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1. Introduction

Large inelastic deformations are frequently accompanied by the formation of intense bands of

localized shearing. Often the large localized strains in a shear band precipitate a shear fracture.

In other circumstances shear bands do not lead to fracture but localized shearing becomes an

important mechanism for subsequent plastic deformation. tlence shear bands have a dual

significance; as a precursor to fracture and as a mechanism of large strain plastic response.
I|

When the solid is considered to be deforming quasi-statically and isothermally, shear band lo-

calizations can be analyzed as a "material instability," within a framework due to Iladamard

(1903), Thomas (1961), Hill (1962), Mandel (1966) and Rice (1977). Within this framework, a

material element is considered subject to all around displacement boundary conditions consis-

tent with homogeneous deformations; different homogeneous deformation states prevail outside

and inside the band and the analysis determines the jumps in field quantities across the band

interface. For rate independent solids, the onset of a shear band localization can occur as a

bifurcation corresponding to a loss of ellipticity of the rate equilibrium equations, Hill (1962),

Rice (1977). For rate sensitive solids a bifurcation is effectively excluded and the governing

rate equations remain elliptic, although in the presence of initial band type imperfections shear

band localizations do emerge, e.g. Pan et al. (1983).

The analysis of shear band development in non-honogeneously deforming solids requires a

full boundary value problem solution. Such solutions have been obtained for the quasi-static

development of shear bands, see e.g. Tvergaard et al. (1981), Triantafvllidis et al. (1982),

LeMonds and Needleman (1986) and the review of Needleman and Tvergaard (1983), and have "''"

shown that shear bands do initiate with the orientation given by the "material instability"

analysis. Shear band propagation, however, is greatly affected by the inhomogeneity of the

surrounding fields.

The physical mechanisms responsible for triggering shear bands can vary widely. At low strain

rates, a key feature of plastic material response for localization is the yield surface vertex

structure implied by the discrete natuir'e of crystallographic slip. The significance of a vertex

lies in the reduced stiffness to a change in loading path which permits shear bands to emerge

ii strain hardening materials, see e.g. Rice (1977). At higher strain rates, thermal softeniig i

appears to play a major role in shear band formation, as originally srggeste(l by eZrner and

llolloman (19-14). An overview of conditions for high rate shear band formnation in sni ple shear

and correlation with experiments is given by Clifton et al. ( 198,1).

lProfuisious of internal shear bands are sonileirnies olbserv(l, e.g..\naand arid Spit zig (19S0), and %

these bands appear to originate at internal inhonliogeneities. Analyses of shear localization front

internal strain concentrators have beerr carried ouit bY Ahevaratlle ald Triaritayllidis (19S1).
'vergaard (1982, 1987), Friund(. Wrr ;1 rl( 'l'oilios (1(.) aid lvlornds ;id Needlenuar (19S6).

2.TV , .



Abeyaratne and Triantafyllidis (1981) investigated shear band initiation in quasi-statically de- I

forming hypo-elastic and hyper-elastic solids in plane strain. LeMonds and Needleman (1986)

also considered plane strain _quasi-static deformations but analyzed the course of shear band --
development in elastic-viscoplastic solids, accounting for strain hardening, rate dependence,
thermal softening and heat conduction. Tvergaard (1982, 1987) has studied the quasi-static

response of porous plastic solids having two size scales of void nucleating particles and where

early nucleation at relatively large particles triggers localization into a void sheet. In Freund,

Wu and Toulios (1985) the dynamics of shear band propagation was analyzed for a nonlinear

elastic solid in anti-plane strain.

lere, t, dynamics of shear band development from internal material inhomogeneities under

plati train compressive loading is used as a model problem for investigating shear band prop-

agation in a rate sensitive solid under plane strain conditions. The material is characterized as
an elastic-viscoplastic von Mises solid. In order to simulate the phenomenon of thermal soften-

ing due to adiabatic heating, the material is taken to be strain softening. Although attention

is focussed on circumstances where such softening is responsible for shear band development, it

is important to emphasize that for more general constitutive descriptions of plastic flow, strain
softening is not necessary to precipitate a shear band localization, Rudnicki and Rice (1975),

Rice (1977). Due to the viscoplastic formulation wave speeds remain real even in the softening

regime; in fact, regardless of the plastic pre-strain, wave speeds are set by the elastic moduli.

