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EXECUTIVE SUMMARY
\
~
‘ -
k .." .
\, OBJECTIVE =
A
Develcp the piecewise quadratic strength tensor theory for composite
materials and demonstrate its applicability to the available biaxial fracture N
data on composites. The theory will have application to current composite {
structures of Naval Ocean Systems Center’s interest such as transducers and
future composite structures such as torpedo hull section, Vertical Launch
ASROC (VLA) nosecaps, and tethered deep submergence structures. The theory ]
can also be used with a wide variety of other NAVY structures such as aircraft -i
.
\
. . » T - L
and submarine substructures.t AHem.- £ S~ Tl e
,
‘
RESULTS l
An extensive literature review has been conducted to search for the useful :%
biaxial fracture data on composites. The data obtained pertain to a wide N
3
spectrum of composite material systems: graphite/epoxy, graphite particulate, &
o,
graphite/aluminum, glass/epoxy, and organic textolite. d
o
A\
The general results pertaining to the proposed piecewise quadratic ‘:‘
.
strength tensor theory have been reduced from an anisotropic material to an kL
a9
. . . . : . . \ - %
orthotropic, transversely isotropic, and isotropic material for composites u_ -

applications. Also, these general results for a multiaxial stress state have

o l .
-

been reduced to a biaxial stress state for correlation purposes.

[0 BN

Good correlations between the theory and the biaxial fracture data on the . =
_T::::;

above-mentioned composite systems have been demonstrated and significant k:
- p

improvements of the proposed theory over the Tsai-Wu thecry have been shown . ‘"f
for the cases where the biaxial data have nonelliptical characteristics. —n
»
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1. INTRODUCTION
A multiaxial failure criterion* is a set of equations which, if satisfied

by the six stress (or strain) components, imply failure. Mathematically, it

can be written as

* K
where o is the contracted notation of the second rank stress tensor. For a

given stress state, o, the function f is characterized by

if f(ok) <1 , no failuire occurs;

if f(ck)

It

1 , failure occurs; and (1-2)

if f(ok) > 1 , not admissible.

Geometrically, Eq. 1-1 defines a failure surface in the six-dimensional stress
space and Eq. 1-2 states that a stress point can only reside either on or
inside the failure surface and that failure occurs only if the stress point is
on the surface. Because of this geometric interpretation, the failure

criterion defined in Eq. 1-1 is also known as a failure surface.

The function f in Eq. 1-1 is usually obtained by a mathematical

*

To familiarize the reader with the general concepts of a failure
criterion for composites, some content of this section has been reproduced
from Reference 1.

* %k

With reference to a rectangular Zartesian cocordinate system (i.e., xy=
or equivalently, xlxzx3 system): 0y = 9.4 0y = cy, Oy = 0,4 Oy = Txy’
O = T, 0, = T_ .
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correlation of experimental observations. It must, however, satisfy the

following requirements:

Rl. The function f must be a scalar function.

R2. The failure surface represented by Egq. 1.1 must be closed,

surrounding the zero stress state.

The first requirement ensures that the failure criterion is valid for all
coordinate systems; the second requirement ensures that the material strength

is finite in all directions.

Unlike metals, composite materials are generally compressible and have
different (uniaxial) ultimate strengths in tension and in compression.
Moreover, they are often nonisotropic. In other words, a composite material
may be anisotropic, orthotropic, transversely isotropic, or quasi-isotropic,

which are defined below.

An anisotropic material has material properties that are different in all

directions at a point of the body; there are no planes of material symmetry.

An orthotropic material has material properties that are different in
three mutually perpendicular directions at a point in the body and, further,

have three mutually perpendicular planes of material symmetry.
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N A transversely isotropic material possesses an axis of rotational symmetry

such that the material properties on any plane perpendicular to the symmetry

: axis are practically invariant under any rotation of that plane about the

} axis, but the properties are different along the symmetry axis. '
0 ‘
Y An isotropic material has material properties that are the same in every 3
X N
;0 orientation at a point in the body. A quasi-isotropic material is essentially N
¥

o considered to be an isotropic material. ‘
o ot
h
v From the above discussions on the material characteristics of composites, '

it is clear that a failure criterion for composites must satisfy additional N

f; requirements:

: }
b ;

R3. The failure criterion must be free of the restriction of !

o W

incompressibility and depend on the hydrostatic state of stress

L -
f K
- (i.e., mean stress). :
L N
> .
- o
. R4. The failure criterion must include the difference between the
,3’ ultimate compressive and tensile strengths. y
~ f
~ Py
~ :
R5. The failure criterion must conform to the orthotropic, transversely

. "o
< isotropic, and isotropic material symmetries for orthotropic, .
. -
3 transversely isotropic, and quasi-isotropic composites, respectively. -
N :
. As is well-known, the Tsai-Wu’s quadratic strength tensor theory X

(Reference 2) satisfies the above five minimum requirements and encompasses

all other quadratic failure criteria used for composites. For a general

aLn

: 3

? y
[ ' b} 4 2 .® u 4 ) . RN B L N 2 Wl
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. *
anisotropic solid, Tsai and Wu’'s strength tenscr theory can be written as
F, 0. + F,. 0, 6. =1 , (i,3=1,...,6) , (1-3)

where F, and Fij are the strength tensors of rank two and four, respectively.

Without loss of generality, it is assumed that

F.. .
ij ji

In addition, constraints® must be imposed on the strength tensor Fij to
ensure that the material strength is finite in all directions. More

specifically, Fij must be positive definite, that is,

at all points 9, in the six-dimensional stress space. Geometrically, Eg. 1-5
is a necessary and sufficient condition to ensure that the failure surface

represented by the quadratic pclynomial of Eq. 1-3 is closed and ellipsoidal.

