations using line draw- to increase because the actual code for
ings, etc. Ada was chosen as a pro- each function and procedure call is
gramming tool because the language eahfntonadpoedr ali
coains tl bcase tned languagent inserted where the actual subroutine call
contains language defined concurrent is located. Since the programs are exe-
programming constructs. Ada and con- cuted on a sequential machine and file
current techniques are applied to some sizes are not a constraint, this pragma
commercial and in-house application proved to be very beneficial in the exe-
algorithms. cution of the sequential implementations.

Also, this pragma strengthens the use of
modular structuring for the general algo-
rithm and the device driver. The other
construct provided by the Ada compiler is

1 ... the OPTIMIZE pragma. This pragma instr- %
This research is being funded ucts the compiler to optimize the execu-

under NASA Grant Number NAG-l-789, table code.NASA Langley Research Center.
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ENHANCEMENT OF DEVICE DRIVERS procedure TILING-EXPLORER is
begin

Concurrent programming techniques DA VISIBILITY(0);
are not limited to the concurrent imple- CLEAR DIALOG;
mentation of the algorithms, but is also DA LINES(30);
applied to the device drivers. Applying SELECT CODE(2);
concurrency to the device drivers re- end RESET;
duces the execution time required by
the graphics terminal. For sequential procedure TILINGEXPLORER IS
implementations of graphic applications, C,R,Q: integer:
the processor in the graphics terminal XY integer;
is not always adequate for the timely Z float;
execution of programs. After the imple- begin
mentation of several sequential programs SGOPEN(l);
for a variety of graphics applications, for Q in 0..4095 loop
the underlying routines for the device if Q mod 10 = 0 then
driver are studied to determine several SGUP;
concurrent implementations for each of end if;
the underlying routines. With the en- for R in 0.. 307) loop
hanced device driver, the generation X:= BETAI + GAMMA * Q;
of graphical images is faster. Y:= BETA2 + GAMMA * R;

Z:= float(ALPHA) * sin(float(X))
+ sin(float(Y)));

APPLICATION ALGORITHMS C:= FLOAT TRUNCATION(Z);
if C mod MODF = 0 then

The Tiling-Explorer Algorithm used MARKER (Q,R);
is an algorithm that generates a large end if;
variety of unpredictable patterns whirh end loop;
appear symmetrical. Due to the slow end loop;
rate of execution and image generation, SGCLOSE:
this algorithm is a good candidate for end TILINGEXPLORER;
this research. Execution of the imple-
mented algorithm varies based on the procedure CHARCONVERT is
values that are used for the paremeters begin
RES, BETAI, BETA2, GAMMA, ALPHA, and if M = 0 then
MODF. In order to perform the initial CHAR:= '0';
studies using the algorithm, the elsif M = I then
paremeters are constants during the CHAR:='I';
generation of the graphical images. elsif M = 2 then

CHAR:= '2';
The following is the Ada imple- elsif M = 3

mentation of the Tiling-Explorer Algo- CHAR:= '3';
rithm that generates the image file. elsif M = 4

CHAR:= '4';
-- Needed "WITH" statements go here. elsif M = 5 then
procedure EXPLORER is CHAR:= '5';

elsif M = 6 then
FILE NAME : string (l..6); CHAR:= '6';
COLOR, M : integer; elsif M = 7 then
CHAR : character; CHAR:= '7';
FILE PAREMETERS: file type: elsif M = 8 then
BETAL: integer : -150; CHAR:= '8';
BETA2: integer : -209; elsif M = 9 then
GAMMA: integer : 877; CHAR:= '9';
ALPHA: inteqer : 100; end if;
MODF t integer := 519; end CHARCONVERT:

procoduro SET UP is procedure CREATE NAME is
heqin YYY,XXY: iteger;

SELECT CODE(0); beqin
DA ENABIE(l); if M . 10 thenn

DA LINES(32); CHAR CONVERT;
DA VTSIBILITY(1); FILE NAME(!):= CHAR;

end SETUP; FILE-NAME(2):
=  

'a';
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else Executable file CPU time
YYY:= M; case 1
XXY:= M mod 10; TILINGEXPIORER 1:00:01.98
M:= (M - XXY)/10;
CHAR CONVERT; case 2
FILENAME(l):= CHAR: (w/INLINE pragma)

end if;
end CREATENAME; TILINGEXPLORER 0:53:I.81

procedure TILING is case
begin (w/OPTIMIZE pragmi)

put(FILEPARAMETERS," # "); TILING EXPLORER 1:00:31.42
put(FILE PARAMETERS,M);
newline(FILE PARAMETERS); case 4
BETAI:= -150 + 2 * M; (w/ONLINE pragma and OPTIMIZE
BETA2:= -209 + 3 * M; pragma)
GAMMA:= 877 - 5 * M; TILINGEXPLORER 0:53:18.47
ALPHA:= 100 - M;
MODF := 519 - 5 * M; case 5
put(FILE_PARAMETERS,BETAI); (compiled using
put(FILE_PARAMETERS,", "); ADA/OPTIMIZE=TIME)
put(FILE_PARAMETERS,BETA2); TILING EXPLORER 1:00:13.62
put(FILE_PARAMETERS,", ");
put(FILE_PARAMETERS,GAMMA); case 6
put(FOLE PARATEMERS,", "); (w/LINE pragma and
put(FILE PARAMETERS,ALPHA); compiled using
put(FILE PARAMETERS,", "); ADA/OPTIMIZE=TIME)
put(FILE PARAMETERS,MODF); TILINGEXPLORER 0:53L18.89
new line(FILEPARAMETERS,2);

end TILING; case 7
begin (The FOR LOOP constraints were switch.

open(FILEPARAMETERS, The outer loop performed 3072
in file, inerations and the inner loop
"TILING PARAMETERS.APP"); performed 4096 interations.)

reset(FILE PARAMETERS); TILING EXPLORER 0:53:56.38
get(FILE PARAMETERS,M);
FILENAME(3..6):= ".APP";
TILING; At this point in the research, the file
CREATE NAME sizes did provided an added constraint.
create(GENERATE FILE); If the file sizes were a problem, the
setline_length(GENERATEFILE,80); optimal execution time of 53 minutes and
set pagelength(GENERATEFILE,0); 14.81 seconds could not have been
MARKER TYPE(0); achieved. It was also apparent for this
SET UP: particular graphics package, that the
COLOR:=M mod 15; OPTIMIZE pragma produced added over-
if COLOR = 0 then head in all of the implementations using

COLOR:= COLOR + 2; this pragma. In this graphics package,
elsif COLOR = 1 then there was a total of 12,682,498 function

COLOR:= 7; or procedure calls(This number includes
end if; only the user defined subroutine calls).
LINEINDEX(COLOR); In images that are more dense plots, the
TILING EXPLORER; number of subroutine calls increases.
RE SET:
close(GENERATEFILE);
reset(FILE PARAMETERS); IMPLEMENTATION ENVIRONMENT
put(FILE PARAMETERS,0);
close(FILEPARAMETERS); The implementation environment in-

end EXPLORER; cludes Tektronic Graphics Terminals 4107
and 4109, and the host computer is the

The following are execution times VAX 11 '780. The Ada compiler used in
for the TILING-EXPLORER Algorithm that this study is Digital's VAX/Ada.
was studied.
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FUTURE IMPLEMENTATIONS

The future implementation of the gra-
phics packages will be hosted by a VAX
8300 series computer using the con-
current implementations of the optimal
sequential executions as benchmark.
Future implementations may also be imple-
mented on different computer hosts and
using different programming languages.

SUMMARY

General algorithms of the type that
have been implemented in this research
provide a good introduction to the study Reginald L. Walker received the
of the impact of concurrent programming B.S. Degree in Mathematics from Morris
on the performance of graphics packages. Brown College, Atlanta, Georgia, in
A further study of this algorithm and 1981. He also holds the M.S. degree in
similar algorithms will lead to the Mathematics from Atlanta University,
implementation of concurrent programs Atlanta, Georgia, received in 1986. He is
for these simple graphics applications, presently an Instructor of Computer

Science at Hampton University, Hampton,
Virginia.
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ABSTRACT: 1. L\71? OD UCTIO.V

Emergencies and crises must be dlealt with b Iin iaeiiat eIlv nI-'ergencies andi cirises must be dealt .%ith Iimmeiidiamtely

andi gracefully by comnmunications software, and gracefully by con) Ini iic:t olls software.
Concurrent. dlist ributed environments mu ust rely on Comcurrent. distributed environ menits imist, rtl]\ oti

between processes and sornetirnes between processors. b~etween processes and~ soinetities betweeni processors.
Rlecent concurrent programmiing languages exploit thle Rlecent concurreint programming languages exploit t lii*
processing power of' parallel systerns by the use of prcsiglOx'ro aallel systems by t be use, of'
nondeterministic conist ructs. But mnilitary nondeterministic const ructs. But miilit arv
comminu nications sciltware requires strict, control of communications software requires strict conitrol of
nondeterminism in order to efficiently and immiediately nondetermninisn in ordler to efficiently and ininietiatelv
handle emergencies and crises that must be anticipated handle emergencies aiid crises that must be anticipated
and~ correct lv dealt with liAlthbough many programming and correctly dealt with. Although many programming
languages contain different controls Onliiondet erminism. languages contain different controls onl noildeterininisnl.
none contain a conist ruct equal to dynamnic preference none contain a construct. equal to dlynamic pireferenice
control [.5] [71. I)vii inlic plreference control has thle control [5] [7]. Dynamic prceeence control hias thle
flexibilitv ii( e x pressive poiwer needled by military flexibility and expressive power needied by inilit aix
commitications to best handle emiergencies andI crise's commuinications to best hanidle emergencies arid crises
at the programmiing language level. F'reference control at the programninifg language level. Preference conitrol
allow.%s the pirogranmmer to explicitly give plrefereince to allows the programmer to explicitly give preference to
thre detection of emergency sit uations and t hereby the detection of emergency situations and t hereby
responding to thle crises iiniediatelv. responding to the crises imimiedliately.

''lhis paper discusses the added explicit expressive power Dynamic preference control allows the prograxmumeur to
of using tlvnaii preference cointrol anid its many assign expressions as values to preferenices instead of
applications to mnilitary tomtuiciatioiis software. One assigning them constants: thlese preferenices tani
piossibIle example niay he a weapoii withI several dynamically change as conditions change ( e.g.
defensive and offensive operations. l)liriiig normial enmergencies or differeiit modes tof operationis
operation, the offensive operations may be given Preference control allows thre programmner to exllicitlv,
preference. But in case of anl attack. the (defensive give some alternatives within the moideterniiuitic
operations miust be given preference to help) prevent the cntut(eg h eetsacln i I. h
destruction of the weapoii. These situiationis will chau ge chance to be considered before others with a lower
dynamically and niandate that the software also change prel'erence. Rleal-tie military commmunicatilon soft ware
its prefereuices dlynamnically. reqJuires the dynamiic pldfrir'iltt (tnstruilt to hlter

control nondetermniiisiii duirinig emergeicy aiid crisis
sE O D N HAE:ituat ions. Th'Iiis contst ruic t adhie res tms twr

KEY ORDSANDPHRAES:engineering principles atnd is vey %ell suited for

Emergencies and crises requirements, military militaryv communiiicationis.
communications software. Ada, controlling Our paper conttainis soic exailes itf coniunuitelmionl
nondeterminism. parallel processing, (dynamnic sfwr eliil lnuncpeeetecti tlt
preference control. eficietly qiing etnrgilieiii trelirence ot iueto

fashioii. Fir-st, inl sect ion to, we brieflyv cover tilie
classification of ilifferetit coint rols ol tuontleteriiiisiii if)
current concuirreint progr'amimling 1:1tigiiagecs. Th'le selet
statenient, is thle uioioetermimiitic tonstriucit iii Aln.
Exampijles of thlese cotrols ill Ala nre illiistrated iii [5].b
161 aiid (71. Section thlrei' the duti isciusses t lit' need Itit.
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preference control during parallel processing, This is alternative is chosen before an open immediate
followed by a description of the syntax and semantics of alternative. None of these languages contain a
the dynamic preference control construct pref. Finally. primitive to control preferences explicitly; this led us to
in section four we describe a few applications of the implementation of the "pref" primitive, which is
dynamic preference control to hypothetical military necessary for preference control. The by and the such
software to meet emergency and crisis requirements. that constructs differ from preference control in that
An example is then illustrated and analyzed using they control choices from with an entry's queue: "pref"
software engineering principles, controls the preferences of entries and other alternatives

within the select statement. The "cell" concept 1171
2 CO.NTROL CLASSIFIC4TION. allows explicit preference control amongst the entries

a. PRIVATE ('ONTROL within the select statement by attaching labels to

Private control: nondeterniinism restricted by variables entries and ordering the labels statically.

local to the task. Private control is considered open if
the boolean expression is true: it is closed otherwise. 8 THE PREFERE'NCE CONTROL CON;TRUCT
Only alternatives with open private control are
considered for selection by the nondeterministic - 1 THE NEED FOR PREFERENCE CONTROL

construct. The extension of Ada to include static or dynamic
preference control in the nondeterministic construct.

2,2 CO.ENSE.US CONTROL the select statement, would greatly increase the
Consensus control: nondeterminism restricted by programmers' explicit expre,;sive power. Preference
environmental/communication constraints, which we control is an implementation of the Branching Wide
classify as consensus. The choices are restricted to only Horizons Principle, which is our extension of the known
those for which the communication request for the Wide Horizon Principle by N Francez and S. Yemini
entry has been queued. Consensus control is considered [9]. The Wide Horizon Principle describes the need for
established if the rendezveous can be established, a nondeterministic construct in concurrent

programming languages; whereas the Branching Wide

2.S HYBRID CONTROL Horizons Principle extends this need to include

Hybrid control: nondeterminism restricted by both preference control.

local boolean and environmental constraints ( private
control and consensus control ), which we classify as 8.1.1 THE WIDE HORIZON PRINCIPLE The Wide

hybrid control. Hybrid control is available if private Horizon Principle [9/ . "Whenever the semantics of a
control is open and consensus control is established, construct C in a language for concurrent programming

implies the delay of a process (task) executing C. C
An alternative is ready if all of the controls have been should be able to have other alternatives, and all such
satisfied; that is: if the private control is open and/or if constructs should be able to serve as alternatives to
the consensus control is established or if the hybrid each other.
control is available. The nondeterministic construct will
check all of the controls in each alternative and then E-,1a .- ,i

choose one of the ready alternatives. In our experience,

the programmer requires a combination of these three [ .... rntitiv al .1t-111 6-3 It rnwi, 4

controls when using the nondeterministic construct.

2 4 0T1ER RELATED CONSTRIUCTS

Many concurrent programming languages contain all or
some of these controls, but have never classified them.
CSP 1131 11,11 contains private, consensus and hybrid
control. Ada 1161 only allows consensus and hybrid &6-nta

control: although private control can be implemented
combining the when construct with the delay
alternative. And Concurrent C, which is based on Ada, T.1 .. FliE IRANdItLVC ll'IIDE 1ORIZO.",,
allows private, consensus and hybrid control. The by PRI.N'CIPLE The "\Vide lHorizon Principle" supplies "

construct was introduced by Andrews 121 and many alternatives to choose from nondeterministically,
Concurrent C [III] later implemented the by construct but it also allows the choosing of a less urgent
andl the such that construict. These const ructs allow alternative. \we ne(d to further control this choice by
the entry to selectively choose an entry call from the specifying the relative urgency of each alternative: this
entry queue instead of receiving the entry calls from the is accomplished via ptreference control. The Branching
queue in FIFO order. which is the default. Concurrent \Wide lorizons Principle describles the need for the
C and Ada have implicitly defined preferences built into preference control construct in concurrent programming
the language: in Concurrent C. an available accept languages.

308 6th National Conference on Ada Technology 1988

w -• -0



7'he Blranichinig Wi'de H~orizons. I'riticiple' \'ileievver t he h''l p~reference control 'onistructt sijppttrts thei
setnttics of a corist riit S. %%hii'l iii jtlttivtiits t he \%it' Brancin'i~g VWitlt Hlorizotns P'rinipjle. Staitic' preferencve
horizon prrin'ilt'. imptilies thle tlela v of S (e.g. flte lela.\ control entails assigning a c'onst ant 10iit ltit 's

ofC all otf the alternative vowitriit'ts C'inl S ). S should be statically. These vallie's (.:In hf stored :it toni i
Ale to have a rinijtt set of lt'ss jtrt'erable hoizon-;. atitl cannot cliaigt' iliig 1run1 tinlie. (Sve' t'vaiijdt. 1)

.4 aaten otebashlq ieh e:u~ 2ert;i Pritftrenict controtl slioiltl ajtjttar :is ja!rt of thle controls
.4 ~ ~ ~ ~ ~ ~ ~ O iittjiofthetlnctet'u drhiitiiprncple01 withlt tlt selct slatcmuent ( e"g.. ais

p~art of tiie e'ltr rv guard ): thlereforte it tmulst be iicic'ltl
1o% pr~feren-. alternativc2 alterratis.3 :1S aurtt asJtart of thle task hotly. A cttnjtlete giarl siotil

iclude nte e con 'tit rttl. private conthtrotl an(l
colisonsus cotttrol. Wet also chose to tXplieitl * \ si at C the

deci.sion statci 1trtferetice wit ill t lie task sjt'iival ion sitict it rii:i% be
Jtat't of thev t'equiirt'riirs. '1nti [lot li1st pait of tile
hnIrupleertat ion.

high preference .1ternativet alternative5 'Xiid'-

EAMPLEi 1I\ AD)A WlITll '1'h IE S'l'ATI1C
P~REFERENCE CONTROL PRIMITIVE-

decsinsae type urgencies is ( low. iedium. critical

-- I liese enunieratedl constants ate staticallv

'1'1('TI PRI!FRPIVI *E--YBL_ assignedl to each entry.

Before proceeding, the difference ltetw('en p)riority and1( task ('ON'HOLERl is
1treference conitrol tmulst Ito (listitiguishet]. T'he t erni pref criitical entry E.NTRYA)..):
priority is tisei to dietole a1 race amtongst tdifftertent pref miedium :entry EN'FRin__lm..):
tasks. We nieed to vt' itrol the race amongst the pref low entry ENTRYC(..4:
djfftre'rt altt'rnitiv withlint a select st atemenit in a end ('ONTROLLEAZ:
task. Thie term ltrefererce dt'totes the race atiotigst
ailterntlivs and11 differentiatets thIiis rate froni t :isk task body C'O.\'T OLLICI? is
priorities, begin

We hiave classirFil preferenrce con t rol ;i pref u rgenit: accept EN'l'R'i' _A(..) do
noritlt'ertiiitniisrii tst rictt't bY pretftrenices. jtn'tfer'riet' A'r~j'l'ON_..(..); end ENTRY __\:
tottrol gives tw he rogrartnit'r It'e power to aissign or
preferenct's to the chioice's wit hiir the noritheterri-11iiliv pref tte(liuini: accept ENR 1.)do
construct. E~achi et'try inside a notithetorniriist ic ACTrIONB(..); end ENTRY __B:
const rrit mra * (lut ruved riot) have a p~reference. which or
is a corist ant of thlit pretdiint'l su Itype pref. A lower pref low: accept NTI'((.)do
valuev intlicatcs a lower tht'gret of urgevncy: the rittgt' ttf' A(''IONC((..): end E'NTRY(?':'
1treferetices is imtplemntirtationi (lt'ititd. ( ~.a rn'd\- end select:
e-ntry with a prteferertcte 2 is chosen before a realY end loop:
tnt rN or prtefe'rencite ).end 'O'l'R0LI,'1?.

E'xtem'ntit SYtti for th lit .lh seletct ahterriativt' with I .mnfirs of lircftrrnce control cronstrliI St'ltect ttow. of
static pref: t he available :iltt'rwitives, with IiIlit' liighit'st jrt'lt're iN1cc

p re n st .4nt > w h e n ~ t ' d t r > = > a c ce p t 'cIr I It i . 5 : i t I;> ci iv tvi '

SELECT ALTERNATI.

mist con*UCS codtf =>
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I~ . D...I( PIEAE(; O.\'IWOL loop

F*xte'riied SYntax foer Owe Ai:i sclcvt %rlrnar~ti%- wih select -*Aacp NR (.d
dynamnic pe-pref pri_:acetNTI'_A.)d

pref: ACTION _A(..): end LNTIY _A;

pref <%-ari:iiei> : when <vonilion>> acceptprrroipf__reiIrfC):(
< e ntrIY > or

Exaile 5 pref pre-f -It: accept iC'fYI.)do
I1JK(T ALTIMNATI\L: ACTIIONH(..): end ELNTI{Y II

or
------ - pref pie C: accept ENTRY _((..) do

,~>~-J-~ >,~.-~AC-TION (1(..): end ENTR~Y-(:

end select:
LJ~rneiv preferec e -nmA lie-, the w~signmn (4 end loop:

hel.- o he ari.le &- we A.ah ntr, -i~ed((N ~ 1B

prference ciii re, is muct, more ;eeeerful than, static

i'reterewe- ,,ntrJ. NOTEK: (..rfpreserts a vector of values, r5Lprii I
Th.. d~at'ei~ar, ir th, p..r' of panii tio the voitiii of preferences. This (-:11 lbe rijp eirir

exaeepl, C narY 2veaid

Lxarnle 6 o give a clearer illiist rat ion of tihe prefe-rence control
(onst riot. (xarnples four arid ,vvern didi rot incle iP

I..preere" -teratieS ltenat e3private conitrol. wvhich is ioplinierited rrsiri, the when
low pefernce iieraiive alirnate.3 ontdruet . You'll notice t hat preference conitrol appears

iii both the task specification anid iii tire task body.

P'reference coro l inay sornet i res; be part of the

decisio)n stater requiirenieurts. not only part of the solution:, thierefore it
belongs iii the task specificat ion. Preference control is

- a Isko one( oif tire contromi,, oin non (let e rin is n arid belongs
- in thre t ask body, alongside the othIer controls. I leurce.

high preferene arnaii alrnti4 lr.iv2 our synt ax allows this; necessary duilcationi.

The Use of Zero Preference:

For cioniiler olrtirnrization. ilynairric preference control
also allowvs the assignmnent of "0' to an entry

decisi,,n tiateo preference variable. "pref 0:" indriicates to t*]I

criipiler t hat (tie assorciated entry sirouilii not be

E'vinpiv 7considlered for selection until the preference is changed.
I~xanrile* ~As in tire exam ple of tire "Readiers Writers I'rorleru". in

I*;AMPI; N I)A \ Wll ITHlE I)VNAMlI( which all writers tnitst be preteirlirtedun irtil thre readers
COTO f1? lll\H are through reading, tire accept writer entries can lie

e~l~l:IH I: N(IK C( )NCIHO-Lssge prf0 to discourage tire coi rler fromn

tp r*n i5i loWv ireliriri ri. i. needlessly evalurat ing thiese entries' guards until it

prelA. piref_11. puef _C becrries nreir':e

In Ii Iiii' I:e tie "prv- " vatriables (-:rrrd lmrrrrie-lly ' v Where, W'hen and How to Update Dynamic
Iw iCe--arir-d I vle- i :L.sit,1oree Illr.\% valri ru-: t icr 1ev Preference Control Variables

-- ei~rrgirr prler~rces The initialization of tire preference control variables
t ,fe~I'r~fii~)is innust bie done wvitii thre (tsk in rvrich tire select

PtSa ('NRLE isstateutrcn resides . AXfte rwardl. assignirnts to the pref %

pref Iprvi'A entry ENTRY _ x(-): variarbles mnust be doine t irrorigi tire preference

pref perLH entry ENIHTR III.. rrtodificatiiri strurcturre - pref-mod. The use of the

pe eC:e ntr CONTROLLER: pref mod structure inra Oilly appear after the body

on an accept alternative. The extended syentax for the

task body CONTRO~LLER is accept alternative is as frllis:

begin
(pref_A .pre-f .prvf_(1:

310 6th National Conference on Ada Technology 198



Example 8

pridfnod

prefinod ( <list of all pref variables> ) (<list of all pref values>

See exam ples 7 and 10)

The preference modificationi st ructutre simultaneously senses an attack, the inform ation sent by that radar
changes all of the preference variables to ensure the miust be given preference and immedi'itelv processed to
proper [referential relationship bet ween thle dleal with the crisis.
alternatives. Mlodifyin g oly% one preference variable Aohreail a eatlcmoiietin otwr

ma ntenur he intended relation of preferenices-. svmued by a military base. We wvill assume t hat
h Iis is because the value of anot her preference variable thsystem sshrdbalpeonlofifrntak.

his shste isage shnre byfse all persvnnul ofniffrendraks
may heea elatinged adlfetate prvou't trld der normal conditions, all o f the users should be

preeretia reatin o alerntivs.given equal [preference by thle systemi whtij attempting
to make phone calls. But anl emergency sit uation may

4 ( SING; DY.VAIIC PREFEREN'E' CONTROL FOR require that the system give a higher preference to
A!ILI'FIRYVSOFTIV4RE serving, the officials with the highest rank before

attempting t~o serve ot her users iii ordier to allow the

Communhnication is one of tile muost, critical anld highest level commnands to be telephoned first. Ini t his

expenisiveIs pets of dist ribIu ted soft ware: therefore, case, dyn amic preference control woulbd be necessairy to
effciet l cot rllig iitetas comuncaton s J control thle otherwise nonldt termniistic choice.

ou ot inpraic. Tee r ay osbe To better illust rate t he expressive power of the( hvtitti
out preernc conro pootiste Thlet. lats cnlle aposisitbar

a1plicat ins of preference con trol to milit ary prfrnectolosru.I-icnidraliiaY
Volmllitllicatioti software. This paper focuses on the us( weapon with several defensive anid offensive oper:ltionls.
(If dnmcpreference cont rol to satisfy emergency We will asslii that thie softw~are requirements specified

reureet.vnansadenegnve ha l oeaiosb this wevapon be cent ralizel in) oil V I

ooiliitnhiiicatiotiretlliir.nDurtng (rsrsaalol ellergelicthet lint ll olleraillns by
rqieitninediate at tentionl andl reactioni I~ th ake ~ rn iril jeaill i ffnieIleaiol

sof1tWare. A task t hat is conltinuouIlsly supporting somne nliuy be given preference. lBut n ca-se oIf anl alt tck. thle

mlilitary operations lnuist hei :illt to stopt l~inII1o defensive operations mui.st be given preference t(l 111110
:11( ltplrevenit t lie (lest rnct ioni of t lhe weapoll. Theoperation1.114 deail with any1. emiergency silit 11) ill a .a11 IIalltI th Ia

real-t ilne response timne framne. Ani embedded svs'telI situations will change dlnuiical1ynl lm(Lt
may cllntaiti a task whose reslllllsibilities inl:(1, thle software also change 'its jorefirelICies d(lvlllicalhY.

rcei1ving coo~rdinates fromt several radars and tlot tilig In thle following examuple. DI)IICSI A. Dl)FINSL It
lie results o(il a monitor for somne ot her dlefenisive or and D)EFENS C represent different defenlsive

offensive task. This task miay be required to give o[)eratiol.. Which [tot,(.t thle Wea[(oll, bv tllatoaIilo And
plreference to accepting cooroditnates from the closest calling differenit typ~es (If shividbs. v0110lt of hill 111l1X
rolars first, since they miay pose thle greatest ohigir. Iti cvrsprt et(lS(ftesK ITWA'N

hie ca:se of ati emergency, in whlichi (ote of tile rhr
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OFFENSE_A, OFFENSE B and OFFENSE( In example nine, SECRET _\EAPON simply loops
represent different offensive operations. which make forever, accepting any read) alternative
calis to weapons that use different types of secret nondeterministically. In the case of an emergency.
ammunitions. The task. SECRET \VEAlPON, makes which may require a specific defense and/or offense,
calls external to itself to increase concurrency and allow this example cannot dynamically control the
a faster response to other calls. nondeterministic choice and specify the required

alternatives for the specific crisis. Now consider the

Example 9 same example with dynamic preference control.

PART OF TillE ;E(RET EAPO.\ OFExample 10
ttITIIO T D I'.VII(' !'teEt'IE.\'('IE C.VTROL PART OF TilE SECRET WIEAPON. .OFTWARE

task SEtH T\VL WAPON is ll'T DYV4.AMIC PIREFEEN'CE' CONTROL

entry DI 'NSI : A(..): prefears is ( 4. 3. 2. 1, 0 ):
entry I) I"I iNSlII (..): E\MIC.MAENCY.D A.D B.D C.0 A.0 1,.0 (':pref vars:
entry DH-I'lNS'l_(C(..):
entry 01I'N.E_A(..): task SECRET WEAlON is
entry OFFENSE B1(..): pref EMERGENCY entry DYNAMICSTATUS 0
entry OF'E WEI(..): (A.B.C.DEF in prcf_\ars):

pref )_A : entry DEFI NSEA(..):

task body 'E(HIT WIAPON is pref D_B : entry DEF[ NFSE_B(..):

loop pref DC entry DEFENSE C(.):
select pref OA entry OFFENSE A(..):

when S111A.LDIN'EAC'UA' pref 0_B: entry OFFENSE B(..):
n . I \I pref O_C: entry OFFENSE_C(..):accept l)I"'FNSE _A(..) do end S1ECRE-T_\V"APON:

-- 'all (,r atvat e ivil A
end I)EIFENSI A task body SECRET_\\ 'AIPON is

or -- initialize preferences before entering loop
when SlII'.l) _INT.\TIP, loop

accept l)IAt'NSII..p do select
-- f:ll ,r :wtiatc -Bi It lref ECMERGEN(' : accept DY.A.lIC('_TT "S
end I"EN~I._II: (A,.IC.D,E.F : in pref_vars) do

or pref rood (EMEIRGENCY.) A.D 111) C'.
when SIIEI.l) INTA(I 0_A-()_13.0_C) :0 (AI....0(10l).I).F)

accept I)l-:N:.NSE _( 0..) do -- This eitry maintahis sole ownersil'
-- ':,11 ,' :,i,,it hi,.I ' -- for the preference on lMEI ;IEN(Y
end I)IL:EN E_( : end I)YNAMIC' STAT'S:

+ ,r or
when .\MMIiNITI()NI.I'I' V=>wenN -..... • ref I) .A : when StIILI)INTA(TA =>

accept I).EIFNSI \(..) do
-- :tll )r itiIl \V i,,l . -- call or activ'ate stlMIt A
end OFINSI. .\ end I)EI'"NSI'.\

''r 
or

when AXI.II NI>'INI \lI'I'.Il pref I)_13 : when dll.I) lNT.('IV =>accept .F.Nl. II(.. do, accept I)lNl .t( do-- ac ll or fli E \ ' ot -- call or :ctivac t .qi hhvld 11
end ()FFI. sl_ end I)I ' .I It

when .. (ININTI)N IXIsI'( > orI)_C : when SIIIFIJ) _INTA('Tc] =>
accept O"FENS1 ((.. do accept DEFENSE _C(..) do
-- :ill r ,iv t .\V i (-- ,':1ll or :ctivate shield C

end 0I H*.N'd end

else N 1 .1.: ( Ar
-- thi, void riinm at ,x j(' n it' liref ()_ : when >.I1IINITION .XI.TS .X >>

end select: A
end loop:

end :('II.T WAP\I'()N:
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accept OFFENSE_-A(..) do 5. CONVCLUI SION'
-- call or activate Weapon A Dnmcpeeec '~i l(ah i~iIt i

enorFNS~ military emergency atl crisis reqiiireinents. '[lie# a] Iid

pref O-B :when ANMMUNITIONEXISTSBJ => explicit expressive power of dynamic pref -tllo%%s tite
accet OFENSEB(.. doprogrammer to better control noiiieteriiii ill in
accep OFFESEB(.) dodistributed environment inl order to iiiuiiediately iiid

-- call or activate Weapon Befiinlhademegnesndcss.Tep~r
end OFFENSEB; efcetyhnl mrece n rs.''lpN.r(

or parallel processing can be exploited by t, ie., of'
pref O-C :when AMMNUNITIONEXISTS[C] => nondeterminlistic constructs like thle select stuitcmucl ill

acetOFFENSEC(..) do Ada. But this added power muist be loiesticatel , hv
-aept tiae epo understanding the available control,, il nonidet''riuiiiii
end call NS oratvtC\ao and extending the language to allow d1 iiaiinic prebni*, rce

else NULL; cnrl
-this avoids raising an exception Static preference control canl be imiplenmented using

-ifno alentv sray existing language constructs 11] 17 instead .f t lle
static preference con trol coinstruct. But t lf-e

end select; implementations are very complicated, amibiguouS jl
end loop: (10 not ad here to soft ware eiginhcerintg priricilI.b.

D~ynamic preference cotrol. onl thle other haul. canl'

A more intelligent and resilient program may check be implemented usingl existing languace,( construets in11
pertnen inormtionaftr ech peraionandwis to without considerade oVerheaC~d. whilch i - uej l ill

change the dynamic preference control based on that eatne apiain.Teslc htuin uitb
evaluation. For example, the OFFENSE entries could etnded to allow the( pref priniit ive. We are ciirr iii1 I 'v
have a check on the amount of ammunition rminin alo dvtiaina reoiftnceonr. (' on iij'ih i
after each firing. If the ammunition is getting low for a vllwrynai ieeec oi l 'ierui
specific entry, a higher preference could be given to the veysiiflar t d

other OFFENSE entries in order to save enough
ammunition to handle anl emergency.

A comparison of examples nine and tenl illustrates the
advantages and added programming power of the
dynamic .preference control. The lprogramniner -can 1 .- nrwFBSlnie."ocll m('Npli('itIlv express apreferential order to the alternatives 1 RAdes .1Ml ~ie. "oci j
wit hini the select statemnit and change the ord(eir Notations for ('onecuirenit I rograii ng I 9~

yntaiicahlv a~s situnations chlatnge. Under peacefull ACMI 0010-1802/83/0300o-tMb3.
c'ircum nstanie's. Oine may wvisht to be fair- and give all thle 2. C .1?.Anlrews. "Svn cliroiuiziiig Resoiirces." A( M
%lteriiat ives the ,,-lme preference to allow maintenance 'Iranls. Program nimi fig Lailgii-Age SY.tI d .. 3( )et
or testinig. But in c:Lse of an attack, a higher prefei'ence 18
could first bue giveii to the dlefe'isive' solutions until the-
opportuni ity~ arose to take thle offensive andl then give 3. C Hooch. "Software Lngiecriiig with Ii n .\h'I'Th

lli' offensive alternatives higher preference. Certain Benjami n/ C'ummings P~ublishing ('o..lJie k3~.

situiations could arise requiring that somie offensive 4. A. Burns. tLsing Large l'amillies for IIili
al~ternatives lie given higl.er preference t hain others, this Priorityv Requests," Ad(ia LE'I'I' ERS 1:ii h111:i1rv

is also possible with ulvuamic preferetuce control. Felirua;rv 1987 Vol. VII. No. 1.

5. T. 1Llrad. V. .\av ndir'Ducline. ''ltrlhut e
IEIxamiple 9, wit hout preferetnce control, cannot give ILatiguiagi' Design: *Coniisticts for ('introlm
d ifferent preferences to differt nt alternatives, as would Preferences" Proceedings oif t Ile ISM
be requiiredl in case ouf emrergencies or crises. Exanmple 10 International Conferenc(' onl Parallel P'rocessinig in
aives the programmter thle explicit. expressive powelr to tCals liui. uut1 2 9b
aussivii prefe'rencesatid therefore meet emnergenicy an(I
vrisis reuiremnueuts. T.'1. lral. IF. Mnhuiiir-Dueliarini'. ''lffie'iithv

Contrdlit Co'n it i.itou ill Ala ('sinig
Preference Controdl'. h'roceedinugs of th [Ii'V %111
1986 \lilitnirv C'oimmiunieationis ('uufverncu' tit

Moniut crevY (:iior'iin. ()u'iober -7 - t9. 1986.J,.V
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7. 1r. Brad. F. Nlnvtrir-Ducharrne "Inroditctiig thle
Preference Cont rol P~rimiiv e: Expei4nce withI Fred A. Maymir-Ducharme

CootrolingNonet rminism inAda. Pocedi igs received the 1B.S. degree in
Conrolin, oidetrmniin llAda. roeed rgs Computer Science from the

oif tho 1986 \asinvton Ada SYmoihi ill5 University of Southern California in I-W 7W

Laurel. Miaryland. Miarchr 21 - :26. 1986. 198-. and tire Ph.D. in Computer
Science from the Illinois Institute of

8.T1. Eirad. F. .Nav nir-1)-rin t, "Preference Technology in 1987. specializing itt
Coot rol: k Langua.ge Fe attire for NID)A concurrent programming languages.

Applications." Prot'(edinigs, of' thle 1 9S7 T'ii rI
Annual Conference onl Art ifiejal Invli hgonic A, 11, is currently working on research and developmntt at A T k T
Ad a. George NI :iso ii V.niv e rsi t . %A. tvIdi I I - Bel 1.aborat on'es. iii Nape rvi lie. Ill inois. fie is presently teach intg a
1I7. 1987. graduate class. "Software Engineering with Ada." at 11'I'. Ilis areas

of interest itnclude itiulti-comnput ens. pairallel priogratttlitlg arid
9.N. Firatice-(z. "S ,eiiti vriinwtic Ititirt ask iisributed p~rocessing.

('onimmtrtn':ition. (NI Tlr:minv'iori.,. V'ol. 7 No. 1.
19S.5.

10. N. (4;eiii. "Adai: C'oncturrent !'rogrrninmnr
Priinii' I~li.198-1.

if. N. (;'hani. W\. Rooitte (Coriurrent(*'Al'''
Bell1 L~aboratorites. NMurray I1fill. New% Jerse\y 0797 1.
1985.

12. M. lie nnn's ,v :ii ( C. 1). P'lotkin. ''Full Abstraict ion Tm la. poesr o
for a Siriilri. it arzil('i Prtogtraming Language"' Ti~ la. poesr oComputer Science at the Illinois
P roce inrgs Sthi Nil'( S (1079). L ectrure Niotes itt Int itte of Tech nology,. received
(Cortiputer -,irin 1. .1. ilecvar. EAd.. Sp'riniger the B.S. degree itt Computer ..

\ra.1070. Science from the I lebrew %
Vu'iiversity. the M.S. front Syracuse

13.0: ( ... Ibre. ''Cormmutnricatinig Sequiential I riiversitv in New York, arid the
Processes" ('ACN 21.S. A.\ugust 1978. Ph1.!). in C'orrput er Scene fronm

1 1. C'.A.lI. I foare. "Cornl niti nlicatinig Sequential teTciini 92

Process's ." IPrent ice H all international, f1955. 'rzilla's interests are iii concurrent prograttutning lanrguauge desitgn.

15. F. H orowit z, "Friindaroentals of Programmiing contcurrentr programiming applications, r 'sr rig and fi itmal
I~agtrges''Cormputer Science Press. 1981.veicaon

I G. .D. icli~iln. ot :ii. [eft-re nie NIannrl for the' Aiia
Pi'tiit:tniill'4, L11ig.nnaze janu11ary 1983.

17. ilberscliftz. ''(*(elI: A Distributed C'ormptring
Nl(olilarizit itt ('onicept'. 11':B Trans4. otw
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Why Strong Typing was added to DOD-STD-1838,
The Common APSE Interface Set

Robert G. Munck

The MITRE Corporation, Bedford, MA. 01730
,hunck@MITRE-Bedford.A RPA

1 Abstract
must also be available to their successors who wish to

Most current Programmer Support Environments (PSEs) rcuse or maintain thc product.

do not assign types to the pieces of data that they store The concept of an Ada Programming Support
or do so very weakly, for example through naming Environment, or APSE, was well developed in the
conventions. An effort is currently underway to "Stoneman" document [STONEMAN80]. It specifies an
upgrade DOD-STD-1838 (the CAIS) by adding strong architecture containing an identifiable interface between
typing to its data management system. "Strong typing" code having local host or operating system dependencies
in this situation is a somewhat different concept from and code that would be portable from one host to
that of programming languages, mostly because the another (see Figure I). The code implementing this
typed objects persist between executions of the system. interface is called the Kernel APSE or KAPSE. The
It is therefore necessary to support evolution of the type following text from the CAIS Reader's Guide [CAIS87]
definitions where a given tool may have to work describes the DoD effort to develop a standard for that
correctly on old and new instances of a changed type. interface:

This paper discusses the reasons strong typing is being When DoD started procuring tools for the
added; these include the need for integrity of the data Ada program, it did not rest.ict itself to
base of large programming projects, the desire to procuring individual tools. Rather, the
minimize human error and its effects, and the need of DoD embarked upon the procurement of
the DOD to move all of the information of large APSEs. Two procurements were started:
programming projects, including programs, test plans and one by the Army, called the Ada Language
data, documentation, the interrelations among the pieces System (ALS), and the other by the Air

Force, called the Ada Integratedof data, and the tools needed to manipulate the data, Environment (ALE). Unfortunately, the
from the development contractor to the maintenance interfaces provided (by) the KAPSE ...
organization or another developer. were different in these two APSEs.

Because of divergent approaches at the
The paper also gives a brief description of how typing KAPSE interface level by the ALS and
will be implemented in the revision, including an AlE contractors, a team was formed ... to
overview of the way type definitions are an explicit part define more specific KAPSE interface
of the resulting data structure, requirements. This team is the KAPSE

Interface Team (KIT) and is chaired by
(Patricia Oberndorf of the) Naval Ocean
Systems Center (NOSC), a Navy laboratory.

2 Background Added to the KIT was the KAPSE
Interface Team from Industry and
Academia (KITIA). The KIT/KITIA
(produced) DOD-STD-1838, the Military

Early in the development of the Ada(R) language, it was Standard Common Ada Programming
recognized that a computer-based programming support Support Environment (APSE) Interface Set
environment was a practical necessity for Ada (CAIS) [CAIS861.
programmers. It has subsequently become clear that
many of the promised advantages of Ada, including The KIT/KITIA also developed a requirements
reusability of code and case of maintenance, would document called the RAC (for Requirements and
require a lcvel of commonalty in the programming Criteria) [RAC86] that is in some ways a successor to
environnent similar to that of the language. The basic STONEMAN. Unlike STONEMAN, it concentrated on
reason for this is that the product of an Ada the APSE interface seen by the KAPSE and discussed
programming project is not a single executable-form the needs of a DoD standard for this interface. It called
module as was often the case with earlier projects. loudly and clearly for strong typing of the data stored in . 'r.%

Inter-related sets of source files, design documents, test an APSE. A Rationale document for the RAC [RAC871 .
plans, and many other kinds of information must also be was written to capture the discussions that led to it and
present as part of the final product. Moreover. the tools flesh out its somewhat "specification-like" style. Parts of
that the original programmers use to store and this paper are taken from that Rationale.
manipulate these files and relationships among files
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Figure 1 - System Architecture

A contractor was competitively chosen to revise the Data might include the text of a piece of program
CAIS as indicated by the RAC, experience with the source, test data, documentation, or a schedule. Data
original CAIS and other APSEs, and advances in the might also be the date a piece of test was created, the
state of the art since the work was begun. That name of the author, information as to the piece of data
revision, sometimes called CAISa, is about to enter the from which some object code was compiled, or
formal process needed to update DoD-STD-1838 to DoD- information as to which pieces of data contain other
STD-1838a; if it survives the review procedure, it should pieces of data.
become the official standard sometime in early 1989.

These requirements are met in both CAIS and CAISa by
an Entity - Relationship - Attribute (ERA) model in

3 Why Strong Typing? which entities and relationships are the nodes and edges
of a general directed graph. ("Node" and "entity" are
used interchangeably.)

The RAC section on data management begins with a
small set of terse, highly-abstract requirements that set Nodes are representations of real-world or conceptual
the stage for more specific discussions. This was done entities such as files, directories, users, processes, and
because the RAC Working Group (RACWG) of the devices; relationships are associations from one node to
KIT/KITIA wanted to state requirements independent of another (uni-directional) or between two nodes (bi-
any particular implementation, but discovered that such directional); and attributes are named elementary values
statements tended to carry very different meanings for associated with nodes or relationships. See Figure 2.
people from different specialty areas and backgrounds. Attributes may be single values, arrays, or composites of

various primitive types. _ &

3.1 Abstract Data Management Requirements A relation is a set of relationships of the same type
originating at one node -- a one-to-many association.
Each relationship in a relation has its own set of

The following are the "terse" data management attributes; there are no attributes for the relation as a
requirements. As with the RAC Rationale, requirements whole. Certain of these attributes, called keys, can be
from the RAC are printed in italics and followed by used to select individual relationships from a relation.
discussion. The reader's attention is drawn to the fact For example, the equivalent of a UNIX directory would
that most of the terse requirements are about typing in be a node with a CHILD relation of relationships that
one way or another. have a key string attribute NAME. See Figure 3.

a. There mst he a means for retaining data This is obviously an extremely flexible data structure; 'Ile
determining how to store the many kinds of data

h. There must he a way of retaining relationhip.s among associated with a programming project will be a
and propertie.i of data. demanding and complex task. The major focus of the

RAC and of the CAISa design is to add strong typing to
.There n t fe a way of operating upon data, deleting the model.

data. and creating ntew data.
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d. There shall be a means for defining certain operations of a programming project as explicit and
operations and conditions as legal, for enforcing the straight-forward as possible, while allowing them to be
definitions, and for accepting additional definitions specified on an individual, company, or project level.
of legality.

Thirdly, there is a need selectively to allow or prohibit
e. There shall be a means to describe data. and there certain operations on certain data requested by certain

shall be a means to operate upon such descriptions. users or processes. Some specific examples of the kind of
Descriptions of the data shall be distinguished from thing intended are given below.
the data described.

f. There shall be a way to develop new data descriptions
These two requirements can be summarized as requiring by inheriting (some of) the properties of existing
"typing" or "strong typing" of the data. Most "state-of- data descriptions.
the-art" procedural languages of the last decade provide
for "strong typing," including Ada, but the idea of It is desirable to be able to derive new descriptions from
applying typing to the persistent data of a file system or existing ones. This results from the observation that
data base is relatively new and requires justification. there are natural ways in which some items of data are

related to others and the conviction that the support
As discussed above, a project will have a great number mechanisms should conform to this natural "way of the
of data objects and operations on these objects. Typing world". While it is possible to develop such new
reduces the number of different operations that can be descriptions independently of the existing ones, there are
applied to a given object and the number of different many advantages to providing support for inheritance of
objects to which a given operation can apply. Without properties. If there is an orderly, supported means for
typing, the number of "meaningful" object/operation deriving such related descriptions, the process will not
combinations is a very small subset of the total number be an ad hoc one prone to the errors and problems of ad
of such combinations, in that a particular operation was hoc processes. The ability to inherit properties of the
intended to be applied only to a certain small number of descriptions also will reduce the proliferation of
objects and hence may cause unpredictable results, independent relationships and properties. Perhaps most
violations of preconditions, destruction of valuable importantly, this capability will make it easier for users
information, and in general violations of engineering and projects to tailor the data collection to their own
disciplines when applied to all others. needs and to organize the structures of their data in

natural ways.
An important aspect of data management, which is more
widely recognized as a crucial aspect of modern One of the most important aspects of the inheritance of
programming languages, is the separation of the properties of data descriptions is that this allows tools
structure and rules about data from the data itself. This which operate on an existing type to be used unchanged
concept is so widely accepted for programming on new types which are descendants or derived from
languages that it is not normally felt necessary to justify existing types. For example, we may have an editor
it; however, some of the main reasons are rehearsed here. which operates on a type "text". If we derive a new type

"Ada-source" from text, then the editor should still work
Firstly, data is not normally operated on by only one on this type, and correctly manipulate the attributes of
user, but is operated on by many users. Making its this type, although the more specialized type may have
structure and the rules about the data explicit mean that additional attributes.
the several users have a single common understanding
about the nature of the data. g. The relationships and properties of data shall be

Secondly, in any reasonable software project, there will separate from the existence of the data instances.

be a large number of different kinds of data and a large h. The descriptions of data and the instances of data
number of specific operations. The great majority of shall be separate from the tools that operate upon
the operations will "make sense' from a human them.
viewpoint only when applied to a very small number of
the kinds of data. It may not be unduly restrictive to The motivation behind these requirements is two-fold:
specify that individual operations must apply to a single (1) to establish a distinction between an item of data
kind of data. Unfortunately, a user may, by mistake or and the particular relationships in which it participates
with malice, request any operation on any piece of data. or the particular values of any of its properties and (2)
Thus typographical errors, misspellings, and other slips to establish the assertion that the information and
of the fingers or mind can result in requests to compile knowledge regarding these relationships and properties
a tape drive or sort a progress report. An important goal and their interpretation is controlled within the data
of the facilities offered by the CAIS interface is to collection and is not embedded in tools which are
minimize the effects of human fallibility by refusing to external to the collection.
perform operations that do not make sense. Specific
requirements on enforcement of legality are considered The first part asserts that the identity and persistence of
later, an item of data is distinguished from and potentially

lasts longer in time than the particular values of any of
The definitions of what is legal in a system originate its properties or relationships. That is, the values of the
entirely with the people who design and build it, the relationships and properties may change over time
system really only enforces their decisions. In most without changing the data item itself. This notion is to
software systems, the rules are complex, contradictory, be distinguished from the assertion implied in (e.) that ,"-
and largely unknown because they arc created as by- the descriptions to which the data items conform are
products or unforeseen effects of decisions about separate from the existence of the data items themselves;
efficiency, usability, or other concerns. It is a goal of both ideas are included here, and they are both
the CAIS to make the rules governing the data and important although independent of one another.
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A
The second part asserts that all knowledge of the Entities have a type; entity types might, for example,
structure of the data items is retained as data within the determine the types and number of each type of
data collection as opposed to any external tools. It may attributes and relationships required of an entity of that
always be the case that tools may ascribe some type.
additional meaning to a particular property or
relationship, but the relationships and properties of Attributes have a type; attribute types might, for
general interest are not permitted to be defined strictly example, determine the form, format, number, and range
in tools which are external to the data collection. This of values required of attributes of that type.
constitutes a decision that all information about the data
will be retained and controlled by the data collection. Relationships have a type; relationship types might, for

example, determine the types and number of the entities
participating in relationships of that type and the types

3.2 Specifics of a Typed ERA Model and number of each type of attribute required of a
relationship of that type.

The previous section presented two concepts in isolation: The CAISa designers have chosen the rather elegant
the ERA model and the need for typing of data base approach of storing typing information as a node -
objects. To combine the two, we recognize that the relationship - attribute structure in the data structure it
"objects" of the ERA model are the nodes, relationships, describes. For example, a node at a certain place in the
and attributes. We can now be somewhat less abstract in structure defines a particular node type; the attributes
discussing what typing is and what advantages it brings, that instances of that node type have are denoted by

relationships to attribute type definition nodes.
(It was found to be very difficult to arrive at a Likewise the relationships that nodes of that type may
definition of typing that satisfied more than a few have are denoted by relationships to relationship type
people for more than a few days; the RAC takes the definition nodes. See Figure 4. Obviously there must be
safe route of using a superficial definition and adding "built-in" definitions of the types used in the type
examples and further requirements.) definition structure.

TYPING An organization of entities, relationships.
and attributes in which they are partitioned
into sets. called entity ty'pes. relationship -

types. and attribute types, according to
designated type definitions. Rel

Type
Defn

Type e
Defn Type

Attribute Emanates
Reato Rel.ation

Type Terminates EmanatesFromTerminalation

.4

4.

Type (TRUEFALSE) 1AttionUiuee

(TRUEFALSE)

ValueType

Figure 4 - Type Definition Structure
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Attributes on the type definition nodes and relationships Typing is also an important help with maintaining the
specify such things as initial values, cardinality integrity of the database. For example, if the database
(minimum and maximum allowable counts), sub-ranges, management software is told that every OBJECT _CODE
and accessibility. The structure is sufficiently rich -- node must be DERIVED _FROM a SOURCECODE
and the resulting typing mechanism sufficiently node, it can enforce this. However, problems arise
powerful -- to allow project managers and individual because the data objects are "persistent;" they continue to
programmers to tailor the environment completely to exist when the programs controlling them are not active.
taste. (Note that a project manager may allow or This distinguishes typing in the environment from
prevent programmers from defining their own types by typing in a programming language. Most of these
manipulating access controls on the definition structure.) problems have to do with the possibility of changes to

type definitions while instances of those types exist.
CAIS typing therefore cannot be identical to that of

3.3 Types and Operations Ada, but should be "as close as possible" to minimize
confusion (cognitive dissonance) of tool writers.

The facilities provided by the CAIS shall enforce typing Every entity, relationship, and attribute shall have one and
by providing that all operations conform to the type only one type.
definitions.

At the time the RAC was written, two models were
The type of a thing cannot be discussed usefully in discussed: (1) every object has exactly one type and types
isolation from the functions that access the thing. These are arranged in a directed graph or (2) objects could be
functions embody the type definition, of several types. We concluded that the requirements we

wanted to express could be expressed in the two models
Typing establishes discrete sets of each of the nodes, in equivalent ways, but that it was easier to express
relationships, and attributes of the data, probably a them in the first model with this requirement (and later
relatively small number of each, and explicitly associates requirements that allow a given instance of a type to be
a (also probably small) set of operations with each. operated upon as if it were actually an instance of
These sets are called "types" and their members arc another type). The CAIS designers were allowed to adopt
"instances of that type." The effect is that the great either model and also chose the first.
mass of previously non-meaningful operation-object
pairings now have a uniform result: rejection of the It should be noticed that the RAC does not specify a
request as "illegal" with no change to any data. This has particular failure mode for a type mismatch. Consider
the following desirable effects: the following: a tool operates on nodes of a particular

type; internally, the tool "opens" the node it is to work
reduces (manages) the overall complexity of the on and updates a particular attribute defined for the
system. particular type. If the tool were given a node of an

inevitable incompatible type, it could fail at any of three times:
reduces the potential for harm of before the tool is invoked, at the time it "opens" the
human errors. node, and at the time it access the attribute. Note that
athe third failure mode depends on a mismatch in

-allows "building in" of rules that in tradiiional atiuetpntnd yei

systems were expressed in the code of tools and attribute type, not node type. 1

command procedures (and usually bypassable) or
externally as guidelines or conventions. 3.4 Rules about Type Definitions

"Typing" means that the database management software
knows what kinds of nodes are created and manipulated The CAIS type definitions shall
by the tools, what relationships there are between nodes,
and what attributes are associated with the nodes and specify the entity types and relationship types to
relationships. Because the database management which each attribute type may apply.
software has this understanding, it is able to perform
many functions that are impossible in an untyped - specify the type or types of entities that each
database like the node model of DOD-STD-1838, such as relation.ship type may' connect and the attribute

- having more freedom to choose the physical t'pes allowed for each relationship tYpe.

representation of data in the database, while -. specify the set of allowable elementarY values for
-. continuing to present data to the tools in the way each attribute type.

the tools expect to see it;

ats specify the relationshtp types arid airthtute types
allowing different tools to see diferent aspects of for each entity type.the same data nodes. For example, project " m

management tools might be interested in - permit relationship typcs that represent either
TEST STATUS and AUTHOR attributes and functional mappings (one-to-one or many-to-one) or
relationships, while configuration management relational mappings (one-to-many or many-to-
tools would be more interested in Many). IN
DERIVED FROM relationships;

altering the representation of data items to meet permit multiple distinct relationstips among the.

the needs of different processors.
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impose a lattice structure on the types which operations and tools that expect entities of the old (base)
includes inheritance of attributes, attribute value type will also accept and work correctly on entities of
ranges (possibly restricted) relationships, and the new type. The new type must therefore have the
allowed operations, same attributes and relationships that the base does, plus

any additional ones. Attribute types may have more "
These requirements are basically the result of applying restricted ranges in the new type than they did in the
the typing requirements to the entity-relationship- base, but obviously may not be less restricted or
attribute model; they establish type derinition different in any other way. The tool or operation
requirements for each of entities, relationships, and should not need any kind of recompilation or other
attributes. Their wording implies, but does not preparation to operate on the new type. A type
explicitly require, that attribute and relationship type mechanism that works in this way is said to have a
definitions be independent of the entity type definitions lattice structure. The authors of the RAC did not
that refer to them. intend that the formal mathematical definition of the

word "lattice" be used here; the CAIS designers need not
The requirement that two entities be able to be follow the formal definition. A possible restatement of
connected by more than one relationship is a practical the last bullet in the RAC text above, to eliminate the
one, based on such situations as a single user being the word "lattice," would be
"owner," 'author," and "last updater," of an Ada sourceentity., permit the derinition or new entity types whose

definitions are derived from the definition of one
The last bullet above is a major departure from the kind or more existing entity types.
of typing found in the Ada language, requiring further
discussion: To give a concrete example, there might be an node type

named "ProgressReport" that has a text attribute in a
It is clear that: (I) we must have extensibility and (2) certain format, a set of attributes, and a set of
users and projects will want to particularize the data relationships. See Figure 5. Some number of tools may
structures to their needs. Users need to be able to define
new types that are extensions of existing types, such that

SProgressReport

KrutorPR MunckPR

HartPR

Figure 5 - Inheritonce
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exist that manipulate these objects to produce considerations may require that the tool writer not have
summaries, update Pert charts, and so forth. A manager access to information not needed in performing his or
named Krutar may want to add a couple of attributes her tasks.
for data that he's particularly interested in. He should
be able to define a new type named KrutarPR such that There should be no restrictions on the creation of new
objects of that type can still be processed by the existing definitions, e.g., restrictions that could be caused by
tools and by new tools that need the new attributes, naming issues and not easily abided by the tool writer.
These new tools would not necessarily be able to process
objects of type ProgressReport. These objectives are motivated by the desire to have a

large degree of flexibility in extending the type
Another manager, Munck, might want his progress descriptions of the CAIS.
reports to include relationships to all program source
and documentation mentioned in the text, so that he can The CAISa designers have defined a Specialization
look at it easily while reading the report. He could relationship type in the type definition structure with
define a type named MunckPR that has those the following meaning:
relationships.

If type definition node B has a
Finally, because progress reports are generally kept for SpecializationOf relationship to A, B is
the life of a project and managers are not, the day may said to be a Specialization of A. This
come when manager Hart must take over for Krutar and means that B has all of the same compon-

ents as A but may place additional rcstric-
Munck. He may build new tools that operate on a tions on those components and may have
progress report type that has both Krutar's additional additional components.
attributes and Munck's additional relationships, called
HartPR. Moreover, some of his tools may have to A tool that works on instances of A will also work on
handle old objects of type NMunckPR or KrutarPR, or instances of B because the components that it needs are
even ProgressReport. available and it is unaware of B's extra components.

However, it may fail in some cases if it violates one of
It need not necessarily be invisible to the tool that it is B's extra restrictions, where the same action would not
being asked to operate on an object of a different type have been a violation for A.
than that for which it was intended; it could actively
decide whether or not to operate on an object after The relationship Specialization Of is bi-directional,
asking the CAIS whether or not the object type is with the reverse direction named -GeneralizationOf; in
derived from the original type. For example, a tool the above example, A is a Generali:ation of B. A given
written to use a particular attribute found in type type definition may be a generalization of several other
MunckPR would ask if the object is derived from that types and also a specialization of several different types.
type, indicating that the attribute is present. It would
therefore operate on objects of type MunckPR and In Figure 6, X, Y, and Z are specializations of W and Z
HartPR. is a specialization of X and Y. A tool that works on

instances of W will also work on instances of X, Y, and
z.

3.5 Type Definition

3.6 Changing Type Definitions
The CAIS shall proide facilities for defining new entity.

relationship, and attribute types.
The CAIS shall provide facilities for changing type

CAISa will include a number of pre-defined types: node definitions. These facilities musrt he controlled such that
types such as file, directory, process, user, and device; data integrity is mnaintained.
relationship types such as parent/child, owner of/owned
by, members, and includes; and attribute types such as A software engineering environment must support the
integer, float, string, and date. (Also "built-in" will be evolution of the kinds and organization of information
the components that make up the type definition that pertain to projects, in order to support the
structure.) integration of ne'.. tools and to accommodate changing

project needs. The ability to change the type definitions
As environments evolve over time and new tools get of the data has a number of implications on the CAIS
installed, it must be expected that new entity, support for data. For example, one may want to delete,
relationship, and attribute types need to be introduced, add or modify an entity attribute. Deleting an attribute
Consequently, the CAIS needs to provide facilities for in an entity type will result in the deletion of that
defining such types. Moreover, such additions must be attribute in all instances of that type. Similarly, adding
possible without impacting installed tools that are not an attribute will result in increasing the storage for,

logically affected by the change, i.e., there must not be a instances of that type with the possibility of initializing
requirement to recompile such tools or a requirement to the storage for that attribute. Modifying an attribute
restructure the existing data base as a consequence of type (i.e., changing a range constraint) will require that
such additions. all instances be checked to ensure that the values of

these instances conform to these new constraints. J.

The facilities provided by the CAIS must be such that 1 ,

there is no requirement for the tool writer to manipulate The ability to define new types through derivation is
type definitions in terms of a single overall description not sufficient to support the need to change type
of the data base. A tool writer ought to be able to definitions in that one may want to modify existing
concentrate on the subset of the typing information types that are known to a set of tools without modifying
relevant for his or her work; moreover, security the tools that use the type.
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to mandatory. requiring the CAIS to ensure that all Thc section of the RAC Rationale from which much of
entities that can bc related by this relationship in fact this material was takcn was the result of many meetings

are related, and literally thousands of ARPANet messages; now, that
the spelling and punctuation has been uniformly

In practice, it is expected that types that have been in "Americanized." it is impossible to determine the origin
existence and use for avwhile will not be changed; new of any, particular piece. Tim Lyons wrote much of the
needs will be met by creating specializations, original text and did more than most to correct the
Definitions will be chant.gd mostly when the definer is author's (or "editor's") misunderstandings. Text and
correcting a mistake in the definition. Htowever, the comments also came from Tricia Oberndorf, Frank Belz,
CAIS must still be able to handle instances of that Tony' Gargaro, Hal Ilart. Mike Horton, Jlack Kramer.
definition created before the mistake was corrected. Rudy Krutar. Dit Morse, Erhard Ploederder, Ann Reedy,

IAndy Rudmik and Edgar Sibley. Ultimately, though,many controversies were any

4 Conclusions remaining mis-statements are the fault of the author.

The general node structure of DOD-STD-1838 provides 5 References
an extremely expressive and flexible framework for
storing and manipulating the data of a programming
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7
Ada Implementation in Management Information Systems

Major Terence Fong Colonel Roy F. Busdiecker r. Martin Johnson

U.S. Army Information Systems Software Center

ABSTRACT the Information Systems Software
Center a manavement level Ada

In 9E5, the Department of the Implen;entation Group coorcimates
Army directed that Ada be adopted ,! transition to and irplementation of
the single, common computer the Ada language.
programming language for all systems.
Despite initial estimates ef high ACCOMPLISIWJJEWITS
costs, high risks, and increased
development tirmes, the Army led the Our primary goal s the
way ,ithin the Department of Defense development of all new systems as well
in the use of Ada for information as thcse existino applicaticns
systems. This paper describes the requiring 25. or more revisions in
progress of the Information Systems Ada. In order to do so, it was
Software Center towards development ot necessary to acquire Ada compilers,
new systems uti!47ing the Ada language tools, and environments for training
and identifies the challenges in and develeptient and tc obtain hands cr
achieving that goal. knowledge of Ada software engineer4 r

through participation in other Ada
prograns and Ada Beta tests.

Thus far, ix STAMI aI'e
scheduled to be devnoped using Ada.
1hese systems %r( the Standard
Installetion/Division Personnel

INTRODUCTION System-3 (SIDPEFF-3), Standard Army
Finance System Redesign

Several years ago, the Army began (STANFIVS-R), Standard Army Rote,",
development of the Combat Service Supply System-Level 2ACi2B

Support (CSS) Standard Army tlaragement (SARSS-2AC/2B), Dcpartment of the Army
Information Systes (STAMIS), to M!evements l$anavement System-Redesigr

support the critical functional areas Phase II (DAMMS-R Phase I1), Standard
of personnel, force accounting, Property Book System-Redesign
supply, transportation, maintenance, (SPBS-P), and the Combat Service
arniunition, finance, and medical. Support Corimaret and Control Systemt
STAMIS are installed cr various (CSSCS).
systems within the Sustaining Base andTheateritactical environment. SIDPERS-3 i s currently under

deelopment at Software Development

The mission for development, Center, Washington. It is a redesign
integration, testing, extension and of the Army's automated personnel
maintenance of STAMIS is the system which will replace the three
responsibility of the U. S. Army separate field personnel systeras now
Information Systems Software Center in use (Active Arry, Army Reserve and

and its five geographically dispersed National Guard) with a single system. 6

software development centers. The SIDPERS-3 will fk.lfill the personnel
integration of the Ada programning accounting and reportinS needs in the %
language has become a key element in peacetire, mobilization, and wartime

the STAIIIS modernization plan. Within environments. %
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STAkF1NS-R is a new, automated The Informaticr Systems Software
fin.rcial system being developed to Center acquired the Intermetrics
replace several existing Army Multiple Virtual Storage ( PVS) Ada
accounting systems. STANFINS-R Compile version 5.5 and the (eridian

consists of sever n:odules implemented AdaVantage S-DOS Ada Compiler Version

in two subsystems. Subsystem I 2.OA and Ada i:crkstation Environment.
contains the commercial accounts, The Intermetrics rNVS Ada Compiler has
travel I and disbursing modules. been installed at Software Development
Subhs!stem II contains the cost Centers, Washington and Ben Harrison,
accounting, general accounting, to train systems programmers and
performance measurement, program application developers and for
budget and input control modules. development of systems targeted for

large computers running MVS. The
SARSS-2AC2B is part of a family Meridian AdaVantage Ada corpler and

f SARSS systems which ill operate at Ada Workstation Ervironment werew ~the unit level, bivision and Corps. p c~e naidfet uniy

SARSS ?AC will perforr time sensitive purchased on a indefinite quantity,
suppy a t oi s , suc as latralindefinite delivery ccntract for use

supply actions, such as lateral throughout the Army. Initial copies
referral of requisitions, routing of have been installed at each of our
unfilled requisitions, and disosition software development centers and at
cf items declared excess. SARSS 28 tte United States Military Academy for
will perform less tine-sensitive integration into the course of

maragement functions such as demand int ration tere

history, demand analysis, levels instruction there.

computation, docunment history We also installed two Rational
maintenance and innuiries. Ada development environments at

UAFYS-R Phase Ii is the second Software Development Center, Ben
I I arrison. These systems will be used

phase of a two plese implementation of to develop STANFINS-R. Additional
a movements management system. It is sophisticated Ada development systems
desioned to meet the basicsohsiae Ad dvlpen syts

- tare beinc, acquired fcr each of the
transportatior automation needs iother software development centers.
theater of operations down to Divisics

level. DAMRS-R consists of several Addtionally, fourteen Sperry
modules: cargo movements; 5000/80s with the Telesoft TELeGEN I
transportatior, c:cvements address; Ada compiler and Ada proramming
contaircr and freight; recoded from dpport tools have been purchased t
the Phase I implementation, plus the support application development and
added furctions of unit movements, training requireents.
%rode operatiors, highway regulation
and inter theater; all coded in Ada. Io gain more knowledge of Ada

PBS-R provides standard, software the Information Systemrs
Software Center is participating in

automated functional procedures and tiprocesses for property accounting, the WWMMCS Information 'Ystems (WIS) ,
Joint Program Management Office (JPMO)

ecu'pient management, and asset Software Development Maintenance
reporting in both Divisional and Environment (SDME) Working Prototype
nor-Divisional units. System beta test. The SDME consists

lhe CSSCS is the CSS rode of the of Ada tools integrated into an
Army Tactical Command and Cortrol environment which supports development

System. It will automate th cof Ada software. The tools include an

collection, analysis, and distribution editor, a pretty printer, standards

of key elements of irformation from checker, document formatter,
,personnel and dical configuration management/project

funitinal smanacement tools, Ada program metric
funtionald sysemsn r. ue hSS the functions, and a reusable Ada software
battlefield commander. The CSSCS will cataloging facility. These tools are
be the key decision support system in used with the host Ada compiler
the CSS battlefield area. running on a DEC Micro VAX 11. -- .-'

To support these efforts, the To support fielding of the
Information Systems Software Center To support fid the
hasSTAMIS, the Command acquired the XDB

Data Base Management System (DES).
necessary to train our programmers and XD6 is a relational DBMS with an SQL
develop applications at each of our capability. It is the common DBMS for
software developmient centers. STANIS development and fielding and
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will operate on UNIX, MS-DOS and XENIX A su saslto hc rcue
sysedm. icompwill also p rovidea ute the embedding of a foreign syntax into

syseri. XB wll lsoproidethethe Ada program. The solution must
Departnent of the Army approved teke full advantage of IAda's strong
standard Ada S QL binding later this data typing capabilities arci allow the
year. use of Ada sensitive tcol s for

Criicl t or pimry oa ~debuggincj the appl icfation. The Army
Critcalto or pimar gol sis moving towards the oper systems

t he need for P standard development architecture c urren tl1y being def incid
methodolcey. To analyze this probhlem, hy a group of national and
a "Skunkworks" tear, vias establ ished. intern~ational standards ef forts. The

Th ojctve f hs ropar:Army plans on adopting the Portphl e

-To defirc the Information Operating System Interface Environment

Systems Soft%,?are Life Cycle Model (POSIX) as a common spec-'fication for
andth nthoolgythoua 1Hc UIX-l ike operating systens when itan tem~todloythoghwhI chbecomes ;I Federal :nformation
Amymangemnt nfomatonProcessing Standard. Critical to this

systems are to be developed, standard is the Ada lan'ouage binding
Todeie nimeiaeto POSIX. The Information System
Todfn nimdaeSoftware Center is actively

short-term solution, participating in the P1003.5 POSIX Ada
Todeir hemi adlog eriLanguage bindi1ng standareization

- T deinethemi an log trneffort; however, a full use standard
solution. 11. rot expected to be approved for two

- T deinean rerllyears . Another issue is the need for
TodeiiearcvralAda environment support tool s for

impler'ultation plan. microcomputer, minicomputer and large
- oexed h iehdooy rycomputers. Ada corapilers by
- o xtndth nthdoog Ar~ythemselves are not enough to support

wide. our software engineering rec'uirenents.

The hort term objctivs 1. 11Our next initiative will be to acquire
ThE shrt tem bjeties~~lladditional Ada prc~ramming tools for

establish a foundation for software our developnment systemis. We hope that
engirfeninO within the Commrran. Midter. c~eciv i1 ork towrdsthe SDME will provide the foundatio.

t e ri cbjecive 0 1 ork towrdsfor the development o01 a mature Aee.
commang twardefnto developme Programm~ing Support Environment. The / -

comaeothodlog dvelplln Information Systemis Software Center is %
encoineeriliig ehdlg n i also nrvestigating the feasibil ity of

*prr'~oe the brioge to 1 onr tcrii devel op ing an appl icat icr devel opment
*object i Es of inccrrorating both tool which takes full advantage of the

if o rrnti cn engireering ane software high prodluctivity 4CL technology and
erginerzin a e.por a ncer roect the portabiIi t /reusabil ity of Ada tr,

orce.Zdionl/'crpoatfrroectgenerate Ada appl ications. We are
managiement systcrs. encouraged by the information that has *

I L. iben collectrd from vendors and are
I SSUES optiriistic that 461 technology car be

Desite thee acomlismenstransferred tc Ada. Another area of
Despte t1) .S accmplshmetsconccrn is a sophisticated Adc scurce 1

several tichnool ogy gaps are h indierAig cd irr aaeet to hc
cur efftorts to field STANIS in Ada.-wi1 eerueo d oeeir
These technology i s s ues incl udA will me ree oflrr Ada codeieatier.
adoption of dt s 'rol e, eff ic ient Ada Asthr umeruAm Ada sfiaeruaplicattion s
SQL bindfig and a standard POSIX Ada gwn aI daeof tware rsaly imt t.s-
language b ind ir c,, Ada programming vl bcm irresnl irptnt

supprt ools _ or icrcoiputrsFinallyv, la&rge scal e transaction
supor tols fo miroomptesprocessing suppcrt will he a recess it

minicomputers an rd l arge computers, for Army information systems us ing%
applicatier, generators for Ada code Ada. Wtithcut s o me tvrc r;f tele-
using the teclhoology of 4th Generat'or resig nitr efcicy i
Languages, (4GL) software pcrtability/ 'Ikey to be poor and uneconomical :r
rcuslhil ity eEvelopmeflt quides andcoprsn wt ohr rramn
11 rge scalie transact

4oti processing c>guaiason Wi h ashe pr cOBCL.

st-pport. The Aca Joint Pnrram Officf Conceiitrated research and deve7 rprent
(I~jPO ) and the Software Engineering in th is area i s needed to overcome
Institute Of f ice are, wrk ing teir-ards ti eiiny

* ~~identif-ication of an Ada SQL bin~ding, hsdfiiny
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CONCLUSION

The Department of the Army i s
committed tu implementing the Ada

systems. Our accompl ishments are
growing each day, but the technology
issues identified are hindering our
efforts ar~d they must be resolved soon
in order for us to continue. To be
successful, the Department of the
Army, academia and commercial industr%
must combine their resources to
further the use cf Ada in all systems. 1ao eec ogI h xctv
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BENEFITS REALIZED FROM USING ADA,
MODERN SOFTWARE ENGINEERING PRACTICES,

AND ADVANCED ENVIRONMENTS
FOR DEVELOPING LARGE, COMPLEX SOFTWARE SYSTEMS

by Robert T. Bond, Vice-President, Marketing

Rational
1501 Salado Drive

Mountain View, California 94043

ABSTRACT emerged over the last several years that together provide a
means to control the cost, reduce the risk, and manage the

Improvements in the development of complex software complexity of developing large, complex, software-intensive
applications are being brought about through the use of systems: sound software engineering principles, powerful
Ada@, modern software engineering practices, and a'- programming languages, and advanced software develop-
vanced programming environments. This paper examines ment environments.
the need for such improvements and discusses what is
available to facilitate software development today. The
case study describes one company's experiences in con- Software Engineering Principles
fronting the need to increase dramatically their software
engineers' productivity. Simply stated, software engineering is the disciplined appli-

cation of sound principles, such as abstraction, modularity,
strong typing, and information hiding, that guide in the

SOFTWARE DEVELOPMENT CHA~jLLENGE construction of complex software systems. Civil engineer-
ing has had many centuries of growth, during which time

Systems in which software is a major component are among -through trial and error and more controlled experimen-
the most intellectually complex human endeavors. Unlike tation-a set of accepted practices emerged to guide in the
other artifacts, however, software is an intangible medium. construction of dams, roadways, bridges, and other public
Its characteristics cannot be measured precisely, short of works.
counting the lines of code in a given program or producing a
relative complexity measure. Software development in- There is a far shorter history in the computer sciences than0
volves the creation of many more products than just source in civil engineering, but experience in developing many
code itself. Therefore, for anything beyond a small system, large, complex systems during the 1 970s has led to a gen- :
the effort of a team of developers is required; this human erally well-accepted and well-founded set of disciplined ,,

factor further complicates the problem. Given the ever- methods, such as structured design and object-oriented
growing capabilities of our hardware, along with an increas- design. Such methods help to manage the complexity ofA
ing social awareness of the utility of computers, there is software development by offering a fairly rigorous process
great pressure to automate more and more applications of of software development. Related approaches such as rapid
increasing complexity. prototyping also help to reduce risk by increasing the

visibility of critical design decisions early in the lifecycle,
Indeed, the demand for software far exceeds our ability to thereby permitting early feedback to users, freedom to
supply it. As a recent study by the U.S. Department of experiment with alternative approaches, and flexibility to
Defense suggests, the demand for software is increasing at make fundamental architectural changes with minimal im-
a yearly rate of about 12%, while our net productivity is pact on the fabric of the overall design.
increasing at a rate of only 4% per year. Software devel-
opment is still an extremely labor-intensive process, and yet
the programmer labor force is growing at only 4% per year. High-Level Programming Languages

The continuing mismatch of software supply and demand Closely related to advances in software engineering is the %P
results in higher costs for developing software and main- similar progress made in the design of powerful program- ,. p

taining it over its lifetime. However, high software costs ming languages. Such languages are more than a vehicle
reflect only a part of the problem; perhaps more important for expressing implementations; they are a means of ex-
is the quality of software produced. All too often, projects pressing and enforcing our design decisions. This is espe-
exceed their budgets and schedules or fail to meet their cially true of languages such as Ada.

* expected requirements.
Ada is best viewed not just as another programming Ian-

With software increasingly becoming an important element guage but as a vehicle for the application of modern soft-
in the functioning of all complex systems, the major ware engineering principles. Furthermore, Ada has been '~

* challenge facing the world economy today, including the developed with the issues of programming-in-the-large in ~ 4
aerospace and defense sector, is the production of high- mind. With constructs such as packages, generic units, and
quality and economical software, given the constraints of tasks, the developer has at his or her disposal a rich set of
scarce human resources. Fortunately, three elements have building blocks with which to construct large software sys-
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tems. Using Ada as a design language as well as an imple- A CASE STUDY
mentation language provides a means of capturing design
decisions in a fairly rigorous way; tools then can be applied This case study shows how one company controlled cost,
to enforce these design decisions. reduced risk, and managed complexity by adopting a new

technology when faced with three new software develop-
ment projects within the same time frame. Philips Elek-

Advanced Development Environments tronikindustrier AB (PEAB), Sweden's leading developer of
command and control systems, both internationally and for

The third element that has emerged over the last several the Swedish defense services, won a contract to deliver one
years to improve the productivity of software engineers is of the largest software development projects ever under-
advanced software development environments. In the taken: the 9LV Mk3 system, an integrated C3 and weapon
CAD/CAM industry, for example, there is a growing reli- control system for three new classes of warships. The three
ance on the use of powerful integrated and interactive tools, new classes of warships are the Swedish Goteborg-class
A decade ago, common practice was to do gate-level design coastal corvette, the Danish Standard Flex 300 multirole
with only paper and pencil, committing those designs to a ship, and the Finnish Fast Patrol Boat.
breadboard to validate them. To do VLSI design today with-
out tools would be unthinkable. Using VLSI tools, a math- Because PEAB had extensive experience in developing
ematical representation of the design can be built and then command and control systems, they were well aware of the
manipulated and analyzed in a variety of sophisticated limitations of their current technology. They needed to find
ways. a technology that was robust enough to apply to the de-

velopment of the 9LV Mk3 project. In addition, PEAR]
The software industry has witnessed the beginning of a wanted the 9LV Mk3 system to be the basis for a common

similar trend. In the past few years, software development architecture that would have a very long lifecycle.

proceeded with only the most minimal bag of tools: com-

pilers, editors, debuggers, and so on. More recently, envi- PEAR had experience developing many fire control systems
ronments such as the integrated, interactive Rational in assemblyiln e d hig an guges, sucheas
EnvironmentT have been developed, giving a much more in assembly language and high-level languages, such as

seamless approach in providing a software engineering RTIJ2 and Pascal. Over a 15-year period, they had de-

environment. In the Rational Environment, for example, all veloped approximately 25 different systems that ranged in

Ada programs are retained in the more semantically rich size from 30,000 to 100,000 source lines of code (sloc). The

intermediate form, DIANA (Descriptive Intermediate At- system that PEAB had developed most recently, over a pe-

tributed Notation for Ada). All environment tools, much as riod of seven years, was a C31 system of approximately

in interactive CAD/CAM systems, work from this repre- 700,000 sloc that required 300 engineering-years for com-

sentation. For programming-in-the-small, this means that pletion.

tools are much more integrated, thus simplifying the ac-
tivities of the developer. Given a powerful representation Through their extensive development experiences, PEAR

such as DIANA, together with hardware acceleration, incre- learned that certain characteristics appeared in all their

mental compilation is possible, thus facilitating methods systems development. First, requirements always changed
such as rapid prototyping during the project lifecycle; second, there were always manyreleases of the software; and third, there were close links

Of course, software development involves much more than between software development and software management.
the activities of a single developer. For programming-in- These characteristics, along with the critical shortage of

the-large, there must be tools for configuration manage- software engineers in Sweden, led PEAR to determine that
ment and version control. There also must be mechanisms, to be competitive on future large software programs, they

such as Rational Subsystems TM , for managing multiple si- had to realize a significant improvement in software devel-
multaneous releases of a system without incurring exces- opment productivity.
sive recompilation overhead. Especially for the domain of
embedded systems, there must be host/target development PEAB began a process of evaluating new technologies. .

environments, in which powerful tools are placed on a much They wanted to evaluate the technology by applying it to an 419

larger host machine, developing code targeted for a possibly actual project that could be completed before the 9LV Mk3

bare target machine, project had to begin. After preliminary evaluations of many
technologies, PEAB decided to evaluate Ada and the Ra-

The application of these three elements leads to increased tional Environment on a project. The Rational Environ-
productivity, which in turn controls the cost of develop- ment is a comprehensive, lifecycle-oriented environment
ment. Perhaps more importantly, risk is greatly reduced integrated around the Ada language. The objective of the
through the accelerated detection of errors and the auto- Rational Environment is to provide a completely integrated
mation of design checking, which otherwise would require set of capabilities that support and encourage the use of %.
the use of scarce and error-prone human resources. In ad- good software engineering practice through powerful, inter- %

dition, these three elements help to manage the complex- active tools.
ity of developing a large, complex, software-intensive appli- *- .
cation. It is a fact that software systems are growing in PEAB chose the UndC project, a small but significant %

complexity, not decreasing. It is not possible to reduce this mobile Army command and control system, for evaluating
complexity, but with modern software engineering prac- the new technology. The UndC application involves the in-
tices, Ada, and an advanced programming environment, it tegration of high-resolution terrain maps stored on laser
is possible to manage the complexity. disk with computer-generated trajectory information. The
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The project was originally estimated to be 18,000 source
lines of code. The estimates, based on assumptions of pro-
ductivity using Ada and a conventional batch Ada compiler,
were for 74 engineering-months and a project completion
date of December 1986. Given a project start date of
August 1985, this would have resulted in a productivity
rate of 243 source lines of code per engineering-month.

The project expanded primarily because requirements were
added and because PEAB unexpectedly had to develop a
graphics subsystem. (The off-the-shelf graphics subsystem
they had planned to use became unavailable.) Also, the
project team took advantage of Ada's exception-handling
capabilities to produce a very comprehensive error-handling
system, which added to the size of the system but has
already paid off in reduced maintenance costs.

The project moved to the Rational Environment in May
1986 at the start of the greatest resource consumption, the
implementation phase. Because of the increased produc-

Figure 1. Van Used for Mobile Army Command tivity realized by using the Environment, the project was
and Control System completed on time, with only a minor addition of resources

-six engineering-months. (Actually this addition repre-
application is targeted to a DECTM MicroVAXT computer sented three developers from another project who wanted to
system mounted in a van, as shown in Figure 1. evaluate Ada and the Rational Environment for a large

proposal effort.)
The UndC project was PEAB's first Ada project with a de-
livered product. It is written entirely in Ada. PEAB's soft- The cost of the delivered system, if projected productivity
ware engineers had no previous Ada experience before had been achieved, was $2.16 million. The actual cost of
undertaking this evaluation project. the delivered system was $0.76 million. The cost savings

was $1.4 million. The acquisition cost of the R10008 was
The project began in August 1985 and was completed in $690,000, and assuming a 48-month amortization period
December 1986. The delivered code totaled 55,000 source with zero residual value, PEAB's payback on their capital
lines of Ada code. The delivered product included user's investment was 14X.
manuals, internal documentation, and a project standards
handbook. Figure 2 shows the project staffing during the Technology Evaluation Conclusions
development cycle.

PEAB was able to control costs by adopting a new tech-
nology that was built on modern software engineering prac-
tice. They were also able to reduce risk; the UndC project

9- was completed on schedule with basically no increase in
staffing. Applying better software development technology
significantly reduced the risk of this large program, even in
the face of expanded requirements._

5D Many qualitative conclusions were drawn. The team of
5 5 software engineers felt that they were better able to re-

o -spond to changing requirements. The recruiting of soft-
0 ware engineers became easier. Currently, 25-30% of thepersonnel for the 9LV Mk3 project are new employees of

PEAB. The team also felt that the quality of the completed
B C system was improved over other systems that they had

1 developed in the past. The team further concluded that
Mon:ni 8 9 10 11 12 1 2 3 4 5 6 7 8 9 1011 12 Ada supports modern design methodologies very well.

Yea, I 1985 I 1986 1 As a result of the technology evaluation project, PEAB

A Software req6,rernerts analysis determined that the technology was robust enough to be
B Design used on the large-scale, complex 9LV Mk3 program. PEAB

then renegotiated the contract with their 9LV Mk3 systemC Imnplementalion (codirg. unit test, integraton, System test) customers to use Ada and the Rational Environment on the
D Three developers from another project joined the team to project. Although Ada was originally specified for use on

evaluate Ada and the Rational Environment. Although they the system, both bidders for the contract had obtained
controu!ed to the overall estimate, their primary interest waivers; Ada had not been bid on the contract originally.
was in e~aluaton The contract had been won on the basis of using an RTIA2

Figure 2. Philips Project Staffing environment.
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The main factor behind the Ada decision was the desire to economics of medium- to large-scale projects. They have
raise programmer productivity considerably, partly through made a long-term commitment to Ada and believe that the
the power of the language but also because of the quality of language is receiving long-term support from industry.
the available development environment, the Rational Envi- From the results of their technology evaluation project and
ronment.* the productivity currently being achieved on the 9LV Mk3

project today, PEAB is confident that, with the use of
modern software engineering, Ada, and the Rational Envi-

The 9LV Mk3 System ronment, they will be able to control the cost, reduce the
risk, and manage the complexity of the 9LV Mk3 project.

The 9LV Mk3 system is a new family of shipborne weapon
control systems. PEAB is under contract to deliver the
electronics suites for three new classes of warships that are Ada is a registered trademark of the U.S. Government (Ada Joint
the first systems to be built in this new family. These three Program Office).
new classes of warships all carry considerable firepower
and can handle complex missions. As a consequence, the DEC and MicroVAX are trademarks of Digital Equipment Cor-
electronics systems must cope with the complexity of weap- poration.
on systems typical for much larger ships while still making Rational and RI00O are registered trademarks and Rational
it possible for a limited crew to control the operation of the Environment and Rational Subsystems are trademarks of
system. Rational.

The initial operating capability for the 9LV Mk3 system is Motorola is a registered trademark of Motorola, Inc.
more than 1 million source lines of code. The operational
software runs in an environment of multiple Motorola®
68020 processors. The complexity of the 9LV Mk3 system
comes from its requirement that the ships be multi-
configurable, depending on operational needs. The system Robert T. Bond has been vice-
structure must have the necessary properties of being president of marketing for Ra-
adaptable to changing demands from current customers as tional since joining the company
well as the customers for the new family of weapon control in 1983. Bob is responsible for
systems.* all aspects of national and in-

ternational sales and marketing
at Rational.

Status of the 9LV Mk3 Project Bob's background spans more
Sthan 16 years at Hewlett-Pack-
Starting with no Ada experience at the beginning of the ard Company. He was respon-
evaluation process, there are now more than 100 software sible for forming the Application
engineers working with Ada, the Rational Environment, Marketing Division for HP,
and object-oriented design. The detail design phase of the which grew, under his direction as Division General Manager, to
project is complete. The project is currently in the coding $50 million in annual revenues and 15 application centers em-
and unit-test phase. More than 100,000 source lines of code ploying more than 400 people around the world. Bob was respon-
have been developed. The productivity currently being sible for all aspects of the Division, including profit, growth,
achieved on the project is consistent with the earlier eval- productivity, and customer satisfaction.
uation project. Bob received a BS degree in Engineering at Case Institute of

Technology in Cleveland, Ohio.

CONCLUSIONS

During the past few years, the emergence of software en-
gineering practices has provided a means to control the
cost, reduce the risk, and manage the complexity of devel- 4.
oping software. Software engineering provides methodol-
ogies for large-system decomposition and abstraction. Ada ,
facilitates the use of software engineering by providing a
structure that directly captures the design of a system and
automates the control of component interfaces. Software
development environments are now available to provide au-
tomated support for the software engineering process.

PEAR's experiences show that the use of modern software : -o
engineering practices, an advanced software development
environment, and Ada can have a significant impact on the

*The Implementation of Ada in a Large Shipborne Weapon Con-
trol System," paper by Roland Fors and Ulf Olsson.
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SUPPORT ENVIRONMENT CONCEPTS FOR

COST-EFFECTIVE TRANSITION TO ADA" TECHNOLOGY

Peter Lempp

SPS Software Products & Services, Inc.
New York, New York

Abstract: Before modem software engineering principles for various programming languages /Sant86/, /HiiKPT87/.

and Ada's came into common use, a huge amount of soft- However, the resulting Ada source code from, e.g., a

ware was written in high-order programming languages FORTRAN program is more "AdaTRAN" than a full use of

like FORTRAN, COBOL, CMS-2, etc. The challenge now the powerful language capabilities of Ada. What is worse,
is to preserve the valuable parts of these software assets, the transformed Ada program tends to be even less main-

and the application experience of software designers, when tainable than the original code in the conventional program-

migrating to Ada. This transition is eased significantly rming language. Since there is no visibility of the under-

if the development was done independently of a specific lying design structure, efficient maintenance, restructuring

target language, designing with the assistance of a devel- or other improvement of the resulting Ada software is

opment support environment. From the resulting design, extremely difficult.
Ada source code can be automatically generated.

For software developed without a powerful support These observations lead to the development of an

environment, one approach to migration is "Reverse En- approach which involves a higher degree of human inter-

gineering," a process which recaptures design abstractions action and more sophisticated tool support, but which in

from existing software source code, then regenerates them the long run provides a real unraveling of the system to

in Ada. Though not fully automatable, this process shows its inherent higher level abstractions; it therefore provides

advantages compared with direct language translators, since significant potential to incorporate the existing software

the resulting software incorporates the design and require- in the reusable Ada software libraries for the future (e.g.,

ments specification as well, and is therefore easier to /BABK87/, /McNi86/). The approach is to undertake a

maintain and reuse. This paper discusses the methods Reverse Engineering of the software first, then to regen-

developed, and experiences gained, in recently performed erate Ada source code from the recaptured design specifi-

Reverse Engineering projects. It also describes the environ- cation.
ment suppot needed to achieve the high degree of auto-
mation necessary for a cost-effective transition.

2. Software Reverse Engineering

2.1 Reverse Engineering Methodology

Reverse Engineering is the process of unraveling
the system and software to its earlier life cycle devel-
opment representations. During the Reverse Engineering
process described here, one goes beyond the concepts dis-

1. Background cussed in, e.g., /ABCC87/, and reconstructs higher levels
of abstraction, especially on the design specification level.

Most companies and agencies which have developed One normally starts not with the source code alone, but
application-specific software representing a large investment, also takes existing documentation, e.g., informal high-level
and including a great deal of company know-how in design requirements specifications, and especially input/output
structures, algorithms and heuristics, now face an enormous descriptions, etc., into account.
problem: This software is written in languages like FOR-
TRAN, HAL/S, CMS-2 or COBOL, and in many cases has Figure 1 depicts the task graphically, and shows on

" lost its clear internal structure; often, too, it is not prop- the right-hand side the ultimate results of the Reverse , JAM
erly documented, or at least the existing documentation Engineering process when performed with a comprehensive
is no longer up to date. Computer-Aided Software Engineering (CASE) environment:

requirements specifications, design specifications, (re-)gen-

In order to make a transition to Ada technology with- erated source code in the appropriate programming lan-

out losing the application-specific knowledge, more than guage(s), and full traceability between the different repre-
a mere translation of existing source code to Ada code is sentations. These representations are then suited for reli-

necessary. This direct transformation from one language able maintenance and potential reuse of parts of the soft-

to another has been shown to be almost fully automatable ware package.

*Ada is a regisNood Cradranok of the U.S. Goveyme18 (A3PO).
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-------- REIE cuFrMENTS
SPECI IC AT:0N

REQU:IREMEN S
SPECIFICATION E40

. ~,Function X Function Y

u. . .. . . ............... ..... .......... ... ..... OSIGNAL ( T FOMETHODOLOGY,E E
sPEIFWICATIO' '

OFTIcN
SOPCITFFIC AT ION

OUCOE (ANNOTATED)
_________ ________SOURCE CODE

ORIGINAL SET OF SOURCE REVERSE ENGINEERED
CODE AND SPECIFICATIONS SOFTWARE

Fia. 1: Reverse Engineering of existing software [here depicted in the notation used in the CASE en-
vironment EPOS (/LaLe86/)].

The overall procedure to (re-)establish requirement Whereas the first activity of the Reverse Engineering
and design specifications can be broken down into the process is conducted solely on the formal parts of the
following fundamental activities: software source code, the functionality determination is

based on a broader spectrum of information sources. In
(1) Formal source code analysis general, these sources can be grouped into:
(2) Functionality determination - the formal elements of the source code or their equiv-

(3) Establishment of interrelated specifications; and alent low-level design representation as a result of

(4) Verification the formal source code analysis;
- internal documentation (e.g., commens or names/-

The two further steps necessary for a successful labels) within the source code;
transition to Ada, namely, - "external" documentation (such as design specifications,

(5) Restructuring of the reverse engineered design requirements documents, input/output definitions, etc.).
(if necessary), and(6) enecran da The expected accuracy of additional information

(6) Generation of Ada code from the design sources may vary. If there is a contradiction between
are not directly part of the Reverse Engineering process, conclusions drawn from the (formal) source code and those
and will be discussed later, drawn from other documentation, the source code is taken

as the authority.
%' The first activity in the Reverse Engineering process,

source code analysis, captures all basic structures, such
as hierarchical calling structure, "module" interfaces, in-
ternal/extemal data and its principal structure, controlflow
and dataflow, as well as low-level input/output functions -
and interfaces to language-dependent library routines. a.
The further breakdown of functions into their main blocks, - .
relying not only on the subprograms/functions involved,
but also on package-specific block separators like [I:. -L.

a, - comment lines of a specific pattern, / \ /\ Il

- input/output statements, and

-,specific types of labels, etc.

results in a formally structured design as shown in the Ffc
example in Figure 2.Fi.2 Exmlof()cligsrcueadb)epc-

fled design hierarchy structure
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Different strategies are possible to penetrate a for- This project was undertaken to recapture require-
mally restructured software design to recapture its "mean- ments and design specifications for the main avionics corn-
ing," including various starting points like identified library puter of this fighter aircraft, and for software elements
routines, input/output processing modules or identified involving its control, executive, navigation and targeting
"selector modules," (i.e., modules that invoke different systems.
modules depending on specific internal states). Whereas
the exact implementation of the strategy varies from one The problems confronting engineers were typical of
software package to the next, the general procedure of the difficulties encountered in any Reverse Engineering
establishing a hypothesis of functionality which proves to project. During the original development, the avionics
be correct or leads to inconsistencies is the same. Hypo- package consisted of software requirements specifications,
theses are drawn either from existing high-level documen- design specifications, and programming code. This doc-
tation (top-down), or various indicators in the source code umentation was originally developed for the most part
(bottom-up). Naming schemes, the knowledge of expected manually and without any form of clear, consistent in-
behavior from the application domain, or the deduction teractive relationship between the elements. During the
of functionality from known internal/external characteristics extended life of the project, programming code was modified
are helpful in this task. Figure 3 shows, e.g., a typical on innumerable occasions to meet maintenance or partial
function in the avionics domain which can be deducted upgrade requirements. This modified code was accompanied
from its input/output characteristics. by varying degrees of annotation and documentation, and

Cluter Pocesingoften was without complete reference to software require-
C~ut~r Pocesingments or design specifications. As time went on, the design

1 specification documents lagged well behind actual code
implementation. The reverse engineering project was under-

* - -- taken to realign software requirements documents, design
specifications and code so as to obtain a firm basis for
further maintenance and migration to other projects.

