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1. Introduction

Large inelastic deformations are frequently accompanied by the formation of intense bands of
localized shearing. Often the large localized strains in a shear band precipitate a shear fracture.
In other circumstances shear bands do not lead to fracture but localized shearing becomes an
important mechanism for subsequent plastic deformation. Mence shear bands have a dual

significance; as a precursor to fracture and as a mechanism of large strain plastic response.

When the solid is considered to be deforming quasi-statically and isothermally, shear band lo-
calizations can be analyzed as a “material instability,” within a framework due to Hadamard
(1903), Thomas (1961}, Hill (1962), Mandel (1966) and Rice (1977). Within this framework, a
material element is considered subject to all around displacement boundary conditions consis-
tent with homogeneous deformations; different homogeneous deformation states prevail outside
and inside the band and the analysis determines the jumps in field quantities across the band
interface. For rate independent solids, the onset of a shear band localizaiion can occur as a
bifurcation corresponding to a loss of ellipticity of the rate equilibrium equations, Hill (1962),
Rice (1977). For rate sensitive solids a bifurcation is effectively excluded and the governing
rate equations remain elliptic, although in the presence of initial band type imperfections shear
band localizations do emerge, e.g. Pan et al. (1983).

The analysis of shear band development in non-homogeneously deforming solids requires a
full boundary value problem solution. Such solutions have been obtained for the quasi-static
development of shear bands, sce e.g. Tvergaard et al. (1981), Triantafyvllidis et al. (1982),
LeMonds and Needleman (1986) and the review of Needleman and Tvergaard (1983), and have
shown that shear bands do initiate with the orientation given by the “material instability”

analysis. Shear band propagation, however, is greatly affected by the inhomogenecity of the
surrounding fields.

The physical mechanisms responsible for triggering shear bands can vary widely. At low strain
rates, a key feature of plastic material response for localization is the yield surface vertex
structure implied by the discrete nature of crystallographic slip. The significance of a vertex
lies in the reduced stiffness to a change in loading path which permits shear bands to emerge
in strain hardening materials, sce e.g. Rice (1977). At higher strain rates, thermal softening
appears to play a major role in shear band formation, as originally suggested by Zener and
Holloman (1944). An overview of conditions for high rate shear band formation in simple shear

and correlation with experiments is given by Clifton et al. (198:4).

Profusions of internal shear bands are sometimes observed, e.g. Anand and Spitzig (1930), and
these bands appear to originate at internal inhomogencities. Aunalyses of shear localization from
internal strain concentrators have heen carried out by Abevaratne and TriantafvHidis (1981),

Tvergaard (1982, 1987), Frennd, Wu and Toulios (1985) and LeMonds and Needleman (1986).
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Abevaratne and Triantafyllidis (1981) investigated shear band initiation in quasi-statically de-
forming hypo-clastic and hyper-elastic solids in plane strain. LeMonds and Needleman (1986)
also considered plane strain quasi-static deformations but analyzed the course of shear band
development in elastic-viscoplastic solids, accounting for strain hardening, rate dependence,
thermal softening and heat conduction. Tvergaard (1982, 1987) has studied the quasi-static
response of porous plastic solids having two size scales of void nucleating particles and where
early nucleation at relatively large particles triggers localization into a void sheet. In Freund.
Wu and Toulios (1985) the dynamics of shear band propagation was analyzed for a nonlinear

elastic solid in anti-plane strain.

Here, t*.» dynamics of shear band development from internal material inhomogeneities under
plan .rain compressive loading is used as a model problem for investigating shear band prop-
agation in a raie sensitive solid under plane strain conditions. The material is characterized as
an elastic-viscoplastic von Mises solid. In order to simulate the phenomenon of thermal soften-
ing due to adiabatic heating, the material is taken to be strain softening. Although attention
is focussed on circumstances where such softening is responsible for shear band development, it
is important to emphasize that for more general constitutive descriptions of plastic flow, strain
softening is not necessary to precipitate a shear band localization, Rudnicki and Rice (1975),
Rice (1977). Due to the viscoplastic formulation wave speeds remain real even in the softening
regime; in fact, regardless of the plastic pre-strain, wave speeds are set by the elastic moduli.
Furthermore, as a consequence, the pathological mesh size effects encountered in localization

analyses for rate independent solids are eliminated, Needleman (1987).

