F DD:M.S‘ 910 DESIGN AND EVﬁLUﬁTION OF FRI.ILT TOLERHNT VLgi/HSI
MESSOR ARRAYSCU) PURDUE UNIY LAFAYETTE I
J A FORTES 31 DEC 87 N@@914-85-K-03588

‘1’-."_'\-;'.“‘."-‘ AT \KXJ f
PR IR S 2

L
¢
)
Y
)
33
o

EEEE
o o
A

g d ¥
o

7 v2
X P=
X

s e

=y i

Bizs s pes

—
.
—
Fr
H

er

-‘,_
T ."'2;"/"-;'4'
PlA L AEAL
| "\"-f-,"-.{-fs"’
"- P A4 s o]

3

»
b

<

I
a

£
M s N
{$

.
.
» '.'.
N A
Pl N
P Y
Pl

B oond
[T
'— 4
Y
-

la.
<

W/ i

- - - - - - F?
P fu— LR P DR} EORAARS 7!
¥ r d‘- T \ . - ."‘ K . N ,\.. 1‘- A T
N SN -"
N ' ’

A A g 0 T T T S TR P A N 1 O 0 0 e e 0 N 1Y 1 1 A A 0,049,910 ¢ S0 2 ard “havetar
?.n" ’
(4

Lo M PR 1) 2
g
(X .
‘\i,! ~ @
& s
Yot *

i OTE EILE copy

FINAL TECHNICAL REPORT

for

AD-A190 910

CONTRACT NUMBER N00014-85-k-0588

and project entitled

DESIGN AND EVALUATION OF FAULT-TOLERANT
VLSI/WSI PROCESSOR ARRAYS

Period: 85 Jul 01 te 37 Dec 31

Scientific Officer: Dr. Clifford Lau
ONR, Detachment, Pasadena

Prepared by: Dr. Jose A. B. Fortes
Purdu- University

DTIC

Date: 87 Dec 31 = - "TE
‘f FEB 0 21988 3

DISTRIBUTION STA' &

Approved for public release; 88 1 18 029

Distribution Unlimited

o o f - B L., Bt o8 R N o oA N ANA L xS At A

FINAL TECHNICAL REPORT

for
CONTRACT NUMBER N00014-85-k-0588

and project entitled

LA
) 'l‘

gt
e
i) (']
CN)

DESIGN AND EVALUATION OF FAULT-TOLERANT
VLSI/WSI PROCESSOR ARRAYS

Period: 85 Jul 01 to 87 Dec 31

Scientific Officer: Dr. Clifford Lau
ONR, Detachment, Pasadena

Prepared by: Dr. Jose A. B. Fortes
Purdue University \
*;?”W
\ T
Date: 87 Dec 31
Aoccession For
| WTIS GRA&I
DTIC TAB 0O
Unannounced]
Justifieation |
BY]

ngﬁribution/
Availatility Codoa

'Aviil ari/or

A W W WL N N L WU W . R R R TS T . u.n.o.‘.'..uv . v, (W B TR O PO O A I T R T T ™y LT

R !
" v

1 >

é.;r -"
e Ry

bt . . .
ot Distribution: I
0 3
nh Addressce Number of Copies %
:‘.:" Dr. Clifford Lau 1 o
0 SDIO-IST Scientific/ Technical Agent 2
" Department of the Navy
:a::: Detachment, Pasadena 3
- 1030 East Green Street
{;: Pasadena, CA 91106 "
L/

% 2
: 3
tnt Administrative Contracting Officer 1
& Office of Naval Research i
- Resident Representative -
i 536 South Clark Street, Rm 286 "
W Chicago, IL. 60605-1588 o
o 0
\ W)
W) :‘
e Director, Naval Research Laboratory 6]
3~ ATTN: Code 2627 S
N Washington, D.C. 20375 =
» q “
o)
all Defense Technical Information Center 12 N
:: Building 5, Cameron Station N
'j'.:: Alexandria, VA 22314 .
,“: f_ ;
e :
vy,

A i
g 2
o0y A
l. “. K
- &_

o 2

&

e,
-
*ﬁ
'
[.‘: Y
o I
D) ‘: r
7 o
N A

.: S
. ¢
, ::' o,

f\ s

5

A A
‘t.

s (O O A AN N o e e W

S Syt a8 ~ . "W
’:‘M"l.. .l"-‘l‘- .I'.J'- W9, 0 W, Mt s AU U e, Lt l. » ! WKy

AR AR WU A U W WU W W S T W WY 3P WL W WS, WU K TR g R gt g'9 o'k g0 4B RTA Q' K PEN R RN LN LRV 2ol Vab Bal 530 Vog Ead ouf o3 "o TV VeR VIR I

) :
Wy %
p |
0’(O%
t 1}
e .
ot 0
s ~ e
ie (N 'l
. v
f:;; Table of Contents I
X 0
. it
o b
1"1' "'.

1. Introductory Remarks .
s 2. List of Publications Ladk
s 3. Reprints of Publications 2
k) :" A
gt q A
a o
" 0
%
P h,
' 4

LY
v W
A1
L g
N
ey
r n
Xy Lo
¢ .,
M -

S I® L

-: &
o
~-' ’v.
- e
_-\ ‘-’
» d
; R
\' 3
’, ~
Y -.(
P, ~
e, v
: o .-_':
Cd "
- -]
= e
¥ A
¥ L‘ 3
)
oy AN
»
v N
N
] =
g <
\’ R P R R Ry e N Ny X \ o e L S . VI VL L T VIR " e "W iTe % % e e Yy ® D . om oa s - a . .,
t, ” Cd LARCe
Rl A S e o ~ ", : - N

L2

Y PR T R KRR R S T s W W W N TR L W R RO YOUA R RO R U ORI O U O O U O U RO T D P O D oUW T

Introductory Remarks o' :"‘
o i
v "‘.:‘."'Z
This document is the final report of work performed under the project entitled
"Design and Evaluation of Fault-Tolerant VLSI/WSI Processor Arrays® supported by R
the Innovative Science and Technology Office of the Strategic Defense Initiative Organi- 5:{ :Qx.’»
zation and administered through the Office of Naval Research under Contract No. 4
00014-85-k-0588. With the concurrence of Dr. Clifford Lau, the Scientific Officer for
this project, this final report consists of reprints of publications reporting work per- ®
formed under the project. In the attached list of publications, items 1, 2, 3 and 7 are "";'.,;'
papers where fault-tolerant systems for processor arrays are proposed and studied. Stu- o‘.‘t’:‘,:‘
dies on algorithmic and software aspects relevant to systems are reported in items 4, 5, w{:u‘.‘,v
8, 12 and 13. Research on hardware and reconfigurability issues for fault-tolerant pro- 4
cessor arrays is reported in items 8, 9, 10 and 11. . 5
~ 7

?
o
O ey e]

B

"-
-:
[/ -

b

.3
Y
",

"
WX,
bV a0 s

™
WA RN AN e LW . T L ") L VR T R Vi I ST TN IR N T P V. I . » ‘.f(
o 1 =] - v - % ~ ¥t » 7 %) Y0 {\.f A s ."...'. P ..‘.'.“... e '4"...‘, P f.'I\}\f~f$I~f~ L .’f\ll . ‘. e
“-‘Qu'\’c .u‘!?o'o,s‘tj'_tﬁ. £ .D.,\ ': SR M e .!!':I!"t'. \ A .Vﬁ \S '.'\ NN <0 3T K W n o ' "' oy i ‘.'(\'f

‘‘‘‘‘ R A R A S Y R N T T R R O T o o

LIST OF PUBLICATIONS

Fortes, J. A. B., and Raghavendra, C. S., ‘“Gracefully Degradable Processor
Arrays,” in IEEE Transactions on Computers, Volume C-34, Number 11, pp.
1633-1045, November 1985. (before SDIO support)

2. Fortes, J. A. B., Milutinovic, V., Dick, R., Helbig, W., and Moyers, W., “A High-

Level Systolic Architecture for GaAs,” 1986 International Workshop on High-

Level Computer Architecture, Proc. of the 19th Hawaii International Conference

on System Sciences (HICSS), pp. 253-258, January 1986. (before SDTO support)

¢ 3. Fortes, J. A. B., “Algorithm Reconfiguration Techniques for Gracefully Degrad-
able Processor Arrays,’’ International Workshop on Systolic Arrays, July 1986.

Fortes, J. A. B., ‘‘Algorithm Reconfiguration Techniques for Gracefully Degrad-
able Processor Arrays,” in ‘‘Systolic Arrays,” W. Moore, A. McCabe, R. Urquhart,
editors, Adam Hilger, pp. 259-268, September 1986.

4. O’Keefe M., and Fortes, J. A. B, “A Comparative Study of Two Systematic
Design Methodologies for Systolic Arrays,”” (Long Version) International
Workshop on Parallel Algorithms and Architectures, pp. 313-324, April 1986.

O’Keefe, M., and Fortes, J. A. B., “A Comparative Study of Two Systematic
Design Methodologies for Systolic Arrays,” (Short Version) International Confer-
ence on Parallel Processing, pp. 672-675, August 1986.

5, Taylor, V. E. and Fortes, J. A. B., “Using RAB to Map Algorithms into Bit-Level
Systolic Arrays,” 2nd International Conference on Supercomputing, pp. 227-236,
May 1987.

6. Carlson, W. W. and Fortes, J. A. B., “On the Performance of Combined Data

Flow and Control Flow Systems: Experiments Using Two Iterative Algorithms,”

International Conference on Parallel Processing, August 1987.

Carlson, W. W. and Fortes, J. A. B., “On the Performance of Combined Data
Flow and Control Flow Systems: Experiments Using Two Iterative Algorithms,"”
Journal of Parallel and Distributed Computing, to appear.

7. Fortes, J. A. B. and Wah, B. W,, “Systolic Arrays-From Concept to Implementa-
tion (Guest Editor's Introduction),” Computer, pp. 12-17, July 1987.

8. Rau, D., Fortes, J. A. B., Siegel, H. J., “Destination Tag Routing Schemes Based
on a State Model for the IADM Network,” Technical Report TR-EE 87-39, School
of Electrical Engineering, Purdue University, West Lafayette, Indiana 47907, :x:.}\

October 1987. (Submitted to IJEEE Transactions on Computers, October 1987).

¥

VW WAL T F A AR .y P > AR I R T
i v o8 " LN f\r,y‘fa_ P Ca
ANACNC ‘:‘l (h \ N ~'. 'f\ . . 'h\.

Sl e UL L ik Al0e MO LB Ll Lhe o DN LN a2 L B Mt L By o M

Rau, D. And Fortes, J. A. B,, “Partially Augmented Data Manipulator Networks:
Minimal Designs and Fault Tolerance,” Princeton Workshop on Algorithm, Archi-
tecture and Technology Issues for Models of Concurrent Computation, October
1987.

Rau, D. and Fortes, J. A. B., “Destination Tag-Controlled Fault Tolerant Inter-
connection Networks,” Symposium on Innovative Science and Technology, Janu-
ary 1988.

Wang, Y-X. and Fortes, J. A. B., “Hierarchical Approaches to Fault-Tolerance in
Processor Arrays,” Symposium on Innovative Science and Technology, January
1988.

Fortes, J. A. B, Fu, K. S. and Wah, B. W,, “Systematic Design Approaches for
Algorithmically Specified Systolic Arrays,”” in Computer Architecture: Concepts
and Systems,’’ Milutinovic, V. M., eds., Elsevier Science Publishing Co., Inc., New
York, pp. 448-488, 1988.

Fortes, J. A. B. and O’Keefe, M. T., ‘*‘Current Architectures and a Tool for the
Design and Programming of Bit Level Processor Arrays,’”’ 1988 IEEE Int. Sympo-
sium on Circuits and Systems, June 1988.

IR S A Bl N e S A WA R S L B R L N S YL S SRS L T A
St alar . "t"'\." "Q"\- RS \Vs"'-‘-.' L
{) . L)

Bl

IR EREA AR AR KT AT AN A R R TR AR X R RTR RN 0,8 0 0.8 00 8.0° 808,25 2 4a8 Pad 82" k8’ a® vg_ oo . \.'
1

COPIES OF PUBLICATIONS Y

S ad

“,I‘.- t o g
x4

s

o

AR AR
s

LR T
¢ I

L

. 5*1. I\."{'

A AN ol LY

o s

oy

LA
I-'J'_-

ASN Y Y

K

'.,".‘
_ - -

o A" L,

=1

AU L P T U e I S VI e S N Ml S M P, SR P " P, S, Nl S S
a: "’ ’.f: .r:E: r~$.'f,_:\._~.',_. e lwfl}ﬂ\-ﬁ_‘:\i‘-’,‘r

L]
'.'i\
% ‘r
*

RO .'R. AN A A A A AT AT A AT T T
I '-”' e . SN :-v\"'\ N“"\"-" TNANRTI TN LT A
N 8 3 ! a e B o A . o ' M) -

~a$a-gWaoabgcatytey

UWANK A RN AR AR

REFERENCE NO. 1

Fortes, J. A. B., and Raghavendra, C. S., “Gracefully Degradable Processor Arrays,” in
IEEE Transactions on Computers, Volume C-34, Number 11, pp. 1033-1045, November § $

1985. (before SDIO support)

bl
;

1
"y

I/

2
Sy

ALK
hd

5%

5
LS

q

b, 3%
» e '_‘\.)
(o, LML,
>~ _“:
>, l\‘
o) A
v N
L] ~ .
4
N
v
bt Z-_
v ;-'

-
-
v

B TR YA TTNND s nw war
Ral Xy) BN EX TR VR I W 1 0.2 1V Bl R E) Pa® ab

R OV A R ool N TR o 4t r ey

{EEE TRANSACTIONS ON COMPUTERS. ‘OL. C-34. NO. l1. NOVEMBER 1985 ‘ 1033 Q0 o
N
o
Gracefully Degradable Processor Arrays 2
y gr y O
2x
JOSE A.B. FORTES. MEMBER. IEEE, AND C. 5. RAGHAVENDRA. MEMBER. IEEE 2
75
¥
o
YW
. . . . i d
Abstract — A new approach to the design of gracefully de- (without fault tolerance) i1s a potentially disrupting event to
g p y pung »
gradable processor arrays is discussed. Fault tolerance and grace- this “isomorphism” and may result in severe, if not totai. SR
ful degradation are achieved by simultaneously reconfiguring the . ;,rmance loss. Because the farge size of processor arrays hiyted
processor array and the algorithm in execution. Two types of . . ;s " o,
algorithm reconfigurability are considered, namely, row recon- and therr tasks imply a high probabulity of failure. this may }".), ;
v v . . . - .
figurability (RR) and row—column reconfigurability (RCR). Cor- become an important limiting factor to the use of such com- ‘2:,.-
respondingly, two array reconfiguration schemes are discussed, putational machines. o .'f
i.e., successive row elimination (SRE) and alternate row—column Redundancy can be used to add fauit tolerance to processor -
elimination (ARCE). It is shown that the computations of any ,,u¢ | o spare components are added to the svstem and Py
algorithm executable in a processor array can always be R .] . : . R)
(re)organized so that the resultant algorithm has the RR and/or they can replace faulty units. thus preserving the original \
RCR properties. Upper bounds on the increase in execution time ~cOMpuung structure and algorithm mapping. An alternauve N
of an algorithm due to reorganization of computations for recon- and equivalent way ot thinking about redundancy solutions Al
figurability are derived. Detailed analysis of performance and consists of programming algorithms which are smailer than e ::
reliability is done for both SRE and ARCE reconfiguration e requiring the use of the full array and sparning out extra =
schemes. These reconfiguration techniques are applicable to any d [30]. A distinct but vet related benefit of o
processor array and suitable for VLSI technology. unused processors {30]. A distinct but yet related benefit o e
redundancy is the possibility of improving VLSI array fabri- "O':‘:"
Index Terms — Algorithm transformations, computational cation yields {14)-[20}, and several redundancy techniques ':::::'..f
:'““‘:‘i'li‘ty' di':m‘cm'::?sg“:::;’:ﬁig“eml degradation, per- ;.o for this purpose are potentially applicable to fault- "o: W
. p o - tolerant array computation. For a crinque and appraisal of ;5, g@
some of these schemes the reader 1s referred to {i4]. The -“.
I. INTRODUCTION amount of redundancy used in a system 1s limited by eco- 7
.
recurrent theme in the quest for efficient high-speed nomical and technological constraints (e.g.. in [16] it was g
computing systems is the need for matching the struc- observed that vield improvement saturates above 10 percent ~$&,,:.
ture of algorithms and the configuration of parallel com- ©f redundancy). and the mimimization of redundancy for a : l"
puters. In these svstems. successful fauit tolerance and $iven fault tolerance level s an important research problem N
graceful degradation schemes must disturb minimally the {11]. Limited redundancy has been proposed vr used for the @
conformability of algorithm and architecture. These brief MPP (3], Uliac IV “2'(CHiP (6], and ‘D'OgC”CS 3”3}’5‘[_14)v ;'
ideas underlie this paper’s approach to the design of pro- 3mong others. The main observation is that. by definition, o)
cessor arrays where graceful degradation is achieved by si- redundancy solutions still require a fully operauqnal replica ot
multaneous reconfiguration of algorithm and architecture. Of the onginal array, i.c.. no degradation is possible. Alter- :‘vt
The pervasive consideration in the efficient use of processor ~Native approaches to tault tolerance include error-correction LAY
arrays [1]-{10] is the careful development of algorithms that 'echniques [21] and algorithm rescheduling strategies {22]. R
allow the allocation or pipelining of data and instructions so | ne former explores mathematical properties of the aigo- ot
that the right data can be made available to the right processor ~ fithm and is specialized in nature. The latter is algorithm de- f:_f\
at the right time by using the limited interconnection capabili- Pendent and does not explore the possibility of limited array .':-'.f'
ties of the array. In [1]-[10] the reader can find a sample of r\econngurablhty.. An algorithm independent approach to ‘;‘:‘_
! problems. solutions. and experience on mapping aigorithms fault tolerance oriented towards preserving the connectivity :v.'x,*'
into processor arravs. In these works. the prevalent real- ©f VLSI multiprocessor systems has also been reported [13] N
¢ 1zation 1s that dynamic reallocation of data and instructtons is Inthts paper we present & novel approach ra‘un tolerance :.:_‘.:‘.
i a difficuit and time-consuming task. A duality argument can +nd gracetul degradation in array processors. The main dea N
be used to claim that dynamic recontiguration of an array 'S discussed informally in Section IL. [t consists ot using :5"."
’ with fully rearrangeable interconnections can be just as hard. dlgonthm mapping strategies and simple hardware mecha- :.r,\:.-
’ In tact. at 2 more abstract level. both problems reduce to RISMS which make it possible to preserve conformability of NRL
dvnamically achieving “isomorphism™ between algonithm igorithm and architecture Jespite the removal ot taulty pro- °®
and archutecture. Any component tailure 10 4 processor array cessors. [t will become clear that our approach can oe used A
together with previously proposed redundancy solutions, and o)
L) T
Manuscnpt cecerved Sepember 2° 1984, resised March 18, 1985 und such “hvbrid”™ schemes (brietlv discussed 1in the last section) A N
. Aprl ¥, 1985 would have the advantages of both approuaches. Section I N
i) :{B E""" » w‘l'z Tf:“;““"‘ ot Bleirical Engineenng, Purdue Umiver jegeribes 1n a4 tormal setting the theory dehind the two main :::_
SHY. esl Lajavette, | Y . -
{ C 'S Raghavendra 15 with the Department ot Electrical Engineenny- algorithm reconfiguration strategies. Array reconfiguration ®
} Svstems. University ot Southemn California, Los Angeles, Ca HK89 schemes are discussed in Sectton 1V and their performance is A
|]
-y » 3
0018-934/85 1100-1033S01 00 <. 1985 IEEE JOONG
AT Y
LAY
! N
t o
.]
. oo
M e S N M AT PP S L R T AL g T T T . .- A
! N AR WO A e e e e A RN LN T AT . AL S IR .
1 e N D N N S R R ORIV A AT l,-' MO ,‘__ PN ,‘.-: .:'-‘.'?:-f".l_‘f::f,:f\f. f"-i:;:;” J::\f
. * i hl) | 5,09, ¢

- e

5re 6 'e A4 8% 4T 8% 4% 8% 1t <ay e el gy v fatak g

1034 -

studied in Section V. Reliabuity. performability, and com-
putational availability studies of our techniques are presented
in Section VI. Section V1l is dedicated to conclusions.

I1. BasiC IDEAS

We consider two ditferent approaches for achieving lim-
ited dynamic recontigurability of processor arrays and algo-
rithms. The first approach to array reconfiguration consists of
logically removing rows containing one or more fauity pro-
cessors. and is referred to as successive row elimination
(SRE). The second upproach consists of removing either
rows or columns with faulty processors (starting with rows).
and s referred (o as alternate row column climination
{ARCE). Both schemes require the addition of programmable
switches and interconnections to the onginal array architec-
ture and assume that “penipheral”™ processors are cvclically
connected via “wrap-around” links (like 1n [lliac IV and
MPP) or external memory (which is always possible). In
correspondence with the two possible array reconfiguration
schemes. we consider two algorithm reconfiguration strate-
gies. namely. row reconfigurability (RR) and row-column
reconfigurability (RCR). Interchanging the words “row™ and
“column™ in the definitions of SRE. ARCE. RR. and RCR
vields the dual reconfiguration schemes SCE. ACRE. CR,
and CRR. Due 1o this duality. we will not discuss them. The
next paragraph introduces informally the basic deas on aigo-
rithm reconfigurabiiity.

Consider an aigonthm with (7,, < n, X n,) computations
which s executed in time T, in an array with (n, X n,) pro-
cessors. To each computation associate the time of execution
and the coordinates of the processor where it is executed.
i.e.. index ¢ach computation with an integer vector (L. j,. /2),
l=s:=T.1 =/, =n.l =j,<n, The resulting index
set of the algorithm is geometrically represented in Fig. [(a).
If. during execution, data move in a direction for which the
value of j, does not decrease. then we say that the algorithm
has the RR property: if the values of j, and j. do not de-
crease. then the algorithm satisfies the RCR property.
Assume that our algorithm has the RR property and due to
4 fault we remove the last row ot the original (n, X n.) array.
Then. we must also recontigure the algorithm for exe-
cution 1n an (1, — 1Y < ns) arrayv. This can be done by par-
tioning the algorithm into two “subalgorithms™ or “bands”
separated by the plane ;. = n, — | [Fig. 1tb)]. First. the
reduced array executes the subalgonithm tor which | = ;, =
n. = 1 and the RR property ensures that no computations
require Jdata from the other band. Next. the second sub-
sigorithm 1s executed. possibly using data generated in the
previous band and recycled through wrap-around or external
memory connections. Note that potentially slow external
memory communication can be done concurrently with the
execution of 4 band. In fact. data generated in some order by
4 band wil] be used by the next band in the same order i1.¢..
FIFO stacks are suitabie memorv structures for this purpose).
Simiarly. 1 the algorithm has the RCR property and an
ttn. = 1y £ tn. — |y array 1s used. then the algorithm can
be partiioned by the planes;, = n. - land;, = n, — lnto
four bunds which cun be executed in increasing lexi-

Y R 2l Bt -

AN (RS R af AAEAANL NI L DO aMe YR e SRal gkl iy S aiinta i et
IEEE TRANSACTIONS ON COMPUTERS. VOL. C-34. NO. |1. vOVEMBER 1985
LY 'y
' ; 8ong! Bona 2
T .
3 To
i '
! !
i |
| ‘ 'nl.l
1 = /
S n . L] ’I
Ve - . fl
/' /
el a .
i
l2 I3
fa) (b)
's Bondl Sand 3 'y Bongl Bang 2
| i
T Tl
8ond 2 ! v
PO ot .
- , '
B n, "2/,]
o C s P
n N A"/ Band 4
nz """"" el n
J2 iy
(¢) {d)
Fig. |. Partiuoned algorithm on processor arrays of four sizes. (a) (n, X ay)
(partitioming not required). (b) (in, ~ 1) X az). (¢) dla, — 1) X (1 — 1)),
)y tmy = 2) X a.).

cographical order without violating data dependences
[Fig. 1{c)]. It is important to compare this situation with the
case when the array has ((n, — 2) X n,) processors for which
the algorithm wouid still be partitioned in only two bands
{Fig. l{d)]. The remaining considerations on data commu-
nication are similar for RR and RCR with the exception that
RCR may require additional wrap-around connections or ex-
ternal memory.

The ideas underlying our approach to algorithm recon-
tigurability are also usefui for the problem of partitioning an
algorithm for execution in fixed-size VLSI array architec-
tures. From the discussion above. it is clear that RCR is a
sufficient condition for algorithm partitionability, ([9],
{10].[23]). Similarly, one can also think of RR as a sufficient
condition for the partitionability of an algornthm along a
single direction.

Not all aigorithms executed 1n processor arrays have the
RR or RCR property. However. in the next section we show
that for any such algorithm we can always find an equivalent
algonithm which satisties such properties.

1. ALGORITHM RECONFIGURATION SCHEMES
«RR anp RCR)

We see a processor array as a two-dimensional gnid in
which each integer point is a vector index of a processor and
a set ot vectors (the interconnection primitives) which de-
scribes the (regular) pattern of interconnections of the array.

Definttion 3.1:° A processor array 1s tuple (L°. P) where

Z and [denote the sets of wtegers und nonnegative integers. and Z" and /*
denote their respective ath Cartesian powers.

s
N5

S

»
LX

)
> .
L g:"- ,;‘.

a2

ﬂé;.

"5" A e 4
® Lty

,;

v

NANEAEN
. .

WA AN
NI
o458 5Y

o

P

a
PRy
-
“e

AR

.
N
.

'
N

PR

i4
«

AN %)

&2

A Ak
)J'."’?f

.

”
LA A

i »
a2 ‘I -

|
£ L,

I, I

1)

B

s % ™ ‘s e
-

.
4 v
e

PR)

« 8
L

IV

LY

P

4

"o
& 4
s an

-

“»

g 0 R b Sl Bty

3 L *at

FCRTES AND RAGHAVENDRA. GRACEFULLY DEGRADABLE PROCESSOR ARRAYS

L* T Z*isthe index set ofthearravand P € Z'°" " is a matrix
of r € [interconnection primitives.

Thus. in a processor array (L°. P), the processor with index
I € L* is connected to a processor with index I' =7 ~ p,
p € P, ifI' = L°. and is connected to an input-output port
otherwise. This defimition does not account for “wrap-
around” external connections. which. however, are assumed
10 exist between input and output ports.

Exampie 3./: The structure of orthogonal arravs like the
llliac IV. MPP, WAP. and others can be described by (L=, P)
where

L: = i(l..::}:o = /'-[l sV - l}

0 1 0 =1 0]
P =
[o 0 ! 9 -1

where .V = 8 for the llliac IV, N = 128 for the MPP, and V
is variable for VLSI arrays. Fig. 2 shows a (4 <) square
orthogonal array. (End of example.;

The execution of an algorithm on 2 given array can be
thought of as an ordered set of instantianons of the array,
each of which contains an assignment of computations (o
processors at a particular ume ot e¢xecution. Consequently.
we see an array algonthm as a three-dimensional gnd in
which each integer point (j,:/;)" indexes a computation at
time j, and processor { ;). and a set of vectors (dependence
vectors) which is related to the pattern of generation and use
of data in time and space. In other words. if a computation
with index / generates a value used in computation with index
j .thenj = ;s adependence vector. Clearly. the first entry
of any dependence vector must be =1 (i.e., at least one unit
of ime s¢parates generation and use of a variable), and the
vector corresponding to the other two ~ntries must corre-
spend to a linear combination of interconnection primitives
(i.e.. a path connecting the processors where the vanabie is
generated and used). Assuming that communication (over a
single interconnection primitive) and execution of a com-
putation take one unit of time.” the number of interconnection
primitives used to communicate a result from computation
with index ; to computation with index ;' must also be less
than or equal to the firstentry of the dependence vectorj ' =
(1.2.. the interval of ime between the computations). These
considerations transfate into the following defimtion ot arrav
aigonthm.