In the biaxial stress plane, the Tsai-Wu criterion represents a single
ellipse. In general, a single continuous ellipse cannot satisfactorily
represent the biaxial data of composites in all four stress quadrants. To
account for the nonelliptical characteristics of the biaxial fracture data of

composites, Chamis (Reference 3) and Rosen (Reference 4) suggested to use the

*
Unless otherwise indicated, the usual summation convention over a
repeated index is used throughout this report.

*Such constraints are usually referced to as the stability requirements or
stability conditions.
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Tsai-Wu quadratic criterion with different Fij (i#j) for different stress N
>
quadrants. Beyond having more coefficients for better data fit, there is no »
physical or mathematical justification (Reference 5). Another approach to o
)
improve the Tsai-Wu quadratic criterion for composites application was to {;«
h )

. include the cubic terms in Eq. 1-3 (References 6 and 7). Here, an enormous >
numbers of sixth order strength tensor components are needed. Moreover, RO
having cubic stress terms, the failure surface becomes open-ended (Reference 2). :f.

R
- . . . .
Without suffering any of these shortcomings, Tang and Kuei (e.qg., 28,
gt
Reference 8) improved Tsai and Wu’s theory in correlating the biaxial strength ;:f
data of (monotonous) polycrystalline graphite, which show similar :ﬁ
h
nonelliptical characteristics to composite data. Recognizing the fact that !;
such characteristics may be due to different fracture mechanisms being :i
operative under different states of biaxial stresses with different ii
combinations of tensile and compressive stresses (Reference 9), they added to !_
\'. B
the Tsai-Wu criterion the quadratic stress terms with the absolute value of ::
[ d
)
the linear combination of stress components. The resulting piecewise el
ol
-~
quadratic strength tensor theory can be written as
::'_\
=
Q:.\
= 1 = - o N
Fl 0'1+Flj O'i C'j+Hi Ul’Hj 0]' l ’ (1r] ll"'l6) ' (l 6) _:.
L
where Hi is a second rank tensor.
The above equation holds for a genecral anisotropic material. They then
\J
reduced all the results pertaining to the anisotropic material to a ?’:
transversely isotropic and an isotropic graphite and demonstrated good N
’
. , ’
correlations between the theory and the biaxial fracture data of graphite. ‘“
XS
SN
o
=
5 \.. (
LY
-..'
l‘- i
4
B A O e AR G oS AR
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In view of such good correlations with biaxial graphite data which show e
4
similar nonelliptical characteristics to composite data, it is propcsed that
.J v
the piecewise quadratic strength tensor theory be developed for composites. Q:'
N
The developments are presented in this report. Q:'
;
The next section records the general results pertaining to the proposed ::-
N
._-ﬁ
theory and the detailed derivation for reducing these results to an o
K
Ny
orthotropic material for composites applications. It also shows the detailed s
|
reduction of the results from an orthotropic material to a transversely K3
b,
~
: . . . . . )
isotropic and an isotropic material. Section 3 further reduces the results :‘
P
LY,
obtained in Section 2 for a multiaxial stress state to a biaxial stress state. Q;
!. A
Section 4 describes the available biaxial fracture data on composites that i:
c.“‘-
can be used for correlation purposes. These data were obtained through an ;:
extensive literature review and covered a wide spectrum of composite material 5
N
systems: graphite,epoxy, graphite particulate, graphite/aluminum, Cﬁ
glass epoxy, and organic textolite. Section 5 correlates the theoretical :3

results developed in Section 3 with the data obtained in Section 4 and

D
'y

SRS

quantify the improvement of the proposed criterion over the Tsai-Wu theory.

Vrl.
4o,

Finally, Section € concludes the applicability of the proposed theory to

v

composites.
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2. A MULTIAXIAL FAILURE THEORY FOR COMPOSITES

Presented below are the general results pertaining to the proposed
multiaxial failure theory for composites, including general anisotropic,
orthotropic, transversely isotropic, and isotropic materials. The results
contain the explicit expressions for the failure criteria of materials with
various material symmetries, the restrictions imposed on the components of the
strength tensors occurring in these criteria, and the geometric meaning of
these criteria. Along with the presentation, it should be clear that the
proposed theory satisfies all the necessary requirements R1-R5 defined in the

last section for a composite failure criterion.

2.1 Anisotropic Material

As introduced in the last section, the proposed multiaxial failure theory
for a general anisotropic material was given in Eg. 1-6 and is recorded helow

for an easy reference:

[ =1 , (i,j,k=1,...,6) . (2-1)

As in Tsai and Wu's theory, the strength tensor Fij is assumed to be

symmetric:

=F,. . 12-2)

F..
1] J1

With this assumption, there are 6 independent strength tensor ceomponents fer

each of Fi and Hi’ and 21 for Fij' These numbers for a general anisctropic
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material can usually be reduced substantially for a material having a certain
material symmetry. Such reductions will be shown in the next three

subsections.