Furthermore, as a consequence, the pathological mesh size effects encountered in localization

analyses for rate independent solids are eliminated, Needleman (1987).

2. Problem Formulation

The analysis is based on a convected coordinate Lagrangian formulation of the field equations

with the initial unstressed state taken as reference. All field quantities are considered to be

functions of convected coordinates, yi which serve as particle labels, and time t. The position, %
relative to a fixed Cartesian frame, of a material point in the initial configuration is denoted

by x. In the current configuration the material point initially at x is at R. The displacement

vector u and the deformation gradient F are defined by

u R F ( 2.1).k-

Ox

Base vectors in the reference configui ration (, barredl) and in lit, (urrent (onlfiguration (hatred)

are given bY .)

g'-T~ d (2.2)

.V,
.1-
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g gJg3 , = (2.3)

where g 'J and j'j are, respectively, the inverses of the metric tensors gij = gi "gj and ij = g _

The momentum balance can be expressed either in terms of the symmetric Cauchy stress tensor

o or the nonsymmetric nominal stress tensor s. These are related to the force, df, transmitted

across a material element by %

df =P.adS =v.sdS (2.4) %

0

Here, dS and f, give the area and orientation, in the current configuration, of a material element

that had area dS and orientation v in the reference configuration and the stress measures s and

a are related by

s F- 1 .1 r = det(F)a (2.5) %-- --P

The dynamic principle of virtual work is written as

____ I.',' * --.- :-

02. IL .sj'bFij dV = Tzui dS - p 6uidV (2.6)
IV5IV ) I

where V, S and p are the volume, surface and mass density, respectively, of the body in the

reference configuration and

Ti = s~ivj (2.7) "{
T'0__]

The specific problem considered is plane strain compression of an initially square block of

dimension 2h 0 x 2ho. The yl _ y2 plane is taken to be the plane of deformation and the

compression axis is aligned with the y2 direction. The origin of the coordinate system is placed

at the center of the block and identical (lisplacement histories are imposed at y2 = + 0 and 0

the sides y' = ±h0 remain traction free. Attention is restricted to deformations that remin , -

synmetric about both y' 0 and y 2  0. Tle boundarv ('o1llilions for tile (juad rant a nalyzed

ininericallv are

I• _

N-
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I% %.

u.=0 =0 at y =0 (2.9) %

i =0 ],2 =0 at y' =ho (2.10)

T 1 = 0 it 2 =(t) at y 2 =ho (2.11)

where (') is a( )/Ot.

The function U(t) in (2.10) is taken as

(t) = V (/t), for t < t,; (2.12)
V, for t > t(

with V being a prescribed velocity.

The material is characterized as an elastic-viscoplastic von Mises solid. The total rate of .

deformation, D, is written as the sum of an elastic part, D', and a plastic part D P , with

De 1 + V u .. '-
= - f - (f: I)I (2.13)E E

US
D P  r C =p(2.14)

2&S

where f is the Jaumann rate of Kirclihhoff stress, I is the identity tensor, f I is the trace of -, f.. "'S

C is the effective plastic strain rate, E is Young's modulus, v is Poisson's ratio and

1r- I(r:I)l - 2 :, (2.15)

3 2 5--

Conbining (2.13) and (2.14) and iiverting to express - in terms of D gives a relation of tlie

form

-= L:D-P P =L:p =p:L (2. 1(i)

%wIhere L is f lie telisor of" ('lasi ic i( liii ai wl hI (Ie d (lic l)rm(li(t L p (hInot(,s ltIp]).,

41-- -4' _- FF
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On the current base vectors (2.16) has the form

L ilkEk Pij (2.17)

The Lagrangian strain rate appears in (2.17) via the identity Eij gi .D .g and its components

on the reference base vectors are given by

2Ff + F.' Pk.,) (2.18)

~. ",-'

The constitutive relation (2.17) can be expressed in terms of the convected derivative of Kirch-

hoff stress on the current base vectors, i.e. i- = *i. gj, as

=~ - -'kt1k - (
%

where .