Defimution 3.2 Consider an artay (L. P1.P = 27" An
arrav algorithm 1s a tuple (J'. D) where /° T Z' 15 the index
set of the algonthm. and O = 2™ s a matnx of m = /
dependence vectors such that

|

]

A = r=1om th
and
s o .
L =K for K = /"™ such that > k, < d.,.

t =1, m)

We tolow ‘he Jsudi Jssumption that in one unit of tme. 1 Processor Cian
read the outpul tedislers O NeIIbONNY Processors, Provess Jata it necessary.
N4 wnte 2sulls (LY iy LWR DUIPUL regisiers

N a s e e s e s
SRR R

o

o L o ot L o o

033

! 1 ! E
——— L Q) e] e) 3}

1

—
1
0 31—

r al

(0 1] [0 2)—

. 1
—— {00l

Fig. 2. A3 < disgquare orthogonal array

In this definition of array algorithm we repres<ent univ the
structure of the algorithm and abstract tfrom the actua! com-
putations being performed. This 1s adequate because we are
essentially worried with problems of matching compurational
structures. Also, input and output data are not explicitly
represented because they can be treated as generated data
(i.e.., for a given processor receirving data from other pro-
cessors there is no distinction between data generated and
data “passed” by those processors). Finaily. the description
of Jdependences would be more precise if (0 4 ziven dJde-
pendence vector we asscciate the index point where the
dependence s valid. This complication turns out to be unnec-
¢ssary for the denivation of our main results.

Example 3.2 In {¥] the tollowing computation was
performed on the MPP as a tiltering procedure required to
avoid nonlinear instability in the soiution ot Navier-Stokes
equations

qi, = (qff,.'—s, - ZL]'[," het L]}.m"—‘-),"x

= 8 =g Nl sj s N
where N = 128 = number of processors along one dimen-
sion of the MPP. The structure of the MPP 1s descnibed 1n

Exampte 3 1. This computation corresponds to an MPP array
algorithm because

S TS
Ojcer = PK
[

D=1 199

3_—1 0
0]
VRV
0 a1
0oy

g 0

(o1 -1 0
oo o -

| S ——

i
i
i
|
i
f
C

In other words. ttus algorithm maps tnviaily into the MPP
because the number of computations matches the number ot
processors and the next-nerghbor communication can be per-
tormed 1n one anit ot tme End of exampie

Pl o
S ok,

R

SRS AL

B AN
» -’..'(‘_-'

[R A
3

)
a
v "1 T«
.

AR AL

-
S

P,
e

R

,-..
h v
[/

- (~I r\t~¢ -s- r

gy &

PR,
b

)

'.: 2z, LA ¢ 'y

LI
-

[PRPATACAE . e I]

': NS

P

A

1036

Exumple 3.3 In{7] 1t was shown that the followtng algo-
nthm. which describes a simplitied version of 2 standard
relaxation computation. is not amenable to parallel execution
tunless transtormed as described later in Example 3.4):

e —

e ¥ “-.k~'v)/4
(=l sM I shksy.

Uy = Wiy, =

| <

Here we note :hat. because the first entries ot the last two
dependence vectors in

S A) T

{
D=1 0 1 Ol
0~-1 0 itk

are smaller than 1. this algorithm s not an array algorithm.
+End ot example .}

As iilustrated by the last example. not ail algonthms are

array algorithms. [n other words. they must be transformed.
or equivalentlv. their computations must be reorgamzed so
that an equivalent array algonthm s obtained. The reor-
ganization of an algorithm can be seen as permutation of its
index set. and hence. it can be described as linear trans-
formation 7 € Z''** such that T is nonsingular and T = []]
where 7 € Z'7° " s referred to as a time transformation
and § € Z'*" " is called a space transtormation. In other words.
T reorganizes the computations so that a computation with
index ; is executed at tme w7 and processor Sj. Due to the
lineanty of this tvpe of transtormation. the dependence matnx
of 4 transtormed algorithm is simply TD where D is the depen-
dence mamx of the vnginal algonithm. Hence. T can be selected
s0 that the new Jependence matnix makes the transtormed
aigorithm an array algonthm. The fact that (1) must hold for
the new matnix ensures that data dependences are not violated
n.e.. T vields an array algorithm which 1s equivalent to the
original one). This type of transformation was introduced in
27} where T 1s denoted R and referred to as reindexing trans-
tormation. Subsequent work in reindexing transformations is
reported 1 |9],{10],{28].[29] and their references. In this
paper. we add to the knowledge of algonthm transformations
bv showing that there exists always some T which yields an
algorithm with RR and RCR properties (Theorem 3.1) and
how to Jerive upper bounds in the execution time of such
aigonithms «Theorem 3.2). Next. we illustrate how a remn-
dexing transtormation can be used to transtorm uan algonthm
into an array algortthm.

Ewumple 34 Assume L = M =N = 4inthe algonthm
of Example 3.3, uand consider the array shown 1n Fig. 2.
In (7. the transtormaton

-1) ()

~as used to ubtan an equivalent algorithm suitable tor paral-

lei computation. The <hightly different transtormation

TN A AT _\‘,:J.s'.:f\‘.w‘,- R

A A ASIOAN ~ RO
et W&@ﬁ&'ﬂ\{\. T L A A

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34. vO. |1. VOVEMBER 1985

transtorms that algorithm into an array algorithm because the
resulting dependence matrix is

[1 (|
TDO={-1 0 1 0
D -1 0 1

for which the first row has only positive entnies and

00 00
0010

0 -
PK=[O(I)?(!)_?}0001
1 0 0O
0100

Fig. 3 shows three steps of the execution of this new algo-
nthm. Empty squares represent unused processors. The index
of the veriable generated is shown for each busy processor.
Arrows indicate data communication required for the compu-
tations. and broken lines identify computational wavefronts.
The total execution ume is w{fL — t.M - I.N = 1} +
I = 13 umts of time. {End of example.)

The problems of selecting T for general case algorithms
are out ot the scope of this paper. and the interested reader is
referred to {9]. Here. we concentrate on the probiem of
selecting T for array algorithms so that the transformed
algonthm satisfies the reconfigurability properties, i.e., the
RR and RCR property. These properties can now be defined
very simply in terms of the dependence matnx of an array
algornithm.

Definition 3.3: An array algorithm (J°, D) has the

RR propertv — if the entries of the second row of D are
nonnegative.

RCR propertv — if the entries of the last two rows of D are
nonnegative.

Example 3.5: The algorithm of Exampie 3.2 has the
RR property. but does not have the RCR property. (End of
example.)

Example 3.6: The algorithm of Example 3.4 does not
have the RR and RCR properties. However, if T is rede-
fined us

-
Hp—
”

T :ES =
S

3 1
o
:J’ ‘.O 0 4

the resuitant algorithm has the RR proparty. In fact.
1

' 0 ol

0 -1 0t

2 A

o

and 1t 1s interesting to note that communication associated
with the first two dependences takes two units of tume. and
tor the second one 1t requires the use of two interconnection
pnmitives. namely. (1 01 and 10 —1)". Three steps of the
execution ot this algorithm are shown in Fig. 4 where arrows
indicaung data communication which takes two units of ime

are labeled with a 121 The execution ime s now (L ~ I,

. . R T P T
T e A R S g i M VAT A
O ol N A,V.,‘J'.f‘__ _‘.r__/'__a_'.'_'.'

Jp——

”
o

NAN N
y

v

WAL]

P

~
e
o

7

Y

s
IV

4

a2k W |
A e Ll
AR

[T
}.
N
£ P

f

»

@
Ll

(SRR

ST

o

[oy &)
A
'I‘}"_

YA
. [}
Y

v Y
L4

o,
g

'}‘i“"l
vA5%CS

Y. J

't ® N

L4
&L

* “2f

¥ *r ‘2
l'u'sf_f

P
(]

5

-"‘?"
DR A

ARG
LR R
AR

b.'i.'b‘) h]

A
.

e . -

‘,.‘..“.'.... NN NN ..-., WML . WL WUNULR X R RRY 't Jfg®, LG

1*6

Fig. 4. Three steps of the execution of the aigonthm of Exampie 3 6.

M - 1IN = 1]F + | = 16 units of time. (End of example.)

Next we prove that we can always reorganize the com-
putations of any array algorithm so that the resultant algo-
rithm has the RR and the RCR properties.

Theorem 3./: Given an array algorithm A' it is always
possible to reorganize the computations of A so that the
resultant array algorithm has the RR and RCR properties.

Proof: We show that we can always find T such that the
new dependence matrix has no negative entries. By definition
of array algonthm. the dependence matrix D of A must have
only positive entries n the first row. This means that there
exists a convex set which contains all dependence vectors of
A. Hence, using convex set theory, there exists an infinite
number of separating hyperplanes. In other words. there ex-
ists an infinite number of vectors S € Z''* suchthatSd = 0
foralld € D. Furthermore. because the subspace outside the
convex set 1s not degenerate. from that set of vectors one can
aiways choose three linearly independent vectors for rows of
T sothat T is nonsingular. [t1s also clear that they can always
be chosen so that the new dependence matrix satisties (21 for
some K. Hence. the new algonithm s still an array algonithm,
and 1its dependence matnx has no negative entries. thus im-
plying that the RR and RCR properties hoid. QED

The next theorem provides an upper bound on the exe-
cution time of the reconfigureu algorithm as a function of the
execution time of the onginal algonithm. This upper bound s
valid for arrays with a matrix of interconnection primitives

-~

identical to that of Example 3 1. [n other words, we consider

only the class of square orthogonal arrays. The methodology
used can be easily applied to the derivation of similar bounds
for other classes of arrays.

Theorem 3.2: Forany(n X n)orthogonal array algorithm
with execution time T, there exist equivalent orthogonal array
algorithms with the RR and the RCR properties and with execu-
tion time T* < 2T¢/n + 3T, ~ n and T* < 3T3/n* +
9T3/n + 6T,, respectively.

Proof. Assume that the original orthogonal array algo-
rithm does not have the RR property and consider the worst
case possible. i.e., the case when at every instant of time ail
processors and interconnection primitives are used. This cor-
responds to an algorithm for which

S T U D O
D=1 0-1 vl
00 0=t
and it can be transformed into an equivalent algonthm with the
RR property by choosing 7T as
Ea 1'2 Lo]
T=iS) =11 0 0l sotha
(2 0 0 1
M B
I
0 -t

Given that the onginal algorithm has «7,, x n < n) com-

LS

I'd "} <
i

o &L
L,

x]

f,
s'
oty
e

'}
g

F X4

L
r s
7,

e

L PLfPo ol ot
X,

v
® <X
rx

l: oS,
R
Aten

l " { l’
5 "'
'.' "

LN e .'- 3
@ e

v’.'l ,‘ ,W
e

-

’f‘"‘f"{'
r
P & ..,‘s,& 5

y)

.

¥

:é .
()
“'!

Y

i

T

1038

putations. the new algorithm requires
alTy n o nl=a(l t 1]+1=2T,+n-2 (3

units of time to execute in an array with T, rows and n
columns (due to the values of 5, and §.). Given that the actuai
array has only n rows. we must partition the algorithm into
Ta/n® < Ta/n - | bands (i.e.. now S allocates computa-
tion with index ; to processor [(S,) mod n)S./17). and each
band takes at most the time given by (3). Hence. the total
execution time of the new algorithm is

T*<Q2Ty = n = D(Ty/n + B <2Ti/n + 3Ty ~n. (&)

Choosing = = (300}, §, = [110], and S, = [101] leads to a
similar proot for the RCR case.

Q.E.D.

We remark that the upper bounds derived in the last theorem
may be too high, and how to find (for any array) a trans-
formation T which yields exact upper bounds for T* is an
open problem. Nevertheless, typically, aigonthms executed in
{n < n) arrays have execution time finear in n, which impiies
that. according to Theorem 3.2, reconfigured algonthms aiso
have linear execution time.

Example 3.7: The algorithm of Example 3.4 does not have
the RR and RCR properties and executes in 13 units of time,
whereas the equivalent algorithm in Example 3.5 has the RR
property and executes in 16 units of time. However,
the value of the upper bound given by Theorem 3.2 is
T* <2Ti/n + 3Ty + nlr,.13..-s = 85. This discrepancy
between the values of the upper bound and the actual execution
ume 1s also due to the fact that the algonthm of Exampie 3.4
is not a worst case algorithm like the one considered in the
proof ot Theorem 3.2. This is easily realized from Fig. 3,
which shows that not ail processors and interconnection
pnmitives are used every time. (End of example.)

IV. ARRAY RECONFIGURATION SCHEMES (SRE AND ARCE)

This section describes the architectural features of pro-
cessor arrays capable of SRE and ARCE reconfiguration. In
both cases. limited reconfigurability is achieved by using
redundant interconnections and switches. The figures used to
describe these architectures display the logic organization
and functional characteristics of the architectures and their
components. Their physical layout and implementation de-
pend on the technology used and may take different forms. as
discussed 1n [14]-[20].[26].

A. SRE Recontiguration

The basic idea of SRE 1s as follows: if a fault occurs in
processor (1. ;). then eliminate logically the ith row of the
array. The logical elimination of a row 1s done by setting
identical programmable switches to certain states and using
redundant interconnections to bypass the ¢liminated row.
Fig. Sta) shows the additional interconnections and switches
for a (4 < 1) array. The broken lines represent the original
hardware. [n general. (n, = 1)n, interconnections (=50 per-
cent interconnection redundancy) and n, - lin, switches
are required. The structure and possible states of each switch
are shown in Fig. 5(c1. We ignore the need for additional

b
S I A S

.y

' C}=

e

- twilches Co ceolls of ongwnal array
(S)

- - - = interconnechions of onginal orray
odded nierconnectons

1°3

e

- swrcher E- 3 «cells of origengl array

- = = + nierconnec hans of origeael array
——— added mierconnechons

(b}

: T !

State QO State O State 10 State 11

{c)

Fig. 5. Array architecture. (a) SRE reconfiguration. (b) ARCE
reconfiguration. (c) States and structure of switches used.

external memory due to further partitioning of the algorithm
because external memory is usually available or inexpensive
to add.

The reconfiguration of the array is done by setting the
switches 1o certain states. Let the (th row of switches be such

————

Pt L
oy o !

L4

[Ks
u &%
r.v{‘l

st
I
N

T
'.". S %S
R

s
'{ Py

v,
'.»

-

o

100.0°09°5 0% 870,07 4 op s

" 1.

VYW RS D I @S0 SEEh Gl gt g 40y §00 4y ¢

FORTES AND RAGHAVENDRA: GRACEFULLY DEGRADABLE PROCESSOR ARRAYS

that it connects the (i — [)th row and ith rows ot processors.
Let X, = | when row : of processors is ¢liminated from the
array because it contains at least one taulty processor, and
X, = 0 otherwise (i.c.. row ¢ 1s preseat). The ith row of
switches has its state determined by X, and X.-,. 1.¢.. each and
every switch in row I is in state X, X,. [t is easy to see that
the above rule can be implemented with simple logic distrib-
uted across everv row or every processor. Thus. additional
controi hardware is minimal and can be ignored for practical
purposes. Furthermore. note that compiete isolation of fauity
modules is provided by the switches and the control rule used.

B. ARCE Reconfiguration

In describing ARCE reconfiguration, we assume without
loss of generality thatinan(n, < a,)array we have n, = n,,
ail the following discussions remain valid when 7, = nif we
interchange n, and n, and repiace the word ARCE by ACRE.
ARCE removes either the row or the column of the array
containing a faulty processor according to the following rule-
remove a column tf and only if "n,, 7. rows have been climi-
nated after the last column elimination (if any). Note that for
n, = 1 orn, = 1. ARCE reduces to SCE and SRE. respec-
tively. As for SRE. logical elimination of rows or columns
uses additional switches and interconnections. Fig. 5(b)
shows this additional hardware (full lines) and the onginal
array tbroken lines) with (4 x 4) processors. In general.
{n, ~ Lyn, = nyin, ~ 1) additional interconnections
(=100 percent redundancy) and (n, =~ lin, = niny ~ 1)
switches are required. As for SRE. additional external
memory and internal control logic can be ignored. The struc-
ture and states of the switches are the same as for SRE
[Fig. 5(c)]. To reconfigure the array, the scheme used for
SRE reconfiguration is also used in ARCE for row elimi-
nation. For column elimination the rule is similar except that
the word “row” is replaced by the word “column.” Thus.
simple distnbuted logic can also be used. and total fault
1solation is also guaranteed.

V. PERFORMANCE ANALYSIS

A consequence of the simultaneous use of SRE with RR
and ARCE with RCR reconfiguration is gracetul perfor-
mance degradation as the array size s reduced. [n this section
we give a lower bound for array performance as a function of
the number of rows and columns eliminated. The lower
bound is exact in the sense that there are worst case algo-
nthms for which such lower bound pertormance results.
Assuming worst case algorithms for which the RR and RCR
properties hold. we also derive exact lower bounds for the
performance as a function of the number of faults for the best
and worst case fault distributions. The best case fault distri-
butions can also be thought of as the case when an 1deal array
has the capability of reconfiguring itself so that faulty pro-
cessors can always be grouped in the same row or column.
For simplicity, we only present the reasoning leading to these
bounds. and the reader can use simple inductive rules to
venfy their correctness.

Any algonthm executed in an in. < 1) array in time T,
will perform at most (T, < n, < 1) computations. Thus,

Al N

v) "\’ y .Y ’VJ.'.'.‘-.‘ v"‘ -@')')-f‘ \.,. v-.".'ll'.'.l " vl b A V.-"('n".-l‘.)"“-" - ‘d“ LI S _‘.‘.,'
:".o\« Rt ~\"‘§$~ "ﬁ ? L\, """ ~;~$ v S:'w'\' N AR -‘.'-"‘.r"j'.d-'q‘\r‘" R,
. . N ;

1039

the worst case happens when the algorithm has exactly
{Ty x n, X n,) computations, i.¢.. all processors are always
busy. We consider this as the worst case in the sense that any
single processor failure resuits in the fargest number ot com-
putauons that are not pertormed. Consider the case when this
worst case algonithm must be executed 1n an array of size
n,=m) Xiny—myyy. 0€m <n,, 0 =m <n, This
smaller array will need at most time T, to compute each of the
“myitay = my) Tns/(ns — my) partitions of the original algo-
rithm. each of which has at most Lan. = myy %
tny = m») computations. Taking computation time as a mea-
sure of performance. the performance of anv array with
m, rows and m. columns climinated 1s

T < nin, ~mp nitny — ma'T, 61

Let T denote the computation time for an array with & faulty
processors. Let the ratto 7,7, be a normaiized measure of
performance when & fauits occur and let P, dercte a lower
bound on such ratio (1.e . consider worst case algonthms),
Depending on the distribution ot taults in the array, P, can
take distinct values tor a fixed k. For SRE. & fauits cause the
elimination of at most & and at least &/n, rows. From (6) it
foilows that

- = < (Psrg =

For ARCE. in the worst case fauit distribution,

k k
k - =— rows and -_— Columns
‘n‘[ny
== = -
N e

are removed. [n the best case fault distribution, ine numbers
of rows and columns removed satisfy complex expressions,
and we prefer to use simpler conservativ. :stimates. Clearly,
the number of rows removed s less than k., tn,)). and the
number of columns removed 1s less than & "n,, n, n._.
Hence. from (6) we have

< AP g
T RE

Xy

1A

e =

Tk _‘lk

n, s o ==
n- n
- .
n:

Note that for both SRE and ARCE the lower bound on per-
formance reduction (i.¢.. tor the worst case algorithm and
worst case fault distnbution) is alwayvs less than or equal to
0.5tork = 1. Fig. 6 shows these bounds as tunctions of the

number of faults tor the case whenn, = n. = n

~
o

TR

.

v v
A

AR
\.,,&"'
[

e
Y oY
.'-i
s
ped
u)\‘ .
oy
o

» ? K,
AR

NN
L
o e

N
voy

¥
4@

.
-

3

o, o,

e
&
-

r"'(\'{‘:"ﬁ
Y
e 'J ‘z\.’ i

S g
o
-

o
s’ﬁ ®

o C Ry
e Ef }',')"(:"'.

g t“r o
':“.' 2y

L
el

IOt
v“_-".-\ “)‘)\I&f"
','.‘-'xsl""‘i

“x,
a

- e S

WY F.r r-5

K [no of foults)

nel n-
b}

? K {no of fauits)

Worst case performance reduction. (a) SRE. +b) ARCE as a function
of the number of faults in an (n x n) array.

Fig. 6.

Example 5.2 Assume that. due to the occurrence of
faults. the algonthm of Example 3.6 must be executed by
a)a(3 < drarray. andb) a(2 x d)array. Fig. 7 shows three
steps of the execution of the aigorithm in case b). The total
executiontimeis 2(w{l.M - L.V ~ |} + 1) = 20 unuts of
time where 7, M, and .V are as in Example 3.6. The normal-
1zed execution time or performance is 16/20 = 0.8. which s
higher than the value of 0.5 predicted by (7). The same can
be said for case a), and full details can be found in (31]. This
example also illustrates the execution of a reconfigured RR
algonthm in an SRE recontigured array. In Fig. 7. the wrap-
around arrows are labeled with (5) to indicate that commu-
nication takes S units of ime. This illustrates our claim that
this scheme allows the potentially time-consuming use of
externai memorv for recycling data. (End of example.)

VI. ANALYSIS OF RELIABILITY PERFORMABILITY AND
COMPUTATIONAL AVAILABILITY

In this section we evaluate SRE and ARCE recoafiguration
schemes in terms of the following commonly used measures:

1) reliability R(r), i.e.. the probabtiity of no array failure
1n the interval ot ume {0.¢].

2) performabulity Perf(B,1){24]. i.e.. the probability that
the array pertforms above some performance level B:

}) computational availability 4 11 [25]. 1.e.. the expected
value of the computational capacity of the array at ime ¢ (in
this work, computational capacity means the number of pro-
cessors that have not been removed from the array}.

We use the common assumption that the processors of the
array have exponentially distnbuted tailures. 1.¢.. the proba-
bility that a processor has not failed before time . given that

LA AN A A AN LA A A A A N4
NN b s P P e
L) .’\-’\l.__ff\f.-’_.f.'f_.nf‘I\,'J'_.- NP NG _ \-’\i‘\

.0t e e ale’ 0) t fat put gt

. ‘g8 at:
- - w¥op W W, W W, B oS oV oF) I8 ")

'EEE TRANSACTIONS ON COMPUTERS. \OL. C-34. vO. |l, VOVEMBER (985
it was imtially functional. 1s ¢ ™" where A is the failure rate.
In our analysis the unit interval of time [0,] 1s such that
At = |, i.e.. we use a failure rate that 1s normalized with
respect to the time umt {e.g.. A = 107" failures/h, 1 =
10° h). The assumption of exponentially distributed failures
1s also convenient because it will allow us to use Markov
models for arrays with SRE and ARCE reconfiguration
(exponential distributions are memoryless). This is justifi-
able for arrays with independent processor modules. We also
consider the possibility of imperfect reconfiguration by using
a parameter c. the coverage, which is the conditional proba-
bility of a successful array reconfiguration given that a failure
has occurred. This parameter incorporates the effectiveness
ot both the fault-detection and switching mechanisms used
and we assume it to be the same for any fault in any processor.
Next, we give the number of possible array configurations
{also called degradation states. or simply states) for SRE and
ARCE schemes. This number also measures the number of
faults that such schemes sustain before total array failure
tassuming worst case fault distribution).

The number of processor failures tolerated in an (a, X n3)
array with SRE or SCE reconfiguration is. respectively,

(9

(ny — 1) = (K)sgg = (m - l)"z
and

(":—HS(K)scgs('lg—l)'h. (10)

The left- and right-hand sides of (9) correspond to the cases
when all faults occur in distinct rows and in the same rows,
respectively. This comment also applies to (10) if we replace
the word “rows” by the word columns. Clearly, SRE is more
fault tolerant than SCE if and only if n;, > n,. This 15 a
criterion as to when to use SCE or SRE.

For ARCE, the number of processor failures tolerated in an
(n, X n,) array is

n
— +n —-2=K <nin -1
My
‘A,
L mi _ | (n
| ns
ny

where the left- and right-hand side expressions correspond to
the case when all faults occur 1n distinct rows and columns
and to the case when they occur in the rows and columns
already climinated. respectively.

Without loss of generality, we consider an (n X n) array
and analyze its reliability, pertormabulity, and computational
availability when SRE and ARCE reconfiguration 1s used.
The Markov state diagrams tor these two cases are shown 1n
Fig. 3. The number ot degradation states i1s given by the
left-hand stde ot (D and (11) wheren, = n, = n.1e..n - 1
for SRE and 2n — 2 for ARCE. In the same figures. every
state is represented by a circle showing the state number and
the number of processors in the reduced array for that state:

- »

oy

7

P4
P

e e e e e~
. o
R

[
L1

oo

=
LK 1
s

o

_.-'."/r.'
N
g
"-

v, -

*
L e

wx
'J

2

2z
:"/_'1

= _

the state transition rates are also indicated. An arrow starting "
4
» 4 ‘
@
O N
o
LE0N
- 3 o " - L - - - - . - - - - - -~ - W - .b ‘f
AR UL N A RS TR A S LR SRR S R L RS A
e N T \\.\ "o ENGAN LN CCAC AN A

l ! L5 L | |
-—jcl.spg_'n.z.u? £I.|.22_’(l,0.3;')—- —E: \'I,S.H/) (.22 \'t.a.32—

;\mt ;\mr Mz)t i | rk 2) rz)f
—) .
-—1 — ——1(033 ——J -

e T

| | il ’ ’ ’ '
- o el =T
J: f
i
t

s :5)1 (%) L1 3

(2.0 r—— (2,100] (2,0.1)
TN N]

L el el N | L e Nl

(]
-

Wl

2
2
£

1]
o
']
0,

i
[A
ks

7
7,

2
oy
e,

[s

P4
& Y

r
5

k4

|
|
.Ld
!U
]
]
e
F
&>
i{—[
.’a.;&.’
.