Equation 2-1 can be decomposed into two equations:

F. o, + (Fij + Hi H.) 6. 0. =1 , (2-3)

for all o, with

and

i % 1 = By Hy) oy oy ' (2-5)

for all o with

oo}

Q

A

o
o

|
o

The stability conditions to ensure the closure of each of the failure surfaces

represented by Eqgs. 2-3 and 2-5, respectively, are

. A
i3 j ] ’ e
for all o satisfying Eq. 2-4, and
8
T i T A A R S A SV A LA SRR

. RS
AL A

Y o 4 v et B b

f o s,
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) {
. .
n )
» _ 5 _
' (Fij Hi Hj) oy Uj >0 , (2-8)
*
) for all o, satisfying Eq. 2-6. Clearly, Egs. 2-7 and 2-8 are the stability v
l
L, conditions required to ensure the closure of the entire piecewise failure
surface represented by Eg. 2-1.
’
v i
G: Geometrically, the itailure surfaces represented by Egs. 2-3 and 2-5, 8
respectively, with the restrictions made by Egs. 2-7 and 2-8 on the strength :
o tensors Fij and H, are two ellipsoids in the two half spaces defined by Egs. y
H
] (
" 2-4 and 2-6. Thus, the failure surface represented by Eg. 2-1 with the K
- .
[~ strength tensors Fij and H; satisfying the stability conditions given by Eqs.
v, 2-7 and 2-8 is a piecewise ellipsoid in the six-dimensional stress space. h
o
> . ‘ .
> Hence, the proposed quadratic strength tensor theory is referred to as the :
P, '
W "
- piecewise quadratic strength tensor theory. y
” Being in tensor form, the failure criterion defined in Eg. 2-1 is valid :
4 not only for the material axes but also for any different reference coordinate N
systems. The transformations of (oi, Fi' and Hi) and (Fij) under the
x coordinate transformations follow the well-known tensorial laws ite.q. N
- Rt
L Reference 10} for the second rank and the fourth rank tensors, respectively. .
l‘ .
i. for example, if x’i (i=1,2,3) denctes the reference coordinate system, Xy z
N n
1y (i=1,2,3) designates the material axis system, and aij (1,7=1,2,3) represents :
; the associated coordinate transformation defined by 4
2,
L A _ 5 kel.2 5
- X' o= aij xj , aij akj 1, (1,3,k=1,2,3}) , (2-91 ‘
= 2
. then, a second 1ank tensot f’um and a fourth rank tensioe f"nmx roeterred to
¥ | 3
+ .
v\
9
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the x’. system are related to fnp and fqrst referred to the x; system by

fr =a a_ f , (2-10)
um un “mp np

Ty

and

S

£ ump = 2ug %nr Pns %pt fqrst (2-11)

respectively. All the latin indices in the last two equations take the values

1, 2, 3.

The major features of the piecewise quadratic strength tensor theory are

as follows:

TP AN e R

Ld
L,
1. Equation 2-1 is in tensor form, hence, it is valid for all coordinate -
'
systems when it is valid for one coordinate system. This allows -;'
transformations of the strength criterion from one coordinate system .
to another through the well-known tensorial transformation laws. Q'
b3
I
1\.
2. The stability conditions imposed on the strength tensors assure the ﬁ
: L
closure of the failure surface. >3
r.':
3. The effect of the hydrostatic state of stress on fracture can be }:
considered since no restriction of incompressibility is contained in :-
o
the theory. N
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Equation 2-1 contains linear terms, which take into account the

effect of the difference in tensile and compressive strengths,

*
It is possible to derive a complete set of independent strength
tensor components for materials with different material symmetries,

such as orthotropy, transverse isotropy, and isotropy.

Equation 2-1 contains the stress terms with the absolute value of the
linear combination of stress components, which take intc account the
difference in failure mechanisms being .perati.~ under different

multiaxial stress states.

The criterion has been obtained without using any constitutive
equation of a brittle solid. More specifically, the linearly elastic
stress-strain law has not been employed in the derivation of Eqg. 2-1.
Thus, if a nonlinear constitutive law is used to evaluate the

stresses in Eq. 2-1, there will be no inconsistency.

The criterion is operationally simple because it represents a
piecewise ellipsoid consisting of two ellipsoids and it contains no

terms of the stress components higher than the quadratic ones.

*
The derivation will be given in the next three subsections for
orthotropic, transversely isotropic, and isotropic materials, respectively.
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2.2 Orthotropic Material

For an orthotropic material with the reference coordinate planes
coinciding with the planes of material symmetry, based on the invariance
requirements (References 11, 12) of orthotropy material symmetry, the stress

dependent function f defined in Eg. 1-1 must be expressible as a polynomial in

2 2 2

the seven quantities: O1r Ops O3, 04y 05", O, 0,0c0¢.

Thus,

-~
<

£ ( 2 2 )
9ys Oy, O34 G4 4 Og™, 0", 0,000

f:

Alternatively, f is expressible as

9l i
< <

o I,) ,

a7 %+ % ' °3
where I, is a stress invariant given by

g + 0 3 + 0 3 + 30
1 2 3 1
3 2 2) 46

+ 3og (05 + 9 )+

Hence, the explicit expression for the quadratic function f defined by Eq.

2-1 can be given in terms of the arguments occurring in Eq. 2-12 as

9 ¥
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Comparing Eq. 2-15 with Eqg. 2-1, it can be seen that

46 = Fs6 = 0 (2-16)

With the above results, it is clear that there are only three independent

strength tensor components for each of Fs and H, (i.e., (F,, F F3) and (H

1" "2’ 1’

H2, H3)), and only nine for Fij (1.e., Fll' F22, F33, F44, F55, F66’ F12’ F23,
F13). As noted earlier, the numbers of independent strength tensor components
for a general anisotropic material has been substantially reduced due to

orthotropy material symmetry.