_ Existing assembler program code, along with limited
_____ _____annotations and program commands, as available, was used
_____ _____for Reverse Engineering. The code was then used to tie

.',~cinto old design specifications. In this fashion the specifi-
cation tree as well as the requirements documents were
recreated, so that at the end of the project a complete
design specification was accomplished. The finished spe-

Fig. 3: Example of input/output characteristics and cifications and the inherent algorithms and other avionics-
components of a typical avionics subfunction specific concepts are now available for maintenance and

reuse in next-generation avionics projects.

The process of building consistent and interrelated A recently completed project for NASA' doaling with
specifications from the existing requirements documents the possibilities of automated Reverse Engineering con-
and the recaptured design information aims at establishing sisted of three main subtasks:
(formal) links between the different descriptions available -development of a systematic Reverse Engineering9;
as project/product documentation. Further, it aims at Methodology,
updating the specifications so that they reflect the cur--_
rent status of the software represented by the source -(manual) application of this method to a selected
code. The process of finding interrelated descriptions piece of existing software, and
relies strongly on searching for equal or similar specifi- -identification of a concept of additional tool support%
cation/naming patterns. for (further) automation of the Reverse Engineering

A verfican of the results of the Reverse Engineer- process.
ing process is essential. After assuring completeness and
consistency of the representations themselves, source code The project was successfully completed, and led to
in the original programming language is regenerated from a systematic methodology with a clear identification of
the design specification and compared for functional equiva- the necessary steps as outlined in the previous chapter.
lence with the original piece of software. The level of The methodology also identifies the underlying assumptions
confidence in an exact recapture of earlier representations and prerequisites for each step, as well as clearly defined
decreases with the number of levels of abstraction recon- end results. The Reverse Engineering example consisted
structed; nevertheless, the acceptability of a respecified of a 20,000 lines-of-code FORTRAN program from NASA's
design can be checked in this way. Deep Space Network program, a package with "near real-

time" requirements. The Reverse Engineering of the spe- . "'
2.2 Experiences from Reverse Engineering Projects cification identified errors, inconsistencies and missing

items in the reference documentation, and the regenerated
*Complex Reverse Engineering projects for major soft- FORTRAN source code was verified to be functionally

ware systems have been undertaken and successfully com- equivalent to the original code.
pleted, applying the method described with computer assist-
ance by the EPOS System /Laub87/, /LaLe86/. One typical
example showing the feasibility of the approach was the
TORNADO reverse engineering project, performed as a
multi-company effort under the direction of West German 1NASA-980, "Reverse Engineering for Information Sys-
MOD. tems," concluded 30 July 1987.
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3. (Final) Transition to Ada _
ACINOUTPUT_.RESUI.T

The reverse engineered design can be the starting PURPOSE "Otput 0, the o rSE-9 .
point for a complete regeneration of the software in Ada, Acclted result PEED_. T.

a process for which the technology exists and automatic CODE

to o l su ppo rt is read ily av ailable (e.g., /L eZ e 87/). 'l 'F R R N c d 1 '.N _ . .A a c d
-od-FORTRA cod *wAd oe

However, one of the advantages of the described PRINT 1000. MAX (AN). K= IMAX) PUT (MAX WIDTHz 2).

transition method over direct code-to-code translators is 1000 FORMAT (12/(IOI7)) NEW-LINE,

that higher levels of the design are accessible; through for K in MAX loop

structural improvements directed towards Ada as the target Kmod I0=Ithen

language, the powerful language constructs of Ada can NEW-LINE
now be utilized. Therefore, besides avoiding the restrictions end if;

of non-meaningful names (e.g., only 6 characters in FOR- PUT (SPED SAMPLES(K), WIDTH=>T.end lop,

TRAN) /Sant86/, restructuring at different levels of the NEW-LINE,

dcsig is now feasible. This may include, e.g.,
* (high-level) synchronization Fig. 5: Example for transformation of a low-level de-

" restructuring of low-level (unstructured) control flow sign/code block (see also /Sant86/).

• using data record structures and other powerful tech-
niques to group related data objects. (Figure 4 shows In a development support environment used for first
an example of a redefined record structure which designing the software in a (mostly) target-language-inde-
consisted of unrelated variables/array in FORTRAN). pendent form, then using a code generator for reaching
Code eeneration can then produce all Ada packages the source code level, the key elements are

from the design automatically, with correct program struc- * Support for various levels of abstractions
ture, data and type definitions, exception handling, tasking 9 Availability of a "rich" design laneuage /Lemp87/.
and statements for sequential and parallel control. This
usually represents about 75-90% of the Ada code. At the Both characteristics are necessary to ensure that
lowest design level, mappings of I/O formats and/or specific software designs of earlier developments can be regen-
library calls usually require additional but straightforward crated in Ada, including the option of performing the re-
transformations. Illustrated in Fig. 5 is an I/O statement structuring possibilities (described in the previous chap-
in FORTRAN, the low-level design documentation, and its ter) within the same support environment. Beyond this,
resulting conversion to Ada. there are very specific requirements for a computer-aided

Reverse Engineering environment, mainly in the following
areas:

e Source code transformation tools
To automatically extract (low level) design specifi-
cations from the source code and generate a design
model in the design database.

e Comprehensive documentation and visualization features
from various points of view
To determine the functionality of a piece of soft-
ware recaptured from mainly source code, all aspects
(tasking, i/o, control flow, data flow, etc.) must be

: presentable in a correlated manner. Figure 6 shows
an example from an actual project visualizing input/-
output and controlflow to assist in deducing an overall
abstraction.
Databased query functions

To allow either general search or confirmation of a
specific functionality hypothesis, easy-to-use querymethods of the specification must be available.

Fig. 4: Documentation of a restructured record structure * Code generator facilities for different progrmmn
la~nguages*
In addition to a powerful Ada source code generator, '., .,.
mechanisms to regenerate code in the original pro-
gramming language(s) for verification purposes are
necessary.

4. Computer-aided Support Environment necessry. (

Additional requirements apply for (re-)establishing" le
To perform the described steps in the transition effec- high-level requirements specifications and their interre-

tively, computer-aided support is necessary. By first sum- lations with the design. To assist in the highly interactive -"I'
marizing the characteristics which a development support functionality determination of all pieces of software, knowl- or
environment QughL to have for top-down Ada development, edge-based support can advise the reverse engineering
we can highlight the additional specific concepts and fea- personnel of expected or suggested functionality (based
tures necessary to perform a transformation using the on a knowledge of application-typical functions and their
Reverse Engineering approach. characteristics). This knowledge-based support can even
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help in automating portions of this reverse engineering
activity. Figure 7 summarizes the necessary tool corn-

ponents.
2

Stot .t.. A ~ OIT

stimusar Knotledg No :Zut

Other~~OF J pli1in n-
doetto D Revr. EnCneein

utput~ ~ ~ ~ d.' OIO ---- --------------

Fig6: Simltaeouviuaizaionoflowlevl e n spsors funtratv

_ees Engneein
Doccmenttionion

ourceoftar codevelylsreprt

Fa ,

Eig,. 7: Concept of computer-aided support environment for Reverse Engineering and regeneration of 1
4 software in Ada

2 Iln the NASA project mentioned above, the software engineering environment EPOS was uised as
the computer support kernel in conjunction with manual transformations; tools for automating formal
code analysis and knowledge-based support are in development. qU"01.
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Conclusion /Laub87/ Lauber, R.: "Automated Software Production."
AIAA/NASA International Symposium on Space

The transition from existing software written in con- Systems in the Space Station Era, Washington
ventional programming languages to new projects now begun D.C., June 22-23, 1987.
using the Ada technology often requires more than a code-
to-code translator. For parts of the software to be suc- /Lemp87/ Lempp, P.: "An Environment to Promote Soft-
cessfully reused, to be maintainable and an integral part ware Reusability at the Design Specification
of the new software product, the reused portions must Level." Proc. 5th Pacific Northwest Software
meet the same quality and documentation standards as Ouality Conf., Portland, OR, Oct. 1987.
does the newly developed software.

/LeZe87/ Lempp, P., Zeh, A.: "Developing AdaTM Soft-
Therefore the transition from existing code in ware using the Software/Hardware Production

FORTRAN, CMS-2, HAL/S, etc. should be made using the Environment EPOS." SDIO Ada Conference and
Reverse Engineering process of recapturing higher-level Tools Fair, Washington D.C., Jan. 1987.
design specifications, and subsequently regenerating Ada
source code. This provides the possibility of restructuring /McNi86/ McNicholl, D.: "Common AdaTM Missile Pack-
the software at the design level to utilize powerful con- ages." Proc. Nat. Conf. on Software Reusability
structs of Ada, and it enables automatic generation of and Maintainability. Tysons Comer, Virginia,
complete and consistent documentation from the design Sept. 1986.
specification. The approach has been shown successful in
projects using the computer-aided support of the software /Sant86/ Santhanam, V.: "A Practical Approach for Trans-
engineering environment EPOS. Although not fully auto- lating FORTRAN Programs to Ada." pr . 4th
matable, the method provides a cost-effective and practical Annual Nat. Conf. on Aa Technology 1986,
solution for further utilization of existing software which pp. 142-148.
incorporates years of application experience in concepts,
algorithms and heuristics.
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SOFTWARE DEVELOPMENT STANDARDS:

NECESSITIES, LIMITATIONS, AND OPPORTUNITIES

George W. Macpherson

SofTech, Inc.

Abstract -The size and complexity of the Two Significant Events
Department of Defense mission require Recently two extremely significant
that, to the greatest extent practical, events in the area of software standards
resources be standardized for effective have occurred. The first was the 22 Jan
and efficient management and operation. 1983 publication of ANSI/MIL-STD 1815A, a
DoD software development, especially with the Ada Programming Language. The second
the advent of Ada, Is a prime example of was the 4 Jun 1985 publication of the
the application of standardization. This Software Development Standards (SDS)
paper reviews the structure of the MIL Documentation Set (which includes DoD-
and DoD standards that apply to software STD-2167) . The adoption of the Ada
development with special attention given language reflects judgement that while
to DoD-STD-2167 and Its relationship with individual and separate languages may
the Ada MIL/ANSI-18i5A. Finally, in have unique advantages for specific
spite of the complexities of Ada, this applications, the chaos in portability
paper suggests a method which could and maintainability created by this
reduce costs of Initial software delivery multiplicity of languages far outweighs
by proper use of the language. any individual advantage. Although no

single language might be best for every
The Role of Standards application, it was decided that a

Over the centuries of scientific standard language incorporating the best
evolution arnd development, we have of software technology, but including
learned that in most areas, a degree of many compromises and possibly a few
standardization is very beneficial, if imperfections, would serve far better,
not absolutely essential. Mutual particularly in the area of mission-
acceptance of standards allows us to critical embedded systems. The adoption%
communicate our ideas clearly with no of the SDS Documentation Set marked a
ambiguity, and to build separate parts of milestone of cooperation among the

a large system so these parts "fit military services. Now all the services
together", physically, electronically, deal with software under a single set of
and functionally. Some standards are standards. To the great relief of both
quite absolute: the standard meter, the contractors and reviewing officials,

a standard coulomb, the standard second, volumes of overlapping and potentially
* and so on. Other standards are less contradictory standards and directives

absolute and provide certain options; have been streamlined into a far more a
examples of these are ADCCP and TCP/IP workable and efficient system. But while
protocols. And of course, some standards the SDS Documentation Set cleared up many
are quite subjective, we have all seen problems, the Ada language introduced
standards that call for "good structure", totally new programming concepts,
"logical organization", and so on. opportunities for more efficient software

development, and substantial reduction of
The software standards we work under life cycle costs. If these software

cover the full spectrum of this development advantages of Ada are to be
* specificity. The developers of software properly exploited, we must be both

standards carry a heavy burden In finding perceptive and innovative in our
the correct balance between absolute applications of standards.
requirements and general guidance, which
will provide the optimal software Structure of the SDS Documentation Set
development environment. Standards which Those readers who have spent long%
are specific and Iron-clad cannot years developing software under the
anticipate break-throughs in our rapidly military standards system may wish to
advancing technology and tend to stifle skip this section, but for those who are
innovation. if standards are too general relatively new to the process, a quick
and subjective, the goals and benefits of overview may be helpful. The SDS
standardization can be completely lost. Documentation Set contains the following:
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I . Joint Regulation (un-numbered), Preliminary Design Review (PDR) and
"Management of Computer Resources in Critical Design Review (CDR). But 1521
Defense Systems". This regulation does far more than prescribe an agenda
establishes policy for the acquisition, for a review meeting. This standard,
management, and support of Mission- along with the Data Item Descriptions,
Critical Computer Systems (MCCS) software dictate what kind of design information
during all phases of the system life is to be presented. PDR and CDR must be
cycle. Perhaps the most important facet successfully completed if development is
of the regulation is that it establishes to continue, and typically 40 percent or
a software authority and responsibility more of development resources are
for all the armed forces in a single expended by the time CDR is completed.
entity. Software design and preparation for PDR

and CDR are strongly influenced by 1521
2. DoD-STD-2167, "Defense System and the DIDs. Application of the standard
Software Development". This standard and the DIDs becomes a critical factor in
establishes uniform requirements for the software development process.
software development that are applicable
throughout the system life cycle. The 6. Data Item Descriptions. By far the
standard has been under nearly constant greatest direct influence of the military
review and revision since its first standards system on software development
publication, and in this author's view, is through the Data Item Descriptions.
one of the important and most over-looked The guidance given by the previously
aspects of this document is the spirit of described standards is much more general
the standard which is expressed in and in some cases subjective. The DIDs
paragraph 2 of the Forward of the 4 give a specific format for expressing
September 1987 draft, which reads, "This design, and the method for expressing a
standard is not intended to specify or design has a surprisingly large influence
discourage the use of any particular on how the design is accomplished. There 7
software development method. The are 24 DIDs in SDS Documentation Set,
contractor is responsible for selecting ranging from the Operational Concept
software development methods that best Document to the Detailed Design Document.
support the achievement of contract The thrust of the paper focuses around
requirements". It should be noted that production of the Software Top-Level
Appendix E of 2167 is guidance for Design Document, DI-MCCR-80012.
tailoring the standard to support the
unique characteristics of any individual Software Development Philosophy Changes
software development. Direction. Before proceeding into a

proposed approach to preparation of a
3. MIL-STD-483, "Configuration Software Top-Level Design Document, it
Management Practices for Systems, might be well to step back and get
Equipment, Munitions, and Computer perspective by reviewing how software
Programs". This standard with its very development has emerged from the very
broad scope, is being phased out of the start. Back in ENIAC days, when
scftware picture. In particular, its computers were designed to automate the
Appendix VI, "Computer Software operations of desk calculators, programs
Configuration Item Specification", has were written in binary with something
been replaced by two Data Item like "101" standing for Clear and Add,
Descriptions (DIDs). and perhaps "110" for Store. Memory

storage locations were referenced by .'\'

4. MIL-STD-490, "Specification their absolute binary address and an
Practices". This is where the terms "B5 entire computer program consisted of
Specification" and "C5 Specification" nothing more than lots of ones and zeros.
came from. Like MIL-STD-483, it is being The arrival of assembler languages
phased out of software development and relieved the programmer of keeping track
both B5 and C5 specifications have taken of numerical addresses and allowed use of
the form of sets of Data Item mnemonics for machine instructions. Then
Descriptions. a program consisted of statements like

CLA A and STO B; the code was far easier
5. MIL-STD-1521, "Technical Reviews and to read and much quicker to write.
Audits for Systems, Equipments and Compiler languages further abstracted the
Computer Programs". With 1521, the programming process so that thestandard system becomes more specific. programmer was no longer required to :' V
This standard describes ten reviews and understand the details of machine
audits that may be conducted during the instructions, and programs consisted of , 'p'.
course of software (or hardware) mathematical formula-like statements such

development. In software, probably the as X=(-B+SQRT(B**2-4*A*C))/(2*A). In all
most important of these are the these developments, the thrust was to
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make it easier and quicker for a quickly slay the software crisis
programmer to get his program operating. werewolf, and that a more tedious process
This worked quite well as long as will probably be required. In noting the
software systems were fairly small and discrepancy between the advancement rates
only a few programmers were involved in of hardware and software development
writing systems, which ran on a single technologies, he suggests that perhaps
computer. the two problems are different, and

software development technology might be
As software systems grew in size, more like another field, medicine, which

involving large numbers of programmers had to take a dramatic change in
and multiplicities of computers, problems direction. There came a time when that
began to emerge which are now generally profession transitioned from a demon
recognized as the "Software Crisis", theory to a germ theory. That transition

Software reliability became very did nothing to improve surgical
qusinbe hni eaencsay rdciiy h uieso ahn
to modify software to meet new hands and sterilizing instruments was

*requirements, or to move it to a new and time consuming and costly, but the
more powerful computer, we often found overall effect on the very literal life
after expending a great deal of time and cycle was gratifying.
resources that it was cheaper to start
again from scratch rather than to In our change of direction in software
understand, untangle and modify the development philosophy,we are endeavoring
existing software. Software costs to employ engineering principles in
skyrocketed, deliveries were late, and software development. We get

Aall too often after spending a great deal encouragement from another statement by
of money, the software never became Dr. Manley, "Ada is a vehicle for
operational. We discovered that the introducing software engineering methods
language philosophy of simply making into use". It was mentioned earlier that
programs easier and quicker to write was the method of expressing a software
getting us into serious trouble and design is closely related to the method
things had to change. We discovered that with which the design is produced. The
we were expending far more effort in next section will propose a method for
repair and modification of software than expressing a design (thereby impacting on

*in design and production. We discovered design production) which is a departure
that while software is written once, it from traditional methods.
is read and analyzed perhaps hundreds of PV
times. Software languages and philosophy Opportunities
had to change to address the software The opportunity to reduce software
task from the full life cycle point of development costs hinges on recognizing,
view. and taking advantage of the fact that Ada

Is itself a design language. In a '
Computer hardware development nutshell the opportunity is this: Byt

continued to advance at an astounding expressing some of the design information
rate while software development required by the DIDs in Ada, rather than
technology crept forward with painful charts and tables, software development
slowness. To emulate the achievements of costs can be reduced. The Appendix in%
the hardware engineers, we created the this paper gives an example of how thisV
term "Software Engineering". But method could be applied to portions DI- %
creating a term does not necessarily MCCR-80012, the Software Top-Level Design
create an engineering discipline. Dr. Document (STLDD) . The STLDD requires
John Manley, former director of the that certain design information
Software Engineering Institute, is quoted concerning the software, such as range of
as saying, ". .. although progress is values, data type, precision, etc., be
being made, software engineering is still presented. The STLDD goes on to give
an aspiration... The established examples of how this design information
branches of engineering have splendid might be presented in the form of tables
mathematical models to work with such as (Figures 1,2). The appendix shows how
Newtonian Mechanics, Maxwell's Equations, all the design information presented in
and the periodic table of the elements. these example tables can be expressed in

qIn software, we're still groping. Dr. Ada, (Figure 3) and we will examine
Frederick Brooks, author of the classic reasons why this simple change in design % '*%

book "The Mythical Man-Month" gives information format can reduce software .%ep1
insight on the problem in an rticle development costs. The assertion here is
entitled "No Silver Bullet" 2 in the not just that software designated to be b
April 1987 issue of Computer Magazine. implemented in Ada could benefit from
Dr. Brooks suggests that we are unlikely this method, but also that using this
to find a silver bullet to cleanly and method in an Ada environment can reduce

MV
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development cost compared with producing language. We are all aware that it is
the same software in another language possible to get bogged down In minute
such as FORTRAN. This assertion should be details during design and lose sight of
met with skepticism. "Common Sense" the complete design picture. On the
would tell us that since Ada is more other hand, there is an insidious
complex and more demanding on the temptation, when faced with a
programmer, it is only natural to expect controversial, important, and difficult
that more resources would be required for design decision, to be lulled into
Initial delivery and we would hope that designating that decision as an
this additional effort would be more than "implementation detail". In these cases
compensated for by the benefits of the designer might be very well served by
reliability, modifiability, and coding, compiling, and testing skeletal
portability. At this point, it is well versions of the alternatives.
to recall two statements by Grady Booch
in his well known book, "Software Returning to the proposed method, the '
Engineering with Ada" 3  First, ". ..the Appendix gives a detailed comparison of
phases of des ign/code/ test are no longer presenting design information in a
distinct; rather, they should form an compiled Ada format versus a table
iterative process as each level of the format, and shows specific examples of
solution. . ." and second, "Etch the how the Ada format can avoid problems
following five words in your mind: Ada is which could develop in the table format.
a design language." The ways in which the Ada format can

reduce software development costs may be
*In reflecting on the first statement, summarized as follows:

it has been our general practice under
the military standards system to write a 1. The Ada design information is
complete and detailed design before any validated for consistency, language
coding is done. This is possibly an legality, and dependencies by the Ada
over-reaction to the days when coding was compiler. The design information in
vigorously pursued before any sound table format can be checked only by
designing had been done. But this manual methods, which may miss design
practice is not consistent with standard flaws and result in very expensive
engineering practices. In the other repairs in the test phase.
engineering disciplines, promising design
ideas are implemented in models, 2. As software development proceeds,
breadboards, mock-ups, and prototypes. the validated design information becomes
Those models are rigorously tested, and part of the operational software, with no
the results at these tests confirm or risk of error in translating design
reject the feasibility of the design information in the form of charts,
concept, and give direction on how tables, and PDL into implementation code.
further design should proceed. All too Thus, coding and testing costs are
often in software, the infeasibility of a reduced.a
design is discovered only at the late and
expensive system testing phase. 3. The task of Quality Assurance in

Mr.Boch' scod rmak, the areas o f range of values,
Concerning Mr oc' eodrmr, constraints, and data protection, is

it took this author some time to greatly simplified, and thereby less
appreciate just what "Ada is a design costly.
language" meant. That Ada is a design
language does not imply that it is by 4 . A great deal of the design
itself the only tool required to produce information is embedded in the software.
a software design. Structured Analysis As modifications, such as changes in
and Design Techniques (SADT) , Object parameters or range of values are made in
Oriented Design (OOD) and other tools are the developing software, these design
extremely useful, particularly at the changes are automatically incorporated in%

4initial phases of design. But Ada Is the Ada specification sections, and the
also a design tool, and is particularly software acquires a substantial degree of
useful in designing interfaces and data self-documentation. Thus documentation
dictionaries. Another factor concerning costs are reduced.
Ada as a design language is that there is
a lingering misconception in the software Let me reiterate that what is being%
community that a program design language proposed here is not an entire software
(PDL) and an implementation language are development methodology. It is a%
necessarily separate and distinct things. technique which may be embedded in any of
Before Ada arrived this was true. Now it a number of methodologies to enhance
Is not true. There is another important development efficiency. The example in
issue concerning use of Ada as a design the Appendix gives an alternative method
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for expressing some of the design
Information required by the Data Item
Description, DI-MCCR-80012, Software Top-
Level Design Document, dated 30 June
1986. This DID is currently under
revision and the present draft no longer
deals with Top-Level Computer Software
Components, TLCSCs (CSCs only) and the
new draf t does not give a sample CSC
output table. The changes however, do
not effect the concept of the proposed
method. Also, this method is equally
applicable to DI-MCCR-80027, the
Interface Design, Document and DI-MCCR-
80031, the Software Detailed Design
Document.

Conclusion
Standards perform a necessary and

useful function in every scientific
endeavor. This paper has presented an
Ada application of standards which
hopefully could improve software
development efficiency. Standards are
not, nor are they Intended to be, a
substitute for the creative process.
There is always a danger that
interpretations of standards will
restrict or confine Innovative methods.
In making decisions about use of new
methodologies, there is often a deadly
fear that the new methods may be "non-
compliant", and a narrow, "safe"
interpretation of the standards is
chosen. But here is something we all
know very well and must always remember:
Full compliance with the regulations and
standards is no excuse for failure.

de
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APPENDIX very unpleasant surprises and expensive
repairs might result.

AN ALTERNATE METHOD FOR DEVELOPING Line 12 - SPEED is an input parameter of
THE SOFTWARE TOP-LEVEL DESIGN DOCUMENT, Table V and an output parameter of Table
DI-MCCR-80012. VII Therefore its type must be visible

This section suggests an alternate to both TLCSC X and the calling software,
method of expressing the design and the type definition is placed in the
information expressed tn Tables IV,V,VI, GLOBALS package. Note also that Tables V
and VII of DI-MCCR-80012. These tables and VII give SPEED a range of
are entitled: 1.0. .10_000.0 and the GLOBALS package

Table IV Sample global data gives a range of only 1.0..1_000.0. This
definition table is because the compiler used in preparing

Table V - Sample TLCSC X input this example is simply not capable of
table producing a fixed point type with a delta

Table VI - Sample TLCSC X local of 0.00 _0 00 5 and a range of
data definition table 1.0..10_000.0. This is another example

Table VII - Sample TLCSC X output of detecting a design problems at an
table early stage, when it is far less

expensive to resolve.
This alternate method is to express that Lines 13,14 & 24 - Table VII lists a
information by means of a package called global output array with the identifier
EXAMPLE TLCSCGLOBALDATA and a procedure "COORDS" just as does Table IV. But the
called EXAMPLETLCSCX. A line-by line precision of the two "COORDS" is
explanation of these two compilation different. Therefore, in this example,
units follows: In all cases, the columns t h e i d e n t i f i e r "BMI L E S" and
entitled "IDENTIFIER" in Tables IV "B COORDINAREARRAYS" are used. This is
through VII have been ignored, since the another example of early detection of
columns entitled "DESCRIPTION" contain design problems.
information which seems more appropriate Lines 21-23 - These are the global input
to use as Ada identifiers. These variables from Table V.
examples are not offered as "good" Ada,
but only as an example of alternate EXAMPLETLCSCX.
methodology. This procedure skeleton defines the

local data of Table VI, and the input and
EXAMPLE TLCSCGLOBALDATA. output parameters of Tables V and VII.

Th is package contains not only the Of course the global inputs and outputs
design information from Table IV, but are defined in the GLOBALS package.
also the design information from Tables V Line 1. Visibility to the GLOBALS package
and VII which is declared tZ be GLOBAL. is required for the type of the procedure
Line 2 - MILES is given as a derived type parameter.
only to demonstrate that this is a design Lines 2,3 - Tables V & VII indicate that
option. SPEED is an in out parameter.
Line 3 - Table IV does not give a range Line 10 - Same "range" problem detection
of values for COORDINATES, but a good Ada as line 12 of the GLOBALS package.
design should invoke a range constraint. Line 12 - PIXELSTATUS is made a user
Line 4,5 - It would be quite simple to defined enumeration type to make it
express PRIORITY_LEVELS as a range of absolutely clear to any reader exactly
integer values in Ada, but this would be what is meant by PIXEL STATUS values.
contrary to the fundamental Ada Line 17 - The identifier here has been
philosophy of strong typing. A user changed slightly from Table VI to make
defined enumeration type is clearly its purpose more clear. Note that the 46
called for. use of the Ada "constant" feature
Lines 6-10 and 18 - This section clearly simplifies the QA task of assuring proper
demonstrates a great advantage in conversion.
expressing design information in compiled °
Ada code. The design information for
"ALIST" in Table IV is very fuzzy and
open to many different interpretations.
Lines 6-10 and 18 give one of these
interpretations in precise and
unequivocal form. The advantage here is
that at design review, this precise
record and array definition may be
examined, and revised if necessary to
meet system requirements. If the design
of "ALrST" is given in Table IV were
allowed to stand until test time, some
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TABLE VI. Sample TLCSC X local data definition table.

IDENTIFIER DESCRIPTION DATA I DATA SIE UNITS OF IULMIT/ ACCURACY1
TYPE J REPRESENTATIONf SIZRERNG PEISO

LOCAL 0.0MARXs0 NAUTICAL
MYCORDCOORDINATES ARA F FIXED WORDS MILE 055 =.:

MIYYMAG LCL REAL FIXED 2WORD NOTS C-10.000 JOO

KOS CONVERSION REAL CONSTANT I WORD MILMIL N/KNTS FACTOR NAT ICAIMLE NA =.OO

nrUE PIXEL ARRAY 10010 1000 0 Na O/A

PCUE MATRIX MATRIX WORDS 1/ 1ON N/

TABLE VIL Semple fLCSC X output loble.

DATA flATA SIMAITI A"IISAC /DIT11
M)ibi iE *LUL'RLNIA1 AlNUN 11IT IIAWZ PULEWOR DiDDTINA1IS '114.01

VUG ED RLL FILD Iwoll in 6IIA * m fil I.(bU IAA I
VSIAG xrEE ELA fl121 2~iN ins bAU *iEEE I 5 11.1 AS11,31I

fljcgls IA IDA X

5 IINIM IS UU4111IAL I SIAL Ix 64 so i, I A(.1 M MS

%till S * A5131J 1 *il4.LAI IIIUIAN JI BMaI N/A 141 A NIA [ Ii Kill ~ s GIANIAs..

Figure I Tables V1 and I'II from DI-MCCR-80012 11
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TABLE IV. Sample global dab deinllof lable.

DATA DATA UmNs OF limhIT/ ACCURACY/ Arruc~LL
IDWENTIFIER DESCR~rTIDN TvrE SEMA SIZE MEASURE RANGE rmsC TAW

GRANGE GRID RANGE REAL CONSTANT I WORD) MILES N/A N/A TI15('31
TLLAC ii

EMERGENCY Tixsr 31
SItill STATE BOOLEAN BOOLEAN I JIME N/A N/A N/A TIAN( .1

AIJTIORMA110 3" s

A JT IJT4IATA A501I 1.11 OF WORDS NA RELAJEDS N/A .0d, it
BASE SSR INTEGER 19 RECORDS 6 CI3ARO A4Z N/AN 3

PNIORUTT' MMEI I WORDj 54

to 100 6S DE5C. K AME *I.C(W 32
cOIIIIS COORDINATES REAL ARRAY WORDS N/A N/A I sum"s I.(it

J/ BYTE a ST
J/ MlAN v a BIS
J/ WORD a 16 BITS.) 2BYTtE

TABLE V. Sanmle TLCsc I t Wh.

IT 1
1Sb"A11 1 XMI Sm1E01thn 119CI XvIJ AsMICrI1 In04

T&JAC MW~ MILAL 11612) 2 "101 e 0L 1IPA IRe, MAPLMEM

RM AamMIF 141C21 rMPin M% I SRIM SI A as is I SeI, 11M :13 451M.

11111m el I IwJ
blI WS3IMS 1111M 1111A 64 141A AMINIUMC :jl 3%1 3' E11 n

aS) "Iem I u on" Awl I M. . ..- A. 1.1.1 .4 111A AM1111110Sem l. Anfl I%

J, 1USTE *kht3t1

FigRure 2 -Tables IV and V from DI-MCCR-80012
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V t) e X ZZIz E

7 recor-'dy

S USER strina (1-.6);
S PR:OR:TYLE--V-L. FRX)FJT7YLEVEL-S;

10 end record;
ii type COORDINATEARRAYS is array (1-.10, 1.-10) of C0OR:)NATES;
12 type SPI-S is delta 0.000 005 range 0.0.2 . 000.0;

l3 type BMIL-ES is delta 0.001 raa7...E0

14 type ECOORDI)NATESFARRAYS is array 1l.0, 1. . 10) of B_-MLES;Z
15 subtvre NUMEZRS OF -OE:7CTS is positi-ve rneI 15

16 CRP::-.Z -AT MILE3 := 1000.0; -- TLCSC :
17 E.MR0F:EN:YSTATE boalea.; -- TLCSC 3:133,>:

IS n-O -0 0A:N LI:ST array (1 1)of AUT'HORWAZ;TIOKISS

NUhMB=ROF_0B,7ECS rMES OF OBJECTS3;-- TLCSC X
=1-_CODE srna(:..6); =S: X~

I3 REQUET_-PRIORITY ?R-RIT-Y§7-zVE! - TLCSC-X
B COORDINATES_3ARRAY B OFIATSARYS -T.

25 end rrz::cCOAAA

I wit4 lAPETCCG0LAA
2 procedure f..oErs~
3 (S'--- in out S~iAY.FLE-7-r_ Z OBALD:ATA.5P5S) ±s
4 -

5 -- Local Variab'les
6 -

7 type LOCA:LCOORDIATES is delta C.O01 range 0.0- 55.0;
S type LOCALCZOORDINATES -cARRAYS is array of 1,. 1)c
9 LOCAL_ COORD)INATES;
10 tvne L.OCA_SP=S is delta 0.000 005 range 0.0..:_000.0;

tvne CONVEROSIONFACT-ORS is delta 0.0OC00.1 range 0.0.-1.0;
-- type PI)STATJS is (OFFON);

13 type ?:*,=L.ARRAYS is array v .0..10 of P:= Tr"'S;
14
15 L'OCAL-COORDI:NATEARRAY LOCALCOOR)NATS.ARP.AYS;
16 LOCALS5P-* LOCAL, SP=S;
17 MPHTOKNOTS constant CONV=ErS:-ONFACT-ORS := .8695E5;
1s PI2EL MAT-R:x PI=-LARRAYS;
19 begin
20 null;
21 end flC:AMPLE TL=CSCX;

Figure 3 - An Alternate Method for Expressing the
Design Information of Tables IV,.VI ander
VII of DI-NCGR-80012, "Software Top Level
Design Document" ~'y
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KALMAN FILTERS IN GENERIC ADA* PACKAGES

SiERRIE A. BRANYON, HENRY B. KNOWLES, JR., GEORGE K. HESS, JR.

MARTIN MARIETTA CORPORATION. P.O. BOX 5837, ORLANDO, FL 32855

create a template describing the logic and then instantiate (create
ABSTRACT an instance of) the generic unit for the particular type on which

the logic must operate. Combining these two features produces the
Kalman filters are used in signal processing applications generic package, an eminently suitable mechanism for creating

where system state variables and observation variables contain reusable software components 141 which can be placed in an Ada
noise. This paper describes generic Ada packages for four types of parts library and linked to produce a software program.
Kalman filters: 1) conventional Kalman filter, 2) square root
covariance filter, 3) square root information filter, and 4) The purpose of this paper is to describe the design and testing
Chandrasekhar square root filter. These packages are maintained of generic Ada packages which make several Kalman filters
in a library of reusable Ada components. The Kalman filter available in a library of reusable components. Kalman filters
packages are supported by packages and subprograms which (KF) are used extensively in modeling physical systems. Many
provide interactive user inputs, target motion simulation, such systems can be modeled adequately by linear difference
mathematics, matrix and vector operations, performance analysis, equations [51 which relate system state variables at discrete time
and graphic displays. Examples of the packages and subprograms instants. At each discrete time, a set of noisy inputs are applied
developed are included in this paper. An extensive list of to the system and a set of noisy measurements are produced.
references to papers and books on these subjects is provided.

The filtering problem is to produce optimal estimates 161 to I101
The application of a reusable Kalman filter package in an of the system state variables using all available measurements.

embedded computer requires evaluation of the package from two Optimal estimates are usually based on minimizing the mean
aspects: filter performance and embedded computer utilization, square error between the true values of the state variables and
Preliminary results of such evaluations are given. Experience in their estimated values. In 1960, Kalman published 1111 a new
this area supports the concepts of reusability of Ada components approach to the linear filtering and prediction problems. In
and improvements of life-cycle productivity, simple KF implementations, the previous state estimate vector

and error covariance matrix are combined with a new measurementvector to produce the desired new state estimate. There are now

I. INTRODUCTION many excellent technical papers 1121 to 1181 and books 1191 to 1201
which the reader should consult for information on the theory and

One of the requirements for the design of the Ada application of Kalman filters.
programming language III was that it provide facilities which
support software reuse. As observed by Booch [21, the benefits of Kalman filter implementations in reusable library packages
applying reusable software components are that they leverage the have been selected from extensive published literature on KF and
talents of good developers, thus improving the quality of the practical experience in KF applications. In the development of
software; they also reduce the amount of software needed, which large Ada programs for land, sea, and air target tracking with
reduces the cost of software development and accelerates software laser, radar, and infrared sensors, it is considered necessary to
production. The Ada features which provide the strongest support simulate system operations. Therefore, the development of KF
for development of reusable software components are the packages has been augmented with the development of other Ada
packaging mechanism, generic facilities, and the concept of packages and procedures so that system simulations can be easily
program libraries. In Ada, packages are used to encapsulate assembled from the library of reusable Ada components.
related entities, which can include constants, objects, types, or
program units. The structure of the package, i.e., a specification It is intended that the KF Ada packages and supporting Ada
and a body which can be separately compiled, provides a means of library components will find their primary use in digital
controlling what is visible to, and usable by, the outside user. computers "embedded" in missiles, aircraft, and land vehicles [211.

Because of the wide range of such applications, it is expected that
As noted in 131, the package construct promotes the idea of Kalman filter components will be selected from the parts library,

creating an industry of reusable software components, and the customized if necessary, and then fine-tuned based upon the timing
generic unit enhances the possibility of such a service. The strong and memory requirements of the particular application. The
typing rules of Ada could be a deterrent to writing reusable Ada design of the packages has been influenced primarily by the need
parts if not for the generic facilities provided by the language. for readability, modifiability, and maintainability. The
Often, the logic of a section of code is independent of the type on conventional Kalman filter, as defined below, has been run on an
which it must operate. The generic mechanism allows the user to embedded processor, and performance analysis for that system is

being conducted. % %
*Ada is a registered trademark of the United States Government,Department of Defense, Ada Joint Program Office (AII) IDetailed technical information on KF theory and other KFapplications can be found in the references cited in this paper. The

Copyright © 1987, Martin Marietta Corporation (USA), emphasis in this paper is on Ada features as they relate to
All Rights Reserved Kalman filter programs.
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This paper is divided into six sections. Section 11 contains and STATISTICS OPERATIONS. TESTFILTER must be
issues for reusable software components and the effects of those compiled after KALMANFILTERTEST and DISPLAY_
issues on the Kalman filter design. Section III contains background RESULTS.
information on the theory and mathematics of four types of
Kalman filters, along with design and coding information for one
filter. Section IV describes the requirements for test inputs for TEXT IO
Kalman filters and the manner in which these inputs are provided [GENERIC MATH LIBI
to the program which tests the Kalman filter. Evaluating the
performance of a Kalman filter implementation is discussed in
Section V, along with some typical results for one implementation.
Section VI presents a summary of the experience gained in MATRIXVECTOROPERATIONS

producing the various packages which form the Kalman filter
program, describes additional work needed, and discusses TATISTICS OPERATIONS)
advantages of producing reusable software components. [KALMAN FILTER

HI. REUSABILITY ISSUES *

The process of creating a Kalman filter program with its MANIL

associated testing environment illustrates on a small scale what
can be accomplished on a larger scaled software project. 'DISPLAY RESULTS)

The generic Kalman filter packages discussed in this paper_ "
represent part of a library of reusable Ada software components. TESTFILTER
Included among these components are packages providing general
purpose mathematical routines, including trigonometric, * Packages beingdesigned
exponential, and logarithmic functions, square root, and angle ,, b Fe ins
conversions [221; conventional matrix and vector operations 1231 to Four KF implementations
[271; statistical operations 1281 to [301; and the capability of under construction
producing a graph of operational results.

Legend
Since the Kalman filter implementation requires matrix

multiplication, it utilizes the generic matrix/vector operations
package from the reusable parts library. This matrix/vector %
operations package requires a square root algorithm, which is
provided in a generic math library package from the parts
library. In order to test the Kalman filter package, the generic
package KALMANFILTERTEST was created.

A package of statistical operations which can be used to WITH RELATION
provide performance characteristics for the various Kalman filter
implementations discussed here is being developed. Package
STATISTICSOPERATIONS will also become a reusable Figure 1. Structure of Ada Kalman Filter Program
component in the parts library.

U "
A test driver, procedure TESTFILTER, was developed to Figure I shows the structure and dependencies of the Kalman

execute the testing routines of KALMAN FILTER. TEST. This filter package together with its interactive testing facility using .

interactive, menu-driven procedure required the facilities of the symbology introduced by Burkhardt and Lee 1311. Five of the ._ir
language-defined package, TEXTIO, for input from the user, program units are reusable Ada software components, i.e.,
output to the screen, and writing test results to a file. During the GENERICMATHLIB, MATRIXVECTOROPERATIONS,
design of TESTFILTER, it was decided that the ability to graph DISPLAYRESULTS, STATISTICS OPERATIONS, and
the error of the Kalman filter would be a desirable feature. A KALMAN_FILTER. The 1/O facilities are provided by the Ada
package called DISPLAYRESULTS was therefore produced and language. The two remaining components. KALMAN
placed in the reusable parts library. It provides an interface to a FILTERTEST and TESTFILTER, are application-specific units
graphics utility and has the option of producing a line graph, bar developed to test Kalman filter packages, although they contain
chart, or pie chart of the test results. Ada subprograms which may be easily adapted to other uses.

4V The dependencies among program units in Ada determine a The Kalman filter program was constructed by combining , , ..

partial ordering for compilation and recompilation. As shown in language-defined Ada packages, existing reusable software
the structure chart in Figure 1, GENERIC MATH LIB, DISPLAY components, and application-specific components. This method
RESULTS, and STATISIICSOPERATIONS have no depend- will be applicable to larger scale projects as the availability and

, encies. The only compilation order requirement is that they must number of reusable Ada components increase.
be compiled and placed in the library before the units which list
them in a context clause. MATRIX VECTOR _OPERATIONS Ada's packaging mechanism provide% a means of controlling
depends on GENERIC .MATH 1.IB and must be compiled after it. those items available to the outside user. The specification of the

v Figure 1 shows that KALMAN FILTER must be compiled after Kalman filter package, as shown in Table I, contains the
MATRIX _VECTOR _OPERATIONS, and that the compilation of instantiation of the generic MATRIXVECTOR OPERATIONS
KALMAN FILTER TEST must follow that of KAI.MAN FILTER package with the same precision as KALMAN FILTER. This
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package is placed in the specification to make it visible to any A problem can occur, however, if the structure is not designed I-
other unit needing the facilities of MATRIX_ carefully. In the example above, both KALMANFILTER and
VECTOROPERATIONS. The packaging facility ensures that KALMANFILTERTEST require access to package MATRIX_
those items, and only those items, declared in the.specification VECTOROPERATIONS. If the package KALMAN
are available to the user of this package. However, neither items FILTERTEST instantiates MATRIXVECTOROPERATIONS
declared in the package body, nor the implementation details of and KALMANFILTER with the type specified by its own generic
the package, can be accessed by the user. parameter, and the package KALMAN-FILTER instantiates

package MATRIXVECTOROPERATIONS with its generic
This feature is used to protect the state information stored parameter, then KALMANFILTERTEST and KALMAN_

between iterations of the Kalman filter. As long as the package is FILTER would each contain a version of MATRIXVECTOR_
in scope, i.e., available for use, the state variables in the Kalman OPERATIONS instantiated with their own generic parameters.
filter package body, unlike local objects in an Ada subprogram, However, since the generic parameter of KALMAN -FILTER is the
will remain available and valid, retaining their values from same as the generic parameter for KALMANFILTERTEST, one
iteration to iteration. might assume that the two instantiations of MATRIX-

VECTOROPERATIONS would be compatible, though this %
Experience in designing reusable parts has revealed few assumption is not necessarily valid. Suppose the package

problems with writing generics instantiated within other generics. MATRIXVECTOROPERATIONS declares types MATRIX and
For example, in the Kalman filter, generic package VECTOR, which are based upon its generic parameter. If the
GENERIC MATHLIB is instantiated in generic package package KALMANFILTERTEST declares objects of type
MATRIXVECTOROPERATIONS, which is then instantiated MATRIX and attempts to pass those objects to a subprogram of
within generic package KALMANFILTER, which is then KALMANFILTER which expects objects of type MATRIX, a
instantiated within generic package KALMANFILTERTEST. particular compiler may not accept those calls and may complain
KALMAN_FILTER_TEST is instantiated within procedure that the call cannot be resolved. This is due to the fact that
TEST-FILTER, the main procedure. By using levels of generics in KALMANFILTERTEST and KALMANFILTER instantiated
this way, all testing is performed in the precision with which MATRIXVECTOROPERATIONS with their own generic
TESTFILTER instantiates KALMANFILTERTEST. Table I parameters. Although the parameters are identical, a compiler
contains code segments showing the instantiations. may consider them distinct and therefore not allow them to be

used as though they were the same.

Table I. Instantiations of Generic Packages A solution to this potential problem with generics is to
perform instantiations of generic packages needed by package A in
the specification of package A, rather than in its body, if those

generic packages are needed by another unit which uses package A
type YtXW FLOAT is digits <;

package GENERIC MATH LIB is (directly or indirectly). That other unit would then use the
instantiation in package A instead of performing a new

end'GEIMATHLIB ........ instantiation itself. This also eliminates the overhead of
with GI ERICMATHLIB; multiple (identical) instantiations of generic packages within the
generic same program, as well as resolving possible overloadingtype YOLYP FLOAT is digits <>;

package MATWIX VECTOR OPIONS is ambiguities.
package MY MTH L9IBis new GDJEIC_ M _TLIB (YOUR_FLOT);
use MYMATitLIE; As observed by St. Dennis, Stachour, Frankowski, and Onuegbe

end MATEIxVECITOOpERATI ns; 1321, reusable software is built for reuse; is fit for reuse, i.e., is
composable with other code without interfering with the other

with MATRIX VEcT OPMATIONS;
generic code, nor allowing itself to be interfered with; and presents a

type YOU FLOAT is digits <>; useful abstraction at an appropriate level of abstraction. The

package KtALMAN rILTE is reusable components in the Kalman filter program and, in general,
package MY FATRx vEc'tO OPEATIONS is n all the components in the reusable parts library, are primarily

MAYtIx vEC-ro oPfbTAtios (Co Ym arLOT)i designed for reuse. Others are developed as a necessary or
use MATRIxxECo 6PEATIoNeS - desirable feature for a specific application, and only after

end KlAMiRA1 _FILT1ER; ..................... development is the part itself recognized as an appropriate

with RA~U _FILTER; candidate for the reusable library. In this case, the part is
generic modified, perhaps even redesigned, to become a reusable

type YOM FLOAT is digits <>; component.
package RALMN FILTER TEST is c n

package MY SKALAN FYLTER is new KALMAN FILTER (YOI.P FLOAT, 9, 6);
use MY KALRAN FILXIER; In the development of the reusable Ada software components,
us: my-rATRixv/EcI oR OPERATIONS; --instantiated in KA rIL'TER. it was realized early on that an overwhelming concern must be

end S ' ,AI4 rILTRTrEST; given to readability and understandability by the user. To this
........................ end, an internal Ada Style Guide was developed to guide the

with SKAUIANFILTERTEST; construction of the reusable parts. Methods of formatting text in

procedure TEST FILTER is erder to enhance readability are included in the style guide.
type TEST FLdkT is digits 6: Naming conventions are established to make the source code more

package MY KALMAN FILTEPTEST is new readable and self-documenting. Guidelines are established on the
u.MAN FILTE TEST (TEST FLOAT); us',e of comments, exceptions, representation clauses, and other

use MY KAW ILTER TEST; language fatures. Included are suggestions on program structurng
use MY KAIAN FILTER; -- instantiated in KALAAN FILTE RTST.
use MY MATPIX VECMOR OPERATIONS ; -- instantiated in A.MAN FILTEP. and guidelines on appropriate use of different program units.

end TEST FILTER ; In addition to the Ada Style Guide, header templates in the s'

hrni oft comment blocks were created for each type of program unit
ti be dVreloped. There are different templates for a subprogram
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compilation unit, an embedded subprogram, a package Selected Implementations
specification, and a package body. The header for a subprogram
compilation unit includes information about the input, output, Four types of Kalman filters have been selected for inclusion in
action performed, method used to perform the action, supporting the Ada library of reusable components: the conventional Kalman
routines and dependencies, exceptions, embedded subprograms, filter (CKF), the square root covariance filter (SRCF), the
types and subtypes, and a data dictionary. For an embedded Chandrasekhar square root filter (CSRF), and the square root
subprogram, the header adds a section for listing those units information filter (SRIF). Verhaegen and Van Dooren 1461 have ,
which call the subprogram. Package specification and body treated these four KF algorithms, and their paper provides the
headers contain similar information to a subprogram compilation necessary analysis and references. The reader should also consult
unit, but also include a list of all functions and procedures 1471 and 1481 for additional KF theory and algorithm information.
contained in the package.

In the CKF, the new measurement vector and previous values AL.

Embedded comment blocks precede major/critical sections of of the state estimate vector and of the error covariance matrix are
code to ensure that the reader understands the purpose of those combined at each discrete time to produce a new state estimate
sections. These blocks are also used to clarify complicated vector and a new error covariance matrix. This recursive process is
mathematical operations. called propagation. The propagation of the error covariance

matrix can result in ill-conditioned quantities for particular
Before a component is placed in the reusable Ada parts library measurement and system conditions. Potter 1491 and 1501 gave a

it is reviewed by several members of the staff, in addition to the method for propagation of the error covariance matrix in a square
implementer, to ensure that the required style guidelines have root form. Kaminski, Bryson, and Schmidt 1481 have published a
been followed for the source code, that there are appropriate survey of algorithms used to propagate state estimate vectors and
headers and sufficient internal comments, and that the testing error covariance matrices in square root forms. The term square
method is sufficient to validate the code. root, widely used in KF literature, is more properly called the

Cholesky factor 1511.

IlH. KALMAN FILTER PACKAGES A different algorithm for performing the KF function, devised
by Fraser 152!, is the information filter. The information

Hlistory of Kalman Filters algorithm, discussed by Anderson and Moore 110!, provides
recursive filtering by propagating a reference vector and an

Kalman filters are named after R. E. Kalman, who presented information matrix. The system state estimate vector can be %
his paper, "A New Approach to Linear Filtering and Prediction calculated (when needed) from the reference vector and the
Problems", at the Instruments and Regulators Conference, March 29 information matrix. The information matrix is essentially the
to April 2, 1959, of THE AMERICAN SOCIETY OF Cholesky factor of the inverse of the error covariance matrix.

* MECHANICAL ENGINEERS. His 1960 paper 1111 related his Kailath [531 has shown that filtering algorithms may be based
work to the prior work of Wiener 1331 in 1949, Zadeh and upon either the ancient (1724) Ricatti-type difference equation
Ragazzini 134) in 1950, and Bode and Shannon [351 in 1950. The 1541 or the Chandrasekhar-type equation introduced in 1948 for
Kalman filter concept found widespread applications and served problems in astrophysics. These algorithms offer advantages and
as the basis for many new theoretical and computational disadvantages from the point of view of numerical computations.
developments.

Theoretical developments by Andrews 1551 have shown that
In February 1970, the NATO Advisory Group for Aerospace the measurement vector can be applied one component at a time in

", Research and Development (AGARD) published a comprehensive a technique called sequential processing. When the entire
set of reviews in its report, "Theory and Applications of Kalman measurement vector is used at once, it is called simultaneous
Filtering" 136). NATO AGARD published a second report in processing. KF implementations are usually divided into two
March 1982, "Advances in the Techniques and Technology of the parts. In the first part, the previous state vector and covariance
Application of Nonlinear Filters and Kalman Filters" 1371. In matrix are replaced by new predicted or extrapolated values. In 6P
March 1983, THE INSTITUTE OF ELECTRICAL AND the second part, the state vector and covariance matrix are
ELECTRONICS ENGINEERS devoted a special issue of its adjusted to new values based upon the predicted values and new
Transactions on Automatic Control to the subject, "Applications of measurements. In some KF algorithms, simultaneous processing is
Kalman Filtering". There are many other publications on KF used in the time update portion and sequential processing is used in
which demonstrate its utility. With the advent of modern digital the measurement update portion.
signal processing 1381 to i2l and the application of statistical
concepts to filtering [61, it has become practical to estimate the Many KF implementations are now available, based upon the
state of a linear system with noisy inputs using noisy choices of covariance/information matrix propagation,
measurements. In its simplest form, the Kalman filter algorithm simultaneous/sequential processing, square root factorization, and
yields: 1) an estimate of the system state (n x I state vector), and Ricatti/Chandrasekhar equations. Additional choices result from
21 a measure of the quality of the estimate in x n error covariance the various kinds of matrix operations that are available. The
matrix). At each discrete time, the KF algorithm produces a new reader is referred to many books on numerical methods 1561 to 1611.
state estimate and a new error covariance. Numerical difficulties In the following paragraphs of this section, the essential
with the simple KF have led to other KF implementations which equations for each of the four selected types of KF
res olve some of these difficulties. implementations are given approximately as they would be

expressed in Ada statements. ,Y,"~qq.,

In view of this KF history and the major role of KF in tracking epse inAd satmets

and control systems, it is apparent that an Ada library i431 and
[441 of reusable components must include a means to implement
Kalman filters and to test their performance Itherefore. the
oblective has been set to establish generic Ada packages for
several KF implementations 14 1 and fior the necessary supporting
packages and subprograms.

eJ1*
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Matrix Mathematics Conventional Kalman Filter

The package ADVANCED_MATRIXOPERATIONS contains Conventional Kalman filter (CKF) mathematics are presented
subprograms which accomplish Cholesky decomposition, and explained in this paragraph. The linear system and
Householder triangularization, modified Gram-Schmidt ortho- observations in this paper are modeled according to the following
gonalization, a back-substitution solution for triangularized linear equations:
equations, and other sophisticated matrix operations. - - PRESS EQUATIONS (n-component vector

STATE NE :- STATE TRANSITION - STATE OLD
The Cholesky decomposition of a symmetric, positive, PROcESSWISE Cot VERSI o PRocESSNOISE;

semidefinite n x n matrix A, produces a lower triangular n x n - - OBSERVATION EQuATIONS it-component vector)

matrix L which solves the matrix equation: MEASUREMEN :- MEASUECtoNVERSION - STATEOLD - MEASURE NOISE;

L * TRANSPOSE (L) = A (1) The covariances of PROCESS NOISE and MEASURE NOISE
are known and are represented by COVPROCESSNOISE and

The call to this function passes matrix A: COV MEASURENOISE. The matrices STATETRANSITION,
PROCESSNOISECONVERSION, and MEASURECONVER-

L := CHOLESKYFACTOR (A); (2) SION are also known and may be time-varying.

The Householder triangularization of an (n+m) x n partitioned The CKF algorithm treated in this paper consists of two parts:

matrix A produces an n x n upper triangular matrix W, using 1) the time update of the state vector and the error covariance

implicitly an (n+m) x (n+m) orthogonal transformation matrix T. matrix using values of this vector and matrix from the previous

When A is a 2 x I partitioned matrix, with matrix elements Al iteration; and 2) measurement update of the state vector and error

and A2, the procedure HOUSEHOLDER_2XI solves the equation covariance matrix, using a calculated gain matrix and the vector of
below for matrix W: measurements. The equations used for these CKF calculations are

as follows:
n I W I Al I n - - TIME UPDTE

I .. .. I = T I .. .. I (3) STATETP ,ANS ITION STATE OLD ;
ERROREXTFRAPaOLATION STATE TRANSITION ERROR OLD - TRANSPOSE

m I 0 I I A2 _ m (STATE TRANSITION) OCSS NOISE cONvEsIC -
- - COY P CESS NOISE TRANSPOSIE(PROCtSS NOISEC ONVEION);

- MEASUREqDTT UPDATEn nmGA :- OR ETRAPOLATION " TRANSPOSE( MEASURE CONVERSION)

The call to this procedure names the inputs Al and A2 and the INYERSE(WSURE CONVERSION * IRPORP APOLATIO
outpuPOt W(:IEASR. CONVERSION) COV MEASURE NOISE);

Mr UR coNEVsTa4 - STATE ExrRAPOLATION);

HOUSEHOLDER_2XI (AI,A2,W); (4) ER MRAiATICI - GAIN - KEASURECONVERSIO-

_ UIEND 5 UCIPAT4
When A is a 2 x 2 partitioned matrix, procedure
HOUSEHOLDER_2X2 solves the matrix equation below for scalar These equations require the use of simple matrix and vector

F, row vector G, and matrix W: operations available from the reusable package
MATRIXVECTOROPERATIONS. The ERRORNEW matrix

I IF I G I I 0- 1 1 can become ill-conditioned as a result of numerical problems, and *
the GAIN matrix can be a problem due to the matrix inversion

I.... I--- I = T I-... I--- I operation. If the GAIN becomes small, the measurements are
n 10 IW I IA2 I A31 n essentially ignored in the calculation of STATENEW. If the

n n GAIN becomes large, measured values become dominant.

The call to this procedure names the inputs (scalar Al, column Square Root Covariance Filter
vector A2, matrix A3) and the outputs (F, G, and W):

In the square root covariance filter (SRCF), the error
HOUSEHOI.DER_2X2 (A1,A2,A3,F,G,W); (6) covariance matrix of the conventional Kalman filter (CKF) is

replaced with a lower triangular Cholesky factor [611 (square
The modified Gram Schmidt orthogonalization algorithm root) of the error covariance matrix. The product of the Cholesky

also solves matrix equations (31 and (5) with the calls factor and its transpose is the error covariance matrix; this product

can never fail to be non-negative-definite. Its conditioning is %
MOD G-S _2Xl (A1,A2,W); (7) better than that of the error covariance matrix. The Cholesky

MOD_G_S_2X2 (AI,,A2,A3,F,G,W); factor yields a double precision effect in numerical computations.

The SRCF statements below are based on the equations given
WhenUisannnupper triang rmatrixandBisaonstant by Kaminski, Bryson, and Schmidt 148J. The time update is done in

vector, a set of linear equations for vector Z. is: the simultaneous processing mode with a single vector operation.

UlI ZI + U12Z2 . + UlnZn=BI The measurement update is done in the sequential processing modeby means of a loop in which one scalar component of the
U22 Z2 + ..... + U2n Zn= B2 (9) measurement vector is processed in each iteration. If the e

Unn Zn = Bn covariance matrix of the measurement noise is not diagonal, an
additional Cholesky decomposition is necessary to make it % 6%

These equations are easily solved by a back-substitution diagonal (1481 pp. 730-731).
algorithm which starts with the last equation for Zn. The call for
procedure BACKSUBSTITUTION names the inputs (matrix U
and column vector B) and the output (vector Z1:Y

BACK SUBSTITUTION (U,B,7.); (10) " .
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TIME UPDATE a
STATE EXTRAPOLATION:- STATE TRANSITION * STATE OLD; Square Root Information Filter
X= POCESS NOISE :- OIOLE3KY FACTORCOV PROCESS NOISE);
TEM PMATRIXI TRAiSPOE(_ROC OLD) * TRANSPOSE(9TATETRANSITIONt); The "information" matrix is defined to be the inverse of the
TEMP-MATRIX-2 TRASPOSEOI PROCESS NOISE) *error covariance matrix. The Cholesky decomposition algorithm,

TiFANSPOSE PROcESS NOISE CCtNV RSICE4) errCoek eomoiinagrtm
HOUSEHOLDE 2X1(-OPMATRIX ITEMP MATRIX 2,ourPuTfMATRIx); when applied to the information matrix, yields a lower triangular
R UTRAP51ATIONZ TRANSOSEt(OJPUMARIX); matrix called the square root information matrix. Use of matrix
- RzAsu.numn UPDATE
-R MEASURE NOISE :-COLERY FACTOR)OV MEASURE NOISE); mathematics shows that the propagation of the state estimate

for T in I..5BSERVATION SIZE 15,o - - vector and the error covariance matrix, as in the CKF, can be
Tow SCALAR OOT mJURE No2Irsi,I; replaced by the propagation of the information vector and the
TEMPVECTOR - TRANPO(Eit( mI"rIW.OLTCow

S-COLU~MNI.TRANSPOSE(MEASUrE CONVERSIcON)); square root information matrix. The algorithm which achieves
T MATRIX :- TRANSPOSE(tr E TAPOLATICN); this propagation is called the square root information filter
HOUSEHOLDER 2X2(T SCALAR, !T VECToR, TE PMATRZX, (SRIF). Described in the published literature 1101, [191, 1461, and

NUA - CAA, NW VECTOR, NEWMATW x) I-
FAc -:-NEW SCALT; 1641, are SRIF algorithms which offer choices between

GRIN :- NEW VtCT0t; simultaneous processing and sequential processing modes.
STATE NEW :Z (1.0/FACTOR) TVANSPOSE(GAIN) * (MEASURE Em -

MEASURE CONVERSION~ - MTTEXTRAPOLATION4) *STATEOLDI
ROO NEW :- TRANSPSE(NIN MAWRIX); The statements below represent an algorithm from 14 6 1 which
end loop; executes the measurement and time updates simultaneously. It is

Em ~ or UPDATES
assumed that the covariance of the process noise is a diagonal

The implementation of the SRCF requires matrix operations matrix or that it has been made so by an appropriate Cholesky 'I'
for Cholesky decomposition, Householder triangularization, decomposition. The state estimate vector and the error covariance
modified Gram-Schmidt orthogonalization, back-substitution matrix can be obtained, when needed, from the variables produced
solution of a linear equation with a triangular coefficient matrix, in the SRIF.
and selection of a column vector from a matrix.

- - MEASUREMNT AND TIME UPDATES

TEMP MATRIX 1 :- TRANSPOSE(CHOLESKYFACTOR(INVERSE
(CCIV PROCESS NOISE)));

Chandrasekhar Square Root Filter TUIP MATRIX 2 :ROOT INFORM OLD ; INVERSEfSTATE TRANSITION);
TEKP-MATRIX-3 TEMP-MATRIX-2 -PROCESS NOISE DISTRIBUTION;
TEPMATRIX-6 :- TRANSPOSE)CHOLESKYFAC R( INVRSE

The mathematical basis for the CKF, SRCF, and SRIF are (Z!ov MEZURE NOISE))); -
T 'P MATRIX 4 :Z TEMP MATRIX 6 " MEASURE CONVERSION;process and observation equations with time-varying matrices: TER PMATRzx-5 :- TIP MTIX-6 • ME;SURdT)

state-transition, measurement-conversion, process-noise-con- HouSOLDER3X33(TEP MATRIX I, TEKP MATRIX 2, TE74P MATRIX 3,

version, process-noise-covariance, and measurement-noise- TEMP MATIX 4,11,0 MATRIX 5, INFlRM VECR-OLD-
INFORM vEcT6R Nt~,Rr INFORM N~w);.

covariance. The error optimization calculations for those filters INFORM VECTOR OL5 t- INFORM v~cOR-NB; 5
make use of a nonlinear, first-order differential equation treated ROOT IFOROED :- ROW INFRM DNE;

by Ricatti in 1724 1541. In 1973, Kailath [531 showed that, when - - b UPDATES -

these matrices are time-invariant, optimization could be based
upon a differential equation introduced in 1948 by the The above implementation of the SRIF algorithm makes use of
astrophysicist Chandrasekhar. Hence, for the time-invariant special versions of the Householder triangularization algorithm.

case, the Kalman filter equations can be replaced by equations for HOUSEHOLDER_3X3 is provided in the package ADVANCED_
the Chandrasekhar square root filter (CSRF). The CSRF is MATRIX OPERATIONS. The SRIF offers numerical advantages
considered to be a simplification of the SRCF achieved by making which have led to its wide use.,%

use of the time-invariance of these matrices. In the CSRFalgorithm, the state estimate vector is propagated using the )

measurement vector and three auxiliary matrices. The error Filter Package Design
covariance matrix is propagated using one of the auxiliary
matrices, which is a Cholesky factor of the increment of the error An Ada package consists of two parts: the specification and
covariance matrix. The following Ada statements, based on [461 the body. The specification may be compiled separately, but must
and 163!, accomplish one recursive iteration of the CSRF. be compiled before the body is compiled. The specification

provides the outside interface. The body contains the hidden NP
-C- CINED TIME AN MEASUREMENT UPDATES details, package initialization statements, and exception
HOUSEHOLDER CSRF(ROOT MEASURE OLD. R OYT_ OLD, GINOLD, handlers. Those procedures, functions, and variables intended to

STATE TRANSITIONI, MEASURE i!ONVERSION, LGILhnlr.Ths n aibe neddt
oor MEASURE NEw, ROT ERop NE, GAIN NEW); be visible outside of the package are controlled by the

TiP MATRIX 1 :Z GAIN NEW INVfESEICHOLESPYFACTOR specification. The use of the Ada "generic" mechanism permits
(COv MEASURE NoisET);spcfcto.TeuefthAd

TEMP MATRIX 2 :- MEASUREMENTO'NVERS ION the parameterization of packages with types, values, and objects.
-STATE 5LD:

STATE NE STATE- TRANSITIIN STATE OLD These Ada features have been used effectively in designing
ERROR NEW-:- ERF46B - LD.RC6'rT_ERROR_OLD *TRANSPOSE)Rwr_ERROR_OLD), Kalman filter packages. The procedures for initializing and
GAINWS G" AIN_.., -running the filter are made visible to other parts of the program
Por MAU OLD :- roT IdER ND by suitable declarations in the package specification. The generic

SThAT OLD T- STATE - N - feature has been used to permit the external control of the
ERD :- ROR-N~e ; numerical precision (number of decimal digits) used. Variables

given visibility include scalars, vectors, and matrices. The state

estimation vector and error covariance matrix, for example, are
The implementation of the above CSRF algorithm utilizes declared and made visible in the specification. The detailed

special skew Householder transformations provided in the statements needed for each KF algorithm, as well as local
package ADVANCED_ MATRIXOPERATIONS. The numerical variables, are hidden in (he package body The Ada with" and
properties of these non-Ricatti-based estimations have been bus, are h e ne a kae ody. the Ad w and

repotedin he ltertur citd n162 and[63. 'se" constructs make available for use within the KF package.,reported in the literature cited in 1621 and 1631. those mathematical, vector, and matrix operations provided in
other packages. The exception handling features of the Ada
language are used within the package body in techniques which
deal with ill-conditioned matrices and other numerical problems
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recognized during the performance of the internal KF operations. begin -- RUN KALW4 FILTER
The Ada package construct has been found to be a convenient and LOCAL STATE ESTIMATE NEW :- STATE TRANSITION
useful means for treating each specific KF implementation. STATE ESTIMATE oD;

LOCAL ERROR COV bEW :- (STATE TRANSITION * ERROR COV OLD
(TRANSPOSE (STATE TRANSITI6N))) - STATE NOISE CDV;

COMPUTE INVERSE ((OBSERVATION CONVER ION *-LOCAL-ERP'R COV NEW
(TRANSPOSE(OBSERVATION CVERSION)) ).OBSERVATIlVNOISECDV),Example : CKF Package INVERSE MATRIX, ILL CONDITIONED- MATRIX); _

GAIN :- LOCAL ERROR COV NEW -
Ada implementation of the CKF was designed as a generic (TRSPOSE(OBSERVATION- U r'ERSION)) * INVERSE MATRIX;LOCAL ERROR COV NEW :- LOCAL ERROR COV NEW - (GAIN

package with three parameters: the precision of the floating OBSeRVA7TION AONVERSION * OCAL R" COV NEW)
point type, the size of the state vector, and the size of the LOCAL STATE ESTIMATE NEW - LOCA-STATE ESTIMATE NEW + (GAIN

(OBSERVATION VALtI - (OBSERVATION COiVERSIONobservation vector. The package consists of a procedure to IOALSTATEESTIMATENEW)));
initialize the filter, a procedure to run the filter, a type used for
reliability, and variables which store values of the state ERROR CV ODX) LOCAL ERROR COV NEW;
estimate and error covariance produced during the previous run of STATEESTIMATEOLD -LOCALSTATEESTIMATENEW;

the filter. The source code for the specification and body of the ERROR COV NEW - LOCAL ERR COV NEW;
generic package KALMAN-FILTER is given in Table II. To STATE--STMATENE : LOCA_STATE--STIATE_NW;.
conserve space in this paper, extensive documentation has been if ILL CONDITIONED MATRIX then k.
removed from this listing. The usual -)de format, which stresses KrRELIABILITY - CUESTIONABLE;I
readability, has also been sacrificed in some places for the same KF RELIABILIT - GOOD;
reason, end If; %

Table II. Source Code for Package e t -> F RELIABILIT BAD;
KALMANFILTERCKF end RUNKALMAN-FILTER;

-- COPYRIGHT (c) 1987 Martin Marietta Corp. All rights reserved, end KALmNFILTERCKF;

with MATRIXVE CTO ROPERATIONS; - COPYRIGHT (c) 1987 Martin Marietta Corp. All rights reserved.

generic
type YOUR FLOAT is digits <>; IV. TESTING METHODS
STATE SIZE POSITIVE;
OBSERVATIONSIZE POSITIVE; Before an implementation of a Kalman filter can be stored in a

package KAMANFILTER_CKF is library of reusable components, the code must be thoroughly tested
package MY MATRIX VECR OPERTIONS is new to ensure that the filter performs correctly. To test the filter, a

MATRIX VETOR OPERATIONS (YOURFLOAT); procedure which serves as a user interface and a package of %
use MY MATRIX VECTOR OPERATIONS; simulation procedures were created. After the user of the testing
type RELIABILITY is TGcoo, QUESTIONABLE, BAD); procedure sets the parameters for a run of the test, the filter is

procedure INITIALIZE _ALMAN FILTER initialized. A simulated target is produced, Gaussian distributed
(INZTI.AL STATESTIMATE i in VECTOR; noise is added to target state variables, and this observation
INITIAL-ERROR-COV :in MATRIX) ;procedure RERO ;A-RLTE -)vector is passed with the user-specified parameters in a call to

p(OBSEreATION VALUE ; in VECTOR; the Kalman filter procedure. The Kalman filter produces a state
STATE TRANSITION in MATRIX; estimate, an error covariance matrix, and a reliability measure
OBSERVATION CONVERSION in MATRIX;
OBSERVATION--NOISE COV in MATRIX; based upon its arguments. The state estimate and error covariance
STATE 18115E7COV - in MATRIX;
STATE-ESTIMATE NEW ; out VECTOR; matrix are returned by the filter, and are also stored in the
ERROR"COV NEW out MATRIX; Kalman filter package %,4riables for use in the next call to the
r _RELIABILITY out RELIABILITY); filter. Following completion of a filter iteration, information

end FRAIANFILTERCEF; about the accuracy of the state estimate is stored for later
analysis. A file is also generated with data for use in graphing

package body ILMAN_FILTERCKF is the accuracy of the filter, and a third :,P, stores values of
variables for use in tracking down problems with the filter, if the

ERRORCCVOLD MATRIX (1 .. STATE SIZE, 1 .. STATESIZE) debugging mode is turned on. A typical cycle of testing the Kalman
:- (others -> (others -> 0.0));

STATE_ESTIMATEOLD VECTOR (1 .. STATESIZE) :- (others -> 0.0); filterisgiven in Figure 2.

procedure INITIALIZE KALMAN FILTER Package KALMAN FILTER TEST is a generic package which
TINITIAL STATE ESTIMATE in VECTOR; P A

INITIAL-ERRORCOV in MATRIX) is provides the subprograms needed to test the filter in a Kalmanbegin filter package. This test package has one generic parameter used
to establish test precision. The package instantiates the generic k_.ERROR COV OLD :-INITL'L ERROR COV;

STATE ESTIMATE OLD INITIAL-STATE-ESTIMATE; Kalman filter package with the same precision, and with state
size siy and observation size nine. The package. specification
contains the variables which may be modified interactively by

procedure RUN KALMAN FILTER the user during testing and contains specifications for three
(OBSE R ATION VALUE in VECTOR; procedures: INITIALIZEFILTER, SET_TODEFAULT_ '

OBSERVATIONCONVERSION in MATRIX; VALUES, and PERFORMTEST. The body contains variables
OBSEFVATIONNOISECOV in MATRIX; used in generating Gaussian-distributed random noise and contains %,x.STATE NOIIE COV in MATRIX; the three procedures listed above and procedures GENERATE_
STATE ESTIMATE NEW out VECTOR;
ERROR-COV NEW out MATRIX; NOISE, SIMULATE-TARGET, and PRODUCE-OBSERVA-
KF RELIABILITY out RELIABILITY) is TIONS.

LOCAL STATE ESTIMATE NEW : VECTOR (I .. STATE SIZE);
LO" L. ERROR COV ry NEW MATRIX (I..STATE SIZE, I..SrATE SIZE1;
',AIN MATRIX " .. STATE SIZE, i .. 'BSERVATION SIZE);
I!JVEPSE MATPIX:MATRIX)I..6SERVATIC, SIZE,). .OBSERVATION_SIZE);
ILL a"oatoITIONnD MATRIX : TOOLEAN;
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Table Ill. Portions of Code From Package
KALMANFILTERTEST

Open Output and package body ALMANILTER_T-EST is

Debugging Files use MY_MhAThLIB; -- instantiated in MATRIXVECTOR_OPERATICNS

-- ** SEVERAL PORTIONS OF CODE REMOVED TO CONSERVE SPACE ....

procedure PRODUCEORSERVATIONS is

Display Menu of User Selected Option begin

Testing Options to End Testing SIMULATE TARGET;GEEATe-NOI SE ( GAUSSIANNOISE )

LOOP 70 MODOIFY GAUSS IAN NMqBERS TO REFLECT STANDARD
- DEVIATIONS REMVED 70 COSERVE SPACE IN LISTING

U ser selects options from m enu for Close O utput and O - :- T S M AUsE s1 .. 6) +

modifying various parameters for test Debugging Files GAUSSIAN_..ISE;

of filter (if desired), then selects end PRODUCEOBSERVATIONS;

option to begin the actual test
procedure PERFORM TEST is

Initilize ilterPRODUCE OBSERVATION4S;
Initialize Filter E I cumE (START TIME);

RNKAIAAN FILTER (UBSERVATICH MEASUREMENT.
STATE TRANSITION SET, OBSERVATION CONVERSIDN SET,
OBSERVATICN NOISE COV SET, STATE NOISE COV SET,
STATE ESTIMITE, EWPOR-COVARIANCET RELIRBILTTYVALUE);

Perform test (generate target observations, GET CPU TIME (STOP TIME);-

run filter, store state estimate and error DELTA CPU TIME :- "9TOPTIME - START-TIME;

covariance), and analyze performance for the end PERFORM-TEST;

time interval specified by the user begin -- KAUA"._FILTER_TEST

SET TO DEFAULTVALUES;
INITIALIZEFILTER;

Figure 2. Typical Cycle of Kalman Filter Testing end KALMAN_FILTERTEST;

Procedure INITIALIZEFILTER initializes package matrices Finally, as shown in Table Ill, procedure PERFORMTEST
not directly user-modifiable from the testing procedure. The causes one iteration of the filter procedure to be executed. After
procedure then calls procedure INITIALIZEKALMAN_FILTER calling procedure PRODUCEOBSERVATIONS to produce an
in the Kalman filter package with the user-provided (or default) observation vector, procedure PERFORMTEST calls RUN_
initial state estimate and initial error covariance which will be FILTER in the Kalman filter package to execute one run of the
used during the first iteration of the filter. Procedure Kalman filter. Thus, calling PERFORMTEST results in a
SETTODEFAULTVALUES initializes to their default values simulated target and a set of random numbers being calculated, the
all variables which may be modified by the user. two sets of values being combined to form an observation vector,

and one run of the Kalman filter being executed. In addition, CPU
Procedure SIMULATETARGET computes the state vector for time used by the procedure RUN-FILTER is recorded.

a simulated target moving in a rectangular, Cartesian, inertial
reference frame with X-axis to NORTH, Y-axis to EAST, and Procedure TESTFILTER runs a test of package KALMAN-
Z-axis down (negative Z-axis is up). The target moves on a spiral FILTER using procedures in package KALMANFILTERTEST and
three-dimensional path, with separate sine-wave modulation user-supplied interactive parameters. Results of the test are
superimposed on radius, height, and angle coordinates, reported to an output file. Several intermediate results are also

reported to a debugging file if the user specifies that debugging
Procedure GENERATE-NOISE produces six independent, should be turned on. This procedure uses package TEXT_10 and

uncorrelated, Gaussian-distributed, zero mean, random variables, instantiates several input/output generic packages and generic
This process utilizes two embedded subprograms, PRODUCE package KALMANFILTERTEST.
UNIFORMVALUE and PRODUCEGAUSSVALUES. Two
values uniformly distributed between zero and one are generated, a TESTFILTER declares the floating point type to be used to
random variable with Rayleigh probability distribution is instantiate all generic packages, then instantiates all necessary
generated, and then two independent Gaussian random variables packages not already visible. After opening files for output and
are generated [651. This process is repeated until all six random debugging information, the procedure displays the values of
variables are created. user-modifiable test parameters and a menu of options available

to the user. These options include changing any modifiable
Procedure PRODUCEOBSERVATIONS calls the procedures parameters, toggling debugging on/off, resetting all modifiable

listed above to acquire a state vector based on the simulated target parameters to their original default values, and running the test
and a vector of noise. The noise is then modified to reflect desired based upon the current set of parameters. The user may continue
standard deviations for position and for velocity. The procedure modifying the parameters and running tests as long as desired.
then combines the state and noise vectors into an observation When all desired tests are completed, the user chooses the option
vector, which it returns. This procedure is shown without to end the test (or series of tests).
comments in Table ll.
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If the user selects an option to change a parameter or set of V. PERFORMANCE EVALUATION
parameters, this is also done interactively, with instructions to
the user and the old values of the parameters provided by the test Evaluation of the conventional Kalman filter (CKF) is
driver appearing on the screen. When the user indicates that the divided into two parts: 1) performance in state estimation, and 2)
test should be run with the current set of parameters, a message is run-time characteristics in embedded computers. The performance
sent to the screen, local variables are initialized, and the Kalman in state estimation is evaluated by simulating noisy observations
filter and testing package are initialized with a call to of target motions and system noise, and by comparing the state
KALMANFILTERTEST.INITIALIZEFILTER. For each value estimates from the CKF filter with the known true states of the
in the user-specified (or default) set of times, target. For example, a graphic display of the errors in the
KALMANFILTERTEST.PERFORMTEST is executed. A local estimates of target coordinates is constructed easily with the use
procedure then records the results and accuracy of that iteration of of package DISPLAYRESULTS. Numerical evaluations,
the test, and any debugging information is output to the debugging although not the principal objective of the work reported here,
file. include study of error covariances in state estimates, filter

divergence, and stability. The reader is referred to many excellent
Following the completion of the entire set of time values, the papers [661 to [701 for the characteristics of the various KF

test results are sent to the output file, and a message that the test implementations.
has been completed is sent to the screen. The user is then returned
to the main menu and may choose whether to continue testing or In addition to evaluating the state estimates produced by the
end the series of tests. Kalman filter, run-time conditions have also been examined. In

particular, the size of the source and object code, the number of
After at least one test of the filter has been run, the user also statements in the source code, and the amount of CPU time needed

has the option to graph the results of the previous test, if the for one execution of the Kalman filter, i.e., one call to procedure
proper hardware and software are available. This allows the KALMANFILTER.RUNKALMAN_FILTER, have been
user to generate a line graph or bar chart of the mean square errors gathered based on results of compiling the set of files and running
of the state estimate. An example of the main menu produced by the test.
procedure TESTFILTER is shown in Table IV.

Tables V and VI present the current results described above.
Table IV. Sample of Main Menu Used Object size and source size are given in number of blocks, with 512 -

for Testing Kalman Filter bytes/block. Note that for the generic packages, i.e.,
GENERIC MATHLIB, MATRIXVECTOROPERATIONS,

KALMAN FILTER TEST PROCEDURE (DEBUGGING is turned of f) KALMAN FILTER, and KALMANFILTERTEST, the sizes

Current values of modifiable parameters: Time interval is 1.OOOOE-01 represent the combination of the specification and body. These
Initial time is 0.00000E.00 Last time is 1.00000E+00 sizes are small because the packages are generic. The number of
Jerk covariance is 1.00000E-04 statements in the source code is the number of semicolons in the
Std.dev.(position) is 1.00000E-02 Std.dev.(velocity) is 1.O0000E-0l source files which are not part of a string or comment.

FREQECY PHASE ANGLE AMPLITUDE MEAN vALUE
RADIUS 3.00000E-02 0.OOOOOE+00 1.00000E-01 3.OOOOE+00 Table V. Kalman Filter Size Information
ANGLE 1.00000E-03 1.60000E 00 5.OOOOOE-03 1.00000E-02
HEIGHT 2.OOOOOE-02 8.00000E-01 l.50000E-02 -l.00000E-03

I blocks 0 blocks 8 of statements
Spiral location is 5.OOOOE+00 6.OOOOOE+00 -l.00000E+00 object source in source code

module name module code total (spec-bcxdy

Options : 0. End the test (or series of tests).
1. Run the test with the above values. GENERIC MATH L1B.OBJ;l 2 158 166
2. Reset to all original default values. mATRIx VEcToR OPERATIcNS.OB3;l 2 290 336
3. Turn on debugging mode. KALMAN-FILTER-CKF.OBJ;l 2 63 52
4. Modify time parameters. KALMAN-FILTER-TEST.OB;l 3 118 193
5. Modify Jerk covariance, std. deviations DISPLAY RESULTS.OB3;l (body) 3 5 6
6. modify spiral location. DZSPLAY-RESULTS_ .O8J;1 (spec.) 2 5 2
7. view/modify initial state vector. TEST_FILTER.OB;l 280 221 744
8. View/modify initial covariance matrix.
9. modify radius information.
10. Modify angle information.
11. Modify height information. Table VI. RUNKALMANFILTER Execution Time
12. Graph error from previous run.

Number of digits of precision CPU time (milliseconds)

Extensive, but not exhaustive, testing is done on the 6 13.712
components considered for the reusable Ada parts library. The 16 596.820
number of test cases run will vary with the complexity of the unit.
For example, in testing some of the algorithms in MATRIX_
VECTOR_ OPERATIONS, 2500 iterations have been run at once to Performance analysis of the Kalman filter is accomplished by
determine if singularity or ill-conditioning of a randomly Ada package DISPLAYRESULTS and Ada procedure
generated matrix could be observed. Each reusable part in the ANALYZEPERFORMANCE. DISPLAYRESULTS serves as an
library will be accompanied by documentation describing the interface to a system graphics package and allows the user to see a
testing procedure and reporting the results of the testing performed graph representing the amount of mean square error in the most
as a final validation of the code. A maximum error bound between recent set of times for which the filter was run. For each
the value achieved and the value expected is included in the component of the state vector, ANALYZE PERFORMANCE
documentation as appropriate. Since many reusable parts have an calculates the square of the difference between the estimate
interactive testing package available with the components, the produced by the Kalman filter and the known true value produced \ \
potential user is free to perform his/her own testing. The content by KALMANFILTERTEST.SIMULATETARGET.
of the formal documentation and testing procedures is expected to
evolve as the reusable parts library matures.
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Procedure ANALYZEPERFORMANCE updates the mean development and testing of software systems, it is necessary to be
square error and sends additional information to the output file for able to test the performance of a particular filter under simulated
later use by the test operator. Portions of the code from procedure conditions. Therefore, components which support system
ANALYZEPERFORMANCE are given in Table VII. simulation have also been designed and tested for inclusion in the

Table VII. Portions of Code for Analysis of Results Ada library.

procedure AALLYZE PERFORANCE is Procedures for interactive user input to, and control of, system
ERRO TST FELT; simulations with Kalman filters have also been provided in the

begin library. In addition to the mathematical functions that would be

-- Write differences between true and estimated state vectors to included in any Ada library, Ada packages for statistical
-- output file. Actual code removed to conserve space. functions, advanced matrix operations, and graphic displays have

-- update the cumlative error term. been produced.

for COUNTER in STATE ESTIMATE'RANGE loop
STRE STATf MASUIPMUM (OCrI)- Further work is planned to evaluate the run-time

STAl ESTINkT (COUNMTER); characteristics of this Ada software in embedded computer
CUJIATED FILTER ER (COUNTR) :-

TcuLAi rILTlmm (couNTE) applications. It is anticipated that the documentation for these
((IERATITO[ M - 1.0) / ITEEATION N NR))+ generic Ada Kalman filter packages will provide the user with

end i * / lTop_ );- measured run-time, memory-use, and accuracy data for particular
embedded computer environments. The documentation will also

end ANALYZEPERFORMANCE. describe Kalman filter performance in producing state estimates

for selected system configurations.
The creation of the entire Kalman filter program, the

components of which are shown in Figure 1, involved the use of The life cycle productivity of system and software engineering
some existing reusable Ada components from the parts library, the efforts will be considerably enhanced by the availability of
development of some components specific to this application, and Kalman filter packages and supporting Ada components in a
the identification of some desirable components which are or library designed for convenient reusability.
eventually will become components in the reusable Ada parts
library. As mentioned previously, GENERIC-MATHLIB and
MATRIXVECTOROPERATIONS were existing components in ACKNOWLEDGEMENTS
the library at the beginning of the project. The goal of the project
was to develop several implementations of Kalman filters to The authors wish to express their appreciation to Theresa M.
become reusable components. The problem of adequately testing Bennett, Craig E. Kirkland, and Dr. Leung Ping Luk for their
the filters and viewing the results in some way, brought about the suggestions, comments, and assistance in completing the work on
creation of new reusable components, such as DISPLAYRESULTS which this paper is based; to M. Louise Mills for editorial
and STATISTICSOPERATIONS, as well as routines currently assistance; and to Edward C. Soistman, Jr., and Victor J. Sorondo
embedded within other program units which will soon be for reviewing the paper, making helpful suggestions for its
developed as independent reusable components. improvement, and providing support and encouragement during the

development period.
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A KNOWLEDGE-STRUCTURE OF A REUSING SOFTWARE COMPONENT IN LIL
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ABSTRACT specifications methods in LIL's Library to
support reusability in Ada programming

In this paper, we will address the proble-n environment. The ANNA-liKe modified LIL
of accessing effectively the software components specification language will be used. A
in LIL's Liorary by combining both formal and knowledge-structure for a software component in
informal specifications methods to support LIL's Library, as introduced in [2], will be
.rpusabili ty in Ada programming environment. imposed. It allows a description of the domain
The ANNA-like modified LIL specification of variables, and describes the resource
language will be used. A knowledge-structure characteristics of a component. It also
for a software component in LIL's Library, as provides the capabilities and facilities for
introduced in [21, will be imposed. It allows a users to determine, and ways to search for the
description of the domain of variables, and appropriate resuable software component in LIL's
describes the resource characteristics of a Library.
component. It also provides the capabilities By combining the formal and informal
and facilities for users to determine, and ways specification methods, we have a powerful tool
to search for the appropriate resuable software to support the reusability in Ada programming
component in LIL's Library. environment. While informal specification

method itself can only provide the functional
description of a package and a mean to enable a
user to allocate a particular software component
of interest in the LIL's Library; to include the
ANA-like modified LIL formal specifications, we
can analyze mathematically to determine the
correctness of the specification and for
possible equivalence between different sets of
specifications, we can also check for their

I. INTRODUCTION consistency and completeness. But most
important of all, it can be automatically
processed by a computer.

One of the most important goals in any
programming environment is to make programming II. LIL_ SPECIFICATION LANGUAGE
significantly easier, more reliable, and cost
effective. In [5], £6], w2 examined the problem As discussed in [3], [5), [6], LIL uses
of making verifiable specifications in an Ada THEORIES containing semantics to formalize data
software development environment, then abstractions (sets, variables, functions,
illustrated the program development methodology etc...), THEOREIES may use other THEORIES and
of analogous abstraction and finally, etc. to extend their properties and to bind them
illustrated how the verifiable specifications together. We will visualize LIL's THEORIES as
can aid in making analogous abstractions in the the software development system primitives; the
Ada programming environment. LIL, introduced by GENERIC THEORIES will be emboddied in making
Goguen in £3], was used to do all these works, parameters, i.e., it will mean adding structures
But how can software components in LIL be and semantics to existing THEORIES. GENERIC
accessed effectively by the programmer? PACKAGES are used for ADT (abstract data types)

and functions (or procedures). Further, LIL
In this paper, we will address this problem utilizes the "make" command using the concept

by combining both formal and informal "view" of THEORIES and PACKAGES to make an
instantiation of an existing software component
in LIL's Lbirary.

*This research is partially funded by the

California State University, Long Beach, Il. AN EXAMPLE
California.

Figures 1 and 2 in the appendix is an
example of an genmeric unit with ANNA-like
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modified LIL formal specifications and informal As in example (Figure 1), in the operation
specifications included. It is for section, the special commented line "--:
demonstration only, it is by no means complete. Function length Return natural;" and its

associated lines with the symbol "--," represent
The generic unit in the appendix can be ANNA-like formal specifications. The function

described as an abstract data type (AOT) in a "length" in the package "stack" is an example of
LIL's Library. An ADT with informal the virtual concept in ANNA. It may be viewed
specifications consists of a list of aliases, a as a concept the programmer used in formulating
natural language description, a list of and designing the package. It is a "virtual
keywords, a domain specification, and zero or function," it is not visible in the actual Ada
more operation specifications. Syntactically, source (text). It is used to specify the input
aliases, descriptions and keywords are and output conditions on procedures "PUSH" and
represented by the special comment symbol -- ", "POP". The ANNA-like annotation -- for the
which are optional, but if they do exist, they function "length" could also be declared in the
must appear immediately after the package body of the package "stack" for run-time
header. On the other hand, if ANNA-like formal checking of correctness of calls to "PUSH" and
specification is included, it may appear "POP".
anywhere in a package wherever valid Ada texts
are allowed. From this example, it is obvious that this

ANNA-like annotations support program debugging,
Aliases are synonym names for the ADT verification of specifications and checking

name. In Figure 1, the ADT name is "stack", and program performance against axioms and against
its aliases are LIFO-LIST, LIFO, and LIST (or its specifications.
its analogous equivalences).

IV. ADTRELATIONSHIPS
The natural language description describes

an AUT; it has no format or content constraints, The followings are only a few of the
but it should be written to be as helpful as relationships among the ADTs, adopted from [2],
possible for a programmer to identify the AUT. in a LIL's Library (serious reader should refer

to [2] for more ADT relationships):
The keywords allow context words or phrases 1. Depend-On(a,b,i): ADT "a" depends on ADT "b"

be specified (e.g. LIFO, LAST-IN-FIRST-OUT). in the implementation "i" if and only if "i" is
an implementation of "a" and "i" references to

The domain specification is a regular "b". For example, (stack, LIFO, #1) holds.
expression whose elements are ADTs, the With Depend-On relation, it is possible to
primitive elements defined by THEORIES, or ADT recursively list all AOTs needed for the
instantiation parameters of the AOTs that had implementation of a particular ADT. It is thus
been defined, or those parameters specified by possible to build automatically a complete,
the GENERIC THEORIES in the LIL's Library. Ada compilable software component for an ADT in a
does not allow a domain specification to be LIL's Library.
syntactically represented. the domain 2. Close(a, b, n): AOTs "a" and "b" are n-close
implementation for the package "stack" can be if they differ by at most "n" operations. This
stored separately from the ADT specification makes it possible to move from ADT "a" to n-
(Ada allows this). The domain specification close ADT "b". This relationship can be used to
thus defines a value set for an AOT. It is a compare differences in domains and operations of
mapping from the value set of an AOT to a set of ADTs in a LIL's Library.
representation defined in terms of previously
existing ADTs (GENERIC THEORIES OR GENERIC
PACKAGES) in the LIL's Library, some of which V. HOWTO USE LIL'SLIBRARY
may be given as AUT instantiation parameters.
Figure 2 is an example of the domain Based on the relationships derived and the
implementation for the package "stack". It is knowledge structure for each software component
specified as an array of ELTs (a THEORY in the (e.g. AOTs) in the LIL's Library, a programmer
LIL's Library). Note that the very first line can find a particular component of interest by
contains the characters "#I". which is to name, or by automatic use of aliases. General
differentiate the different domain description provided by a programmer can be
implementations for a given ADT. compared with the natural language descriptions

associated with each component. The keywords
Each operation in the operation list can be used for searching an ADT, this

specification is specified by giving its name, yields a faster search in comparing to the use
arguments, results, and exceptions if any. of natural language descriptions. A programmer
following each operation specification is an can also locate the desired component by
optional list of operation aliases, a providing partial domain definitions. The
description, and a list of keywords identical to system would then search for any component (e.g.
the sections of the package header. ADT) with a domain specification containng some

or all of the giving domain specifications. V -
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VI. SUMMARY STEPS --!Out(stack.length) = In(stack.length) + 1;
Procedure POP (Old ELT. OUT ELT);

Summary steps for finding a component (ADT) Where In stack.length < Min,
of interest from LIL's Library: --. OUT(stack.length) = In(stack.length) - 1;
1. Use the keywords search, natural language Function Empty Return ELT;
description comparison, or search by name Function Top Return ELT;
through aliases, a programmer can find a list of Exceptions
components (ADTs) of possible candidates. Stack-underflow;
2. Determine the type of operations that is Stack-Empty;
needed for particular implementation. S : Stack.definition;
3. Assuming that such functions as "find", I : ELT;
"searcn", "browse" or "n-close" exist in the -- ' Axioms:

A system, a programmer can use the informations (POP(PUSH(S,I) = S)
obtained from steps I & 2 to find the software - (TOP(PUSH(S,I) = I)
component of interest in the LIL's Library. -- ; (EMPTY(CREATE) = True)
4. Once the desired component is found, an -- (POP(EMPTY) = Stack-underflow)
ANNA-like LIL preprocessor will be used to -- (TOP(EMPTY) = Stack-Empty)
translate this component into Ada texts that End Stack,
checks whether the assertion is satisfied by a -- Any neede "with" statements go here.
program stated. This checking can be executed Package body Stack is
together with the underlying Ada program, thus Function Create Return Stack.definition is..;
performing run-time checking. Procedure PUSH(New ELT: IN ELT) is ...,
5. The component (ADT) found in step 4 can be Procedure POP(OLD ELT: OUT ELT) is...;
compiled via a standard Ada compiler. The Function EMPTY ReTurn Boolean is...;
resulting software system, when executed, End Stack;
enables an Ada program to be tested for
consistency with their formal specifications, Figure 1
thus support reusability.

-- Any needed "with" statements go here.
CONCLUSION -- Domain Implementation #1 of Stack.

Private
We believe that by using the program type List is array(l.. .size) of ELT;

development methodology of analogous type LIFO-LIST.definition is record
abstractions, and then storing these LIFO: LIST;
abstractions in the LIL's Library by combining Front : Integer Range I...size;
both formal and informal specification methods, Back : Integer Range 1 .... size;
using the AUT relationships and the access tools End record;
as we summarized in sections IV, V, VI above and End Stack;
as in [2], we have developed a powerful tool for
reusability in Ada programming environment. Figure 2
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REUSABLE ADA MODULES

FOR
ARTIFICIAL INTELLIGENCE APPLICATIONS

by

Verlynda S. DobbsWright State University

ABSTRACT [BOO83, FRE83]; the reusability level of
the element (weak, strong, effective)The development of reusable Ada [GARB7]; and the level of customization

modules as one component of an Ada required for use of the element (none,artificial intelligence toolkit is manual modification, templates fordescribed. Modules for bidirectional modification, generic parameterization)
heuristic search are implemented and used [STA831. Currently, much attention issuccessfully in two domains: sliding block focusing on methods for cataloging andpuzzle and flight path generator. The describing the contents of libraries of
reusability provided by the modules is at reusable software modules. [HEN87, FIS87)both the code and specification levels.

Although reusability is a
characteristic often associated with Ada,
there has been minimal practicalexperience with reusing Ada modules and no
generally accepted methodologies for
reuse. Several Ada projects are currently
under development that would facilitate AI
efforts if the modules could be provided
in a reusable library. These includetools for pattern-directed string
processing [REE85], a method for
implementing semantic networks [SCH86),and the modules described in this paper ,%
for heuristic search.

1.0 INTRODUCTION 3.0 REUSABLE MODULES FOR HEURISTIC SEARCH
The use of Ada for artificial Elements for reuse must be chosen

intelligence (AI) applications could be carefully. The elements must embodygreatly facilitated by the existence of an common concepts and abstractions fromAda AI toolkit. This toolkit would domains which have reached a degree of
contain components such as libraries of maturity. Heuristic search algorithms,reusable modules, code generators and such as A*, [HAR68] have been widelyexpert system shells. This work published in artificial intelligence
concentrates on one toolkit component, textbooks and are well understood. Thesereusable Ada modules, with experiences algorithms can be used in many applicationdeveloping heuristic search modules. areas where heuristic search is desirable.

