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EXEC7UTIVE SUMMARY

OBJECTIVE

Develop the piecewise quadratic strength tensor theory for composite

materials and demonstrate its applicability to the available biaxial fracture

data on composites. The theory will have application to current composite

structures of Naval Ocean Systems Center's interest such as transducers and

future composite structures such as torpedo hull section, Vertical Launch

ASROC (VLA) nosecaps, and tethered deep submergence structures. The theory

can also be used with a wide variety of other NAVY structures such as aircraft

and submarine substructures., K--"..

RESULTS

An extensive literature review has been conducted to search for the useful

biaxial fracture data on composites. The data obtained pertain to a wide

spectrum of composite material systems: graphite/epoxy, graphite particulate,

graphite/aluminum, glass/epoxy, and organic textolite.

The general results pertaining to the proposed piecewise quadratic

strength tensor theory have been reduced from an anisotropic material to an 1Ps'

orthotropic, transversely isotropic, and isotropic material for composites 11

applications. Also, these general results for a multiaxial stress state have

been reduced to a biaxial stress state for correlation purposes. U

Good correlations between the theory and the biaxial fracture data on the

above-mentioned composite systems have been demonstrated and significant r%

improvements of the proposed theory over the Tsai-Wu theory have been shown

for the cases where the biaxial data have nonelliptical characteristics.
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1. INTRODUCTION

A multiaxial failure criterion is a set of equations which, if satisfied

by the six stress (or strain) components, imply failure. Mathematically, it

can be written as

f(a) = 1 , k=l,...6 , (1-1)

kA

where ak is the contracted notation of the second rank stress tensor. For a

given stress state, ak, the function f is characterized by

if f(ak) < 1 , no failuLe occurs;

if f(ok) = 1 , failure occurs; and (1-2)

if f(a) > 1 , not admissible.

Geometrically, Eq. 1-1 defines a failure surface in the six-dimensional stress

space and Eq. 1-2 states that a stress point can only reside either on or

inside the failure surface and that failure occurs only if the stress point is

on the surface. Because of this qeometric interpretation, the failure

criterion defined in Eq. 1-1 is also knon as a failure surface.

The function f in Eq. 1-1 is usually obtained by a mathematical

To familiarize the reader with the general concepts of a failure
criterion for composites, some content of this section has been reproduced
from Reference 1.

With reference to a rectangular Cartesian coordinate system (i.e., xy:,-
or equivalently, x x2x 3 system): o1 = 02 = "y' 03 a a a4 = T y'

5 = tyz' 06 zxy

r 4 W 01%! V, r I 41V 4r r -. r



correlation of experimental observations. It must, however, satisfy the

following requirements:

Ri. The function f must be a scalar function.

R2. The failure surface represented by Eq. 1.1 must be closed,

surrounding the zero stress state.

I

The first requirement ensures that the failure criterion is valid for all

coordinate systems; the second requirement ensures that the material strength

is finite in all directions.

Unlike metals, composite materials are generally compressible and have

different (uniaxial) ultimate strengths in tension and in compression.

Moreover, they are often nonisotropic. In other words, a composite material

may be anisotropic, orthotropic, transversely isotropic, or quasi-isotropic,

which are defined below.

An anisotropic material has material properties that are different in all

directions at a point of the body; there are no planes of material symmetry.

An orthotropic material has material properties that are different in

three mutually perpendicular directions at a point in the body and, further,

have three mutually perpendicular planes of material symmetry.

2.
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A transversely isotropic material possesses an axis of rotational symmetry

such that the material properties on any plane perpendicular to the symmetry

axis are practically invariant under any rotation of that plane about the

axis, but the properties are different along the symmetry axis.

An isotropic material has material properties that are the same in every

orientation at a point in the body. A quasi-isotropic material is essentially

considered to be an isotropic material.

From the above discussions on the material characteristics of composites,

it is clear that a failure criterion for composites must satisfy additional

requirements:

R3. The failure criterion must be free of the restriction of

incompressibility and depend on the hydrostatic state of stress

(i.e., mean stress).
4.q

a-

R4. The failure criterion must include the difference between the

ultimate compressive and tensile strengths.

R5. The failare criterion must conform to the orthotropic, transversely

isotropic, and isotropic material symmetries for orthotropic,

transversely isotropic, and quasi-isotropic composites, respectively.

As is well-known, the Tsai-Wu's quadratic strength tensor theory

(Reference 2) satisfies the above five minimum requirements and encompasses

all other quadratic failure criteria used foa composites. For a general

-I%
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anisotropic solid, Tsai and Wu's strength tensor theory can be written as

F. a. + F.. a. a. =1 , (i,j=l,....6) , (1-3)

where Fi and F ij are the strength tensors of rank two and four, respectively.

Without loss of generality, it is assumed that

F..= F.. (1-4)
13 Ji

In addition, constraints+ must be imposed on the strength tensor F . to

ensure that the material strength is finite in all directions. More

specifically, F.. must be positive definite, that is,

F.. a. a. > 0 (1-5)
1J 1 ] 3

at all points ai in the six-dimensional stress space. Geometrically, Eq. 1-5

is a necessary and sufficient condition to ensure that the failure surface

represented by the quadratic polynomial of Eq. 1-3 is closed and ellipsoidal.