The strength constants mentioned above are not free material parameters
because they are restricted by the stability conditions Egs. 2-7 and 2-8. For
an orthotropic material, using Eg. 2-16, the independent restrictions on Fos

and Hi can be obtained as

L+
x

22 >0 ., (2-17»
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Fgg > o,
Foo > 0,
Feg > 0
2 2 2
(Fp # Hy7) (Fpp # Hy') = (Fyp + H) Hy)" > 0,
2 2 2
(F22 + H, ) (F33 + Hy ) - (F23 + H, H3) >0 (2-17)
(Fan + Ho?) (Fyy + Hi%) = (Fy + H Hy)o > 0
33+ H37) (Fyy + By 13+ Hyp Hy '
2 2 2
(Fyqp + H7) (Fyy # HY) (Fyy + H3™)
v 2 (Fyp + Hy Hy) (Fp3 + Hy Hy) (Fyy + Hy) Hy)
2 2 2 2
2 2
- (F33 + H3 ) (Flz + Hl HZ) > 0

[\
(V)

Transversely Isotropic Material

For a transversely isotropic material with the Xy - axls being parallel to
the axis of rotational symmetry, based on the invariance requirements (e.g.
Reference 11) of the transversely isotropy material symmetry, the function £

in Eq. 1-1 must be expressible as a polynomial in the five quantities: Iy I,

~

-
13, O3 and 05“ + 06" where Il and I, are stress invatriants given by

pas

—
[£9]
i
Q
—
+
Q

' (2-18)
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and I is the stress invariant given by Eg. 2-14.
Thus,
2 2
f = f(Il, I2, I3, o3r O+ ocT) . (2-19)
In light of this, the quadratic function f defined by Eq. 2-1 can be
expressed from the arguments occurring in Eq. 2-19 as
2 2

f = ag Il + a1 o3 + [bo I1 + b1 I1 oy + b2 )
2

2
+ by Lo + 0,%)] + (cy I) +cp og)cy 1) + c; o5l - (2-20)
A comparison of Eqg. 2-20 with Eg. 2-15 using Egs. 2-18 and 2-14 leads to the

following results for the nonvanishing strength tensor compenents:

™
w
it
1%
(]
+
oV]
—

Fi3 = bO + bl + b, + b3 ,

F44 = Zb3 = Z(Fll -~ Flz) , {2-21)
FSS- F66 = 2b3 + b4 /

Fl2 = Pg
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Fa3 = Fj3 =Dy + =
2
Hl = H2 =Cy (2-21)
H3=CO+C1

Substituting these results into Eq. 2-15, the expression for f in Eq. 2-1

becomes

+ [Hl (ol + 02) + H3 03] |Hl (cl + 02) + H3 c3| =1 . (2-22)

From Eq. 2-21 or Eg. 2-22, it is clear that there are only two independent

strength tensor components for each of Fi and Hi (i.e., (F,, F

1’ 3) and (Hl, H3))

Fll' F33, Fero F12’ FlB}' As noted earlier, the

and only five for Fij (1.e., 55

numbers of independent strength tensor components for a general anisotropic

material has been further reduced due to transversely isotropy material

symmetry.

The independent stability restrictions on these strength constants can be

obtained by substituting Eq. 2-21 into Eg. 2-17 as

Fll + Fl2 + ZHl > 0

o D
n - fp2 0 (2-23)
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2.4 Isotropic Material

TAISNS

For an isotropic material, based on the invariance requirements (e.q.,

r %

Reference 11) of the isotropy material symmetry, the stress dependent function
f defined in Eg. 1-1 must be expressible as a polynomial in the stress

invariants Il’ 12, and 13 defined in Egs. 2-18 and 2-14. Thus,

LT NN

Py T F

In light of this, the quadratic function defined by Eg. 2-1 can be

_s

RN,

expressed hy

s
o A

I, + (b, I + b, I

o 3 Iy I
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Comparing Eg. 2-25 with Eg. 2-20, it can be seen that
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Substituting Eq. 2-26 into Eg. 2-21 the following relations tor the
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nonvanishing strength tensor components can he obtained:
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Faq = Fos = Fgg = 2b3 = 2(F)) = F o) (2-27)

: o
r

{ -

= = = -

Fip = Fp3 = Fy3 = bg %

o

]
H. = H, = H, = ¢C \

Using Egs. 2~-27 and 2-25, the expression for f in Eg. 2-1 becomes

; 2
] = — = — )
s E=F) I+ Fp) I, + Fy (1) I,) +H I, B I, =1 . (2-28) ‘
. 3
b )
An alternative expression for f can be obtained by substituting Eq. 2-27 into H
‘ Eg. 2-15 or Eq. 2-22 as f.
2 2 2 5, 2 2 )
= { 2 .
E=Fplog rogvogl v By lop v opn +ogn v 2oy + g + o )] 3
) ] 2 ':\
: + 2F12 [c1 9, + 0y 03+ 03 0 - (0,° + 0" + o )] ,
’
_ v
+ Hl oy + g, + 04! | Hy fo) + o, + cgi‘ . (2-291 e
’
!
From Eqs. 2-27, 2-28, or 2-29, 1t 1s clear that there are only four _f
I independent strength tensot components: Fl, ”l’ Fll' and Flﬂ; one each for Fi -
D < -
an- H, and twn for F))' Tleatly, the numbers ~f independent strength tensnr )
) components far a general aniootiopro material hag been further reduced due to i:
isotropy material symmetiy. .ﬁ
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The independent stability restrictions on these strength constants can be

obtained by substituting Eq. 2-27 into Eq. 2-17 or 2-23 as

ro
w

-

2
pi
Fll + F12 + -Hl >0 ,
Fll - FlZ >0 , (2-30»
2 Ny 4 o 2.2
(Fllle ) (F11+F12+9Hl ) “L(FthHl ) > 0

General Remarks

Along with the developments made so far. the following should be clear:

{1» In the proposed theory, there are 33, 15, 9, and 4 independent
strength tensor components for anisotropic, orthotropic, transversely
1sntiopic, and isotropic materials, respectively.