The algorithm used in these modules is for2.0 REUSABILITY EFFORTS bidirectional heuristic search (DNODE)
[POL84), a search from a known start state

Reusability can be simply defined as to a known goal state.
the ability of an element to be usedagain. In this spirit, the terms 3.1 Heuristic Search
"software reuse" and "softwarereusability" have been applied to a Searching has been traditionallyspectrum of techniques which include performed blindly, either breadth first or
classical portability, shared code, depth first. These blind searchesrepeated use of algorithms and the continue to generate all successors of Nincorporation of building blocks. [LEN87] nodes (expand) in some predetermined order
Attempts to analyze reusability have until a goal node is found. Anresulted in numerous categorizations of exponential explosion occurs in both thethe elements. These include, but are not time and the space required to find a
limited to, the abstraction level of the solution.
element (requirements, design, data, code)
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The size of the search tree can be 3.2 Module Development
reduced by using more informed search
techniques. Heuristics (rules of thumb) Development of reusable modules for

can be used to estimate a new node's heuristic search concentrated on keeping
distance from a goal. The next node all the domain dependent information
chosen for expansion will then be the node separate from the search strategy. The
believed to be the closest to a goal. result is a set of packages that
Consequently, time and space will not be encapsulate the search graph, the search
wasted on nodes that show very little strategy, the heuristics, and the domain.
promise. All the program units are shown in Figure

1. An arrow between two units indicates

To help avoid an exponential that one unit depends upon elements (data,

explosion, a heuristic function h, whose procedures, or objects and operations)

two arguments are state space nodes, is contained in the other unit. The unit

provided. h returns an estimate of the enclosed in a rectangle is used by all the

path cost between its arguments and is other units.
used by the search algorithm to determine
the best node to expand next. DNODE DRIVER

Heuristic search algorithms take one I
of two basic approaches. Unidirectional
search algorithms, which build one search DNODE_PACK
tree of nodes rooted at the start, expand
nodes from the start until a goal node is
found. Bidirectional search algorithms DOMAIN PACK
maintain two search trees of nodes rooted
at the start and the goal. The nodes on
these trees are those so far generated by SEARH GRAPHPACK

the algorithm, and the path from a root to
a leaf represents the least cost path the
algorithm has yet found connecting root HEURISTICSPACK
and leaf. The leaves, called open nodes,
are candidates for expansion. The E T PC
algorithm attempts to expand leaves in
such a pattern that the two trees "meet"
as soon as possible, at which point the
problem is solved and a route from start Figure 1. Relationship of Units
to goal may be reported.

In order to determine which open node Three of the program units are domain

n to expand next, there is an evaluation independent. These units are the main

function of the form program (DNODE_DRIVER) and the packages
encapsulating the search graph

(SEARCHGRAPHPACK) and the search

f(n) = (1 - w) * g(n) + w * h (n), strategy (DNODEPACK). The main program
0 unit requests input from the user of the

0 <= w <= 1. number of problems to be solved and
whether to trace the program. The search
graph package is an abstract data type

Here g(n) is the cost of the search tree that contains object definitions for a
path from node n to its corresponding search graph and the operations available
root, h is the heuristic component of f on those objects (standard list operations
(derived in some fashion from the function plus other operations specific to a searche:h mentioned above), and w is a weight graph). The search strategy package . ,-

fixed to some value deemed to be encapsulates a collection of procedures VV
effective. Small values of f(n) indicate for bidirectional heuristic search. Only
that n is more likely to be on a lost cost one procedure is visible from outside the % N
solution path than do large values, package, the heuristic search procedure
During each cycle of the search algorithm, (DNODE). All of these domain independent
an open node with minimal f-value is program units can be used in other domains
selected from the appropriate search tree without modification.
for expansion. Its successors are
generated. If one of the successors is on Parts of the remaining three units
the opposite search tree, the algorithm must be provided for each domain. These

halts, otherwise f is evaluated for each units describe the problem state

of the successors and they are (ENVTYPEPACK), the domain (DOMAIN_PACK),

appropriately placed on a search tree. and the heuristics (HEURISTICS_PACK). The

The algorithm recycles, problem state unit must contain the type
definition for a state of the problem.
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The domain unit contains all procedures 3.3.3 Step 3: Complete HEURISTICS PACK
required for the domain except the
heuristics, which are contained in the Heuristics must be identified that
heuristics unit. Since the specifications have been found to be effective in the
are given for both the domain and the domain. All procedures used to implement
heuristics, only the bodies must be the heuristics are included in
completed. The specifications of HEURISTICS PACK. Three procedures are
HEURISTICS PACK and DOMAIN PACK are shown visible from outside HEURISTICS PACK:
in the Appendices A and B, respectively. SET_G_VAL, SET_H_VAL, and INIT H.

SET_G_VAL and SETHVAL each have three
3.3 Module Use parameters: a selector (HSEL) used to

select the desired heuristic and two
The modules can be used by completing parameters that are both states of the

the following steps. problem (type STATETYPE). INIT_H '

3.3.1 Step 1: Identify domain initializes the heuristics.

3.3.4 Step 4: Complete DOMAINPACK
The domain in which the heuristic . ')

search is to be used must be identified. DOMAIN PACK contains procedures to * b'
input and output a problem state, set a

3.3.2 Step 2: Complete ENVTYPEPACK default state, open and close files,
calculate statistics, output results of

To complete ENVTYPEPACK, two data the search, and expand a node. These
structures must be chosen. The first procedures must all be provided. An input
represents a state of the domain (of type file, opened in OPENFILES, contains the
STATETYPE), and the second contains goal state followed by any number of start
variables relevant to the domain (in a states. EXPAND generates all the
record of type DOMAINTYPE). A constant successors of a problem state by applying
(MAX) is set to the maximum number of new all valid operations. This procedure,
states that can be generated from any which is conceptually domain dependent,
state. Any domain specific constants are may need some search information. This
also declared. After ENV TYPE-PACK has will depend upon the domain, as shown in
been compiled, the following units must the applications in Section 4.
then be recompiled in the order shown.

3.4 Reusability Characteristics

HEURISTICS PACK specification
SEARCHGRAPH PACK The reusability aspects of the units
DOMAIN PACK specification are summarized in Table 1 for the
DNODE s iaACK abstraction level and the level of

DNODEDRIVER customization required. The reusability
levels remain to be evaluated by

(The bodies of HEURISTICSPACK and additional use of the packages for
DOMAIN PACK must be compiled after the bidirectional heuristic searching in other

code has been completed.) domains.

Table 1. Reusability Characteristics

ELEMENT ABSTRACTION LEVEL CUSTOMIZATION
----------------------------- ----------- --------------------------

ENVTYPEPACK Definitions Manual*
----------------------------------------------------------------

HEURISTICSPACK Specification Manual*
-------------- ------------------------------------------------------
SEARCHGRAPHPACK Code & Specification None

-----------------------------------------------------------------
DOMAINPACK Specification Manual*
--------------------------------------------------------------------
DNODEPACK Code None

DNODEDRIVER Code None
----------------------------------------------------- ---------------

*Templates for customization could be provided
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4.0 APPLICATIONS 4.1.2 Step 3: Complete HEURISTICS PACK

The modules were originally developed Several heuristics have been found toin Vax Ada on a Vax 11/780 running the VMS be effective in the sliding block puzzleoperating system. Sets of packages for domain. The Manhatten distance, based ontwo domains were used with the domain the distance of a tile from its goalindependent packages - sliding block position, is used. INIT H initializes apuzzle and flight path generator. matrix of these distances.- SET H VAL sumsDevelopment of these two sets of packages the distances of all the tiles- in theis described in the following sections by current state from their positions in theapplying steps 2-4 of the procedure for deepest node on the opposite search tree.using the modules (Section 3.3). SET_G_VAL is the number of moves from the
start state to the current state.

4.1 Sliding Block Puzzle
4.1.3 Step 4: Complete DOMAIN PACKThe specific sliding block puzzleused here is the 8-puzzle. The 8-puzzle Most of the procedures of DOMAIN PACKconsists of 8 numbered, movable tiles in a are straight forward. The one interesting3 by 3 matrix. One cell of the matrix is procedure is EXPAND. The four operationsalways empty, therefore an adjacent that can be applied to the current statenumbered tile can be moved into the empty are to move a tile up, down, left orcell. Two configurations are shown in right. If the resulting state is valid,the new state is added to the searchFigure 2. The object of the search in the graph. EXPAND for the 8-puzzle is shownsliding block puzzle domain is to find a in Appendix C.

sequence of moves that will begin at the
start state and end at the goal state. 4.1.4 Sliding Block Puzzle Summary

Use of the modules is straight06 01 (1 01 02 03 forward for the sliding block puzzles. it
is easy to keep the domain information and04 05 02 04 05 06 the search information separated.

03 07 08 07 08 [] 4.2 Flight Path Generator

START GOAL The problem space for a flight path
generator (FPG) can be represented as aFigure 2. 8-puzzle Configurations grid aligned along the x-y axis. The FPGis given a starting location (the start),
a destination location (the goal), and aSteps 2-4 for the 8-puzzle are description of threats to be avoided (thedescribed in the following sections. costs associated with the edges of the
graph). The search finds a flight path4.1.1 Step 2: Complete ENVTYPE_PACK from the start to the destination based on
avoiding the threats and producing a short allThe problem state for a sliding block path. An example is shown in Figure 4.problem can be represented as an array of

characters. The only domain information
needed is the number of tiles plus a
constant for the maximum number of new
states that can be generated from a
problem state (4). ENV_-TYPE-PACK for the
8-puzzle is shown in Figure 3.

PACKAGE ENV TYPEPACK IS

TYPE STATETYPE IS ARRAY (1..8) OF ID OCHARACTER; 
•1 "0TYPE DOMAIN TYPE IS . 0.RECORD- "- - , I

TILES : INTEGER; ~..,,
END RECORD; 0 10 2"

MAX : CONSTANT INTEGER := 4;

END ENVTYPEPACK; Floure . ,

Figure 3. ENVTYPEPACK for 8-puzzle
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Steps 2-4 for the flight path contribute to the complete heuristics.
generator are described in the following These include the leg length, the path
sections. deflection angle, the maximum number of

possible legs generated from each state
4.2.1 Step 2: Complete ENVTYPE_PACK within the angle of deflection, and

others. SET H VAL sums the weighted cost
The problem state for the flight path of threats intersected by a straight line

generator is a point on a grid. This from the current state to the state of the
point can be represented as a record with deepest node on the opposite search tree.
two components: the x-coordinate and the This sum is added to the distance between
y-coordinate. Many constants and the two states. SET G VAL is the actual
variables associated with the domain must distance plus the cost of threats actually
be declared as shown in Figure 5. Several intersected by the path obtained from the
functions on the statetype are also start state to the current state.
provided.

4.2.3 Step 4: Complete DOMAINPACK
PACKAGE ENVTYPEPACK IS Expanding a state for the flight path

generator is based on several parameters.
TYPE STATETYPE IS A set number of legs are generated of a

RECORD specified length within the angle of
X_COORD, YCOORD : FLOAT; deflection. These new states are checked

END RECORD; for validity before adding them to the
search graph. EXPAND for the flight path

MAX : CONSTANT INTEGER := 15; generator is shown in Appendix D.
MAXTHREATCATS : CONSTANT INTEGER

:= 5; 4.2.4 Flight Path Generator Summary
MAX THREATS : CONSTANT INTEGER := 150;
MAXLEGS : CONSTANT INTEGER := 15; In the flight path generator domain,
PI : CONSTANT FLOAT := 3.141592654; it was more difficult to separate all the
DEGRAD : CONSTANT FLOAT := domain independent and domain dependent

0.01745329252; information. Specifically, EXPAND needed
information about the deepest nodes in the

TYPE DOMAINTYPE IS two search trees. Other difficulties were
RECORD related to the continuous nature of the

X_LIMIT, YLIMIT : INTEGER; states of the flight path generator
NRTHREATS, LEGS_PERARC : domain, in contrast to the discrete states

INTEGER; of the sli4ing block puzzle.
LEGLENGTH, PATH ARC,

LEGARC, PATH LENGTH,
CONFLICT COST : FLOAT; 5.0 CONCLUSIONS

THREATSET : INTEGER;
END RECORD; The modules have been successfully

used for bidirectional heuristic search in
FUNCTION FIVESIGNIF (N : FLOAT) two domains. Many improvements remain to

RETURN FLOAT; be made before the modules could be
included in a library of reusable modules

FUNCTION DISTANCE (POINTA, POINT_B for public use. These include separating
STATETYPE) RETURN FLOAT; the domain dependent procedure EXPAND from

the search strategy and providing module
PROCEDURE INIT_DOM (LEGLENGTH and parameter descriptions to facilitate

FLOAT); the use of the modules.

END ENV_TYPE_PACK; ACKNOWLEDGEMENT
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APPENDIX A. HEURISTICS-PACK Specification

package heuristicspack is

function set h val (hsel in integer; pstate, qstate in statetype)
return float;

function set_g_val (hsel in integer; pstate, qstate in statetype)

return float;

procedure init-h ( dom : in out domaintype);

end heuristicspack;

APPENDIX B. DOMAINPACK Specification

package domain_pack is

procedure input-state (state out statetype; P in out ptr;
dom in domain_type);

procedure output_state (dom in domain_type; p in ptr);

procedure set_default_state (dom : in domair,_type; p : in ptr);

procedure expand (s : in out sys rectype; dn in out dnode type;

dom : in out domaintype);

procedure show-results (dom in domain_type;
dn in dnodetype; s in sysrec_type);

orocedure open_files (bug : in boolean);

procedure close_ files;

end domainpack;
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APPENDIX C. EXPAND for Sliding BloCk Puzzle

procedure expand (s :in out sys rec -type; dn :in out dnode-type;
Io: in out dlomain type) is

cur, p :ptr;
type move_direction is (up,down,left,right);
Inew_pos, start, bspace :integer;

state statetype;
move move-direction;
valid boolean;
begin

debug :=s.debug;
if deb-ig then put_ line ("entering expand")i

for iin 1. .g loop
put (dn.current.state(i));

end loop;
new __line;

end if;
cur :=dn.current;
bspace - 1;
while cur.state(bspace) /= blank loop

bspace :=bspace + 1;

end loop;
if s.debug then putline ("bspace=") ; put (bspace) ; new_1me;

end if;
for move in up.. right loop

state :=curstate;
case move is

when up => new-pos :=bspace - size;,
valid :=bspace > 3;

when down => new_pos :=bspace + size;
valid :=bspace < 7;

when left => new_pos :=bspace - 1;1
valid :=bspace mod 3 /= 1;

w hen right => new -pos :=bspace + 1;

end ase; valid :=bspace mod 3 /= 0;

if valid then
state(bspace) state (new pos);
state(new_pos) blank;
if state /= cur.parent-state then

generate_new_sg_node (dn,s,state);
end if;

end if;
end loop;
s.x :=S.x + 1
put (S.X,5);
if debug then put_ line ("leaving expand");
end if;

end expand;
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APPENDIX D. EXPAND for Flight Path Generator
r-ocedure expand (s : in out sysrectype; dn in out dnode_type;

dom : in out domain type) is
-- generate legs

i : integer;

legangle : float;

new-point, point : statetype;
begin

if s.debug then
put line ("entering expand");
put (dn.current.state.xcoord);

put (dn.current.state.y-coord);
new_ line;

end if;
point := dn.current.state;
if distance (point, dn.dnode(dn.o).state) <= dom.leglength then

generate_new_sg_node (dn,s,dn.dnode(dn.o) .state);
else

leg-angle - (dom.path_arc/2.0) - dom. egarc;
for i in ..dom.legsperarc loop

legangle := legangle + dom.legarc;
if dn.dnode(dn.o).state.xcoord > point.x coord then

newpoint.xcoord point.x coord +
dom. leg Tengthecos(legangle);

else
new_point.xcoord point.x coord -

dom. leg Tength~cos(legangle);
end if;
newpoint.xcoord five signif (new point.x_coord);
new_point.y coord point.ycoord +

dom. leglength * sin(legangle);
newpoint.y_coord five signif (newpoint.y coord);
if s.debug then put (new_point.xcoord);

put (newpoint.y_coord);
new_line;
put (s.goal.x_coord);
put (s.goal.y_coord);

end if;

-- is the new point within the boundaries?

if newpoint.ycoord < 0.0 or newpoint.xcoord < 0.0 or
new point.ycoord > float(dom.y_ limit) or
new-point.x coord > float(dom.x_ limit) or
(abs(atan((s.goal .ycoord - newpoint.y_coord) /
(s.goal.x_coord - new point.x coord))) >
dom.path arc / 2.0) then

nulT;
else

generate new sg node (dn,s,new point);
if s.finished and dn.min_ptr(dn.d) /= null and

dn.min_ptr(dn.o) /= null then
if dn.min_ptr(dn.d).state /= dn.min_ptr(dn.o).state the
generatenew sg_node (dn,s,dn.dnode(dn.o) .state) ;
end if;

end if;
end if;

end loop;
end if;

S.x := S.x + 1;
if s.x = 1000 then put_l;ne ("1000");
end if;
if debug then

put (s.x,5);
put_line ("leaving expand");

end if;
end expand;
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THE GENERIC ARCHITECTURE APPROACH TO REUSABLE SOFTWARE

Gerald R. Brown
U.S. Army, CECOPA

Richard B. Quanrud
Soffech, Inc.

-- ACT components must be adaptable to the needs of
individual applications. As a result,

Generic architectures provide an approach to the applications based on a generic architecture are
development of reusable software for families of inherently more adaptable to changing
related applications. They provide both a high requirements, an important consideration In the
level design and a set of reusable components to development of any software with a long life
be used in the applications supported by the cycle.
architecture. The components are typically larger
and more complex and result in higher levels of A number of different programmving languages can be
software reuse than with conventional reusable used to implement a generic architecture. The
components. most appropriate are probably those with strong

object oriented features. The language choice can
have an Important Impact on the design and on the
implementation of the components. This discussion

1 INTRI)UCTION is limited to generic architectures that are
implemented in Ada. Ada has important strengths

Generic architectures provide an approach to the as well as some weaknesses In this area. An
development of reusable software that Is objective of the current effort is to Identify the
significantly different from the more conventional most effective implementation techniques for use
library of reusable components. A library with that language.
typically provides a large number of components
that are potentially reusable across a wide range The basic concepts of a generic architecture are
of applications. The components of most libraries not new. Dijkstra[3] in his original paper on
stand alone, i.e., they have few "Structured Programmwing" discussed "incomplete
interdependencies. However, some libraries are programs" constructed from "programming pearls" or
designed for more restricted application domains reusable modules. Parnas[4) described techniques
in order to meet the particular requirements of for developing and using reusable modules In the
those applications and improve the opportunities development of programs belonging to "program
for reuse. families". Similar ideas can be found in

reconfigurable operating systems, application
A generic architecture provides both a design and generators, and particularly In more recent
a set of reusable components for use in the attempts to develop application frameworks such as
development of applications within a specific the MacApp~tm] package for the Apple
application domain. It provides a much smaller Macintoshttm). SofTech has used the generic
numiber of components than normally found In a architecture approach in the development of
library, and most of those components are reused software for the RAPID* and RAPIER** projects.
in each of the applications of the domain. The
comonents tend to be larger, more complex, and A generic architectures is not intended for use
are highly integrated with the other components outside of its specific domain. The expectation
provided by the architecture, is that a separate architecture will be needed for

each different application domain. Each generic
with a generic architecture, generality is architecture has a domain, a design, and a set of
sacrificed to obtain a higher level of software reusable components which are specific to that
reuse than is normally possible with library architecture. The material that follows 'discusses
components. The components are both application domains, designs, and reusable components In
and design specific and therefore incorporate more greater detail.
assumlptions about their Intended use than Is
possible with more general purpose components.
This allows the components to be both larger and
more complex than would be the case without such
assumrpt ions.

*eusabe Ada Packages for Information Systems
A second objective is adaptability. Within the Development
domain of the architecture, the design and the **Rapid Emergency Reconstitution System
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2 THE DOMIN developed from the architecture. These are
typically the only components that are provided

The domain limits the generality required in the with a generic architecture. They are highly
design and in the reusable components so as to set Integrated and interact with each other in ways
bounds on the complexity of both. This, in turn, dictated by the design. If a component Is
limits the effort required to implement the removed, it must usually be replaced by a
architecture. The domain also identifies the comrponent that fills the same role. However, at
applications that can be supported by the least some of the components oust be adapted to
architecture. This provides a basis for the requirements of an application and some
estimating the implementation effort and the size applications may require components that were not
of the domain that can be used In a cost/benefit included with the architecture. Thus, a generic
analysis. architecture may be treated as an incomplete, but

adaptable, application.
The selection of an appropriate domain is critical
to the success of a generic architecture. In discussing the decomposition of a system into
Applications within the scope of the domain should modules, Parnas[5J proposed that the designer
be similar enough to share a coimmon design and a begin by listing design decisions which are
significant number of components. It helps if difficult or likely to change. "Each module is
they also share a common hardware and software then designed to hide such a decision from
environent, although the importance of others." This is a particularly appropriate
environental dependencies can be limited by guideline for the isolation of dependencies in the
confining them to a small number of components. design of a generic architecture.

It is also highly desirable that the applications The design should isolate hardware and software
within the domain be under the control of a single dependencies by confining each type of dependency
organization. That organization is the best to a small number of components. However, it
source of financial support. It can also assist should be recognized that there are several
in the resolution of issues, support the use of distinctly different types of hardware and
the architecture in the development of software dependencies. Hardware dependencies
applications, and reap the benefits of this range from those related to the instruction set
approach to software development, architecture to dependencies on specific display

or other input-output device characteristics.
A domain analysis is conducted to establish the Software dependencies may be associated with
scope of the domain. It should identify the specific software subsystems such as an operating
requirements that are coamon to the applications system, a data base manAgement system, or a
of the domain and include the cost/benefit graphics package. The use of separate components
analysis that is needed to justify the up front to encapsulate each type of dependency provides
effort required to develop the architecture. The added flexibility in dealing with later changes.
development of a generic architecture is
appropriate only if the number of applications in Application dependencies result from the unique
the domain Is large enough to justify the requirements of each of the applications In the
development effort. domain. They are likely to be more widespread and

harder to isolate than those associated with the
The domain analysis oust also Include the hardware/software environment. Components with
development of the preliminary design for the application dependencies should be adaptable to
architecture. The design must be specified to the types of changes needed to meet the specific
sowe level of detail in order to know whether it requirements of the applications. Dummy
can be shared by all of the applications within components are often used as place holders for
the scope of the domain. Applications that cannot components that will contain large amounts of
share a common design cannot be included In the application unique code.
same domain. Thus, the design plays a critical
role In determining the scope of the domain There are at least two reasonable approaches to
itself, the development of a design. The first is to

examine the design of existing applications within
the same domain. A great deal can be learned from

3 THE DESIGN such an analysis even If the existing designs are
not reused with the architecture. The second

The high level design oust meet the requirements approach is to develop a prototype architecture
of all of the applications In the domain of the and prototype applications as a way to test a
architecture. Application specific adaptations of proposed design. The development of prototype
the design are possible at lower levels, but the applications that use the prototype architecture
overall flow of control should be the same for all is necessary to validate the design.
applications. This is because the components are
likely to contain design dependencies that may Use of the principles of object-oriented design is
affect their behavior In a different design also highly desirable. An object orientation
context. .provides a basis for partitioning the elements of

the design into reusable components. Object-
The design normally identifies a complete set of oriented components tend to be inherently
components for a basic application that is reusable. This is because they tend to make fewer
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references to data that is defined outside the messages, housekeeping and initialization
using component. Finally, an object orientation operations, etc. The component is large and
provides an easily understood role for each tailored specifically to the requirements of this
component, a feature which facilitates both the network of applications.
use and maintenance of the components. Booch[2],
Schmucker(6], Seidewitz[7], and Berardtl] are good
sources for additional information on
oject-oriented techniques.

4 THE REUSABLE COMP'ONENTS

A reusable component of a generic architecture
should represent an abstract object and
encapsulate all of the data and operations
required to manipulate the abstract representation
of that object. In Ada terms, a component will
usually be an Ada package, the data representation
of the object will be private to the package, and
all of the operations that may be invoked from
outside to manipulate that data representation
will be identified as subprograms in the package
specification.

The reusable components provided by a generic
architecture are fundamentally different from
those that might be found in a library of reusable
components. They tend to be larger and have Figure 1. The Workstation Network
complex interrelationships with the other
components provided by the architecture. Most of
the components invoke operations of other
components provided by the architecture and depend
on those components for essential services. A Table 1. Partial List of Operations
component typically encapsulates a large number of Performed by the Message Manager
separate operations on the abstract object
supported by the component. The number and types
of operations are dictated by the requirements of Operation Purpose
the domain and the design provided by the
architecture. Create Initializes data representation

An Example Address Assigns one or more addresses

Assume that a number of workstations are linked Compose Composes the text of the message
through a communications network as shown in
Figure 1. Different applications are executed on Edit Supports operator editing
each of the workstations, but all of the
applications are within the domain of a single Display Displays message to the operator
generic architecture. Messages are exchanged
among the applications, but the messages produced Classify Assigns security classification
by each application are different from those
produced by the other applications. Send Submits message for transmission

One of the principal reusable components provided Receive Accepts a message from the queue
by a generic architecture for those applications
would be a message manager. The object Reply Assembles a reply
orientation of the component is to messages. The
component encapsulates all of the data required to Forward Forwards to a new addressee
represent the messages exchanged by the
applications and all of the operations that are Print Prints a hard copy
performed on messages. A partial list of the
operations that might be performed on a message is File Files for later retrieval
contained in Table 1. The actual number of
operations that might be supported by the Archive Records on the archive device
component is likely to be in the range of 50-100,
if allowance Is made for different types of Delete Deletes the data representation
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The message-manager component does not contain all longer encapsulates all of the operations on the
of the code needed to carry out its operations. A data. The data is now global to the system; side
large share of the operations require support from effects are harder to control; and reusability has
other components provided by the architecture. been compvromised.
Table 2 provides a partial list of the
message-manager operations that invoke the The most useful Ada mechanisms for the adaptation
operations of other components and the type of of a component are generics and separate subunits.
support that is provided In each case. Again the A component represented by a generic package can
table shows only a small share of those outside be adapted through the substitution of type,
requests. When all such requests are considered, value, object, and subprogram declarations
the message manager is shown to have a complex set contained within the package. The specific
of dependenIe on the other components provided declarations that may be substituted are
by the architecture. identified as generic parameters In the original

generic package.

Table 2. Partial List of Services Separate subunits allow the Implementation of an
Provided by Other Components operation to be provided as a separate subprogram.

That subprogram can then be replaced without
changing the reusable component itself. However,

Me~ssage Operation the code in the component's package body must
Invoked Operation Service Provided indicate that the subprogram is being provided

(Invoked Component) separately.

The main problem with both of these techniques Is
Address that the specific types of adaptations that may be
Get Distribution The standard list of made to a component must be anticipated in
(Data Base Mgr.) message recipients advance. This requires additional effort during

the domain analysis and design stages to identify
Get Address The current address of the types of adaptations that may be required.
(Data Base Mgr.) each recipient They also provide no way to add new operations or

data to an existing component.
Compose
Get Operator Input Message parameters and A component can always be replaced when it cannot
(Dialog Mgr.) other operator input be adapted to meet the requirements of the current

application. This may not require a great deal of
Get Template The text string used effort because much of the code from the original

(Data Base Mgr.) to compose the message component can probably be salvaged. However, it
can result in a second version of a rather large

Insert Text Insertion of text into component, with a coammensurate increase in the
(String Mgr.) the message template longer term maintenance burden.

Print Adaptation requirements have a major impact on the
Queue for Printing Staging of the message documentation for a generic architecture. With a
(Printer Mgr.) for printing library of reusable components, the documentation

________________ _________________ assists the user in the selection of the
appropriate component from a library containing a

Adptation Techniques large number of components. With a generic
architecture, the user starts with the assumption

Components that do not meet the specific that each component will either be used or
requirements of an application must either be replaced. The documentation deals with the role
adapted to those requirements or replaced. The of the component within the architecture and the
ilost important mechanism for the adaptation of an adaptation of the component to meet the
object-oriented component is Inheritance, requirements of specific applications.
Inheritance allows a component to inherit the data
representations and operations of an existing
component, add data to the data representations,
and add or replace operations on the data. 5 CONCLUSIONS

Ada provides no real support for inheritance. The within a given application, higher levels of
use of derived types allows one to export a data software reuse are achievable through the use of a
representation from one package to another along generic architecture than with a more conventional
with the operations on that data representation. library of reusable components. The components
However, the data representation cannot be are larger and more complex because they are
private. The exposure of the details of the designed specifically to be used with the design
representation to one package provides those and to meet many of the requirements of the
details to any other package that may want to application. Most of the components of such an
perform operations on that data. This undermines application are likely to have been provided by
the integrity of the original component as it no the architecture.
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Because the level of reuse Is high, both 3. E. Oijkstra, "Structured Programming"
development and maintenance costs should be Software Engineering Techniques, Report on a
substantially lower than with other development Conference Sponsored by the NATO Science
approaches. In addition, the emphasis on the Committee, p. 84, October 1969.
adaptability of the design and components to meet
the needs of specific applications leads to 4. D.L. Parnas, "On the Design and Development
applications that are more adaptable to future of Program Families." IEEE Transactions on
changes in requirements. The underlying adaptable Software Engineering, vol. SE-2, no. 1, p. 1,
structure is present in each of the applications March 1976.
just as it is in the architecture itself.
Documentation needed to adapt the architecture to 5. D.L. Parnas, "On the Criteria to Be Used in
new applications provides most of the information Decomposing Systems into Modules."
needed to change or maintain those applications in Communications of the ACM, vol. 5, no. 12,
the future. p. 1053, December 1972.

Interoperability is likely to be enhanced among 6. K.J. Schmucker. Object-Oriented Programming
the applications that use the same generic for the Macintosh[tm], Hayden Book Company,
architecture. Message protocols and other 1986.
standards can be supported more consistently
across applications if they are implemented 7. E. Seidewitz and M. Stark. General
through common components. A consistent Object-Oriented Software Development, Goddard
man-machine interface, that results from the use Space Flight Center, August 1986.
of common graphics routines, can reduce training
costs and allow operators to be moved more easily
from one application to another.

Rapid prototyping is facilitated by a generic
architecture because the design and most of the
code is already in place. The adaptability of the
code supports the development of the final
application through a series of incremental
refinements, with the opportunity for user
experimentation and reaction at each step in the
process.

However, because the components are application
and design specific, they are likely to be useful
only In the domain for which they were developed.
Moreover, the cost of development must be
justified solely on the basis of the contribution Gerald R. Brown is an electronics engineer with
they make to the applications of that domain, the U.S. Army at Ft. Monmouth, NJ. He is

responsible for the development and demonstration
Generic architectures are intended to produce of reusable software technology within the Center
higher levels of software reuse. However, they for Software Engineering.
also represent good software engineering practice.
They help to clarify the specific objectives of a
project with respect to reusability and
adaptability. This in turn leads to software that
is adaptable, improved interoperability among
applications, and support for early prototyping
and incremental refinement of new applications.
In effect, the approach formalizes many of the
practices of a well run project team.

REFERENCES

1. E.V. Berard, An Object-Oriented Handbook for
Ada Software, E.V.B. Software Engineering,
Inc., 1985 Richard B. Quanrud is a principal investigator

with SofTech, Inc. in Waltham, MA. He is
2. G. Booch, "Object-Oriented Development." IEEE currently interested in the software development

Transactions on Software Engineering, vol. process and its application to the development of
SE-12, no. 2, p. 211, February 1986. command and control systems.

394 6th National Conference on Ada Technology 1988



Searching for Reusable Software Components

with the RAPID Center Library System

Ernesto Guerrieri

SofTech, Inc., Waltham, Massachusetts 02254-9197

Abstract This paper describes the development of the SIDPERS-3

RAPID Center for promoting the successful reuse of software
This paper describes the SIDPERS-3 RAPID Cen- and, in particular, the development of the RAPID Center

ter project that Sotfrech, Inc. has undertaken with

the U.S. Army Information System Engineering Com- Library (RCL) system as an automated tool for the identifi-

mand (ISEC). It describes the development of the cation and retrieval of RSCs in the RAPID library.

SIDPERS-3 RAPID Center for promoting the suc-

cessful reuse of software and, in particular, the de- The RAPID Center
velopment of the RAPID Center Library (RCL) Sys-

tern as an automated tool for the identification and The RAPID Center will be a support center for software

retrieval of Reusable Software Components (RSCs) reuse, providing expert assistance and sophisticated tools

from the RAPID Library. to SIDPERS-3' engineers. The RAPID Center concept de-

rived from the findings of the ISEC RAPID2 investigation

Introduction performed by Sofrech 'RUEGSEGGER87 for ISEC. The

RAPID Center is currently being developed by the US Army

The success of software reusability depends on several fac- and SotTech. The project is funded by the Software Tech-

tots. The Reusable Software Components (RSCs) need to nology for Reliable Adaptable Systems (STARS) program.

be of high quality and very reliable so that .1 her software7 The overall objective of the RAPID Center project is to

development projects can seriously (onsidcr their use. There provide SIDPERS. and ultimately ISEC, with a significant

needs to be a simple and fast way to identify the most appro- and meaningful aid to developing Ada programs through

priate RSC for another software development project. Fur- reusability.

thermore, the integration of the selected RSCs into another The tasks involved include the development of: '

software system should be easy. a a comprehensive plan for the development of the SJDPERS-

As the number of RSCs available grows. it will he ir- 3 RAPID Center. This will include: J.,

portant to the success of software reusability that the above

goals be achieved in a coherent and organized manner (i.e.. - RAPID policy recommendations, :4

through proper management of RSCs). These are some of
'StlIPEtS-3. Standard 1Istallation Di~isi lerso-nnel Svsteni,

the objectives of the SIDPERS-3 RAPII) Center project that version 3

Sofrech. Inc. has undertaken with the U.S. Army Informa- 2 RAPII) Reusable Ada Packages for Inftrnation sistem

tion System Engineering Command (ISEC). Development
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Figure 1. SADT diagram "Promote Software Reuse" (Context).

- RAPID system administration guidelines.

- RAPID programmer user guidelines, and for user feedback). The RAPID Center performs four prin-

- RAPID reusability standards. cipal functions in accomplishing its comprehensive activity
of promoting softwarc reusc (see Figure 2):

a the RAPID Center Library system. to provide SIDPERS-

3 personnel with a fast effective means of locating and I. Develop and Maintain RSCs,

identifying RSCs so that it will be more effective for 2. Catalog and Retrieve RSCs,

the programmer to reuse software than to develop the
3. Provide Technical Guidance, and

software himself.

4. Analyze and Exploit Experience.

s ten RSCs, to provide SIDPERS-3 personnel with case

studies of reusable software components shown to be

usable within SIDPERS-3. Develop and Maintain RSCs

The RAPID Center staff, guided by the recommended RAPID
'The SIDPERS 3 RAPID (Center is conceived as a center

of excellence on Ada reusability issues and provides technical policy and the RAPID reusability standards, ensure that

the software components submitted to the library are of ac.
services in promnotiing reusability within ISF.C. The primary

activity of the Center is not simply furnishing and maintain- ceptable quality, complete, and properly documented. Some
ing reusable soft wkare. but the hrader mission of promoting new RSCs and enhancements are submitted from outside the

the successful reuse of software throughout SIDPERS-3 and. Center: the staff complete them as needed and test them.
Other components are developed by the staff in response to

ultimately. ISEC. The main goal of the RAPID Center is to
promote s w rrecommendations for new RSCs and enhancements. Bug re-

promote software reuse (see Figure 1). This is achieved ports are analyzed and problems corrected; change notices

via the iasuance of RAPID policy and publicity (including are distributed to RAPID users. The primary output of this

poliy, ecomendtios, eus advcac~. nd slictatons activity is library RSC packages (see Figure 2, box 1). Such
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packages include the complete component as the user will enters a description of the desired software component and

receive them. along with documentation, test results, and the RAPID Center Library System proposes possible candi-

suitability assessments used by the library to aid the user. date RSCs that are available through the RAPID Library.

The principal activities include: A suitability assessment is made to see how well each of the

"candidate RSCs match the user's desired software compo-* the development/maintenance of RSCs,

nent. Based on the suitability assessment and other data

" the acquisition of RSCs, and (e.g., RSC description, RSC use history. bug reports. docu-

" the acceptance and validation of RSCs. mentation. software metrics. etc.). the user can narrow the

choice to the most suitable RSC. When the user has nar-

Catalog and Retrieve RSCs rowed the choice sufficiently, tie system provides everything

the user needs to know to obtain the component source code
Once an RSC is accepted into the RAPID Center Library, and all documentation. The source code for most compo-

it is classified and cataloged (similar to what is done in a nents is obtained directly from the RAP]D Library. though

"book- library) for retrieval purposes. The classification the system may well identify components in some other It-
cheme adopted is a faceted classification scheme 'PRIETO-

DIAZ87a . With a faceted classification scheme, a software brary or that are available commercially. The system com-

compoent is described by a set of software c tat- piles an RSC use log and a log of search failures that will aid
in monitoring the success of the RAPID Center.

tributes (i.e.. facets) that are assigned values (i.e., facet terms).

The RAPID Center Library system aids a user of the Comparable library systems can be found in BURTON87,

ReeKATZ8T, and PRIETO-DIAZ87b'.

RSC in the RAPID Library (see Figure 2. box 2). The user

FIgure M4 2.0c SAD diagram P rom ote Sof a are Res"

MpI

E." oi, RAPID~ m4 AMC RAPID P IM-CUMA-

RETRIEVE ISI

Co d09 FC RAPID
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& MAINTENANCE

TEA . 11 RAPID
CENTER REQUEST

NEW/PDATED LIBRARY SCS

RSCs

Figure 3. The RAPID Center Library System.

Provide Technical Guidance for decision support. Those histories pertaining to the use of

individual RSCs are fed back into the library system as infor-The RAPID Center staff helps the SIDPERS-3 software en-""
mation to help users evaluate RSCs. Search failure informa.

gineers identify and develop RSCs from ongoing software de-

velopments, search for and request RSCs from the RAPID tion results in recommendations for new or enhanced RSCs,

Center Library System, and integrate RSCs into new soft- or in updates to RAPID Center Library search mechanisms

ware developments (see Figure 2, box 3). (i.e., the classification scheme and the underlying thesaurus),

depending on the cause of the search failure.

Analyze and Exploit Experience

To support the primary mission of promoting software reuse The RAPID Center Library System
(via the primary RAPID policy and publicity), the staff

The RAPID Center Library (RCL) System is a software sys-
tracks the Center's experience in running the library sys- tem designed for the automated cataloging and retrieval of

tem (via RSC use, search failures) and in guiding users (via RSCs in the SIDPERS-3 RAPID Center Library so that

consulting). and tracks the RAPID user's experiences with users can find suitable RSCs. The system is being ia-

the RSCs that they have drawn from the library (see Figure plemented in Ada for a Sperry 7080 with Unix 3 System V

2, box 4). The staff also collects costs from inside and out- operating system. The software is planned to be operational

side the Center to compare software reuse with conventional in August 1988.

software development practices. Much of this data, analyzed

and condensed, is provided to managers as RAPID histories 3Unix is a trademark of AT&T Bell Laboratories.
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The RAPID Center's goal is to promote software reuse. 9 identify an RSC,
The RCL system supports the goal of software reuse in two

e extract an RSC,
ways. First, it provides the RAPID user (typically a soft-

ware engineer), with an automated and user-friendly tool a maintain the search apparatus,

for searching for a reusable software component. Second, it •maintain the RSC library catalog,

leads the RAPID user to one or more components particu-

larly suited to his needs. Both of these services add validity 0 generate reports, and

and appeal to the Center's role in publicizing and promoting e control system actions.

software reuse.

The RAPID user searches for and obtains an appropri- There are two principal classes of users of the RCL sys-

ate software component to reuse via the RCL (see Figure 3). tem: the RAPID user that searches for and requests a copy

The RAPID decision support and consulting staff monitor of an RSC, and the RAPID librarian that maintains the sys-

the RCL success in satisfying its users, in order to fine-tune tem (i.e., the search apparatus and the RSC library catalog)

the system (recommending new:'enhanced RSCs or refining and generates reports.

the RCL searching mechanism) and give guidance and tech-
RSC Identification

nical assistance to the RAPID users. The RAPID librarians

maintain the RSC 'atalog and operate the system. The Prior to requesting an RSC. the RAPID user needs to iden-

RAPID development and maintenance team incorporate the tify an RSC in the RAPID library that best meets the needs

new/updated RSCs into the library. of the user. The RSC identification process will allow the

The major functions of the RCL system are (see Figure user to describe the requirements of the desired software
4 &it 5) to: componenl. search the RSC catalog database for candidate

RSCs which closely match the user's requirements. assess the
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suitability of the candidate RSCs according to the user's re- (see Figure 8). A software component is described by a set of

quirements, display available on-line information for each of software descriptors. Each software descriptor describes an

the candidate RSCs, and refine the list of candidate RSCs. attribute (i.e., aspect or facet) of the software component.

This process can be repeated until the user has identified a For example:

suitable RSC. suitble SC.(FUNCTION:sort, METHOD:exchange,

The major activities in RSC identification are (see Figure
OBJECT:integer ..

6):
Srequest an RSC (analyze descriptors),sorts integers using the

rachangc method. At any point, the user can ask the system

a search for candidate RSCs (match), for a list of known valid choices (for the attribute-name or

* browse through candidate RSC information (review attribute-value fields) from which the user can choose.

numeric measures and review descriptive text), and Once the user has input the description of the software

component, the system analyzes the input and classifies it

e refine RSC candidate list (review numeric measures according to the RSC taxonomy (based on the RSC faceted
and review descriptive text).

4A softuare description is represented as the set

RSC Request (software-descriptor, ... )

The RAPID user enters the requirements for the desired soft- A software descriptor is represented as the pair

ware component as a description of the software component attribute-name attribute-value

WELCOME TO THE

SIDPERS-3

RAPID CENTER LIBRARY

LOGON ID:

PASSWORD:

Figure 7. RAPID Center l.ibrary System login screen.
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RCL-3.1

RSC SEARCH FORM 
R 

iF

Software Software Attribute
Attribute Attribute Importance

Name Value Factor

ENTER DESCRIPTION OF DESIRED SOFTWARE COMPONENT (ABOVE) OR RSC ID (BELOW):
RSC 0:_ _ _

PFI: Help PF3: List PF5: PF7: PFO: Save
PF2: Suggest PF4: Match PF6: PFS: PF10: Logout

Figure 8. RAPID Center Library System RSC search screen.

classification scheme and thesaurus). The analysis produces formal software component description, the RSCs are ranked

a formal software component description which is later used according to the user's importance factor and a suitability

to search the RSC catalog. If the analysis encounters an assessment. The suitability assessment gives an index on

unknown descriptor, the system queries the user for clarifi-catins nti a vliddesripion s otaiedthe closeness of the match between the user description of

the software component desired and the description used to

RSC Catalog Search classify the chosen RSC in the RAPID library. The system

allows for inexact matches of RSCs to occur for two primary
The search for Candidate RSCs function matches the formal reasons. First, it allows the user to evaluate RSCs that would

software component description of the software component be excluded in exact matches but that maybe easily modified

~requested by the user to the RSCs in the RAPID libraryS lfor the user's purpose'. Second, it allows the user to search

catalog. Given a formal software component description, a~even though an inexact description was given.

query will be made to find the RSC descriptions that match

the formal software component description. It will utilize Browsing Capability

the importance factor (or priority index) set by the user to O-• Once a list of canldidate RSCs has been constructed (the
guide in the search.

RSC Candidate List). the user can examine the on-line in-

Suitability Assessment

Once one or more RSC descriptions has been matched to the 'This is useful when the slitrn de,,s n,.t nake an exact match
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formation available for each of the RSCs. The RSC informa- etc.). If the RSC is not directly available, the system may

tion is divided into textual and numeric information. The identify a software component in some other library or that

textual information consists of on-line documentation, ab- is available commercially. Appropriate instructions for re-

stract, summary sheet, bug report summary, etc. and can trieving the RSC would be issued.

be browsed or printed. The numeric information consists of

software measures (i.e., lines of code, reusability index, num- Search Mechanism Maintenance

ber of reuses, software metrics, etc.) GUERRIERI87 that
In order for the RAPID Center Library system to be suc-

can be used as comparative data, thus allowing a user to cessful. it must inspire confidence among its users that their

compare similar values across selected RSCs. search will be worth their time and money. As experienced is

Refinement Process gained from past usage, the system will be updated to facil-

itate the identification process. This will include fine tuning
The main objective of the user is to find and retrieve an RSC of the search mechanism as well as enriching the RAPID

that satisfies the description of the desired software compo- Library with commonly requested RSCs.

nent. Given a list of the candidate RSCs, the user needs Fine tuning of the search mechanism is achieved by main-

to choose the most suitable one. The system has made an taiing the search mechanism: the classification scheme and

attempt to rank these RSCs according to the suitability as- the thesaurus. Each RSC is given a description according to
sessment, but further refinement can be made after the user

a faceted classification scheme; a version of which is on-line.
has browsed through the on-line information of the RSCs. As the categorization of software is refined, the classifica-

The user can eliminate those RSC from the Candidate RSC tion scheme needs to be updated to reflect the refinements.

List that are inappropriate or do not satisfy some criteria Since the user's terminology will differ from the terminology

(which may have been omitted during the initial component utilized by the classification scheme, there is also a need to

description). bridge the gap between the formal terminology used by the

The user can also refine the Candidate RSC List by refin- system and the user's terminology. This is achieved through

ing the description of the desired software component. While a thesaurus. When a new term is utilized within the system,

browsing, the user may notice other descriptive terms in the a dialog between the system and the user tries to resolve the
addialogtbetweenfthensystemhan the useretriesstoiresolvedth

documentation of an RSC that may better describe the de- user's use of the term. This is logged (in the search failure

sired component. This can either narrow the search or cor- log) as candidate refinements of the thesaurus.

rect the search direction.

RSC Catalog Maintenance
RSC Extraction

The RAPID Center Library system needs to be kept updated
Once the user has refined the search to the point in which so that the new or updated RSCs can be searched within a

the most suitable RSC has been identified, the user can re- rcalistic time frame. This can be accomplished by having

quest for a copy of the RSC complete. If the RSC is directly provided an easy mechanism for the librarians to update.

available from the RAPID Library. a copy of the RSC com- add, or delete RSCs from the RSC Catalog. Updating an

plete will be directed to the medium specified by the user RSC may consist of a total update (i.e., replace RSC with a

(i.e., user directory space. magnetic tape. diskettes, modem, tecv %ersiun).or a patial update (i.e.. abstract. bug report
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Component Long Name: Type of Component: Proced-re

Bubble SoN Version: 1
Previous Use Inlo.: Y Other Necessary Components:
#Pages of Source Code Listing: None

7

Types of Documentation: Other Related Components:
2167 None
InstnJClons for Obtaining RSC:
Book: *oftware Components with Ada"
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Figure 9. RAPID Center Library System RSC information screen.

summary, description. etc.). The deletion of an RSC can mation are available through reports that can be generated

either be an archival procedure or an actual deletion of the by the system.

RSC from the RAPID library. RSC Use

Library Monitoring As an RSC is retrieved by a user. it is logged in the RSC

Use Log. This information allows other users to know of the
The RAPID Center Library system logs a variety of infor- .

popularity of a certain RSC. allows the librarians to notify

mation for the purpose of tracking its performance, evaluat-purposethe RSC users of revisions and updates to an RSC, allows

ing possible changes to enhance the system, and triggering the librarians to track success .f an RSC in a software de-

RAPID Center activities. The information logged includes: veloprnent.

& RSC Use

e Search Failures Search Failures

a Suggestion Box During the identification and search process, information is

recorded so as to provide data for fine-tuning the search

a User Accounts
mechanism and recommending the development or acquisi-

Some of the data is automatically incorporated into the RSC tion of new RSCs. It also gives an indication on the success

catalog (i.e., RSC use, user logins, etc.), while other infor- of the system.
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Suggestion Box RAPID Center is a proof of concept that will be applied to

The RAPID user can submit comments and suggestions into the development of SIDPERS3. The current version will

an on-line Suggestion Box. This is reviewed periodically by support only software components that are Ada code. Since

the RAPID Staff for enhancements to the system as well as the benefits of reuse can be achieved early in the life-cycle,

indications on areas where assistance and guidance would be future versions should be extended to include not only code,

beneficial. but also design, specifications, and documentation.

User Accounts References

User information is also tracked so as to assist and inform BURTON87 "The Reusable Software Library." Burton. B.A..

users of changes to either extracted RSCs or RAPID Center Aragon, R.W.. Bailey, S.A.. Koehler. KD.. and L.A.

procedures. It is also used to control access to the RSCs and Mayes, IEEE Software. Vol.4, No4. pp.25-33, July

the system. 1987.

Report Generation GUERRIERI87 "On Classification Schemes and Reusabil-

There exists a series of canned reports that the librarian can ity Measurements for Reusable Software Components,"

generate from the above logs as well as from on-line infor- Guerrieri, E., Softech Technical Report TP-256, SofT-

mation of the RSCs in the RAPID Library. These reports ech, Inc.. 460 Totten Pond Road, Waltham, MA 02254-

are used by the RAPID staff (i.e., decision support staff and 9197. October 1987. Also to be published in Wookshop

consultant staff) to monitor the success of the RAPID Cen- on Software Reuse Proceedings, Rocky Mountain Insti-

ter Iilrarv sy-stem as well as suggest enha met-mnts t1 the tute of Software Engineering.

system or to the center, in general. KATZ87 "PARIS: A System for Reusing Partially Inter-

preted Schemas." Katz. S.. Richter. C.A.. and T. Khe-

RSC Development Sing, MCC Technical Report STP-026-87. Microelec-

tronics and Computer Technology Corp., 9430 Research
To initially populate the RAPID Center Library, a set of ten Blvd., Austin. Texas 78759-6509, January 30. 1987

RSCs are being developed. These RSCs will be components

that can be utilized directly on the SIDPERS-3 project. The PRIETO-DIAZ87a "Classifying Software for Reusability,"

components will either be developed or adapted from ex- Prieto-Diaz. R.. and P. Freeman, IEEE Software.

isting public domain or Commercial-Of-The-Shelf (COTS) Vol.4, No.I. pp.6-16, January 1987

software. PRIETO-DIAZ87b "Breathing New Life into Old Soft-

ware." Prieto-Diaz, R., and G. Jones. GTE Journal,

Conclusions Vol.1, No.l. pp. 22-3 1. June 1987

The software lifecycle needs to incorporate the role of soft- RUEGSEGGER87 "RAPID: Reusable Ada Packages for

ware reuse in order to reduce development costs and increase Information System Development," Ruegsegger, T., Tech-

software reliability. The U S. Army Information System En- nology Strategies 87 Proceedings. January. 1987

gineering Command recognizes this fact. The SIDPERS-3
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SOFTECH87 "SIDPERS-3 RAPID Center Policy Recom- Ernesto Guerrieri is a System Consultant at SofTech, Inc.

mendation - Initial draft," SofTech, Inc., Contract No. in the Military Applications Department. He is the techni-

3451-4-112/5, SofTech, Inc., 460 Totten Pond Road, cal leader in the development effort of the RAPID Center

Waltham, MA 02254-9197, December 18, 1987 Library system. He also manages several contracts among

which the support effort for the Ada Language Maintanence

and the maintenance of the ACVC Implementers' Guide. He
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The Next Level of Reuse

by
Daniel E. Hocking, Compoter Scientist

Amy Institute for Research in Management Infolmation,
bmunicatons, and Computer Sciences

(AfltMI(S)

Abstract: This paper sumarizes the status and reuse including incentives and legal issues,
findings of an AI JCS/pMAy/s'Ms research project assess existing software components for reuse and
to promote reuse by making it possible to prodace, automatic transformations for enhancing reuse,
describe, validate, and find reusable components assess the effect of reuse on reliability as
to use as pieces of a now system. The project components are moved into new envirconnents.
addresses issues affecting reuse throughout the
life cycle - both technical and administrative These issues are among many which need resolution
which currently limit the amount of reuse which to make reuse of functional components more
can be realized. AIRmICS has organized a team of comn. This paper presents findings to date and
researchers from Martin Marietta and seven uni- the status of the efforts of the team members-
versities to investigate issues in reusability and
in mesurement of reusable components. This team Levels of Reuse. The July 1987 issue of IEE
will assess the effect of reuse on the validity Software magazine focused on the theme "Making
and adequacy of tests of reusable components, Reuse a Reality." Five of the seven articles in
develop classification techniques for reusable that these are accounts of projects that have made
components to aid retrieval identify library the reuse of software components a reality.(1)
issues affecting reusable components, extend Reuability as a concept is as old as computing.
database management systems for storing reusable Initially coding was done in machine language.
components, identify management issues for design- This was an intense manual effort to translate and
ing components for reuse including incentives and cross-reference specific code for a specific
legal issues, assess existing software components machine, later came assemblers that took an
for reuse and automatic transformations for assembler language and converted that to machine
e*hancing reuse, assess the effect of reuse on language. The assemblers did much of the transla-
reliability as components are moved into new tion and in effect did much of the job of trans-
environments. lating human readable information into a useful

computer program. The assemblers were "reusing"
concepts and taking a burden from the programmer's
job and automating it. Later cme "high level
languages" and the compilers that converted the

Background: This paper summarizes the status and source code to object code. much of the pro-
findings of an AInicS/Arly/Sum3S research project gramsers job was transferred fron thinking about
to promote reuse by making it possible to produce, the needs of the compter to thinking about the
describe, validate, and find reusable components reds of the people who were to use the applice-
to use as pieces of a new system. The project tion. In most cases, the programmer was still
addresses issues affecting reuse throughout the putting together a procedure - but it was a
life cycle - both technical and administrative procedure that was logical in people terms.
which currently limit the amount of reuse which Applications have begun to be reused as people
can be realized, learn to build systems that can be tailored within

a company to the various locations where the
AZNCS has organized a teasm of researchers f ran cmpany operates. More recently the industry has
Martin Marietta; Georgia Institute of echnlogy; been dramatically changed by the availability Of
Georgia State University; Morehouse Ollege, spread sheets and data base management systems for
University of QOloracb, Boulder; University of even the personal computer classes of machines.
Houston, Clear Lake; University of Maryland, and With each advance in the state of the tools,
University of Purdue to investigate issues in productivity of both programmers and people using
reusability and in measurement of reusable com- the products of programmers has improved.
porents. This team will assess the effect of
reuse on the validity and adequacy of tests of Ihenextlevelofreuseisaagfrom what
reusable components, develop classification has gone before. To this point, reuse has been
techniques for reusable components to aid re- either at the level of primitives in the language
trieval, identify library issues affecting reus- being used, or algorithm reuse as in the math
able components, extend database management libraries, or whole systems as in the Infolmation
system for storing reusable components, identify systems Oomand where the Army has developed over
mangemt issues for designing coaponents for a hundred standardized systems. The next step is
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Life 0jcle Emphasis f or Reuse: much of the
to have libraries of omponents that can be used effort in reuse to this point has been on the
by system and software engineers to develop new reuse of code or the reuse of some specific form
appimatios. These components can be simple of the software. This project foames on the

omoponents that do a specific task or they can reuse of components at any point in the life
be omplex components that provide a frmework cycle. The capability to trace the origin of the
into which more specific components can be in- compnent f ron documents logically earlier in the
serted. life cycle such as requirements documents or the

design documents is one of the goals identified in
For management information systems which so this project. The companion capability to trace

far have been programmed mainly in C(BCL, a major the implementation of the component in one or marV
advantage of changing to Ada is the promise of forms depending on the hardware envircments or
reusable oamponents. Another advantage is im- language environments in which the component has
proved portability. Other advantages, such as been realized is also one of the goals identified
moving to a single language, have long been in this project. This project also focuses on the
achieved. COBL, while not as portable as origi- organizational aspect of reuse as compared to the
nally intended, is the single language of these personal aspect of reuse. We wish to make it
systemn. The modilarization features of (BCL possible for a project team to reuse components on
have high overheade and all data within a single a planned basis instead of leaving reuse to
component is global and available everywhere individ choices.
within the component.

nlderlying Assumptions: There are some basic
/A possesses several features that make assumptions that affect the choices being made in

reuse more feasible. The first of these is strong this project. These assumptions are:
data typing. hile programmers find this feature Libraries will have hundreds and perhaps thou-
annoying at first, it has the advantage Of re- sands of omponents to choose from when fully
stricting use of specific items of data to the stocked. The logical outome of this assump-
intended use. 1his reduces errors involving the tion is that reuse by inspection of the
use of a wrong data item Another feature is the cmponents will not be possible. This also
seperation of the specification and the lbxoi of an means that the relationships among the com-
Ada oponent and the enforcement of data types ponents will not be obvious without automated
across compnent boundaries. Since much of the support.
data type checking is done at comlpile time instead The history of the develoment, the suport, and
of at operational time, this does not result in an the use of the components will be essential to
unreasonable overhead. Furthermore compile time having a quality library that systems and
data type checking improves the ability to reuse software engineers can use with confidence.
cponents without introducing context errors for The logical result of this assumption is that
the data elements in the reused components. The a significant requirement for on-line storage
concept of data hiding within a component is also of information about the components will
a feature f Ada which promotes reuse of com exist. We have also made the assumption that
ponents. When data names are only available for on-line storage of this magnitude will be
use within a component, unintended use of ident- available for use in this way.
ical data mes causes no problem within the There is a set of descriptors that can be used
computer,- for retrieval of components. The goal is to

umjomnts-: I have made use of the term achieve a capbility where there can exist "a
components without defining it. Within the Library of Congress" or a "corner store" for
context of the project, a component is an identi- software omponents and that indeed anY level
fiable part of a system. It may be an A package of complexity between can exist.
or the design of the component which leads to an Current operations will not scale up gracefully
Ada package or the requirements which lead to the to handle our assumptions involving large
design. Alternatively, it may be the test plan numbers of components with large amounts of
for testing an Ada package or the documentation information about those components. History
specified by the DoD Standard for software de- has shown that in the software area, solutions
velopmint, 2167A. This dcumentation may go to simple problems have rarely scaled up
beyond the specification part of an Ada package to easily to handle the same problem in a larger
describe what the Ada package is, hKw the da environment. In the contrary sense, however,
package works, and why the Ada package has been software engineering history has frequently.
aisembled. This purposely vague definition of a shown that simple problems are a special case
omponet is being used with the hope that the of some larger problem. An example of this is
linkages among the forms of a component can be the case of operating systems. An operating
maintained and exploited whenever new components system established for a single cpu with a
are being contemplated or worked on. It is this single user operating in a batch mode was
broad definition of components which we believe difficult to upgrade to handle multiple users

romeotes more effective reuse of components frm a at the some time. Similarly, the multi-userresource point f view and which will make a life operating system was difficult to upgrade to
cycle e tasis on reuse a reasonable empnasis. handle the case with multiple cpu's working

together even when the cpu's were "tightly
coupled." In each of these cases. however,
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lhiat onsatructive guidel ines can be derived from
the silper case is just a special case of the theeabove analysis.
largest case. The result of this assumption What guidelines for the reuse process there
is that we need a design that handles cn- should be in Ada projects.
pernts fron all stages of the life cycle. How to support the transition process on Ada
1he design must also handle links among these projects to emphasize reuse.
components and handle such xxplications as The principle investigators for the University of
multiple opies of a single design in equival- Maryland are Dr. Vic Basili and Dr. Dieter
ent forms on different hardware, and alterna- Rcmbach.
tive forms for a given set of hardware with
light variations in function. If such a Purdue University is developing methods to use the

complex case can be handLed, we would then operational history of reused software components
propose to show that the simpler cases are but to predict the fault-tolerant capabilities of new
special cases of the more complex case. systems and the reliability of new systems that

Productivity improvements will result on a use those oomponents. Keys to their approach
continuing basis fran the capability to reuse include:
software oonponents. Many of the past break- The development of an iterative model that
throughs resulted in step increases in pro- permits increasingly accurate predictions of
gramming productivity. Once that step in- fault-tolerane based on prior experience.
crease was realized throughout the industry Development of a definition of figures of merit .
(as in the use of cupilers), little further that can be included in the interface speci-
increase in productivity caould be realized. fications of Ada reused components.
The productivity improvements resulting f ran Development of aggregation rules that permit
success in this and similar projects will be the oomposition of system-wide metrics f rom
just as important as earlier breakthroughs. oomponent-level figures of merit.
0hce that initial step is taken and the The principle investigator for Purdue University
initial prodactivity improvements achieved, is Dr. Richard DeMillo.
additional, but smaller improvements in
productivity will continue to be made as the Georgia Institute of Technology is identifying the
library of reusable omponents expands. effect of using reusable components on the testing

At least some of the programs already in func- process. Sane of the issues they are dealing with
tional libraries may be reusable. !his means include:
that evaluations of components and even some Should components be developed for reuse or
automated transformations may be appropriate alternatively developed and reused?
to make sud programs useful as components in How does reuse affect the verification & vali-
new systems, tion of non-functional requirements?

Can truly hardware independent software be
Goals The goal of this project is to de=velop a developed?
Concept of operations that support large scale Can software be developed that will run
libraries of reusable components. The omponents orrectly in any use context?
in the library will be of varying scales of size The principle investigator for the Georgia Insti-
and ocmplexity and may be either single function tute of hnology is Mr. Mike McCracken.
cimponents or large "application architectures"

that can be completed by filling in the missing Georgia State University is investigating library
parts with either new components or by smaller tools for use in describing, classifying, catalog-
alreay existing components. ing, organizing and managing Ada reusable oma-

ponents. The focus of their effort is on the
The principle p odnc f this project will be a development of classification definitions and
handbook for reusing software. we will cover the methodologies, evaluation of these methodologies
development of new omponents that will be re- as applied to reusability generally and to Ada
usable, the transformation of existing components cumponents specifically. The principle in-
into more reusable components, the search and vestigators for Georgia State University are Mr.
retrieval of components, the evaluation of com- Ross Gagliano and Dr. Soott Owen.
ponents, and the tracking and record keeping of
the use of components. Morehouse College is investigating data management
There will also be prototype demonstrations of methodologies that promise merit for application

to reusable Ada libraries. Various data manage-
some tools needed in such a cxmplex undertaking, ment techniques are being investigated and evalu-

ated for their effectiveness, practicality,
idrrent Status: ihe iniversity of yland is functionality, and serviceability when used on Ada

identifying:objects that are contained in a reusable Ada ~
What structural and other product characteris- library. 7he principle investigator for Morehouse

tics of an Ada component enhance its potent- 0ollege is Dr. Arthur Jones.
ial reuse value.bow those characteristics can be assessed University of Houston is developing a "Conceptual
qustitatively. Model of the Sofare Engineering Life -zclew that

HOW the messrmant proess can be supported by will promote reuse. This model must acoommodate
autumated Ada metric tools. managemet of systems that evolve incrementally
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Presentations of the final work will be made at
over a long 1 If e, contain nonstop components, and the anpirical Foundations of Information and
must simultaneously satisfy a prioritized balance Software Sciences Synpsiun, October 19-21, 1988
of mission- and saf ety-critical requirements for in Atlanta, Georgia. Questions about the syiruos-
runtime behavior. It must provide the capability ium or offers to present other work on reusability
to specify tools through the data objects that are should be directed to the above address.
created, changed, and used by those tools and the
functions needed to manage those components. the Bibliography
ooncept is to enable the tracing of components
from the first statement of requirements through 1. Reusability Oomes of Age bl Will Tracz of IBM
multiple designs, implementations, and uses so federal Systems Division and Stanford Univer-
that information from all stages in the develop- sity; pp 6-8 in IEEE Software, July 1987.
ment and use of a component can be used to determ-
ine the appropriateness of reuse of a component.
Dr. Charles McKay is the principle investigator
for the University of Houston.

the University of Colorado efforts are directed at
using a richer semantic model than the entity-
relationship model and at using an object-oriented
database system. they are exploring combining
these two approaches into one since together they
provide both structural and behavioral ways of
managing complex data objects. In earlier work
the University of Houston has developed a pro-
totype database management system with the cape-
bility of handling complex data objects. they are
building on that prototype in this project and
have identified constructs their prototype does
not suport. these include conglamerate objects
for representing such things as software con-
figurations, long and nested transactions for
supporting interactive software design trans-
actions, and more relaxed forms of concurrency
control. they are identifying appropriate direc-
tions for solving these problems. Dr. King is
lead investigator for the Universty of Colorado.

Martin Marietta Energy Systems has the re-
sponsibility of melding the results of the above
efforts into a single reusability guide that can
be used to direct further efforts in making reuse
a reality. they will also be taking advantage of
prior SWRS work in producing a reusability guide
and melding the results together. Pete Lesslie is
the principle investigator for Martin Marietta.

Plans

7here will be a formal IPR 15 and 16 June, 1988
involving presentations from each of the univers-
ities and from Martin Marietta Energ Systems.
Reipresentatives of goverrnment agencies, uni-
versities, and private corporations will be
invited to attend and coment on the progress to
that point. Individuals wishing to participate in
the IPR as a representative of their organization
should send their name, address and phone number
to:

AIRMICS (attn: Mr. Daniel E. Hocking)
115 O' Keefe Building
Atlanta, GA 30332-0800
Arpanet: RARI@ISEC-OA
Phone Number: (404) 894-3110
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ADA: ALIVE AND WELL IN THE ARMY

Cira Mortgillo
Charles J. Walton

Grumman Aeorspace Corporation
U. S. Army, CECOM, Ft. Monmouth

Ada is alive and well in the Army. The Army The interface controls the database and also
Test Program Set Environment (ATSE) is one of the controls the use of the tools. The tool set
first software systems written primarily in Ada consists of automated aids for program
that has been delivered to the Army. ATSE is development, maintenance, quality assurance. and
comprised of approximately 250.000 lines of Ada configuration management that are to be used
and is presently hosted on both the VAX series of throughout the life cycle of an application. The
computers under Ultrix, and the SUN workstation database is the central repository for information
under UNIX. associated with each Ada application. This

information is stored throughout the life cycle ofThe primary purpose of ATSE is to support the the application.
development and maintenance of ATLAS test
programs- It is a structured environment ATSE has a similar set of goals: the ATSE
consisting of a friendly, controlling User environment was designed to be open-ended,
:nterface, and a set of Test Program Set (TPS)

t, portable and provide life cycle support. ATSE.tools to be used by a TPS engineer. These too s like the APSE, has a User Interface. a tool setdeposit configuration control information into a and a database.
relational data base. A TPS consists of several
:tems that are necessary to test a Unit Under Test Access to ATSE is facilitated and controlled
(UT with appropriate Automatic Test Equipment by the User Interface. The user may request any
(ATF). These items include a Test Program (TP). of the tools by selecting from a series of menus.
Test Program Instruction (TPI), Interface Device The User Interface checks user privileges before
(:0's) and Supplementary Data (SD). invoking the requested tool. The menus may be

easily modified or expanded by editing text files.
Each menu is broken into segments and 'chained*,hetoether by NEXT and PREVIOUS commands, which

the Stoneman components of an Ada Program Support allow for forward menu scrolling and backward

Environment (APSE). The Stoneman objectives scrolling andpectkwaly

inciude the followin: portability, open-endedness, scrolling, respectively.
and life cycle support. There are three levels to
the Ada env:ronment as recognized by the Stoneman The User Interface presents a single

requremnt: he iniml Aa PrgramingSupinterface to the user, whether the user is on therequirement: the M~nimal Ada Programming Support SUN or the VAX. This interface buffers the userEnvironment (MAPSE). the Kernel APSE (KAPSE), and from UNIX commands by supplying an easy to use
the APSE. The minimal set of tools is defined by file manager command repertoire.

the MAPSE. The KAPSE is the runtime library
interface to the chosen machine's operating Security is enforced by this controlling
system. The KAPSE is all that need be changed if a SecurityFor ins a user may
different operating system is used. The APSE is a ony ine atol that he ha ne, apeab yt
set of recommended tools that support the Ada only invoke a tool that he has the capablity to
system and include all other tools that can help execute. Also, a user may only access files that

in the overall system's life cycle, are in his directory or subdirectories.

The User Interface menu mechanism allows for
h tneman specifithe he basic requirements of a very open-ended design: tools may be added to an

existing menu and/or new menus may be added,
M vtawithout changing the User Interface program.9 Must provide an interface that allows
an APSE user to interface with the The ATSE tool set is an integrated tool set
APSE software as well as an interface that is used to help build TPS programs. These
between the different APSE software thas uedhe

components. tools include:

o ATLAS Compiler: The function of the

ATLAS compiler is to accept test programs written
o Must contain a database to act as the in the IEEE Standart 716 C/ATLAS test language,
oentrai point of the environment, process the program and generate interpretive code

(IC) which can be executed on a suitable ATE,
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e.g., Intermediate Forward Test Equipment(IFTE). o The operating system chosen was UNIX.

o ATE Simulator: The ATE Simulator o Each tool interfaces with the

allows the TPS engineer to execute all or part of operating system through the ATSE Rehostable

an ATLAS program without actually interfacing to Kernel System Library. This library is

any ATE hardware. The Simulator allows the functionally very similar to the KAPSE. It

verification of an ATLAS program whether or not contains calls that perform such functions as:

ATE assets are available, scheduling programs to run in background mode;
reading/writing to files; returning the host name

o Syntax Directed Editor: This tool to the calling program, etc. When ATSE was ported
provides the TPS engineer with a nnvenient means from the VAX to the SUN. there were no programming
of constructing syntactically correct ATLAS test chages required to interface to the new operating
program statements. Once the user chooses an ATLAS system.
verb, the SDE generates a syntactically correct
" skeleton' and the user is prompted to add the ATSE is a very open-ended system. As already
necessary test parameters. discussed, the menus may easily be expanded to

accommodate new tools. Additionally, users may be
o Text Editor: The Text Editor provides added to the ATSE User Table via a simple

host-computer independent and terminal independent procedure. Each tool may be easily enhanced by
editing and document processing capabilities. This virtue of the modular design that Ada imposes. It
tool may be used to create new files or modify is his open-ended design that will facilitate all
existing ones. future growth on ATSE.

o Hierarchical Integrated Test Simulator ATSE has the capability to provide life cycle
(HITS): HITS provides the user with an automated support. Each tool deposits statistical
means of generating fault detection and fault information into a database. SQL-type queries may
isolation information for digital UUTs. This is be formulated to retrieve pertinent information on
done by simulating a circuit and then applying this data. For example, the information retrieved
stimuli, either manually or automatically, and can shed light on the current state of the project
tabulating the results. and how far along each user is in the development

o Automatic Test Program Generator(ATPG) 
process.

Post Processor: The ATPG Post processor accepts One of the tables that the tools deposit into

the output files of an ATPG system (i.e., HITS) contains the following column headings (sample
and automatically generates an ATLAS language data is also shown):
program and associated data files used for testing
digital UUTs.

TOOL USER SESSION
o AN/USM-465A (PSP-BASIC) To ATLAS ID NO ID NO TIME STAMP UUT NO TIME

Translator: This software tool provides a vehicle ..........................
for the automatic translation of digital test 12 123 08/09/87 10:42:07 uutOl 1 HR 27 MIN
programs from the PSP-BASIC test language (used by 06 52 08/09/87 12:12:05 uutgO 0 HR 12 MIN
AN/USM-465A tester) into the ATLAS test language
(used on IFTE Base Shop Test Station (BESTS) and
7ommercial Equivalent Equipment (CEE) test The types of questions that can be generated
stations), from this table are:

As each tool executes, it deposits o For a particular UUT, what was the
information in a relational database. This total time spent in development9

information includes statistics on tool usage,
such as which user invoked a particular tool or o What were all the tools that a
the number of times a tool was accessed. This data particular user invoked since January?
nay be extracted in an interactive, query mode by (This question would show at what
iuthorized users for analysis and summation, stage the user was involved in the

The ATSE Database Manager is a general development process.)

purpose database manager and includes such o What tools consumed most of the users
features as: data definition language, data time9

manipulation language, multi-user capability,
report generator and recovery capability. ATSE DEVELOPMENT

The portability issue on ATSE was resolved in
a number of ways. The ATSE development process has primarily

been a Pascal to Ada translation effort. Existing

o Each tool wai written in Ada. Ada was modules were translated to Ada. In addition.
lesigned to provide a machine-independent design and coding of most new modules proceeded in ..,,
?nvironment which is re-hostable and re-targetable. Pascal and were later translated to Ada. This r"!
The target machine can change without modifying approach had two distinct advantages:
existing programs.
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o The design and coding phase could
begin in parallel with an Ada learning (5) The original Pascal source was compared
curve. This way, no time was lost in to the final Ada source to make sure that they
putting out a product, were equivalent.

o If Ada performance provided to be It was during the refinement process (Step 4)
unacceptable, the Pascal system would that the greatest Ada learning curve occurred.
be available as a fallback. During this process, Ada features were exploited

to enhance the maintainability of the source code.
The translation process was mostly a

mechanical process. An inexpensive translator For one, by virtue of converting to Ada, the
(Pastran) was utilized that executed on the IBM PC Ada library structure had to be imposed. An Ada
under PC DOS. program consists of a library of one or more

program units, which can be compiled separately.
Pastran operates as follows. This program has Each program unit (or package) has a specifier

three passes. In the first pass, Pastran containing information that must be visible to
determines the syntax or structure of the given other units, and a body that contains
program. If Pastran cannot make a sensible implementation details. This means that a program
determination of the syntax of the program, it can be designed, written and tested as a set of
will give up after the first pass. The Pascal independent software components.
source code will then have to be massaged
further. Because of this library structure, time is

saved when recompiling a large system if a change
In the second pass, Pastran analyzes the is made or someting is added. This structure also

semantics or meaning of the Pascal program. enforces modularity which helps keep the ATSE
Pastran reports errors whenever it cannot make design open-ended and very maintainable.
sense of a syntactically correct program. Pastran
may make guesses to determine semantic meaning Additionally, the Ada exception mechanism was
which may lead to further semantic errors, introduced during the refinement phase of the Ada

translation. This mechanism allows for defining of
The third pass of Pastran actually generates exceptional situations, signaling their occurrence

Ada code by taking the meanings found in the and responding to them.
second pass.

If an exception is found during program
The steps taken for the translation process execution, normal execution ceases and control is

were as follows: passed to an exception handler. These include
predefined exceptions as well as user defined

(1) The Pascal source file was checked for exceptions. After execution of the exception
all features that Pastran could not handle handler the current program unit terminates and
perfectly. For example, if the module was very control is passed to the previous level of
large, it would have to be divided into smaller software.
pieces,

The advantages of the exception mechanism for
12) The Pascal source files were downloaded ATSE are increased readability because the

to the IBM PC from the VAX. exception handlers are in a textually distinct
part of the program, and the elimination of the

(3) The source file was then run through need to explicitly check for errors that could
Pastran. occur at any time.

(4) The output from Pastran was massaged. The Future work on ATSE will be designed and
types of corrections that were needed were: coded in Ada with the elimination of the

translation step. An Ada design will ensure
o Dummy procedures that were included software that is reliable, efficient, and easy to

for Pastran were removed, modify. Additional Ada constructs (i.e.. tasking,
generic packages) will be exploited when

o Pascal identifiers that are Ada necessary, which will ultimately provide for a
predefined types i.e. the identifier very portable and maintainable ATSE system.
.string'. were changed.

The performance of the Ada version of ATSE
o Undeclared identifier errors usually has proven to be comparable to the Pascal version.

implied that the appropriate code (or The ease with which the ATSE software system was
package) needed to be included with rehosted from the SUN to the VAX and vice-versa.
the source file. has demonstrated its portability. The one drawback

is that Ada executables are about 15% larger than %
" Operations on string objects had to Pascal executables. This affects speed to some
either use 'slicing' or the object had extent. In the future, this factor will have to be
to be padded with blanks to the considered and compensated for.
declared length.
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An effort to design and code new ATSE tools
in Ada will begin in the near future. It is
anticipated that with the experience gained to
date, efficient and cost effective software will
be produced.
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Development of an Ada Environment for Communications' Protocol Testing

K. Bachmann, H. Busch, H. Gerhards and R. Holle

SCS Technische Automation und Systeme GmbH

GB Sondertechnik, Dehleckerring 40, 0-2000 Hamburg 62, FRG

As part of a study on transport protocols In Layer 4 is called the transport layer and is
special LANs a Protocol Test System (PTS) was responsible for transparent and reliable data
implemented In Ads. This paper is a report on transfer between two end systems within a
the project. The test system simulates data computer network.
transmission from user A to user B via two TCP
transport layer protocols on one single computer From the viewpoint of network performance the
system. In order to simulate realistic data evaluation, implementation and parameterization
transmissions the main components of the test of a transport protocol is extremely important.
system were implemented as independent Ada tasks.
In addition the transmission behaviour of every
task is able to be changed dynamically and Layers Functions
independently using runtime parameters. The
structure and implementation of the test system Application Ids 86"eem %* =I
and its components will be described in detail p

from the viewpoint of an Ada user. Many Presentation ife

advantages, some disadvantages and even problems Session lls tea i,
were observed during the intensive use of Ada in
this type of work. Transport t t 0assir

Network Ls eet workIT a

1. Introduction Sts Link am& c t

An increasing effort in networking between Physioal I o _ et lel
computers of different manufacturers running
different operating systems can be observed

today. As a consequence there is a great need
for standardized communication software, which Figure 1: ISO Basic Reference Model for Open
guarantees safe connection handling and reliable Systems Interconnection
data transmission within such heterogenous
environments. Todays well known and most frequently used

transport protocols for heterogenous computer
The OS (Open Systems Interconnection) basic networks are

reference model divides data communication into
seven functional layers (Figure 1). These layers - ISO-TP4: ISO Transport Protocol Class 4 and
are ordered hierarchically from the physical - TCP Transmission Control Protocol
layer up to the application layer. (MIL-STD-1778).

The specifications of these protocols allow
Tis document ha been approved for public software developers to vary the strategies for
release and sale: Its distribution I@ unlimited. transmitting, retransmitting or receiving date
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and offer them a certain amount of freedom in the which communicate and synchronize with methods of

interface design to the ULP (Upper Layer interprocess communication. In addition the

Protocol). Besides these parameters the central supervisor function for simulation

behaviour of a transport protocol depends on the control and monitoring shall have access to all

properties of the network's lower layers 1 to 3 system components at every time. For this

and the strategies implemented in its peer layer. reasons Ada with its tasking mechanisms seemed to

be very suitable as an implementation language

Since it is rather difficult to estimate for the PTS.

dependencies of such parameters and their

influence on data transmission behaviour, a In the following chapter a global description of

Protocol Test System (PTS), which simulates TCP the implementation of the PTS as well as some

based data communication between two systems in details, problems and their solutions are given.

one single computer, was implemented.

Figure 2 shows the functional structure of the 2. Structure and Implementation
PTS consisting of the modules: -

It is evident that the structure in Figure 2 is

- Simulation Control implemented by defining an appropriate Ada task

- Transport Protocol Users on System A type for each function. These tasks are

- Transport Protocol on System A (TCP) administrated via the simulation control

- Transport Protocol Users on System B function. Unfortunately it is not possible to

- Transport Protocol on System B (TCP) use the normal Ada task rendezvous mechanism to

- Network Simulation implement the control and communication pathways

shown in Figure 2, because in an Ads rendezvous

the calling task normally waits until the entry

S call is served by the called task. This
Simulation ContwolI mechanism is not suitable for the PTS, since the

i iu..ua..suaqum mr ... Oafml o
un dependencies in the control flows of the various

W tasks would be too strong.
U BatAu m Um~m

Syte A , yt I For this reason the PT5 uses a more indirect and
TP : ay of intertask communication

User User ' - I User I
Al A : .1 . ADU supported by server tasks called agents. Agents

are independent tasks, which are created

I MqI es r ust • I dynamically in order to accept data from one

' I M ="-IM I Data * bUl I rtask, to deliver this data to another task and to
exit after completion of data delivery. The

Transport Transpor i originator task may continue with its mission

i -osro*o Protocol I immediately after a short delay caused by

I . . creation of the agent and the rendezvous with it.

.... - L ------ J The agent then has to wait until the receiver

send or task is ready to process the data destined for
it. This mechanism for example allows a task to

Network *lv tim
E  

call its own entries, if required.

Data Communication The agent mechanism offers the PTS several

3lIII Control and Ionitor functions advantages:

Figure 2: Functional Structure of the - It is not necessary to implement an explicit

Test System administration for request queues.

In order to build realistic scenarios the modules

have to be implemented as independent processes
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- There is no direct data coupling between the and executes console commands or respectively

communication tasks. It is therefore possible returns an error message. Additionally the

to implement some adaptation code within the I/O-Manager handles all PTS output activities

agent task in order to integrate another (screen output, logfiles etc.).

transport protocol into the PTS (for example

ISO-TP4). Another important objective of the PTS proj,,ct

was to develop a portable implementation of the

A disadvantage encountered was the fact, that the specific transport protocol (the TCP). Therefore

memory space used by a task is not deallocated a reasonable module structure was necessary,

entirely after its completion unless the which separates hardware and operating system

immediate master of the task is terminated. On dependent code from the more general packages.

the other hand control cannot leave an immediate Within PTS all functions have been implemented by

master until all tasks created in its scope are using Ada features. Queue management is based

terminated. To achieve complete independence of upon dynamically linked lists. All interprocess

an agent a package has to be defined as its communication is based upon the task rendezvous

immediate master. That would cause a slowly mechanism. When implementing the TCP on another

increasing waste of memory space if no special system these mechanisms might not be adequate.

housekeeping is done.

Ada private declarations have been used to

encapsulate date types within some packages, such

as timer administration, send/receive queue

Ibeaed Driver management and interfaces to the upper and lower

layer protocols, since these packages may

probably be modified during an exchange of the

1/...... underlying system. The encapsulation of types

will give greater safety against side effects

a after a redesign of these packages for other

systems.

2.1 Special Data Types

This paragraph gives a few examples how some Ada

features have been used to solve problems during
at Protocol the transport protocol implementation.

eat oat Sequence Numbers:

To identify and reorder protocol date units the

Ne f *TCP uses sequence numbers counting each byte in

sat the data stream. Within the TCP a great deal of

arithmetic and comparison operations are executed

on sequence numbers. Since these operations are

Figure 3: Task Structure of the Test System governed by special rules, sequence numbers have

been implemented as a new data type and all

Figure 3 shows the task structure of the PTS in necessary arithmetic and comparison operators

detail. For simplicity only half of the system have been overloaded by functions on this type.

with only one TP-User is depicted. In order to

allow user console interactions at every time, Protocol data units:

the simulation control module is implemented in Within the TCP header bit positions are defined

two tasks, the Keyboard Driver and the to hold some special flags which are to be set or '

I/O-Manager. The Keyboard Driver only waits for reset by the protocol. Pragma PACK has been used

user console input and delivers these data to the for the record types concerned in order to force

I/O-Manager immediately. The I/O-Manager checks a correct storage representation of the protocol
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data units. This Is very important since Nevertheless Ada allows to fix all interface

protocol data units appear as simple blocks of conditions between the protocol and the outer

data to the underlying network layer. world without any knowledge of the protocol's

internal rules.

2.2 A Model or the Transport Protocol Task

For this paragraph we regard the transport layer -- SPECIFY DUMMY DATA STRUCTURES AS INTERFACE TO

of the OSI reference model as a piece of software -- LOWER AND UPPER LEVEL PROTOCOLS.

which can
package TPINTERFACE Is

- process events generated by its lower layer,

- process requests for its upper layer, -- DESCRIBE DATA RECEIVED FROM LOWER LAYER

- generate service responses for its upper

layer, type FROMLLP Is (IMPLEMENTATIONDEPENDENT);
- generate events for its upper layer, and

- process timeout events initialized by its own -- DESCRIBE DATA RECEIVED FROM UPPER LAYER

protocol mechanisms.

type FROM_ULP is (IMPLEMENTATIONDEPENDENT);

Additionally the implementation of the transport

protocol task was governed by the following end TPINTERFACE;

requirements:

The implementation of the protocol task shall --

only contain code for intertask communication - SPECIFY TIMER SPECIFIC DATA STRUCTURES AND

and timeout control. All protocol specific -- FUNCTIONS

code shall be implemented in separate packages

which shall be used in the context of the package TP_TIMER In

protocol task.

-- SPECIFY TIMER UNITS
All static control information and runtime

parameters used by the transport protocol type TIMERUNIT is (IMPLEMENTATIONDEPENDENT);

(i.e. connection states, current buffer

sizes, etc.) shall be visible to the -- SPECIFY A DATA TYPE TO IDENTIFY DIFFERENT

simulation control task at every time. -- TIMERS

- Multiple transport protocol tasks shall exist type TIMERID is (IMPLEMENTATIONDEPENDENT);
simultaneously each of them using their own

control information and runtime parameters. -- SPECIFY A TIMER SPECIFIC DATA STRUCTURE

-- CONTAINING ALL INFORMATION FOR TIMEOUT

The action procedures called in the context of -- CONTROL

the transport protocol task shall not use any

static data because this code must be callable type TIMERSTRUCT Is (IMPLEMENTATION_DEPENDENT);

simultaneously from several protocol tasks

each of them having their own local context. -- RETURN TRUE IF A TIMER IS ACTIVE

The following example is a simplification of the function TIMER-SET (T: in TIMERSTRUCT)

code actually implemented for the test system and return BOOLEAN;

describes how the above listed objectives have

been reached. -- RETURN DURATION UNTIL THE NEXT TIMEP EXPIRES
The example can be formally checked by a compiler

although the package bodies of TPTIMER and funotion UNTILNEXT TIMEOUT

TP_PROCEDURES are not contained in the code. (T: In TIMERSTRUCT) return DUHATION;
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-- SET A TIMER THAT WILL EXPIRE AFTER THE GIVEN -- ACCORDING TO THE PROTOCOL RULES

-- AMOUNT OF TIMER UNITS AND GENERATE A UNIQUE

-- IDENTIFICATION FOR EACH TIMER procedure PROCESS ULP DATA

(D: In FROMULP; S: In out TP_STATIC);

procedure SETTIMER

(T: In out TIMERSTRUCT; -- PROCESS ALL NECESSARY ACTIONS AFTER A

V: In TIMER-UNIT; -- TIMER PREVIOUSLY SET BY THE TRANSPORT

I: out TIMERID); -- PROTOCOL HAS EXPIRED

-- CANCEL THE TIMER SET BY THE PREVIOUS procedure PROCESS TIMEOUT

-- PROCEDURE (S: in out TPSTATIC);

procedure CANCEL TIMER end TPPROCEDURES;

(T: in out TIMER_STRUCT; I: In TIMERID);

end TP_TIMER; .....

wIth TPINTERFACE;

-- *f** .. #* @ e** *** e..** *** W.******* ***** *** W** * * with TPPROCEDURES;

-- SPECIFY DATA STRUCTURES AND PROCEDURES TO BE

USED IN THE MAIN LOOP OF THE TRANSPORT PROTOCOL use TP_INTERFACE;

-- TASK. use TPPROCEDURES;

with TPINTERFACE; package TRANSPORTPROTOCOLTASK Is

with TP_TIMER;

-- USE THIS DATA TYPE FOR CONTROL FLOW WITHIN

use TPINTERFACE; -- THE TASK BODY OF THE TRANSPORT PROTOCOL TASK

use TP TIMER;

type TPTASKSTATUS Is (STOP, RUN);

package TPPROCEDURES is
-- DEFINE THE STRUCTURE OF THE ENVIRONMENT ON

-- DESCRIBE DATA STRUCTURES USED BY THE TRANSPORT -- WHICH A PARTICULAR TRANSPORT PROTOCOL TASK

-- PROTOCOL INTERNALLY. SEPARATE TIMER DEPENDENT -- OPERATES

-- INFORMATION

type TP_WORK_STRUCT Is

-- DESCRIBE TIMER INDEPENDENT CONTROL STRUCTURES record

STATUS : TPTASKSTATUS := STOP;

type TIMER_INDEP Is (IMPLEMENTATION_DEPENDENT); CONTROL: TPSTATIC;

end record;

type TPSTATIC Is

record type TP_ENVIRONMENT Is access TPWORKSTRUCT;

TIMIND: TIMERINDEP;

TIMDEP: TIMERSTRUCT; -- SPECIFY TRANSPORT PROTOCOL TASK.

end record;

task type TP_TASKTYPE Is

-- PROCESS DATA RECEIVED FROM THE LOWER LAYER

-- ACCORDING TO THE PROTOCOL RULES -- CALL THIS ENTRY IMMEDIATELY AFTER TASK

-- GENERATION TO PASS A POINTER TO

procedure PROCESSLLPDATA -- THE SPECIFIC ENVIRONMENT ON WHICH THIS

(D: In FROM LLP; S: In out TPSTATIC); -- TASK SHALL OPERATE

-- PROCESS DATA RECEIVED FROM THE UPPER LAYER entry TP START (ENV: In TP_ENVTRONMENT);
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-- CALL THIS ENTRY TO SIMULATE DATA DELIVERY -- ACCEPT AND PROCESS LLP DATA

-- FROM LOWER LAYER
accept TP_RCVFROMLLP(D: in FROMLLP) do

entry TP_RCV_ROMLLP (D: In FROMLLP); PROCESSLLPDATA (D. E.CONTROL);

end TP-RCV-FROMLLP;

-- CALL THIS ENTRY TO SIMULATE DATA DELIVERY or

-- FROM UPPER LAYER

-- ACCEPT AND PROCESS ULP DATA

entry TPRCVFROMULP (D: In FROMULP);

accept TPRCV_FROM_ULP(D: In FROMULP) do

-- CALL THIS ENTRY TO SHUT DOWN THE TRANSPORT PROCESS ULPDATA (D, E.CONTROL);

-- PROTOCOL end TP-RCV-FROMULP;

or

entry TPSTOP;

-- GENERATE TIMEOUTS FOR THE TRANSPORT

end TPTASKTYPE; -- PROTOCOL

end TRANSPORT_PROTOCOLTASK; when TIMER-SET (E.CONTROL.TIMDEP) ='

delay

UNTILNEXTTIMEOUT (E.CONTROL.TIMDEP);

- - .o. PROCESSTIMEOUT (E.CONTROL);

end select;
with TPTIMER; end loop;

use TP TIMER;

end TPTASK_TYPE;

package body TRANSPORTPROTOCOLTASK Is

end TRANSPORTPROTOCOLTASK;
task body TP TASK_TYPE Is

E: TP_ ENVIRONMENT; ..... .... ..... 0...

-- A VERY SIMPLE EXAMPLE HOW TO ACTIVATE THE

begin -- TRANSPORT PROTOCOLS

-- WAIT HERE TO RECEIVE A POINTER TO THE with TRANSPORTPROTOCOLTASK;

-- OPERATING ENVIRONMENT use TRANSPORTPROTOCOLTASK;

accept TPSTART (ENV: In TPENVIRONMENT) do procedure STARTTP Is

E :- ENV;

E.STATUS :: RUN; -- GENERATE TASKS AND THEIR SPECIFIC

end TPSTART; -- ENVIRONMENTS

-- MAIN LOOP OF THE TRANSPORT PROTOCOL TASK TPl: TPTASKTYPE;

ENV_1: TP_ENVIRONMENT :- new TPWORKSTRUCT;

while E.STATUS - RUN loop TP_2: TPTASKTYPE;

select ENV_2: TPENVIRONMENT := new TPWORKSTRUCT;

-- SWITCH STATUS TO STOP TO EXIT THE TASK begin

-- MAIN LOOP

-- INSERT ADDITIONAL CODE FOR SPECIAL ENVIRONMENT

accept TPSTOP; -- INITIALIZATION HERE

E.STATUS :. STOP;

or null;
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-- PASS ENVIRONMENT TO THE TRANSPORT PROTOCOL operating system, i.e. Ada tasks are not

-- TASKS processes in the sense of the operating system.

Compiled and linked Ada programs run in the

TPI.TPSTART (ENV 1); context of the user's process instead. All Ada

TP 2.TP START (ENV 2); specific runtime activities such as task

scheduling is done within the program using a

-- BEGIN WITH CODE FOR COMMUNICATION SIMULATION runtime library.

-- HERE

During the development of the PTS no significant

null; problems were observed using this Ads system.

end START_TP; Personnel and Effectivity:

At project begin the development team's Ada know

how was more or less theoretical. Nevertheless

3. Observations and Results there was good skill in software development and

in using the general facilities of the operating

The Development System: system environment.

The development system for the PTS was a MicroVAX

11 running MicroVMS 4.5 and VAX-Ada 1.3. The time spent on familiarization with Ada and

Additional support was provided by a language the language specific development tools was

sensitive editor and the source code oriented rather short. Including this time and the time

debugger of VMS. for testing and documentation the team consisting

of three persons spent six month on the

There were no problems to become familiar with development of the PI5.

the development software, since the Ada system,

which works as compiler, library manager and The Ada Influence on Software Development:

interface to the VMS linker, as well as editor Compared with other languages (Pascal, C,

and debugger fit exactly into the normal user Fortran, Cobol, etc.) Ada compilers check the

environment, source code more thoroughly. This offers the

user the advantage to detect many types of errors

The language sensitive editor supports at compile time already, which otherwise might

familiarization with Ads by generating cause runtime errors difficult to fix. Some

syntactically correct templates of language examples are:

constructs. In addition it is possible to

compile programs without leaving the editor. If - Ada performs consistency checking between

errors occur during compilation a report will be separately compiled units. This feature

given in a second window on the screen and the greatly simplifies software integration.

developer can walk through the code directed by Debugging is more or less restricted to

the locations of syntax errors. Simple errors program logic and executable instructions,

(for example a missing ';') will be corrected since all interface relations have been

automatically after confirmation by the checked at compile time.

developer.

- The private type feature encapsulates data and

The debugger is source oriented and offers all avoids unintended side effects.

standard features such as setting breakpoints or

changing values of variables. Besides that Ada - Consequent usage of the 'in' and 'out' mode

specific support is provided like monitoring of specifiers in subprogram and task entry

task states and changing task priorities. During declarations forces detection of a lot of

the development of the PIS a normal debugging errors at compile time already.

session was run using one terminal for debugger

input and output and another as PTS user console. - Using records with discriminants forces these

values to be write protected. Unintended

The Ada runtime system is not embedded in the modifiLation of a record discriminant will be
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detected by the compiler.

Conclusion:

This paper has detailed the development of a

Protocol Test System for 05I layer 4 protocols in

Ads. After careful consideration of advantages

and disadvantages this approach has proved, that

Ads is a suitable implementation language for

communications software. Especially when

autonomous entities in a simulation environment

are required the tasking features of Ada seem to

be very advantageous.
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DESIGN FOR
FAULT TOLERANCE AND PERFORMANCE

IN A DoD-STD-2167 Ada PROJECT

WALTER SOBKIW and THOMAS L.C. CHEN
E-Systems, Inc., ECI Division at St. Petersburg, Florida

ABSTRACT The problem with these methodologies
is that they tend to ignore other aspects

As computer hardware decreases in of the system equally important to
cost, it becomes increasingly available accomplishing the system mission.
to software developers and computer Specifically performance and fault
users. With this decrease, computer- tolerance in the system are not
based system tools are finding new addressed in a methodical manner. In
automation applications, which tend to addition, the impact of various issues
replace manual tasks. Most of these related to fault tolerance are not related
automation tasks require timely arrival to the functional analysis or the
and accuracy of their product or output. performance analysis of the system.