In the biaxial stress plane, the Tsai-Wu criterion represents a single

ellipse. In general, a single continuous ellipse cannot satisfactorily

represent the biaxial data of composites in all four stress quadrants. To

account for the nonelliptical characteristics of the biaxial fracture data of

composites, Chamis (Reference 3) and Rosen (Reference 4) suggested to use the

Unless otherwise indicated, the usual summation convention over a

repeated index is used throughout this report.

+ Such constraints are usually referred to as the stability requirements or

stability conditions.

- . r r r



Tsai-Wu quadratic criterion with different Fij (i~j) for different stress

quadrants. Beyond having more coefficients for better data fit, there is no

physical or mathematical justification (Reference 5). Another approach to %

improve the Tsai-Wu quadratic criterion for composites application was to % 0

include the cubic terms in Eq. 1-3 (References 6 and 7). Here, an enormous

numbers of sixth order strength tensor components are needed. Moreover,

having cubic stress terms, the failure surface becomes open-ended (Reference 2).

without suffering any of these shortcomings, Tang and Kuei (e.g.,

Reference 8) improved Tsai and Wu's theory in correlating the biaxial strength

data of (monotonous) polycrystalline graphite, which show similar r

nonelliptical characteristics to composite data. Recognizing the fact that

such characteristics may be due to different fracture mechanisms being

operative under different states of biaxial stresses with different

combinations of tensile and compressive stresses (Reference 9), they added to

the Tsai-Wu criterion the quadratic stress terms with the absolute value of

the linear combination of stress components. The resulting piecewise

quadratic strength tensor theory can be written as I

F. . F. a. a. + H. ai H. I 1 , (i j=l,...,6) , (1-6)
1 1 1] 1 J 1 1 j '7J

where H. is a second rank tensor.
1

The above equation holds for a general anisotropic material. They then

reduced all the results pertaining to the anisotropic material to a

transversely isotropic and an isotropic graphite and demonstrated good

correlations between the theory and the biaxial fracture data of graphite.

N N. N



In view of such good correlations with biaxial graphite data which show

similar nonelliptical characteristics to composite data, it is proposed that

the piecewise quadratic strength tensor theory be developed for composites.

The developments are presented in this report.

The next section records the general results pertaining to the proposed

theory and the detailed derivation for reducing these results to an

orthotropic material for composites applications. It also shows the detailed

reduction of the results from an orthotropic material to a transversely e

isotropic and an isotropic material. Section 3 further reduces the results %

obtained in Section 2 for a multiaxial stress state to a biaxial stress state.

Section 4 describes the available biaxial fracture data on composites that

can be used for correlation purposes. These data were obtained through an

extensive literature review and covered a wide spectrum of composite material

systems: graphite/epoxy, graphite particulate, graphite/aluminum,

g lass epoxy, and organic textolite. Section 5 correlates the theoretical

results developed in Section 3 with the data obtained in Section 4 and I.

cniantify the improvement of the proposed criterion over the Tsai-Wu theory. v

Finally, Section 6 concludes the applicability of the proposed theory to

composites.

6
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2. A MULTIAXIAL FAILURE THEORY FOR COMPOSITES -

Presented below are the general results pertaining to the proposed

multiaxial failure theory for composites, including general anisotropic,

orthotropic, transversely isotropic, and isotropic materials. The results

contain the explicit expressions for the failure criteria of materials with

various material symmetries, the restrictions imposed on the components of the

strength tensors occurring in these criteria, and the geometric meaning of

these criteria. Along with the presentation, it should be clear that the

proposed theory satisfies all the necessary requirements Rl-R5 defined in the

last section for a composite failure criterion.

2.1 Anisotropic Material

As introduced in the last section, the proposed multiaxial failure theory

for a general anisotropic material was given in Eq. 1-6 and is recorded below

for an easy reference:

f(a F a + F.. c. a. + H. . IH a 1 1 (ijk ,...,6) . 2-19f~ck 1 1 i ° 1] 1 J 1 1 j J . . . . . '

As in Tsai and Wu's theory, the strength tensor F., is assumed to be P

symmetric:

F. = F.. .2-2)

With this assumption, there are 6 independent strength tensor components for

each of F. and Hi , and 21 for Fi. These numbers for a qeneral nistropir

7
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material can usually be reduced substantially for a material having a certain

material symmetry. Such reductions will be shown in the next three

subsections.

Equation 2-1 can be decomposed into tvo equations:

F. . + (F. + H H.) a. a.= , (2-3).. . . . . . ' i

for all a. with
1

H. a. > 0 , (2-4)1 1 -

and
',

F. ai + (Fij -H Hj) ai aj=l , (2-5)

for all c. with1

H. a. < 0 (2-6)
1 1

The stability conditions to ensure the closure of each of the failure surfaces

represented by Eqs. 2-3 and 2-5, respectively, are

(F.. + H H.) . .> 0
1] 1 ] 1 E

for all a. satisfying Eq. 2-4, and

"1

U ' .

U, .



(Fi j -H Hj) ai a >0 , (2-8)

for all ai satisfying Eq. 2-6. Clearly, Eqs. 2-7 and 2-8 are the stability

conditions required to ensure the closure of the entire piecewise failure

surface represented by Eq. 2-1.