Cijkl - 1j [likr 7 ji 7 k + jk7 l + j + plrik (2.20) %

The uniaxial response is represented by the power law rate relation

%10 '4

= io[/g~i) / ' (2.21)

The hardness function y( ), with c = f (dt, represents the effective stress versus effective strain

response in a tensile test carried out at a strain-rate such that c = i0. In (2.21). ao is a reference

strength and m > 0 is the strain rate hardening exponent.

On quite general grounds, for metals ilindergoi ug plastic deformation dlie to dislocation motion.

the plastic strain rate is apl)ropriately taken as a finction of tlie stress and the cirrent state."

Rice (1970). The relation (2.21) employs the idealization of a single pa rainet er claracteriza t io..

of the current state. A fundamental (listinction bet ween rate de)en(de nt material hei vior as

elt)odied in (2.21) and rate indepen(lent behavior is tlhat the h)lastic strain rate in (2.21) does
not depend on increm ental (Jilantities. For structural ittet als at, rOlil temperat re, values of %-

in the range 0.f002 to 0.02 are representat ive: se. for exa ii ple. (lat a collec(e v ( iosli ( 1!)77).

'ven though there is no explicit. plastic yielding con(ition in tie coistitl lie formilatiou. for
this range of in, there is an apl))ar(,nt rate de'lend(eit yiehl streinthi and an "miloadino"-like 5

re'sl)onse oil sir;,ii ratl roversal, e ",.. Nodleian (IP,>7).

,%.,

. . . . . . . . . ~ t-,",.-*
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The power law description of material strain rate sensitivity in (2.21) is not a. fundamental %

physical relation, but it can provide a reasonable representation of the strain rate sensitivity %

of common structural metals over several decades of strain rate. The physical background for

power law viscoplasticity, and its limitations, are discussed by Asaro (1983) and hlop), Clifton

and Shawki (1985).

The hardness function g(c) is taken to have the form 

= a(1 + elO)N (2.22)

1 + ((/E) 2

For el - oc, (2.22) reduces to a power law hardening relation. As q decreases, g(c) exhibits

strain softening at decreasing values of c. Figure 1 shows curves of g(e) versus 4 with N = 0.1 NAP

and t 0 = 0.00218 and for E1 = 104 x to, 200 x to and 100 x EO. The finite element calculations

to be discussed subsequently are based on the three hardness functions shown in Fig. 1.

Since the plastic strain rate in (2.21) depends on the current state and not on incremental ...

quantities, the propagation of disturbances depends on the elastic stiffnesses, which is consis-

tent with observation, see e.g. Clifton (1972). In particular. the speed at which incremental

disturbances propagate does not depend explicitly on whether the material is hardening or :.-..-

softening. Over the range of stress and deformation states arising in the numerical examples a.-

here, the maximum 11 r 11< 0.01 x E and maximum principal logarithmic strains less than 0.5,

wave speeds remain nearly constant at their linear elastic values, even in tile softening regime.

3. Numerical Method M

The discretization is carried out in the reference configuration with the convected coordinates.,

y', being the independent variables. Linear displacement triangular elements are used arranged.

in a quadrilateral pattern consisting of "crossed" triangles. The "crossed" trialgular quadrilat-

erals are used both because of their ability to represent incompressil)ev deforinations withot t
mesh locking, Nagtegaal et al. (1971). and because of their abilitv to repro(luce localized defor-

mation niodes that are obli Iue to t lie quad ri li tera I mesh . 'Fwr, a rd ,t al. ( 1!)S 1), Need let i an-.

and Tvergaard (1983). A lumped nass matrix is used instead of the consistent mass matrix

in (3.6), since this has been found preferable for explicit time intgration procedures. froi tie"
p~oint of view of accuracy as well as coinput ational ,lhiiicy.'v l\rieg anid hKev (1.973). WVhen th In' ' "

finite element approximations of tie displaemnent coimpomnts n'; are sul)stittiled into (2.i).an(I the integrations arc carried out. the( discret iz,,d (jl t ot is of l lt l aro o til ainid W..'.

.,. - °

..:..I.
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0

% wlere M is a mass matrix, U is a nodal displacement vector and R is a nodal force vector. -

An initial iniiogeneity is specified that corresp~ondls to a local reduction in flow strength (Tom -

In (2. 11) of thle form

Oro(Y Iy) Oro o aex p{[(YI - 1)2 + (1,2 -Y2 )2]/1.2}1(3

where yo, and y2 specify the location of the inhomiogeneity and ro and a give the inliomogeneity

P!, size and magnitude. respectively.