This has resulted in the development of In the structured system analysis
new requirements related to data inte- methodology, performance is considered
grity and system availability. The to be a minor issue. The advocates
solution to preserving data integrity generally assume 10% of the units need
and providing for high availability has to be redesigned in any project to
been to develop fault tolerant computer- support any unexpected computer
based systems. This paper defines a performance deficiencies. DoD-STD-
fault tolerant system design methodolo- 2167 defines a system development
gy within the framework of DoD-STD- methodology which relates system
2167 and the constraints of implemen- development products to major program
tation in Ada. milestones, however, the standard tends

to only focus on the functional definition
INTRODUCTION of the system with little emphasis on

performance analysis and no emphasis
The formal system methodologies on fault tolerant analysis.
utilized in the development of many of
today's medium-to-large systems tend This point of view has been disputed by
to only address the functional system many practitioners and system users.
requirements. They are usually top- There are several articles documenting
down oriented methodologies which rely practitioners and system users point of
on structured systems analysis as devel- view. These articles suggest that major
oped by Yourdon and or Hlierarchical effort must be dedicated to fault
Input Processing Output (HIPO) tolerance and computer performance in
analysis as pioneered by IBM. the early phases of a design project, and
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that this analysis be refined as the The products associated with the design
system design baseline matures. of a fault tolerant system include an

availability model, a computer perfor-
To a very large extent, the maturation mance analysis, and a failure analysis.
of the design baseline is heavily These products each take on a different
dependent upon the fault tolerant form and address specific issues at the
analysis and computer performance 2167 major milestones. Many of the
analysis of the system. fault tolerant key issues will only

surface after a methodical detailed
In the past, design for fault tolerance analysis of the system has occurred. The
and performance of computer-based specific implementation of Ada is one of
systems has been successfully achieved the key issues. The required solutions
without a widely accepted design for many projects is several orders of
methodology. Examples of such magnitude larger than the solution
systems include Nuclear Power Plants, depicted by the implementation inde-
the U.S. Air Traffic Control System. pendent function analysis of the system.

Experience on an Ada fault tolerant With the introduction of Ada, certain
communications system at E-Systems constraints are introduced into the fault
as well as experience in the design of tolerant design of the system. These
the new U.S. Air Traffic Control System constraints are generic in nature,
suggests that the design for fault related to the language and implemen-
tolerance and performance can be tation-specific related to each vendors
systematically accomplished by a series particular interpretation of the Ada
of analysis. These analysis are aimed at specification. For example, the use of
a certain class of questions to produce a rendezvous as opposed to semaphore is a
set of documented design alternatives constraint on the design generic to the
as the functional analysis of the system language definition, while the particu- '

is performed. lar design characteristics of tasking for
each vendor type is dependent upon that

These documented design alternatives vendor's Ada implementation
can be eliminated or refined by the
restrictions provided by the computer PRESENT SYSTEM DESIGN
performance analysis, fault tolerant PROCESS OVERVIEW
analysis, design restrictions of the
hardware and operating system The present system design process is an

* characteristics, and the functional interactive process in which certain key a.

analysis of the system. These studies issues of the system design are surfaced
*and trade-offs must occur in a timely as the level of detail of the design

manner in conjunction with the evolves. The design at the system level
functional design of the system to form can be summarized as follows:
the overall system architecture. To a Requirements Analysis
some extent the level of detail at each * Functional Analysis %

phase is driven by the 2167 standard. * Functional Allocation
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It is at this time, during system The IBM mainframe computers offer
architecture development, that the fault extensive hardware error checking
tolerant strategy must be decided. For capabilities with the CPU logic and
example, will the fault tolerant strategy multiple instruction engines that can be
be based on hardware, software, or tightly coupled to shared memory.
both? Will the hardware and software
in the system be built from the ground As the system design process progresses
up or will the system be built using a to lower levels of detail, certain issues
combination of off-the-shelf hardware related to the use of Ada must be
and software and newly developed resolved. The first question is, will Ada
hardware and software? be appropriate for the application in

question? Additional questions would
For example, Stratus Computer be: Will the entire system be Ada-based
Systems [31, [7] fault tolerant strategy or will there be some subsystems
is based on hardware in which all the implemented in C, for example? Will
hardware is replicated in a dual-dual the same Ada-based computer subsys-
configuration. This fault tolerant tem share another environment such as
strategy may make sense if the driving Unix and will the Unix environment
factor is fault tolerance in hardware as support another language such as
opposed to software. If there are issues Fortran or assembly? Fault tolerant
associated with reconfiguration and implementation requires control
recovery time, then August systems [6], structures. Will these structures be
[8] MR system may be of interest since developed by the applications program-
its reconfiguration and recovery is mers in Ada or will co-existing
inherent in its normal mode of voting operating system services provide these
operations. If fault tolerant software is control structures?
a primary consideration, then perhaps
Tolerant Systems [31 or Tandem These issues are surfaced during the
Computers [31, [51 with their trans- course of designing fault tolerant Ada-
action processing facilities may be more based systems. However, the frame-
appropriate to the application, work of 2167 makes it difficult to

document the analysis and results that
These two vendors also may be lead to final requirements definitions
attractive if the fault tolerant software that resolve these issues in each
may use innovative software error particular vendor design.
detection mechanisms such as multiple
designs processing the same data and FAULT TOLERANT COMPUTER
comparing the outputs. [10] DESIGN METHODOLOGY

If there is a tightly coupled application Figure 1 identifies the major milestones
that requires extensive amounts of in the 2167 system development
computer resources, then perhaps a methodology. Normally when the
fault tolerant system must be built from standard is reviewed and the major
the ground up using IBM mainframe milestones identified, the design and
like computers. [ 11, [4], [8], [9], [11] management staff view the design from
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the main mission function which is to major milestone. Missing are the
define, develop, and design the products which show the fault tolerant
automation applications functions. For design baseline at each major milestone
example, if an air traffic control system and how the design effort arrived at the
is being developed, then the primary fault tolerant baseline design.
focus is identifying what the system is
suppose to do (i.e., define the system Figure 2 has identified the DoD-STD-
functions) and how the system will 2167 major milestones and mapped a
support those mission function (using family of recommended activities and
micros, mainframes, array processors, products to support the design of a fault
etc.) tolerant system. These products are

summarized as follows:
However the analysis of the system in * Fault Tolerant Design Program
terms of availability and fault Plan
tolerances becomes of secondary 0 Generic Fault Tolerant Analysis
concern. More important is that the Avaia lt Mol
functions associated with a fault Availability Model
tolerant mechanism are ignored. * Static and Dynamic Computer
Figure I also shows the major Performance Models

k milestones in a 2167 program and the a System, Hardware, Software, and
kind of activities associated with each Operational Failure Analysis

SRR SDR SSR PDR CDR IMPLEMENTATION

P - PRELIMINARY - SYSTEM SEGMENT - SRS AND IRS - TLDD - SDDD - RELEASED VERSION
R SYSTEM SEGMENT SPECIFICATION - PRELIMINARY TLDD - PRELIMINARY SDDD - PRELIMINARY
0 SPECIFICATION - PRELIMINARY IMPLEMENTATION
D SRS AND IRS
U
C
T
S

A - REVIEWAND MODIFY - IDENTIFY SYSTEM - IDENTIFY CSCI - IDENTIFY ALL CSCI - IDENTIFY ALL LLCSC CODE
C CUSTOMER A-LEVEL FUNCTIONS AND AND TLCSC AND UNITS
T SPECIFICATION INTERFACES - ALLOCATE SYSTEM - CODE
I FUNCTIONS TO CSCI - IDENTIFY ALL COTS - ALLOCATE LLCSC - DATABASE
V SUPPORT THE - ALLOCATE SYSTEM HARDWARE AND TO HWCI, MAJOR POPULATE
I DESIGN CONCEPT FUNCTIONS TO - ALLOCATE CSCI TO SOFTWARE COMPONENTS AND
T WITH ANALYSIS GENERIC HARDWARE GENERIC HARDWARE SUBSYSTEMS DT&E
I SUBSYSTEMS - ALLOCATE CSC TO
E - SELECT LANGUAGE HWCI, MAJOR - ALLOCATE UNITS TO - TEST CONCEPT
S SUPPORT THE AND SYSTEM COMPONENTS AND ADA PACKAGES, - TEST DEFINITION

DESIGN CONCEPT CONTROL SUBSYSTEMS PROCEDURES, AND - TEST PROCEDURES
WITH ANALYSIS ENVIRONMENT TASKS - TEST RESULTS .,'

- SUPPORT THE - SUPPORT THE
DESIGN CONCEPT DESIGN CONCEPT
WITH ANALYSIS WITH ANALYSIS

Figure 1. DoD-STD-2167 Major Milestones and Expected Products

p
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SRR - Fault Tolerant Design Many times the mission can be
Program Plan redefined with less stringent

availability requirements and the
The System Requirement Review (SRR) system can exceed fault tolerant
is primarily used to review the customer expectations. For example, in the case
specification. Normally, the system of the communications systems being
developer has an initial concept of the developed by E-Systems, the availabili-
system and is able to identify problems ty requirements were defined with
associated with the customer specifica- centralized communications queues in
tion. These problems include function- mind. Some of these systems can be
al, computer processing performance made more fault tolerant with a
requirements, and problems associated distributed queue however, the
with availability and maintainability customer specifications would have
requirements. At this time, the made those designs non-compliant with
primary focus of the effort associated the overall system specifications. By
with fault tolerant definition should be SRR, the program plans should be
an examination of the mission and the developed and available to all
availability requirements. personnel. This includes a stand-alone

PSRR SDR SSR POR CDR IMPLEMENTATION

P MODIFIED A-LEVEL - AVAILABILITY - REFINED - REFINED MODEL - REFINED MODEL -FAILURE ANALYSIS
R SPECIFICATION MODEL RESULTS AVAILABILITY RESULTS RESULTS
0 REQUIREMENTS MODEL RESULTS -SOFTWARE

D - STATIC COMPUTER - DYNAMIC MODEL - REFINED FAILURE AVAILABILITY
U -FAULT TOLERANT MODEL RESULTS - REFINED STATIC RESULTS ANALYSIS TLDD GROWTH PROGRAM
C DESIGN PROGRAM COMPUTER MODEL AND SDDD PRODUCTS
T PLAN - GENERIC FAULT RESULTS - REFINED FAILURE REQUIREMENTS

STOLERANT ANALYSIS ANALYSIS SRS AND
( COOK BOOK) - FAILURE ANALYSIS TLDD REQUIREMENTS

SEGMENT SPEC AND
SRS REQUI REMENTS

A PACKAGE

T -REVIEW CUSTOMER - INITIATE - REFINE AVAILABILITY -REFINE MODELS - REFINE MODELS -FAULT TOLERANT

I A' LEVEL AVAILABILITY MODEL PROGRAM PLAN
*V SPECIFICATION MODEL -IDENTIFY CRITICAL - IDENTIFY CRITICAL

I RELIABILITY - REFINE STATIC CSCI. TLCSC. AND CSCI, TLCSC. LLCSC. - GENERIC FAULT
T AVAILABILITY - INITIATE STATIC MODEL HWCI. IDENTIFY UNITS. AND HWCI TOLERANT ANALYSIS

I REQUIREMENTS COMPUTER FAILURE MODES IDENTIFY FAILURE
EPERFORMANCE - IDENTIFY SYSTEM, MODES - SYSTEM FAILURE

S MODEL SUBSYSTEM, AND -IDENTIFY CRITICAL ANALYSIS
SOFTWARE OPERATIONS AND - REFINE OPERATIONS

- IDENTIFY GENERIC FUNCTION FAILURE FAILURE MODES FAILURE ANALYSIS - SOFTWARE FAILURE
FAULTS AND MODES ANALYSIS
RESULTING ERRORS -IDENTIFY GENERIC - IDENTIFY ADA

ADA CONSTRAINTS IMPLEMENTATION - HARDWARE FAILURE
- IDENTIFY GENERIC AND SOLUTIONS SPECIFIC ANALYSIS

FAULT TOLERANT CONSTRAINTS AND
FEATURES SOLUTIONS - OPERATIONS FAILURE

ANALYSIS

Figure 2. DoD-STD-2 167 Major Milestones and Recommended%
Fault Tolerance Analysis Products
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plan to support fault tolerant design. performance and availability models,
The Fault Tolerant Design Program and traded off the various solutions in
Plan identifies the inputs to the effort, overall program goals using the inputs
the product outputs, and the relation of from the various models on each fault
the fault tolerant products to all other tolerant architecture approach.
products on the program.

During this time, the program should
SDR - Generic Fault Tolerant examine the state-of-the-art in fault
Analysis, Preliminary Availability, tolerance. This should be in the form of
and Static Computer Performance a Generic Fault Tolerant Analysis
Models document that identifies various fault

tolerant features and their capabilities
By Software Design Review (SDR) in terms of dealing with various
there should be a generic architecture hardware and software faults and*
solution. This solution identifies all errors. This document also establishes
system functions, allocates those system the fault tolerant definitions that will
functions to generic data processing be used throughout the program
hardware, identifies the internal and development effort. These definitions
external interfaces and provides will include various generic ways in
supporting data to satisfy the system which computer-based systems have
performance requirements. At this failed. In addition, if there is some prior
time, there also should be: generation of the computer-based
(I) supporting analysis in the tradeoffs system in operation, this document
that show the generic architecture identifies some of the more unusual
solution; (2) the performance analysis problems encountered in that previous
identifying the computer processing generation computer-based system.
performance at the function level; and
3) an availability model. This document needs to be detailed and

yet capable of being reviewed and
This is a very critical time period for the understood in a very short time period.
definition of the fault tolerant system, This document effectively forms a
since effectively the basic approach to t cookbook' of generic fault tolerant
fault tolerance is chosen. This defini- approaches available to the system
tion should include, for example, if the designers. Just as an A-Spec is
system is to be characterized with large developed to identify the mission of the
numbers of hardware error checkers system, this document is developed to
capable of detecting transient errors or identify various fault tolerant functions
is the system characterized with and their missions.
software capable of detecting errors in
processing induced by the hardware or For example, a Cyclic Redundancy
software. This time period has Check (CRC) attached by the software
effectively identified the generic and maintained during all data trans-
approaches to implementing a fault port processing can protect mission data
tolerant solution, developed computer to a very high degree from a host of
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various system faults. That knowledge to support the top-level software
may not be readily known or understood architecture selection issues. At this
by all the system designers (nor should time, the fault tolerant design of the
it be). In addition, each designer will system needs to continue refining the
have an opinion about the effectiveness computer performance and availability
of each fault tolerant function. models.

This document will, for example, In addition, a formal failure analysis
provide the official program position on needs to be initiated. That failure
the effectiveness of range checking in analysis needs to begin identifying
software versus the use of hardware various failure modes associated with
error checkers in the CPU hardware, all system mission functions, defining
even if the program position is based on the potential harm of each failure mode
qualitative analysis instead of quantita- (some failure modes may be harmless),
tive analysis. The issue is to capture and modifying the system baseline from
the analysis and make the findings SDR to minimize the potential harm.
available to all designers during system The output of this failure analysis
design. should be requirements that are

incorporated into the system SRS's and
SSR - System Failure Analysis, the System Segment Specifications.
Refined Models

This failure analysis should be
The SSR is primarily focused on partitioned into system, hardware,
software design. Effectively, the software, and operations. The failure
generic architecture defined for SDR analysis should use the design products
has evolved to a more application developed to date and primarily focus in
specific system definition. The on the SDR baseline design. The most
functions previously identified are now important products are the identifica-
allocated to Computer Software tion of subsystems, major components,
Configuration Items (CSCI's). Those software functions in the form of data
CSCI's are allocated to the generic flow diagrams, and any single thread
hardware architecture configuration. diagrams.
At this time, the language should have
been selected along with the system The failure analysis should begin by
control environment. Will the system effectively performing a Black box

be implemented in Ada using a real- analysis on the automation system .

time Unix executive, or will the system where subsystems are removed from
be partially implemented in Ada and C operational service because of a failure.s"%,
with a custom designed real-time Failed subsystems that result in
control executive? Certain specific damage to on-line operations and
implementation issues associated with impact the availability requirements
these software design selections need to are the most critical subsystems. When
be identified and surfaced. In some a subsystem is removed from service,
cases, new functions need to be defined the impact of that event should be
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documented. Those impacts include loss identified and their requirements are
of system data and mission functions. If documented in the Top-Level Design
critical data or critical mission func- Document. At this time, the computer
tions are lost, then various solutions performance model should have evolved
should be identified for preventing the to represent the design in terms of the
loss of that data or system function TLCSC's.
service. A starting point for all fault
tolerant solutions should be with the In addition, a preliminary dynamic
generic fault tolerant features model representing various queue
identified in the fault tolerant analysis relationships and context switching
effort used to support the SDR baseline, baselines should be providing the
Those generic solutions should then be designers with further definition of the
modified to support the specific system performance characteristics.
characteristics of the baseline. The availability model should be

tracking the evolving baseline. The
Those approaches should be architecture solution should be defined
documented and a tradeoff in terms of in terms of a vendor implementation if
the effectiveness of each solution and its off-the-shelf hardware and or software
impact on the system architecture will be used in the system.
identified. Many times the various
fault tolerant solutions have large The fault tolerant analysis should now
impacts on the computer performance switch to a failure analysis of the each
characteristics of the system, and so the individual TLCSC and Hardware
timing and sizing analysis needs to be Configuration Item (HWCI) in the
closely coupled to this tradeoff analysis. system. The TLCSC's should be

characterized in terms of importance in
The primary focus at this time should be the system and the various failure
the system failure analysis, however, modes previously identified at SDR
the hardware, software, and operational should be allocated to the TLCSC's
failure analysis can also begin at this identified. In addition, each HWCI
time. The other failure analysis efforts should be characterized in terms of
will be refined during PDR. importance in the system, and the

various subsystem failure modes
PDR - Full Failure Analysis, previously identified at SDR should be
Refined Availability Model(s) and allocated to the identified critical
Dynamic Computer Performance HWCI's.
Model(s)

It is at PDR that the architecture
The Preliminary Design Review (PDR) solution has transitioned from a generic e
consists of an architecture where all the solution to a non-generic solution. The
interfaces are defined and allocated to a Ada language has been selected along
system configuration baseline, all the with any Commercial Off-the-Shelf
CSCI's, and Top-Level Computer (COTS) hardware and software. In
Software Components (TLCSC's) are addition, the design of new hardware
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and software has begun to be constrain- In addition, to maintain consistency
ed by various implementation issues. before, during, and after a failure, the

mechanism grows into a sophisticated
For example, if a high speed communi- sequence or control structures filled
cation bus is being developed the access with many potential design errors in
mechanism should be defined. Is the and of itself. In addition, once an error is
bus Carrier Sense Multiple Access detected by either hardware or
(CSMA) or Token controlled? Is the software, recovery must proceed. This
physical plant fiber optic or copper recovery also must be in a consistent
based? The same non-generic issues manner to ensure that system data is
related to fault tolerance also should be not compromised. These are all
surfacing at this time. Which TLCSC's elaborate control structures that must
and HWCI's are critical? For the be implemented in Ada by the
critical TLCSC's and HWCI's, what are applications programmer from the
the error detection mechanisms? For ground up.
the critical TLCSC's and HWCI's, what
are the recovery mechanisms? How This issue is further exacerbated by the
long does it take to recover and will the context switch time of many Ada imple-
availability be satisfied? These are all mentations. In order to implement
very detailed questions that cannot be many of these control structures in Ada
reasonably answered without a non- context switching needs to occur. This
generic architecture definition, context switch time can significantly

reduce the time left to support
It is at PDR that the generic constraints application programming functions.
of Ada begin to surface. Fault tolerance This issue is particularly acute in real-
is accomplished with error detection, time fault tolerant system design.
replication of the same design or alter-
nate designs, and routing via active Some vendors such as Tolerant systems
healthy paths. In the non-generic have developed control structures and
architecture, these functional require- made them available to the applications
ments translate to control structures. programmer. In Tolerant's case, these

control structures reside in an
For example, to protect data from dam- augmented Unix look alike operating
age resulting from memory storage system. The Ada 'application' code
failure data is replicated. This replica- executes with the augmented Unix look
tion can occur in hardware or software. alike operating system.
However, after examining the market
place there are no vendors that offer full It is at this time that the issues related
data replication implemented in hard- to interprocess communications and
ware. This control structure must either process synchronization surfaces. There
be implemented in the applications code are two basic process synchronization
or the operating system services, schemes as depicted in Figure 3.
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SERVERshared memory. The second scheme is
message passing. Two processes are
synchronized by expressly passing

CLIET SEVERmessages to each other. When both
PROCSS 2processes share the same hardware

processor, a context switch is always
SERVERrequired in synchronization. When

3 each process is supported by a different
RENDEZVOUS - A BASIC MESSAGE PASSING hardware processor, one of the processes

PROCESS SYNCHRONIZATION will be idle waiting for the other process
-A CLIENT MUST WAIT FOR SERVER, SERVERunestedycclofbhpress

MUST WAIT FOR CLIENT.unestedtcylofbhpress

-IN A UNI-PROCESSOR SYSTEM, A CONTEXT are perfectly matched. Tasking in Ada
SWITCH IS ALWAYS INVOLVED, is synchronized by rendezvous, which is

SERVERa message passing scheme.

In the semaphore scheme, the applica-
CLIET SEVERtion context and the queues need to be
PROCSS 2secured for fault tolerance. In the

SERVERmessage passing scheme, the processes
3 (task table, stack, etc.), as well as the

application context, has to be secured
SEMAPHORE - A BASIC SHARED for fault tolerance.

PROCESS SYNCHRONIZATION

- PRODUCER PLACES DATA IN QUEUES IN SHARED
STORAGE; CONSUMER REMOVES DATA FROM A project can chose to use Ada tasking
QUEUES.oraoprtnsytmpoesiplc

- PRODUCER NEVER WAITS FOR CONSUMER AND oraopatnsyemrcssiple
CONSUMER NEVER WAITS FOR PRODUCER. of Ada tasking. The choices of Ada will

- CONTEXT SWITCH OCCURS ONLY WHEN THERE
IS A COLLISION ON THE SEMAPHORE WHICH IS also effect the selection of the hardware.
VERY INFREQUENT IN THE REAL WORLD. No Ada compiler in existence today can

allocate Ada tasks to a different
Figure 3. Rendezvous vs hardware processor nor is there any

True Semaphore support for rendezvous across hardware
processors. The nature of the applica-

The first one is based on a semaphore tion may favor one scheme or the other.
and requires shared memory. When The hardware architecture should
this scheme is selected the producer match the selected scheme. The
process deposits its products in the architecture design must weigh all
shared memory and the consumer these interdependent matters to form
process takes the products off the shared the lowest cost solution that is
memory. The semaphore is used to technically practical. Many designers
arbitrate the access of the shared would argue that this is an implemen-
storage. A process context switch is tation issue, however, these two choices
only required when there is a hit on the can severely impact the architecture to
semaphore. This is an old efficient the point of invalidating the
scheme which requires the support of architecture concept.
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CDR - Refined Products ready for It is at this time that the vendor
delivery to Software Availability implementation of Ada will begin to
Growth Organization constrain the design of the system. For V -

example, the Ada task is not
By CDR, the requirements, analysis, constrained in DoD-STD-1815 and there
and design documentation should be are a number of different vendor
complete. This milestone effectively implementations of this Ada task some
gives the go-ahead for the contractor to of which do not support true parallel or
begin implementing all the hardware concurrent processing. This issue is
and software. It is at this time that the particularly acute in a communications
Ada packaging and procedure concepts system where concurrent I/O is to be
should be allocated to the TLCSC's, supported. There are also issues related
LLCSC's, and units. to the Ada load image and the

management of the heap. In both cases,t
At this time, the failure analysis has memory is consumed such that
focused on the units, HWCI's, and embedded real-time fault tolerant
resolved all issues related to the system systems can be severely constrained.
databases. The issues related to Ada These issues need to be surfaced and
packages and procedures also have resolved by CDR.
been resolved with a clear indication of
how each package and procedure will be CONCLUSIONS
supported with fault tolerant features.
The error detection, reconfiguration, In conclusion, the design of a fault
and recovery mechanisms should be tolerant system is similar to the design
fully documented as requirements in of the main functional application of
the specifications and thle require- that real-time system. The fault
ments should be justified in the availa- tolerance analysis needs to begin with a
bility model and analysis, dynamic plan. That plan should not only contain
model and analysis, and the failure the approach and methodology to
analysis. supporting the fault tolerant design, but

it should also contain a heavy emphasis
The failure analysis should have on the technical aspects of fault
identified all the design constraints tolerance. Once this plan and cook book
associated with developing a real-time are established, then a failure analysis
fault tolerant Ada system using the of the system needs to occur at each
selected hardware and accompanying level of the system design. This begins
software. This analysis will then be with the subsystems and top-level
submitted to the organization tasked functions and concludes at the Ada
with the software availability growth packages or procedures and the HWCI's. ,.

program. This software availability The entire failure analysis should then
growth program should be fully be packaged as one product and
established and ready to begin its submitted to the software availability
activities with the test and integration growth program organization.
phase during implementation.
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During the course of the design, many 4. Fault Tolerant Computing -
control structures used to support fault Concepts and Examples,
tolerance will need to be developed. David A. Rennels,Vol C-33, No. 12,
Some of these control structures have pp 1116-1129. IEEE Transactions
been implemented in external operating on Computers, Aug 1984.
system environments. Other structures
will need to be implemented in Ada and 5. Fault Tolerant Architectures
will be limited by context switching Douglas Eidsmore,
time. In some cases, some of the fault Digital Design, pp 70-82, Aug 1983.
tolerant control structures may need to
be developed in assembly language to 6. Fault Tolerant Computers Ensure
preclude the negative impacts of context Reliable Industrial Controls
switching time. Electronic Design, 25 Jun 1981.

As with all design methodologies, the 7. Making Processing Fail-Safe
intent is to provide a vehicle for Robert Fredburg, pp 255-264.
identifying and controlling program Mini-Micro Systems, May 1982.
risk. Risk in this case is related to the
successful design of a fault tolerant 8. Fault Tolerant Computer Study,
system. With the identification of these Jet Propulsion Lab, JPL Pub 80-73,
products and related activities schedule, Contract NAS 7-100, pp 2-1 to 2-51.
cost, resources, and expertise can be
identified and planned to support a 9. Survey of Fault Tolerant Computer
successful fault tolerant design. More Security andComputer Safety
importantly, the progress of the fault SRI International,
tolerant design activity can be effec- NTIS RADC.TR-86-164
tively tracked during the entire design I-1 to 1-26, IV-1 to IV-56.
process.

10. An Empirical Study of Software
REFERENCES Error Detection Using Self-Checks.

Fault Tolerant Computing
I. IBM Journal of Research and Symposium July 1987.

Development, IBM 3081 System Sung D Cha, John C. Knight,
Development Technology Vol 26, Nancy G. Levenson, and
Number 1, Jan 1982. Timothy J. Shimeall, pp 156-162.

2. Computer System Isolates Faults - 11. Fault Tolerance Principals and N
The Tolerant Systems Eternity Practice, T. Anderson and P.A. Lee
Series, Computer Design, Nov 1983. Computing Laboratory, University

of Newcastle upon Tyne, England.
3. Fault Tolerant Systems in I-I to 111-89.

Commercial Applications, Omri
Serlin. IEEE Transactions on
Computers, Aug 1984, pp 18-30.
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The Development and Retargeting of SECOMO in Ada

John LeBaron Raymond Menell
Judith Richardson Johnny Ng

U. S. Army Communications Electronics Command
Center for Software Engineering

Fort Monmouth, New Jersey

Abstract was the Software Engineering Cost Model

(SECOMO) developed by IIT Research Institute.
This paper discusses the experiences Rome. N.Y. This system consisted of
gained and lessons learned during a two phased approximately 10,000 lines of FORTRAN source
software development project using Ada. The code.
first phase focused on the conversion of the
Software Engineering Cost Model (SECOMO) from The SECOMO program is an interactive software
VAX/VMS FORTRAN to VAX/VMS Ada. The second cost estimation model that calculates the
phase concentrated on retargeting the Ada total staffing requirements of a software
implementation from VAX/VMS to IBM PC/AT and system and includes activities related to a
IT machines running under MS-DOS. Life Cycle Software Engineering Center. The

SECOM program is based on the intermediate
The work described in this paper was conducted version of the Constructive Cost Model
at the U.S. Army's CECOM, Center for Software (COCOMO) developed by Dr. Barry Boebm of TRW.
Engineering at Fort Monmouth, N.J.. during the SECOMO extends COCOMO by providing a mechanism
period January 1986 to May 1987. to determine what portions of the life cycle

activities will be performed by the
Government, the type of funds that will be
expended, and the portions of work which will

Introduction be performed by the LCSE Center.

The Ada Language Branch is part of CECOM's Originally the effort was considered to be a
Center for Software Engineering at Fort FORTRAN to Ada translation, but early in the
Monmouth. New Jersey. Our mission is to conversion phase we realized that a simple
support the Center's Project Leaders and translation would do little to improve the
CECOM's Program Management Offices, by quality of the product. As a result, the
increasing their awareness of Ada issues, project became a redevelopment effort. In
promoting AMC's policies and helping them to addition, ten months into the project a new
insert Ada-based software engineering requirement was added; to retarget the SECOMO
requirements into their application domains, to the IBM PC/AT and XT compatible targets.
Our assign task was to select an existing
system and implement it in Ada. The project During the course of the development effort we
had the following goals: had to face many of the 'hard-knocks' of any

software development effort. This paper
* To develop a usable product, discusses our experiences and lessons learned

in the area of design methodologies, Ada
# To provide in-house Ada programming coding, testing, integration and retargeting.
experience,

* To use Ada-based software engineering Development Background
methods and tools during software
development. When the five members of our development team

started this project, none of us had any
We evaluated several candidate systems for experience in the development of an actual
this project. Our evaluation criteria system in Ada. All of our members had some Ada
included amount of source code that would programming language training. However, the
allow the project to be completed within six only Ada program we had developed ware small
months to a year, availability of a target individualized classroom projects. Further-
environment, documentation, and some more, we did not have any training in software
experience in the system's original engineering practices, experience in the
Implementation language. The selected system SECOMO application domain and had not worked

together as a development team. b
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The hardware and software configuration process was completed, the design and coding
required to develop the VAX targeted SECOMO of each module was assigned to a member of
version was as follows: our team.

VAX Host Development Environment During the design process we represented the
- VAX 780 with VMS Operating System, functionally decomposed modules as Ada
- 16 Megabytes of Memory, packages. Members of our team used an objected
- 500K bytes of disk space, oriented approach for designing each of the
- DEC Ada Compiler versions 1.2 and packages. First, we described each function as

1.3 with Symbolic Debugger, a paragraph of text. Next, we identified noun
- VMS Environment Tools, phrases as abstract types and objects and the
- VIC Ada Language Sensitive Editor, verb phrases as operations. Our main design
- ACS Ada Program Library Management goal was to design a packages that hid the

Utility, implementation from higher levels. We did not
consider the identification of reusable
components during the design phase.

Deveopmet ExeriecesOur coding and unit test strategy was to first
The SECOMD User's Guide and the executable code and compile the package specifications
FORTRAN programs were used to analyze the derived from our design process. All visible
requirements of this system. We decided to package specific abstract data types, data
maintain the FORTRAN version's formats for the objects and subprogram specifications within
various user's inputs, reports and datafiles. the package were compiled. Next, we coded and
In addition, the FORTRAN source code provided compiled the package body using the separate
us with all of the COCOMO and SECOMO clause for the subprogram bodies. This allowed
algorithms. The 'Software Engineering specifications of each subprogram to be
Eco'nomnics' textbook by Barry Boehm was directly visible, but bodies could be
reviewed for any additional COCOMO separately compiled and therefore textually
information, and logically hidden. Each member of the team

coded and tested within a separate Ada
At the start of the project we decided that program sublibrary. This proved to be of great
SECOMO would be coded entirely in Ada. The value for the management of the coding effort.
textbooks 'Software Engineering with Ada' by
Grady Booch and 'Programming in Ada' by J.G.P. Our strategy enabled each team member to
Barnes were used as references and guidelines concentrate on good structure without worrying
for software design and coding. about the implementation of the subprograms.

After the overall structure was established.
We decided to use functional decomposition to each team member started coding the subprogram
develop SECOMO. Our first decision was to bodies. Each subprogram was then tested and
decompose the model into two separate modules: integrated within the package. Each package
the data input portion, SECOMO_- 1: and the was then integrated and tested in a 'system
report output portion, SECOMO-2. build' designated library that checked

interfaces. Reusable components in our
Our team understood the requirements o f implementation were flushed out during the
SECOMOl., however some of the requirements for integration process. Some new packages were
SECOMO-2 were not fully analyzed. We were very built that incorporated reusable types and
anxious to code in Ada. Therefore, we decided subprograms.
to develop SECOMO_ 1 first and not worry about
SECOMO -2 until SECOMOl was completed. We did
not think this decision would cause a problem. Development Lessons Learned

In retrospect we can look back on this effort
During each development, the two main modules and see what mistakes were made, see what
were further decomposed into smaller modules, things we should have done differently and
The SECONO -I module was decomposed based on evaluate what we have learned. Some of the
the screen format functions that captured lessons we feel are important to pass on to
various types of user input information: others about to embark on this same type of
datafiles. systems, activities and cost effort are:
drivers. The SECOMO_2 module was decomposed
base on the following functions: user inputs, Due to our impatience to code in Ada we fell
development calculations, maintenance calcu- victim to a common beginner's trap of not
lations and report outputs. In both looking at the complete design. When our team
development phases, the interface requirements began the SECOMO-2 development, we realized
between the module were defined. When this several access and record types that had beenr
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designed for the SECOMO 1 program could have IBM PC/XT Environment
been better designed for the SECOMO2 - Intel 8088 processor,
implementation. Some objects and types - Intel 8087 floating point coprocessor
developed in SECI )M_ had to be changed or
tailored for the SECOUO_2 implementation. This
would not have happened if we had designed the Retargeting Experiences
entire model before we started coding.

We began this effort with the assumption that
We also should have made a more concerted retargeting SECOMO would be a simple task. We
effort to identify reusable code during the believed Ada was portable. However, differ-
design phase. Once the code was developed, we ences in operating systems, compiler capabil-
kept evaluating the code for possible reuse. ities and hardware dependent features slowed
We would group the potential reusable software our effort. ,*.

functions into common packages that could be
used across all modules. However, this The approach we took was to maintain a single %
approach was not efficient as code needed baseline of the source code. All modifications
ccnstant modification. to the code would be performed on the VAX and

then transferred to the IBM PC/AT for
On the positive side we took full advantage of compilation. During the initial development
DEC's Ada library facility for shared effort, we had documented the target dependent
libraries and sublibraries and the Ada features within the Ada source code. We made
separate compilation capability. Each the necessary changes to the identified target
functional package was developed in it's own dependent features, transferred the code to
sublibrary which would consist of all the the PC/AT and started compiling.
;Tgically related entities needed to implement
and test each SECOMO function. This allowed
each :f us to completely code and test Retargeting Lessons Learned
packages without affecting the co' of the
cther individuals on the team. Due to memory and storage limits imposed by

the target processor, it became necessary
during the retargeting effort to restructure

Retargeting Background the code. Although these limitations were
clearly specified in Appendix F of the Alsys

Upon completion of the effort to convert the User's Guide, we had not considered them
SECOMO program into Ada. we were tasked to because the retargeting effort had not been 01,r .

retarget the code for the IBM PC/AT and XT. specified prior to the first development
This effort had two primary ob2ectives. First effort. If we had known of the retarget
to produce IBM PC/AT and XT executable effort, we would had made the necessary
versions of the program and second to acquire adjustments within the original implementation.
knowledge about the Ada features which need to
be addressed during a retargeting effort. The first problem we encountered was that the

maximum size of a dynamic record object was
Two of the original team members had left the exceeded during execution of SECOMO_2. This
organization before this task began and one problem was caused by a constraint due to a
new member had joined the team. None of the hardware limitation. Upon examination of the
team members had had any experience working code, it was determined that by splitting the
with IBM-PC hardware, the MS-DOS operating single record up into several smaller records
system, the Alsys compiler, the Alsys AdaProbe we could solve this problem. This change was
debugger or the communication programs for relatively simple. 1
transferring files to the PC's from the VAX.

The second problem we encountered was when we
The following hardware and software configura- attempted to retarget on the IBM PC/XT. We
tion was used during the retargeting effort: simply ran out of memory when SECOMO 2 was

executed. The executable image on the AT was ./.- '

VAX Host Development Environment produced using the I286_Protected mode.
- as described above allowing the dynamic data to exceed the 640K

bytes of address space. Since this was not
IBM PC/AT Environment possible on the XT, we once again had to
-Intel 80288 processor, restructure the source code. We examined the

' Intel 80287 floating point coprocessor, code and found that SECOMO_2 had 'withed" many

- 640K bytes extended memory, of the SECOMO I packages. We did this to take
- 'OMegabytes disk storage, advantage of several subprograms within each %
- lvs compiler versions 1.3 and 3.2 package. We knew that only some subprograms
with AdaProbe within the SECOMOI packages were required.
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Therefore, some subprograms were placed in a Beference-
separate package that could be "withed" by
both modules. This eliminated SECOMO_2's need Barnes, J.G.P,. 'Programming in Ada'. 1984,
to 'with' all of SECOND I's extra baggage, (Addision-Wesley Publishing Co.)
resulting in an executable image nearly 0%
smaller, which executed on the XT. Boehm, Barry W.. 'Software Engineering

Economics', 1981, (Prentice-Hall. Inc.,
The resolution of both these problems Englewood Cliffs, N.J.)
highlights the importance of the use of
Appendix F of the compiler reference manual. Booch, Grady, *Software Engineering with Ada'.
This appendix describes all implementation- 1983, tThe Benjamin/Cummings Publishing Co.,
dependent characteristics of the compiler and Inc., Reading, MA)
target processor. It should be referenced
during the design phase of the system Ada Programming Language. ANSI/MIL-STD-1815A,
development in order to eliminate the problems U.S. Government, 1983
mentioned above. However, these problems made
our team realize how easy it is to restructure Developing Ada Programs on VAX/VMS, Digital
Ada code. Equipment Corp. , Maynard, MA, 1985

SECOMO Instruction Manual, U.S. Material
Conclusion Command, Management Engineering Activity,

Huntsville, AL, June 1985
The final product is a system which contains
25 packages and 300 subprograms. The team SECOMO User's Guide. IIT Research Institute.
developed a quality product which has been Sept. 1985
transitioned to the Center's support
contractor for maintenance. They have stated
that they are able to make updates to the
model more easily and quickly than they had
been able to while maintaining the FORTRAN
implementation. In addition, it should be
noted that the total lines of source code was
reduced from approximately ten thousand lines
of FORTRAN to eight thousand lines of Ada.

All of the team members improved their
software development techniques and learned
the importance of utilizing modern programming
methodologies. Furthermore, we gained
knowledge and skills in Ada programming and
more clearly understand the advantages Ada
provides the software developer and
maintainer. Finally, we believe we are in a
better position to assist the Center's Project
Leaders and CECOM's Program Managers because
of the work performed during this project.
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Requirements Engineering and Ada

George E. Sumnrall

U. S. Army Communications Electronics Command
Center for Software Engineering

Fort Monmouth, New Jersey

Abstract customer (often the Government) to want to change "The
Requirement" during development. Because it is written

The quality and cost of developing Ada-based into the contract, such changes are very expensive and
software is significantly affected by activities and deci- the customer is forced to accept an unsatisfactory
sions which precede the software life cycle, particularly in product or fund excessive cost overruns. Clearly, these
the area of requirements definition. This paper examines problems are not Ada-based, yet they can have a signifi-
some of the difficulties associated with traditional view- cant effect on the cost and quality of Ada-based soft-
points and ways of defining and handling requirements. ware.
Some new perspectives and fundamental concepts are
introduced including the notion of user viewpoint and This paper takes a look at the traditional way of
associated interfaces, requirements evolution and re- viewing and handling software and system requirements
quirements engineering. A new perspective concerning and provides some new approaches and insights con-
the role of requirements engineering, system engineering cerning requirements as they relate to the creation and
and software engineering across the system life cycle is evolution of Ada-developed software.
proposed. Finally, an approach to the handling of re-
quirements in Ada-developed software is proposed. It is noted that although the motivation for this

work stems from concerns in the development and
evolution of Army tactical embedded systems, the con- %V
cepts and techniques discussed should be applicable

Introduction across a wide range of application domains.

Use of the Ada programming language and soft-
ware engineering methods which Ada supports hold The Traditional Approach
great promise for being able to reduce the cost and time
required to develop and maintain software for computer The following diagram depicts a traditional life
based defense systems. Unfortunately, Ada and soft- cycle approach for the development of a software-cnitical
ware engineering methods alone are not sufficient to system.
ensure that promise. One source of difficulty is in the Requirements 11Development ItMaintenance
way that requirements are handled for Ada-developed Phas Phase I Phase
software . A

Software requirements (which presumably are ~The User I I
derived from some sort of system engineering process)I
are typically viewed to be "The Requirement" (with the User sse .~sse

igexactly t what " the Rqieet oi software is o and that t will not \sd ~ omn~~V[ec
change). Accordingly, "The Requirement" is often writ--~ ~
ten into the software (or system) development contract.
It is not uncommon for the Ada programmer to discover I.,
that "The Requirement" is not complete. However, he or Requirements
she often is constrained by a deadline and "picks" a Spec ification
solution without taking the time to research what the
customer wanted. It is also not uncommon, when the Figure 1 - Traditional System Life Cycle View
system is delivered many months (or years) later, for the
customer (user) to discover that the system does not From the viewpoint of the software designer or program-
perform as he "wanted". It is also not uncommon for the mer, the user represents some person or organization
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who will be the eventual user and/or owner of the system Each of these users has a different "~user view-
being developed. The users needs for the system are point". For example, the commanders view of and
somehow known and Captured in the requirements interaction with the system is certainly different than that
specification document. The software development of the operator and similarly, the maintenance person.
process is part of the system development activity and
typically follows a "waterfall" life cycle model similar to Associated with each user viewpoint Is a
that shown in figure 2 [1] [2]. unique, abstract "user Interface" which characterizes

and Identifies how that user Interacts with and views
the system. This interface applies not only to the actual
"man-machine" interface in the target system, but applies

Prel~inaryto any prototyping and documentation associated with
Desig Cd~r andthe system (e.g., a user manual).

Un~t Test Itegfat~on The notion of "user" can be extended to non-

ql TstSystem' Test human entities such as devices connected to
communications ports or data links. Equipment connect-
ed to these ports are "users" of system resources, must

Figure 2 - Software Development Life Cycle interact with the system in some manner and in fact have
their own unique interface. (We already recognize this

This life cycle model presumes that the software require- fact for some types of data communications interfaces.)
ments are known at the start of the process. The soft-
ware requirements are somehow derived from the re- The "user requirements" for a system com-
quirements specification as part of the system engineer- prise the union of the requirements of the different
ing process. user viewpoints.

The end of the development phase (see Fig. 1)
occurs when system development is completed and the 2. Requirements Drivers
system is delivered to the user.

System requirements stem from several sources:
The maintenance phase is viewed as the "period a. Need tor new or improved capabilities

in time" when software problems are corrected and b. Emergence of new technology and products
perhaps the system is made "nicer to use". This phase c. Familiarity with the current system
is often viewed by the software developer or programmer d. Perceived new "threat" to the user
as somebody else's problem. Supported by this view, e. New level of user sophistication
difficult software problems which are encountered during f. Solutions to previous requirements
development are sometimes "swept under the carpet"
and left for somebody else to solve during the mainte- There are three primary factors which drive
nance phase. requirements for a system. Their relation is shown in

Figure 3:
With this (somewhat simplistic) traditional view of

the system life cycle in mind, lets proceed to look deeper
into some of the concepts, expose some myths and Solto
explore some new thoughts concerning the concept of "''

requirements throughout the system life cycle.

Some Myths and Some New Ideas I

In the discussions to follow, an attempt has been Rq ireets
made to group related requirements issues. New view- \' -uNowr'1St't~

points and concepts are highlighted in bold Italics. ~ sandiIg

1ThUsrFigure 3 - Need-Solutlon-Understandlng Relation' ',",

In reality, "the user" Is not just one user, but
several different users1 . In the case of an Army tacti- The awareness of a need results In a solution being
cal command and control system for example, several sought. Realization of the solution can result in new
users come to mind: an operator (enlisted person), the understanding and/or thought patterns which can
commander and a maintenance person to name three. trigger the awareness of a new need. The system
TThi point may not apply in the case of single user personal requirements can be driven by any or all of these
computer software. factors. . U
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By extending this concept further, one can reason Experience on the otherhand, does not support
that in some cases, the Introduction ofta new system that viewpoint. Requirements have changed, even during
(Le., capability) Into an organization can change the development. Inconsistencies have been found. Design-
way the people In the organization operate and do ers routinely must make design decisions which affect
business. For example, the introduction of a new corn- system behavior in areas not covered by the require-
mand and control capability into the Army battlefield or ments specification.
into a corporate headquarters can change the way the
commander and the corporate executive operate and "do The following conclusions have been reached:
business". Even though this process may obsolete
the new system, It Is a necessary cycle to go A complete, consistent and accurate state-
through. Furthermore, it is probably impossible to fully ment of requirements for a system may be Impossi-
predict the impact of the introduction of such a new ble. There are several reasons for this: a) inability of
capability. users to foresee all level of detail, b) complexity of the

system and c) inconsistency between various user view-
By taking a different look at the need-solution-un- points.

derstanding diagram, one can construct a requirements
evolution tree: For some systems, a complete, consistent and

accurate statement of requirements Is impossible.
This is especially true for systems where the introduction
of a new system into an organization will change the way
the people in the organization operate and do business.
An example is an Army command and control system.

Requirements will change and may change
often [3]. This conclusion follows from the two previ-

vie ous conclusions. It is supported by experience.

Solutlo solto

4. Requirements vs. Needs vs. Desires
We have all seen cases where what appeared to

Figure 4 - Requirements Evolution Tree be an absolute and essential requirement was relaxed or
waived when the user (buyer) was presented with the
cost of such a feature. Was the original requirement a

The idea here is that a solution to one need (i.e., require- real requirement or a desire? The answer can be found
ment) may generate a new need. The solution(s) to that by looking at the notion of essentiality of requirements. I" -

need may in tumn generate a new need. Conversely, For each requirement in a requirements specification,
technology advances may currently be available which assign a Requirements Essentiality Factor (REF) such
could satisfy a prior need and thus obviate the current that
to be aware of the evolutionary nature of require- and for REF = 0, the "requirement" is not desired.
rnenls. In particular, requirements analysis activities
should include "looking back up the tree" to examine An absolutely essential requirement is defined to be one
eariier needs and solutions to see if current understand- that the user must have, else the system is not wanted.
ing and technology applied to an earlier need might be a
better solution than the one currently being sought. For all requirements, 0 < REF <= 1

and usually REF < 1.

3. The Nature of Requirements Furthermore, the REF is a dynamic factor which is de-
pendent on other requirements, their associated REFs, "

Software developers and programmers often view the users needs and the users financial resources.
system and software requirements specifications as an
authoritative, unquestionable statement of what the in other words: Few requirements are absolutely
system is to do and how it is to behave and perform. essential. The essentiality of the rest vary and are
The requirements document is expected to be an accu- negotiable.
rate, complete and consistent statement of the user's
needs and is expected not to change.
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Requirements Development Process Considerations The System Architect and representatives of the
various user viewpoints, who have authority to make

The concept of defining requirements is not new in decisions concerning system requirements[4][5], meet
engineering and architectonics. The process is mature along with representatives from the development organi-
and works rather well in many areas. The following zation2 to discuss system capabilities and requirements.
example gives some insight into how requirements are Prototyping and similar techniques are used to help
developed for a new building and suggests an analogous achieve a consensus on system capabilities, functional-
approach as to how requirements for software-critical ity, performance and interfaces. The requirements for
systems could be developed, the system are documented in the System Requirements

Statement (see below) which must have working group
Several years ago, I chaired a requirements com- consensus and approval of the parent organization(s) of

mittee for a church who wanted to build a new church the requirements working group. Next a System Specifi-
building. (The old building had burned down.) The cation is prepared by the System Architect which also
committee consisted of persons representing each requires consensus and approval. The System Specifi-
organization in the church and the staff (i.e., different cation is then given to the development organization 2 ,
user viewpoints). After hiring an architect, we met to who selects a development contractor and with the help
discuss our requirements for the new building. In partic- of the system architect, oversees development of the
ular, after reviewing our mission and purpose, we identi- system.
fied the functional requirements which would be needed
in the new building to enable us to accomplish our mis- The System Requirements Statement
sion. The requirements statement which was developed
was agreed tc. by all user viewpoints. A concept of the The System Requirements Statement (SRS) 3 is

form of the building was discussed and an initial plan prepared by the requirements working group with the
(conceptual model) was developed by the architect. assistance of the System Architect. The SRS identifies
Based on feedback from the committee (i.e., users), the the purpose of the system and provides an operational
plan was revised more than once. At one point in the scenario of how the system is to be used. It contains a
process, the architect's cost estimate was almost twice description of the functional behavior of the system,
the planned budget. Requirements were of course interfaces (human and other), performance characteris-
scaled down until an affordable plan was agreed to and tics, constraints and special considerations such as
accepted. Several different models (reflecting different security. Statements concerning the "ilities" (e.g., main-
user viewpoints) were useful in achieving consensus. tainability, portability, etc.) might also appear. The level
The architect then prepared a detailed design and archi- of detail is determined by the working group. There is
tectural drawings. It should be noted that up to this point obviously a tradeoff here between amount of detail,
in time, the architect's role was twofold: he served as a volume of text and understandability. A short SRS is
consultant to the user(s) and acted as a surrogate for the probably preferable. All absolutely essential require-
(yet unselected) building contractor and subcontractors. ments should be so identified. The other requirements
The architect then served as a consultant to help us should have a relatively high Requirements Essentiality
select a builder. As construction proceeded, the archi- Factor (REF). The SRS then becomes an agreed to
tect oversaw this effort, acting as a surrogate for the statement of what the users want the system to be.
church (users).

With the building architectural model in mind and The System Specification
using some of the new concepts presented above, con-
sider the following model for the requirements develop- The System Specification (SS) is prepared by the
ment process. System Architect. Several iterations of the SS are envi-

sioned. Each version is fed back to the user working
group (ideally recognizing and using the various user
viewpoint interfaces). The system development organi-

Pzation participates in these reviews. The System Specifi-
A Proposed Requirements Development Process cation development may cause the system requirements

(for Software-Critical Systems) to change. If so, the SRS should be updated according-
ly.

The key player is a System Architect who has a l

role similar to that of the building architect described At some point in time, the SRS and SS become
above. During requirements development, he serves as agreed to by aft user viewpoints, the System Architect-",,,
a surrogate for the system and software developers, and the developing organization. Upon organizational
During system development, he serves as a surrogate approval, these documents should be put under configu-
for the user viewpoints. ration management since they may change throughout

the remainder of the life of the system. "
2 The development organization is the organization who will have 3 Not to be confused with the IEEE's Software Requirements
system development responsibility. Specification, also abbreviated SRS [6]

6th National Conference on Ada Technology 188 445

S 'I %



Some Observations Requirements Development 1 Maintenance

Phase Phase I Phase1. The term Requirements Development was used
above to describe the process of producing the System
Requirements Statement(SRS). Under the model pro-
posed, the requirements statement is indeed developed
through a disciplined process and put under configura- Reqiuiremeats Engineering
tion management. The process has a life cycle. Further,
the SRS is an architected product[7]. Thus the concept
of Requirements Engineering is a valid notion[7] and is
defined as follows: & Software

Requirements Engineering is a systematic
approach to the development, transition, evolution I N&
and dissolution of requirements. 11 System

Delivery

2. During the past year or so, I have sought an-
swers to the questions "What is a requirement?' and System System
"How would I know one if I encountered it?'. The answer Requirements Specification
can now be given: Statement

A requirement Is some capability or feature of Figure 5 - New View of the System Lifecycle
the system that is stated in the System Require-
ments Statement.

Role of the Ada Language

There are several ways that the Ada language can
be used in developing and handling system and software

Requirements Engineering in the System Life Cycle requirements.

The traditional system development model shown 1. Probably the single most important capability
in figure 1 suggests that requirements development that Ada offers for handling requirements is the ability to
stops at the end of the requirements phase. Based on modularize and encapsulate software requirements.
the ideas presented here, it appears that requirements Using principles of information hiding and modularization
engineering activities continue throughout the whole developed by Parnas [8] [9] and others, software require-
system life cycle. Requirements engineering is probably ments can be structured, modularized and encapsulated
most intensive at the start of the life cycle. The nature of using Ada package(s). This should protect the software
the requirements engineering activities may change system from any adverse affects due to changes in
during the life of the system, but never cease. requirements . It is envisioned that these Ada packages

would not have package bodies.
Similarly, system engineering activities (including

software engineering) are needed across the whole life 2. A second capability which Ada offers is the
cycle. Figure 5 shows the relative amount of these capability to write reusable Ada packages defining com-
activities across the traditional life cycle phases. mon interfaces. Such interfaces include communications

protocols, database (SQL) interfaces and graphics stan-
dards such as GKS. Further application unique interfac-

This model shows requirements engineering, es should be encapsulated in Ada packages. These
system engineering and software engineering activities packages could have package bodies.
co-existing in all phases of the system life cycle. Ways
must be found to separate the concerns of each disci- 3. It is possible that Ada could play a role in help-
pline while at the same time taking advantage of their ing to develop requirements prior to system specification
co-existance. Boehm's spiral model[10] is one approach through prototyping and modeling of various user inter-
that accomodates activities in these disciplines, faces and by providing the user(s) a "feel" for the system

functionality. It will probably be some time for this role to
become a reality, since the development of standard
interfaces and common interfaces as well as an Ada-
based prototyping capability will need to be achieved.
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TOWARD AN OPERATIONS-ORIENTED METHODOLOGY
FOR Ada@ REAL-TIME SYSTEMS

Richard F. Vidale" and Bard S. Crawfordt

*Boston University tThe Analytic Sciences Corporation

Boston, Massachusetts Reading, Massachusetts

ABSTRACT methodology and indicate which aspects of our meth-
odology address these requirements.

Essential requirements of a real-time Ada devel-
opment methodology and an operations-oriented ap- The first requirement is to provide a suitable
proach to satisfying these requirements are format for capturing the stimulus/response require-

outlined. This approach is designed to capture per- ments of a real-time system. We use Stimulus/Re-
formance requirements early in the life cycle and sponse Charts (SRCs) to document the required
trace them through to validation. A graphical tech- response to each stimulus, traced back to system

nique featuring SRCs (Stimulus Response Charts) and requirements. Each SRC captures a requirement at

SODs (System Operation Diagrams) is featured. An the level of a paragraph or sentence in the system
example problem illustrating the use of the ap- requirements specification.
proach, including a key fragment of resulting Ada The second requirement is a structure linking
code, is included. Characteristics of an appropri- the SRCs together to represent a flow of operations
ate graphics workstation support environment are in which the response of one stimulus may become the
briefly discussed, stimulus of another response. We use System Opera-

1. INTRODUCTION  tions Diagrams (SODs) to provide macroscopic repre-
sentations of system operation. SODs serve as

This paper summarizes the results of an inquiryt roadmaps showing the relationships of the SRCs. The

into the design of Ada real-time systems in which process of documenting a system's performance re-

performance issues are dominant. The inquiry was quirements can start with SRCs, or with SODs, or

motivated by our observation that available Ada-spe- with both.

cific design methodologies, namely Object-Oriented The third requirement is the ability to estab-
Design JABBO83J, IBOOCS3], System Design with Ada lish point-to-point timing requirements along paths
(BUHR84], and Process Abstraction Method for Embed- of the SODs, upon which resource allocation deci-
ded Large Applications [CHER85], lack the means to sions can be based. Some of these timing require-
explicitly capture performance requirements and im- ments may be stated directly in the system
plement them in a controlled manner. Methodologies requirements specifications: others may have to be
with this capability are clearly needed if Ada is to derived from system-level requirements, such as
be successful in real-time applications, throughput. In the latter case, it will be neces-

sary to model the system operation to derive the
As our study progressed, we became convinced point-to-point timing requirements. The SODs canthat an operations -oriented approach was the most provide a database from which a model can be devel-

direct way to deal with performance requirements, oped.
We were strongly influenced by Alford [ALF085] and oped
McCabe [MCCA85], who maintain that performance is- The fourth requirement is a means to make a pre-
sues must be addressed early and continuously liminary allocation of processing resources to meet
throughout the life cycle. By the end of the in- the point-to-point timing requirements. In simple
quiry we had outlined a methodology, with supporting cases the allocation can be done by inspection of
graphic conventions, which is fundamentally differ- the SODs. More complicated situations require auto-
ent than existing Ada design methodologies. We be- mated analysis of the system performance models as
lieve that further development of our preliminary described in [MCCA85], for example.
results could help fill a current gap in Ada design
technology. The fifth requirement is a means to facilitate

Ada task body design, once the allocation of proc-
2. REQUIREMENTS OF A METHODOLOGY FOR REAL-TIME esses to tasks has been made. We use the Mealy form

Ada DEVELOPMENT [WARD851 of State Transition Diagrams (STDs) as an
intermediate representation of the states of a task,

Before presenting a step-by-step description and each state representing the execution of a process
example of our approach, we shall state some essen- allocated to the task. The state transition design
tial requirements of a real-time Ada development can then be realized in the task bodies using a

select statement,
The sixth requirement is that the methodology

@Ada is a registered trademark of the should facilitate the design of test plans. In our
U.S. Government (AJPO) methodology, the flow of system operations, and

$Independent Research and Development Program, their attendant timing requirements, are mapped di-
1-8807, The Analytic Sciences Corporation, rectly onto the SODs. The development of perform-
June - September. 1987. ance test plans is then largely a matter of
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exercising specific paths on the SODs to verify the is included in recognition that iterative develop-
estimated delays. ment may still be necessary.

3. AN OPERATIONS-ORIENTED DEVELOPMENT METHODOLOGY 4. A SIMPLE EXAMPLE OF OPERATIONS-
ORIENTED DEVELOPMENT 3

The Operations-Oriented Development (OPSOD)
methodology focuses on performance requirements The following example was invented to illustrate
early in the development process and traces perform- the OPSOD methodology. It provides samples of the
ance in a controlled way through specification, im- first nine steps listed above. Though small-scale.
plementation. and validation. OPSOD provides models the example illustrates the following design issues:
of the system to allow the designer to make informed
decisions about how to specify processors and algo- * Handling concurrent, asynchronous inputs
rithms to meet performance requirements and how to
validate performance. The eleven steps in OPSOD are 0 Parallel system responses
listed below.

0 Parallel process synchronization and commu-
nication

Step 1 Develop a written Requirements 
Speci-

fication document 0 Allocation of processing to processors

Step 2 Develop a set of Stimulus/Response S Data abstraction
charts (SRCs) based on the Require-
ments Specification 0 Multi-thread processing by a process

Step 3 Link the Stimulus/Response charts to 0 Ada code implementation.
form a set of System Operations Dia-
grams (SODs) Informal Problem Descriotion

Step 4 Establish point-to-point (PTP) timing The system described below is a warning system
requirements on the SODs for a U.S. Navy ship. The requirements for this

system are purely fictitious. Any resemblance to
Step 5 Make estimates of the processing re- real requirements is purely coincidental.

sources (number of machine instruc-
tions) required by the operations The Warning System receives signals from a radar

when an echo is detected. The system must first
Step 6 Make preliminary allocations of system digitally process the signal, then determine if it

operations to tasks and processors, is a valid signal from an aircraft. If so, the
exploiting opportunities for parallel- signal is analyzed to determine the distance to the
ism revealed by the SODs aircraft and whether the aircraft's signature is

Step 7 Develop State Transition Diagrams that of a friend or foe. If the distance is less
(STDs) for tasks and processors to than some specified SAFEDISTANCE, a CLOSEALARM is
show how concurrent threads of proc- sounded. If a foe signature is identified, then a

essing are handled FOEALARM is sounded. If both conditions obtain,
then the PHALANX is activated, if it is not already

Step 8 Analyze performance, based on prelimi- so. If a friend is identified and is farther away
nary processor allocations and STDs than SAFEDISTANCE, then the PHALANX is deactivated

if it is not already so.
step 9 Develop Ada code to implement the STDs

The requirements for sounding the alarms are so
Step 10 Test the Ada code, using the test stated because it takes much longer to determine

plans from Step 4 friend/foe than distance, and a too close warning is

desired before a friend/foe identification.
2 Revise the hardware/software design

and/or requirements so that perform- In addition to processing radar signals and mak-
ance requirements are satisfied. ing appropriate responses, the system must allow an

operator to enter a change in the value of SAFE DIS-These eleven steps do not fit neatly into the TANCE at any time except while the check for dis-
conventional life-cycle phases of software develop- tance is in progress.
ment. i.e., those defined in (DEFE85]. The reason
is that the conventional (waterfall) life-cycle Methodoloxy Walkthrouah
model is top-down, separating specification, design
and implementation concerns. OPSOD is largely bot- Step 1:
tom-up because performance requirements drive design
and implementation decisions that are typically con- Figure 2 shows the part of the Requirements
sidered low-level, and these are addressed before Specification which specifies PHALANX activation/de-
high-level architectural decisions. Figure 1 shows activation.
a mapping between the eleven OPSOD steps listed
above and the six phases of [DEFE85]. The first S12:
five steps in OPSOD correspond to conventional re- V,% 0
quirements analysis, but are much more performance Figure 3 shows two of the Stimulus/Response N
oriented than usual. Steps 6 through 8 correspond Charts (SRCs) which capture part of the requirements
to detailed design, but precede any attempt to cre- defined by Figure 2, i.e., the cases when a foe is ,
ate a high-level software architecture, i.e., the identified. These charts all pertain to a parent
packaging of unit operations into CSCIs (Computer operation, PHALANX Activation, in the higher-level
Software Configuration Items) and CSCs (COmputer Radar Signal Processing operation, whose label
Software Components). Step 9 corresponds to the is 12. All the labels in Figure 3 are therefore
conventional top-down design steps, and Step 10 cor- numbered 12.x to show the parent-child relationship.
responds to conventional bottom-up testing. Step 11 Each SRC in Figure 3 is classified as either an
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Operation. Test, or Outcome (of a test) and is given Radar Signal Processing (Figure 10), even without
a name. Operations and tests require some process- changing safe distance.

ing time, outcomes take zero time. Estimates of

processing time delays can be entered in the Timing Preliminary allocation of system operations is

Estimate box. made by assigning operations to three processors
(Figures 7 and 8). Note that operations of two dif-

Steo 3: ferent SODs are assigned to the DISTANCE_ANALYZER
processor.

Figure 4 shows the System Operation Diagram

(SOD) for the high-level radar signal processing op- Step 7:

erations, while Figure 5 shows the SOD for the next-

level PHALANX activation operation. Each node of an A State Transition Diagram (Figure 9) shows how

SOD has an SRC of the same label number and name. the two threads of processing are handled by DIS-

Figure 6 is the SOD for another function of the sys TANCE_ANALYZER.

tem. in which a human operator can enter a change in

SAFE-DISTANCE. Step 8:

We now see that the maximum delay through Node5

will be 1010, when the analysis of distance must

The point-to-point (PTP) timing requirements are wait a maximum of 10 units during which SAFEDIS-

provided by the Requirements Specification (not TANCE is being updated. Then the estimated thread

shown herein) which specifies the following maximum processing times become:

delays for various threads of operation in Figure 4. S

Thread 1 The maximum delay from the start Thread Est, Processing Time Maximum Delay

(Node 1) to the detection of an 1 1500 2000
invalid signal (Node 4) is 2000. 2 2520 3000

3 6510 6800
Thread 2 The maximum delay from the start 4 6560 7000

to sounding the Close Alarm is
3000.

These processing times assume the three proc-
T The maximum delay from the start esses are each being executed on their own dedicated

to sounding the Foe Alarm is processors, and the communication/synchronization
6800. overhead is negligible.

Thread 4 The maximum delay from the start Step 9:
to activating the Phalanx is
7000. An Ada program fragment. (Figure 12) shows how

the state-transition mechanism of Figure 9 is imple-
Step 5: mented with a select statement in the body of DIS-

TANCE ANALYZER. It is assumed that the target
The processing requirements for the SOD nodes machine has multiple processors and that it is pos-

are estimated as follows: For Figure 4: sible to specify that each of the three processes

will run on its own dedicated processor.

d Machine Instructions FO
5. IMPLEMENTATION OF OPSOD

1 1000
2 500 Any development methodology, to find acceptance,
5 1000 must be cost-effective. It must be easy to learn

6 5000 and easy to use, and must shorten development time.

II 10 We believe our Operations-Oriented Development meth-

12 variable odology will prove cost effective if implemented in

13 10 a workstation environment. The key to such an im-
plementation is the creation of a central data base

For Figure 5: as information is entered through OPSOD's charts and
diagrams.

volt Machine Instructions The technology for creating databases from

graphical and tabular input is well known. It
12.1 30 should not be difficult to relate the data on the
12.6 20 Stimulus/Response Charts to data on the System Op-

12.12 10 erations Diagrams. The implementation software

12.13 10 should adhere to the principle of enter-the-data-
once. For example, if a response on a Stimulus/Re-

For Figure 6: sponse Chart is a stimulus on another SRC, the arc

joining the corresponding nodes of the System Opera- "l
tions Diagram should be automatically generated. If

2 10 an arc between two nodes on the SRC is entered, an

as-yet-unspecified postcondition item is created on
Step 6: the SRC of the originating node and a corresponding

precondition item is created on the SRC of the ter-
For simplicity, assume that a machine instruc- minating node. In addition to reducing data-entry

tion takes one unit of time to execute, Analysis of effort, the enter-the-data-once principle reduces
Figures 4 and 5 shows that the timing requirement the possibility of entering inconsistent connections
for thread 4 cannot be met with a single processor, on the SRCs and SODs, and reduces the effort re-

since it takes 60 units of time to traverse Phalanx quired to capture a change in the system require
Activation (Figure 11) and thus 7580 to traverse ments. Furthermore, creation of the SODs can start
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with either the SCRs or the SODs, or with both in achieve tighter control of (non-Ada) tasking: By
parallel, depending on which view of the system re- going outside the Ada tasking mechanism, it is pos-
quirements is a more natural starting point. sible to guarantee that absolute timing requirements

are met, provided sufficient power is available from , -

Consistency and completeness checking must be the processor. Point-to-point timing information
provided. Preconditions without corresponding from the System Operations Diagram can give early
postconditions should be flagged and reported when a indications of processing requirements.
consistency check is requested. Consistency checks
of stimulus/response charts have been shown to be Our inquiry has produced a preliminary concept
effective in detecting incomplete or inconsistent of an operations-oriented methodology that is miss-
requirement specifications [DEUT87]. ing from current Ada design practice. We share the

view of Alford [ALFO85] that the design of real-time
From the completed database, point-to-point tim- systems should be requirement driven, and believe

ing information can be automatically calculated be- that our preliminary OPSOD is a correct first step
tween any two specified points on an SOD. When toward a suitable operations-oriented development
branching occurs within any nodes along the path methodology for Ada. As Ada implementation technol-
between the two points, worst-case or expected de- ogy improves, the utility of an OPSOD will also im-
lays can be computed (if branching probabilities are prove. As it matures, we expect operations-oriented
provided). These timing calculations will be needed approaches will become essential adjuncts to current
frequently during the allocation of tasks to proces- Ada design methodologies.
sors and the development of test plans.

REFERENCES

If the state-transition diagrams are included 
in

the data base, it would be possible to automatically [ABBO 83] Abbott, R.J .. "Program Design by Infor-
generate control skeletons for the task bodies which mal English Description," Communica-
implement the state-transition diagrams. Simple tions of the ACM. Vol. 26, No. 11,
state transitions, as in the above example's DIS- November 1983.
TANCE ANALYZER task, are implemented by a select
statement, in which each branch execution causes the [ALFO 85) Alford, M., Ch. 2 in Distributed Sys-
task to enter a new state. In the more general tems Methods and Tools for Specifica-
case, the state transitions are controlled by guards lion, M. Paul and H.J. Siegert, ed..
which are functions of the states, or by a case Lectures in Computer Science, #190. New
statement using the state as the selector. As the York: Springer-Verlag. 1985.
current state is left, the state variable is updated
to the appropriate next state. Thus a standard pro- [BOOC 87) Booch, G.. Software Eneineerine with
gramming paradigm exists for task bodies which par- Ada, 2nd Ed.. Menlo Park, CA: The Ben-
ticipate in multiple-thread control, and therefore jamin/Cummings Publishing Company,
multiple-mode (state-transition) behavior. 1987.

6. ONCLUSIONS [BUHR 84) Buhr, R.J.A., System Desirn with Ada,

Englewood Cliffs, N.J.: Prentice-Hall.
The Ada technology needed to fully utilize an 1984.

operations-oriented design methodology is not yet
available. At present, real-time Ada software de- (CHER 851 Cherry, G.W., and B.S. Crawford, "The
signers cannot guarantee that timing constraints PAMELA Methodology," Thought Tools,
will be met because of the non-determinacy of the Inc., Reston, VA, November 1985.
Ada language, e.g.. the implementation of delay and
select statements. Furthermore, the lack of dis- (DEFE 85] "Defense System Software Development,"
tributed processing prevents designers from meeting Dod-STD-2167. June 1985.
timing requirements by dedicating processors to cer-
tain tasks. But an OPSOD approach could prove help- [DEUT 87] Deutsch, M.S. and R.W. Jensen, "Real-
ful now in two types of applications: Time Software Systems; Analysis, Vali- %

dation and Management," EFDPMA Seminar,
(i) In "soft" real-time systems, where timing Montreal, Quebec, June 25-26, 1987.

deadlines can fail to be met without the system
failing: An example is a packet-switching network, (MCCA 85] McCabe, T.J. et al, "Structured Real-
where a packet lost because of excess time delay can Time Analysis and Design." IEEE Ninth
be retransmitted. Here, performance degrades, but International Computer Software and Ap-
the system does not fail. In these types of appli- plications Conference, Chicago, Illi-
cations. models of system behavior, derived from the nois, October 9-11. 1985.
OPSOD data base, could give early indications of
whether system performance will be adequate. When [VIDA 861 Vidale, R.F., "Extending Object-Ori-
distributed Ada becomes available, OPSOD can be used ented Ada Design Methodology," Boston
to rationalize the allocation of processors to Ada University, June 30, 1986.
tcsks.

(WARD 85] Ward, P.T., and S.J. Mellor, Structured
(ii) In "hard" real-time systems, where a Develooment for Real-Time Systems,

missed deadline can cause system failure, run-time Englewood Cliffs, N.J. : Prentice- A
services outside the Ada language are used to Hall. 1985.
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task body DISTANCEANALYZER is
SIGNAL COPY SIGNALTYPE;
DISTANCE MILES TYPE;

TOO CLOSE BOOLEAN;
SAFE DISTANCE MILES TYPE :- 200.0,

F 2
2  

F a fr .;Oned procedure SOUND CLOSEALARM isO €t K St C ~ I begin

PUT LINE ('Close alarm sounded)l;

end SOUND CLOSE ALARMt
ph.'n. f., .begin loop

select
accept ANALYZE SIGNAL (SIGNAL : SIGNAL TYPE) do
SIGNAL COPY ', SIGNALJ

end ANALYEE;
-- determine distance:

Wno; Acte A;(oatel Acti.tld DISTANCE :- SIGNAL COPY.MILES;if DISTANCE < SAFE-DISTANCE then
SOUNDCLOSEALARM;

2TOOCLOSE ,. TRUE;
else

TOO CLOSE ,- FALSE;
end if;
accept REPORT (CLOSE STATUS : out BOOLEAN do
CLOSE STATUS :. TOO CLOSE;

end REPORT;
or
accept CHANGE SAFEDISTANCE (NEWVALUE , MILES TYPE) do

SAFEDISTANCE :- NEW VALUE:
end CHANGESAFE DISTANCE;

end select;
end loop;

end DISTANCE_ANALYZER:

Figure 11 System Operations Diagram Figure 12 Ada Code Fragment
(12 - Phalanx Activation)
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SEDL - An Ada-Based Specification and Design Language

Gerry Fisher and Ann E. Kelley Sobel

IBM TiJ. Watson Research Center 0W
Yorktown Heights. New York 10598

Abstract This refinement process is terminated when implementa-
tion in Ada is straightforward. ,

In creating a software product, it is essential to identify In SEDL. one can use text for recording high-level spec-
precisely and specify its functional characteristics. The useifctosadei lsfrmlyThnn-xto-
of formal notations to outline these characteristics allows ifctosaddsgsls omly9h o-etcm
the programmer to be concise and unambiguous, to support ponents of the SEDL specifications can be checked for
formal reasoning about the functional specification, and to internal consistency by analyzers and compilers. This
provide a basis for verification of the resulting software. permits the programmer to trade off precision and ex-
Given these advantages, a programmer would benefit from pressiveness in design recording while maintaining the
the use of a programming language that permits the inte- benefits of consistency checking. Using a design language
gration of these formal functional characteristics (specifi- that incorporates specifications provides certain free-

cations) with the design and execution of the software. A doms:
coherent language that covers the transition from problem
specification to implementation is referred to as a wide e One can use text to specify the behavior or structure
spectrum language I11. The presented wide spectrum lan- of the program informally. Later, one can refine that
guage SEDL, Software Engineering Design Language, text into actual code, a more detailed textual specifi-
combines specification and design into one language that is cation, or some combination of the two.
executable. SEDL provides the programmer with the po-
tential to record and maintain all these views of a software e One can use set-theoretic notations to describe data
product in an integrated and cohesive presentation. structures before deciding on the representation of

those data structures.

L Introduction e One can specify the behavior of the software product
using high level notations that can be compiled for the

A wide spectrum Ada* -based programming language, purpose of rapid prototyping. Later, one can refine
SEDL 14 1. is presented that supports specification, design, those specifications into algorithms that are designed
and execution of software units. The availability of all with the appropriate level of efficiency.
three types of constructs in one language allows the po-
tential of recording and maintaining all three views of a The identification of an implementation and code pack-
software product in an integrated and cohesive presenta- aging strategy is an important component of SEDL,
tion. Incorporated within the language SEDL is a design Without such a strategy, the programmer is exposed to the
methodology based upon the use of abstraction for spec- following difficulties. o
ification and the process of refinement for incrementally
adding program design details. Each refinement step adds* Difrnimletaonsaegswllbche,
both a design structure and additional lower level specifi- cauirn aifragmentation ofaege thl e cebas
cations which are included as components within that de-
sign structure. When applied repetitively, this results in a e The code will lose some of its traceability back to the
hierarchy of intermediate abstractions being recorded and design
presented to the reader. These specifications may be re- 0 Ucranywl eitoue notesfwr ecorded bih ails of rep at then einmested, velopment process at a point where it is not expected
they form the bai o eetn h eieetse.and therefore cannot be easily addressed

*Ada is a registered trademark of the U.S. Government (Ada Joint Program Office)
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SEDL provides two predefined procedures. Identhi and

SEDL supports a methodology which allows the pro- Undefined. The procedure Undefined is used to explicitly in-
grammer to create and present abstract specifications that dicate that the specified behavior is undefined. The Idea-
suppress implementation details. This methodology sup- titN procedure indicates that the behavior specified is the
ports behavior and data modelling in conjunction with identity relation for the givcn values of the program state
set-theoretic abstract types. Both behavior and data %ariables.

modelling are intended to separate the concerns associ-
ated with the use from those associated with the design We will illustrate how one would write a SEDL specifica-
of a software product. This separation enforces a level tion of the program Mcrge. Using English. the function of ; 6

of modularity by separating the design decision (how the MIcrp is to return a vector that is an ordered arrangement
software accomplishes the specification) from the spec- of the catenation of two given ordered vectors. The

ification of what the unit is intended to accomplish. In the specification of \Icrgc is as follows.

following sections. we will present these concepts of he-
havior and data modelling along with a short discussion itpe Vector is arra.lnieuer range < > ) of Integer.

on the use of SEDL. function I Ordred (X Vector) return Boolean

Il. Behavior Modelling in SEDL < - fir all I. J in X'RA(i I < J o X(I) < = X(I) - >

SEDt. supports the principle of abstraction using behavior function I_rranumcnt ()t X.Y Vector) return Mmcan

modelling. Abstraction permits separation of the con- < * X'I I\G I II=Y'I t (i IIt and (for all I in X'RANGI-

ceptual aspects of a system from the implementation dc- (ard)K in X'RA,5(iI X(K) = XI) =
tails. During software design, abstraction allow's the
designer to postpone structural and algorithmic consider- tardl(K in VRAN(I Yt K) = XII)) .

ations until the functional characteristics and data ha\e function \Icrtc I .c \cctrI return Vcct,,r
been established. Therefore. design becomes the processofpo e tig ri< .1k ORL()r Vl and Ik ()rdct'rd(Y) an% Z. in '.'cotwe

ka of proceedingfo abstract considerations to concrete --

representations. )rcdl/) and is_ .\rrAmnnlvnl (III /.X&) > *

Behavior modelling allows one to abstract the deiails ol I h use of construclisc. mathematically founded notation
procedural logic in terms of a beha, ior specification, a for beha, ir specification makes it possible to execute
special form of statement enclosed in < • and e > IheSFL I)I. specifications in order to perform rapid pro-
which states the relationship of the program state variable totyping. A programmer would then be able to exper-
ralues before a i\cn statement or subprogram is cxc- iment with the functional beha\ior of a design without

cuted to the %alues they may ha\e as a result of executing ha\ ing to spend time de\eloping the details of its imple-
the statement or subprogram. These behavior specifica- mcnlation.
tions are defined using a state transition model 121. Given
the set of slates of the system "" a transition function f is SEDI_ supports the conccpt of stcpwisc refinement which
defined as follows: allows the programmer to incrementally add software de-

sign details from the decomposition of high-lecl specifi-
') = Ycations. Each refinement step adds both a design

structure and additional lower-le\cl specifications. The
where A are the %aloes of the sariablcs in the incremental addition of detail at each step of the refine-
system state n and Y arc their \alucs in the sub- ment process postpones design decisions as long as possi-
sequent system state a'. hbe and allows the designer to argue convincingly that the

resulting softs arc product is consistent with the design
A nondcterministie beha\ior specification contains the specifications. S1DI. also supports the notion of design
keyword ans and is interpreted as the arbitrary selection cxecutability so that one could check the consistency be-
of an element from the specified set. If nondeterminism tween the specification of the design and the subsequent .'
is introduced, the corresponding behavior specification spccification of its refinement. This check would ensure .

must be defined as a transition relation where Y becomes that the following relationship is true gi\cn that the re- ,_
a set of possible state variable values for the correspond- lation f is a behas ior specification anti the relation t is the p- % ,e

ing set of possible subsequent system states n'. ',, . behavior of its refinement.
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<*f* > isg - f sg

where

fog d VX 6 D(f)IX c D(g) I D(f) Af(X) =g(X)j

D(/') denotes the domain off and D(g) 1 , denotes the to be refined. This refinement is presented by following
domain of g restricted to the domain off. the original behavior specification with the keyword is.

Each refinement step should reflect a definite design de-
The specification of the function Merge given above is cision as to how a specified behavior is to be imple-
transformed into a SEDL design by refining the behavior mented. Both data and control structures are refined in
specification ol Merge into a program statement which can this manner until the entire specification has been rewrit-
also contain additional behavior specification statements ten into code.

function Mcrgc(XY: Vector) return Vector

< * Is Ordered(X) and Is Ordered(Y)

an Z in Vector :l% Ordered(Z) and Is Arrangement Of(Z.X&Y)* > is

Z : Vector(l .. X'I.FN(iTH + Y'LLNGI'll):

XF: constant Integer: = X'FIRS]

YF: constant Integer: = Y'TIRST.

beRin

< * X'LENGrII =0 - Z: Y

I Y'I_-NG I tl = 0 - Z: = X

I X(XF) < = Y(YI:) - Z: = X(XF) and Mcrgc(X(XF + I X'IAST). Y)

else Z: = Y)Y[:) and Merge(X, Y(YF + I I. Y'LAST)) * >

return Z:

end Merge.

Subsequent additional refinements will transform this duced by Hoare 131). The designer may create abstract
SEDL design of Merge into sLfficient detail so that effi- data types and functional abstractions and map the real-
cient implementation in Ada is straightforward. The world domain to these programmer-created abstractions.
coding phase in SEDL should be viewed as merely adding SEDL also supports, through the use of data modelling,
a lowest level of refinement to the completed design. The data encapsulation which defines a data structure by the
implementation component of SEDL (Ada) checks the operations performed on it. Since the data structure is
package specification. which includes information con- packaged with its access routines in a single module, it is
cerning its interface, for consistency when coupled with manipulated only by the contained access routines. Rou-
other independently-developed and compiled packages. tines that use the data structure are not privy to the details
Advantages to this approach include the protection of of its data representation or manipulation.
data, the promotion of independent testing, and the po-
tentially substantial savings of compilation time. Data modelling allows one to abstract the details of data

representations in terms of SEDL abstract types and ob-
IlL Data Modelling in SEDL jects which include the set-theoretic abstract types such

as sets. maps, relations and sequences. An abstract type
Data modelling supports a major jump in abstraction since consists of a collection of definitions of types and oper-
it is no longer necessary for the system designer to map ations on objects of the defined type. A SEDL abstract
the problem domain to the predefined data and control type is defined in two parts: the specification part con-
structures present in the implementation language (intro- taining the model type declarations and behavior specifi-
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cations for the operations of the type; and the body part
containing the representation of the abstract type and the As an example of data modelling in SEDL. let us consider
implementation of its operations. The model of the ab- the abstract data type, Smalet. consisting of integer sets
stract type is the view of the type seen within the specifi- whose cardinality does not exceed a given maximum size.
cations of its operations. The constraint for the model This example uses data modelling to specify the abstract
states a condition that must always hold on the objects type while permitting the designer to select a data repre-
and the initialization specifies the initial value for the ob- sentation during another phase of development.
jects of this type.

abstract type Smallset is -Assume Max Size is a non negatise Integer contafnt

model

type Smallsct is set of Integer:

constraint

for all S in Smallset : Card(S) < = Max Si/c:

initial

Empty;

end model;

function Query(I: in Integer: S: in Smallset) return Boolean .

< -linS- >:

procedure Insert(I: in Integer: S: in out Smallset)

<* Query(I.S) - Identity

I Card(S) < Max Si/c - S: = S + III >:

procedure Remove(l: in Integer: S: in out Smallset)

< * Query(I.S) - S:= S - III else Undefined * >

end Smallset:

In SEDL. the abstract type body may contain a represen- strate that the restated behavior maps to the behavior of
tation or implementation of the abstract data type. The the model using the function 0 that maps the represen-
representation is typically a low-level type. such as an ar- tation of the data to the model data. Given a data item Z
ray or linked list, that permits an efficient implementation of the representation type TR, O(Z) must be a data item
of the abstract type operations. The behavior of the op- of the abstract type T. Using this function 0. we can

erations of the abstract type must be respecified in terms demonstrate the correspondence between a function f,
of the operations of the representation type. Just as the defined on T, and the function.R defined on T. Pictori-

model defines the type as seen in the specification of the ally, the following relation must hold to ensure the cor-
operations. the representation defines the type as seen in rectness of our data representation.
the implementation of the operations. One must demon-
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fA

TR > T, O

fA o O(Z) = 0 ofR(Z)

Returning to our example, the type Smallset can be represented in SEDL by a record containing the elements in an array,
:flem Vector. and a count. Size. of the actual number of elements present in the set.

abstract type body Smallset is

representation

type Elem Vector is array I .. Max Size) of Integer:

type Smallset i%

record

Size: Natural range 0 .. Max Size: = 0;

V: FHem Vector:

end record;

constraint - No duplicates in a Smallset

for all S in SmalIset and J, K in I .. S.Size:

J io K * S.V(J) 9 S.V(K):

mapping of S in Smalket'representation to Smallset'model

< - IS.V(II:I in I - S.Sizej * >

end representation;

function Oucryll: in Integer; S: in Smallset) return Boolean

< * existsJ in I .. S.Si/c : S.VJ) I * >

is separate;

procedure Insert(l:in Integer: S: in out Smallset)

< Q uery) IS) -Identity

I S.Si/e < Max Sie - S.Si/c. S.V(S.Size + I): = S.Si/c + 1, 1 >

is separate:
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procedure Remove(l: in Integer: S: in out Smalct)

< * exists J in I .. S.Size : S.V(J) I - S.Size. S.V(J): = S.Sizc - I. S.V(S.Silc) *>

is separate;

end Smallset;

The behavior of the operations of Smallset are restated in V. References
terms of the chosen data representation. Using our rep-
resentation of Smallset, one must show that for each S in 1. Bauer, F.L., M. Broy. G. Gnatz, W. Hesse, B.
Smallset and each I in Integer it is the case that I in , (s) if Krieg-Bruckner, H1. Partsch, P. Pepper, and H.
and only if there exists a i in i .. S.Si/c such that S.v()=. Woossner. Towards a Wide Spectrum Language to
To demonstrate the correspondence of the two behaviors Support Program Specification and Program Devel-
of Incrt(I.S). one must show that for each object s of type opment, SIGPLAN Notices. Vol. 13, No. 12. De-
Smallsct and I in Integer: S.Si/c It Max _Size if and only if cember. 1978, pp. 15-24.
Card(M(S)) < Max Size: and if S.Size < Max-size and not 2. Ferrentino. A.B. and 1-.D. Mills. State Machines andQucry(IS) then ,(S') = ,S) + I l given that S' is the newvalue of S produced by nsecrt) I.). Their Semantics in Software Engineering. IEEE

Computer, November. 1977. pp. 242-25 1.

IV. Summary 3. Hoare. C.A.R. Proofs of Correctness of Data Repre-
sentation. ACTA Informatica, Vol. 1, 1972, pp.
271-281.

An Ada-based specification and design language, SEDL.
is proposed that supports the development, recording, 4. Software Engineering Design Language, Version 1.1,
analysis, and review of software products. SEDL can be Language Reference Manual, IBM, 1987.
used to express all stages of the program development
process. This wide spectrum language incorporates spec- 5. Shaw, M., G.T. Almes, J.M. Newcomer, B.K. Reid,
ification. design, and implementation using a methodol- and W.A. Wulf. A Comparison of Programming
ogy that is based upon the formal notations of set theory Languages for Software Engineering, Comparing and
and logic in conjunction with software engineering prin- Assessing Programming Languages Ada. C. Pascal,
ciples. Behavior and data modelling separate the design A.R. Feuer and N. Gehani Editors, Prentice-Hall,
decisions from the specification of the software unit. The 1984.
implementation component of SEDL (Ada) prov:des the
coupling of independently-developed packages and the 6. Wiener, R. and R. Sincovec. Softhure Engineering
safety of this assembly process. SEDL specifications and with Modula-2 and Ada. John Wiley & Sons, Inc.,
designs are executable and may therefore be used for the 1984.
rapid prototyping of software products.

%
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An Algebra for Real-Time Process Decomposition

Mike Adler

Control Data Corporation
Corporate Research and Engineering

Abstract conditions, removes limitations due to
This paper describes a formal, top-down the previous notation, and produces a
method that takes a transformation schema result that is suitable for automatic
process (used for describing real-time layout.
processes) and logically implements it as
a network of smaller data transformations The control flow notation in (3] is
and control transformations, based on its extended to include both signals and
input and output data flows and control predicates. Predicates are conditions
flows. This work generalizes the defined on data flows (similar to the
author's previous work by extending it limited form predicates of [4)) and have
from data flow diagrams (structured the same control properties as signals.
analysis) to transformation schemas (real Specifications are extended to support
-time analysis), reducing the number of input and output control definitions and
operators in the algebra from seven to control references in the transform
one, adding pre- and post-conditions, matrix. Only flow connections are
removing limitations due to the previous specified. The algebra generates the
notation, and producing a result that is decomposition data and control
suitable for automatic layout. The transformations (and their local flow
control flow notation of transformation inter-connections) based on how the input
schemas is extended to include both and output flows group together.
signals and predicates. Predicates are
conditions defined on data flows and have A decomposition is produced in stages.
the same control properties as signals. The first stage uses the new algebra to
Criteria are given for when to decompose produce a data flow diagram from the data
a process, when to decompose a flow, and flows in the specification. A single
when to terminate the decomposition control transformation is defined.
process. Signals are allocated to the control

transformation, with connection through
to data transformations as needed to meet
the specification. Predicates connect

I. Introduction data transformations to the control
transformation.

Transformation schemas are used for
describing real-time processes [3]. This The second stage uses the new algebra to
paper describes a formal, top-down method produce a control flow diagram (a network
that takes a transformation schema of smaller control transformations) from
process and logically implements it as a the control flows of the single control
network of smaller data transformations transformation. This step is completely
and control transformations, based on its symmetric to the way that the data flow
input and output data flows and control diagram is produced (but may be skipped
flows. A data transformation can be if the number of control flows is small).
further decomposed as a transformation In the last stage, each un-decomposed
schema process. A control transformation control transformation is decomposed to a
may be decomposed into a network of state-transition diagram. This is done
smaller control transformations, or into using a different technique that requires
a state-transition diagram, augmenting the specification at this

point in the decomposition process.
This work generalizes the author's Again, only control flows are specified.
previous work (1] and extends it from The states and transitions are generated
data flow diagrams (structured analysis from the augmented specification.
[2)) to transformation schemas (real-time
analysis [31). The previous work is The decomposition process continues
generalized by eliminating the matrix- through further decomposition of the data
based part of the algebra and making it transformations. Criteria are given for A
completely graph-based (although the when to decompose a process, when to ,
matrix is retained in the specification decompose a flow, and when to terminate
for ease of use). This reduces the the decomposition process.
number of operators in the algebra from
seven to one, adds pre- and post- The objective of this algebra is to

provide a rigorous technique for real-
time process decomposition at the Ward
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and Mellor 151 level. A grammar 16] tools for use in a production
based on directed acyclic graph (DAG) (7] environment. Outlook for further
generation from a bi-partite (two transformations is in the final section.
partition) graph is defined and presented
in the style of axiomatic programming
(81, where the nodes defined by the
grammar form a very simple algebra. As
with the previous work [1], this is a DAG
construction problem and is not the same
as DAG node count reduction (91 or
compiler code optimization using DAGs .........
[101. The acyclic nature of theC
decomposition means that it contains no
feedback loops (which are handled outside
of the algebra). The defined grammar is
applied to an example problem (111 to ...
find the first level decomposition of a-
robot controller.

This algebra addresses data flow and
control flow. It does not address atC
least the following: algorithms, data
composition, data or procedural ,.--

constraints, design objects. It is
expected that in the future, the algebra . ... '....

will be integrated with these
capabilities in other techniques. .

For this paper, a trans formation schema (b
consists of a data flow diagram (DFD), a
control flow diagram (CFD) and a set of-
control flows that connect the data and ..........-

control transformations. These follow
the Ward and Mellor conventions. A DFD
will consist of data transformations
(solid circles) and data stores (solid Fig-~ 1. Tb. A19.W. V P.1 fl 1b. P ..... DVOVp-.IV U..lbd

parallel lines), with input, output and
connecting data flows (solid arrows). A
CFD will consist of control
transformations (dashed circles) and
control stores (dashed parallel lines), 11. Grammar
with input, output and connecting control
flows (dashed arrows). The control flows The graph basis of the granmar is
that connect the data and control presented first, followed by definitions
transformations are also represented by of the symbols, terms and sentences of
dashed arrows. Figure 1 is an example of the grammar. Canonical forms that are
a transformation schema that shows how used in the interpretations, operator,
the algebra fits into the transformation and pre- and post-condition definitions
schema process decomposition method. are derived. Appendix A discusses the

motivation for a new algebra relative to
The paper is organized into the following the original algebra presented in [1).
sections: grammar, interpretations,
operator, decomposition, state-transition
overview, tools and outlook. The grammar A. Graph Basis for the Grammar
section discusses the graph basis of the
grammar, the definitions of the grammar Consider DAGs of the form in Figure 2.
that derive from this, and the invariants This graph is connected and is called a
of grammatical expressions. The context graph. Its vertex-connectivity
interpretations section discusses the two is 1 and the context vertex is its one
ways of interpreting the sentences of the and only cut-vertex. The input, context
grammar -- as a matrix, and as a graph. and output vertices are all distinct.
The operator section discusses the There is no directed path between any
motivation for the grammar, the operator pair of input vertices or between any
definition, and the pre- and post- pair of output vertices. There is a
condition constraints that are put on the directed path from each input vertex,
operator. The decomposition section through the context vertex, to each
discusses the overall decomposition output vertex. This graph is equivalent
process, from initiation to termination, to the complete bi-partite graph of
distinguishes the data and control Figure 3.
components, and defines a decomposition
~uality metric. The state-transition The problem to be solved is the
iagram section overviews an extension to construction of a DAG to replace the

the algebra that is the next logical context vertex. The connectivity of
transformation step. The tools section the input and output vertices is
discusses a prototype of an automated reduced to that specified by a
algebra tool and how the algebra might be matrix, called the input-output
built into current software engineering matrix (1/0 matrix). This matrix is
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equivalent to the adjacency matrix of The constructed DAG together with its
a bi-partite graph which is connected input and output vertices is called a
but not complete (one with reduced decomposition graph. The DAG itself is
connectivity relative to Figure 2). called the decomposition of the context.
Appendix B discusses the equivalence
of the IO matrix and the adjacency As an example, suppose the connectivity
matrix, of the context graph in Figure 2 is to be

reduced according to the connectivity
specified (marked) in the I/O matrix of
Figure 4. By applying the algebra to the
bi-partite graph in Figure 5

19PUTS CONTEXT OUTPUTS (corresponding to the I/O matrix of
Figure 4), the context node (CO) of
Figure 2 is replaced by a DAG (CI-C2-C3-
C4) to produce the decomposition graph in
Figure 6. This graph has directed paths
only between the inputs and outputs that
were specified by the analyst in the I/O
matrix of Figure 4 (corresponding to the
bi-partite graph in Figure 5).

Co

OUTPUTS

x y z

.. u. 1. o pro d

Out" y r u!

b

P,... 2 Ct..t Gph 0. I F.... . .nd Er....pi) INPUTS c * * . .

i U-.d to produce

Output z

0 INPUTS OUTPUTS

C,1-m 1-ed -i

Output y . produced by
lnput,.' b c ar . d

Figure 4. 10 matrix for Contoi Graph OfcolpOsilion Spacfclaiori

In practice, the marked binary elements
c Y of the matrix specify that a particular

input data or control flow is used
(either conditionally or unconditionally)
in the production of a particular output
data or control flow. The selected
elements of the matrix are a subset of .
the context and define a relation on the .

inputs and outputs called: is used to a
produce. For example, in the matrix of
Figure 4, row c, column z is marked, so:
input c is used to produce output z.

B. Symbols of the GramarN xia

Pigot, 3 Comptto s p.. .. pbi Graph Co.r.ponding to V
5
.,., 2 The sentences of the algebra are made up

of three classes of symbols: labels,
nodes, and partitions.
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The output labels (ending alphabet
letters): ... x y a

INPUTS OUTPUTS Labels correspond to stores and flows.

The input and output label sets are "
disjoint. In practice, this means that
when a process has an output flow to a

* store and an input flow from the same
store, the flows to and from the store
are treated as distinct by the algebra,
even though they have the same name. Non

b .- store input and output flows of the same
name are treated as representing
different flow iterations, or as before-
and-after flow updates, or as being
otherwise distinct.

d- * .invariant: Each input label and each
output label of the graph
appears once.

Nodes. Nodes are denoted by upper case O
letters:

The input nodes (beginning alphabet
letters): A B C ...