2. Problem Formulation

The analysis is based on a convected coordinate Lagrangian formulation of the field equations
with the initial unstressed state taken as reference. All field quantities are considered to be
functions of convected coordinates, y*, which serve as particle labels, and time £. The position,
relative to a fixed Cartesian frame, of a material point in the initial configuration is denoted
by x. In the current configuration the material point initially at x is at X. The displacement

vector u and the deformation gradient F are defined by

Ix
F=ox

Base vectors in the reference configuration (unbarred) and in the current configuration (barred)

are given by

dx _ Jx N
g, o= — B=— (2.2)
dy iyt
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g =g'g;, & =i8; (2.3) Y

where g*/ and §'/ are, respectively, the inverses of the metric tensors ¢;; = g;-g; and §;; = g:'8;- »

-}

s
The momentum balance can be expressed either in terms of the symmetric Cauchy stress tensor ‘ ﬁ

5

o or the nonsymmetric nominal stress tensor s. These are related to the force, df, transmitted

'y

across a material element by

Py
20

P 4
By
o

df =v-0dS =v-sdS (2.4)

2 g )
”
Wy

o

Here, dS and b give the area and orientation. in the current configuration, of a material element

5

that had area d5 and orientation v in the reference configuration and the stress measures s and

&
I

o are related by

75
&
%

i

s=F1.r r=det(F)o (2.5)
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The dynamic principle of virtual work is written as

’l l. ‘
“« % R
:‘S/.‘h 5

/'Sji(SFij(“/:/Ti&uids- P&#éuidv (2.6)
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where 17, § and p are the volume, surface and mass density, respectively, of the body in the &

reference configuration and O

2
3
’

®
s

T

L

T = s7'y; (2.7)

The specific problem considered is plane strain compression of an initially square block of
dimension 2hg x 2hg. The y' — y* plane is taken to be the plane of deformation and the
compression axis is aligned with the y* direction. The origin of the coordinate system is placed
at the center of the block and identical displacement histories are imposed at y? = £hg and
the sides y' = +ho remain traction free. Attention is restricted to deformations that remain
svmmetric about both y' = 0 and y° = 0. The boundary conditions for the quadrant analyzed

numerically are
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=0 T'=0 at y*=0 (2.9)
Ty=0 T*=0. at y'=he (2.10)
Tv=0 @=U@) at y*=ho (2.11)

where (") is 9( )/0t.

The function U(t) in (2.10) is taken as

vy d Vilt/t), fort < ty; .
U(t) - {Vl, for t > tl (2.12)

with V] being a prescribed velocity.

The material is characterized as an elastic-viscoplastic von Mises solid. The total rate of

deformation, D, is written as the sum of an elastic part, D¢, and a plastic part DP, with

1
D¢ = z"f— %(f ) (2.13)
DP = %f’ = ip (2.14)

where T is the Jaumann rate of Kirchhoff stress, I is the identity tensor, ¥ : I is the trace of 7,

€ is the effective plastic strain rate, E is Young’s modulus, v is Poisson’s ratio and

r’:r—%(r:I)I =11 (2.15)

Combining (2.13) and (2.14) and inverting to express ¥ in terms of D gives a relation of the
form

T=L:D-P P=«@L:p=¢p:L (2.16)

where L is the tensor of elastic moduli and the dvadie product L : p denotes L%,
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On the current base vectors (2.16) has the form

#1 = [Ukp, _ pii (2.17)

The Lagrangian strain rate appears in (2.17) via the identity E:,-J- = g;-D-g; and its components

on the reference base vectors are given by

. 1 - .
Eij =3 (F.'Eij + F.,;'Fki) (2.18)