Geometrically, the failure surfaces represented by Eqs. 2-3 and 2-5,

respectively, with the restrictions made by Eqs. 2-7 and 2-8 on the strength

tensors F. . and H. are two ellipsoids in the two half spaces defined by Eqs.

2-4 and 2-6. Thus, the failure surface represented by Eq. 2-1 with the

strength tensors F and H. satisfying the stability conditions given by Eqs.1]1

2-7 and 2-8 is a piecewise ellipsoid in the six-dimensional stress space.

Hence, the proposed quadratic strength tensor theory is referred to as the

piecewise quadratic strength tensor theory.

Being in tensor form, the failure criterion defined in Eq. 2-1 is valid

not only for the material axes but also for any different reference coordinate

systems. The transformations of (ai, Fi, and Hi ) and (F. 3) under the

coordinate transformations follow the well-known tensorial laws (e.q.

Reference 10) for the second rank and the fourth rank tensors, Lespectively.

for example, if x'i (i=l,2,3) denotes the reference coordinate system, x1

(i=1,2,3) designates the material axis system, and a i(i,j=l,2,3) represents

the associated coordinate transformation defined by

x'. ]a. x aij = 1 (ij,k=l,2,3) (2-9)

then, a serond ank tensci. P and a fourth ri.k 'rs f' d'', t:



the x'. system are related to f and f referred to the x. system by
1np qrst 1

f an amp fnp (2-10)

and

aumnp auq ans a f (2-11)

respectively. All the latin indices in the last two equations take the values

1, 2, 3.

The major features of the piecewise quadratic strength tensor theory are

as follows:

1. Equation 2-1 is in tensor form, hence, it is valid for all coordinate

systems when it is valid for one coordinate system. This allows

transformations of the strength criterion from one coordinate system

to another through the well-known tensorial transformation laws.

2. The stability conditions imposed on the strength tensors assure the

closure of the failure surface.

3. The effect of the hydrostatic state of stress on fracture can be

considered since no restriction of incompressibility is contained in

the theory.

10 I



4. Equation 2-1 contains linear terms, which take into account the

effect of the difference in tensile and compressive strengths.

5. It is possible to derive a complete set of independent strength
.5'

tensor components for materials with different material symmetries,

such as orthotropy, transverse isotropy, and isotropy.

.)

6. Equation 2-1 contains the stress terms with the absolute value of the

linear combination of stress components, which take into account the

difference in failure mechanisms being peraLi--- under different

multiaxial stress states.

7. The criterion has been obtained without using any constitutive 5

equation of a brittle solid. More specifically, the linearly elastic a

stress-strain law has not been employed in the derivation of Eq. 2-1.

Thus, if a nonlinear constitutive law is used to evaluate the

stresses in Eq. 2-1, there will be no inconsistency.

8. The criterion is operationally simple because it represents a . -.

piecewise ellipsoid consisting of two ellipsoids and it contains no "a

terms of the stress components higher than the quadratic ones. .

The derivation will be given in the next three subsections for
orthotropic, transversely isotropic, and isotropic materials, Lespectively.

iiI



2.2 Orthotropic Material

For an orthotropic material with the reference coordinate planes

coinciding with the planes of material symmetry, based on the invariance

requirements (References 11, 12) of orthotropy material symmetry, the stress

dependent function f defined in Eq. 1-1 must be expressible as a polynomial in

2 2 2
the seven quantities: 1, a2 ' a3 f, a'4 , 5  a a6  a 4 a5a6 "

Thus,

22 2
f f (a1' a2, a3, a4 , a 5  C 6 a 4 a5 6) (2-12)

Alternatively, f is expressible as

2 2 2
f f (a, a2, 3 042 5 2 6 P I3 (2-13)

where 13 is a stress invariant given by

3 3 3 2 22 213 0i + 2 + a3  + 3ai 'o4 + ao + 3a2 (04 + a)
2 2

+ 3a3 (a'5 5) + 6 a. a 5 6  (2-14)

Hence, the explicit expression for the quadratic function f defined by Eq.

2-1 can be given in terms of the arguments occurring in Eq. 2-12 as

f = F1F +F iI + 2l Ji + 2F i a
2 3  3 11 1 12 1 13 1 3

2F a a +~ oF ± 2 F a2 + F a222 23 2 3 33 3 44 4 55 5 66 6

+ (H1 01 + H +Ha Ha + H2 o 2 + 3 a 3 I= 1 (2-15)

1? S

1 1 2 3 3 1 1 3 31-

i-



Comparing Eq. 2-15 with Eq. 2-1, it can be seen that

F =F F =F =F =F F2 =F = F36

=F45 - F = F56 0 (2-16)

H -H = H =0 H

.5
'.,.

With the above results, it is clear that there are only three independent

strength tensor components for each of F. and H. (i.e., (F1 , F F3 ) and il,

H2 , H3 )), and only nine for F.j (i.e., F F FF Fp.,
2 3 111 F2 2 , F3 3 , F4 4 , F F6 6 , 12' 23'

F13 ). As noted earlier, the numbers of independent strength tensor components

for a general anisotropic material has been substantially reduced due to

orthotropy material symmetry.