5} (SH |19 tH R4 (8) z,t

LN

(2,20 {2, 1,4) 2,02 — (2,30 S Sm e

TNV N TN G N T

LA

b

LY

t= | 3 t= ‘4
Fig. 7 Six steps of the execution ot the aigonthm -t Example < | case m

1at2 x drarray). Fort = Sand 1 = 6 the computations proceed 4y siown
in Fig. 4

BErET IS
s, ',:';‘:‘:'b'& -
« €«
LSRR A N

in state #: goes to state (: ~ 1) to indicate that a failure of * 1n ARCE
the array in state #: 1s covered (i.¢.. detected and recovered - - g
successfully). An arrow starting in state #i goestostate F to y = {n - : Jin - i)
indicate that the array in state #i failed to recover from - - Dt
failure. Each arrow 1s labeled with u state transition rate. and from state #! to state #0 ~ |} "“.r:.r
this is - - Rt
* in SRE M=ca =0 -afn -)‘n— L) \ib.
hE ®
- TN
from state #¢ tostate £y = 0,-- . 2n =3 (1} AT

1o~

A= cnn = DA from state #: to state #(: + [)

(1= oA, = (1l - cmn - : TN
P= oA =11 = cimn = 1A In both ARCE and SRE there 15 a single possible transition S
o

from state #i o state F.0 = 0. - .n — 2 (12) from the last degradauon state to ~tate F For SRE. the state

- T N R P A R I R R R e N AR T NP gy R
Yow . ~ Y A O Ao W LA LA N N A,
I N OJ‘:?":. .l‘:’l'.l'n o .V NN, .'ﬁ..' ll'.i 239 %] $: .. f"}

-"v'.-¢<(n‘_ » ’- .‘J'V'J"I".f‘-r.‘\.-'('.\.
PR N E T "'-r"“ A I
, X O Ry Nl M il XM g X

PR U BU U U T T P T R T R L A N L N o T LR ORR R 6 ot tav §a® ta-ga ine 4e
. 4 7 N < - -’ a’

|EEE TRANSACTIONS ON COMPUTERS. vOL. C-34. %O. |1, VOVEMBER 1985
* pertormability = Pert(8.¢) = S;.,Prit)
wherej is such that the performance P, = Bfork = 0.--- . Leons
* computational availability = A.(t) = S0, Prt)Cs - ',"
where D is as above and C, is the number of processors in :
state k., i.e., “
Ce = nln = k) for SRE
Ck=(n—f§;)(n—i-§§) for ARCE .
We can aiso compute the reliability improvement factor o
(RIF), defined as RIF(:) = (1 = R, t)/(1 = R(1)), where :.‘ £
R.(2) s the reliability of a nonreconfigurable array, and _.'\-}_%'
thus. R.(1) = Pryis). O
We used the above expressions to evaluate the following ‘a.’.-"
arrays using SRE and ARCE: a (5§ X §) array for the cases :!"
when (¢ = 1.B = 0.5), (c = [.B =0.25). and a (10 X ®
| 10) array for the cases when (¢ = [.B8 = 0.5). (¢ = 1. RO
: B =0.25(=0958 =0.5),(c =098,8 =0.5), and ey
! (c = 0.99.8 = 0.5). We considered the operation of the OV
array during five intervals of 0.1 units of time starting at o
t = 0. The results summarized in Tables I and (1 allow us to "}ﬂ.\
conclude the following. ®
* ARCE has better reliability than SCE when fault cover- N
X {®) age ¢ = | (see Table D). :;:-’
| Fig. 8. Markov state diagram. (a) SRE. (b) ARCE reconfiguration. * ARCE and SRE have comparabie reiiability when fault :.r“‘
coverage ¢ < 0.99 (see Table II). ' gt
- .) o * For high performance (i.e.. large values of 8), SRE has ;-I:
transition rate is A,., = nA, whereas for ARCE itis Ax—: = peyer performability than ARCE (see Table 1). . -
A. The Markov models for SRE and ARCE differ only in the « ARCE has better computational availability (see o
number of states, and they are described by the differen- Table 1). X :\
. tial equations * Reliability for both SRE and ARCE degrades signifi-)
| dPry(t) cantly as coverage decreases (see Table 1I); this is particularly . :s
— = =(cAg = (1 = C)Ag)Prolt) = —AoPry(t) drastic for ARCE. o o
Table lII compares SRE and ARCE qualitatively and ®
dP;;(H = CAPL) + A Prlt). k=1..D :::t t!ca):)l:'):vmg comments complement the information of ,.;::“.
(14) * The amount of additional hardware can be measured in ; ..c'
terms of the increase in the number of a given type of compo- el
where D = n — | for SRE and D = 2n — 2 for ARCE. pent of the array or in terms of the chip area taken by that .‘ %
Pri(1) denotes the probability of the array being in state k at hardware. The first approach may be unrealistic for VLSI ®
ame . and the A 'sare asint 12) and (13) for SRE and ARCE. arrays, whereas the second is dcpendent on the (cchn()'ogical i :.::'I. :
respectively. process and the size of each cell used. We used the first ap- .
Assuming the nitial conditions Pryts) = 1. Prl0) = 0. proach to account for the additional number of inter- : :':.::
k = 1. --.D. the solution to (14) can be obtained by using connections and the second to measure the etfect of adding T
Laplace transforms and paruiai fraction expansion as switches. We assumed that every switch takes 20 percent of bosdat
Prir) = ¢t the area of a cell tlike in [20]). \ ®
olt) = ¢ . L » ’
. T A * Faultcoverageisa ;rmcal parameter for the reliability of LN
Pr.ir) = C‘S_T__’_i‘__'__ew‘ ARCE and SRE. Two important conclusions can be made. ; :.':'r\
xnn-:o"\: - A) First. if fault coverage is not very good. then the difference A
- in refiability tor SRE and ARCE is negligibie. This. in turn, b.:\: !
After evaluating the state probabilities. the refiability. per- means that SRE s preterred to ARCE because 1t requires less \j\{: .
formability, and computational availability can be computed additional hardware. The second conclusion 1s that the fault o
using the tollowing expressions: detectton and recovery schemes used should be as simple and Y,
* reliability = R(ry = T2, Pr.(D) reliable as possible so that fault coverage is very close to | |’.::.::
where the number of degradation states 1s D = n — | for unity. The fact that our reconfiguration schemes use only a t.::l":l.
SRE and D = 2n - 2 tor ARCE: reduced number of interconnections. switches (which can be \:."':::
o
.
: "
. 1':;_\

L
[4

AL AT AT A A o
w h
:, !l...t lw.‘ AuX)

N T S e A L o T D P T T T I I S T IV R I TR L. P . - e - .
P) N O A AR AN N Ry ‘S'n‘\l"‘ Mo S R 3
A Ints ‘ ALY Y S LT ELCRANY

b IR Y N *" K A CCPN . MY, $\ "i e T

27,

(L8 A

!

W S Y T W ——— - -

ORI T IO A R R U R O O, SN L N

FORTES AND RAGHAVENDRA: GRACEFULLY DEGRADABLE PROCESSOR ARRAYS

TABLE
RELIABILITY. PERFORMABILITY FOR PERFORMANCE LEVELS OF 8 = 1) § anD
8 = 0.25. AND COMPUTATIONAL AVAILABILITY FOR SRE anp ARCE 1N
15 < 31 aND (10 x 10) ARRAYS (COVERAGE ¢ = |

? \ SRE \ A\RCE |
'Amyl'l‘--c:]'
| Sige CRIU Perf (5.0 Perf{254) Adt) | RI Perf 1S4 Ped (350 Ade) !
: I 0%0 9083 onz 151 1000 08 0.900 o1 |

: 089 0288 0605 910 0900 seskin? oms na)
sx$§ . 3 0717 TTmi0? Q31 337 [0.999 1.0ix10° 058 33

.4 0518 200x10 ° 038 338 0908 ! 4x10* O3S 438 |

T35 0348 48Tx10° 00ST 108 ‘09008 i7xt0 ' 0182 501
\ .1 roses 01w 0TS WT 1000 325x10°0)83 s

P 0T 910’ 0143 138 100 300 U 508 i’
101 3 (0399 a8x19* 113107 487 'oowe 000 0188 81
‘ ; 4 10188 000 seli0’ 183 00 000 a0 ot
. 3 '008s 700 I0x10° 2873109009 000 110} a2
TABLE 11

RELIABILITY IMPROVEMENT FACTOR FOR SRE aND ARCE IN 4 110 < 1)
ARRAY FOR COVERAGE¢ = |.c = 099.. = 198 D¢ = 09§

RIF(t) for SRE ‘ RIF(t} for ARCE ,‘

' Time *
o=l =09 =08 ‘:“1 ~=y r298 =08 c=8S

, 981 141 Tz 358 2210 153 Tes a7

I

1

!

i f
134 [477610 374 462 207 '
I

1
T2 0 478 339 284 201 iT8N107 104 344 248
P03) 188 15T 150
Dol v s ot |2ismi0t Ter g 200
[5 108 108 108 10 'uT3wi® T 306 101 _
TABLE 111
Comparison of SRE anD ARCE
| . Addwosal U Retisbility | Sesstmity | Performablity | Comp-unonﬂ
Hardware o coversqe J| Avadaburty
i S0%% (1atercow.) ' J ! Good for high i
SRE | ' Good High performaace | Good
207 iswitches) | . levels :
! 100% (1otercos | ! I(‘-ooélmlov !
1 ARCE | " Very good i Very bigh . performance ' Verygood |
| 0% (rwisches) | | levels . .

designed conservatively). and a very simpie control rule
matches this need. This may not be true or feasible in fully
reconfigurable arrays.

* SRE has high performability for high performance
levels, whereas ARCE has high performability for low per-
formance levels. This suggests that SRE should be used
in real-ime applications where execution time 1s critical.
whereas ARCE s adequate for applications requinng long
periods of operation (e.g.. remote svstems).

¢ Computational availability 1s used here to meusure the
potential computationai capacity of the array. The actual
computational capacity depends also on the method used to
expiore the potential capacity. In other words. there mav be
other algorithm partioning techniques or computation-te-
processor allocation policies that vield better performability
than our techniques. In particular. note that 1 potentiat) com-
putational availability 1s always better tor ARCE 1n contrast
to worse pertormabulity for high pertormance levels.

VII. CONCLUSIONS

Any processor array can be made tault tolerant by using the
approach described in this paper. However, our recon-
figuration schemes assume the existence of complementary

w
A
=

1043

testing und fault recoverv techniques and uadequate tech-
nologically teasible hardware implementations. Due to limi-
tauons 1n space we do not elaborate on these issues here. and
for a brief discussion on some of them the reader s referred
to [31].

In summary. this paper proposed and analvzed iwo pos-
sible approaches to the design ot gracetully degradable array
processors. They thrive on the generality ane wimphcity of
recontigurattion schemes which make it possible to preserve
the contormability ot the processor arrav and the aigorithm
being c¢xecuted We showed that anyv aigonthm can be
rreimapped 1nto a processor array so that it can be partitioned
or recontigured along one or both orthogonai direcuions ot the
plane. Arrav recontiguration :v achieved by owical ehm-
naton of rows and:or columns with fauitv processors The
switching mechanism isolates taided modules and 1 ex-
tremely simple ind cost effective We analvzed and exem-
plified the use of our techmques in detailed exampies. Closed
tform expressions were derived for reliabtlity . performabiinty
and computational availability. and they were used to evalu-
ate (5 < Srand 110 < 10) array svstems. Besides its sim-
plicity and generalitv. our approach has another significant
advantage over previously proposed sofutions. ;¢ . the pos-
sibulity of gracetul degradation. Our schemes tolerate at least
tn = P)lauitsinanta < namrav. whereas redundancy solu-
tions tolerate a smatl constant number ot taults and require
larger amounts ot additional hardware . The noveaity and supe-
nority ot vur schemes results trom the tact that thev explore
the characteristics ot both the atgorithm and the architecture.
Clearly, our approach can be used together with other solu-
tions based on the use ol redundancy or more cumple< lormy
of array reconhiguration. [n these hvbrnid schemes. redun-
dancy could be used to preserve the s1ze and structure ot the
arrayv as long as possibie. tollowed by progressive simple and
tast SRE or ARCE reconfiguration steps interspersed with
other complex time-consuming reconfiguration procedures.

REFERENCES

1) K Hwang and F A Brugs. Puratle! Compuier Aronuecture New

York: McGraw-Hill. 1984

L Uhr. Computer Arravs und Nemorks Algoruhm-Structured Parallel

Archueciures New York Academic. {942

i K E Batcher. "Design of 5 massivelv paralle! processar, {EEE Trans

Comput ot U219 pp <26-8300 Sept 1980

H T Kang and C E Losersen. \jgonthms tor W LSE processor ar-

wavs,n darnduction s Ly Sostems O Mead ang L Tonway,

Eds. Reading, MA. Addison-Wesler Sec ¥ 3. 9%

SES Y Kung, K0S Aarun, R 0 Gui-Ezerand DV B Rye. "Warelrront
afray processor Language srchitecture and appinanons. (£EE Trans
Comput . voi C 3 pp O83- 0606, Nov 19R2

[

4

~l L savder. lnrroduction o the conhigurable meniy Sarglet computer.
[EEE Compur vob % pp 37-3%0 jun 982

L Lampont. The paraife: svecunion of DO wes. ammun ACM
of iTono D opp N3-wd ben 974

i €) Gallopowlos and S D McEwan. Numenicat sxperiments waith the
nassivelv parallel processor * n Proc 9818 far Conr Porader Process-
ne. Pp M PR

9§ A B Fortes, " \Vgonim rranstormations for nararied frocessing and

VLS arehutecture Jesign. " Ph D dissertanon Dep Elec Ung St
Untv Southemn Cablitornia, Lo Angeles. Dec (983

DD Motdovan and) N B bones. Pamminoning o1 algonthms tor 2xe-
cution in tixed size N EST architectures, "o be publisheg. wce a0 -——
Dep Elec £nag Svat U nnn Southern Calitomua, Los Anwetes. Tech
Rep PPP.3 1yR3

Lol oWy o GO o S DAV AT AT N A A L A T R AL R PR Y]

LR A S R S ALY A R S T AN AL St Sl N S N)

A e i'\._-" m.‘,r\."\fN g \ y AN
L) L) Rl N . - "

NG RAUNE NN RN AN RE XN N AN RN RN APATACANANR I

{11] 1. P. Hayes. " A graph mode! tor fauit toierant computing systems. /EEE

Trans. Comput.. vol. C-15. pp. 875-584. Sept. 1976.

{12} A.L Baqa and T. Lang. “Reliability aspects ot the Iihac [V computer.”

wn Proc. 1976 Imt. Conf. Paralle! Processing, pp. 123-131.

{13] D.K. Pradhan. “Fauit-tolerant architectures for multiprocessors and

VLSI systems.” n Proc. [3th Fault-Tolerant Compus. Svmp.. 1983,
pp. <+36-441.

{14] A._L. Rosenberg. “The Diogenes approach (o testable fauit tolerant arrays

of processurs.” (EEE Trans. Compui.. vol. C-32. pp. 902-910. Oct.
1983

[15] 1. Koren and M. A. Breuer, “On area and vieid conswderations for tauit

tolerant VLS! processor arrays.” Dep. Elec. Eng.-Syst.. Umv Southern
Califormia. Los Angeles. Tech. Rep. DISC 82-5. Nov. {982.

[16] T.E. Mangir and A. Avizienis, “Faulit-tolerant design for VLSI: Etfect

of interconnect requirements on"vield improvement of VLSI designs.”
{EEE Trans. Comput.. voi. C-31, pp. 609-615. July 1982.

(171 C.S. Raghavendra and T. €. Mangir. "On the VLSI impiementation ot

fault-tolerant architectures.” in Proc. 1983 Int. Conf. Comput. Des..
VLSI Compus.. pp. T44-747.

{18) D Fussel and P. Varman. “Fault-tolerant water scale architectures for

VLSL." in Proc. 9th Svmp. Comput. Architecture. 1982, pp. 190-198

{19} J.W Greene and A. El Gamal. “Area and delay penaities in restruc-

turable wafer scale arrays.” in Proc. Jrd Caitech Conf. VLSI. 1982.

{20] K. Smuth. “Senal convoiver to be tault-tolerant.” Electron.. p. 76. Aug.

[}

{22

(23

[24
{25

(26

Nal

1983.

| K.-H.K. Kuang and J. A. Abraham. "Low cost schemes for tault toler-
ance 1n matnx operations with processor arrays.” in Proc. 9th Svmp
Comput. Architecture. pp. 330-337
R. H. Kuhn. “Yield enhancement by fault-tolerant systolic array | Sum-
mary).” n USC Workshop VLSI Modern Signal Processing, Nov. 1982,
pp. 145-152.

| J.A.B. Fortes and C.S. Raghavendra. “Dynamically reconfigurable
tault-tolerant array processors.” 1 Proc. 14th Fault-Tolerans Compui.
Svmp .. 1984,

| J.F Meyer. “On evaluaung the performability of degradable computer
systems.” /[EEE Trans. Comput.. vol. C-29. pp. 720-731. Aug. 1980

] M. D Beaudry. “Performance-related reliability measures for computing
systems.” [EEE Trans. Compus.. voi. C-27. pp. 540-547. June 1978,

] H.T. Kung and M. S. Lam, "Wafer-scale integration and two-level pipe-

.
7]
I
"
ol

G202’ ata’afa e’ b el e te ath b ata at et e % a " et R s %Y 2 e

IEEE TRANSACTIONS ON COMPUTERS. VOL. ¢-34, ~O. ||. NOVEMBER (985

o
»
%
G,

uned implementation of systolic arrays.” /. Parallel Distrib. Comput .
vol. 1. no. I. pp. 32-63. 1984

{27 R.H. Kubhn, "Optumization and interconnection complexity for paraliel
processors, singie stage networks and decision rees.” Ph.D. dissentation.
Dep. Comput. Sci.. Univ. lllinorts. Urbana-Champaign. Rep. 80-1009,
Feb. i980.

{28] D |. Moldovan, “On t.e analysis and svnthesis of VLS aigonthms.”
IEEE Trans Comput.. vol. C-31. pp. 1000-1009. Dec. 1982

{29) 1.A. B Fortes und D {. Moldovan. “Parallelism detection and trans-
format: + techmiques useful tor VLSI algonthms.” / Parallel Distrib.
Compur . 1985 10 appear.

{301 D.K. Pradhan. “Fault-Tolerant multiprocessor and VLSI-based svstem
communication architectures. ” tn Fault-Tolerant Computing. Theorv and
Techmques. Englewood Cliffs. NJ. Prenuce-Hall, ch. 6. 10 appear.

[31] J.A.B. Fortes and C.S. Raghavendra, “Gracefully degradable array
processors,” School Elec. Eng.. Purdue Univ . West Latayette. [N, Tech.
Rep. TR-EE-34-15. 1984.

X
¥

-‘—f:‘.-” r

L5

r 5 -

e o

Jose A.B. Fortes (S'80-M'84) was bom mn Lu-
anda. Angola. on August 15. 1954. He received the
Licenciatura ¢em Engenhana Electrotecnica degree
trom the Universidade de Angola in 1978, the M.S.
degree in electncal engineering from the Colorado
State University. Fort Collins, 1n 1981, and the
Ph.D. degree in ¢lectncal engineenng from the Umi-
versity of Southern California. Los Angeles. in
1983.

Since 1984 he has been an Assistant Professor in
the School of Electncal Engineenng, Purdue Uni-

e

versity. West Lafavette. IN. His research interests include architectures,
languages and algonthms for parallel processing, fault-toierant computing,
and design automation.

Dr. Fortes 1s 4 member of the Association tor Computing Machinery.

AN

A4 5 S
Yot

C.S. Raghavendrs (S'80-M'82), for a photograph and biography. see p. 5
of the January 1985 ssue ot this TRANSACTIONS.

353
Pl

WX

L PN,

s P
A
4@ A o

.

-

(Y

Y

A AR AR O A

v .',"Oa"k.-. e LA I

et
»‘)

\':.'\" R CY

A
S
[d

A Y J
S
e X

N,
>‘

>0 3 ¥_ %
AW

-8 8 5 Y
NI XA

vy
NN
¢

4

L

”
»

..n'

PN PN e T L L,
S0 ety N

o, '1'-."-"'."'
%y N
T Loty 2 3

REFERENCE NO. 2

Fortes, J. A. B., Milutinovic, V., Dick, R., Helbig, W., and iMoyers, W., ‘A High-Level
Systolic Architecture for GaAs,” 1986 International Workshop on High-Level Computer
Architecture, Proc. of the 19th Hawaii International Conference on System Sciences
(HICSS), pp. 253-258, January 1986. (before SDIO support)

N
e
]

-
Yoty

) .

2

h

K _'v

-g- "- "-

S U L N R e T) ‘o ag 4 ana avaaty 2o e ia-ta ea® 4 . s
: My 'S - Sad a il T ey Ve Cu WL W e g T R AT N K TN e Y
] .. .

'.:5 Presented at the 19th Haaii Int'] Conference on Systen Sciences , January, 1986 (recipi ent of

)

WA honorary mention)
-

h
‘,.

b
&

1‘:.

X

1gd
o

A High-Level Systolic Architecture for GaAs

44
e
; J. A. Fortes R. J. Dick
e V. Milutinovi¢ W. A. Helbig
:":‘ Scheol of Electrical Engineering W. D. Moyers
N Purduce University Microelectronics Laboratory
¥ West Lafayette, Indiana 47907 Advanced Technology Laboratories

f
A RCA/Aerospace and Defense
:t" Moorestown, New Jersey 08057
LY
b
I. Introduction later 4K-bit versions were presented. Several companies

_t,: were working on SK-bit designs in 1985, Gate arrays

K X ’I"h:s paPer descr»bes the design o‘f a high-level Gz%.»‘\s have advanced from a 1000-gate design presented in 1984

A systolic architecture 1.ntex.1ded for use in a new generation ,, . 2000-gate design announced in 1985. With this

"W of advanced comr.numcatlo-n and ra(.iar systems. The pl‘ll‘- enormous progress underway, it is now appropriate to

o pose of tbe systohc'array 18 to.prowde thos? systems ‘fvll"h consider the use of this pew technology in the implemen-

R a real time adaptive filter signal processing ?apablhty tation of high-performance systolic arrays.

Fo with very large throughput and short response time. The . . .

‘o . . . GaAs technology generates high levels of enthusiasm
"{' bigh performance characteristics of the architecture . v b 't dvantages it eni S
A described here result from the use of fast GaAs techmol- Pr'Martly because ? wo advantages 1 en;oys_nver -

i con. These are higher speed and greater resistance to
B ogy. an eflicient and numerically stable algorithm, and an . L.

3 adverse environmental conditions.
innovative systolic array architecture. The following sec-] - ‘

- 4 tions of this paper describe these design choices and how GaAs gate§ swntchl faster then Silicon bipolar

~ they interplay and converge into a solution which meets Trabsistor-Transistor Logic (TTL] gates by at least an

:::'.: the stringent requirements of communication and radar ofder of magnitude [2]|. These switching speeds are even
o systems of the 1990's. faster than those attained by the faster Silicons, CMOS

"‘ ; . 3 L0 N

s . . 2C t] ols 3].

':; Section Il summarizes the basic advantages and an‘d bipolar ECL b}‘ at lower power le_w“ s, {2] [l For
Yy L . L this reason, GaAs is seen to have applications in com-
. disadvantages of GaAs. Section Ol explains in more) : i . i
v detail the adaptive filter signal processing problem as it puter designs in several computationally-intensive areas.
by 4 e . In fact, it has been reported that the Crav-3 will cuntain

= occurs in the targeted applications and describes the algo- GaA s
’::- rithm used for its solution. The global systolic architec- S parts. _ ')

,,.::: ture is described in section IV, as well as the design of the GaAs also enjoys greater resistance to radiation and
. individual processor elements of the array. Section V is lemperature variations than does Silicon. Gads success-
v dedicated to considerations on fault-tolerance, modularity fully operates in radiation levels of 10 to 100 million

B and extensibility, and, architectural impact of GaAs tech- RADs [2]. Its operating temperature range extends from

g nology. Section V1 is dedicated to conclusions. -200 to 200 degrees centigrade [2]. Consequently, GaAs

“\-:‘.. has created great excitement in the military and

N
o acrospace markets.
~ ? . . .

P O. Why GaAs! Unfortunately, GaAs is also characterized by some

Gallium Arsenide (GaAs) technology has recently undesirable properties. Two significant arcas where GaAs

“u shown rapid increases in maturity (1] In particular, the is inferior to Silicon are cost and transistor count capabi-

LY k - « . i .

' '5,\ advances made in digital chip complexity have been enor- ity

i . . . < . .

;: mous. This progress is especially evident in two types of The higher cost of GaAs chips is largely the result of
oy chips: static RAMs and gate arrays. In 1983, static the higher cost of GaAs material itaelf and the lower
» ! . .

. RAMs containing 1K bits were announced. One year yleld of GaAs ('.hipSA 1aAs matenal s more expensive

7 Proceedings of the 1986 International Workshop oo High-Level Com- than Silicon. Also, since GaAs is a compound material,
A puter Architecture, Honolulu, Hawaii, January 1986. additional processing is required to create it and to verify
\

\ \

«.,..

Y4

o
“ 3
T
o

.\.' -.- . ..- .
T e T

e "-_'r

o

L =

VAL LA LA

.\‘..,_,
'« N e
R N A

hY

2% 1

£

w -
-t

ol ¥ s

Pol sl Y

a

AL R 8

'.'".I'-,‘- F RN

../‘.-

7T

Y™
TN)

A

)

14
A,

Ad AT L

l' l- l.
. v
h {2

s

va ,7’-\»}1‘;./'.-"- '."""

its composition. The lower GaAs yield is also duc to
multiple influences. First, although improvements are
being made in this area, GaAs is characterized by a
higher density of dislocations than Silicon. Second, in
otder to achieve working devices with adequate noise
margins, very fine control of circuit parameters is
required, and this is oot yet easily achieved [2]. Finally,
the high brittleness of GaAs contributed to its high cost
due to its increased breakage [4]. Currently, GaAs chips
are roughly two orders of magnitude more expensive thap
their Silicon counterparts, however, this difference should
narrow to possibly one order of magnitude or less by the
end of this decade.

Transistor count limitations of GaAs are attributed
to both yield and power considerations. The relatively
low yield of GaAs chips forces designers to consider chips
with smaller area (therefore lower transistor count) in
order to remain cost-effective. Although GaAs gates
require less power than their Silicon counterparts when
operating at similar speeds, GaAs gates do consume con-
siderably more power than slower Silicon MOS gates.
Because of the thermal management problem this creates,
fast GaAs chips cannot match the transistor count poten-
tial of Silicon chips.

It is believed that these four GaAs-Silicon differences
are not of a temporary nature, but instead result from
inherent differences between GaAs and Silicon materials.
Conclusions which are based on these four fundamental
characteristics will remain valid even as GaAs technology
matures.

Because of these GaAs-Silicon differences, it is not
sufficient to merely copy existing Silicon designs into
GaAs in order to obtain optimal GaAs performance. The
GaAs environment presents the computer architecture
designer a new set of challenges. However, the rewards of
successfully exploiting this new environment are substan-
tial. With the high speeds which characterize GaAs and
the recent examples of GaAs chips with VLSI levels of
integration {> 10,000 transistors), we are presently on the
verge of achieving, with a single-chip processor, speeds for
scalar operations typical of present-day supercomputers.

II. Applications and Algorithms for Adaptive
Filter Signal Processing

Two similar adaptive filter signal processing applica-
tions exist for the proposed systolic array processor;
adaptive antenna array beamforming and adaptive
doppler/spectral filtering. In an adaptive antenna array,
the phase and amplitude of the waveform incident upon

I AR g A N PP N A g S AT P ANATE P PP L
/ S .’,‘::," T 'v-s" AR
a ¥ a .. ¥ . o 3 . o -

In\AalAacals

each antenna element within the receiving aperture are
adjusted to control properties of the far field antenna
pattern such as maximum gain, low sidelobe levels, nar-
row mainbeam and pattern nulls io the angular direction
of interfering signals. In adaptive doppler/spectral filter-
ing, the phase and amplitude of each waveform sample in
the time domain are adjusted to control properties of a
filter in the frequency domain such as maximum gaip at
the desired frequency, low filter sidelobe levels, narrow
main filter response and sidelobe nulls at the frequencies
of interfering signals. In both cases, the amplitude and
phase adjustments (i.e., complex weights) are determined
by processing all voltage samples in real time. In either
case, an adaptive Discrete Fourier Transform filter
operating on a number, N, of complex voltage samples
may be used. The N input samples, frequently multiplied
by a window weighting function to control filter sidelobe
levels in the transform plane, form a complex N-
dimensional vector, x. The filter output is formed from
the product of the weight vector, w, and the signal vec-
tor, x. The optimum weight vector is
w =Rl = MIv*

where s is the N-dimensional steering vector defining the
antenna direction or doppler (requency peak response and
R = x’x" is the N by N covariance matrix of the signal,
whose ij-th component is r; = x;'x{. M and v are res-
caled versions of R and s, respectively (for full details,
the reader is referred to [5)).