The constitutive relation (2.17) can be expressed in terms of the convected derivative of Kirch-

hoff stress cn the current base vectors, i.e. 79 = g'-7.g’, as

9 = CUME, - PY (2.19)

where

. o 1 L P L o
Cl]kl - Ll_]‘\l _ i{gzkrﬂ +g11,r]k + g_]k,rtl +g]lT1k (220)

The uniaxial response is represented by the power law rate relation

= éofa/g(e)/™ (2.21)

The hardness function ¢(€), with € = [ €dt, represents the effective stress versus effective strain
response in a tensile test carried out at a strain-rate such that € = ¢o. In (2.21). 0q is a reference

strength and m > 0 is the strain rate Lhardening exponent.

On quite general grounds, for metals undergoing plastic deformation due to dislocation motion.
the plastic strain rate is appropriately taken as a function of the stress and the current state.
Rice (1970). The relation (2.21) employs the idealization of a single parameter characterization
of the current state. A fundamental distinction between rate dependent material behavior as
embodied in (2.21) and rate independent beliavior is that the plastic strain rate in (2.21) does
not depend on incremental quantities. For structural metals at room temperature, values of m
in the range 0.002 to 0.02 are representative; see, for example. data collected by Ghosh (1977).
Even though there is no explicit plastic vielding condition in the constitutive formulation. for
this range of m, there is an apparent rate dependent vield strength and an “unloading™ like

response on strain rate reversal, see c.o. Needleman (1987).
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The power law description of material strain rate sensitivity in (2.21) is not a fundamental
physical relation, but it can provide a reasonable representation of the strain rate sensitivity
of common structural metals over several decades of strain rate. The physical background for
power law viscoplasticity, and its limitations, are discussed by Asaro (1983) and Klopp, Clifton
and Shawki (1985).

The hardness function g(é€) is taken to have the form

(1+¢/e)™

O errrE (2.22)

g(€) =

For €, — oo, (2.22) reduces to a power law hardening relation. As ¢; decreases, g(€) exhibits
strain softening at decreasing values of €. Figure 1 shows curves of g(€) versus € with N = 0.1
and ¢ = 0.00218 and for ¢; = 10* X ¢, 200 X ¢p and 100 X ¢;. The finite element calculations
to be discussed subsequently are based on the three hardness functions shown in Fig. 1.

s b
e
L

Since the plastic strain rate in (2.21) depends on the current state and not on incremental

quantities, the propagation of disturbances depends on the elastic stiffnesses, which is consis- "-}'
tent with observation, see e.g. Clifton (1972). In particular, the speed at which incremental ,;',
disturbances propagate does not depend explicitly on whether the material is hardening or DA
softening. Over the range of stress and deformation states arising in the numerical examples :_;:.—
here, the maximum || 7 ||< 0.1 x E and maximum principal logarithmic strains less than 0.5, :f-_',
wave speeds remain nearly constant at their linear elastic values, even in the softening regime. :E::
',:.-::
3. Numerical Method e
L
The discretization is carried out in the reference configuration with the convected coordinates, :“:j\
', being the independent variables. Linear displacement triangular elements are used arranged ';5:\,.
in a quadrilateral pattern consisting of “crossed” triangles. The “crossed™ triangular quadrilat- ;::ﬁ:::
erals are used both because of their ability to represent incompressible deformations without "
mesh locking, Nagtegaal et al. (1971). and because of their ability to reproduce localized defor- E'.:::i
mation modes that are oblique to the quadrilateral mesh. Tvergaard et al. (1981), Needleman :::_'::_
and Tvergaard (1983). A lumped mass matrix is used iustead of the consistent mass matrix :"::::;-::
in (3.6), since this has been found preferable for explicit time integration procedures, from the O
point of view of accuracy as well as computational efficiency, Krieg and Key (1973). When the '__.-g-{
finite element approximations of the displacement components u' are substituted into (2.6), E'\-‘.}:
and the integrations are carried out. the discretized equations of motion are obtained '_'_:'.'_'_-'.'
o

=R (3.1)
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where M is a mass matrix, U is a nodal displacement vector and R is a nodal force vector.

