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TestGen - Testing tool for Ada Designs and Ada Code.

Thomas S. Radi, Ph.D.

Software Systems Design, Inc.

This paper describes a software program, TestGen, that
assists in the testing of executable Ada code as well
as assisting in the testing of high level descriptions
of Ada designs.

The TestGen program provides three distinct
capabilities:
1. The Design Review Expert Assistant-

Allovs Ada designs to be thoroughly reviewed,
insuring that all paths have been evaluated, and
that all possibilities have been covered.

2. The Unit Test Strategy Generator-

Assists in the definition of unit test procedures

using a "white box" testing technique.
3. The Test Coverage Analyzer-

Determines the extent of coverage (the percentage

of the total numbers of paths, branches and
statements that were actually executed during a
given test sequence).

The TestGen tool is one of the AISLE (Ada Integrated
Software Lifecycle Environment) toolset, an integrated
set of tools that assist the developers of Ada
software.

Introduction

This paper describes TestGen, a tool which was
developed to assist in the review and testing of Ada
code.

TestGen is one of an integrated family of tools wvhich
assist in the design, coding, documentation and
testing of Ada programs.

The utility of TestGen is in four primary areas:

1. TestGen can insure that Design Reviews are
complete, and that every possible set of conditions is
examined to determine the proposed consequences of
that set of conditions.

2. TestGen can be used in conjunction with a
"white box" testing approach to prepare Unit Test
plans and procedures for each program unit.

3. TestGen can be used to estimate the testing
complexity, by determining the number of tests
required to insure complete path coverage, or branch
coverage or some combination of approaches.

4. TestGen can be used in conjunction with a
"black box" testing approach to determine the
effectiveness of a set of tests, i.e. to determine the
number of paths or branches that a series of tests has
executed.

The paper briefly describes the TestGen tool, shovs
some examples of the TestGen output reports and
describes how the tool is being used.

Control Structure Determines Testing Effort

Executable Ada source code and Ada/PDL designs which
are expressed using a high level structured pseudo-
code have an internal control structure that can be
analyzed to determine the total number of paths
through a program unit.

These paths form the "graph" of the control logic
associated with each program unit in an Ada program.

By examining the conditions at each branch point, as
expressed in pseudo-code for the Ada design, and as
expressed in executable code, two independent control
graphs are developed to describe the control structure
of the design and the code respectively.

Figure 1 shows an example of some Ada code, and the
associated control graphs.

The nodes of the control graphs represent branch
points (typically conditions) in the Ada design or in
the Ada program. The paths connecting the nodes
consist of statements (pseudo-code or executable code)
in the Ada program.

During the creation of the control graphs, each node
is associated with the statements from the original
Ada source file that correspond to the condition at
the node. These statements are used to textually
identify the conditions that are required at each
branch point and also identifies the statements that
will be executed as a result of the conditions.

Once the control graph is known for both the design
and the code, the graph (as stored internally by the
TestGen program) is used to determine

a) the number of branches through the program

b) the number of paths through the program

¢) the cyclomatic number (for McCabe Structured

Testing)
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The number of paths, branches and cyclomatic number
provide the user with an estimate of the time required
to use either of three vhite box testing

methodologies:

a) total branch coverage - where all conditions
at each branch point are executed at least once.

b) total path coverage - wvhere every possible
path through the design/program is covered.

c) Cyclomatic (structured) testing - a midground
betwveen branch and path coverage where the cyclomatic
number is used to determine the number of tests
required.

Figure 1. An example of a control graph

The code fragment
procedure A dog_of an_example is

--! if the dog is hungry then
--1 feed it
--1 else
! take its temperature
! if it has a fever then
H take it to the vet
! elsif it has a dry nose
- give it some water
:
]
1
i
1
i

-- else
-- wipe its nose

-- end if

begin

null; -- executable code not shown

end A dog of _an_example;

The control graph
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TestGen wvorks in conjunction vith the ADADL Ada/PDL
processor

ADADL 1is the Ada-based Design And Documentation
Language. The ADADL processor analyzes designs
described using Ada/ADADL to produce reports that
highlight various aspects of the design. When used in
conjunction with TestGen, the ADADL processor analyzes
the Ada source code to determine the control structure
of each program unit.

During the analysis of the source file, the ADADL
processor creates an intermediate control structure
file, in which every statement is identified either as
a passive statement (not containing any branch
conditions), or as a statement containing a possible
branch condition. The specific condition at each
branch point is identified and associated textually
vith the branch point.

TestGen Design Reviev Expert Assistant identifies all
possible conditions.

If the designer has used an Ada/PDL pseudo-code to
describe the design algorithm, the Design Review
Expert Assistant (DREA) portion of TestGen can be used
to insure that a thorough design review is conducted.
The DREA identifies all possible conditions in each
program unit, and delineates the expected result for
each set of conditions.

Figure 2 is the ADADL pretty print output of the
example in Figure 1. There are four possible paths
through the design. Figure 3 {s the output of the
TestGen Design Review Expert Assistant analysis of the
example.

Figure 2. The Example of figure 1 with ADADL Line
Numbers.

LINE
1 procedure A_dog_of_an_example is

2 --' if the dog is hungry then
3 --1 feed it

4 --! else

5 --} take its temperature

6 --y  if it has a fever then
7 -- take it to the vet

8 --!  elsif it has a dry nose
9 -1 give it some water

10 --} else

I -~ wipe its nose

12 --}  end if

13 -~

begin

null; -- executable code not shown

end A_dog_of_an_example;
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HFgure 3. 4 fragment of the Design Review Expert
Assistant outpyt.

PP SIIITI IR SR RIS 24T 24 A 2]l d

Reviewing all paths of Subprogram:
A Dog 0f An_Example
FrYYYY PRSP RIS A S22 a2 R R Y2222 A d 2 ddldsdd

Design conditions reviewed case | of 4 for
subprogram: A _Dog Of An_Example

The Design conditions examined for design case 1 are:
2: ( the dog is hungry ) is False

6: ( it has & fever ) is False

8: (it has a dry nose) is False

Expected resuits for design case | are:

5: take its temperasture
11: wipe its nose

Design conditions reviewed case 2 of & for
subprogram: A _Dog Of An_Example

The Design conditions examined for design case 2 are:
2: ( the dog 's hungry ) is False

6: ( it has a fever ) is False

8: ( it has a dry nose) is True

Expected results for design case 2 are:

5: take its temperature
9: give it some water

Design conditions reviewed case 3 of 4 for
subprogram: A _Dog Of An_Example

The Design conditions examined for design case 3 are:

2: ( the dog is hungry ) is false
&: ( it has a fever ) is True

Expected results for design case 3 are:

5: take its temperature
7: take it to the vet

Design conditions reviewed case 4 of 4 for
subprogram: A Dog Of An _Example

The Design conditions examined for design case 4 are:
2: ( the dog is hungry ) is True
Expected results for design case 4 are:

3: feed it

Since the DREA shows the reviev team every possible
path through the proposed design, using the DREA helps
insure that all design decisions which affect the flow
of control through the program have been examined.

Unit Test Strategy Gemerator

The Unit Test Strategy Generator (TSG) is used to
determine the test conditions that a test engineer
vill need to set up to insure the complete testing of
the executable Ada code.

The TSG supports three "vhite box" testing
methodologies: complete path testing, branch coverage
testing and Structured (McCabe) Testing as identified
in NBS Publication 500-99 (National Bureau of
Standards).

The executable Ada code is analyzed by the ADADL
processor to determine all of the relevant
control/decision points.

The user can specify the methodology of testing that
he/she wishes to employ during the unit test for each
module.

The TSG will subsequently identify the conditions that
must be set up at each branch point to insure that all
necessary tests are run according to the testing
methodology specified (total path coverage, branch
coverage or Structured Testing).

Note that there is no guarantee that the conditions
identified by TSG are feasible conditions. Indeed the
program itself may very well prevent the execution of
certain paths as shown below. There are four possible
paths through the example. The path where a is true
and ¢ i{s true will never be executed. The path vhere a
is a is false and ¢ is false can never be executed.

procedure a is
a,b,c:boolean := false ;
if a then
b:=true;

else

c:=true;

end if;

if ¢ then
c_true;

else

c_{false;

end if;

One observation at this point is that perhaps the unit
under test should be examined for possible elimination
of infeasible conditions.

The example above could be re-written as

procedure a is
a,b,c:boolean := false ;
if a then

b:=true;

c_false;

else

ci=true;

C_true;

end if;

6th National Conference on Ada Technology 1988 3

o
-
Bl
LY
-
-
o

y

e,
..q‘-'!-‘q‘its
DATHAING

.'l»dp‘

“‘..'i‘i'i‘f
(LR
4 .’(“0"!(

DL
(R
v ‘n'.:s'.:‘




The TSG helps identify infeasible paths
Ve claim that by (human) examination of the TSG
strategy, infeasible condition n-tuples (vhich are
paths in the program) can be identified.

Ve do not claim that all of these infeasible paths may
alvays be eliminated by suitable re-coding of the
algorithm. However, the identification of these
infeasible paths may lead the test engineer to a
closer examination of these "anomalies", which may
indeed lead to a more reasonable design.

The TSG provides three test strategy options:

1. Complete Path Testing

Vith complete path testing, the TSG identifies the
conditions at every possible control point in the unit
under test, to insure that every path in the program
is executed at least once during a series of tests.

2. Branch Coverage

With branch coverage, the TSG identifies the
conditions at each control point to insure that each
possible branch 1is exercised with the branch point
taking on every possible value. Branch coverage is
equivalent to insuring that every (reachable)
statement has been executed.

3. Structured Testing
Structured Testing, as identified by McCabe in

National Bureau of Standards Publication 500-99, is a
combination of Branch coverage and Path coverage. If
the user selects Structured Testing, TSG identifies
the conditions at each branch point to insure that the
requisite number of tests will be run. In structured
testing the cyclomatic number (McCabe metric)
identifies the suggested number of tests. There are
usually several possible sets of Structured Tests that
can be identified for a given unit under test; the TSG
identifies one set of tests.

Test Coverage Analyzer Determimes the Extent of
Functional Test Success.

The TestGen Test Coverage Analyzer (TCA) is used to
determine the effectiveness of a set of tests. The TCA
may be used either during "white box" Unit Test, or
during functional "black box" testing of the program.
The TCA consists of tvo parts:

Ada Code Test Coverage Instrumenter

Test Coverage Profiler
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The TCA asks the user to identify two things:

(a) the list of program units to be tested during a
particular run (this identifies the units under test),
and (b) the type of testing desired, where the user
will identify whether he wishes to instrument the
units under test for Branch coverage or path coverage.

The Ada code Test Coverage Instrumenter will place
"instrumentation code" in the appropriate places in
the list of units under test . The ACI attempts to
minimize the number and amount of instrumentation code
that is placed in the code to be tested.

The user must recompile the "instrumented" Ada source
code, and run the tests using the results of the
compilation of the instrumented code.

The  Test ver. Profile: S
effectiveness of test coverage.

The TestGen Test Coverage Profiler (TCP) quantifies
the effectiveness of the series of tests which have
been run against the units under test.

The TCP generates reports which show the user how
effective a particular series of tests have been with
respect to the execution of all of the branches and/or
paths.

Of equal interest to the test engineer is an
identification of those branches and/or paths which
have not been executed during the testing process.
Knowing the set of statements vhich have not been
executed, and using TestGen's Unit Test Strategy
Generator, the test engineer can easily prepare
additional test conditions that will execute the
missing branches and paths, or the test engineer can
determine why the particular branches and paths were
not executed as originally expected.

T verage Profiler also provi Timi i S
In addition to delineating the sets of branches and
paths vhich have been executed during a test, the TCP
can provide estimates as to the percentage of time the
program has spent in each routine.

This capability is useful in determining where any
additional optimization of the code would have the
most effect in terms of execution speed.

A typical output report is shown in Figure 4.
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Figure 4.

Report.

The Input file

1: Procedure feed_the Dog

2:
3:
L2

5:
6:
7:

8:
9:
10:
T
12:

13:

( Size_of_Dog : Dog_Size_type;
Ouner _atlows_meat : Boolean) is

Case Size_of _Dog is
Vhen Big =>
Fitl_feed_bowl
(with_food_for => large_dogs);
Throw_in_cage(item => steak);
When Medium =>
Fitl_feed_bowl
(with_food_for => medium_dogs)
1f Owner_slliows_meat then
Throw_in_cage(item => gteak);
End 1f;
When Small =>
Fill_feed_bowl
(with_food_for => small_dogs);
End Cease;

14: End feed_the_Dog;

Path Coverage Anslysis

Path Coverage Deficiencies of Module feed the Dog.

There were 2 paths that were not covered.
Path Deficiency 1:
Path Statements: 1,2,6,7,8,9,10,13,14

1: Procedure Feed_the_Oog
( Size_of _Dog : Dog_Size_type;
Owner_allows_meat : Boolean) is
2: Case Size_of Dog is
6: When Medium =>

7: Fill_feed_bowl
(with_food_for => medium_dogs);
8: t1f Owner_allows_meat then
9: Throw_in_cage(item => stesk);
10: End 1f;
13: End Case;

14: End Feed_the_Dog;

Path Deficiency 2:

Path Statements: 1,2,11,12,13,14

1: Procedure Feed_the_Dog
( Size_of _Dog : Dog Size_type;
Owner_allows_meat : Boolesn) is
2: Case Size_of Dog ts
11: When Smatt =>
12: Fitl_feed bowl
(with_food_for z> small_dogs);
13: End Case;
14: End Feed_the_Dog;

A portion of the Test Coverage Profiler

Statement Coverege Analysis

Statement Coverage Deficiencies of Module Feed_the_Dog
A total of S statements were not executed:

8: 1f Owner_allows_meat then
9 Throw_in_cage(item => sgteak);

: End I f;
1: When Smalt =>
H Fill_feed_bowl
(with_food_for => small_dogs);

Statement Execution Count Profile

- | V: Procedure Feed_the Dog
( Size_of _Dog : Dog_Size_type;
Owner _allows_meat : Booleen) is

|
23 | 2: Case Size_of _Dog is
20 | 3: When Big =>
20 | &: Fill_feed_bowl
(with_food_for => large_dogs);
20 | §: Throw_in_cage(item => steak);
3 | 6: dhen nedium 2>
3 |7 Fill_feed_bowl
(with_food_for => medium_dogs);
3 |8 1€ Ouner_allows_meat then
0 | 9: Throw_in _cage(item s> -t k);
3 | 10: End 1¢;
e | 11 When Smail =>
o | : Fill_feed_bowl
(with_food_for => smal <);

23 | 13: End Case;
-+ | 14: End Feed_the _Dog;

Invocation Profiler Report

Invocation Count f-~r Package Kennel

Subprogram Name Number of Invocations

Kennel _Handler | |
feed_the_Dog | |
Perform_Medical _Check Up | 52 |
Walk_the _Dog f |
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Puture Efforts

The TestGen tools are currently operational on several
computer systems, including VAX/VMS VAX/Unix, Sun,
Apollo, Data General and Harris.

The tools are currently configured are designed to be
totally independent of the Ada compiler being used on
the host and/or target system.

A closer integration of TestGen with a compiler’s
debugger is an effort that is planned for the future.
This integration will provide the additional
capability of running "uninstrumented" Ada code on the
target machine. A subsequent analysis of the execution
paths on the target would determine the branches and
paths that vere (and were not) executed.

Conclusion

Ve have described the capabilities of TestGen, a tool
vhich was developed to assist in the Testing of Ada
designs (as expressed in a structured pseudo-code),
and in the testing of actual Ada code.

Testing encompasses all phases of the development
lifecycle. During the Design phase, the testing
process is a process of Design Review. The Design
Review Expert Assistant portion of the TestGen tool
assists in insuring that the design of each unit id
thoroughly reviewed.

The Unit Test Strategy Generator assists in the
preparation of the test plans and procedures for each
program unit. The number of tests required is
determined by the complexity of the unit being tested,
and the test methodology selected.

The Test Coverage Analyzer reports on the
effectiveness of a series of tests which are performed
on the program.
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Ada Complexity Extension (ACE)
An extension of MeCabe's Cyclomatic Complexity Metric
for Analysis of Ada Software

Holly J. Tauson-Conte

TELEDYNE BROWN ENGINEERING

ABSTRACT

This article contains the results of initial research work
performed to extend the applicability of MeCabe's
Cyclomatic Complexity Metric for the analysis of Ada
software. Having proved useful both as a logical
measurement technique and as a testing aid, the Ada
Complexity Extension (ACE) is proposed for general
acceptance as a standard to provide a useful metric that
may assist in improving the quality of Ada software
programs.

1. INTRODUCTION

Ada is designed to support modern software engineering
principles. The use of Ada-oriented metrics, together
with the features of the Ada language, constitute a
valuable framework against which to apply these
principles during software development. To address the
need for Ada metries, this paper proposes a metric, Ada
Complexity Extension (ACE), which deseribes, quantifies,
and makes visible the logical complexity of Ada modules
[1]. At the time of this publication this theory has not
been validated by extensive empirical data.

The ACE metric is an extension of McCabe's Cyclomatic
Complexity Metric and preserves many of its basic
properties. ACE has a mathematical basis in graph
theory, supports structured programming, and is
applicable to multiple phases in the software life cycle.

2. HISTORICAL BACKGROUND

MeCabe developed and published in the 1970's a graph-
theoretic complexity measure to address the need for a
mathematical technique that provides a quantification of
software system modules [3). The technique is intended
to assist in the identification of software modules that
may consume time and prove costly during test and
maintenance.

The properties of McCabe's Cyeclomatiec Complexity
Measure include its mathematical basis, its support of
structured programming, its applicability to multiple
phases of the software life cycle (design, implementation,
testing (4], and maintenance), and empirical support
through case studies verifying correlation between logical
complexity and software program errors. This com-
plexity theory is pragmatic because it assists with the
management of software complexity by making control-
flow visible and quantifiable. Each software module may
be depicted as a flow graph by associating a block of

sequential code with a graph node and a program logical
transfer of control with an are. Applying graph theory to
a flow graph of a program module yields a eyclomatic
complexity number by evaluating the formula

G =e—n+2,

where e is the number of edges and n is the number of
nodes.

At the time of McCabe's complexity theory's introduction
in 1976, high-order programming languages were using
expression and control abstraction as initial mechanisms
for controlling complexity. The application of McCabe's
complexity measure to the expression, control, and
procedural abstraction of languages in the mid-1970's was
a relatively direct mapping. Ada's advanced language
capabilities, such as strong typing, packages, tasks,
generic units, and exception handling, go beyond the
capabilities of most preceding general-purpose high-order
languages and therefore generate an impact on the
traditional McCabe complexity metric. The ACE theory
incorporates evaluation of data abstraction (packages)
and process abstraction (tasks), plus the remaining special
features present in the Ada language, to provide an
accurate static evaluation of Ada modules.

3. MAJOR DIFFERENCES BETWEEN ACE AND
McCABE'S METRIC

It was necessary to modify and extend the traditional
McCabe metric for complexity analysis of Ada modules
because the Ada language contains a number of con-
structs and statements that may be used for inter-module
dependency and communication and other unique langu-
age features. The ACE theory evaluates complexity by
applying the formula (e-n+2) to flow graphs that have
pbeen modified to appropriately represent the flow of Ada
program modules. The major modifications are discussed
briefly in this section, to be followed by a more detailed
description in Section 4.

The static complexity analysis of program modules that
involve inter-module dependency and communication may
result in interrupted program module flow paths. The
interrupted paths may be illustrated on the flow graph by
unconnected nodes and, in some cases, specialized arcs
connected to a single node are introduced to depict either
8 dynamic transfer into the module or a dynamic transfer
out of the module.
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Ada package bodies and generic units require further
extensions of McCabe's metric. Complexity evaluation of
Ada package bodies requires a recognition of the optional
sequence of Ada statements that may be present in the
executable part of the package body as well as the nested
bodies that are contained in the declarative part of the
package body. The complexity analysis of nongeneric
units produced by the Ada compiler as a resuit of
instantiations of the generic units cannot be acquired
through source code analysis. The complexity value of
each instance of a nongeneric unit must relate back to its
corresponding generic unit code analysis.

The ACE does not attempt to measure the dynamic
features, such as creation, termination, and suspension of
Ada tasks, but does include the static complexity analysis
of Ada features, such as the select statement, guard
conditions, the abort statement, and entry calis.

The Ada exception handler feature is yet another reason
to extend McCabe's traditional metric. An Ada exception
handler represents replacement or recovery code, which
may incorporate a large variety of Ada constructs
resuiting in a recovery algorithm that may be as com-
plicated or more complex than the abandoned algorithm.
The ACE theory introduces a composite value to quantify
the complexity of an Ada program module that contains
one or more exception handlers,

4. ACE DESCRIPTION

The traditional MeCabe metric is designed to ane'yze
modular divisions of a larger program. The definition of
a program module varies from programming language to
programming language and it is appropriate to identify
those units that constitute analyzable Ada program
modules. Certain Ada compilation units and certain
declarative items are the essential units that may have a
static complexity value associated with them. By
eliminating the compilation units that contain only
declarations, the analyzable Ada program modules
include subprogram bodies, package bodies, generic
bodies, and subunits. In addition, nested declarations of
proper bodies are also considered analyzable program
modules. These nested declarations include subprogram
bodies, package bodies, task bodies, and generic unit
bodies.

FIGURE 1
procedure EXAMPLE 1 is
begin
OPEN (FILE, . . .;
while not END_OF_FILE (FILE) loop
TEXT_IO.GET ( INPUT_CHAR );

case INPUT_CHAR is
when Character' VAL (7) => RING_BELL;

when Character' VAL (12) => SKIP_TO_NEXT_PAGE_POSITION;

when ‘A" . . 'K’ => CHOOSE_A_MENU;
when others => exit;
end case;
end loop;

CLOSE (FILE);
end EXAMPLE_1;
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The static evaluaton of Ada constructs and features
according to the ACE theory is described in the following
subsections. Flow graphs illustrate the path analyses
associated with example Ada program modules.

4.1 Ada Conditional Statements

The first kind of conditional construct, the Ada if
statement, has the same complexity as that described in
McCabe's metric. The second conditional construct, the
Ada case statement, selects one of a number of alter-
native sequences of statements for execution, depending
on the value of an expression. Since the alternative
choices are exhaustive and mutually exclusive, the Ada
case statement with x alternatives has a complexity
measure of x - 1.

4.2 Ada Loop Statements

The Ada loop statement may be expressed in a variety of
ways, with the completion of the loop execution
depending on an iteration scheme, the execution of an
exit statement, or some other transfer of control. The
Ada basic loop statement involves no evaluation of a
logical decision and therefore does not contribute to the
complexity of the program module. Unlike the basie
loop, the Ada "while" and “"for" loops both contain an
iteration scheme that represents a logical decision
regarding completion of the loop. Therefore, the
evaluation of an Ada loop with an iteration scheme will
result in contributing one to the value of the module
complexity.

Any form of the Ada loop statement may contain an exit
statement. If the exit statement includes a condition,
the loop will complete when the exit statement is
reached and the condition evaluates to TRUE., The exit
statement that does not include a condition will cause the
loop to complete when the exit statement is reached.
The conditional exit statement then will contribute one,
whereas the unconditional exit statement will not
contribute to the program module complexity. The
complexity evaluation of an Ada procedure that contains
a loop plus a case statement is illustrated in Graph 1.
The Ada procedure is given in Figure 1.

begy EXAMPLE 1

end EXAMPLE 1
v(EXAMPLE 1) = e -2

= 13-10+2
= 5

Graph 1
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FIGURE 2

type Vector is array (Integer range <>) of Integer;

function AVERAGE ( V : Vector) return Float is
SUM : Integer := 0;
begin
if VVLENGTH = 0 then
return 0.0;
end if;
for J in VVRANGE loop
SUM := SUM + V (J);
end loop;
return Float (SUM) / Float (V'LENGTH);
exception
when CONSTRAINT_ERROR | NUMERIC_ERROR =>
declare
SUM : Float := 0.0;
begin
for J in VVRANGE loop
SUM := SUM + Float ( V(J) );
end loop;
return SUM / Float (V'LENGTH);
end;
end AVERAGE;

4.3 Ada Exception Handlers

During program execution, an Ada exception may arise
from several sources: a raise statement, another Ada
statement, an operation that propagates the exception, or
during the elaboration of declarations. When an
exception is raised, control transfers to a user-provided
exception handler, which may occur at the end of a block
statement or at the end of the body of a subprogram,
package, or task unit.

Since the exception handler has the potential of being
executed as a result of a transfer of control from any
Ada statement in its current frame or from any Ada
statement, operation, or elaboration of declarations in a
nested frame, the number of possible paths to a handler
cannot be determined by any method of static analysis.
Also, the Ada language rules allow a large variety of Ada
constructs to be coded within the handler, which may
result in the recovery algorithm being as complicated or
more complex than the abandoned algorithm. The third
consideration regarding the replacement code or recovery
code within an exception handler is that the handler
actions are outside of (and often quite different from) the
normal sequence of actions. These three characteristics
of the Ada exception handler justify the ACE decision to
compute the complexity of the exception handler
separate from the complexity of the normal sequence of
statements within the program module. The total module
complexity is then represented by a8 composite number.

Graph 2 and Figure 2 illustrate a possible exceptional
condition raised within the sequence of statements of
a frame that contains a handler for the exception.
Consistent with the intent of the Ada handler, when
function AVERAGE raises CONSTRAINT_ERROR or
NUMERIC_ERROR the sequence of statements within
the handler are executed as a replacement for, or

CONSTRAINT_ERROR |

begin AVERAGE NUMERIC_ERROR

end AVERAGE

v (AVERAGE) = (e-n+2, e-n+2)
w (9-8+2, 7-7+2)
= (3, 2)

Graph 2

recovery from, the normal sequence of statements within
function AVERAGE. The total complexity for function
AVERAGE is a pair of values (3, 2). The first value
represents the paths through function AVERAGE during
normal execution; the second value represents paths in
the exception handler(s).

When appropriate, a program module may contain several
exception handlers. In this case, the second value of the
composite complexity is the sum of the individual
complexities of the handlers. Although the logic of the
individual handlers may not be continuous, the second
complexity value is a deliberate compromise designed to
indicate the total complexity of all sequences of Ada
statements outside the normal execution of the program
module. The second value therefore approximates the
amount of additional path testing necessary to verify
proper operation of the program module.

4.4 Unconnected Flow Graph Segments

Unlike McCabe's traditional metrie, which is based on a
strongly connected graph, the ACE theory requires
unconnected flow graph segments to accurately depict
the flow of control. These occurrences of unconnected
flow graph segments may be noted on Graphs 1 and 4.
Unconnected graph nodes may be caused by the following
conditions:

e In any form of the Ada loop, execution of an
unconditional exit statement results in a direct
transfer out of the loop. Therefore, no are should
connect the exit node with any node inside the loop.

An apparent "endless" loop may be legally coded in
Ada. Therefore, there is no connecting arc to an Ada
statement that follows the "end loop" node of any Ada
basic loop that does not contain an explicit transfer
statement.
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® By localizing the complexity analysis of an exception
handler to those Ada statements within the handler it
is inappropriate and often impossible to connect nodes
associated with transfers of control outside the
handler. Therefore, within an exception handler a
node depicting an abort statement or raise statement
may not be connected with any node in that program
module.

4.5 Ada Raise Statement

Applying a similar analysis to the raise statement as was
applied to the exception handler, the Ada raise statement
should also represent a departure from the normal
sequence of statements. The ACE proposes to represent
the raise statement on the flow graph by a node with an
exit path whose destination is undefined. The rationale
for the unconnected exit arc is based on actions
performed when the raise statement is reached during
execution. When the raise statement is executed,
execution of the normal sequence of statements within
the current frame is abandoned in search of the exception
handler named in the raise statement. This search may
transfer program control flow to a handler at the end of
the current frame or propagate it to an enclosing frame.
Since the destination of the search transfer varies
dynamically, it is not possible to statically determine an
accurate connected flow graph. Procedure SALARY in
Figure 3 and Graph 3 contains an illustration of a raise
statement.

FIGURE 3

procedure SALARY (EMPLOYEE DATA :in.. .
RETURN_INFO :out...)is

begin

if EMPLOYEE_DATA.ID > 50_000 then

raise EMPLOYEE_DATA_ERROR;

end if;

-- Calculate return info
end SALARY;

Caiculste

end SALARY

v (SALARY) = e-n+2
-~ 8-8+2
-2

Graph 3
4.6 Ada Tasks

Process abstraction implemented by Ada tasks may
involve a collection of sibling tasks, dependent tasks,
tasks created from task types, and dynamically created
tasks, all exercising a high degree of interaction through
the rendezvous mechanism. The complexity of the
dynamic characteristics of the Ada taskecannot be
evaluated by static analysis. However, an individual
complexity value for each task body in the system can be
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determined by using the following ACE guidelines for
analysis of the unique Ada statements that may appear in
the implementation of the Ada task body.

4.6.1 Ada Abort Statement

Stopping execution of an Ada task without stopping
execution of the entire program may be implemented by
one task executing an abort statement. The abort
statement may list a collection of task names, including
the task object name that corresponds to the body
containing the abort statement. If the task name of the
task issuing the abort, or a master task, or an indirect
master task of the task is inecluded in the abort state-
ment, then the "abort" node on the flow graph will be
connected to the end node. When these task names are
not included, the "abort" node is connected to the next
sequence of actions. In either case, the evaluation of the
abort statement does not contrbute to the complexity v.

4.6.2 Ada Select Statement

The select statement may be implemented in many
forms, including the selective wait, the timed entry ecall,
and the conditional entry call, employing such features as
guard conditions, delay alternatives, the terminate aiter-
native, and the else part. Although the evaluation of
such features as guard conditions and the terminate
alternative cause the decision mechanism within the
select statement to become rather complex, the execu-
tion of this statement leads to a choice of just one of the
select alternatives. The complexity evaluation of the
select statement is analogous to the Ada case statement.
That is, the selective wait, having x alternatives, will
contribute x - 1 to the complexity of the task body
module.

4.6.3 Task Entries and the Ada Accep: Statement

When an entry call has been made and the corresponding
accept statement has been reached, the rendezvous is
executed by the called task and the calling task is
suspended. Since the task entry synchronization is so
closely dependent on the task owning the entry, the ACE
considers the complexity of the sequence of statements
in the accept statement to be an integral part of the task
body complexity. As such, the complexity value
associated with the accept statement is added to the task
body complexity and the nodes and arcs that represent
the paths within an accept statement are connected to
the flow graph of the task body along the appropriate
logical path. Figure 4 illustrates a select statement,
three acrept statements, and a basic loop coded within
the Ada task body SCHEDULER.

Several items can be noted in Graph 4. There are three
branches corresponding to the three alternatives of the
select statement. The paths within the three accept
statements are connected to the flow graph of the task
body. The basic loop contains no local means for
completion. There is an incoming arc connected to the
end node that indicates there is a means of unknown
origin that will cause the task body to complete.

4.7 Additional Flow Graph Arcs

Certain compilable Ada constructs may be combined in
such a way as to produce either unreachable program
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FIGURE 4

WRITING : Boolean := FALSE;
task body SCHEDULER is
N_READERS : Task_Count := 0;
begin
loop
select
when not WRITING =>
accept START ( REQUEST : in...)do
case REQUEST is
when READ =>
N_READERS := N_READERS + 1;
when WRITE =>
forIin 1. .N_READERS loop
accept STOP_READ;
end loop;
N_READERS := 0;
WRITING := TRUE;
end case;
end START;
or
when WRITING =»>
accept STOP_WRITE do
WRITING := FALSE;
end STOP_WRITE;
or
when not WRITING =>
accept STOP_READ do
N_READERS := N_READERS - 1;
end STOP_READ;
end select;
end loop;
end SCHEDULER;

segments or locally nonexecutable activities. An
incoming arc that has an undefined source will be added
to segments of the flow graph that are not connected in
the forward direction. The additional arc will result in
increasing the complexity value by one per arc. The
increase is appropriate since these ares will correspond to
the test paths necessary to fully test all code paths
within the program module. One example of an addi-
tional are is illustrated at the bettom of Graph 4.

4.8 Ada Package

The Ada package specification is designed to encapsulate
logically related entities and may include a subprogram,
package, task, or generic declaration as a declarative
item. If the package specification contains any of these
declarative items, then the package body must contain
the corresponding unit bodies in its declarative part.
Those program unit bodies that are included in the
declarative part of the package body should have the
ACE complexity evaluation applied to each program unit
that is considered a program module.

Consistent with the design of all Ada program unit
bodies, the package body may contain an executable
sequence of Ada statements with an optional exception
handler before the end of the package body. If this
optional sequence is present, the package body will then
require a complex.ty evaluation incorporating ACE

DR B R SRR 0

O begin SCHEDULER

end SCHEDULER

v (SCHEDULER) = e - n + 2
=23-19+2
=8

Graph 4

guidelines for those Ada statements used within the
executable sequence of that package body.

4.9 Ada Generic Units

The Ada generic unit is a template in the form of a
generic subprogram or generic package. Although the
body of a generic unit does not represent an executable
Ada program unit, it is necessary to include it as an

analyzable program module. The reason is that the
source code within the generic body represents the only
accessible reference for analysis. Each time an
executable subprogram or package is obtained from a
generie unit, the compiler performs the substitution of
the actual parameters for the generic formal parameters
and the resulting nongeneric unit becomes part of the
program. Since the nongeneric bodies are very similar in
logic structure to that of their corresponding generic
unit, the complexity of the instantiated program unit will
be considered identical. A complexity value is only valid
when the program module contributes to the complexity
of the program. Therefore, the complexity measure
computed for the generic body is to be applied only to
each instantiation of the generie unit.

5. FUTURE RESEARCH AREAS

The ACE metric recommendations that are provided in
this article for extending McCabe's cyclomatic
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complexity metric have been evaluated and tested on a
limited amount of Ada software. Extensive empirical
evaluation of the ACE will be necessary to "fine-tune"
the theory and maximize its practicality.

There is support for the concept of expected maintenance
difficulties and error-prone modules correlated to high
complexity design and program modules. Consequently,
interest has been expressed in determining a value that
represents a reasonable upper limit for the complexity of
an Ada software module. Empirical studies [5] have
supported the number 10 as a practical upper-limit
guideline for the application of McCabe's metric to
traditional high-order languages. In addition, the use of a
composite complexity value associated with program
modules containing exception handiers may be modified
to indicate the number of exception handlers within the
program module. Guidelines for the maximum number of
handlers per module and for determining a reasonable
upper limit for handler complexity are ailso under
consideration.

The manual evaluation of the complexity of an Ada
program module according to the ACE metric can be
tedious and may be inaccurate because of the variety of
Ada constructs and features. Producing reliable
calculations of the complexity measure will require an
automated Ada complexity analysis tool {2]. Such a
software tool would provide useful support to an Ada
program devejopment environment.

6. CONCLUSIONS

The criteria applied to evaluate the usefulness of a
proposed software metric include a straightforward and
intuitively appealing interpretation and its practical
applicability to multiple phases of the software life
cyele. The ACE metric responds to both criteria by using
either a single or a composite value to quantify the
logical complexity of a program module. The complexity
value has a direet correspondence to the number of basis
paths [3] through that module. The ACE metric supports
evaluation and provides assistance through the design,
implementation, test, and maintenance phases.

The ACE metric provides for managers and developers
the visibility and quantifiability of Ada module
complexity. Further research and information derived
via empirical case studies will be needed to refine and
validate all aspects of the ACE metric. The application
of an automated ACE complexity analyzer [2], together
with other Ada environment tools, would assist software
development by enhancing the reliability and
maintainability of Ada software systems.
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ABSTRACT

The gocal of this study is to
investigate approaches to ‘'high-
assurance’ software written in the &da
programming language. ‘High-assurance’
software includes the software in
systems defined to be ‘secure’ by the
Department of Defense Trusted Computer
System Evaluation Criteria (TCSEC) &s
well as other software with very high
reliability or security requirements.
The primary approach to high-assurance
software considered here is formal code
verification. This report investigates
Ada constructs relative to code
verification, the technologies necessary
to support code verification, and ongeoing
efforts directly related to verification
of Ada coce. Since Ada was not developed
to be a verifiable language, there are
some constructs that will defy formal
verification; these challenges do not
seem to be overwhelming and could
presumably be controlled by restrictions
on the use of the language. Tasking and
exception handling are the two greatest
challenges that the language constructs
provide for verification, with tasking
being the greater challenge.

INTRODUCTION

This paper addresses several issues.
The abstract goal 1is to investigete
methods that would 1lead to a ‘high
assurance’ that software written in the
Ada language would perform as intended.
To make this goal concrete required a
preliminary wunderstanding of ‘high
assurance.’ The Department of Defense
Trusted Computer Svystems Evaluation
Criteria defines secure computer systems
as those that satisfy six requirements:

1. There must be an explicit and
well-defined security policy
enforced by the system.

2. Access control labels must be
associated with objects.

MR. KARL NYBERG

DR. ROBERT MATHIS
INC. CONSULTANT
9712 Ceralene Dr.

VA 22180 Fairfax, VA 22032
3. Individual subjects must Dbe
identified.
4. Rudit information must Dbe

selectively kept and protected
so that actions affecting
security can be traced to the
responsible party.

5. The computer system must
contain hardware/software
mechanisms that «can be
independently evaluated to
provide suifificient assurance
that the system enforces
requirements 1 through 4 above.

6. The trusted mechanisms that
enforce these basic
requirements must be
continuously protected against
tampering and/or unauthorized
changes.

The software in these systems is
frequently referenced as 'secure’ or
‘trusted’ software. The conclusions of
this paper are directly applicable to
'secure’ and ‘trusted’ software and are
also applicable to a much broader
collection of software. This broader
collection includes software with very
high reliability or security
requirements, and software which must
function as intended or there will be
threat to human life or national
security. Througliout this report, such
software is referred to as 'high-
assurance.’

The initial approach of the research
on which this paper is based was a review
of each Ada construct as defined by the
rda___languace Reference Manual (LRM).
This review was centered on the impact of
each construct on Zormal verification.
The assessment was based on the
feasibility to develop & verification
axiom, or proof rule, for each construct
in isolation. Those constructs with the
greatest impact on verification are
reported here.
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In addition to the axioms, other
support technologies are required for
code verification. These include a
formal definition and a specification
language. Specification languages are
not only necessary for formal «code
verification, but can also be used with
other techniques, both formal and less
formal. An understanding of runtime
issues is necessary to understand the
limitations of code verification relative
to how the software will function during
execution. The status of each of these
issues relative to Ada execution 1is
presented.