The adaptation process requires the inversion of an
NxN complex matrix in real time or, equivalently, the
solution of a set of simultaneous linear equations. This
problem has been one of the main concerns in numerical
analysis and control theory for many years. A number of
algorithms have been developed and studied with the
adaptive array application in mind [5-6]. However, for
the size of the future systems for both communications
and radar applications, the complexity of solving the
associated equations grows rapidly, implying the need for
utilizing only the most efficient algorithms. Tradeoffs
between hardware complexity and convergence time,
maximization of signal-to-noise ratio and minimization of
the effect of error sources on the adaptive process must
be seriously considered for each application. After
analysis and simulation of the candidate aigorithms, one
of the direct Matrix Square Root (MSR) algorithms pro-
posed in (6] was selected as the most adequate.

The MSR algorithms involve directly updating the
sample matrix square root factors U, D that evolve from
a Cholesky factorization of the positive semi-definite M
matrix.

e

ll. sIA5 .,

oY

4

xoa
v"-‘/'
e 1
» P F)

-

[_‘l{ﬁ Y
as Al
-“ ’) 1 }.

'@

P

o
Aty .":

h)

5

b3

’:,"- ‘-I'-
Pd

«

L

»

P

7,
oo

L4

3

P

‘

2y
e
ey

LA Ny

,;‘.‘;'.g".
prerd
oY "N

L
'y

,_
& %
PN IR

Y
S

AL
l-‘_'& Ay

“
&

‘:"1,';"1.
PR
v

VY

’

-

M = tDUT
where U is a lower triangular matrix with unit diagonal
elements and D is a diagonal matrix with positive or zero
diagonal elements. U and D are defined as
K
Mg = UDiUf = 3 xx T
i=1
and are recursively updated as
UkDU = Uk D1 Udy + xkbxg

where b is a scalar set tc one initially. The matrix inver-
sion needed to solve for the optimal weights, wy, can be
reduced to a single back-substitution. Distinet MSR
algorithms differ only in the values used for the diagonal
clements u; and/or d;. The chosen MSR algorithm
results from letting u; = 1.

IV. The Basic Systolic Architecture

The algorithm lends itself to a systolic array realiza-
tion. The triangular structure of the array reflects the
matrix triangularization step, characteristic of the algo-
rithm. The array consists of a triangular grid with N(N-
1)/2 nodes or elements (N being the size of the original
matrix). With regard to the computation involved at
cach ol them, the elements are of two types: the ele-
ments along the diagonal and the others.

Three Systolic Waves

Assuming initially a fully systolic realization, the
algorithm iteration requires three systolic waves of com-
putation (they are shown for the simple case of N=6 in
Figures 1 through 3}):

1) Wave 1, covariance matrix updating, starts
from the top-left element and propagates
toward the right and the bottom; the data
vector x enters the array from the top,

2) Wave 2, first step of the back substitution,
propagates, as wave [, from the top left ele-
ment and generates an intermediate vector 2
used next to compute the weights w,

3) Wave 3, second step of the back substitu-
tion, propagates backward from the bottom
element of the array, and generates the
weights sequentially.

N . -
e N R e
AR SN AL Nt

One notes that waves 1 and 2 can be run simultaneously,
but wave 3 must wait for the completion of the previous
two to start backward. Not only that, wave 3 has to
operate on old covariance values: as an example, when
wave 3 reaches the last row at the top, it expects to find
the U values that were there when the data vector X, for
which the weights are now being computed, first entered
the array. This requires memory within the array.

Given the array fully populated wath processing ele-
ments and necessary memory, each algorithin iteration
will perform two passes through the array (Figure 1)

- The first pass (including waves 1 and 2)
proceeds from the top and left, down aud right
at a 15 degree angle The data vector is fed in
paralle! and at a 15 degree angle into the array,
f.e., each data clement in a same veetor enters
the array one cycle after the input of the previ-
ous data element in the same vector. The pro-
cess then proceeds at an array clock interval
determined by the longest computation time in
any array element, which, in this case, happens
to be that of the diagonal element. Con-
currently, the updated covariance matrix U
values are stored into each cell, as in a shift

register.

- the secoud pass (generation of the weights w's)
can start at the same time the Jast diagonal ele-
ment D is proressed (same clock); now the com-
putation proceeds backwatd also at a 45 degree
angle starting from the last column and last row
on the right. At each clock a new weight is
computed. Note in Figure 4 the uneven but
predictable length of the “shift register” in each
array element.

From Figure 4, one can assess easily not only the
memory requirements but also the latency tume {of the
order of 2N} between the time a new data vector enters
the array and the time the last of the weights w's is
released.

Figure 1 also shows the organization of the 1Cs
within the systolic processor. The processor ¢lements are
arranged as aright triangle. Caleulations within the tri-
angle ripple from top to bottom (root covanance update
aud first step of back substitution) and from right to left
substitution). Data flows

{seccond step of back

horizontally, vertically, and downward along the outside

diagonal. One important feature of the array is that the
R R L P T N I R Y P E R I I R R PR T R

g S N N S P B PO S P S A S A
Al N T e P S e e Ca e Y N
ek v 8. KRN

S '
B a2
':'.".

v S
\]

L}

W N

e
-

el
5"..\'

»

RNCLENEY

Y.

B RN
) APIELL S
(RN T
PR AR
g Aty Y Y

o,

e

l'_ -,n
h Y

Sy s
s

v ¢ f 0
LY

S

autocovariance values remain stationary within the array,
so that no busses are required to transmit them to other
parts of the array.

The array is constructed of two cell types, which are
designated SAA-1 and SAA-2. The SAA-1 cells perform
calculations needed by the root covariance update and
the first step of the back substitution.

The SAA-2 cells are involved in both the root covari-
ance updates and both of the steps of back substitution.
The root covariance values are kept within the SAA-2
cells. For purposes of pipelining the second step of the
back substitution, each SAA-2 cell contains a FIFO regis-
ter which delays these U-values for the necessary cycles.

V. The Fault-Tolerant, Expandable, GaAs Sys-
tolic Array

Fault-tolerance is achieved by periodically testing
the array and dynamically reconfiguring it when a fault is
detected. To avoid performance degradation, spare
columns and rows are provided to allow for the logical
removal of faulty processing elements. If a cell in row i
fails then both row i and column i are bypassed and logi-
cally replaced by the neighbor column and row, respec-
tively. Figure 5 show the basic array augmented with
spare rows and columns and figure 6 illustrates the
reconfiguration of a (128x123) triangular array with an
extra row and one extra column and one faulty processor.
In the worst case fault distribution (i.e., all fauits occur in
diffcrent rows and columns), up to K faults can be
tolerated if K spare columns and K spare rows are pro-
vided. To tolerate K worst-case faults in a system for N
degrees of freedom the percentage of additional hardware
K(2N + K+1},.

N(N'l) 7O
N=12 and K=1, 20% redundancy is required. On-cell
multiplexers set by the array control system are used to
bypass rows and/or columns of the systolic array. Fault
detection is done by interleaving test vectors with the
input data and checking the output generated by the
array for the test inputs against the expected results.

required is 100 x For example, for

The occurrence of a fault after all spare rows and
columins have been used does not have to cause the crash
of the system. Graceful degradation is possible in two
ways: (a) by reducing throughput and (b) by eliminating
degrees of freedom. If processor in row i and column j
fails then (a) the row i can be bypassed and a neighbor
row is time-multiplexed to replace row i or (b) row i and

column j can be bypassed and the corresponding degree
of frecdom ignored. Notice that a reduction in
throughput may require the system to ignore some sam-
ples but the degradation affects all weights instead of
simply eliminating one.

An alternative to the use of test vectors and complex
diagnostics for the detection and location of faults con-
sists of using actual receiver sampled data and time
redundancy. The basic idea is to multiplex the systolic
array in time so that the same input samples are pro-
cessed twice. However, for the second processing cycle,
the samples are circularly shifted so that column i of the
array receives the same data received by column i-1 in
the first processing time (column 1 would receive the
same data received by column N in the previous step).
Internally, each processor can then compare its result
with the result computed by the neighbor processors for
the same data.

Figure 7 shows a (6x6) square array module as an
extension of the (6xG} basic triangular array. Note that:
(1) the diagonal elements are capable of performing as
SAA-I or SAA-2 cells and (2) the upper triangle of SAA-2
elements in the basic array is replicated below the diago-
nal of square array module. The basic idea underlying
the extensibility and universality of this square array
module is illustrated in Figure 5. This figure shows how
a large triangular array can be generated by replicating
the square array module. The replication can be done in
time, i.e., by time multiplexing the square array so that it
emulates the large triangular array. The replication can
also be done in space, i.e., several identical modules are
simply tiled together until the large triangle is covered.
Partial space and partial time replication is also possible.
Thus, the square array module can serve as the building
block the systems with different customer requirements
and intended for different applications. These basic ideas
are similar Lo those discussed in [7}.

V1. Conclusions

We described the design of a high level systolic
architecture for adaptive signal processing in high perfor-
mance advanced communication and radar systems. The
main characteristics are extremely high throughput, fast
response time and high reliability as result of marrying
advanced GaAs technology, a sophisticated algorithm and
innovative concepts in computer architecture and fault-

tolerance.

B A A N P

-‘ ,f*‘_i

‘.f

h]

b

o

P
e
.
\
.
A

¥
s e

LSO
LSS
T
\‘I\I.".
ey

o\
e

- R
‘e
»

"
",

>
"
®
Ny

9
\n;
'|

!

e .»_{,.
» '..','" (‘{‘. %x‘l"i‘.i,
P e Pt

'y
4y

Lo BN 4
»

i AN AR
304 et e l.n’l‘.'l
o PR AN
L@ L e

atea
8 4
Pl

o 55

L S l‘
s
e,

.o &8
P

.
v

[
b,
',
g
l' .
»
:,l.l
b7
»

L)
.

-
»

a:‘/ Pl

L a0

. ‘Tv:t-" ..."-; o .r..‘

S

s

R

»

.&.zf‘f.«‘

b
&

NS 8

: !"l

]

1 <
"%y

S
‘.

TEUN Y
AN

AR

-‘l{

D e A
A f’ .\‘ b

) Ot
o' n'L‘L{\":-

N

S Yt

g
hY
Pt

.d'
&

(1

2]

[3)

References

Milutinovic, V., Fura, D., Helbig, W., “Impacts of
GaAs on Microprocessor Architecture,” Proceedings
of the [CCD 85, Port Chester, New York, October
1935, pp. 36-40.

Eden, R. C., Livingston, A. R., Welch, B. M.,
Integrated circuits: the case for gallium arsenide,
IEEE Spectrum, Vol. 9. No. 12, December 1983, pp.
30-37.

DiLorenco, J. V., Fowlis, D. C., Hewitt, B. S., Hou,
T. W, Mogab, L. J., Roman, B. J., “GaAs-Status

and Directions,” Froceedings of the ICC’D &3, Port
Chester, New York, October 1985, pp 371-383.
Heagerty, W., GaAs Seminar presented at Purdue
University, January 1935,

Manzingo, R., and Miller, T., “lutroduction to
Adaptive Arrays”, John Wiley and Sons, New York,
1950.

Bierman, G.)., “Factorization Mcthods for Discrete
Scequential Estimation,™ Academic Press, 1977,
Fortes, J. A, and Raghavendra, C. S., “Gracefully
Degradable Processor Arrays™, IEEE Transactions
on Computers, November 1985,

A []
) SAA Y SAA?
x
1
2 SAA
x
2
san] saa 2}
3
3
5 -
SAA2

Figure 1. Root covariance update data flow.

! I .
N v i
?

Back substitution, step 1.

I R R

Figure 2.

Figure 1.

Figure 3. Back substitution, step 2.

seay, =)
- -
- b 1 -
ol ~ -
. T
' o
i r
oA
i Coe T
¥ | SETGwD
z Yo 4 e
g P S
2 o
3 PR
3 -
o el .
. o T
T “
Ty
‘ F

Systolic array operation (3-dimensional
representation).

Y
| A

on

o7
-3

PP A s
BE

A N BN 3R B
AN AP A
UL

R e, ol
8 - W 2

b A'N
a

..
)
¥ .

¥

i)

~»
7,2,

L L Y

[4
5

<’y

Z

b
)

7
8

Xl J 'x).
LA

1

"/(‘

AN RN

I S
2T

e

LN iy

{4'4‘;‘

128 COLUMNS 16 SPARE COLUMNS
VSED INITIALLY I FOR REPLACING

FAULTY PEs
34% FL) Zli 31 F) lil
: ¢

2 t 2|2 24w 20 ARRAY OF
PES PROGRAMMED AS
3 T3 TYPE 1 OR2TYPICAL)
NERERERE
}
ADAPTIVE WEIGHTS hd N i B Ry
FORBEAM 1M, —F— X RS
i | vasrowsuseo
2 T INITIALLY
\ ’a
JE— k‘l‘\\z —_
t
16 SPARE ROWS FOR

REPLACING FAULTY PEs

Figure 5. (128x128) basic array augmented with 16 spare
rows and 16 spare columns.

F.

ADAPTIVE WEIGHTS s

FORBEAM 1. W, ,, ———

FAULTY PROCESSOR

Figure 6. Reconfigured (128x128) array with one spare
row and one spare column and a faulty proces-

SOT.

Figure 7. A (6x6) square array module as a result of ex-
tending a (6x6) triangular basic array by (a}
designing the diagonal elements so that they
can behave as either SAA-1 or SAA-2 cells and
(b) adding a lower triangle of SAA-2 cells.

I Tt

h)
[

~ﬂﬁ
A

.

N
2 1“?

o

2 oliAS

o

T R
-

S
J-’l'

,'I
Y
7,

lr ,

A
,;'-;-"-
-5

5

L Y= T 20 D0
'i‘v;': A
Ay

".-:4
® 2L

1

o
%

Py
LA AN

13

'-.‘f:f.

b g
.l

W
ot

P
A

3

x
Pt s
KR A

Ll LL
S &y oy
PR NS

PEEY,
S
o SO
o

AL
Yoo
:-.. \';
W

P—
[(A XN

e s b &G

CLL L NI

'S %

B,

“.

H

RO NOENNCY

P ‘e dun g Yo @ . . - daa® . v g a
A B AU SR AN Mg 08 000 S8 ¥ A WX Y LA A Wu s LN WOV N W A Se gt et AR A LA DA AN S NE A BN A st Al Sl Al vus Sol

REFERENCE NO. 3

Fortes, J. A. B., ‘“Algorithm Reconfiguration Techniques for Gracefully Degradable Pro-

R

Y
=N

S

>
§
-

cessor Arrays,’’ International Workshop on Systolic Arrays, July 1986.

h)

Fortes, J. A. B., ‘‘Algorithm Reconfiguration Techniques for Gracefully Degradable Pro-

17,

cessor Arrays,” in ‘‘Systolic Arrays,” W. Moore, A. McCabe, R. Urquhart, editors,
Adam Hilger, pp. 259-268, September 1986.

AR
- 0.‘,‘

X
@y,

%
«

XAL

FrIEY.

) L AALAT T,
I @ i3 ‘\}*:,5',5_, Q@
- B w Ao

I{V.V.'{“-
et w ANy
S

k]
r

,
usl

.

NN

,l.,,.'.
e
7,

. {'l(:l "I"! ‘v
(-"‘,‘I lf'{" .

s % _¥_ 2 5 "
I“{‘.I\ Y,
Rl

» 2
‘!‘x
¥ 4

s v
75

%
x
.
.
.
.
%
.
3
s
DD
s
.
N
s
y
.
.
t
)
s
e
s
*
.
.
.
.
]
»
.
.

A R R R R A N R A AT R AT AT AT AT AT R
IR TN S - ., AR » Al . - (LD "I
. \'i\ PR H“:-' o '$.;'\) ’W N~ }\'.\ {\.\‘.‘\‘.'\ '.\ "'\--‘.\- *\ ﬁ"’-.‘\ ',,\‘.\

| . v La BhN .0 N)

L

-

P Y]
-
s
"'

WA

it R et h e R S AR Bl <, ' adadta et e A Al M Al A0

3.6 ALGORITHM RECONFIGURATION
TECHNIQUES FOR GRACEFULLY DEGRADABLE
PROCESSOR ARRAYS

Jase Fortes

INTRODUCTION

Operational fauit-tolerance 10 VLSI/WSI processor arrays remains an important obstacle to the
widespread use of such architectures In particular. graceful degradation is hard to achieve, thus
implying the need for large amouats of redundancy Without graceful degradation, after redundancy
is exhausted, any additional fault causes the entire system to fail. 2 unacceptable fact for the very
large processor arrays imade possible by VLSI/WSI Some <olutions have been proposed for this
probiem In these relatively few fault tolerance schemes, graceful degradation 1s achieved at the cost
of large losses in throughput or response ume «ostly additional interconnect. complex switching
mechanisms and/or tavoived control schemes

A promusing approach to this problem relies on using simple on-line algonthm reconfiguration
techniques together with <imple bardware reconfiguration mechanisma In essence. algorithms are
reconfigured so that they ran execute on the same processor array after the occurrence of f3ults and
possible removal of processing elemeats

In the space allowed, this paper shows how rational quasraffine (RQA) algorithm transfermoa-
tions can be used to devise such reconfiguration <chemes. It describes the mathemaucal framework
underlying ~ur techpiques, discusses examples and three approaches based on a common RQA
transformation which yields optimal graceful degradation and briefly discusses extensions of our
approach to J-dimensional arrays.

MATHEMATICAL FRAMEWORK

In the following discussion we use 7 and | to denote the set of integers and the <et of nonnega
tive integers, and use Z° and I to refer to their rotresponding nth Cartesian powers. We will con-
sider only g-dimepsional processor arrays. where q = 1.2. We see a processor array as a finite ¢
dimensional grid in which each integer point is a vector index of 3 processor and a set of vectors (the
interconnection primitives) which describes the regular pattern of interconnections of the array. The
following definition formalizes this view.

Definition 1 - A proressor srray is a tuple (L9P) where q is the dimension of the array. LYC 72718
the tndez set and PEZ'* " is a matnix of r€l interconnertion primatsves.

Thus, in a processor array (L9p), the processor with index éEL“ is connected to a processor

with index d' =] + p, peEP. L P €L9, and 1t is connected to an input-output port otherwise

The research was sapporied 1o part by the (nnovative “cience and Technology Office of the Strategic Defense
loatiative ()rganitation and was admipistersd thraugh the Oithce of Maval Revearch under contract so 0D0014-
85-k-0588

259

'.‘1 .'-(."' \l \u .\- ’\. ’,\‘- \. \- - “.
.f-_».r\.r,».r\ .r .I‘\-"\v‘.\f.\

(SN
XA

2 P
1 L

4

FEE
e

5%

i

°F
4
e

h Y

. "
.

' o

" .{‘
T

i e Pl
<,

L7

“‘l
L g

P PR §
A
11':‘,‘:‘5 4 s

e
I'. l- 1,
‘2,

yo

N
5

»
»
P

N '..'; {;‘
oSy

“a s b,
'l‘l
e/

X

2
.

&
v

.
)

.l'(

5

a

Ve
+ % Y
]

', 'x}

MR

. »"l""

A T A

L
t

‘v

.
»
ll‘
.
AN

S
’

«
y
b)
[.‘f

Y

s
f:('.'
'

L4

Y
S
[#

45

14

1 ey
.

o 1@
)

g

<

PYUTLN VR UY PN LR W T 279 0 85000 5o 3 € 00 1o a0 §.% a0 ot fuv B2 83" 0a” Ua Ue® Ba® Ga-.teY Baaha’ 04° 0" 0" $ yav ta® iy ...'
; s
-

: Y
X »ﬁﬁ
]
[} l 't
K [y
K
¢ *\P‘{_ :
" r P (
X b,
' ~ S i

260 Svstolic Arravs)
I \

Example 1: The linear processor array shown in figure 1(a) can be described by (L'P) where
L'={§: 0<0 <3}aad P = [01-1}. The square processor array of figure 1(b) can be described
; by (L°P) where L? = {{f,f2): 0 <), 72 < 3} and
h
! 010-1 0
P=hot o-t

o)

!'.',‘h‘ “ 'b

A%
2

s

N
..(}-H 3
2 NN
X e
5 5 T
®
— 2 3 O
V
K {a)
¢
b
1)
(b)
N Figure | (3) - A linear processor array; (b) - A (4 «4) orthogonal processor array
The execution of an algorithm on a given array can be thought of as an ordered set of iastan-
tiations of the array, each of which contains an assignment of computations Lo processors at a partic-
ular time of execution. Copsequently, we see ap array algonithm as a (q+1)-dimensional grid in
- which {3) for q = 1, each integer point (j,j;)7 indexes a computation at time J, and processor j, and
A {b) for q = 2, rach integer point (j,izis)T indexes a computation at time j, and processor (i2dg)T In
- addition. we associate with each array algorithm a set of vectors (called dependence vectors) which
- describes the pattern of generation and use of data in time and space._[n other words. if a computa-
" tion with index j generates a value used in computation with index ', then ;' - ; is a depeadence
» . A)
A vector. Clearly, the first entry of any dependence vector must be > | (i.e., at least one unit of time
separates generation and use of a variable), and the vector corresponding to the other entries must
o correspond to a3 linear combiuation of interconnection primitives (i.e., a path conaecting the proces-
N sors where the variable is generated and used). Assuming that communication (over a single inter-
conpection primitive) and execution of a computation take one unit of time, th_e pumber of intercon-
' nection primitives used Lo communicate 3 result from computation with index ; to computation with
» index)’ must also be less than or equal to the first entry of the dependence vector j - j (i.e.. the
) ioterval of time between the computations). These considerations translate into the following
- definition of nrr>- “-anthm.
- W
L) a
g Definitior, ¢ .t an array (LAP), PEZ'Y"". An array aigorithm is a tuple (J9*'D), where .--_:‘ 3
N Jticzar! . indez aet of the algoritbm, and DEZ"S¥ V™ s 3 dependency matriz of mE! depen- -:\'r"
b dence vec such that -J,_‘
v
. Lo,
dy21l i=1..m (1) hoa
o and [P I A
r
) . Lt
dox 2q*Li=1L..m|=PK for KEF*™ suchthat L ky<d,, . i=1_.m (2) o
= P
DAY
§ In this definition of array algorsithm we represent only the structure of the algorithm and '::{_‘
i abstract from the actual computations being performed. This is adequate because we are essentially :\‘,_vl'
) worried with problems of matching computational structures. Also, input and output data are oot -ﬁ'\
. L%
L]
‘ Al
[, & 'J‘? A
«
AN
r'.‘f.
b N
]
! LN
DAY
Ry,
@
RS
§ h ':i
I N R I S S IO I I N A I I DN A R S R R AT R R R R R R R L v R R s S N R IR NP P AL At AY
A ARG AGS T e O e G AN LR N TRt RS Sy
G0, PPN IO R G M0 A ARMRIATIN OGN, o ¥y LR LS S . Ny, »- 4

) A } . , N
L it Sa Ut Bt 1, S lat) 00s 88,01, 0°g ¢’ 2% 1% 4%’ A "8 ? RN QY - . .

[§

‘

L]

.

»

- o J
N
AR
. .

F s
N _\
v _4

ﬁaoL

Fault Tolerance und Test 261

'

explicitly represented because they caa be treated as generated Jata {ce, for a givea processor
receiving data (rom other processors there s no distinction between data geperated and data
‘‘passed’’ by those processors). Finally, the description of dependences would be more precise f to a
given dependence vector we associate the index point where the dependence s valid. This complica-
tion turns out to be uanecessary for the detivation of our main results.

0

e

Example 3: Consider the linear syscolic array showa i figure 2 for rosvolution computation (pro-
posed in [Li & Wah 85]). It computes the recurrence

'\ - t+tk-t
Xide-1 = X4k

a = ot i3)

wE el 01 <0, 0<j<Em
for m=3 and 0=5. The algorithm executes 1n 9 units of time and some processors are idle onfy dur-
ing the initial and 6nai phases of the computation. Variables "2~ stay always ip the same processor
and vaniables "y~ and “x'* move to the right neighbor processor every uae and two units of time.
respectively. This array algorithm can be described by {J°D) where 5% = {{},)T 0< . <3,
j2 €5 £5 %+ j;}. 1e), = time and j, is the processor index. aad

V2o

= . {
b [O T I PP 4)
(a) {J ty)
where Lthe secoad row corresponds to
tou
PK=1{ 1 -l fa11f. 15)
000
x4
Xy Xy X2 Xg | i
Step 2 L T a a
s Y1 Ys !L:’j:yc ! rs ’m !
n —— s - X ? ;
Xy '15 y y' &.‘1’:. .
x __’,,{l S t
Step 3 Yo M ,no ! ‘n, LY Ay < =x ‘A{:I.- :
Yo N Yy iy, Yo —™Ys |—™ y' =y +ax Lo

%Y
»_3
Sy

:{$

Figure 2 - Systolic array for convolution (n = 5 m = 3)

Since we are interested in general purpose algnrithm reconfiguration schemes, we will consider ®
“worst case’ array algorithms. [n other words, we will consider ulgorithms which, at any time dir- Ixﬂ X
ing execution, use ail processors and all interconnection links of the array Thus. for 2 haear array ,*:}\
algorithm which takes T units of time to execute on a linear array with N processors we have {J°D) ,ﬁt,\ d
where ’\.“':‘

i
oy

and D =

5
19 >

11 1
01-~1}"

2= [(j,,,.‘.)T: 0<j, <T-1, 0<j,<N-1

Figure 3(a) illustrates this for T = 3, N = 4 Similarly, for a square orthogonal array algonthm with .: %
execution time T aod (N« N} processors we have (J°D) where A
ey
1it o1 i.,-; '
B= {(il-jz-js)T' 0<) <T-1, 0<j)y <N~1} and D=(001 0-1 "":4““ 3
010-10 NN

L4

Hereon and unirss otherwise stated, we use the term array algorithm to mean a worst case

array algorithm. We are interested in the cane when, due to the failure of one processor. the onginal ::-\ -]
array algorithm must be executed by a smaller processor array This requires that the slgarithm be
reconfigured, ie.. that operations imtially allocated to faully processors be remapped 1ato the O

~*.'*;‘.. -"-’ .f-‘ I‘-
.r" WM N

262 Svstolic Arrays

operational processing elemeats. This is equivalent to saying that we need to obtain 2 aew array
algonithm by traosforming the original array algorithmi. Algorithm trapsformations have been stu-
died extensively and are reported in (Fortes & Raghavendra 85 and {Moldovaa & Fortes 86| aad the
references thereof. In [Fortes & Raghavendra 85] it was shown that a simple transformation can be
used to reconBigure array algorithms with unidirectional data movements. [t was also showa that any
array aigorithm can be transformed into an equivalent array algorithm with unidirectional data
movements, thus making that scheme geperally applicable. Oune of the disadvaotages of this
approach s that the equivaleot algorithm may be slower than the original one. Apother disadvan-
tage 15 the requirement for “wrap-around’ links between processors at the boundaries of the array.
To show the impact of this approach on the “degraded” performance of the array with faulty proces-
sors we need to discuss this scheme s more detail. Consider the case of a linear array algorithm
which executes in T units of time on N processors. Assume that data movements are unidirectional
and oae processor fails. The remaining operational processors have virtual indices ranging from 0 to
N-2. The reconfiguration is done by simply mappiag a computation oniginally performed in processor
J2 at time j, {i.e., point (j,.jz)) into processor }omod(N-1) at time j; + |j2/(N-2)| T. This means that
response time is doubled and that the average throughput is halved.

The reconfiguration technique proposed in this paper does not suffer from the drawbacks dis-
cussed above. It evolved from the theory of linear algorithm transformations ([Fortes & Raghaven-
dra 85), [Moldovan & Fortes 86]) whose basic ideas are explained next. The reorganization of an
algorithm corresponds to a permutation of its index set and can be described as a linear transformar
tiop TEZHA*H1 9% (eh that T is noosingular. The first row of T. denoted 7. 15 referred to as time
transformation and the remaining submatrix of T, denoted S. is called a space transformation. In
other words. T reorganizes the algonthm so that a computation with index j in the original algorithm
1s executed at time -] and processor S {i e.. the index in the transformed algorithm is (x),S}})7). Due
to the linearity of the transformation, the dependence matrix of the trapsformed algorithm s simply
TD, where D 1s the dependency matrix of the original algorithm. Of course, T must be selected so
that the aew algorithm is 3a array algorithm, ie.. (1) and (2} are satished. To illustrate this
approach the reader can verify that

~11
01

can be used to transform the algorithm described by (3), for which

-1-10
011

10to the array algorithm of figure 3 for which the depeadence matrix is {1), i.e., TD.