An initial inhomogeneity is specified that corresponds to a lacal reduction in flow strength, og
in (2.11) of the form

2

ooly' y?) = 0o |1 — cexp{{(y' = ¥5)* + (¥ — ¥3)°)/73} (3.2)

where y} and y; specify the location of the inhomogeneity and r¢ and « give the inhomogeneity
size and magnitude. respectively.

Attt = 0. the rectangular block under consideration is taken to be stress {rece and motionless. The
equations of motion (3.1) are integrated using a central difference scheme that can be regarded
as a member of the Newmark family of time stepping algorithms, Hughes and Belytschko (1983).
At each time increment the stress state is updated using the rate tangent method of Peirce et
al. (1984). This combination of a central difference time stepping scheme in conjunction with
the tangent modulus stress updating algorithm is discussed by Moran (1987) and has also been

used in Needleman (1987) and Tvergaard and Needleman (1987). For the present problem, the
basic equations take the form

2OV,
Upp1 = Un + AV, + 1(Az)-L (3.3)
2 ot
av, _ ,
—0r+1 = -M"'R,4 (3.1)
1. oV, 0V
Vg1 = Vo + A0 4 220t 3.5
+1 + 2.lt BT + 0t (3.5)

Here, V is the vector of nodal displacement and velocity, M~ denotes the inverse of the mass

matrix and the subscripts n and n + 1 refer to quantities evaluated at ¢, and t,4. respectively,
At cach integration point, the stress tensor is updated via
=44 _ t ) . .
ERTE S M 7.”_1 + A7 (-‘.f))

The stress vate components. 77 are computed from (2.19) and (2.20) with L and P replaced

by the corresponding rate tangent quantitios,
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£ 1 €1 -
L“*=L- ———(L:p)o(L: pien = L: 3
L 1+£h( p)®(L:p) Ty el P (3.7)
| where A ® B denotes the tensor product A% B* and
> .- - l/m 05 -
€ = éol0/g(e)] = wAt)h()_ar (3.8)

- as\ 1
h=p:L:p—(%><%> (3.9)

In the second of (3.8), 8 is a parameter of the integration scheme that is taken to be unity in

the numerical calculations here.

The effective plastic strain is updated using €,4; = &, + Até with

. AT & £
: e_,t_1+£+(1+£)h(L.p).D (3.10)

™

The constitutive updating calculations use (U, 41 — U, )/At to represent the displacement rate

components in (2.18).

In the limit € — oo, (3.7) through (3.10) reduce to their rate independent counterparts. On
the other hand. for £ = 0, which results from setting § = 0 in the second of (3.8), the Euler

integration scheme is recovered.
s 4. Results

In the calculations here, all material parameters are kept fixed except for ¢; which governs the
rate of softening. Although the aim here is not to model any particular material, the fixed
property values are taken to be representative of structural steels; E = 211 GPa. g = 160
MPa, ¢¢ = do/E = 0.00218, » = 0.3, NV = 0.1, m = 0.0l and é; = 0.002 sec™!. The

initial inhomogeneity in (3.2) is specified by g8 = 3 = 0. @ = 0.2 and ro = 0.1 mm. With

J p = 7800 kg/m* = 7.8 x 1073 MPa/(m/sec)?, the clastic wave speeds are

i 2(1' '.2(1'1—" 1_2’

! o=y = 3.23 x 10 /sec ey =4/ ( v/ ) = 6.03 x 10%m/sec (L)
/ ,

where 200 = /(1 4+ v).
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Three values of the imposed velocity are considered; Vi = —3 m/sec, V) = —10 m/sec and
Vi = =30 m/sec, which correspond to | V) | fco = 0.929 x 1073, | V; | Jeo = 3.10 x 10~ and
| Vil /co = 9.29 x 1073, respectively. In each case the rise time, ¢ in (2.12), is 0.1 x 1078

7

o

we
-
)

.y
2z
o

X
2 A

sec. Also, the block size hg is taken to be | mnm, so that the nominal strain rates for the three
imposed velocities are 3 x 103, 10* and 3 x 10, respectively.