At t 0. the rectangular block under consideration is taken to be stress free and motionless. The

eqluations of motion (3.1 ) are integrated using a central difference scheme that can be regardled

as a mremiber of the Newvmark family of time stepping algorithims, 1uIuies and lBelytschiko (1983).
At each time increment the stress state is updated using the rate tangent method of Peirce et

usedin eedlman(1987) and Tvergaard and Needlemnan (1987). For the present problemn, the

basic equations take the form

-- + UTT + At, (AI)2a- (3.3)l
'-111- n 1LflT2 at

O1+ -'R 1 +1  (3.1)

V~~ V~+ 2 1 [2Y! + (3.5)l

H ere, V is thle vector of nodal displaceiiien t a nil veloci ty. M - (leliot es thle inverse of the( iiiass

matrix and the subscripts it and it + I refer to quantities evaluated at 171 Mid~ t, .I respect ivv.

* ~At vach i tegrat ion poinut. thle st ress tenisor is u pdlat ed via

1,111. '5 ia( ( iulU~ei.. ~ r c(itiinileI feiiu (2.11)) aii(l (2.20) Nit1 L d ( 11 ipilli1; S

SI
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%-I

L tan
= L  +h ( L : p ) 9 ( L : p )  

Pa ~ 37

where A 0 B denotes the tensor product AijB k' and

1 'o~ag(o)
' /  = (OAt)h- (3.8)

h L: p - (3.9) i--'.

In the second of (3.8), 0 is a parameter of the integration scheme that is taken to be unity in %

the numerical calculations here.

The effective plastic strain is updated using ,+ = n + Atf with !%

AC,?%
C__= +_ _ (L: p) D (3.10) p - A
A--t 1 +t (1 + )-- - h".'''

+%

The constitutive updating calculations use (Un+, - Un)/At to represent the displacement rate

components in (2.18).

In the limit o - 'x, (3.7) through (3.10) reduce to their rate independent counterparts. On

the other hand. for = 0, which results from setting 0 0 in the second of (3.8), the Euler

integration scheme is recovered. •

4. Results

In the calculations here, all material parameters are kept fixed except for , which governs the

rate of softening. Although the aim here is not to model any particular naterial, the fixed

property values are taken to be representative of structural steels: E 211 GPa, ( 0 = .16.

NIPa, (0 = ao/E = 0.00218, i = 0.3, N = 0.1, m= 0.01 and (0 0.002 sec - 1 . The

initial inhomogeneity in (3.2) is specified by y' = y = 0. a = 0.2 and r0  0.1 inin. With.

p 7800 kg/in 3 7.8 x 10-aM la/( In/sec) 2 , the elastic wave speeds are

x I /2t,(;(1 -( )/( - 2v) "-%s-.

=3.23 x 10)111 /., c (' 1 6.03 X 0 iln/.,,'l" .l )

V '-. _'.

wi,r, 2(; 1 -./( 1 ,+ )

."5 %li
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Three values of the imposed velocity are considered; V1" = -3 rn/sec, V' = -10 m/sec and

V, = -30 rn/sec, which correspond to I V1 I /co = 0.929 x 10- 3, 1 1I 1 /co = 3.10 x 10- ' and

I V I /co = 9.29 x 10- 3 , respectively. In each case the rise time. tl in (2.12), is 0.1 x 10-  -6
sec. Also, the block size h0 is taken to be 1 mm, so that the nominal strain rates for the three %

imposed velocities are 3 x 10, 10' and 3 x 10', respectively. .. %

A uniform finite element mesh is used. with the elements arranged so that at a strain a little

larger than when the peak hardness is attained, the element diagonals are oriented for -15 shear

bands. For the majority of calculations, with cl = 200 x 0, a 26 x 20 element mesh is used (the

deformed mesh is shown subsequently in Fig. 8), while with ( = 100 x (0 a 24 x 20 mesh is %
used. In each case the 20 element division is in the y2 direction. A variable time step method (

is used with one criterion limiting the time step being the requirement that the time step be no

greater than the time for a wave travelling at velocity c1 to traverse half the smallest element
side. With the ratio of wave speeds in (4.1), this is about 91A of the time for a wave travelling .. 1

at the shear wave speed co to traverse the smallest element side. Other time step limits are set

by stability requirements for the rate tangent modulus integration of tile constitutive relations. .