The output nodes (ending alphabet
Pigu,. S. i-pc, .. Graph C.,,...d .8ig to Spc..ifi...n M.,ri. F,.m . letters) : ... X V Z

The intermediate nodes (middle
alphabet): ... L M N

Nodes correspond to processes. Nodes are
structured, consisting of four sets:
input links, input labels, output labels

INPUTS OUTPUTS and output links. The indegree of a node
is !(input links): and the outdegree is
:(output links):. A node that has one
input label, no output labels, indegree

0, and outdegree > 0 is an input node
(Figure 7a). Similarly, a node that has
one output label, no input labels,
outdegree = 0, and indegree > 0 is an
output node (Figure 7b). All other nodes
are intermediate nodes. Input and output
nodes are the minimum cases of

cI distributor and collector nodes -- having
C2 one or more input or output labels,

respectively (Figure 7c/d). Distributor
and collector nodes are important in
defining data and control flow diagrams.

Node links are denoted by node names.
C4 Two nodes, M and N, are adjacent if the

name of M appears as an input link of N
and the name of N appears as an output
link of M. M is said to be to the left
of N, and N is said to be to the right of
1 (Figure 8). This may be stated by the
adjacent predicate:

FIG~.* . o..P..iU. DAG (CI -CI-CSI-C) .9....... C .f.. (CO) adjacent (M N) [M is on the left and
F ig... 2) N is on the right]

invariant: The nodes of the graph form a
directed acyclic graph (DAG).

Labels. Labels are denoted by lower case Links may also be characterized as

bold letters: primary or secondary, with definitionsbold letters: from []:--e _ _

The input labels (beginning alphabet A link connecting two nodes for which
letters): a b c ... there is not a longer directed path

is a primary link, 6
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A link connecting two nodes for which Partitions. Partitions are denoted by an
a longer directed path exists is a upper case P followed by an identifier:
secondary link.

The input partition:
invariant: All graph links are primary. PI: upper case I

The output partition:
PO: upper case 0

The intermediate partitions:
Pa: where a is a lower case letter:

abc ... xyz
X

A partition is a set of non-adjacent
z 1.1 nodes. There is one input partition, PI,

and one output partition, PO. The input
C partition is the left-most partition (its

nodes have no input links). The output
partition is the right-most partition
(its nodes have no output links). An
intermediate partition is to the right of

Inpu lid. b Outpu, Nod the input partition and to the left of
the output partition.

Dui..No.e d Collct,,or Nod Two partitions are either ordered or

independent. Two partitions are ordered
if they are adjacent, or if they are
connected by a chain of adjacent
partitions (the right partition is

- reachable from the left partition). Two
partitions are adjacent if they contain
at least one pair of nodes that are

C cadjacent. As with nodes, this may be
stated by the adjacent predicate:

adjacent (Pa Pz) [Pa is on the left
and Pz is on the

F.O,. 7 Grap In.. trp,.. o,co. Of o..fbulor I CcItor M.d right]
(input I outpui I he onimn c l*boeIil)

All adjacent node pairs in adjacent
partitions have the same orientation
(left to right) -- this is called uniform
orientation and the orientation of two
adjacent partitions is said to be the
same as the uniform orientations of theirW .. ,t Naedj.entnode.d adjacent nodes. Two partitions are
independent if they are not adjacent and
if there is no chain of partitions

o .n. 1.np .. .. . connecting them.
ou.tput 1,nk ofU Inp,.t link0 o N

The initial graph constructed from the
I/O matrix is bi-partite (has two
partitions) -- it contains the input and

.X output partitions and no intermediate
partitions (Figure 5, for example). The

. . mfinal graph, after applying the algebra,
will be multi-partite -- it will have two

"V C or more partitions (Figure 9, for
example).

invariant:
to W .. rght ... 11 The partitions of the graph form a

multi-partite, uniform, directed
acyclic graph (mu-DAG).

C. Terms of the Grammar

The terms of the algebra are nodes. The
S1,,.$ Adil...nt Nod, algebra operation will change the

sentences of the algebra by operating on
the terms of the sentences (its nodes).
The terms of the algebra are contained in %
partitions.
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A set or a member of one of the sets of a
term will be denoted by a short set name
as a function applied to the term, so

pi P. PO that:
(I'-b (g*., .. I.*~ dl) C.p, inlabels (T) [plural form]

dM~ is the input label set of term T, and:

inlabel (a T) [singular form]
(or just a, it it is
unambiguous)

is one input label of term T. These
Ibl 4.LW forms apply to all of the nodes in the

term. A term may be broken into
subgroups and a single node of a term may
be designated by the node function:

node (N T) (or just N, if it is
unambiguous)

and the partition which contains a term
may be designated by the partition
function:

partition (T)

Figr,. Multi-pa.ft. Gr*ph wih N. Repl.lng Ve.ni.. The input links of a node may belong to
(.Fg... 0) one or more partitions and may be grouped

into one term per left adjacent
partition. Similarly for output links
and right adjacent partitions. The
canonical form of a node then becomes:

{K L ... ) Ia b c ... } {... x y z)
D. Sentences of the Grammar {... M N) <1>

The sentences of the algebra are Since a partition is a set of nodes and a
constructed from partitions according to set of nodes contained in a partition is
the following rules: a term, all partitions are maximal terms,

with canonical form:
A partition is a sentence.

A multi-partite, uniform, directed (T <2>

acyclic graph (mu-DAG) of partitions or (expanding <2> to subgroup form),
is a sentence.

A subgraph of a mu-DAG which is also (K L M ... (3>

a mu-DAG is a sentence.
Canonical Sentences. A canonical
sentence is a set of one or more

E. Definition of Canonical Forms sentences represented by an upper case
bold letter.

Canonical forms for terms and sentences
can now be defined. These forms will be The -anonical form for a sentence is:
used in the definition of sentence
interpretations and the sentence s <4>
operator.

or (expanding <4> to subgraph form),

Canonical Terms. A canonical term is a P Q R ... <5>
Sset of one or more nodes (within a
partition) represented by an upper case Since the smallest sentence structure
S.talic letter. consists of a single partition, all

partitions are minimal sentences.

Recall that a node has a structure

consisting of four sets: The canonical form for a sentence, <5>,
Re becomes:

(input links) adjacent node names
(from the left) (PI] C [...] Pn I...] ] [P01 <6)

(input labels) input label symbols
(output labels) output label symbols where: [) denotes optional, subject to
(output links) adjacent node names the constraint that there is at

(to the right) least one partition present
(actual partition adjacency is
determined by node adjacency, not
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the apparent adjacency of original node with an output link
canonical sentence form). to the new output node

({K L ...) {a b c ...)
Partitions in a sentence, <6>, may be (... x y z - z) (... M N + Z));
expanded to their canonical term forms, create the node adjacency matrix from
<2> or <3>, and terms of one node to this expanded sentence:
their canonical node form, <1>. - the source nodes include the

intermediate nodes and the input
nodes (output nodes need not be

III. Interpretations included, see Appendix B);
- the destination nodes include the

The sentences of the algebra may be intermediate nodes and the output
interpreted in two ways: as a matrix, nodes (input nodes need not be
and as a graph. The matrix included, see Appendix B);
interpretation constructs a matrix from a - from the adjacency matrix, compute
sentence. This is effectively the the reachability matrix (transitive
inverse of what the algebra operator does closure);
(construct a sentence from the bi-partite - the subset of the reachability matrix
graph derived from a matrix). The matrix that includes only the input and
interpretation is used to compare the output nodes is the required I/O
initial matrix to that which results from matrix -- in other words, the I/O
applying the operator. This comparison matrix elements correspond to those
measures decomposition quality. The input-output node pairs where the
graph interpretation constructs a graph output nodes are reachable from the
that corresponds to a decomposition final input nodes through the nodes of the
sentence. The interpretations set the sentence.
relationships between an I/O matrix, a
sentence, and a decomposition graph.

Matrix Interpretation Example. The
example sentence following corresponds to

A. Matrix Interpretation of a Sentence Figure 9 which is the decomposition of
the context in Figure 2, as specified by

The matrix interpretation of a sentence the I/O matrix in Figure 4:
is the set of matrix elements that the
sentence generates by pairing inputs and S = PI Pn PO = K) 1L) IM N)
outputs. This is used to define the = } (b c) (x) (L)) K
equivalence of sentences: (K) (a) () (M N)) L

(((L) (d) (y) ())

Two sentences which have the same ((L) (e) (z) {)) MN <7>
matrix interpretation are equivalent.

Applying the matrix interpretation
procedure to <7> first causes new input

Matrix Interpretation Procedure. Given a and output partitions to be generated and
sentence, S, the I/O matrix corresponding populated giving:
to the sentence is constructed by the
following procedure: S = PI Pa Pn Pz P0

= 4A B C D E) (K) L) M N) (X Y Z)
- relabel the current input and output = ( (a) ( (L)) <8>

partitions as intermediate partitions ((} (b) {} (K))
(PI -> Pa; PO -> Pz); ( (c) () (K))

- create new, emptl input and output ( ) Wd (M))
partitions (PI, P0); ((I (e) (} (N))) ABCDE

- for each node of each intermediate ((B C) () () (L X)) K
partition of the sentence ((A K ) (M N)) L(S = P Q R ... (((D L) (} } (Y))

P Pn R ... = P (T) R ... (EL) ( ) (Z))) MN
= P (node (N T)) R ... ): (K) () (W )

- for each input label of the node (HMI () (Y) M)
(inlabel (a N)): ((N) {} (z) M)) XYZ
- create an input node in the input

partition (() (a) (} }); The only labels in <8> are in the input
- create an output link from the and output nodes (Figure 10). Continuing 6

new input node to the original with the matrix interpretation procedure, .,
node (M) (a) () (N)); the adjacency matrix of <8> is shown in ,

- replace the input label in the Figure 11 and the reachability matrix is
original node with an input link computed in Figure 12. The indicated
from the new input node subset of the reachability matrix is the
(K L ... + A) (a b c ... - a) required I/O matrix. Compare this subset
(... x y Z) ... M N); to Figure 4.

- for each output label of the node
(outlabel (z N)):
- create an output node in the
output partition ({) () (z) (1); B. Graph Interpretation of a Sentence

- create an input link to the new
output node from the original The graph interpretation of a sentence is
node ((N) () (z) ()); a set of processes, each of which may

- replace the output label in the have external input and output flows and
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n...-'. ,4 m Z v ., ,.Ww.7. u Wil PAPUT N W 1P. W IM7,WM-P;n P-M 7d W= -

which are inter-connected by a set of
local flows. This is used to define the
congruence of sentences: OUTPUTS

Two sentences which have the same X L. M N X Yz
graph interpretation are congruent.

K 0 t I 1 1 1 1

L 0 0 1 1 0 1 1
-. . . . . . doo mposltion

M a 0 a 0 0 1 O graph nod.

Pi Pa. P. P. PO
(inpt.) lintor tdlat) (Intero diate) (intermedlite) loutput) N 0 0 a 0 .0 0 1

INPUTS A 0 1 1 I 0 i 1

C t I t I I iput nodes

SI V 0 0 1 0 0 0 0

OIL 44
- 

04-

K 0 0 Compet0 0.
deoampoltion output Fiure 4 -

graph node. nod.. this repressnte
Ill inputoutput

node pairs
.uch that the
otput nod In

4n4p 4i4-- - 1 -4 44-- - .
4
l4 .4o4thronh inptthodo

Vill: throagh tho
docompositon
graph nodes

Only input and output nodes have label. in this form of the graph Figuro t2. gflo hahlty Matti. Corresponding to Figure tI

Etch input and output nod. Wiso he. only a 1ngl.. link
(a result of the invariant that each label appear only once)

Figure tO. Multi -partite Graph with Labels El rcled to Now Pl I PO

lan FIgare P) Graph Interpretation Procedure. Given a

sentence, S, the DFD or CFD component of
a transformation schema corresponding to
the sentence is constructed by the
following procedure:

- each node of the sentence becomes a

OUTPUTS process;
- for each node of each partition of

the sentence:
K L u N N X Z - each input label becomes an

X 0 , a 1 , 0 external input flow or an input
flow from a store (depending on the

L 0 t 1 0 0 0 context);
a . .0 do. oiif

M O O 0 0 O .0 :: -Ph*°d -- each output label becomes an
external output flow or an output

Is 0 0 0 0 0 0 flow to a store (depending on the ?I
context);

INPUTS A 0 1 0 0 0 0 0 for each adjacent node pair:
- the corresponding processes are

, 4 0 0 o 0connected by a local flow from the

C 1 0 0 00 input nod.. process corresponding to the left
node of the adjacent pair to the

a 00 1 0 0 0 process corresponding to the right t

0 0 pair of the adjacent node pair;
I___+___ I I initial node layout of the graph is

according to partition:
- partition PI, the input partition,

output is the left-most partition;
, h od.. .e. - partition PO, the output partition,

is the right-most partition;
- partitions Pn, the intermediate

partitions, are placed between
partitions PI and PO in partition
adjacent order;

FigroIt dioony atro o~anpndng o igao o.- the nodes of each partition are ~..
Flituro , Adjacency Matrix Corresponding to Figure 10. arranged vertically so that local

flow overlap is eliminated or
minimized.
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Graph Interpretation Example. The IV. Operator
example sentence, (7>, repeated here for
convenience, is the decomposition of the The algebra operator operates indirectly
context in Figure 2, as specified by the on the sentences of the algebra by
I/O matrix in Figure 4: operating directly on the nodes of a

sentence's terms. An initial sentence is
S PI Pn P0 = (K) (L) (M N) constructed from the bi-partite graph

M (b c ) (x} {L) K corresponding to an I/O matrix. The
{KI (al () (M N)) L input partition contains input nodes and
({LI (d (y) () the output partition contains output
((L) (el [zi 1))) MN <7> nodes. The function of the operator is

to combine input and output nodes into
Following the graph interpretation process nodes (possibly generating
procedure: intermediate partitions) that will be the

data or control transformations of the
nodes K, L, M, and N become DFD or CFD component of the decomposition
processes; transformation schema. The final result

- labels become external flows: of this combining process is the terminal
process input flows output flows sentence.

K b, c x
L a -
M d y A. The Merge Operator
N e z

- links become local flows: The node combining operation is called
from process to process merge. The canonical form for the

K L operator is:
L M
L N nodel.node2

This produces Figure 13. Compare this to where the connective period (.) means
Figure 9 (the node version). that the combined form represents a

single node. Two nodes are merged by the
following procedure:C. Conjecture

- for each of the four sets (input
Equivalent sentences are congruent, and links, input labels, output labels,
conversely, and output links) of the two nodes

being merged:
- the set of the merged node is the

union of the corresponding sets of
the two nodes being merged.

so that if (Figure 14a):

. M ( J K ... } ) a b ... {. x y)

"..• PQ)

b N (K L ... (b e .. y S)

(... QR)

then (Figure 14b):

M.N (J K ...) union (K L ...1
(a b ...) union (b c ...)
I.. x y) union I... y z)

"1... P Q) union (... Q R)

( (J K L ... ) )a b c ... )
... x yz (... P Q R)

If the identity node, I, is defined as:

I 0 {) ( { [all null sets]

then the algebra can be derived
immediately from the definitions of the

Figure3, Gh ...pera..on.E... merge operator (.) and the identity node
(I), and from the properties of union,
without further proof:

(1) 1.1 = I identity

(2) N.I = I.N N identity

(3) N.N N idempotence
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(4) M.N = N.M commutative (maximal) all distributor and
collector nodes have been converted

(5) L.(M.N) (L.M).N associative to process nodes.

(Note: The termination condition, along
with the invariants for
partitions (mu-DAG) and links
(primary), may force the final

• P. K partition mu-DAG to be linearly

. • -f ... : ordered (a chain). This would
4 ( .. '"' mean that the final decomposition

0 " graph (DAG) is weakly ordered
[12]. If this is the case, is
the generality of the algebra
reduced? This question requires
further resolution.)

RoCd.. bu. ,. u0ginI

........ ... . C. Pre- and Post-Conditions

%t t to, vote.... In the case above, where the graph was
-tilputIn reduced to a context node (before the-input Iabol.

SotuIobol, introduction of the termination
- o..,p.., criteria), some links must have been
I o. o.d b., added by some of the merge operations
fro, to nod.. sbovo

Sp byt.hg th., .io. since the bi-partite graph corresponding
h : to a context node is complete (all inputs

4. Itu .. are connected to all outputs). Merge
operations that do not change the matrix

L0 interpretation of a sentence are called
conservative and are preferable to the
non-conservative operators which do. Non

Fig-.1, M..,Si Ha.. -conservative operators effectively
change the specification (but make
choices and resolve conflicts in doing
so, see Figure 15). To implement
preference for conservative selection,
pre- and post-conditions are added to the
merge operator.

B. Termination Ft PO

As defined above, the merge operator " y
forms a simple and powerful algebra. In ,
fact, it's powerful enough to reduce o
every bi-partite graph to a single node. b ,
This is a trivial decomposition since a
single context node is the starting -
point. Some criteria are needed to
define the subset of possible graphs that
are acceptable as the DFDs and CFDs of a
transformation schema. This is where the
need for distributor and collector nodes iniil nont : (A 0 C1 (X V Z)

arises. . .. W ts . t|o bi-paflito g-.ph

Each input node in the input partition is
a minimal distributor node. Each output 9. p.pt opt.o. d...., I.. pt.t. .

node in the output partition is a minimal ( .. oioo)
collector node. A process node is
distinguished from a distributor or x
collector node in that it meets one or y
both of the following criteria:(. 1

the node has at least one input label I . .

and at least one output label, . .

the node has indegree > 0 and p-ibl. t" "n- ... IS-.

outdegree > 0. (A) (@X c.1 J (z) ... -I...t (b.y) I. 0.

'B A,: Cl) (Y, -.*It of hava.tig tkao
The termination criteria for combining (c4.c ) .52 X,....t-o..

nodes is that the graph remain connected
and either: Fiw,.pIS t .M n©Cho...

(minimal) distributor nodes are not
adjacent to collector nodes, or Pre- and post-condition notation is

borrowed from the axiomatic programming
notation for program precondition and
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result, [8]. The canonical form for This says that two distributor nodes
merge with pre- and post-conditions is: which are adjacent to the same nodes

can be combined.
pre-conditions
(nodel.node2) (2) Pre-conditions (Figure 16c/d)
post-conditions partition(Y) = partition(Z)

type(Y) = collector
There are four condition types: type(Z) = collector

inlinks(Y) = inlinks(Z)
node partition match .

(equal, adjacent) Post-conditions
partition(Y.Z) = partition(Y)

node sets match = partition(Z)
(equal, subset, intersect) inlinks(Y.Z) = inlinks(Y)

= inlinks(Z)
*(inlink, inlabel, outlabel, outlink)

This says that two collector nodes
node type which are adjacent to the same nodes

(distributor, collector, process) can be combined.

node adjacency (3) Pre-conditions (Figure 17a/b)
(adjacent, non-adjacent) adjacent(partition(A) partition(N))

type(A) = distributor
Conservative Merges. There are six type(N) = process/collector
conditions under which conservative outlinks(A) = (N)
merges occur between two nodes:

Post-conditions
(1) Pre-conditions (Figure 16a/b) partition(A.N) = partition(N)

partition(A) = partition(B)
type(A) = distributor This says that a distributor node
type(B) = distributor attached to only one other node can
outlinks(A) = outlinks(B) be combined with it.

* Post-conditions
partition(A.B) = partition(A) n Pn

= partition(B)
outlinks(A.N) = outlinks(A)

= outlinks(B) K Q K Q

Pi PO Ill ) I YJ i (.y)

Pi A A L Z PO

di.1,gbol., node with I collector node.

.I.f . -twl link o..glo. npet link

. Diiibulo, (A) and Proess Nodes c. Proess and Collector (Z) Nod".

b. Merged Nod. 1.),to)
Y C

P., P.
. I.irlbulof Nod.. o. CO1ttor Nod..

b Merged Node (.) d Merged Node (c) J p J •P

I' PO

*X B"f

as I)~~ l) .1 ~ 'Figure 17 Coneorvailvo Mergo (Oi*ltribulor - Process I Proces -Collector)
IF C

(4) Pre-conditions (Figure 17c/d)
adjacent(partition(N) partition(Z))

Fill-e 1 Co...... Worg, ,..,bt I Co,,.0, Noa..) type(N) = process/distributor
type(Z) = collector
inlinks(Z) = (N)

Post-conditions
partition(N.Z) = partition(N)
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This says that a collector node Post-conditions
attached to only one other node can adjacent(partition(M) partitioniN))
be combined with it. type(M) process (was Y)

adjacent(M N)
There are also two conservative null-
merge conditions that convert distributor This says that a process node in the
and collector nodes to process nodes same partition as a collector node,
through a coercive adjacency post- may convert it to a process node by
condition. The null-merge part may be making the collector node adjacent to
thought of as: it on the left.

pre-conditions (I.I) post-conditions Conditions (5) and (6) may require the
creation of a partition and may give rise

with the pre- and post-conditions to secondary links. These conditions can
specifying the actual nodes. also be caused by the merge of non-

conservative nodes.
(5) Pre-conditions (Figure 18a/b)

partition(N) = partition(B) Conditions (5) and (6) may require the
type(N) = process creation of a partition if there is no
type(B) = distributor adjacent partition that is between the
outlinks(N) = outlinks(B) partition of the distributor or collector

node and the partition containing the
Post-conditions nodes to which it is adjacent. This
adjacent(partition(N) partition(M)) usually applies to the first occurrence
type(M) process (was B) of this condition. In subsequent
adjacent(N M) occurrences of this condition, the

subject distributor or collector node can
This says that a process node in the be placed in the newly created partition
same partition as a distributor node, when the subject nodes are independent of
may convert it to a process node by the node that caused creation of the
making the distributor node adjacent partition (Figure 18).
to it on the right.

Whenever a node is put into an
intermediate partition, it has links on

P PO both the left and right (indegree ) 0,
outdegree > 0). This means that all
intermediate partition nodes are process
nodes. And this means that distributor
nodes only appear in the input partition
and collector nodes only appear in the

• C output partition.

x oWith conditions (5) and (6) comes the
first possible occurrence of secondary
links (Figure 18). The procedure for
removing secondary links (to maintain the

• c primary link invariant) is applied after

every operation and always starts with a
single node. Start with the converted I

Mal., JB) .- d Proesd.e* c. P...... and C.,..o (Y) Nodes distributor or collector node or with the

b Adjacent Moado (a) d Adj..ent Ned-11 merged node. The procedure (with
P1 ll.k (XY...)oE P. in.o0 C.. f starting node N) is:

nose N beIn. .oa N be....

... "tdary link. *..r4, link.
end a.. deleted and ..- deed - delete intersect(

, .outlinks(N)
P. PO inlinks(N))

from each list (occurs when two
•' adjacent nodes are merged);

- for the set of nodes, (J K .. .,,
I referenced in inlinks(N) and the set

dk,1a6,01n.M.a' 1b l in i..,.. T . of nodes, (L M ... ), referenced in
bec.. pn..P . bann . n,..... out 1 inks ( N):

".uln.. V nod.Minna. - delete
P.M..no i intersect(

outlinks({J K ...))
Pig.#. 10. C..dnref.iv. Mre". (Diililbuto, I Collector Adjaency) nl inks (I(L M . .. 1))

from each list.
- for the set of nodes,

(6) Pre-conditions (Figure 18c/d) (inlinks((J K ...))),
partition(Y) = partition(N) and the set of nodes,
type(Y) = collector (outlinks((L M ... }):
type(N) = process - delete
inlinks(Y) = inlinks(N) intersect(

outlinks(
(inlinks(J K ... }))I)

inlinks(
(outlinks((L M ...)))
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from each list. V. Decomposition
- delete

intersect( Top-down decomposition of a
outlinksU(J K ... 1) transformation schema process, performed
inljnks( in the software engineering analysis

foutlinks(IL M ... f) phase, can be viewed as a generate and
from each list, test activity. The decomposition is a

- delete construct, or model, that "logically
intersect ( implements" the process. The

outlinks( decomposition model is first generated (a
iinlinks(IJ K ...f) synthesis activity) and is then tested

inlinks((L M ... (an analysis activity). The analyst
from each list, validates the model (doing the right

-iterate in the same manner until thing?) against requirements, user
partitions PI (no more input expectations, experience with and
lists on the left) and P0 (no knowledge of the problem domain. The
more output lists on the right) analyst verifies the model (doing the
are reached. thing right?) through checks on

completeness and consistency (for
Non-Conservative Merges. The property of example, level balancing) -- this is the
anon-conservative merge is that the area in which most of today's analysis
matrix interpretation of the sentence tools are being built.
after the merge is not identical to the
matrix interpretation of the sentence This algebra addresses the model building
before the merge. At least one element synthesis activity and complements the
will have been added to the matrix verification analysis techniques, leaving
(corresponding to at least one link the analyst free to concentrate on the
having been added to the initial bi- most difficult part of the analysis task,
partite graph). the semantic and pragmatic issues

(validating the analysis). The analyst
This is where labels of the same node guides the decomposition through a
interact. All output labels of a node process of matrix assignment, recognition
are adjacent to all input labels of the of decomposition functions and
same node. This is also where links and decomposition direction.
labels interact. All output labels of a
node, which is adjacent to or reachable As presented so far, the algebra applies
from another node, are reachable from the to either the DFD or the CFD component of
input labels of that other node. Non- the transformation schema. To solve real
conservative merges forge new links -time problems, the algebra is applied in
between input and output labels by a larger framework. In this framework,
bringing previously unlinked labels into flows are distinguished as data flows or
the same node or by adding new links control flows (with subtypes that will be
between their nodes. ignored here since they do not affect the

algebra). The framework is:
Non-conservative conditions are formed
from the set, (1) - (6), of conservative - input and output flows are each
conditions by weakening either or both of grouped into data and control flows
the node type or the node set relation: in the 1/0 matrix -- this breaks the

matrix up into four blocks (Figure
the node type is weakened by changing 19),
it from distributor or collector to
process, the algebra is not applied directly

to this matrix, but to parts of the
the node set relation is weakened by matrix,
changing it from equality to subset,

-the input data flow to output data
the node set relation is further flow block (the DFD decomposition
weakened by changing it to non-null matrix in Figure 19) is decomposed
intersect, first with the algebra in the usual

way,
the node set relation is weakened by
allowing more than one link -- cases - a single control transformation is
(3) and (4), formed and all input and output

control flows are assigned to it,
combinations of the above.

- each element in the data flow to
Nodes which are not considered for merge control flow block generates a
are: control flow from the data

transformation which inputs that data
Nodes which are in different flow to the control transformation,
partitions but which are not
adjacent, - each element in the control flow to

data flow block generates a control
Nodes with set relation of null flow from the control transformation
intersect (nodes which have no to the data transformation that
adjacent nodes in common). outputs that data flow,
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predicates defined on input and As an example, suppose that the context
output data flows generate control is that of a robot controller (11 as
flows from the control transformation shown in Figure 20 (this is the same
to the data transformation associated problem that was solved in (1) with the
with the data flow, data flow only method; here, two of the

flows, push buttons (b) and lights (x),
the control transformation can now be are specified as control flows to
treated as a context process with a demonstrate the real-time solution
control flow to control flow matrix framework). The analyst determines from
defined for it, an analysis of the problem that the I/O

matrix for this problem is as shown in
external input to output control flow Figure 21 (in the data flow solution, the
information is transferred from the matrix looked like Figure 4; Figure 21
original matrix input control flow to was derived from Figure 4 by sorting it
output control flow block (the CFD into blocks so that it is in the form of
decomposition base matrix in Figure Figure 19). From the DFD decomposition
19), matrix block, the analyst constructs a bi

-partite graph, Figure 22a, and writes
the rest of the matrix is filled in the initial sentence of the decomposition
and the algebra is again applied in as two partitions:
the usual way -- this completes the
decomposition. 1A C D E) (Y Z)

OUTPUTS

data flow control flow " ".

DFO data flow . .".

data decomposition to
flow matrix control flow

INPUTS ........

control flow CFD
control to decomposition .. ... .'* "

flow data flow base matrix

data dat How Ioput I data flow ot

flow

Control signal in I inal out, a doth Row baosod
flow I01W p dioetI ot.1pa p-ddlt Figro,. 20. MWaIg. Robot EoosopIl

Fig.re It. NowI-Tisoo Ooveoporhio" Matrix

A. Initiating the Decomposition
B. Applying the Algebra

Decomposition is initiated when the
analyst chooses to expand a single The actual decomposition is performed by
transformation schema process. This repeatedly applying the algebra operator -r
becomes the context of the decomposition, to the initial sentence of the
whether it is a context diagram or a decomposition. The operator conditions
process from a previous decomposition. are considered in the following order:
The matrix for the decomposition is set
up by analyzing the problem and deciding, Conservative Conditions
for each input/output pair of the (1) and (2)
context, if that particular input is ever (3) and (4)
used to produce that particular output, (5) and (6) .
either conditionally or unconditionally.
The analyst then constructs a bi-partite Non-Conservative Conditions
graph from the matrix and writes the Smallest number of links involved
initial sentence of the decomposition as Smallest number of labels involved
a two partition sentence, taken directly
from the bi-partite graph.
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The operator is then reapplied to aee if
the maximal criteria can be satisfied to

DF~Dftf.-Mel. Mertt OTPUITS find a maximal solution (recall that a

seso output (y) maximal solution means all distributor
and collector nodes are converted to

axis output (Z) process nodes). If a maximal solution is
found, it becomes the solution; if not,

lights (X the minimal solution is used. If the
minimal solution is conservative, then
only a conservative maximal solution is
accepted over it. Conservative
conditions always cause a merge to be

- -INPULTS. performed.

* -programs (a) If the minimal solution is a single
- --process, then a trivial solution has been

found (occurs if the bi-partite graph is
- sitch setting (c) complete and may occur if it is not* * *connected, although in this case there

may be several connected components that
sensor input (d) can be treated independently). When a

trivial solution occurs and flows are not
decomposable, the original bi-partite

a isinpu (6)graph may be considered as a solution

* aisinut( alternative.

Returning to the robot controller
-push buttons (b) example, the DFD part of the solution

* * *goes like this (underscoring highlights
- --the terms for the next operator

be.. a.ftft.,lo application):

Figa,. 21. 10 Maul. far Rabat Cantrell-, Ral.-Time. D-ftftp..m
1 1
0f 0. initial sentence (from Figure 22a):

terms:
(A 9 ) (Y Z~)

Pi POpi PO(there are three operand pairs here:
A and C, D and Y, E and Z. Since

t~i4~,they are independent, the algebra

fA 1 (a twc:can merge them concurrently)

nodes:

ALI) (c) () Y Z)
((d) (I MY

(Az 1) (e) ( ) MZ)

ft .1awl .- "all.f, bi- ftftfll grph I b. d -.ftft..tft graph, D nO) (A C D) ( ) ty) I(
. d...pofillon graph int.,p,.letion wib th t6t co ire ir-traaion added (A C E I ( s)(aI (

er lpeldJM, g.uluty 1. conditions: (1) [A&C],

...... ~ begi,. I entd P".Itt... (Figure 22b) ( ) [& ,E Z

terms:

I ff... p,.Mft J.f.. A. C) j D.*Y E. ZI

... ~.e. .minimal solution (conservative)
AM, M*. .. (there is no maximal conservative
Co.ld. bo... d solution)

*ll.b light. (a)

.1....nodes:
lee ((I (alir . c) ( D.Y E.ZJI

The*t~f ft., lb . p . we ..al.... aire n lb.p.V t*. tb

(A.CI (e) (z) ill
F igft. 22 01bo1 C.M.l1tl., 111 - pe"lb Gratph Me. "~tp-1fl... Gratph

0I..t DFD 4-. 01s. if t fti)

C. Interpreting the DFD Result

The operator is repeatedly applied to the To produce the initial DFD graph
sentence until the minimal termination interpretation of the solution, the nodes
criteria is reached (recall that minimal of the senten'e become the graph
termination criteria means no adjacent processes, the node links are paired to
distributor-collector node pairs). This produce the graph local flows, and the
is called a minimal solution, node labels are the external input and
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output data flows. Diagram layout is in transformations that output the data
partition order. flows "sensor output" and "axis

output",
This is where a control transformation is
added. The external input and output the analyst has defined a predicate
control flows are allocated to it. The called "axis bound error" on the
data flow to control flow block, the input data flow called "axis input":
control flow to data flow block (both
from the I/O matrix) and any predicates forsome(i),
(defined by the analyst) connect it to :axisposition(i): > bound(i)
the data transformations.

which generates a control flow from
To complete the initial transformation the data transformation that inputs
schema, the analyst: the data flow "axis input" to the

control transformation.
1. replaces the algebra symbols with the

actual flow names from the context The resulting initial transformation
diagram schema is shown in Figure 22c. The

analyst has named the processes, based on
2. names each of the transformations, the external input and output flows, and

based on recognizing the data has then named the local flows, based on
transform of inputs to outputs or the the process names.
control function (from the experience
and knowledge of the analyst)

D. Continuing the Decomposition
3. names the local flows connecting the

transformations (again, from The control flow transformation can now
experience and knowledge) be decomposed by constructing the matrix

that is indicated by the control flows in
Continuing the robot controller example, the initial decomposition, filling it in,
if the initial solution sentence from constructing the bi-partite graph,
step 1, above, is: writing the initial sentence, and

applying the algebra to this sentence.
terms: This results in a CFD, just as the data
JA.C) (D.Y E.Z) flow context decomposition resulted in a

DFD.
nodes:
It) (a c) J) (D.Y E.Z)) Continuing the robot controller example,

the 3-by-3 matrix for the control
|(A.C} (d} fyj fi transformation decomposition is
(A.C) (e) (z) (}} constructed using the control flows in

Figure 22c and the CFD decomposition base
then the processes of the interpretation matrix information from the initial I/O
are: matrix (Figure 21). The analyst supplies

the rest of the information to fill in
Processes the matrix, which is shown in Figure 23.

1. A.C
2. D.Y From this matrix, a bi-partite graph is
3. E.Z constructed (Figure 24a). The initial

sentence corresponding to this graph
and the local flows are between starts the control transformation
processes: decomposition (as before, underscoring

highlights the terms for the next
Local Flows operator application):

1. (A.C) (D.Y)
2. JA.C) (E.Z} 0. initial sentence (from Figure 24a):

The control transformation is now added, terms:
with the following: 14 E G) (X V W1

the external input and output control (there are two operand pairs here:
flows, bush buttons (b) and lights B and F, X and W. Since they are
(c) are allocated to it, independent, the algebra can merge

them concurrently)
from the data flow to control flow
block of the I/O matrix (see Figures 1. conditions: (1) [B&F]
19 and 21), one control flow is (2) (X&WJ
generated: from the data (Figure 24b)
transformation that inputs the data
flow "switch setting" to the control terms:
transformation, (B.F G) (X.W YJ

from the control flow to data flow (there are two operand pairs here:
block of the I/O matrix (see Figures G and X.W, B.F and V. Since they
19 and 21), two control flows are are independent, the algebra can
generated: from the control merge them concurrently)
transformation to the data
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2. conditions: (3) [G&X.W]
(4) [B.F&V]

(Figure 24c) PF PO P PO

terms:

maximal solution (constructive)
(there is no minimal solution) ...

CFO decomposiion base matrix 0OU T P UT S
(from tho $a matrix)

lights (x) O robot controller bi-parlit grahpt b constroinl: (I) IllA F (2) X&WS

Send (v)constr : (3) [O&X.W] (4) |B.1VI d. decomposition of *Control T .ks
begin/en (w

suspend I begin / nd IN)

resume (w) no rog O
aelct I

pr Pog push
sOol )f) Control botlon8 (b)

* * * -push buttons (b) jt, I+ (nI (gi Z) ..

no prog selected / Control

* * * program selected (f) ..parl light. ll.

- axis bound eror (g) a.is* * boond
error (g)

Figure 24 Robot Controller Control Trnfor,. Decomposition
(from the CFD decomposition matrix)

F. Terminating the Decomposition Process

In the overall decomposition process, one
of the difficult questions is the

F.... 23 CFO D-ooreso .ot Usel.r to, Robot Coo.ot determination of when to terminate the

process. Using this algebra, the
decomposition criteria that specifies the
next step in the decomposition process is
based on the process to be decomposed and

E. Interpreting the CFD Result the composition of the flows in to, and
out of, the process.

The terminal sentence produces two
process nodes: A primitive process is one with a trivial

decomposition and a primitive flow is one
Processes with no components (neither a compound

1. {B.F.V) data flow, nor a control flow bundle):
2. (G.X.W)

Next Decomposition Step Criteria
and the one link connecting them
generates one local flow: process decomposition non-primitive

process
Local Flow

1. (B.F.V) IG.X.W) flow decomposition primitive
process and

Assigning partitions from top to bottom, non-primitive
instead of from left to right, produces flows
the CFD decomposition of the control
transformation (Figure 24d). The analyst terminate decomposition primitive
has named the processes, based on the process and
external (to the control context) input primitive
and output control flows, and has named flows
the local flow based on the process
names.% G. Decomposition Quality

This algebra provides a quality metric
for decomposition. Based on the
decomposition and the matrix
interpretations of the initial and
terminal sentences, the decomposition may
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be trivial, optimal or feasible: matrix. Additional information will be
required from the analyst to produce the
state-transition diagram, but there are

Quality Definition several points in common with the
trivial decomposes to a single algebra:

process
optimal initial and terminal the additional information is about

matrices are identical the inputs and outputs only (as it is
and not trivial with the algebra),

feasible initial and terminal
matrices are distinct the number and arrangement of states
and not trivial and transitions is produced by the

procedure, not directly specified by
Optimal decompositions occur when the the analyst -- it will change to meet
decomposition can be accomplished using the specification as the
conservative operators exclusively, specification changes (this is
There may be both minimal and maximal similar to the way that the algebra
solutions, or just one solution. The constructs and changes the processes
manage robot decomposition example is of the transformation schema to
optimal. follow the specification),

Feasible decompositions have multiple A very small example, from Ward and
solutions and result when any non- Mellor [5), is used to illustrate the
conservative conditions apply (Fig. 15). process. The example is the state-

transition diagram for a three-way lamp:

H. Handling Decomposition Feedback A three-way lamp bulb contains two
filaments, one of lower power, one of

All input flows are treated as distinct higher power. Assume a lamp bulb
from all output flows. This means that with 50 and 100 watt filaments.
when a process has an output flow to a Successive pulls on the lamp switch-
store and an input flow from the same chain cycle the bulb from OW (off) to
store, the flows to and from the store 50W to 100W to 150W and back to OW

a re treated as distinct by the algebra. (off) as the individual filaments go
Non-store input and output flows of the on and off' (Figure 25a).

same name are treated as representing
different flow iterations, or as before- sw~
and-after flow updates, or as being On

otherwise distinct.

After the decomposition has been SOW am
completed, a local flow is added to the Con.trol
resulting diagram. It connects the Pul --

process generating the flow as output, to lamp 100W..
the process accepting the flow as input
(if these are the same process, no local
flow is generated). The name of this101 1
local flow is the same as the common iO f

input-output name.* thre - um.-., .30
b. decompoiionl .. Via

SOW.as

1. State-Transition so a"
Decomposition Overview f

The Ward-Mellor methodology [51 calls for*
final decomposition of all control L

transformations as state-transition
diagrams. When used with the algebra,
that means all lowest level control Column - 1 2
transformations. If the single control * piu-1[-~
transformat ion added after the DFD I-4--
decomposition step has a small number of Pul *2
control flows, the CFD decomposition step Pul * (3) [~ .)~

can be skipped. Conversely, if the L1A....LI'
control transformation is very complex, .. p~d cub..t arild. d. .. qu.n.. oun
it ay require more than one level of
decomposition to make the individual
control transformations manageable Figure 25. Augentcing the Specificaion to, Si.tat astion Diagrams,

(especially if control flows are not
bundled at the higher levels). In either
case (or in between), the lowest level
control transformations are decomposed to Figure 25b shows the specification matrix
state-transition diagrams. corresponding to the context of Figure

2 5 a. The next two steps comprise the
The starting point for this adjunct to additional information supplied by the
the algebra is the control analyst:
transformation's CFD specification
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each row of the matrix is expanded so logic [12, 131 to resolve ambiguities.
that there is one control flow input Work is proceeding towards a working
row for each allowed subset of model in this area.
control flow outputs in the original
line which can occur together,

VI. Tools
columns are added to specify all of
the sequences in which the input The algebra is fairly straightforward for
control flows may occur -- each small problems, but becomes difficult to
column generates a time line (these apply as the problem becomes larger.
time lines are specified This necessitates implementing the
independently so that additional algebra as an automated tool if it is to
specification may be added later be used for real problems.
without disturbing what is already
there).

A. A Prototype
The time lines are then combined to form
a state-transition diagram. The analyst The original algebra was implemented as a
will try to name the states and may small Prolog model on a standard
iterate to get a (better) solution. microprocessor. Both the manage robot

example and a set of test cases were
In the three-way lamp example, the developed and validated by hand. This
expanded matrix rows are shown in Figure was used to verify the Prolog model.
25c and the sequence columns in Figure While this worked reasonably well for the
25d. The time lines corresponding to the author, the level of tolerance that was
sequence columns are shown in Figure 26a required to use a graphics tool that only
and the state-transition diagram put out text kept the prototype from
constructed from these time lines in being widely tested.
Figure 26b.

The prototype for this algebra (and
P.." (3) P.l (1) P," (2) subsequent transformations, such as state

-.ur O "S nS f -transition diagram generation) is being
sOW° "on s0OW.a implemented in the C language, in a

standard windowing and graphics
Pull (2) P.,, () Poll (3) environment, on a standard microcomputer.

column 2 This is taking longer to implement than
soWo. tOWo SOW°. the Prolog model took, but should be
,oow on~ 10W off received by a wider audience for testing

Poll Pull P.l '.l P.1 purposes.

SOW .. SOW on, SOW off SOW an SOW .
I Oow 10oWo. ,00w off B. Industrial Strength Production Tools

STim. Lin- ifte Fig-. 25d)

b SIta.-Tr,,lonDiagram Making the algebra usable in a production
environment requires not only a graphics

sowo interface but a tool environment (the
IOWo. . . prototype is being designed as a scratch

O(oo) pad to hold down the work and to keep it

Pull from unintentionally escaping to de facto
Sowo. product status). There are a number of

• tools currently available which automate
sow the drawing and maintenance of

P.l, P., transformation schemas with which the

Sowo. algebra could be combined. The,oow0o. ,W ,ow. decomposition steps might appear to the
,o OW user of such an enhanced package as:

Pu.l
SOW.. 1. the analyst selects a process to be

decomposed (using the mouse), a

2. the package generates an initial ..0

Figre. 2l, Tie. Lt. .0d 1.- Taniii.0 Diagram. matrix, decomposing data flows ( from
a dictionary), if necessary, _PAP

3. the analyst fills in the matrix aa Pit
It is expected that the complexity of the (using the mouse),
independent time lines does not go up
nearly as fast as the complexity of the 4. the package applies the algebra,
states (no combinatorial explosion for generates the graph interpretation,
time lines, which can be thought of as and displays the initial
forming a basis set for the state- decomposition DFD and single control
transition diagram under construction). transformation, with context flow and
One concern about combining time lines is store names already supplied,
the question of whether they will combine
directly for large problems or whether 5. the analyst adds process names and
they will need some form of interval local flow names to complete the

initial decomposition,
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6. the analyst decides to decompose the The author believes that transformation
control transformation as a CFD or as utilities exemplify the general direction
a state-transition diagram, software engineering methods and tools

must take if we are to substantially
7. if as a CFD, the package sets up the improve the process in the next few

CFD decomposition matrix, fills in years. Methods and tools can be defined
the part corresponding to the CFD and implemented through graphics
decomposition base matrix block in interfaces to provide an automated
the original I/O matrix, and the sequence of transformations from
analyst fills in the rest of the specification to source code.
matrix, which the package decomposes
and displays, in the same way it did
for the DFD, so the analyst can again Appendix A
name the processes and flows, Motivation for a New Algebra

8. for state-transition decomposition, In looking at alternatives to the I/O
the package will present each row of matrix as an interface specification
the control matrix to the analyst who mechanism for the analyst to use in an
will turn off outputs not in that automated tool, one of the mechanisms
subset, considered was to display the input flows

on the left, the output flows on the
9. pointing to rows of the expanded right, and let the analyst connect them.

matrix with the mouse will build the This was rejected over the matrix as a
sequence columns and display the time specification mechanism because it
line under construction, required two elements (the input and

output flows) to specify what could be
10. upon completion, the state-transition said in the matrix with one (toggle

diagram will be generated and matrix element).
displayed, after which the analyst
will try to name the states and may In studying this bi-partite graph form,
iterate to get a (better) solution. it became apparent that it had advantages

over the matrix when used as the
The user only sees the graphics interface underlying algebra. Specifically, it:
and does not deal with the algebra
directly at all. reduced the number of operators to

one,

VII. Outlook provided the best solution without
modes (row versus column, and broad

In the near term, work is continuing on versus deep decomposition proved to
the prototype and on the completion and be artifacts of the representation),
integration of the state-transition
decomposition model into the algebra. allowed for multiple solutions in a

more natural way than equal length
In the longer term, transformations will rows or columns,
be developed for other parts of the Ward-
Mellor methodology. This implies provided a theoretical basis for what
completing the analysis level and were previously assumptions (e.g.
defining transformations to and within validity of the I/O matrix,
the design level for generation of task decomposition optimality),
architecture, structure charts within
tasks, multi-process and multi-processor allowed easy expansion to real-time,
models, token modeling, and data model and
integration.

provided the answer in a format
Other long term objectives are: suitable for automatic layout.

the transformation of detailed design Additionally, as the paper progressed, it
information to source code, became clear that:

reuse of analysis and design there were many fewer definitions
information through transformation -- needed,
for example, generating a
characteristic decomposition for an some definitions, such as minimal
existing transformation schema by sentence and primary flow, along with
which it could be located later, new elements not previously
given an I/O matrix, considered, such as node and

partition, became the basis for
the implementation of the inverse of invariants,
each transformation to implement
reverse engineering, which is needed the conditions for conservation of
not only for source code, but during the specification became specific,
the development process, if analysis instead of probable, as with the
and design information is to remain previous weak operators,
viable over the life of a product.
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the need for a relative matrix to Now compute the reachability matrix, or
generate a graph interpretation from transitive closure, (Figure 27b) of the
a sentence disappeared, and the adjacency matrix. The only elements that
distinction between primary and have changed, versus the adjacency
secondary links became specific matrix, are that VIV@ = 1. But this is
(previously, a decomposition and a just the complete bi-partite graph of
matrix were required to generate all Figure 3, which is equivalent to the I/O
of the links, which were then tested matrix. Additionally, VoV 0 remains
for primary or secondary type). true due to the DAG invariant. When

combined with ViV. = 1, this is
The matrix is retained as the most equivalent to the orientations of nodes
economical specification representation in partitions being uniform, and this is
form. maintained by the mu-DAG invariant on

partitions.

Appendix B Since no elements in the same partition
Equivalence of the I/O Matrix are adjacent, and the graph is acyclic,

and the Adjacency Matrix Vi iVj = ViVo = VeVi = 0, and the only
part of the adjacency matrix that is not

To see that the I/O matrix is equivalent static for this algebra is exactly that
to the adjacency matrix for the part that corresponds to the I/O matrix.
decomposition algebra, first consider the
general form of a context graph (Figure The I/O matrix is equivalent to the
2) and construct its adjacency matrix adjacency matrix, for this algebra.
(Figure 27a). If Vi is an input vertex,
Ve the context vertex and V. an output
vertex, the only adjacent elements in the
matrix are V#Vc and VcV.. No elements in
the same partition are adjacent so Vi lVj *

= VoA!,l 0 for all 11, i2 and all ol,
o2.

*b d CQo
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Development of Innovative Systems in Ada

Thomas J. Wheeler

Software Technology Center
Ui. S. Army CECOM
Ft. Monmouth N.J.

Abstract: This paper describes an approach to the development of novative functionality; those whose use changes the way the
systems in Ada which provide innovative functionality, that is those using organization operates, or at least, whose use
systems whose introduction into use in an organization changes how changes how some individuals do their work; those whose
that organization functions. Since systems of this type change their functionality is new and unknown. Systems whosc inter-
using organization's behavior, the functionality of the system cannot faces cannot be specified without observation, by the
be adequately specified prior to acquiring experience with the sys-
tem's use. Current approaches to developing this type of system in- designers, of the use of the systems by their "real users"
clude: believing that one can write an adequate specification, which also fit into this category. This paper concentrates on the
doesn't work; prototyping the system, which leads to fielding the development of systems in this second category by inves-
prototype; and evolutionary development, which is slow and inhibits tigating a development strategy, or life cycle model,
real innovation. This paper develops an alternate approach in which which addresses the problem of developing adequate sys-
a System Specification is developed through a sequence of phases of tern specifications by providing a formal specification
creation, formal specification and analysis; validating the concepts method and a formally assisted validation capability for
and facilities of each specification by methodical construction and thsyempcicaonrcs.
formal verification of a prototype of it in an executable very high thsyempcicaonrcss
level language and analysis of simulated use experience. All of the current approaches to developing this type

of system are variations on the cannonical "define re-
quirements, specify, design, implement" life cycle

introduction diagrammed in figure 1.

The current life cycle model for the development of CretApoce ntefrto oa' prahs
software systemsli] provides a linear framework for CretApoce ntefrto oa' prahs
managing their development starting from their Require- the "egotistical" approach, the developers assume that

ments Document through their Implementation and Field- they have adequate experience and intuition to design the

ing[21. All of the Documentation, which is the "work system and the system is developed, more or less, accord-

products" by which the system's development is ing to the diagram. The validation of the system's

managed, is in informal, sometimes structured[31, English functionality (and the verification of the developers' com-

prose; thus the semantics of the system's description is petance) must wait for the tested implementation to be

only available to readers of the documentation and is not introduced into operation. As the time between system's

available for formal checking until the implementation is conception and system's completion and use is usually

running, thereby providing for formal observation and rather long, the customer must have great faith in the

analysis of the system's semantics operationally. Unfor- developer. One would not wait for the completion of a

tunately, this validation of the system's behavior is only building before deciding whether it was acceptable; but

available at the end of the development cycle. This is we do that for software. As the first version of the system

allright if the desired behavior of the system is well is usually not viewed by the customer as satisfactory, the

known at the start of the development but disasterous for "maintenance" phase must be (mis)used to get these sys-

those systems for which it is not. This paper is about the tm noacniinweete a ea l sfl

Ada based development of those systems in the second An alternate approach is to develop a running
category. prototype of the system. Using the developer's analysis of

the intended system's requirements and initial intuition, a
In order to organize the life cycle structure for running prototype is quickly created by an organized

software systems, it is convenient to categorize software method, eg. the UNIXG "shell scripts and pipes"
systems into two categories: those for which it is methodl4l, or an ad-hoc method, eg. the "hacking"
reasonable to expect the system's designers to be able to method, LISP methods can fall into either category
write an adequate system specification based on their in- depending on the mental set of the programmer. This
tuition and experience with similar systems and those for prototype is provided to the users for a trial use period,
which that expectation is not reasonable. The systems in in which the developers acquire feedback as to the cor-
the second category are those systems which provide in- rectness and quality of the prototype's functionality. This
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Specification (Design)

implement

Useru

:+- :. ' +Implementatio

Current Life Cycle Model (figure 1)
process of "trying things out" continues in an iterative functionality, nor orthagonal, since discovering "building
fashion until the developer and customer decide that the blocks" which can be combined to build functions is a
prototype is satisfactoryl. difficult problem in general. The second is that is is dif-

ficult to introduce innovative concepts or facilities, since ll-
There are two possibilities as to how to proceed at this the currently existing concepts and facilities, at any time,

point; in the first, the customer falls into the trap of think- p re a concept nd imlmettin ntia hie
ing hatthe rottyp is n accepabl sotwar sytem provide a conceptual and implementation inertia hinder-

ing that the prototype is an accceptable software system ing the introduction of different ways of system function-
(product) and puts the prototype into operation. The main
problem with this strategy is that the prototype is neither
robust nor maintainability; one would not think of fielding The theoretical problems are also twofold: first, each
a hardware "breadboard", one should not think of field- of the increments is a software development in itself; if
ing the software analog. the increments are substantial, one has helped, since each

is smaller than the origional problem, but each increment
The second possibility, after the prototype is found to needs a development strategy and none of the strategiesbe satisfactory, is that the developer will use the prototype mentioned so far is adequate. The second is that evolu-

as a "running specification". The problem with this is that tion only produces adequately constructed systemsl6;

developing the real system must then be done by a there is no design process of the system's overall struc-

process similar to "reverse engineering"; the prototype ture, which evolves over time, it should not be surprising

has no real specification, the equivalent of one must be that the final system suffers from a lack of structure.

explicitly, covertly or implicitly constructed in the process

of designing the (implementation of the) system. This is not to say that the prototyping strategy and the
evolutionary strategy are not without merit. As will be

The last approach, termed the "evolutionary" ap- seen, a variation of the prototyping strategy forms the
proach, is a simplification of the Family of Systemssl al- basis for the life cycle that is developed here, but with a
proach, in which one starts with the "minimum useable shift in emphasis from the development of the prototype . .

system" and adds functionality until the system is satis- to the development of the specification. The evolutionary

factory. Each step is done using the cannonical life cycle, development fte specelln. The etation

with each new piece either being added on to the current development strategy is an excellent implementation

version or thrown away. If the pieces of functionality are strategy, in that, after the first increment is completed,
smal an ortagoal eoug, ths sratey wr s which is early, there is always something working; but it

small and orthagonal enough, this strategy works should only be used as an implementation strategy, not a
reasonably well. requirements development strategy.

The problems with this approach are both practical
and theoretical. The practical problems are twofold: the This paper develops a strategy for developing a sys-
first is that the increments are neither small, because it tem's specification through the use of formal specifcation

would take too long to build up to a reasonable techniques coupled with translation of a formal system
specification into a verifiably "correct" prototype. The

0 UNIX is a registered trademark of AT&T Bell Laboralories concepts and facilities embodied in the prototype are then

IThe we of Cho form uatifactory" rather than "acceptable" connotes that. in validated by controlled use by the "real" users of the

use, the system provides a level of functionalty which the users view as helping prototype. The feedback, both positive and negative, from
them accomplish their function, as opposed to meeting some predefined criteria, the prototype's use, guides the next iteration of the
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specification and its corresponding verified prototype. nesting of other specifications within the set of declara-
The feedback helps this process converge on a system tions again allows the use of the defined facilities, but
which satisfies the customer. It is important to note that it only within the enclosing specification.

is the specification and not the prototype which is the The specification language, its concepts and its com-
product of each iteration. ponents will be explained in terms of example specifica-

The paper begins, in the next section, by discussing tions which should illustrate and motivate the language

the formal specification method and introducing the ex- and its usage. A specification has a name and collects

ample used to illustrate the method. The translation and together a set of entities which are intended by the

verification techinque is described and illustrated in the specification's author to be thought of as either a concept

third section followed by a description of the require- used in, or a component of, the system. Since there are a

ments development method using these techniques in the number of ways of expressing a particular concept as well

fourth section. In the last section, the relation of this as a number of concepts closely related to any particular

method to the rest of the life cycle and other conclusions concept, the language provides a flexible means of ex-

are discussed. pressing concepts. The simple examples given here will
illustrate the general ways of writing specifications in the

Formal System Specification language, while illustrating the specification language.
The first example (exl) is a stack module which al-

As the approach taken here is entirely dependent on lows items, integers in this case, to be PUSHed onto or
formal specification, the Specification Language, its Poped off of the STACK, which is an object internal to the
method of use and formal System Specifications are module.
defined in this section. The specification method and lan-
guage are meant to fit well with the model of program- INTEGER_STACK : PCIFICA TuINTEGERSTACK: (h,l,..I,); -- a tuple

ming which makes use of explicitly defined modules in- where lIi1,..I, : integer and 0:n;
terconnected together as components to form a system, as Size(INTEGER STACK) > 0 ; -- invariant

is used in languages like Ada)[7l or MODULA-2[sj. This PUSH:( INTEGERSTACK, I:Integer - INTEGER STACK)=
model of programming is very intuitive and matches the Post INTEGER-STACK' = INTEGERSTACK I1;

style of hardware construction where systems are con- Pre INTEGER STACK = (hI.1C,..l,),

structed out of subsystems, which are constructed out of INTEGER STACK 6 0;
components, etc. In this model, components are explicitly Post i' = I..
and individually constructed out of smaller components INTEGERSTACK' = ( htli,..ls-l);

connected to other components to form the system EMPTY:( INTEGERSTACK - Result:Boolean) =
and c e ot o nResult'= ( INTEGER STACK = ) ); -- empty tuple
(or next larger subsystem). end INTEGERSTACK MOD-ULE;

The specification language is meant to be natural and (exl)

intuitive for programmers to use and therefore the syntax This module, called "INTEGERSTACK_ _MODULE",

and style of the language are similar to those of modern specifies a stack of integers by declaring an object, ie. a
programming languages. The language has, for instance, variable containing the state of the module, called "IN-

modules, types, objects, statements and operations, but TEGERSTACK" which is defined as an n-tuple in which
these are defined in terms of mathematical concepts each element is a integer. There is an assertion, the in-
rather than in terms of execution of a computer; modules variant, which states that the stack can never have less
are specifications, types and objects are defined in terms than zero elements. There are three operations declared
of set theory and statements and operations are asser- which are "applicable" to the stack, the first of these
tions. "PUSH" takes the current value of the stack object and a

Specifications are modular; they consist of a name, a integer parameter and produces a new value of the stack.

set of parameters, a set of declarations of types, objects The term "INTEGER-STACK" in the signature of the PUSH

and/or other specifications and a set of operations. Each operation refers to the actual INTEGERSTACK object
of the types and objects are defined by a name and a defined on the second line of the specification, whereas
signature. The operations are defined by a name, a sig- "I" is a formal parameter which refers to the value of

nature, a precondition and a postcondition. Specifications whatever actual parameter is supplied when the
are related to other specifications by importing other operation is invoked; "global" variables (objects) are ex-

specifications or by nesting other specifications as local plicitly referenced in signatures in this language. The

declarations. The importing of specifications allows the PUSH operation causes the value of the stack to be equal

use of the facilities defined in the other specification by to the previous value of the stack, with the integer (I)

entities within the importing specification, as well as by concatenated (&) to the right end of the stack. This is
other specifications which import that specification; the stated by the post-condition of the operation, where IN-

0 Ada is a registered trademark of the US Government TEGERSTACK' denotes the value of the stack after the
(Ada Joint Project Office). operation is complete. Note that in the post-condition,
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INTEGER STACK and INTEGER STACK' denote the value sequences of lines labeled "<Output>" and "<Input>"

of the actual stack before and after the operation invoca- which are meant to represent, or model, the real ter-

tion respectively, while "I" denotes the value of the actual minal's printer or screen and keyboard respectively. As

parameter supplied in the "call" of the operation. this module is meant to provide for input and output of
lines, the two operations provide for reading the first

The second operation illustrates the use of a pre-con- (leftmost) line from the (temporal) sequence of the lines
dition defining the conditions required before the POP which are going to be typed by the user in the future and
operation can be invoked. The pre-condition states that it the printing of the last (rightmost) line of the lines which
is expected that the stack before the operation invocation have been output in the past.
will contain a number of integers designated as I through TERMINAL-MODULE: (TextSequences) SPECIFICATION

In and that that number will not be zero. This pre-condi- TERMINAL: (<Output>,<Input>);--(<past output>.qfutire input>)

tion is a compound statement and illustrates two of the GET: (TERMINAL.<Input> -. TERMINAL.<Input> ,
type of statements which are used in pre-conditions; the Resuht:Linel EXCEPTIONS)=
first is an example of a condition being used for a local Pre TERMINAL.Input = <First:Line & <Rest>>,

<First & <Rest>> = < iffails raise( EOF);

declaration of a value that an object is stated to have so Post TERMINAL.Input' = <Rest>,

that it may be referred to in the post-condition thereby Result' = First ;
allowing the effects of the operation to be defined. The PUT: (TERMINAL.<Output>,L:Line--TERMINAL.<Output>)=Post TERMINAL<Output>' 

= <Output>

other is an example of a condition which is expected to end TERMINAL MODULE;

be checked by the pre-condition, with failure not allowing -(exT)

the operation to be invoked. The post-condition is a com-

pound condition in which the effects of the operation on The "EXCEPTIONS" declaration and the "iffails" state-

both the stack and the parameter are defined by state- ment allow specification of failures or errors in the sys-

ments referring to the symbolic value of the stack tern's operation.

declared in the first, declarative, part of the pre-condi- The main example of this section showing the makeup
tion. of a system specification is the following example system,

The use of a condition for the purpose of introducing which will be used as a running example, illustrating the

a local declaration makes sense if one thinks of the defini- method, in the rest of the paper. The example is a text

tion of an operation (a pre-condition, post-condition editor which is a version2 of the UNIX- Ed editor small

pair) in terms of the phrase "if the pre-condition (is true) enough to fit within the scope of the paper, yet substantial

then the operation occurrs causing the post-condition (to enough to allow illustration of the concepts of this paper.

become true)"; in this case, "(l)if the stack is considered
to contain (11,12,..l) before Pop is invoked (the first pre- The editor specification consists of two main modules,
condition) and (2) if the stack is not empty (the second the environment within which the editor is to be specified

pre-condition); then the operation Pop is invoked causing and the editor module which defines the behavior of the

(1) I to contain In (the first post-condition)and (2) In to be editor. The environment module defines (contains)

removed from the right hand end of the stack (the second models of the terminal, in the Terminal module, and the

post-condition) leaving it containing (11.1..In-i)." file system in the Files module. The overall structure of
the specification is shown in figure 2.

The last operation is a function which
provides(returns) a boolean result based on the current Here the EditorASpec contains the Editor and En-

value of the stack. Note that since the only statement in vironment specifications, the latter of which contains the

the post-condition is a definition of the value returned, Terminal and Files specifications. The Editor specifica-

the word "post" is not necessary. tion uses the Environment specification.

The next example(ex2) is less academic and is closer In the specification language, the specification is

to the type of specifications that would be used in paramaterized by the library module "text_sequences"
specifications of systems. This specification defines a which defines lines and sequences of lines. The two main
(printing) terminal which has line input and output. It modules which make up the specification are nested
reads a sequence of lines from the Input (keyboard) and within the specification. The Terminal and Files specifica-
prints a sequence of lines on the Output (printer). The tions are further nested within the Environment specifica-
terminal module is paramaterized by text sequences tion. The editor specification module is parameterized by
which can be formally defined, but for now can be and thereby imports the environment specification. An in-
thought of as providing definitions of text lines and se- dented list of the specification headings shows this textual
quences of text lines, a special syntax for sequences structure(ex3).
("<first & <rest>>" is a sequence of lines with the
leftmost line labeled "first" and the rightmost sub-
sequence labeled "<rest>") and operations applicable to
sequences (eg. "&": concatenation of lines). The terminal 2 This example is what is refered to as the minimum useful version of

object which this module declares is defined as a pair of the systemnis.
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The rest of the Editor specification defines the opera-

Editor A Spec: tions which can take place when using the Editor system.
Each of the operations has a pre-condition which defines

Editor: the circumstances under which the operation is invoked

Document: <Prefix> & <Suffix>; and the circumstances under which an exception occurrs
D ;while invoking it and a post-condition which defines the

Append, Print, Backup, Delete effects of the invocation. An example operation specifica-

Read, Write, Exit tion which defines the behavior of appending a line input
from the user's terminal after the current line in the docu-

• .. ment which raises an exception if an unexpected end of

Environment: 
file is encountered is (ex6).
APPEND: (TERMINAL, DOCUMENT -> TERMINAL,

Terminal: (<Output>,<Input>); DOCUMENT I EXCEPTIONS)=
I Pre TERMINAL = (<Output>, <CL:COMMAND LINE &

Get, Put C_L.CMD = 'A'; Text:Line & <Rest>>),

Files: (Name -. <Text>); <Text & <Rest>> /= o if fails raise(Missing_text);

Read, Write Post TERMINAL' =(<<Output> & C_L >, <«Text> & <Rest>>); b
TERMINAL" = (<<Output> & CL & Text>, <Rest> ),

__________________DOCUMENT.<Prefix>" =DOCUMENT.<Prefix>&<Text>;

Figure 2 
(ex6)

EDITORA_SPEC: (Text Sequences) SPECIFICATION The "APPEND" operation requires, in the pre-condi-
ENVIRONMENT: SPECIFICATION tion, that the command on the command line be "A" and

TERMINALMODULE: SPECIFICATION that there be some text after it on the Input. The post-
FILES MODULE: SPECIFICATION ta t

EDITOR: (ENVIRONMENT) SPECIFICATION condition expresses the operation's actions in two steps,

(ex3) thus both the " TERMINAL' " and the " TERMINAL" " in

The terminal specification was given above; the Files the post-condition; the first line of the post-condition is

specification (ex4) defines (models) the behavior of a not really needed, but this style models the intuitive un-

simple file system by a partial function from file names to derstanding of the operation, first the operation's name is

sequences of lines contained in those files and READ and echoed to the output and then the text is, and makes the

WRITE operations on the function. proof more straightforward.

FILESMODULE: SPECIFICATION Proof Method
FILES : ( Name: STRING 4- <Text> ) 

M

Exception Names contains NonExistent
READ: ( Name: STRING , FILES -* <Text>EXCEPTIONS)= Correctness of a specification with respect to another

Pre (Name, AnyText) in FILES if-fails raise(NonExistent); specification is defined in terms of a mapping of the

Post <Text>' = FILES( Name); values of the objects of the first specification, usually
WRITE:(Name:STRING,FILES,<Text>-.FILESIEXCEPTIONS)= thought of as an implementation, onto the values of the

Pre (Name, Prev-text) in FILES if-fails raise(NonExistent); objects in the second specification and mappings of the
Post FILES' =(FILES-(Name,<Prevtext>))U(Name,<Text>); transformations between states of the first by operations

(ex4) of the first onto transformations between states of the

The actual editor specification defines (models) the second by operations in the secondliol in accordance with

behavior of the editing system by importing the environ- the diagram in Figure 3.

ment and defining an internal document, to be used as a
conceptual model, as a concatenated pair of sequences ofR
lines and defining operations on all of those objects which
give the behavior of the editor. The "declarative"
part(ex5) of the editor specification module gives the ini-
tial conditions of the imported modules, defines and ini-
tializes the document within the editor and defines the
members of the set of possible exceptions. Op ln* Opeop d

EDITOR: (ENVIRONMENT) SPECIFICATION 2
INITIALLY: TERMINAL.<Output> = <> S 2rs2

FILES = current file system state; se

DOCUMENT : <Prefix>&<Suffix> ; -- > <lines up to and
including the current line>&41ines following the current line>;
INITIALLY: DOCUMENT = <> & <> ;

Exception-Names contains {Missing_text, End_ofDoc, figure 3
NonExistent, At Line_0, DelLine_0. EOF);
(ex5)
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that is is necessary to verify the equivalence of theThe mapping, "R": the representation's map, is an prttpanthsyempeictosneweaeeay

abstraction function. The first specification, usually an prototype and the system specification, since we are really
implementation, is defined to be correct with respect to interested in the satisfaction of the specification and the
the second if the above diagram commutes or equiv- prototype is just a vehicle for that end, not a product. Thisalently if: approach to rapid prototyping concentrates on the

development of a specification with the prototype being

Rused to assist in that process not on the development of a
R( Op(S t )) = Op ...n(R(S,st)) prototype with a specification being an afterthought (or

not thought of). Once any of the prototypes is verified to
for all S and Op in the first and second specifications. be functionally equivalent to its corresponding system
The first specification is correct with respect to the specification, the validation of the prototype automatically
second, or correctly implements the second, if the first is an validates that system specification.
abstraction of the second; ie. if there is a homomorphic The verification process for the prototype is relatively
map from the (objects and operations of) first specifica- straightforward, as will be seen later, using the technique
tion to (those of) the second. described earlier in the section on proof method. The

Often, in the case when one of the specifications (the reason for this relative ease of verification is that the
second) is a system specification, the operation referred prototyping method is based on a translation scheme
to as Opim. above is a sequence of operations, sometimes which results in the objects and operations in the
referred to as a "Path". An example of this will be seen prototype corresponding extremely closely, usually one-
later. The construction of the path equivalent to a to-one, to the concepts and operations in the system
specification's operation through the implementation or specification; and the verification method is based on con-
architecture specification is a ramification of the implicit structing a mapping function from the objects and func-
invocation character of system specifications written in tions of an implementation onto the concepts and opera-
the style described above, which allows us to separate the tions of the specification. If this mapping is one-to-one,
specifications of the aspects of system behavior and sys- the proof is trivial.
tem structure. This correspondence of path to operation is The validation, on the other hand, must be caretully
a formalization of the concept of "traceability"; it is a thought out and carried out, as the developers and users
description of, as well as an aid in, allocating system are attempting to ascertain whether a system, which is
functions to system components. new and unfamiliar to the users is helping the users do

their jobs better; but this is no different than the process
of validating the product in the standard life cycle; and is

Formally Assisted Prototyping much earlier in the life cycle and much cheaper; this is

The availability of a formal System Specification the point of this development method.
makes possible a way of prototyping the system's The method of formal prototyping will be described
functionality which avoids the problems associated with through the editor example whose specification was out-
the rapid prototyping methods described earlier, viz. the lined and illustrated earlier. The prototype will be
problem of "fielding" the prototype and the "running programmed in the SETLIXI] programming language, a
specification" problem. The key to the realization of this "very high level" programming language based on the in-
possibility is the availability of "very high level" lan- corporation of sets as a built in data type. The SETL lan-
guages, through which the specification can be quickly guage is also a modular language and thus the structure,
and faithfully implemented. In this approach, we define a as well as the contents, of the specification can be
translation scheme to guide a translation of the system straightforwardly portrayed in the prototype program. The
specification into one of these languages, such that there Editor prototype(ex7) consists of two modules, one im-
is a one-to-one correspondence of most of the concepts plementing the editor described in the specification and
embodied in the specification in the "very high level" one implementing the exception model used in the
program. We then verify, formally, that the program specification, along with the built in modules which
implements the system specification and then validate it implement the terminal, which has the same semantics as
by having the system's prospective users make use of the that in the specification, and the file system, which has
prototype system in a set of controlled experimental the normal record I/o semantics.
scenerios to ascertain whether our design is effective. Directory EDITOR; $ SETL Software Prototype

Program Editor; imports Exceptions;
The process of designing, translating, verifying and Procedure On-Failure of(Bool_Exp),repeats iteratively improving the design of the Macro Raise( Excep, Bool Exp),validating Procedure Raised(Excep);

system until the users are satisfied that the behavior of the Library EXCEPTIONS; exports Exceptions;
prototype is effective, and thus satisfied with the system Procedure OnFailure of(Bool_Exp).

Macro Raise( Excep, BoolExp).specification, which was formally verified to exhibit the Procedure Raised(Excep);
same behavior as the prototype. It is important to note end Directory; S (ex7)
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The Editor prototype implements the specification's In the System Specification, the "invocation" of an
COMMANDLINE, which was a sequence of characters, its operation is implicit in that any operation whose pre-con-COMMANDLNE, widition is true is eligible to occur, but in the prototype, as it
which was a sequence of characters, with STRINGS; thus is a program, the invocation must be caused by the

there is a straightforward and obvious mapping function program reading and decoding the input to decide which
for these back onto the specification's corresponding con- procedure to call Thus there is an interpreter loop, whichcet.The DOCUMENT, which was a concatenated (&) again is stylized and straightforward to construct, which
cepts. Th OUET hc a octntd() controls the invocation of procedures by explicitly decod-
pair of sequences of lines in the specification, is imple- in tos t s ofation opr o n's pre-conditly dec h
mented in the prototype as a pair of Tupples of strings ing those parts of each operation's pre-conditions which
which again has a straightforward and obvious mapping determine which operation applies at a given time, in this
function for these onto the specification's corresponding instance by a case on the Command (exl0).
concepts. Likewise, the initialization of the DOCUMENT to loop do
the empty sequence is implemented by the initialization read(Commandjline);

if EOF then EOFExceptionHandler end if;of the pair of sequences to empty strings. Lastly, EXCEP- Print(Commandline);
TIONS in the specification, which is a set of names, is Command := Commandline(l);
implemented as a set of identifiers, with another obvious Parameter := Commandline(2...#Command_line);

mapping to the specification. The declalative part of the case Command of
prototype is given in (ex8). ('A'): Append;

('P'): Print_cmd;
Program Editor; ('B'): Backup;

('D'): Delete;
Commandline: STRING; S a line. Commandline = ('R'): Read cmd;

Command + Parameter ('W'): Write cmd;
Command : STRING; $ a character (+ = concatenation) ('E'): Exitcmd;
Parameter: STRING; S a string else Error;

end case;
Prefix : TUPPLE(STRING); S DOCUMENT= Prefix + Suffix (ex10)
Suffix: TUPPLE(STRING) ;
Prefix := Suffix := S ; $ Initially: Prefix + Suffix = The detection of raised exceptions is implemented by

checking the set of Raised exceptions after the case state-
Editor_Exceptions := (Missing_Text, EndofDoc, AtLine_0, ment(exl 1) to see if any are raised and calling the hand-

DelLine_0, NonExistentl; lers if so.
Exceptions := Exceptions + EditorExceptions;

(ex8) if Raised /= {} then _ii ,,' d¢'
case of ~"

The operations of the specification are each imple- ca issingText in Raised): MissingText_Handler;
mented by procedures in the prototype which have, cor- (Endof Doc in Raised): EndofDocHandler;
respondingly, the same names as the operations. The (AtLine_0 in Raised): At_Line_0_Handler:
translation scheme which produces each procedure con- (Del_Line_0 in Raised): Del_Line_0_Handler;(NonExistent inRaiwel): NnExisten,_.ondler;
sists, approximately, of providing one, or sometimes a end case;
few, statement(s) for each assertion in the post-condition end it;
of the Operation; with Raise statements for each excep- end loop;
tion raised in the pre-condition. The example operation (exll
APPEND is implemented by the Procedure Append, which The Path, for the APPEND operation and for the case
is shown in (ex9), along with the procedure which imple- when there is a premature end of input, which has to be
ments the exception handler for the exception which can constructed for the proof of correctness, is the concatena-
be raised by APPEND. tion of the interpretation loop body with the statements in

Procedure Append; the Append procedure, followed by the possible invoca-

Read(line); tion of the exception procedure. These paths are shown
Raise(Missing_Text, On_Failureof( not EOF)); on the left side of figure 4.

Print(line);
Prefix := Prefix + line; Proof of the Prototype

end Procedure Append;

Procedure %MissingjextHandler; As the prototype must be verified to be equivalent to

Print('lMissing textl); the specification. in order that validation of the prototype

Print('E'); also validates the system specification, we must prove
Exitcmd; that the prototype implements the specification. This

end Procedure Missing_TextHandler; proof relies on the simplicity of the abstraction mapping
(ex9) function to make the proof simple. The outline of the

proof is shown in figure 4.

16
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Proof Outline of Prototype.Append
Abstraction Map R:( PROTOTYPE.EDITOR -> EDITOR_A_SPEC.EDITOR) =

Command-line i-4 COMMANDLINE,
Command -- CMD.
Parameter J. PARAMETER,
Exception J EXCEPTIONS,
STDOUT, STDIN t-+ TERMINAL;

Rpath: Read(Command line);
Print(Command line);
Command := Commandline(l);
Append;

Read(line);
Print (line);
Prefix := Prefix + line; -R-> APPEND;

or
Read (Command) line)
Print(Command line);
Command := Commandline() ;
Append;

Read (line);
Raise(Missing Text, On Failure_of(not EOF));

Print ( Missing text F);
Print('E');
Exit cmd; -R-> APPEND;

Prefix := Suffix := 11; Raise (MissingText);
quit; Missing_Text_Handler;

--------------------------------------------------------------------------------------------
if R(STD OUT, STDIN) = <<Output>,<"A" & LI & <Lines> >>

EDITOR.APPEND'=
Read(Command line);
Print(Command line); -R-> TERMINAL = <<Output &"A">, <LI& Lines>>;
Command := Commandline(l); -R-> CL.CMD = "A";
Append;

Read(line);
Print(line); -R-> TERMINAL = <<Output & "A"& Ll>,Lines>;
Prefix := Prefix + line; -R-> DOCUMENT = <Prefix & LI>, <Suffix>;

or
if R(STD OUT. STDIN) = <<Output>,<"A">

EDITGR.MissingTextHandler' =
Read(Command)line);
Prnt(Commandjline); -R-> TERMINAL = <<Output &"A">, <>;
Command := Commandline(l); -R-> C L.CMD = "A";
Read(Ine); -R-> <Text & <Rest /= <>
Raise(MissingText, On Failure of(not EOF));-R-> !Fail => Missing-text!

Print('IMtsstng text f); -R-> TERMINAL = <<Output & "A" &
Print('E'); "IMissing text]"& "E"> , 

<>>
Exit cmd;

Prefix := Suffix 1; -R-> DOCUMENT = <> & <>
quit; I'igure 4

In the figure, the Abstraction Mapping is explicitly Given the mapping of the sequence of statements in
defined as a function "R" which maps the prototype t e the mapn of the seunesof saeetin
editor onto the editor specification and consists of a col- the prototype (its Path) onto the corresponding operation
lection of individual mappings, one for each of the con- the specification, the proof is constructed by mapping

cepts in the specification, which were described earlier, the resulting values of the objects in the prototype onto

and a collection of mappings Of Paths through the the corresponding abstract values of the concepts in the

prototype onto Operations in the specification. Following specification domain. The resulting values are compared
with the values required by the post-condition of the

thedefniton f te cncet mppigsin he pper half i.
of the figure. the definition of the mapping of the se- operation. For instance, the statement sequence

quence of statements in the prototype onto the operations "Read-(Commandine); Print(Commandline) " reads a

of the specification is given for the Append procedure; line from the terminal's input and then echoes it to the
the sequence labeled "RN,.h"3 maps onto the operation AP- terminal's screen (or printer) and places the value of that '.

PEND. This is required. as was alluded to above, since the line in the (string) variable Command_line; mapping

proof technique needs to form the sequence of object those actions onto the concepts in the specification causes
value changes in the implementation so that they can be the specification (sequence) variable COMMANDLINE tO '
mapped into the concept values in the specification It is the Inverse of this Rpath colletion which is the tormal Tracahility "un-

domain. If the changes to the mapped objects correspond tion" (nh. if there is nondeierminism in the architecture, this is a function onto 'I

to the specified concept value changes, then the prototype a set of paths, ic. a relation).

implements the same behavior that the specificat ion NiMore cottcctly, the post-condition of the mapped path must tenply the

specifies4. specification's post- condition
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verify

S rstem design
ch v l T M iN iAto n T e f l eS pecificationtranslate

mv A r tlm i oti verify implement
User..lo per / erify

Formal Life Cycle Model fo
figure 5

contain the line "A<CR>" and the variable TERMINAL to The full exploration of the life cycle outlined in figure 5
move "A" from the leftmost item on the input sequence are beyond the scope of this paper, but it can be seen that
to the rightmost item on the output sequence. This is ex- this life cycle allows for a greater use of formalism and
actly what is specified in the first assertion in the post- feedback than the current one and thus has the capability
condition of the APPEND operation. The rest of the proof for more control of the development process than today's
outline is similar and equally straightforward. In figure 4 methods.
the first half of the proof outline for the APPEND opera-
tion is for the case when the operation can succeed and Conclusions
the second half is for the case when the operation fails The combination of a natural, model based, formal
because there is no more input after the line "A". In all specification method for writing System Specifications
cases, a small number (usually one) of statements in the and very high level programming languages for which the
prototype correspond to, and therefore map their results representation of the concepts used in the specification is
to, a single assertion in the specification straightforward provides the basis for a reorganization of
Life Cycle Model the development process for innovative systems which can

improve the functionality of that type of system while
With the possibility of validating the design of a sys- shortening their development time. The use of methodi-

tern while writing the system specification, it is possible to cally created and formally verified rapid prototypes in the
have a specification development process become part of development of system specifications through actual valida-
the system's development cycle. This leads to a revision tion of those specifications provides the feedback neces-
of the standard life cycle to provide earlier feedback, a sary to improve the productivity of the early parts of the
closer working relation between the developer and the development process and thus allow the development of
users early in the life cycle and, by earlier validation of these systems to be cost effective. The formal verification
the system, greater separation of the developer from the of these rapid prototypes and subsequently of the sys.
user later in the life cycle, where that is desirable. The tem's architecture and implementation provides the con-
new life cycle also provides for more control of the trol necessary to make the development of these systems
product by providing for more verifed work products[12 manageable.
during the development process.
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ABSTRACT
expressed as a set of assertions about properties of the solu-Real time mission-oriented embedded systems are much tion and not as sequence of procedural steps.

more difficult to design than ordinary software systems. They
require highly reliable and efficient implementations to satisfy In the paper, we discuss the design of an Ada code
mission and time constraints imposed by the applications. The generator for the assertive language called MODEL [Tseng
Ada language has been design to facilitate real time system et al, 1986]. Assertions in MODEL are expressed as recur-
software development. However, for many programmers the size
and complexity of Ada itself are of concern. sive equations. MODEL specifications are concise, free

In the assertive programming paradigm, computations are from implementation details, and easily amenable to
specified as sets of assertions about properties of the solution, verification and parallel processing.
and not as a sequence of procedural steps. Solving procedures The MODEL language and system aid or automate the
are automatically generated from the assertive description. Real
time programming for mission-oriented systems is supported by following steps of the software development and mainte-
equational languages in which assertions are expressed as alge- nance process:
braic equations. Programs written in equational languages are 1. Generating high level language cede for individual
concise, free from implementation details, and easily amenable to
verification and parallel processing. The level of programming program units. A very high level, nonprocedural
expertise required to program in an equational language is much language (MODEL) is provided for writing the
lower than the level that is needed by Ada programmers. software specifications. The MODEL compiler uses

The paper describes an implementation of an equational specifications to generate program code in Ada or
language system which generates highly efficient distributed code other high level programming language (Fortran, C or
in Ada. It also demonstrates how the equational language system
can be used in real time software development. PL).

2. Establishing synchronization and communication

1. INTRODUCTION between program units executing in parallel. The

Real time system programming is distinct from pro- Configuration Specification Language (CSL) is pro-

gramming other parallel or distributed applications in that vided for this purpose. A MODEL subsystem called

timing constraints are imposed on delays caused by real Configurator generates communication tasks with

time programs. The complexity and diversity of skills necessary entries.

needed for real time programming have caused extended 3. Testing. An executable model of the system that runs
development times, difficulties in attaining desired reliabil- on the host computer is produced by the MODEL

ity and sometimes even a reluctance to undertake mainte- compiler and Configurator. This model can be used for

nance and updating of real time systems. This has testing, debugging and performance study purposes.

motivated development of several programming languages 4. Documenting. Several reports are generated automati-
[Brinch 1978, 1981, Martin 1978, Wirth 1977, and most cally. The following is a partial list: the system design
notably Ada, 19781 to make the task easier. and structure, individual program listing, generated

Real time system development can often be simplified Ada (or Fortran, C, or PL/I) code listing and timing

if it is done on higher programming level then supported by reports.

Ada. Several specification languages [Lamport 1983, Laner 5. Static timing performance analysis. Normally, the tim-
1979, Lee 1986, Milner 1980, Ramamrithan, Teichreow ing study can be done only after programs in target
1977, Zave 19821 have been proposed to this end. Some of machine code have been produced and executed.
these languages support assertive programming paradigm Instead, with the help of a MODEL subsystem called
which provide a bridge between the formal requirements of timing evaluator, performance analysis can be done
a real time system and the system implementation (for when an individual task has been specified, even on a
example in Ada). In this paradigm a computation is host other than the target machine.
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The paper discusses an implementation of the Ada language. The MODEL compiler processes each unit
code generator for the MODEL system. It is organized as separately, performing completeness and consistency checks
follows. In the next section, we describe real time software within each unit, and in the absence of errors, generates an
development using MODEL. Section 3 discusses implemen- Ada program to perform the task of that unit. The user can
tation of the Configurator and generation of communication now employ the Timing Evaluator on each generated Ada
tasks. Section 4 describes Ada code generation for program program to verify whether the time constraints associated
units. Finally, the last section offers the conclusion regard- with the corresponding program unit are satisfied. The Tim-
ing the use of equational languages for real time program- ing; Evaluator produces a Timing Report for each program
ming. unit that provides information on time delays between

instances of input and/or output in the unit. The user has to

2. REAL TIME SYSTEM DEVELOPMENT USING provide certain timing data of the target machine to the
MODEL Timing Evaluator for it to generate the Timing Report.

In te MDEL pprachtheproganuer iitillyThe programmer may also have to check if global
priinsteMDL prah the progrminount amme inintioal time constraints are met by adding individual unit delays in

affiity Thn, ach nitfuntio is escibe inthe a path of the configuration to obtain the overall delays
affinity.uThnoeachlunitfunctionsisiesc rbedtor insh between critical events involving multiple units. If some of

employed to implement the computation and provide the thscotrisaentstsfdhepgam rmy
feedback on performance. This guides the programmer in have to modify the configuration of the entire system by
further partitioning or consolidating parallel units until a partitioning some units to obtain a greater degree of paral-
satisfactory, locally optimal, performance is reached. lelism.

Three software tools were developed to support our Once all the program units have been satisfactorily
approach: processed by the MODEL compiler and the timing evalua-

tor, the programmer uses the Configurator to synthesize all
i) A compiler for the configuration specification language the system components (units and data files) into an

in which units' interconnections and a mapping of the integrated system. The user composes the system by speci-
parallel tasks onto processors are defined. fying a configuration of units and files in the Configuration

ii) A compiler for the MODEL equational language in Specification Language that is input to the Configurator. It
which individual units are defined. This compiler pro- then schedules individual program units, synchronizes units
duces parallel tasks for the respective processors. that will execute in parallel, generates tasks responsible for

iii) A timing evaluator for estimating the delays inherent exchanging communications, and generates a configuration
in the parallel tasks. The estimates are used by the procedure that will run the Ada programs with maximum
programmer to verify that the time constraints of the concurrency in the host computer's multiprogramming/
developed system are satisfied, multiprocessing environment.

The real time software development process starts Finally, the system can be executed and tested on the
after the software system requirement are available. These host machine. Then, code can be transferred to the target
requirements usually consist of three parts : machine for further testing and execution.

1. Functional requirements - defining the functions and
subfunctions of the system. 3. CONFIGURATION SPECIFICATION LANGUAGE

2. Performance requirements - time constraints for time- The Configuration Specification Language, CSL,
critical performance of the system. defines flow of data between program units. Objects of the

3. Definition of interfaces with the environment - the lay- language are units and files that the units exchange [Shi et
out of the data communicated with the environment. al, 19871. A target/source or consumer/producer relationship

The rogammr bginsby iviingthe ystm fnc- between a file (file) and a unit is represented by a directed
The rogammr bginsby iviingthe ystm fne- edge between those objects. When the same file is pro-

tions into software units and data files. A function may be duced by one unit and consumed by another, then these two
carried out by one one or more units, or several related units become connected via the file.
functions may be combined into one unit. The relationship Toatiue fcniuainndsaewrho
and communications between units are also defined at this metog attrbut ofp configuation hodestae wrth of:
point. The program units are in skeletal form, with only the metoighr.Auityeswshterhenti:
external data structures outlined as files. The programmer 1) simple - an individually specified unit (default),
can now use the Configurator to verify global system con- 2) compound - a group of units for which a configuration
sistency and completeness. is defined separately, or

Next, the programmer composes the unit specifications 3) interactive - a human communicating with the system
independently for each program unit in the MODEL through a terminal.
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Files have an organiation attribute with the following can be easily modified by composing a new configuration
values: sequential (default), indexed, mail and post. that includes existing, as well as new or modified, units and

A sequential file is exchanged as one entity. It can be files.
consumed only after it has been entirely produced. Such a The easy modifiability of a configuration supports
file may have only one producer, but any number of consu- several development modes. For example, individual units
rms and files may be reused as the system is required to change.

An indexed file has a variable defined as a key used to Entire independently developed systems may be easily
define (access) records in the file. There are no restrictions interconnected by adding interfacing processes that convert
on the order or number of references to such a file made by commonly used variables from the form used in one system
producers and consumers. to that of the other. Thus, the creation of a new system

A mail file is a collector of records. It is private to its that encompasses the functions of several old systems
consumer and therefore it can have only one consumer, but would not require designing of a new system.
several producers. Records from different producers are Ada implementation:
accepted by the consumer in order of their arrival. Using Ada as an object language of the MODEL sys-

A post file is a distributor of records to dynamically tem gave us several advantages over using other high level 4
addressable files. The post file has one producer, and its languages. Ada multitasking and randezvous create a con-
record include a key used as an address of a destination venient tool for assembling parallel computations. Each
file. Therefore, it can have any number of edges connect- MODEL specification is translated into a task.
ing it to mail files. Configuration dependent parts of program units, like inter-

An exchange of data between units executed in paral- connections, are encapsulated into separately compiled sub-
iel can be set either through a mail file or a pair of a post programs and subtasks. A configuration unit, also generated
and mail files connected together. The goal of our by the configurator, assembles the parallel computation by
approach is to eliminate timing considerations from real simply enumerating in its body all the participating units
time programming. The user's view of computation is with the 'WITH' clause. Only configurator generated parts
totally static, where computation itself is expressed as a of the overall computation have to be recompiled if the
mapping of source data structures onto target data struc- configuration changes.
tures. Consequently, our communication primitives are In our design of an Ada implementation of the
based on (limited) nonblocking 'send' and blocking MODEL specifications, we stressed the independence of
'receive'. The producer of the messages continues compu- computation and configuration descriptions. Units generated
tation immediately after of messages waits until the mes- by the MODEL compiler need to be compiled in Ada only
sage to be read arrives. Such semantics allows the user to once. The naming can be local in program units, and the
treat communications in exactly the same way as other i/o. configuration provides the translation of file names in
If the synchronization is needed, it can easily be achieved different units. The user is able to select any set of such
by adding a 'receive' (in the producer unit) after the 'send' units and, after providing a configuration specification, gen-
to obtain an answer (or an acknowledgement) from the con- erate a configuration unit that will run the entire computa-
sumer. tion. The configuration unit is compiled separately from

The MODEL compiler, when generating a program for MODEL units. Any change in configuration unit does not
a unit, optimizes the use of the main memory assigned to require MODEL units recompilation. Such solution pro-
data, often replacing the entire range of an array by a win- vides high degree of modularity and supports easy assem-
dow, i.e. few elements. When such array has to be con- bling of new systems from existing computational units.
municated to the other units, only that window, i.e. few Thus, it facilitates fast prototyping and bottom-up develop-
records at a time, can be sent out. Threore program ment and debugging of real-time systems.
optimization causes a producer to store or send as few The devised scheme of compilation is as follows:
records at a time as feasible. Similarly, a consumer has Each mail file is replaced by a task. This task receives
also to store and consume a minimum number of records at messages from producers, stores them in a queue and then,
a time. When producer and consumer processes are con- on the consumer request, moves them to the consumer.
current, the post and mail files require a buffer for a limited Sender and consumer establish randezvous with this task
number of records. This type of data exchange realizes the and not directly with each other. Due to the name indepen-
concept of a pipeline or a stream. The user is not involved dence (the same file can be named differently in different
in this aspect of program design, however is warned if a program units), sending messages is done through a re-
file can nbt be exchanged in that fashion, router procedures which are generated by the Configurator.