>
A
o

ULy

:

A uniform finite element mesh is used. with the elements arranged so that at a strain a little

z

larger than when the peak hardness is attained. the element diagonals are oriented for 15° shear
bands. For the majority of calculations, with ¢; = 200 X ¢g, a 26 X 20 element mesh is used (the

deformed mesh is shown subsequently in Fig. 8), while with ¢; = 100 x ¢ a 24 x 20 mesh is

'y y
y .'"r"f Py

T . . 9 . . . .
used. In each case the 20 element division is in the y= direction. A variable time step method

is used with one criterion limiting the time step being the requirement that the time step be no
greater than the time for a wave travelling at velocity ¢; to traverse hall the smallest element
side. With the ratio of wave speeds in (4.1), this is about 94% of the time for a wave travelling
at the shear wave speed cg to traverse the smallest element side. Other time step limits are set
by stability requirements for the rate tangent modulus integration of the constitutive relations.
However, in the problems considered here these are rarcly operative and the time step limits
set by stability requirements for the explicit integration of the equations of motion determine
the maximum permissible time step.

Figure 2 shows curves of average stress versus end displacement, with an imposed velocity of 10

m/sec, for cach of the hardening relations in Fig. 1. The average stress (per unit out-of-plane

thickness) is given by

»

h
Tove = 1 O[TI] s dyt
ave — h yr=no Y

0

-
o

R4

.l'ﬂﬂ‘
PN
Yo oy’

~ 5#‘-"

where I is the current width at y? = hg and the end displacement is Uy = fol Vidt.

""}'1_ "
A S P
s t":"'

The initial response is identical for the three hardening relations. Once extensive plastic defor-

ination occnrs, dynamic effects are vapidly damped. Tor the softening solids there is an abrupt

'l'l)
e

stress drap that is associated with shear band formation.,

[
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Belore cousidering ~hear baud propecation. thie dviinies of strain developient for the hard-

/2

enine ~olid i~ shown in Fieo 30 Ston contoms orieinate at the inhomogeneity and evolve as
finger-like contours at 157 tathe connae s on axdss Once agiven contonr crosses the specimen,
1t fans our abont its ninal dirocrioss o faopaeation, In Fieo 30 the propagation speed along

the 4157 direction is S8t <o tor tie ons coptonr and THOO m/see for the 0.09 contour,

Forthe softemee ~olid i Pieo bt o lopoent mitially follows the pattern shown in Fig. 3.

A shiear band Bitircation occni- tor the nnderiving tare independent solid at the attainment of
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the maximum hardness and the 145° shear band orientation is the most critical one. Eventually.

4
»

L

for a strain level beyvond the peak in Fig. 1, spreading in the direction perpendicular to the
initial propagation direction slows down and further straining occurs in a band. The ultimate
course of events is essentially determined at the stage of loading shown in Fig. 4b; continually
increasing strain in a shear band with very little change in strain outside the band. Between
Figs. 4a and 4b the speeds of propagation of the 0.07 and 0.08 contours are 2200 m/sec and

1600 m/sec, respectively. Between Figs. 4b and -c. the propagation speed of the 0.09 contour

along the band is 2900 m/sec, which is approaching tlie shear wave speed. For the case in Fig. NN

2 with €, = 200 X €, plastic strain contour speeds at a similar stage of band development are _\-‘_':‘.\:N

somewhat slower, around 1300 m/sec. _-,:_.
R

Figure 5 shows the effect of prescribed velocity on the average stress versus end displacement
response for a material characterized by the hardness function with ¢, = 200 X ¢;. With
V1 = =3 m/sec, corresponding to an average strain rate of 3000/sec. the response is essentially

quasi-static as soon as there is any significant plasticity. When the velocity is increased to

—10 m/sec, (this is the same case as B in Fig. 2) dynamic effects persist much longer, but
have been essentially damped out by the time localization initiates. At Vi = —30 m/sec,
significant inertial effects are evident through localization initiation. If the imposed velocity
were increased much beyond —30 m/sce, the average stress would change sign at the first
trough. indicating a separation event, subsequent to which imposition of (2.11) would not be

the physically appropriate boundary condition.