The strength constants mentioned above are not free material parameters

because they are restricted by the stability conditions Eqs. 2-7 and 2-8. For .

an orthotropic material, using Eq. 2-16, the independent restrictions on F.

and H. can be obtained as %N

11

2

F 2+ 1> ,.
22 2 >0

F H2 ,0'"F 3 > 0

13
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F44 > 0

F 66 > 0

(F + 2 (F + H) ( + H 1 H22 0 , %2

2 2 2(F 2 2 + H2 2) (F33 + H3 2) - (F23 + H2 H3 ) > 0 , (2-17)

(F 3 + H 2) (F + H 2) (F 3  H H > 0

2 2 2(F 1 1 + H1 ) (F 2 2 + H2 2) (F33 + H3

+ 2 (F 1 2 + H1 H2 ) (F 2 3 + H2 H3 ) (F 1 3 + H1 H3 )
212 2 2 2 23 1

- (F 1 1 + H1 ) (F 2 3 + H2 H3 )2 - (F 2 2 + H2 ) (F 1 3 + H H3 )211 31 2 3 2 3 2" 3

(F3 3 + H) (F 1 2 + H I H > 0

2.3 Transversely Isotropic Material

For a transversely isotropic material with the x - axis being parallel to
3 .

the axis of rotational symmetry, based on the invariance requirements (e.g. •

Reference 11) of the transversely isotropy material symmetry, the function f

in Eq. 1-1 must be expressible as a polynomial in the five quantities: II , I 2...

3 a3 and a 5 + a , where rI and I air stLess invaiants given by

1  1 - 2  3 ' ."'

1 2  ( + a2  + T 2 , + 1 (2-18,

C C 1 0 

. ,



r ~ ~ ~.? . '~~ .~J'..~ p ~ . . V. . . . . - -I.

and 13 is the stress invariant given by Eq. 2-14.

Thus,

2 2

f = 12, 1, 03I I a , + 6 2 (2-19)

In light of this, the quadratic function f defined by Eq. 2-1 can be

expressed from the arguments occurring in Eq. 2-19 as

2 f = a0 I1 + a1 °3 + [b 0 I1 ± b1 I1 o3  b2 03 + b3 12

+ b4 (a52 + 062)] + (c0 11 + cI o 3 )Ic 0 11 + c1 031 . (2-20)

A comparison of Eq. 2-20 with Eq. 2-15 using Eqs. 2-18 and 2-14 leads to the I,

following results for the nonvanishing strength tensor components:

F 1 F2  a 0

3  0  al

F -ab0 +ab

11 F22 = 0 + 3  V:
F -F.

F3= b0 + b1 + b2) + b3  -

F 2 = , (2-21)

F -F =2b + b55 66 3 4

F -bF12 - 0 ,"-

S'"

I -!' -5 . ~ % - 5 5 .. '. 5- 5 N-- 5
S. - 5 5 5 Ss' -5 -14 .



b

F2 3  F 1 3  b 0 + 2

H H2 = co  , (2-21)

SH3 =c 0 + c1

Substituting these results into Eq. 2-15, the expression for f in Eq. 2-1

becomes

f = F1 (aI + a 2
) + F3 a3 + F1 1 (a 1 2 +  22 + 2a 4 2) + F3 3 a 3 2

+ F5 5  (a5 2 + a62) + 2F12 (aI 2 - a42) +  2F13 (aI + a2)a?

+ [H1 (a1 + a2) + H3 03] IH1 (0I + 02) + H3 031 = 1 . (2-22)

From Eq. 2-21 or Eq. 2-22, it is clear that there are only two independent

strength tensor components for each of Fi and Hi (i.e., (F1, F3 ) and (HI, H))

and only five for Fij (i.e., FII F33' F55 F12' FI3). As noted earlier, the

numbers of independent strength tensor components for a general anisotropic

material has been further reduced due to transversely isotropy material

symmetry.

The independent stability restrictions on these strength constants can be

obtained by substituting Eq. 2-21 into Eq. 2-17 as

F F2 + 2F[ 1  0

I F -F > 0 (2-23
11 12



I,,

F3 + H32 > 0,
33- 3%

(F3 3 + H3
2) (F + F12 + 2H 2  

- 2(F13 + HI H3)2 > 0 (2-23)

F55 > 0

2.4 Isotropic Material

For an isotropic material, based on the invariance requirements (e.q.,

Reference 11) of the isotropy material symmetry, the stress dependent function

f defined in Eq. 1-1 must be expressible as a polynomial in the stress °l

invariants Ii, 12, and 13 defined in Eqs. 2-18 and 2-14. Thus,

f = f (Ii, I2, 13) (2-24

In light of this, the quadratic function defined by Eq. 2-i can be

expressed by S.

f = a0 11 + (b0 1 2 + b3 12) + c I 10 Ii 2-2il l

Comparing Eq. 2-25 with Eq. 2-20, it can he seen that

5"

a 1  b I  b, b 4 =c 0 .02-2

[.

Substituting Eq. 2-26 into Eq. 2-21 the following relations t,:), th,-

nonvanishing strength tensot componnts, r-an he -htain-.',

Ir.