Some of the conclusions of this
study go beyond the initial study plan.
While investigating the ©principle
questions addressed by the study,
secondary observations were made and are
included.

ADA CONSTRUCTS THAT AFFECT VERIFICATION

Ada is generally viewed as a rich
language. The richness of the language
is perceived to be detrimental to formal
verification. This section highlights
the constructs most challenging to
verification, identifies a few problems
considered to be unresolvable and
outlines restrictions on Ada programming
style that would be necessary if the code
were to be formally verified. The
conclusion of this section outlines the
impact that using Ada would have on
secure systems.

Different perspectives are used in
different subsections of this section.
The subsections on challenging
constructs, unresolvable problems, and
necessary restrictions in coding style
assume that the intent is to verify code
using axiomatic verification techniques
on the code. The concluding subsection on
the impact of the use of Ada for secure
systems takes a pragmatic view, assessing
the impact of Ada on current practice.

Most Challenging Constructs

Tasks, Ada's implementation of
concurrency, are the most challenging
obstacle to applying formal verification
technology to the Ada language. By
allowing only restricted use of tasking,
it appears that concurrency in Ada can be
made amenable to application of formal
verification technology; however, it
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remains to be seen whether what remains
has any semblance to what would be called
Ada, and whether it would have any
usefulness for the objectives for which
it was designed into the language. Use
of the technigques employed in
Communicating Sequential Processors (CSP)
(Barringer]) appears to be a promising
possibility while other research
indicates that restriction of
communication to only buffers (a 1la
Gypsy) [Young80), to only scalars
[Odyssey85), or to only <those entry
peints in which pre-condition and
postcondition assertions have been
specified [Tripathi] would alleviate many
of the inherent difficulties in applying
formal verification technology to the Ada
concurrency problems.

It must be noted that those
restrictions to communicating between
tasks reflect the state of the art rather
than assess feasibility. Although no one
has published proof rules for passing
aggregate types, for example arrays or
records, development of such proof rules
seems quite feasible.

Several researchers [Odyssey85,
Pneuli) have recommended that access
pointers to tasks not be allowed. The
intent of this restriction is to
disallow dynamic creation of tasks. In
the absence of dynamic creation of tasks,
proof rules can be obtained for tasking.
However, it is unlikely that this
limitation will be readily accepted,
particularly in the systems programming
arena.

The approach used [Owicki and Gries)
to verify Communicating Sequential
Processes, Hoare'’s language framework for
concurrent programming, is readily
adapted to wverification of Ada tasks.
This approach consists of two distinct
steps: internal verification and
external verification. Internal
verification consists of proving that the
task is an isolated, sequential program.
External verification consists of proving
that, with the exception of entries,
tasks do not affect any subprograms,
tasks, or variables declared outside of
the task being verified. External
verification also requires proof that the
task in question is not affected by any
subprograms, tasks, or variables declared
outside of the task. Again, entries are
the exception to this rule. External
verification is performed in two states:
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&) 1-O0 assertions on entries are
made and shared variables
are restricted.

b) A proof against deadlocks and
starvation is made.

Deadlock and starvation avoidance
proofs are prevalent throughout parallel
processing literature.
also

The verification of tasks

assumes the following:
a) All processes terminate
normally.

b) Subprogram calls have no side
effects.
side

c) Assignments have no

effects.
d) Tasks may not be aliassed.

Exceptions are the other principle
obstacle to verification. The major
difficulty with exceptions [Tripathi) in
the Ada language from the point of view
of verification is the dynamic manner in
which exceptions are propagated, and the
resulting complexity that derives from
attempting analysis during symbolic
execution of programs in the verification
step. This complexity is furthered by
the fact that exceptions are propagated
“as is," which could cause an unhandled
exception to propagate from several
levels down to a routine that has no
understanding of the meaning of the
exception. For example, a stack package
with a private implementation that raises
INDEX_ERROR in the environment of the
calling procedure would be totally
unexpected and either unhandled or
mishandled.

Through adequate containment of the

exceptions, the complexity should be
reduced. However, the interaction of
exceptions and other constructs moves

this issue well beyond the problem of
bookkeeping. For example, if an
exception is raised during execution of a
routine with IN OUT parameters, it is not
clear if those variables will have been
updated prior to transfer of control to
the exception handler.

Unresolvable Problems

Programming languages not developed

for verification inevitably contain
constructs that are non-verifiable. Some
of these can be controlled through

restrictions on programming practices and
are discussed in the next section. For
two common programming constructs there
is no current solution. Although these
constructs are not unigue to Ada, they do
exist in Ada.

Verification of statements including
real numbers, and operations on real
numbers, is beyond the state of the art.
This is due to the lack of accuracy. 1In
the statement

Ji= (1.0/3.0) + (1.0/3.0) + (1.0/3.0)

J would, mathematically, be set to 1.0.
However, not only is it uncertain if J
will equal 1, it is not known how close
to 1 J will be. The effect of this on
subsequent statements involving J is
unpredictable. As in other languages
using real numbers, they cannot be used
if the software is to be verified.

Another area that is not verifiable
is the process of setting timing
constraints. 1f a section of code must
be executed within a specified time,
there is no way to verify that the
constraint will be met.

Restrictions to be Enforced

The recommended coding restrictions
of note involve aliasing, aliasing of
access types, using shared variables by
tasks, and side effects of functions.

Verifying a specific subprogram call

requires verifying certain conditions
about the parameters involved in the
call. These parameters fall into one of

two categories: input parameters or
output parameters. Input parameters are
used only for passing values to the
subprogram; output parameters may have
their values altered by the subprogram.
The conditions that must be verified for
each are as follows. No variable, either
input or output, may appear in either the
precondition or postcondition. No
variable that appears in the output
parameter list may appear more than once
in that list, and no output parameter may
appear as an input parameter. The former
condition results in updating multiple
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variables when only one is intended to be
updated. For example, if two subprogram
formal parameters, A and B, are both
passed variable X through a subprogram
call, the result of the statements

A:=0
B:=1

leaves variable X with the value 1 and no
variable from the call with value 0. The
postcondition after these two statements
would assume the existence of two
distinct parameters, one with value 1 the
other with wvalue 0. If an output
parameter appears as an input parameter,
the time at which the input parameter is
evaluated becomes critical. If the
output variable is updated prior to the
evaluation of the input parameter, the
value of the input parameter may differ
from the value recorded if the output
parameter is not updated prior to
evaluation of the input parameter. A
single actual parameter used for more
than one formal parameter is known as
*aliasing.”

The association of parameters at
subprogram call points would be the ideal
location to exclude aliasing [Good80,
Odyssey85]. Although there might be a
loss of efficiency, the fact that
aliasing is unnecessary and complicates
application of formal wverification
technology [Young8l] would seem to be
sufficient reason for its elimination.

The major concern in the use of
access types 1is the possibility of
aliasing. One possible solution to the
aliasing problem with access types,
presented in [Tripathi), is to define a
new operator for access types that
performs component copying, rather than
pointer duplication. This solution is
appealing with the advent of the
evaluation of the Ada language, due in
the latter part of the 1980s, when
changes and updates based on several
years of working experience with the
language will be incorporated into the
language. However, restrictions on
parameter passing [Odyssey85, Young8l]
would appear to provide the same benefit
with fewer changes.

If a function performs input or
output or accesses non-local variables,
it is said to cause "side effects." If
function subprograms are truly functional
they will not include side effects. If

16 6th National Conference on Ada Technology 1988

Ada functions are restricted to exclude
side effects, they can be verified
similarly to Gypsy function subprograms,
in which these restrictions are enforced
by the language.

Shared variables are the major
construct in tasking that will have to be
restricted (although perhaps simulated
through use of other constructs using
synchronization) in order to apply formal
verification technology to Ada. On this
matter, there is no disagreement among
the researchers ([Cohen, Good80,
Odyssey85, Tripathi].

Many of these recommended
restrictions are consistent with what are
considered good programming practices.
The exception is use of shared variables
by tasks; forcing tasks to communicate by
other means will restrict the utility of
tasking. If the code is to be verified,
however, the restriction may be
necessary.

FORMAL VERIFICATION IN ADA

Formal verification is the highest
technology approcach to increasing
assurance in the correct functioning of
computer software. Other approaches, such
as testing, configuration management, or
development methodology, have benefits
but verification alone can make a quantum
leap in the level of assurance. This has
resulted in the unfortunate position that
verification is an all-or-nothing
proposition for software development
requiring very high levels of assurance.
This mentality has only slowed the
application of formal verification
technology.

The formal verification process
consists of preparing, prior to the
development of software, the formal
specification of a model of the intended
behavior of the software. Some effort
may be placed (as described previously)
in the analysis of the specifications to
ascertain their completeness and internal
consistency. Then, following the
software development methodology, designs
and implementations at the various levels
of the software are completed, and formal
correspondence with the specification is
performed, resulting 1in proofs of
correctness of the implementation with
respect to the specification. The
formal proof of correctness consists of
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showing that the two separate, hopefully
somewhat orthogonal, descriptions have a
proper correspondence.

Assessing the state of the art of
formal verification technology relative
to the Ada language requires perspective.
To date, the largest code verified system
in operation is 4,211 lines of code.
Given that languages that are designed
and developed to be verifiable provide
challenges to the development of large,
complex systems, it would be naive to
expect that Ada would be easily
verifiable.

One of the earmarks of formal
verification technology is its formality.
This is an area that seems to have had
varied amounts of support during the
design of Ada. In the early
requirements documents for the Ada
language, verification was mentioned as a
desirable goal, but the language contains
many constructs that prevent this goal.
In order to do formal proofs of
consistency between the specification and
the implementation, a formal description
of the language semantics is also
necessary. Some effort has been done by
the EEC in this area, but it has not
sufficiently matured to a stage where it
can be utilized in formal verification.
The only viable specification language
for Ada, ANNA, has been geared more
toward the utilization of runtime
assertion checks, not formal
verification, and has largely ignored
the aspects of parallelism. At least
one known effort is involved in extending
ANNA to overcome these deficiencies.

Once the remaining theoretical
obstacles have been overcome, it will
be necessary to develop automated support
tools for the specification and
verification process.

ADA-SPECIFIC SUPPORT TECHNOLOGIES

Formal code verification requires
several key components. The
implementation language must have a
formal definition or semantics so that
the exact meaning of each language
construct and sub-construct is clear and
unambiguous. There must be a
specification language. Since the proof
establishes the consistency between the
specification and the <code, the
specification must be stated in a formal

language. Although not required for code
verification, runtime issues are very
important. Code, even if proven correct,
will not function as expected if the
runtime environment does not execute in a
manner that is consistent with the
assumptions of the proof.

These issues -- formal definitions
and semantics, specification languages,
and runtime issues -- are discussed in

this section.
Formal Definition and Formal Semantics

The most ambitious attempt at a
formal definition of the Ada language is
being undertaken by the Dansk Datamatik
Center and its member companies. This
definition is intended to give meaning to
each Ada language construct by providing
meaning to each sub-construct. This
definition is to be a readable,
unambiguous definition that will be
implementation dependent. The approach
was to develop a static semantics and
then to develop the dynamic semantics.
The dynamic semantics will have embedded
in it the sequential constructs, as these
may be executing in parallel, and the
input-output portions of the language.

The semantics are provided by use of
axioms which are given as abstract data
types and an algebra, or model, for
combining the constructs. In addition to
being a basis for formal proofs, this
definition is meant to be a standard
reference or specification for
implementors of the language.

This effort has produced a very
large volume for the formal definition.
Although the developers have built into
the definition mechanisms to establish
the completeness and consistency of the
definition, these two concerns --
consistency and completeness -- are still
major.

SofTech has been working on an
effort to define the problems and
potential solutions to the development of
an axiomatic semantic definition of the
Ada language. The difference between an
axiomatic semantic description of Ada and
the definition of Ada given by MIL-STD-
1815A is that the semantic description
defines the behavior and
interrelationships of the individual
language constructs in such a way as to
be used as the basis of a proof. The
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existence of a semantic definition of a
lanquage is necessary if a comprehensive
verification technology 1is to be
developed for that language. Any aspects
of a language that are not rigidly,
semantically defined are subject to
varying interpretations by different
compilers. Some of the Ada constructs
that pose difficulties in verification
have been left out of the semantic
description. A list of the excluded
constructs are address clauses, unchecked
conversions, variables shared among tasks
and subprogram calls that generate
aliases.

To a large extent, most elements of
a semantic description are handled at
compilation time and need not be dealt
with during verification time. It is
important to realize that the actual
verification environment is based on the
semantic definition of Ada rather than
the actual language, and constructs that
are not included in the semantic
definition invalidate the verification
process. The SofTech study concerns
itself only with those constructs that
are not dealt with at compilation time.

Specification Languages

Specification languages are
necessary for code verification and can
also be used for other proof-related
purposes. Analysis of the specifications
prior to preoving consistency between the
code and the specification, can only be
formally done with a mathematically-based
specification language. Also, runtime
analysis is facilitated by use of a
specification language to state the
assertions that are to be checked at
runtime. Some Ada-specific work on
specification language tools is being
done at Stanford University.

At the present time, software system
specifications are done in the English
language. While using English as a
specification language has the advantage
of providing easily readable, easily
composed specifications there are some
problems inherent with the use of
English. The English language often
contains inconsistencies and ambiguities
which inhibit exact interpretations of
the specifications. The translation
required from specification language to
coding 1is so broad due to the vast
difference in media as to create
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transitional errors in all but the most
detailed, trivial or exhaustively used
system.

The principle specification language
for Ada was developed at Stanford
University. ANNA (ANNotated Ada) is an
annotation language for all constructs of
Ada except tasking. The language is
designed to support various theories of
formally specifying and verifying
programs. One area of current research
is the use of parallel processors to
provide <concurrent checking of
specifications.

Since the ANNA semantics closely
parallel those of Ada, its use in secure
systems development would allow the
system designers and implementors to use
the same underlying language semantics
for communication of the intended
behavior of their specifications and
programs. However, since the language
appears to have been targeted to the
runtime validation of program execution
rather than pre-execution proofs of
correctness, its applicability in secure
systems development would be limited
until a supporting infrastructure, both
in terms of theoretical aspects of the
language and in terms of automated tools,
can be developed.

The use of Ada as its own
specification language would enable the
specification to be read and interpreted
by a compiler-like consistency checker
which is able to enforce internal
consistency within the semantics. Taken
to a higher 1level, the consistency
checker may be used to check the
consistency between different 1levels of
specification. In this manner the
integrity of the initial specification
may be checked, level by level, down to
the actual code. The disadvantage of
using Ada as a specification language is
the limitation of Ada's expressibility
relative to specifications.

Runtime Issues

Verification of a program, in any
language, takes place during a “proof
time* which occurs before the program is
executed. Situations that are difficult
to predict at proof time are generally
either discounted or disallowed by
verification techniques. The result of
this is that one of two things happens:
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either an issue is ignored or discounted

in some superfluous way, or a great deal
of effort is spent attempting to suppress
possible occurrences of the problem.

Ada deals with runtime difficulties
through the use of exceptions. Much work
has gone into exception handling during
verification. One of the more detailed
investigations into runtime issues
relative to verification is McHugh’s work
a2t the University of Texas at Austin on
the Gypsy language [McHugh]. Gypsy's
exceptions are similar to Ada; this
enables us to apply runtime techniques
developed in Gypsy to Ada.

McHugh handles
manners,

exceptions in two
one of which is that exceptions
that are considered domain related.
These exceptions are discounted with
regards to verification. An illustration
of this is as follows: a verified
satellite communications system would
fail if the satellite were disabled. The
effect of this decision is to localize
the responsibility of the verification to
not include errors that emit from outside
the program. Should the satellite be
verified in addition to the software,
then a failure would indicate a fault in
the verification process.

Exceptions that are not external in

origin are handled differently. These
exceptions are, in effect, eliminated
from the program to be verified.

Exceptions of this type are indirectly
optimized during the verification process
before runtime. This is performed by the
creation of optimization conditions that
are related to possible exceptions.
Optimization <conditions must Dbe
sufficiently well defined to show that
the corresponding optimization condition
must occur before the exception may be
raised. Civen this, it is easily proven
that, if an optimization code can be
proven to never occur, the exception will
never be raised. It is easily concluded
that an exception which is never raised
cannot compromise the verification of a
program or module of a program. We may
now state that, if an optimization
condition is offered as a precondition of
a module of Ada code then the code may be
considered verified with respect to the
exception that corresponds to the
optimization condition.

In short, the nature of exceptions

makes them difficult to verify in a

robust manner. The state of the art is
little more than the statement that "if
an exception never occurs it creates no
problems in verification."”

Runtime Assertion Checks

Another area in which specifications

may be applied is that of runtime
assertion checks. This subsection
describes the various types of such

checks, their applicability and utility,
and the status of the technology as
applied particularly to Ada.

Runtime assertion checks can
increase the assurance in the correct
functioning of a program in a number of

ways. First, the additional effort
expended in the development of such
assertions, whether they be informal or
formal, increases the 1level of the
progranmmer’s understanding of the
program. Second, the preparation of
assertions can provide a gentle

introduction to the application of formal
verification technology, by allowing the
programmer to get a small amount of
exposure to part of the verification
process without having to make the total
investment in learning the process at
once. Finally, and the major reason for
their use, is that the runtime checks can
be used in instrumented versions of the
executable programs to check the
programmer’s understanding of the program
against its actual execution.

Runtime assertion checks can be
included in a program in various forms.
The first, and most obvious, form of
assertion is simple inclusion of code in
the programming language itself. This
code may be instrumented in such a way as
to be turned on or off at runtime,
although recompilation of the source code
may be required. The level of overhead
associated with such checking increases
from the lowest, in which the runtime
assertions are not included at compile
time, followed by instrumentation with
checks turned off, runtime assertions
compiled in, to instrumentation with
checks turned on. Another possible form
of inclusion of runtime assertions is
through the use of a formal assertion
mechanism. These may be processed by a
preprocessor, as in the case of the C
language assert construct, and converted
into corresponding source code, or parsed
with the program text, as in ANNA runtime
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specifications, and expanded during the
code generation phase of compilation.

One benefit of the use of runtime
assertion checks is that the technology
is so similar to compiler technology that
it can be applied without additional
technology development. Its application
is also at a sufficiently low level to
allow its use by programmers at various
ability levels (depending upon the level
of formality of the specification
language). Another benefit is that the
technology can be easily integrated into
the traditional software development
methodology without having to make large
investments in retraining, changes in
practice, or additional hardware.

The use of runtime assertion checks
is not without drawbacks, however. The
most obvious one is the overhead penalty
in execution time while running programs
instrumented with such runtime
assertions. Another drawback is that the
application of formal verification
technology may obviate such runtime
checks. With a formal verification
methodology, it may be possible to
logically prove that the assertion holds
at the point in the program’s execution,
and the resulting runtime check can be
omitted, thus reducing the program’s
runtime overhead and increasing its
performance.

Runtime assertion <checking 1is a
technology which can be, and currently is
being, applied to increase the assurance
in the correct execution of software
written in Ada. Research at Stanford
University has resulted in ANNA, a
specification language for Ada,
specifically designed for wuse in
preparing runtime assertion checks.
Automated tools for supporting the
software development process using such
checks have been developed, and
preliminary results have been obtained on
a number of research and development
projects.

ANNA was designed primarily fo:r use
with tha sequential aspects of the Ada
language. Efforts are underway to extend
ANNA and combine it with other languages
to use it for the parallel aspects as
well, Additional research 1is Dbeing
targeted at providing a mechanism for
concurrent execution of the resulting
runtime assertion <checks (on multi-
processor hardware) in order to exploit
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some of the benefits of the parallel
execution and reduce the apparent runtime
overhead penalty associated with the
checks.

The use of ANNA is very CPU
intensive, not only in the execution time
of the resulting software, but also in
the execution time of the automated
tools. The lack of speed in these tools
is due in part to their use of somewhat
dated compiler technology. This drawback
might prevent its application in
environments that are unable to provide a
sufficient hardware base for development
environments. The benefit of the choice
of Ada has allowed transition among
avajilable hardware configurations which
provide Ada software development
environments.

CONCLUSIONS

This study had several objectives.
The abstract goal was to investigate
methods that would lead to the highest
assurance that software written in the
Ada language would perform as intended.
This led to the examination of elements
related to the formal verification of Ada
software, to the examination of formal
methods applied at levels other than code
verification, and to the examination of
less-rormal methods.

Relative to code verification, the
continuing examination of Ada constructs
reveals two findings. Since Ada was not
developed to be a verifiable language,
there are some constructs that will defy
formal verification; these challenges do
not seem to be overwhelming and could
presumably be controlled by restrictions
to the use of the language. Tasking and
exception handling are the two greatest
challenges that the language constructs
provide for verification. Of these,
tasking is the far greater challenge.

Code verification requires both a
formal definition and a specification
language. The formal definition being
developed by DDC will need to be
verified, validated or certified by
someone outside of the developing group.
This 1is a major issue. Also, the
structure and syntax of the definition
will limit its utility.

ANNA as a specification language has
limitations which are being addressed by
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Odyssey Research, and alternative forms
for specifications are being investigated
by Computational Logic.

As these various elements of formal
verification with the Ada language
progress, it will remain to apply
resulting technology in order to gain
experience with it and to evaluate the
feasibility for development of large
scale projects. To date, applications of
verification technology have been
performed by small groups of people on
small tasks, with rather limited results
in terms of both costs and quantity of
software. This situation will be no
different in application of formal
verification technology to the Ada
language. The community of individuals
trained in the use and application of
formal verification techniques is small,
and the intersection of those individuals
with the 1limited pool of talent
proficient in the Ada language continues
to reduce the available labor.

Existing verification projects have
been small in size, because that has been
the only manner in which to maintain
control of the complexity of the project,
and to be able to support the project
with automated support tools. Advances
in hardware technology will improve the
utility of support tools, but cannot
solve the personrel problem.

Beyond code verification, formal
methods are being investigated with
respect to Ada. The two areas of
research are the application of formal
methods to specification analysis and to
runtime assertions. In the area of
specification analysis, the focus is on
finding and analyzing inconsistencies in
the specifications. Although this will
not provide the assurances of code
verification, it seems that an emphasis
on this work will prove to support code
verification in the long run, and will be
useful in its own right. Successful
verification projects depend on
consistent specifications.

Although runtime assertion checking
seems redundant for verified software,
this avenue seems particularly worthy of
research for distributed systems. This
avenue may well help in the understanding
of concurrency.

Assessing the adequacy of the state
of the art of formal verification

technology relative to the Ada language
requires perspective. To date, the
largest code verified system in operation
is 4,211 1lines of code. Given that
languages that are designed and developed
to be verifiable provide challenges to
the development of large, complex
systems, it would be naive to expect that
Ada would be easily verifiable.
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Ada SOFTWARE METRICS
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W ABSTRACT The goal of this modernization effort (both
':: Joint and Army) is to reduce the life cycle costs
Metrics are the quantification of through reliable, portable, and reuseable code
. environmental and performance factors to produced under strict configuration control
i:o measure the effectiveness of activities in the utilizing the DOD-mandated Ada programming
:.ﬁ areas of resources, schedule, quality, and risk. language [DOD87a, DOD84b). AWIS expects
N Metrics provide both a prospective and nearly two million lines of code to be produced
! retrospective measure of accomplishment. incrementally with phased releases to the
A Retrospective data provides a baseline for the multiple world-wide sites. Because there is
* next project. Prospective data support insufficient direct experience in the management
! forecasting, planning, and control of on-going of such a program utilizing Ada under the
Q activities. The latter is obviously preferrable. guidelines of DOD STD-2167 [DOD 85], this
d contract has been on the leading edge of both
{‘n‘ This paper summarizes the types of metrics Ada technology and management of that
»‘,: developed during the foundation phase of the technology.
'ty Army WWMCCS Information System (AWIS), and
X the methodology applied to achieve a selected
: subset of these metrics. Current plans are to From a Program Manager's view point,
‘N continue to tune and refine these metrics during there are four areas of importance required for
‘W full scale development, which starts early in 1988 forecasting, planning, and controlling a project to
» and is expected to last for five years. achieve the desired end product. These areas
"t‘ are resources, schedule, quality, and risk.
Y Resources are those replenishable ingredients of
o people, equipment, facilities, and support (e.g.,
INTRODUCTION communications, supplies, etc.). Schedules deal
f with the one non-replenishable resource - time.
;’ Quality consists of an evaluation of how well the
¢ Project Managers strive to be in the fore- product conforms to the desired specifications.
e front of technology. However, along with the Risk is the degree of expected success in
4 distinction of being a technological first come managing the first two factors in order to achieve
: problems that do not surface in other projects that the third. The common denominator across all
follow. Both of these statements are true of the tactors is cost.
Army WWMCCS Information System (AWIS)
" Software Development project.
A AWIS is in the process of developing
4 methodology, collecting data, and performing
A The AWIS Software Development is being analyses to develop Metrics to support the
done in Ada and is the first large scale non- management and control of the above variables.
embedded Ada development within the Army. Results to date are preliminary but the approach
AWIS is the Army portion of the Joint appears to have merit. They are presented to
v modernization of the World Wide Military encourage discussion and invite the interchange
i Command and Control System (WWMCCs). WIS of concepts and findings in this early but critical
. (WWMCSS Information System) is also being aspect of Ada development.
developed in Ada, but in many respects AWIS
s software development is ahead of the WIS
N software developments. AWIS has started the
designing and coding of Ada applications
software utilizing methods and procedures
" specifically tailored for this project.
"y
L}
)
i
o
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BACKGROUND

The World Wide Military Command and
Control System (WWMCCS) serves the National
Command Authority (NCA) and key commanders
across a broad spectrum of planning and
operational activities from day-to-day through
crisis operations to conventional and nuclear war.
The computers, software, and associated
telecommunications form the backbone of the
current WWMCCS ADP system. Its use is
expanding both in breadth and depth of
operational applications.

Modernization of the WWMCCS program
officially began in November 1981 with the
establishment of the WIS Joint Program Manager
(JPM). The JPM is the focal point for coordination
and control of all existing WWMCCS ADP
requirements and upgrades. The overall goal of
the WWMCCS Information System (WIS) program
is to build an affordable system that makes
maximum use of commerical off-the-shelf (COTS)
hardware and software to provide responsive
support to JCS validated operational
requirements. The new system will allow for the
future integration of state-of-the-art improvements,
as well as provide system enhancements in
survivability, DOD standard protocols, modularity,
flexibility, sustainability, etc.

Army WIS (AWIS) is a part of, and an
extension to, the larger joint modernization effort
called WWMCCS Information System (WIS). As
the Army portion of WIS, AWIS includes those
service and command capabilities in support of
the Joint and Army missions not provided by WIS.
The Army maintains primary responsibility for
implementing these supporting applications.
AWIS will provide information 1o WIS and
additional information handling capabilities at the
WWMCCS sites managed by the Army.
Therefore, AWIS, the Army subset of WIS,
provides joint operational planning and execution
capabilities to meet the command supporting
requirements at the eight sites jor which the Army
is responsible.

The AWIS Software Development (ASD)
effort will provide the applications software for
Army and command subsystems that will support
WIS. The applications software is being
designed and implemented in Ada. The AWIS
applications software will provide for command-
supporting wartime and transition functions and
will be resident on joint hardware at the
appropriate locations.

The contract, being p~ricrmed by TRW,
Inc., is divided into two phases. Phase | is
structured to provide a foundation for the full scale
development of Ada software to replace the more
than eight million lines of COBOL and FORTRAN
sofiware presently being operated at the Army
supported WWMCCS sites. Phase | will acquire
an Ada Programming Support Environment;
develop plans, procedures, and a methodology
for Ada development; establish training courses
specific to AWIS; and build a pilot subsystem to
ensure that the methodology, plans and
procedures are correct. Phase 1l will use the
approved methodology and procedures to
implement the full-scale development of the
estimated two million lines of Ada code. Phase |
is projected to be completed in February 1988,
with Phase |l immediately following.

EQUNDATION

Metrics are the quantification of
performance projected for or resulting from the
management of resources, schedule, quality, and
risk. Metrics provide both a prospective and
retrospective measure of accomplishment. They
are vital components of management on both the
part of the Government and the contractor.
Retrospective data provides a baseline for the
next program phase. The more important use of
metrics to a program manager is prospectively. It
is in this mode of usage that forecasting,
planning, and controlling can be exercised.

The challenge facing a program manager
with Ada as the software development language
is the sparseness of retrospective data. In
recognition of this deficiency in the Ada
environment, the Army included metrics
development as one of the foundation tasks for
Phase | of AWIS. Specific emphasis is given to
developing an Ada Cost/Schedule Estimating
Model [DEL88). Initially it was envisioned that
metrics would only be gathered in Phase |.
However, it has been realized that additional data
points are needed.

Key to improving software cost estimation
capabilities is to collect data, data, data. This is
the reason for extending the metrics task into
Phase Il. The Government has realized that the
Phase | metrics tasks only provides a single data
point. This point is only one of many that makes
up a cost estimating curve. The exact shape ot
that curve can not be determined by only one
point. More data is needed to determine whether
the curve is a straight line or some other shape.
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Prospective usage of metrics is most
effective where the environment and
methodology can be controlled and the cycle of
activities repeats itself a sufficient number of times
so that the metrics can be refined anrd applied.
The longer the period of performance and the
higher the number of cycle repetitions, the greater
the benefits to be derived. AWIS Phase Il has
these characteristics.

Why bother with metrics at all? The
following quote from Lord Kelvin sums it up..
"When you can measure what your are speaking
about, you know something about it. When you
are unable to use a quantitative description, then
your knowledge is meager and unsatistactory.”

The fundamental goal of metrics is to
gather data from an historical perspective,
analyze the data, and formulate a methodology of
predicting future performance of similar
developments. In this project, the Government
desires to prospectively determine the
incremental costs of the full-scale Phase | effort.
The Government needs to more accurately
forecast the cost and schedule of this
development project. Adequate funds must be
programmed, and more importantly, defended to
assure development completion. Once funds are
budgeted, programmed and provided to the
project office, then the amount of work to be
tasked to the contractor can be properly scoped
using the metric data. Schedules must be known
to assure ease of transition at each of the Army
supported WWMCCS sites. Many sites require
long-term planning to assure proper integration of
implementation scheduling.

Metrics data can also be used by the Army
(Government) to evaluate how much IV&V effort is
required for a particular deveiopment. Analysis of
the data can help direct the proper application of
the IV&V effort available. Metrics can then be
used to determine when the IV&V effort has
achieved "acceptable” results.

From the TRW (Contractor) point of view,
metrics provide a baseline against which
resource, requirements, schedules, and risks can
-be identified, corrective actions evaluated,
performance measured, and success achieved.
Quality may be evaluated prospectively. The
availability of good metrics will permit TRW to
respond quicker and more accurately to the
development scheduled required by the Army.
The resultant improvement in planning will yield
better resource utilization and, therefore, lower
costs.
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Although there may be ditferences
between the Government and the contractor in
where sub-optimization can or should be
achieved, the end goal of success is common and
predominant. Effective utilization of metrics
requires both the Government and the contractor
to believe the viability of the metrics and be
willing to use them as a significant basis for
forecasting, scheduling, planning, and control.
Metrics can help alleviate the fears and fantasy
associated with Ada [BAMB87].

Metrics are of little value without definition
and control of the context in which they are
developed. In recognition of this, the Army
required several early products in Phase | to
establish the proper foundation for Phase l. TRW
also, recognized this and invested during Phase |
in the creation of a processing and development
environment sufficiently robust to support Phase
18

In the area of control, the objective is to
estabiish a feed-forward mechanism rather than a
feed-back mechanism of control. This provides
the Program Manager with an ability to "steer” the
project to the desired goal, rather than recovering
after the fact.

Among the first products 10 be produced
were a description of the design methodology
and a Software Standards and Procedures
Manual. Another early product was a study that
led to the selection of an APSE, including the
initial tool set. A risk management program,
configuration control system, quality evaluation
program, and metrics development program were
all started very early in Phase I.

With all the components in place, a
preselected subset of a Functional Description
was implemented to verify the foundation and
provide for appropriate refinements where the
processes, procedures, and controls were found
lacking. Strict configuration management control
was exercised at all times.

The design, development, test, and
delivery of Ada software may span a period from
several months to several years depending on
the size and complexity of the application.
Metrics which are not available until after program
completion are of little benefit. AWIS has chosen
the seven software development phases of DOD
8TD-2167 to provide the first level of
decomposition of activities and performance. The
intent is that the Metrics at the end of the

-y

AN :
B TG ORI AN G P AL A L ARG A A g

N
3




Requirements Analysis, Preliminary Design,
Detailed Design, Code and Unit Test, CSC
Integration and Test, CSCI Integration and Test,
and DT&E will provide the ability to evaluate
performance on the phase being completed and
adjust, as necessary, the expectation for
subsequent phases.

When the retrospective data is meager,
there is initially a need to "over-collect” data and
perform analysis to discover the highly leveraged
factors that should constitute the final Metrics set.
As analysis determines low correlation of the
factors to performance measurement and/or the
ability to impact performance using those factors,
they are discarded. Where two or more factors
are interdependent and sensitive to the same
management actions, they are either combined or
the most appropriate factor is selected for
continued data collection. AWIS is in the initial
stages of this determination.

There is a need to have a high degree of
automation in the Metrics program to assure
timeliness of results and to minimize the cost of
the Metrics activities on life cycle costs. AWIS has
used available tools where ever possible to
support the metrics activities. Since insufficient
data points are available to determine the final
metrics set, only a small number of specialized
tools are currently being applied to AWIS.

Preliminary methodologies and results
from this foundation phase are presented in two
areas: Productivity and Quality. Continued
refinements to the methodologies and procedures
are obviously required and are on-going.

ERODUCTIVITY

It was decided early-on that the lack of
global retrospective data for Ada developed
under DOD STD-2167 guidelines required AWIS
to collect and analyze detailed data in a variety of
areas. To facilitate this data collection and
analysis, a generic model was developed and is
presented in Figure 1. The project was
segmented into the seven software development
phases described in DOD STD-2167. Using this
generic model, a mini-model is developed for
each of the phases. Each mini-model has its own
set of algorithms and is constrained so that the
output of one mini-model provides the input to the
next mini-model.

FIGURE 1 - METRICS MODEL

The Metrics model permits data to be
collected at each of the development phases and
still be aggregated over any contiguous number
of phases. Thus, the resulting metrics at the end
of any phase provide for retrospective analysis,
adjustment, and a prospective ook at succeeding
phases of the total software development cycle.

In the first phase of software development,
the input products are the System Specifications
and the Functional Description (FD). The output
of the first phase is the Software Requirements
Specification. The Software Requirements
Specification is aiso the input to the second
phase which is Preliminary Design. The process
flow continues in this manner through the total
software development cycie.

The Functional Description provided to
TRW by the Army describes the functionality of the
system through a series of ADP events. The data
flows in the FD associated with an event are
translated into data flows for the SRS. The data
flows lead to sub-programs as described in the
Software Top Level Design Document at
preliminary design. Figure 2 shows the
correlation between these parameters on the

selected subset of events implemented in Phase
1.

One of the goals of AWIS is to provide an
Ada Cost/Scheduling Model. For most models
that exist today, there is a requirement to estimate
the lines of code or the number of units to be
developed. This is one of the more imprecise
requirements in the process. There has been
evidence for some time [BEL 76] that over the life
cycle of a software product, the number of
"modules™ has an impact on effort expended to
maintain and enhance the product. Other product
parameters may also have a bearing on life cycle
costs.
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¥ AWIS has the fundamental tool set
it ) necessary to support the collection on analysis of
. SOFTWARE REQUIREMENTS ANALYSIS productivity metrics. This tool set will be
“ “ - augmented as the most meaningful metrics are
*‘2 - determined and as automation is determined to
X d be cost effective.
W : o
+ -
0 H The Complexity Measures Tool (CMT), by
e H EVB Software Engineering produces a count of
a the lines of code (Blanks, Comments, Executable
~ H Lines, Data Declarations, and Total Physical
.:n Lines). Additionally, it computes the McCabe
of cyclomatic complexity metric and the fifteen
:\ Halstead Software Science Metrics.
i:’ . n
DATA FLOWS IH Fl
rearEson v o A tool has been developed by AWIS to tally
. DATA FLOW IN SRS « 151 * DATA FLOWS IN 50 numbers of Ada type declarations, Ada sub-
i POWER OF RELATIONSHIP (A 3) u Te% N - "
K program declarations, and "WITH" clauses. The
0 PRELIMINARY DESIGN counts from this tool also supports the
I o determination of Ada design complexity
Q) o T indicators.
?.. 104
t "
; g o The accounting utility of the development
. 2 vl processor is used to collect data on AWIS CPU
L z usage, connect time, storage, page faults, and /0.
3:.. § - These data support both the analysis of
Y H :;: development resources consumed and the
4] £ determination of sizing and timing data.
3 :i
X . AWIS uses Change and Configuration
3 o oa Contro! by SOFTOOL Corporation in support of
j H5-—rcﬁ‘ L A A LI basic configuration management.
j : D‘AYA FLOWS IN SRS
J REGRESSION EQUATION IS:
t NUMBER OF suan:%c:l:;u:;u“s&g%;sﬂill(-“ r;;\r.A.;;ows 1N SRS + 0.95 Lotus 1-2-3 on the IBM PC supports
analysis and reporting. STATPAK (PC) provides
8 COMPOSITE TRANSFORMATION regression analysis.
by " -
:‘. 1] AWIS collects and controls costs and
; " " schedules using Cost//Schedule Control System
; 3 ol Criteria delineated in DODI 7000.2. The Work
8 10 o Breakdown Structure provides the cost
g = accumulation and scheduling framework and
R - . o supports the calculation of productivity measures.
) c 10- o The WBS is consistent with the selection of the
X g ’- o o DOD STD-2167 software development phases for
K z . o o o productivity calculations. Modifications and
, o g extensions of the WBS have been required at
N si R 5 lower levels for more detailed cost collection.
4
H 3 L O T T T
: x-AclulLsuumzcmM:Ms QATA FLOWS IN FO The establishment of schedule networks
, o 2 EQUATION 1S: and critical path analysis is further supported by
R R OF S oF RELATIGNSHIP (8 By s g3 o " the use of ARTEMIS.
F FIGURE 2 - METRICS CORRELATION
4
;\
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No code is generated during the
requirements phase. However, because of the
use of ADL for design, lines of code are
generated during preliminary design. AWIS is
developing a profile of productivity on a weekly
basis. An example is shown in Figure 3 for the
period from the start of development to CDR.
Attention is called to the decrease occurring at
226 Days After Contract. This decrease resulted
from a simplification implemented during design
which permitted the removal of code. The
reduction in productivity 268 DAC resulted from
no code being produced during CDR. Similar
anomalies have provided insight into the impact
of various technical and management decisions.
The full impact of such visibility is as yet unknown,
but value has already been realized.