NEW RECONFIGURATION SCHEMES

o this paper. we coansider rational quasi-affine (RQA) transformations of the form lTI + I].
where TEQUItV a*ih 1€Q@*D) 304 Q denotes the set of rational numbers. As for linear transfor-
mations, T consists of a time transformation » and space transformation S. Time transformations of
this type are discussed in [Fortes & Parisi 84} and a (ull discussion of RQA mappings will appear in a
forthcoming paper Cleatly, the class of RQA transformations 13 a superset of that of linear map-
pings mentioped 1o the previous section. However, RQA transformations for which T is nonsinguiar
do not necessanly correspond to one-to-one mappings. Thus, before considering an RQA transforma
tion, one must show that it indeed specifies an injective mapping. In addition, conditions similas to
those used to select linear transformations must also be used to choose RQA mappings. As men-
ticued before, a valid algorithm transformation must yield a new algorithm for which the depeadency
matrix satisBes (1) and (2). For a lipear transformation T. the new matrix 1s simply TD where D is
the dependency matrix of the original algorithm. For RQA traasformations, this is not true. How-
ever, it 13 still possible to define conditions which enpsure that (1) and (2) are satisfied. Note that for
any X, Y and W the value of [X/W]~ [Y/W]is either l(X:Y)LW]_or [(X-Y)/Wl Hence, for the
traosformation R meotioned above and any dependence d = ;- ;' we have that the value of

MR AR N R e e R R R I N P s o v N e T T
N e L S RN VA W S NN,
A N N At Yy ,_._‘J\J‘ SOV PN .- .r\ - "\1-\ :

"EINRE Ty A O .

A28
x". ¥
o

(3

XA

1

e

53

o &
’,

.
Do

e
@ &

LS
5 'S

Y,
o
L

S
Al
)

RS
faly

3
[
5,

LA A

R
2z

e
h
1@ {;'f_v'{-. o
u

et
I

.

a

P AP 4

5 &% % ‘-.""“’

‘ A A
P N :.(. ..{v,q{.

I‘}

v
W
[

5 vy
s

Y

et hl B Ay Y -.'~-~~ N ' ¢ Bl b el ‘] 1 o 4a¢ flat Aev AavJint Jut o S oin e atg" AR Pl ’i‘
I '.'::
o
~h
8
e ,
N

p Ny

4 h

»

p Fuult Tolerance und Test 263

N R()-R(})is ”TJU where T is as defined above and the notation [l 1] means that any entry n Td

7 can be replaced by either its ceiling or floor value. Thus, a valid RQA tranaformation must be such

that [[TD1] satsty (1} and (2).

We start by discussing the case of linear array algorithms. Hereon, we will only coasider RQA
transformations of the type iotroduced in the next theorem. The theorem shows that such transfor-
mations are injective and, 1o addition, reversible in the integers. Afterwards we show that itrol]
satisfy (1) and {2). We use the symbol R to deoote the set of real numbers and R?=R:R.

Theorem 1

Let J*CR? and J = JMI? Consider the RQA transformation R : J—L such that

R = |17 +] (6)
where
. 1 a 1 -
T= 05l =7 |1 a2 a€l, a>2 (7)
aad
' -
ts — N
=1 {37~
and

L=b(V L= {’ . V-' - T? + ;' ;'EJ']
The traasformation R is a bijection.
. Proof

We show that R 1s both an injection and a surjection and thus it must also be a bijection.

{3) R 1s an injection - By contradiction. Assume that). 1Y €J.1#) and 0 =R()) = R() = 9

. — -

) We show that this implies ; =y, ie, 0= "]_’ = 0. Rl;l can be reexpressed as

L

\

ROy =71+

1

<

‘ -~
! -
K and, because |- (x +1)/k] = - [l + lx/kl] for all x and k, we have ’::?:
: Pt
: Bo= i+ [+ 0] sed 0s= o [+ i/aen)]. ®) Pyt
L)
e o
The assumption § = ¢’ implies ‘_\':'\.
o ®
S+ tiat b 6 +)a -
5+ 1 ThThhTo 1 Ve =
a-1 a1}
- =4+ EH=0
. Sititizth, S+] _
. by - =
. a1 a-l
. Substituting for &, + & in the floor functions of the above equations implies §, = &, = 0. 1e . 0= 0.
) {b) R 1s a surjection - Since [T| = 1, L* has the same area of J* Thus, L® caanot contain
mote ioteger points than J® does. Since R is an injection 1t must also be a surjection {pigeonbole
., principle). QED e
.'.\.-.‘
b it
SRS
X KA
®
=
o,
N
TN,
Ry
N
“w
-
¢ o g8)
®

]

qﬁl.

BRI

1
a

AV G S N
'f "'f,, lf.\f)\:

264 Svstolic Arravs

“Now we ~how that I[TDU satisties (1} and {2). In fart we have

3 lllll]__l_

™ = SR] 9)

=1 3=3 —{a-1}

aa+l a-l]

A
a-l
The worst case occurs when we take the floor of the first row entries and the ceiling of the

absolute values in the second row. This corresponds to the case when the least time is available for
data communications to take place. The resulting matrix is

1 11
~1 1-1
which clearly ~ausfies (1) and {2). Another possible matrix resulting from {iTDI) corresponds to the

case when the ceiling and foor functinns are applied to the first and second rows, respectively. The
resulting matrix is

(10

221

00 -1 (n
which. expectably also satisfies (1) and {2). [t also becomes obvious that, at different execution
times. the same variables could move every nnit of time, or move every two units of time or stay in

the <ame processor {or two units of time. This may suggest that data timing and movement are hard
to predict. Fortunateiy this is nct the rase and much information can be derived from our format

ism. For example it can be shown that for any dependence d. the only values of [|Tdl| which occur
in the new algonithm rorrespond to those where the ceiling function is applied to one entry of d and

the floor function 15 applied to the nther entry (a consequence of §,+V. = j; +j. from (8)). ln other
words. the aew dependencies correspond to vectors present in the matrices

111 221

ot-t] ™ e
An important implication 18 the face that buflering (local memory) is required (for the first two
columns of the second matrix). \s another sxample, consider the first 2 entries of the second row of
{9} and consider the question of finding out when. for 3 given processor, the corresponding variable
moves or remains 10 the processor (i.e., when the cetling and floor values are valid). It is possible to
show that the ceiling function is valid (a2} out of every {a-1) times for the lirst eptry and {a-3) out

of svary {3-1) times for the second entry [in 3 periodic manner). Similar deductions can be done with
respect to tim:ng and data movement (or other individual processors and variables.

\s for linear transformations, graphical representations of RQA mappings are quite insightful.
For linear transformations. the locus of 2) = constapt 10 the index set of the original algotithm
corresponds to a plane or line which describes a computational wavefront (i.e.. the execution of com-
putations whose indices belong to the wavefront takes place at the same time). Likewise, the locus
of SJ = fg contaims the indices of ramputations executed by processor p,. For the case of RQA map-

piogs. the locus of r; + l,l = ronstant corresponds to several consecutive wavefronts which are

computed simultaneously. The locus of [S;_ + t.| = B, rontains all indices of computations executed
by processor p,.

The transformation R given by (6) is the basis for three reconfiguration schemes to be described
later 1o this paper. ln geoeral, when reconfiguring an algorithm for execution on a linear array with
N processors, oge of which is faulty, we assign the value N to the parameter a in R. In order to
iflustrate the concepts introduced above, we now discuss an example for which N = a = 5. Thus, we

have. from (6).
N Y 1
Tl'l 3]j + n [3 and TD = v

Figure 3 ilustrates several ideas discussed before. Figure 3(a) shows the original worst case
algonithm before any fault occurred. The dots represeat computation indices and the arrows depict

Ri) = -1 24

364]

e T

e

TR
e

»
¥ 4
S,

SRy

i
-

X
XA

Y, ':
»
l"

.
LA

RS
AN

L[]
" .' l"
NN @ ;,“ ARX

v 4

v,

Tyt fe YY)
R
[

PSS

};‘f,{'
7
bl e Jade

P'd
53

S IR

(e
2 “

Fault Tolerance und Test 265

data movement. \We assume ap execution Ume of a-1 = § units of time (the reason will hecome clenr
later). Figure 3{b) depicts the computational wavefronts (full hines) and the time when they ire oxe-
ruted as determined by R (the svmbol r degotes execution ume 1n the new sigonthm) The broken
lines contamn ndices of computations executed by the same processor (we use the ~vmbol » for pro-
cessor indices) Figure fc) shows the same wlormation as figure 3{b) 10 different form together with
the movement of data The “crosshatched™ hars contan wdices of computations executed at the
same ime. The “dotted’” bars contain indices of computations executed by the <ame processor The
following properties of the reconfigured algorithm discussed previcusiy are now readily apparest.
First, notice that ooly N-1 = processors are used, 1 e. the faulty processor ts not required Second
no arrow crosses 3 dotted bar. 1 e | all commupication occurs between operational neighboring proces-
sors (we will comment on necessary recoafiguration haruwure later). Third. ~ome data must be
buffered in each processor for two umits of time. This occurs whenever an arrow crosses 4
crosshatched bar As predicted. stativoary data the original algorithm remains o the same proces.
sot three out of fuur steps ia the new algorithm e (a-2)/{3-1) = /1), data shifting to the night
stays in the <ame processor two out of four steps (1o {3-2)/{a-4) = 2/ 1} and data shifting left moves
in every step. Finallv. from tigure 3(hi. it 15 clear that each time and <pace wavefront contans 3
single index. 1 e cach computating belongs to a different wavefront. Since the smailest entry in the
tirst row of the matnx given by (9)1s a-f = 1. we know that at most that many computations ran
occur simultanecusly ((Fortes & Parisi 31f). Heace, only that many processors ure needed

Nate that this recontiguration --heme s optimal ttee no aperattonal processar iy ever jdle
the executon time s increased the least possible 1o . bv 2 factor given by the ratw of the pumber of
all processors over the number of operational processors 15/1 in this case) [t s interesting to note
that a necessary condition for a transformation to preserve the product of the number of processors
by execution time 15 that it be reversible 1n the integers Thecrem | proved that R satisties this con-
dition. With respect to throughput, assume that the original algorithm accepted 1 new 1nput aod
generated 2 new output every unit of time. The new aigorithm accepts 1 new nputs and geeerates 4
new outputs every 5> umts of time_ which is also optimal.

Naw let us ~nnsider the general case when the ongisal array aigorithm has executiong time
larger than a-1 = 1 units of time The algorithm which results from applving R has the same
characteristics as helore including the fact that at most { ptocessors are used at anv ime However,
the indices of these processors are not restricted to range from 0 to 7 and more thas 1 processors
would be required To solve this problem. we consider three possible schemes based op the transfor-
mation R. We describe them aext and discuss thewr characteristies afterwards. Let (- o) denote the
image in the reconfigured algorithm of the index § = {j,.1.) in the ongmal array algorithm, The three
possible schemes are as follows:

Scheme 1 = {ro) = (f,. ¥ mod(a=1)) where (7. ¥.) = ¢ = R(})

Scheme 2 - (r0}) =}, + a

h/(rl)], /) where {7,0.) = ¢ = Rijymod(a-1}.)

Scheme 3 - (r.0) = (#; + a |j,/(a=1}] .V} where

Wyl =9 =

R(jymod(a-1}.4;) il {j,/(:\-!)]mod 2=0

R'(j;mod(a=1)j;} otherwise

5

Though it may be possibie to analyze the three schemes mathematically, 1t is easier to explain
them by referring to ligure 3. For execution times of the onginal algorithm larger than a-1 {a=5 for
the example), scheme | »ssentially replicates figure 3 every additional a-t umits of time. However, for
every replica, 10 addition to changes 10 the time indices, the processor indices are increased by

where R’ is such that

I G
a1 1a-2f! T30

R'() =

.'.';J ;
1

W
Pl
Sy Yy

e
A Iy ty
N A

P
wne

(.' iy
e

s":,
7’

D XXX
el o[A
T .-] chvund-v\\ n-!-v -v *

€
. _ .
- 2 '
-
i o .
-0
A B
: b4
-]
o
Q
< < < < e !
e = g L) 4
[] [] ® L] Pe— — —— “
< o N N £
. N N -
N R a
a a /N @ a : > '
e =/ \¢ c e ; —— E
" i I3
1 N ~ . - ® . 't X p— H]
R [
< ; NS : 2
- b ~) 3 . 4 .
4 H.Xm Xm /m < // // x g
o -) ” »
8 = L) . o \ - o 8 :
" —ee — ——— [
: N ° . ® o n N ~ 7 3 .
~ a2
.. AN <3
P =y =) = =) N\ X gv °
s ¢ z L s - N] 8
3 § e—=3—wo— =0 TN —N=— QT 2 s e
b 2 . N s g
] . < -4
N - - X -]
b) g g X : ¥ 5 .
A [= e Lo °]
P, v = ot m m
: s —_— . £ o b
0 \ﬂl e h I v ©c wv g
S ! : : : : e a
- 8 -
& N 2 4 A w
. < 8 ¢ 8
_ g ® £ €
- 3 C &
o
P _— =
K A a2
K '
. ~
L M
L 8 g
-
» ~N o

Fuault Tolerance und Test 267

[r/(:x-lj] mod({a-1). For example, computations with indices (3-1.0) througn {a-1.a-2} are executed at
time =5 by processors with indices 3. 0. 1 and 2 in this order. Computation at indev {a-1.2-1) 15
executed at time 6 by processor 2. It is easy to see that this scheme will require 3 “wrap-around”
link between the first and last processor of the array

Scheme 2 also generates a replica of figure 3 every a-1 units of time. In this case the replica 1s
exact for the prucessur indices. However at the interface between cobsecutive replicas the moves
ment of data associated with the ofiginal dependence {1 1)7 does not occur between adjacent apera.
tional processors. [f such dependence is not present (e g . 10 10 slgorithm which s not 3 worst -ase
computation) then this scheme is acc»ptable For example, computations with iadices (a-1.0) through
(a-1.3-2) are executed al ttmé - = 5 by processors with indices 0 through 3 and computation with
1adex {a-1.3-1) 1s executed 3t time © = 6 by processor 3.

Scheme 3 also generates a replica of figure 3 every a-1 units of time. However, successive repli-
cas are mirrur images of each other {except, of course, for the arrows depicting data movement).
This scheme does not have any of the disadvantages of previous approaches Note that R is
obtained from R by -hanging the sign of the off-diagonal entries of T and changing the value of t
from (0. {3-21/{a—1 0T te {{a=1}/la~1),)T = (1 0T Grapbically, the aet resuit of these changes is
the reversal of the vign of the <lnpe of the wavefronts shown 1a tigure 3{b} This. in turn, yields the
mirror tmage of the figure (c) generated by R. For example, computations with indices {a-1.1)
through [a-1.2-1) are executed at 'ime 7 = 5 by procescors 0 through 3. and, computation with index
{3-1.0) 15 executed by processor 0 ytiune r = K

it remains to discuss the case when there are X faulty processors where X -an he [arger than
aone The solution 1s simple and conpsists of recur<ively applying the proposed -cheme(~) U times
Clearly, N-1 faults can be tolerated with mimimal performance degradatior 10 2 linear processor with
N processicg elements.

HARDWARE REQUIREMENTS

Simple additional hardware 1s required to support the algorithm reconfiguration schemes dis-
cussed here !t must be possible to bypass each faulty processor Thus, switcning hardware s
mummal. Also additienal lora)l memory 1s required for sach processor :p an amount proportional tn
the number of faults to be tolerated. The constant factor 15 rather small aad the reader cnp ~asily
verify that for the systohic array of example 2 this constant s 1 In fact of we reverse the agn of the
coordinate J; of the index set for that example this constant s 2 for the re<ylting algorithm
Finally. one must also ronsider the imphications of implementing on-line the recapfiguration schemes
on the complexity of the control and host interface hardware It must be possible to impleme~t R 10

real-time As mentioned e the prool of theorem 1.} =),/) = Ryl mpaes that
=t [lj,*j:)/(:l—l)‘ and . = jp {(]l*’j:]/(l‘l‘f Thus, R(j} a0 be computed with 3t meost

!
two adders. one divider and one subtracter Note that the Baor fuactions apd the modulo operations
which are also required for each scheme are easily done by discarding or masking bits of 3 number
In addition to the computation of R, scheme 3 also requires the computation of R It is refatively

easy to <how that [=({,i:) = R'(]) mplies that ¢, =g + 1 + {“1-;_-)/!3—!)} and
1=+ (j“j:‘[’(l"”l Thus, the <ame hardware can be used to -ompute 12 and R Hence

bardware requirements are rather <mall.

TWO-DIMENSIONAL ARRAYS

Nince our formalism and hasic wdeas are applicable to 2-dimensional arrays, RQA trapsforma
tions can ilso be used to device reconfiguration ~chemes for these arrays Neveral types of RQA
trapsformations are useful depending on the degree of ha: 'ware reconfigurability assumed !o grn-
etal, uptimal graceful degradation s harder to achieve thaa for hineatr arrays, unless relatively com-
plex recoafiguration hardware 1s used This seems 10 he inherent to the nature of the interconnection
structure of 2-dimenvional arrays. When considening very simple forms of hardware reconfiguration.

T N, S Y
R W A
R e o
PELEST

t
2
Ty

[

.
Y 2) ,'
< j.

&" 'l

o
44

2
-
¥

O

a e 4 p RS

268 Svstolic Arravs

it may be necessary to logically remove operational as well as fai lty processors. We have studied
several schemes with advantages over previous approaches which ‘equire hardware mechanisms of
comparable complexity. Due to space limitations, a discussion of these schemes and their relative
merits is aot doae here and will appear ia a forthcoming paper.

CONCLUSIONS

This paper described three related algorithm reconfiguration schemes which, together with sim-
ple reconfiguration hardware, can be used to achieve optimal graceful degradation in linear processor
arrays. These schemes are based on a class of RQA transformations, a sew type of algorithm
transformations introduced in this paper. While our results have geperal applicability, their practical
advaotages will undoubtedly depend also on the nature of the implementation and intended applica~
tion of the processor array. The general approach described here can also be applied to 2-

dimensional processor arrays and is also useful for mapping arbitrarily large algorithms into arrays of
Bxed size.

References

Fortes, J. A. B. and Raghavendra, C. S.. 1985 "Gracelully Degradable Processor Arrays,” [EEE
Transactions on Computers, Vol. C-34, No. 11, pp. 1033-1044.

Li. G-J. and Wab. B. W, 1985 “The Design of Optimal Systolic Arrays.” [EEE Transactioas oa
Computees, Vol. C-34, No. |, pp. 66-77.

Moldovan. D. . and Fortes. J. A. B., 1986 "Partitioning and Mappiag Algorithms into Fixed Size
Systolic Arrays,” [EEE Transactions on Computers, Vol. C-35, No. 1. pp. 1-12.

Fortes, J. A. B. and Parisi-Presicce, F., 1984 Optimal Linear Schedules for the Parallel Execation
of Algorithms.” Proceedings of the 1984 International Conference oa Parallel Processing, pp. 322
329.

L .A
<
oL

' 1w 5 .
“ @

<

LT
»

]
3

Y,

X %
72
't "!»

};’f
%y

2

'n'l,
223.
> 4

L
v

L4
r

€ E T
Y
AL

s "(%ﬂ
710

I.’
.~
L

57
-;5 s

PN
7

W

¢ &

[

Y

»

;'l W 0 0¥ ooy NN G A A AN A0 0 gt o S AN N R AT NN N W S N Ny W, W WV P’ A" e A '2
\
; y
R :
oo o
B :
:H .C:i
.,n” W
) S,
" W
| S
RYs N
& Sy
b REFERENCE NO. 4 54
Wy -
.-:;. O’Keefe M., and Fortes, J. A. B., “A Comparative Study of Two Systematic Design
- Methodologies for Systolic Arrays,”” (Long Version) International Workshop on Parallel Ky,
[o
o Algorithms and Architectures, pp. 313-324, April 1986. by
[» > f'.
. ot
O'Keefe, M., and Fortes, J. A. B., ‘A Comparative Study of Two Systematic Design ®
;.E Methodologies for Systolic Arrays,” (Short Version) International Conference on Paral- FT\)
; lel Processing, pp. 672-675, August 1986. :-.:
2 3
i 2
o 3
2 -
A N
7 i
N ~
] ‘;"—
. ’
S -
St .
3 o
: .
-:’\.
". :_\;I
: . . :\

b
s r

Y

1
t
o AL,

.... ‘.)
. ._:_.
- ~

.. “-'

.'_'_. o

" o

A, ? N

T o

N -

P
.“ l‘~ -
T o
» .
-"' '--“‘
A
[
D " ’;
o ~
: e
, 'n. e
A
b':-h <)
o W
. 1)

2 A

f.} ,“
o Y
'. - f\.

A -I‘\‘:"y'-"i-'{w’\'.‘ X

<

DN

POV

)

RS ol ® 1 —— 0 - . .
X - AR RS DS A Sl Sl 00,040, 1§ 4% N VTR O

X

\ "
A 7
o
: i
X L
) L
¢ v 0%
) -_:..
0 \,‘-
' -
™ ':':\
e d (4
¢ PARALLEL ALGCORITHMS & ARCHITECTURES 'd‘:
M Cosnard et ai vditors: IR ",
') D Elsevier Science Publishers 8 3 North-Holland, | vsa _§
> ey
.
¥ X2
¥ .' i)'l
B l. ~
X A COMPARATIVE STUDY OF TWO SYSTEMATIC DESIGN W
b METHODOLOGIES FOR SYSTOLIC ARRAYS g:-.
» %ty
D
"d
:. M. T. O 'Keefe and /. V. B Fortes * v
- '-.’-'
.’ o
- . i . , . o l.I,. X
P School of tlectrical Engineering, Purdue University, West Lafayette [N 47907 N
N
This paper identifies equivaleaces between two <ystematir methodoiogies for 1he g
s pap ifies eq ystet
design of systolic arrays aad dlusirates the benefits of uaderstanding those [J
relatiopships. The methods are _he parameter method of [and Wah and the XY
| : dependency method of Moldovan and Fortes. After a review of the core idens, 0
i models and parameters of euch method. mathematical relatiors berween them are \
., derived The usefuiness of rhese relations s dfustrated by ~howing haw 1) o™
D optunization procedures {or the parameter method saggest simidar procedures for Pt
the dependency method, (2} systolic designs for comvolution and deconvolution. e
- obtanned through diferent methods, ran be mathematically proven to be identical >
< and (3} new systolic equations for the parameter method result from the o
A .
_: knowledge of equivaient equations in the dependency method. :f.‘
~ . RN
’ I - Introduction -
b ta this paper. two proposed methodolagies for the systematic design of <ystolic arrays me ':"l'
L~ comparatively studied. They are the data dependencv method of Moldovan and Fortes, "{]-121, :N")
and the parameter method of 1.1 and Wab. (9], |10l We find and cxpose the recondite ,'\-":
X relationships and equivalences between the two methodologies wad use this aformat.on to
'~ improve them aod verily similar deaigns. :—..-\
:' Section |l provides a short description of both methodologies. Section 111 establishes ;-""
',.: equivalences between the mathematical cxpressions used to systematically desigp svstolic arravs S
24 in the two wmethods. The cquivnalences of section I are used in section I\ to propose SS9
N optimization procedures and improvements for both methodologies. Additionally, the two -:,-'
D methods are used to obtaip systolic arrays for the convolution algorithm and the resulting '4.4'"
designs are wathematically proven to be equivalent. Section V ia dedicated to conciusions LA
; @
A O - Introduction to the Parameter and Data Dependency Methods L
- s
» .. -
e 2.1 Parameter Method [9],{10] ‘;'.:‘ .
': This methodology considers :he design of optimal pure planar systolic arravs for a class of ;-::,.-
_'e linear recurreuces which take the gegeral form <l
Kk — LR - . S,
I'l—/rl'v Wenn»ym,.]«‘s‘il RANY Py
-
A
:, where [4 the function to be executed by each cell of the array and <(ik). yiky} are hoear ‘..,'i
<y wndexing functions for the two-dimensional input varmables X and Y. (o the following S
= presentauion. the coefficients of ij. k are either 1 or -1 ne-dimensional recurreaces have the p_“.-
A general form =
. S
: . [S} - B ~, :‘
! L A L AR T P 1 a CeaX
v ..H
- . . D
> More general recurrences can also be considered. o the interest of brevity we do not
" consider them here. However, ail results of this paper can be extended to include those cases, -
i as reported in [12]. .
' -
g e -
“) * This work was supported in part by the Nstional Science Foundation ander Grant DMC- 8419745 and in pari b "
i the fnnovative Science and Technology Office of the Strategic Defense Initiative Organization and was administere i .
through the Office of Naval Research under contract no 00014-85k-0588
ar .
N N
' ,‘\v'., ¥
0 'y
S O
L -
N
ara
o

[
N oV
o | | e,

Ny
P el et e s e T T N T AP N AT W L e e
ﬂ‘ S :" 3 »r-a“:“'-r"i"' A -e-'&:-\'é:‘f"q-"*‘f‘.-‘ >

314 UT OKeefeund J A Fortes

Three sets of parameters are used to characterize a systolic array: velocities of data flow,
data distributions, and periods of computation. The velocity of a datum s 13 the directional
distance passed by that datum in one clock cycle and is denoted by X4. The distance between
two PEs is defined to be one. Thus, X4 must be less than or equal to one because broadcasting
is oot allowed in pure systolic arrays.

Data distributions are defined using row and column displacements. For two-dimensional
input and output matrices, the elements along a row or column are arranged in a straight line
and the distance between adjacent elements in a row or column remains constant as the data
flows through the array. To define the row displacement of array X, suppose that the row agd
column indices of X are i and j, respectively. The row displacement of X is the directional
distance between i) and Xir) and is written as X,. Similarly, the column displacement

is the distance between x,, , and x;(, ., and is written as X,,.

Periods of computation are described using two [unctions. 7. and r,. r. is defined as the
time at which a computation is performed. whereas r, defines the time at which a variable is
accessed. The periods of ¢ and j for two-dimensional outputs are defined as

L= rc(llk’u) - rc(zyk,) (2.1.3)
"j = rc(zl,k;"'l) - rc(zvlj) ‘214)
te = (et - riet) (2.1.5)

It will be assumed that t is positive. {f this 1s not true for a given recurreace. the
recurrence can be rewritten to satisfy this condition. Ib computing z,,. x,,,, and ¥,
are accessed and two additional periods can be included to describe this interaction. They are

te = nlXgeaen) T ondxn) (2.1.0}

by = ey =) (2.1.7)

Depending on the order of access. ty, and t,, may be negative. Since operauds to be used
in a computation must arrive at a PE simultageously, the magnitude of the periods must equal
Ly, .. it must be true that

b S] T |ty (2.1.8)
The periods are independent of the indices ¢, j, and k. aod they must be greater than or
equal Lo one to prevent broadeasting.

These parameters (velocity, data distribution, and periods) can be combined into a set of
equations which describe the operations of a systolic array. These equations, for the two-
dimensional case, are

Xy T Ry T ot Ty (2.1.9)
h¥e t Yu T 4yl (2.1.10)
tXy + X, =ty (2.1.11)
tdy + 7, = Ly (2112
e * Vs = 4Ry (2.1.13)
Lh +t F, = % {2.1.14)

The parameters and equations described previously can be used to formulate the design
| represents

process as an opltimization problem. o the following equations, the expression
the magnitude of the vector quantity p. The design problem is formulated as follows:

minimize #PE . T¢

subject to (2.1.9 - 2.1.14)

or

#PE . T

(2.1.1§)

o
v
% %5 2 2

‘-‘\-;.l
ST

SR A

@ L&

7
o

- 4
T

VY L
X
‘."n

..,.,
s . '.
P v} r
"
AAAL

LY

y
@

¢
7
e’

v""ll'

- I
XA
Tty

1
77
Yy

[
'
X/

Y
&

5y -yow v
Pd g
%‘f,‘.