.\'
Quasi-static calculations were carried out using the same material properties and using an :::
identical finite element mesh for the cases in Fig. 5 with V7 = =3 m/sec and V| = =30 :::
m/sec. With V; = =3 m/sec. except for the lack of “wiggles,” the quasi-statically computed SO
stress strain curve coincides with that in Fig. 5 up to the drop due to shear localization. -".r':i
The quasi-static calculation gives localization at a strain 0.0006 smaller than given by the AN
dynamic calculation in Fig. 5, but other than this small shift, the quasi-static post-localization :-\}:'
response is indistinguishable fromn the dynamic response shown. The case analyzed here is R

one for which there are equilibrium solutions with increasing end displacement during shear .‘.
band development. In some circumstances. see e.g. Tvergaard et al. (1951), there may be no ;-;;;';
equilibrium solutions having increasing end displacement as localization proceeds and in such ::"::\
cases dvnamic effects may be significant for localization development even at very low imposed ':.-‘:s
velocities. N
. @
In the quasi-static analysis with a prescribed velocity of =30 m/sec. the order of magnitude
increase in the nominal applied strain rate, from 3 x 10 1o 3 x 10, gives an increase in stress
level of about 2% (1097 & 1.02), but shear localization. as signalled by the drop in the overall :“f’ .
stress-strain carve, occurs at nearly the same end displacement value as with 1 = =3 m/sec. ) ®
This behavior is expected, since analvses of the effect of rate sensitivity on plastic instabilities .:".E‘:‘_‘i
AN
. :.:::.\:.:
0
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in rigid-plastic power law rate hardening materials, e.g. Hutchinson and Neale (1977), show
that while the instability strain depends sensitively on the strain rate hardening exponent, it
is independent of the rate Ilence, the delay in shear band initiation with increasing imposed

velocity evident in Fig. 5 is a consequence of material inertia and not of material strain rate
sensitivity.

There is a significant distinction between the dynamic and quasi-static formulations regarding
characteristic time scales. In the quasi-static formulation there is a single material time scale,
1/éo, while in the dynamic formulation there are two; 1/é, and a problem dependent time scale
that is a wave speed divided by a characteristic length, e.g. co/ho. The rate of strain develop-
ment scales with V1 /égho in the quasi-static formulation, but not in the dynamic analyses, due
to inertial effects.

Figures 6 and 7 show the course of shear band development for V; = —3 m/sec and Vj = —30
m/sec, respectively. There is a clear effect of imposed velocity on the speed of propagation
of the strain contours. For example, in Fig. 6 the 0.15 contour propagates along the band
at a speed between 590 m/sec and 680 m/sec, while in Fig. 7 the corresponding propagation
speed is 2500 m/sec. The qualitative features of shear band development do not depend on the
imposed rate, but it is evident in Figs. 6 and 7, as well as in Fig. 5, that there is a delay in
shear band initiation with increasing rate.

Figure 8 shows deformed finite element meshes at two stages of deformation. Fig. 8a corre-
sponds to the stage of deformation in Iig. 7c. Even though the shear band has already formed,
this is difficult to ascertain from the deformed mesh. At the stage of deformation in Fig. 8b, the
mesh is incapable of resolving the sharp strain gradients across the band and the discreteness
of the mesh significantly aflects the computed response. This figure is included to illustrate the
ability of the mesh to develop a narrow shear baund, which confirms, for example, that the initial
thickness of the band evident in Figs. 3, 4, 6 and 7 is an actual reflection of the inhomogeneity
size and is not a mesh artifact.