. g §f
IR}
9 I | HE
i :
R R R EEER §§

POR{ 194 | 3052 | 10387 | 455 | 5298 | 21742( 5753 | 45.01| 128
219 1 4650 | 14154 | 776 | 6016 | 2750S) 6792 54.43] 125
226 | 5022 16123 | 813 | 5572 | 30542} 6385 | 56.64] 113
233 | 4575 14959 | 740 | 4907 [ 27953 5721 ] 59,40/ 96
240 | 4941 | 14748 | 676 | 5496 | 20098] 6172 | 62.43| 99
247 { 5339 | 16582 | 955 | 5838 |31452| 6793 | 64.92{ 105
254 | 6572 22491 1421 | 7945 | 52407| 9376 | 65.90] 142
COR| 261 | 6855] 36670 |1518 | 8216 | 57373] 9734 | 67.11| 145
268 | 6855 | 36670 1518 | 8216 | 57353] 9734 | 89.95| 139
275 | 6961 | 35586 10186 | 8059 | 56952] 9875 | 72.11] 136

“Men-Hours Inciude time apent on
non-deliverable software lools deveioped

FIGURE 3 - PRODUCTIVITY

Productivity increases to a peak at the
completion of coding then decreases through unit
test and subsequent activities. When sufficient
data points are available, the profiles will be used
to evaluate current progress against estimates for
developing end-item software.  Significant
variation in profiles and levels of productivity will
be used as triggers for futher management
evaluation.

QUALITY

Quality evaluation is a requirement of the
AWIS program. The areas of concern are shown
in Figure 4. Again, it was decided that data
should be collected against the software
development phases as described in DOD-STD-
2167. It was determined that the Automated
Measurement System (AMS) [RAD85] was the
best tool available for use as the fundamental tool
for this analysis. AMS instruments the RADC
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Software Techology for Adaptable, Reliable
Systems (STARS) framework for the 13 quality
factors shown in Figure 4. AMS is used by the
quality evaluation team to assess the software
quality at the end of each software development
phase.

Design - How valid is the design?
- Correctness
- Maintainability
- Verifiability
Performance - How well does it function?
- Efficiency
- Integrity
- Reliability
- Survivability
- Usability
Adaptation - How adaptable is it?
- Expandability
- Flexibility
- Interoperability
- Portability
- Reusability

FIGURE 4 - QUALITY CONCERNS

The methodology employed appears to
have merit in "scoring” each of the "ilities”. It does
not yield quantified results on such parameters as
reliability, survivability, efficiency, etc. Significant
tailoring to the question set has been required for
an Ada/Object Oriented Design environment.
Problems have been encountered with some of
the algorithms. Also, as a new tool and
methodology, some problems have occurred with
TRW's implementation.

During the first phases, the quality
evaluation scoring lacked sufficient discrimination
in some of the metrics, e.g., scores of 1.0. The
question sets will be reviewed for the introduction
of more sensitivity where possible.

Figure 5 shows the population from which
quality evaluated metrics were developed during
the Detailed Design Phase.

Number Metrics

I |Distin
CSClI 1 1 57
TLCSC 5 4 10
LLCSC 32 21 10
UNITS 216 22 118

FIGURE 5 - CDR METRICS POPULATION
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Analysis of the metrics yielded the scoring
shown in Figure 6. Several anomalies were
evident. As an example, the reliability score was
a surprise. Subsequent analysis identified
several problems with the tool and/or its
application. Several questions assumed strict
design rather than Object Oriented Design.
Several questions relative to Units were
misapplied at a higher level. Several formulas
were found to be faulty.

DETAILED

IMPORTANCE EACTOR DESIGN SCORE

HIGHEST CORRECTNESS 0.92

VERIFIABILITY 0.712
RELIABILITY 0.64
USEABILITY 0.99
REUSEABILITY 0.72
PORTABILITY 0.89
MAINTAINABILITY 0.7%
EFFICIENCY 0.81
INTEGRITY N/A

EXPANDABILITY 0.61
FLEXIBILITY 0.65
INTEROPERABILITY 0.82
LOWEST SURVIVABILITY 0.87

FIGURE 6 - CDR QUALITY FACTOR CALCULATION

The question set was altered and the
application adjusted, and the formulas corrected.
Re-evaluation yielded the results shown in Figure
7. Work continues to evaluate the other factors.

ACCURACY (AC)
= N/A THIS PHASE
ANOMOLY (AM)
= AVE (ERROR TOLERANCE/CONTROL = 1.0

HANDLING IMPROPER INPUT DATA = 0.94
HANDLING COMPUTATIONAL FAILURES = 0.97)

=0.97

SIMPLICITY (SI)

= AVE (DESIGN STRUCTURE = 0.80
STRUCTURED LANGUAGE = 1.00
CODING SIMPLICITY = 0.95
SPECIFICITY = 0.97)

RELIABILITY (RE)
= AVE (AC, AM, SI) = 0.95

FIGURE 7 - REVISED CDR RELIABILITY FACTOR
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Conclusions at this stage are that the
concepts are good. Considerable work is
required on both the questions and the formulas.
The results should be interpreted as grades only.
AMS provides more available metrics than are
required. Analysis for eliminating some metrics
and reduction of the question set for others is
underway.

This tool is less mature than was expected,
but the methodology appears to offer long term
benefits. AMS should become more useful as its
usage by other projects increases. As a scoring
system, it still lacks a solid baseline against which
to interpret the "goodness” or "acceptability” of
results in the achievement of project
requirements. It does not replace the need for the
more conventional quality assurance metrics but
does appear to augment the prospective value of
indicators. Actual values for the factors still need
to be derived during testing and usage of the
product.

CONCLUSION

The management of “first" projects
represents some unique and many distinct
challenges. The AWIS software development
project is facing those unique challenges head
on. In the area of metrics, a program is well in
place but has only scratched the surface in the
resolution of this elusive problem. Advances
have been made and set backs have been
encountered. The net thus far has been positive.
Work continues because the cost benefit
potentials are high.

With all the attention being given the
subject, the availability of global Ada metrics
should grow rapidly. In two or three years, a
project such as AWIS will no longer be
categorized as a "firsts” project.
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Experience Using an Automated Metrics Framework
in the Review of Ada Source for WIS

J. D. Anderson and J. A. Perkins

Dynamics Research Corporation ]
60 Frontage Road, Andover, MA 01810

1. INTRODUCTION

ABSTRACT

Analysis of the WIS Ada source code Dynamics Research Corporation (DRC) has

W involved applying an automated, hier- developed an Ada Measurement and Analysis OO
archical, Ada-specific software metrics Tool, ADAMAT, designed to use software At
framework to approximately 200,000 lines metrics analysis to improve the quality of

» of Air Force-supplied Ada source. The Ada software. The metrics in the frame- T

1 purpose of the analysis was to aid the Air work used by ADAMAT are automated, hier- :ﬂq*ﬁ

' Force in identification of the char- archical, and Ada-specific. Each low- X

A acteristics of the code that detract level metric in the framework is: !J¢¢¢§

: unnecessarily from reliability, maintain- 1) based on an underlying software quality %b%“%

. ability, and portability. The software principle, 2) defined in terms of specific ?ﬂ?pv
was analyzed during the initial phase of features of the Ada language, and NUANN

. code development to insure that sufficient 3) documented to indicate both the w3

! time would be allotted for the elimination rationale for the metric and the method )

0 of undesired characteristics. for improvement of software when the hﬁﬁﬂ?

n quality problem related to the metric is PRty
DRC's Ada metrics framework measures three detected [Keller 85, Perkins 85]. QRO

', software factors, six software criteria, AT

' and 150 software metric elements, where In previous studies, involving analysis of 'ﬁﬂﬁﬁ

‘ each metric element relates a software Ada code developed at DRC [Perkins 86] and EMER
quality principle to the use of specific Ada code supplied by the Naval Underwater ,

: features of the Ada language. System Center [Perkins 87], we illustrated -/5*'m

. the usefulness of automated Ada-specific Ty

Y The analysis of the Air Force-supplied Ada metrics for the detection of quality % ﬂhk‘

» source involved: 1) automated calculation problems; the identification of specific P\g ﬁ

» of metric scores for the supplied source, Ada features, indicating where training of ﬁ}u&n

’ 2) human analysis of the metric scores to Ada software personnel is required; and Rﬂ?‘ﬂ
determine those characteristics that the improvement of quality of Ada f et

\ augment or attenuate quality and to software. In this paper, describing DRC's |

" formulate recommendations on how to metric-based analysis of Ada source i
enhance quality, 3) modification of two performed for Air Force Electronic Systems ‘Q'(F

: modules of the supplied source to Division (ESD), we discuss the :ﬁ¥h§

A illustrate the impact of our recom- effectiveness of metrics as an aid to %ﬁ#\
mendations, and 4) reporting of the reviewing the quality of large Ada code Yy \eﬁ
findings to the Air Force. segments. '\":

i

' TRe
X KEYWORDS .:::.;S:.v
R ] _ ADAMAT o N
! software metrics, software quality, Ada, ADAMATALL ‘ lg‘:' :

software principles, software tools COMMAND et
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Our work for ESD involved —collecting
metric scores for approximately 200,000
text lines of Air Force-supplied Ada
source, analyzing these metric scores to
determine those characteristics of the
source that augment or attenuate quality,
and reporting our findings and
recommendations to the Air Force. This
work was performed during the early stages
of code development to provide ample time
for the Air Force and the software
contractor to review our report and react
to the recommendations. This helped to
insure that those characteristics of the
source considered by the Air Force as
unnecessarily detracting from reliability,
maintainability, and portability could be
eliminated from the software by the
software contractor prior to the start of
the testing phase. OQur analysis was
limited to a fixed time period in the life
cycle of this source, with no regard to
the previous history of the source.

For this study, the meaning of the term
"quality" is limited to three software
factors: reliability, maintainability,
and portability. These  factors are
measured with respect to the following six
criteria:

Anomaly Management,

Independence,

Modularity,

Self Descriptiveness,

Simplicity, and

System Clarity,

where each of these criteria is further
defined in terms of low-level metric
elements.

The investigation involved the following
steps:

000000

o Automated data collection (Section 2.1)
and metric score calculation (Section
2.2) for each of the files constituting
the Ada source, and the reporting of
metric scores (Section 2.3) in three
views: for each of the 335 files, for
the 75 distinct higher-level groupings
of those files, and for the composition
of all the files,

o Recommendations on how to improve the
quality of the Ada source with respect
to each of the six software criteria
(Section 3.1),

o Analysis to determine those char-
acteristics of the Ada source that
enhance these criteria and those that
raise quality concerns (Section 3.2),
and

o Modification of two selected modules to
illustrate the impact of incorporating
the complete set of recommendations with
respect to reliability, maintainability,
and portability. (Section 3.3).

»£Y A ¥ V.Y iy ¥ Y & {
DORCRMILMOOUCI NN K e A A abetnSy '{‘A.!‘A'!‘(‘!‘I‘{‘t‘!‘|‘!‘t'!‘\'!‘!|:‘l'! l‘!‘l‘t'l‘e‘l.. DO o Ui M My

2. AUTOMATED COLLECTION AND CALCULATION

Our metric analysis started with receipt
from the Air Force of a tape containing
335 separate files of compilable Ada
source. Our initial objective was to
calculate and report metric scores for
each of these 335 files, for the 75
distinct groupings of these files, and for
the Ada source as a whole (as a "336th
file). The production of the desired 411
metrics reports required three steps: 1)
collecting data items for each file, 2)
calculating metrics scores for each file
and each group of files, and 3) producing
the hard-copy reports for each resulting
set of metric scores (Figure 2). Each of
these steps was automated using the three
principal components of ADAMAT - COUNT,
ANALYZE, and REPORT (Figure 1).

:

TOTAL METRIC NAME
* anomaly management
user_exceptions_raised

4947 user_types
applicative_declarstions
constrained_variant_records
loop_normal
constrained_subtype
default_initialization

independence

X RE
&

tati defi

d_attributes

.o.o.§000

nu_pr;mnl_in'.erf:cc
bt Pl

P _dependent_pragms
no_component_clause_f{or_record_types
no_length_clause_for_storage_size
no_length_clause_for_size
numeric_type_declarations
numeric_constant_declarations
no_pragma_pack
macharithindependence
no_min_int
no_max_int

modularity
no_multiple_type_declaration
block_declarations
limited_size_profile
no_variable_declarations_in_specifications
user_defined_operstions
private_types

self_descriptiveness
no_predefined_words
number_of_commented_declarations

ber_of_ ted_stat +
number_of_commented_bodies
ber_of_com ted_specifications
simplicity
declarations_contain_literals
array_range_explicit
subtype_declarations_explicit
array_type_declarations_explicit
system_clarity
qualified_aggregate
named_aggregate
named_exite
module_end_with_name
named_blocks
named_loops
single_object_declaration_lists
timited_private_access_types
no_default_mode_parameters
for_loops_with_type
no_while_loops
expressions_parenthesized
non_negated_boolean_expr

0§¢§000...c..5.0§
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FIGURE 2 ABBREVIATED METRICS REPORT FOR COMPOSITION
OF ALL FILES
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2.1 COLLECTION OF DATA ITEMS

The first step in the automated portion of
the metrics analysis is collection of data
item counts. "Data item” is the
classification given to the lowest
elements in DRC's metrics hierarchy
(Figure 3). COUNT parses a file of
compilable Ada software to produce a set
of data item counts for that code. Each
data item count is an integer value
indicating the number of occurrences in
the source of a specific feature of the
Ada language. The data items are actually
collected by module for each file; as a
result, later recommendations may focus on
the specific modules of the software.
"Module" is used here to mean the
specification or body of a generic or non-
generic function, procedure, task, or
package.

SOFTWARE - ORIENTED
TERM3

FACTOR — CRITERION~—— SUBCRITERION . . .

CRITERION ~ SUBCRITERION . . .
SUBCRITERION — METRIC ELEMENT . ..

FACTOR — CRITERION — SUBCRITERION — METRIC ELEMENT . . .

METRIC ELEMENT — DATA ITEM

DATA ITEM

METRICS J

FRAME ELEMENTS

FIGURE 3 HIERARCHICAL STRUCTURE OF THE METRICS
FRAMEWORK SUPPORTS MEASUREMENT OF
SOFTWARE QUALITY

Producing the 335 sets of data item counts
required for this work necessitated 335
runs of COUNT; each of the 335 files was
processed individually (Figure 4).

INPUT COMPONENT OUTPUT

filel count di, set of data item counts for file 1
file 2 count d2, set of data item counts for file 2
ﬁle 335 .cc.n'mt ;15515. set of data item counts for file 335
FIGURE 4 COLLECTION OF DATA ITEMS
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2.2 CALCULATION OF METRIC SCORES

The second stage in the automated portion
of metric analysis is calculation of
metrics  scores. "Metric"” is the
classification given to all elements in
the metrics hierarchy that occur at any
level above data items. Metrics are
subdivided into factors, criteria,
subcriteria, and metric-elements (See
Figure 3). ANALYZE calculates a single
set of metric scores from one or more sets
of data item counts, where each metric
score is an ordered pair (good, total) of
integer values indicating the number of
"proper"” occurrences and the number of
"total®” occurrences of specific features
of the Ada language present in the source.
This ability to process multiple sets of
data item counts allows the calculation of
metric scores for a grouping of files
without requiring the files to be composed
at the source level,

Producing the 411 sets of metric scores
required for this work necessitated 411
runs of ANALYZE. The data item counts for
each of the 335 files, the composition of
the data item counts for the files of each
of the 75 distinct groupings, and the
composition of data items of all 335 files
were processed to produce the sets of
metrics scores (Figure 5).

INPUT COMPONENT OUTPUT

d1 analyze ml, metrics scores for file 1

d2 analyze m2, metrics scores for file 2
4335 ;;;u'alyze m335, metrics scores for file 335

dl .. dj analyze nl, metrics scores for group 1
dj+1..dk analyze n2 metrics scores for group 2

dx+1..d335 ;c;\;ﬂyze n75 metrics scores for group 75

dl...d335 analyze ¢, metrics scores for
composition of all files

FIGURF 5 CALCUATION OF METRICS SCORES

2.3 PRODUCTION OF HARD-COPY REPORTS

The third stage in the automated portion
of metric analysis 1is production of the
hard-copy reports containing the metrics
scores, REPORT produces a single for-
matted, hard-copy, metrics report from one
or more sets of metric scores, and the
corresponding data item counts. The
ability to process multiple sets of metric
scores allows the comparison of sets of
metric scores in a single report. The
form and content of the report may be
controlled by the user/analyst.
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We chose to report only those metric
scores where the number of "proper”
occurrences was less than the number of
"total" occurrences, and not to report the
individual data item counts. These
restrictions allowed the metric-based
human analysis that followed to focus
quickly on “"improper" occurrences, and
guaranteed that the size of any report
would be independent of the number of
modules in a given file (recall that
although data items are collected on a
module basis, the metric scores are
calculated on a file basis). The infor-
mation lost by omitting the data item
counts from the report is relatively small
since numbers of proper and total
occurrences for a metric-element are made
up of the counts of the associated data
items. 411 runs of REPORT produced the
411 metric reports required by this work,
in other words, one run for each set of
scores produced by ANALYZE (Figure 6).

INPUT COMPONENT OUTPUT

ml report metrics report for file 1

m2 report metrics report for file 2
ma3s ;é;;ort metrics report for file 335
nl Teport metrics report for group 1
n75 .n;;;ort metrics report for group 75
¢ report metrics report for

composition of all files

FIGURE 6 PRODUCTION OF HARDCOPY REPORTS

To produce comparison reports, for example
the metric scores for each grouping
compared to the scores of the individual
files in that grouping, would have
required an additional 76 runs of REPORT;
one run for each grouping (Figure 7).

INPUT COMPONENT OUTPUT

dl,..dj, nl compare metrics report for
comparison of group 1 to
filel .. filej

dnet .. d335, n75 ;:c;rﬁpare metrics report for
comparison of group 75 te
file n+1 . . file 335

¢,nl..n75 compare metrics report for the
comparison of group 1 . .
group 75 to the Ada source as
a whole

FIGURE 7 PRODUCTION OF COMPARISON REPORTS

3. METRIC-BASED HUMAN ANALYSIS

This section discusses how human analysis
of the generated metric scores provided a
means of outlining metric-by-metric
potential non-adherence to accepted
software quality principles and of
identifying overall characteristics of the
code which augment or attenuate quality.

3.1 METRIC-BY-METRIC ANALYSIS

The metric scores generated for the
composition of an entire set of supplied
files (ALL report) was reviewed, metric-
element by metric-element. Since each
metric-element of our framework is
associated with a software quality
principle, the metric scores provided a
means of measuring the extent to which the
code adheres to these principles.

Of the 153 metric-elements examined, 45
metric scores indicated a level of
potential non-adherence sufficient to
warrant further analysis. Of these, 12
metric scores, two for each of the six
criteria, have been chosen for discussion
in this paper. Each discussion contains a
definition of the metric, the rationale
for the metric, and the actual score the
supplied code achieved.

The metric reports for each of the
individual files allowed us to quickly
locate code containing actual examples of
non-adherence. The analysis of these code
segments involved trying to determine the
reason for non-adherence, the negative
effects of non-adherence if any, and
making sample modifications to the code to
see the actual effects of obtaining
adherence to the criteria. Each of the
chosen metric elements are discussed below
according to the criterion with which they
are associated.

For anomaly management,

o user_types: the proportion of type or
subtype references to user-defined types
rather than pre-defined types.

Variables, constants, and parameters
were declared in terms of system-defined
types. Declaring objects in terms of
system defined types is not recommended
because the effectiveness of strong type
checking and range checking features of
Ada is reduced. The score for this
metric over all files was (13278, 14947)
or B89%.
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. o constrained subtypes: the proportion of The presence of multiple types in a
T subtype declarations containing a package may indicate that conceptually
constraint. Subtypes were declared different objects are being defined in a
without constraints. In most instances, single package. The need to reference
Y declaring a subtype without a constraint any of these objects results in the
L provides no advantages beyond those ability to access all of these objects
K already provided by the base type, in even when such access is not desired.
N terms of strong type checking or range The score for this metric was (93,153)
Y checking. This again reduces the or 61%.
o effectiveness of the range checking
. features of Ada. o private_types: the proportion of types
declared in the non-private part of the
. As a related consequence, it should be package specifications that are declared
Q noted that frequent use of such as private or limited private.
¢ subtyping without range may indicate
3 that a parent type is being used to Non-private composite types in package
J group conceptually different but specifications wusually indicate a lack
, structurally similar objects, resulting of information hiding. Every user of
8 in loss of advantages which could be the package is dependent wupon the
gained from Ada's type checking. The underlying data structure used to
score for this metric was (366, 470) or represent objects, Consequently, any
;4 78%. changes made in the data structure will
A require changes by the users. Score for
! this metric was (95, 992) or 10%.

For Independence,

2 numeric_type_declarations: the propor- For Self Descriptiveness,
tion of numeric type declarations which -
are declared without using an associated o no_predefined words: the proportion of
) explicit type. names for packages, subprograms, types
‘ r r ’
W ] . subtypes, blocks, loops, constants,
o Most of the numeric type declarations variables, numbers, parameters, excep-
o reference system-defined types. Refer- tions, enumeration literals, loop
“ ences to the system defined types force parameters, entries, and components that
’ the compiler to use system-specific are not predefined names.
representation which may differ from
I machine to machine. The score for this The reuse of a system-supplied name is
'y metric was (2,10) or  20%. The not recommended because the reader of
) occurrence of only 10 numeric type dec- the code may be confused as to whether
! larations in a program of this size is the name refers to a user-defined or
) an indication that the numeric types system-defined object. Score for this
i supplied by package STANDARD are being metr’~ was (27068, 28153) or 96%.
overused. In fact, most of the refer-
. ences to system types recorded by the o number_of_commented_bodies: the propor-
o user-types metric are because of the tion of “package bodies, task bodies,
¥ reliance on type INTEGER. subprogram bodies, subunits, and body
N stubs that are commented.
N o no_component clause_for_record_types:
X the proportion of record type declar- Lack of commenting of bodies increases
¢ ations that do not contain a component the difficulty of understanding the
clause. functionality of the software. Score
. for this metric was (1463, 2559) or 57%.
¢ Component clauses create dependency on
. the word-size of the target machine. 1In
'y those cases where component clauses are

; justified, comments should be added to
; indicate the precise reason for their
» use, The score for this metric was
(572, 594) or 96%.

For Modularity,

o no_multiple type decls_in_package_spec:

‘ the proportion of package specifications
! containing less than two type declar-
ations.
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For Simplicity,

o declarations_contain_literals: the pro-
portion of referenced numeric literals
referenced in constant declarations and
type declarations

Using literals in the non-declarative
portion of a program reduces clarity and

increases the likelihood that a change
to a literal will not 1lead to the
appropriate modifications of other

occurrences of that literal or that
changes to identical literals may result

in unintended changes to different
objects. Score for this metric was
(3707, 13347) or 28%.

o explicit_array_types: the proportion of
array type declarations which are non-
anonymous.

An anonymous array type declaration is
of the form: "<identifier_list> :
array <index_definition> of
<subtype_indication> ..". Declaration
of an 1mplicit array type eliminates the

ability to declare parameters,
constants, and multiple variables of
that type. Score for this metric was
(175, 200) or 80%.

For System Clarity,

o named_blocks: the propertion of blocks

that are named.

Lack of block identification results in
structural, rather than a declared,
association of the block BEGIN to block
END. Score for this metric was
(262,776) or 34%.

o default_mode_parameters: the proportion

of IN “or default mode parameters to a
procedure explicitly specified as |IN
mode.

The lack of explicit specification of a
parameter mode increases the likelihood
that a parameter, intended to be OUT or
IN OUuT, 1is defaulted to IN mode. The
score for this metric was (3055,3120) or
98%.

3.2 IDENTIFICATION OF CHARACTERISTICS

scores
overall
augment

Our analysis of individual metric
allowed the identification of

characteristics of the code which

or attenuate quality.

3.2.1 AUGMENTATION OF QUALITY

The following characteristics that augment
quality were identified:

Our metrics for anomaly management showed
that the software does not use the PRAGMA
SUPPRESS, and does use the exception
mechanism and type mechanisms of Ada.

The independence metrics indicated that
the software does not use machine code
statements, address clauses, alignment
clauses,or floating point or fixed point
types.

The scores for modularity showed that the
library and package mechanisms are
effectively used, and that subprograms are
parameterized,

The self-descriptiveness metrics indicated
that the identifiers have meaningful
names, and that package specifications are
well-documented.

The simplicity metrics showed that GOTO
and ABORT statements are not being used,
and the number of branches and level
nesting within subprograms are not

excessive.
The system clarity metrics indicated that

the qualification and naming mechanisms of
Ada are being used.

3.2.2 ATTENUATION OF QUALITY

The following characteristics that

attenuate quality were identified:

The software is heavily dependent on the
Ada system-defined integer types. In most
cases, this dependency seems unjustified.
Replacing the use of system-types by user-
defined types is recommended.

heavily dependent on
implementation-defined pragmas and
attributes, and on compiler and machine-
dependent clauses and pragmas. In most
instances, these dependencies seem
justified and are well isolated. However,
the occurrences of such features are well
commented to indicate the precise reason
for their use.

The software is

The software is heavily dependent on pack-

age specifications providing access to
system-supplied operators, In nany
instances, composite types are not
declared as PRIVATE. This extensive

dependency of "WITHers" of packages on the
underlying data structures seems
unjustified. Composite types should be
declared as PRIVATE.
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The software is heavily dependent on a few
packages that declare many types, In
general, the declaration of so many types
in a single package seems unjustified.
These packages should be decomposed into
smaller packages.

The software is heavily dependent on
numerical literals in the executable part
of the software. There seems to be no
justification for this. Constants should
be declared to represent these literals.

The software is heavily dependent on
implicit types and subtypes. 1In general,
there seems to be no justification for
this situation. Explicit types and
subtypes should be declared.

In most instances, the package
specifications and bodies are well
commented. However, there are  many
uncommented procedures, functions, and
tasks. More commenting is recommended.

In general, the delineation of the
structure of the supplied software is not
difficult. However, more extensive use of
qualification, naming of structures, and
parenthesized expressions would be
beneficial.

3.3 MODIFICATION OF SELECTED MODULES

Two modules of the supplied source were
modified using the findings of the metric
analysis. The modifications focused on
the 45 metric scores warranting further
analysis; however, non-adherence to
principles associated with other metrics
was addressed.

Most of the changes were straight-forward
and required very little modification to
the basic structure of the code., However,
two of the most interesting changes did
require structural modification,

The first instance of such change occurred
in association with a loop, which contains
references to 6 variables. One of these
variables was accumulating the sum. One
was used to hold the sign. The other four
were assigned values that depended only on
the current iteration of the 1loop. The
original structure of the module required
careful analysis to determine that 1) the
value of the sign was evaluated during the
first iteration of the loop, unchanged
during successive iterations, and
referenced during each iteration and
2) the current values of the other four
variables were not in any way effected by
their previous values. To enhance
clarification, the code was modified by
placing a block inside the 1loop and
declaring these four non-recurrent
variables there.
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The other instance of such a change
involved the functions inside a package
body. As the suggested modifications were
added to each of the functions within the
package body, it became apparent that each
of the functions was of the same general
form, that of performing a search. If the
search succeeded, an index indicating the
position of the desired element was
returned; otherwise an exception was being
raised. The modification consisted of
creating a generic search function with
two generic parameters. The first
parameter was the type of the index and
the second was a function which evaluated
the search condition based on the value of
the index. All of the original functions
wvere modified to define a function for the
search condition, to instantiate the
generic function, and to return the index
value of this instantiated function.

4. REPORT DELIVERED TO AIR FORCE

The recommendations of the metric-based
human analysis and and the hard-copy
metric reports generated by ADAMAT were
delivered to the Air Force, thereby
allowing our findings to be integrated
into their review process.

The Air Force also received a copy of the
ADAMAT Reference Manual, our guide to the
interpretation of the metric scores.
Figures 8 and 9 show actual pages from
this manual.

4.1 REPORT QF HUMAN ANALYSIS

The report of the metric-based human
analysis of the Ada source contains three
major segments. The first segment
summarizes the characteristics of the
overall code that augment or attenuate
quality and the metric scores that support
these findings. Figures 10, 11, and 2
show abbreviated versions of this summary.

The second segment contains an explanation
of each of the metric scores that
contributed to the summarized findings.
The form of these explanations was similar
to that of the reference manual; however,
the examples were taken directly from the
supplied software. Figures 12 and 13 show
such explanations.

The third segment contains the modified
versions of the two selected modules., The
modifications recommended by the analysis
are incorporated into these modules.
These modifications were performed
specifically to demonstrate the effect
that our suggestions would have on the
code; any actual modifications of these
modules or any other modules of the
supplied software are the responsibility
of the software contractor,
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NO_MULTIPLE_TYPE_DECLARATIONS

-6

The proportion of k spe
declaration.

no more than one type

In some cases, the pi of multiple type declarati in a package
) specification may indicate definition of multiple objects in a single
] package. The need to reference any of these objects will result in the
1 ability to access all of the objects even when such access is not desired.

In other cases, the presence of multiple types may indicate definition of
a single object structurally too complex for representation by a single
data type. The object represented may require operators not directly
supported by any type and may not require all the operators supported by

the types.

In some cases, multiple type declarations in a package specification
b should be replaced by multiple package specifications that each declare
) a single type. In other cases, one of the multiple type declarations
S should be defined to be private and others should be moved to the private

part of the package specification.

For this metnic, the following has a score of (0,1).

package stack_package is
type stack_range_type is range 1 . . max_stack_size;
type stack_array_type is array (stack_range_type) of
element_type;
type stack_type is
record
stack_array_fld: stack_array_type:
stack_index_fld: stack_range_type:
end record;

The following has a metric score of (1, 0).

package stack_package is
type stack_type is private;
procedure pop_stack
(stack: in out stack_type;
element: out element_type);
procedure push_stack
{stack: in out stack_type;
element: in element_type);
private
type stack_range_type is range 1 . . max_stack_size;
type stack_array_type is array (stack_range_type) of
clement_type,
type stack_type is
record
stack_array_fld: stack_array_type,
stack_index_[d: stack_range_type;
end record;

FIGURE 8 METRICS DEFINITION

NUMERIC_TYPE_DECLARATIONS

The proportion of numenic type declarations which are declared without
using an associated explicit type:

The use of an explicit type forces the compiler to use a system
dependent type. When no type is explicitly used a declared object is of
a universal type. This improves the portability and generality of the
program concerning a declared abject.

Do not use explicit type when declaring a numeric type.

For this metric, the following has a score of (0,1).

type my_integer is new integer;
The following has a metric score of (1, 0).

type my_integer is range - 1E6 . . 1F6;

FIGURES METRICS DEFINITION

Lo ARa kil ndd s

CHARACTERISTICS THAT ENHANCE QUALITY
The software does not suppress the error-detection mechanism of Ada by
using PRAGMA SUPPRESS.

The software does use the EXCEPTION hanism of Ada. E:
are being declared, raised, and handled.

The software does not use hine code stat ts, address cl or
alignment clauses.

The software does not use floating-point or fixed-point types.

The software does use the PACKAGE mechanism of Ada. Only types,
constants, variables, procedures, functions, and tasks relating to the
same high-level conceptual object are encapsulated within a single
PACKAGE.

The software limits the use of the "WITH™ and "USE" mechanism of
Ada. Packages are "WITHed" only when needed.

The software effectively uses the "TYPE" mechanism of Ada.
Enumeration, array, record, variant record, and access types are used
when required.

Functions and subprograms in the sofiware are parameterized.

The identifiers used in the software are given ingful names.
The PACKAGE specifications in the software are well d ted as to
intent.

The software does not use GOTO or ABORT statements.

The number of branches and the level of nesting within modules of the
sofiware are not excessive.

The software does use the qualification and i hani of
Ada. References to elements in "WITHed" PACKAGES are often
qualified; references 1o components of aggregates sre ofien named.

FIGURE 10 AUGMENTED QUALITY LIST

CHARACTERISTICS THAT RAISE QUALITY CONCERNS
The software is heavily d dent on the Ada system-defined integer types.
In most cases, this dependency seems unjustified. Replacing system-
defined types by user-defined types would increase the effectiveness of the
strong type-checking capability of Ada, in the detection of unintended
transfer of values between conceptually-different objects. User-defined
types should be declared to replace these references to system-defined types.

The software is heavily depend on impl tation-defined pragmas
and attributes, and on the iler and hine-depend and
pragmas. In most cases, these dependencies geem justified and are well

isolated. However, for each occurrence of these features, a comment ghould
be added justifying the precise reason for its use.

The software is heavily dependent on package specification providing
access to system-supplies operators. In many instances, composite types
are not declared as PRIVATE. This extensive dependency of "WITHers"
of PACKAGEs on the underlying data structures seems unjustified.
Composite types should be declared as PRIVATE.

The software is heavily depend on a few pack that declare many
types, thereby ereating pling between lly-different objects. In
general, the declaration of so many types in a single package seems
unjustified. These packages should be d d into 11 k

The software is heavily dependent on numerical literals in the executab!-
part of the software. In most cases, this dependency is unjustified.
Constants should be declared to represent these literals, so that multiple uses
of the same literal for different purposes are not confusing.

The software is heavily dependent on implicit types and subtypes. In most
cases, this dependency is unjustified. Explicit types and subtypes should be
declared to replace the implicit types and subtypes, so that references to these
types are possible.

In most instances, the package specifications and bodies are well
commented. However, there are many uncommented procedures,
functions, and tasks. Moreover, comments concerning the declaration of
vnr;ables and constants or the reasons for transfer of control are often
lacking.

In general, delineation of the software structure ia not difficult; hawever,
more extensive use of qualification, naming of structures, and
parenthesized exoressions would be beneficial.

FIGURE 11 ATTENUATED QUALITY LIST
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AVOID MULTIPLE TYPE DECLARATIONS IN PACKAGE
SPECIFICATIONS

There are pack specificati that many type or subtype
declarstions. Out of a total of 153 package specifications, there are 93
package specilications with not more than one type declaration,
resulting in & acore of §1%.

The presence of multiple types in a package may indicate that
conceptually different objects are being defined in a single package.
The need to reference any of these objects results in the ability to access
all of these objects even when such access is not desired.

EXAMPLE: In X25_data

package ACP5250_Types is

typo‘Sylum_Conuol_Remrd_Type
(Control : ACP5250_Parameters_Type : = Link Disabte;
Length : Octet := Control_Record_Length (Link_Disable) )is

record
-$...
type Host_Command_Type
(Command : Host_supervisor_Command_Type : =

Host_System_Control;

Byte_Count : Octet =
Host_Supervisor_Length (Host_System-Countrol);
Control_Count : Control_Count_Type :=

Control_Count_Type'first)
18
record

SAMPLE MODIFICATION:
package system_control_psckage is

typ.e 'éynwm_ConUo]_Recnrd_Type
(Control : ACP5250_Parameters_Type := Link_Disable;
Length : Octet = Control_Record_Length (Link_Disable) ) is
record

package host_command_package is
type'}.lolt_Cummand_Type
(Command : Host-supervisor_Command_Type :=
Host_System_Control;
Byte Count : Octet :=
Host_Supervisor_Length (Host_System_Control);
Control_Count : Control Count Type :=
. Coatrol_Count_Type'first)
is
record

REFERENCE: ADAMAT Reference Manual, Section 3.82, Page 3-85.
FIGURE 12 METRIC EXPLANATION FROM WIS REPORT

AVOID NUMERIC TYPE DECLARATIONS THAT REFERENCE
SYSTEM-DEFINED TYPES

Most of the numeric type declarations reference system-defined types.
There are 2 numeric type declarations that do not reference system-
defined types from a total of 10 numeric type declarations, resulling in a
score of 20%.

References to the system-defined types force the compiler to use system
depeadent types rather than universal types.

EXAMPLE: In WISNAS_Message Types_

type One_Octet_Type is NEW INTEGER range 0. . 255;
for One_Octet_Type SIZE use 8’

type Two_Octet_Type is NEW INTEGER range 0. . 65535;
for Two_Octet_Type'SIZE use 16;

SAMPLE MODIFICATION:

type One_Octet_Type is range 0 .. 255;
for One_Octet Type SIZE use 8;

type Two_Octet_Type isrange 0. . 65535,
for Two_Octet_Type SIZE use 16;

REFERENCE: ADAMAT Reference Manual, Section 2.27, Page 2.29.

FIGURE 13 METRIC EXPLANATION FROM WIS REPORT
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4.2 REPORT OF AUTOMATED ANALYSIS

The report of the automated analysis
consists of the 411 generated metrics
reports, Each of these reports contains

only those metrics with a score "less than
1".  The reports were presented in this
manner to allow the Air Force and the
software contractor to isolate those files
containing code having characteristics
that unnecessarily detract from quality.
Figure 14 shows such a report.

GOOD TOTAL METRIC NAME
. . anomaly management
2 k] user_types
. . applicative_declaratioos
. . default_initialization
. . independence
. macharithindep
. . self_descriptiveness
57 & no_predefined_words
. . number_of_commented_declarations
. . pumber_of_commented_statements
5 6 number_of_commented_bodies
. . pumber_of_commented_specifications
. .
. . simplicity
. . decisions
. . structured_branch_constructs
6 72 declarations_contain_literals
. he array_range_explicit
. . subtype_declarations_explicit
. . calla_to_routines
. . system_clarity
. . qualified_aggregate
i i named_aggregate
. . named_loops
. * single_object_declaration_lists
. . for_loops_with_type
. . no_while_loops
. . expressions_parenth d
. .

non_negated_boolean_expressions

FIGURE 14 ABBREVIATED METRICS REPORT FOR A SINGLE FILE
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5. CONCLUSIONS

Our analysis of Air Force-supplied Ada
source indicates that an automated, hier-
archical, Ada-specific, software metrics
framework is an effective aid in the
review of the quality of large segments of
Ada code.