]

o3

/

8
a *r

B

TRV E e R et A Bt Bt e Rt mt AR A et
|) AN S H RN AN AT TR T RN 8 949 9.0 g0 guv & Pa¥ Aa® gad Bav | * gat: S ot

J
.
d

‘

3 a nd
'.f
(g

“-’

2.2 R
rad
LY

4
hY
I

"[{"
b]
:"-:’-.-.

"[
3

Twa systematic design methodologies for svstolic array s

.

e

and

]

£
DO
vy .r: ol

e S

—gyx, gl ar Ll =0 ROy

&

,

or

1A
<
A
«<
1]
c
5
).'.s.“.“ .
Ly L
N
PR A

Lo<cigy <t or gl o0 (21 1%)

7
A

A
A
3
3
A
A
-
&
iA
A
;
£
v
J »
% ¥

.
=
i
-~
A
-
8
4
1<
i
-
WA
5 .
4
=,
1l
-
IA
B
4
I
L
[ol 4
vy
L §
-t

x

~

=

X,
T

»
=

»

=)

[
rer
2L

and the recurrence determines the relative wigns of 1, and ;.

Recall that t, describes the gumber of ciock cycles which elapse between two copsecutin Pty
computations using -arnable :. aod that g4 represents the direchonal distance traversed by T
datum : 0 one clock ~vele. Thus, k, ir (2.1.20) represents the magmtude of rhe direerionai PN
distance traversed by a datum : between its use in two consecutive compuiations. Similarly
k. aod ks represent this same distance for vanables y apd 1. respecuvely k, .k, .and ky
describe the spatial distance covered by a datum between its use in two copsecutive
computations. The Gy Uy o 30d Uy, values are the maximum period values consudered
in the optimization. Periods equal to or greater than these maximum values result i
completion times which are equal to or greater than the senal processing time. ¢‘onstraint
equations (2.1.21) and (2.1.22) prohibit muitiple nputs from entering 1 PE 1n one cycle
Clearly. if a data distribution vector 13 equal to zero, two aor more data elements are separated
by zero distance and must enter a PE simultagecusly. Thus. the formulaton of the desiga
problem as an optimization problem as given 1o equations (2 1.9-2.1.14) and (2.1.15-2.1.2%)
ensures that the resulting array satisfies the constraints of systolic processing.

The optimal systolic array for a given recurrence can be found by systematically
enumerating the possible solutions using a search order that guaraotees that the first feasible
solution found is, in fact, the optimal one. Consider optimizing T, the total time ueeded 10
complete the computation. First set k; = k, =k, =1 or. if a particular variable p ix 10
remain in the same PFE. set the associated k, = 0. Then. set the magnitudes of the pertods

L
NS el T (2o I\.t :,
'l

t,,t, ., and t, equal to oae and determine if a feasible solution exists. If a feasible solution 1s :-":-".,-
found it is the cpuimal solution for T because T is a linear function of the periods that .’:’.‘_\."
increases monotonically with increases in the magaitude of these periods. [If po feasible ~olution J‘._-'-.'
is found with t, =, =ty = 1. one of the periods is increased by one and the scarch for PR
feasibie solution repeats. if no feasible solution ran be found with k; = k. =k, = | . one of -:,‘-';'\-'
the k, 1<i<3, is igcreased by one and the search begins again. \ Bowchart describing this ‘ :.-':

[
'

optimality procedure is shown in {12]

Consider optimiziag AT, First. use the above procedure to find a solution with optimal
execution time T, which nses P, processing clements. Theo. let the largest dimension of the
input or output matrix be {n x n) and assume that the smallest number of PLs that can be
used in a solution is n-. Then, solutions with completion time T, such that " T; > P, T,

ie.,
—
vFE,
T. 2 -—T, (21
o
need not be considered and the search 1y carried out only for values ~maller than T The

reason for ignoring designs which have completion times greater than T, s that. f T
multiplied by the mimmum possible number of PEs s greater than the AT- measure for the
T,, then the T, solutice cannot have a smaller AT" measure When all possible designs with

N e B T e o v N .y S
N A e Lo T e e o e e e o T T N T T AT T R
" Vi *$- ..'v{*...*"-"\M'\.."-".-\'.P.‘\'-"\‘\'.'\'\f’"'-\‘-"'\-'

DO S S (1Y ‘B B0 0 W0 0% VR ANy "‘ N ‘- ".Ff .h.’* ('F-* T :{J‘v'.’(*** :

D VO PR PN Sk UK Y (<Y WP W™ L ol el AL AL AR AR S S AL A AP R D I N A0 L i Dbl e’ A A e I SR A0 bl g g'

s
e

o

Ly
%a‘,{{‘
Loy

L9
245

316 M T OKeereandJ A I'nrres

o

.
?

hY

[} execution time between T, and T, have been found. the AT’ measure is compared to find the
minimum solution.

This optimization procedure bas heen applied to find optimal systolic arrays for matrix
multiplication, FIR Hltering, discrete Fourier transform and other algorithms. [9].

v X ¥ ¥
PR A

%
\I‘t;i r,

e
ok

*
o
)

2.2 Data Dependency Method [1]-(8]
Let Z® denote the nth cartesian power of Z. the set of nonnegative sntegers To describe

: an algorithm A, a five tuple A = (J° . C . D . X. Y} used where J* C 2" is the index «ct, :':'/:'
A C 1s the set of computations. D is the set of dependence vectors. X 13 the set of nput N
; variables. and Y is the set of output variables The data dependencies describe the structure of L
» the algorithm and are given as a set of triples (d.v.j) such that the computation indexed by N ,':\':-\,
; requires the variable v, generated at index } — d. as an operand. e
‘ As an example, consider the two-dimensiopal recurrence W
ajids) = Slat=lya+1) alj—-1j,-1)] . 0<j; £4.0<j: <4 where [is some function Y
We can describe it as A =(J*. C.D.X. Y) where J° = | ; 0<j <4 1=12 1} . Cs .

the set of all computations on the right-hand side of the recurrence ecquauon. 1e. \,‘*('
C = (f(alj=1.ir=t) . alj=l.imt 1]:(j .)7 31, and D, a set of triples e
{d.v.}), can be described by a matrix whose columns correspond to the first element of each '-P*‘f'
triple and v. j need not have an exgjicit representation. Thus. the columos of D correspond to ;\"‘ 2
the vector difference between (j,.5.)' and the (ndices of the refcrences to a on the right-hand A A
side of the recurrence, {j,—1.j,+1)" and (y=1.0,~1)T . which vields ~A
U1 .\
3 "
= Cole
‘ D -1 1] - 'J‘l::fﬁ
. . *
X is the set of ioput variables aod Y s the set of output vamables. ie. -_).'\:.
X={al=l):i=te 25 Ulatl) 0< €30, =150 Y ={aj,4,):0<)5 < 4} :::'\-)
p Linear_indexing functions [i] describe how variables are referenced. A_linear indexing . ﬂ.:
' function F:J* — Z™ is defined by aa equation of the form F(j) =C, + C; where -{"'.

Gy
.,,'l.\‘,‘c

C, € 2'® " is called the index displacement and C € Z'™"®' 1s called the indexing matrix. For o
example, the variable alj; -), j: + J3 = 1. Jy — ;) has a linear indexing funcuon for which _-'..;
, e
I -1 0 0 ROV
¢ =10 1 1] ad C, = |- :-.:,
-1 0 1 0 ;:'.:'
o,
Data broadcasting is pot allowed in systolic arrays and the data dependency method can A
detect, remove or reduce broadcasts from algorithms to be implemented on systolic arrays {{]. @
During the execution of an algorithm. a variable needs to be broadcasted if and oaly if both of f:_i(,{.
the following conditions are satisfied: (1} at least two computations use the variable and (2} s
such computations are scheduled for execution at the same iostant of time. To determine if :\'-'\-'
\ the first condition is satisfied, it_is clear that a variable with indexing function F is used by .-.':.\:
computations indexed by J and] if and caly if ’ I
» W
F(j) = F(7 ie, F(F) = @ 22 v
) F(j) F(i), te.. F(I) 0 (2.21) Aoy sf
where T = J—~7. From the definition of F equ. (2.2.1) can be rewritten as o
- — .« ea
X cr =0 . (2.2.2) e
LN Ny
o esseace, the dependency method fnds a reindexing transformation which, when applied to -_:.._":
the original algorithm. yiclds a new r-equivalent algorithm which maps easily into a systolic '~.;-':_
array. A transformation matrix T cao be used to describe a linear bijection which transforms N
the dependency matrix and index set of an algorithm so that it can be executed in a VLSI AL
array. T can be partitioned into two matrices, x and S: el
e .8
IS \'_:\': d
. . . LN
The = matrix defines the time transformation whereas S defines the space transformation to be :~'\-‘ \
applied to the dependence matrix and index set of an algorithm. The time at which a I
computation indexed by j is executed is determined by x j, while S) specifies which processor \':\':)
is to execute this computation. In other words, the transformed equivalent algorithm is such A
o
¥ ?.K >’
gty
» .
e W
U
‘J
o
L \F s
W
L
Nate
NP
T N T AT = N T T I TR T w et g
o o

T T AT N

- X R N J
SR SRRV isi&”-.:s::s’-j-.}, I

NN

JON

Twa) svstermaric design methodologies tor systolic arranvy A

that the first coordinate of the index of any computation determines its execution time and the
remaining coordinates determine which processor 19 to be used (Jf ronrse. 7 and S must
satisly certain conditions if they are to bhe considered valid transformations let s be the
oumber of columns in the _depeadency matrix. Time transformations must <anshy
rd, > 0 . i=12. . m, where d is acoluma vector in the dependence matric This constrynr
results from the requirement that 4 variable wust be genersted before 1t s geed 4
computation. The time of exccution of 3 computation with index jis given by

(1) = (’u “minfry €%+
i dispr
where dispr. the displacement of the ordering determined by 1. must satisfy
dispr < min(xr d, :1=1...m). lotuitively, the displacement describes the number of parallel
wavefronts that simultaneously sweep over the index set to complete the computation [n this
paper, unless othberwise stated, the displacement i3 considered ta be one. wince the parameter
method considers only this case.

The «pace trarsfurmation S maps the computation wdexed by j into processor Sy This
assumes 3 processor array model coasisting of a grid which has the dimenwonabty of the are
Each poiat of the grid correspouds to 3 processor and the roordinates of the paint are the
1ndex of the processor Certain restrictions must be placed oo possible ~olutions foe 8 due 1
the limited interconnections avalable 10 VL3I arrays. These restrictions can be embodied i rhe
P and K matrices. The P matrix describes the interconnection primitives waslabie within i1
array, 1.e.. the vector differences hetween indices of connected processors For exwmple
square array with only sorth-<outh. east-west. nearest-ueighbor connections would have he
following P matrix:

0-1 0 10

P =10 -101

where each column of P describes one interconnection primitive 1o he used 1o send or recevn
data from 31 gext-neighbor processing element. The primitive with all zero entries ndicates
that a variable can also be stored i1n the processor The utilization matrix K deserthes the
1nterconnections nsed by the transformed algorithm during execution The relaticaship berween

K.P,S. and D s
SD = PK |

where the entries of K must satisfy the following constraint

=
[

r
Vk, < nd, .71 .m (22
3=

This last constraint requires that the time between the generation and use of a variahis must
be greater than or equal to the sumber of inteérconnection primitives needed hyv the datum 1o
travel from the PE in which it was generated to the PE 1n which 1t will be used. [n fact. the
inequality in (2.2.4) can be replaced by equality If the number of primitives 1 less thau the
time allowed for communication. the datum mnust be stored for the remaining time, thus using
the all zeros primitive. An additional coostraint can be added that reflects the limited coatrot
available within the simple PEs. This means that. in general, data must travel along the same
direction as it flows through the array. Thus. ooly one entry in each column of the K matrix
can be nonzero. These restrictions can be relaxed to reflect advances 1o VL SI techoology

The design problem in the data dependency method can be formulated as follaws: find 4
suitable ». which then defines possible solutions for K {2.2.4). Examine the solution (or
solutions) for S corresponding to each K and determine which S requires the smallest aumber
of PEs. A procedure is available for finding the optimal x in terms of the smallest execution
time [5]. There is no guarantee that a solution for § in the equation SD = PK exists for the
matrices K associated with the optimal = 1f oo solution for S can be found for the optimal .
certain beuristics {3} can be applied to find a suboptimal x <o that a spac: transformation S
exists, However. note that these results refer to a space of <olutions where dinp x may be
equal to or larger than unity. This greatly complicates the optimization procedure |5

Esssns
"fé’)‘fi .

e

wig s e m AN

i

318 M T 'Keepeand J A Fortes

Ml - Equivalences between the Parameter and Data Dependency Methods

The two methods discussed in this paper each contain sets of equations which describe the
flow of data in a systolic array. The data dependency and parameter methods have,
respectively, the space equations (2.2.3) and the systolic processing equations (2.1.9-2.1.14). In
the following apalysis, the relationships between the two sets of equations wiil be established.
Lemmas 1-3 provide equivalences betweca the differeat parameters of the two methods. while
Lemma t describes the form of the dependency matrices for algorithms considered in the data
dependency method. These lemmas are then applied 1o Theorem | to show that the space
equations and systolic processing equations are equivalent. The proofs are omitted here but
can be found in {12}

The first lemma gives expressions for the data distribution and velocity vectors of the
parameter method in terms of the transformations and indexing matrices of the data
dependency method.

Lemma |

Let S, » be as defined previously in section 2.2, and let ¢ be any of the variables z. ¢, -
as given for the parameter method. Also, let C" represent the indexing matrix for variable v
Then the following relationships hold for the two-dimensiocal case:

1 t 1
Cv *1 X Cv 0 . Cv 0)
. 0] =v, .S . =V, .8 . 01 = vy

0 0 b4
For the one-dimensional case, the following relationships apply-
c' cl'[o
S
x

| 4 *1
The next lemma describes the relationship between the x vector of the data depeadency
method and the periods t,, t. t; of the parameter method. The reiationship will prove to be
remarkably simple.

S

%1
0

- V, = Vd

Lemma 2

r = [l, t, ‘u]

Thus, the periods of the parameter method are the elements of the » matrix. The next
lemma relates the elements of the data dependency method's K matrix and the constants.

k, (1 €1<3), as defined 10 equation (20200 e [[= kL] [yy] = k.
F4] [X4) = ky . Let k, be the single nonzero entry of the 1'th columa of K.
Lemma $

k = k 1<i<3

The next lemma describes the form of the dependency matrices for the class of recurrences
considered 1o the parameter method.

Lemma §

The dependency matrices for the class of recurrences considered in the parameter method
have the following structure:

Two-dimensional Recurrence:

0 0 |
D =10 £t 0 | 4 .4
0 0 i1 |

P

T a
[l
1

5y

et atet
v,:r‘:.‘- 'f' -’:,Y
' -‘ﬁ- A

._..
S
e

v .
e’

) t

o>

"’ | R}

".I-‘ e
v
l- l‘

“
.
%

e v e Y
R

B I

PR A

A
«

R e
]

e’

¥

I3

Two svstematic design methodologies for svstolic arravs 319

]
One-dimensional Recurrence:

0 | o | _

D:l0 i‘l(cgl d, .. d, e =l =t

where d,,...d, are dependency vectors which are a function of the recurrence, as s r. the total
number of these additional dependencics.

The following theorem shows that the equations used 1n both methods to describe the
operation of a systolic array are equivafent.

Theorem !

The constraint equatioas {2.1.9 - 2.1.14) of the parameter method are cquivalent to the
apace equations, SD = PK, of the data depepdency method.

IV - Optimisation Procedures and Examples

Optimisation Procedures

Optimization procedures for the parameter method were discussed previously in section |
By directly translating the parameters and ccustraints of this method nto the corresponding
clements of the dependency method. we can devise a similar procedure which 1y applicable 1o
the recurrences considered in {9]. However. by using a slightly Jifferent approach. 1t s possible
o propose a related optimization procedure applicable to all cases for which dispr=1 in the
dependency method. It differs from that proposed for the parameter method i1n that 1t checks
all possible values of K before considering longer execution times {i.e., differeat 7'si. The
flowchart of Figure 2 describes the new optiwization procedure. In words, it starte by finding
all transformauions 7 which minimize exceution time. This is relatively casy, since only the
case dispr=1 is considered and execution time 13 therefore 3 monotonic function of the entries
of x. ilence, one cam start with all entries of » being zero and progreswively increase their
absolute values conmdering all possible combinations of signs und magaitudes (while. of course
checking for the validity of each 7). Possible 7's, which might result from further increases in
the absolute value of the sntries of a particular x for which execution time 13 larger than the
koown minimum. need not be considered due to monotonicity property mentioned above
Thus. the search space is finite. and, in fact, rather small for most cases. Once 1he set uf 7414
knowp. it is necessary to check if there evists a solution to the equation D =P for at least
ope of the possible values of K. If a solution is found, then the corresponding x (as well as th
design determined by 7 and S) is optimal with respect to execution time. Otherwise, 3 new set
of t's must be fouad which increase execution time by the least amount and the process is
repeated again. The procedure always terminates, since. in the worst case, serial execution 1+
reached as a feasible solution.

A similar reasoning can be used to optimize measures combining area and execution time.
e.g., AT or AT®. Figure 3 illustrates such a procedure. [t differs from that of figure 2 in that
the search space is reduced to the set of 7'y which result in execution time bounded above by
T, as given by {2.1.24). In tbis finite space, all valid values of v and S are considered and those
which optimize the combined measure of area and time determine the optimal solution. This s
exactly the same approach used in the parameter method The key idea consists of limiting
the search s<pace by choosing bounds for r and. thus, for the execution time. Many different
criteria can be used to choose the bounds. For example. in {li]. the same approach is used and
 is bounded by limiting the values of »d {which can be thought of as the number of buffers for
the data associated with the dependence d) for all depeadencies d in the matrix D

Examples - Systolic Designs fcr the Convolution Algorithm
Convolution can be expressed as the following recurrence equation

y2=0 1<€i<a

T O A 1€i€a t<k<m o x, 70 for p > (o

Another possible description with the order of access of the input terms reversed is

ARG I a0 AR L A AR I R R TN I T ‘.(A A I I S A T
R AT A A O (i B ;‘aﬁ;‘;‘a‘¢‘a‘:;g\$\3‘32
f .. N » i N N . » Al | . B R

EADAC G Al Sell ol Ml il e sl Ay ki b ve 4 P e 4

Y "
VR

LY
‘i"'\t“ ',
!

X

-

I"fl;.f'
ARA

AN YAYR AL,
1 “ere el Uy
."'f-{)‘ﬁ'.' O

-

L
)

l"‘,:\,\;5'
P/ %
-4 L

5h
A R

(XX

@
,

l‘

~ \..\J‘if\"\ 3
‘ " -' .\

*
P
1&{*4'}}1’!.1

{
o

:'.4-
LS
Pall)

Sk
Y 4
LY
AR

b

[4

320 MT O'Keefeand J 4 Fortes

“
detereine ser of
all ¥3 uith
SiNleus XECULion

tise

I_T_—_._J

choose a fessible
K satrix

use 7 .S to obtain

optiasl design

! deteraine the set

| of s uich

| resuits in the 1

i least increase
in execution tiae

-

!

|
i
J
i
\

—_— .

Figure | - Optimization procedure for obtaining a systolic array design with mimmum
execution time (T) using the dependency method.

y =yt A ieXgker 1€i<€0, 1<k<m 0> m (12)

Design using the parameter method

Two cases were considered for the convolution design problem [12], but only one is shown
here. Letting m=4, n=0, the first case will have periods t, = 1 and ¢t,, = ¢, = -l.
Substituting these values into the systolic equations results in four equations in 6 unknowns.
For FIR-filtering applications, the as are constants that can be loaded inta or fixed in the PEs
before the computation begins. Thus & = 0 and from the systolic equations &, = t,,¥y = -¥,.
To achieve the fastest solution ¥4 can be set to I or -1. A possible solution is shown in Figure
3 Four PEs are required; m + n-1=9 time units are needed for computation and the
preloading of values x;, ... x, The time to completion is therefore 2m + n—-1=13 time
units.

Design using the dependency method

Now consider the problem in terms of ihe data dependency method. To do so, the
dependency matrices that are valid for recurrences (4.1} and (1.2} must be found. Pipelining
the variables in (4.1} and (4.2), we have. respectively,

13 - N k - -
oy TS0 ok T Xl
.
3= e s0d sy T aphe
[IP ik [X
Y=y oAy Yo 2yt ag e Xgte -

1
-

WP T
L e N
) *\J

W N W W W W
M Yy
LAt d R g

.
-.’)

L]
[
2"

» 1"_'_?.‘ P}
PR AL LS

s % .
Y .I" -_"\"\: 3

‘.',-
b

Pl T,
PR -
. e
s L
»

f‘.i' '.q

;.
[
L

;ﬂ»

LA Y
P02 A
Sl

.
.
v

o
i 8

Fd
L4

!
>

.

TP a W W

LIS A A R R

O Rl g 8 o P ® Pl ol Rt Rab 9ot g jat s~ _gav, R old a0l e st Pl e

- - - - - - - - - - -] - - - b
Two svstematic design methodalogees for svstolic arravs 321
ZTART

— ——
ten Sineart |

Nere A ang T

e
| resLIL from design
vith sinjeus
PASTULION L10g

| fang set of ail
" g e uith einimoa
P2CLLION 188
————————
—_——
reacwe 2 ¥ (rom
the set :
—_—
zhoose feasid.e
« .l rix .
-
.~ ‘d0ew
< SpePK nagve ~_ 4€5
Ce g AL LAt AT
s soiutior —

! -
[N S——
&

PR .
DO K welrices no oAt i
— .
consi0ered — - N
. 1*S “es
——————
vy
) =im e at
YU PRl S ——
—_—— .
‘e sec —
-
x "0

N —_————
. - ©® .S for NN g E:‘

* AT-optieal
L e

o

fing ser af ¥y

Mieh incresse

compietion Lime
Dy s8ei.est ssount '

—_— .

Figure 2 - Optuimizatton procedure for obtaining a systolic array desigo with mimoium
area.execution time (AT) using the dependency method.

which yields the following form for allowable dependency matrices, respectively.

1 0 £ 1 0 i
Di = Hg 1w 2 D= g

Note that the only diflerence between D, and D, s that elements in the dependency vector
for z must have different signs for D, and the same signs for D. According to the
dependency method, the first x to be considered is # = {1 1] Multiplying x by D, and D.
yields D, = {110}, D, = (1 1 2|. The zero entry in xD, indicates the r selected violatey the
dependencies of recurrence (4.1) as it is pecessary to provide broadcasts. Thus, the recurrence
{4.2) is selected and the space transformation correspcading to the systolic array of figure 3 is
S, = {0 —t] which vields $,D, ={ 0 -1 -

Verification that both methods yield the same design

Lemma 2 can be casly verified, ie. #=[t 1,] ={1 1 To verify that rhe space
transformation S, corresponds to the same systolic array of figure 3 and. thus. to the velocitics
and data distributions of the corresponding solution in the parameter method. Lemma I can be
verified as follows

.

...
.' “'I.
Faha's

Y R

-' ‘-. pl
)
. 1

S
s

4,

Uy N !
E R A Ay .
LA NG
2 i

Yo

X,
P

LY

', .J ‘l.;l '.\ "I
SRS

hY
L

h Y

[
‘®

[

2
7

'-ll's
o4 NS
[

A

-
<
"‘- gy

"? .
¥

.
-~

P,
AT

s

22 MT OKeeteand J A Fortes
K’ Xl
. . X Xg Xy : % .)(za 31_+_4‘r —
Xy x5
2 v Xy "c—‘ Xg X,EJ—*’_‘ "1a +
R N I Tt 2 >
- Xe *y -Ye - a, "My
e+ —o s o ¢+ . ———
x _[ﬁ—,‘
‘J—l——}—q '——i.—’o(—‘-{'—o.a: ——"—-)4(—"'—. o‘.
Y
Ya :""
Figure 3 — Systolic array for convolution - [9].
K 1 0 : 10
c 1] - ~ -~ c‘[ﬂ _[_] P] =
sru[J ‘[0 4—11&]""~S?x[1 Rl Ly | SPRY | 1Y A £

.—-_<
2 —

=
]

3 [1.

o= ofel=o- =

allf

11 11
1 1 — P
c|))¢ 2[1]_!__- ct o]_[]2 3[0_-1_*
SZ‘I 0]-[0]]_—_1__1_0—3_," S:‘ 1 O-llll]~7—x.
2 2 2 2

Systolic Design for the Deconvolution Algorithm

Deconvolution is the inverse of FIR filtering and can be expressed [9] as the following
recurrence with temporary variable z,

1’ = 1<i<s
L T3k tXiemk

l<k<m-l.1<i<nx =0forj>an

X, = 1<i<ao
3

Design Using the Parameter Method

The parameter method was applied to develop a3 systolic array which performs
deconvolution [9). The array must perform division to obtain x,, and x,’s are used in the
computation of the ¢’s. The division operation may take more time than multiplication, and
this fact should be considered in the design process. Assume the delay of a division PE is w
and the delay of other PEs is 1. This yields the equation |t,\ = w + 1. Analysis of the
feedback condition of datum x, vields an additional systolic equation

Xy = wiy - 1,
These two equations must be included in the optimization; letting w = 2,33 =0, 3, = -1, ¢,
-3. and observing that t,, = t,,, a posmible solution to the constraint equations yields t,
-3/2, Ty =2/3,%, = 2. %4 =-2/3, and X, = -2. Note that the velocities of data flow bave been

averaged over three clocks cycles. A systolic array corresponding to these parameters. with m
= 4,0 =35, is shown in Fig. 4(a).

[{S

$

PRI
AT

vy

\E{“J'-"- g P

:

-~ v v -

P

&Y%

.l
(e

P e e

R Tt e 0 T

"L 4

<

rl

Pl

AT

N

AR R

)

S

]

S

TR

.
Lk

y
AN

Pd

Rk

X

>

4%

g

Pe

<
[

[

2

o

.

x5

MLy
z

1
7/

" .

P

a

X

NS AP

b2
L

rre @

>
5%

P

{

o

iy 4 Ay

Y
A. a

'y

ll

RS

L4
v e e

Y

.

.

Y @
i]

P

[l wt]

.\ .I’S 5 b

-

[l N

-

4

oGt
.}}‘1

X

)
ks

o

P3P0

% .

-

BacXs

~, 3 LIRSS NP L N gl S A Ol W ANy
o "-.""&;\'\ AR LLAAE St o

Two systematic design methodologies tor systolic arrar s 33
—— X, R X,
—_— ————— p——— | —— — —— —
- a—*—‘l"ar—_ﬁu i!'am‘ "J"'a—«_1 a a‘»—.d" D
; a P a i o S raL o au
25—y [T B 3 23 3}——\} —t —— Y2y s
[Lo
Figure 4 - Systolie array for deconvolution, m=4, n=5 (a) Parameter method <ofution. 1

= -3, ty = 3/2. (b) Dependency method soluticn. # = -3 ljand 5 = {0 !}

Design Using the Dependency Method

The following depeudency matrix can be derived from the recurrence requations for
deconvolution
-1 0 -1 k-m

D=10 1 -1 k-w+1

Examining the recurrence. the critical dependence occurs between the generation of 1" ' and
-1

the use of x,, this arcurs with k=m-1, sielding ol the dependence vecter The usnal

broadcasting analy<is 15 then applied to pipeltae variable « . resulting 1n dependence sectaor

-1 Sioee division requires w time units, 7} (|=w+ 1 and with w=2 7 = .3 Using the

proposed optimization procedure, x, = |, the smallest posuible value: possible S vajues in-lude

S = [0 1}, which optimizes space. This means that the generation and usage of z™ ' and v,

respectively, occur in the same PE. This array is optimal with respect to completion ume T
apd #PE x T° It could be developed using the parameter method, where, from Lemma 2, 1, =
-3 and t, = 1. A systohic array which conforms to this # and S for m = f. o = 7. 13 shown n
Fig. #b); the completion time of this array is) mlin=1) + | 7 j{m-t+wt The deconvolution
array of Fig. f(a) bas # = [-3 3/2} and S = {0 |]. The same process of verification used for
coavolution can be applied to bow equivalence bhetween the deconvolution arrays designed
using the different methods.