In order to explore the effect of mesh on the computed response, two additional meshes were
used for the case with V; = —10 m/sec and ¢ = 100X ¢p. In one case the mesh aspect ratio was
varied. while in the other case the aspect ratio was kept fixed, but a finer mesh was used. The
computed average stress versus end-displacement curves are shown in Fig. 9. In the 29 x 20
mesh the band is spread across two rows of quadrilaterals. This gives rise to a signtficant mesh

induced delay in the onset of shear band formation even though this mesh has more elements
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rise in the stress versus end-displacement curve for the 29 x 20 mesh is a consequence of mesh
induced stiffening when gradients in the band become very large. A similar stiffening occurs
for the other two meshes in Fig. 9, but occurs later in the deformation history with improved

resolution of the band.

The speed of propagation of the constant plastic strain contours does not differ much between
these three meshes. For the 24 x 20 mesh in Fig. 4, the propagation speed along the band of
the 0.08 plastic strain contour is 1600 m/sec. At a similar stage of deformation with the 36 x 30
mesh the 0.08 contour is propagating at 1900 m/sec and at 1600 m/sec with 29 x 20 mesh. The
difference in propagation speed found for the 36 x 30 mesh is attributable more to variations
in speed as the contour propagates along the band than to the increased resolution; with the

24 x 20 mesh in Fig. 4, a propagation speed of 2200 m/sec is found for the 0.07 contour.

5. Discussion

Key features of the phenomenology of shear band development under dynamic loading condi-
tions are the same as under quasi-static loading conditions. Shear bands develop at 45° from
the compression axis, as expected based on a quasi-static “material instability” analysis. Under
quasi-static loading conditions, for the viscoplastic solids considered here, the strain at which
shear bands initiate is an outcome of the competition between the destabilizing influence of
the inhomogeneity and the stabilizing effect of material strain rate sensitivity. Under dynamic
loading conditions, a delay in shear band development arises due to inertial effects. Also, since
dynamic effects induce non-homogeneous deformations, an inhomogeneity is not required to ini-
tiate localization but, in the circumstances analyzed here, the inhomogeneity plays the major

role in triggering the onsect of shear localization.

The key to the development of shear bands in the calculations here is the speed of propagation
of plastic strain contours in the direction normal to the eventual band. This is consistent
with what would be expected based on a rate independent shear band bifurcation analysis,
where, at bifurcation, the propagation velocity of shear waves normal to the band vanishes.
The vanishing of this wave speed is also the shear band initiation criterion that emerges from
the perturbation analysis of Freund, Wu and Toulios (1985). The process of band formation, a
cascade of finger-like plastic strain contours emanating from the inhomogeneity and from a small
region where the hband intersects the impacted surface, in a continually sharpening band, is one
that makes defining a band propagation speed somewhat arbitrary. Although there is no single
event that can be identified with shear band initiation. there is a reasonably well identifiable
strain in Figs. 1, 6 and 7 above which all further straining occurs within a narrowing band. A\
band propagation specd can he identified with the propagation speed of some particular strain
contour along the hand. but this speed is not associated with some sharp gradient propagating