This work demonstrates that software
metrics are useful for controlling quality
as soon as the first specifications become
compilable. Based on the reported metric
findings, the Air Force was able to direct
the software contractor to eliminate code
characteristics which were deemed by t.e
Air Force to be unnecessarily detracting
from quality. The metrics analysis
provided ESD with a means of addressing
quality concerns in the WIS Ada source
before the code became executable and the
testing results became available,

Proponents of Ada should be encouraged by
the characteristics actually measured in
this large segment of Ada software. The
library, package, type, and exception
mechanisms of Ada are, from a software
engineering perspective, being effectively
utilized. The analysis indicates that
this segment of the WIS software employs
the features of the Ada language in a
manner consistent with the goals,
concepts, and spirit Ada was designed to
support.
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1":“ Abstract: This paper evaluates some of the existing Developing benchmarks for Ada is different from other
o benchmark suites for Ada, namely the Ada Compiler languages because of the RTS which implements
:::l Evaluation Capability (ACEC) test suite, ACM features such as tasking, memory management, interrupt
e Performance Issues Working Group (PIWG) handling, exception handling and others. The task of
o benchmarks, and the University of Michigan determining what is to be measured and how is not
benchmarks. The benchmarks have been analyzed straightforward. Incorrectly designed benchmarl_cs gsed
W with respect to a) evaluating compilers for for real- to select an Ada compiler for embedded applications
Y time embedded applications, b) accuracy of the can cause an application to be doomed from the very
;—‘.u' measurements, ¢) preventing unwanted code beginning. Techniques are needed to ensure the
N‘: optimizations, and d) portability of the benchmarks. accuracy and relevance of benchmarks. It is the
I Areas for which additional benchmarks are needed authors’ view that benchmarks that determine the
:! are identified. implementation characteristics of an Ada RTS are
needed along with benchmarks that measure time and
> space utilization [7].
v
:\l 1. Introduction Recent studies that have reported results of running

n existing benchmarks [1] have been conducted on self-
hosted compilers where it is difficult to predict the

The principal goal of Ada is to provide a language
supporting modern software engineering principles in
the design and development of real-time embedded
systems  software. Unfortunately current  Ada
implementations don’t allow the development of real-
time embedded software reliably and without sacrificing
quality and productivity. The reasons for this are
manifold but the most important ones are a) lack of
certain features in Ada language itself (this issue is
addressed elsewhere [4],[5],16]) and b) implementation
and size of the Ada Runtime System (RTS) which
differs widely from one compiler to another. Real-time
embedded systems are characterized by severe timing
and memory constraints. In traditional real-time
systems not programmed in Ada), a separate executive
was responsible for making sure that the various timing
and memory constraints were satisfied by different parts
of an application program. In Ada, the executive is part
of the language as the runtime system.

interference effect from the operating system, paging as
well as other sources. In an embedded system, there is
no virtual memory paging or system daemons and hence
there is no effect of such interference on benchmark
results. It has to be emphasized that benchmarks that
are designed to measure performance of Ada compilers
for real-time embedded applications are intended to run
on bare targets if meaningful results are to be obtained.

The authors have been involved with developing
benchmarks for Ada language and runtime features
considered important for programming real-time
embedded applications. As part of this ongoing effort,
existing benchmark suites were analyzed to determine
their suitability for evaluating Ada compiler systems for
embedded applications. The test suites analyzed
included the Ada Compiler Evaluation Capability
(ACEC) suite [8], ACM Performance Issues Working
Group (PIWG) benchmarks, and the University of

¥ PR .
o Real-time programmers have no control on the design M'dl't'ganf tt’ﬁ"fhmal{ks. “]'-I‘h Tht;: %aperk prlelsentsbg;e
= and implementation of the RTS except that the RTS resm; sdo 'tha ana 2’?5' ¢ benchmarks have been
o satisfy the requirements listed in the Ada Language anafyzed with respect to
tc! Reference M_anual (LRN_[). ) .Due to thq effect _on « the features that the benchmarks are intended to
program efficiency and reliability of the various runtime measure and usefulness of the benchmarks for

B implementation options, simply adopting a compiler that embedded applications. The next section lists the

’, implements the language as defined in the LRM is Ada language and runtime features considered

> insufficient  for  real-time embedded  systems. important for programming real-time embedded
k)’ Benchmarks are needed to determine the performance of systems.
i various Ada language and runtime features in order to « accuracy and repeatability of results;
o assess a compiler’s suitability for real-time embedded . . .
Ly system applications. - techniques used  for  preventing  compiler

optimizations;
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« and portability of the benchmarks.

The authors intend to run some of the existing as well
as the newly developed benchmarks under this effort on
bare targets, the results of which will be published later.
However, we did run these benchmarks (ACEC, PIWG,
and U. of Mich.) on an Ada compiler system hosted and
targeted for the MicroVAX 11,

2. Real-time Ada Features

This section highlights the Ada features that a
benchmarking suite intended for evaluating real-time
embedded systems should address. Within each feature,
there is a brief description of the various aspects of that
feature that should be benchmarked. These aspects are
related both to runtime performance as well as
determining implementation characteristics. Of course,
this list is by no means exhaustive and further additions
will be made to this list as the work progresses {7].

2.1 Tasking

There is a significant amount of necessary overhead
inherent in the programming constructs associated with
Ada tasking. Tasking overhead affects the efficiency of
the RTS in both sizing and timing as the RTS contains
the code that implements the tasking features (entry
calls, accepts, selects, .. etc.). The LRM outlines the
interface to the tasking system from an applications
program and a method of communication and
synchronization between tasks, but has left a large part
of the implementation undefined.

Some of the aspects of tasking that need to be
benchmarked include:

« Time to activate and terminate tasks. Task
activation and termination times are measured for
task objects of a task type, tasks declared directly,
and tasks allocated via the new allocator.

+ Determine if task space is deallocated on return
from a procedure when a task that has been

allocated via the new operator in that procedure
terminates.

+ Determine the maximum number of tasks that can
be elaborated in a system without running out of
memory.

» Determine if tasks performing I/O may block an
entire process thus defeating task concurrency.

» Determine the status of tasks declared in library
packages on termination of the main program.

+ Time required for a) simple rendezvous and b) for
passing different sizes and types of parameters
during rendezvous.

+ Default priority of tasks (and of the main program)
that have no defined priority.

-‘

Uy S X l.o

Algorithm used when choosing among branches of a
selective wait statement.

Order of evaluation for guard conditions in a
selective wait.

If a low priority task activation could result in a
very long suspension of a high priority task.

« Priority of a rendezvous between two tasks without
explicit priorities.

Order of evaluation of task names in an abort
statement.

» Determine which tasking optimizations (e.g.,
Habermann-Nassi) are implemented.

2.2 Scheduling and Delay Statement

Task scheduling is an important consideration for a
multitasking application. Real-time embedded systems
contain jobs with hard deadlines for their execution.
Failure to meet a deadline reduces the value of the job’s
execution possibly to the extent of jeopardizing the
system’s mission. It is the responsibility of the RTS’s
scheduling mechanism to guarantee that the deadlines
are met.

Some of the things that we need to know about the
scheduling mechanism include:

+ Determine if user tasks are pre-emptive. Does a
completed delay interrupt the currently executing
task to allow the scheduler to select the highest
priority task.

- Determine the method of sharing the processor
within each priority to prevent the starvation of any
single task (round-robin, time-slicing).

2.3 Memory Allocation/Deallocation

Ada is the first high order language intended for mission
critical, real-time applications that requires dynamic
memory allocation and deallocation. The Ada language
encompasses dynamic objects of unconstrained types,
objects of access types, workspaces of tasks, compiler
generated temporary objects for computation, and
subprograms with locally defined data. Dynamic
memory allocation and deallocation poses efficiency and
reliability concerns in a real-time embedded system
environment.

Some of the aspects of memory allocation/deallocation
that need to be benchmarked include:
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« Time for allocating storage known at compile time. oS,
» Time for allocating variable amount of storage. h ‘:;g 3
« Memory Allocation via the New Allocator "_'ﬂ_" ;
« Determine STORAGE_ERROR threshold. C'“ ]
« Determine if garbage collection is performed.
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+ Determine if
implemented.

« Measure time required for Unchecked_Deallocation.

Unchecked_Deallocation is

2.4 Exceptions

Real-time embedded systems should be able to handle
unexpected errors at run-time. Unexpected errors could
have disastrous consequences if not handled properly.
Many real-time systems operate for long periods of time
in stand alone mode and there is a need for efficient and
extensive error-handling for such systems.

Benchmarks for exceptions include:

« Timing overhead due to exceptions. Measure
overhead if a code sequence has an exception
handler associated with it, yet no exceptions are
raised during the execution of that code.

Measure exception response time. Exception
Response time is defined as the time when a
exception is raised to the time the execution handler
starts executing.

Measure exception propagation time. Exception
propagation time is the time between raising an
exception in a unit and the time required ¢o
propagate the exception by raising the exception at
the point where the unit was invoked. No exception
handler is present in the unit where the exception
was originally raised.

2.5 Chapter 13 Benchmarks

Ada defines some features which allow a programmer to
specify the physical representation of an entity, i.e., map
the abstract program entity to physical hardware. Real-
time embedded systems require Chapter 13 features to
interface with physical devices and in specifying the
precise layout of data structures. These features are
implementation-dependent: an implementation is not
required to support these features. For real-time
embedded systems, it is necessary to that the Ada LRM
Chapter 13 features be implemented and made
mandatory.

Benchmarking Chapter 13 features depends on the
characteristics listed in package SYSTEM, the hardware
and its interface with the peripheral devices. The goal
should be to develop general purpose benchmarks that
can be easily tailored for a specific implementation.

» Determine if address clause can be specified for an
object, subprogram, package, task, or single entry of
a task family.

Determine if the length clause, enumeration
representation clause , and record representation
clause are implemented.

Determine the availability of bit packing via pragma
PACK for arrays of boolean and measure the
overhead required for shift, rotate, and bit-wise
boolean operations.
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2.6 Interrupt Handling

In real-time embedded systems, efficient handling of
interrupts is very important. Interrupts  are
asynchronous events. They are hardware or software
signals that stop the current processes of the system
under specified conditions and in such a way that the
processes can be resumed. In a real-time embedded
system, interrupts are critical to the ability of the system
to respond to real-time events and perform its required
functions and it is essential that the system responds to
the interrupt in some fixed amount of time.
Benchmarks include:

+ Measure Interrupt Response Time.

+ Determine if accept statement executes at the
priority of the hardware interrupt, and if priority is
reduced once a synchronization point is reached
following the completion of accept statement.

2.7 CLOCK Function Overhead, Resolution and Type
DURATION

For real-time embedded systems, the CLOCK function
in the package CALENDAR is going to be used
extensively. The CLOCK function reads the underlying
timer provided by the system and retums the value
associated with the timer. If the overhead associated
with executing the CLOCK function is high, then real-
time embedded systems will be hesitant to use the
CLOCK function.

The Ada type DURATION is not required to have the
same resolution as the clock period. It is required by the
Ada LRM to be at most 20 milliseconds and that it be
no more than 50 microseconds. A real-time embedded
system has timing constraints that require response
within a predetermined time interval. The clock period
(or time resolution) or resolution of type DURATION
must support these requirements. Another extensive use
of the CLOCK function is for the measurement of time
in generic benchmarks.

» Measure CLOCK function overhead.

» Measure CLOCK resolution. This test measures the
resolution time of the CLOCK function,

+ Determine implementation of type DURATION.
Implementation of Type DURATION will determine
the resolution of the delay expression.

2.8 Arithmetic For Types TIME And DURATION

For real-time embedded systems, it is necessary to
dynamically compute values of type TIME and
DURATION [1]. An example of such a computation is
the difference between a call to the CLOCK function
and a calculated TIME value. This value may be used
as a parameter in the delay statement. If the overhead
involved in this computation is significant, the actual
delay will be longer and this could be disastrous for
real-time systems.
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» Measure the overhead associated with a call to and
return from the "+" and "-" functions provided in the
package CALENDAR.

2.9 Subprogram Overhead

In Ada, subprograms rank high among program units
from a system structure point of view. Systems designed
and implemented in Ada appear as a collection of
packages and subprogram units, each of which may
have multiple procedures. For real-time programmers to
use good programming techniques and structured system
design methodologies, it is important that subprogram
call mechanism be as efficient as possible.

« From our own experience as well as after analyzing
existing benchmarks, subprogram overhead has to be
measured for inter- and intra-packages as well as
generic and non-generic instantiations of code. In
all the tests, various numbers and types of
parameters are passed with modes in, out, and in
out. For intra package calls, all the tests have to be
executed with pragma INLINE for the called
procedure.

3. Criteria for Benchmark Evaluation

The benchmarks have been analyzed with respect to the
following characteristics:

1. Features measured by the Benchmarks: The
previous section highlighted some of the aspects
of Ada features that are important for real-time
Ada programming.  Although this paper
concentrates on runtime benchmarking, other
criteria that are important for a compiler selection
include compilation speed, development and
debugging tools, documentation, compiler/linker
options and operation, library management, and
configurability and size of the runtime system.
The size of the runtime system is an important
consideration for embedded systems as memory is
at a premium in such systems. The larger the size
of the RTS the lesser is the memory available for
an application program. Another important
criteria is the configurability of the RTS. A
compiler system that loads only those features of
the RTS that are needed as well as enables a user
to configure the RTS to suit his/her application
needs is preferred.

In the analysis section of each benchmark suite,
there is a general discussion of the features
measured by that suite. The areas not covered by
the benchmarks will also be highlighted.

2. Accuracy and repeatability of results: Benchmarks
that produce incorrect data can have disastrous
consequences for a project that uses those
benchmarks to select a compiler system. It is
imperative that the feature be isolated and
measured correctly with sufficient accuracy.

3. Preventing Code Optimization: Benchmarks
should be designed so that compilers cannot
distort results by employing optimizing
techniques. The test should be designed so that
the feature being measured can be isolated and
not removed by the compiler by optimizations.

4. Portability: The benchmarks should be portable
and executable on any Ada compiler system with
the minimum of modifications. There are some
benchmarks (like interrupt handling) that are not
portable and depend on the hardware being tested.

4. Ada Compiler Evaluation Capability (ACEC)

The ACEC benchmark suite was put together by the
Institute for Defense Analyses (IDA). The purpose of
ACEC is to provide users with a) an organized suite of
compiler performance tests, and b) support software . 1
executing these tests and collecting performance
statistics. These tests were collected by the Ada
Evaluation and Validation (E&V) team from several
sources. There are around 250 tests in this suite that
have been available within the public domain since
March, 1986.

4.1 Features Measured by ACEC Tests

The ACEC tests are divided into the following
categories:

1. Code Efficiency: For the language features
measured, a quantitative measure of its space and
time cost is obtained. Each test comprises of two
files: a test version and control version. The test
version contains the feature under evaluation. The
control version must have exactly the same
execution time and space requirements except for
the use of the specific language feature. The
memory space usage for an Ada language feature
is computed as the space required for the object
code of the test version minus that required for
the control version.

The tests measure

- space and time efficiency of simple loops, for
loop, while loop, if statement, GOTO
statement, case statements.

« Timing for Integer, floating point and fixed
point arithmetic.

Timing for procedure call overhead.

Timing for reference to global, and uplevel
variables of access and non-access type as
well as components of records.

The tasking tests determine overhead in
context switches between tasks, impact on
performance of guards on entry statements and
idle tasks, size of passed parameter in entry
calls. The tests also make some attempts to
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determine the algorithm wused in select
statements.

» There are some feature tests that measure
optional language features. These tests are
few in number and are limited to testing the
implementation of some pragmas.

« Some commonly used sorting algorithms and
programs like Whetstone and Dhrystone are
also provided.

Capacity Tests: Capacity tests indicate the
limitations imposed by the compiler and the RTS
on application developers (e.g. levels of recursion,
size of stack). For real-time embedded systems, it
is useful to have an idea of the maximum number
of tasks that can be elaborated. This is dependent
on the amount of memory available to the system.

Code Optimization tests: The code optimization
tests check for optimization techniques
implemented by a compiler. The optimization
techniques tested for include loop optimizations,
common subexpression elimination, expression
simplification, strength reduction, constant
propagation, boolean, constant, and numeric
folding, function call elimination, and others.

It is obvious that the features measured by the ACEC
tests are not adequate for selecting a Ada compiler for
real-time embedded applications. Recently, there is a
new effort by Boeing Aerospace Company to develop a
new set of ACEC benchmarks. More information on
this effort is lacking at the present time.

4.2 Accuracy

The ACEC tests provide facilities to measure elapsed
time as well as cpu time used during execution. The
accuracy with with a feature can be measured depends
on the SYSTEM.TICK divided by the number of
iterations of the benchmark [1]. The control and test
loops are executed 10000 times regardless of the clock
resolution. If the clock resolution is 10 milliseconds,
the results can be measured within an accuracy of 1
microsecond for 10000 iterations. But if the clock
resolution is more (say 100 milliseconds), 10000
iterations will not produce results within an accuracy of
1 microsecond.

4.3 Preventing Code Optimizations

The ACEC benchmarks do a poor job of preventing
unwanted compiler optimizations. For control and test
loops, the benchmarks contain a for loop with a
constant iteration limit thus enabling the compiler to
perform unwarranted optimizations. The tests for
integer, floating and fixed point arithmetic can be easily
optimized by a compiler resulting in incorrect results.

4.4 Portability

The CPU clock function for the machine on which the
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benchmarks are being run has to be entered in one ¢~
the packages. The command files needed for the
compilation of the tests have to be tailored for the
system on which the benchmarks are being compiled.

5. PIWG

The PIWG benchmark suite consist of Ada performance
tests that were put together and developed by the
Association of Computing Machinery (ACM) Special
Interest Group on Ada. There are two versions of the
PIWG suite available for distribution. They are
PIWG’8S released in December 1985 and an enhanced
version PIWG'86 released in August 1986. The PIWG
benchmarks comprise a readily available test suite that
measures execution times of individual Ada features.

5.1 Features Measured by PIWG

The PIWG tests are divided into three groups.

1. The first group of files establishes the basic
routines in the program library. It contains PIWG
defined library routines that are needed for the
execution of other tests. It also contains some
composite benchmarks (Whetstone, Dhrystone
etc.).

The second group consists of runtime tests that
measure the performance efficiency of individual
features of the Ada language.

« Task creation and termination times are
measured for task objects of task tvpes and
tasks declared directly in main procedure.
These tests do not measure task creation and
termination times for tasks created via the
NEW allocator.

» Measure the time for dynamic array
allocation/deallocation, dynamic record
allocation/deallocation.

+ Exception handling and propagation timings.
+ Coding style tests.

» Subprogram overhead.

+ And task rendezvous times.

3. The third group consists of tests that measure
compilation speeds. These are the Z tests.

5.2 Accuracy

The PIWG benchmarks use the dual loop strategy to
determine the performance efficiency of an Ada feature.
The PIWG tests calculate the number of iterations a
benchmark should be run by first determining the
minimum duration of the test loop a benchmark should
run. The minimum duration is the maximum of 1
second, 100 * SYSTEM.TICK and 100 *
DURATION'SMALL. The PIWG tests then caiculate
the number of iterations a benchmark should be run by
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starting the iteration count at 1 and increasing it until
the test duration is greater than the minimum duration.
On a system where SYSTEM.TICK is 1 millisecond,
and the desired accuracy is within 1 microsecond, the
number of iterations should be 1000. Some Ada
features that take microseconds to execute can be
measured up to an accuracy within 1 microsecond by
running for a specific duration, but features that take
longer to execute cannot be measured to within an
accuracy of 1 microsecond by this method.

The PIWG tests also output a zero value for tests that
produce negative results.

5.3 Preventing Code Optimizations

The PIWG tests do not perform a thorough job of code
optimizations. Some cases were discovered where it is
possible for a compiler to perform optimizations causing

distortions in the results.

The PIWG tests provide a set of tests that can be used
for evaluating Ada compiler systems for time-shared
use. As far as real-time embedded applications are
concerned, these tests do not address a large number of
features as listed in Section 2. Also, the features that
are addressed are not covered extensively. In their
current form and shape, the PIWG benchmarks are not
suitable for measuring the performance of Ada language
and runtime features important for embedded systems.

6. University of Michigan Benchmarks

The University of Michigan has developed a suite for
benchmarking specific Ada language and runtime
features that are important for real-time embedded
systems {1].

6.1 Features Measured by Univ. of Michigan
Benchmarks

The University of Michigan benchmarks is a good start
towards developing a test suite for evaluating compilers
for real-time embedded applications. The features
measured by the benchmarks include:

« Time to activate and terminate tasks ( for task
objects of a task type, tasks declared directly, and
tasks allocated via the new allocator). Time
required for simple rendezvous and for passing
parameters during rendezvous.

» Determine if user tasks are pre-emptive.

» Time for allocating storage known at compile time,
allocating variable amount of storage and memory
allocation via the new allocator. Determine if
garbage collection is performed, if
Unchecked _Deallocation is implemented, and
STORAGE_ERROR threshold,
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. Measure exception response time and exception
propagation time.

« Measure CLOCK function overhead and CLOCK
resolution,

« Measure the overhead associated with a call to and
return from the "+" and "-* functions provided in the
package CALENDAR.

» Measure subprogram overhead for inter- and intra-
packages as well as generic and non-generic
instantiations of code.

The University of Michigan is the first test suite that has
taken a comprehensive look at determining the
performance efficiency of Ada features important for
real-time embedded systems. This suite addresses a lot
of issues that are mentioned in Section 2 and is an
excellent first step towards achieving the goal of a set of
benchmarks intended for embedded systems.

6.2 Accuracy

As mentioned above the accuracy with which a feature
can be measured depends on SYSTEM.TICK divided by
the number of iterations of the benchmark. Most of the
Michigan tests have a iteration count of 10000, although
this number can be changed by the user to produce the
desired accuracy.

The dual loop benchmarks make the assumption that the
overhead in calling the CLOCK function is fixed and
hence this gets filtered out when the test loop and
control loop timings are subtracted. This assumption
may not be true and for each system that has to be
benchmarked this assumption has to be verified.

In a recent report published by the Software
Engineering Institute (2], and also from the experience
the author had in running the University of Michigan
benchmarks some negative results were encountered in
running these benchmarks. If the control loop is a
subset of the test loop, then the timing difference
between the test loop and the control loop has to be
positive. But due to factors such as placement of code
into memory and asymmetrical translation (where the
sequence has fewer machine code instructions) it is
possible to get negative results [2],[3]. Hence, before
dual loop benchmarks are run on a system, it is
necessary to verify that the loop times are similar by
coding identical loops in a procedure and comparing
their execution times.

6.3 Preventing Code Optimizations

In dual loop benchmarks it is necessary to employ
techniques that thwart optimizations by a compiler. This
can be done by hiding constant vanables from view,
preventing simplification of loop constructs, and by
arranging the order of compilation for similar purposes.
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The following paragraph has been stated as is from the
University of Michigan report [1]. "The key to avoiding
code optimization is to not let the compiler see
constants or expressions in the loops whose times are
being measured. For example, instead of using a for
loop with a constant iteration limit, a while loop is used
with the termination condition being the equality of the
index variable to an iteration variable. The index
variable is incremented by a procedure, the body of
which is defined in the body of a separate package. The
iteration variables are declared and initialized in the
specification of a library package. Since the iteration
values are kept in variables (not constants), and the
body of the increment procedure is hidden in the body
of the package, there is no way the benchmark loops
can be removed by optimization as long as the package
specification and body are compiled separately with the
body being compiled after the benchmarking unit.
Similarly, the compiler must be prevented from
removing the execution of the feature being tested from
the loop or eliminating the loop entirely from the
control loop which does not contain the feature. To
ensure that these problems do not happen, control
functions are inserted into both loops and the feature
being measured is placed in a subprogram called from a
library unit. Again, if the bodies of these subprograms
are compiled separately, and after the benchmark itself,
there is no way for a compiler to determine enough
information to perform optimization and remove
anything from the control or test loops."

6.4 Portability

The Michigan benchmarks enable the user to specify the
number of iterations the control and test loops can be
executed. As discussed before, this number depends on
the accuracy desired. For certain tests like task
activation/termination, the number of iterations may
have to be reduced (thus reducing the accuracy of the
results).

7. Conclusions

Benchmarking Ada implementations to determine their
suitability for real-time embedded systems is an
extremely complex task. This job is made even more
difficult due to differing requirements of various real-
time applications. The University of Michigan
benchmarks are a good start towards developing a
comprehensive set of benchmarks for embedded
applications. In the near future, the authors plan to
develop benchmarks to address the issues raised in this
paper as well as run those benchmarks on embedded
system compilers.
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ABSTRACT:

T

For software developers world-wide, there has
N been a need to create a usable software devel-
opment environment which includes more than one
language. This need has been felt strongly at
Digital Equipment Corporation. Digital's
response to that need is the substance of this
paper. Specifically, this paper addresses how
Digital's environment has evolved to its
present state, what the present software devel-
opment environment includes, how Digital devel-
i opers use it, how the integration and versa-
tility of this environment make it viable for
" large-scale applications, and some general
D directions that Digital has for the future of
its software development environment.

S o

: 1 INTRODUCTION

)

Engineering software development environments
for interactive software construction has been
completed in varying degrees by many vendors

’ and software companies. In addition to providing
an adequate environment for customers, vendors
like Digital Equipment Corporation ! need strong
software development environments internally
to produce software required to support their

I\ hardware and to make software development a

profitable business.

One of the exciting developments during the last
eight to ten years of business in software at Digital
is the evolution of a very strong software develop-
ment environment to meet the needs of internal
users as well as external customers. The exten-
sion of this is that we have learned lessons from
our efforts and these have influenced our further
work as we continue to develop languages and
tools for a fully integrated software development
environment,
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This paper will address four topics:

1. The evolution of Digital’s X
environment to its present 0“'*
srate Wttt
2. The current software development .
environment on VAX/VMS and how
pigital developers use it

3, The integration and versatility
of languages and tools to create
a viable environment for use in
large-scale applications

4. Directions for the future

2 EARLY DECISIONS IN AN EVOLVING
ENVIRONMENT

[
1 The foll are ke of Nigital Equlp Corp . VAX
VMS. DEC. DECICMS, DECIMMS

2.1 History of Digital Compilers

In the late 1960's, software developers were pri-
marily interested in using strong compilers. n
response, Digital concentrated in producing com-
pilers that were industrial-strength. Digital built
compilers for its PDP-11 series machines, and in
the process learned that as good as our individual
compilers were, there was a strong need for a stan-
dard architecture for passing information in the
"environment” that a developer was using. When
a new operating system was developed, VAXIVMS,
much was done to make the operating system itself
easy for use in software development. Moreover,
instead of putting many compilers on this new
operating system in a random way, a great deal of
thought went into creating a standard architecture
for the family of compilers that would reside on
VAX/VMS. Creating a common calling standard
and common passing mechanisms, and including a
standard condition handling facility were positive
steps toward calling any language from any other.
This helped promote reusable code and consistent
methods of development, and it also meant that
tools and utilities created on VAX/VMS could be
multi-lingual. We profited from the common call-
ing standard, and internally have many products
written in more than one language, even though
we have used the BLISS language for the majority
of our software development in the last 10 years.
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2.2 History of Digital Tools

2.2.1 Debugger with Compilers

The ability to call any language from any other,
inevitably meant that the "environment” had to
evolve to support multiple languages. Multiple-
language support has many advantages, but it
increses the complexity of software development
for ail of the related tools. In developing an Ada
Programming Support Environment (APSE), when
finished that APSE must work equally well as

a Fortran Programming Support Environment

or a Pascal or Basic or C Programming Support
Environment. For example, the VAX Source Code
Analyzer (SCA), when being queried for all of

the COMMON BLOCKS in code basicaily writfen
in Fortran, must also show the related PSECTS
for those BLISS modules in the system. SCA
must understand that different compilers have
different names for similar things, and must work
generically across the multiple language madules,
Tools must be generic while still being efficient,
The VAX Symbolic Debugger uses a symbol table
specification which all languages support but still
gives the debugger the ability to respond rapidly to
the specific needs of individual languages {1].

The advantage of a multi-language environment
concept was that people used the same tools on
VAX/VMS to meet diverse needs. Users did not
have to learn to use a different debugger or editor
when assigned to program with a language other
than the language they are fluent in. The chal-
lenges continued for the VAX Symbolic Debugger as
new languages such as VAX Ada (r) were developed
at Digital. When VAX Ada was developed, the
Debugger had to handle things such as tasking. It
would have been easier to develop a specific debug.
ger for Ada, but this would have been impractical
for the user. Designing a debugger to work for 12
languages, and to insure the basic needs of each
fanguage was met, was a challenge for the Debug-
ger project. More important, for the user trying
to handle multi-language systems, such a set of
debuggers would have been impractical. Incorpo-
rating the calling standards and working diligently
to produce a mulll-lanFuase Debugger produced a
very powerful product!

Except in cases like the VAX APL interpreter, which
has its own environment, Digital pursues the goal
of a common environment for users, regardless of
which tools they choose to manipulate on VMS,

2.2.2 CMS and the Debugger with Compilers

Compilers continue to be enhanced at Digital to
provide new and interesting features, These are
still undergoing modification to meet evolving
standards, new hardware, and better technology.
Strong compilers on VAX/VMS, plus a strong
Debugger, were necessary but not sufficient for
software development being done within Digital.
Internal developers found that they needed a
variety of other tools to help them complete their
projects within time constraints with the desired
quality.
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In 1978, for example, internal developers needed
a way to keep track of multiple versions of a

code module, so an automated method of code
management was designed for internal use, It was
enhanced as systems became larger and multiple
releases were being made of individual software
products. By 1981, this code management system
was being used by over one thousand internal
Digital developers to help automate and control
the complexity of managing their sources. This
internal product later was offered externally as
VAX DEC/CMS, DEC’s Code Management System
I3]. CMS can handle any ASCII text file, and

the language that the code is written in does not
matter.

How was it decided to make it an external product
that customers could use in their own develop-
ment environments? First, the internal tool that
had grown to handle many diverse needs was
reworked. Its command line was modified to fit
the standard command language on the system
and to be consistent with other products that were
available. It was made much more robust. Error
recovery was enhanced, and CMS added the abil-
ity to roll back any command that was “stopped”
before completion. Much more testing was added
to insure the integrity of its libraries, even though
internal people had never lost code in over 4 years.
The product was compared with other projects
that were being worked on for consistency and for
cleanness. CMS was finally released as the VAX
Code Management System (DEC/CMS).

Tuning a good internal tool so that it could be used
by customers in their own robust environments
was doable. While this work was going on, other
functionality was needed for which no tool was
available. These tools had to be built, and often
while they were being buiit from scratch to satisty
the needs of internal software developers, market-
ing was putting pressure on the team to already
make them external products.

More and better tools were also not enough. It
became obvious that they had to integrate well
with each other to take advantage of their power
easily by the user. But integration proved to be
complex to manage and often difficult to do.

For example, several projects began to work to-
gether to handle one of the most delicate and
troublesome problems - that of a common data
base for holding private information. Each product
that was evolving needed some kind of contral
files to hold data that they needed to do their
job. If these were stored as simple files on the
VMS system, the overhead of opening and closing
multiple files was inhibiting. As project teams
triedt to work together to evolve solutions to the
data storage and retrieval problems, they found
that what they wanted to store differed from one
project to another. Projects found that creation of
their own project-specific data bases seemed easier
than defining and building data hases common ta
even two products. Digital had some of the best
overall data base products available at the time,
but prototyping databases using DBMS and other
commercially available products showed that the
power of these products was more than what was
needed for small applications such as tools wanted,
and carrying around a large database for such a
small job was prohibited by cost and performance.
Strong databases were robust for large applica-
tions and for transaction processing, but the small
amount of storage and retrieval needed by a simple
tool meant minimizing the overhead needed to
handle their data. Customers developing eaftw are
wanted very fast software development grole ond
weren't willing to accept a wait longor thaw ey
were currently required to complete a file (opy
command.
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Data storage problems were resolved in the short
term by aliowing each toof to handle it's own
manipulation of private data. But when CMS V2
produced a very simple data base to handle data
storage for its needs, that mechanism of storage
was seen as useful and adapted by other projects
to handle private data. Common data held by one
tool but needed by another was accessed through

callable interfaces. Callable interfaces and standard
definition of these interfaces became important,
and was a primary means of sharing data and
information.

Reusability of code was common within Digital,
but evolved in an informal way. Developers were
accustomed to using to the VAX Run-Time Library.
If one team built a module that others would use,
they submitted their routines to the Run-Time
Library. Over time, a Tools Clearinghouse evolved
to accept that developers created for one job and
were willing to share with others. Developers who
need a tool look there first. Those who are about to
implement something are very apt to first consider
if they can take advantage of the work of others,
and share code if that seems useful.

2.2.3 Specific Tools Added to the VMS
Environment

Environment-enhancing tools that are well inte-
grated evolved quickly. Internal software devel-
opment became more complex. Customers had a
variety of specific needs, and products like VAX
FMS (forms management), the VAX DEC/SHELL
(a UNIX ! Bourne Shell), Datatrieve (information
management tool) , and VAX DEC/MMS (auto-
mated application system builder) evolved to meet
these needs. In many cases, what new features
were doing was automating software development
by letting the computer do things that users had
done by hand or that users had been required to
keep in their heads.

As the offerings of VAX/VMS products, including
its "layered products”, continued to expand, Digital
worked hard to insure that the combination rep-
resented a consistent and powerful environment
for software developers. The wealth of third party
applications available for users allowed Digital to
concentrate on core tools in software development.

2.2.4 More Tools Evolve from New Product
Needs

The development of Ada spurred Digital to reassess
the direction in which internal software develop-
ment was moving. With plans for building an Ada
compiler had to come plans for an Ada Program-
ming Support Environment that could evolve from
the Stoneman requirements of the Department of
Defense. Instead of addressing those requirements
for Ada alone. the larger challenge was addressed.
When the first version of VAX Ada appeared, users
had, not a new Ada debugger, but the familiar VAX
Symbolic Debugger enhanced to provide full Ada
support [2].

Y OUNIX s a trademark of Bell Labucatories
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The VAX lLanguage-Sensitive Editor was built as
the premier editing environment for Ada users,
even though it was just as powerful and useful for
users of Basic, Bliss, C, Cobol, Fortran, Pascal,
and PUL The real power of an integrated, muiti-
language environment is apparent to current VMS
developers at Digital who are now moving toward
doing some, but not all, of their development

in Ada. Projects building something like servers
may want to use Ada tasking, so they develop
those modules in Ada. Their environment hasn't
changed. It has just been extended.

3 THE CURRENT SOFTWARE
DEVELOPMENT ENVIRONMENT

3.1 Overview

Inside Digital, processing speed on VAX/VMS is
important for developing the software products
expected of a vendor. But the effective use of that
computer power is paramount for both Digital
developers and customers. The VAX/VMS environ-
ment, as it continues to evolve, isn’t a prototype
environment used in research, but it is a real work-
ing environment for very large scale applications
development. Customers of Digital depend on this
development environment because it gives them

a powerful edge in producing software efficiently.
The core of the components of this environment
include:

VAX/VMS SOFTWARE DEVEINTMPHT FHUTP i o

o VMS SYSTEM
- System Services

- Common Run Time Library

- DL

- Special Purpose Libraries
BUNDLED TMNLS

- VAX Symbolic DEBUGGER

- VAX TPU (Text Frocessing Utility)
- DSR (RUNOFF)

o]

MAIL
SORT
o UNBUNDLED TOOLS

- LANGUAGES (ADA,BASIC, BLI1SS, ©, CCOBOL,

Fortran, LISP, PASCAL, PL/T...)
- YAX Language-Sensitive Editor
- VAX Source Code Analyzer
- PROJECT CONTROL (DEC/CMS,
DEC/MMS, ...}
- TEST DEVELOPMENT (DEC/
Test Manager)
Software Performance Analysis
{VAX Performance & rcoverage Analyzetr)
ALTERNATE COMMAND LANGUAGE
and UNIX utilities (VAX DEr/Shell)

Text processing languzge (VAX DOUANY
DATABASES (RDB, DBMS...)

Common Data Dictionary (7DD}
CONFERENCING (VAX Hotes)

4th Generation Languaages (DATATRIEVE,
VAX Cobol Generator)
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These features constitute the components of a de-
veloper’s core software development environment,
They produce a foundation from which developers
can concentrate on the pieces of software unique to
their intended application.

The functionality of the products listed above is
enhanced because all of the tools are presented
in a consistent way to a developer. The general
VAX/VMS interface, called the Digital Command
Language (DCL) provides a command language
interface used by all of the tools on VMS. Picking
up a new tool is easier because it conforms to the
style of VMS.

Most tools in the environment are flexible enough
to serve muitiple functions. Numerous users have
used DATATRIEVE (information management
tool) and DEC’s Code Management System (CMS)
to create a powerful configuration management
tool for their program. Others use DEC's Module
Management System to control the building of
documents. CMS provides an audit trail of all that
has happened on a project which is used in some
companies for analysis of project information and
for metrics reporting,

It has been difficult to continue to develop new
products and still conform to the multi-language
foundation of the Digital tools architecture. How-
ever, it is interesting that this concept is enforced
internatly at Digital because the VMS operating
system as well as many of the layered products on
VAX/VMS are written in mare than one language,
Tools as developed are needed to work within

a common environment, or Digital developers
can't be as productive. Digitat developers design
software tools that customers will use. Since col-
leagues will be using them too, they had better
be easy to pick up and they needs to fit well with
what developers aiready have.

T UNIX e a trademark o Bell Lahoratortes

3.2 Examples

Examples of some of the more recent extensions
to the core VAX/VMS environment show the
power that comes to the user by means of current
technology.

3.2.1 The VAX Language-Sensitive Editor

The Language-Sensitive Editor (LSE) is a multi-
language advanced text editor enhanced to lets
users quickly and accurately development pro-
grams. LSE allows software engineers to code in
VAX Ada, VAX Basic, VAX BLISS, VAX C, VAX
COBOL, VAX Fortran, VAX LISP, VAX Pascal,
and VAX PL/| with the aid of language-specific
templates, expansion of language constructs,
language-specific help for any construrt, and ex-
tensive review of all code that does not compite
correctly. For VAX C and VAX Ada. 1.SE makes
building a correctly compilable program even easier
because LSE provides error correction for their
compilation errors.

Using USE has changed <ome of the wavs in which
saftware was developed at Digital, Developers no
longer use hard copy listings; listings are setdom
sepn in offices. Working online became the norm.
Deyelopers began to spend Tees time getting clean
compilations and to focus on building good code
Farticularty important has been the ability 10 inter.
actively reviess errors and the ability to compile
read mail and work sith multiple buffers withowt
exiting the editor
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Internal users at Digital, like many customers,
want to tailor their editing environment in their
own way to “feel right for them”. This need to
modify the editor caused LSE to be built on the
VAX Text Processing Utility (which comes with
VMS) and thus allowed LSE to be completely
tailorable as well as programmable. With LSE,
developers can modity their editing environment
to suit their own desires and needs, a flexihility
essential for our programmers,

3.2.2 The VAX Source Code Analyzer

The VAX Source Code Analvrer gave deseliper v
additional edge in developing and madifiing s
code. The ability to interractively crosc-reference
ALL of the modules in his system through the VAX
Source Code Analyzer (SCA) lets the developer
insure the continuity of his work across many files.
If a developer wants to change the parameters of a
routine while in LSE, a simple query (done while in
LSE but handled by SCA) can show him alt of the
places that routine was referenced. The Editor can
then take him to the corresponding source modules
at the location to be modified. This can be done
for a few references or for many without the user
losing the context of his problem.