1 2 3  a0

F11 = F22 F33 b 0 + b3  .%

F = F =F 2b _)F2 (2-27)
44 55 66 3 1(F1  - F1 2 )

F12 F23 F13 b0

HI = H2 = H3 - cO %

Using Eqs. 2-27 and 2-25, the expression for f in Eq. 2-1 becomes

f = F 11 1 1+ F 12 + F12 (1 - 2) + H1 I H1 Il = (2-28)

An alternative expression for f can be obtained by substituting Eq. 2-27 into

Eq. 2-15 or Eq. 2-22 as

S+ 2 2 2I

f = F 1  1 ± + 3 I [0 ± 0 + 2134 + 05 06)1
2

2F2 a,1 02 + 0, 0 3 01 - 10,2 + Cyr + a6 (
+ H + 0 + a HI  ±1 + a, 0 . 2-29)

1 1 2 3 3 1'3

From Eqs. 2-27, 2-28, or 2-29, it is clear that there are only four

independent strength tensor components: Fl, H, F. and F1,; one each for F.

and H. and two foi F . C) aly, th. nmi--r -'f independent stlenqth tensor

c,mponents for a generl anzt ' mitti <il hs ,,en futther reduced due to

is)tuopy matetial symmirtt'.

p
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The independent stability restrictions on these strength constants can be

obtained by substituting Eq. 2-27 into Eq. 2-17 or 2-23 as

F F > >(0 , ,

11 12 2-1VF1-F'12 >-0 (2-30)'! .,.

)F + H + F + 2H ZF -2( + HC 0
"1  1 O

2.5 General Remarks

Along with the developments made so far, the following should be clear:
-

V.-

(1 i In the proposed theory, there are 33, 15, 9, and 4 independent

strength tensor components for anisotropic, orthotropic, transversely

isotropic, and isotropic materials, respectively.
%'V

2 Comparing Eq. 2-1 with Eq. 1-3, it can be seen that the proposed

theory degenerates into the Tsai-Wu theory whrn

H - , t l, , (2-31)

Substitutions of Eq. 2-31 into various results pertaining to the

proposed theory follow the corresponding results for Tsar and ;',''s

theery. .

In the Tsai-eki thr-rty, their at, 27, 12, 7, and I indePen*,nt -

str-nqth t'-nsot - n*oo for -n ani!ctropt-, oth,=trop]',

C)".
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3. BIAXIAL FAILURE CRITERION FOR COMPOSITES

To facilitate the correlations of the proposed theory with the biaxial

fracture data on composites, the general results (including the explicit

expressions for the failure criterion, the stability conditions on the

strength tensor components, and the geometric meaning of the criterion)

obtained in the last section for a general multiaxial stress state are reduced

in this section for a biaxial stress state:

Ci t 0 , a s 0, 02 = a4 = CT a 6 0 (3-1)
1 03 2 4 5 6(-)

which is a special case of the plane stress state:*

'.1 0, 03 * 0, a t 00 -', 0 (3-2)
6 3 6- 4~ -

Moteover, to facilitate the comparison of the proposed theory with the

Tsai-Wu theory in these correlations, the reduced results for orthotropic, :%

transversely isotropic, and isotropic materials are also explicitly

*degenerated into those pertaining to the Tsai-Wu theory.

Alternatively, in these stress states, we can use -, € 0, a 0 rather
than 2 = 0, 03 t 0 without losing any generalities. 3 r

3i

.6

.4

V'

* V.
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3.1 Anisotropic Material
V

Substituting Eq. 3-2 into Eq. 2-1, we obtain

f = F1  I + F3 a3 + F6 a6 +F 1 1 a1  4 F3 3 a3 '±F 6 ( _

+ 2F13 a1 a3 + 2F16 a a6 + 2F36 3

" (H1 a1 + H3 a 3 + H6 aC)I HI o + H 17 + Ho , =-

which is the failure criterion for an3iS-<,- raai. ::t .

plane stress. Using Eq. 3-i, Eq. 3-3 can 1- sirnr2,K .

f F a1 + F3 C3 + F + F"'
13 13

+ (H1 a1 + H3 a3) H1 01 + H3 a

which is the desired biaxial failure r-ritoLi-n f' 'n - s'-->- rnve'.-

Utilizing Eq. 3-4, the stability conditions on the seven strenith .-.

constants (F1, F3 ; F1 1 , F3 3 , F1 3 ; H1 , H.) appearing in Eq. 3-4 can be obtained ne

as

F 11 + H 2 0 0

( + 2 2 - ) 2 -."i
(F - H1  (F3 3 + H (F + H H

The above stability conditions pertaining to the biaxial criterion defino' by

Alternatively, this condition can b replaced b, F H 0K

,.-

21'-
I-1
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Eq. 3-4 is a subset of the stability conditions given by Eqs. 2-7 and 2-8 for

a general multiaxial stress state.

Geometrically, Eq. 3-4 with the strength constants satisfying the

stability conditions given by Eq. 3-5 represents a piecewise ellipse in the -"

biaxial stress plane. This piecewise ellipse is made of a single ellipse

represented by

fF a+~22 2 2
f =F11 + F3 +3 (Fl + H12 12 (F3 + H3)3

+ 2(F3 + H H C a (3-6)

in the half plane

H 1 1 H 3 > 0 (3-7)

and another single ellipse represented by

f= a F2 2 2 2
f =F1 Ci + F3 CT + (FI HI2 i + (F3 H32 3

+ 2(F13 - H H3 ) 1 03 = 1 (3-8)

in the half plane

H 01 + H3 3 < 0 (3-9)

N ."