New systolic equations

Theorem [showed that the xystolic equations of the parameter method are equivalent 1o the
space equaticny, SD = PK, of the data dependency method. Systolic equations for the one-
dimensional case are equivalent to Sd, = Pk, and Sd, = Pk,. respectively. The subseripts on
the vectors k and d indicate which variable is associated with a particular vector. Thus, the
Sd, = Pk, space cquation is pot contained within the systolic equations of the parameter
method for the one-dimcensional case.

The svstolic equations for the 1 dependency will take the general form
[.8g * & = [EREY
I2e ¥ ¥ = [X (4

where [, and [, are linear functions of t, and t,. To determine the functions f, ./, . the
equivalences defined in Lemmas | and 2 are applied to (4.13-4.14) resuiting in

'l el c|'fo
/,S" 1 +s;r 0 :/‘sx i
! | :

C C'{ C*| |o
/YS:r 1 +Sr 0 :/"sx I

b AN

v

v
I.I‘

g
P

DAY
'c'\."'f P
h S T

rpp
e
2l
i s,
4

‘40
-

;"
II

s
»

‘A
‘a-,:f'f': o2
SR

L4

e
P

Jo

{.
s

T
l"l-
P)

[
5 %

#, .:”:; ..'

; ‘l,r
s
’_&‘

.

LIRS A R

P T O o
- M N
" o "(. o Cn,

24 U T OKeeteuand J A Fortes

Factoring out the S and «implifying the above equations yields

' c['fo
" [/‘lz [I\ e
c|'[i c'[o
- [IVI = x| /. (4.16)
Selecting recurrence (1.2} yiekds C* = [1 -1}, C* = (0 ~1] .and C* =i 0] . theo.
Lol ol
cl' o],] c ‘_o—|]‘_n ‘,
x ““k,.,‘) fied) el TL o T|-to
cf' fvol* 11 o
x[:[t, vk] = -t
b 4

Using these inverses in (4.15-4.18) gives [, = ¢ + 1,). /Y = (1, + 1} and equavions (1 13-
1.11) become

o+ ey +

i

i
1]

LY > #1

]

(4, ¥ 1)¥y + ¥, = (4 +pG

The above apalysis was applied to the recurrence of equation (4.2). A similar analvsis of the
recurrence cxpressed in equatioa (4.1) results in £, = (t, —t) and [, = —t, — () in rquations
{4.13) and (1.11). This new set of systolic equations. derived from the data dependency method
through the equivalences described in Scction I, can be added to the set of systolic equations.
From this new set. oply four equations are needed to provide equivalent volutions to those
derived from the original four equations.

References

1] D.I. Moldovan. “On the Analysis and Synthesis of VLSI Algorithms.” IEEE Trans.
Comp.. Vol. C.31, pp. 1121-11268, Nov. 1982.

2] DI Moldovan, “Oun the Design of Algorithms for VLSI Systohic Arrays.” Proc. IEEE. Vol
71, No. I, Jan. 1983.

3] J.AB. Fortes, “Algorithm Transformation for Parallel Processing and VL SI Architecture
Design.”” Ph.D. dissertation, Untversity of Southern Califorma, L.A.. CA. Dec. 1983.

{1} J.AB. Fortes and D.I. Moldovan, “Data Broadcasting in [Linearly Scheduled Array
Processors,” 11th Ann. Int. Symp. on Computer Architecture, June. 1984,

3] J.AB. Fortes and F. Parisi-Presicce, "“Optimal Linear Schedules for the Parallel
Fxecution of Algorithms,” 1984 lat. Conf. Parallel Processing, 1984.

8] J.A.B. Fortes and D 1. Moldovan. "Parallelism Detection and Trapsformation Techniques
Useful for VL3I Algorithms,” J. of Par. Dist. Computing, August. 1985.

{7] J.A.B. Fortes, B.W. Wah, KS. Fu, "Systematic Approaches to the Design of
Algorithmically Specified Systolic Arrays,”” ICASSP '85.

[8] D.I. Moldovan and J.A.B. Fortes, “Partitioning and Mapping Algorithms into Fixed Size
Systolic Arrays,” IEEE Trans. Comp.. Vol. C-35, No. 1, jan. 1986.

[9] G.J.Liand B. W. Wah, “The Design of Optimal Systolic Arrays.” IEEE Transactions on
Com puters, Vol. C-34, pp86-77. Jan. 1985.

{10} G.J. Li and B.\W. Wah. “Opumal Design of Systolic Arrays for Image Processing,
“Workshop on Com. Arch. for Pat. Analysis and Image Database Mgnt., Oct. 1983,

(11] Y. Wong and J. Delosme. "Optimal Systolic Implementations of N-dimensional
Recurrences,” [CCD 85.

[12] M. O'Keefe, ‘A Comparative Study of Two Systematic Design Methodologies for Systolic
Arrays,”” MSEE Tbesis, School of Electrical Engineering, Purdue University, 1988,

AT AT AT AT N A
f.\f.f

Iy

v'l .‘..

‘_'". X

."-"n"
'.’., %

A}

»
)

e
| 'Y Tl
-’"_’

A o

N

"»{'. h]
AR

"'.":'

AR Y]
'1"-

"
a%

70

".\

5 N5 NS

. _’ ,f

Sl

[
L'ﬁ rédtledde : . . 3 Wt -cv-ntnl- MO ot ...-\.-.:.«-
“ lnwvuv‘ll, _rfnfb-hfhun--'h-'- . . 13 f\-ﬂ-“nl ‘AF. ur‘h w.\\ s‘-. .-. .-. N. M : .\. ... ~\ -\ 1.. .\

DA bt Al Sl

Y g yw

PR

oW

v e
A A At At it

-

i

REFERENCE NO. b

PP ST AP A

LR
radlndln

Taylor, V. E. and Fortes, J. A. B., ‘“Using RAB to Map Algorithms into Bit-Level Sys-

tolic Arrays,” 2nd International Conference on Supercomputing, pp. 227-236, May 1987.

-

T

Tovee A A e e AR o

ARG A S gl A AT RN it ' 2% At ‘A LR PR

. ‘o o A ke Y
- A “ ¥ P .. . T TN W Wy v

Presented at the Second International Conference on Supercomputing, May 1987,

Uaing RAB to Map Algorithms into Bit-Level Systolic Arrays

Valerie E. Taylor and Jose A.F. Fortes

School of Electrical Fngineering
Purdue Universily
West Lafayette, IN 47907

ABSTRACT

RAB, a Reconfiguration Algorithm for Bit-level
code, is a large program which systematically maps a
class of numerical algorithms into bit-level processor
arrays. This paper explains the purpose of RAR,
outlines its overall organization, presents the underlying
ideas and techniques of the main components of RAN,
and discusses some implementation details. The input
to RAB consists of C programs with word-level
computations. FEach arithmetic operation in these
computations is first replaced by several bitwise
operations (i.e a bit-level expansion) which implement
that operation. Dependencies are then detected in the
bit-level code and represented as a dependence matrix
which is used in the synthesis phase of RADB to generate
an algorithin transformation. In the final mapping
phase of RAB, each bit level operation in the
transformed algorithin is replaced by a corresponding
microprogram (i.e,, a microcode expansion). This
microcode is also optimized in this phase to produee the
output of RAB, an algorithm executable on the
processor array. Currently, prototype processor arrays
composed of several NCR Geometric Arithmetic Parallel
Processor (GAPP)R:hips are the targets for the output of
RAR.

I. INTRODUCTION

RAB is a program which maps a class of numerical
algorithms programmed in C into bit-level processor
arrays. It can be used to derive a [ull design
specification for an algorithmically-defined processor
array as well as to identify full (partial) mappings of an
algorithm into an existing processor array of fixed
{variable) size. This paper explains the purpose of RAR,
outlines i1ts overall organization, presents the underlying
ideas and techniques of the main components of RAR,
and discusses some implementation details. In order to
illustrate the concepts and operation of RADB, we show

how two algorithms for convolution are mapped into a
variable size processor array composed of NCR GAPP
chips (i.e., each chip is a (12 x 6) processor array
|DaThR4]).

"l'his work was supported in part by the National Science
Fonndation under Grant DMC.8419745 and in part by the
Innovative Science and Technology Offics of the Strategic Defense
Initiative Organization and was adininistered throught the Oflire of
Naval Research under contract no. 00014-85-k-0588,

YGAPP is a trademark of NCR Corporation.

" 'a.'*.-\.-
" V'

Processor arrays generally consist of a collection of
processing elements (PE's) with a regular interconection
scheme, Systolic arrays, as characterized by Kiung
{Kung82], are a apecial case of processor arrays in which
data flows from one P’E to another in a regular and
synchronous fashion. Generally, a systolic array is easy
to implement and extend because of its regularity and
modularity. Due to simplicity of local processor design
and advances in VLSI technology, relatively general
purpose bit-level arrays are becoming common (i.e.,
GAPP [DaTh&4], MPP [Batc80|, DA [Redd79], CLII®
[DuWa75] and others). As compared to word-level
arrays, bit-level arrays require simple processing
elements (e.g., processing elements composed of a full
adder, some simple logic, and a number of registers) and
provide high throughput rates (i.e., bit rates). These
characteristics also make bit-level processar arrays very
attractive for special-purpose applications, e.g., digital
signal processing (JMcMc82], [Mcetal8d), |Mcetal8st).

Despite being ideally suited for various applications
and VLSI implementation, processor arrays can he
difficult to program (in the case of an existing general
purpose architecture) or design (in the case of a special
purpose architecture). This is a particularly acute
problem for bit-level systolic arrays where the goal is to
implement high-level computations (e.g., matrix
computations, convolution, etc) using bitwin~ operations.
In order to solve this problem, it is desirable to develop
methodologies and tools which enable the systematic
mapping of algorithms into processor arrays. In the
past, several research efforts have been pursued in this
direction and a survey can be found in [Foetal®5]. Many
of those methodologies, which were intended for word-
level processor arrays, are applicable to bit.level arrays.
Iowever, besides some of the limitations that still
characterize those methodologies, systematic bit-level
designs present additional problems. RAB represents an
attempt to develop an automated tool for the design
and programming of bit-level arrays and to understand
and solve the open questions and problems involved in
this process.

In practice, potential users of processor arrays are
given an algorithm and must devise a means for its
execution using one of the following options: {1) to use
an existing processor array, (2) to design a special
purpose processor array, or (3} to design an array that
uses a nutnber of existing “smaller” processor array
modules as the basic components. Option (1) requires
mapping of the algorithm into an existing array taking
into consideration size limitations, fixed interconnection
aschemes, and predesigned processing elements. In this

NN
“» ."\'.‘- '_\..“‘ -

NapltyXd

' ‘s
e
EACy

»
«

)

. v

)
X

i
X

k]
a3

o

- -
MRS
(.u’f.
Brta &%

2y

oY

A RS
LMY

P4
{"-'? L4

Y

P
Y

T.::.

»
-

_%‘\‘
ey

AR

4!'.-' A

vy
S

Y
AN

g ¥ 0
1'5-"‘\
x_a_ g

Y
F Y

x 1
T
'

3
Lo

»
x

-‘i-‘l >
4
:‘{:"n "vx‘ @S

PIAY

RN TG

R
59 %%

P
AT B

e

v % e e
A S

t'.‘{
g

5
’
o4

RS

-

1

(] ’l\; v
LA

0
rah
AL L 2)

2

LA A }

o
"
L4

-

i which we refer to as full tpapping, the
g,:zlgorl;’mming decisions a.e totally subordinated to the
characteristics of the array. Option (2) allows .the user
to design the hardware taking into consideration only
the characteristics of the algorithm. and 'perhaps some
rather general VLSI design constraints (i.e., planarity,
limited pinout, ete). This option is r_eferred to as full
design. Option (3) is a compromise between full
mapping and full design, where the de'sugngr can decide
the overall organization (i.e., shape, size, lnterf.aces) of
the array, but uses given b.allaic blocks which are
themselves fully defined "small” processor arrays. We
refer to this option as partial mapping/design.

The input to RAB consists of C programs which
implement word-level algorithms. In se'ctlon 1T of t'hls
paper we characterize the class of algfmthm for which
RAD is intended, present the algorithm xpodel., and
describe the representation of dependencies in an
algorithm. RAB first expands the co_mputatlom in t}'le
input program into bit-level operations as shown in
figure 1. This expansion phase, whlch.xs des.cribed n
section III, replaces word-level computations v;vnth a bit-
level implementation of the arithmetic operations. Th!s
phase is followed by data dependence/broaflcast analysis
which uses techniques discussed in section IV. The
results of this analysis can be used to generate an
algorithm transformation which yields a full design of an
algorithmically-defined array or full (partlal) mapping
for a fixed (variable) size array correspondlpg to the
third level of modules in figure 1. In section V we
present the methodology for the genera';tion of a part:ial
mapping and discuss how a full mapping or full design
can be obtained. The last two modules in figure 1,
microcode expansion and microcode o;_)timizatiop,
comprise the mapping phase which is discussed in
section VI. In section VII we review the status of the
implementation effort and present some concluding
remarks about the project.

bit-levei
expansinn

dependenee /broadcast
analysis

——

L full mapping J I partial mapping I

microcode
expansion

microcode
optimization
algorithmically fixed size variable size
defined array array
areay

Figure 1. Flow diagram of RAB.

f
L il design

11 ALGORITHM MODEL
REPRESENTATION

Algorithm Representation

RAB accepts as input a program which uses a
subset of C constructs. Since algorithms that run
efficiently on a processor array are likely to have a
repetitive and regular structure, the input to RAB
consists of programs which typically contain loops. For
this reason, RAB is capable of efficiently analysing
loop-like programs with static behavior. In addition to
the fact that pointers and function calls cannot be used,
the structure of the loop-like programs accepted by RAB
must exhibit the following characteristics:

- the Jower and upper bounds of the outermost
loop must be integer constants.

the bounds of the nested loops must be linear
expressions of the outer loop indices or integer
constants.

the step of each loop must be one.
no two loops can have the same nesting level.

arrays of any dimensions are allowed; the
range of each dimension must be an integer
constant.

the boolean expression of a conditional
statement must be a linear expression of the
outer loop indices.

all subscript expressions used when referencing
elements of arrays must be linear expressions
of the outer loop indices.

Example 2.1

The following convolution algorithm is an example
of a program which satishes the criteria of the
algorithm representation.

for(iy = 1; j; <= Ny; ji++){
forlip = 1; j3 <= Ny; ja++){
) ylid) = ylia) + wlia] * x[j;+ip—1]
}
where w(j,] is the sequence of weights, x[j;+j, - 1] is

the sequence of inputs and y[j;] is the result
sequence.

End of example.

Other programs such as matrix-matrix
multiplication, matrix-vector multiplication, and FIR
and IIR filtering satisfy the constraints of our algorithm
representation. A broader list of suitable programs can
be found in the concluding remarks of [Kung82]. Many
programs which fall outside of this class can be
transformed to satisfy the above constraints, using such
techniques as normalization or loop fusion |[Wolf82].
Conceivably, such techniques could be easily
implemented in a preprocessing step for RAB. However,
it is assumed that input programs have been normalized
and loop fusion is not needed. The next subsection
presents the formal definitions of dependencies.

Modeling Dependencies in A .gorithms

The parallel execution of independent operations
requires knowledge about the existing dependencies in
an algorithm in order to preserve its semantics. There
are two types of dependencies that can occur in an
algorithm: machine dependencies and algorithm

dependencies [Kuetal81]. Machine dependences result
from the limitations of the particular architecture used

5 g

;L

R |
A4
Y 4

o

l"‘l "fﬁl .
LA
ol

S o
& % Iy
LA

-
-

i

™Y

5
:'.-:,'.
W

h]

,.-
551
WA

]

. 4

R
o

e

[
. ¥ P
ot

ly ..

hY

¥

l' l‘ l‘ l‘ "
*y
'
)

1.'

A N SN T
R
NARAIIT LR

‘: .'-. Y
P
a0

YA

4

4 ‘::; :’
;"(

for execution of the algorithm; algorithm dependencies
result from the structure of the algorithm. The first
! category of dependence, machine dependence, also called
h resource dependence, is defined as follows.

Y De finstion 2.1 (machine dependence)

Statement §;, denoted as the head of the
dependence, is machine dependent on statement S,
dencted as the tail of the dependence, if and only if

1. statement S; precedes statement S; and

2. res(S;) Nres(S)) #
where res(S;) denotes the set of resources needed to
execute statement S;.

Machine dependencies can be divided into two
categories: explicit machine dependence and implicit
machine dependence. Explicit machine dependencies

in a dependence matrix which is representative of the
algorithm dependencies in a program. This matrix and
other algorithm parameters are essential features that
are represented in the algorithm model defined below.

De finition 2.8 (algorithm model)

An algorithm is a 5-tuple, <J°, C, D, I, O,>> where
J® € 2" is the index set (Z represents the set of all
integers), C is the set of computations, D is the set of
dependencies represented by distance vectors, 1, is the
set of input variables for the algorithm, and O, is the
set of output variables for the algorithm.

An example of the algorithin model is given in section
v,

The dependencies represented in the dependence
matrix, D, must be satisfied by the execution ordering of

result from the apparent limitations of the architecture. an algorithm defined below. :
. For example, statement S; is explicitly machine et
5 dependent on statement S; if lbot,h statements require a De finition 8.4 (execution ordering) -
write to two different memory (RAM) locations and the A partial ordering is an execution ordering il all

given architecture only has one RAM port. Implicit
resource dependencies are inherent in the semantics of
the instructions. For example, in a GAPP array, the
A arithmetic and logic unit (ALU) of each PE always
s executes a "full add” operation every clock cycle,
regardless of the instruction being executed. As a
consequence, the architecture of each PE exhibits
implicit resource dependencies with the use of the
caleulated variables sm, bw, and cy (which denote sum,
borrow, and carry respectively). Thus, if a statement
explicitly uses a calculated variable, it will always
depend on the previous statement.

The second category of dependencies, algorithm
dependence, consists of the three classical dependencies:
output dependence, data dependence, and anti-
dependence. These dependencies are defined in the
following definition.

i

DO e,

. De finition 2.2 (algorithin dependence)

, Statement S;,, denoted as the head of Lhe
" dependence, is a’gorithm dependent on statement §,,
- denoted as the tall of the dependence, il and only if
1. statement S; precedes statement S; and
2. one of the following conditions is satisfied:

i. out(S;) M out(S;) # 1
ii. out(S;) N in(S;} # ¢
iii. in(S;) N out(S;) # (I
X where out(S;) denotes the set of output variables of
statement S;, and in(S;) , the set of input variables.
It is assumed that the reader is knowledgeable
about algorithm dependencies for which an example
would be redundant. In RAB, only algorithm data

distance vectors are positive in the sense of that
ordering.

In other words, the execution ordering of an
algorithm restricts the generatiocn of a variable to
always precede the usage. RAB replaces an execution
ordering which is total by an execution ordering which is
partial. Thus the original distance vectors represented
in the matrix D must be positive in the sense of the
lexicographical ordering.

Now that we have presented our algorithm mode)
and representation, we will describe the various modules
shown in figure 1. The next section discusses the bit-
level expansion of the word-level computations.

II1. BIT-LEVEL EXPANSION

The first phase of RAB systematically replaces the
word-level computations with bit-level implementations
of the arithmetic operations. These bit-level
implementations are hereafter referred to as expansions.
The actual e¢xpansion for a given arithmetic operation is
not unique. [or cxample, there are several expansions
for the multiplication operation, e.g., Booth's algorithm
lBootSl] or the shift-add algorithm leanm]. The bit-
evel arithmetic expansions used with RAB were chosen
due to simplicity since RAB is relatively new and in the
initial stages of testing. Conceivably other expansions
can be used with RAB to investigate the optumnality of
diflerent bit-level algorithms. RAB currently implements
the bit-level expansions for addition, multiplication,
division, subtraction, and all possible pairwise
combinations of these operations. Actually, RAB

"
) e a

r

LA

fa

PV
54
o

h S 2N §
AN
A

20

Sy
'."'.’:'.' (k

o

LRI
P

..'l
)

%)

K

g
o

v

A AN

PR
R A RN

A dependencies are detected in the dependence analysis for provides two types of expansions for each operation or .8

use in the generation of the algorithm transformation. operationn pair. The first type is used for running the -_":-,'.

. The reason for the detection of only data dependencies expanded algorithm as a conventional C program. This oY
"

will become evident in the discussion on the algorithin
- transformations. However machine dependencies and all
three algorithm dependencies are detected in the
microcode optimization module to be discussed later in
this paper.

provides the user with a means for gathering test data.
In these expansions, statements are included which
explicitly convert the initial data values to their bit-level
representations, These conversion statements are not
contained in the second type of expansion which is used
in the dependence analysis module of RAB. In order to

“eTe v
1] l"(‘
AR
AN

@

Distance or dependence vectors provide a b !) O

particularly convenient way of representing algorithm facilitate the analysis, the gecond type of expansion S

v dependencies between statements referencing arrays. eliminates output and anti-dependencies using such :\:.‘
! We define the distance vector as the vector dillerence techniques as renaming aqd expansion ([Ca?lalﬁll, i
: between the index of the computation where a variable {Kuetal81]). Two dlﬂl:rent, bll.,-level. implementations of -','.r;'
’ is used and the index of the computation where the the Co[“"”“tmﬂ algorlthm {(given in example 2.1) are X
shown in figure 2, These two algorithma result from the s,

same variable is generated. These vectors can be placed

[0y

for(j, = 1; J; <= Nj; j,++){
for(j; = 1; j; <= Ny; jo++){
for(j3 = 1; j3 <= Ny; jz++){
for(j, = 1; jy <= Ng jy++}{
if(jy == 1){

cy2lis|lialliallo] = (cy2(irllizllis-1}[0] & sumifj]i)[is-1))
(ey2(jiiliallia-1]{0] & sum2{j {lip-1]lis- 1]}
(sum1[5)[32)li5-1] & sum2[j;)[jr-1]lis-1));

sum2(j,]{j,){iz-1] = ey2(is][iz}lia-1][0] ~ sum1[jy)[ia]lis-1]

sum2(j,}[3,-1][5-1];

else
if((jy > 1) && (j3 < Ny)){

eyiialliallia-1] = (sum1[j |ligllis+ie-2] & (wlia)lal & x[is+iz-1]lie-1DN
(sum1{iy][ialliz +ia-2] & cylfiyllia]liallie-21) |
((wliallia) & x[jy+ix-1}lia-1]) & ey1li]{ia]liallia-21)s
sumlfj[liallis+is-2] = sumfj,]{iz)lis+ie-2] * ey1{ia]liz)liallie-2]
(wlia)lia) & x[iy+i-1[is-1));

}

else

if((Gq > 1) && (j3 == Ny))f

cy2(ji)lialliallis-1] = (ey2(ii]liallisllie-2] & sumi lilliallia+ie-2)i
(ey2[iulialliallie-2] & sum2(j,){ip-1][is+ie-2)
(sumfj;)lio]lis +ie-2] & sum2[if)io-1liz 121}

sum2(j][jz}[is+is-2] = ey2li;]liz)lisllie-2] = sum1{3ijliz)lis+ie-2] °

sum?lj|lj,-1}[is+ie-2);

Figure 2a.

use of two distinct expansions of the operation pair (+,

i)'

The algorithm presented in figure 2b is currently
used in the expansion phase of RAB. However, the user
is not required to input an algorithm into the expansion
module; [facilities are provided whereby a user may
bypass this module and input a bit-level algorithm
diflerent from the one generated in the expansion
module. This is the case with the algorithm presented
in figure 2a. Both algorithms correspond to the second
type of expansion mentioned above and can serve as
inputs to the dependence analysis module discussed in
the following section.

IV. DEPENDENCE/BROADCAST ANALYSIS

The dependence analysis module detects
dependencies between statements referencing arrays. In
order for a dependence to exist between two statements
referencing arrays, the following conditions must be
satisfied:

1. the array references in the two statements
must have the same name.

A bit-level expansion of the convolution algorithm.

2. given that condition 1 is satisfied, the
functions which specify the subscripts of the
array references must have the same value
for some index value(s).

3. the index value(s) for which condition 2 is
satisfied must belong to the iteration space.

This module is invoked when the parser detects that
condition 1 has been satisfied. Kuhn's Dependence Arc
Set Analysis (DASA) technique [Kuhn80| is used with
RAB to verify conditions 2 and 3.

Dependence Detection

DASA utilizes five relations represented as convex
sets to gather information about the possible
dependencies and to determine whether conditions 2 and
3 are satisfied. Dependencies are considered in relation
to the Cartesian product of the loop indices and the
nesting level of the statements involved in the possible
dependencies. Two of the five relations, T and H, define
the control structure of the loops surrounding the tail
statement (i.e., the point where the data is generated)
and head statement (i.e., the point where the data is
used) of the possible dependence, respectively. Two

DN RO T R RS N T N N SR R R R
-~ ‘:‘\'.'.'.' AT AT AT '-'\'\.'\“.‘.-\J\.'\J\J".'\.

[S

e, -

o
5 7
qd

h)
hY

f‘:’{' "
2
%,

A
YAy

hY

s
L4

5

7
.

2
Fol

2

-

L
hY
L4

h i gt
<
7

'l
Y
L4

St
.I'I
Y

-’-Fs

e
Y

P4

<

o
9,

2

bt

-y
Y
=

-

Cd

.\
PR S

®-ny

"‘I
53

\‘J}‘;’
227

o,
oe

’:-

‘{"

i
g
PR

« w

.
«
[}

ste 2

[N

-~
o,
.

Mh LA AR AN A COARA, o A a" 1 . W v
' . - . - oS . - - - - a - - - -
>
at

X for(j, = 1; j; <= Ny; j; §—+)S
.‘I rOl'hz = 1; jz <= Nz; jg’F"’ {
s for(jy = 1; jy <= Nyi ja t+4)

~ for(jo = 1;jy <= Ny jet+){
o eybilliallallii = (wialla) & sl 51D (sl &
i o .(WJz Jalus‘}f“LJ ”;‘3'*)4‘1_ o R

sum(j[fiz tie 1] = (“f[.lzlJ:J sumljlig 1ja-1] " exliailig)lia et &

o } [y Hiz- 1)) 1 (sumli)liz tig-1) & “xji 11 JJ)

o~
O }
oo)
o '
(Yt Figure 2b. The bit-level expansion of the convolution algorithm used

in the expansion phase of RAD.