(2) Ceomparing Eq. 2-1 with Eq. 1-3, it can be seen that the proposed

theory degenerates into the Tsai-wu theory when

Substitutions of Eqg. 2-31 1nto various results pertaining to the
proposed theory follow the corresponding results for Tsa: and wu's
theoty.

"3 In the Tsai-wu theory, there are 27, 12, 7, and 3 independent
strength tensor ~omponents for an anioctropl~, artheotropr-,

froansversely asnty oo, and 1o troprs material, respectively,
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3. BIAXIAL FAILURE CRITERION FOR COMPOSITES

To facilitate the correlations of the proposed theory with the biaxial
fracture data on composites, the general results (including the explicit
expressions for the failure criterion, the stability conditions on the
strength tensor components, and the geometric meaning of the criterion)
obtained in the last section for a general multiaxial stress state are reduced

. R . . s *
in this section for a biaxial stress state:

Moreover, to facilitate the comparison of the proposed theory with the
Tsai-Wu theory in these correlations, the reduced results for orthotropic,
transversely isotropic, and isotropic materials are also explicitly

deqenerated into those pertaining to the Tsai-wu theory.

*
Alternatively, in these stress states, we can use o, # 0, o3
than o, = 0, o; # 0 without losing any generalities. ‘
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3.1 Anisotropic Material

Pars
" .,

Substituting Eq. 3-2 into Eq. 2-1, we obtain

v
207

XA
oy

£f=F + F + F + F

11 %1 33

+ 2F

1% 3 93 6 %

+ 2F

+ 2F

Wl
N
Q
(oY)
Q
N
L4

13 91 93 16 %1 %

+ H

+ {(H, o

+
jo of
Q
+
o
2
1l
~
~
o

19 3 03 + Hg op) | H 7,

l"_l o
AT

®

which 1s the failure criterion for an arisatr=p i~ mat 2 1a) 1r ooyl save o

plane stress. Using Egq. 3-1, Eg. 3-3 can be simplifyed ars

E’?

7

J
i 4 AY

2 o
f£=F tFyo3+ Fpy o7+ Fagoym v by

A

)

1
.

+ Hy o3) 'Hl o, + H oyl =2 S

19 3

D 4
SN S S

which is the desired biaxial failure critervien f~r »n anisotr-pa~ mazorss’

R Al

[

Utilizing Egq. 3-4, the stability conditions on the seven strength

d

[
-

T
X

constants (Fl, F3; Fll’ F33, Fl}’ HI’ Hg) appearing in Eg. 3-% can be ohtained

'1

L)

as
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*r T

2 2 2 -
(Flp + H7) (Fyy + H%) - (Fy3 + H H)T >0 . (3-3
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Eg. 3-4 is a subset of the stability conditions given by Egs. 2-7 and 2-8 for

a general multiaxial stress state.

Geometrically, Eq. 3-4 with the strength constants satisfying the
stability conditions given by Eg. 3-5 represents a piecewise ellipse in the
biaxial stress plane. This piecewise ellipse is made of a single ellipse

represented by

d
d
2 2 2 2
f = Fp op + Fy o3+ (Fll + Hy ) o+ (F33 + Hy ) 9q
a + Z(F13 + Hy Hy) 0y o3 =1 (3-6)
J
‘ in the half plane
|
‘ Hy oy + Hy o3> 0o, (3-7)
and another single ellipse represented by
_ 2 2 2 2
f = Fioop + Fyog+ (F11 - H7) oy" 4 (Fyp - H, ) og
2 = -
+ Q(Fl3 Hl Hg) g, 03 = 1, (3-8)
in the half plane
Hy o + Hy o5 ¢ 0 . {3-9)
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3.2 Orthotropic Material

Substitution of the biaxial stress condition given by Egq. 3-1 into Eq.

2-15 leads to the biaxial failure criterion for an orthotropic material as

2 2
3 93+ Fpp 99 * F33 03

+Hy o) [H o) +Hyog] =1 . (3-10)

+ F + F

It is interesting to note that Eq. 3-10 is identical to Eg. 3-4 for an
anisotropic material. Consequently, the stability conditions on the seven

strength constants (Fl, Fyvi Fyq» F3q0 Fy3i Hy, H3) appearing in Eg. 3-10 are

also identical to Eg. 3-5 for an anisotropic material.

The results obtained so far in this subsection pertain only to the
proposed theory. These results can be degenerated into those pertaining to

Tsai and Wu’s theory by utilizing the conditions:

Hl = H3 =0 , (3-12)

which is a subset of the conditions given by Eqg. 2-31. Thus, for an

orthotropic material, the biaxial failure criterion pertaining to the Tsai-Wu

theory is

19 ¢ FS o3 + Fll o + F33 o3" + 2F13 o, 93 = 1, {3-13)

23

L

AR ]
NN

S

I
x

1
5]

4",
Ed
x

S

P s
o ’&”.’-'{'ﬁ ]

i

L VP ?74"{

'll'
e,

RN
»

J".I\:'\-' P
PP

AT

o

N
Al
]

r Te



and the stability conditions on the five strength constants (Fl’ F3; Fll' F33,

F13) appearing in Eg. 3-13 are
Fll >0
F.. Fay = F..% 50 (3-14) !
11 "33 13 :

As remarked earlier in Section 1, the surface represented by Eg. 3-13 with the
strength constants satisfying the stability conditions given by Eq. 3-14 is a

single ellipse in the biaxial stress plane.