If a developer, sitting at his terminal and looking at
a code module, sees a call referenced on his screen,
he can point to that routine, and then go to the
primary declaration of that routine by hitting a sin-
gle keystroke. The primary declaration is displayed
in another window quickly and effortiessly. This
gives the developer a strong understanding, not
only of the module to fix, but of how his fix is go-
ing to affect the rest of the code. The developer can
insure that newly-added changes won't introduce
errors in other modules, Static analysis of code us-
ing call-trees with SCA and checking for references
that were read but never written (or written but
never read!) tightens the code and reduces chances
for error.

Digitai developers started using an early prototype
of SCA in 1985, getting used to looking at their
source code has a system and not as individuat
modules. Developers using SCA quickly adjust

to moving around their system asking questions
like “find all of the places this routine was used”
or "find all of the symbols that start with 's’",
They easily “gather data* about the implications
of a change to code, and are confident that their
modifications have the least impact (or the best
payback!) on the rest of the system. The power of
LSE and SCA together gives users on-line develop-
ment at its best. Because the prototype was in use
while the product was being developed, extensive
internal user feedback was gained to modify the
final product for optimum usability and needed
features.
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3.2.3 VAX DEC/CMS—Code Management
System

To manage change, developers use the Code Man-
agement System (CMS) libraries for their code
storage. They find that they have a full audit trail
of all of the changes that have occurred over the
full phase of development. They can be fixing
bugs on earlier released versions of the code while
they are currently in new development. The disk
storage savings using CMS libraries is substantial.
DEC/CMS can be used for documents or memos
or any kind of VMS files but it has been optimized
for source code and as become essential to project
development. Creating and “freezing” baselines is
straightforward with CMS. Being able to go back
and retrieve modules trom an old baseline while
continuing with new development is essential.

Some of our projects are developing at least three
variant products with a common set of source:.
and use CMS to make order out of this chaos.
Our VMS documentation group has used CMS for
vears to keep multiple versions of all of the VMS
documentation. Hardware groups have used CMS

over the years to store chip lavouts, Thousands of
Digital developers store their source code in CMS
and use it to handle complex development. (roups
like VMS have put a laver on top of CMS to handle
the complexity of their large scale application.

3.2.4 The VAX Symbolic Debugger

The VAX Svmbalic Debugger is an integral part
of the VMS environment during implementation.
The Debugger allows state-of-the-art debugging
with multiple windows. Debugger features let the
developer to walk through his code and (learly see
what ic causing probiems. As with all the VMS
tools that work together in a common language
and tool environment. the Debugger works agross
languages. While in the Debugger. vou can call the
Language-Sensitive Editar and make (hange< to
vour source code as vou continue vour debugging
secion. You can have access to the VAX Source
Code Analyzer information while editing. and
include access to files from DEC (MS in the
process.

Junior programmers tvpicallv use the Debugger

in a limited way and gradually discover its full
power. Internal ucers find the multiple windosws of
their debugger a particular advantage in debugging
programs.

3.2.5 VAX DEC'MMS—Module
Management System

The Code Management System does niot put the
apphication together or perform consistency (hecks
on the built eystem hut 3 developer van vee i
tal’s Module Management Sustem i AIAS) Ty thee
NALS kpeps all of the developers working withoun
version cken on the same actem N oteam of
developers can store the resuits of their individuesd
efinrts in ¢ MS librares on the VALS woatem and
MMS can zet to them directiv. MAS omits unnec-
essary aperations and allow< tor a tormal detinition
of the structure of the austem bring built  AIAIS
understands VAIS files and VNS dibraries

hI

Thus. MMS can build a svstem etficientlv using a
minimum of CPU time and with consistent refi-
abitity. The dependency file which the deseloper
writes to describe the system to MMS can he stored
by baseline in the CMS library along with the code
for that baseline. With this method, deselopers af-
ways know what went with a baceline nr a releace
and exactly how that svstem was built.

Eight hours used to be the norm for an overnight
build of a Digital software product. With MAS,
product builds complete in as little as 10 minutes
with eight hours being the “worst case . and
happening only with a total rebuild. MNS i< ysed
widely for building documents at Digital as well as
executable images.

3.2.6 The VAX DEC/Test Manager

The VAX DEC/Test Manager (DTM) lets a project
team automate regression testing. Many developers
working simultaneously on a software profect
typically finish specific coding tasks at different
times. They always test their tasks individually,
but if they are using the DEC/Test Manager to
control their tests, they can simply give their
groups of tests to the DEC/Test Manager and have
the Test Manager run these groups of tests for
them. Before they consider their task finished,
they may run their tests for that task with one or
two other groups of tests that exercise functionality
that the task interracts with. Finding bugs and
integrating their software becomes part of the

use of the environment when using the DEC/Test
Manager.

Most projects use the DEC/Test Manager for Inte-
gration Testing, for insuring product integrity, and
for checking specific fixes. We have made strong
use of DTM as our products have become interac-
tive and screens have had to be tested. The need
for bit-mapped graphics testing internally has had
DTM developers exploring this area for the past
several years,

Our Software Quality Measurement group uses
DTM to hold regression tests of all layered products
on VMS. They can then run them with each new
baseline of the M5 operationg system to insure
that new features in VMS don’t cause massive
rework in the layered products. A change can

be withdrawn before it affects large numbers of
people and causes large delays and disruptions,
since DTM’s information can be fed back to the
operating system in time to make corrections.

3.2.7 The VAX Performance and Coverage
Analyzer

The VAX Performance and Coverage Analyzer
(PCA) is a tool used to analyze the run-time be-
havior of application programs. It measures test
coverage and to insure that all paths through the
software have been tested. It also finds places
that are bottlenecks in performance so developers
can concentrate on fixes that will have the biggest
payback instead of trying to optimize every part

of the code. The VAX Performance and Coverage
Analyzer can collect page fault data, data on system
service calls, /O data, exact execution counts. and
program counter sampling data. It processes the
data for viewing in tabular displays and histograms.
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PCA has been used by most Digital software
projects, but for different reasons and to achicve
different results. We have achieved large gains

in performance by spending a small amount of
time with PCA, and thereby causing developers to
focus their time when such time is limited. Some
projects use it regularly just to monitor some aspect
of performance. Some use it consistently for test
caverage. PCA came into being in the early 1980's
because Digital needed something to test its Fortran
compiler for performance analysis. From that early
tool, PCA evolved into the product it is today.

3.2.8 Other Tools

Digital has added a variety of other tools to its en-
vironment in the past two years. The VAX Cohol
Generator gives the user the power of a graphical
fourth-generation language. This tool converts
graphically-expressed program designs into work-
ing Cobol code for execution. The vAX Software
Project Manager helps project leaders to success-
fully manage the process of project completion,
scheduling, and tracking tasks. Other products
support endeavors such as system management,
office needs, and document building. All can be
used by the software developer on VMS as needed.

4 INTEGRATION AND VERSATILITY OF
LANGUAGES AND TOOLS

With the above products as well as other languages
and tools available on VAX/VMS, the VMS envi-
ronment gives an ideal climate for serious software
development. The main advantages of using the
VAX/VMS environment for software development
are integration and versatility.

4.1 Integration of Tools

The complexity of large software projects requires
that integrated tools work effortlessly together.
This has been the area of greatest technical (hal-
lenge in software engineering. When a des eloper
needs a tool, or a features, it must be there oo him
to use when he needs it. Thisic why the comyg it
generate code that is callable from ollur Lange s

tf a Fortran program can call a "C " cobrmtion
thus take advantage of existing code work tan
move more rapidly.

Compilers must be closely integrated with the
VAX Symbolic Debugger as well. With the same
debugger used for FORTRAN or C or COBOL. ar
BASIC. developers get used to its features and can
expect them also for Ada or Plil, with extensions
to handle such things as tasking in Ada.

Integration of tools was particularly necessary in
the testing area, One would not want to teave
the DEC/Test Manager in the middle of reviewing
the results of a large set of tests just to call up the
Performance and Coverage Analyzer to determine
the test coverage of that set of tests. By calling
PCA from inside of the Test Manager when PCA is
needed, the user has common capabilities of both
tools at the same time.
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Integration in the VAX Language-Sensitive Editor
(LSE) went one step further. Developers can

keep the same editor session going for a long

time, editing multiple files and muitiple buffers,
compiling and reviewing compilations and making
many modifications. This required that the Editor
be built with very strong compiler support and
that muttitool accessibility be seamiess to the user.
LSE is tightly coupled with SCA and with CMS to
insure that cross-referencing can be done within
the editor with little effort. if a piece of source code
has to be pulled from CMS to make modifications
it is done without leaving the editor and without
the developer having to explicitly call for the file.
SCA works tightly with major compilers on VMS to
insure that its data matches the source. The user
doesn’t have to contend with the logistics that puts
all of this power at his disposal. The functionality
is available as needed, whatever tool is being used.

Integration thus gives the user the sense of one
environment, even though he is making use of
multiple tools and compilers. The Language-
Sensitive Editor can be called from inside the
Debugger or from inside PCA and lets you modify
your source code as you continue your debugging
session. From there you can use the Source Code
Analyzer to determine the implications of your
changes on the rest of your code. You can make
those changes, and then return to the Debugger
for your next breakpoint or watchpoint. If you
want to, you can run some tests with DTM to
insure that your changes are good, and then use
the VAX Performance and Coverage Analyzer with
those DTM tests so that you can get performance
data as well as regression test results from your
testing. You can do all this in a single session and
be assured that you still have your software’s good
performance.

Integration also means that third party tools as
well as Digita) tools can interface with each other.
As tools need protocols to communicate with
each other, Digital evolves standards to progress
toward a truly common tool environment. For
example, CMS is now callable from 38 entry
points, which helps third-party developers as
well as LSE. LSE has a standard diagnostic file
format, and external users with a Jovial compiler
or some other non-Digital compiler can use that
format to build the support that they need for
their non-Digital products. LSE is also callable,
and can therefore be used from other third party
tools. As they become stable tool interfaces and
formats are made available to all users to modify
this environment for the highest user payback.

Choosing to use multiple tools on VAX/VMS implies
that the user has much more power using these
teols in conjunction with each other than they
would if all were separate entities. In addition, all
of the tools use the power of the VMS base. The
whole is greater than the sum of its parts.
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4.2 Versatility of VAX/VMS Environment

As developers get used to using VMS and its many
layered products, we find that the run-time library
routines, the standard operating system calls

and the library calls all become means for our
developers to use ‘reusable code’ and to focus
more attention on unique applications” problems.
We have developed products for use on PDP/11s,
for TOPS-20 machines, ana for other systems on
VAX/VMS because it makes software development
faster, “Faster” means more reliably, of better
quality, and usually with more functionality. lt is
worth our while to provide software engineers with
VMS systems loaded with as many layered products
as are useful to them on their primary development
work stations.

5 DIRECTIONS FOR THE FUTURE

Digital’s software development goals include con-
tinued enhancement of the current environment to
enable consistent software development throughout
the life cycle of a project. We are pleased with
our current offering of software products because
most of them can be used across the lifecycle. We
can’t change our environment radically because
of the great relearning cost to our internal users
as well as our external users. Given the complex-
ity of software development both internally and
externally, our challenge is to continue to evolve
our current environment into one that gives even
more automated support to our own people and to
our customers, The current topics being explored
include: change control and consistency manage-
ment, formalisms for integrating phases of thy 1l
cycle; and software information data bases. Rapid
prototyping methods, requirements sperification,
design tools, and automated confignratinn manae:
ment are also being addressed in the contest of the
existing working environment.

The current VAX/VMS system provides a software
development environment that is adequate for
large-scale software development. The directions
that can be taken to make this an even more robust
and automated environment are many, and we
are working hard to see what makes our people
more productive. Some areas are in early stages of
research and their worth has vet to he determined.
Enhancements in some areas are already being

used internally at Digital. As layers continue to be
added to the VMS environment, it is significant
that each new emerging tool has more ties to the
rest of the current base. A more comprehensive
environment will continue to evolve, but the
core exists today for developers to do large scale
applications programming across languages with
current environment tools.
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A Marriage of Convenience: Developing a Practical APSE
for Use with Ada® and DOD-STD-2167

Damon Lease
Strategic Electronic Defense Division
GTE Government Systems Corporation

INTRODUCTION

There has been much controversy since the introduction of
the Ada! language and the Department of Defense Software
Development Standard (DOD-STD-2167)% to the defense
software engineering community. The biggest problem stems
from apparent incompatibilities between the newer
methodologies espoused by the Ada community and the
standard waterfall life cycle and functional decomposition
method embraced by DOD-STD-2167. Many of these
incompatibilities are now being addressed by the defense
software community, but no clear consensus has yet evolved.
Defense contractors currently developing Ada software must
decide exactly how Ada should be used with DOD-STD-2167
to properly benefit from their respective advantages.

By late 1984, these problems were quite evident at GTE's
Strategic Electronic Defense Division. There was no clear
division-wide philosophy on the proper use of Ada, and no
automated method to support and enforce any methodology
that might emerge. Also complicating matters was the
pending release of DOD-STD-2167. When GTE was
awarded a contract to develop Ada software using a draft
version of DOD-STD-2167 as a guideline, the division
decided to develop a near-term Ada Programming Support
Environment (APSE) for the project. It would support the use
of DOD-STD-2167 and generate the required documentation.
The resulting environment, now known simply as PSE, has
since been adopted for use throughout the entire division.

The primary goals in developing PSE were to:

1. Provide support for Ada software development,
incorporating methods used successfully on other GTE
projects.

2. Incorporate DOD-STD-2167, tailoring it to the needs of
division projects and the proper use of Ada.

3. Automate document generation and other tedious clerical
duties, freeing software developers to concentrate on the
engineering aspects of the project, thus increasing
productivity.

4, Provide support for all phases of the software cycle, not
just code generation, and provide support for non-software
project personnel.

5. Encourage and teach modern software engineering
principles.

6. Incorporate commercial off-the-shelf (COTS) software
whenever reasonable to develop an effective APSE as quickly
as possible.

® Ada is a Registered Trademark of the U.S. Government Ada Joint
Program Office

56 6th National Conference on Ada Technology 1988

7.Reduce the necessary learning time when moving
personnel from one project to another.

Conflicts between Ada, contemporary software development
methodologies, and DOD-STD-2167 were resolved 1o
provide an interim, flexible methodology, capable of graceful
evolution. However, this resulted in some compromises to
resolve conflicts.

This paper describes those conflicts and compromises,
discusses the philosophy behind the development of PSE, the
development methods employed, the current environment's
capabilities, including DOD-STD-2167 documentation
support, and future directions for the environment.

HISTORY OF PSE

When the decision to implement PSE was made, a few high
level management directives were issued to facilitate the
development effort. In retrospect, these decisions were a
major reason the PSE project has been so successful. The
most important decisions were:

¢ PSE would be an interdisciplinary project, not just a
software project.

® High level management would mandate the use of PSE, to
guarantee that the tools would be used.

® VAX™ system managers would be included in the PSE
design effort, with the intent of optimizing PSE
performance.

e The major thrust of PSE would be to enhance the
capabilities of the operating system (VMS™) and vendor
software products--use them where possible, and not hide
them from users.

Therefore, the disciplines of project management, System
management, software engineering, and the capabilities of
vendors, were intermixed to achieve a well balanced, well
thought out design.

It was also decided that PSE would strive to become practical
before it became state of the art. This allowed all involved
parties to work in an atmosphere where success was quite
probable, rather than an unlikely dream.

Lastly, the PSE group was given their own VAX system on
which to develop the environment. This allowed the group to
use system resources that would have been detrimental to any
other development work being done on the same system.
This dedicated facility was responsible for the quality and

™ VAX and VMS are trademarks of Digital Equipment Corporation
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rapid availability of some of the more useful PSE tools.

PSE Development Methods

When actual development of PSE started, the first projects
scheduled for PSE support were under way. This made it
imperative to deploy at least some portions of the
environment as soon as possible, ultimately causing a few
compromises in the development process.

First, the PSE group decided that PSE would be a set of
stand-alone tools, rather than an integrated environment. This
made it possible to incrementally release PSE to the
supported projects. Second, PSE and the standards and
methodologies it was to support were developed
simultaneously. Because of this, early PSE tools did not
follow the current coding standards; the standards simply did
not exist at the time the code was developed. Third, there was
no time to generate formal design documentation for each of
the tools. Instead, user guides were written for each of the
tools, and the actual tool designs were based on the
functionality described in the user guides. Fourth, the tools
were designed to allow projects to choose their own design
methodology. Finally, the group decided that COTS software
would be used, when time and cost effective, to increase the
speed of the development process.

Other important decisions were made early in the program to
optimally support the development and evolution of PSE.

A tool known as DEPARTS (Development Environment
Problem and Report Tracking System) was released.
DEPARTS is a database and tracking tool used by PSE and
its supported projects to record complaints, errors,
suggestions, and bugs found within PSE.

Forums were held where PSE users were invited to meet with
PSE development personnel to discuss problems with specific
tools and suggest enhancements. These meetings continue to
this day.

The user guides that served as informal requirements
specifications underwent formal reviews. The tool designs
underwent in-progress peer reviews. All code was reviewed
in code walkthroughs. Also, as tools became available, PSE
development personnel became responsible for using the
tools and conforming to all standards they enforced.

As PSE development continued, and time and resources
became more available, more formalism was introduced.
Formal test cases and confidence tests for all tools were
written. VAX command procedures were written to install
the tool on a given system, ensuring consistency across all
systems where PSE resides. Since that time, a concerted
effort has been made to rework the earliest tools so they
would conform to any standards or methodologies defined
after their original implementation.

PSE Development Personnel

Since work began on PSE, approximately seventy-five people
have been involved with the project; twenty-four at its largest
point. Currently there are twelve people involved with
continued maintenance and development.
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The project began with six people with software experience,
none of whom had Ada development experience. The Design
Task Manager (DTM), the Technical Manager (TM), and one
additional staff member were experienced software managers.
Of the staff later added, several had some development
experience, and the balance consisted of new personnel,
mostly recent college graduates. As such, the mean
experience level of the team was less than one year.

The intent for PSE staffing is to move people between PSE
supported projects and the PSE group. There are several
reasons for this:

1. Increase the knowledge base of GTE personnel by allowing
people to move between projects, thus transferring
technology between groups.

2. Prevent the PSE group from becoming an academic group
unconcerned with the needs of its users.

3. Provide the PSE group with input from PSE users, and
insight into possible improvements in the tools.

4. Provide projects with personnel who know the capabilities
and limitations of the tools. These people serve as project
specific focal points for PSE help.

DESCRIPTION OF PSE

Currently PSE consists of GTE-developed tools, COTS
software, online libraries, a documentation set, and user
support and training. The GTE-developed portion of PSE
consists of approximately 80,000 lines of Ada code, 20,000
lines of VAX DCL command files, and 2,500 pages of
documentation. There are approximately forty tools in the
environment. Most of the tools are menu driven and include
online help facilities. A complete PSE Software User’s
Manual exists and the VAX online help facilities have been
extensively augmented to include PSE tool descriptions.

The “Stoneman” document® defines Ada support
environments in terms of a Kernel Ada Programming Support
Environment (KAPSE), a Minimal Ada Programming
Support Environment (MAPSE), and an Ada Programming
Support Environment (APSE). The document lists the
requirements for each of these environments:

e A KAPSE ‘“provides database, communication and
runtime support functions to enable the execution of an
Ada program (including a MAPSE tool) and which
presents a machine dependent portability interface.”

e A MAPSE "provides a minimal set of tools, written in
Ada and supported by the KAPSE, which are both
necessary and sufficient for the development and
continuing support of Ada programs." The minimal
toolset must include a text editor, a pretty printer, a
translator, linkers, loaders, a set-use static analyzer, a
control flow static analyzer, a dynamic analysis tool,
terminal interface routines, a file administrator, a
command interpreter, and a configuration manager.

e An APSE is defined as an extension of a MAPSE,
extended by increasing the toolset. Suggested additions to
the toolset include an Ada program editor, a
documentation system, a project control system, a
configuration control system, measurement tools, a fault
report system, requirements specifications tools, design
tools, verification tools, complex translators, and
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command interpreters.

The following sections describe how PSE satisfies those
requirements.

KAPSE Capabilities

The KAPSE underlying PSE consists primarily of the
VAX/VMS operating system, its file storage capabilities, and
commercial software products. The database capability is
provided by many different tools and structures, including
controlled VAX/VMS file structures, relational databases,
data dictionaries, and a COTS configuration control tool. File
access is controlled through the use of VAX/VMS Access
Control Lists (ACLs). Runtime support is provided by the
operating system (VMS) and Digital’s Ada Compilation
System (ACS). ACS provides compilation and linking
capabilities. Communications are handled by VMS, via Ada
interfaces to COTS software products, and database
interfaces.

The GTE KAPSE was assembled almost totaily from COTS
software because it would not have been cost efficient to
develop an operating system, or an in-house relational
database package for PSE. These products are readily
available, and development costs (money and time) made it
more realistic to acquire them from commercial vendors.

MAPSE Capabilities

The MAPSE extension of the KAPSE also consists mainly of
COTS software products. [t is important to remember that
the great majority of tools defined for a MAPSE are also
commercially available, and a major emphasis on PSE was
the rapid deployment of an effective environment. The GTE-
developed tools in the MAPSE are the pretty printer, terminal
interface routines, and portions of the command interpreter
and configuration manager.

The pretty printer reformats syntactically correct Ada source
code according to project formatting standards. Terminal
interface routines exist in a configuration controlled
VAX/VMS directory. Interfaces are written in Ada, and
provide Ada access to standard system-specific interface
utilities. The command interpreter is accomplished through
the use of VAX command procedures, which provide
parameters to Ada programs. The PSE configuration
manager is a toolset. The primary tool is the COTS CM tool
mentioned above. This tool preserves all data and incremental
changes as project configuration personnel approve releases
of source files. There are also GTE-developed CM tools
including Release Request, Move Plane Request, Do Release,
Do Baseline, and Move Plane. Release Request is used by
test and development personnel to indicate to CM personnel
that source files are ready for release. Move Plane Request is
2 high level release request tool which "promotes” an entire
configuration to its next test or release level. Do Release, Do
Baseline, and Move Plane are used by CM personnel to
approve and carry out CM requests.
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APSE Capabilities

The APSE tools or toolsets mentioned above are addressed
individually below. The majority of these tools were
developed at GTE.

Ada Program Editor. A syntax directed editor, tailored to
GTE coding standards and guidelines is provided.

Documentation System. Two major tools contribute to
documentation generation. These tools use the syntax directed
editor in conjunction with the Scribe® text formatter to
provide templates for generating DOD-STD-2167 documents
and other documents used by projects. Scribe allows graphics
and text to be merged electronically, so that development
personnel may make their own drawings, including them
without cutting and pasting, and the drawing files may be put
under control like all other source files. Scribe also allows
Ada source code or Ada design language descriptions to be
included in documents. Thus developers use the same editing
and formatting environment for both documents and code.
The Document Builder produces tailored templates for the
following documents:

o Software Top Level Design Document (STLDD)

o Interface Design Document (IDD)

¢ Data Base Design Document (DBDD)

e Software User's Manual (SUM)

¢ Software Programmer’s Manual (SPM)

o Software Detailed Design Document (SDDD)

e Unit Test Cases (UTC) Document

e Unit Test Results (UTR) Document

o Integration Test Cases (ITC) Document

o Integration Test Results (ITR) Document

e Software Product Specification (SPS)

o Software Test Plan (STP)

* Software Test Procedures (STPR) Document

e Software Test Report (STR)

¢ Version Description Document (VDD)
Although PSE is not truly an integrated environment, the
Document Builder is an exception. It works in conjunction

with other tools and the project database while generating the
documentation.

A second tool, the Software Requirements Specification
Writer's Environment (SRSW) interfaces with the operating
system and the database to aid in generating the Software
Requirements Specification (SRS), Interface Requirements
Specification (IRS), and System/Segment Specification (SSS)
documents.

Project Control System. The Action Item Tracking System
(ACTS), the Inventory Tracking System (ITS), the Review
Item Disposition Tracking System (RIDS), and the Software

® Scribe is a registered 1rademark of Scribe Systems, Inc.
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Requirements Database (SRD) provide assistance with
project control. These tools provide interactive menu driven
interfaces to the PSE database, where the status of action
items, project inventory, RIDS, and software requirements are
stored. SRD performs a major function throughout the
lifecycle of a project. It serves as a central repository of data
that can be used for preliminary and detailed design, testing,
and integration. Managers have full access to these databases,
allowing them to rapidly retrieve answers to questions
without impacting programmer performance.

Configuration Control System. In addition to the CM tools
mentioned previously, the Logical Names tools perform a
variety of functions, including some CM functions. The
Logical Names toolset performs the following:

1. Sets up standard directory structures for each project,
which reflect its design component hierarchy. Within this
structure, there are controlled directories belonging to CM.
Developers have read-only access to the controlled
directories. This structure provides a familiar, standard CM
environment, allowing new personnel to quickly understand
how project CM works.

2. Creates VAX/VMS search lists to find appropriate versions
of files, based on the intent of the user. The search lists are
defined by the DEVELOP and CONTROL commands. The
developer uses the DEVELOP command to indicate to the
system that the most recent version of a file should be found
for development work, while the CONTROL command is
used by CM personnel to search for the oldest configuration-
controlled version of a file.

3. Creates a set of logical names and symbols to quickly
access structures with long, cumbersome names.

Measurement Tools. Two COTS software packages provide
performance data and coverage data for program execution.
One is used primarily as a test tool, and is discussed below
with test tools. The other collects sizing and timing data
based on execution of the code, providing printed reports. In
addition, a software quality metrics tool is currently being
evaluated for possible inclusion in PSE.

Fault Report System. There are currently four tools devoted
to fault reporting. These tools are DEPARTS, the Trouble
Change Report (TCR) tool, the Trouble Report Summary
tool, and the Trouble Report Impact Summary tool.
DEPARTS, as mentioned above, is used to track bugs and
suggested enhancements to PSE. Reports are entered by
development personnel as well as PSE customers. TCR
tracks Program Trouble Reports (PTR), Software Problem or
Change Requests (SPCR), System Trouble Notices (STN),
and Hardware Trouble Reports (HTR). A separate TCR
database is maintained for each project where PSE is used.
Trouble Report Summary provides a detailed report, based on
queries, of project PTRs or SPCRs, or a DEPARTS summary.
The Trouble Repert Impact Summary operates in conjunction
with CM tools to determine files that have been or may be
affected by a problem resolution or proposed resolution.

Requirements Specifications Tools. In addition to the SRD
and SRSW tools which aid if the writing of specifications, the
Clarification Notice Tracking System (CTS), provides a
communications path between systems engineers, designers,
and developers to resolve ambiguities in SRS, IRS, or SSS
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documents.

Design Tools. PSE has not mandated a specific design
methodology, and no specific design tools have been
provided. However, commercially available design tools are
currently being evaluated, and may be added in the future.
Methodologies being considered include  Structured
Development for Real-Time Systems, Object Oriented
Design (OOD), and the Process Abstraction Method for
Embedded Large Applications (PAMELA).

One tool which assists in the detailed design process is the

Body Builder. This tool parses specifications to create null

program bodies. These bodies can be modified to contain a

minimal number of statements, allowing the designer to

:lasily create stubs or prototype a system and validate control
ow.

Complex Translators. Although there are no complex
translators provided as actual tools, there are Ada libraries
that contain a syntax analyzer, some generic hashing
functions, and a command language interpreter.

Command Interpreters. Other than the basic command
language interpreter listed above, no complex command
interpreters have been required as part of PSE.

Other PSE Capabilities. Other PSE tools and services
include testing tools, a standards checker, an online project
information database, reusable software libraries, a graphics
editor, and a spelling checker.

Six test tools are in use: the Global Area Peeker/Poker
(GAPP), the Input Generator/Output Recorder (IGOR), the
Test Data File Generator (TDFG), the Unit Exerciser, and
two commercially available test tools. GAPP aids in testing
and debugging programs that access shared global areas.
IGOR is an interprocess debugging tool that allows recording
and viewing of messages sent between processes, and also
provides input to processes. The TDFG uses Ada packages
and prompts users for input to build test data files for unit
testing. The Unit Exerciser is an interactive tool that
generates a compilable Ada program (a driver) which
exercises a user-specified procedure. The first commercial
test tool provides a controlled, repeatable test environment,
and is used primarily for regression testing. The second tool,
mentioned above, provides coverage and performance data
for a program, including statement coverage on a line by line
basis. This tool also provides time breakdowns, allowing
developers to locate performance bottlenecks.

The standards checker parses compilable Ada code, and
provides a report of the code’s conformance to project coding
standards and guidelines. All source code must be run
through the standards checker.

The online project information is accessed through the
Programmer’s Handbook. It contains a menu driven interface
to database entries. Users may read or add entries to the
database. Most of the entries deal with helpful "tricks" and
otherwise undocumented information of general interest.
This promotes the sharmg of knowledge between developers
in an informal, convenient manner. It also provides an
additional online help facility.
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There are also online libraries of reusable software resident
within PSE. Many of the libraries provide Ada interfaces to
COTS software products, screen management functions, and
text processing capabilities, among others. There are also
functionally oriented packages such as the syntax analyzer,
hashing functions, math libraries, and signal processing
packages.

The graphics editor and spelling checker are both
commercially available software packages.

INCORPORATION OF DOD-STD-2167

In trying to resolve the conflicts between Ada and DOD-
STD-2167, GTE encountered the following problems
inherent to the defense software industry:

eThe available personnel used to staff the PSE
development group were largely inexperienced engineers
who had to be trained in Ada and in development
methodologies.

e There was (and still is) an industry-wide shortage of
experienced, qualified Ada engineers.

e Managers at all levels were comfortable with functional
decomposition and the waterfall lifecycle, and resisted
changing to newer methodologies.

® Managers wanted an environment that would be
compatible with the machine-specific development
environment used on projects (VAX/VMS).

o Proposal and program managers were reluctant to bid a
project using an "untested and unproven” methodology.

With these constraints in mind, GTE decided to follow the
methodology, structures, and lifecycle of DOD-STD-2167
closely in the initial development of PSE, with the intention
that the environment would evolve as division Ada
experience increased. Although many members of the Ada
community advised against using DOD-STD-2167 for Ada
development, there were advantages to the approach,
including:

e A useful, functional APSE was built by relatively
inexperienced personnel in a short time span.

e The training provided through the PSE development
effort has created a large pool of people who know the
syntax and semantics of Ada. Newer personnel have also
gained important knowledge of project methodology and
development procedures.

& An Ada mindset is slowly evolving at GTE. In particular,
people are beginning to realize that Ada is not just "this
week’s language,” but rather the language they will use
for years to come. As this mindset continues to evolve, it
will become easier to persuade managers that they and
their personnel need to be trained to use Ada optimally.

There are also disadvantages in the approach used:

® Because DOD-STD-2167 promotes no specific design
methodology, PSE includes very little automated design

support.
e Existing code is not nearly as maintainable as it could be.

® Reusable libraries are not very extensive, nor are they

60 6th National Conference on Ada Technology 1988

R QOURN BN R Ay IR R () (M
AR AN "t‘"-'l.-?l'n.f:’l.o!l':?l'u‘,l‘:?l'u %, \‘;’I‘e'l'.‘!'q.c'..l'e'o'..l’

well documented.

o Database and graphics capabilities are supported by
VAX-specific, non-portable software.

DOD-STD-2167 Incompatibilities with Ada
The following is a summary of perceived incompatibilities
between Ada and DOD-STD-2167.4

DOD-STD-2167 provides a lot of "how to" information, i.e.,
users are not only told what must be done, but also how to do
it. This improper "how to" information imposes a standard
lifecycle, a static program hierarchy, functionally oriented
design methods, informal test requirements, use of a PDL,
and constraints on reviews. All of these constraints violate
DOD Directive 5000.43, the "Acquisition Streamlining”
directive.’

DOD-STD-2167 also prevents users from taking full
advantage of Ada. In general, advanced design methodologies
such as OOD, PAMELA, and rapid prototyping go against
the methods proposed by DOD-STD-2167. There is also an
underlying assumption that all software will be developed
specifically for the project, i.e., there will be no reuse. There
is also no indication that the developers of DOD-STD-2167
gave any thought to mapping DOD-STD-2167 structures into
Ada language structures.

There are also problems with the Data Item Descriptions
(DIDs). The DIDs are not Ada oriented, and fail to address
the point that Ada may be used as both a design and
implementation language. They also require the
documentation of information that is redundant or useless.
For example, in the detailed design document, input to and
output from design components must be listed. However, this
information is already clearly documented by the required
PDL. Also, the DIDs continue to espouse the default
functional decomposition of DOD-STD-2167, and do not
allow other methodologies to be easily used.

PSE Resolutions of Incompatibilities

GTE was fortunate in having a customer who did not demand
a literal interpretation of DOD-STD-2167, but rather was
supportive of GTE’s attempts to tailor DOD-STD-2167 for
the proper use of Ada. Thus, GTE retained the lifecycle,
static hierarchy, terminology, and DIDs described in DOD-
STD-2167, but adapted them for use with Ada. Throughout
this adaptation process, the PSE development group
attempted to provide enough flexibility so all developers
would be supported by the environment. The goal was to
support new development methods such as OOD, as well as
traditional functional decomposition methods.

These areas caused the greatest controversies and required the
majority of compromises. The adaptations are described in
the sections below.

Adaptations to the Lifecycle. This area required the least
modification as most project personnel were already familiar
with the "waterfall" lifecycle. Most of the phases specified in
DOD-STD-2167 fit into the project phases used at GTE, and
are not affected by the use of Ada. The design phases
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$ an Ada design method could affect the activities and subprogram too small to be considered a unit on its own. In "N
documentation required by DOD-STD-2167. these cases, the processing is identified in the design g 4
description as the ‘unit processing’ part of the CSC. .l':q‘:.'
¥ N . - ' >
! Some people in the {\da community assert that when using This labeling has been found to help design reviewers in "';‘:':':'
! methods such as rapid prototyping or "code a litle, test a understanding the structure of the software design. WA
4 litle," the distinctions between preliminary design and L l..:iu.l.v
) detailed design are arbitrary and have little meaning. 5.The PSE supports the use of the static hierarchy by “.ll:‘!.:,
! Nonetheless, using separate design phases and reviews® has incorporating the hierarchical directory structure of the VMS Sl

been an important management tool at GTE, and they have
been maintained.

operating system. As the software system is designed,
directories are created in the environment to match the
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Adaptations to the Static Hierarchy. The problems in In addition to the development directory structure, the PSE e &

. mapping DOD-STD-2167 static hierarchy components (top builds identical directory structures for the use of Rl

) level computer software components (TLCSCs), low level configuration management and test and integration personnel. N ‘;3' ‘

J computer software components (LLCSCs), and units) to Ada Each of these parallel directory structures is called a ‘plane.’ X000

D rogramming units are well known in the Ada community. All development work dealing with a component is done in shichal
";'he only cogmpliant mapping is to allow one or more Ada its corresponding directory in the development plane. ,,

» programming units to correspond to a DOD-STD-2167 unit.” When work on a component for some phase has been ‘;':i"‘.:l:.:

: GTE has taken this definition and added other guidelines to completed (the preliminary design, the detailed design, ARTRT

: aid developers in the design of DOD-STD-2167 units: coding, etc.), the source files are ‘released’ and moved to the fl‘,q‘(:o';
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: into a number of TLCSCs, eac{!v(})‘f \;hlcgixs :’epresente.d.as an owns them, and how they will be used. J’.!'S"'c
Ada package specification. ether the decomposition is . )
achieSCd using OOD (resulting in object TLCSCs) or using The use of VAX/VMS logical names and search lists e !

y functional decomposition (resulting in functional TLCSCs), gautomaucal]y crgated when the directories are createq) make o "0‘%

) each TLCSC is defined using an Ada package. Major data it easy for project personnel to move to any directory \ '::l"l
items identified during preliminary design are also described (component) in the hierarchy to perform their work. A :.,..c;‘
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s . . L. Adaptations to the DIDs. DOD-STD-2167 describes the ":l‘ N

2 This use of Ada as a design language during preliminary design, test, operation, and management documents that must l:.'lgq‘tﬂg

b design is not required by DOD-STD-2167, but promotes be produced during the life of the software development = :‘
consistency of deSlgifI?- a”lKWS pr?xmmaxy gf{xal{'sxrs‘ . wanbg project. Each of the documents is described in a DID, giving Ty
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o 2. During detailed design, the software is designed developers to concentrate on the engineering aspects of the 40 "

completely to the unit level. Unlike preliminary design, there software development. The PSE also provides guidance in . ‘.‘::'pl

: is no restriction on the type of Ada construct used to represent the type of information to include in the documents. ..':..

\ a TLCSC, LLCSC, or unit. All data items are described as ¥ 8
Ada objects. GTE first followed the tailoring guidelines in DOD- ‘

« Care must be exercised that designs do not tum into code. STD-2167 and selected a subset of the DIDs appropriate to ';",\;“;i;‘.
Design descriptions should explain what is to be done, but not the projects. After this tailoring process, the PSE group made it
implementation details. selected changes to those DIDs for two reasons: to support '\"l‘::;,,
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: management tool throughout the defense software industry. p B nth.
As a very rough guideline, the following SLOC counts are software system evolved. ‘.._l.'f’l
used in selecting software components: TLCSCs - 3000 to . . . . i

: 5000 SLOC, LLCSCs - 500 to 2000 SLOC, units - 50 to 150 Using Ada as a design language in both preliminary and ko

" sLOC. detailed design made it impossible to use the original format .1\.5$ .:’"

L/ for the two DOD-STD-2167 design documents: the Software P s
Due to the fact that a DOD-STD-2167 unit.canberepr.eser]ted Top Level Design Document (STLDD) and the Software Y 'l.“

, by more than one Ada programming unit, these guidelines Detailed Design Document (SDDD). In addition, Ada design Ay
help designers decide when a unit is becoming too large and language is used to describe the data items during the design A
should become a LLCSC. It is also important to ensure units 4 ' h 8 NS

. are logically cohesive. The SLOC guidelines will be adjusted phases, so the DIDs for the Interface Design Document (IDD) L)
as needed according to project experience. and Data Base Design Document (DBDD) had to be changed. o
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) 4. DOD-STD-2167 states that units are the only components DOD-STD-2167 calls for the updating of the STLDD and ) .‘.l' 3
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5 of the static hierarchy that will be implemented in code. SDDD throughout the life of the project. This involves ke

Y Because of the flexibility allowed in using any Ada "backtracking” to make the descriptions of the design N

. programming unit to represent a CSC in detailed design, ‘h';'. components match the final code. Previous experience has h :0.':0

X rule does not hold. Insteac, the PSE uses a convention o shown that this requires much effort and is of little use in the ..‘1'|'l.|'
identifying all processing (not all code) as either a unit or as P

3
)
\
[}

*unit processing” associated with a CSC.