1*

n ....

""S
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3.2 Orthotropic Material

-

Substitution of the biaxial stress condition given by Eq. 3-1 into Eq.

2-15 leads to the biaxial failure criterion for an orthotropic material as

2 2
f = F1 °13+ F3 o31+ F1 1 + F33 a3 + 2F1 3 o1  3

(H1 01 + H3 03) H1 01 +H 3 031 = 1 (3-10)

It is interesting to note that Eq. 3-10 is identical to Eq. 3-4 for an

anisotropic material. Consequently, the stability conditions on the seven

strength constants (F1, F3 ,; F11 , F3 3 , F1 3; Hl, H 3 ) appearing in Eq. 3-10 are

also identical to Eq. 3-5 for an anisotropic material.
.

The results obtained so far in this subsection pertain only to the

proposed theory. These results can be degenerated into those pertaining to

Tsai and Wu's theory by utilizing the conditions:

H1 =H 3 =0 , (3-12)

which is a subset of the conditions given by Eq. 2-31. Thus, for an

orthotropic material, the biaxial failure criterion pertaining to the Tsai-Wu

theory is

f;F 1 01 + F3 03 + F 12 + F 032 + 2F 01 03 =1 (3-13) N

13

1%.



and the stability conditions on the five strength constants (FI, F3; F11 , F33 ,

F1 3 ) appearing in Eq. 3-13 are

F > 011

FI1 F - F13 >0 (3-14)

As remarked earlier in Section 1, the surface represented by Eq. 3-13 with the

strength constants satisfying the stability conditions given by Eq. 3-14 is a

single ellipse in the biaxial stress plane.

3.3 Transversely Isotropic Material

Substitution of Eq. 3-1 into Eq. 2-22 leads to

2 2f = F 1 + F3 a3 + F 1 1 + F33 r3 + 2F13 a1 3

+ (HI I + H3 a3 ) HI a1 
+ H3 a3 J = 1 , (3-15)

which is identical to Eq. 3-10 for an orthotropic material. In view of this,

other results obtained in the last subsection for an orthotropic material

(i.e., the stability conditions given by Eq. 3-5 in the proposed theory and

the results given by Eqs. 3-13 and 3-14 in the Tsai-Wu theory) are also

applicable to a transversely isotropic material.

3.4 Isotropic Material

Substitution of the biaxial stress condition qiven by Eq. 3-1 into Eq.

'"Z 2

-:. q * *~*~ S * 5 . ' A .
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2-29 leads to the biaxial failure criterion for an isotropic material as

" 2 2.'f = F1 (ai + a3) + FI (a 2 + a3 2 + 2F12) al a"
f= 1 ( 1 +o3+ 1 1 (1 +3 +2 1  1 03

9,."

+ H (a +  
3 ) H1 (a1 

+  
3  1

Using Eq. 3-16, the stability conditions on the four strength constants (F1 ;

F1i, F1 2 ; H1 ) appearing in Eq. 3-16 can be obtained as

F11 + FI2 + 212 > 0+2,

F 11 F 12 > 0,
5.j

which constitute only a subset of the stability conditions given by Eq. 2-30

for a general multiaxial stress state.

Substitution of Eq. 3-12 into Eqs. 3-16 and 3-17 results in the biaxial

failure criterion pertaining to the Tsai-Wu theory as

f = F1 (01 +  3) + F1 1 (a12 +  32) + 2F12 a1031, C-18

and the appropriate stability conditions on the three strength constants (F1 ;

F11 , F12 ) as

F + F >0
11 12 '

F -F >0 -l9
11 12
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4. BIAXIAL FRACTURE DATA FOR COMPOSITES

F
An extensive literature review has been conducted on the biaxial fracture

data on composites. Table 4-1 collects the references that contain enough

biaxial data for our correlation purposes, which cover a wide spectrum of

composite material systems: graphite/epoxy (Reference 13), graphite

particulate (Reference 9), graphite/aluminum (Reference 14), glass/epoxy

(References 15, 16, 17), and organic fiber-reinforced textolite (Reference

18). Table 4-1 also contains the secondary information on the nations where

and the years when these data were reported.

These biaxial data were all obtained from tubular specimens subjected

simultaneously to an axial load and internal and/or external fluid pressure,

except those on graphite aluminum unidirectional composite which were obtained

from flat cruciform specimens under biaxial in-plane loadings. In presenting

the data for tube specimens, the circumferential (i.e., tangential) direction

will be designated as the direction for x (i.e., x1 ) axis and the direction

along the axis of the tube as the direction for z (i.e., x3 ) axis. For the

flat cruciform specimens, the fiber and its perpendicular directions will be

identified as the directions for x and z axis, respectively.

4.1 Graphite ,,

Figure 4- illustrates the extensive experimental results for 0-deg

graphite epoxy amina, which is orthotropic Morganite IIlepoxy (Reference 13).

fS.



Table 4-1. References Containing Sufficient Biaxial Data on

Composites for CorLelation Purposes

COMPOSITE MATERIAL .