3.3 Transversely Isotropic Material

b . t
= Substitution of Eq. 3-1 into Eq. 2-22 leads to

N f=F, o, + F, 0, + F 02+F 02+2F g, ©

:; 171 373 11 71 33 73 13 71 73

)
:: + (Hl o) + H3 03) 'Hl o) + H3 03| =1 , (3-15) :
- which is identical to Eg. 3-10 for an orthotropic material. 1In view of this, ,
:% other results obtained in the last subsection for an orthotropic material )
v (i.e., the stability conditions given by Eg. 3-5 in the proposed theory and

:é the results given by Egs. 3-13 and 3-14 in the Tsai-Wu theory) are also
?i: applicable to a transversely isotropic material. !
o 3.4 Isotropic Material

~

-
..:

» Substitution of the hiaxial stress condition given by Eg. 2-1 into Eq.

7, X
2 '
.

"l

2 24

PN
*2"a"s
.

¥

DA

-----

.- s v atatan
AN

Y

- -..‘:) S v*v AN AT \'_\J;\-.\.*\..)..‘--_\..\‘.\..\ RIS TP TS T _.\ .

- S
LNy AT T




.
v
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2-29 leads to the biaxial failure criterion for an isotropic material as

B 2 2
f = Fl (cl + 03) + Fll (ol + o3 ) + 2F12 9y 03

+ Hy (o) + 03) l Hy (o + o3) [ =1

Using Eq. 3-16, the stability conditions on the four strength constants (Fys
Fll' Flz; Hl) appearing in Eq. 3-16 can be obtained as

’

2
Fll + F12 + 2Hl >0

which constitute only a subset of the stability conditions given by Eg. 2-30

for a general multiaxial stress state.

Substitution of Eq. 3-12 into Egs. 3-16 and 3-17 results in the hiaxial

failure criterion pertaining to the Tsai-Wu theory as

and the appropriate stability conditions on the three strength constants (Fys
Fiqv F12) as

B ™ A" 2% -"..‘\-‘\(‘\.‘\."
\’ﬁ 'v(\ ' \.’ . N .
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4. BIAXIAL FRACTURE DATA FOR COMPOSITES

An extensive literature review has been conducted on the biaxial fracture
data on composites. Table 4-1 collects the references that contain enough

biaxial data for our correlation purposes, which cover a wide spectrum of

composite material systems: graphite/epoxy (Reference 13), graphite

L}

P e

particulate (Reference 9), graphitesaluminum (Reference 14), glass/epoxy

*

fReferences 15, 16, 17), and organic fiber-reinforced textolite (Reference

18). Table 4-1 also contains the secondary information on the nations where

TSN TN,

and the years when these data were reported.

-

These biaxial data were all obtained from tubular specimens subjected
simultaneously to an axial load and internal and-or external fluid pressure,
except those on graphite- aluminum unidirectional composite which were obtained

from flat cruciform specimens under biaxial in-plane loadings. In presenting

the data for tube specimens, the circumferential (i.e., tangential) direction

.,
PR)

will be designated as the direction for x (i.e., xq) axis and the direction

g Y

along the axis of the tube as the direction for z (i.e., x3) axis. For the

P s

flat cruciform specimens, the fiber and its perpendicular directions will be

N

identified as the directions for x and z axis, respectively.

1 4

Sy -

?

4.1 Graphite ™

» LI
L0
s

-

/,

Figure 4- 1illustrates the extensive experimental results for 0-deg

graphite epoxy amina, which is orthotropic HNorganite 11 epoxy (Reference 13).
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E Table 4-1. References Containing Sufficient Biaxial Data on oL
o

Composites for Correlation Purposes ;

,

.-

f

e : ‘

[ -
COMPOSITE MATERIAL '

SYSTEM REFERENCE NATION YEAR

A o B : g
L ~
. Graphite /Epoxy Wu and Scheublein USA 1974 N
(Reference 13) .

. | _ ' S _ . . R :
Graphite Particulate Weng (Reference 9) USA 1968 Y
N

} Graphi te /Aluminum Zimmerman and Adams USA 1984 .
) (Reference 14) »
4
,

Glass/Epoxy Protasov and Kopnov USSR 1965 N

3 (Reference 15) \
~

, T I o R
Hotter, Schelling, and Krauss Germany 1974 .

(Reference 16) 14

o 1 _ o
" Teters, et. al. USSR 1981 v
(Reference 17) -

— - . :

Organic Textolite Maksimov, Sokolov, and Plume USSR 1979 R
(Reference 18) :

-

T o T T T - - "\-

o~

R

L

-

ey

. )
. -‘:.
v "-\
¥

L

j 5 %

: ]
‘ "
“ - B I N '-'.lr

T \'f‘r"-:'.'"-f"f"f‘}"}-".’";-'.".}".r}}:‘f.r?':\.f-".r"}:‘.("a.-".r-:‘.-".~"¢".f".r:'.-\ s e s 2 S OO S S S8 S e e



nA

v

2
F g 3

]
¥\

'N

NSNS

Yy

P

' '_.".-:_’;'_:":‘_v

.\‘

AR
S,

"{‘l'l
ML N B

L
o
3 e

Pl
59 %S

173 iksn

Figure 4-1. Biaxial fracture data of graphite/epoxy lamina (Morganite |l
(Reference 13).
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Figure 4-2. Observed and predicted biaxial strengths for [0/90/0/90] ¢
graphite/epoxy laminate (Reference 13). 9
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Figure 4-2 presents the observed and predicted biaxial strengths for a

symmetrical cross-ply graphite/epoxy laminate with lamination geometry: 0, 90,

T VP P I T V.S SN » v % v » Vs & 7
a_P»