For example, a CSC implemented as a package may include

maintenance of the software. Under the PSE, the STLDD and
the SDDD are "snapshots” of the software design that are
meaningful to the project only at the time they are produced.
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After preliminary design, the STLDD is out of date and not
maintained, and after detailed design, the SDDD is out of date
and not maintained. However, the design information in the
STLDD and the SDDD is not lost. It evolves with the
software and is maintained in other places.

PSE’s adaptation of the design documents breaks them into
two major parts: an overview of the software and descriptions
of the design components (TLCSCs, LLCSCs, and units).
The parts evolve as described below.

The first part, the overview, describes the functionality of the
software and how it fits into the rest of the system, the
requirements allocated to it, the expected execution
characteristics, and the major data used by it. This provides
important information for a general understanding of the
software as a whole.

After preliminary design, the sections of the STLDD that
comprise the software overview are copied, section for
section, into the SDDD. During the detailed design phase,
they are updated continuously to reflect any changing views
of the software. By the end of detailed design, these sections
are up to date and contain useful information for the
reviewers of the SDDD.

After detailed design, the sections of the SDDD that comprise
the software overview are copied, section for section, into the
as-built design document, the Software Product Specification
(SPS). During the coding, testing and integration phases,
these sections are updated continuously to reflect any
changing views of the software. By the time the system is
delivered, these sections are up to date and contain useful
information for maintainers of the software.

The second major part of the design documents, the detailed
descriptions of the design components, also evolves with the
system. After preliminary design, the TLCSC descriptions
from the STLDD are copied into the SDDD, updated with
any design changes, and augmented with LLCSC and unit
descriptions.

The SDDD may contain textual overview information to
describe any large CSCs. This text is in the same format as
the overall software overview. After detailed design, any
important CSC overview material should be copied into the
SPS, in the same manner as the main software overview
sections, and maintained in the SPS throughout coding,
testing, integration, and maintenance.

At the conclusion of detailed design, the design component
descriptions are integrated into the code. Because each of the
design components is described using Ada design language,
their translation into Ada programming units allows the Ada
design language description to be incorporated: the data and
interfaces become part of the code, while the structured
comments and algorithm description become comments
within the code.

In this manner, design information is kept up to date and
provides useful information during all stages of the software
development, as DOD-STD-2167 requires. In addition,
designers, coders, and maintainers are not required to update
obsolete documents, supporting the DOD-STD-2167 mandate
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that the same information not be documented in several
different places.

The PSE group wrote their own versions of all the DIDs used,
describing the changes to incorporate the use of Ada and the
software overview. Like the DOD-STD-2167 DIDs, the PSE
DIDs give the exact format and content of each section, and
include a complete example of the document.

As mentioned above, the Document Builder toolset supports
generation of these documents in the correct format. It builds
a skeleton of any of the documents with all the necessary
formatting commands and boilerplate text included. The
developers need only edit the files to insert the information
specific to the project.

For design documents, the tool also supports the generation of
the Ada design language descriptions of the components and
places those files in the correct directory within the hierarchy.
When the document is ready to be generated, the tool collects
all the component descriptions from the various directories
and composes the document,

TRAINING AND EDUCATION

To ensure that the methodologies and tools provided by the
PSE group are used correctly, most training is provided by
PSE personnel. Training is performed using five methods:
classroom instruction, computer assisted instruction (CAI),
videotapes, a user’s group, and new project retraining.

Classroom Instruction

Classroom training consists of Ada-related courses, vendor
courses, and PSE courses. All classes emphasize hands-on
experience with the environment.

Ada Classes. Ada classes are generally taught within projects
and are quite often for the benefit of new personnel. These
courses give project managers the opportunity to stress those
features of the language or design characteristics that are
especially important to the project. Conceptual Ada classes,
aimed specifically at managers, are also given.

Vendor Classes. Vendor classes are used to train personnel
on individual VAX/VMS development tools and other COTS
software. Some vendors also offer more generalized classes
on design techniques. These are used when appropriate for a
particular project.

PSE Classes. The classes taught by the PSE group span a
comprehensive range, from management techniques under
PSE to software engineering methodologies to tool-specific
PSE instruction. Classes range in length from four hours to
two weeks, and are given prior to the applicable project
phase. The following is a list of some of the courses that PSE
has offered or plans to offer:

1. Introduction to Software Engineering Methodology
2. Requirements Analysis

3. Software Design

4. Advanced Software Design
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5. Ada Library Management

6. Introduction to PSE

7. Introduction to PSE for Managers
8. PSE Document Generation

9. PSE Requirements Analysis

10. PSE High Level Design

11. PSE Detailed Design

12. PSE Coding and Unit Testing
13. PSE Integration and Testing

14. PSE Configuration Management
15. PSE Software Test Management

These PSE courses cover techniques and usage of tools that
provide automated support of the techniques.

Computer Assisted Instruction

GTE uses a commercially available computer-based Ada
course as an introduction to the language for both new
personnel and persons switching into Ada projects from non-
Ada projects.  The course is usually completed in
approximately eighty hours, and introduces engineers to basic
Ada concepts and techniques. The course contains
programming exercises on each topic, and is not merely an
online textbook. This hands-on approach gives a feeling for
Ada and VMS without overwhelming the users.

Videotapes _
A set of videotaped Ada lectures is used as an introduction to
Ada and software engineering concepts.

User’s Group

The PSE group hosts biweckly user’s group meetings. This
gives the PSE development team a chance to interact with
users in an informal environment to exchange ideas and
information. The PSE staff provides information on how to
use new tools, explain changes in existing tools, and field
questions from users.

New Project Retraining

The ability of one group to have such large control over
division training and education has an extra added benefit.
As older projects wind down and new projects start, people
are constantly moving between projects. The use of consistent
methodologies and a common tool set can reduce the
readjustment period between projects and allow new project
personnel to become productive in a shorter time period.

FUTURE DIRECTIONS
The following have been identified as high priority tasks for
the PSE group:

1. Fix the problems that currently exist in PSE tools. Some of
the tools have major problems in performance, and are not
being fully used. In some cases, this may mean a partial or
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complete redesign and implementation of a tool to increase
efficiency. This has been expected, as PSE is still an
evolving environment.

2. Update all PSE documentation. The SSPM has recently
undergone major updates and when revision A of DOD-
STD-2167 is issued, a complete new set of documentation
will need to be tailored.

3. Work on filling gaps within PSE. Some areas that could be
better supported include automated design support, quality
measurement, graphics packages, management and reporting
metrics support, PDL support. and hardware/firmware
development methodology support. Decisions must continue
to be made between developing new tools internally or
acquiring COTS software.

4. Consider integrating the tools into a more cohesive
environment, possibly defining and using an Ada-oriented
command language as the common language for using PSE.

5. Be receptive to the needs of our users. PSE must provide a
toolset that meets its users quality and productivity needs; i.e.,
it must be efficient and effective.

CONCLUSIONS

Although there is still a lot of work to be done on PSE, many
lessons have already been leamed. A few points that may
save others time and effort are listed below:

® There must be system management and hardware support
for the development effort. Developers need to have a
dedicated system, or at least the authority to use system
resources that could impact the entire system.

¢ An APSE should be developed on a system similar to
where it will reside. For example, an APSE to reside on a
networked VAX system should not be developed on a
single VAX machine.

e When beginning to build an APSE, clearly define a
methodology and the APSE requirements as soon as
possible. If portions of a methodology cannot be
specified, delay defining all but the most generic tools to
support that area.

o If the APSE is to support DOD-STD-2167(A), develop it
following the standard. This will provide development
personnel with experience that other projects can later
draw on.

e The APSE development team should use their
environment as it becomes available. There is no better
test environment than real life usage.

¢ Train the APSE development team as early as possible,
and include training in software engineering principles
and the use of DOD-STD-2167.

o If development training must be "on the job,” partition the
developers into teams and attempt to match personnel so
one team member’s weakness is another's strength.

® Consider using COTS software whenever an effective and
cost efficient tool exists. If development is on a tight
schedule, remember that cost efficiency is determined not
only by production costs, but by production time as well.
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Extensibility in an Ada Programming Support Environment

Stowe Boyd, Mark Marcus, and Kirk Sattley

COMPASS

Abstract

The DAPSE (Distributed Ada Programming Support Environment)
project! is a research effort developing a technology base for
mature Ada programming support environments (APSEs). The
project is jointly funded by Ft. Monmouth (U.S. Army), Rome Air
Development Center (U.S. Air Force), and the STARS program.
Other reports on this work have been published [1,2,3].

This report focusses upon extensibility in APSEs and environments
in general, and the direction taken in DAPSE in support of
extensibility.

introduction

Consolidating the results of research on integrated programming
environments, the DAPSE project applies these results toward the
prototyping of a precursor mature APSE. The project is focussed
toward a few, high-payoff areas:

+ experimentation with a prototype environment and initial set ot
tools distributed across a local area network of high-
performance, raster-graphics workstations;
investigation of techniques by which a particular DAPSE may
communicate with other environments (DAPSEs or otherwise);
environment support for development and maintenance of Ada
systems, and in particular, distributed Ada systems;
and development of a uniform DAPSE construction
methodology, exploiting high-level specification language
technology and allied generators to build tool and environment
components automatically.

Use of high-level specification languages and allied generators has
yielded components of the prototype DAPSE. An initial DAPSE
tooiset exists in prototype form, and includes

+ agraphical "shell” which channels user interaction;

+ adistributed Ada application method and supporting, reusable,

Ada components which encapsulate system services necessary
for inter-processor communication {4,5];

DAPSE is funded by Ft. Monmouth, US Army CECOM, with support from The
STARS Program Office, and Rome Air Development Center, US Air Force.

Authors' Address: COMPASS, 550 Edgewater Drive, Wakefield MA 01880.
Telephone: (617)245-9540.
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a rule-based query language, oriented toward Ada intermediate
representation and library information {6];

a family of graphical editors: an Ada structured editor and an
Ada library manager based upon grammar-driven graphical
manipulation [7];

tools used in the development of the editors;

and an integrated configuration control system (CONCON) [2],
which manages sets of objects; its primitives include
reconciliation (a means to control multiple updates), as well as
creation, deletion, and update.

The DAPSE construction methodology is based upon attribute
grammar techniques [8,9] and recursive data structures [10]. The
methodology has been used to generate the prototype environment,
and certain development tools, and is based upon the use of a
common specification language. Other generators — the front end
generator, data {(object and relationship) management system
generator, and the structured editor generator — may extend the
semantics of the common specification language into their domains.
A report describing the use of a uniform specification language,
LDOQ, is in preparation[11].

Barriers to Extensibility

The mature, extensible APSE is a significant departure from the
loosely-coupled toolsets currently in use; such an APSE model has
been characterized as coherent, or lifecycle-oriented [12]. There are
significant barriers to the development and introduction of
technology suited to the production of such environments. In
particular, the prevalence of tool-oriented methods and
environments, and the costs associated with comprehensive
environment frameworks stand as the principal sociological barriers.
On the technical side, several fundamental problems block the
development of extremely extensible environments:
+ the current dichotomy between hierarchical file systems and
graph-oriented information models,
the lack of a wide-spread and sufficiently powerful information
specification language,
+ and the lack of stable interface standards.

A shared theme of the Common APSE Interface Set {CAIS)
definition [13] and the Portable Common Tool Environment [14] is
“to provide interfaces sufficient to support the use of APSEs for
wide classes of projects throughout their lifecycles...” [13; § 2.1]:
this is not a sufficient basis for APSE extensibility. In fact, certain
features of the CAIS and PCTE designs make uniform extensibility
unlikely: in particular, the fundamental split between the “coarse-
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grain” information managed by the environment and the “fine-grain™
information managed by t00ls or toolsets.

immature environments may provide support for the range of
activities invoived in the software life-cycle, such as requirements
analysis, design, deployment, and maintenance. Very few
commercial environments have been developed to support
extensibility. However, the need for flexibility, extensibility, and
modifiability of software support for large-scale systems (>5 million
source lines of code) introduces requirements which cannot be
satisfied by an immature environment:

+ The long fifetime of large-scale systems (over 20 years)

reguires a highly extensible environment framework.

+ Systems of such magnitude may undergo major architectural
restructuring due to upgrades and the incorporation of new
technology.

« The size and time frame guarantees the need for support of a
shifting collection of developers, testers, designers, and support
staff.

To date, most efforts toward extensibility in environments have
been based upon the UNIX "filter" concept [15]. As an example,
consider the Toolpack/Odin project {16,17] in which too! fragments
of small capability are composed into tool assemblages in order to
carry out specific tasks. Typed information fragments (virtual files
or sets of files) are associated with tool fragments, and control of
all fragments is centralized in the environment manager. Users are
provided a specification language with which to describe new tools
or tool fragments upon their introduction into the environment. This
facility is more or Jess the equivalent of defining of new views, and
the specification of how those views are created (18]. This
approach suffers from the limitations of a firewall” between file
system and file contents, however. This is simitar to the limitations
encountered with other systems, such as the IDE environment [19].

In the Arcturus prototype APSE [20], significant effort was
directed toward extensibility in user interaction, primarily in the
area of user-defined editing presentation and report formatting.
This approach does not provide sufficient support in those areas
most critical for the management of large-scafe software systems.

Extensibility and the Mature APSE

Mature environments provide an adaptable, modifiable structure
which supports flexibility within the constraints of certain invariant
principles. The DAPSE project has adopted an approach to
environment extensibility in which specifications of an intended
environment are used to generate an instance of that environment,
or to regenerate components of the environment. This approach is
quite similar to independent work in the ALMA project [21,22], and
the direction originally planned for the WIS Software Development
and Maintenance Environment {23).

Extensibility within a8 DAPSE takes the following form: layers or
components of the environment are specified by a high-level, non-
procedural specification language: LDO2. Software generators have

2 LDO: Language-Derived Objects.
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been developed to accept these specifications and automatically
produce environment and tool components. (The status of these
tools is discussed in more detail in the next section.)

The structure, or schema, of project-specific information managed
within such an environment is extensible in an analogous way. The
definition of environment objects, such as Ada source, documents,
and executables, is described by means of the same specification
language. Complex relationships between objects can be
represented. The user's interaction with the environment is
subsequently channeled through the project-specific characterization
of the information managed by the environment.

The integration mechanism which supports this high-degree of
extensibility is a partitioned user view provided by a consistent
family of editors, as in Gnome [24]. The term editor must be taken
in the most general sense, as an interactive mechanism which
provides a user with a view over a well-defined information
representation, and means to modify the information content of the
domain under examination. An alternative to editor is “view
manager”; given the definition above, it is clear that a wide number
of interactive systems not commonly considered editors are in fact
view managers, such as command interpreters, database query
languages, Ada library managers, and job control.

Extensibility is not effortless, and the actual process of extending
an environment, while automatable, does have a cost. The
specification of an information model can be extended to include
new objects, relationships and attributes; consider the Ada program
library as an example. To support existing tools — such as
commercially available Ada compilers — in their manipulation of
the library, the extended view needs to be either
1) realized in the form of partitioned information models, one
associated with the existing tools' view and the other
supporting the auxiliary information,

2) or exploited by the existing Ada compilers.

The goal of the DAPSE approach to extensibility is the second
alternative: mature tools should not be "gasketed” into an
environmental information model in a passive manner. in the case of
an Ada compiler well-suited to a mature APSE, the compiler would
share the schema which defines the structure of a program library,
and would access the information content based upon the model
described there.

This discussion leads to the final, and critical subject: the limits of

extensibility. Environments cannot be totally plastic, and the range

of extensibility must be well-defined. There are several constraints

on extensibility, including

+ standards, such as the Ada fanguage requirements for library
management;

+ costs associated with information and tool transformation
caused by modifications in schemata;

* and configuration management overhead imposed by tracking
environment versions.

The last point represents the ultimate result of a
"metaprogramming” approach [25] where software systems are
treated as data to be manipulated. When the environment is
extensible, and can change in fundamental ways over the course of
a project, the state of the environment must be considered as an
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integral part of the state of the project. Attempting to resurrect a
previous system version — prior to performing the traditional "build”
of system components — will require the "build" of the environment
based on the operative schema, followed by the populating of the
information mode! with the system components and supporting
materials.

Extensibility in the DAPSE: Current Status

Prototypes of our approach to environment extensibility have been
constructed, and reported [1,2,3,4]. The DAPSE project is currently
centered around three major releases of demonstration software.
This section reports on the state of the second release.

The key to the DAPSE environment technology is information
modeling. DAPSE's extensibility centers around the support for the
flow, change, and management of newly specified kinds of
information within a programming support environment.

In the current DAPSE prototypes, non-procedural specifications
describe the schemata for information that are going to be
supported by a particular DAPSE environment (e.g. typeset
documents, Ada code, Ada libraries, designs, specifications,
reports, efc. ). These specifications are attribute-grammar based
and carry syntactic and semantic content; they allow a system
administrator to specify potential relationships among entities
stored in the database. For example, a DAPSE might be configured
to allow a user to establish a relationship between an Ada
compilation unit and a document. Besides allowing relationships
between two entities (i.e., coarse grain relationships), fine grain
relationships are also supported: for example, an Ada source
statement may be related to the pertinent section of a design
document.

The remainder of this section outlines the specific DAPSE release
2.0. mechanisms supporting environment extensibility.

ructured Editor Generator

The DAPSE release 2.0 structured editor generator takes as its
input

subprogram names surrounded by boxes (a form of elision) which
then can be expanded to show the full bodies on a user's request.

The goal is to produce, as quickly as possible, capabilities for
graphically presenting and intelligent editing arbitrary entities. Our
current domain comprises data structure- and grammar-based
entities, such as Ada source, Ada libraries, command languages,
and program management languages. Our hope is that the
generated editors will provide sufficient performance, and that the
ability to rapidly modify and extend them wiil offset any apparent
productivity loss due to performance.

ntity-Attribute-Relationship D

The DAPSE database system takes as its schema definition
language the same specifications of entities that the structured
editor generator does. In the current version, the entire set of
specifications are combined into a single, very large specification.
That specification is used to model the attributes and type system
of entities managed by the UNIX file system, as well as
relationships between these entities: the coarse-grain information.

Currently, the DAPSE aciivity window — a DAPSE-specific shell
— allows navigation of the database by following relationships
between entities. The activity window provides access to both
DAPSE and foreign tools in terms of operations defined upon the
type system associated with entities. When a DAPSE session
starts, all databasa meta-information is loaded from a set of UNIX
files into transient memory.

DAPSE 2.0. database supports a single user. The requirements for
a full, multi-user persistent database have not yet solidified,
although a prototype multi-user system has been devised, based
upon a distributed Ada application paradigm {4,5]. Both the single-
and multi-user versions use hand-built code to access a particular
database schema, and as such has extremely limited extensibility.

A variety of prototype systems within DAPSE exploit knowledge
about the structure of entities. All DAPSE editors do so, in effect

structures. A prototype query language which allows the user direct

: 'ﬁi‘.wa.o

U

XX
J

]
(X
[RE0
KRN
"!_“.f

l';.'

o

W

(

'P

.\

§o0

making database queries with respect to the entities' internal ‘ ,a::‘
|

1) a definition of the form of information to be managed by the query access based upon the internal structure of the Ada program
aditor library and Ada program structure has been developed, and is being
evaluated as a model for related efforts.

WANA

&
0 Q" ¢ ‘v
‘;Q:.. O

2) and a mapping which represents the graphical representation of
the information structure.

Muitiple editors can be generated for the same entity simply by
creating different mappings.

The structured editor generator currently generates about 50
percent of the code needed to implement DAPSE editors. With
future releases we plan to reach nearly 100 percent of the code.
The generators currently generates code to do syntactic checking
but not semantic checking. The generated editors take advantage
of the high resolution raster graphics based Sun workstation3,

One of the best features of the generators is their hierarchical
nature, and the consistent editor support for suppression of
unwanted detail. When editing an Ada package body containing
several subprograms, for example, one might first be shown the

3 Suniis a trademark of Sun Microsystems Inc.

Qur hope is that our research will lead us to a model which can
merge our fast short-term fine-grain storage facilities with a
commercial, persistent, coarse-grain database.

Configuration Control

The configuration control facility of DAPSE provides an orthogonat
means of managing the temporal aspect of entities [2,3]. Logically
related entities are managed as sets which share a common
history. Modification of any entity within a set represents a new
instance of the set as a whole4. The series of states making up the
set history are stored (at the coarse-grain level), and differences
between branches in the history can be reconciled.

4 Note thatthe physical implementation does not reGuire copying the setas a
whole.
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All access to fine- or coarse-grain information is arbitrated by the
configuration control system. The current version of DAPSE is
independent of the database schema and therefore extending the
schema has no impact on the configuration control mechanisms.

Future Work on Extensibility

DAPSE prototypes have demonstrated the power and flexibility of
a specification language/generator approach toward environment
technology. Our future goals are a carrying forward of the
principles which motivate DAPSE. The increasing automation of
graphical view managers (or ed.rs) will have a farge impact an
other aspects of the project; in particular, generation of large
components within the DAPSE "shell" and the uniform exploitation
of the editor paradigm.

A database-oriented policy-management language (along the lines
described in [26]) has been defined. In summary, the language
extends the basic descriptive capabilities for information models
with pre- and post-conditions on database operations. The
conditions are planned as the building blocks for software
development policy description and enforcement, either interpreted
by tools, or used to structure access control.

Environment extensibility must rest upon a stable base, or better, a
collection of stable interfaces. DAPSE work has led to the
identification of non-existent, but needed, interfaces (such as the
Ada Library Interface Set (ALIS)3) and the need for standard Ada
interfaces to other emerging standards {such as POSIX [27] and
XWindows {28]). For extensible environments to move out of the
laboratory and into the field, widespread commitment to stable
interfaces is critical.
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A PORTABLE SYMBOLIC DEBUGGER FOR
DEBUGGING REAL-TIME ADA APPLICATIONS

Elisabeth Broe Christensen

DDC International A/S

Abstract

The paper addresses the suggested
topic "Ada Life Cycle Environment:
Debuggers". The paper is based on the
experience gained during the DDC-1I
Symbolic Cross Debugger Project. The
following topics are addressed: Do we
need dedicated Ada debuggers, or can
general debuggers be used. Ada fea-
tures hard to support: Generics and
PRAGMA INLINE - how and to what extent
are they supported. User friendliness:
How this has affected the debugger
design. Portability versus minimal in-
terference with the target system -

how this is achieved.

Introduction

A debugger 1is an indispensable tool
during the test phase of the Life
Cycle for diagnosing program errors.
In particular when developing applica-
tions, where program failure may be
caused by faulty or unstable hardware,
a debugger 1is an invaluable tool for

tracking the cause of errors.

A series of issues considered essen-
tial for the usefulness of a debugger
for the diagnosis of errors in Ada
programs are addressed in the follo-
wing. The paper is based on the
experience gained during the DDC-I

Symbolic Cross Debugger Project,

examples from this project will be

uged.

Do We Need Dedicated Ada Debuggers ?

A continuously ongoing discussion is
whether the use of Ada requires debug-
gers developed especially for Ada, or
whether general debuggers developed
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for other 1languages could be adapted
for use with Ada as well.

The opinion of the author is that
dedicated Ada debuggers are needed.
Ada has some facilities, which were
not part of the older languages like
Pascal and FORTRAN, for which general
debuggers are normally made. These
facilities should be supported by the
debugger - as well as by any other
tool -~ in order to allow the user to
fully exploit the advantages of Ada.
We have found that the support of
these features of Ada affects the en-
tire debugger design.

What are then these special Ada fea-
tures ? The first one to be thought of
is tasking. The tasking model is an
integrated part of Ada; an Ada debug-
ger should therefore be able to handle
programs with concurrent tasks. This
means, that a strategy should be
decided for handling the situation
where several tasks are or may become
breaked (i.e. suspended on
breakpoints); and the control struc-
ture of the debugger must be prepared
for asynchronous events. Furthermore,
the debugger should be able to handle
the task states as defined by Ada. The
current state of a task like "caller
in rendezvous", "delayed" and "waiting
for children tasks to complete" and
state information like current or ex-
pected rendezvous partner should be
available, as well as information
about the task structure 1like the
names of the parent and the children
tasks. Furthermore, the debugger
should be able to set breakpoints at
task events like task activation, ren-
dezvous, termination, abortion and
completion.

Some applications do not use paral-
lelism - what about those ? Well,
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another important feature of Ada is
the ability of well-controlled error
handling - the exception mechanism. In
Ada, the user may define his or her
own error conditions and associate a
named exception with a given condi-
tion. The debugger should be able to
set a breakpoint on the raise of a
given exception, in order to detect
possible error conditions and investi-
gate how they are handled;
furthermore, it should be possible
when using the debugger to explicitly
raise an exception in the user program
in order to test the handling of e.g.
hardware failures, which may otherwise
be difficult to simulate.

Other features which call for dedi-
cated Ada debuggers are

- overloading: A resolution strategy
for setting breakpoints on an over-
loaded procedure must be chosen

- dynamic constraints: This in-
fluences the strategy for checking
values at assignment

- the package concept: A strategy for
looking at entities which are not
actually visible from the current
point of execution must be
designed, as an erroneous value of
a variable defined inside some
package may affect the system be-
haviour. The strategy must ensure,
that the entity is meaningful
(elaborated), otherwise inspection
must be prohibited

- generics: A way of handling instan-
tiations must be designed

- PRAGMA INLINE: A way of debugging
programs containing INLINE expanded
procedures must be invented.

The two latter features: Generics and
PRAGMA INLINE, and the problems they
cause, are the subject of the next
section.

Generics and PRAGMA INLINE

Most Ada debuggers - in fact, to the
knowledge of the author, all except
the debugger treated in this paper -
do not support generics or PRAGMA
INLINE. Why are generics and PRAGMA
INLINE difficult from a symbolic
debugging point of view ?

Basically, because the same source

text statement or declaration cor-
respond to several different entities
of code, and these different code en-
tities should be distinguishable from
the user's point of view !

When doing symbolic debugging, the
most frequent activity is to set
breakpoints at source text positions -
even the most rudimentary debugger
supports that. A source text position
is referenced by giving a module name,
a 1line number and, in some cases, an
identification of which of several
potential breakpoint positions on that
line you want to break at.

But how do you reference a source text
position in a generic instantiation ?
As module name the name of the instan-
tiation 1is wused - but what about the
line number ? Our choice has been to
use the corresponding line number in
the generic declaration. From the
user's point of view, we think this is
the 1logical thing to do; but it does
require more care when translating a
source text position into a physical
address.

For INLINE expanded procedures you
have a problem with the module name.
The meaning of a PRAGMA INLINE 1is to
make the procedure code become ex-
panded into - and thus be part of -
the code of the entity containing the
call. Therefore, the user should be
able to distinguish between different
expansions of a given procedure. How
do you distinguish between different
calls of the same INLINE expanded pro-
cedure ? Well, you invent a syntax for
names allowing you to unambiguously
reference a specific call - our choice
is to use the source text position of
the call as qualifier for the proce-
dure name. Example:

The command
SET BREAK AT p #12 INLINE q #5

will result in a breakpoint at line
number 5 of procedure g, in that
specific call to q which is located
at line 12 of p.

But this does not solve all problems.
According to the definition of Ada,
INLINE expansion is only to be carried
out when possible - a program is still
correct even 1if some PRAGMA INLINE's
have been ignored. This introduces a
new set of cases, which must be
checked and a handling strategy
chosen. The possible cases are:
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1) A debugger command specifying an
INLINE call is given for a proce-
dure, which has not been mentioned
in a PRAGMA INLINE.

2) A debugger command specifying an
INLINE call 1is given for a proce-
dure, which was mentioned in a
PRAGMA INLINE - but that particular
call has not been expanded.

3) A debugger command specifying an
INLINE call is given for a proce-
dure, which was mentioned in a
PRAGMA INLINE - and the call has
been expanded.

4) A debugger command specifying the
name of a procedure mentioned in a
PRAGMA INLINE is given, but with no
indication of which call is
referred to, and all calls have
been expanded.

5) A debugger command specifying the
name oOf a procedure mentioned in a
PRAGMA INLINE is given, but with no
indication of which call is
referred to; not all calls have
been expanded.

Our strategy is as follows: in cases
1,2 and 4 an error is reported. In
case 3 the breakpoint is set in the
specified call. In case 5 the break-
point is set in the "shared" procedure
code, 1i.e. the code executed for non-
expanded calls.

This 1is, in our opinion, the best
solution from a user point of view.
Though from a designer point of view,
it complicates the debugger structure:
The 1looking up of names can no longer
be separated from the handling of code
position information. Whenever a pro-
cedure name is looked up, it has to be
investigated, whether the name has
been mentioned in a PRAGMA INLINE, and
if so, whether inline expansion was
actually carried out.

We have chosen to support both PRAGMA
INLINE and generics as well as any
combination of the two; this has af-
fected our entire mechanism for
looking up names and deciding
visibility. We have made this choice
in order +to have a useful and user
friendly solution. Other aspects of
user friendliness are treated in the
next section.
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User Friendliness

In the recent years, many attempts to
define user friendliness have been
made. In a way, most of the subjects
treated in this paper are related to
user friendliness. 1 will not try to
come up with yet another general
definition. 1Instead, 1 will take a
more pragmatic approach: Look at our
design goals and at the features of
our debugger, and extract those that
were not dictated strictly by the
debugging operations, but which were
added in order +to make the debugger
easy to use.

The design goals dictated by user
friendliness are:

Goal 1: Minimal User Learning Effort:
The User should be required
to learn as 1little new as
possible 1in order to use the
debugger. The User should be
allowed to express things in
the way he or she is used to.

Goal 2: Easy Information Access: The
many different pieces of in-
formation supplied by a
debugger should be presented
in a way, which makes it easy
for the user to find the
relevant information.

Goal 3: Efficiency in Use: Frequent
operations should require
minimal effort.

Goal 4: RAutomation: Work, that may be
done by the computer should
not be done by the user.

The debugger features reflecting these
goals are:

Goal 1: Minimal User Learning effort:

- The debugger command language may
be tailored to fit the host system
conventions: Keywords may be
changed and new keywords may be in-
serted in the debugger commands.

- Command parameters are expressed
using Ada syntax. 1In particular,
expressions are identical to Ada
expressions.

- When displaying source text defined
entities, the definitions are dis-
played as written by the |user,
including comments.
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- Output (e.g. object values) is for-
matted to 1look 1like Ada source
text.

- Use of commands and parameters is

consistent.

Goal 2: Easy Information Access:

- A set of windows is defined, each

dedicated to a particular kind of
information. A window needs only to
be present on the screen when the
commands handling the window infor-
mation are used. The windows may be
moved, closed and have their size
changed by the user.

Display commands have qualifiers
indicating the amount of informa-
tion to be displayed.

Output (e.g. object values) is for-
matted to 1ook 1like Ada source
text.

Default formatting strategies may
be set up by the user.

Goal 3: Efficiency in Use:

Function keys are defined for the
most frequently used commands.

Defaults values are defined for
certain command parameters.

Cursors may be used for pointing,
i.e. cursor position is used as
parameter value.

Subprograms of debugger commands
may be defined.

Symbols may be defined.
A facility for easily traversing

(and displaying) 1linked 1lists is
included.

Goal 4: Automation:

Expressions may be used in com-
mands, e.g. when assigning a value
to an object or when setting a
breakpoint at a physical address.

Subprograms of debugger commands
may be defined.

Control flow constructs like "if"
and "loop" are incorporated in the
debugger command language.

- Files may be used for debugger in-
put and output.

Portability, which is treated in the
next section, also contributes to
achieving Goal 1: "Minimal User
Learning Effort": When the User
switches from one development system
to another, using the same tools mini-~
mizes the learning effort.

Portability Versus Minimal Inter-
ference with the Target

Portability of a tool is important,
because it allows the maximum number
of wusers on various systems to profit
from the tool with the minimum amount
of time and effort. As stated above,
the 1learning overhead is minimized by
using the same tool on different
systems; and reuse, which is one of
the key concepts of Ada, is
facilitated by portability.

The Ada compiler system, of which the
debugger referred to in this paper is
a part, has been ported to a number of
different development systems with
hosts ranging from mainframes to mini
computers and targets ranging from
bare microprocessors to mainframes.
Therefore portability is a key issue
for this debugger project.

Easy portability of a debugger is not
simple to achieve, as a debugger in-
herently manipulates machine dependent
data.

Increased portability of a debugger is
often achieved by relaxing the demands
for minimum target system interference
that are put on the debugger. For ex-
ample, some portable debuggers rely on
calls to a special debugging module to
be 1inserted in the code after each
statement. This is not acceptable, in
particular not in real-time applica-
tions, as the behaviour of the target
program is affected whenever the
debugger interferes with the target
system. Errors may change, or even
disappear, because of such inter-
ference. The extreme case is when the
needs of the debugger cause the target
program to grow to a size which makes
it impossible to run on the target
system.

The debugger referred to in this paper
is designed to require minimal inter-
ference with the target: no insertions
in the target code are necessary. How
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is this achieved, and what is meant by
still stating, that the debugger is
easily portable ?

The requirement, that no insertions in
the target code must be relied on,
means, that address information has to
be handled on the host, and, if the
debugger is to be easily portable,
preferably by the portable parts. This
is achieved by defining a set of data
structures, on which <the portable
parts operate. These data structures
are built by a portable tool from in-
formation which 1is generated by the
the portable parts of the compiler
(the front end), propagated and ex-
tended with relative address
information by the non-portable parts
of the compiler (the back end) and
finally merged with the information
about absolute addresses obtained from
the linker.

Information about entity names and
visibility is obtained from the symbol
table, which is stored in the program
library.

The target system interference re-
quired is then basically reduced to
read and write operations on target
memory and registers, and this is only
done, when the target program is
suspended becausa a breakpoint has
been encountered.

Some of the features of the debugger
may, though, require changes in the
run-time system: If the facility of
forcing a task to be suspended, until
explicitly released by the user is
wanted, an additional task state value
may have to be added. But in order to
allow for different user requirements
depending on the application, and for
different levels of system debugging
support, the debugger is configurable:
When implementing the debugger on a
given host/target system, the im-
plementor may choose to implement orx
leave out any facility. This is yet
another aspect of making the debugger
easily portable.

So, to summarize, what is meant by
stating, that the debugger is easily
portable ?

- the maximum amount of debugger
processing is carried out by the
portable parts

- the target (and host) interfaces
are isolated and well-defined
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- the data structures for information
to be provided by target dependent
parts are defined and prepared to
be filled out, and a portable tool
for building address information is
provided

- the debugger is configurable, al-
lowing for different applications
and different 1levels of system
debugging support

Conclusion

Ada offers some facilities, which were
not part of older 1languages. The
ability to support these facilities
affects the entire design of a debug-
ger for Ada; debuggers designed
especially for Ada are therefore
needed. Some of these facilities are
difficult to support. Two examples,
namely generics and PRAGMA INLINE,
were presented along with the solu-
tions chosen 1in the DDC-I debugger
project.

User friendliness and portability are
other important features of a debug-
ger; a set of goals as well as

examples of design decisions con-
tributing to these goals were
presented.

* ‘.l
A i,
A
it

(NKAXKX]
e
:.c':,c N

080

4
Ry

XN ‘e,
)
oy

"
U} II|
!.‘I".l‘
.} 3 {] ‘.‘

',

(
Y]

U
(M ¥ ‘l'(

boagh
et e,
PR

)%
i

oLy
\\ @hﬁ

o
-‘M!I:‘.:;



RN

Mok o Uof %ap C 9 0 G f v Pk A ) o ot VR g O 8. %0

Elisabeth Broe Christensen

DDC International A/S
Lundtoftevej 1C

DK-2800 Lyngby (Copenhagen)
Denmark

T1f: +45 2 87 11 44

Elisabeth Broe Christensen is current-
ly project manager for the development
of a Portable Symbolic Ada Cross
Debugger for the DDC-I Ada® Compiler
System®.

After graduating as a M.Sc.E.E (spe-
clalized in digital signal processing)
from the Technical University of Den-
mark in January 1982, she worked for 3
years on an advanced medical diag-
nostic system at Dantec Elektronik
A/S, designing and implementing high
speed digital hardware, system soft-
ware, and User Interface Software. To
strengthen her background in computer
sclience she studied at the University
of Copenhagen, and achieved a B.of Sc.
in Computer Science, May 1986.

In May 1985, she joined DDC Interna-
tional A/S, where she became respon-
sible for the first revalidation of
the DDC-I Ada Compiler. She partici-
pated in the porting of the compiler
to the CDC 180 and designed the
integrated Program Library Manager for
the DDC-I Ada Compiler System.
Further, she carried out a study of
the tools needed for Ada program
development, resulting in a tool plan
for DDC-I, of which the debugger is an
important part.

®Ada is a registered trademark of the
U.S. Government, Ada Joint Program
Office.

®DDC-1 Ada Compiler System 1is a
trademark of DDC International A/S.

6th National Conference on Ada Technology 1988 75

AP 5,00 Py

- s|~%~“
I |‘l

.'I‘:: :
2

'c 0,0
la $¥'
'l ;'0 .0 i
"}.."'. U "6
fh'n




e B B -y o AN W “of oI - )
ARSIV ) “"-.“"‘-,"," "'.‘?’a‘?‘.‘.ﬁ\“h LAY ..'u'.' KA !'5 .'l‘.a'n.‘@l ¢

PN R Y IR X KRR T TS
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1 Federal Street, Billerica MA 01821

Abstract

The graphic design assistant (GODzillA) is
a tool that facilitates the design of large in-
formation systems. It enables a designer to
graphically specify procedural as well as data
aspects of system design. Procedural design is
specified using a modification of an object-
oriented notation, whereas the data aspects are
specified using an entity-relationship (ER)
[CHEN?76] notation. The sytem has been
partially implemented on a Symbolics™
machine and is currently in use at GTE's WIS
Division in Billerica, Massachusetts. Additional
features are being incorporated to make the
tool more widely applicable. A notable feature
of the system is its suitability for very large
designs.