However, in the problems considered here these are rarely operative and the time step limits

set by stability requirements for the explicit integration of tile equations of motion determine

the maximum permissible time step.

Figure 2 shows curves of average stress versus end displacement, with an imposed velocity of 10
in/sec, for each of the hardening relations in Fig. 1. The average stress (per unit out-of-plane %

thickness) is given by

where h is tIhe current width, at y 2 =ho and the e1(d displacement is 1', = fo I dt. %

The initial response is idelntical for tle t 1r4.e lihardoiiig r.ltions. Once extensive plastic defor-

I tionl occur", dv am ii (" 'el(t." ;1t,(, ralpidllv ( nllpod. lor thi) softi(' 1iii solids there is aIni abrupt
sti.'.S d,. .

stro". dro )p thlat iS', ;I,('(Nild w ih Iw,,Ar k ,i fttmtllii. %

%

,ef(,ro , . -h,,ai (d,,,t , l ain (evol(,)I (' , 0t l o 1 d- .4.-'..
,,ni) a ~ ~ ] Illi I> Ihm t _ J. ' T% I.,!1, oIt , lI ( L 'Uilti'lll 1 tlh ililhoill () eo l~il id ,,volvo ;1s
tim itr- ik, , m , t , I V i" , t,, !t,, ,. .i , 0 11,.:. ( o,, a I ,' cm ill ( .1-w'ro es thO >lT VCIIIVI. -

f io,, I5 V ' th , T If ,it 1- I lltt - s, ), ! , , ... l,' ,J:J J I Il)M ) I 1, l()I.'Ithe . () .()I ll m irl.'% " "

I ,, ll .. .. !,'i :_' ,,lit i, 1i:' 1.-:I..: . '! l, l*,ll 111111.111% f,,ll,,wm 1h' 1);l te 11 ..h ~l ill Fl'.g 3.

.\ -41,11 b.tt li( ,14 .01 ..1 Ill- !..1 :, ,! ,'l~ t~tI' tl 'Wlell ')Ild a1 Ilhe attl inlon! )f.^ ,% ,

&%..'. .'..'% %.''.. %-' " ". . . .'.. . % % .. '. .'. _' '>. .% .. "',".",,,, "-,,-',.....' ".' .,"- .,"'. . ,,'. '" '.
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the maximum hardness and thle 450 shear band orientation is thle most critical one. Eventuiallv.

for a strain level beyond the peak in Fig. 1, spreading in the direction perpen dicular to the

initial propagation direction slows (town and further straining occurs inl a hand. The ul1timlate

course of events is essentially determined at the stage of loading shown in Fig. .41; continuially

increasing strain in a shear band with very little change in strain outside the band. Bet ween

Figs. 4a and 4b the speeds of propagation of the 0.07 and 0.08 contours are 2200 in/sec and

1600 ii/sec, respectively. Between Figs. 4b and 4c. the propagation speed of the 0.09 contour

along the band is 2900 rn/sec. which is approaching the shear wave speed. For the case in Fig.

2 with El 200 x co, plastic strain contour speeds at a similar stage of band development are

somewhat slower, around 1300 rn/sec.

Figure 5 showvs the effect of p~rescribed velocity oii the average stress versuis end displacemnent
response for a material characterized by the hardness function with (I - 200 x co. With

V1=-3 in/sec. corresponding to an average strain rate of 3000/sec. the response is essentiaUv

quasi-static as soon as there is any significant plasticity. When the velocity is increased to

-10 m/sec, (this is the same case as B in Fig. 2) dynamic effects persist much longer, but

have been essentially damped out by the time localization initiates. At V1 = -30 m/sec,

significant inertial effects are evident through localization initiation. If the imposed velocity

wvere increased much beyond -30 ini/sec. the average stress would change sign at the first

trough. indicating a separation event, subsequent to which imposition of (2.11) would not be

the physically appropriate boundary condition.