The units (processes) and files are the basic building These procedures contain configuration sensative address
blocks of a system in the MODEL environment. A system tables.
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The generated ADA units are as follows: -- TMAILN - target mail/post file
A. Each MODEL specification of a program unit is corn- -- UNITN - program unit name

piled by the MODEL compiler into a group of the fol- with UNITN; - repeat
lowing packages: -- for all consumer units

separate(UNrN) -- name of program unit
2. Packages for each source mail file in the follow- -- which contains this file

ing format: procedure UNITN_TMAILN_c is

begin
SMAILN - source mail file name- a table of address translation and

-- UNITN - name of the unit with SMAILN -- case on the value of the table address.
package UNITN SMAILN is end UNITNSMAILNs;
task UNrrNSMAILN-mbx is 2. A configuration unit for invoking the entire com-

entry -- for receiving mail putation:
entry -- for sending mail

end UNITNSMAILN-mbx; -- CONFN is the name of the configuration
end UNITNSMAILN; with UNrITN_SMAILN; - repeat
package body UNITNSMAILN is -- for all source mail files
task body UNITN_SMAILN_mbx is with UNITNTMAILN -- repeat
-- body of the mailbox (queue of messages) -- for target mail & post files
end UNITNSMAILN-mbx; with UNITN -- repeat
end UNITNSMAILN; -- for all program units

procedure CONFN is
begin

2. A package for a unit procedure with the follow- UNITN.UNrITN_prog; -- repeat
ing structure: -- for all program units

end CONFN;

All Ada compilation units are compiled in the follow-
-- SMAILN - source mail file name ing order. Al, A2, and B (order of BI relative to B2 is
-- TMAILN - target mail/post file name irrelevant). Changes in B units affect only the changed
-- UN1TN - program unit name package (therefore changing connections between program
with SMAILNUNITN; -- repeat units and/or adding/deleting program units from
-- for each source mail file in the unit configuration is easy and simple). It is worthwhile to note,
package UNITN is that during compilation of a program unit no knowledge of
procedure UNITNprog; configuration in which this unit will participate is needed.
end UNITN;
package body UN1TN is 4. MODEL COMPILER
procedure UN1TN_TMAILN_c is separate; The compilation of an equational specification into an
-- repeat for all post and mail files object code consists of four stages: syntax analysis,
procedure UNITrt-prog is semantic analysis and checking, scheduling of program

task UNITNjtsk;task bodUN Ntsk events, and generation of the program. The later three
task body UNTNtsk is stages, relevant to this paper, a sunmerized below.-- code of the M ODEL program unitSe a tc A ly i an Ch k ng
end UNITNjsk; Semanic Analysis and Checking:

begin The compiler translates the specification into a
null; directed graph of data dependences. Use of data depen-

end UNlTNprog; dence graphs to optimize programs, in particular for parallel
end UNITN; execution, has been proposed recently in the literature (see -

for example [Allen et al, 1983], [Ferrante, Ottenstein, and
B. The configurator produces the following configuration Warren 1984], [Kuck et al, 1981; Waters, 19831). The dis-

units: tinctive feature of the array graph of the MODEL language
1. For each target post or mail file in the is the compact representation of data dependences (a node

configuration it will generate the re-router in the represents entire array not a single element) and the lack of
form: control dependences (flow of control is generated by the

compiler).
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Checking the specification and making corrections compiler, provides an efficient implementation tool for

and additions may be regarded as inferring or propagating parallel execution of the equational specifications. It also

attributes from node to node. Thanks to nonprocedural ensures smooth synthesis of automatically generated Ada

semantics of the MODEL language we were able to imple- code with the existing Ada software.

ment powerful consistency checks in the compiler. Experi- Use of an equational language for expressing computa-
ence has shown that these checks are effective in locating tions shields the user from considering low level implemen-
80-90% of the errors (not including syntax errors) in tation details, like describing input/output operations, loop
development of a program [Szymanski, et al, 19841. structure, flow of control in the program etc. Compilation

Scheduling Program Events: of specifications, including optimization and synchroniza-

In composing a unit specification the user chooses tion algorithms and customized code generators provides

natural and convenient data structures and equations. Typi- the user with efficient implementations of real time sys-

cally this choice does not correspond to the most tems. Three cooperating components of the MODEL sys-

efficient implementation. In addition, the user descrip- tem: MODEL compiler, Configurator, and Timing Evalua-

tion of data is independent of the medium of the data and tor, constitute an integrated software development system

whether it is internal (in main storage), external (secondary that supports rapid prototyping, modularization and

storage), or exchanged (communication line carrying mes- comprehensive consistency checking.
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utility [Teld 79]. In many cases this rule causes
Abstract the unnecessary recompilation of many modules that

do not use the resource that was actually changed in
the altered definition. Languages in this category

This paper presents an implementation of include Ada [ehb 79], Modula-2 [virt as],
the global interface analysis algorithms, as Modula-2 + [aovn as], Mesa [INs 79], Cedar
proposed by Hood, Kennedy and MOller [Tait 84, SwZN as], and a number of the recent
[3oKM 86]. These algorithms analyze and modular Pascal dialects [josl 87]. A prime
limit the effects of a change to a basic inter- example in Ada would be the altering of the paCkage
face in a software system. The CMI STANDARD. A change in this low level interface
(Changing Module Interfaces) implementa- would affect a great many modules in a large soft.
tion is targeted to the Ada and Modula-2 ware system, consuming considerable amounts of
programming languages as an aid for cffi- machine time to bring the system back up to a con-
cicnt recompilation of module interfaces. sistent state.
CMI is an integral part of the Rigi software
development environment for programming- In a rapidly changing development environment,
in-the-large, but can also be used as a stand the time needed to observe the effects of a change to
alone tool for software development and an interface will often cause the programmer to cir-
maintenance. cumvent the compiler's cross-module .h"cking in

order to avoid the tedious wait of a ') long
rccompilation [ain s]. This eva, .i npiler

I. Introdaction checks is contrary to the safe modul ,,osophy
that the language provides. Using CA, ,ro-

One of the many problems in a large, evolving grammer can minimize the time needed for ret,..
software systcm is the difficulty of changing the inter- Intion, thus allowing various alternatives in the
faces of low level components. A low level component interface design to be explored before a final decision
is one that has many clients and/or is near the ik reached.
bottom of the system hierarchy [NoKm 86, Null
86]. They are usually defined early in the design of During the maintenance phase cf a software
a system and, as such, may not benefit from know- project, the changinC of a low-level interface involves
ledge gained at a later stage of development. The the tracking down of all its clients and making sure
traditional rule in strongly typed, separately compiled that they are recompiled in the correct order to main-
programming languages is the recompilation of all tain a consistent system. In a software development
modules that use resources provided by the changed environment such as Rigi, aided by CMI, the main-
definition. This conservative rule is typically imple- tiner of a large, complex system can easily decide
mented using time stamps [Tait a,,] and the make whether a change in a basic interface can he imple-

)iqelaimer- The views and conclu.ions contained in this paper are those of the authorm, and should not he interpreted as representing
the official policies, either expressed or implied, of IBM Canada ltd.
l AdN retn tered tademark or the U.S. Governmn. Ada Jont Prngram Oftfi (AJPO)
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mented or not by computing the set of affected due to the altering of a basic interface is usually
modules. If the set is acceptable, the change can be much more time consuming than the changing of an
implemented, otherwise it can be undone. implementation part [Tioh 82], since numerous

other interfaces and implementations in the system
The next section of the paper presents some back- may directly or indirectly depend on a basic interface

ground on pertinent issues of modularization and and an implemer ation part has only local dependen-
syntactic interface specifications in the targeted pro- Cies.
gramming languages Ada and Modula-2. Section 3
illustrates the use of CMI as a stand alone tool and 2.1 Modula-2
as part of an integrated software development envi-
ronment. Section 4 discusses the implementation, The modularization mechanisms of Modula-2
and reports on the current status of the project. include three types of modules: DEFINITION,

IMPLEMENTATION, and the main program's
MODULE.' Every module in Modula-2 (except for

2. Modutarization and Interfaces the main module) has both a definition part and an
implementation part. These correspond to Ada's

Many programming languages supporting package and package body, respectively. The deft-
programming-in-the-large, such as Ada, Modula-2, nition module is the interface to its clients.
and Cedar, as well as some of the module intercon-
nection languages such as PlC [mocu 884, mocw The most recent version of Modula-2 [Nirt 85]

iiS., Intercol [Tich 79]and C/Mesa [oins 79], implicitly exports all objects defined in a definition
provide facilities for the modular construction and module. The initial definition of Modula-2 required
description of large programs. These languages sepa- the programmer to explicitly list the exported objects.
rate the interface specification of a module from its Both the definition and implementation parts can
implementation. More advanced systems allow for import objects, but only the definition part can
multiple alternatives and/or versions of the imple- export objects. There is a I-I correspondence
mentation to co-exist; the user may select the version between definition and implementation modules. A
desired as late as link time [M1s 79, LeCH 8S]. client may import some of the objects provided by a

module, or it may import everything in the module.
The benefits of software engineering principles Only identifiers are used in the import and export

such as modularization, information hiding, and syn- lists: the Modula-2 syntax does not require one to
tactic interface specifications applied to the con- specify the category of the identifier (e.g., constant,
struction of large software systems are well type, variable, procedure).' There is an optional
documented in :he literature. However, the recompi- QUALIFIED clause that may be applied to exported
lation and coordination cost of changing a syntactic identifiers. If given, the importing module must
interface in large software systems is often prohibitive always fully qualify references to such objects (in
since too many software components depend on it. Ada this would be a with clause without a corre-
This leads to interfaces that are frozen before they sponding use clause).
are sufficiently explored and tested [Tait 8].

For example,
Programmers are unwilling to alter a basic inter-

face since they are not able to estimate the effects on FROM x IMPORT a,c; (' specific objects ")

the entire system. Indeed, programmers often try to IMPORT y; (* the whole module *)
breach the intermodule type-checking facilities to
avoid this (possibly lengthy) recompilation time. This
is clearly going against the encapsulation and strong- 2.2 Ada
typing facilities provided by these languages. Typi-
cally. contrasting the modification frequency and The main mechanism provided by Ada for
compilation time of the interface and implementation decomposing systems into modules is the package
of a module, the interface is rarely modified (less comtruct. A "module'" is a package with its corre-
text) and compiles much faster (no code generation). ponding body. These packages may be nested:
Nonetheless, consistency checking and recompilation however, the body of the nested package specification
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must be elaborated in the same body of the corre- construct. Again, the default Ada rules are used if
sponding outer package's body or in a separate the standard with clause is used.
subunit. We do not make a distinction between the
two in the algorithms beyond noting the nesting Both of these extensions can be mapped onto the
structure. In Ada, one may access objects in a nested CMI intermediate language. This language is a
package, unlike Modula-2, where only the outermost textual representation of the underlying graph data
layer is accessible. base stored by CMI. Functionally similar to Intercol,

it provides a superset of the modular definitions
Ada has only two provision levels of resources: all available in standard Modula-2. CMl is also similar

or none. A client gains access to the objects provided to the PIC/Ada [NocU asb] language in that,
by another package through the with statement, though a resource may be made globally available, it
However, the with statement causes all of the pack- may also be explicitly provided to only a subset of
age's specifications that are visible to be made avail- modules. This facility is available in Anna [Lune
able (that is, all those objects that are not private or 8s] through the provide to clause. This provides
Ilimited private). The use clause may then be used to an additional level of control over resource provision
provide unqualified access to resources, as long as and requests. An extended Backus-Naur formalism
they do not conflict with already defined objects. (EBNF) is used to describe the syntax of the CMI

language depicted in Figure I below.
2.3 PIC/Ada This small grammar allows the CMI data base to

store the minimal information required for interface
The PIC/Ada language extends Ada by adding analysis. There are no provisions made for version

provides and requires clauses to the grammar. The control in the CMl system, However, the semantics
programmer then has greater control over the pro- of the Rigi model include version control facilities
vision of resources by explicitly providing objects to [Mull 86, MuK1 87].
specific modules. The clients in turn can request the
whole package (as in standard Ada) or only the The user of CMI may use the system in two
required parts of a package. It also provides an ways: as part of the Rigi software development envi-
incompleteness construct to alleviate the bottom-up wrnment, or as a stand-alone tool. As part of Rigi,
restrictions of Ada development, the algorithms are invoked when a basic interface is

altered through the Rigi editor. As a result, Rigi lists
the names of the set of affected modules. The list

3. Using CMI may be used as an indication of the scope of the
changes and help predict their effects on the system.

CMI allows for the specification of explicit When the user has finished editing the interface, the
provide-require relationships between modules. The global interface analysis algorithms are used to recom-
Modula-2 grammar accepted by the parser allows an pile the affected modules.
extension to the EXPORT clause of the form

As a stand-alone tool, CMI works as a pre-
EXPORT [QUALIFIED] TO modules objects processor, parsing the source text of the interface and

producing an intermediate representation which is
where modules and objects are lists of modules and recorded in the CMI data base.
objects, respectively. This refinement allows stricter
control of object provision. If it is not present, then Suppose we modify an object xyz in the package
the usual rules of Modula-2 apply. The Ada NEAR BOTTOM, which is near the bottom of the
grammar is extended to allow a more refined module hierarchy and is part of the abc library. In
importing of objects through a most Ada compilers all units in abc would have to be

recompiled if they withed NEAR BOTTOM. Lwith package.(obiects)

Ihe main module is in (act an implementation module [Vir t 67]. 1 ocAl niodtile% are not comidered,. ince they Are not visihic nutide their
ehclIting %cope which is another local module, a definition module, or an implemeniAlion module,

Ihere i no overloadlgn in Modua-2.
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CmiFile - FileName TimeStamp {ModuleDescription}.

ModuleDescription = ident ":" ModuleType [requires] [provides] END [ident] '.

requires - REQUIRES {ident O:" ModuleType ["<-* objects]) ;.
objects ident N:N ObjectType {", " ident ":" ObjectType).

provides = PROVIDES {[modules 0->] objects [QUALIFIED]) ";N.

modules - ident 0:0 ModuleType {*," ident O:" ModuleType).
ModuleType = DEFINITION I IMPLEMENTATION I MAIN I LOCAL I UNKNOWN.
ObjectType = PROGRAM I MODULE I TASK I PROCEDURE I CONST I TYPE I VAR I UNKNOWN.

Figure 1: Syntax of CMI language.

However, if only a few modules in abe actually use another, and yet may only use a small subset of the
the object xyz, CMI would only recompile these few objects provided in the requested module. This is
modules. particularly true in Ada, with its all or nothing

approach to packaging.

4. Implemenation In large software systems recursive compilation
dependencies occur quite frequently [clar 8S].

CMI is part of the Rigi software development CMI deals with recursive compilation dependencies
environment. As such, it is part of a larger and more by reducing the cyclic graph to a directed acyclic
complex system for programming-in-the-large. graph (dag). The dag is obtained by computing the
However, its nature of use is such that it can also be strongly connected components of the original graph
employed as a stand-alone tool, though its true riMlhl 84]. In most cases, such a strong component
strength and potential are only realized as part of consists of a single module. However, for those that
Rigi. have more than one module in them, they are log-

ically bound together and from then on treated as a
In part because of time and resource constraints, larger, single module.

and in part because of the philosophy of the tool, the
existing Ada and Modula-2 compilers were not When the system is initially built, all files that
altered. Instead, CMI is implemented as a pre- make up the system are parsed and the modules that
processor. It parses the source text and extracts the they contain are entered into the internal data base.
module interconnection information necessary for the The user supplies the list of files either through
global interface analysis algorithms and stores the command line arguments (for small projects), or by
information in the CMI data base. The information specifying a .PRJ file. This is simply a text file that
extracted is modelled by the grammar outlined above, lists all the files that make up the system, and is

updated by CMi as new modules are added or
The data base is an attributed, directed graph. deleted to/from the data base. As the modules are

Each node in the graph represents a module of some being entered, the graph will usually be incomplete
type (e.g., syntactic specification or implementation). (unless the files are entered in the exact order so that
The links in the graph represent the import and dependencies are resolved as they arise). Thus,
export relationships in the system. In addition, the minimal checking is done while parsing. If an error
nodes in the graph are linked through use links. This occurs, while parsing the Modula-2, Ada, or CMI
relationship is more specific than the export list; a source, an error is reported at the offending line, and
module b is on the use list of a iff b actually uses and processing returns to the top level. No attempt at
references the objects provided by a. This scheme error recovery is made. Once the modules have been
eliminates many redundant recompilations, since entered into the system, a complete consistency check
many modules often request all of the specification of takes place. This is to ensure that resources requested
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by a module from another are also provided, and Unlike Ada, Modula-2 compilers do not usually
that there are no conflicting declarations. If the provide a library manager. Most produce a .sym file
network is consistent, the use-links are also put into from the compilation of a .def (DEFINITION) file
place at this time. [Powe 84). This mainly consists of time stamp

information, and an encoded symbol table. Others
After the data base has been checked, the system simply reparse the .def file every time it is imported

is ready for general use. The user may update the by some module [rost 86]. Neither scheme pro-
data base by altering and/or deleting existing vides for automatic compilation of the affected
modules, and by adding new modules. Modifying an modules when a definition module changes. Many
existing module does not change the topology of the users on Unix make use of makefles, but these
graph: only the links may be altered. The latter case quickly become complex and hard to maintain for
will involve a local re-mapping of the data base to a large system, [Maid 84]. CMI performs the optimal
graph structure. CMI also provides a primitive undo recompilation checks before invoking the Modula-2
facility for reverting to a previous editing state; this compiler for the necessary compilations. It is here
facility comes in handy when the set of affected that altering the compiler would improve perform-
modules is unacceptably large and the changes have ance, since the semantic inter-module checks need not
to be undone. This facility is implemented by altering be done again by the compiler.
a copy of an existing module, instead of the actual
module itself. CMI determines the type of change Ada provides a library management system.
made by comparing the data base entry of the old However, recompilation time can still be improved
version with that of the new. This is analogous to using CMI. Though the Ada library system has much
comparing the abstract syntax trees of the provide- of the same information that CMI keeps internally,
require relationships. The magnitude of the change is the recompilation sequence is not as well defined as it
characterized as either inconsequential, local, or could be. Some Ada compilers requires the use of
global, where an inconsequential change has no effect special constructs embedded in the source informing
either inside or outside of the module, a local change the compiler of the compilation order of the files that
effects the module but not its clients, and a global affect a package, and that the file is imported by
change affects the clients [Koit 86]. someone else, and will not be compiled unless the [

main program is. CMI can do this automatically, and
The Tichy,'Baker algorithm can be used to effi- through the use of the global interface analysis algo-

ciently deal with local changes [Tich 86]. To rithms recompile only those packages (files) that
compute the set of affected clients for the third case, absolutely require it. Again. ideally this mechanism
the global change is to be propagated through the ,hould be built directly into the compiler or library

require and provide list of the clients. The imme- manager.
diately affected modules are those that require one or
more of the new resources that the changed moduie CMI is written in C, and uses the yacc and lex

now provides (or no longer provides, as the case may compiler development tools to aid in the parsing of

be). If the module imports the resource but does not the source text. The development work was done on

actually use it. a warning only is given; no recompila- an IBM 3090 running VM/CMS, as well as an IBM
tion is necessary. This situation often occurs in Ada RT PC running AIX. It has also been tested on an
when a package with's another. The whole package IBM PCiXT running PC-DOS 3.2. We are consid- .

is made available, but perhaps only a few resources ering porting CMI to systems such as MVS/TSO. As
are actually used out of it. However. if the module a stand alone tool, the only external interface that

actually uses one of the changed resources, we must needs to change is how files are named on the host
determine if this change will affect any of its exported system. CMI is currently being integrated into the
resources. If this is not the case, then recompilation Rigi software development environment under con-

may halt at this point. Otherwise, we must continue struction at the University of Victoria on a network
propagating the changes through the provide-require of Sun-3 workstations.
relationships of the affected modules. By visiting the
set of affected modules in topological order, it is
guaranteed that each client is only visited once (i.e.,

no hack tracking).
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ADA ACQUISITION
A TAILORED APPROACH

by George J. Smith
Sandra A. Pryor

Naval Weapons Center
China Lake

This paper addresses what we perceive to be the that will have organic support by the Government.
high risk areas in Ada procurement. We have struc- For example, if the software is to be maintained
tured this paper to follow the natural sequence by the developer we would typically order less
of events including preprocurement activities, documentation and might not require full Ada soft-
Statement of Work writing, and proposal evalua- ware library rights. Therefore, it is vital that
Lion. Each has a different set of problems and is the maintenance strategy be determined prior to
addressed in a different way. Under preprocurement generation of the Statement of Work for the Full
activities we identify contractual and programmatic Scale Engineering Development Phase.
"givens" that impact the Ada software procurement.
Under Statement of Work writing, we discuss the key System engineering is also a programmatic activity
aspects of technical management, legal requirements which takes place early. Unfortunately, experience
and engineering discipline. Under proposal evalu,,- has shown us that the system engineer is typically
Lion, we focus on management evaluation and provide hardware oriented and has neither the time nor
., "tool" to assist in evaluating the alternative inclination to become an expert in Ada and its
Ada software development cycle. In each situation design techniques. Therefore, system architectures
we identify the pitfalls and, where possible, ways are established according to a functional decom-
to avoid them. position rather than an object oriented design.

This functional decomposition makes it difficult
The Naval Weapons Center is the U.S. Navy's princi- for the software engineer to map Ada onto the sys-
pal laboratory for research, development, test and tem as it was designed by the system engineer. In
evaluation of airborne weapons systems. Weapons the past, software systems were hardware driven
iytems procurements always contain a certain degree (i.e., the software was written to drive the hard-
vt risk. The greatest risk is that the contractof ware). With Ada, that is no longer the case. The
,ll not meet the requirements established for the hardware should be designated according to its
weapons syste'. When the weapons system contains ability to support Ada. Unfortunately, the hard-
softw,re the risks increase notal ly. This is ware oriented system engineer often relies upon
partly due to the fact that we cannot specify hardware specifications which are quoted for the
"good" software by the pound, size, or color. We hardware's own assembly language. The specifica-
can describe what it does but we cannot visually tions will be quite different for running Ada. If
picture the software; therefore, requirements, the system engineer is not aware of this, he may
communication, visibility, and control become commit the system to hardware that is neither large
very difficult. Compound these problems with the enough or fast enough to run Ada. This situation
requirement to use Ada and our risks of not meeting can lead to a very complex system architecture. On
the requirements usually escalate even higher. the other hand, a system engineer that is only Ada

software oriented could design an architecture
Prekrocurement Activities which no existing hardware can handle. This could

be due to size requirements, weight, and environ-
A high level of activity occurs during the pre- mental constraints. To help remedy this situation,
procurement phase, from both a contracting aspect an Ada knowledgeable software engineer should pro-
and a programmatic aspect. The results of these vide input to the system engineer during the design
activities combine to produce an acquisition of the system architecture.
strategy for procuring or developing the software.
Some elements of the acquisition strategy such as Contracting Arena Activities. In the contract
Firm Fixed Price contracts and lifecycle support arena, basic decisions have to be made such as type N%
philosophy are "givens" or mandated by Department of contract and single or multi-phase contract.
of Defense directives. These "givens" have a great The Department of Defense presently mandates that
impact on the software acquisition effort and will we use Firm Fixed Price contracts for all Research
be discussed in the following paragraphs. and Development efforts. While this is the most

favored and cost effective way of procuring stan-
Proammatic Arena Activities. In the programmatic dard items when we have prior purchase experience

arena the maintenance strategy or the lifecycle of the same or similar items, it is extremely %
support philosophy of the software must be decided difficult with Research and Development efforts.
by the Government. If the software will always be
maintained by the developer the requirements will Firm Fixed Price contracts are commonly thought to b
be different than the requirements for software place the total financial risk on the contractor.
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This is only true if we have a solid performance or phase of the development to another. With multiple
design specification before entering the contract. phase contracts the contractor may be more prone to
That is, we must know precisely what we want to produce better documentation and plans, knowing
have built. Unfortunately, with Research and that he will have to implement them in the next
Development efforts, especially involving software phase. On the other hand, if the documentation is
and Ada, that is not the case, not required at a specific milestone in the State-

ment of Work, the contractor may delay documenta-
The hardest single part of building a software tion until later, knowing he has the next phase to
system is deciding precisely what to build, complete and deliver it. To keep this from happen-
No other part of the conceptual work is as ing, multiple phase contracts must have built in
difficult as establishing the detailed tech- milestones equivalent to smaller phases. These
nical requirements, including all the inter- milestones provide visibility of the contractor's
faces to people, to machines, and to other progress and the appropriate degree of control. In
software systems... . It is really impossible turn, the Government must provide the support and
for a client, even working with a software monitoring necessary to verify that the contractor
engineer, to specify completely, precisely, has met the established milestones and may progress
and correctly the exact requirements of a to the next phase.
modern software product before trying some
versions of the product.' Single phase contracts seem to be easier to control

because we do not have to worry about the contrac-
Since we cannot specify exact requirements it tor advancing to the next phase before he has the
the beginning, the contractual specifications are appropriate documentation and planning. However,
likely to evolve and exceed the scope of the con- if the contract is for a single phase, such as
tract. This could produce a need for contract Conceptual Phase, the winner of the Full Scale
miodification and invoke additional cost to the Engineering Development phase contract will have to
Government. Therefore, the risk to the Government inherit the technical documents produced by the
can escalate greatly. In the past we have dimin- first contractor. Early planning documents such as
ished that risk by using Cost Plus contracts which the Software Development Plan, Software Quality
actually procure the contractor's "best effort" Assurance Plan, and Software Configuration Manage-
and has built into it a mechanism for handling ment Plan which could have been written in the
changes. We know of no immediate solutions for Conceptual Phase are delayed until the beginning
the Firm Fixed Price contract problem. The best of the Full Scale Engineering Development Phase.
we can recommend is to recognize the problem ahead In some cases the effort may progress along for
of timie and formulate a strategy to deal with the several months without an approved Software Devel-
inevitable changes. opment Plan, Software Quality Assurance Plan, or

Software Configuration Management Plan. One way of
Contract Phasing. Another contractual decision handling this problem is to have multiple contrac-
involves contract phasing. It must be decided tors for the earlier Conceptual Phase. Require
whether to utilize a single or multiple phase con- each contractor generate and deliver a Software
tract. Kach tarries with it certaiin benefits aiid Development Plan, Software Quality Assurance Plan,
certain drawbacks. and Software Configuration Management Plan during

the Conceptual Phase. Limit Full Scale Engineering
There are many factors which determine the Development competition to the Conceptual Phase

contract phasing decision. Phasing of the contract contractors. Require the winner to follow the
may be greatly impacted by whether the effort is a Software Development Plan, Software Quality Assur-
"new start" or a "Product Improvement Program". If ance Plan, and Software Configuration Management
it is a new start, the effort will generally start Plan they generated as a deliverable of the Concep-
with a Conceptual Phase, will take longer to get to tual Phase.
the fleet and will have less historic data to draw
upon. However, a new start provides more flexi- With the advent of Ada the single phasing approach
bility because we are not tied to constraints which presents another problem. The System/Segment
are carried over in a Product Improvement Program Specification is usually generated during the
effort. With a Product Improvement Program we will Conceptual phase either by a Government or a con-
have a shorter, and sometimes less costly develop- tractor system engineer. Traditionally, the soft-
ment time frame due to the fact that some of the ware development phase is perceived to begin after
work done on the original program can be utilized the System/Segment Specification is generated; how-
on the Product Improvement Program. The early ever, this is no longer the case. DOD-STD-2167
phases can sometimes be abbreviated. Also, the emphasizes that the software development cycle can
original program provides a great deal of historic take place during any phase of the weapons system
data that can be used on the Product Improvement lifecycle and may cross boundaries. The Ada soft-
Program. Unfortunately, a Product Improvement Pro- ware development cycle must begin concurrently with
gram may also be burdened with constraints such as systems engineering, traditionally, in the Concep-
old hardware and system architectures which may not tual Phase. It is the responsibility of software
be adequate to run Ada. Once again, we must cecog- engineering to ensure that the computing architec-
nize the problems and plan accordingly. ture is capable of accepting the Ada implementa-

tion. The Data Item Description associated with
Multiple phase contracts do not invoke recurring DOD-STD-2167, for a System/Segment Specification
cost to initiata new contract each phase and they accommodates this observation. For a single Con-
promote a smoother flow and continuity from one ceptual Phase contract, with the System/Segment
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Specification as the final product, there is no way bidder supply a draft Software Development Plan and
that the software engineer from the following Full tailored Data Item Descriptions with his bid pro-
Scale Engineering Development phase contract can posal. The Software Development Plan and Data Item
have any input to the System/Segment Specification. Descriptions should be in accordance with DOD-STD-
That input is necessary to ensure the Ada architec- 2167, but tailored to support Ada. The Software
tural requirements are accoimmodated in the System! Development Plan should include a Software Configu-
Segment Specification. ration Management Plan, Software Quality Assurance

Plan, and Software Standards and Procedures Manual.

Statement of Work Writing The contactor should include the System/Segment
Specification, if appropriate, the Software Top

The Statement of Work purveys to the contractor Level Design Document and the Software Detailed
the tasks he is required to perform; the Contract Design Document. The Software Development Plan and
Data Requirements List orders the documentation tailored Data Item Descriptions should reflect the
and software which result from these tasks. All contractor's proposed alternate software develop-
too often the Statement of Work invokes blanket ment cycle and thus provide contract proposal
standards and requirements which are unrealistic, evaluators with insight into the contractor's
conflicting and unachievable. This will often, understanding, ability, and experience in develop-
especially when DOD-STD-2167 is invoked, result in ing and documenting Ada systems. It will also pro-
a conflicting and unachievable Statement of Work. vide the contractor the opportunity to impact the
For example, the requirements of our current soft- Statement of Work requirements and apply what they
ware development standard, DOD-STD-2167, do not have already learned and are familiar with. The
support the Ada standard, DOD-STD-l815A; however, Statement of Work should require delivery of the
according to current requirements, we must invoke final Software Development Plan within 30 days of
both. When the Ada developer chooses an alternate contract award and the contractor must be required
approach or methodology, to the one specified in to follow the Software Development Plan.
DOD-STD-2167, DOD-STD-2167 and its associated Data
Item Descriptions require major tailoring, beyond
simple deletion. Fortunately, DOD-STD-2167 advo- Legal Perspective. When writing a contract State-
cates tailoring of itself. ment of Work, we must acconmnodate not only the

technical requirements hut also the management and
*A good contract Statement of Work decreases the legal requirements. From the legal aspect we must

risks to both the contractor and Government. One always determine and levy the appropriate data and
risk reduction method is to request that the con- software rights. Standard clauses are placed in
tractor include proposed tailoring of DOD-STD-2167 the contract to ensure that the proper rights are
to accommodate Ada in his bid package. This will required. With Ada the issue of software rights
hopefully minimize unrealistic, unnecessary, or and full design disclosure becomes a complex legal

Aimpossible requirements. This will also pro- issue that must be addressed in the Statement of
vide the Government with insight into the conl- Work.
tractor's experience and knowledge of Ada and his
ability to apply that knowledge to the Government's The objective of Ada is to create reusable software

*requirements. code. This encompasses creating and utilizing a
"software library" of reusable code. To exercise

Statement of Work preparation requires the com- the reusability iactor across developers, we must
bined efforts of many people in specialized areas. have rights and access to the software library.
Many times the individuals looking at the Statement Hwvr hsmyntb ssml n tagt
of Work in these areas are hardware oriented and Howvr, ts may sonotbssipead.tagt
not software knowledgeable. When this situation fowrasisun.
occurs, the software is not properly addressed in
the Statement of Work and may not be visible. A Software development contractors may not be willing
team of hardware and software professionals is to sell the rights or visibility to their Ada soft-
required to ensure that the technical tasks, the ware libraries. Ada libraries can inherently con-
legal aspects, and the engineering disciplines are tain proprietary factors which give the contractor
adequately addressed, a competitive edge. However, without the rights

to the Ada library it will be difficult for the
Technical Perspective. From the technical perspec- Government to maintain a competitive reprocurement
tive, it is necessary for a software engineer to posture which is mandated by the Department of
have input to the Statement of Work to ensure Ada Defense. Without knowledge of, and rights to, the
and Ada design techniques are properly addressed. Ada library we will not have full design disclosure
An example of this would be the requirement for an and, for the Government, the real objective and
object oriented design approach rather than a top- benefit of Ada cannot be achieved. The Ada soft-
down design approach. ware will be reusable by the developing contractor

only. Without knowledge and visibility ot the
The contractor possesses past experience and a Ada software library maintenance of the opera-
depth of knowledge that should be capitalized on. tional software becomes extremely difficult, if not
Therefore, it is necessary to give contractors bid- impossible. A decision must be made whether to
ding on the contract an opportunity to have inputs require full rights and design disclosure to the
to the contractual requirements. This can be Ada library in the contract or treat it as a "black
accomplished through "Instructions to Bidder". box" with each successive contractor utilizing or
The Instructions to Bidders can request that the developing his own library to meet the need.
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Engineering Discipline Perspective. In the past true. Since designers in Fortran, Cobol, Assembly,
we realized that hardware efforts required an etc., use functional thinking and functional decom-
engineering, disciplined approach. We started position, it is sometimes difficult for them to
invoking and following a structured phased approach switch to something as abstract as Ada and Object
and required configuration management programs and Oriented Design. Quite often, when an experienced
quality assurance programs. Unfortunately, this Fortran system designer tries to design an Ada sys-
was not the case with software. Software develop- tem without adequate training, they end up with a
ment was sometimes looked upon and treated as a poor Fortran and Ada design, or what we call Ada-
"black magic". Good engineering discipline, such tran. It may be easier to take a novice and teach
as a structured, phased approach, Software Con- him Ada techniques than to try to retrain an expe-
figuration Management and Software Quality Assur- rienced functional designer in Ada. Additionally,
ance, were not applied. Therefore, the word "soft- there is evidence which shows that the Ada learning
ware" became synonymous with the words "over cost", curve for a Fortran or Cobol programmer may be
"over schedule", and "under documented." We have longer than the learning curve for a programmer in
since learned that all software development efforts a structured language like Pascal. 2

require an engineering, disciplined approach. Ada
provides a structure and methodology which supports Productivity rates are another important aspect for
this approach. The Statement of Work must be management to consider and plan for. Productivity
written to require a phased approach, a Software is a difficult thing to gage, however, it appears
Configuration Management Program and a Software that it requires experience on a minimum of three
Quality Assurance Program which supports and uti- Ada developments before a programmer's productivity
lizes Ada's inherent capabilities, with Ada is equal to his productivity using other

languages. Reduced productivity could cause major
Proposal Evaluation schedule slippage and overspending. How many

experienced Ada programmers does the contractor
The SDP. The Software Development Plan submitted have? What is the extent of their experience?
with the contractor's proposal provides the infor- Management must be aware of all this and plan
mation necessary to evaluate the contractor's pro- accordingly.
posed software development effort. The Software
Development Plan is a keystone document in any The proposed schedule should be another good indi-
software acquisition and development, but it is cator of management's understanding and experience
particularly important and informative in an Ada in the Ada software development arena. Compared
effort. For example, if the contractor really has to a non-Ada software development, an Ada schedule
previous Ada experience, he should have an Ada should indicate increased expenditures and activity
software library with reusable code in it. The during the early phases of development and less
Software Development Plan should specify how much during the coding phase.
existing Ada code the contractor anticipates using
and how much of the new code he generates will be The alternative software development approach is an
reusable? important part of the Software Development Plan.

However, a bidder proposing an alternative software
The Software Development Plan not only provides development cycle for an Ada project is faced with
information on the contractor's software develop- a dilemma. On one hand he has the desire to do the
ment resources, Software Configuration Management job in a timely and cost effective manner and on
Program, Software Quality Assurance Program, and the other hand he is faced with the absence of any
proposed alternate software development approach, objective criteria for judging an alternative soft-
it also provides insight into management support ware development cycle. The proposal evaluator is
and understanding of the nuances unique to an Ada faced with a similar problem. He can no longer use
software development. Without management's under- the cookbook approach to evaluate the software
standing of Ada, planning for Ada, and committment development cycle and he too is faced with the
to Ada the end goal of decreased lifecycle cost absence of any objective criteria for judging an
cannot be achieved. When money and time get alternative software development cycle. Therefore,
short, the first inclination is to cut corners in we have two problems. The first problem is how to
training, resource allocation, schedules, and evaluate an alternate software development cycle.
documentation. This could make Ada objectives The second problem is understanding how Ada affects
unachievable. The Software Development Plan the cycle.
should present schedules, design techniques, man-
power loading, training activities, etc., which A simplified information model is a tool that can
corrolate with the use of Ada. be used to help solve these problems. The software

development cycle is a simplified information model
Management planning must anticipate and deal with of a complex process. There are six elements to
the risks an Ada system development carries with consider in establishing criteria for using a sim-
it. Our Ada experience to-date indicates that much plified information model to evaluate alternative
of our non-Ada historic data is not valid with an software development models. We will first cite
Ada software development. For example, in the the elements of a simplified information model 3

past if a program needed to be designed and gen- that are critical to the software development
erated in a certain language unknown to any of the cycle. To create a simplified model we use simpli-
designers, it was preferable to choose a designer fying assumptions based upon experience and we
experienced in another language and put him to work ignore some relationships by not including them in
on the job. With Ada this does not appear to be the model. The use of a simplified model is based
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on the assumption that a manager will make any day then under the formal control of Softweire Configu-
to day decisions based on heuristic reasoning and ration Management.' This statement of formal rea-
that the formal reasoning implied in the model soning must include the answer to the question
will be used periodically to make programmatic "why ". It is not obvious that one form of Clean
decisions. Initial planning information is derived Room Testing is to submit code for formal testing
from the model as budgets and schedules. After after compilation and informal testing by Software
project initiation, the information received from Development. By modifying the same example we ran
the model or from other sources is control informa- easily create an incorrect and incomplete example.
tion and is used to modify the model or modify 'Following the completion of a package it is given
current decisions. to Software Configuration Management for Clean Room

Testing."
(1) Simplifying Assumptions. In order to

reduce the complexity of the software development (5) Planning Information. There are two
cycle we make assumptions that simplify some aspect caeois of pann nlormition: static
of the model. An example of a correct Simplifying adegynris Stti planning ifraini h
assumption is assuming that each Ada programmer addnm, Sai lnigifraini h

produces code at a rate equal to some average rate. software developiment cycle itself. It is static
Whil ths isnottrue itsimpifis th moel. at any point in time and any product can be identi-

An example of an incorrect simplifying assumption fidabenatsmpotinarcssotold
is assuming that non-Ada programmers will be by the software development cycle. Dynamic plan-
equally productive on their first Ada project. The ning information is the information that flows
simplification is that Ada is just another programn- directly out of the software development cycle once
ming language. it has been implemented. This information is ana-

lyzed and used to change the software development
(2) Ignored Relationships. In order to cyi le itself. An example of dynamic planning

reduce the complexity of developing a software information is the statement, "Software Engineering
development cycle we must ignore certain relation- will conduct a semiannual audit of software devel-
ships. For example, it would be correct to ignore opment practices, analyze the results and make
the relationship between a particular manager aund appropriate changes to the Software Development
the software development cycle. While a manager Plan as needed." It shows that management has
may he identified for a project, we cannot guarai included the ability to monitor, evaluate and cor-
tee that he will be the manager throughout the rect the software development cycle.
entire software development cycle. It would he
incorrect to ignore the relationship between a pro- (6) Control Information. Information that
grammer's Ada experience and the programmer's the software development cycle produces about the
productivity, product is control information. It provides man-

agement with the information needed to determine
(3) Heuristic Reasoning. Heuristic reasoning~ whether or not to intervene in the process. An

is characterized by the use of "rules of thumb" arid example of control information can be found in the
is the province of humans .ind expert systems. It statement, "Product quality information will be

shoud nt b par ofthesofwaredevlopent collected and analyzed. Recommendations for cor-

cycle. An example of incorrectly including heuris- etv cinwl epoie. I hudb
tic reasoning is the statement, "AllI problems noted that the analysis of the data may reveal a
encountered during the software design review will need to change the software development cycle,
be analyzed and corrected by the programmer." This i.e. , it is a planning problem, and/or a need to
statement is incorrect because it assumes that all change the product.)
software design problems are caused by, and can be ThAd __ eno hae stbied hec-
corrected by the programmer. An example of cor- Thd_ Ipc.Wenwhaeetblsetec
rectly excluding heuristic reasoning is the state- teria to be used in judging any software develop-
menit, "All problems encountered during the software ment cycle independent of a standard. Before
design review will he analyzed and appropriate we can use the criteria in an Ada context, we must
corrective action taken." This statement does not understand whait sets Ada apart from other program-
specify what the corrective action will be and is ming languages. More importantly, we must estab-
correct because it is impossible to state what the lish a criteria to distinguish "good" Ada develop-
problems, their causes, and their solutions will be ments from "Ada-tran". A topological approach can
in the future, be used to explain Lhc differences in each genera-

tion of programming langu.ages.
(4) Formal Reasoning. Formal reasoning is

the "stuff" that software development cycles are Since assembly languages are still commonly
made of. It provides the answers to who, what, used for embedded computer systems, we have
when, how, and when necessary, where and why. The provided their topology .., it does point out
formal reasoning must not only be correct but the tart that assembly languages provide no
it must also he complete. An example of correct inherent structure. .. Certainly, they provide
and complete formal reasoning is the statement, great flexibility in creating systems, and it
"Following the successful compilation of a package is possible to write structured assembly code.
identified for Clean Room Testinig,4 Software Devel- However, once a solution reaches even a moder-
opment will graduate the package from the develop- ate size, the nature of the assembly compli-
ment library to the test library. The package is rates it.',
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We take exception to one minor, but significant Ada software development cycle must begin concur-
point. If we view the assembly code from the rently with systems engineering. This is due to
point of view of a programmer who has implemented the fact that the computing architecture must be
some algorithm, say a function to compute SINE(X)/ capable of accepting the Ada implementation.
X, there is no structure visible in the assembly
code. As anyone who has ever inherited assembly It has been stated that the software engineer is
code will agree, it is possible to understand the systems engineer 01 last resort because the
exactly what each line of code does without ever people who are performing systems engineering func-
being able to understand what the total program tions are actually subject matter experts. 7  Our
does or why. This is because the algorithm is not
readily visible in the assembly language implemen- neers often have neither the time nor the inclina-
tation. But if we view the assembly code from the tion to become experts in Ada and its design tech-
point of view of the processor there is a struc- niques. While such a person would be extremely
ture. The assembly code is a perfect mapping from valuable, we believe it is counter-productive in
a line of assembly language onto the processor
micro-code. It is this fact that allows for the aiiy organization producing software intensive wea-
extr-eme flexibity in th fct i the roesort puns systems. The rationale for this belief isextreme flexibility in controlling the processor that modern industrialization is based on the

ihile this may seem obvious, since that is what division of labor into specialities. The "Jack-of-assembly language is designed to do, the signifi- all-trades" is a product of a cottage industry. We
cance of the concept will be illustrated shortly. passed out of the software cottage industry stage

when engineers began to use programmers. The pro-
Ada was developed at the end of the language fessional programmers marked the beginning of the
"generation gap" and so has been influenced software industrial age. Software Engineering and
by contemporary software methods. In a sense, its language, Ada, marks the beginning of the soft-
it is the first of a new generation of lan- its lagu age Aa m as th e gn n o eoft-guaes..Ad's opoogyis ot latlik thse ware factory age. It has already been reported
guages ... Ada's topology is not flat like those that the concepts we argue for have produced inter-
of the previous generations [first, second and changeable programmers. When our tools are com-
third], but rather is three-dimensional... this plete and our reusable component libraries are
topology helps us to localize design decisions full, the software factory age will truly be here.
and so the structure of the original design is For this reason we believe it anachronistic to
more easily maintained as modifications are expect systems engineers to become expert in map-
made. ping Ada solutions onto systems. Our experience

shows that the software development cycle mustFrom the point of view of the programmer who has begin with the systems engineering effort. The
implmented the algorithm to compute SINE(X)/X il failure or inability to do so produces undesirable
Ada, this three-dimensional structure has no results which we discussed earlier.
obvious advantage. In fact, Ada would probably
seem very restrictive compared to Fortran. From
this point of view, Ada is just another programming Pre-Award Survey. After the contractor's proposal
language that represents an algorithm in a human has been reviewed a team of evaluators should visit
recognizable form. each bidder's facility and perform a pre-award sur-

vey. A pre-award survey is performed to determine
If we view Ada from the point of view of the total which contractors actually have the resources and
system, much as we viewed the assembly language capacity to do the job. The team then verifies
from the point of view of the processor, we again that these contractors have followed the procedures
discover the possibility for a perfect mapping from and approach specified in Software Development
Ada onto the system. Just as the mapping of assem- Plans on past and current projects. The team
bly language onto the processor micro-code gives us should be presented with proof of these factors.
flexibility in controlling a processor, the mapping The contractor should make available software docu-
of Ada onto the system gives us flexibility in con- mentation, status accounting reports, meeting
trolling an evolving system. This control is the minutes, or other information from past and present
direct result of correctly utilizing the levels of projects which corroborate his proposal, the draft
abstraction inherent in Ada and separates a good Software Development Plan, and tailored Data Item
Ada development from "Ada-tran". Descriptions. The results of the pre-award sur-

vey should be factored into the final proposal
Now that we have addressed the Ada impacts as well evaluation.
as the software development cycle evaluation cri-
teria, we need to look once more at how they tit Conclusion
together in the software development cycle. We
have observed that most software development cycles This paper is a snapshot in time which identifies
begin with inputs from systems engineering (i.e., areas where Ada increases procurement risks and our
system specification) and end when the software is approach to reducing them. We feel a growing con-
input to system integration. This traditional fidence in our ability to successfully reduce such
ending is acceptable if we assume that system inte- risks in Ada procurement. This confidence arises
gration marks the beginning of a new software from the sharing of common Ada problems and solu-
development cycle. However, we disagree with the tions among Government and industry organizations.
idea that an Ada software development cycle begins This paper has been our attempt to add to that body
when systems engineering provides its inputs. The of shared experience.
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N 4INIWIZIG ADA RISKS TIUKX

Christine L. Braun

SofTech, Inc.

Abstract trade studies devoted to just such
experimentation. Customers understand

DoD's mandate requires the use of Ada this -- many key programs include

for most new developments, forcing many initial prototyping or advance

to use it for the first time. Ada, like development phases.

any new technology, poses risks. These

risks can be controlled and minimized Why haven't we applied this strategy to

through proper planning before key the software development aspect of these

decisions are made. In particular, an systems? Not because software

important part of such planning is development was perceived as easy or low
benchmarking. Benchmarking attempts to risk, but because we did not have

replicate key critical aspects of the alternatives. Few choices were possible

project and to measure the effectiveness -- programing was programming. With no

of proposed approaches. It guides the choices to be made, there was little

choice of Ada compiler, methods, and purpose to such experimentation.

tools. It can also influence design
decisions and hardware selection. it First, the software development approach

allows program managers to be "informed was usually not new. Algorithms might

consumers", and to undertake Ada be new, but methods, language, and tools

projects with a high degree of were typically those the programmers had
confidence that there will be no used before. Much software development

was in assembly language. Even when the
surprises, machine was new, the new assembly

language was "just another language".
The programmer could use methods and
design approaches he had used before.
Because assembly language is low-level,
it did not constrain these higher-level
choices. Second, the software

WHY "ADA RISKS"? development approach has not been
perceived as a driver of other system

Risk is not a new problem in DoD decisions. For example, one processor
systems. Most DoD system development would not be selected over another
programs push the state of the because it has a simpler, more reliable,
technology in one or more areas. New or more powerful assembly language. All
processors and equipment are used, assembly languages work, and programmers
existing ones are used in new ways, new were expected to be able to work with
algorithms are developed, and ever-more- what they were given. Finally, because
stringent performance demands are met. software development was always done in
We are all used to working this way, and much the same way, we had developed
have developed an understanding of how (reasonably) effective metrics for
to approach these risks. Basically, we estimating software schedule, size, and
try out new ideas first, before performance.
committing absolutely to them. Our Of course, this complacency has not
management understands this -- major new alwayse, warranted. as t
business developments and proposal always been warranted. Consider the
efforts are accompanied by significant efforts made by the Air Force to

transition to JOVIAL J73. They f aced
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many of the same problems of newness
that Ada poses, and were hurt badly by The benchmarking process involves five
them. Programming in J73 was in fact major steps. These are described in the
different. Programmer unfamiliarity following paragraphs.
with the language, functional Identif kex risk areas for evaluation.limitations on what the language These shoul be aspects of the software
supported, immnaturity of compilers and development that are sources oftools, and lack of reliable estimating potential risk. Risk typically arises
procedures caused major schedule, cost, when something new is being attempted --
and performance problems, to the point when lmethod it
where some programs scrapped J73 and for example, when a tool or method is toreverted to assembly language. J73, in be used for the first time. Risk also
fact, was not "just another language", arises from difficult-to-meet system

requirements, either for performance or

How can we hope to be more successful functionality. Difficult cost and
schedule constraints are another sourcewith Ada? Not satisfied with the many of risk. Risks should be fairly

"newnesses" resulting simply from a new specific -- e.g., "using Ada for the
language, we are also demanding a
revolution in software engineering first time" is too general a statement
methodologies -- compilable PDLs, to be useful. Risks should be stated in
object-oriented design, software terms of what might go wrong -- e.g.,oeuabject-oi nd de n sor oftar "lack of familiarity with Ada may makereusability, and all sorts of other it impossible for our programmers to
fancy new ideas are being bandied about. mt theoschle we h a se tmeet the schedules we have set". The
All this new technology means new next section of this paper discusses a
choices -- various compilers and tools,
methodologies, and design approaches are number of possible Ada risk areas.
possible. This is a long way from the
world where the programmer 4ust combined Identify available alternatives for each
his knowledge and his assembly language area. Ideally, each risk area listed
skills to solve the problem. In fact, should have alternative approaches.
the software development approach is now (Hopefully, these are less extreme than
a key decision area and a key risk area. "go back to assembly language" or "give
We must treat this risk like we have up the whole idea".) Even if you are
treated traditional risks -- we must fairly confident that you know what theunderstand it, consider alternatives, best approach is, devote some time to
and conduct experiments to determine the identifying other possibilities.
best approach. In other words, we must
benchmark. Devise an experiment for each key risk

area. Describe how you will either

T BCERKING PROCSS a) demonstrate that your planned
approach will in fact work, or

Benchmarking, as we use the term, means
experimentation to select the best among vaus a letvesgand
available alternative approaches. It various alternatives, and
may be an experiment specifically demonstrate that the chosen one
designed to evaluate more than one will work
approach, or may be designed to prove It's not enough to find a way to try out
the expected effectiveness of a single the planned or alternative approaches.
preferred approach. In either case, it You must determine how you will gather
allows us to proceed with development results from the experiment, and
with a greatly-improved degree of identify the results that must be
confidence in our approach. It is a achieved to demonstrate that an approachsimple concept -- try it out before you will work. Remember that your goal iscommit to it. to find, not the best approach, but asufficient approach -- one that will
The term "benchmarking" has most often wo An approach can be sufficient e'' ,

been use in conjncton ith without being best (and you might wantbeen used in conjunction with to choose it for another reason, e.g. ]
performance measurement. While that is cos e c or asn
an important aspect for evaluation, we cost) conversely, even the best
use the term more broadly. Benchmarking approach may not be sufficient. ,
also allows us to evaluate the Note that typically experiments for
effectiveness of a proposed approach in differentriskyareas canand should be
meeting system functional requirements, combined. For example, the same single
in providing a maintainable product, and experiment might address object code

on conforming tO project cost and performance and size requirements. code
schedule constraints. 
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perimmets. arr outthecorrectly. Of course, the first step in
Conduct gxpeiet. Car u h assuring this is to use a validated
experiments and document the results. compiler. However, the validation
select a suitable a2Rroach for each risk Process addresses correctness rather

than robustness -- a compiler can pass
area. If the experiments were devised validation tests and still be highly

-orrectly, each will have resulted in an unreliable. A good approach to this
evaluation of suitability for each problem is to try to gather information
candidate approach. At this point, YOU on practical experience of other
must select the overall set of projects that have used the intended
approaches that best meets your compiler, a more realistic possibility
requirements. Typically approaches willno thtAa i sengwdru .
interact -- for example, the compiler nowevr that Ada is seig wer usde.
that provides the best object code consideration may be too new for this to
execution speed may be the least robust. bepsil.Mroromefrtae
approahes suffic t to dovtel job. o obliged to depend on a compiler that is

apprache suficint t dothe ob.still in development, typically because

Perhaps an experiment for a risk area n aiae oplreit o h

might determine that none of the chosen target computer. (This might be

candidate approaches is sufficient to a reason to consider another computer,
meet requirements. If this occurs, by the way.)

seveal rsposes re ossile:In cases where there is not adequate

a) Relax the requirements. practical experience to establish
confidence in the compiler's maturity,

b) Identify another alternative it is essential to do some independent
approach that would suffice. benchmarking. The goal here should not

(and realistically cannot) be to

c) Apply extra resources and duplicate the correctness testing done
management attention to the by the validation process. Instead, the
area at risk, compiler should be tested on the kinds

For xamle, uppse bncharkig sowsof programs likely to stress it during
th a ompler bupoen bevauated appeas the project. This can be done by
lihel o ropiesulting sufficiete exetio developing one or more benchmark

speed. Perhaps the performance cpgr eisdtcly exrie The
requirements can be relaxed. compileri realisticallyod route
Alternative approaches include using bechmarkteitcslfudgoerbutns
another compiler, changing to a faster bnhakicue
processor, or coding performance- a) size -- The program(s) should
critical segments in assembly language. Fe f airly large. The
If no changes or alternatives are validation tests are small and
possible, top programmners can be test single features. Many
assigned and extra effort devoted to validated compilers fall down
performance monitoring and tuning.on lre mut-aue
Benchmarking provides a sound basis for pog argutifatr
justifying these changes or extraprgas
efforts. (It also helps develop a b) representative use of languag~e
realistic cost estimate for doing the features -- The program(s)
job -- a concern of both customer and should use the Ada features the
contractor.) project will use. For example,

if you plan to use tasking

BcUAKINGKEY ISK REASextensively, exercise it well.
BWCHAMNGKEY ISK REASif you depend on generics, try

In this section, we will examine some of te u navreyo as
the key risk areas that might be c) presence of programmiting
considered when using Ada, and brief ly errors -- Many compilers handle
discuss some approaches to benchmarking correct programs fine, but fall
them. apart on incorrect programs.

ComplerMatuitYYou do not want a compiler that
complerMatuitybombs out when it encounters a

syntax error; it should
The entire software development activity diagnose it properly and
is dependent on the Ada compiler. It is continue processing. various
critical that the compiler work - - that kinds of likely programmuing

* it be bug-free and that it compile Ada errors should be included.
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can be defined in a single
It may be that all compilers tested will program, or the number that can
have some problem meeting theme tests, be active concurrently. it
In this came, consider the possibility might limit the size of the

of orarond. Thecopier enorcomplete Ada program, themay berkablendto rened thpies e or number of modules that can bemayre tobtr th e otend toesdocume linked together, the number ofthe fory he m ut arga i nd taff, uen objects declared, the number of
themfor he roarmmig stff.generics, or many other similar

Compiler Capability things. It is essential to be
aware of any capacity

As noted above, compiler validation restricions uthatil migtotests that a compiler processes the Ada influene thyr ablit.tlanguage correctly. However, manyimlen thsye.variations are still possible. These The way to address these questions is toinclude: (1) list the areas in which variations
a) otionl faturs - The Ada among compilers might exist, (2) forla !ingae deintion inclues Aa each area, identify any dependencies youlangagedefiitin inluds a might have, and (3) define a means fornumber of features that are determining whether candidate compilersoptional; a compiler can be meet your dependencies. The startingvalidated without supporting point is a thorough understanding ofthem. An important example of what options the language allows. Thisthis is "Pragma interface", a requires someone with a pretty strongcapability that allows the Ada knowledge of the Ada Language Referenceprogram to interface with Maul It i thn ecsry oprograms in another language, Mueand Ith implicationseofathese

Furthermore, this feature can choiestn your application. ofthsca

beys impleetpe ina nary ofr be difficult, because the implications
ways;i fore xape nyvr are low-level and complex. A SIGADApiiie calls may be Working Group, the Ada Run-Timesupported. If your application Environment Working Group (ARTEWG), isrequires such interfaces, you studying some of these issues,must be sure the compiler particularly as they apply to theprovides the required support. implementation of embedded real-time

b) untme upprt - Mny dasystems. A familiarity with ARTEWG'sb) rntie supor -- any Adawork will help understand implicationslanguage features are for your project.implemented by compiler-
generated calls to a runtime It might be possible to address thesesupport library provided by the questions adequately withoutcompiler vendor. These include benchmarking per se. Ideally, thetask and memory management. A vendor will document the choices andvariety of algorithms can be limitations incorporated in his product.used to implement these
features, and these can make a However, this is not always the case,difference to the function and particularly with capacities, so someperformance of an application, testing may be required simply to
For example, the task discover these compiler properties.
management algorithms can Also, knowing the compiler properties isinfluence the order in which not always enough. In order to matchtasks are scheduled. As them to your application needs, some
another example, a memory benchmarking may be needed. Formanagement algorithm greatly example, if there is a limitation ofinfluences performance in its task nesting depth at runtime, it may bechoice of strategy for necessary to develop some kind ofreclaiming freed storage. it simulation to determine what nesting
is important to be sure that depth your application will require.

wthe rutie aoplgoritmse provide This is an area in which, if analysis or %
wpihathen copere metsou benchmarking do not identify any% %

appictin ees.compiler that meets project needs, otherP e
c) capacities -- Many compilers recourse may be possible. Many compiler

have built-in capacity vendors are prepared to add optional
limitations of various sorts. faue, o o tio utmFor example, a compiler might0
limit the number of tasks that
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environments, to particular customer It is vital to consider this total
requirements. Because matching solution -- to remember that compiler
application requirements and runtime choice is not the only factor.
support needs is complex, some vendors
will work with application vendors to How do we approach performance S
design specific customnizations that best benchmarking? It is relatively easy to
meet application needs. measure performance on some benchmark

test -- the hard part is establishing
object Code Performance confidence that the benchmark is

representative of the application. This
Execution speed is an important concern is a subject that has been treated
in all applications; in some it is extensively elsewhere. Simulations and
critical. This is probably the greatest loading models can be used. For Ada, it
area of concern for those adopting Ada is particularly important that any such
f or the first time. It is a valid approach take into the account the
concern -- high-level languages tasking behavior of the application.
generally give somewhat worse This is an area of substantial possible
performance than assembly language, execution overhead, and one where
particularly when the language is new significant tuning and customization are
and compiler technology for the language
not fully developed. However, this is possible. Another Ada consideration is,
an area where a lot can be done. if assembly language insertions are

required, to obtain a compiler that

First, it is important to consider supports them.
performance up front. Performance is a
true requirement, just like ObJect Code Size
functionality. If performance is
critical to project success, there is This issue is very similar to the
really no point in undertaking the performance issue. It deals with how
project without some degree of analysis much memory the object code takes up,
to establish confidence that rather than how fast it runs. In some
requirements can be met. This is no applications this may not be very

Ndifferent from setting out on a major important. In embedded applications,
where size and weight limitations apply,

development without satisfying yourself it can be critical. The computer system
that the key algorithms work -- it just and its resident software must fit in a

does't mke snse.missile, an airplane cockpit, or
is iporantto elet a whatever. If an additional memory bank

Second, it isipratt eetais needed at the last minute, the system
total solution that can meet performance may simply not fit. Just as there is no
requirements. This total solution might point in undertaking a project without .4

involve: confidence the system will run fast
enough, there is not point in starting

a) choosing a compiler that has without being sure the software will fit
the best possible object in its intended home. (A recent DoD Ada
performance for the intended development effort, which did not do V
target computer advance size benchmarking, ran into %.."

exactly this problem. The embeddedV
b) choosing a target computer that computer had to be replaced with an

has a compiler that can meet entirely different one after
performance requirements implementation was almost complete,

because there was simply no way to make
c) adding processing capacity to the system fit with the first approach.

the chosen target computer Cost and schedule impact was
significant.)

d) making design decisions that
optimize performance Like performance, this issue requires a

total system approach. The same aspects
e) identifying critical portions listed above apply here. This is an

of the system that may be area where a hardware solution may be
candidates for implementation particularly appropriate.
in assembly language

Design Feasibility with Ada
f) otiigo.pcic additional

appliatio-speificThere is an interplay between chosen
optimizations or runtime design solutions and the implementation
support library tailoring from language, Ada. Some kinds of design
the compiler vendor
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choices may be dif ficult or even port to another prior to delivery. They
impossible to implement in Ada - - this may plan to use the same code on
is particularly true of designs different processors within the system.
developed by people who have always used They may plan to reuse code from another
assembly language before. Some choices application developed on another
may have major performance implications, computer. All of these are good ideas.
as indicated above. This is However, portability cannot be taken for

particularly true in the realtime area. granted, even with Ada. An Ada program

Some choices may be entirely feasible in not specifically programmed to be

Ada, but may not be "good Ada". This portable will almost certainly not be.

means that they may not take advantage There are several possible reasons for

of Ada's benef its. They may not have this:
the reliability, maintainability,
portability, etc. characteristics that a) Some Ada features (by intent)

Ada offers. This typically occurs when depend on target machine

the Programmer avoids all Ada features characteristics. An example is

that do not closely resemble those in numeric representations, which

the language(s) he is used to. influence precision of results.
Clearly, machine-dependent

Performance imlctos o einfeatures such as representation

choices would probably be dealt with in specifications are not

the same set of experiments used to portable.
address the performance issue in b h prto n efrac
general, as noted above. It helps to of The softwaren ay peomnco

obtain recommendations from the compiler spfi ch sftare mayr depen ofnh

vendor as to relative efficiency of spuniic support library, as

various language constructs in his duised Popot lirtin the

implementation; many offer such data. dsftwaed can rchng tse

Benchmarking may be useful in behavior.

determining whether certain design c fotoa agaefaue
choices are feasible in Ada. This is (eg. opragna) largae usethrey

particularly true with first-time Ada mayg notbeaailabe oned theye

users. For example, the designer of themanobevillenthnw
software that processes interrupts from machine.
external system equipment might be
unsure that his planned design will d) Software may depend on

work, perhaps because he is not sure how characteristics of external

Ada, and his intended compiler, handle hardware, e.g. user terminals,

interrupts. It is straightforward to that may dif fer f or the new

develop small benchmarks to try out such machine.

designs. This is especially important e) Software may interface to other
when the design choice might influenceprgas eg. a dtbe

overll sste desgn.management system, that are not

The problem of "good Ada" may not beaviblonteewmcn.
best addressed by benchmarking. It isTh wa to prac prablyis o
probably not feasible to try to measure (h) identif any scif portabilityt

the maintainablijlity of alternative(1 idnfyaysefcpotbly
designs. However, if particular design requirements you have, (2) obtain and
constructs appear many times in the use a good set of Portability
system, it may be worthwhile to develop guidelines, and (3) consider
really good model Ada solutions to benchmarking as a proof of principle.
promulgate to the programming staff. In this case, benchmarking involves
With a staff of new Ada users, a project trying out your approach to portability
guide documenting various such Ada usage in each of the above areas that apply.
guidelines specific to the application For example, if you have a dependency on

cnbe vlae. Special training in numeric representations and have used
these may also be appropriate. Ada data typing to handle this, try out

your strategy by actually porting some
Portability Potential representative code and comparing

execution results. If you plan to

Portability is a widely-touted Ada handle a DBMS dependency by the use of a

*benefit. Some new system development standard interface such as SQL, write a
efforts are planning to take advantage test program that exercises the DBMS
of that benefit. Developers may plan to calls, and verify that it runs

develop initially on one computer, then
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identically on the two machines. As the environment. The compiler is certainly
project progresses, don't assume that new. There are usually other language
you've taken care of any portability processing tools (e.g. linker, loader)

risk. I posibl, strt ortig drectly associated with the compiler.risk. I posibe, sartporingOther special-purpose tools may alsoearly, proceeding incrementally as have been acquired from the compilerdevelopment progresses. This allows vendor or other sources. These canearly identification of any include configuration management tools,unanticipated problems, design aids, documentation tools, PDL
processors, etc. The programmersReusability Potential assigned to the new project may have

Reusability is handled much like used none of them before.
portability. Like portability, it is an The key point of environmentAda benefit that offers attractive ecmrig ssmpe-tyou aladvantages, but does not come free. bheharkngls simle anin trym othal
Reusability refers to the ability to use poettols befo ec in the one of'a piece of applications code in a new troec tream. Too shc elhaetiony istonsoaapplication, whereas portability refers the aena ingih ha ve man ovosptions,
to the ability to run it on a new There are three objectives tomachine. (Reusability, if the two environment benchmarking:
applications run on different machines,
has portability as an underlying1)Dtrie ha tol wrk s
requirement.) Reusability deals with a)dterminedta. toswokasoftware interfaces, while portabilityadets.
deals with hardware interfaces.2)Dtrie ha tey wk

Reusability is harder to specify together.
precisely than portability, and
generally more difficult to achieve, we 3) observe the effects of their
stated above that any desired use.
portability properties should be is
specifically stated as system Testing to see if tools work i
requirements. The same is true of straightforward. The important is to
reusability, but requirements are harder define what you want the tools to do for
to specify. Existing code not your project. (Perhaps You'll find out
originally designed to be reusable is that the tool was never even intended to
rarely so without extensive modification do that.) Then You test them to be sure

-_ interfaces and exact functionality they do so. i
are too unlikely to be compatible. Determining if tools work together i
components can be designed for reuse, much more complicated, assuming that

* generally through the use of tools did not all come together from the
* parameterization capabilities such as same vendor. The incompatibilities may

Ada generics, but the reuse is still be straightforward and obvious, such as '
limited to "reusers" who can match the incompatible file formats. Such
interface provided. Only when the incompatibilities are generally fixable.
programmer is specifically tasked to Incompatibilities may also be non-
write a reusable component, provided obvious and perhaps subjective. For
with guidelines for doing so, and example, a top-level design tool and a
working to a fully-defined interface detailed design tool might have
that will be adopted by reusers, can different ideas about where the boundary
reuse be depended on. between those two levels lies. As part ~

of the benchmarking process, you will
Benchmarking can be used to help define need to interface the selected tools, or
the interface to be provided by a at least define clearly how this will be
reusable component. A "dummy" component done.
providing the anticipated interface can
be developed and tested with sample observing the effect of tool use
fragments from the reusing programs. includes some measurement of how the
This helps ensure that the interface is tool helps or hinders the developer.
adequately generalized. Included in this judgement is the

critical issue of tool efficiency. Some
Environment Effectiveness Ada compilers execute very slowly, which "

can impact development cost and
Usually, when undertaking a first Ada
project, programmers are confronted with
a completely new development
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schedule. Tools that are hard to use, available user documentation, and the
buggy, or have poor error recovery need for training. Here we will almost
should also be discovered now. The certainly determine areas where project-
quality of tool documentation, and the specific guidance is necessary to ensure
possible need for training in tool use, that methodologies are used
should also be considered. Tool correctively, uniformly, and
benchmarking, to permit these productively.
observations, should be done by
individuals representative of those who Schedule/Cost Estimate Reliability
will be assigned to the project.

Accurately estimating schedule and cost
Methodology Effectiveness of software development has never been

one of our strong points. Our only
Just as a first-time Ada project useful approach has been to gather
typically means a new set of tools, it empirical data on programmer
also usually means new methodologies, productivity, etc. and base estimates on
Ada is perceived as a way of improving that data. With Ada and all the new
our overall approach to software technology surrounding it, we lose even
engineering; consequently customers and that. There is much need in the
managers typically demand that we use industry to start gathering and
various new methodologies. These promulgating such data, and this is
include new techniques for analysis and beginning. However, what does a first-
design, and well as new software life- time Ada project do?
cycle models. (For example, iterative
development approaches such as rapid Using the early available Ada
prototyping are popular.) New productivity data may be a mistake.
standards, e.g. DOD-STD-2167, are Early figures vary widely, and in many
imposed. cases seem to be produced by Ada

evangelists (and hence to be positively
Just like tools, we must try out slanted). Also, early figures are
methodologies before putting them in greatly skewed by programmer experience
use. We have the same three goals -- and training.
see that they work, see that they work
together, and observe their impact. Benchmarking can help with this problem,
This is a bit more difficult with but only through a fairly aggressive
methodologies than with tools because it approach. If the only way to estimate
is harder to define just what it means accurately is by gathering empirical
for a methodology to work. Also, many data, then we must use the benchmarking
of their good effects are not apparent activity to do that. But because
immediately, but evolve with experience development cost depends on so many
with the methodology. It is essential, factors, the only way to gather really
however, that we establish some usable data is to essentially conduct a
definition of what we expect a "practice" or "model" project.
methodology to do, and verify that it
does that. This should be in concrete This need not be as drastic as it
terms -- i.e. produce a particular kind sounds. A good example is the plan for
of diagram that allows one to proceed to the Army WWMCCS Information System
some subsequent activity. (AWLS) project. This project concept

specifies an initial phase devoted toThe problem of methodologies working (1) defining the overall set of
together is also significant.
Methodologies have an unfortunate approaches to all of the issues above,
tendency to try to solve all the (2) applying them to a small piece of
problems of software engineering, rather the application development, (3) ',..
than sticking to one. Thus, when we try refining and revising them as required ,

to adopt more than one we usually find to achieve maximum effectiveness, and
that they overlap. We must clearly (4) gathering productivity and cost

what we intend to do with data. This is an excellent approach.establish just ate tend to fit (However, it is necessary to keep in
each, and demonstrate that they fit mind that the first phase must not just
together in a deterministic ordered beom another pmet ot wit
sequence. It is not appropriate to become another development project with
offer the project team a shopping list
of methodologies that may or may not When this occurs, the first thing to go
address their problems. is any attempt to improve the approach.)Does such an approach really cost more

Observing the effect of methodology use, or take longer? Not obviously, for
as noted above, is difficult. However, don't we end up doing these things
we can assess the ease of learning to anyway? And typically later, when it
use the methodologies, the quality of costs more to change? However, tnis

522 6th Ntional Conference on Ada Technology 1988 on 

M,16



It can show that we have a head start onclearly reouires the concurrence and getting the job done. It can givesupport of our customer and management. greater confidence that our approach

WHO PAYS FOR ALL THIS? will work. For management to believe
this, it helps if the customer

The preceding description makes appreciates the problem. A customer who
Th recding souds r hiion aey doesn't understand that there is risk
benchmarking sound prohibitively involved won't appreciate the up-front
expensive. It probably isn't as bad as work.
it sounds. Most projects will not
involve all of these decision areas. Clearly providing a better cost estimate
Also, as we noted at the beginning, is an advantage, although sometimes the
these various analyses can typically be news may not be what we want to hear.

combined into some relatively small However, pticular in toda'
nube o epeimns. Inth "odl However, particularly in today'snumber of experiments. In the "model competitive enviroment, it's best to

project" approach described above, all know what we're getting into.

issues can be addressed in essentially a

single experiment, while at the same Why would the customer want to pay?
time moving forward with the project. Because:
However, there is undeniably cost
associated with the benchmarking 1) He wants to avoid risk.
process.

2) He effectively pays now.
Is it additional cost, though? We would

argue that it is not -- that in fact it 3) It will cost less in the long
will save money. Clearly we will have run.
to try out all of our methods, tools,
and approaches anyway; benchmarking just 4) He has more control in seeing
says we will do it up front, when bad that the benchmarking is done
decisions are less costly to reverse, right when he pays.
We are, though, proposing a distinct
activity in the project schedule, and Clearly, if the customer intends to
hence a distinct cost item. support and control such benchmarking
Who pays? There are a variety of activities he must write this into his
approaches, but all fall into two basic Statement of Work. Bidders will not be
categories -- the company or the inclined to propose it otherwise. Also,
customer. when planning a comprehensive

benchmarking activity such as the "model
Why would the company want to pay? A project" phase described above, the
product company has no alternative, customer should provide some mechanism
Such a company will invest in to allow results gathered to determine
benchmarking if it thinks it will pay project cost and schedule estimates.
off in long-range cost savings. Because Otherwise, a key benefit is lost.
such a company will usually adopt a
single set of tools and methodologies Whatever structure we adopt to fit
for all its software development, the benchmarking into the software life
payoff prospects are great. However, cycle, it can bring us reduced risk,
most of us are concerned with developing lower costs, and better long-range
software on government contracts. As benefits from Ada.
discussed initially, the question is
analogous to deciding to invest in other
trade studies, prototypes, etc. There CONCLUSIONS
are two reasons our management mightwant to invest in benchmarking: Like any new technology, Ada imposes

risks. These risks should not scare us

1) because it provides a away from using Ada; they can be managed
competitive edge in bidding and and controlled. One of the best ways to
winning jobs do this is with up-front benchmarking -- No

trying out planned approaches before
2) because it helps cost jobs adopting them. Benchmarking will save 0

accurately money over the project life cycle, but
it will take management and customer

Benchmarking can provide a competitive commitment to make it happen. If we
edge in several ways. It can approach projects this way, we can show
potentially lead to some sort of early that Ada does not jeopardize our chance
products or prototypes that we can of project success, and that it brings
actually demonstrate to the customer. us the long-range benefits it promises.
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Implementation of Ada Tasks on General Purpose OS's

Tasuku Miyazaki, Hirofumi Hotta, Ryuichi Yasuhara

Software Engineering Laboratory
NTr Software Laboratories

Abstract requires a task dispatcher for itself. and Ada

All Ada compilers which have been developed for tasking is processed using run-time support
general purpose OS's assimilate Ada tasks into one routines. While these implementations are
OS task. However this implementation has some relatively easy, they have the following problems:
problems in I/0 processing and task switching. (1) Ada task dispather overhead;

This paper presents a method which can implement (2) asynchronous I/0;
each Ada task in one OS task to solve the above (3) shortened time-slicing.
problems. One OS task (State Management task) is The main reasons for these problems is that
introduced to manage all Ada tasks to eliminate current implementation doesn't use OS facilities
the semantics differences between Ada tasking and efficiently.
existing OS tasking. Some optimization methods to This paper, in order to solve the above
decrease Ada tasking overhead is also proposed, problems, proposes and evaluates the

Performance of the implementation method for implementation method of using general purpose OS
real-time system models based on actual systems, facilities without modifying of OS functions; and
such as banking systems, which are implemented proposes optimizations of implementation in order
by using OS tasks, are evaluated, to decrease Ada tasking overhead.
The following evaluation results:

(1) The execution speed of task communication 2. Problems of Ada task implementation on
using Ada without optimization is three to general purpose OS's
five times slower than those using assembly
language. Current implementations of Ada tasks on general
(2) Using the proposed optimization method, purpose OS's assimilate all Ada tasks in one OS

it is possible to implement task task(Figure 1). This implementation is relatively
communication using Ada which has the same easy because it does not hav4to differentiate
approximate efficiency as those using assembly between Ada tasking function and OS's tasking
language. function; i.e., the entire tasking function is

implemented by run-time support routines.
1. Background However, they have the following problems:

(1) There are dispatching overheads of Ada
NTT has application systems such as banking tasks in addition to dispatching overheads of

systems and air traffic control systems on OS tasks.
general purpose OS's. These are multi-task real- (2) In systems without asynchronous I/0, when
time systems in which many tasks are used to one Ada task issues an I/0 request, the whole
process entire jobs. These systems must be OS task will be suspended because all Ada
implemented on general purpose OS's in order to tasks, including executable ones, must be
utilize a database management system of general blocked.
purpose OS's. These systems also have the (3) The time-slicing quota allocated for an
following two advantages because of implementation OS task for Ada tasks are the same as those of
on general purpose OS's: other languages when tasks performing

(1) Time-slicing facilities which are programs written by other languages are
necessary for banking systems can be used; executed concurrently with Ada program tasks.
(2) File management facilities of OS's can be In this case, the time-slicing quota for each

used. Ada task becomes shorter than that for other

OS tasks.
These systems were implemented using many task Therefore, the Ada tasking facility implemented

facilities. Therefore, reliability and writability by the above method can not be used for actual
can be improved by using Ada task facilities real-time systems.
instead of using OS tasking facilities directly. These problems occurred because current Ada
Current implementations of Ada tasks on general tasking implementation is only an assimilation of

purpose OS's, however, generally use the tasking and doesn't efficiently use OS
implementation methods on bare machines. They facilities, which will be described in the
assimilate all Ada tasks into one OS task. following chapter.
Therefore an Ada program which includes Ada tasks
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..is switching of OS tasks" (8) PCHNG macro (change priority)
"is witcingof Aa taks"Changes priority of specified task.
"is witcingof Aa taks"(9) Inter-task common memory area

OS has a common memory area which can be
TASK DISPATCHIER used by all OS tasks.
of GENERAL

PURPOSE OS F OESTAK3.2 Basic policy to solve problem

Problems described in chapter 2 can be solved by(implementing one Ada task as one OS task andF-1 NE O TAS ANOHERleaving the OS task dispatcher to dispatch Ada
ONEOS ASKANOHERtasks. But the following problems stem from the

TASK DISPATCHER LANGUAGE differences between OS tasking facilities and Ada

TASKd TSK tasking semantics.
(1) State transition :A task which has the

highest priority shall be scheduled after
ONE every rendezvous and task creation because of
Ada the semantics of Ada tasks. In order for the
n ,~ OS task dispatcher to schedule Ada tasks, the

running task breaks execution and give the
,' I"~Iexecution to the OS task dispatcher. That is

TASKONE OS TASK to say, the state of Ada task shall be changed
as executing-> ready -> executing. However,

Ada some OS's lack such state transition function.

ITAKIANOTHIER (2) Task creation :In Ada. arbitrary task
hierarchies can be created, that is. any Ada

LANGUAGE task can create a Child Task.

TASK It is necessary for OS's to be able to
create arbitrary hierarchies of tasks, if the
OS task creation facility is used to create

ILIW Ada tasks; however, some OS's lack such a
facility.
(3) File sharing :Some OS's have the

Figure 1. Original implementation of Ada tasks on limitation that a task which opened a file
generl puposeOS'smust read, write and close that file. Ada
ge ralPuroseOSStasks lack such a limitation. Therefore, if

3. Implementation of Ada taskcs more than two Ada tasks want to access the
same file, one OS task must access files to
that file instead of each task.

3.1 Facilities of general purpose OS's To solve the above problems, a management
routine which manages Ada task dispatching, task

This paper assumes that the following functions creation and file sharing must be introduced for
are provided by general purpose OS's: oeAaporm

(1) PPEN maco (ask reaton)There are other problems in implementing Ada
Creates OS task. Some OS's cannot create tasks besides the above, such as the processing of

arbitrary hierarchies of tasks.shrdvialanexptohnlng
(2) POST macro (notification of event)shrdvialanexpto hnlng
Notifies the specified task of the 3. Implementation of state management

occurrence of events. The waiting state task routine
can be activated to change its state to ready
using this macro. We can take the three implementations of state
(3) WAIT macro (waiting for notification of management routines, i.e. (l)task, (2)SVC and

event) neoevnsThtak (3)subroutine. But it is difficult for SVC
Waits for the occurrenc feet.Tets routines and subroutines to dispatch Ada tasks and

may be changed from waiting state to ready share files. Therefore task management routines
state by using this macro. are implemented as an OS task, called the "State
(4) GIVE macro (request to process) Management Task". Ada tasks send a request to the
Sends a request to the queue of specified State Management Task to process any facilities

task to process. which the original OS's lack.
(5) TAKE macro (take request to process)
Take data from its own task queue. This 3.4 Implementation of Ada tasks

macro performs task communication using the
GIVE macro. In this chapter, an implementation method for
(6) SRTW macro (set timer and wait) Ada task facilities, mainly task creation and task
After specified time passes, timer communication (rendezvous), which depend on each

interruption will occur; this macro is used to OS's facilities and influence the performance of
wait for the specified time. sseaedsusd
(7) CRT macro (cancel SRTW macro) sseaedsusd
Cancels issued SRTW macro.
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3.4.1 Task creation 3.4.2 Rendezvous

All Ada tasks are created by the State The next steps outlines the implementation of a
Management Task not by the Ada task directly. The rendezvous(Figure 3).
State Management Task issues a task creation macro (1) The semantics of an Ada rendezvous
and creates a new OS task for the Ada task. All require implementation to be a synchronous
information which includes relation between Parent communication. Calling Task(entry call side)
and Child Tasks, Siblings of Ada tasks and other issues GIVE and POST macro to send data and

information necessary for managing Ada tasking is Called Task(accept side) issues WAIT and TAKE

stored in the user area of the task control macro to receive data.

block(TCB)(Figure 2). (2) When Called Task is ahead of a rendezvous

The steps to create Ada tasks are as follows: request from Calling Task, Calling Task

(1) The Ada task which wants to create a changes the priority of Called Task. if

Child Task (Parent Task) sends a request to necessary, and issues a WAIT macro. Then,

the State Management Task for task creation Called Task takes, the data and begins the

using the POST macro. rendezvous.

(2) The Parent Task issues a WAIT macro to When Calling Task is waiting for Called Task

change its own state from executing to to become ready, Calling Task issues only the
waiting. WAIT macro. Eventually when Called Task is

(3) The State Management Task issues an ready, it changes the priority of itself, if

APPEND macro and creates a task (Child Task). necessary. Then it takes the data and begins
(4) The State Management Task sets the task the rendezvous.

name in the TCB of a Parent Task. (3) When the rendezvous ends, Called Task

(5) The State Management Task sets the issues a POST macro to the Calling Task to

parent-child and sibling relation information change Calling Task from the waiting state to

in the user area of Child Task's TCB. the ready state.

(6) If the request is to create more than two (4) If the priority of Calling Task is higher

tasks, each Child Task issues a WAIT macro to than a Called Task's. The Called Task can not

wait until the creation of all Child Tasks. continue execution because of Ada

(7) After all Child Tasks are created, the semantics(see Ada reference manual 9.8).

State Management Task issues a POST macro to Therefore at the end of rendezvous. Called
all Child Tasks to activate them.

~- "is a request to process" -"is a request to process"

TASK DISPATCAER ~--"is switching oE tasks' TASK DISPATCHERsichnoftk"

of GENERAL 
of GENERAL

PURPOSE OS PURPOSE OS

4 STATE MANAGEMENT TASK * STATE MANAGEMENT TASK

* 
3 1  ----- Create child Activate

task using CALLED TASK

(41 APPEND macro 3 'Force itself
' hil to wait

\ task to wait,
\ .Activate a

parent task CREATEIssueitPOST/ and all child CHILD\

macro and tasks using TASK1
force POST macrof orc f, 

ACT IVATE

'to wait ACTIVATE ACTIVATE

PARENT TASK CHILD TASK CALLING TASK CALLED TASK

'Request to 'Wait until 'Request to at .Receive data

create all child make EC and begin to

child tasks tasks are rendezvous make rendezvous /created (GIVE & ,atvt (WAITE & TAKE) ,

POST) : rendezvous

'Force itself *Activate CALLZNGto watTASK and STATE
wait MANAGEMENT TASK

Force itself to
wait

Figure 2. Implementation of creating Ada tasks Figure 3. Implementation of rendezvous
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Task must issue a WAIT macro to break 3.4.5 Exception handling
execution.

However there is no task for activating the When an exception is raised in a task, it is not
waiting Called Task. therefore the State usually propagated to other tasks. But an
Management Task is introduced and it issues a exception can be propagated to a Calling Task if
POST macro to the Called task. The Called Task it is raised during a rendezvous.
restores its task priority and issues a POST Implementation or exception handling is as
macro to the State Management Task so that follows:
State Management Task can issue a POST macro The interruption handler of each task includes a
to the Called Task later. Then Called Task routine to terminate rendezvous. If the exception
issues a WAIT macro to force itself to wait. occurs during rendezvous, the interruption handler
(5) The activated State Management Task sets a flag which indicates that an exception has

issues a POST macro to the Called Task. Then been occurred and performs the rendezvous
it issues a WAIT macro to force itself to termination processing, i.e. changing priority or
wait. At this time. the OS task dispatcher notification of rendezvous end to the Calling
switches to the task having the highest Task. This flag is placed in the task common area
priority. Therefore the task having the and exception existence during rendezvous is
highest priority will be executed first. The checked both after entry call statement and
State Management Task shall be given a higher accept statement execution. If this flag
priority than any other Ada task, indicates that an exception was raised, an

exception handler corresponding to the exception
3.4.3 Access to shared files is executed.

Not all Ada tasks issue I/O macros directly. 4. Evaluation
Each Ada task sends a request to the State
Management Task to open. close, read or write. 4.1 Model for evaluation
The State Management Task receives the I/O request
and issues an I/O macro in behalf of Ada tasks. Real time processing, one type of concurrent

Processing is classified into two typesll2][3]. The
3.4.4 Access to shared variables first is a transaction-type system which is used

for on-line systems such as banking systems. The
Ada reference manual specifies that "if two Second is a control type which is used for air

tasks read or update a shared variable, then traffic control systems.
neither of them may assume anything about the
order in which the other performs its operations 4.1.1 The transaction type model
except at the point where they synchronize"[11.
Tasks can synchronize only at the start and at the The transaction-type system deals with data
end of their rendezvous, at the start and at the which is input at irregular intervals. To deal
end of its activation, and at the completion of with irregular intervals' input data, these data
their execution. are queued in a buffer and each task performs the
Furthermore. a program that uses shared Processing according to the data taken from

variables is erroneous if the following are buffer. This implementation is used for banking
violated: system, and has the following characteristics:
"(a) If between two of its synchronization points (1) A queue to deal with data which is input

a task reads a shared variable, then the variable at irregular intervals.
is not updated by any other task at any time (2) Task construction and task communication
between these two points. of these system types are almost identical.
(b) If between two of its synchronization points Therefore, a typical model can be easily

a task updates a shared variable, then the defined.
variable is neither read nor updated by any other (3) It is not necessary to determine the
task at any time between these two points."Ijl]. upper limit of response time strictly but, of

Shared variables were implemented as follows to course it is better to have a better response
satisfy conditions (a) and (b): time.

(1) The variables of a task which creates When this system is described using Ada, it is

Child Tasks is placed in a common area among necessary to implement an asynchronous
tasks. communication using a queue. Therefore, as is well

(2) When the Child Task is created, the known, a buffer task to implement asynchronous
Parent Tasks' variables which are used by the communication must be introduced.
Child Task are copied into Child Task's own In this paper, the communication processing part
area. of banking systems was examined and modeled. The
(3) When the shared variables are updated, banking system is used for two types of tasks. The

only the variable copy is updated and its first type accepts input data and delivers it to
copy is copied back into the common area at the second type of task, which processes these
the next synchronization point. The variables data according to its contents. Usually banking
which are not updated are copied from the systems consist of one first-type task and several
common area at each synchronization point, second-type tasks. These two types of tasks

communicate with each other. Processing of a
transaction-type model using an assembly language
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is illustrated in Figure 4. An illustration of the there are various types and relations of task

same system using Ada. instead of the assembly construction in the control-type systems. Hence,

language, is shown in Figure 5. it is difficult to determine one typical model.

4.1. Conrol-ype odelTherefore, two sub-models are used for evaluation.
14.12 Cntrl-tye mdelOne sub-model has a task which sends the data to

two tasks. Another sub-model has tasks which send

Control-type model systems deal with data which data to a single task. The first sub-model using

is input at regular intervals. To deal with assembly language is shown in Figure 6. The same

regular interval input data, each task must sub-model using Ada is shown in Figure 7.
complete its processing within this interval.
Consequently, it is not necessary to use a queue 4.2 Evaluation method

in the control-type system, unlike the transaction

system. This implementation is used for air To make a quantitative performance evaluation,

traffic control systems by NTT, and has the the number of executed machine instructions in

following characteristics: task management and task switching processing are

(1) The upper limit of a response time is measured for two cases; one where the above ~ '.
strictly determined based on input time implementation method is used, and another where

intervals. OS macros are directly used using assembly

(2) Task construction and task communications language. The number of machine instructions is

differ from system to system. assumed to be the same for parts other than for

(3) it is not necessary to use the queue for task communication processing in both cases.

the task communication. The number of each OS macros executed machine

When this system uses Ada. buffer task is instructions are known. In addition, execution

unnecessary and task communication can be times of each macro have been estimated for each

implemented with the rendezvous, model. Thus the total number of executed machine

The transaction system is modeled using a fixed instructions for each model can be calculated.

form of task construction. On the other hand. The results of the performance evaluation are

TASK1 TAK 2shown in Table 1. The "Synchronous Ada model"
TASUE 2 column in the transaction-type model shows the

model in which task construction is the same as

GIEWAIT the original, however, task communications are
performed synchronously. This model is presented

-Queue data -- wait for data only for the evaluation of buffer task overhead.

-TAKI

activate -- take dataDAATK

Figure 4. Implementation of transaction-type --send data to GIVE and DATA TAKE

model using assembler -TASK 2 and POST -- receive
--activate -- send A --data

TAS 1BUFERTAK TSK2 -TAK- data to --from

TASIV 1n POSTTS TS 2- TASK 4 --TASK 2

--senddata o andWAIT and N
buffer-.task select buffer-.task --TSn 3daat -- activateA

.GET(Dl); accept GET .PIJT(D2); -AS TAKE

(in datal) --receive -- ciae--receive

data do --data from 
--data

--toFER X(I):=datal; --BUFFER-TS. 
--from

--TASKR~ end GET; --TASKWATad-AS3%
--AK--receive data DTTK

- -from TASK 1f

or

accept put 
dt

do GIV and'Z
data 2 :=X (I); PS

--send data to 
-t

--TASK 2 
-TS n

end select; --activate

Figure 6. Implementation of control-type

Figure 5. implementation of transaction-type model 1 using accembler

model using Ada tasks
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TASK 2 Table 1. Number of executed machine instructions
accept SEND YPE of[TRANSACTION TYPE I
(in data) YPEfS A CONTROL TYPE MODEL
doMODELS MODEL

X:=data;SYN-X :=data; MODEL I CHRO- MODEL I MODEL 2
FUNC- ASSE N US A E0SSEM- AdaSEN1 A

--receive data IONS BBLER Ada MaELBLER Ada BLER

--from TASK 1103-2 1103-9 103-5 103-411031,1 103×4i103x13
--TASK 1 DISPATCH =206 =927 =515 '=412 m1751 =412 =1339TASKAS I1AS

TASK 1 TASK4 94x1 168x2 1681 94,41163x4 94x3!168-3
task2.SEND task4. SENDI accept SENDi AL -94 1=336 =168 =376 =672 =282 =504

(DI); (D3); k(in data)- __

--send data to --send data to do BEGNNING iioxi 110x2 110×1 110x4110 110×3 10x3DF =44 -1 0 =44" '0
--TASK 2 i--TASK 4 X:=data; CCEPT = =220 =11 =4=0 =330 =330

task3. SEND | end SEND1; -
(D2); TASK 3 --receive END.-send da E o\ D 186-2 186× I l 186x4  1186x3

--send data to accept SEND --data from OF =372 =186 =744 - =558

--TASK 3 (in data) --TASK 2 ACCEPT i =

do STATE 3 1303
d=data accept SEND2 AE1302l1 130x4 130x3

end SEND; (in data) MENT - 1=260 I=130 =520 - 390

--receive data do TASK I I

--from X:=data; TOTAL 410 2115 12391 1228 14127 1024 3121
--fro --eceiv send2

--TASKend send2 (5.2) (3.0) (3.4) (3.0)
--r e c e i v eL - - - J - - -

task4.SEND2 --data from* The valves in parentheses are the ratio
(D4); --TASK 3 of Ada to assembler

--send data to
--TASK 4 the following reason. If the Called Task

includes I/0 requests or delay statements, the
Calling Task must wait for the completion of theseFigure 7. Implementation of control-type I/0 requests or delay statements. Waiting for

model 1 using Ada tasks these I/0 requests or delay statements becomes

overhead for Calling Task. In the control
4.3 Evaluation results systems, entire jobs are broken into several tasks

so as that they can be executed concurrently.
The following conclusions result from Therefore, many tasks have I/0 requests or delay

evaluation of Table 1. statements. The optimization method applicable to
(1) Comparison of the two control-type sub- systems in which tasks have I/0 requests or delay

models revealed that there are 3 times statement like control-type system are described
number of executed machine instructions using here.
Ada as compared to the assembly language. In the control-type systems. Calling Task
There is no overhead differences between the receives the data from another task or hardware
two models. device and sends them to Called Task. Called Task
(2) There are 5 times the number of receives data from Calling Task, processes it and

instruction steps using Ada as when using the write the results in the data bases. In this
assembly language for the transaction model model, Calling Task does not a wait the response
because of the extra buffer task needed to from Called Task after sending data.
implement asynchronous communication. The Consequently, data communication between the two
overhead using this buffer task accounts for tasks is only transmitting data and it is not
about 50 percent of all overhead, necessary bidirectional data communication such as
(3) The number of task switchings are rendezvous. Therefore, when nothing but sending

significant overheads for both type models. the data is used by rendezvous, the Calling Task
does not have to wait the completion of

5. Optimization rendezvous. That is, in this case, rendezvous can
be implemented as an asynchronous communication

As is seen in the evaluation results, Ada and a lot of task switching can be eliminated.
tasking overhead is rather large. A rendezvous The described optimization can be used under the
optimization technique for the implementation of following conditions:
Ada tasking is proposed. (a) The accept statement has only in mode

There are overheads using a buffer task on parameters.
transaction type models using Ada. Buffer task (b) Execution of the accept statement can be
overhead is optimized by using the Habermann and done by the Calling Task. That is to say. the
Nassi method[4][5]. In their optimization, all variables used in accept statements can be
buffer task processing is changed into used by the Calling Task or if the accept
subroutines. This optimization can be applied to statement has no sequences of statements with
the transaction type system, however, it can not it.
be applied to the control-type system because of (c) The priority of Calling Task is higher
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than or equal to that of Called Task. facility to manage the parenti-child relation

(d) Accept statements do not include I/0 of Ada tasks and file sharing.) and that a

requests or delay statements. State Management Task is required. By this

If the system satisfies these conditions, method, Ada tasks can be implemented as an OS

Calling Task can execute the process of accept task without modification of the OS.

statements in its context of Calling Task and (2) In this implementation, there was

send the results of this processing to Called considerable overhead in switching task at the

Task. Therefore. rendezvous can be implemented end of rendezvous. Consequently, it has

without task switching. Almost all control systems overhead 3.0 to 5.0 times greater than an

satisfy the above conditions. assembly language.