SYSTEM REFERENCE NATION YEAR

Graphite/Epoxy Wu and Scheublein USA 1974
(Reference 13)

Graphite Particulate Weng (Reference 9) USA 1968

Graphite/Aluminum Zimmerman and Adams USA 19811,
(Reference 14)

Glass/Epoxy Protasov and Kopnov USSR 1965
(Reference 15)

Hotter, Schelling, and Krauss Germany 1974
(Reference 16)

Teters, et. al. USSR 1981
(Reference 17)

Organic Textolite riaksimov, Sokolov, and Plume USSR 1979
(Reference 18)

Ni
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Figure 4-1. Biaxial fracture data of graphite/epoxy lamina (Moiganite 11)
Reference 13).
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Figure 4-2 presents the observed and predicted biaxial strengths for a

symmetrical cross-ply graphite/epoxy laminate with lamination geometry: 0, 90,

6' 0, 90, 90, 0, 90, 0, or equivalently, [0/90/0/901 s (Reference 13). Due to

this lamination geometry, the laminate is considered isotropic. In Figure

4-2, solid circles represent the actual experimental data, whereas open

circles represent the inferred data from isotropic material symmetry. The

latter data have been deemed necessary for the correlations performed in

Reference 13. However, they will not be used in the next section for our

correlations.

4.2 Graphite Particulate

Figure 4-3 shows the biaxial fracture strength of the JT-50 composite and

their comparison with the Tsai-Wu criterion (Reference 9). The JT-series

composites are graphite-based refractory composites, which are a class of

particulate composite materials produced by varying the proportion of the

carbon matrix and the metallic additives. Resulting from the fabrication

processes, the JT-50 graphite particulate posseses transversely isotropy

material symmetry. In the biaxial strength test results shown in Figure 4-3,

the longitudinal axis of the test specimens was oriented parallel to the

symmetry axis (i.e., the x3 axis) of the material.

4.3 Graphite/Aluminum

Figure 4-4 presents the biaxial fracture data for a unidirectional

graphite/aluminum composite, which is orthotropic (Reference 14). As

mentioned earlier, these data have been generated by flat cruciform, rathert

29 f

5 f%
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than filament-wound tube, specimens under lonqitudinal (along the fiber -r

direction) and transverse biaxial loadings.

4.4 Glass7Epoxy

Presented below in this subsection are tubular tests results on several

glass fiber-reinforced plastics, which are all orthotropic- laminates.

Figure 4-5 shows the biaxial fracture data of laminates made of satin- and

linen-weave glass fabric and epoxy-phenolic resin (Reference l5 . The fillq

direction coincided with the direction of the tubular test piece axis (i.e.,

the x3 axis), while the warp fibers ran in the circumferential fi.e. x ) "

direction.

Figure 4-6 presents the biaxial strength data for a unidirectional glass te

fiber reinforced laminate (Reference 16). The tube specimens used were
'5

circumferentially wound. Figure 4-7 presents the biaxial strength data for a

multilayer (i.e. [90/+30'90]) glass fiber reinforced laminate (Reference 16._

The low failure points for biaxial compression ,:ere possible due to bucklinq

failure. '

Figures 4-8 and 4-9 illustrate the biaxial experimental results for

cross-ply and helically wound glass fiber reinforced tubular specimens,

respectively (Reference 17). The layer orientation of the c-russ-ply tube ..as

as follows: the first layer was oriented along the circumference (i.e., x] '

axis), the second layer along the tube axis (i.e., x axis), and the third

layer along the circumference. The reinfnrcement ,tientation -f thr, h-li-<(ly

L'4%
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Figure 4-8. Experimental surfaces of destructive stresses

(1) and stresses, at which the photoemission (2) commences
for a cross- ply glass/ epoxy laminate (Reference 17)
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wound tube was at an angle of +45o to the tube axis. Stresses, at both th-

ultimate failure and the onset of the light emission (i.e., photoemission'l

were presented in Figures 4-8 and 4-9. However, for our pupsOnly tr %

stresses at the ultimate failure will be considered in the next sectrc..

4.5 Organic Textolite

Figure 4-10 shows the biaxial fracture data for an crthro ,pic crjaj,1-

textolite, as well as a glass textolite and three hybrid texrcit- wt k

different values of the relative concentratio-ns ~v 'of layelr of
9f of'

glass and organic fabric (Reference 18). only the organic tex~ lIite ha-s

sufficient data for our application and -,.ill be considered i n teno x

section. The reinforcement of the organic textolire %.as a scrvev ar1

composed of high-modulus organic fiber yarn. The fill direction of the

reinforcing fabric coincided with the longitudinal (i.e., x 3  dite- 'tln fth

tubular specimen, while the warp ran in the tangential 'i.e., x1  droio

%
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5. CORRELATIONS OF THE THEORY WITH BIAXIAL FRACTURE DATA OF COMPOSITES

To demonstrate the applicability of the proposed pie,^ewise quadratic

strength tensor theory to composites, comparisons are made in this section

between the proposed theory and the available strength data of five composite

material systems: graphite/epoxy (Reference 13), graphite particulate

(Reference 9), graphitealuminum (Reference 14, qIassepoxy Refeiences 15,

16, 17), and organic textolite (Reference 18). Also, to show the improvements

ot the proposed theory over the Tsai-Wu theory, comparisons are made between

the two theories. In these comparisons, Eq. 3-16 of the proposed thecry and

Eq. 3-18 of the Tsai-Wu theory are used for [0 90 0 901 giaphite epoxy
,p.

laminate which is isotropic, while Eq. 3-10 (or the identical equation, El.