Quasi-static calculations were carried out using the same material properties and using anl

:-'5..

idlentical finite element mesh for I lie cases in Fig. 5 with 1~ -3 in/sec anid I = -30
i/sec. With h= -3 Iin/sec. except for the lack of "wiggles," the quasi-statically computed.- .. .

stress strain curve coincides eith that in Fig. 5 upin to the drop (ci to shear localization.

The quasi-static calculation gives localization at a strain 0.0006 smaller than. given by tiae

dynamic calculation in Fig. 5, but other than this small shift, the quasi-static post-localization

response is indistinguishable from the dynamic response shown. The case analyzed here is

one for which there are equilibriui solutions with increasing end displacement d rin shiear

band development. Ini some ci=20x sic rin ces see e.g. sveigaard et al. (1f b d) threlima e no•

s(mIilibriuiii so)litwios having increasing. e'd .ispacelliet as localizatioln proce'eds and ill Sii

cases dvinamiic effects may he significant, for localization developineit eveii at very low impi1 osed

veloci ties.

Il the 5uasi-static effect of pr scribed velocita oal ysiave e n/sec. lie order of ilacint fiie

V1 = -3 I/seecorrspon i toean avera elcirt of -300/etersos(i setal *"

increase inl tie ioiisi al aph lieds slas ;iit. om. x 101 :iev x loc gives ali i icrease ill St les

level of aomi, 2 ( 1 0ts i 1.02), bilt shir localizatim as sialled by tlie drop in li overall

strese-strail crve. occisll at lleoty tie ie dl ciainicellenitiias It Iit = -3 ll/e,-c.

s'llifi havior is expectd. sarice vies th loi ecti of iate Solatilvlv on. plf tic ilist ahloity ee.V
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in rigid-plastic power law rate hardening materials, e.g. lutchinson and Neale (1977), show P%',

that while the instability strain depends sensitively oil the strain rate hardening exponent, it

is independent of the rate Hence, the delay in shear band initiation with increasing imposed

velocity evident in Fig. 5 is a consequence of material inertia and not of material strain rate "

sensitivity.

There is a significant distinction between the dynamic and quasi-static formulations regarding

characteristic time scales. In the quasi-static formulation there is a single material time scale,

1/i0, while in the dynamic formulation there are two; 1/to and a problem dependent time scale

that is a wave speed divided by a characteristic length, e.g. co/ho. The rate of strain develop-
ment scales with V/loho in the quasi-static formulation, but not in the dynamic analyses, due

to inertial effects. 0

Figures 6 and 7 show the course of shear band development for V, = -3 In/sec and V1 = -30

m/sec, respectively. There is a clear effect of imposed velocity on the speed of propagation
of the strain contours. For example, in Fig. 6 the 0.15 contour propagates along the band

at a speed between 590 m/sec and 680 m/sec, while in Fig. 7 the corresponding propagation

speed is 2500 m/sec. The qualitative features of shear band development do not depend on the

imposed rate, but it is evident in Figs. 6 and 7, as well as in Fig. 5, that there is a delay in

shear band initiation with increasing rate.

Figure 8 shows deformed finite element meshes at two stages of deformation. Fig. 8a corre- ,- -

sponds to the stage of deformation in Fig. 7c. Even though the shear band has already formed,

this is difficult to ascertain from the deforlned mesh. At the stage of deformation in Fig. 8b, the

mesh is incapable of resolving the sharp strain gradients across the band and the discreteness

of the mesh significantly affects the computed response. This figure is included to illustrate the

ability of the mesh to develop a narrow shear band, which confirms, for example, that the initial

thickness of the band evident in Figs. 3, 4, 6 and 7 is an actual reflection of the inhoniogeneity

size and is not a mesh artifact.

In order to explore the effect of ineshi on the computed response, two additional meshes were .

used for the case with lV = -10 In/sec and ( = 100 x (o. In one case the mesh aspect rat io was ..
varied. while in the other case tile aspect ratio was kept fixed, but a finer mesh was used. The .
computed average stress versus etad-displaceent curves are shown in Fig. 9. I the 29 x 20

mesh tilie baid is spread across two rows of quadlrilaterals. This gives rise to a significant mesh

induced (lelav in the onset of shear alld fornhatioll evell thfoughi this llesh has llOr( eloeivietnlu o