0, 90, 90, 0, 90, 0, or equivalently, [0/90/0/90]S (Reference 13). Due to E'

this lamination geometry, the laminate is considered isotropic. In Figure E‘

4-2, solid circles represent the actual experimental data, whereas open X

circles represent the inferred data from isotropic material symmetry. The E

latter data have been deemed necessary for the correlations performed in ;

; Reference 13. However, they will not be used in the next section for our :
y correlations. A

o

‘ e

’ 4.2 Graphite Particulate g

‘E Figure 4-3 shows the biaxial fracture strength of the JT-50 composite and ?1
. their comparison with the Tsai-Wu criterion (Reference 9). The JT-series ;
h composites are graphite-based refractory composites, which are a class of ?

; particulate composite materials produced by varying the propertion of the Ef
? carbon matrix and the metallic additives. Resulting from the fabrication $

) processes, the JT-50 graphite particulate posseses transversely isotropy .

material symmetry. In the biaxial strength test results shown in Figure 4-3, Ei

t the longitudinal axis of the test specimens was oriented parallel to the E
i symmetry axis (i.e., the X3 axis) of the material. %
; 4.3 Graphite/Aluminum E

-7

i: Figure 4-4 presents the biaxial fracture data for a unidirectional ’
N graphite/aluminum composite, which is orthotropic (Reference 14). As E
3 mentioned earlier, these data have been generated by flat cruciform, rather '
. .:\:
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Figure 4-3. Biaxial fracture strengths for JT-50 composite
material (Reference 9).
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than filament-wound tube, specimens under longitudinal taleong the fiber

direction) and transverse biaxial loadings.

4.4 Glass/Epoxy

A

" o0
’\‘.ﬁ.{‘:‘\- vy . ®

%

-
4
Presented below in this subsection are tubular tests results on several :j
o‘.'
glass fiber-reinforced plastics, which are all orthotreopi< laminates. ;j
®
Figure 4-5 shows the biaxial fracture data of laminates made of satin- and .
oAl
linen-weave glass fabric and epoxy-phenolic resin (Reference 15). The fill i
N
__-I'
direction coincided with the direction of the tubular test piece axis (i.e., 1N
»
the X3 axis), while the warp fibers ran in the circumferential (i.e. xl) v
f
I
’
direction. ”
g
-f'\
o
Figure 4-6 presents the biaxial strength data for a unidirectional glass %i
< d
l?,
fiber reinforced laminate (Reference 16). The tube specimens used were e
o. ’
D )
circumferentially wound. Fiqure 4-7 presents the biaxial strength data for a o,
multilayer (i.e. [90,+430.90]) glass fiber reinforced laminate (Reference 16!. !;.
The low failure points for biaxial compression were possible due to buckling F:‘
N4
. T
failure. e
g
).
Figures 4-8 and 4-9 illustrate the biaxial experimental results for :{i
cross-ply and helically wound glass fiber reinforced tubular specimens, Ef_
,.
respectively (Reference 17). The layer orientation of the cross-ply tube was !__
L4
~
as follows: the first layer was oriented along the circumference f1.e., X4 }:'
o
e
axis), the second layer along the tube axis (i.e., X3 axis), and the third t:
o
N
layer along the circumference. The reinforcement nrientation ~f the heli-ally »
5
e
o
.:,'\.
G
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L
-
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Figure 4-8. Experimental surfaces of destructive stresses
(1) and stresses, at which the photoemission (2} commences
for a cross-ply glass/epoxy laminate {Reference 17},
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wound tube was at an angle of +45° to the tube axis. Stresses at both the
ultimate failure and the onset of the light emission (i.e., photoemission:

were presented in Figures 4-8 and 4-9. However, for our purpose, only the

stresses at the ultimate failure will be considered in the next secticr.

4.5 Organic Textolite

Figure 4-10 shows the biaxial fracture data for an crthetropic crganic
textolite, as well as a glass texteclite and three hybrid textolites with
different values of the relative concentrations (“’gf “'of) cf layers of
glass and organic fabric (Reference 18). Only the organic tex .lite has
sufficient data for our application and will be ~onsidered in tho neoxt
section. The reinforcement of the organic textolire was a satin-weave fabii-
composed of high-modulus organic fiber yarn. The fill divectiren of the
reinforcing fabric coincided with the longitudinal (i.e., x,: directirn f the

3

tubular specimen, while the warp ran in the tangential ti.e., x,  directizn,
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and organic textolite (5) (Reference 18)
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5. CORRELATIONS OF THE THEORY WITH BIAXIAL FRACTURE DATA OF COMPOSITES

‘b‘;i ’\{‘n ‘;' ¥

To demonstrate the applicability of the proposed piecewise cuadrati~
strength tensor theory to composites, comparisons are made in this section

between the proposed theory and the available strength data of five composite

'|“. " of
7,

material systems: graphite/epoxy (Reference 13), graphite particulate

L
2,y
.

{Reference 9), graphite- aluminum (Reference 14), glass epoxy (References 15,

o
16, 17), and organic textolite (Reference 18). Alsc, to show the improvements :\‘
ot the proposed theory over the Tsai-Wu theory, comparisons are made hetween ga
o

2

the two theories. In these comparisons, Eq. 3-16€ of the proposed thecry and

’ ",l?