1.0 Introduction

This paper discusses a graphic design tool
(GODzillA) for designing large information systems.
Today "programming in the large” is well recognized as
a critical issue. The engineering of large information
systems is an equally important issue and requires tools
to support both the procedural as well as the data
aspects of the design. Therefore, GODzillA embodies a
tool to design both large programs in Ada as well as
databases using the ER model. In addition, the tc:ol
ensures consistency between these two aspects of the
design. The focus of this paper is on the description of
the Ada tool. This includes a description of the notation
developed, the implementation of the tool and how it is
currently used.

® Ada is a registered trademark of the U.S. Department of Defense
(Ada Joint Program Office).
™ Symbolics is a registered trademark of Symbolics, Inc.
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The standard object-oriented notation, by itself, is
inadequate for the design of large Ada programs. The
notation developed for GODzillA supports a hierarchical
object-oriented scheme allowing for large programs to
be manageable and understandable. The system per-
mits both internal and external specifications. The inter-
nal specification is stated using a variety of techniques
including a finite state machine approach. The system
generates Ada specifications including an Ada prologue
and Ada body code from a completed design.

Database tools allow the user to rapidly generate
error-free, well-designed schemas rather than doing
them tediously by hand. This tool allows a user to
generate fourth normal form (4NF) schemas from an
extended ER model. The standard ER model is insuf-
ficient for describing large systems. GOD:zillA offers
sorme innovative ideas for the expansion of this model.
The system generates SQL [DATES86] schemas and
enables the coupling of Ada and SQL programs.

The sysiem has been implemented on a Symbolics
LISP machine. The interactive environment and the
large base of graphics primitives provided the ideal en-
vironment for this rapid protc'yping effort. GODzillA is
currently in use at GTE on the design of two large infor-
mation systems (greater than 100 entities).

The following sections describe the Ada notation, the
database notation and the development of an appli-
cation using GODzillA. We show the graphic design and
the generated code. The paper concludes with our plans
for the future. Actual screen dumps of the system are
included.

2.0 Graphic Notation for Ada

In 1986 GTE was involved in the design and
implementation of a major local area network (LAN). As
part of the requirements, it was necessary to document
the entire design. Initially we started with a notation de-
scribed by Booch in [BOOCS6]. While this notation was
sufficient to describe small systems, the notation was in-
adequate to describe large designs. During that period
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our research produced a graphic notation which re-
moved some of the limitations [Poon86). This notation
was used successfully to describe the LAN design.
However, a significant drawback to the notation was
that it was not automated; consequently several
inconsistencies in the design went unnoticed. We also
noticed limitations in the new notation . Therefore, we
decided both to revise the notation as well as implement
a graphic tool to express designs. This section briefly
describes the notation as it is currently implemented.

in designing a notation for expressing
object-oriented designs, we felt the following capabilities
were essential:

a. the ability to represent large designs.
b. support for decomposition and abstraction.
C. parsimony in expressing designs.

Figure 1 shows the interface the designer sees
when beginning a new design. The palette on the left
displays the various Ada objects that can be repre-
sented. Objects that have no real existence at run time
and that are definitional by nature, for example generics
or types, are expressed using broken line icons; others
are expressed using regular lines. One additional object
that is included in the notation is the entity. Entities
correspond to database items and are used to connect

the procedural design with the database design. The
database design is described in Section 4.

Procedure units contain a body and its declared
units. Packages and tasks contain an external interface
which is connected to the appropriate visible units. A
difference between this notation and others is that all
units, both internal units and those units externally
visible to other programs, are visible to the designer.
While internal units are not visible to other programs it is
important that the designer have a facility to express to
himself the need for these internal units; some of these
could be units that are included from a library of useful
units. Connections between units indicate depen-
dencies, not data flow.

One of the drawbacks of notations that have been
introduced previously [BOOCS86, BUHR84] is the clutter
they generate f3 large designs. This detracts from the
desirability of a graphic notation. One way to reduce this
is to model all objects including the connections as
hierarchical objects which could be exploded further.
Thus to determine details of the dependencies one
merely has to explode the connection. Moreover,
associated with each graphic object is a pop-up menu
which displays additional attributes of the object.

The body of a procedure or package may also be

exploded to show either the Ada PDL asssociated with
that unit or a finite state machine (FSM) that may have

GODziA

Fackage

MASHINGTON
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\
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-8 3 78 xom
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—»
dependency
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4 task tyoe |N
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Edit Ada design Edit database design

Edit default parameters

Grid offy " Grid on View File
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Generate Ada code Save Design Zoom out
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externsl 1GODziV1A command:
oblect  1GoDe(11R command: B

niranda, prans Shift, Contral, Meta-hift, o1 Super.

8] Helen Machiappan CL-USER: User Input FIRE

Figure 1. Initial State of Ada Designer (GODzillA)
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"j been used to define the behavior of the unit. The FSM is about meetings and another requests meeting rooms.
" described using a standard notation for transitions and Additional people can easily be added to the system
" states and is described further in Section 3. GODzillA without loss of generality. We will model the three bty
uses the FSM description to generate the appropriate persons as Ada tasks INFO_PERSON_ONE, INFO_ -
" Ada code. PERSON_TWO, REQUESTING_PERSON (for multiple GO
:, persons we could have used task types), within a main Q::;:!:
B procedure called CONFERENCE as shown in Figure 2. y : |.:¢' ~
. 3.0 Designing an Ada program The conference room scheduler manages the LR
K conference rooms and is therefore modelled as a ! ,:.gl.::f
) This section describes the use of the Ada notation package called CONFERENCE_ROOM _SCHEDULER. Kty
to describe a simple application. We will first describe Notice all Ada units are numbered sequentially. The »
5 the scenario and then show how the designer might numbering is used for referencing and traceability T )
$ create a design using GODzillA. purposes. At this stage the designer realizes that all '-Q 4
;, three tasks depend on the CONFERENCE_ROOM_ ’: i
v 3.1 Scenario SCHEDULER and therefore indicates the dependency oy .:;s
4 by connecting the three tasks to the package as shown :&I '.:...v:
The problem is to model a conference coordinator in Figure 2. Since this is the main procedure, there is no WL 3K
. who will schedule conference rooms as well as give external interface. Moreover, we do not show any .
X information on the status of the rooms. The information external objects for this design. Figure 2 also shows the AN
»: about the rooms is stored in a database. Several initialization that needs to be done. The initialization )
' attendees may request information simultaneously code is defined by a procedure in our case and is called
b about where meetings are being held; others may want from the body. At this level the designer is not concerned
) to schedule additional meetings. about how the scheduling is done, but primarily about
what needs to be modelled. However, since people are
" 3.2 Design asking for information as well updating information, their ¥
iy requests need to be coordinated. el il
5 For simplicity, we will asume there are only three Wy .":’-
persons in the system, two of them ask for information y "y,
)
)
GODzillA
‘ F‘ Procedure CONFERENCE
) o dy
X LI —
3. package |
! 1.1
4 B “ Info_Pe
soid [l A |
jj procedure Conferen
---- ;:;’::z?; Iln"st_iaV ize
' % SNSRI i X
N R ooonenice =
! d!pe-n_d:ncy Z:gz::ﬂ
& task 1.4 o '
. Ceaas 20
[\ son F W .
- . ﬁ-.;ﬁ-
[l tesk type o W
’; Edit Ad design Edit dawse design = Ed deaun paramguoff ; rid on Uiew File . ‘
‘l entity Generate Ada code Save Design Zoom out !
'o 60D2i11A command: Y ".’l,‘
) extirast |Sobeitia comenc: ‘
: oSject  |gonzi11A command: , : i i . ! ::
Acnment ation |-f.'>\,\n.1\m ,'M:}vn‘o M rs'n_,,ml Menu; Mouse-R: Menuy 3 .' L)
! ' e e e s LDt SFIAE: nachi sppan>scneduier soe 82 § s‘:‘:':‘
:j Figure 2. GODzillA representation of Procedure Conference Ye ' :
- A 435 |
‘3 "’ ‘k ) L
N \J \ 1o
: LN
78 6th National Conference on Ada Technology 1988 . 9 ¢
)‘ . . .
R ¢ ) 'q‘.‘n
Aoy ]
s

+ = Apm g, n
S INA N Tket)

- . L - . ”
O T AN AL SN A A N U

» . «
Tl

T AR WL T PSS I I L P TV WS I T P A SR N
GRORR IO QSRS ARG Ll At LAt AR ARG e




IR S WU W WY T T TS “batl 4 140,00 N VRN TOR AU AAFUCT R AP LA WS WU UNCY U U At 8 AV 2¥a V2 % Aa 8V A2 2% 2%s At2 B

The first level of design is complete and the
designer needs to further elaborate the design of the
package CONFERENCE_ROOM _SCHEDULER. He
does this by placing the cursor on the package and
selecting explode. Visually he gets an empty package
with a body and an external interface similar to Figure 1.
This package provides two external interfaces, namely

GET_INFO and REQUEST_ROOM as shown in Figure 3.

Both of these procedures need to access the database
entity CONFERENCE_ROOM. Parameters for these
access calls can be specified by invoking a menu as
shown in Figure 3. For example, procedure REQUEST_
ROOM has five parameters.

As noted above, it is important that simultaneous
access to the database be prevented. While several
requests to get information are allowed, the conference
room entity cannot be updated by more than one task.
This requires an internal task, called ROOM_MANAGER
to manage the scheduling. Each procedure gets per-
mission from the ROOM_MANAGER to either update or
access the CONFERENCE ROOM entity. When the task
is completed, the associated procedure reliquishes
access so others may gain access. Notice Figure 3 does
not depict the detaiis of the scheduler. This is expressed
by the designzi at the next level of detail as shown in
Figure 4.

Readers = 0

Request_Write/Null

Reading

()

Request_Read/
Readers := Readers + 1

Request_Read/
Readers := Readers + 1

Release/Null

Readers : integer := O

Figure 4. FSM for Task Room_Manager

Figure 4 models the scheduling using a finite state
machine technique. Circles depict states and arcs depict
conditions and actions. Conditions can be either
boolean expressions or entry calls initiated by other
units. Initially the ROOM_MANAGER task is in the idle
state because no requests have been made. Notice in
this state a read or a write request can be honored with
the appropriate transition being made. If a write request
i$ accepted, the new state is WRITING. For this transition
there is no additional action. When the update is com-
pleted, a RELEASE is issued by the calling task and the
state is again IDLE. With a read request, the number of
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readers is incremented and the new state becomes
READING. In this state additional read requests can be
honored thus accomodating multiple readers. When the
reading is completed, once again a RELEASE is issued
by the reading task and the number of readers is
decremented. If there are no more readers, the
ROOM_MANAGER goes into the IDLE state; otherwise
he stays in the reading state. Our notation uses a special
state which allows for "if-Then-Else" transitions. To re-
present initialization, a start state is provided whose arcs
only contain actions leading to the first state.

The diagram clearly depicts the asymmetry of the
situation with the readers being favored [Buhr84]. The
usefulness of the the finite state machine is that requests
can be dynamically simulated. With several such
machines, potential deadlocks can also be detected.

If the designer is satisfied with the design ot the
interface and the body, he can generate code directly
from the diagrams as shown in Figures 5 and 6. In
generating code, we strived to make it readable and as
close to what would be written if done manually. The Ada
prologue is adapted from DOD Standard 2167 for
software documentation.

We have shown a segment of the process that a
designer might go through. Other Ada units can be
elaborated similarly. The elaboration of the database is
done using an extended ER tool. This process is de-
scribed briefly in the next section. The tool ensures that
the entities defined in the Ada design are also captured
in the database design and vice versa.

package CONFERENCE _ROOM_SCHEDULER 4s

--ABSTRACT
--This package schedules reading and writing accesses
<o the conference database.

~-KEYWQRZS
--readers, writers

--CCONTENTS

--author: Helen Nachiappan

--department: CASE

--created-on: 12/01/87

--last-revised-on:

--purpose: To allow the existence of multiple reagers
and writers.

--function: To prevent simultaneous access to the
database.

procedure REQUEST_ROOM(Length_Required : in INTEGER:
Room_Scheduled : out INTEGER:
Granted : out BOOLEAN:

Number_of Attendees : 1n INTEGER;

Time_Needed : in STRING):

procedure GET_INFO(Available : out boolean:
Time : in Integer;
Room : in Integer);

end CONFERENCE_ROOM_SCHEDULER:

Figure 5. Generated Specification for Package
Conference_Room_Scheduler
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cask body ROOM_MANAGER is
type statetype is (Reading, Idle, Writing)/
scate : statetype := Idle;
Readers := 0;
loop
select
when state = Idle => accept Request Write do
state := Writing;
end:
or
when state /= Writing => accept Request Read o
case state (s
when Reading => Readers := Readers + 1;
when Idle => state := Reading;
Readers := Readers + 1;
end case;
end;
or
when a-ate /= Idle => accept Reguest_Release do
case state is
when Reading => Readers := Readers - 1;
if Readers = 0 then
state := Idle;
end if;
when Writing => state := Idle;
end case;
end;
or
terminate;
end select:;
end loop;
end Room_Manager;

Figure 6. Generated Code for Task Room_Manager

4.0 Database Design

GODzillA includes a database design tool which
enables the designer to model databases in terms of an
extended ER model. The ER model includes entities
shown as rectangles and relationships shown as
diamonds. Relationships may be specifiedas 1to 1, 1 to
many, or many to many. We have extended the model to
include several other facilities [MART82] such as:

a. is-a.

b. exclusive is-a.
c. weak entities.
d. areas.

All entities included in the Ada design are automatically
included in the database design. The designer may add
additional entities and associated relationships. Details
of the database design tool are given in [POON87].
Figure 7 shows the top level system design of the
database. It includes two areas, ORGANIZATION and
FACILITIES, and one entity PEOPLE. Areas are a
collection of logically related entities. PEOPLE has
several binary relationships with ORGANIZATION and
FACILITIES. This is indicated by the bold unlabelled
diamond. The entities within ORGBANIZATION have
several binary relationships with the entities within
FACILITIES. To elaborate the areas, the designer
explodes that area. Figure 8 shows the explosion of
area FACILITIES. The CONFERENCE ROOM entity is
part of FACILITIES. Notice HOTEL ROOM,
RESTAURANT and CONFERENCE ROOM are depicted
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as exclusive kinds of rooms, meaning that one room
cannot be used as another. Notice that the housekeeper
maintains rooms regardless of the function of the room.
Thus, we do not have to include three separate
relationships to the individual types of rooms. The
shaded icons represent entities or areas that are defined
at the previous level. Since PEOPLE has a binary
relationship with FACILITIES as shown in Figure 7, there
must be a binary relationship with PEOPLE and at least
one entity in FACILITIES. In Figure 8, PEOPLE is related
to three other entities in FACILITIES.

5.0 Conclusion

GODzillA is an operational prototype that was
deve.oped as part of an internal research and
development project at GTE's WIS Division, The
database tools as described above are complete and
are being used in two large information system design
projects. The Ada tools have implemented the facilities
described above, however, the capability to describe all
Ada units needs to be included. Currently we have not
implemented types and generic facilites although the
notation has been defined. We also plan to incorporate
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Poonen, G., Landstrom, S., Nachiappan, H.,
"GODzillA - A Graphic Object-oriented Design Assistant,”
submitted for presentation at the 10th Annual
International Software Engineering Conference to be
held in April, 1988.
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ESD Acquisition Support Environment (EASE)

Christopher Byrnes

The MITRE Corporation

ABSTRACT

The ESD Acquisition Support Environment (EASE) is an
Ada® analysis and development environment that integrates a va-
riety of off-the-shelf tools into a Sun 3 UNIX workstation run-
ning the SunVIEW windowing system. These tools include a
Verdix Ada compiler, UNIX textual search utilities and custom-
ized Ada unit status monitoring tools. Together these tools aid
an analyst in the evaluation of Ada design or code. The analysis
that can be performed with EASE today includes checking for
strong typing, Ada unit dependencies, initialization and threads
of control. This analysis could be done as part of an independ-
ent acceptance test of Ada deliverables or as part of internal soft-
ware quality assurance. The types of analysis which can be done
by EASE are being expanded as more Ada analysis tools are
developed and integrated into the environment.

1. INTRODUCTION

This document describes the ESD Acquisition Support En-
vironment (EASE) that has been developed at The MITRE Cor-
poration as an aid to the of analysis of Ada deliverables such as
Ada as a Program Design Language (PDL) and Ada source code.
The growing use of Ada in government software development
efforts will lead to a large amount of Ada that should be analyzed
as part of a formal design review process. Just as software devel-
opers need automated tools to aid in the creation of Ada soft-
ware, so the analysts of Ada software also need tool support.

EASE was developed as an environment in which to place
Ada analysis tools. The tools that are useful to Ada analysis are
available from, or under development at, a variety of sources.
Some of these tools are Off-The-Shelf (OTS) commercial pack-
ages while others are specially developed tools. Because the
analysis of Ada covers a wide spectrum, there will be many tools
that can be applied to this job.

The current version of EASE provides an integrated envi-
ronment (running on a UNIX® workstation) into which OTS Ada
tools can be placed. As more Ada analysis tools become avail-
able or are developed internally within MITRE, they can be

® Ada is a registered trademark of the U.S. Government
(Ada Joint Program Office)
® UNIX is a trademark of AT&T Bell Laboratories
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added into this environment. EASE has been designed so its
suite of tools can be broadened with a minimum of effort.

This document defines the reasons that the analysis of Ada
code requires an environment such as EASE and how such an
environment should evolve to support future Ada analysis tools.
In the interest of space, this document will not describe each
feature of the EASE system. The features of EASE are best seen
in a demonstration. This document will also outline the future
plans for EASE. OTS tools can only perform some types of Ada
analysis; MITRE's support work will require much more powerful
analysis tools. EASE will evolve to support these new types of
analysis tools.

2. OBJECTIVES OF EASE
2.1. FRAMEWORK IN WHICH TO DEVELOP TOOLS

Because we wanted to create an environment with a mini-
mum of development effort that could be extensible, the EASE
user interface was developed through the creation of low-level
primitives that the higher levels of EASE could be developed on.
These primitives provide a layer which abstracts out the details of
the workstation environment chosen to implement EASE on. As
more OTS tools are added to EASE, these primitives are reused
to integrate the new tools.

In addition to abstracting out the workstation dependen-
cies from the tools, these low-level primitives can be used as the
basis to implement higher level programming interfaces. The
current version of EASE allows programmers to create an envi-
ronment of OTS tools without having to learn the details of the
workstation’s conventions. The programmers and maintainers of
future versions of EASE will also want to provide sophisticated
Ada analysis without first having to learn the details of the cur-
rent primitive level. This layered approach should make it easier
to implement the advanced Ada analysis capability planned for in
future versions of EASE.

2.2. CONSISTENT TOOL INTERFACE

EASE provides a consistent interface to all the OTS and
developed tools used in Ada analysis. Each tool builder had
his/her own conventions for how a user interface should be im-
plemented. In some cases EASE is using tools that were origi-
nally part of incompatible environments. EASE supplies the
mechanisms to use these tools without having to learn the inter-
face conventions originally provided.
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The need for a consistent interface is particularly acute for
Ada analysis groups. An independent Ada analysis group (which
could be an internal group such as Quality Assurance or an exter-
nal group such as MITRE) will usually have only a short time to
analyze the delivered Ada. These analysts will not have time to
learn or remember the different interfaces of each tool. EASE
allows these analysts to concentrate their limited amount of time
on actual analysis of Ada deliverables.

2.3. IMPROVED UNDERSTANDING OF SOFTWARE
ENGINEERING ENVIRONMENTS

In addition to analyzing Ada software deliverables,

3.2. ANALYSIS OF ADA PROTOTYPES AND MODELS

In addition to traditional design deliverables such as
STLDDs and SDDDs, there is growing interest in requiring other
executable products which are designed and implemented in
Ada. The use of prototypes, both as a source selection evalu-
ation aid and as an early mock-up of a delivered system, creates
software to be checked. Software models can be built to analyze
a system’s attributes. Ada can be used to write this software
which needs the same sorts of analysis that were described above.

3.3. DEVELOPMENT OF ADA CODE

¥ . .
f;:‘ MITRE must also review other development documents such as MITRE will also develop its own Ada prototypes and mod-
g2, Software Development Plans (SDPs). An important factor in els for its internal use and to support its customers. These pro-
.',5’ these SDPs is the level of software engineering support provided grammers will need soh\.ware environments that support both the
& by a contractor’s host environment. The development and use of development and analysis of Ada code. As a by-product of sup-
A8 EASE provides insight into what is needed by a software devel- porting acquisition, EASE can also be used as an Ada software
oper to create and analyze Ada code. This additional insight development environment. Ada developers will be under .he
. should be reflected in better analysis of proposed SDPs. same tight time constraints as Ada analysts and so will need an
o environment that is just as powerful.
" 3. EASE ROLE IN THE ACQUISITION LIFECYCLE 4. ANALYSIS DONE ON ADA DELIVERABLES
K :,‘,l;}_fvi;lf::;: F DESIGN PHASE ADA 4.1. TYPE CHECKING
' The primary EASE role is to help analyze Ada PDL that is There is a variety of Ada-specific a.na‘lyses that can be St
delivered as part of a preliminary or detailed design. This deliv- done on Ada deliverables. One such analysis is of how well typ- B
3;1; ered Ada might be part of a Software Requirements Specification ing has been used in the design. Ada is a strongly-typed lan- :"0; ,
:Al‘ (SRS), a Software Top-Leve! Design Document (STLDD) or a gu§ge; proper use of user—defined data types allows Ada's compi- 5:’ 0
. ) Software Detailed Design Document (SDDD). The SRS, lation rules to ‘detect erroneous combinations of data types, op- ’!'3%559(4
;;‘\ STLDD and SDDD are examples of deliverable documents erators and objects. An Ada compiler can be used 10 see if these 5"0 ?
:::“ called for in DOD-STD-2167 which are reviewed in conjunction rules have been followed.
L] with a Preliminary Design Review (PDR) or a Critical Design Re-
A view (CDR). Recent DoD directives have mandated the use of 4.2. UNIT COUPLING
_ Ada in both delivered software and as a software design notation. The compilation units that make up an Ada program can
:;:l As this n_namdau:i is nmplel'r:;:’med..“ab gtgat:L percentage of deliv- be analyzed to see the coupling between them. How the units
n": ered designs and source code will be in Ada. are coupled will depend on the design methodology being used
B Some of the aralyis that can be peromed an Ady (18 S annied or herachiea) and wheter e Ad
‘5 deliverables is similar to the analysis done on existing natural- compilation (and recompilation) or derg?l's‘ 1o det Emine th
W language documents. Requirements traceability and allocations pl'in bet P fil Poorl a ‘;’aé' 0 dete i ;
i of functionality are examples of the traditional analysis that will coupling between source Wes. Poorly coupled systems will Jea
ntinue to be done on Ada. But Ada has the constructs to 10 excessive recqmpnl'al_lon and maintenance cOsts. Such prob-
\ co . . . lems should be identified as soon in the development cycle as
oy capture a much broader range of design and implementation de- possible.
KN cisions than normally found in natural-language documents.
,1:; Analysis of early design (as well as code) deliverables allows the 4.3. SYSTEM INITIALIZATION
o detection of mistakes (such as non-conforming system perform-

ance) before expensive coding decisions are made. This addi-
tional analysis (provided by the use of Ada) requires additional
resources such as those provided by an environment like EASE.

All of this analysis (and all the tools that will be a part of
EASE) assumes the use of MIL-STD-1815A Ada, not some
subset. All of the analysis tools in EASE must use a common
mode! of semantics and run-time behavior as well as a common
syntax. Ada provides such a common model; both developer
and analyst can speak the same language. When constrained
subsets of Ada are used. important design information may be
left out. When alternative models of computation are used, ex-
isting tools (such as EASE’s) will not understand the design being
analyzed.

Proper initialization is as important to software systems as
steady-state operations. The Ada language has rules defining
how Ada units and objects are elaborated (initialized) and the
order in which such elaborations are done. Determining the Ada
unit elaboration and dependency order allows an analyst to see if
the software will initialize properly.

4.4. THREADS OF CONTROL

Analysis of software includes looking at the threads of con-
trol under steady state and exceptional conditions. In addition to
the compilation rules that define how executable Ada statements
can be written, Ada defines the semantic run-time actions of its
statements. Ada designs and code can be compiled and exe-

;': cuted to see how the threads of control work.
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4.5. DESIGN ALTERNATIVES

During the (long) acquisition lifecycle, evolving require-
ments and improved understanding of target system issues may
lead to a need to investigate design alternatives. An analyst may
wish to modify a design to see how well it responds to anticipated
changes. When working with Ada designs and code, the analyst
will want to modify the Ada and then use the same analysis tech-
niques described above on the modified Ada to see how well the
design handled the modification. Ada that has be written for
maintainability will be able to handle these changes with a mini-
mum of effort. Unmaintainable designs will be discovered by the
analysts as they learn how difficult it is to modify such a design.

5. PROBLEMS WITH MANUAL ANALYSIS

5.1. WORKING WITH ADA REQUIRES A “MESSY
DESK”

The analysis techniques described above are difficult to
perform on paper or using a standard glass (24 lines by 80 char-
acters) terminal. Analyzing Ada requires looking at the specifi-
cation and body of a unit. Understanding how Ada software
works requires looking in both subunits and their parents. This is
in addition looking at where subprograms are defined and called
as well as where data types are created and used. The informa-
tion ahout an Ada design is spread throughout the source code,
so understanding the source requires looking in many places at
once.

Working with just the paper source listings results in the
analyst constantly flipping back and forth between pages. Using
a glass terminal is only slightly better; without the ability to
browse through different source files (and positions within a
source file) the analyst will be constantly flipping back and forth
between source files. A workstation that provides a “messy
desk,” i.e., one that allows many simultaneous views into all the
Ada source being analyzed, is required. The Smalltalk environ-
ment{Gold83] is an example of a workstation providing multiple
simultaneous views into the source code. A user of such an envi-
ronment may “browse” through many portions of the source
code at once.

5.2. WORKING WITH ADA REQUIRES COORDINATED
EFFORTS

Analyzing Ada deliverables will involve many separate ac-
tivities, some of which will be occurring simultaneously. In addi-
tion to the multiple views of Ada described above, the analyst
may wish to run one type of analysis on one pant of the Ada
(perhaps using the compiler to check strong typing) while doing
another type of analysis (perhaps running through a thread of
control) on another part. Many of these Ada analysis tools place
restrictions on what can and cannot be done simultaneously.
Uncoordinated use of these tools can result in the analyst violat-
ing these rules.

In addition to coordination among tools, there must be
coordination among the Ada source. As the analyst builds or
modifies Ada, any changes must be done consistently between
the specification and the body. parent and child, etc. Ada’s
strict interface rules require that any changes must result in re-
compilation; a large Ada system cannot afford to discover im-
proper updates through trial and error.

5.3. ADA WORK MUST BE DONE IN A PARTICULAR
ORDER

There are many steps involved in building (and modifying)
an executable Ada design or program. Ada units must be edited,
compiled, linked and executed in a particular order. As prob-
lems inevitably are discovered, the analyst must remember the
error messages produced by one tool in order to go back and see
what might have caused the error. A correction and another
iteration through the tools may be tried.

The analyst must keep track of all the steps that have been
performed and what the results from each step were. These im-
portant intermediate results often “disappear” off the top of a
glass terminal or they are jotted down on a scrap of paper which
is misplaced. Not keeping track of this intermediate information
results in wasted time as analysis steps are rerun.

6. EXISTING TOOLS PROVIDE SOME SOLUTIONS

6.1. EXISTING ADA DEVELOPMENT TOOLS CAN BE
USED

Many of the analysis techniques described earlier can be
performed with existing OTS tools. For example, a validated
Ada compiler can be used to check the quality of the Ada code
or PDL. The compiler requires that Ada’s rules for strong typing
and visibility be followed; so the compiler can check how well
these Ada attributes have been followed. An analyst can use the
Ada compiler to automatically check important aspects of a de-
sign without manual intervention.

The Ada library manager must keep track of the compila-
tion and link status of all the Ada source files and units in the
program library. The analyst can use the library manager to see
if the design can be linked together, an indication that the de-
sign/code is complete and consistent. The library manager can
also keep track of which tools (compilers and linkers) have been
run on Ada source so the state of the library can be determined
as tools are run.

An Ada source level debugger can be used to step through
the threads of control. By providing test input files and/or having
the debugger modify objects, the analyst can see what the threads
of control are for different circumstances. A good debugger will
also be able to monitor Ada tasking structures and the elabora-
tion/instantiation work done by Ada source as part of system in-
itialization.

Other tools useful in the analysis of Ada source include
structured editors, textual search utilities and pretty-printers.
The UNIX programming environment provides a rich set of
tools, some of which apply to analyzing Ada. The VERDIX Ada
Development System (VADS®) provides a set of Ada-specific
ools that run on top of UNIX, so version 5.41 of
VADS|VERDS86) is used as the source for EASE's Ada OTS
tools (such as a compiler and library manager).

6.2. EXISTING WORKSTATION WINDOWING SYSTEMS
CAN BE USED

In order to support the “messy desk” described earlier,
EASE needed a multi-window interface. The SunVIEW® (ver-
sion 3.0) interface running on Sun 3/75 workstations® (using ver-
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sion 3.0 of Sun's BSD UNIX operating system) was chosen.
SunVIEW([Sun86a] provides a fairly standard windowing system
that allows multiple windows to be dynamically created and de-
stroyed on Sun's bit-mapped display. These windows can be
scrolled, resized, closed into/opened from icons; all from a
three-button mouse. Different types of windows support termi-
nal emulation, UNIX shells, text editing, graphics and combina-
tions of all these features.

In addition to a standard set of tools that run on Sun-
VIEW, Sun has defined a ‘C’ language interface that allows ap-
plications software to create their own windows and
tools[Sun86b). EASE uses this SunVIEW interface as the
mechanism for providing a multi-window Ada analysis environ-
ment. About 13,000 lines of ‘C’ code interfaces to SunVIEW,
the VADS tool set and other UNIX utilities such as “grep.”

7. EASE INTEGRATES OTS TOOLS INTO SUNVIEW

7.1. CUSTOM WINDOWS MAINTAIN STATUS OF
SOURCE AND UNITS

One example of the customized tools developed specifi-
cally for EASE is the windows that maintain the status of Ada
source file and compilation units in the program library. The
information about a file's or unit’s status is gathered from a vari-
ety of sources. The program library manager keeps track of
which units have been compiled, what source file was used to
create a unit and what the specification/body and parent/subunit
relationships are between units. The Ada compiler and linker
keep track of what source files are currently being compiled/
linked and which ones contained errors. The source code editor
keeps track of which Ada source files are being edited and which
ones have changed (requiring recompilation).

Rather than force a user to check with many different
tools to see what the status of the program library is, EASE pro-
vides several tools that create and manipulate SunVIEW windows
while the analyst is working with the Ada. One window maintains
the list of Ada source files in a library (which is a UNIX directory
for VADS®) and their status. Another window maintains the list
of Ada compilation units, their types (package/subprogram/task,
generic/instantiation, parent/subunit, etc.), the associated source
file and the unit’s status. The status of a file or unit might be
“Being Edited,” “Up To Date,” “Contains Errors,” etc. These
windows are dynamically updated as the status of a file or unit
changes as the result of a tool being run.

7.2. OTS TOOLS INTERFACED THROUGH
STANDARDIZED INTERFACES

The OTS tools that an analyst can use on Ada source are
complex, with many options that define how a user wishes to use
the tool. In following the UNIX convention for defining these
options, the tool builders have defined many different command
line options that a user must supply (which options are needed
will depend on the circumstances). Naturally different tools from
different vendors will have their own set of command line op-
tions. Even within the same vendor’s tool set, the many different

® SunVIEW and Sun-3 are trademarks of Sun
Microsystems, Incorporated
® VADS is a trademark of the Verdix Corporation
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tools may have so many options that a user will have difficulty
remembering them all.

Learning all the different command line options is particu-
larly important to the Ada analyst. The OTS Ada tools are ori-
ented towards the Ada programmer, so the default behavior of
these tools tries to address the needs of the person writing the
code. The Ada tool builders often provide capabilities useful to
the analyst, but these capabilities are usually placed as obscure
command line options. The Ada analyst needs to be able to
access these options without having to dig through the back of
the Ada tool’s reference manual.

EASE has developed a set of customized user dialog boxes
for each analysis tool supported. These dialog boxes use Sun-
VIEW fields, toggles and sliders to allow the user to fill in the
choice of how a tool will be run. The analyst retains the option
of running the tool using the EASE default command line pa-
rameters; in that case the analyst does not have to spend any
extra time filling in the dialog box.

7.3. OTS TOOLS RUN IN SCROLLABLE WINDOWS

Many of the analysis tools used by EASE will produce tex-
tual output that contains useful information about the Ada source
file or unit being processed. For example, the Ada compiler will
report the positions of any errors in the source. A text searching
utility such as “grep” will report the positions of the text that
matched the searching criteria. This information is useful to both
the analyst and to other EASE tools.

The analyst will want to read and study this information in
detail. EASE will capture the textual output from a tool in a
scrollable SunVIEW text window, so large amounts of output are
not lost off the top of the screen. The analyst may wish to save
part of this output for use in documentation and letters; Sun-
VIEW allows the text in these windows to be saved into a file
and/or cut and pasted into other windows. Because each invoca-
tion of an analysis tool will result in a new EASE window being
created, the analyst can save and then compare the outputs of a
tool on different versions of an Ada source file.

Other EASE tools can use some of this textual informa-
tion. An example is the “next error” function provided in
EASE, which works similarly to the Emacs[Stal86] “next error”
function. The user places the cursor in a window with compiler
(or “grep™) messages in it and gives the “next error” command.
The “next error” function will parse the textual messages until an
error message is found. An editor is started up and automatically
scrolled to the source line that contains the error. Using this
mechanism, an analyst can navigate through a large Ada system
and through all the errors the analysis tools have found.

7.4. TILING ALGORITHM MAXIMIZES SCREEN USAGE

The analyst using EASE will be busy looking at all the
status windows and the source listings of the Ada being analyzed.
Having to worry about defining the position and size of all of the
EASE windows that will be dynamically created will only slow the
analyst down. EASE implements a simple window tiling scheme
that defines the initial size and position of EASE windows.
EASE tries to place new windows into currently blank areas of
the screen. If all areas are in use, EASE will cover~up the oldest
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window. The goal is to maximize screen real estate usage while analyst to intelligently browse through Ada code, looking for fni :s "
minimizing user interaction. those features or constructs of interest. A DQL proposal de- . -
scribes how this work will be done in detail. J
7.5. HIDDEN DATABASE MAINTAINS WINDOW OO
RELATIONSHIPS In conjunction with the DOL work, EASE will be used to N v
create a useful set of metrics for analyzing Ada PDL and code. “. s
The status of all .the source ﬁle.r?. units. and windows under DQL includes the mechanisms for computing metric numbers for ,:u
B the conyol of EASE is maintained in a h{dden daFabase that Ada constructs. Because DQL will provide access to all of the ot
automatically runs whenever EASE is running. This database Ada constructs, metrics can be defined and computed that better W
' allows any tool to query the status of any other tool. The data- reflect the quality of Ada code. tty
base allows EASE to prevent more than one editor from being ?
run on the same source file or 10 prevent a file from being edited The current version of EASE relies on the analyst to form ’6 N
P while it is being compiled. The database automatically shuts judgements based on all of the information provided by the vari- ";‘;; \:‘:
% down when the user leaves EASE. so the user is never aware of ous tools. As new tools (such as DQL) are added to EASE, the ‘g;éga_’tf;g:x
bt its existence. amount of information available for analysis will grow dramati- AN
! cally. The analyst will need even more powerful mechanisms for |’,‘f(:.:c"
i The database also maintains the relationships between managing, displaying and analyzing all this data. Future versions G’c'g".ﬁ'c
o tools and the windows they are running in. This allows an EASE of EASE must be careful not to bury the analyst with too much AL N
N user to find the window where a particular tool (such as the edi- raw data and not enough information. . ‘
tor working on a particular source file) is running. The user can N
& use the custom windows managed by this database 10 find win- One way for future versions of EASE to manage all this N ‘i,’ o
K dows and bring them to the top of the display surface, even if information is through the use of expert system shells. An expent ‘g',‘t'-'.f
5 that window is deeply buried or closed into an icon. This data- system such as the Knowledge Engineering Environment :(9.' :
K base brings some organization to the EASE “messy desk.” (KEE®)[Inte86] or the Automated Reasoning Tool ‘\_;u,‘;u‘g
! (ART®)[Clay85] could gather its facts for its knowledge base “";"h:.
* 8. EASE STATUS AND PLANS through DQL and then use its reasoning mechanisms to analyze SN RS
. the Ada code or PDL. The DIANA Query Language Proposal 3
8.1. CURRENT EASE STATUS discusses how such Lisp-based expert systems could interface HERER
K . - with DQL and EASE. Several expert systems have been ported NIANN
iy Currently Version 1.2 o.f EASE has been released for in (or are in the process of being ported) to the Sun 3 workstation ‘,';‘,‘a':
o ternal MITRE use. Anyone with the necessary hardware (Sun 3 5o these analysis tools will be available to Sun users soon. Y
i with 8 MB of memory and SunVIEW 3.0) and software (Version ) ’o“;zi‘ i
o 5.41 of VADS) can use EASE. All of the EASE low-level primi- The current version of EASE displays all of its information :0::1:".':
’: tives (as dqcun:emed n the EASE lmz—level primitives manual) in textual form. The use of graphical notation would provide a lf;fl‘.‘ﬁ
have been imp ited.  Exp UNIX programmers can more concise representation of what is in a program library or an R ]
use these low-level primitives to extend EASE or to implement Ada package. Several computer scientists have defined graphical 4ty
v their own windowing scheme. These EASE primitives can be notations that can be used to represent the higher levels of Ada '0;‘:#1
* called from any language that can call ‘'C', so they can be (and code. The Buhr and PAMELA [Cher85] notations are examples '.'s:,';:.
. have been) called from Ada programs. of this. Future versions of EASE could add support for these lg"i‘g:\‘
3 notations. Buhr's CAEDE([Buhr85) system is currently available DODE
3 ithi - \ (M
" EASE has been used wuhm' MITRE 10 develop a proto on a Sun 3 workstation and so it could be used as the basis of |‘l'9.j’;'£
? type and to evaluate contractor deliverables. It should be noted ' ; . DM
. R A i EASE's graphical Ada notation. PN
that EASE requires the mastery of several important skills before ‘
::‘ u;el;;:)?algs':\‘:l‘g\l;/be\;:’;;s e‘;‘g‘:’;é A’:‘ EAlS_E :iero’:‘:ﬂ _ EASE currgml_y uses the SunVIEW windowing system to gl
) to ‘:un all the' a:al sis lo'ols EA;E onl simC(l)ifi\(l;na:’: stanndarcelr provide the graphics |merface. Sun h'a s already announced sup- q"‘:"‘:
Yy ¢ : 3; S, 1y simp port for SunNeWS®, an improved window support system that eret bt
P izes all these interfaces, it does not eliminate them. could be used to implement the current SunVIEW interface or to :ﬁtitt.‘:l‘
N implement other standard window interfaces such as the new ‘X’ “t Aot
t_f 8-2. FUTURE PLANS standard|[Gett86]. As part of the maintenance of EASE, it could :Q;E:Q:i:g
oyt NN RN
" Future plans for EASE include the integration of more be. [.;or:’ed to ru;\l under hs unll\;(e'\\l/,S[S:nBGC‘! ansl/or X" so EASE
OTS Ada analysis tools as they become available. An example of might be portable to other ased workstations. . !
- such a tool is the ANNotated Ada (ANNA){Luck84] toolset that E IR
. . . o ASE currently uses VADS as the source for all Ada-spe- W, (X) )
X :l:;s:lrfeo 1d3hl:e;r:j;n}; :: :lesci l::::i:sf_;nAS:ILm::fsf)o[l;S‘::;)s cific tools such as compilers. linkers and source debuggers. As ":'.!:ﬂ!
\ become available (o MI‘I‘RI‘E‘ The :i" beg‘ilnti ratod mto EASE other UNIX-based Ada compiler systems become available, *&0. Xy
i ' y 8 : EASE could be modified to support these compilers as well. The ‘ .,:.. “'
‘i Currently EASE has only 2 limited ability to browse current EASE system has lrleq to abslract[ out as ‘much of lhre ..‘5.“:1‘.
A through large Ada systems. EASE uses program library informa- compiler dependencies as possible. Part of the maintenance ef- YA (]
: tion to allow the user to move between specifications and bodies
as well as parents and subunits. EASE also uses “grep” for sim- "l.;.i“‘
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fort for EASE could add support for these alternative Ada com-
pilers.
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LIST OF ACRONYMS

ART Automated Reasoning Tool

BSD Berkley Standard Distribution

CAEDE CArleton Embedded system Design
Environment

CCPDSR Command Center Processing Display Segment
Replacement
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AN ADA* DEPENDENT FAULT TOLERANT
DISTRIBUTED SHORTEST PATH PROGRAM

Pen-Nan Lee and Camron Malik
University of Houston

ABSTRACT

A simple, elegant algorithm upon implementation
presents innumerable problems. This paper provides insight
into the difficulties of implementing a distributed algorithm.,
This is followed by a fault tolerant implementation of the
Distributed Shortest Path Algorithm. The unrestricted
communication in a distributed system produces situations
conducive to deadlock. This is particularly true if
synchronous message passing is used, as processes may wait
indefinitely for each other. To ensure freedom from deadlock
dynamic message sending based on Ada timed out eniry calls
is used. The use of an indirection methodology is also
proposed as an alternate to ensure freedom from deadlock.