I hin the reference inesh. IcreasinI- lhe nuihebor of elellells, but keeping a fixed aspect 'atio

leads to; a slightlyV earlier oliset of Iflc lizat niol. which is ill paIlt d e to ; bet tl 're'sollit ion of t Ite

strainl coicel trati ol; at tHie illhl illo"leity. hl , iln r tlefl- call ;Ilo rsolv, larger .,,radjeilts ;1"1(f

So ,Ihlibits a gl te er stless drop e,,lh , uiiIh ritd ce' d dlitlo1tlin oc'curs. Tile post-localiatitzll

.%.
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rise in the stress versus end-displacement curve for the 29 x 20 mesh is a consequeUce of mesh 7
induced stiffening when gradients in the band become very large. A similar stiffening occurs

for the other two meshes in Fig. 9, but occurs later in the deformation history with improved

resolution of the band.

The speed of propagation of the constant plastic strain contours does not differ much between

these three meshes. For the 24 x 20 mesh in Fig. 4, the propagation speed along the band of

the 0.08 plastic strain contour is 1600 m/sec. At a similar stage of deformation with the 36 x 30

mesh the 0.08 contour is propagating at 1900 m/sec and at 1600 m/sec with 29 x 20 mesh. The

difference in propagation speed found for the 36 x 30 mesh is attributable more to variations "p-

in speed as the contour propagates along the band than to the increased resolution; with the

24 x 20 mesh in Fig. 4, a propagation speed of 2200 in/sec is found for the 0.07 contour.

5. Discussion

Key features of the phenomenology of shear band development under dynamic loading condi-

tions are the same as under quasi-static loading conditions. Shear bands develop at 450 from

the compression axis, as expected based on a quasi-static "material instability" analysis. Under

quasi-static loading conditions, for the viscoplastic solids considered here, the strain at which

shear bands initiate is an outcome of the competition between the destabilizing influence of

the inhomogeneity and the stabilizing effect of material strain rate sensitivity. Under dynamic

loading conditions, a delay in shear band development arises due to inertial effects. Also, since

dynamic effects induce non-honmogeneous deformations, an inhomogeneity is not required to ini-

tiate localization but, in the circumstances analyzed here, the inhomogeneity plays the major

role in triggering the onset of shear localization. ."r

The key to the development of shear bands in the calculations here is the speed of propagation

of plastic strain contours in the direction normal to the eventual band. This is consistent %

with what would be expected based on a rate independent shear band bifurcation analysis,

where, at bifurcation, the propagation velocity of shear waves normal to the band vanishes.

The vanishing of this wave speed is also the shear band initiation criterion that emerges from -

the perturbation analysis of Freund, WVu and Toulios ( 19S5). The process of band formatioi, a %

cascade of finiger-like plastic straiin conitours emanating fron the inihoniogeneity and from a small

region where the band intersects the impacted suirface, in a con ti nually shiarpeiiiing banld, is onle

that makes defining a band propagation speed sonmwhat arbitrary. Althouigh there is iio shi i"le

event that can be identified witi shear baiid initiation, there is a. reasonal)lv well id(etifiable %

strain in Figs. .1, ti ankd 7 above which all firt her straining occurs within a narrowing haind. A

band propagatioi spo,,d cai 1) ideit ifi,( will I the )rol)agatioii speed of some parlicular st raii

comitolir along tHie haiid. but this I) 1,, i loit a.isociate(d with soiiie sharp gra(lieiit prol)agati .lug

through the material.

12
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The main strain gradients occur across the band and large strain gradients dlo not develop along

most of the band; substantial strain gradients in the band direction are confined to very near

the inhoniogeneity and to a small region where the band intersects the impacted surface. This -s
can be seen in Figs. 4, 6, and 7; for example, even in Fig. 7c, the element in tlie center of

the inhoniogeneity has all effective plastic strain of 0.33. while in the adjacent element ili the .

shear band the effective plastic strain value is 0.25 (clearly, the mesh used here (foes not resolve

the details of field distributions around the inhomogeneity). The continually steepening strain

gradient across the band is much like that in one dimensional simple 6hear calculations, e.g.