The details of implementing the described (3) An optimization method was proposed to

optimization are as follows(Figure 8): decrease the execution time of the task

(1) When Calling Task is going to execute an communication of control-type systems. Using

entry call and Called Task is not waiting at the optimization, Ada tasks were implemented

the point of rendezvous, the rendezvous which had the same performance as the assembly

processing described in chapter 3 is executed language.

as usual.
(2) When Calling Task is going to execute an In this paper, the number of machine

entry call and Called Task is waiting for instructions was used to evaluate performance. A

rendezvous, the former executes the accept future application is to implement Ada tasks on

statements as a subroutine, general purpose OS's based on the proposed

(3) When execution of accept statements is implementation and to measure actual execution

finished, Calling Task sends the data time in order to examine its efficiency.

processed in the subroutine of accept
statements to Called Task using GIVE and POST 7. Acknowledgement
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OPPORTUNITIES FOR PARALLELISM IN ADA: LANGUAGE SUPPORT AND

RESTRICTIONS ON EXPLICIT AND AUTOMATIC PARALLELISM

Carol R. Peo

Alliant Computer Systems Corporation

Modern architectures support parallelism parallel code exemplify the latter.
at the instruction, expression, loop, Languages should take advantage of all
block and task level. This paper levels of parallb .ism to maximize
discusses features required for explicit performance gains. This paper will
parallelism and techniques used for discuss the various forms of
automatically detecting parallelism at parallelism, how they can be exploited,
each of these levels. Ada is examined and particularly, how they relate to
in terms of how it promotes and inhibits Ada.
parallelism. Ada's problems as well as
its unique advantages for parallelism Section 2 will discuss levels of
are presented. The paper shows that Ada parallelism. Section 3 will discuss
can exploit many forms of parallelism, explicit parallelism. Section 4~ will

present a brief survey of techniques
used for automatic detection of implicit
parallelism and will discuss issues that
make such detection problematical.
Section 5 will examine Ada in light of

1. INTRODUCTION what it provides and lacks to support
parallelism. Section 6 will draw some

Parallel processing yields tremendous conclusions.
performance gains over serial
processing. Machine architectures have 2. LEVELS OF PARALLELISM
become increasingly sophisticated in
their hardware support for par-allel Parallelism can be applied at each of
processing. Hardware now supports the following levels within a program:
parallelism in many forms: multi-
processing with multiple processors or instruction level
functional units (termed MES or multiple expression level
execution of scalar code), vector loop level
processing (termed SEA or single block level
execution of array operations), and task level
multi -processing vector processing
(termed MEA or multiple execution of Instruction Level - Pipelined
array operations). Machines based on architectures which overlap the
these forms of parallelism offer decoding, fetching and execution stages
enormous potential speedups over of instruction processing have been
traditional Von Neumann architectures, available for a long time. Compilers

can schedule instructions to minimize
Languages and language processors should the pipeline stalls that occur when .. ~ .

take advantage of the opportunities required data is not available.%
afforded by these parallel
architectures. Two distinct approaches Expression Level - MES and MEA
towards program parallelism have emerged architectures can take advantage of
in recent yea rs . One approach has expression-level parallelism. This .J

aimed at explicit high-level refers to the parallel evaluation of
parallelism, directed towards relatively operands on the right-hand-side (RHS) of
large independent sections of code. The an expression. Each independent
other approach has focussed on more expression can be executed in parallel. '

fine-grained, implicit par'allelism. Transformation techniques using
Languages which provide concurrent associativity, commutativity and
programming constructs such as Ada and distributivity can be applied to
Modula-2, exemplify the first approach, increase the amount of parallelism.
while FORTRAN compilers which Techniques promoting tree-height
automatically generate vector and reduction enhance the parallelism at
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this level [14,15]. This fine-grained Concurrency is also used for loops that
parallelism by itself may not provide cannot be vectorized. For example, the
significant performance improvement, range of a WHILE loop construct is not
since it can easily be impeded by a as well-defined as that of a FOR loop.
memory system. Memory clashes can WHILE loops often do not use an
overwhelm the effect of parallelism at induction variable, and frequently use
this level. EXIT statements to exit from the loop

when a condition is reached. Such loops
Loop-Level - SEA and MEA architectures are difficult to vectorize since
can exploit loop-level parallelism, processing must be synchronized at the
Iterations of a loop are executed in conditional statement to know whether
parallel by vector hardware or by doling the loop should continue. Concurrency
out iterations of the loop to multiple has access to synchronization mechanisms
processors, or a combination of the two. and can execute such a loop in
The loop parallel.

for index in index'range loop loopi:
A(i) := B(i) + C(i); WHILE true loop

end loop; IF condition then exit loopl; 9
statements

can be processed by a vector processor end loopl;
in a single instruction, which might be
represented as: This loop could execute in concurrency

mode assuming the statements are capable
A(index'range) := B(index'range) + of being run in parallel, with a

C(index'range); synchronization point set at the IF
statement.Alternatively, the loop can be processed

in parallel by multi-processors, where Other constructs which prohibit
one processor executes iteration 1, vectorization but not concurrency
another processor executes iteration 2, include multi-way branching inside a
and so forth. This style of self- loop, forward branches outside the loop,
scheduled loop execution has been termed and return statements.
concurrency. Some loops cannot be
vectorized because of data dependencies, Hardware support is required for
but can be run in parallel using concurrency. In particular, the
concurrency (data dependencies will be hardware should efficiently support data
discussed in Section 4). Additionally, synchronization, communication and
some nested loops can utilize both processor self-scheduling. The Alliant P
vectorization and concurrency 'y u3ing FX/8, for example, has hardware
vector mode on the inner loop and registers to support processor self-
concurrency on the outer loop. For scheduling, synchronization registers
example: and a high-speed concurrency bus.

loopi: Block Level - MES and MEA architectures
for i in one'range loop can also take advantage of block level '

loop2: parallelism. This form is applied to
for j in two'range loop adjacent statements or loops. A block

A(i,j) := B(i,j) + C(i,j); of adjacent assignment statements, the
end loop2; evaluation of the RHS's of a block of

end loopl; assignment statements with intervening

conditional statements, statements
In this example, iterations of loop 1 adjacent to loops, and consecutive loops
could be distributed to different could each be executed using concurrency
processors, and within each processor, on multiple processors if there were no
vector operations could execute loop 2. data dependencies or if synchronization
If one'range were 1..8 and two'range points could make the data dependencies
were 1..32, for example, this loop when manageable.
run in concurrent-outer-vector-inner
(COVI) mode on a machine with eight Task Level - Another form of parallelism
processors, would require just one add available to MES and MEA architectures
instruction on each of the eight is task level parallelism. Task level
processors as opposed to 512 add parallelism refers to the concurrent
instructions that would be required for execution of disjointed portions of
this loop to be run serially, code. This may refer either to

subprograms which can be executed in
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parallel if there are no data Explicit parallelism has the advantage
dependencies, or to explicitly parallel that the programmer controls where

code such as Ada tasks. This level of parallelism is applied, and languages
parallelism is achieved by executing can define precise semantics for it."tasks" on separate processors. This section will outline language

constructs that promote explicit
All of these levels of parallelism can parallelism. These language constructs
be applied in concert to a single include task-level constructs such as
program. When conflicts for resources Ada's tasking, vector constructs like
arise, the resource allocation choice those added to FORTRAN/8X and
might be made based on which mode FX/FORTRAN, and pragmas that can make
provides the greater performance any level of parallelism explicit.
speedup. Alternatively, under user
control, the choice could be biased TASKS
towards satisfying explicit parallel
constructs first, and allocating only Tasks identify sections of code which
the remaining resources to implicit can execute concurrently. Ada tasking
parallelism. Thus on a machine which provides an ideal vehicle for high-level
supports all of these forms of parallelism because it explicitly
parallelism, portions of programs might informs the compiler and runtime system
run in any of the following modes: what code can execute in parallel, and

scalar (serial) precisely defines the semantics for the
vector behavior of multiple tasks in a program.
vector-concurrent Other languages have provided means for
scalar-concurrent subprograms to run independently. Some
multi-processing/scalar implementations of FORTRAN, for example,
multi-processing/vector support macrotasking for this purpose.multi-processing/vector-concurrent
multi-processing/scalar-concurrent In addition to performance gains

The Alliant FX/8 is an example of an achievable through task-level
architecture that supports all of these parallelism, the use of tasks has
forms. An Ada program could be executed advantages from a design standpoint.
such that each task executed on its own Many applications comprise a set of
processor, and the code within each task concurrent and relatively independent
executed in parallel using both vectors functions. With tasking, these
and concurrency. Concurrency could be applications can be designed as single
utilized if processors were available programs with multiple tasks, thus
because either there were fewer tasks extending the protection of visibility
than processors or because some of the and typing rules to the entire
tasks were blocked thus making the application. Finally, the use of tasks
processors available for concurrency. rahter than system-dependent services
3. EXPLICIT PARALLELISM and processes promotes portability and

3 PL inter-operability.

Parallelism can be either explicit or VECTOR CONSTRUCTS
automatic. That is, either the
programmer controls precisely which Specific language constructs for loop-
parts of the program are run in level parallelism provide the programmer
parallel, or the programmer allows the a means other than loops to specify

- compiler to automatically detect where operations to be applied to multiple
parallelism can be achieved, elements of a vector. Such constructs
Additionally we can have hybrids of instruct the compiler explicitly to
these two, where tools are provided generate parallel code for the
which help the programmer structure the operations. The semantics of a vector
code such that parallelism is enhanced. operation versus a loop executed in
The programmer supplies information to serial mode specify that all the
the tool, which inserts pragmas in the operands are fetched once before the
code instructing the compiler to vector operation rather than on each
generate paralle code. Additionally, iteration of a serially-executed loop.
the tool helps the programmer Using explicit language constructs to
restructure the code in such a way as to specify such behavior, makes the design
enhance the opportunities for clearer and asserts that such behavior
parallelism. Tools to help FORTRAN is correct.
programmers in this way are already i

available. FORTRAN/8X and FX/FORTRAN include many
vector extensions to support loop
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vectorization. Constructs of importance For example, if B <True, True,
include: False, True>, then A(B(*)) selects

A(O), A(l), and A(3). This U
Vector types expression is useful for

The language recognizes vectors as conditional assignments which will
a type. Assignment is defined for be described below.
vectors, and objects of vector type
can be passed as parameters to Vector operations
procedures and be returned from All arithmetic operations should be
functions. Vectors are used for predefined operations for vector
each dimension in multiply- and array types. Thus A(*) + B(*)
dimensioned array. would yield a result vector whose

Vector expressions elements contained the results of
Several ways to reference vectors the elementwise sum of vectors A
are useful for explicit loop-level and B. Another set of useful
parallelism. FORTRAN/8X allows arithmetic operations take one
users to reference vectors by operand of type vector, and one of
range, length and wild carding, all scalar type. The operator is
with an optional stride. Stride applied to each element of the
allows array sections to be named, vector and the scalar object. Thus
Wild carding is required to select A(*) + 5.0 would produce a result
sections and shifted sections of vector whose elements contained the
arrays, such as all columns, all results of an add of each element
rows, or the area above or below and 5.0.
the diagonal. The following
FORTRAN expressions are vector Reduction operations are also
references for A: useful for explicit loop-level

A(1:32:1) -- Elements 1..32 parallelism. SUM and DOT-PRODUCT
A(1:32:2) -- Odd elements are examples of reduction

1..31 operations.
A(3:#10) -- Elements 3..12
A(*) -- All elements of Vector assignment and conditional

first dimension assignment
A(i, *) -- All elements of FORTRAN/8x added semantics for

second treating arrays as aggregates
dimension for assignment. FORTRAN/8x also

A(i, * + 2) -- All elements in defines conditional assignment
(lower bound+2 for arrays. Its syntax is as
.. upperbound) follows:
of second
dimension WHERE (A(*).NE.O)

A -- All elements of B(*) := C(*)/A(*);
A OTHERWISE

B(*) := 0;

FORTRAN/8X also allows array The effect of this statement
references using an index vector to would be to assign the result of
select those elements referenced in the C/A to B for all elements of
the index vector. A which are non-zero. Such a _

A(V(*)) -- Elements of A construct replaces the loop:
corresponding to the
value of the elements for i in index'range loop
of V. if A(i) /: 0 then

For example, if V = <0,3,5,6>, then B(i) := Ci) / Ai);
this A(V(*)) references A(O), A(3), end if;
A(5), A(6). This kind of end loop; % ..
expression is useful to reference
sparse matrices. Below is an example of a code fragment

coded using loops, and one using
Boolean vectors can also be used to predefined vector operations. Clearly
select elements in an array. the second is preferrable in terms of

A(B(*)) -- Selects elements of clarity, and, on vector hardware, will
A corresponding to the perform much faster than the first.
elements of B whose
value is TRUE. for i in index'range loopSfor j in subindex'range loop 4
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A(i,j) := B(i,j) * C(i, j)/ D end loop;
end loop;

end loop; can not be vectorized since each
iteration of the loop depends on a value

(for simplicity we will assume that of A that was calculated during the
index and subindex refer to the type previous iteration. If the code were
used in the declaration of A.) vectorized, incorrect values of A would

be used in the calculation.
A :: B * C/D; When executed in concurrent mode on
PRAGMAS multiple processors, synchronization

points can be inserted before the
Pragmas that direct a compiler to reference to A(i-1) on each iteration to
generate parallel code are another form force the processor executing the
of explicit parallelism. A pragma such iteration to wait until the updated data
as CONCURRENT(subprogram) might inform is available. This enforces a partial
the compiler that the subprogram can be ordering on the loop. Additionally,
executed in parallel. This would allow compilers can sometimes schedule
loops with embedded calls to subprograms instructions such that the data is b
to execute concurrently. The programmer always available at the time it is
would have to ensure that the concurrent needed.
subprogram had no dangerous side-effects
such as the modification of global data. Automatic parallel code detection
Subprograms that exhibit such behavior focuses on data dependency analysis and
when specified as CONCURRENT are program transformation techniques that
erroneous just as are tasks which modify eliminate data dependencies. There are
shared data outside synchronization three forms of data dependency.
points. True or flow dependence: As in the
4. TECHNIQUES FOR AUTOMATIC PARALLELISM above example, one statement or

iteration of a loop produces a result
Automatic vectorization and concurrency that is used by a later statement or
promotes portability and transparency iteration.
since parallel code is generated for
programs written without concern for A X;
parallelism. There has substantial Y:= A;
research into the problems of automatic
vectorization and concurrency. The Anti-dependence: One statement
theoretical foundation was laid by Kuck reassigns a value to a variable which is
in [14, 15] and Allen and Kennedy [1, referenced by a previous statement.
3]. An excellent overview of the Here again, if the statements are
technology can be found in [19]. executed in parallel, the first
FORTRAN compilers that make use of this statement might retrieve an incorrect
technology are already available, value. In the following example, A must
Alliant Computer Systems Corporation's be assigned the original value of X.
FX/FORTRAN automatically generates
vector and concurrent code. This A :=X;
section will briefly present the major X :: Y;
techniques used to detect opportunities
for parallelism.

Output dependence: Two statements
The basic factor that determines if a assign new values to the same variable.
section of code can be run in parallel When not executed in serial order, the
mode is the existence of data variable might contain the incorrect
dependencies within that section. Since value at the end of statements'
a vector operation fetches all of the execution. After execution of the
source operands before the operation or following statements, A must contain Y,
assignment is executed, code which not X.
modifies data that is used on later
iterations of a loop cannot be A ::X;
vectorized. It might, however, still be A := Y;
a candidate for concurrency. For
example, the following loop: Output and anti-dependence are not true 5 .

for i in index'range loop dependencies since they result only
A(i) :: B(i) + A(i-1); because of the use of a common variable.
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If different variables were used to hold IF conversion: Generation of temporary

the results, the statements in 2 and 3 boolean variables to contain results of

above could be run in parallel, condition statements. This converts
control dependence into data dependence.

A := X; Scalar expansion: This technique
NewX := Y; promotes a scalar variable into an array

and which often helps to eliminate output
dependence. For example, in the

A := X; converted IF statement above, the
New A := Y; variable B was used to hold the value ofNewA :: Ythe conditional expression within the

Now there is no data dependency in these loop. However, since B is a scalar

pairs of statements and they can be variable, there is an output dependence
executed in pralel.s Od cue, all ewithin the loop. By promoting B to a
executed in parallel. Of course, all vector with the range index'range, thereferences to X and A following these loop can now be executed with vector
substitutions would have to refer to operati os:
newX and newA respectively. operations:

Another kind of dependency is control for i in index'range loop;

dependence where conditional branches B(i):= conditional expression;

can alter the course of execution. WHERE (B(i)) AM := B(i);

In the following code fragment an IF end loop;

statement controls whether the As long as the conditional expression
assignment statement is executed. can be evaluated in parallel, this loop

could now be executed in two vectorfor i in index'range loop operations.
if condition then

Aei) := Bii); Loop fission: This technique breaks a
end if; loop into multiple adjacent loops in

end loop; order to separate data dependencies.

A solution to this problem is to for i in index'range loop
introduce a variable that contains the AM B(i) + C(i);
boolean value of the conditional D(i) :A B(i) * E(i);
expression. That variable then can end loop;
guard the assignment statement. This
technique converts the control can be vectorized if broken into the
dependence in this loop to data following two loops
dependence, which can then be f
manipulated using normal data dependency for i in index'range loop
techniques. The transformed loop A(i) := B(i) + C(i);
appears as end loop;

for i in index'range loop for i in indexrange loop
B := ondiion;D(i) := A(i) * E(i);B :: condition;enlop

WHERE (B) A(i) := B(i); end loop;
and loop; Loop fusion: Adjacent loops with no

data dependencies can be fused into aMany techniques have been developed to single loop to reduce vectorization or

reduce data and control dependencies by

transforming programs so that more code concurrency overhead.

can be run in parallel. Where data for i in 1..5 loop
dependencies still remain, code can for j in 1..3 loop
often be executed using concurrency on A(i, j) := B(i, j) + C(i, J);
multi-processors. The following section end loop;
mentions a few techniques used to end loop;
transform data. For more discussions of
this topic see especially might become[1,3,10,19,24]. mgtbcm

PROGRAM TRANSFORMATION TECHNIQUES for i in 1..15 loopAPi) :T B(i) + C(i);

Renaming: Anti-dependence and output end loop;
dependence can be removed by using
temporaries as discussed above.
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Loop interchanging: Since data end loop;

dependencies may exist only on one of a

nested loop indexes, interchanging the would be transformed into 7
loop may remove the dependency on the

innermost loop, thus making it a loopi:

candidate to run in parallel. 
for i in 1..N/L loop

loop 2 :

for i in index'range loop for J in 1..L loop

nsubindexrange loop A(i, j) := B(i,j) + C(i, j);for j in ubne'aelopend loop2;

A(i, j+1) := A(i, j) * B(i); end loopl;

end loop;
end loop;

becomes The inner loop, loop2, can now be run in
vector mode while loopl is run in

for j in subindex'range loop concurrent mode.

for i in index'range loop
A(i, j+1) := A(i, j) * B(i); Loop copying: When embedded conditional

end loop; statements inhibit parallelism, the

end loop; compiler can generate two versions of

where the inner loop can now be the loop, one which executes in vector

vectorized as A(*, j+1) := A(*, j) since mode and one which executes in scalar

there is no recurrence in the ith mode. For example,in the loop

subscript, 
for i in 1..N loop

A(i) := B(i) + A(i + m);

Global analysis: By tracking the end loop;

values of indexes and subscripts, it is

sometimes possible to eliminate data if m is positive, this loop can be

dependencies. For example, in the loop vectorized; if not, there is a data
dependency that prohibits vectorization.

i in 1..N loop The following loops could be generated:

A(i + K) := A(i); if m >= 0 then

end loop; loop -- vector code

if K is not in the range 1..N, no data A(i) := B(i) + A(i + m);

dependency exists. By keeping track of end loop;

the value of K wherever such information else -- no vector code
is available, the compiler can sometimes A(i) := B(i) + A(i + m);

detect that this is safe to vectorize. end if;

Inter-procedural analysis: Calls within Idiom recognition: This technique

loops or blocks of statements usually recognizes common patterns and

prohibit parallelism since it is transforms them appropriately. For

impossible to know if data dependencies example,

exist between the called procedure and for i in index'range loop

the calling code. Inter-procedural S := S + A);

analysis sometimes allows the compiler end loop;

to know if the called routine modifies is a sum reduction. A compiler can

any of the data accessed by the calling transform this loop into a call to a

code. library summation routine if available.

Global forward substitution: This is FACTORS INHIBITING AUTOMATIC PARALLELISM

used in conjunction with renaming to A
eliminate non-cyclic data dependencies Automatic detection of parallelism is
and in conjunction with global has limitations. Some of the factors

analysis to assist in the tracking of which interfere with automatic detection

variable values. are described below.

Strip mining: This technique creates a GLOBAL DATA

nested loop from a single loop. This
might be advantageous because of Since all of the techniques described in
hardware vector register lengths. For Section 4 focus on reducing data

example, assuming the hardware vector dependenautomatic parallelism not surprising enerallyt
register length is L, inhibited by anything that can cause the

for i in 1..H loop state of the data to be unknown. A

A(i) := B(i) + C(i); compiler must make the safe choice to
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execute in serial mode anytime the data processors. The task-level parallelism
is not fully understood. For example, defined by Ada can be realized with
the following statements substantial performance savings on

parallel tasking systems. The following
A B; graph shows the performance speedup
C D; achieved on the Alliant FX/8 using

FX/Ada.which appear to contain no data
dependencies, cannot be executed in M O
parallel if B and C might reference the
same location, or if A and D are aliases
for the same location. Thus the use of
access variables and aliases can inhibit
generation of parallel code. The
problem is compounded if A,B,C and D * /
above were array references, since in 0
that case the subscript references might P
also be aliases for one another.

CALLS

Likewise call statements can preclude
parallel code generation since their OR
affects on global data and their
parameters might not be well understood. The extent of performance enhancement

and the degree of code portability areI/O greatly affected by a parallel tasking
Ada implementation. An implementationI/O calls usually inhibit parallelism must consider numerous user-level and

since access to external files usually implementation-level factors.
has to be serialized in order for the
output to be meaningful. Additionally IMPLEMENTATION-LEVEL FACTORS
many I/O runtime systems are not
reentrant. Areas that can become bottlenecks if

they are not implemented efficiently are
memory access, task scheduling, cross-

5. ISSUES SPECIFIC TO ADA processor synchronization mechanisms,
runtime lock granularity, and I/O. EachThe discussion of parallelism in Ada can of these will degrade performance if

be divided into two separate areas. they are not handled properly.
First, because the language defines
concurrency at the task level, explicit Memory Access - Globally shared memory
parallelism at that level is well- available on tightly-coupled multi-
understood in Ada. The other levels of processor machines facilitates a
parallelism are not explicitly addressed parallel tasking implementation for Ada.by the language and are therefore less Because data can be visible from two or
clearly understood and more difficult to more tasks, and because it is often
achieve. This section will first impossible to know at compile-time
address issues related to explicit task- whether tasks access shared data, it is
level concurrency, and will then discuss important to allocate the entire data
issues related to the other levels, space of an Ada program in shared V

memory. Furthermore, shared memory
ADA-TASKING allows runtime tasking data structures

to be efficiently accessed by all tasksAda's tasks provide an explicit in the system.
mechanism for task-level parallelism.
Task constructs offer benefits to both Task scheduling - Dynamic load-balancing
system design and performance, of Ada tasks is essential. The runtime
Unfortunately tasking tends to degrade should schedule tasks dynamically to
performance on single-processor machines available resources, according to
since these machines must execute both priority and resource requirements.
the user code and the additional runtime
task management code serially. Multi- Cross-processor communication mechanisms N
processor machines provide excellent - Fast communication mechanisms between
platforms for Ada program execution processors is essential to implement
since they can execute tasks on separate pre-emptive scheduling and certain
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language features such as the ABORT to achieve loop-level parallelism, i r
statement, example, would likely make for awkward

design. Furthermore, tasking overhead
I/O - Since file objects can be shared is fairly expensive. If the task body
variables, a parallel tasking system is too small, the overhead associated
must be able to access the same file with task creation and management might
from multiple processors. When parallel exceed the efficiency gained via
tasking is implemented with multiple O/S parallelism.
processes, this can be a problem since
file descriptors are often not shared ADA AND-LOW-LEVEL PARALLELISM
between processes. This section will discuss Ada issues

Runtime Lock Granularity - To achieve related to low-level parallelism.
scalable performance increases as First, problems in this area will be
processors are added to a program, the identified and solutions suggested.
lock granularity of runtime services Problems affecting both explicit and
must not prevent parallel execution of automatic parallelism at this level
the runtime. Although some critical include exception handling semantics and
sections must be maintained in the related code motion restrictions, result P
runtime to protect its data structures, accuracy rules, and the semantics of
minimizing use of critical sections is a shared composite objects. The lack of
goal. predefined vector types and operations

affects explicit parallelism. Ada
USER-LEVEL FACTORS features that promote low-level

parallelism will then be discussed.
A parallel tasking Ada system must also These include range information, global
consider user-level factors. Among data usage patterns, modes for
these are: parameters, and Ada I/O. Finally two

features of Ada, pragmas and its
Portablility - One of Ada's main approach to environments, facilitate
language design goals was portability, both task-level parallelism and low-
Multi-processor implementations of Ada level parallelism.
tasking must not impede portability.
Ada code which runs on single-processor EXCEPTION HANDLING
machines should execute in parallel on
multi-processor machines with no change Exception handling semantics is the
to the code. Machine details such as major obstacle facing the application of
the number of processors to use and how either explicit or automatic low-level
tasks are assigned to those processors parallelism (instruction, expression,
should be handled in a portable fashion. loop and block levels) to Ada.
In fact, these decisions should be According to 11.4.1 and 11.6 of the Ada
deferred to execution time. Language Reference Manual (LRM),

exceptions must be raised synchronously
Priority - To give the programmer with the operation that caused them. If
sufficient control over his application, the exception occurrs during evaluation
a multi-processor implementation for Ada of the RHS of an assignment statement,
tasking should support a broad range of the store to the LHS of the statement
priorities enforced by a pre-emptive must be abandoned. In any case,riotiesc uenorcd bcontrol must pass immediately to the

appropriate exception handler.

Software tools - Software tools which According to John Goodenough in
help users construct parallel programs AI 00315/11, Section 11.6(4), permits
using tasking, and which help them debug the deferral of raising predefined
and profile those programs are important exceptions such as NUMERIC ERROR as long
tools in a multi-processor environment, as the exception is raised before

control leaves the current frame. Even
Parallel tasking systems have proven the in this case, however, the assignment to
performance benefit of Ada tasking. It the LHS cannot proceed. Since these
is important, though, for Ada to support rules imply an control dependency before
the lower levels of parallelism as well. every assignment statement that can
Tasks should be used where they are possibly raise an exception, they
appropriate for the design of the interfere with parallel execution.
application. When used for lower level CDMOI
parallelism, Ada tasks can obscure the CODE-MOTION
design rather than clarify it. Using
tasks to implement iterations of a loop
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Additionally these semantics severely "It follows that, in the absense of
restrict code motion optimizations. a handler for CONSTRAINT ERROR, an
Section 11.6 of the LRM describes legal implementation is allowed to
code motion optimizations. Code motion perform all possible optimizations
is allowed only in regard to operand assuming that CONSTRAINT ERROR will
evaluation of predefined operations and not occur (and need n~t provide
in respect to eliminating code whose defined behavior if
only purpose is to raise an exception as CONSTRAINT-ERROR does occur)."
a side-effect. Reordering assignment
statements or changing the order of and states:
evaluation of operands of user-defined
operations is generally prohibited. "In the presence of a handler for N
Since most of the techniques used to CONSTRAINT ERROR, code can be -
automatically detect and enhance reliably written that depends on
opportunities for low-level parallelism the canonical meaning of the
described in Section 4i rely heavily on program.
code motion, Ada's restrictions on code
motion significantly impact automatic In the absence of a handler for
low-level parallelism. CONSTRAINT ERROR, implementations

can provide more optimization than
Even with these rules, there is currently allowed (and more
opportunity for low-level parallelism in easily). For example, pipe-lining
Ada. The rules governing exception can be exploited, vectorization of
handling and code motion apply only to loops can be employed, and
cases where there is a visible effect in temporaries need not be introduced
executing code in a order different from just to guarantee that an exception
the canonical serial order. Visible precedes rather than follows an
effects include either assignment."

raising an exception in the Given this sentiment and other
optimized order when no exception guidelines proposed by AI-00315/11, full
would be raised in the canonical liberty to reorder assignment statements
order, or and to store all result values into

canonical locations in the process of
the occurrence of an exception executing parallel code could be given a
where the data involved with the compiler if Il
exception is visible to an %
appropriate exception handler. 1. The compiler could detect that

there was no visible difference in
If a compiler can determine that no the parallel code execution as
exception can possibly be raised by a compared to the canonical serial
section of code, it is free to apply any execution according to existing
optimization to it. Such code can be rules as described earlier, or
therefore be executed in parallel mode.
Parallel code can also always be 2. The user directs the compiler
generated for operations involving to generate parallel code, either
local data that is not referenced in a with a pragma or compiler switch,
relevant exception handler. In such and, there is no exception handler
cases, there can be no visible effect of for CONSTRAINT ERROR in the
executing the code in parallel rather innermost frame For the code being
than scalar mode. generated.

Additionally, there is ongoing This solution gives the user complete
discussion about a broader control while still enabling the the
interpretation of 11.6 of the LRM among compiler to fully exploit
the Ada Language Maintenance Panel and parallelization opportunities. The
other interested members of the Ada following sections prove the advantage
community. Many people have recognized of this approach.
the limitations which Ada's exception
handling semantics and section 11.6 Instruction-level: Using strict
have placed upon global optimizations. exception handling semantics,
Ada Issue AI-00315/11 addresses this instruction scheduling for pipelined
concern. Having stated that architectures becomes much more
NUMERIC ERROR is subsumed in difficult since stores to canonical
CONSTRATNT ERROR, Ron Brender writing in locations must be scheduled in such a
AI-00315/1T suggests the following rule:
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way as to guarantee that hardware the loop in parallel. In this case,
exception delivery precedes the store. even if an exception occurred during the
Pipeline stalls are invariably execution of the loop, the behavior of
introduced to ensure this. When the parallel loop would be the same as
permitted to use the new optimization the scalar one. Elements of a vector
guidelines, stores to canonical past the point of an exception would be
locations can precede exception delivery updated, but the element causing the
and pipeline stalls are avoided, exception would remain unmodified. With

these restrictions, this mode would
Loop-level: Loop-level parallelism still be useful for loops as long as the
implemented with vector operations is stalls necessitated to delay stores did
difficult to achieve with current not dominate the code. Using
exception handling semantics because a concurrency to implement all forms of '

vector operation is atomic. When an loop-level parallelism is not efficient,
exception occurs during a vector however, since singly-nested loops with
operation, the hardware has probably no data dependencies yield the best
updated all the elements of the result performance when executed in vector
vector before the exception is mode. Furthermore, concurrent-outer-
delivered. (The case where a user vector-inner mode for doubly-nested
vector is processed in a series of loops could not be used.
vector instructions because the vector
length exceeds hardware vector register When the broader interpretation of 11.6
length is unimportant, since in any as presented above is used, all
case, some number of elements past the parallel optimizations could be applied
element which caused the exception have for both vector and concurrent mode. In
probably been processed and updated.) this case, loop level parallelism for
Furthermore, the hardware might not Ada would deliver the same performance
report which element of a vector caused benefits as it does for FORTRAN.
the exception, and in the case of
multiple exceptions in the same vector Block-level: Block-level concurrency inV
operation, it might not report either Ada shares the same restrictions and
the first element which caused an opportunities for parallelism as
exception nor the first exception if concurrency at the loop level as
more than one kind of exception described above.
occurred.

NUMERICAL RESULT ACCURACY
This behavior makes it almost impossible
to obey current exception handling Numerical results can differ when
semantics since there is no way to avoid computed in parallel mode from those
updating the element which caused an computed in scalar mode because of
exception to be raised. The fact that round-off error accumulation order
later elements have also been updated differences. This issue applies to
would probably be acceptable given the automatic expression-level, loop-level
liberty to defer the raising of and block-level parallelism. The result
NUMERIC ERROR to a later point in the value difference may be in violation of
same fFame if only those elements not 11.6(5) which states that a real result
causing any exception were updated, must belong to the result model interval

defined for the canonical left-to-right
At first glance, a solution to this order evaluation of operands. The
problem might appear to be to reexecute result difference has been acceptable to
a vector instruction in serial mode upon scientific and mathematical applications
the occurrence of an exception. Such a written in FORTRAN. For cases where it
solution is untenable since the work is not acceptable, Ada users can avoid
associated with such reexecution is far low-level parallelism either by not
beyond the scope of the runtime. using the compiler option to
Another solution would be the use of parallelize, or by specifying an
vector temporaries. This solution might exception handler in the appropriate Y
introduce a performance penalty negating frame.
the gain achieved by vectorization.

SHARED COMPOSITE OBJECTS %
Using concurrency to implement loop-
level parallelism fares a bit better. The rules for accessing shared variables %.

As long as each processor defers the by two or more tasks are given in '"

update of the LHS of an assignment to Section 9.11 of the LRM. These rules
guarantee that no exception occurred, apply to shared variables of scalar or
each processor can execute iterations of access type. Shared variables of these
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types can be safely referenced only at Ada incorporates features and software
synchronization points; that is, a engineering principles that promote
program in which the same scalar or automatic detection of low-level
access object is modified by two parallelism. These include range
different tasks outside a information, its approach to global
synchronization point is erroneous. data, subprogram specifications, and
These rules do not apply to composite handling of I/O.
types. It is legal for two tasks to
simultaneously modify distinct elements RANGE INFORMATION
of the same array.

Knowledge about subscript values greatly
It is necessary therefore, to implement helps a compiler detect opportunities
vector operations when not applied to for parallelism. In the example
the entire vector so that they update
only those elements whose values have for i in 1..N loop
changed. For example, if task 1 A(i+k) := A(i);
modifies all the even elements of a end loop;
vector, and task 2 modifies all the odd
elements, at the conclusion of these an inhibiting recurrence exists if k is
tasks the entire vector has been in the range 1..N. In Ada, k's type
modified. However, if vector hardware might have a constraint that ensures the
is used, it is likely that each task compiler that k will never be in that
fetched a copy of the original array, unsafe range. If the user knew this to
calculated the new values for half the be the case, s/he could define a type or
array, and then wrote back their copyof subtype for k that would allow the
the entire array with only half the compiler to automatically detect that
elements modified. At the conclusion of the parallelization was safe. This
the two tasks, the vector would by only method is preferable to FORTRAN's use of v
half updated by the task that executed a directive explicitly instructing the
the last store instruction. To solve compiler to generate parallel code
this problem, either an implementation because it is more portable and it
must store back only those elements formalizes the assertion about the
which were modified, or the language values that k can assume.
must treat vectors the same as it does
scalar objects in terms of shared By propagating range information, an Ada
variables, compiler has access to substantial .,

information in regard to the values of
EXPLICIT VECTOR CONSTRUCTS subscripts and other data. This

information will not only allow the
Explicit loop-level parallelism requires compiler to detect when apparent
vector constructs in the language. recurrences are not real recurrences as
Although slices in Ada define contiguous in the previous example, but it will
sections of a one-dimensional array, and also help the compiler predict code
assignment is defined for arrays, most branches and other behavior. In
of the other features presented in particular, range information
Section 3 are lacking in Ada. Ada does propagation will help the compiler
not have a predefined vector type. detect when exceptions cannot be raised
Although implementations can define by certain operations. Eliminating the
their own vector types and operations possibility of exception affords the
for them, there are advantages to the compiler even more opportunities to
language providing them instead. First, generate parallel code.
code using the type would be portable.
Currently such code would be portable GLOBAL DATA USAGE
only to implementations which define the
type and its operations in the same way. Use of global data interferes with
Secondly, if the language defined a automatic detection of parallelism since
vector type, it could also extend vector a compiler often cannot determine data
referencing expressions to include the dependencies when data is global. In
expressions described in Section 3. these cases, a compiler must make the
Finally, if it were defined in the safe choice not to generate parallel
language, implementation of vector code. The software engineering r
functionality could be verified and principles that helped inspire some of
evaluated by the same test suites used Ada's program structure features demand
for other parts of the language. that global data be used sparingly. Ada %

programs probably use more local data
ADA ADVANTAGES TO LOW-LEVEL PARALLELISM
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and parameters, and use packages to does not interfere with low-level
manipulate what otherwise would be parallelism. Parallel tasking systems9
global data structures, than programs must already serialize I/O access to the
written in many other languages. same file. Low-level parallelism with
Therefore, the more infrequent use of 1/O calls will likely serialize the I/O
global data in Ada programs may allow in the runtime.
more opportunities for parallelism to be
found in Ada. Ada offers two more advantages to both

explicit and automatic parallelism at
ACCESS VARIABLE USAGE any level. First it defines the pragma

mechanism, and secondly, the Ada
The use of access variables is also environment is a repository of
probably less frequent in Ada than in information that can be utilized by any
many languages such as C where pointers tool.
are used extensively. Since pointers or
access variables also interfere with the PRAGMAS
data dependency detection, restricted
use of access variables promotes Pragmas can be used to instruct the
parallelism. Ada's strong typing rules compiler to generate parallel code for
encourage programmers to reference cases where a compiler can not determine
objects by name rather than by access that it is safe. For example, a pragma
variables. For example, C treats arrays could be used to force a subprogram to
and pointers almost identically, leading be run in parallel with other code, or
C programmers to use pointers to inform the compiler that no data
extensively in array operations. Ada dependencies exist where the compiler
programmers are much more likely to use cannot detect that on its own.
array references for array operations.

TOOLS
SUBPROGRAM SPECIFICATIONS

------------------- Tools which help the user structure and
Calls to subprograms generally inhibit write code to exploit opportunities for
parallelism since it is usually unknown parallelism could be written for Ada.
what side effects the subprogram has on The concept of such a tool fits in very
its parameters and global data.Here nicely with Ada's programming
again, Ada provides an advantage since environment concept, and much of the
its parameter passing strategy is much information which such a tool requires
more controlled than that in other is already available in the program
languages. First, subprogram library. Many tools that help
specifications are helpful since they programmers design and build programs
specify parameter types. An Ada are already commercially available.
compiler knows whether an address or Extending these tools to understand
value is passed. Furthermore, because parallelism is highly desirable.
parameter modes are specified, an Ada
compiler knows if the value of a 6. -CONCLUSIONS
parameter can change in a called
routine. Parameters of mode IN cannot Ada can take advantage of explicit and
be modified by the called subprogram. automatic parallelism at all levels.
Therefore when mode IN is specified for Ada's tasks provide task-level
parameters which are not access types, parallelism. Its performance on multi-
the compiler can assume that the data is processor machines prove the performance
not modified. Furthermore, if the benefits of task-level parallelism.
subprogram is in the same unit and is Below the task level, Ada's current
not separate, the compiler has access to exception handling semantics sometimes
the entire subprogram body. In this stand in the way of fully exploiting
case it can determine how global data is parallelism. The more liberal
used in the subprogram. interpretation of code reordering rules

suggested by AI-00315/11 and the 2
1/0 approach described here enables Ada to

take full advantage of low-level
Unlike other languages where the parallelism. ~/
execution of I/O prohibits parallelism,
Ada probably can take advantage of low- Explicit loop-level parallelism in Ada (uI\.

level parallelism in the presence of would be aided by adding a predefined
I/O. Because the issue of I/O being VECFOR type, operations and extended
conducted in parallel must be solved for referencing expressions to the language.
the parallel tasking case, it probably Even without these, an implementation
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can provide most of the needed Proceedings of the 1986 International
functionality in a supplied vector Conference on Parallel Processing (St.
package thus delivering explicit vector Charles, Ill., Aug 19-22). IEEE Press,
capability to the user. New York, 1986, pp. 836-844.

Ada also includes some unique features 7. Cytron, R.G. and Ferrante, J.
which help automatic detection of What's in a Name? -or- The value of

parallelism. Its range information in renaming for parallelism detection and
particular can help an Ada compiler find storage allocation. In Proceedings of
opportunities for parallelism that can the 1987 International Conference on

not be detected in other languages. Parallel Processing (Aug. 17-21). A
Ada's limited global data usage and Pennsylvania State University Press,
wealth of information stored in program University Park, Penn., 1987, pp. 19-27.
libraries help to reveal additional
opportunities. 8. Cytron, R. Limited processor

scheduling of Doacross loops. In

Modern machine architecture offers vast Proceedings of the 1987 International
performance potential through Conference on Parallel Processing (Aug.
parallelism. It has been shown that Ada 17-21). Pennsylvania State University
can take advantage of parallelism at Press, University Park, Penn., 1987.
every level. All forms of parallelism pp. 235-242.

applied in concert to a single Ada
program, can yield tremendous 9. Dietz, H. and Klapphotz. Refined
performance savings. The challenge is Fortran: another sequential language for
for Ada compiler and runtime technology parallel programming. In Proceedings of
to make optimum use of these the 1986 International Conference on
opportunites. Parallel Processing (St. Charles, Ill,

Aug. 19-22). IEEE Press, New York,
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The Ada' Execution Analyzer - Graphical Support for Multitasking Systems

Anne Clough

The Charles Stark Draper Laboratory. Inc.
Cambridge, Massachusetts

ABSTRACT EXECUTION ANALYSIS USING TIMING DIAGRAMS -- Pre-
sents the graphical approach chosen by Draper

Tools that directly support Ada's tasking Laboratory for analysis of tasking applications.
feature, particularly graphical tools, are inade-
quate for current Ada applications and will cer- APPLICATIONS -- Discusses four possible environ-
tainly be deficient for the complex applications ments for such an analysis tool.
envisioned for the future. In an internal
research and development effort at the C.S. Dra- Mainframe Environment -- describes the operation
per Laboratory(CSDL) , a graphical Ada Execution of the Ada Execution Analyzer as it is currently
Analyzer (AEA) has been developed to provide the used in a VAX 8650 self-target environment.
necessary graphical support for the debugging and
analysis of Ada tasking applications in a self- Embedded Systems -- discusses the requirements
target environment. The AEA allows a global view that must be met when developing an AEA for an
of each Ada task (suspended, ready-to-run, run- embedded target and describes current efforts at
ning, rendezvous) as a function of time. This CSDL to accomplish this.
can be very useful in the testing/debugging phase
of multitasking system development by showing the Eault-Tolerant Processors -- discusses extending
exact sequence of events that lead to undesirable the tool so that it may be used in a fault- tol-
behavior in the system. Such support is even erant processor.
more critical in complex embedded, fault-tolerant
and distributed systems given their unique Distributed Systems -- presents the need and 3B
requirements and constraints. The need for and challenge of providing graphical testing and
impact of such tools must be examined and further debugging tools for distributed systems.
research supported so that useful dynamic analy-
sis tools can be developed and provided for the
full range of application environments. OVERVIEW

Incorrect design or implementation of task-
INTRODUCTION ing, whether in Ada or any other language which

supports parallel processing, will produce unin-
In this paper, current techniques for analy- tended task interaction which can degrade system

sis and testing of Ada tasking applications are performance and result in deadlock, starvation or
examined. A graphical approach using timing dia- incorrect sequencing and synchronization. The
grams is advocated for the testing/debugging Ada community is engaged in a continuing debate
phase. Automated tool development to support concerning correct tasking design. However,

this approach is then evaluated for the self- automated tools which support the testing of mul-
target, embedded target, fault-tolerant processor titask Ada programs are particularly needed
and multi-processor environment, today.

The paper is organized into four major sec- The software developer needs to have a means
tions: of monitoring how tasks in an Ada system are

behaving. Current tools may provide textual
OVERVIEW -- Focuses on challenge of testing and information but useful graphical descriptions are . Ike

analyzing tasking applications and introduces not available. For example, traditional debug-
automated timing diagrams, as generated by gers have been augmented so that a programmer can %
Draper's Ada Execution Analyzer, as a partial examine the state of the tasks in a system at a
solution that could be applicable to a variety of breakpoint; however, the larger picture - how
environments, tasks operate and communicate over time - is not

provided. The user needs a global view of task
TESTING AND ANALYSIS OF ADA TASKING APPLICATIONS operation and interaction to understand the
-- Surveys current approaches to the problem of incorrect (or unanticipated) sequencing of entry
testing and analyzing tasking applications, calls and accepts that lead to deadlock, starva-

tion or dead tasks. ' ''
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In an internal research project at the Unfortunately, the time required to implement g

Charles Stark Draper Laboratory, Inc., an Ada such techniques tends to increase exponentially
Execution Analyzer (AEA) has been developed, in proportion to the number of tasks in a system, '
This tool runs as an adjunct to the DEC VAX2 /Ada making the practicability of static analysis
debugger and automates the production of timing approaches questionable for large systems.[1) As
diagrams. Graphical output (provided as a func- an alternative to static analysis techniques,
tion of time) shows task states for all tasks in some Ada developers recommend severe limitations
an Ada system . as well as communication between on the way tasks are used in a system, thereby
tasks. Use of the tool in the VAX self-target stripping the Ada language of much of its power.
environment has proven its usefulness in quickly
identifying how a starvation or deadlock situ- If neither of these "solutions" are accepta-
ation has occured. AEA's graphical output usual- ble, it appears that, at least for the near
ly provides enough insight to correct such future, the need for detecting tasking errors
problems. Although the primary value of the tool during program execution will remain. Several ~ aN
is in the area of analysis of tasking design, its proposed methods are based on transforming the
use has also helped Ada students understand task- source program to introduce a new task called the ?t
ing concepts much more quickly than would be the monitor.E2J (3) This monitor receives information
case without such a descriptive aid. from all other tasks about their tasking activ-

ities and uses this information to detect dead-
Current development is -ocusing on porting locks. If the transformed system exhibitsS

the tool to an embedded real-time target micro- deadlocks, it is presumed that the original sys-
processor environment. Transferring this tool to tem would also exhibit deadlocks. There are two
such an environment has given the development objections to this approach: (1) The entire sys-
team the opportunity to investigate issues unique tem must be transformed to allow the monitor task
to the embedded computer application. A major to operate, and (2) It is very difficult, if not
challenge when providing such a tool for real impossible, to prove that the transformed system
application development is to assure that the is equivalent to the original system. One cannot
tool does not change the behavior of the system. be Certain that deadlocks in the transformed sys-
Extending the use of the execution analyzer to tem can be used to accurately predict deadlocks4'
fault-tolerant processor and multiprocessor envi- in the original system; similarly, the absence of
ronments will present even greater challenges. deadlocking behavior in the transformed system
However, as systems become more complex, the need may not preclude its occurance in the actual
for tools that allow visibility into task inter- implementation. In addition, results are depend-
action becomes more critical. ent on the supporting environment, especially on

scheduler characteristics.

TESTING AND ANALYSIS OF ADA TASKING APPLICATIONS The more traditional and less intrusive meth-
od of using a debugger to obtain information 4

Tools are needed by software developers about a software system is another current test-
throughout the entire life cycle of a project, ing and analysis option. Most Ada debuggers have
from requirements analysis to the maintenance been enhanced to provide information about tasks
phase. However, most available tools focus on in a system. For example, commands are often pro-
code generation, leaving both early and later vided to enable a user to examine the state of
phases without support. Testing and analysis tasks in a system when that system is suspended.
tools for Ada applications are particularly need- It is often possible to set breakpoints or trace-
ed. Few such tools currently exist; moreover, points when certain tasking states occur and even
those available to the software developer have modify task states during program execution.[4)
limited usefulness with respect to tasking. However, the user is often overwhelmed with tex-

tual detail and still does not have a clear pic-
The Ada tasking model continues to be one of ture of how tasks are operating in the system.

the most complex and controversial aspects of 4
Ada. In general, the area of parallel execution -
is not very well understood, regardless of the EXECUTION ANALYSIS USING TIMING DIAGRAMS r,4i'wb
implementation language being used. Formal math-,, J
ematical treatment has proven elusive. Even Some type of graphical support for tasking
adopting a standard notation has not been accom- appl ications is clearly needed. The timing dia- .%"a pW

plished. The potential for misuse of tasking ;a gram concept was chosen because it is an easily
great. Given Ada's high-level tasking con- understood and useful way to visualize task % F
structs, the software developer can quickly cre- s tates and task i nterac t ion over the i fet ime of
ate very complicated multitasking scenarios. It a system. As a part of the internal research
is much more difficult to have these multitasking effort, a methodology was formulated for using
systems work properly. timing diagrams throughout the development proc-% e

ess to ensure that the tasking behavior of pro- %.
Persistent tasking problems such as deadlock, grams is specified correctly and executes as

starvation and incorrect sequencing and synchro- specified.(5)
nization are coammon. Ideally, the software
developer would like to detect these problems Standard notations (Booch diagrams[6), Buhr
before program execution. Toward this end, notationt7h, PAMELA3L8I) used by Ada developers ,.~
research continues on static analysis techniques. in the design phase of a project reflect the%
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designers view of the operation of a system. The AEA produces two kinds of timing diagrams
Because there is no assurance that the system that help to visualize Ada task interaction:
will work over all permutations of inputs, timing
and interrupt sequences, and because there is no (1) An overview diagram which displays up to
closed form theory for the stability of such a 20 Ada tasks (see Figure 1).
system for all possible inputs, such systems can (2) A detailed diagram which displays up to 5
fail, Using the AEA during the testing phase Ada tasks (see Figure 2).
shows how a system is operating for a specific
sequence of inputs. Once the AEA traps an unan- Symbols are defined in Tables I and 2. Table i
ticipated sequence of inputs that causes prob- contains the task states and Table 2 contains the
lems, the developer can then go back to the task substates. Since the Ada Execution Analyzer
original design, apply that sequence and discover runs as an adjunct of the DEC VAX debugger,
any logic errors. Use of the AEA in the information shown on the timing diagrams and
design/test/redesign cycle is shown below: explained in these symbol tables reflects infor-

mation on task states available from the debug-
ger.[9)

Requirements
Analysis Embedded Systems

The Ada Execution Analyzer operates in a rel-
n r> Success -> Done atively simple configuration where compilation,

in EOOCH, BUHR -> Test -> Failure > AEA Trap execution, debugging, and run-time analysis occur
in the host processor/operating environment.

or PAMELA Sequence However, testing and analysis tools for more com-
Notation plex environments, such as embedded systems, are

A critically needed. An Embedded Ada Execution

I Analyzer (EAEA), currently under development at
Rethink Design < Draper Laboratory, will provide graphic execution

traces of system events in real-time on a target
microprocessor.

Software developers can gain insight into how Developing a useful testing and analysis tool
tasks execute and often important information for embedded applications requires that develop-
about why their design has failed. The effect of ers pay attention to two unique requirements of
various language constructs can be gauged. In such applications:

general, such a tool facilitates better under-
standing of the critical aspects of complex mul- (1) The Ada code that runs on the target dur-
tiprograms. Graphical time-line outputs can ing testing and analysis must be identical .6
certainly reduce pages of textual information to the code that will be delivered.
into a concise and useful pictorial form. To use

such debugger output to reconstruct task inter- (2) The tool itself must have at worst a neg-
action in a software system would be tedious and Iligible effect - at best, no effect - on

error-prone. Clearly, an automated graphical the run-time performance of the entire
capability is invaluable. Ada Execution Analyzer system.[1O]

* output is worth hundreds of pages of debugging
printout. The first requirement effectively eliminates

any testing approach that requires instrumented

code or the introduction of testing or monitoring
APPLICATIONS tasks. Compiler designers have attempted to

answer the second requirement by developing host-
Mainframe Environment target debuggers for embedded targets.t1i[12 i

Source level debugging of code running on the
The Ada Execution Analyzer (AEA), developed target microprocessor can be provided by keeping e'

under a research and development grant at the all the Ada-related functions (Ada source code,
C.S. Draper Laboratories in 1986, automates the symbolic information available in the Ada program
production of timing diagrams following program libraries, compiler and builder symbol tables) on
execution. Task states (running, suspended, the host. A target debug monitor is then
ready-to-run/active, inactive) and task inter- installed on the target microprocessor to provide

actions are clearly shown. Information about the necessary low level support, such as reading
each task in a system is logged every time a task and writing target memory, setting breakpoints,
switch or task rendezvous occurs. This informa- downloading and running application programs.
tion is displayed graphically as a function of Such a monitor will have a negligible effect on
time, thereby giving the software developer a run-time performance as it will not affect pro-
true picture of what is going on in a system. gram execution until it is explicitly directed to
The AEA runs as adjunct to the DEC VAXAda debug- intervene. The monitor itself is very small and
ger and, as such, uses debugger commands to log only requires a small amount of target memory.
information about task states at each task An alternative approach uses a hardware emulator

switch. to provide even less debugger intrusion.
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CSDL's EAEA runs as an adjunct to the Verdix The first requirement, guaranteeing that syn-
VA DS4 VAX to M680XO debugger; it provides graphic chronous operation is preserved, is the most dif-
execution traces of system events in real-time on ficult. Hardware solutions to provide this are
the target processor. The Verdix target debug being investigated. The second concern, disabl-7N
monitor (TON), installed on a M68020 micro- ing the clock whenever a breakpoint is reached,
processor, is used to extract the necessary can be addressed by modifying trap instructions
information about task states and communication within the target debug monitor to provide trap
during program execution. Uninstrumented code is handlers to disable the clock.
used. Relinking is not necessary to use the
debugger. Therefore, program execution, in terms Distributed Systems
of task sequencing and interaction, should not be
affected if the tool is operative during a run. There is undeniably a need for a tool that
The TODl will intervene only when invoked. When will help the software developer analyze task
this happens at task switches and rendezvous, the operations and interactions in a single processor
system will be suspended and restarted when the or fault-tolerant configuration. An even more
logging activity is complete. The entire run pressing need exists for a tool that will enable
will take longer, but logging output will reflect the developer to trace synchronization and commu-
the real system's sequencing and interaction. nication events for applications that share mul-
Important diagnostic information about the system tiple machines. Certainly, the possibility of
will be supplied on the system trace, which shows errors in task sequencing and interaction
events in the system on a relative (rather than increases dramatically with the complexity of the
absolute) time scale. system. Working on a distributed system, without

the benefit of easi ly tracking task interactions
Fault-Tolerant Processors across processors and throughout the system, is

unacceptable, both in terms of personnel produc-
The EAEA can also supply important system tivity and in terms of the quality of the result-

trace information for the fault- tolerant proces- ing software.
sor. In CSOL fault-tolerant arch itectures, [13]
processors run in synchrony, using redundancy to An Ada Network Execution Analyzer would
provide back-up computing power in the event of graphically show the behavior and interaction of
processor failure.[14) A target debug monitor tasks across a network. To accomplish this, it
could be installed on each processor in such a is necessary to log task switching/rendezvous
configuration. A debugger interface on the host information from each processor in the network.
would handle the outputs being received from each In addition, it is necessary to log task calls
processor. These debugger outputs should be and rendezvous between processors. If each
identical; if they are not, the output which is switch and rendezvous is time-tagged, perhaps by
not in agreement with the output of the other two using the system clock, then the
processors will be rejected. In this way. dis- switching/rendezvous information for all tasks in
parities in processor operation will be handled the system could be sorted at the end of a run
as they are throughout a fault-tolerant system. and timing diagrams could be generated.

A simpler interim approach would eliminate The feasibility and cost of developing such a
the need to provide the interface described above tool is currently being studied. As with AEA
by providing debugging capabilities on one node tools already under development, it is of para-
of a fault- tolerant processor at a time. Since mount importance that any network analyze- tool
processors are running redundant code, a trace not change the way a distributed system operates.
produced by one processor should mirror traces However, stopping an entire distributed system
produced by the other processors in the config- while information is being logged may not be
uration. If lack of true synchrony is suspected, either desirable or possible. Consequently,
a developer could request traces to be run sepa- other approaches, such as building a logging
rately. using debugging capabilities on each pro- facility into the run-time system or using a L
cessor in the fault-tolerant configuration in trace/replay approach[15), are being examined.
turn. Results could then be compared.

In either case, it is essential that synchro- CONCLUSION
nous operations be preserved. The action of any
debugger or tool must not disrupt or adversely The need for analysis tools of all types,
affect the synchronous operation of the fault- including graphical tools, is acute. Ada appli-
tolerant processor. If the EAEA wishes to col- cations, particularly those utilizing tasking,
lect information about task states at every task are not well served by existing tools.
switch, it is essential that all processors in
the configuration be stopped synchronously when Through the research and development effort
this logging activity takes place and restarted currently underway at Draper Labs, the potential %
synchronously when it is completed. If the tar- for developing useful graphical tools has been
get debug monitor can be modified to stop the demonstrated. Further research is necessary, ,

clock when breakpoints are reached, absolute tim- particularly in the area of fault-tolerant pro-
ing information could be added to the relative cessors and distributed systems. Such research
timing information now provided by the tool, should be supported and rigorously pursued so
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that software developers can have the tools that [11I Domitz, R.O., "Real-Time Ada Debugging,"
are needed to develop the complex applications Proceedings of the International Workshop on

that are envisioned for Ada. Real-Time Ada Issues, May 1987, pp. 18-20.
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Figure 2. AEA Detailed Timing Diagram
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Table 1. AEA Overview and Detailed Diagram States

TASK STATES

TIMING OVERVIEW
DIAGRAM DIAGRAM
SYMBOLS SYMBOLS MEANING

TASK N (0) TN Task number N with priority
P# #

UNIT.TASKNAME Logical name of program
unit that declares TASK_

NAME

POINTS OF RENDEZVOUS:

RNDZV TASK # R# Task has rendezvoused with
task #

ENTRYNAME Task I.ENTRY FAME

ACCEPT TASK A A# Task has accepted call from
task 4

ENTRY NAME Accept ENTRYNAME

TASK STATES:

• * Task is running

Task is ready to run

Task is suspended

<TERM <T Task has terminated

Table 2. AEA Overview and Detailed Diagram Substates (Part I of 2)

TIMING OVERVIE

DIAGRAM DIAGRAM
SYMBOLS SYMBOLS TASK SUBSTATE MEANING

<ABORT <AD Abnormal Task has been aborted.

<ACCEPT <A Accept Task is waiting at an accept
statement that is not inside
a select statement.

<Completed[ab <CA Completedlabn] Task is completed due to an
abort statement, but is not
yet terminated. In Ada, a
task awaiting dependent
tasks at its "end" is called
'completed-. After the

dependent tasks are termin-
ated the state changes to
terminated. P

<Completed(ex <CE Completed(exl Task is completed due to an
unhandled exception, but is
not yet terminated. In Ada,
a task awaiting dependent
tasks at its "end' is called m
'completed". After the de-

pendent tasks are termin-
ated, the state changes to

terminated.

<Completed <Co completed Task is completed. No abort
statement was issued, and no
unhandled exception occured.

<Delay <DL Delay Task is waiting at a delay
statement.

<Dependent <DP Dependents Task is waiting for depen-
dent tasks to terminate.
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Table 2. AEA Overview and Detailed Diagram Substates (Part 2 of 2)

TIMING OVERVIEW
DIAGRAM DIAGRAM

SYMBOLS SYMBOLS TASK SUBSTATE MEANING

<Dependentste <DE Dependents[exc] Task is waiting for
dependent tasks to allow an

unhandled exception to
propagate.

<CALL <C Entry call Task is waiting for its
entry call to be accepted.

<Invalid State <IV Invalid state There is a bug in the VAX
Ada run-time library.

<I/O or AST <IO I/O or AST Task is waiting for I/O
completion or some AST.
(Asynchronous system true).

<Select or del <SD Select or delay Task is waiting at a select
statement with a delay'

alternative.

<Select or Ter <ST Select or term. Task is waiting at a select
statement with a terminate

alternative.

<SELECT <S Select Task is waiting at a select
statement with neither an

else, delay, or terminate

alternative.

<Shared resour <SR Shared resource Task is waiting for an in-

<Terminatedta <TA Terminated[abn] Task was terminated by an
abort.

<TerminatedCe <TE Terminated[exc] Task was terminated because
of an uhandled exception.

<Terminated <TN Terminated Task terminated normally.

<Timed entry <TI Timed entry call Task is waiting in a timed

entry call.

_y.

. S.
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The Application of Ada To a VHSIC Hardware Embedded System

Robert J. Abel
Cindy C. Dare

Richard J. Prokop
William R. Snow

ESL Incorporated Sunnyvale, CA

ABSTRACT Threat Association is a key function of many EW

Although the Ada language was developed for systems. The threat association function compares ~ i
raltimeug mbeddeddalua as, dverypedttle characteristics of intercepted emissions with those of 'real-time embedded applications, very little D --

work to date has reported on the use of Ada in known signals. Threat Association facilitates

these applications. The VHSIC TAM system identification of the type of emitter and type of platform

utilizes the unique combination of VHSIC from which the signal originated. Modern scenarios
hardware and Ada software technologies to require that associations be performed in real time at a
attack a demanding embedded application:
Threat Association used in Electronic Warfare. vr high te
VHSICTo meet the challenge of the threat association
of both a workstation and a multi-processor problem, ESL developed the VHSIC TAM (Very High

embedded computer. Design of the system Speed Integrated Circuit Threat Association Module).
utilized concepts from Object-Oriented Design. VHSIC TAM is a high performance system that

Attention was paid to Software Reuse. This paper implements the real-time threat association function, as
relates the experiences encountered during
development that are directly related to the use well as a user interface and environment simulation
of Ada. capability. VHSIC TAM attains the necessary processing

power by combining two new technologies: VHSIC
hardware and Ada software. It also utilizes recent design

INTRODUCTION methods, and strives for software reuse.

VHSIC TAM was developed under contract from the

Although the Ada language was developed for real- United States Army's Electronic Warfare

time embedded applications, very little published work Reconnaissance Surveillance and Target Acquisition

to date has reported on the use of Ada in real-time Center (EW/RSTA), Fort Monmouth, New Jersey1 . The

embedded systems. Much of the reported work has system was completed in October, 1987, and a follow-on

focused on general purpose computing problems that effort is currently in progress. j,

are typically solved on a general purpose computer This paper examines the use of Ada in the VHSIC

running a general purpose operating system. More TAM system. It not only describes the Ada software

specifically, little work has been reported on the use of architecture but also relates the developers'

Ada in Electronic Warfare (EW) Applications. Some work experiences using Ada. The intent of the paper is to

has been reported in other real-time areas (such as document those issues encountered in development of

avionics [11), however, the real-time constraints are a real embedded application which are directly related

typically less stringent in these areas. This paper reports to the use of Ada. The intent is not to simply provide a list *

on the use of Ada in the area of Electronic Warfare of Ada's strong and weak points. The paper begins with _

signal processing; this area has historically been known an extended problem statement followed by an overview

to be one of the most demanding real-time embedded of the system architecture. It then describes the Ada ,;

applications. -
I VHSIC TAM is a VHSIC insertion program for the MEDFLI system.
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software design methods used, the system software 12M

design and important issues and experiences. The

paper concludes with a list of our observations and Sorse Two 68020 Display

insights.
Sun Workstation Bus Extender

PROBLEM STATEMENT Embed
Computer

A particularly difficult threat association problem is

posed by a "dense" signal environment. In these 2 ,,m

environments, a large amount of data must be M mory 68020r

processed and analyzed. The situation is made more A ion AMM

difficult when the instantaneous collection bandwidth' is ,"P

maximized to provide high probability of intercept. A

wide instantaneous bandwidth requires the EW system Figure 1: VHSIC TAM Hardware Architecture

to process many signals simultaneously. Typically, an

EW system must process hundreds of signals per Man-Machine Interface (MMI) and an environment

second and report the results within milliseconds. simulator in addition to interfacing to the signal sorter.

Before data collected by the EW system reaches the The MMI provides the operator with system control and

VHSIC TAM unit, the data is preprocessed by a signal displays the results of the threat association. The

sorting function that separates the signals within the environment simulator generates "front-end" reports that

instantaneous collection bandwidth. Thus, the input that are processed by the threat association function. It

VHSIC TAM receives from the system "front-end" is a provides standalone testing of the system.

stream of reports that characterize the received signals The multiprocessor embedded computer is a high

according to the signal parameters measured. The performance parallel processing unit that is intended to

threat association function uses these reports to be located on a collection platform. The unit consists of a

unambiguously associate an identification to each Motorola 68020 application processor with memory

report. Association entails a complex processing board, and a special purpose Associative Memory

procedure; central to the procedure is a comparison Module (AMM) interconnected by a VME backplanel.

between the parameters of the received reports and The AMM is comprised of a 68020 control processor,

those of a resident database. These comparisons memory board, VME interface, and the VHSIC

represent a large part of the threat association hardware. Collectively, the units of the AMM implement

processing burden. Parametric overlap between a high speed search processing unit which performs the

measured signals and the resident database indicate parametric comparisons between reports and a resident

multiple potential source identities. Multiple identities database. The performance of the AMM is achieved

may then be further resolved by application of additional through the use of a VHSIC Window Addressable

algorithms. Memory (WAM) array. WAMs are capable of performing
multidimensional comparisons at an extremely fast rate.

SYSTEM ARCHITECTURE The AMM control processor executes an assembly
language program. The application processor executes ".

The VHSIC TAM architecture is a distributed system an Ada application program and runtime environment.

consisting of a multiprocessor embedded computer and The workstation is a Sun Microsystems Sun 3.2 This

a workstation. The hardware architecture is shown in
Figure 1. The embedded computer hosts the real-time 1 The AMM hardware and its controlling software were developed

under subcontract to TRW MEAD.
threat association function. The workstation hosts the 2 Specifically, we chose the Sun 3/160. This workstation features a

68020 processor running at 16 MHz, monochrome bit-mapped
display, and a VME backplane. Our configuration had 4 Megabytes

1 Receivers collect large amounts of data in a very short period of of memory. The workstation runs UNIX 4.2BSD as its operating
time. system.
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workstation features the UNIX' operating system and a For some time, ESL has researched alternate
bit-mapped graphics display. All software that executes software design methods. This research is motivated

on the workstation is programmed in Ada, with the partially by the desire to build complex software systems

exception of required interfaces to UNIX 2, which are (such as distributed systems), and partially by the

programmed in C. acceptance of powerful languages such as Ada. Ada

Both the Sun and the embedded computer are VME fueled our interest in Object-Oriented Design. Object-

based systems. A commercially available VME bus Oriented Design supports software engineering

extender provides the high speed interface required concepts not directly addressed by Functional
between the workstation and the embedded computer. Decomposition; two examples include concurrency and

The VHSIC TAM architecture represents the future in information hiding. These concepts proved to be helpful
high performance real-time signal processing and user when designing a complex system like VHSIC TAM.
interface systems. Multiprocessor embedded computers Each method has distinct advantages and

augmented with high speed special purpose disadvantages. Functional Decomposition is a
coprocessors to perform burdensome computational commonly used and well-understood method. However, S

tasks, and software implemented in the Ada language, it lacked support for the notion of concurrency within a
can be expected to dominate future military signal system. Object-Oriented Design supports the notion of
processing systems. Operator workstations can also be concurrency, but this method was relatively new to us
expected to dominate future systems because window- and its use was not without risk. The developers further
based graphical user interfaces provide unmatched researched Object-Oriented Design. Direct application
flexibility and cost effectiveness, of this method on VHSIC TAM was not acceptable as it

would have proven too tedious and would have caused

DESIGN METHODS a proliferation in the number of objects and tasks in the
system. Unnecessary tasking overhead was not

An initial step involved selection of a development acceptable for this system. Additionally, direct

environment and design methods suitable for the VHSIC application would have been difficult because the
TAM project. An appropriate development environment system specifications were incomplete.
was a host-target configuration. Code for both the The best approach for the design was to use a
workstation and embedded computer was developed on combination of the two methods. The system was
the workstation. Code for the embedded computer was functionally decomposed into subsystems. Each
cross-compiled on the workstation and downloaded to subsystem was then decomposed into modules1 . Many
the embedded computer. VHSIC TAM used the Verdix modules were separate threads 2 of execution. Module
Ada Development System (VADS) to do the software designs incorporated the main concepts of Object-

development. VADS provides the Sun native compiler in Oriented Design.

addition to the 68020 cross-compiler 3.
Two design methods were studied: Functional The Choice To Use Ada

Decomposition and Object-Oriented Design (OOD)

[2],[3]. Historically, Functional Decomposition has been Ada is the language chosen for VHSIC TAM. This

widely used by many companies, including ESL. This was not a clear choice when the program began. VHSIC

was probably a result of the number of projects using TAM required a high-level language combined with

FORTRAN; Functional Decomposition is quite effective 68020 assembler. The high-level candidates included

for design of FORTRAN programs. Ada, C, and Pascal. The developers had the most

1UNIX is a registered trademark of AT&T. A module is a self-contained, logical piece of the
2
1t was necessary to interface to UNIX in order to access devices, low design. It has a small set of well-defined functions to

level graphics primitives, and to interface to C routines that could not perform and a well-defined interface.
be implemented in Ada (bitwise logical operations for instance). 2 A thread of execution refers to a logical flow of '
3 The project was developed using version 5.3 of the native compiler exccution in a program. Tasks provide a way to
and an engineering version of the cross-compiler. implcmcn lthreads of control.
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experience with C; they had the least experience with SYSTEM SOFTWARE DESIGN

Ada. The predominant experience with C ruled out

Pascal, leaving the choice between Ada and C. C had The top-down design of the system software was

the advantage of minimizing risk; all of the developers begun using Functional Decomposition to decompose

had completed substantial programs in C and programs the system into four subsystems: the Control, Data Input,

similar to VHSIC TAM had been delivered using C. On Information, and Threat Association subsystems. Each

the other hand, the use of C could not provide the subsystem was then further decomposed into its

additional benefits that the use of Ada could: First, the constituent modules using Object-Oriented Design

Department of Defense has made a substantial concepts. The modules mapped into Ada package

investment in Ada and is anxious to reap benefits from specifications. The final software design and the

this investment. Second, the customer was technology- allocation of the software to the hardware is shown in

oriented and interested in the benefits provided by Ada. Figure 2. The Data Input and Information subsystems

Third, use of Ada would allow ESL to gain a competitive are resident entirely on the workstation and the Threat

advantage. Association Subsystem is resident entirely on the

But we perceived Ada to be risky; none of the embedded computer. The control subsystem spans both

developers had done substantial Ada programming and computers.

ESL had never delivered a program (much less one

employing an embedded computer) that used Ada. The Workstation Embedded Computer

industry-wide programming community harbored Display Syect-o

vociferous Ada skeptics. Compilers were immature and Modules MM odue

good runtime environments for embedded applications
were virtually non-existent. However, if the project could

be completed successfully using Ada, the benefits to Bus

both the customer and to ESL would be enormous. The

customer would have experience with and insight into

the development and performance of a complex Ada- Informailon Subsystem

based system. ESL understood that many future l

contracts would list Ada as a requirement. Additionally, ahaeet

ESL would understand more about this new technology, Dala Input Subsysem

enhancing ESL's ability to deliver state-of-the-art Figure 2: VHSIC TAM Software Subsystems and Modules
products to the customer and ESL's competitive

advantage in the industry. Software Subsystem Overview
Ada was chosen after gaining customer support. To

mitigate risk, Ada and Ada development products were ConoSst

investigated. In addition, a contingency plan was The control subsystem is composed of the MMI and

created that would allow program completion using an the Bus Managers. The MMI is the operator's window

alternate language if Ada was found to be too immature. into the system and is the largest portion of this

And even if Ada was too immature, an important subsystem. The MMI module is broken down into three

contribution would still be made to the customer submodules: control modules, display modules, and

because there would be concrete evidence of the ways data collection modules. Control modules handle device

in which Ada is risky. This information would serve as input and manage the allocation of display modules to

valuable input to future programs considering the use of areas of the screen. Display modules manage windows.
Ada. Each window is an instance of a tactical display such as ,

the current system configuration or the threat association
results. Data collection modules collect data from input
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devices and often serve as buffers between devices and SYSTEM DATA FLOW
display modules. The Bus Managers control the bus
extender and enable the embedded computer and the The major data flow through these modules is
workstation to exchange large quantities of data. depicted in Figure 3. Intercept reports originate at the

Simulator or Signal Sorter Manager. These reports are
DataIn~dSub~ilemsent to the embedded computer through the bus

The data input subsystem is the entry point for managers. The acquisition manager collects the
intercept reports processed by the system. Normally, intercepts, bundles them, and hands them off to the
intercept reports are supplied by a signal sorter. The analysis manager. The analysis manager sends the
Signal Sorter Manager handles all aspects of this intercepts through searches initiated by the AMM
interface; it provides for signal sorter control and for manager, runs analysis algorithms on the results, and
intercept report acquisition. In absence of a signal sorter, sends the results back to the workstation through the
intercept reports are supplied by the environment bus managers. A data collection task on the workstation
simulator. This module simulates both the operational receives the results and passes them on to a display
environment and the signal sorter interface, task if one exists.

Workstation Embedded Computer

The Information Subsystem consists of the Modules Mi o

parametric databases and configuration information
used when running the system. A parametric database Modules

drives the threat association function. The library
manager is the main module in this subsystem. It Bus ADlui

handles the creation and maintenance of this database. M

di. The threat association subsystem performs the threat Sotrmulato9

.1' association function for the system. It consists of three (tm.,I
main modules: the acquisition manager, the analysis Figure 3: VHSIC TAM Report Processing Data Flow
manager, and the AMM manager.

As reports are received from the workstation over the ADA-RELATED DESIGN DECISIONS
bus, they are collected by the acquisition manager. The
acquisition manager bundles intercept reports into It is instructive to take a closer look at some of the
groups sized to make efficient use of the AMM. design decisions that went into several of the modules

The raw reports received by the acquisition manager with the intent of highlighting the design decisions that
have to be analyzed to identify them. The analysis could be directly associated with the choice to use Ada.
manager initiates searches through the parametric Ada simplified some decisions while complicating
library to get a list of possible candidate identifications others.
for each emitter report. It then performs other algorithms
to reconcile any ambiguities. It sends the final results to The Man-Machine Interface
the operator. MIUeo h d akn oeThe AMM manager provides a "se rver" interface to MIUeo h d akn oe

the VHSIC search hardware. The analysis manager The VI-SIC TAM MMI is a multi-window bit-mapped
requests searches through its interface. graphical display. It displays any combination of text,

vector graphics and imagery in a window. MMI input
devices include the mouse, keyboard, and bus extender. ~ '"

Other devices are easily interfaced to the MMI.
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The MMI design took advantage of the Ada tasking The nature of the MMI tasks complicated this

model to create a modular windowing system. The requirement. Some were transient and others were

design took advantage of the fact that the MMI is permanent, some were single instance and some were

logically many different threads of execution; there are multiple. An additional requirement to support three

threads for handling input devices, managing the modes of communication complicated matters. It was

screen, collecting data, and for drawing displays. The necessary to support broadcast, multicast, and point-to-

design translated the input handling and screen point modes. A broadcast message is sent to all MMI

management threads into control tasks, data collection tasks. A multicast message is sent to all instances of a

threads into data collection tasks, and display threads particular type of MMI task. A point-to-point message is

into display tasks. delivered to a particular instance of a particular type of $0%

A goal of the MMI design was easy addition of new MMI task.

displays. Ada's packaging concept made this an Ada's rendezvous paradigm is insufficient for this

especially easy goal to achieve. The goal was application. First, it provides no mechanism for group

accomplished by having one task type that could draw communication. A rendezvous is by definition point-to-

any of the displays. One of these tasks is allocated for point. Second, it introduces the possibility of deadlock

every active display. The control tasks in the MMI can occuring when MMI tasks are exchanging messages. To

then treat all display tasks the same. Display tasks randomly allow any module to rendezvous with any

reference packages that conceal the details of each other module invites deadlock in situations such as two

different type of display. For example, a window is modules calling each other at the same time. One

opened by the operator during execution for display of solution to this problem is to place restrictions on which Z .penedb
association results. A new task is allocated. It is MMI tasks can call others. A design that seeks to allow

initialized to function as this type of display. The task any MMI tasks to communicate precludes this *V.

then calls subprograms in a specialized package to alternative. Two other alternatives were considered.

manage the display (redraw, get input, resize). All The first alternative used an agent task to make the

display packages have the same interface because all message delivery (See Figure 4). An MMI task procured

must handle the same events. Mouse events, keyboard a message agent and gave the message to the agent for

events and window movement events are examples. delivery. This alternative had the advantage of being

To add a new display is easy: a new package is easy to understand and implement. Its disadvantages

created conforming to the standard interface and the were that three rendezvous would have to occur to

task body is updated to reference the new package. The deliver a single message and that extra overhead would

data collection tasks have the same extensible design be incurred for the agent allocator task and the agent V

as the display tasks. tasks.

A configurable number of display and data collection

tasks are allocated at system initialization. This was _'_

initially appealing because it avoided the runtime

overhead of task allocation and deallocation. It turned 3. Deliver

out to be necessary because the runtime system does

not do garbage collection on deallocated tasks. Receiving

Dynamic allocation would eventually cause the system MMI T. T-
to run out of memory and fail. A.ct

Intertagg Conlmunkcatlon d -

Aet Pool of
The MMI design required that all display and data Allr Agents

collection tasks be capable of exchanging messages ' 'e

(for the remainder of this section display tasks and data

collection tasks are collectively referred to as MMI tasks). Figure 4: Use Of Agent Tasks For Message Delivery
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The second alternative used shared mailboxes and a generalized radar simulation that can be configured to

mail delivery task (See Figure 5). Each MMI task had an run different scenarios. A scenario consists of a set of

in-box and an out-box. An MMI task read messages from moving, multiple-emitter platforms and a set of moving,

its in-box and placed messages in its out-box. The multiple-receiver collection platforms. The

delivery task periodically visited the mailboxes and characteristics of the emitters and receivers may be

transferred messages from out-boxes to in-boxes. The specified along with their movement patterns.

advantage of this method is that it requires no The simulator operates as follows: when it is started,

rendezvous to transfer a message. It has several each emitter and each receiver operates autonomously

disadvantages. First, there is a time lag between the according to the scenario description. As receivers scan

time that a message is placed in the out-box and the frequency bands, they detect emitters currently

time it is received by the re, pient. This time lag may transmitting in that band. The receiver informs the signal .' '.

have a large variance depending on the number of processor of the emitters that were seen, their

tasks, the number of messages, and how often the parameters, and the locations of the emitter and

delivery task executes. Second, MMI tasks have to receiver. The signal processor then generates emitter

handle encountering a full out-box when trying to send. reports from the information.

This is especially troublesome for the delivery task An event-driven simulation was chosen. In this type

attempting to deliver broadcast and multicast messages; of simulation initial events are placed into an event

sometimes several of the recipients have full in-boxes queue in time-order of execution. When an event is at

and the delivery task has to keep track of which the head of the queue the event is dequeued and

recipients have received the message and which have executed. Each event that is executed will, in general,

not. Third, it requires the delivery task and the MMI tasks alter the state of the simulation and generate further

to poll the mailboxes, events to be executed. In this manner, the simulator runs
indefinitely or until a preset stop condition is

encountered.

Sending Delivery Receiving The simulator lent itself particularly well to Object- A

MMI Task Task MMI Task Oriented Design. Figure 6 depicts the design, showing

' ja1,X the objects with boxes and the dependencies with

I = I I arrows. The event manager controls execution of the

In-Box Out-Box In-Box Out-Box simulation. When told to start by the MMI, it tells each of

Figure 5: Use Of Mailboxes For Messaging the receiver objects and each of 'he emitter objects to

seed the event queue. This will cause each receiver and

Both methods were tried and both met the Event Handlers

requirements. However, the agent task method was

superior to the shared mailbox method because it Cleto

ensured a form of flow control not available with the latforms

shared mailbox method. Busy senders did not have tc. v f -Processor *.VV
worry about filling up their mailbox; the inherent nature e. . Emitter

of the rendezvous assured that all messages were n Platforms Report

delivered. ~)-
E Execute Event Intercept

OOD Used In The Simulator u

evn Event :
The simulator is required to produce emitter reports e Get Event Manager Run

for testing in absence of a real signal sorter. It provides a Stop

Figure 6: VHSIC TAM Siiiulator Object Design
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emitter object to post their initial events to the event part of the program makes a blocking call on a device
queue. When this is done, the event manager will get the entire process may get blocked. This means that a
the next event from the event queue. It will then alert the task dedicated to handling a device may cause all other
appropriate receiver or emitter object of the event and tasks running in the process to also be suspended when
that object will execute the event. As receivers detect it executes a blocking call. Ideally, only the calling task
emitters they inform the signal processor. The signal should block while all other tasks continue executing.
processor will then generate emitter reports. Two solutions were considered. In the first, a second

process (Ada program) handles the device. This process
intersystem Communication blocks on the device. The two processes communicate

The VME bus extender provides the high bandwidth asynchronously using UNIX signals and UNIX inter-
commnictio pah bewee th wokstaionandthe process communication. The disadvantage of this

communiedcoptInalation pahbewe the orktoend the method is that it requires interfacing UNIX signals to the
embededcomuter Intalatio oftheextederwas Ada program.

not simple; one hardware problem quickly became The second solution considered does non-blocking
apparent. The bus access protocol used by the bus reads and writes to the device. The advantage of this
extender was incompatible with those used by the method is that it is simple to implement, requiring only a
workstation and the embedded computer CPUs. This small amount of code to configure the device and to
required a hardware modification to the bus extender. handle retries when the call fails (normally, this is where

Designing the communication across the bus it would block). The disadvantage of this method is that it
extender was not straightforward. Communication rqie eieplig h eodslto sue n
needed to be bidirectional. One way to effect this would rits evimace poln.Tescnouinis acceptable
have been to allow either system to interrupt the other ispromnei cetbe

when there was data available in the embedded A Fight With Strong LSnnTo Receive Messages
computer's shared memory'. Unfortunately, it was Many different messages are exchanged between
discovered that the workstation did not support the workstation and the embedded computer. The
generation of VME bus interrupts from software. This different kinds will, in general, be of different sizes. Ada's
precluded peer communication. In the current design, strong typing causes a problem when trying to read a
the workstation is a slave to the embedded computer. message from the device. The message type cannot be
More specifically, the embedded computer has to ask specified because it is unknown--any type could be
the workstation for reports and has to tell the workstation received next. Two solutions were considered.
when results are available. The first uses a single type for all kinds of messages.

It is a large variant record with many discriminants. This
The Bs Mangersis not appealing because of the way that the compiler

To control the bus extender on the workstation a treated variant records. The code generated for the
UNIX device driver had to be written in C. This driver receive always specified the maximum size of the
allowed the bus to look like a file that could be opened, message. A real time system cannot afford to always

closed, read, and written. read and write the size of the largest possible message.
The question of how to access UNIX devices from an The second solution avoids the type checking A type I

Ada environment is one that has subsequently been field precedes every message and the bus manage rs
encountered many times. The problem arises because simply read and write bytes. When a buffer of bytes is
of the implementation of Ada on the workstation: an Ada read, an access type is cast to point to the message

*program exists as a single UNIX process. Whenever any type. Knowing the message type then allows the correct

access type to be cast to point to the message. The main '
Bus loading would occur with three CPUs trying to access the bus. disadvantage of this alternative is that it avoids the O

This would significantly degrade performance. To avoid this strong type cekn.Ti rbe a eperdodegradation, the busses remain electrically isolated until opened for cekn.Ti rbe a eperdo
data transfer. other projects, especially those involving networking.

564 6th NatifiaI Conference on Ada Technology 1988



The latter alternative has always been chosen. This is Debugging

one situation where strong type checking is more of a There is no embedded system debugger. This makes

hindrance than a help. it extremely difficult to identify programming errors; the

only way to debug is to use print statements. This

The Threat Association Subsystem method also has problems. If an interrupt occurs while

doing terminal I/O, the program fails.

The threat association subsystem resides on the

embedded computer. Two processors comprise this "rrmerSupt

subsystem. The application processor is dedicated to There is no software timing support based on a real

running the threat association software, the AMM hardware timer Timing, such as that required by an Ada

controller is dedicated to controlling the VHSIC "delay" statement or the Calendar package, is

hardware. The software on the application processor is implemented in software and does not correspond to

a combination of Ada and 68020 assembler. The real time. For example, a delay statement of 10 seconds

assembler is written using package MACHINECODE is executed and appears to return immediately.

as defined in the Ada Language Reference Manual [4]. Fortunately, accurate timing is not as critical for this

The Ada run time environment used on the application as throughput. This situation would not have

application processor is an engineering release of the been acceptable for applications such as avionics which

Verdix 68020 run time environment' .  require precise timing.

The interface to the AMM uses a combination of

shared memory and interrupts. The AMM manager InterruitSuo

controls this interface. To perform a search, the AMM Perhaps the most notable implementation problem is

manager sets fields in the shared memory and interrupts that the runtime system provides no support for Ada

the AMM. Upon receipt of the interrupt, the AMM interrupts. Ada interrupts are defined to be handled as

firmware copies the data from shared memory into the task entries, however, the compiler does not implement

WAMS. The VHSIC hardware performs the search and this part of Ada. Three solutions were tried. The first

places the results into shared memory. The AMM then solution branches to an Ada interrupt handling

interrupts the AMM manager to signal the completion of procedure which then calls a task entry. This solution

the search. fails because it causes stack corruption. The second

This simple interface was difficult to implement with solution also branches to an interrupt handling routine,

Ada. Many problems were encountered, most can be however, the routine sets a flag rather than calling a task

attributed to the immaturity of the runtime environment, entry. This requires the AMM manager to poll the flag to

The problems are in four categories: dynamic memory catch the search completion. This approach also causes

management, debugging, timer support, and interrupt stack corruption.

support. The conclusion was that interrupts could only be
handled when expected. At this point the design really

Dynamic Mento hllanagemnent became one which utilizes synchronous remote

There is no garbage collection to handle buffer procedure calls instead of asynchronous interrupts. The

deallocation. It is easy to allocate a buffer, but once third solution is the same as the second except that this

allocated it cannot be freed. The VHSIC TAM solution solution requires that the program execute a polling loop

uses static allocation; at the start of execution all buffers immediately after requesting a search. It does not exit

are preallocated. Static allocation provides continuous the loop until the flag is set. When the Done interrupt is

system operation. received from the AMM, the AMM manager exits the loop

and retrieves the search results. This is a very

1 An engineering version is not even a Beta version of a product. As undesirable solution, however, it is the only one that can

such, it cannot be expected to support many of the features needed be made to work predictably. Essentially, parallelism on
by an actual product. This particular version was supplied to us more
than a year before the actual product release. the embedded computer could not be exploited.
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PROJECT IMPLEMENTATION *The combination of Functional Decomposition and
Object-Oriented Design methods proved to be a

The system was implemented using a top-down good way of approaching the design. They are
incremental development approach. This approach is complementary methods.
especially well supported by Ada's concept of packages
that have separately compilable specifications and The software engineering principles utilized by OOD
bodies. First, a "skeleton" of the system was built. This in combination with Ada allows rendition of a design
skeleton was an executable framework of the Ada that is easily distributed, easily maintained, and
module specifications, with stubs for the Ada bodies. easily extended. The current VHSIC TAM
Interfaces to the hardware were also filled in with architecture is being further distributed across more
software stubs. The skeleton allowed expedient CPUs in the follow-on project.
implementation and testing of the control paths for the
entire system. As each module was completed, it was Ada has no paradigm for distributing Ada across
integrated into the system in place of its stub, and the multiple processors. This has impact on many
system was retested. Separately compilable bodies embedded systems that utilize multiple processors.
made integration easy because only the latest versions The same old approach of building separate Ada
of the bodies had to be recompiled. After all software programs for each processor must be taken until a
was integrated on the workstation, one of the paradigm is defined.
subsystems was moved to the embedded computer. The
workstation-embedded computer interface, and the The use of Ada has promoted some reuse. VHSIC
embedded computer-AMM interface were installed and TAM used some of the packages found in the public
tested. The final system testing and tuning was then domain, for example, linked lists and variable length
performed. The building of the system proceeded strings. Some generally useful packages developed
smoothly using the skeleton and incremental integration, to support VHSIC TAM such as thread of execution

Ada eveopmet eviromens prvid sevral tracing and error-logging have been reused. ESL is
Adal ols hVD development environment vd eea looking at ways to make more of the MMI reusable.

usvefl tgte tools he VAD ldlopme twaenviromen Ada's concept of generic packages was a big factor

compiling, software configuration management, inahengrueotesfwr.

symbolic debugging, code disassembly, and pretty- Even validated compilers still have problems with
printing. The most useful tool was the "make" tool used generics. We ended up just using the generic
for building programs. This tool automatically kept track package as a code template to create multiple I

of inter-file dependencies. This relieves the programmer packages because of incorrect code generation.
from the tremendous burden of manually tracking
impacts of changes to the code. One area in which tools Ada's rendezvous paradigm is insufficient for many
are lacking is software version maintenance. We used tyeofcmuiaonDsrbtdAamdls
the standard UNIX tool, SCCS, to keep a history of types ofttcommucatin Disrue acmoous
software versions. ne etrspotfraycrnu

communication and for group communication
OBSERVATIONS AND CONCLUSIONS (broadcast and multicast).

*The choice of runtime environment on workstations
VHSIC TAM has been a big success for the customer can greatly affect the system architecture. The deviceand for ESL. The system met its requirements and much hadigwudavbenesnddfertlhd

has been learned about the use of Ada in embedded the implementation not required that all tasks be
systems. The following list contains some observations contained within a single process.
and conclusions.
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ABSTRACT decisions. The argument for employing a par-

The perceived need to evaluate and measure ticular software technique is more convincing

instantiations of the software process is dis- if backed by experiments demonstrating its
cusdfrmtoperspectives. One of these is benefit. Rigorous scientific procedures must

cused roma tworctclreurmeto be applied to studying the development of

thsee nt logca a thd prc is reqirmentsr fore software systems if we are to transform pro-

upon results of an effort by the authors to [grmiginoaSegnein iciln.

develop a catalog of software development [ut0

methods for the software engineering com- If one accepts the assertion that there is such
munity. The authors offer conjectures to be a need, then the statements which follow
tested further, and based upon their experi- represent a chain of logical consequences.
ences, offer opinions intended to stimulate 2. Compaxrisons of methods must be based upon
further thought on the problem of measure- the identification of a suitable set of similar or

ment nd ealuaion.common attributes. Any type of comparison
requires the establishment of some suitable

1. INTRODUCTION set of attributes upon which to base the corn-
parison. Consider, for example. an attempt to

As Ada technology continues to mature, a crit- compare method ABC with method XYZ.
ical question is facing software developers. Method ABC provides an approach to formu-
Which of the myriad of software development lating system specifications, while method
methods (SDMs) are most appropriate for use XYZ provides a framework in which to do
with an Ada project? The answer to this question detailed design. Since the methods do not
demands that the software engineering commun- address the same activities within the
ity determine how to measure and evaluate development process, it would be ludicrous to
methods. As part of a recent project to develop a consider a comparison of the two methods
catalog of software development methods with the intent of providing a user with
[Maha87]. the authors considered what is required information as to which method was "better".
to describe and contrast SDMs. An analysis of the On the other hand, determining what modes
problem led to the following assertions: of communication are used by the respective

1 . There is a desire or need to compazre software methods may enable a user to determine
deveopmnt mthos. he ned or sme ypewhether these two methods could be easily

of comparison has been expressed both byusdicojntnwthneater
those within the software engineering com- 3. The common attributes of SDMs must be recog-
munity and by software clients. In 1980. B. nizable and sepazrable. The authors assert that
Curtis wrote: it is necessary to establish suitable attributes

"The magnitude of costs involved in software upon which to formulate comparisons of
SD)Ms. Additionally. it must be possible to

development and maintenance magnify the " separate" and "uncouple" these attributes if i
need for a scientific foundation to support they are to be analyzed and measured
programming standards and management
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independently from one another. For exam- "difference". To determine causality requires
ple. would it not be useful to single out further study of why this difference exists.
which attributes of an SDM make the method 7. Measurement data alone may not be sufficient
well-suited for use in a project whose imple- Jfr establishing causal relationships. The fact
mentation language is Ada. or whose applica- that measurements can be taken, and that rea-
tion domain is real-time systems? sonable interpretations can be assigned to the

4. A measure must be established for each of the results. may still not be sufficent for estab-
identified attributes. Again in [Curt8Ol. B. lishing some type of causal relationship for
Curtis states that application of scientific pro- individual SDMs. The establishment of such
cedures requires "the development of ineas- a causal relationship may depend upon the
urement techniques and the determination of results of experiments in which two or more
cause-effect relationships." It is not sufficient SDMs are used for the development of the
to base a comparison on some vague notion of same large software project under the same
" goodness", or on some loosely defined feeling circumstances. To ensure the same cir-
of satisfaction expressed by a user of an SDM. cumstances might require multiple develop-
A suitable range of values must be chosen ments which use comparable people. working
which correspond to the scope of the attri- in a comparable environment, with compar-
bute, thereby providing a measurable basis able management. and at the same point in
for the attribute. These values need not be time. The question then must be asked. "Is
numeric, and the basis of comparison can be such an experiment feasible?"

o.ther eiteane oftatimeiasueeneto One goal of software engineering should be to
5. Te eistece f ameasre s idepeden ofobtain correct interpretations of measures defined

the existence of a practical way to determine for SDMs. Though work has been done toward
the correct values associated with an SDM. achieving this goal, it is the authors' contention
The establishment of a suitable measure that this goal has not yet been reached. In fact.
represents only a first step. The pragmatic based on their experience in developing a catalog
aspect of determining correct values must be of software methods, the authors contend that the
addressed. An 5DM does not exist in isola- prerequisites for progressing towards the goal are
tion. There are users of the SDM. and the not yet in place.
capability of such users to correctly interface In the process of developing a catalog, the
Developes work within b megniasured. adauthors established what they believe to be a use-
Deeoeswr ihnorganizational isusmanfetdh ucesu ful and practical standard for contrasting SDMsorgaizaiona isuesmay ffet te sucesful by means of a set of descriptive attributes. The
use of the method. Finally, a particular rsligdsrpin fidvda ehd i

instnceof se o anSDMis ssocate wih a differ because the methods themselves differ.
particular application problem. and this too Nevertheless, by choosing to use a common style
can influence the results. Thus, establishing and framework for the descriptions, a basis for
proper control over all these variables is comparing methods was established. Addition-
necessary before measured values can be ally. conclusions drawn were restricted to state-
correctly correlated with the 5DM itself. ments about what a method does rather than

6. The existence of a practical way to determine making assertions about the quality of resulting
values to measure a given attribute is itself software produced using the SDM.
indep!endent of the interpretation of the In the effort to produce the catalog, the authors
results. Given that a practical way has been addressed assertions 2 through 6 above. Their
determined to measure SDMs. care must beaprahcnedaouddptgasadrde-

sider a impitcaue the inepeai n eumber onu- minology and developing abstractions and models.side a impisti mesur. te nuberof uc- It was hoped that ways could be found to describe
cessf ul projects for which a particular method attributes of SDMs by abstracting their "essence"
hbeen used. Kccesfull may oe tmeso than and postulating models exhibiting how the

bee ued ucessuly anymoe tmetan abstractions fit together. The authors concluded
a second method establishes that there is athat the lack of agreement on the use of terms
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within the software engineering community sug- The catalog was developed for the US Army
gests that there may well be a new software crisis CECOM installation located at Ft. Monmouth,
resulting from this lack of uniformity of expres- New Jersey. Information for the catalog was
sion in connection with the software process. The gathered by surveying both method developers
authors propose that some of the suggestions and users of methods in the software engineering
which addressed the previous crisis are applicable community. Survey questionnaires were distri-
to the new one: in particular. the need to stand- buted to approximately 150 developers. and 76
ardize and foster uniformity for the bulk of responses were returned. Of the approximately
development work. A note of clarification here: 160 user survey questionnaires which were distri-
the previous statement is not a plea for use of one buted, 39 were returned. The resulting catalog
method; rather, it is a plea for use of standard contained descriptions of 47 methods.
terminology. In order to achieve their goal. the authors

2. BACKGROUND found that four major problems had to be
addressed. These involved: contending with vari-

The goal in producing the catalog of software ations in terminology, establishing key charac-
development methods was to provide interested teristics upon which to base the descriptions of
members of the software engineering community individual SDMS. formulating developer and user
with information about ways in which the survey instruments, and evaluating the survey
software process is carried out. One of the means responses. An implied follow-up to the authors'
for reaching this goal was the establishment of work is the possibility of an enhanced catalog in
characteristics which tell researchers about which SDM products are rated according to
methods when: effectiveness, utility. economy. or other measures%

* The acquisition or enhancement of one or more ofmrt
SD)Ms is being considered. 2.1 Contending with Terminology

* Work or a proposal incorporating the use of What is a software development method? Is a
SDMs is being evaluated, single computer-based development support tool a

9 There is a need to describe one's own SDM to method? Is a collection of such tools a method or
others. an environment? What does it mean to say that a

method fosters reusability, that use of a method is
After discussing techniques for comparing cost-effective. or that a method supports main-

methods, the authors concluded that a procedure tainability? How does one interpret terms associ-
based on descriptive characteristics is the ated with methods such as understandability.
appropriate level at which to begin. In order to cohesiveness, applicability, and transferability?
facilitate such a comparison. the authors decided The authors concluded that addressing such ques-
that a uniform framework should be used to tions required an agreement among themselves
describe individual methods. and that further relative to the usage of terminology, even when
information should be conveyed by providing that implied a dramatic change from previous
tables in which specific characteristics of methods practice and *understandings". This leads to the
are contrasted. Examples of types of tables following conjecture:

incldedin he cmpltedcataog re:Effective intra-team communication requires a
*Activities within the software process conscious agreement by development team
addressed by the method. members to use terms in a consistent manner.

*The suitability of the method for seific How should a basis for agreement on the use of
application areas.tembeetbihdOnlokatxsigefrs

" Modes of communication and representationtembesalihdOnlokatxsigefrs
used by the method. toward standard terminology. The authors .