Distributed programs are also, by virtue of their
complexity, difficult to verify. Even after extensive testing
residual design inadequacies may be present. Thus the
concept of Communication Closed Layers is used to design
the program. The Consensus-Global Tester is used to
implement error detection and assist in error recovery. These
together form Fault Tolerant Layers. In the event of an error,
a Backward error recovery scheme is used thus, computation
can be reinitiated. The provision of fault tolerance has a large
overhead in terms of the number of messages required. A
modification of the algorithm is proposed to reduce the
number of messages, using buffering in conjunction with
Ada constructs to achieve this in the implementation.

L INTRODUCTION

The trend towards distributed processing on
computer networks has led to an increase in the number of
distributed algorithms and the development of programming
languages to exploit the concurrency. But two major issues
have not yet been addressed. The first issue concerns the
problems associated with the implementation of the
algorithms, within the constraints of a Janguage. The second
issue concerns the assurance of reliability in such a complex
software system, as the results depend on the unpredictable
order in which actions from different processes are executed.
In this paper we consider the problems and drawbacks of
implementing the Distributed Shortest Path Algorithm
[CHANS2] within the constraints placed by a language,
specifically Ada*. We then design and implement a fully
distributed, fault tolerant program.

The Distributed Shortest Path Algorithm is an
elegant distributed solution to compute the shortest path from
a special vertex v1 to all other vertices of a weighted, directed

*Ada is a registered trademark of the U.S. Govt., AJPO.
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graph. The unrestricted communication in a distributed
program and the unpredictable order of execution of the
component processes pose problems. These are compounded
by the constraints placed by a language. Thus to achieve
freedom from deadlock requires either an indirection
methodology or the use of Ada constructs to provide dynamic
output. A general method employing indirection for
overcoming deadlock is proposed and implemented using
Communication Processes (buffers).

Distributed programs are inherently difficult to
verify and even after extensive testing, may have residual
design errors. Thus techniques for designing correct
programs have to be utilized. This particular fault tolerant
implementation is based on the concept of Communication
Closed Layers [ELRAS83], which partitions programs
logically / physically to provide what are called Safe Layers.
Such a design methodology coupled with the concept of
Consensus-Global Testers [LEE88] provides fault tolerance.
Hence, error detection and recovery are possible.

A Recovery Block [RAND75] type scheme is
used to implement error detection and recovery. The premise
of a Recovery Block type scheme is that errors will occur,

thus "spare” modules must be provided. Hence, at the con-
clusion of a particular computation, if an error is detected the
"spare” can be used to recompute the values. While the
erroneous values are discarded. The errors are detected
through the use of a Tester module which assures that the
results are either "acceptable” or erroneous.

The objective is to maximize concurrency and
provide fault tolerance without incurring overheads in
time-space. To begin the discussion a brief outline of the
Distributed Shortest Path Algorithm and backgrounds on the
concepts, techniques and methodologies will be given in
section 2. This will be followed in section 3 by a description
of the implementation. Section 4 is devoted to the analysis.
Finally, in section 5, some concluding remarks are made.
The outlines of some tasks are provided in the appendix and
references are made to the figures in the paper.

II.  BACKGROUND
In this section we provide the conceptual

background of the techniques which form the basis for this
paper. These are firstly, the concept of fault tolerance
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followed by the Safe Layering design methodology. Then a
consideration of the problems and difficulties of
implementing a distributed program are provided. Finally, an
overview of the distributed algorithm is given.

Concurrent programs may be executed in several
different environments, depending basically on the
availability of processors and their interconnections. The first
method allows processes to share one or more processors
and is referred to as, multiprogramming. If each process is
executed on a single processor, but all processors share a
common memory, it is referred to as multiprocessing.
Finally, the execution of processes on dedicated processors
connected by a network is called distributed processing.
Since no memory is shared cooperation is achieved through
message passing or remote procedure calls. Thus a
distributed program consists of a collection of processes or
tasks executed in a distributed processing environment.

In what follows, the terms task and process are
interchangable and refer to self sufficient execution units
which communicate via messages.

21 Software Fault Tolerance

The need to provide increased reliability in
computer system led to the approach of achieving this goal
through the use of fault prevention. Reliance is placed on
tools and techniques such as verification, documentation,
testing, etc. Such techniques assume that all possible causes
of unreliability can be removed prior to delivery and reliance
will not be placed on a system until all "bugs" have been
removed. This approach fails to account for faults which
were unanticipated and thus not weeded out during the design
and testing of the system. It is reasonable to assume faults
may be present in a system and will have to be tolerated.
Thus the concept of fault tolerance uses redundancy of design
as a means to provide error detection and recovery from
residual design inadequacies. This ensures uninterrupted
service even in the event of faults. To achieve this objective,
fault tolerant systems must detect errors, assess the damage,
try to recover and provide continuous service,

Two complementary approaches for providing
fault tolerance in software have evolved. These are forward
error recovery and backward error recovery. The aim of
forward error recovery is to identify the error and based on
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the available knowledge correct the system state to provide
continued service. An example of such an approach is
N-Version Programming. In contrast, backward error
recovery manipulates the system state so as to achieve a
“reversal of time". That is, to a state prior to the erroneous
one without regard for the current state. Thus previous states
are saved on a stable medium, to be recalled if the need ever
arises.

The recovery block scheme [RAND75] is an
example of a backward error recovery technique and like all
fault tolerant schemes relies on redundancy. It consists of
three distinct parts: a recovery point, execution modules and
an acceptance test point. The first of these is a point in the
execution of a program when the important variables are
saved. This occurs prior to entering a recovery block. The
second part consists of a primary module, which is executed
first upon entering a recovery block. Upon completion the
Process must pass an acceptance test to ensure the reliability
of its results, If the test is passed, then the process proceeds.
But if the test is failed the process state is restored to its
original version (saved on entering the recovery block). Then
an alternate module of the program is executed, in the hopes
that the alternate will not have the residual design
inadequacies present in the primary.

The alternate blocks / modules may be of differing
design, algorithms, languages or a combination thereof. The
premise is that residual design inadequacies present in one
module will not be present in another. Any number of
alternates may be used as long as they provide a measure of
fault tolerance within acceptable costs. For example, if four
algorithms to solve a particular problem are available and
their time complexities are n log n, n2, n3 and n12, then the
last version even though it provides redundancy, may be too
expensive to employ especially in a time constrained
application.

The acceptance test is a last moment check to
ensure the reasonableness of the output and is by no means a
test for absolute correctness. This acceptance test is over and
above the usual interface checks provided by the system: -
which lead to exceptions, etc. Thus if no exception has been
raised and the output of the module meets the acceptance
criteria it is assumed that no fault occurred.

2.2 Safe Layering
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Distributed programs, by virtue of their
complexity, are very difficult to verify formally. Even after
extensive testing and debugging residual design inadequacies
may be present. This coupled with the unrestricted
communication between concurrent processes could cause the
propagation of erroncous values. Ultimately leading to
erroneous results or a crash of the software system. Thus
there is a need for methodologies to design reliable programs
and for techniques to detect and recover from faults. One
such design method, based on the concept of
Communication-Closed Layers proposed in [ELRAS3],
provides a means to design reliable distributed programs in
what are termed Safe Layers. This in conjunction with the
Consensus-Global Tester [LEESS] provides error detection
and recoverability through Fault Tolerant Layers. The
provision of fault tolerance based on these techniques does
not give up any degree of concurrency, allowing component
processes to execute at their own pace.

2.2.1 Safe Layers

Distributed programs can be viewed as having a
two dimensional data-flow. That is, sequential within the
process and parallel between processes. Thus, in order to
design a distributed program we must consider the sequential
behaviour within each process and manage synchronization /
communication between the processes. The concept of Safe
Layering allows such a consideration. The basic idea is to
view distributed programs as a sequential composition of
concurrent Layers. For example, a concurrent program P
consisting of interacting processes py ; py; """ Py iS
defined in CSP [HOART78] syntax as :

Pulpylipgli==lip,]
Furthermore, each component process can be subdivided into
d logical / physical segments. Thus each process ( p;) may be
defined as :

Py Pi13 - Pid]
Thus, in general, process segments can be defined as :
PS8 (i=1l.n , seg=1.d}
and a Layerk is :

[p]k i} pzk {l seeee

f .‘.;“’n".,s"oym‘.m!\ 3 " "‘»" R .0."08"!" t"’t“‘\" 4

2

The Sequential Composition (denoted by ";") of a

concurrent program P is
[Layer1 R Layeld]

This allows a concurrent program to be viewed as a collection
of sequential layers. But gives up some concurrency and
requires a global synchronization scheme, as commands in a
following layer are not available until the previous layer has
terminated.

The Distributed Composition (denoted by ":") of
a concurrent program P is:

[Layer1 D Layerd]
and is exactly equivalent to :
[pll;.....;pld [f oeeee Il pnl;.....;pnd]

Thus allowing a process to execute at its own pace without
any global synchronization and ignoring layer boundaries.
The equivalence of the two compositions can be
provided by assuming for all layers, that Layerk is
Communication Closed. That is, in any communication both
members must belong to the same layer. Thus if inter-layer
communication is disallowed, across layer boundaries, each
of the layers is communication closed and such layers are
called Safe Layers. These Safe Layers can be used as units of
modularity with layer boundaries serving as synchronization
points [LEE88], [ELRA83], [GERT86], [MOIT83].
The Distributed Shortest Path Algorithm (DSPA)
is implemented in two layers corresponding to the two phases
of the algorithm, described in section 2.4.

2.2.2 Consensus-Global Tester

The efficacy of fault tolerance depends to a large
extent on the ability to detect errors and consequently have a
chance to correct the errors. Thus error detection is an
extremely important phase in computation and relies heavily
on the ability of the tester to "catch” the errors. In sequential
programs the errors are isolated within single programs
which are not affected by outside influences. But in a
distributed system, where many processes may be running
concurrently and interacting, errors outside the module can
affect the outcome. Some errors may be localized but,
through interactions, have tainted parts of the program which
appear to be fine.

A tester for a sequential program is required to
ensure that specifications for a particular program are met. In
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profit from the enormous potential of distributed processing.
These issues include the danger of deadlock, unnecessary
blockage, overheads of messages and processes, language
constraints, reliability, and a fully distributed implementation.
When addressing these issues compromises have to be made,
which ultimately affect the implementation and its efficiency.
In distributed solutions, the unrestricted
inter-process communication produces situations conducive

to deadlock. For example, some arbitrary process P; attempts

to communicate with another process Pj; simultaneously Pj

purposes, such as buffering. They should be kept to a
minimum, or eliminated altogether if possible. Since the
overhead lies not only in the number of processes but also for
inter-process communication. The inefficiency inherent in a
system using a large number of processes and / or messages
is a drain on the system. This ultimately affects performance
and throughput of the system is reduced.

Until the recent development of general purpose
programming languages, which incorporate multitasking and
constructs for concurrency as primitives, most languages did

TORTS
o
|I."|.',z
NGRS
[ ]
n‘q'a:.‘iz._
S
B the case of distributed programs, the tester must ensure the may try to send a message to P;. This circular wait situation "::!,::::z
'" correctness of the results for the entire computation. This is is unresolvable as both processes would wait indefinitely for ':zt‘:'S'
made more difficult since the order of execution, of the the other to receive its message. There are two basic solutions '. .
, actions of the interacting processes, are unpredictable. Thus, to this problem, either deadlock avoidance or deadlock :!: ‘!'::::
N so are the results. detection and arbitration. The latter is much more costlier in ‘:’z::'c:é;
% The Consensus-Global Tester [LEE88] based on terms of the overhead of monitoring and is almost impossible :::O:Q:&:!
, the premise that there are interactions amongst processes to achieve, in general, for distributed programs. The ::‘:.:.:::‘:
provides error detection for all the component processes. avoidance of deadlock is relatively easier to achieve through
": This is achieved by providing a global speciﬁcat.ion, wh.ich careful structuring and design of the program [LEES7]. ':S':’:-':'
:: can test the correctness of the results of all the mteracfmg A less serious but equally important issue ;' ‘:;‘o‘::‘:
3: processes. In the event of a global error all tasks are required concerns unnecessary blockage / waiting. A process blocked '::. :::'::f
0 10 rollback. o ' . . for communication / synchronization must not have to wait .!..:0::;|:f
) If a distributed implementation can be partitioned too long. This issue gains significance if it is realized that the ASAACY
7‘_ into regions or layer% in such a way that error detection and speeds of execution of processes are arbitrary and therefore |‘ “'
: recovery can be localized. Then “"e concept f’f Gl?bal Testers unpredictable. Thus a faster executing process may have to &5 :“.:',
i can be applied to each of the regions to regionalize the error wait for a slower partner to effect a synchronization or :'\\::E:O:;:
“ detection and recovery, without having an adverse effect on complete a communication attempt. For example, if a process 3|‘|. .:::‘
¢ the other regions. Thus, errors can be detected and recovery P/ attempts to communicate with a process Py and finds P ! '!‘,;
initiated only in those particular regions. In the event of an | ]
K error, rollback and recovery occur within the region. But if busy. Py should not be required to wait for P, instead Py ‘l_::;;',:' :
: no regional errors are detected the results are sent to the may delay a short time and thereafter proceed on its own, '::I.::?:;
:.u Global Tester for consensus-global testing. That is, to ensure subsequently returning to reattempt a rendezvous. '.:::E::
» that all regions meet the specification as a whole. Since processes are executed on systems which ::::.::::0;:
In the program to be implemented the concept of a could be geographically separated and no sharing of memory £
o single Consensus-global Tester for each phase of the occurs, the only means of communications are remote " ‘;:,':;ls
A computation is used. This tester should verify that the global procedure calls or message passing. In the algorithm and the " ' ':
W assertions hold in all cases. implementation language, message passing is assumed and % ::‘.:‘..‘:
{ thus only the latter is considered. It is apparent that " :::.:;:.
2.3 Problems and Difficulties communication through messages has a substantial overhead R
! S o in terms of the delay, the amount of memory required to ;.:.;':5;.
K The concept of distribut'ng processing is a buffer message and the number of messages propagated. . :'..:::'::‘
:: powerful and useful one, but must be utilized with extreme Aside from the number of messages, under ‘ ,::‘:%
& care. Several problems are faced in the effort to implement a certain circumstances, the number of processes may be quiet :‘ 'H:"‘.‘
distributed program, and these issues have to be resolved to high. These processes may be needed for secondary P! :v'

)
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not provide for such concepts. But the provision of such
capabilities in the new languages is by no means complete, as
they are still not powerful or expressive enough to allow all
types of implementations. In the event that a construct is not

directly available to the programmer, the flexibility of a

language plays an important role in allowing solutions
without incurring unacceptable overheads. An example is the
timed out entry call in Ada, without which nondeterminism

for output messages would not be possible.The inventors of

distributed algorithms usually do not consider specific
languages to implement their algorithms. Therefore, these
algorithms are not always amenable to implementation within
the constraints of a language. The tools provided by a
language, either directly or indirectly, may be utilized by a
programmer in cases where regular constructs are too
confining or inadequate.

There are two types of correctness properties
which all programs must possess - Safety and Liveness.
Safety properties are the static portion of the specifications
and are explicitly stated. An example is mutual exclusion.
Liveness deals with the dynamic properties and ensures that
an event will eventually happen. Deadlock is an example of a

breach of liveness. These issues are extremely important in

concurrent programs as the results of the execution of several
processes depends on the order in which actions from
different processes are executed. The complexity of the
situation greatly increases the probability that the programmer
will make mistakes and that errors will not be detected during
testing. Such design errors would ultimately lead to the
violation of the correctness properties and either incorrect
results or, failure of the software system. Until reliable
proofs of correctness which cover implementation details are
available for realistic software, reliance has to be placed on
design methodologies and software fault tolerance.

It is obvious that a distributed program must be
exactly that, distributed. Since the quality, speed and
efficiency all stem from the distributed environment which
allows various parts of a concurrent program to execute at
their own pace. It is possible to implement distributed
algorithms using a host or controller process to restrict
communication . But this reduces concurrency and has a
detremental effect on the speed, efficiency and ultimately the
quality of the program. A centralized model using a single
controlling process is infeasible, not only for the reasons
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above, but it is prone to bottlenecks and intolerant to faults.
The loss of the central node can cause a crash of the entire
system. Such an implementation would also sequentialize a
distributed algorithm, making it no better than a sequential
program given time slices on a single processor. Thus all
distributed programs must allow unrestricted communication
without any host or controller process and use the advantages
provided by the language, the algorithm and the system.

24 Distributed Shortest Path Algorithm

In this section we provide the background and
highlights of the Distributed Shortest Path Algorithm. The
complete algorithm can be found in [CHANS2].

The algorithm implemented is an elegant,
distributed solution to compute the shortest path from a
vertex to all other vertices of a weighted, directed graph in the
presence of negative cycles. A directed graph G = (V,E)
consists of 2 sets. V is a set of vertices and E is a set of

edges. If an edge <V V> is incident to vertices v and vjp

then a path exists from v; to vje The vertex v; is called the

predecessor of v and Y is the successor of v;. Each edge has
associated with it a length lij corresponding to the distance

from v, to vj- In the event a length lij is negative, a cycle of

negative length may exist. Consequently, all vertices
reachable from the negative cycle will have lij equal to -oo. An

example of such a graph is shown in figure 1.

In this algorithm processes communicate through
messages and the presence of message buffers is assumed.
The computation is done in two phases. The first phase

computes the minimum distance from vertex vy to all other

vertices. If there is a negative cycle a vertex will have a
distance of -0 . The second phase is used to inform the
vertices that they are at a distance of -o. In phase I the path
lengths are propagated using a length message and
successors reply using an acknowledgement message. Where
there is no ambiguity the terms vertex and node will be used
interchangably.

Process Py at Node v initiates Phase I by using

length messages to inform its successors of its distance from
them. The successors upon receiving this value add the
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distances to their respective successors (1o the received value)
and pass on the new value.

This iterates until all successors receive their
respective length messages. Upon the receipt of a length
message each process updates its local value for the shortest
path received thus far from a predecessor and propagates the
message. An acknowledgement sent in response to a length
message is used to terminate phase 1.

Phase II, again initiated at node vy, employs two

types of messages. Namely the over- and over? messages.
An over- message is sent if it is determined that a negative
cycle exists, i.e. shortest path distance is -es. The receipt of
an over- message requires a successor to set distance to -eo,
unless it already has distance equal to -oo. The over- message
is then propagated. The second message type, an over?, is
sent if it has not been determined whether distance is -oo. In
the event that there are no outstanding acknowledgements the
successor propagates the over?. But, if some length
messages remain to be acknowledged, an over- is sent.

The algorithm assumes each process has a
queue-like input buffer, to which messages from its
neighbors are appended. Since Ada does not support such a

capability, one implementation buffers outgoing messages at
the source of the communication. The other uses variants of
Ada constructs to provide nondeterminism on output.

1

2 [ 5]

Ls | 6

Fig 1. A weighted, directed graph with negative cycle
[CHANS2].
1IL IMPLEMENTATION

The fault tolerant version of the DSPA program is
implemented in two layers corresponding to phases I and 11
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of the computation. The first layer consists of the Primary
version and an Alternate for each node of the graph. There is
one Tester for each version of each phase which performs
error detection and controls the computation, sending the
initialization values for each task and receiving the results.

The computation is initiated at node, with each node in the

system executing its primary version first. At the conclusion
of computation which corresponds to the end of phase I,
each of the nodes send its final result (obtained by the
execution of the primary version) to the Tester. The Tester
verifies that the results are in compliance with the
specifications and if no errors are found, the second phase of
the computation is started. On the other hand, if the results
are found to be erroneous, rollback occurs and recovery is
initiated. These correspond to discarding the current values
and invoking the alternate version. When the Alternate at each
node completes computation, it sends the final values to the
Tester for validation. Once again compliance with the
specifications is checked and if no errors are detected, the
second phase is initiated. Otherwise the computation is
aborted, unless more alternate versions are available.

The second phase corresponding to layer 2

consists of two versions, a Primary and an Alternate.
Computation is initiated at node i, with each node executing
its primary version for phase II. The sequence of execution
and testing is similar to that for phase 1. A pictorial
representation of the overall structure is shown in figure 2.

BEGIN Alemae
TESTER
Phase | Primary
Layer Phase ]
fom o o -
Alemae Phase I
. -
Phase Il { Primary
Layer2
END

Fig 2. Overall structure of implementation (Layer and Tester)

Each phase / layer consists of a procedure with
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nested tasks to perform the actual computation. An outline of
the overall structure of procedure DSPA is as follows :
PROCEDURE DSPA IS

PROCEDURE Layer1Primary IS
BEGIN

-- layer 1 primary module
END;
PROCEDURE Layer2Primary IS
BEGIN

-- layer 2 primary module
END;

PROCEDURE Layerl1Second IS
BEGIN

-- layer 1 alternate module
END;

PROCEDURE Layer2Second IS

BEGIN
-- layer 2 alternate module
END;
BEGIN
END DSPA;

The outline of the code for procedure DSPA is
shown in figure L of the appendix. An overview of the
primary and alternate versions is provided in the following
sections.

3.1 Primary Version

The primary version is implemented in two
phases similar to the algorithm in [CHANS82). Each phase
consists of a procedure with nested tasks for each node of the
graph. These are :

(1) Layer]Primary :: primary version for phase [ / layer 1.
(a) Task L1P1 :: computation task for nodel. See
appendix figure A.
(b) Task L1P(i) :: computation task for nodes 2..N
See appendix figure B.
(c) Task Tester :: Tester for phase 1. See appendix

. . . N ; ; 0': (O
’ - Ok, Y] ; OO0 U, P A PR OB
L MANARMAND u'ifu 0,.'0.\'!,;'6.,.‘04‘!.. i) .'I‘Ja ,h‘.!s"\ !Ml! A X, ' ; .. 1',‘.'#.':'.'l'f‘l'.'n'.‘o'» I'.‘-‘a Wy l‘o?l’e -‘."’\’i %, "l."‘l"‘l."" v

figure C.
(2) Layer2Primary :: primary version for phase 11 / layer 2
(a) Task L2P1 :: computation task for node 1. See
appendix figure D.
(b) Task L2P(i) :: computation tasks for nodes 2..N
See appendix figure E.
(c) Task Tester :: Tester for phase I1. See appendix
figure F.
A sk L1P(i) corresponding to node v; implements phase I
of the algorithm and computes the minimum distance. The
shortest path computation is initiated by task L1P1 at node v;

which sends length messages to its immediate successors and
then loops, only accepting messages, until the number of
outstanding acknowledgements becomes zero or a length
message of less than O is received. At which timg it sends a
stop message to all its successors. The tasks L1P(i) for all
other nodes accept and send messages until they receive the
stop message. Each task upon receiving the stop message
propagates it until all nodes receive such a message from each
of its predecessors. Then all tasks send a copy of their final
values for d, pred, num (path, predecessor and outstanding
acknowledgements, respectively) to the Tester and complete

execution.

The Tester checks compliance with the
specifications it is provided. If no errors are found, Phase 11
is initiated. This involves invoking procedure
Layer2Primary, with task L2P1 initiating the computation
upon receiving the initialization values from the Tester.

All primary tasks for phase I (L1P(i)) use three
types of messages for communicating amongst themselves.
The first, a length message, is a triplet (s,Pi,ack) where s is
the path length, Pi the source address and ack the
acknowledgement for previous length messages. The second
is an entry call to entry point STOP, which is used to inform
the nodes that phase I has ended. The third is an
acknowledgement message (ack) used only to send
acknowledgements to the task for node 1 (L1P1).

All tasks upon receiving a length message check
whether the path length (s) is shorter than the current shortest
path. If so, the tasks compute the values for propagating the
message and then buffer them in the Table. The buffering of
the shortest path continues until no more tasks are waiting for
a rendezvous. At which time the new shortest path is
propagated using length messages. If an even shorter path is
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subsequently received, it is written over the previous shortest
path. The use of buffers ensures that only the most minimum
of the length messages (of that particular round of messages)
will be propagated and requires a buffer size of N - 1 in the
worst case. Though a buffer of size N is convenient to
declare and use.

During a rendezvous, tasks take the opportunity
to return any acknowledgements which may still be owed to
the calling task. This is achieved by the use of IN OUT
parameters to exchange data. Thus while accepting a length
message tasks also return acknowledgements which were
buffered along with the previous length messages.

All Phase Il tasks, L2P(i), use one type of
message with two input parameters consisting of the message
type and the task id for communicating among themselves. A
message value of 3 signifies an over-, whereas an over? is
denoted by a message value of 4. Each task (after receiving
the initialization values from the Tester) waits for the initial
message from a predecessor at which point it enters a loop
which either accepts an over- / over? message, or propagates
them. Computation for phase Il tasks concludes when over
messages from all successors have been received and

propagated. At the end of phase II the values for d and over,
comesponding to the shortest path and over message, are sent
to the Tester for validation. In the event of an error, the
Alternate for phase I is invoked under the assumption that
phase 1 is correct. This can be safely assumed because the
Tester "passed” the phase I results.

Alternate Version

The alternate version, invoked in the event of an
error by the primary, is implemented as two procedures
corresponding to each Phase / Layer. Each procedure
consists of three concurrently executing tasks for each vertex

v; of the graph and a Tester. These are:

(1) LayerlSecond :: alternate version for Phase I/ Layer 1.
(a) Task L1S1 :: alternate for layer 1 node 1. See

appendix, figure H.

(b) Task L1S(i) :: alternate for layer 1 nodes 2.N

See appendix, figure L.

(c) Task CP(i) :: communication / buffer process.

See appendix, figure G.
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(d) Task Tester :: Tester for phase I.
(2) Layer2Second :: alternate version for Phase II / Layer 2.
(a) Task L2S1 :: alternate for layer 2 node 1. See
appendix, figure J.
(b) Task L2S(i) :: alternates for layer 2 nodes 2..N
See appendix, figure K.
(c) Task CP(i) :: communication / buffer process.
(d) Task Tester ::
Initialization is controlled by the Tester. The task

Tester for phase 1.

L1S(i) corresponding to node v; implements phase I of the

algorithm and computes the minimum distance. The tasks
L2S(i) implement the second phase and ensure that all over
messages are propagated.

Upon receiving the initialization values from the
Tester, L.1S1 initiates the graph computation sending length

messages destined for its successors to its CPj. The
Communication Process (CPy) in turn redirects them to the

destination tasks. If the path received is shorter than the
previous one, it is immediately propagated via CP. Otherwise
an acknowledgement is sent to the calling task. The
computation proceeds similarly to that described for the

primary version with the exception that no buffering of
messages occurs and all inter-task communication is via the
buffer processes (CP). A pictorial representation of the
relationship between processes and their CPs is given in

figure 3.

Figure 3. Relationship pathways for processes.

A message from any computation task to its
corresponding CP is a 3-tuple (to.mtype.w) which provide
the destination address, message type and path length. The
CP for phase I tasks can differentiate three types of
computation messages depending on the parameter, mtype :
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2 :: acknowledgement message
5 :: stop message.
Whereas CP for phase II tasks can differentiate two types of
messages, based on the parameter mtype :
3 :: over- message
4 :: over? message
When a mtype 1 is received the CP redirects it to the
destination as a length message 2-tuple (s,Pi) which are the
path length and source address, respectively. Upon receiving
a mtype 2, an acknowledgement message is sent to the
destination. The message types 3 and 4 are used during phase
IT and correspond to an over- and over?. The final mtype i.e.
5 is sent as a stop message to indicate the termination of
Phase I computation. It must be noted that all tasks
communicate directly with the Tester, to receive the
initialization values and send the final results, thus ensuring
reliability.
The layer 2 tasks use one type of message to
communicate with each other, that is :
over :: consists of two parameters, mtype and id. A
value of 3 for mtype denotes an over- and
4 corresponds to an over?.The id corresponds

to the task id.

Each phase II / layer 2 task receives its initialization message
from the Tester and is then ready to compute, waiting for task
L2S1 (phase II node 1) to initiate the computation. Each task
propagates messages until all its successors are notified and
then exits the processing loop. Subsequently sending its final
values for d and the over message type to the Tester.

In this particular case there are two versions for
each phase, but we are not restricted to this. For example, a

design similar to the alternate (Second;) but with buffering of

messages at the destination can be used as a third version.
Another alternative is the use of different programmers.

33 Tester

The Tester for each version is implemented as an
Ada task and controls the computation by sending the
initialization values to cach task. It then receives the results
from the computation tasks. When all tasks have responded
by sending their final results, the Tester initiates its testing
phase which ensures that all specifications are met. If an error
is detected the Tester informs the procedure DSPA (using the

variable status). Thus, the Alternate for that particular phase
can be invoked. If all specifications are met the next phase is
initiated or, if it is the last phase, computation successfully
completes.
The initialization values for Phase [ tasks are:
(1) A boolean list of successors.
(2) A list of lengths to the successors.
(3) The id number of each task (except node 1)
(4) The number of predecessors.
The initialization values for Phase II tasks are:
(1) The shortest path.
(2) The number of outstanding
acknowledgements,
(3) A list of successors.
(4) A list of predecessors.
(5) The id number of each task (except node 1)
After ensuring that all the computation tasks have
received their initialization values, the Tester waits at an
Accept statement for the final values for d, pred, num (path
length, predecessor and acknowledgements) from all the
phase I computation tasks. It then performs the verification
test and sets the variable status accordingly. A status of OK

signifies that all tasks passed the test, whereas if status = GE
(Global Error) the Alternate will have to be invoked.

A Tester for phase II computations uses a similar
strategy to detect errors for phase II tasks. First initializing
the tasks and subsequently waiting to receive the values, for
the path length and the over message.

The inputs Py to the Tester at end of phase I :

Forall nodei:

receive (d; A num; A pred;  id;)

The inputs Ppp to the Tester at end of phase I1 :
Forall node i :
receive (d; a over; a id;)

At the end of phase I, a Tester checks whether
three assertions are met. These are: if the computation
successfully concluded. Secondly, if any negative values for
the shortest path are present. If so, either the predecessors
shortest path must be negative or the path length must be

negative. Finally, whether the shortest path (d) of a node; is

equal to the shortest path of its predecessor plus the length
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from the predecessor to node;.
(1) Fornodej :num=0 v s=0.
(2) For node; : d; <0 --> dpred <0 v lpred,i <0
(3) For nodci : di = dprcd + Wpred,i'
At the end of phase I, the Tester checks whether
the path length and over message correspond. That is:
(1) For node; : d; <0 --> over- message.

If the conditions are not met then an error is assumed and
error recovery is initiated.

Iv. ANALYSIS

In the following analysis the difficulties and
problems alluded to in section II will be addressed within the
context of the construct or methodology used to overcome
them. Thus certain issues may be referred to several times,
each will provide the technique, construct or methodology
used to overcome the problem. The issue of reliability is
treated separately.

4.1 Implementation Issues

The bidirectional inter-nodal communication
inevitably leads to deadlock in distributed solutions, whereas
centralized implementations are too restrictive and intolerant
to faults. Reliance was placed on two techniques to overcome
the problem of deadlock, these were: the use of an
intermediary process (CP) in the alternate version and the use
of Ada timed out entry call to provide dynamic output in the
primary. The intermediate / buffer process technique avoids
deadlock by providing indirection. But poses two major
drawbacks, in that, each phase of the implementation requires
2N + 1 (2N tasks + Tester) concurrently executing processes
for a graph of N nodes. Secondly, the number of messages

also doubles. One message is required from task T; to the

corresponding CP; and a second from CP; to the task Tj.
Though these drawbacks are associated with the use of
intermediary processes, they stem from the constraints placed
by the language, which would not allow another deadlock
free implementation with such a high degree of parallelism.
Dynamic Sending is the capability for a task to
execute an alternate sequence of statements if the called task
does not respond to a rendezvous. That is, it is not
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predetermined that a task will have to wait for its partner in a
communication. It may execute alternate statements and at a
later time, retry. The timed out entry call allows a sequence of
statements to be executed alternatively if an entry call is not
accepted within the specified duration. Thus
SELECT
P1.message("entry call");
OR
DELAY X;
-- statements
END SELECT;
will execute statements following the DELAY, if P1 does not
accept the call within X seconds. Consequently, tasks do not
need to wait indefinitely for each other. It is worthy to note
that the message passing is still synchronous i.c. the called
task must respond. There is no message buffering capability.
If a rendezvous is unsuccessful it can be attempted later. This
allows two-way communication between tasks without
resorting to the use of an intermediary process. Thus each
phase requires only N + 1 (N tasks + Tester) tasks for a
graph of N nodes and a single message suffices for each
communication attempt. The problem of deadlocking due to a

circular wait situation is no longer an issue. The overhead of
such a scheme is the delay incurred in waiting for a task,
especially if the rendezvous is unsuccessful. Aside from the
benefit of freedom from deadlock, a programmer can specify
the time interval to wait for another task.

In Ada, communication is through an entry call
made to the called task, which has a comresponding ACCEPT
statement. The use of parameters in an entry call allows
information to be exchanged by reference or value. The
benefit of such a two-way scheme is the ability to exchange
length messages and acknowledgements in the same
communication. Thus circumventing the need for a task to
explicitly send acknowledgements to its predecessors. This
was effectively used in the primary version of the
implementation, which buffers acknowledgements until the
particular task calls with another length message. At which
time the acknowledgements are exchanged with the length
message. The obvious drawback of this scheme is that
acknowledgements are always delayed until the predecessor
attempts to communicate. Thus predecessor tasks are always
a little "behind" in the information they possess. This is
especially true if the task owed the acknowledgements does

XX 'Oii.Q,l\
I

t‘g‘l (. .

' l‘w"“
IO ‘
|‘|! ‘\:Q‘l‘i “
t‘\ ity

U
“l'ptl.' i‘
l"‘l |" 1'!’
OO
oed

& 4

s:'.r“

2

't‘\ ¢
I.' ".':
patategte
0O
|'0 B
1‘0‘1
:“ ‘v.p'
’f"t "‘

' "l' ‘\\




not communicate again and when computation concludes, the
number of outstanding acknowledgements may have an effect
on the eventual outcome.

The number of messages propagated in the
Alternate implementation is very large. In the worst case N
(N - 1 messages + 1 EOT) messages are sent from a task to
its CP and the CP propagates N - 1 of those, thus
approximately 2N2 messages are used for N nodes. The
number of messages is large not only for the reason stated
above, but also because length messages are propagated even
though a following message may provide a shorter path. In
the Primary version the use of the COUNT Attribute
indirectly provides the capability to reduce the number of
messages. The syntax is, PCOUNT, which provides the
number of tasks waiting at entry point P and allows the
implementation of priorities at a very crude level. Thus tasks
can prioritize messages, with in-coming messages having
first preference. Outgoing messages are buffered until no
tasks are waiting to rendezvous. That is, PPCOUNT is equal
to 0. This ensures that the shortest path will be propagated
after a round of messages and the others will be discarded. In
the primary version use of the COUNT Attribute coupled

with the modification to buffer messages is instrumental in
reducing the number of length messages which are
propagated. Considering, that in the worst case, the primary
propagates N2 messages ( N nodes each sending N-1
messages) any reduction is a help.

The use of the Communication / Buffer Process
(CP) scheme provides an arbitrarily greater degree of
concurrency when compared to the primary version. Since
tasks, using timed out entry calls, need to delay for a
message to get through they are unable to do any thing else.
‘Whereas the CP (Alternate) version sends its messages and
can then continue processing. It essentially frees up the task
to do something else. In the Primary, the task must itself wait
and synchronize with the called task.