Wada et al. (1978), Wu and Freund (1984), Shawki, Clifton and Majda (1987) and Needleman

(1987). Such narrowing shear bands are observed, Marchand and Duffyv (1987). In actuality, of

course, under the conditions of temperature, strain and strain rate that prevail in a narrow shear

band. material behavior is not described by the sort of simple phenomneological constitutive

relation used in this investigation. Also, some material dependent length scale ultimately sets

a minimum band thickness.

The situation analyzed in this investigation is one where, just prior to shear band formation,

the stress and deformation fields are rather uniform. When shear band development takes place

from a more non-uniform deformation state, the gradients in the background field retard shear

band growth, as is shown in quasi-static analyses, Tvergaard et al. (1981) and Triantafyllidis 6

et al. (1982). Under dynamic loading conditions, when there are strong unfavorable gradients. -

shear bands are likely to propagate in a more crack-like fashion than in the cases analyzed here. 0

A strain softening constitutive relation has been used as a simple model for a thermal softening
solid. For an actual thermal softening solid, since the softening bchavior is governed by the

current rate of llastic dissipation, increased softening would accompany an increase in imposed

strain rate and this would tend to counteract the delay in localization due to inertial effects. -.1,-
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Figure Captions J1

Figure 1 Curves of hardness g versus effective plastic strain, C, from (2.22) with N 0.1, -.

(0 = 0.00218 and (A) (I = 10' x (o, (B) ' = 200 x (o and ('') (I = 100 x . v.

Figure 2 Average stress versus end displacenent curves with a prescribed velocity of V,1 = -10

rn/sec. The fixed material properties and initial inliornogeiieity are specified inl the

text and curves (A), (B) and (C) correspond to the three hardness functions shown in

Fig. 1.
-, *J

.1'*

Figure 3 ('ontotnrs of constant effective plastic strain, (, for a hardeni g solid. , l=  a(0. The

fixed material properties and initial inlhomogeneitv are specified in the text and ith lie

prescribed end velocity is I = -10 in/sec; (a) I = 6.4 x 10" sec (b) t = 6.71 x 10" •

sec (c) I = 6.9S X 10" sec (d) t = 7.25 x 10" sec.

Figure 4 Contours of constant effective plastic strain, c, for a softening solid, (I = 100 x (o. The

fixed material properties and initial inhomogeneity are specified in the text and the

p)rescribed end velocity is V1  -10 m/sec; (a) t .1.75 x 10" sec (b) t = 5.02 x 10- 6 -

sec (c) t = 5.28 x 10 3 sec.

Figure 5 Average stress versus end displacenent curves for a softening solid. = 200 x (o with
(A.) I = -30 i/see (1B) V] -10 ni/see and ((') V = -3 ml/sec.

ligure (6 (' onitours of (oist ait effective plastic straiii. (. for a softening solid, i 200 x(. ThnI.e

fixed material properties and iiiitial ilhomiogeneitv are specified ill tile text aiid t lie

prescribed end velocity is I'l = -3 mn/see: (a) t = 28.(7 x 10-" sec (b) I = 29.1 x 10-"
.sc (c) I = 29.71 x 10" see. 0

"i ,ure 7 (oiitoii rs of constant effective plastic strain, (, for a softeniiin solid fI = 200 x ((. 1le,,
fixed material properties andl initial inhomoeueity are specified iii the text aid tIe
prescribed end velocity is I' -30 in/see: (a) t = 3.2.1 x 10' set (b) t 3.50 x 10'
sec (c) I = 3.76 X 10 ' seC.

.ligure l)8eformed finite vlement mie e.,,s for a .sofltiiiii- sflid. i - 2)) x ,. l Iid quidrl lt'i.

-. (olsists of I lmr "c rossed- t rii ,iulai r ele (,i .T le fixed IIatelit l lll:,ifit) r rlW i 1t il '

inhomio"e i (t y ar'e specifie ill t l I'X i ll tl1' proesc.iild ('m vhwilY V i. 1*1 -- - )

m/see: (a) I = 3.76 x 10-" wc () f 1.7!) x 10-" s'e.

lipim re !) S ress versu, iis l dis m elleil t1'()Ir a s (ltvit ,i - -, i t. (I - 2))) x in. \ilh ai p ,, ilI..
vvlocity Vn - 10 11/',ec ltR thrc 'i - v, (.A '21) x. 20) B) '2 1 20) ;tmd, 36 X' 1 :J()..-' -
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