" Verification support provided by the method. referred to existing glossaries, such as those
*Project management support provided by the appearing in [IEEE83J and [Free82]. and the efforts
method. of others in the area [IWSP85]. After analyzing

*Training assistance available for the method. such works, the authors still felt the need for
*Estimates of time needed to learn the method. additional clarification. In particular. it appeared
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to be essential to distinguish between tools. Following this, a similar approach was used to
methods. environments. and approaches. The rate the concepts according to their importance.
authors* resolution of this problem is discussed in Concepts which were considered very important,
detail in section 3 of this paper. but difficult to recognize, were analyzed further

Two techniques of analysis were developed for by looking for inference chains which associate
clarifying meanings: an abstracting technique and these important concepts with other, more easily
a modeling technique. The first operates as fol- recognized concepts. These refinements led to the

lw.Collect the terms which appear to be special selection of a set of key concepts which would
lowsform the basis for the questions in the survey

cases of a more general concept. Next. agree upon instruments, and which would be used to describe
a term or phrase to represent that concept. Exam- SDMs in the catalog.
ples where use was made of this technique appear
in section 4 below. It was evident in this process that various stu-

The modeling technique involves the use of dies were not consistent in the meaning assigned
somerepesetaton. the thn Eglis naratve, to such characteristics. Again it was necessary

som te esbenttin er th.An Enaglais narrtie, that at least among themselves, the authors would
tfor t t mibje te sd. Ah diagram isofe need to reach agreement on meanings. Conveying

modified until agreement is reached on what the these agreed-upon meanings to others proved to be
diagam ean intheconext f te sftwre ro- more of a problem than anticipated. This is dis-

cess. Ultimately. the representation developed in cse nscin23
this manner becomes the "definition" of the con- One of the lessons learned from this analysis
cept. to be referred to when there is a need to test was that certain terms deemed to be highly
correctness of an assertion about the concept. important were not identifiable. This seems to be

22Ertabtishing Key Concepts fo SDMs due to several causes. First, the concept may
2.2 represent an abstraction with more easily

The next step in this aggregation of informa- identified composite characteristics. An example
tion was to determine a collection of key concepts of such a concept might be "changeability".
- phrases which describe characteristic of SD)Ms Second. the word used may represent a "concep-
and which are of practical value. The technique tual hook", a concept that came into being before
used by the authors to converge upon a small list any well-defined subcharacteristics had been asso-
of items is described in the following paragraphs. ciated with it. (The idea of a conceptual hook is

An niia st f 15 oneps asidentified discussed further in section 4.) A possible exam-
ba n ntl uset of125icyncepts e as ple of this latter concept is "reusability". Finally.

baed upoan tde s. se 2 ialn (c ,wth the characteristic may be of a nature that would

some further input from other methodology reur .oefr fepeietto odmn
research sources. This set, based upon the consid- strate its existence. "Reliability" is an example of
erable previous efforts of others, provided a foun- such a concept.
dation for further analysis and refinement. As a result of the process of determining key

The anddat coceps wee frstratd a tocharacteristics, the authors selected the following

their identifiability or recognizability by using a t eciemtos
polling technique. The word "identifiability" is * Activities covered by the method:
used to mean the capability of establishing that a a Extent of usage:
given method has the given characteristic. F'nr 9 Appropriate application areas;
example. establishing the economic benefit of an e Ability to incorporate requirements of the tar-
SDM would be very useful. but the ability to get system:
actually identify or recognize this characteristic is * Support of communication during develop- ~ ~
anything but easy. Accordingly. each of the ment:
authors individually attempted to rate the charac- * Specification and support of client involve-
teristics. Then a group consensus was sought. ment:
though in a few cases the authors were forced to e Support of changeability:
accept the fact that a clear consensus was not e Support of project management:
reachable. 9 Available automated tools supporting the

6th National Conference on Ada Technology 1988 571

-QJ1 %. %



method; One premise used by the authors was that. for
" Available training in the use of the method; survey purposes, important but hard-to-identify
" Acquisition factors. concepts must be preserved in essence, but not in

Further, it was agreed to attempt to identify form. There were several reasons for doing so.
how individual SD)Ms provide assistance for pro- For one, abstract goals such as "maintainability"
ducing software which can be characterized as are what motivate people to develop or choose a
being maintainable, portable, testable, reliable, method. They hope that achieving such goals will
and reusable. When discussing such characteris- contribute to a better software product. The

tics whch pplymor tothequaltie ofthespirit of the concept must be kept in mind because
reuting. softappyrea to the muleto the of its importance. In spite of this, however, the
aeutorsfhose t a ouso the inethof. the mehd very words representing the goals are often used
atoprt hse qualitis r ther iten o thevaluat in a symbolic sense to impart qualities to a method
timatthe seeffectivenesstof that intentat or to the software that have no real basis in fact.

the ffetivnes of hatintnt.Thus, terms which are indeed important can
Finally, for purposes of establishing a uniform degenerate through usage into buzzwords and jar-

format for describing methods, the characteristics gon.
selected were grouped into the following major T ovytepeiemaig neddb
categories: technical aspects. means of expression teator nvey thareie meeansitned byreena

and ommniction aplicbilty ad cvergetion of extensive definitions or textual explana-
usage of the method, project management support. tions. These definitions could be subject to
training, and acquisition factors. Many of the disagreement on the part of the readers. hindering
characteristics are relevant to several of the the effort to gather information. Instead, the
categories, necessitating some redundancy in the atoseetdt okfrteeiec hc

presntaton o infrmatonwould imply the existence of the concept being
It may be observed that these characteristics analyzed. More specific and recognizable concepts

are similar to those derived in previous studies. were assembled into groups, with the idea that if
Where this analysis does differ from these previ- such concepts were shown to be present in a

*ous studies is in the emphasis placed on the method, then the less recognizable concept could
method itself as opposed to the software resulting be inferred to be present also.
from use of the method. Thus, in the catalog This approach to conveying meaning in the

* some important software qualities were not sre loe h uhr ocntutaqey
Wmhaizroed is tthac nfrmdesrptie frra ing technique that was based upon more objective
Work for preotingd iniformiononiatwie frage- and agreed-upon words, thus avoiding as much
okfo ethods.ing heautorsatiopnon, it wise thise jargon as possible. The overloading of words wasof mthos. I th auhors opnio, itis hisavoided as well as the presentation of differentframework which provides a basis through which words which were judged to be synonymous. The

the reader can contrast methods. segmentation of concepts among several different
2.3 Survey Development and Evaluation questions allowed the authors to re-synthesize the

How houd on deelopquetion inende to abstraction from the responses to the set of corn-
reveal whether or not a given characteristic is poea usinslss duigdtardcio0n
present in a method? Some of the ground rulesanls.
adopted by the authors for the questions to be After striving to meet the above requirements,
asked were: the authors found that there still were problems

" Avoid the use of buzzwords, jargon and terms to be addressed. One way to get the respondent to
whos meaing s ovrloaedanswer a survey is to make it simple to answer.
whos meaing s ovrloaed.Typically this leads to multiple-choice and

" When posing a question. be objective; do not check-off type questions. Often, there is a difficult
introduce bias by limiting the possible trade-off between asking a complex question
answers. versus the desire to make it easy for the respon- ,

"Address the need to motivate users to respond dent to answer. There is a significant difficulty in
to te suvey.that easy-answer questions tend to force things
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into categories that could reflect the authors' own A software development method is a definite,
pre-conceived notions of what the answers should established, logical, or systematic plan. The
be. steps and purposes have been thought out r 7

Anterdficlyis that respondents may beforehand in detail. A method must guide

want to appear to be above average, betterthusroapedcblrsltgvnn
informed or more knowledgeable: consequently. appropriate set of starting conditions.

they may not be candid. People may not even An approach is a way of beginning or manag-
realize that their responses are biased. In particu- ing an effort; a way of analyzing. planning or
lar. it is natural for vendors of methods to want directing a project: a way of conducting opera-
to present their products in a favorable light. For tions. An approach suggests ways to identify
example. how is one to evaluate the often encoun- goals initially and/or suggests, at an abstract V,
tered claim from vendors that their methods are level, ways to proceed toward goals.
suitable for almost every type of application? Ato sayhn sdt oseilzdwr
Because of above problem. the authors recognized or too oi ayspecifice ret; therpeiaity wof

the futility of asking the question. 'Can yourortobanaseicrsu;theisantyf
method be used to support development of an Ada purpose. A tool is essentially automatic: the

projct?"user supplies input data or changes. but the
tool produces the associated work product.

After reviewing the answers provided by sur-Anevrmntiannegtdcoltonf
vey respondents, the authors judged that there tool supprormeti an appra.te compctonents

stil isa lck f uifomitywitin he eveop-of an environment are designed to reduce the
ment community relative to terminology. Theefotrqidtocryuthestwe
responses showed a wide range of interpretationefotrqidtocryuthestwe

givento sch tems a forml spcifictiondevelopment process whether they are used 'J

language. semantic analysis. and prototyping. Ininvdulyoincmnao.
fact, there even was a wide interpretation given to It should be noted that early in the project. the
such English phrases as, "activities supported by authors decided that the often-used term "metho-
the method". "the capability of the method to dology" is overloaded and has achieved a buzz-
address timing constraints", and "automated sup- word status. Accordingly. the authors have
port provided by a method". Given the difficulty chosen to follow the leadership of others
of producing unambiguous English. one must have [IWSP85] by restricting the meaning of this term
precisely defined technical terms. to the study of methods.

Accordingly. the authors suggest that the con- Despite the authors' wish to make clear dis-
jecture of section 2.1 should be expanded to: tinctions. attempts to classify objects according to

Effective software engineering community com- the above definitions quickly led to difficulty.
muniatin reuirs a onsiousagremen by Both tools and approaches exist over wide spectra.
muniatin reuirs a onsiousagremen by Within these spectra, making a clear distinction

community members to use terms in a con- between a sophisticated tool and a method on the
sistet maner.one hand, or between a method and a prescriptive

3 approach on the other, is difficult. Thus, the
STRIINGFORSTADARDTERINOOGYauthors' use of the term method may include

One of the first tasks which the authors set for objects that could be termed tools or approaches.
themselves was to clarify the concepts of By way of examples. consider the following.

P approach, method, environment, and tool. In '*

undetakig ths tsk te auhor hada muualAn integrated set of tools with a prescriptive ~.
udertoabenconistant bth inuthir own wor and user'.s manual might be offered as a software

desie t beconistet bth n teir wn orkand development environment. In such a case, an
with the general usage of these terms within the implied method or approach exists by virtue of
industry. Initially, it was thought that the cata- the fact that there is only one way to use the set
log itself should be divided into sections of tools in order to arrive at a final software pro-
corresponding to these classifications. Based on duct. On the other hand, consider a way of doing
ideas found in [IWSP85]. the authors arrived at things which prescribes the order in which activi-
the definitions presented below, ties occur and how these activities are to be
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managed. but is not limited to one specific way of possible to formulate carefully chosen definitions
accomplishing individual activities. This might be which delineate these objects. but whether there
offered as an approach. Nevertheless, the instan- exists a well-defined boundary separating them is
tiation of such an approach implies a definite sys- not well understood. The assumption that
tematic plan for developing software. instances of the above objects are clearly

Consider the problem of classifying a given classifiable may be untenable. On the other hand.
object as either a tool or a method. The results of the authors question the importance of making

the urvy shwedtha man mehodsareem-such distinctions. The issue that needs to be

bodied in an automated tool. In some cases, the addressed is to what extent assistance is provided
method may be extracted from the tool without by such objects for the software development pro-
losing the essence of the method. In other cases,ces
the tool and the method are so closely coupled 4. USING ABSTRAUFTION TO CLARIFY IDEAS
that the method cannot stand alone.

The way in which a method develops has an There is a need for software engineers to corn-
influence on its relationship to a tool. Methods municate technical information without getting
which evolved without incorporating software caught in language traps. Many times the

toos aylaerreceive support from a number of exchange of technical information and ideas is
toolsen may l laedr.Ohrdvlpr ra hindered because the software engineering discip-

automated support as a necessary component of line has not established standardized meanings for
their method, in which case the method and tool terms. While the IEEE Glossary of 1983 includes

ar ieyto be synonymous. quite a few of the terms in use, the authors did
are lkelynot always find a level of detail which would

Tools may also extend the scope of a method allow common acceptance of meaning for these
by addressing concepts beyond those originally terms. As a result, people involved in the study
considered by the method. In this case, it is and use of methods invent their own definitions
difficult to distinguish whether the method has leading to even greater confusion.
been redefined to encompass these additional con-ThsaprstbenualRselAboti

cbnor scoeentinues a butaoe. pat ofan me efcla-t his article, "Program Design by Informal English '. '

borte chee. n sch cseit an e dffiultto Descriptions" [Abbo3 presents the idea of a "con-
determine whether the method incorporated the ceptual hook" to show how people talk about ~
tool, or the tool subsumed the method. something that has an acknowledged importance

This difficulty becomes even more complicated without exactly knowing how to actualize the
as a method which can exist independently disas- concept in reality. He points out that this mode
sociates itself from the tool in which it was first of thinking is quite different from the way data
incarnated". On one hand, the method developer types must be specified in programs, that is.

may propose new aspects for the method that are defined completely to the most detailed level.
not supported by the tool. On the other hand, the A oepit oeei sncsayt
toolmaker may have his own ideas about the way A oepit oee.i sncsayt
development should be done, diverging from the qualify what is meant by an abstract concept,
developer's original ideas. A relationship stillsuhapotblyoresbityjstsits

exiss, bt te eae wth wichthe ompnent of necessary to provide a body for an Ada ,"''V
this relationship may be distinguished varies con- spcfato.Iistthstgehtdsuson

siderbly.become bogged down in a quagmire of terminol-
ogy. jargon. and buzzwords. Thus, there is a

The existence of these complex relationships definite challenge to progress beyond such a situa-
reveals why it is difficult to clearly categorize tion to one with a more solid foundation of ideas,
methods and tools. Though there are objects upon which an increased understanding of
which are clearly tools, and other objects which software engineering may be built. One of the
are clearly methods, there is a broad spectrum efforts to meet this challenge of terminology
over which these two types of objects merge. involves the recognition of overloading and

Similar complex relationships also exist among synonymy. Overloading occurs when the same

methods, approaches, and environments. It is term is used for essentially different meanings,
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while synonymy occurs when different terms are ruggedized <- transportability (vibration)
used to represent the same basic concept. In + transportability (shock) '
either case. the problem of interpretation arises
because the context in which the word is used is human-engineered <- transportability (weight)
implicit, rather than explicit. + transportability (size)

The authors' experience with the search for climatized <- transportability (geography)
meaning led them to derive the procedure +tasotblt saos
described in section 2.2. This procedure was based +ta~otblt saos
upon the acceptance of intuitive understandings of%
word meanings. Their premise was that con- The above format "transportability (size)" should %
sideration of both the importance of a concept or be read:"cniengtasoablyinheo-%
characteristic in the context of the software pro- te confsid.Oering ransportabiltyminnehepcon
cess. as well as its identifiability (the ability to . vides reasoning advantages. For example. ~
establish its presence) would assist the authors in taefsbtentedfeetcnet o rn
reaching agreement on the concept's implicit sprafbtwcan be valuat. exsfr rn
meaning. sotblt a eeautd

The bov proedue di no proe t beAbstractions can also be attained by shifting

totally satisfactory for establishing a clear under- serch fo-eor uf igh-oncepts Foixa com n- n
standing of concepts. Further efforts to resolve serche porol f unifying te oepts. o-
uncertainties with terminology involved the use cie hangeabl. f r usaiyin.andpoabilt. one
of abstraction and modeling. Abstraction is a cagaiiy esbltadpraiiy n
mechanism that has been incorporated in pro- possible unification might be the idea of polymor-
gramming languages to facilitate the design pro- phism. In the notation above we have:
cess. In fact. Ada's separation of specification polymorphic (requirements) = changeability
from body accommodates the tendency for people polymorphic (applications) = reusability
to think in terms of abstractions before those polymorphic (machines) = portability
abstractions are well-defined. The authors
employed the abstraction mechanism as a second Code is portable if it can be adapted to many
component in the effort to clarify terminology, types of machines: code is reusable if it can be

As an example of a way in which a lower-level adapted to many types of applications: code is
concept can be assigned meaning. consider the fol- changeable if it can be adapted to many types of
lowing. In the realm of hardware engineering,reuemns
there are a multitude of terms representing mili- The formulation above shows that if reusabil-
tary standards for equipment. The terms "rug- ity is to be defined, then the characteristics of
gedized". "human-engineered", and "climatized" applications must be considered. In a similar vein.
seem to have little in common other than consider how the above mechanisms might help to
representing qualities of the equipment. They put established concepts in a new light. Prototyp-
can, however, be defined as particularizations of ing methods and evolutionary methods have
an abstraction: and so. their relationship is seen characteristics in common; they both set up a
through the abstraction. By utilizing the more working system prior to the development of the
abstract concept. "transportability", as the ances- final system. Why get a system running "early" in
tor of these three terms, one might find a way to the total process? An answer might be that the
elicit better understanding as follows: methods adhere to a strategy centered around

intense client involvement; that is. the "client-
involvement" approach. The notation above
yields:
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client-involvement (actual-product) To what degree will my organization have to
evolutionary development change to successfully use the method? To what

degree can the method be tailored with little nega-
client-involvement (modeled-product) tive impact?"

- prototyping development For the Ada community, the need for stan-

dardization has always been a necessary and
An abstraction has been formulated which may be accepted fact of life. Let this standardization also
particularized to different methods, thereby estab- be applied to terminology and to the descriptions
lishing the possibility that the models for these used for methods.
methods may have substantial similarities.

5. CONCLUSIONS BIBLIOGRAPHY

As a result of the authors' experience with [Abbo83] R. J. Abbott, "Program Design by Infor-
preparing a catalog of software methods, several mal English Descriptions". Communica-
conclusions were reached. They are listed below. tions of the ACM, Vol. 26. Nov. 1983.

1. Successful evaluation depends upon standard- [Curt80] B. Curtis. "Measurement and Experi-
ization of terms. So far, an appropriate level mentation in Software Engineering",
of terminology standardization related to Proceedings of the IEEE, 1980, Vol. 68,
software development methods has not been No. 9.
reached.

2. The characterization of software development [Free82] P. Freeman and A. I. Wasserman.
2 thds char teationdofsotwardze d een "Software Development Methodologies
methods must be standardized: that is, there and Ada; Ada Methodologies Concepts
should be substantial agreement about how to and Requirements, Ada Methodology
describe a method. As yet, there is no such Questionnaire Summary. Comparing
agreement. Software Design". University of Cali- __ _

3. Establishing metrics on methods requires that fornia, Irvine. CA.. Nov. 1982.
the previously mentioned levels of unifor- [IEEE83] IEEE Standard Glossary of Software.
mity be reached and that practical means for Engineering Terminology. New York.
determining values of a measure be derived. NY. Feb. 1983.
Presently. there are software metrics but
their correlation to the process of software [IWSP85] SIGSOFT Software Ftgineering Notes,
development is uncertain. Special Issue - International Workshop

of the Software Process and Software
The authors believe that in addition to metrics, Environments. Vol. 11. Aug. 1986.

there is a need to determine sufficient precondi- -
tions for the correct execution of an SDM. that is, [Maha87] L. Mahajan. M. Ginsberg, R. Pirchner.
an execution which will result in a successful and R. Guilfoyle, "Software Methodol-
development of an application/system. Three ogy Catalog", Technical Report MC87 ."
components of these preconditions have to do COMM/ADP-0036. Teledyne Brown
with the nature of the application to be addressed, Engineering. Tinton Falls. NJ. prept-, , ., -)
the characteristics of the development organiza- for U.S. Army CECOM. F,, i \1 r-.
tion, and the robustness of the method itself. In mouth, NJ.
the authors' experience. SDMs do not provide ade- [McDo86] C. W. McDonald. W R idl.-
quate information to make judgements as to Youngblut. "STARS ,Me,
whether the preconditions have been, or can be. Summary", SIGSO-" ,
met. There is a question of "fit" here: one is trying Tngineeriing Note, s
to learn how well the problem. the method, the
developer and the result all match each other. For
the Ada community, questions to be asked are:
"What does the method expect of my organization
to get an effective implementation done in Ada?
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Lessons Learned in the Implementation Phase of a
Large AdaTrm Project
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College Park, MID. 20742 Greenbelt, MD. 20771 8728 Colesville Road
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Abstract Ada incorporates many software development con-

We need to understand the effects that introducing cepts; it is much more than "just another language".
Ada has on the software development environment. As such, we need to understand the effects of introduc-
This paper is about the lessons learned from an ongoing ing Ada into the software development environment.
Ada project in the Flight Dynamics division of the This paper concentrates on the lessons learned from an
NASA Goddard Space Flight Center. It is part of a ongoing Ada project in the Flight Dynamics Division of
series of lessons learned documents being written for the NASA Goddard Space Flight Center (GSFC). The
each development phase. Ada project is sponsored by the GSFC Software

Engineering Laboratory (SEL). It is part of a series of
FORTRAN is the usual development language is lessons learned documents being written for each

this environment. This project is one of the first to use development phase.
Ada in this environment. The experiment consists of
the development of two spacecraft dynamics simulators. Environment
One is done in FORTRAN with the usual development FORTRAN is the usual development language in
techniques, and the other is done with Ada. The Ada this environment. The flight dynamics applications
simulator is 135,000 lines of code (LOC), and the FOR- involve mission analysis and spacecraft orbit and atti-
TRAN simulator is 45,000 LOC. tude determination and control. Many of the software

We want to record the problems and successes development projects are similar from mission to mis-
which occurred during implementation. Topics which sion providing, for example, an attitude ground support
will be dealt with include (1) use of nesting vs. library system or an attitude dynamics simulator. This pattern
units, (2) code reading, (3) unit testing, and (4) lessons of developing similar applications is important for
learned using special Ada features. domain expertise and for the legacy developed in this

It is important to remember that these results are environment for code, designs, expectations and intui-
derived from one specific environment; we must be very tions. The similarity between projects allows a high
careful when extrapolating to other environments, level of reuse of both design and code. Since the
However, we believe this is a good beginning to a better problems are basically familiar ones, the development
understanding of Ada use in production environments, methodologies which involve much iteration do not seem

to be necessary. The waterfall development model is
basically used here, and seems to work well in this case.
Lessons learned from the initial uses of Ada do not
include changing this basic methodology.

______________________________________ Project

The project was originally designed as a parallel
Ada is a trademark of the U.S. Department of Defense - Ada Joint study with two teams. Each would develop a spacecraft

Program Office. dnmc iuaooewt OTA steipe
Contact: Carolyn Brophy, Department. of Computer Science, dnmc iuaooewt OTA steipe

University of Maryland, College Park, NM 20742, (301) 454- mentation language, and one with Ada as the Implemen-
6154. tation language. The specifications for each simulator

Support for this research provided by NASA grant NSG-5123 to the were the same, supporting the upcoming Gamma Ray
University of Maryrland. Observatory (GRO) mission. However, there are many
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other differences between the projects which keep the Lessons Learned
study from being truly "parallel". The FORTRAN ver-
sion was the production version, thus they had schedul- 1. Nesting vs. Library Units
ing pressures the Ada team did not have. Without
scheduling pressures, the Ada team made enhancements 1.1 The flat structure produced by using library units has
in their version not required by the specifications, which advantages over a heavily nested structure.
increased time spent on the project. This was also the Nsighsmn fet ntersligpout

firs tie ay ofthee tam mmbes hd doe a Ad. a The primary advantage of nesting is that it enforces the
project, while the FORTRAN team was quite experi- principle of information hiding structurally, because of
enced with the i'ue of FORTRAN. The Ada team the Ada visibility rules. Whereas with library units, the
required training in the language and development only way to avoid violations of information hiding is
methodologies associated with Ada, while the FOR- through self-discipline. In addition, the dot notation
TRAN team did things in the usual way [McGarry, tells the package where a module is located.
Page et al. 83]. The Ada team also experimented with
various design methodologies; this was necessary to find There are quite a few disadvantages to nesting,
which ones would work better for this development however. Nesting makes reuse more difficult. A second
environment. The FORTRAN team was working with dynamics simulator in Ada is now being developed
a mature and stable environment. In switching to Ada, which can reuse up to 40% of the Ada project's code.
the legacy of reuse for design, code, intuitions and But in order to reuse it, the nested code has to be
experience are gone, and will be rebuilt slowly in the unnested, since the new application only needs some of
new language, the nested units. This is often a labor intensive opera-

The hilsopies f dvelpmen wee qite tion. Nesting also increases the amount of recompia-

different between the two projects. The Ada team con- assume eedwencge betwe eve sibine netda
sistently applied the ideas of data abstraction and infor- objects/procedureseevenwen tevdendencylis nt

mation hiding to their design development. The FOR- obet/rcdesevnwnthdpnecyint
TRAN development used structural decomposition really there. This requires more parts of the system to

methods.be recompiled than is necessary when more library units
methodsare used. It is also harder to trace problems back

Our goals with this project include: through nested levels than it is through levels of library
units. There is no easy way to tell where a unit of code

(1) How is the use of Ada characterized in this was called from, when it is nested. But library units
enviromenthave the "with" clauses to identity the source of a pieceenviromentof code. For this reason it is now believed that over use

(2) How should the existing development process be of nesting at the expense of using more library units
modified to best changeover from FORTRAN to makes maintenance harder. This is contrary to the
Ada? team's earlier expectations. The team had used nesting

(3) What problems have been encountered in successfully before on a 5000 lines of code training pro-
development? What ways have we found to deal ject. However, this kind of approach does not scale-up
with them? well when developing large projects.

Library units seem to have a lot of advantages.
Current Project Status Besides fewer recompilations when changes are made,

Both the FORTRAN and Ada teams started in and easier unit testing, every library unit can easily be
January, 1985. The Ada team began with training in made visible to any other library unit merely by use of
Ada, while the FORTRAN team immediately began the "with" clause. In nested units this visibility does not
requirements analysis. The FORTRAN team delivered exist, and a debugger becomes essential to see what is
its product (45K) after completing acceptance testing in happening at the deeper levels that are not within the
June, 1987. The Ada team is scheduled to finish system scope of the test driver. Library units allow smaller
testing its 135K product in February, 1988. Discussions components, smaller files, smaller compilation units, and
of the product size differences and effort distributions less duplication of code. The system is more maintain-
are presented in (McGarry, Agresti 88]. able, since it is easier to find the unit desired. Reuse

The lessons learned from major phases in the Ada with library units is also easier, since the parts of the
development are being recorded in a series of SEL system are smaller. Configuration control is also easier
reports: Ada training [Murphy, Stark 85], design [God- with library units since more pieces are separate (i.e.,
frey, Brophy 87), and implementation [in preparation). the ratio of changes to code segments modified is closer
This paper presents some of the main results from the to 1). The major disadvantage seems to be that a com-
implementation (code and unit test) lessons learned. plicated library structure develops, which can lead to

errors by the developers. However, it the Ada project
were to be done over now, the team would use more
library units, and nest less.
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Advantages and Disadvantages of
Nesting vs. Library Units

NESTING

Advantages Disadvantages

* information hiding * enlarged code
* visibility control * more recompilations
* type declarations in * harder to trace problems

one place through nested
levels

* can't easily tell where a
unit of code called
from

* type declarations in one
place means problems
for reuse

* harder maintenance
* debugger required
* larger unit sizes

inhibit code reading
* harder to reuse part of

the system

LIBRARY UNITS

Advantages Disadvantages

* fewer recompilations * no information hiding
* easier unit testing * complex library structure
* smaller components
* smaller files
* smaller compilation units
* less code duplication
* easier maintenance

* "with" clauses show source
of other code units used

* easier reuse
* easier configuration control

1.2 The balance between nesting and library units is an
important implementation issue, not a design issue.

The issue of whether to use library units or nested The library units in the Ada project went down
units first arises in the design phase. At least this is the about 3 to 4 levels, while nesting went down many lev-
case if it is assumed that the design documents reflect els below that. Another view of the system shows the
this aspect of implementation (i.e., the design docu- Ada project had 124 packages and 55 library units.
ments indicate in some way when nesting is intended vs. During implementation most team members felt an
when library units should be used). While it is appropriate balance had been reached between nesting
appropriate for the design to show dependencies, these levels and number of library units. However, in retros-
should not dictate implementation, as far as the library pect, several felt the nesting had been overdone.
unit/nesting question is concerned. The team con-
sidered the decisions concerning nesting/library units to
be an implementation issue.
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1.8 It appears best to wee library units at leest down to who developed the code. Comments are returned to the
the subsystem lev~el, and naeeting at lower levels where original developer. After code reading and unit testing,
there ie minimal interaction among a emall number of the unit is put under configuration control.
module.

Experiences with unit testing seem to indicate that 2.1! Code reading helps in training people to wee Ada.
library units should at least go down to the subsystem Besides helping to find errors, code reading has the
level. This makes testing easier. Below this level the benefit of increasing the proficiency of team members in
benefits of nesting sometimes become too important to Ada. Individuals can see new ways to handle the algo-
ignore. This is one heuristic which could be used to rithms being encoded. Code reading also allows another
help determine when the transition from library units to person besides the original developer to understand a
nested unite should occur, given part of the project. This insight should help

An additional way to determine when the trrs- understanding and lead to better solutions of problems
tion should occur is to examine the degree of interaction in the future.
between pieces. For modules which interact heavily, 22Cd edn ep slt tl n oi roslibrary unite are preferred. At the point where the 9.BCdreinheeioatetladlgcerr.
interaction drops off, using nested unite is preferable. The mast common errors found in code reading
Sections with nested code are easier to deal with when with Ada were style errors. The style errors involved
they are small, adding or deleting comments, format changes, and

changes to debug code (not left in the final product).
1.4 In mapping design to code, caution should be weed in Other types of errors found are initialization errors, and
applying too rigoros a set of rules for vieibility control. problems with incompatibilities between design and

In an attempt to control visibility, two features code. This can be due to either a design error or a cod-
appear to have been too rigorously applied. The first ing error.
feature is nesting. The design of the Ada project Because the Ada compiler exposes many errors not
seemed to suggest a particular nesting implementation. exposable by a FORTRAN compiler, code reading Ada
But this created many objects within objects yielding a has a different flavor than code reading FORTRAN.
high degree of nesting. The second way to control visi- For example, the Ada compiler exposes such errors as
bility is through the use of many "call-through"s (a pro- (1) wrong data types, (2) call sequencing errors, (3) vari-
cedure whose only function is to call another routine), able errors- either the variable is declared and never
"Call-through"s were used to group appropriate pieces used, or it is used without being declared. So, one
together exactly as represented in the design. They can seasoned FORTRAN developer working on the Ada pro-
be implemented via nesting or library units. Faithful- ject noted that code reading is more interesting in FOR-
ness to the design structure was maintained this way. TRAN, since there were more interesting errors found in

The design had non-primitive objects with specific code reading FORTRAN, not found in reading Ada
operations. These objects were implemented as pack- code. In general, logic errors are hard to find in this
ages. To put the specific operations (subprogram) into application domain, but enough logic errors are found to
the objects (packages) the team used "call-through"s. make code reading worthwhile.
Thus a physical piece of code was created for every Some of the difficulty of code reading with Ada on
object in the design. "Call-through"s are one of the this project was due to the heavy nesting and the
reasons for the expanded code in the Ada project when number of "call-through" units. Code reading would
compared to the FORTRAN version. It is estimated have been helped by a flatter implementation. The
that out of the 135K LOC making up the Ada system, SEPARATE facility makes it necessary to look in many
22K LOC (specifications and bodies) are because of places at once to follow the code. However, code read-
"call-through"s. While "call-through"s provide a good ing in Ada was easier than in FORTRAN because the
way to collect things into subsystems, these should be code was more English-like, and hence, more readable.
limited to only two or three levels in the future. Often the reused FORTRAN code is an older variety

If the implementation were to be done over now, without the structured constructs available in later ver-
many of the existing "call-through"s would be elim- sions.
inated. Instead of creating actual code to correspond Code reading tended to miss errors that spanned
with every object in the design, some objects in the multiple units. This would be expected with any imple-
design would remain "logical objects". No actual pack- mentation language as well. One example was a prob-
ages would exist; instead, a logical object would be lem where records were skipped when they were being
made up of a collection of lower level objects. output. The debugger actually found the problem.

Despite the implementation language, code reading
2. Code Reading appears to be important for highly algorithmic routines.

Code reading is generally done with unit testing.
The developer doing the code reading Is not the one
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Groups of routines that are used only to call others may Two other ways to deal with the nesting during
be checked to make sure the design's purity is main- unit test were tried and were not very successful. One
tained, solution pulls an inner package out, and includes the

types and "with'd in" modules the outer package used
3. Unit Testing in order to execute the inner one. This is difficult to do

for each unit. The other solution is to modify the
8.1 Unit testing was found to be harder with Ada than specifications of the outer package so that nested pack-
with FORTRAN ages can be "seen" by the test driver. This solution

The FORTRAN units are already relatively Lso- requires lots of recompiation. With more library units,
lated; this makes unit testing easy. Only the global there would be leqs recompiation, because there would
COMMON. --'-d to be added to do the unit tests. On be fewer changes of specifications. Again however, the
the other h-,nci, the Ada units require a lot of "with'd best way to test was to use the debugger on unaltered
in" code, and are much more interdependent. Another code.
very different Ada project had perhaps even more inter-
dependence between its modules than the Ada project 9.4 The importance of unit testing seems to be more
did. That team also found the interdependence made related to epplication area then to implementation
unit testing very difficult. More interdependence exists language.
between Ada units because there are more relations to Whether the implementation is in FORTRAN or
express in Ada. There are textual inclusion (nesting), Ada, does not seem as important as whether the appli-
with-ing in (library units), and invocation. FORTRAN cation has lots of calculations or has lots of data mani-
only has invocation. pulations. Unit testing seemed more valuable with

scientific applications; perhaps because calculation errors
9.2 The introduction of Ada as the implementation show up when only a small amount of localized code is
language changed the unit testing methods dramatically, executed. But data manipulation errors require more of

Unit testing with Ada was done very differently, the system to be operating before it is known if errors
Since one unit depends on many others, it is usually are present.
hard to test a unit in isolation, so this was generally not
done. The Ada pieces were integrated up to the pack- 4. Use of Ada's Special Features
age level, and then unit testing was done. Then testing
was done with groups of units that logically fit together, 4.1 Separation of specifications and bodies is quite
rather than actual unit testing. The integrated units beneficial and easy to implement.
are tested, choosing only a subset of possible paths at a The team entered the specifications first, whenever
time. The debugger is used to look at a specific unit, possible, before the rest of the code. This gave a high
since the test drivers cannot "see" the nested ones. level view of the system early in the development.
With Ada projects a debugger becomes essential. This Another benefit is that this helped clarify the interfaces
is in contrast to the usual development in FORTRAN early. Separating the specifications and bodies also
where no integration occurs at all until after unit test- reduces the amount of recompilation required when
ing. changes are made.

This shows that the biggest difference between the
way FORTRAN and Ada projects are done at this point 4.2 Generics were fairly easy to implement and they
in development is incremental integration. This actu- reduce the amount of code required.
ally represents a change in the development lifecycle of The only problems encountered were with correct
an Ada product; integration and unit testing are alter- compilation of the generics in some cases, due to com-
nately done rather than finishing unit testing before piler bugs in an early version of the compiler, rather
integration, than incorrect code. As Ada matures, this will not be a
9.3 The library unit/nesting level issue directly affects problem at all.
the difficulty of unit testing.

The greater the nesting level, the more difficult 4.9 Using too many types increases coding difficulty.
unit testing is, since the lower level units in the subsys- The strong typing was very difficult to get used to,
tem are not in the scope of the test driver. This is the when one is accustomed to weakly typed languages such
primary reason a debugger becomes a required testing as FORTRAN. It was easy to create too many new
aid with Ada projects. For this reason, more library types as well.
units and less nesting would have made testing easier. Often a brand new type was created with a strict
Library units have to go down to a level in the design range appropriate for one portion of the application.
that makes testing more feasible. With the Ada project Then in other areas where subtypes could have been
that would have meant taking library units down to a used, the range on the original type was found to be too
lower level in the design, if the project were to be done restrictive, so another brand new type was created
over. instead to handle the new situation. Then a whole new
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set of operations had to be created as well for the add!- Several members of the team would recommend
tional new type. Next time the team would recommend incorporating the way exceptions are to be handled into
creating a more general new type, and using many the design, rather than leaving this until implementa-
different subtypes of the original type, rather than tion. Put into the design (1) what exception would be 1
creating more new types. In this way operations can be raised, (2) where it will be handled, and (3) what should
reused and there are far fewer main types to keep track happen.
of. Designers need to spend time developing families of
types that inherit properties from one another.

The strong typing presented some problems when Ada Features*
testing units, though it prevents some kinds of errors,
also. It was harder to write test drivers that could deal ipeetto
with all the types in the units being tested. It was also ipemsentationt
harder to do the I/0, since so many types had to be es eei
dealt with. tasking -+

4.4 Tasking was difficult to code and test, however, this strn ing + +
seems due to concurrency in general and not Ada extontpn00

apciicli.handling 0 +
Tasks were used in the user interface part of the nesting +

project. The user was given many options which made separate
the interactions between the tasks of the subsystem specs/bodies ++ ++
very difficult to plan and execute correctly.

It was harder to code tasks from the design than it *This figure represents a subjective assessment
was to code other types of units. However, this is not based on team member interviews
really due to Ada, but rather it is the nature of con-
currency problems. The language made the use of task-
ing easier, and encouraged the developers to use tasking
more than they would have otherwise. The dynamic
relationships of concurrency cannot be represented in Summnary
the design (termination, rendezvous, multiple threads of' We have learned several important things about
control). Correctness was very difficult to assure, as is four major areas in implementation. There are many
usual with these kinds of problems, and deadlock was advantages to using library units, though nesting can
hard to avoid. Functional testing was done, which is have its usefulness at some point below the subsystem
the usual type in this environment, level. Code reading helps train people in Ada, and helps

The major problem the developers had was with to isolate style and logic errors. Unit testing was sub-
exceptions. These are no worse with tasking than they stantially changed by using Ada: the first stages of
are with any other program unit, however, integration often began before unit testing proceeded.

Some Ada features are quite powerful and should be
4.5 Exception handlers have to be coded carefully, carefully used.

The key problem with exceptions is deciding the It is important to remember that these results are
best way to handle them. Errors and the sources of derived from one specific environment. We must be
errors can be hard to find if the exception handlers are very careful when extrapolating to other environments.
not coded carefully. Suppose a particular procedure will There are also many questions still left to be answered.--
call another unit, expecting some function to be per- Studies of this project will continue, and other Ada pro-
formed, and certain kinds of data to be returned. If an jects are being started. These will help us evaluate the
exception is raised and handled in the called unit, and it effects on longer term issues such as reuse and maintai-
is non-specific for the problem raising the exception nability of the Ada projects. We believe this project is
(e.g., "when others") , the caller gets control back agood beginning to a better understanding of Ada use
without the required function being performed. But the in production environments.
exception was handled and data was returned, so the cnwegrnt
call looks successful. Yet as soon as the caller tried to Akoldeet
use the data from the routine where the exception was The Ada experiment is managed by Frank
raised and handled, it fails. Because of propagation, it McGarry of NASA/GSFC. The authors would like to
can be very difficult to trace back the error to the origi- asthance. n heAata ortercoprto n
nal source of the problem.asitne
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THE 'SOFSWARE FZRST' SYSTEM DEVELOPMENT METHODOLOGY
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ABSTRACT shortcomings of the current approach.
The intent of the methodology is to allow

Software first has been a software to be developed prior to
theoretical goal in computer science selection of the target computer; to
since the early 1970s when software costs permit development and initial testing on
began to exceed hardware costs. However, a programmer-friendly host computer; to
with each machine having a unique determine functional and operational
assembly language, and with the software changes by executing the
tremendous variability in high-order software on the host by end users; to
language compilers from machine to implement the necessary changes on the
machine, software remained machine host system; to define the hardware
dependent. The portability of Ada requirements by instrumenting the host
software finally makes software first a system; and to enhance the confidence in
feasible concept. A research effort to the software component of the system
define a software first system prior to porting the software to the
development methodology has recently been target hardware. The benefits of this
initiated. This paper describes the approach will hopefully be realized both
background of the software first during development and, more importantly,
philosophy, the approach being taken to during the operations phase of the system
define the methodology, and the life cycle. When proposed changes come
objectives of the anticipated life-cycle in on a fielded system, their feasibility
phases. and impact can be assessed asing the host

environment prior to updating the
targeted version of the systen. Beyond
the technical effects on system

INTRODUCTION development, this approach will hopefully
introduce more competition into the

The classical method of system contracting process since intimate
development is to choose the hardware for knowledge of a system-specific target
the system, fit the software to the hardware configuration will no longer be
system, then add hardware components and necessary to develop or maintain the
both add and alter software components to software. The other anticipated major
make the system work. By the time the effect will be on training. Training
system is fielded, the hardware is will be started earlier, and lessons
several years old and no longer state of learned from the training process will be
the art. The software design has been fed into the development process.
altered to fit the hardware of choice and
h a s therefore become both With the development and
machine-dependent and difficult to standardization of Ada, Department of
maintain. And, the schedule has slipped Defense software has become more
due to incompatibilities between the portable, less machine dependent, and
hardware and software. The negative therefore a software first development
effects of this approach are most methodology now appears feasible. It is
pronounced during the maintenance phase assumed here that the portability of Ada
of the life cycle. in response to this will minimize the effort required to
situation, the U. S. Army's Communication retarget the software developed. It is
Electronics Command (CECOM) Center for also assumed that any changes that must
Software Engineering and IIT Research be made to the software will be made to
Institute have recently initiated an the software running in the host
effort to define a software first system environment. Further, the development
development methodology. The objectives tools will be available at the site
of the proposed software first performing post-deployment software
methodology are to produce more reliable, support. Finally, with decisions being
less costly systems by avoiding the made with respect to quality software

Support for this research was provided by RADG Contract Number
F30602-86-C-0111.
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engineering Practices, requiremen~ts will tall pole in the tent." The Air Force
be more easily maintained and traced and budget for fiscal year 2972 indicated
'requirements creep' minimized, that between $1 billion and $1.5 billion

was spent on software, approximately
This initial phase of the study will three times the cost of hardware for the

define the software first development same period [BOEH73). Not only was
methodology and identify the primary software costing more than the hardware
areas of concern to be explored during component of a system, but it was also
the next phase. A specific concern, for believed to be more responsible for
example, is the development of acceptance schedule slippages, cost overruns,
criteria which are measurable in the host operational penalties and performance
environment and which imply specific penalties, as well as for complex
levels of performance in the target embedded problems that surfaced after
environment. Other concerns which will system fielding. In the one and a half
be addressed during the course of the decades since 1972, the problem has
study include the degree to which Ada is continued to grow and the software pole
portable, the compatibility of various has become even taller.
development techniques with DoD-STD-2167,
and potential interaction effects between Both the concept of software first
the Ada language, real-time system and a sof tware first development machine
development, and the software first were proposed in the early 1970s,
development methodology. By f irst although both the concept and machine
addressing the most challenging systems, being proposed here are significantly
real-time, it is believed that solutions dif fere-it f rom their predecessors. The
will be more easily ported to other intent to bring system cost, schedule and
system types. performance under control is still the

same but the approach can now be more
Inputs to this phase include the ambitious. Although many of the problems

results of experimental applications of highlighted earlier either remain or have
the software first system development grown in magnitude, a significant new
methodology performed by CECOM's Center tool exists which we believe can
for Software Engineering. These facilitate software first becoming a
applications have included systems reality. That tool is the Ada programming
developed in Fortran, C, and BASIC, and language.
include a current project being developed
in Ada Also, the planned redevelopment The software first concept of the
of the Enhanced Position Location and early 1970s was not literally a software
Reporting System (EPLRS) will be first approach hut rather a concurrent
performed using the software first system software and hardware development
development methodology. Additional approach (FLEI74J. The approach called
inputs include the results of ongoing for an iterative system design process
studies on the use of Adz. in real-time with several iterations possible between
systems and cn Ada runtime environments, logi-a1 levels. once the design had been
e x is t ing syster development completed, software development and
methodologies, military standards that hardware fabrication could be initiated.
govern DoD software development efforts, The theory proposed that final testing
and techniques that address a particular needed to be done on the actual system
lif e-cycle phase such as design hardware and, therefore, the period for
techniques. This phase of the study will parallel development of hardware and
be completed in November 1988. software was between the completion of

the system design process and final
The balance of this paper provides a testing. The proposed software first

background of the origins of the software concept is much more literal in its
first concept and outlines the approach interpretation of the software
of the study and the objectives of each development being first.
anticipated life-cycle phase.

The software first machine proposed
in the early 1970s was a generalized

BACKGROUND computer capable of simulating several
computers and several computer

By the early 1970s it had been configurations [BOEH73]. Software would
determined that software had become "the be developed by assuming a specific
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architecture and then determining its The intent of this methodology is to
adequacy as the software was developed, reduce total lif e-cycle costs by
This would require that the software enhancing the flexibility, portability,
f irst machine be able to emulate the and overall quality of the software
particular machine of interest. Although developed. The methodology will be based
various aspects of the architecture could on making software -oriented decisions
be altered during the course of without making compromises in software
development, such as memory size and development to satisfy hardware
clock speed, the instruction set in which constraints.
the software was being developed would
obviously be fixed. The set of hardware The methodology will be generic in
options would then be limited to machines the sense that it will not be oriented to
with the same instruction set. The a particular type of software, although
proposed software first development the inputs to the methodology will be
methodology would not require the oriented toward complex, real-time
construction of a specific software first systems such as are found in DoD mission-
machine with simulation capabilities, critical systems.
Rather, any computer with Ada cross
compilers would be a candidate host
machine, with the potential targets being LIFE-CYCLE PHASE OBJECTIVES
the set of computers for which cross
compilers from the host exist. The structure of the methodology to

be developed will not be constrained to
Although the software first machine follow the structure of any existing

of the 1970s is more consistent with what methodology. However, the functions
is being proposed here than is the defined by various phases of the standard
software concept of the 1970s, there are development cycle must be satisfied by
significant differences with the machines any comprehensive methodology. Although
as well. Rather than a special purpose the structure may not follow the outline
machine being constructed for software below, the methodology produced will
developmen~t, the focus would be on a perform the indicated functions.
machine with strong software development
tools and Ada compilers with several System Requirements Analysis
potential targets. The technology exists
and has been successfully demonstrated to The scftware first methodology will
have imultiple Ada cross compilers utilize detail a method for partitioning system
the same front end rDEBA86). The requirements into software and hardware
advantages of this technologry include recuirements. The determination as to
having a consistent user interface, whether a system requirement will be met
having compiler enhancements available by hardware or software (or in some cases
for all cross compilers at the same time, a combination of the two) will be based
and making the development of new cros3 on several key factors. These factors can
compilers more f e as ible . The be identified by answering the following
significance of Ada's portability in questions:
general and this cross compiler
technology in particular is that software Has a similar or related requirement
first machines already exist and, given been successfully satisfied in
today's technology, make software first a software?
quite plausible approach to system
development. Are the required software interfaces

within the current state of the art?
APPROACH

For a distributed system, is there a
The methodology to be produced by similar software architecture to the

t h is effort will be a tr ul1y one being considered?
software-oriented development
methodology. It will also be one which Are the system timing requirements
will be usable in the near term and as that must be satisfied by software
much as possible avoid reinventing the realistic?
wheel.

These questions will be addressed during
system requirements analysis to determine
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both the feasibility of successfully database of target hardware capabilities
satisfying the system requirements and and characteristics.
the appropriate hardware/software split
of requirements. Software prototyping The software first methodology will
will be utilized during systems be developed to eliminate the constraints
requirements analysis to establish the imposed on designing, coding, and
feasibility of satisfying requirements in integrating the system by the hardware
software. These prototypes will be used configuration. The development
to establish the feasibility of configuration will obviously be
requirements and will not be considered determined; however, the target computer
as models of how to satisfy the will not have been chosen during these
requirement. phases. This will allow all decisions to

be made based on the capabilities and
Software Requirements Analysis limitations of the state of the art of

software engineering and software
Once the software requirements have technology. The development of the

been identified from the system software architecture, the system's
requirements, software requirements algorithms, and the software interfaces
analysis will be performed. The software will all be based solely on the software
first methodology will provide an requirements and the capabilities of
approach to software requirements software.
analysis that will assure that the
requirements are both achievable and Integration and testing will have
sufficient to meet the needs of the multiple sub-phases. Initial testing and
customer. The high level feasibility of software integration will begin using the
the requirements will be established in development computer. Hardware to
system requirements analysis, and a more software integration will have a major
specific feasibility study will be shift from the current perspective: If
conducted during software requirements. the hardware to software interface
During software requirements analysis, creates a problem during integration, the
groups of requirements will be hardware configuration will be altered to
collectively prototyped to establish the solve the problem. It is anticipated
feasibility of concurrently satisfying that a major area of concern during the
related and interdependent requirements. hardware to software integration will be
Also, the more complex requirements will the runtime environment.
be addressed using exploratory
programming. Although the prototypes are Target Configuration
used only to establish the existence of a
potential solution, the exploratory Once software has been developed,
programming solutions may be used to tested, and integrated on the development
assist in defining the design of the computer, the selection of the target
system and approximating the algorithms configuration will be finalized.
to be imDlemented. The prototypes and Time-critical functions will be
modules developed using exploratory implemented and run on potential target
programming will be used as vehicles for configurations to assess the exact timing
clarifying requirements, with the intent capabilities of each potential hardware
being to minimize the probability of configuration. A major challenge to be
changing requirements later in the addressed at this phase of the life cycle
life cycle, involves the Ada runtime environments

available for potential target machines.
Design, Code, and Integration Runtime environments will differ in

timing-related capabiliaies. Another
The single most important aspect of major effect of runtime environments will

this phase is that all of the be on memory requirements.
capabilities of the development
environment - the memory, the development The process of determining if a
tools, flexibility of configuration - are hardware configuration satisfies system
available both for development and to memory requirements will, necessarily, be
address the problems of the iterative. A potential runtime
hardware/software interface. This may environment may run on multiple
require the future development of a target machines, and each potential '

target may have several runtime ,.PN

or
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environments that it supports. An software have been recommended (SILV87].
initial estimate of candidate runtime The portability of Ada software is being
environments, or candidate target confirmed, and this confirmation has
machines, will need to be established and positive implications for the feasibility
the evaluation of a target runtime of software first.
environment pair performed. The runtime
environment and the target machine must In addition, the early analysis of
be evaluated in tandem, not experimental applications of the software
independently. Also, the evaluation must first system development methodology
consider both timing and memory performed at CECOM's Center for Software
constraints on each potential Engineering indicate that, with
configuration. Some guidance for the forethought, even non-Ada software can be
initial set of candidate configurations ported easily. The current, larger
may be attainable from the prototyping efforts being done in Ada will provide
and exploratory programming performed more direction for this system
during the system and software development methodology.
requirements analyses.

The DoD software crisis is real.
Operations Previously recommended approaches to this

problem have focused on standardizing on
Although the operations phase is not computer hardware [GOLU82] or on

typically defined in a development standardizing on a limited number of
methodology - other than to say that all architectures and high-order languages
major upgrades to a system will follow (MORA78]. A primary advantage of both of
the development methodology - the these approaches is that they limit the
benefits of the software first number of systems and development
methodology should be realized during the environments with which developers and
operations phase. The software will be maintainers must become familiar. The
developed based on software requirements software first approach would realize
and using software engineering practices this same benefit.
with no compromises to support previously
identified hardware. Therefore, the code More recently recommended approaches
should reflect the standard attributes to the software problem have focused on
such as readability and understandability programmer productivity [BOEH87]. Since
that are asscciated with reduced the Ada programming language is
maintenance. However, the major saving instrumental in software first, the
may be realized through the ease of inoications of increased productivity
system hardware changes. Since the with Ada (CAST871 are a positive
software first development methodology indicator for increased productivity
will produce machine-independent code, using software first.
subsequent hardware changes will be much
easier to implement. Technical and managerial

impediments to implementing the software
first system aevelopment methodology

CONCLUSIONS exist, and some of these are yet to be
identified. We believe that the positive

This effort to define a software side of the software first ledger far
first system development methodology has outweighs the negative side.
just begun. We, therefore, currently
have more promise than product to report.
However, if Ada proves to be portable, we REFERENCES
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Graphical Database Management and Its Impact on Ada System Design

Keith E. Bernard & Daniel M. Butler
Telos Federal Systems
1315 Directors Row
Fort Wayne, Indiana 46808

ABSTRACT the possibility of producing a system design that is not
complete.

Various examples of Graphical Database Management Systems
(DBMS) developed for use on the Apple Macintosh computer In some Ada software development environments, for
are currently available to the public. Because these products example, it may be costly to discover that a procedure in a
are database applications, they present the possibility of package that many other packages depend upon requires an
collecting the totality of information associated with a software additional parameter to be added to its parameter list.
system within one application. Also, because these products Changing package specifications during the coding phase, the.
were developed for the Macintosh, they allow a user to use its phase where most design problems are currently identified, is
graphic capabilities. Simply stated, these products readily both frustrating and wasteful. Graphical representation of
lend themselves to the task of associating pictures to words data/control in the system design effort would better present an
and thus pictures to Ada code. overall picture of the system. This overall picture would help

to ensure a complete design as well as to promote
understandability of the system's requirements.

1. Benefits of Using a Graphical DBMS: Importance of associating requirements with static structural
levels.

A system that is developed using a Graphical DBMS has the
capacity to graphically represent the static structural levels Requirements as described here may be any requirements
described in DoD-STD-2167 as: Computer Software associated with a system. If MIL-STD-490A is used, the
Configuration Item (CSCI), Top Level Computer Software requirements may be in the form of B5 paragraphs. The result
Component (TLCSC), Low Level Computer Software of associating requirements to each of the static structural
Component (LLCSC), and Unit (Figure 1). In addition, such levels will be an improved traceability of requirements
a system allows the graphical representation of data/control throughout the system.
flow diagrams for each of these static structural levels.
Furthermore, it has the capability of associating requirements
and interfaces to each of these levels, as well as presenting ODATA/oNToLOW
actual Ada code at the Unit level (Figure 2). Dt I

Importance of graphical representation of data/control flow. " 0 !

In the development of Ada systems, as is true of any system, a oDATA/c Row

clear understanding of data/control flow is required to ensure DLAI

that the design phase results in a complete system design. L CSQUCMEM
Graphical representation of data/control flow helps to reduce TL, o rsc er ^cgs

0 RBUMB.4d

u~r ~rrr UI UNIT 0 UNIT DnIFACES

Figure 1. Static Structural Levels as Described in DoD- Figure 2. Information to be Associated with Each Static
STD-2 167 Structural Level
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Importance of Ada code at the Unit level. Lower levels of Data/Control Flow diagrams are produced
with each recursion of the QOD process. Each recursion

The presentation of Ada code at the Unit level of the static prompts a lower level of abstraction, and thus, a lower
structure will provide a means of directly mapping data/control structural level.
flow diagrams as well as Unit requirements and interfaces to
that code. If the user of such a tool desires to view the Ada The System Development Process incorporating a Graphical
code associated with a particular procedure shown on the DBMS is summarized below:
data/control diagram, he simply selects the area on the diagram
corresponding to that procedure, and the Graphical DBMS will 1. Develop the CSCI.
navigate to the file that contains the associated Ada code.
Inversely, if the user is viewing Ada code, the Graphical * State the problem of the CSCI.
DBMS can easily navigate to the data/control diagram,
requirements, or interfaces which correspond to that code. * Analyze and Clarify the problem using Data/Control
The result is a more intimate knowledge of how the code for a Flow Diagrams identifying data within, to, and from
particular Unit fits into a broader view of the entire system. the CSCI.

.Write the QOD paragraph, identifying objects and
2. Developing Data/Control Flow Diagrams Using a operations.

Methodology Suited for an Ada System

There does not seem to be a single design methodology suited Gruthobesanopain.

to the development of an Ada system which will fully facilitate . Make design decisions.
the software engineering principles of abstraction, information
hiding, modularity, localization, uniformity, confirmability * Identify interfaces.
and completeness. Although Object Oriented Design is a
powerful, proven design tool which promotes these principles * Identify operations that require recursion. These
as well as the reusability of software, it fails to ensure a become TLCSCs.
complete system design. Additionally, while design
approaches may provide completeness, they tend to lack 2. Develop the TLCSC.
support of the engineering principles stated above and fail to
promote software reuse. . State the problem of the TLCSC.

In order to obtain the goal of producing a system that is * Analyze and clarify the problem using Data/Control
modifiable, efficient, reliable, and understandable, by fully Flow Diagrams identifying data within, to, and from
facilitating the principles of software engineering, one must the TLCSC.
merge the benefits of more than a single design methodology.
More specifically, one must tailor the Object Oriented Design * Write the OOD paragraph, identifying objects and
methodology to enforce the completeness of system design by operations.
combining it with those aspects of the structured analysis
approach that result in a full understanding of data/control flow * Group objects and operations.
and of system/subsystem requirements. This full range of
information can be captured, managed, and manipulated by the * Make design decisions.
incorporation of a Graphical DBMS.

. Identify interfaces.
Diagrams produced through recursive Object Oriented Design. Idniyoeaosthtrqreecso.Tee

Some implementations of an GOD methodology merely become LLCSCs.
recommend the use of Dara/Control Flow diagrams to aid in
the analysis and clarification of the requirements. Using the 3. Develop the LLCSC.
above stated method of design, GOD, and Structured
Analysis, the emphasis is placed on the analysis of the . State the problem of the LLCSC.
requirements during the design phase. When using such a
design method, Data/Control Flow diagrams are no longer * Analyze and clarify the problem using Data/Control
recommended - they become required. Flow Diagrams identifying data within, to, and from

the LLCSC.
Data/Control Flow diagrams are produced during the analysis
and clarification of the requirements phase of the OOD * Write the OOD paragraph, identifying objects and
process. This phase is used to gather and analyze information operations.
necessary for solving a particular problem of the system. The
Data/Control Flow diagrams are not intended to enforce a * Group objects and operations.
particular design, but rather to ensure a complete
understanding of the problem. The diagrams will organize the * Make design decisions.
requirements and the OOD process will drive the design of the
system. The goal is to have the Data/Control Flow diagrams * Identify interfaces.
ensure a clearer understanding of the problem to be solved,
rather than communicating the design intent. * Identify operations that require recursion. These

become Units.
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4. Develop the Unit. It is very important that, during this step, a consistent
level of abstraction is obtained. The Data/Control flow

" Make design decisions, diagram for this level should contain only enough
information necessary to solve the problem at the

" Identify interfaces, highest level. Finally, the Data/Control flow diagram
should identify the external interfaces of the CSCI.

* Implement solution. Write the OOD paragraph, identifying objects and
operations.

Recursive OOD, if used in this manner, will produce a more
complete design and packages with levels of abstraction which The paragraph, to identify objects and operations,
correspond to the high, mid, and low level of the static should be written to reflect the abstraction level
structure. identified in the Data/Control flow diagram:

Nominate eligible targets for attack. Select and task
3. Ada System Development Using a Graphical fire support (FS) systems to attack the targets. If an

DBMS FS system is not selected, select and task units with
field artillery (FA) attack assets to attack the target.

The following is the presentation of an example which Also determine if target damage assessment (TDA) is
illustrates the development process stated previously: required and if damage requirements were met. If

damage requirements were not met, send the target to
1. Develop the CSCI. be renominated. Terminate fire support activities.

" State the problem of the CSCI. The operations are:

For this step, write a single sentence describing the NOMINATE ELIGIBLE TARGETS FOR
problem to be solved: ATTACK

SELECT AND TASK FS ATTACK SYSTEMS
The problem is to implement afire support activity. SELECT AND TASK FA ATTACK ASSETS

DETERMINE IF TDA IS REQUIRED
* Analyze and clarify the problem using a Data/Control DETERMINE IF DAMAGE REQUIREMENTS

flow diagram to identify data within, to, and from the WERE MET
CSCI (Figure 3). TERMINATE FIRE SUPPORT ACTIVITIES

The purpose of this step is to analyze and clarify the Group the objects and operations.
problem using Data / Control flow diagrams in order to
produce a consistent, complete OOD paragraph. The operations

NOMINATE ELIGIBLE TARGETS FOR
ATTACK

SELECT AND TASK FS ATTACK SYSTEMS
RRWAUS SELECT AND TASK FA ATTACK ASSETS

CSCI - Fire Support DETERMINE IF TDA IS REQUIRED
DETERMINE IF DAMAGE REQUIREMENTS

"'.... ' . . .. WERE MET
TERMINATE FIRE SUPPORT ACTIVII ES

NOMINATEdo not act on any identified objects.: TARGETS

==Make design decisions.

ANALYSIS AND The CSCI will consist of a main routine, FIRE
AIR ATTACK SYSTEM SUPPORT, and six subroutines which correspond to

the operations identified by the CSCI OOD paragraph.TARGET DANIAi

At-....- ASSMRE)RTING Identify interfaces.

-M .. Figure 4 shows the interfaces within the CSCI.HA MAY ATTACK SYSTEM, :::::::::: "':::::::::

................. .. . Identify operations that require recursion. These
become the TLCSCs.

ASSLSS As a result of the high level of abstraction of this CSCI

paragraph, the implementation of any of the identified
operations is prevented. This does not imply that the
OOD process was ineffective for this CSCI. OOD in

EVM.J.1NcF /this case did not produce the desired packages with
FI .F.CtoN'c -groupings of objects and operations, but rather an

WAPARE operational (functional) decomposition. This

Figure 3. Data/Control Flow Diagram decomposition identifies TLCSCs. Therefore, OOD
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must be reapplied to each operation identified in the Write the OOD paragraph, identifying objects and
CSCI paragraph to establish more detail. Thus, each operations:
operation will become a TLCSC. Receive a message. Identify the type of message to be

processed. If the message is a standard mission,
2. Develop the TLCSC. process the standard mission. If the message is a

smoke mission, process the smoke mission. If the
" State the problem of the TLCSC. For the purpose of message is a quick fire, process the quick fire. If the

illustration, the "NOMINATE TARGETS FOR message is a request for additional fires, process the
A'TACK" TLCSC will be developed, request for additionalfires.

Write a single sentence describing the problem to be The objects are:
solved:

MESSAGE
The problem is to Nominate Eligible Targets for
Attack. The operations are:

" Analyze and clarify the problem using a Data/Control RECEIVE A MESSAGE
flow diagram to identify data within, to, and from the DETERMINE THE TYPE OF MESSAGE
TLCSC (Figure 5). PROCESS STANDARD MISSION

sdm Tk PROCESS SMOKE MISSION
s PROCESS QUICK FIRE MISSION

wm rt PROCESS REQUEST FOR ADDITIONALIll Anc, FIRES

y j Group the objects and operations.

S~The operations

RECEIVE A MESSAGE
DETERMINE THE TYPE OF MESSAGE

act on the object
MESSAGE.

The operations
D.l It ll T... s FMPROCESS STANDARD MISSION
r---Wl[ Av" PROCESS SMOKE MISSION
~ IAI It~IPROCESS QUICK FIRE MISSION
I( IPROCESS REQUEST FOR ADDITIONAL

FIRES
do not act on any identified object.

Figure 4. Interfaces of the FIRE SUPPORT CSCI . Make design decisions.

The NOMINATE ELIGIBLE TARGETS subroutine
identified when developing the CSCI will become

TLCSC - Nominate Targets NominateEligibleTargets.MessageProcessorPack
age and will contain the task TargetMessage-Pro-
cessorTask and the operations Process_Standard-

E ..... Mission, ProcessSmokeMission, Process_
Quick-FireMission, and ProcessRequestForAddi-
tionalFires. The package Message-Package will also

IIdM Cr define the type Message-Type as well as the operationsI I ReceiveAMessage and DetermineType-OfMes-
Isage.

D lTBS I
: . . Identify interfaces.

,N ?4ND l M QIiC Figure 6 shows the interfaces within the TLCSC.

~Identify operations that require recursion. These
become the LLCSCs.

. .. . The operations
..... PROCESS STANDARD MISSION

PROCESS SMOKE MISSION
PROCESS QUICK FIRE MISSION

Figure 5. TLCSC Data/Control Flow Diagram
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PROCESS REQUEST FOR ADDITIONAL The cts a:E
IRESMESG

all require recursion since they require TARGET
further detail to implement. These operations will GUIDANCE
become the LLCSCs.

DETERMINE IF MESSAGE SHOULD BE
3. Develop the LLCSC. PROCESSED

DETERMINE IF MESSAGE MEETS
• State the problem of the LLCSC. For this example, CLASSIFICATION GUIDANCE

the "PROCESS STANDARD MISSION" LLCSC will IF THE MESSAGE IS A TARGET
be developed. ASSIGN A PRIORITY

DETERMINE IF THE MESSAGE SHOULD BE
Write a single sentence describing the problem to be ROUTED TO AGENCY
solved. DETERMINE IF THE TARGET IS A

DUPLICATE
The problem is to process a Standard Mission. NOMINATE THE TARGET FOR ATTACK

" Analyze and clarify the problem using a Data/Control Group the objects and operations.
flow diagram to identify data within, to, and from the
LLCSC (Figure 7). The operations

DETERMINE IF MESSAGE SHOULD BE
" Write the OOD paragraph, identifying objects and PROCESSED

operations. DETERMINE IF MESSAGE MEETS
CLASSIFICATION GUIDANCE

Using guidance, determine if the message should be IF THE MESSAGE IS A TARGET
processed or sent out. If the message is to be ASSIGN A PRIORITY
processed, determine if the message meets target DETERMINE IF THE MESSAGE SHOULD BE
classification guidance. If the message is a target, ROUTED TO AGENCY
assign a priority to the target. Using guidance, DETERMINE IF THE TARGET IS A
determine if the message should be rowed to another DUPLICATE
agency or if the target is a duplicate of another target. NOMINATE THE TARGET FOR ATTACK
If the message is not routed and the target is not a act on the object
duplicate of any other target, nominate the target for MESSAGE.
attack. The object GUIDANCE will be grouped with nooperations.

Make design decisions.

The operations Deter-ineJLMessage.ShouldBe
Processed, AssignPriority, DetermineIfMessage_.
Meets_ClassificationGuidance, NominateTarget,

LLCSC - Standard Mission

Fin 8ypf FAAM

~II1 TARGET

Figure 6. Interfaces of the NOMINATE TARGETS Figure 7. LLCSC Data/Control Flow Diagram
TLCSC

566 6th Natlonal Conference on Ada Technology 198

A P%
-. , ; ' ', " -, '



DeterminejlfMessageShouldBeRoutedToAgen • Identify interfaces.
cy, and Determinejf_Message_ IsDuplicate will be
added to the Message-Package. In addition, the Figure 9 shows the visible interfaces within the Unit.
GuidancePackace will define the type Guidance-Type
and will contain the operations on that type when they * Implement solution.
are identified.

Identify interfaces.

Figure 8 shows the visible interfaces within the _

LLCSC. LDIm- V..

4. Develop the Unit. DTL

" For this example, the "CLASSIFY MESSAGE" Unit t .em. T p.
will be developed. I DR. Tim

" Make design decisions.

The Guidance.Type will consist of a TargetDecay
Tim,-Table and the operation to
GetTargetDecayTime will be added to the ,
GuidancePackage. The GuidanceType will also -

consist of a Sensor_AccuracyReliability_Table and ,-- -
the operations to GetSensorAccuracy and
GetSensorReli-ability. The operation
FieldjIs-resent will be added to the
MessagePackage to determine if a specified field in
the message is present. These types and operations
have been identified from the Classify-Message
requirements to implementing the Unit.

Figure 9. Interfaces of the CLASSIFY MESSAGE UNIT

58=0 T Z. a4. Implementation of a System Developed Using a
Graphical DBMS

The navigation through a system developed using a Graphical
DBMS is depicted in Figure 10. (Note the menu selections
available at each level.) From the CSCI Data/Control flow
diagram, a TLCSC is selected and the appropriate menu
appears. The TLCSC Data/Control Flow Diagram option is

R then chosen from the menu. This process is repeated until the
desired structural level is reached, in this case, the Unit level.

- Both the Ada code and requirements, as well as the interfaces
corresponding to any unit, can then be viewed or edited at
will. In addition to this feature, all levels of the structure offer
supplemental information concerning any data flow or distinct

-entity within that level.

The following example presents one scenario which puts to
use the system developed using Graphical DBMS in the
sections above. In this particular scenario, the user wishes to
view the Ada code, requirements, and interfaces of the Unit
CLASSIFY MESSAGE.

F"" 1' ! The user selects the NOMINATE TARGETS TLCSC areaLL of the CSCI Data/Control flow diagram (Figure 11). As a
result of this selection, the TLCSC Main Menu appears
and prompts the user for a selection. The TLCSC
Data/Control Flow Diagram option is then chosen from the

Figure 8. interfaces of the STANDARD MISSION LLCSC menu (Figure 12).
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TLCSC MAIN MENU

. . . .. .. . . . .. .. . . . .. .TLCSC Requirements
TL.CSC Interfaces

_________ ThCSC LDat&/Cornrol 3SC 7

Figure 12. User's Selection from the TLCSC Main Menu

DATIFcowulcc LLSC..-1,The user then selects the STANDARD MISSION LLCSC
aeofthe TLCSC Data/Control flow diagram (Figure 13).

Again prompted for a decision via the LLCSC Main Menu,
the LLCSC Data/Control Flow Diagram option is chosen

DW/CoaW(Figure 14). This choice leaves the user at the
Data/Control flow diagram for the STANDARD MISSION
LLCSC.

U~rrMAN ME~tTLCSC - Nominate Targets

Figure~~ ~..... 10. NaiainTruhteSai-tutrlLvl

UntRe u et- ..........

UntIneacsMMO

ANALYre AND Figureio 13.ug User' Selectio fromtra theel TC ataCnto

kaN ISIO PtsFIE

I ~ MNINIMENU

ANALSISAND igue 13 Usr's eletio frmthLLCSC Data/Control
SUPPORT O F S. FlwaDiagra

WARET A

Figur 1.User' Selctionfromthe SIDt/onrl Fgue1.Usr eetinfo teLCC anMn
Flow Diagram
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As stated earlier, all levels of the structure offer supplemental Guidance Information
information concerning any data flow or distinct entity within
that level. In order to stress this point, Figures 15 through 20 Target Characteristics Guidance
highlight the effects of selecting such items at the LLCSC • Used to assign a decay time to a target given a
level (For clarity, only a portion of the STANDARD target type and target subtype.
MISSION LLCSC Data/Control flow diagram is shown in • Contains:
these figures). Figure 15 reflects the user's selection of the TargeLType
data flow from the GUIDANCE entity to the CLASSIFY TargetSubtype
MESSAGE Unit area. The results of this selection can be seen TargetDecayTime
in Figure 18. Similarly, Figure 16 reflects the user's selection
of the data flow between the Units SENSOR DATA Sensor Accuracy Guidance
ROUTING and CLASSIFY MESSAGE. These results can be • Used to determine the accuracy of a specific
seen in Figure 19. Finally, Figure 17 reflects the user's sensor system.
selection of the data flow from the CLASSIFY MESSAGE • Contains:
Unit to the entity INTELLIGENCE ELECTRONIC Sensor-Type
WARFARE. The results of this selection can be seen in SensorAccuracy
Figure 20.

Sensor Reliability Guidance
. Used to determine the reliability of a specific

sensor system.
DATA- Contains:

ROUTING SensorType
{ I c Sensor_Reliability

jaNPrEONX I CLASSIFYwARPARE MESSAGE Target Selection Criteria Guidance
- Used to define the minimum allowable values to

GUIDANCE classify a message as a target.
NUMBER - Contains:
TARGET MinimumDecay_Time

MinimumSensorReliability
MinimumSensorAccuracy

Figure 15. User's Selection of the Data Flow from Addressee For_NonTargets
GUIDANCE to CLASSIFY MESSAGE

Figure 18. Results of the User's Selection of the Data Flow
from GUIDANCE to CLASSIFY MESSAGE

2 rA1!MONW CIASSMY [ JMessage Information

2E ' • Message sent from SENSOR DATA ROUTING
_______ operation.

NUMBER • Contains:
TARGET TargetDecayTime

TargetType
TargetSubtype

Figure 16. User's Selection of the Data Flow from SensorReliability
SENSOR DATA ROUTING to CLASSIFY TimeTargetSensed
MESSAGE

Figure 19. Results of the User's Selection of the Data Flow
from SENSOR DATA ROUTING to CLASSIFY

"tA IMESSAGE

INTMIiGENCE
ELcBMrONIC C

LA
SSIFY

WARFARE SSAGE Message to Intelligence Electronic Warfare

NUMBER DA • Sent from CLASSIFY MESSAGE
TARGET •Contains:

SensorDatainformation

Figure 17. User's Selection of the Data Flow from Figure 20. Results of the User's Selection of the Data Flow
CLASSIFY MESSAGE to INTELLIGENCE from CLASSIFY MESSAGE to INTELLI-
ELECTRONIC WARFARE GENCE ELECTRONIC WARFARE
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When the user finally selects the CLASSIFY MESSAGE area CLASSIFY MESSAGE Unit Requirements
of the LLCSC Data/Control Flow diagram, the Unit Main
Menu appears. This menu allows mobility to both the Unit The procedure ClassifyMessage shall update
requirements and Ada code, as well as the Unit interfaces. A the DecayTime field in the message with the
summary of all Unit Main Menu selections and results is decay time provided by the Target
presented in Figures 21 through 25. (Refer to Figure 9 to Characteristics Guidance whose target type and
view the results of the users selection in Figure 22.) target subtype match the Target-Type and

Target-Subtype specified in the message.

If SensorAccuracy is not present in the
message, ClassifyMesage shall update the
SensorAccuracy field in the message with the
sensor accuracy provided by the Sensor

U UN1u rT MAIN MENU Accuracy Guidance whose sensor type matches
UNIT Rqi n7U the Sensor Type specified in the message.
UNrr Intrfaces If Sensor Reliability is not present in the
UNITAdaQode message, Classify-Message shall update the

Sensor_Reliability field in the message with the
sensor reliability provided by the Sensor
Reliability Guidance whose sensor type matches
the SensorType specified in the message.

Figure 21. User's Selection of UNIT Requirements from the If (Current-Time - TimeTargetSensed) is
UNIT MAIN MENU greater than the target decay time specified in

the Target Selection Criteria Guidance, the
message shall be classified a non-target.

If the Sensor-Accuracy field in the message is
greater than the sensor accuracy specified in
the Target Selection Criteria Guidance, the

> UNf M AN MENU  • message shall be classified a non-target.

UNf I uqu ti I If the SensorReliability field in the message is
U.NIoA&Cocle Igreater than the sensor reliability specified in
____________the Target Selection Criteria Guidance, the

message shall be classified a non-target.

If the message has been classified a non-target,
ClassifyMessage shall send the message to the
addressee specified in Target Selection Criteria

Figure 22. User's Selection of UNIT Interfaces from the Guidance. Otherwise, it will transfer control to

UNIT MAIN MENU Number-Target.

Figure 24. Results of the User's Selection of UNIT
Requirements from the UNIT MAIN MENU

UNTsRequi 
TdnaeCs 

f

UNT Interfaces

UNIT MAIN MENU
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wit Guidusne Package.

sepa MessagePackage

procedure Cassfyesage

Mesag in out MessageTye
Guiace in Gudwdackage.Guidancej-ype;

Mesag-Fortar Wayne Indina 680
?egtA~re KEITH E.BERNARD

Is Telos Federal Systems
begin 1315 Directors Row
Cutycug Time CalendarTime:FotW yeInia460

Age Cnietsa CalendarTime;

--I Assign target decay amt

Get-dargetacaye. Mr. Bernard received his B.S. in Computer Science from Baylor
eTyp.ecay>unesaeT tTy. University in 1984. He has been working as a Software

TargeCuype => Message.Target Sype Engineer on the Advanced Field Artillery Tactical Data System
Taetbpe=MesgTagt.bte (AFATDS) for the past three years, and is a member of the

Association for Computing Machinery (ACM) Ada Special
if Fieid-lresemt iSensorAccuracy hen Interest Group (SIG-Ada).
nmill: -4I senisor accuracy is specified

-1 sensor accuracy is not specified
Meqsapg.SrAcurcy

=Guidance-Packafe.
Get_SasrAccuacy

ISensor-System => SesssorSystem

end if.

--I check sensor reliability
if Fieidjs.resent (Sensor Reliabiry )then
null: --I sensor reliability is specified

else

- ensg eliblt = i, not specified

Mesg.Sno Rliability DANIEL M. BUTLER 0
:Guidance ackae. Telos Federal Systems

Get enso Reiabiity1315 Directors Row~Sensor System => Sensor System Fort Wayne, Indiana 46808

end if:

CceitTrne: Caletsdaxs.Package.GeLTiae:

Age-Criteria Mr. Butler received his B.S. in Management Science and7
:=Gdace.TargeSelciton-Cite&MniinnDecay-ise Computer Systems (MIS) from Oklahoma State University in

if Mssae.SesorAccuacy1987. Since then, he has been involved in the development of
> Targe_Seeion_CrteiSoaace-Accuracy thert the Elevated Target Aquisition System (ETAS), and the

Messagej.Aage False: Advanced Field, Artillery Tactical Data System (AFATDS).

eisif GuidacePackag.Reiabiityjype*Pos
Message.Sensor Reliailiyt

> Guidance Package.Reliabiliiyffype'Pos
(Tart 3 etnCriteria.M mium Reliabiity)i then

MeisagetsAkarget False:

elsif AgeCI(Ta,1 e > AgeSCreria then
MesagejsA. arget= False:

else
NMessgeIs A Target Time;

end if: d

end Oassify-Messale:

Figure 25. Results of the User's Selection of UNIT Ada
Code from the UNIT MAIN MENU
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METHODOLOGY FOR IMPLEMENTING ARTIFICIAL

INTELLIGENCE SYSTEMS IN ADA (R)

Bernard Abrams and Teresa Doran
Software Systems Department

Grumman Aircraft Systems Division
Bethpage, NY 11714

I ABSTRACT Progress has been made in Artificial Intelligence using
programming languages and software development envi-

The languages most commonly used to prototype artifi- ronments specially suited for Al. Lisp and Prolog are two
cial intelligence (Al) systems are very different from the important AI languages. Avionics languages are very dif-
languages used to program avionics software. This paper ferent from artificial intelligence languages; the language
proposes a methodology to develop artificial intelligence mandated by the Department of Defense for new mission
software for an avionics application despite this mis- critical systems is Ada. This paper describes a methodol-
match. The methodology involves prototyping in an Al ogy that will enable us to develop software in an AI envi-
language, then reimplementing in Ada using a library of ronment and field the software in military aircraft.
AI functions. The pilot project used to verify this meth-
odology is a maintenance diagnostic system prototyped in 2.2 Languages For AI (Lisp, Prolog)
Lisp and reimplemented in Ada.

Al languages share certain common characteristics. All
The proposed methodology was used to develop an are high level. The number of statements required to per-

embeddable version of a system called the Flight Control form a function are many fewer than for a conventional
Maintenance Diagnostic System (FCMDS). It uses a language. Statements are problem-orienti and express
model flight control system, a set of diagnostic rules, and what is to be done. This differs from lower level proce-
a list of fault indications to generate a diagnosis and sug- dural languages, like Ada and Pascal, that express how a
gested corrective action. FCMDS was reimplemented in problem is to be solved.
Ada to verify the methodology and demonstrate the feasi-
bility of using Ada for embedded Al systems. Two common AI languages are Prolog and Lisp. Pro-

log is based on the predicate calculus. Lisp is a proce-
dural language; its facility for symbolic processing and

function-oriented control structure make it higher-level
2 INTRODUCTION than other procedural languages.

2.1 The Need for AI In Embedded Systems Both languages are well suited for rapid prototyping, an
important issue for Al systems since they are used for

Modern military aircraft require increasingly complex state-of-the-art problems. Mechanizing human intelligence

and capable software. One way to meet this demand is to is difficult, and the solutions are not well known enough

use Artificial Intelligence technology. For example, the for implementation without prototyping.

fault isolation system described herein must do more than However, AI languages are not convenient for some of
provide a list of instrument readings: it must also provide the requirements of mission critical software. The design
a diagnosis and suggested corrective action. The diagno- objectives of Al languages are ease of use and the ability
sis is based on many instrument readings and uses the to conveniently describe complicated algorithms, while
kind of rules that a human expert would use. the design objectives of languages for mission critical

software are fast execution, error detection, modularity,
Since these Al systems interface with aircraft systems, and the ability to interface with complex target architec-

they must work with the avionics computer hardware and tures and non-standard peripherals.
software environment. They must be written in a pro-
gramming language compatible with the rest of the avion- 2.3 Languages For Embedded Systems (Ada)
ics software.

According to the Reference 5 and 6 DOD directives,

Ada is a Registered Trademark of the U.S. Govern- Ada is the required language for mission critical soft-
rant, Ada Joint Program Office. ware. In addition to the directive, there are technical
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resons that led to the selection of Ada as the imple- not well enough understood to be fully designed on paper.
mentation language. It is the right level language: high Typical applications are understanding human speech,
level enough to express complicated problems, and suffi- automated design, or modeling human expertise to diag-
ciently o- level for integration into a system of many nose equipment. Experimentation is needed to get a
interfacing programs and much non-standard hardware. working design. The prototype provides an executable

design that can be used for experimentation and user veri-
Ada is a conventional language, very similar to Pascal, fication.

but with features that support software engineering. One
of the major objectives of software engineering is the The reimplementation step would be tedious if it were
management of complexity. The Ada packages support done from scratch. However, a library of subroutines sig-
modularity and data abstraction which aid in breaking nificantly reduces the work. Many of these routines are
down a problem into manageable pieces. We plan to use generic, enabling them to be used in many applications.
an AI system that attempts to capture human expertise.
Even a small, simplified abstraction of human expertise This methodology has the advantage of being the best
can be very complex; thus the programming language of both worlds. Prototyping is done in an AI language
used must support this complexity. and the final installation is in an avionics language. The

disadvantage is that a reimplementation is required from
Ada supports parallel processing; all the functions the Al language to Ada. Other methods that avoid this

needed for parallelism can be specified in Ada. There is disadvantage were explored and found to be less useful.
no need to go out to the operating system or to use as- Alternate approaches are discussed in Section 5.
sembly language for parallelism. Although the first appli-
cation of the methodology did not use parallel processing, The described methodology was used to develop an
it is expected that future applications will do so because embeddable version of a system called the Flight Control
of the heavy processing demands of artificial intelligence Maintenance Diagnostic System (FCMDS) (*). A design
systems. and prototype written in Lisp was available. FCMDS was

reimplemented in Ada.
3 THE METHODOLOGY

3.1 Proposed Methodology 3.2 Lessons Learned

A standard life cycle for mission critical software is in Lisp is a very different language from Ada, but there
DOD-STD-2167 (Reference 7). The proposed methodol- were surprisingly few problems encountered in converting
ogy suggests enhancing this life cycle by first prototyping FCMDS from Lisp to Ada. Some things that were ac-
the system in an Al language, then reimplementing the complished in one line of Lisp required two or three lines
system in Ada. The steps of the methodology are: of Ada. Some things that were available as language fea-

tures in Lisp required a subroutine package in Ada.
1. Problem requirements analysis

The design and application knowledge are as important
2. High level software design as the prototype. The prototype alone was insufficient

because it is difficult to distinguish between procedures
3. Build a prototype in Lisp or some other appropriate essential for the problem and peculiarities of the proto-

Al language such as ART type language. The reimplementation had to be readable,
maintainable Ada in good Ada style which could only

4. Reimplement in Ada using a library of Al functions result from a knowledgeable translation of the Lisp code
in Ada based on the design as well as the prototype.

5. Test the Ada version in an simulated avionics envi- The reimplementation from Lisp to Ada did not differ
ronment. greatly from a conventional design procedure in which

there is an implementation from a graphic form (like data
For a project done in accordance with DOD-STD-2167, flow diagrams) to Ada. Deriving Ada code from flow

the prototyping would be part of the demonstration and charts or data flow diagrams is not normally considered a
validation phase. Depending on the size and complexity translation, but it is nonetheless subject to the misunder-
of the job, the prototyping could also be in the require- standings and distortions of a translation process. The
merits or design phases. The prototyping and reimplemen- ---------------

tation steps are needed to take advantage of Al tech- * FCMDS was designed and prototyped in Lisp by Dr.
nology. Prototyping is important because artificial intelli- Barbara Gilmartin and Thomas Burzesi of Grumman
gence applications are usually advanced systems that are Aircraft Systems Division.
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Lisp design, while not as readable as an equivalent Ada has no equivalent feature. A function can be
graphic design, has the advantage of being executable. passed as a parameter to a generic procedure, but this is

done during compilation and not at run time. The feature
3.3 Lisp Features in Ada was simulated in Ada by passing an enumeration parame-

ter and having the receiving routine use a CASE state-
3.3.1 Dynamic Data Structures ment to select a function call. This is one instance where

Lisp is more convenient and elegant than Ada. Nonethe-
A central feature of Lisp is a dynamic list composed of less Ada was found adequate.

elements which may consist of single symbols (called
atoms) or other lists. This very flexible data structure can The treatment by Lisp of the first element of a list as a
be any length since the number of elements in a list can function name provides a very uscful way to mix data and
change at run time. A list can also be any depth because program. In one section of the FCMDS Fault Record
a list can be composed of elements that are themselves there is a predicate field that can be either true or false.
lists, depending on whether or not a particular fault has oc-

curred. In some cases, the value depends on whether or
There is no intrinsic Ada data structure closely resem- not some logical combination of faults have occurred.

bling a Lisp list. However, a package can easily be writ- Typical FCMDS fault predicates in Lisp are:
ten to add a dynamic data structure capability to Ada.
The structure can be an exact copy of the Lisp list, but (TRIGGERED Power-Failure)
for FCMDS, it was more convenient to write set and
stack generic packages. These are less general than the (OR (TRIGGERED Power-Failure) (TRIGGERED
Lisp dynamic list, but fit the problem description. Like Actuator-Failure))
the dynamic list, the set and stack have no size limit
other than available memory. The size can be varied at The first function is true if the function TRIGGERED
run time. with the parameter Power-Failure is true. Lisp normally

takes the first element of a List as a function name. The
These Ada data structures were used to model the diag- second predicate is true if either sublist returns true.

nostic system as a varying number of Fault Records "OR" is a function name. Only the built-in Lisp logical
which themselves are of varying length. The generic functions and the natural control structure of Lisp are
stack package was used to represent the varying length needed to produce any logical fault combination.
records. 0

In English the Lisp expressions would be:
The set and stack packages were implemented using

access types called pointers in other languages. The same If Power-Failure is TRIGGERED ....
features could have been implemented using arrays, but
this would have placed a size limit on the structures. If Power-Failure is TRIGGERED or Actuator-Failure

is TRIGGERED ....
3.3.2 Procedure As A Parameter In A Call

The same effect is achieved in Ada, but requires addi-
The primary control structure of Lisp is the function tional programming. The Fault data record contains a

call. When a function is given a list of parameters, it is predicate string with faults or a group of faults followed
assumed that the first parameter is itself a function. This by logical operators, i.e., in reverse Polish notation. Ex-
is one reason that Lisp looks so strange to someone used amples are:
to conventional procedural languages.

Power-Failure
For example, a Lisp square root function could be

passed a numeric parameter, as in: Power-Failure Actuator-Failure Or

(Sqrt 25) An Ada procedure called "Is-Cause" processes the
predicates. The second predicate is true if either a power

It could also be passed a function with parameters, as failure or an actuator failure has occurred. The reverse
in: Polish notation is hard to visualize, though easy to pro-

gram. While some Lisp constructs have any easy and di-
(Sqrt (Min 35 37 42)) rect Ada equivalent, this was not one of them.

The function "Min" for minimum with its parameters Spoken English uses an infix notation where the opera-
is evaluated. The value is passed to "Sqrt". tors like "or" are in the middle. Lisp uses a prefix nota-

tion in which operators preceed operands. The Ada i
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solution uses a postfix notation; operators follow. The
complexity of a statement is the same for all forms, and
readability depends on what the reader is used to.

3.3.3 Weak Typing

Ada is a strongly typed language, while Lisp is a

weakly typed language. In Lisp, a parameter of a func-
tion can be a character, or a string, or a floating point
number, or an integer. In Ada, the type of a parameter
must be declared in advance. Ada does not permit types SYSTEM

to be mixed. The only way to add an integer number to a (FAULTS)
floating point number is to explicitly convert one type to
the other.

R7-547-O0l

Whether or ii: strong typing is better than weak typing Figu I - Tap Lew Dat Flow Dieagrm of FCMDS
depends on the application. Weak typing is flexible and is
good for rapid prototyping. Strong typing permits early
detection of errors - important for mission critical soft-
ware. A common error is a mismatch of parameters be-
tween a calling program and a subroutine. In a strongly Three fault records are shown in Figure 2, which is a
typed language, this error will be caught at compile time. simplified version of a system description. These consti-
In a weakly typed language, the error will not be caught tute the fault model of a very simplified flight control
until the program is running. Run time errors are much system and represent possible faults in the system. A list
more expensive, and no airplane ever crashed because of of entered faults, in this case from one to three faults, is
a software error caught during compilation.

The Lisp version of FCMDS had almost no data defini-
tions, as opposed to the Ada version which had three
packages of data definitions and other data definitions in
procedures. The need for data definitions increased the Fault: Act-Pos-Miscompare
size of Ada programs, but also increased the readablity. Possble Explanation

The nature of Lisp is that programs are almost data free. If LVDT-Faied
Information is passed as values returned by functions. The? Analyze LVOTFae.
Thus, reimplementing Lisp as Ada requires data design. It no explanation then

Cause: Actuator Positron Error
Action: GrounO Teat B

4 FLIGHT CONTROL MAINTENANCE A

DIAGNOSTIC SYSTEM Fault LVDT-Failed

The Flight Control Maintenance Diagnostic System Possible Explanation
(FCMDS) was chosen as the first test case for the meth- if Power-Supply.Failed (PSF)
odology because it is a well-bounded problem. The Al Then Analyze PSF
language prototype was available, and there is much inter- i. No Explanation Then

est in maintenance diagnostic systems. Cause LVDT Failure

Action Repair LVDT

The function of FCMDS is to diagnose a list of fault

words. It has one permanent file, which is a description
of the sub-system being monitored. FCMDS is designed Fault Power-.Supply-Failed

to become a part of the flight control of the X-29 experi- It No Explanation Then
mental aircraft. Fault words are logically equivalent to Cause. Power Failure

lights on a control panel. They are generated by the hard- Action Repair Power Supply

ware when a fault occurs There are usually many fault
words in one diagnosis. A data flow diagram of FCMDS
can be seen in Figure 1. Figm 2- FCMOS Simplified

System Dewiption
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the variable input for a diagnosis. A fault records which "Diagnose" is the critical procedure. It examines all
matches an entered fault is said to be triggered, the triggered faults and derives a diagnosis consisting of a

cause and an action. The Ada program is the same in
All the triggered faults are analyzed in sequence. The principle as the Lisp prototype although the structure is

triggered faults contain a list of possible explanations. different.
They are in the form of:

4.1 Size Comparison
IF predicate THEN action

The Lisp prototype was 644 lines of Lisp. The Ada
The predicate is true if a designated fault or logical equivalent was 2146 lines of Ada, a ratio of 3.3 to 1. The

combination of faults is triggered. "Then" is either a true ratio is actually higher because there was some input
cause-action combination or an instruction to analyze an- data verification in the Lisp version that was not carried
other fault. over to the Ada version. Part of the reason for the differ-

ence is the extensive data definition required by Ada ver-
If the predicate is true, the action taken depends on sus almost no data definition in Lisp.

"Then". If it is a Cause-Action pair, then that pair be-
comes part of the diagnosis. The Cause indicates what The size difference does show that Lisp is a higher
caused the fault. The Action tells maintenance personnel level language than Ada. This is not immediately obvious
what to do. If "Then" is a second fault, that fault is ana- because Lisp is procedure, not problem oriented. It also
lyzed. The diagnosis of the second fault becomes the di- shows that there is economy in prototyping in Lisp. If
agnosis of the first fault. The recursion of the solution there were no expansion factor, it would not pay to proto-

comes from an analysis of a first fault requiring the anal- type in Lisp and implement in Ada.
ysis of a second fault. The size comparison between Ada and Lisp is based on

The Ada version of FCMDS is shown in the data flow a single data point and should be taken only as an indica-
diagram of Figure 3. The first procedure "Intialize.. tion.
Faults" (,rIALT) creates the knowledge base from
text file data. It uses the Set package to build the set of 5 ALTERNATE APPROACHES
faults. This set is a model of the equipment that will be
diagnosed. A number of alternates to the proposed methodology

were considered.

5.1 Automatic Trnslation Of Lisp To Ada

FAMT An automatic translation is very attractive because it is
KE much quicker than a manual translation. However no sat-

isfactory automatic translator was available and experi-
ence with other translators has shown that generated code

,iY TABLE is not readable and maintainable.

,FCMDS is designed to be a small part of a larger soft-
ware system. While FCMDS uses artificial intelligence
techniques, the bulk of the system is conventional soft-
ware. The artificial intelligence parts must be integrated
and maintained along with the conventional software. In

1J the environment for which FCMDS is intended, the con-
_ _ _ _ _ _ _ _ _ _ventional software is written in Ada.

Figar 3 - FCMDS Ads Version Data Flow DiaWam
The diagnostic software must be integrated, verified,

and tuned. This requires a well-designed software prod-
"FaulLWordJnpuLModeLControl" (FWIM- uct. No automated translation meets the requirements.

CTRL) takes the list of fault words and converts them to
keys to the fault set. Fault words are coded indicators that Lisp uses very little data compared to an Ada program
can be likened to red lights on a maintenance panel. The doing the same task. An automatic translation system will
keys to the fault set are meaningful names like "Power do the job of producing Ada code from Lisp code, but it
Failure." In addition, fault records for which there is a does not have enough knowledge to find meaningful data
fault word are marked triggered, structures.
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5.2 Embedded Lisp Machine nique for controlling complexity. There is a contant
tradeoff in software between many simple statements and

Another way to avoid prototyping in one language and a few complex statements. In many situations, the few
implementing in another is to implement in the prototype complex statements that result in an overall reduction of
language. Putting Lisp into an aircraft would eliminate complexity are recursive. FCMDS is naturally recursive.
the need to work in multiple languages for Al. For example, a common situation would be one in which

the analysis of the fault in the linear voltage difference
Lisp can run on conventional machines. There are Lisp transducer requires an analysis of the power supply. In

systems that run on VAX computers and IBM PCs. How- software, this becomes the analysis routine with LVDT as
ever, Lisp is most efficient on machines that have been a parameter calling itself recursively with the power sup-
optimized for Lisp. Texas Instruments has a version of ply as a parameter. This could be done without recursion,
the Explorer system designed to be embedded into an but would be much more complicated.
avionics system.

The negative side of recursion is that the amount of
There are several reasons why the Embedded Lisp Ma- main memory used depends on the depth of recursion. If

chine was not chosen as the recommended methodology, the analysis of the actuator recursively calls the analysis

Most of the avionics environment is not Al. Introducing of the transducer, which recursively calls the analysis of
Lisp would introduce another language into the already the power supply, then three copies of the routine must be

complex avionics systems. Lisp is good for Al and rapid active at once. Since the depth of the recursion depends
prototyping, but is not good for interfacing with buses, or on the input data, the depth, and consequently the amount
for real time response. These are important for mission of storage used is variable and difficult to predict. At
critical systems. some depth, the system runs out of storage.

5.3 Prototype In Ada A mission critical system would have to be designed to
never run out of storage, or to gracefully degrade when it

Another way to eliminate the need to work in two lan- reaches the storage limit. The Ada language, like Lisp,
guages is to prototype and implement in Ada. Ada alone supports recursion. There is no basic difference in the
is too low level to be considered a rapid prototyping lan- way that each language handles the storage problem. The

guage. However, with a library of subroutines and a good difference is between the laboratory environment and the

environment, the speed of generating a prototype in Ada mission critical environment. In the laboratory, storage is
can be increased, plentiful and an abrupt program crash does little harm,

whereas in a mission critical environment, the exact op-
Ada is not designed to be a prototyping language. The posite is true.

design goals of Ada are the opposite to those of a proto-
typing language. Some of the design goals and their con- 6.2 Using Access Types
sequences are:

FCMDS uses many dynamic data structures. The num-
* Readability (as opposed to writability) ber of fault records is variable. The number of possible

explanations in a fault record is variable. The number of
* Maintainability (at expense of the initial build) terms in a predicate is variable. The variable size records

are implemented by pointers. These are called access
* Strong Typing (as opposed to free form data) types in Ada. With these access types, memory is alloca-

ted as needed and released when it is no longer needed.
6 CONSIDERATIONS IN FIELDING AI-ADA A possible problem occurs if the memory that is released

SYSTEMS IN AVIONICS by the application programs is not reclaimed by the sys-
tem: eventually the memory space is exhausted. This can

The Maintenance Diagnostics System was not carried to be annoying or disastrous, depending on how critical the
the point where it was installed in a flying avionics sys- program is. The process of reclaiming memory is called
tem. It was converted to Ada and tested on a laboratory garbage collections.
VAX computer. Some differences between a laboratory
system and actual avionics is the critical response time, Lisp has one main data type-the dynamic list based on
memory limits, and the need to never abort a program. pointers. Garbage collection, therefore, has been well

recognized as a requirement and is implemented in all
known Lisp systems. In the Ada language definition of

6.1 Using Recursion In Real Time Mission Critical Reference 2, garbage collection is an implementers op-
software tion. There is a facility called Unchecked-Deallocation

that explicitly releases memory. This was used in the Ada

An important technique in Al programs, and Lisp pro- version of FCMDS. Memory was released under program

grams in particular, is recursion. This is a powerful tech- control.
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Based on FCMDS experience, it would be extremely 7. DOD-STD-2167, "Defense System Software Devel-
difficult to reimplement a Lisp system without using ac- opment", 4 June 1985.
cess types. Therefore an Ada implementation that is used
for mission critical Al systems must have garbage collec- 8. Dietz, D.C., "Ada Lisp: A Tool for Artificial Intelli-
tion. gence Implementation," IEEE, 1984.

6.3 Avionics Hardware 9. Nadel, D, "Ada and Embedded Al", Defense Elec-
tronics, April 1986.

The Ada version of FCMDS was implemented on a

DEC VAX 1/780 computer under VMS 4.2 using the 10. Sammet, I., "Why Ada is Not Just Another Pro-
DEC Ada compiler. The actual embedded version will gramming Language", Communications of the
likely be targetted to 1750A, MC68020 or i80386-based ACM, August 1986.
hardware. A MIL STD 1750A architecture machine is
one possibility because it is an Air Force Standard. How- 11. Brauer, D.C., Roach, P.P., Frank, M.S., Knackstedt,
ever, the 32-bit processors provide additional computer R.P., "Ada and Knowledge Based Systems: A Proto-
power needed for AL. type Combining the Best of Both Worlds", Expert

Systems in Government Symposium, The Computer
7 CONCLUSION Society of the IEEE, October 22, 1986.

7.1 Evaluation Of The Methodology 12. Clayton, B.D., "Art Programming Tutorial, Volume
One: Elementary ART Programming", Inference

This experiment has shown that Lisp systems can be Corporation, 1985.

reimplemented in Ada. It also showed that Al can be
done in Ada. The methodology of prototyping in Lisp 13. "Texas Instruments Nears Completion of Lisp Lan-

and reimplementing in Ada was a practical methodology guage Microprocessors", Aviation Week and Space

for this test case. Technology", February 17, 1986.
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