through the material.
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The main strain gradients occur across the band and large strain gradients do not develop along .';n-::
most of the band; substantial strain gradients in the band direction are confined to very near :'.:}:‘\
the inhomogeneity and to a small region where the band intersects the impacted surface. This r;_ﬁ
can be seen in Figs. 4, 6, and 7; for example, even in Fig. 7c, the element in the center of ,;,~
| the inhomogeneity has an effective plastic strain of 0.33. while in the adjacent element in the ;.: .':f
: shear band the effective plastic strain value is 0.25 (clearly, the mesh used here does not resolve E:
' the details of field distributions around the inhomogeneity). The continually steepening strain
! gradient across the band is much like that in one dimensional simple shear calculations, e.g. 2o
. Wada et al. (1978), Wu and Freund (1984), Shawki, Clifton and Majda (1987) and Needleman -;.:::_
E (1987). Such narrowing shear bands are observed, Marchand and Duffy (1987). In actuality, of f_‘:_:'
» course, under the conditions of temperature, strain and strain rate that prevail in a narrow shear Xty
' band. material belhavior is not described by the sort of simple phenomenological constitutive "
. relation used in this investigation. Also, some material dependent length scale ultimately sets If::.;\*
‘ a minimum band thickness. ::;V:‘" ¥
: D
The situation analyzed in this investigation is one where, just prior to shear band formation, s
i the stress and deformation fields are rather uniform. \When shear band development takes place _1-*!;.
from a more non-uniform deformation state, the gradients in the background field retard shear Moy
E band growth, as is shown in quasi-static analyses, Tvergaard et al. (1981) and Triantafvllidis E‘ﬁ.\'
E et al. (1982). Under dynamic loading conditions, when there are strong unfavorable gradients, E-,‘ _
shear bands are likely to propagate in a more crack-like fashion than in the cases analyzed here. . e
E A strain softening constitutive relation has been used as a simple model for a thermal softening ::._:i \
\ solid. For an actual thermal softening solid. since the softening behavior is governed by the :"~‘.::~
current rate of plastic dissipation, increased softening would accompany an increase in imposed ':,‘\}‘-:‘:

strain rate and this would tend to counteract the delay in localization due to inertial effects.
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Figure Captions

Curves of hardness g versus effective plastic strain, ¢, from (2.22) with ¥V = 0.1,
€0 = 0.00218 and (A) ey = 10* X eg, {B) ¢; = 200 x ¢¢ and (7)) ¢; = 100 X ¢q.
Average stress versus end displacement curves with a prescribed velocity of Vi = =10

m/sec. The fixed material properties and initial inllomogeneity are specified in the
text and curves (), (B) and (C) correspond to the three hardness functions shown in
Fig. 1.

Contours of constant effective plastic strain, ¢, for a hardening solid, ¢, = 10" x¢p. The
fixed material properties and initial inhomogeneity are specified in the text and the
prescribed end velocity is V) = —10 m/sec; (a) t = 644X 107% sec (b) ¢t = 6.71 x 107
sec (€)1 =698 % 107°% see (d) t = 7.25 x 1079 sec.

Contours of constant eflective plastic strain, ¢, {or a softening solid, ¢; = 100 x ¢5. The
fixed material properties and initial inhomogencity are specified in the text and the
prescribed end velocity is 1y = =10 m/sec; (a) t = .75 x 107% sec (b) t = 5.02x 106

sec (c) & = 5.28 x 107 scc.

Average stress versus end displacement curves for a softening solid, ¢; = 200 x ¢¢ with
(A) V1 = =30 m/sec {B) V] = =10 m/sec and (C) 1] = =3 m/sec.

Contours of constant effective plastic strain. €, for a softening solid, ¢; = 200 % ¢y. The
fixed material properties and initial inhomogeneity are specified in the text and the
prescribed end velocity is Vi = —3 mi/seci (a) t = 28.6Tx 107% sec (b) 1 = 20.19% 107"

sec () £ =29.71 x 107% sec.

Contours of constant effective plastic strain, ¢, for a softening solid, ¢, = 200 x ¢y. The
fixed material properties and initial inhomogeneity are specified in the text and the
preseribed end velocity is V) = =30 m/sec: (a) ¢t = 3.24x 107"% see () ¢ = 3.50 % 107"
sec () £ =3.76 %X 10 Y sec.

Deformed finite element meshes for a softening solid, ¢ = 200 % ¢y, Faclh quadrilateral
consists of four “crossed™ triansular elements, The fixed material properties and initial
inhomogeneity are specified in the text and the preseribed end velocity is V) = =30

m/sec: (a) = 376 x 107% sec (b = 1,79 x 107" sec.

Stress versus end displacement for a soltening solid, «; = 200 x ¢, with a preseribed

velocity Vo= =10 m/see using three mieshiosy () 295 20 (8 21 % 20 and (C) 36 % 30,
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