3-15) of the proposed theory and Eq. 3-13 of the Tsai-Xi theory are use,] f-

oLher composites which are either orthotropic or transversely isotropic.

Tables 5-i and 5-2, respectively, present the strength constants for the

five composite systems least-square-fitted by the above-mentioned equ-ations

pertaining to the Tsai-Wu theory and the proposed theory. In these fittings,

individual data points were used directly + and the appropriate stability

restrictions on the fitted strength constants were not violated. These

restrictions included Eq. 3-17 of the proposed theory and Eq. 3-19 of the

Tsai-Wu theory for the isotropic graphite/epoxy laminate and Eq. 3-7 of the

proposed theory and Eq. 3-14 of the Tsai-Wu theory for other nonisotropic

composites. S

In presenting the strength constants for the isottopic graphito ep[>xy

laminate, the results ]2 F1 3 , of Eq. (2-271) have bon used.

+Rather than using the mean values foi the data undei h- samo leidin0r-ondi t ions.

aI.M
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5.1 Graphite.Epoxy "

Figures 5-1 and 5-2 present the correlations of the proposed theory and -

the Tsai-Wu theory with the biaxial fracture data of a graphite/epoxy lamina

and a [0 90 0,90] s graphite laminate (RefeLence 13), respectively. For the

graphiteepoxy lamina, both theories correlate equally well with the biaxial

data due to the elliptical characteristics of the data. For the

graphite epoxy laminate, the proposed theory correlates better than the

Tsai- Iu theory with the data and predicts significantly different results, at

least in the chird (i.e., compression-compression) stress quadrant, from the

Tai-Wu theory.
S

2 Graphite Particulate

e %

Figure 5-3 presents the correlations of the proposed theory and the -

Tsai-?,hu theory with the biaxial fracture data of JT-50 composite material

(Reference 9). Significant improvements of the proposed theory over Tsai and

1.fi's theory can be seen in the correlations.

.3 Graphite Aluminum

Figure 5-4 compares the predictions of the proposed theory and the Tsai-Wu

criterion with the biaxial fracture data of a graphite'aluminum lamina

Fpcf,-frj  l4. Significant improverM(nts of the pioporsed theory over the

[1T,,ai- 'ui thr)ry :an be found in the comparrisons.

*%*

S1m 1ar- r -rrelations hav, ben rernrted in R-fejr,-,-r 8, where mean data,
,it Iit than indiVIdual dalta, .r' used t fit thr' p, ,wc>'d citer-ion.

10
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5.4 GlassiEpx y

Figure 5-5 compares the predictions of the proposed an, the Tsai-Ku

theories with the biaxial fracture data of satin-weave and linn-'ea."

glass epoxy (Reference 15). Both theories compare equally . ..:ith thr'

data due to the elliptical natures of the data.

Figure 5-6 presents the correlations of the proposed and thr Isal ;,,]j S

theories with the biaxial fracture data of a unidirectional -jlas; ev ,"

laminate (Reference 16). Both theories correlate almost equall' '.ll u, t

the elliptical characteristirs of the data. i

Figure presents the correlations of the proposed and the r-t'>,

theories with the biaxial fracture data of a [90 +30'90] glass ep-vxy ].mii.t

(Reference 1E. Significant improvements of the proposed theC'v , hr

Tsai-Wuk theory can be seen in the correlations.

Figure 5-8 presents the comparisons of the proposed theory and the Tai-i, I

criterion with the biaxial fracture data of a cross-ply olass epcxy laminat.

(Referen-e 17}. Again, significant improvements of the proposod theoy -. 'e

the Tsai-Wu criterion can be found in the comparis!-nm. .

Figure 5-9 shows the rorrelations of the piopos-d anl tho Isa--', thr -w>

•with the biaxial data )f a helically ,ound qlass <--;x:y Vvvlot ,., >,

171. The two theories coreilate equally well with th' d...
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5.5 Organic Textolite

Figure 5-10 shows the comparisons of the proposed and the 1a-u~~~

with the biaxial fracture data of an euqanic text 1itp 'R, m

theories correlate equally well with the hiaxial dita duo,- to -hr litia

characteristics of the data.
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6. CONCLUSIONS

Good correlations between the theory and the biaxial fraoture data havc'

been demonstrated for Ql1 five comnosite matelial systems: qrathite 'nx,

graphite particulate, graphite aluminum, qlcss epoxy, and crganic textoh1tc.

Furthermore, significant improvements of the proposed theory over -he Tsai-W' 'U

theory have been shown for the cases where the biaxial data jcsseses

nonelliptical characteristics. From these results, the foilowino conclusions

are reached:

1. The proposed piecewise quadratic strength tensor theory is applicable

to the composites.

2. The proposed theory can significantly improve Tsai-Au's quadrati-

strength tensor theory for composite applications.

'
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