Eg. 3-18 of the Tsai-Wu theory are used for [0-30 0-90]1_ grarhite epoxy &‘
) »
laminate which is isotropic, while Eq. 3-10 (or the identical equation, Eqj. -2}

[

3-15) of the proposed theory and Eq. 3-13 of the Tsai-¥hu thecry are usel for

e
5, & 4

&

other composites which are either orthotropic or transversely isotropic.

R I H

A |
3

e
P

Tables 5~1 and 5-2, respectively, present the strength constants  for the

P
Lo,
.

five composite systems least-square-fitted by the above-mentioned equations

’

pertaining to the Tsai-Wu theory and the proposed theory. In these fittings,

»

P A

individual data points were used directly+ and the appropriate stability

R,

/4

restrictions on the fitted strength constants were not viclated. These

LA ¢
»
]

S 4

restrictions included Eg. 3-17 of the proposed theory and Eqg. 3-19 of the

oy
» -" 'Y

Tsai-Wu theory for the isotropic graphite/epoxy laminate and Eg. 3-% of the

proposed theory and Eq. 3-14 of the Tsai-Wu thecry for other nonisotropic tﬁ:
Bty

composites. ®
1
S |
In presenting the strength constants for the isotiopic araphite epoxy ]

i s = 2-27 ave been used.

laminate, the results, F12 Fl3’ of Eg. (2-2 )10’11 have been used :
*Rather than using the mean values for the data under the same leoading !‘v
conditiors. e\
n
N
~
{:i
.7 AN
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5.1 Graphite Epoxy

Figures 5-1 and 5-2 present the cnrrelations of the proposed theory and
the Tsai-Wu theory with the biaxial fracture data of a graphite /epoxy lamina
and a [0'90’0,"901S graphite laminate (Reference 13), respectively. For the
graphite-epoxy lamina, both theories correlate equally well with the biaxial
data due to the elliptical characteristics of the data. For the
graphite epcxy laminate, the proposed theory ~orrelates better than the
Tsail-Wu theory with the data and predicts significantly different results, at
least in the third fi.e., compression-compression) stress quadrant, from the
Tai-wa theory.

“

5.2 Graphite Particulate

*
Figure 5-3 presents the correlations of the proposed theory and the
Tsai-*u theory with the hiaxial fracture data of JT-50 composite material
(Reference 9). Significant improvements of the proposed theory over Tsai and

wi's theory can be seen in the correlatinons,
5.3 Graphite.Aluminum

Fiaqure 5-4 compares the predictions of the proposed theory and the Tsai-Wu
criterion with the biaxial fracture data of a graphite-aluminum lamina
(Feferonce 1.0V, Significant improvements of the proposed theory over the

Tear-Wu thenry can be found in the comparvisons.

b3
Similar cnrrelations have heen reported in Reference 8, where mean data,
tather than individual data, were used to fit the propesed criterion.
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Figure 5-3 Correlations of the quadratic strength tensor theories with the
biaxial fracture data of JT-50 composite material (Reference 9).
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Glass, Epoxy

Figure 5-5 compares the predictions of the proposed and the Tsai-th
theories with the biaxial fracture data of satin-weave and linen-wea.o
glass.-epoxy {(Reference 15). Both theories compare equally well with the

data due to the elliptical natures of the data.

Figure 5-6 presents the correlations of the proposed and ths Tsai v
theories with the biaxial fracture data of a uniditectinnal glass oprxy
laminate tReference 1%£). Both theories correlate almost erually woll rve to

the elliptical rcharacteristics of the data.

D2l

Figure 5-7 presents the correlations of the proposed and the Teoai-vh

theories with the biaxial fracture data of a [90-+30/90] glass epoxy laminate
(Reference 14). Significant improvements of the proposed theciy ~unr the

Tsai-wWu theory can be seen in the correlations.

Figure >-8 presents the comparisons of the proposed theory and the Toair-tn
criterion with the biaxial fracture data cf a cross-ply alass epcxy laminate
‘Reference 17). Again, significant improvements cf the propesed theory ~ver

the Tsai-Wu criterion can be found in the comparis~ nz.

Figuire 5-9 shows the correlations of the proposed and the Tzai-ur themyios
with the biaxial data of a helically wound qlass epoxy laminate @ Seforsn.

17y, The two theories corielate equally well with the data,
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Figure 5-5 Correlations of the quadratic strength tensor theories .
with the biaxial fracture data of (a) satin-weave and (b) inen weave
glass-reinforced plastics (Reference 15)
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Frgure 5-7  Correlations of the quadratic strength tensor
theornes with the broaxaal fractare data of 3190 <30 90:
glass epoxy laminate  Reterence 16
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5.5 Organic Textolite
Figure 5-10 shows the comparisons of the proposed and the TIsai-vh thenyior
with the biaxial fracture data of an crganic textolite (RBeferenne 1R &1y
theories correlate equally well with the biaxial data due to the =lliptical
characteristics of the data.
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N 6. CONCLUSIONS :
’-> L]

' Good correlaticns between the theory and the hiaxial fracture data hawve s
" been demonstrated for gll five composite material systems: qraphite opos,, N

\ v

LU graphite particulate, graphite aluminum, glass epoxy, and crganic textolite.

“w
- Furthermore, significant improvements of the proposed theory over _“he Tsai-vu ~

N R
.t theory have been shown for the cases where the biaxial data possesses -
N nonelliptical characteristics. From these results, the following conclusions :
V. are reached:

"'\ )
v »
L <
- Ry

o 1. The proposed piecewise quadratic strength tenscr theovy is applicable -
~ to the composites.

o~
N
N 2. The proposed theory can significantly improve Tsai-Wu's quadratin~
S
n strength tensor theory for compesite applications. :
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