. other relations, S, and S, respectively define the
- indexing function of the generated and used arrays
. referenced in the tail and head statements. The fifth
relation, F,;, represents the forward relation which is
N used to test different conditions of the loop indices for
: the existence of a dependence. These relations are
represented as convex sets in matrix format that is
W easily implemented and manipulated in software. If a

T

= solution space results fromn the convex analysis of the
. .r',: intersection of the relations, T, H, Fy;, and S, composed
1 with Su_‘, then a dependence exists for the conditions
,:- defined by the forward relation, Fyy. The inequalities of
'&w." the solution space of a dependence are then ordered to
* form an upper bound matrix, U, and a lower bound
" matrix, L, to be used in generating distance vectors.
> Further details about DASA can be found in {Kuhn80]
A and {Tayl88].
- Broadcast Analysis

An analysis scheme similar to the one used with
DASA is used to discover when a broadcast exists. Since
only one relation is required for the broadcast analysis
we will elaborate on this concept to introduce the reader

‘)

h
:-. to the representation of relations as convex sets and the
- analysis scheme also used with DASA for dependence
N detection.
; : A data item requires a broadcast if and only if the
-, datum is needed to simultaneously execute two or more
Sy computations in distinct processors. In [Fort84),
- sufficient and necessary conditions for a broadcast are
1“ -~ provided_ in__relation to an array index function,
| : F(j) = Cj + Cy, where C is the indexing matrix and C,
‘o is the index displacement. In order to remain consistent
‘-,-.‘_'-5 with the representation of the relations involved in

£l

DASA, we represent the array indexing function, F(j), by
the subscript relation, S;, which is defined below.

o

n-» De finution 4.1 (subscript relation)

:‘J‘: Let the subseript relation of the { dimensional array
P, e, A be represented by the relation

. i , ¥

. S |-l=1Is" -1 [-]=a

A'. 0

- where | represents the array subscripts, S ¢ yAUR “), is
- called the subscript matrix, I is the identity matrix,
‘;\' BN A) is called the constant vector, and n is the
o dimension of the iteration space.
- The subscript matrix, S/, is equivalent to_ the
A indexing matrix, C, and the constapt vector, ~, is
B equivalent to the index displacement, 5. For example,
N
\'
LY

=
o

ol
' o
oA

o

A

»
2

w

’
-
P

Fs
)

et NS AL N
PO NN AN N \4{:4‘
.'

AR

AL RTRD
1‘\" -~
NI

the representation of the subscript relation for the input
variable x[j,+j,—1][j4—1] is given by the following:

i

T
1100 ~1 0} |j, ;
ooo1 o —1| || |1

11oof -
000 1|29 Iy

According to Theorem 3.1 in ([Fort84}, if the
rank(S;) (or rank{(C) = n-1) then broadcasting can by
eliminated be including the distance vectors for the
input variables in the dependence matrix used to
generate an algorithm transformation. These vectors for
the input variables are hereafter referred to as bulfering
vectors. The buflering vector is defined as the vector
difference between the two points of the iteration space
using the same variable. This vector can be generated
in the following manrer. _ N

Two computations indexed by j' and j" use the
same variable if and only if the value of the array
subscripts are the same. This condition is represented
fjll

where §;' =

by the equation § i - (7, =S/ - (—7; or

s/ (' — ")=0 (4.1)

where J_' —j—" =d is the buffering vector. Equation 4.1
can be represented by the following convex set:

Sil _s_ll Y —
LWSJ[”SE} (4.2)

The intersection of the five relations used in DASA is
represented in a similar manner. The solution to the
convex set in (4.2) is found using an analysis procedure
similar to the one used with DASA. [’irst the variahles
are eliminated using a reduction procedure. If a
consistent solution results from the elimination stvg' the
variables are projected onto the space 2" x2°. A
detailed description of the reduction and projection
procedures can be found in [Kuhn80] and {Tayl86]. In
the projection step the inequalities defining the solution
space are ordered to form the L and U matrices
mentioned in the previous subsection. The results of the

broadcast analysis for the input variable,
x[j;+ja—1]li4—1] are given below.
\-\"\":’" 1-‘./-'-‘ L Al LAl
Y A <, . . Pd

R N e

s

P
Pt

o

".

P v >
A Lt

.
"

t'-ft'fl

""&"\ 2 Yo T 2o

~

R
v
e

s JL U

" s
P
Mo A

a,i

RN
e

ey

"l}. H

P IR 2N]
2.7,

s

Pad

P

r

S O e
A)

l’l LI

/

v

P

/

e Lt)

L AT IS s B)

Pa Sl et ey

"4y

V0 0 0. a8 .2 a0 8 Sl Say bal e - io" 3 " (il 2ta A 8anpe AR AN S e PR T ATAT

The resultant L matrix is shown as the coeflicient
matrix in the following convex set which specifies the
lower bounds of the solution space:

i
i
s !

1
1100—1—100]5" H

IA

o001 0 0 0 -1

Similarly, for the upper bounds of the solution
space, the U matrix is as shown in the following convex
set:

IA

J3
-1 —-10 0 1100 id 0
0 0 0 -100C01

Ja
[j‘"

Similar matrices result from the dependence analysis
(however, typically, 1. ;‘—UR. The generation of the
distnnes veetors for the fuput variables nnd the
generated variables involved in a dependence are
discussed in the following subsection.

4

Distance Vector Generation

The distance vectors can be extracted from the L
and U matrices by inspection and enumeration. The
enumeration step is only necessary when the elements of
the distance vector are functions of the outer loop
indices instead of constants. This step consists of
substituting each point in the solution space of the
dependence (defined by the L and U matrices) into the
given functions and keeping only the distance vectors
with integer elements (fractional entries cannot result
from the difference of integer vectors).

The buffering vectors for the input variables are
extracted in a similar manner. The L and U matrices
resulting from the broadcast analysis of the input
variable x[jl-{-jz—lJ[j(—l] represent the equations
G/ —i") =0y —i)=0 and j'—j/"=0. The
number of buffering vectors resulting from the broadcast
analysis is equal to n—rank(S;’) (which for our example is
2 since n=4 and rank(S;') = 2) corresponding to the
number of free variables. For the equation above, the
buffering vectors are the transpose of the vectors (1 -1 0
0f and [0 0 1 0] corresponding to the case when
n=n")y =1 (j:;"ja") =0 and (/'=i") =0,
j3'—3ia"} =1, respectively. These vectors are not unique;
the value 41 may be used for each of the free variables.
However, this i3 not the case with the dependence
analysis. The distance vectors resulting from DASA are
unique since the control structure of the tail and head
statements are represented in the analysis.

The relations defining the control structure of a
dependence in DASA correspond to a subset of the
iteration space or a subset of J*. For the algorithm
given in figure 2a, the iteration space is the set of the
points (jy, ja. J3, Jg) € J® for 1 < j, < N;. The results of

the .intersection of the control structure with the
relations S, S,, and F,y, along with the results of the
broadcast analysis are combined to form the following
dependence matrix (for the algorithm given in figure 2a).

00001 1
00 100 -1
[t 1 000 0
0~-1010 0

Column 1 of the dependence matrix corresponds to the
used variables cy2(j;]{i,}[i3—1][0} and the input variables
x[ji+js—1]li¢—1], column 2 corresponds to the used
variables suml1|j,|[j,]{j3+i4~2], column 3 corresponds to
the used variables sum2j)j,—1][j;+is—2), column 4
corresponds to the used variables cy2[j,1[jz] ja)li,—1] and
cy1[i1)liz)lia)liq—2] and the input variable w(j,|[is], and
the last two columns correspond to the input variables
w(js|lis] and x[j,+j,—1]{i;~1]. The set of computations,

. used in the algorithm in figure 2a correspond to full
add operaticns. The set of output variables for this
algorithm consists of the results of summing the
products that is stored in the array sum2. The set of
input. variablen conninta of the weighta, Inputa, snd the
ninn wnd enerlen which wers never genernted,

The algorithm model parameters for the algorithm
given in figure 2b are similar to the ones presented
above with the exception of the dependence matrix, D,
given helow,

00 0110
00 1 0-10
01 —j30 0 1
1 -1 3j; 000

D= , Ja=1,.,Njgiven N3y < N,

Column 1 of this dependence matrix corresponds to the
used variables cy[jllﬁ,][j;,][h—l] and the input variables
w(js|{i3], columns 2 and 3 correspond to the used
variables sum[j,|[j;+i,—1], and the last three columns
corresponds to the input variahles wlj,]ljs] and
x(31+Hz—1]lial-

The distance vectors for the generated data items
are used in the synthesis phase to preserve the semantics
of the program; the buffering vectors for the input data
items are included in the dependence matrix in an
attempt to schedule different execution times for the
computations requiring the same variable. The next
section describes the methodology used to generate an
algorithm transformation for a variable size array.

V. TRANSFORMATIONS

The synthesis phase of RAB utilizes a well known
transformation methodology hereafter referred to as
Linear Algorithm Transformation (LAT). This
methodology, which is described in ([FoPa84|, [FoMo85],
and referencgs jtherein) generates a translormation

matrix, T = 7Sr , which maps the index points of the

bit-level algorithm into the space-time domain. The
LAT methodology uses the dependence matrix, D, to
insure that generated and input data are available for
usage by the scheduled PE at the acheduled time of
execution for a given computation. Due to this fact,
only distance vectors for data dependencies and
buflering vectors for input variables are extracted in the

X
AP

SN Nt
ey

'-.‘\-’ ®

*y
S &L

Ay

PRI LAY,
Y@ awAs
I;‘l.'%.'

- e S

i

+

Prve

2,

‘n X ¥
3

DA ELLT D
TS Y5 S
-jaf:;?(:(p.

I

)
1o
/]

LA
LR AL nlNE N

(XA

[S SN B B
AR
7

&
s
'

CuNy

27,
’)

*,

-l)j.n .
L
'hl

4
»

“r Y Y e v %
-
v %
-

77
P

a7
. 4. ,’.

LY

r

TLVE L %S

e % SRS

A2

e :

LRRLEP e .‘}A-’ DAl

R
- -

dependence/broadcast fnﬁlysis module. The first
component of T, 7 e 21°?) corresponds to the tim)e
tranaformation; the second component, S ¢ Z‘“*l)'“,
corresponds to the the space transformation. These
components are described in the following subsections.

Time Transformations

The linear time transformation, 7 € Z("* maps the
index set of the algorithm into the unidimensional time
space, mJ*— t. Given the time transformation, 7, the
time of execution of a computation indexed by j is given
by:

(5.1)

where disp 7 = min{nd,, d; € D} (d; corresponds to the
ith column vector in D) and O = —min{nj: j € J"} + L.
The constant O forces the first computations to be
executed at time t=1. The parameter disp = represents
the maximum number of parallel arithmetic
computations executed in each processing element. We
restrict the value of disp 7 to one. This restriction is
representative of the systolic array used with RAB
(GAPP) and some other available architectures (i.e,,
MPP, DAP, CLIP). Given disp 7w =1, the total
execution time of an algorithm i3 represented by the

expression
j=n
14+)]

t=1

" T} o)
) =[7; +
isp 7

L

(N; — Ls)}‘s (5.2)

where N, and L, correspond to the upper and lower
bounds of the loop variable j; respectively and ¢
represents the number of clock cycles needed for the
execution of the arithmetic computations. To insure
that the ordering determined by 7 is an execution
ordering, we impose the restriction that wd; > 0 for all
di € D.

The time transformation, m, is found by trying to
minimize the function (5.2) which is monotonic in terms
of the entries of m. Due to the monotonicity of the
function, we use a heuristic approach to generate m,
similar to the one presented in [OKFo86]. We start with
all entries of m being zero and progressively increase the
sum of the absolute value of the entries of each m. All
possible combinations of signs of each 7 are considered
with the exception of those obtained by negating
previously generated 7's. We then check the validity of
each of the 7's. The valid time transformations, i.e.
those for which nd; > 0 for all d; € D, are ordered
according to the execution time (5.2). Possible 7's,
which might result from further increases in the absolute
value of the entries of a particular 7, for which
execution time is larger than the known minimum, need
not be considered due to the monotonicity property
mentioned above. The ordered list of 7's is used to
generate the space transformations.

Space Transformation

The space transformation, S, delermines the
spatial mapping of the algorithm into the systolic array.
This mapping requires knowledge of the essential
characteristics of the given architecture. These
charactleristics are represented in the architecture model
defined in the following definition.

De finition 5.1
The systolic architecture is a four tuple <19, P, R,
T>> where L9 is the index set of the processor array, P is

the matrix ol interconnection primitives, R is the set of
resources available in each PE, and T is the local
execution time of a_computation.

Each point f§ € LY corresponds to the relative
location of a processing element in the systolic array.
The matrix of interconnectjon primitives is_such_that if
p € P then for any ¢ ¢ L9, § is connected to #' =0 + p if
0 ¢ LY and § is connected to an input-output port if
0" ¢ L. The set consisting of the resources available in
each PE, R, is used in the microcode optimization phase
to detect machine dependencies. If two instructions
require resources beyond those given in R (i.c., the case
when two RAM ports are required and only one port is
given in R) a machine dependence exists between the
two statements. The focal execution time, T, represents
the worse case time for the execution of an instruction.
This value is used to calculate § in (5.2) to determine
the worse case execution time.

The two parameters of the architecture model, 17
and P, define the global topology of the systolic
architecture. The other two parameters, R and T,
define the local architecture of each PE comprising the
systolic array. The parameters of the systolic
architecture for the GAPP array (shown in figure 3) are
given below.

Example 5.1

The GAPP array shown in figure 3 i3 a sysiolic
architecture which can be represented by the four-
tuple <L9, P, R, T> where the index set of one
chip is given by

L? = [(p,, 0,): 1 <9, <12, 1< 9, < e}

* BLOCK DIAGRAM OF CONNECTIONS BETWEEN
FOUR PROCESSOR ELEMENTS

=] [
r—I' iJ B:duectionsl
L. Ja)

<]

o€ o€
. v %o - o
s -8
; :
> LER N O = e b i b—] - -~ oren
e = = o
o€ oy ‘_J cus ua’j}_] OUG:U’
L P
% R !
RERL- "]
PRy
- c.‘,"i .Jv.‘—‘} T R Na
@ 4 -
B L2 PO 5. LS NPE.LY E,
I i ,_T ’@“(i’.. --
of | lom ws ts_.J 00w ,ItLJ
\

' Lt

€ = Qurpur Enstte s s intacna! connecron
€ast Outputs ensbied whanever Cq = | and Cg = 1 and Cy = 0 (EW =W}
Wast Outpurs enstied whenever Cy =D and Cy = 1 end C) =) {EW)
No«th Qutputs engbied whenever C3 = 0 and Cy * 1 and Cq « 0 iNS =S)
Soueh Outonts pnsbted whanevss Cp = 0sn0 Cy = 1 and Ty = 0 INS =N
GO o putied low wheneve sny NS cegiiter contanwm 1

Representation of GAPP interconnection
scheme {DaThR4).

Figure 3.

v ¥ E_8
L4 [A
'51'&‘:‘15:'\ :

‘r"-

A Y

%

I

<q

s

-t

y!l
5

LA [
Y l',.l(‘:"x '

LY

T

e

&

-
h 2

h g

Ky

»
FAN

=
DA

s
)

-
-
= =l

['s
“
0

’
i

e

{

L4

2N

Ty

WSS

L7
.l
PR A

e por ol) ol iy

The matrix of interconnection primitives is
010 0 -1
001 -1 O0f

The set of shared resources available in each
processing element is given by

Pg

R = jcm reg., ns reg., ew reg., ¢ reg., ram port, ALU]

and the worse case execution time of a
computation, T, is assumed to be three clock cycles
(one clock cycle to place data in proper registers
and execute a "full add" operation, and two clock
cycles to place data in the proper register for
shifting purposes).

end of example.

In mapping an algorithm into a systolic array, the
main goal is to insure that the data communication
between processors can be accomplished using the given
interconnection primitives. In other_ words, if a
computation performed by processor §; at time t;
depends on data generated by processor {, at time t,,
then there must be a composition of interconnection
primitivea that connects §, to {, in time t; —t,. The
composition os intsrconnection primitives is given by the
matrix K e Z¥ ¥™. To insure that a direct path is
taken for the movement of data, we restrict all entries
in a column of K to have the same sign. Given these
parameters, the spatial transformation, S, must satisly
the following set of diophantine equations

SD =PK (5.3)

where S € zx®) pezlxm™ pez@~n, and
Ke z(r > m)

The sum of the absolute value of the entries of
column i of the K matrix represents the total number of
data movements for the corresponding data item
associated with column i of the dependence matrix.

This sum is upper bounded by 7d;, the upper bound on
the propagation time. We require the column su

equal mTi since we include the buflering primitive, 8 R

in our set of interconnection primitives. Only one
interconnection primitive for each unique data link is
included in the P matrix, i.e., even if a data link is bi-
directional, we include only one primitive corresponding
to one of the directions. Consequently, the matrix of
interconnection primitives used with RAB for the GAPP
architecture contains only the first three columns of the
P matrix given in example 5.1.

If no solution exists to (5.3), we select another =
from the ordered list with minimal increase in execution
time. If solutions exists to (5.3), we order the
transformation matrices (composed of an S and the
corresponding 7} according to the AT (area x time)
criteria. We then choose the first transformation matrix
in the ordered list for which a conflict does not occur. A
conflict occurs when two or more computations are
mapped into the same PE to be executed at the same
time given that only 1 ALU is available in each PE. In
other words given two computations indexed by j' and
j", a conflict occurs when T j' — T j" = 0 or

T(i' - j")=0 (5.4)

where 1_' - j_" represents the conflict vector. The conflict
vectors are generated using an analysis scheme similar

to the one used with the generation of buffering vectors
for input variables. If the conflict vector exists within
the given iteration space, we disregard the corresponding
T and check the next transformation matrix in the
ordered list. We continue this procedure until a
conflict-free algorithm transformation can be found for
the partial mapping of the bit-level algorithm into the
variable size array. Further details about the conflict
vector can be found in [Tayl86]. The conflict-free
transformation matrix for the two convolution expansion
are given below.

Example 5.2

For the algorithm given in figure 2a, the conflict-
free transformation matrix for iteration space
defined as {1<j,<3, 1<j,<3, 1<j3<3, 1<j<5) is

3 1 21
T=|-1-100
-2 0 10

with execution time of 176 and spatial requirements
of 1 GAPP chip.

The conflict-free transformatic~ matrix for the

algorithm in figure 2b with the same iteration space
is

T =

O m N

42
00
01

—O

with execution time of 275 and spatial requirements
of 1 GAPP chip. Both transformations optimize the
measure A x T, where A corresponds to the number
of GAPP chips.

end of example.

A [ull design of an algorithmicaily-defined array can
be specified by generating a transformation matrix using
the interconnection primitives for a planar array and
modifying the local systolic architecture parameters, R
and T, to madel a general processing element. The
transformation matrix for a full mapping can be
generated using the same techniques described for a
partial mapping, with the exception of the selection of
an S which satisfies the given spatial constraints of the
fixed size array., For the case where an S cannot be
found which satisfies these constraints, algorithm
partitioning is required. The next section discusses the
last phase of RAB-mapping.

V1. MAPPING

The mapping phase of RAB consista of the last 2
modules of the flow diagram shown in figure 1,
microcode expansion and microcode optimization.
Microcode expansion consists of the replacement of the
given transformed computations with GAPP code (or the
code unique to the architecture used for execution).
This code is then optimized using a modified version of a
technique developed by Ramamoorthy ([Ramags|,
[RaGoBQ) known as Precedence Partitioning. The
straiglit-line microcode is parsed in a sequential manner
placing used and generated variables in a symbol table.
If a used variable is encountered, the optimization
function checks the symbol table to see if this variable
has been generated in a previous statement resulting in
a data dependence. The same applies for the other two
algorithm dependencies. For the statements which are

. »

h]
.

X
.o

I'.'l'.'l".l
RPN
v e ey

4 oy
{ 'l.

oo
"{.' .I ‘l ..

k)

»
-

)S

2 Lttt
7Y X ¥
'I‘J. ." .-l

"
L, 5,
5

’

5'.‘. « v 8 F
T PR A

55 (@ L0,

"’ LRSS

..{
‘ .

.
4
o

(‘t
N

rt.0y
Pty
]

p
5
-y

%

.L‘fn

Yt 90" 100 a%a 085"t st - 18 aog 2t a¥4 TRV RN

algorithm independent, we pairwise check the resources
required for the parallel execution of two statements. If
the required resources exceed the resources available in
R, then a machine dependence exists between the two
statements. The algorithm and machine dependencies
are represented in a ((v-1) x v) connectivity matrix,
where v is the number of statements in the straight-line
code. The element c;; has value 1 if statement j is
dependent on statemené i and it has value 0 otherwise.
The precedence partitioning algorithm uses this matrix
to partition the set of computations into independent
groups by locating columns containing zeros and deleting
the row corresponding to the partitioned statement.
The partitions are executed serially but the statements
within the partitions are executed in parallel. An
example of the precedence partition for straight line
code is given below. An example using GAPP
instructions would require detailed knowledge about the
GAPP architecture, which is beyond the scope of this

paper.

Example 6.1
For the following straight line code
NA=B+¢C
2)D=A+E
3)F=D+E
4)G=H+1
the connectivity matrix is given by
0100
C=1]0010}
0000

The following partitions result from this matrix.
{4}, {2} {3}

end of example.

vIl. CONCLUDING REMARKS

In this paper we presented the overall organization
of RAB and discussed the concepts necessary for the
mapping of a class of numerical algorithms into bit-level
systolic arrays. We also presented a method for
identifying and possibly eliminating the occurrence of a
conflict. A conflict is more likely to occur with bit-level
algorithms, since bit-level expansions usually result in
the addition of 2 or 3 nestings of loops to the original
algorithm. Thus the iteration space of the bit-level
algorithm with dimension greater than 3 is mapped into
the space-time domain consisting of 3-dimensional space.
This mapping of n-dimensional space (where n > 3) into
3-dimensional space generally results in serializing some
of the loops of the iteration space. With the use of the
conflict analysis, we search for a transformation matrix
in which a conflict oceurs outside of the given iteration
space resulting in a bijective mapping.

RAB currently maps numerical algorithms into
variable size arrays composed of GAPP chips. However,
this tool can be used to investigate the optimality (in
terms of spatial requirements and total execution time)
of different expansions of the same task. The results of
these investigations can be used to efficiently design
algorithms for parallel execution. In this paper, two
different expansions for convolution were transformed
via RAB into algorithms for parallel execution. The
expansion given in figure 2a resulted in an execution
time of 176 and the second expansion given in figure 2b
resulted in an execution time of 278. Thus, even though

both expansions performed the same task, one expansion
was more suitable for parallel execution as evident by
the total execution time (both expansion required only 1
GAPP chip).

ACKNOWLEDGEMENTS

The authors would like to acknowledge Weijia
Shang for introducing the conflict concept and coining
the term "conflict vector”. We are indebted to Steve
Hand, Timothy Guinter, Daniel Wong, Wei-Min Lin, and
M. David Fields for their assistance with the
implementation of RAB.

REFERENCES

(Batc80] Batcher, K.E., "Design of a Massively
Parallel Processor," JEEE Transactions on
Computers, Vol. C-28, September 1880, pp.
836-840.

|Boot51] Booth, A.D, "A Signed DBinary
Multiplication Technique,” Quart. Journal
of Mechanical and Applied Mathematics,
Vol. 4, 1951, pp. 236-240.

[DaTh84) Davis, R and D. Thomas, "Systolic Array
Chip Matches the Pace of High-Speed
Processing,” Electronic Design, October
1984, pp. 207-218.

[DuWa75] Duff, M.J.B. and D.M. Watson, "CLIP3: A
Cellular Logic Image Processor,” in New
Concepts and Parallel Information
Processtng, Noordhofl, Leyden, pp. 75-86.

|FoPa84] Fortes, J.A.B. and F. Parisi-Presicce,
“Optimal Linear Schedules for the Parallel
Execution of Algorithms,” International
Conference on Parallel Processing, 1984,
pp. 322-329.

|FoMo84] Fortes, J.A.B. and D.I. Moldovan, "Data
Broadcasting in Linearly Scheduled Array
Processors,” 11th Annual International
Symposium on Computer Architecture, June
1984, pp. 224-231.

[FoMo8s| Fortes, J.A.B. and D.I. Moldovan,
“Parallelism Detection and Transformation
Techniques,” Journal of Parallel and
Distributed Compuling, August 1985, pp.
277-301.

[Foetal8s) Fortes, J.A.B.,, Wah, B.W., Fu, KS,
"Systematic Approaches to the Design of
Algorithmically Specified Systolic Arrays,”
IEEE International Conference on
Acoustics, Speech and Signal Processing,
1985, pp. 300-303.

[Gaetal8l] Gajski, D.D., Kuck, D.J,, Padua, D.A,
"Dependence Driven Computation,”
COMCON Spring 1981, pp. 168-172.

227
"‘ s
B o ae_ab

5

\.“!

‘:'-I.’?

o

{.

e

o
ol

‘l
’
“5—

SR ALY,
g -.',m‘_\ h? e o
PN '.‘x_s'sa' STEY

v

»
)

U
¥

Al

z
Ty

P
R
»

T
e s
{)

-
» Tt

NG OAE U N U R Rl R T I T N IS
SO Y RA R S SRR SEN LSRR AR LR
n ARG "' W

. D i 2 00 208

‘f‘f"f PP 2 AT ANL LA L PN Y I LA S N I I PR AL I I R IPE B ¥ I S Vi W, W
LS S S Y -'\’-)'-’-',"-.-" '\}‘1_’1 L VS .--'-"- YRR DL A L W
’ ' l .A " -. A 24 ¢ W ‘q. “- * ’ "r ’.' -.’ (.‘; ~' f\ -', - ’*

[Hwan79)

|Kuetal74)

{Kuetal81]

[Kuhn80]

[Kung82|

(Mcetai84]

[Mcetal8s)

Hwang, Kai, Compuler Arithmelic:
Principles, Architecture, and Design, John
Wiley & Sons, Inc., New York, 1979.

Kuck, D.J., Budnik, P.P., Chen, S., Lawrie,
D.H., Strebendt, R.E, Davis, EW., Han, J.,
Kraska, P.W,, Muraoka, Y.,
"Measurements of Parallelism in Ordinary
Fortran Programs,” Compuler, January
1974, pp. 37-45.

Kuek, D.J.,, Kuhn, R.H., Padua, D.A,
Leasure, B., Wolfe, M., "Dependence
Graphs and Compiler Optimizations,”
Proc. 8th ACM Symp. on Principles
Programmung Languages, January 1981, pp.
207-218.

Kuhn, R.H,, "Optimization and
Interconnection Complenty for: Parallel
Processors, Single Stage Networks, and

Decision Trees,” PhD dissertation,
Department of Computer Science,
University of Illinois at Urbana-

Champaign, 1980.

Kung, H.T., "Why Systolic Architectures?"
IEEE Computer, January 1982, pp. 37-46.

McCanny, J.V., McWhirter, J.G., Wood,
K., "Optimised bit level systolic array for
convolution,” IEE Proceedings, Vol. 131,
PL.F, October 1984, pp. 632-837.

McWhirter, J.G., Wood, D., Wood, K.,
Evans, R.A,, McCanny, J.V., McCabe,
A.P.H., "Multibit Convolution Using a Bit
Level Systolic Array,” IEEE Transactions
on Circuils and Systems, Vol. CAS-32,
January 1985, pp. 95-99.

LTI O S TN
Ve S W T AT AT AN N T
N A A A O S R TS
ot ‘. sy oo TR A,

»3%

[McMc82]

[Mold82|

|OKFo0886)

[RamaB85]

[RaGo69]

[Redd79)

[Wolf82]

McCanny, J.V. and J.G. McWhirter,
“"Implementation of Signal Processin
Functions Using 1-Bit Systolic Arrays,
Electronics Letters, Vol. 18, March 1982,
PP. 241-243.

Moldovan, D.., "On the Analysis and
Synthesis of VLSI Algorithms,” IEEE
Transactions on Compulers, Vol. C-31,
November 1982, pp. 1121-1126.

O'Keefe, M.T., Fortes, J.AB., "A
Comparative Study of Two Systematic
Design Methodologies,” 1986 International
Conference on Parallel Processing, pp.
872-875.

Ramamoorthy, Cc.v., "Connectivity
Considerations of Graphs Representing
Discrete Sequential Systems,” IEEE
Transactions on Electronic Computers,
October 1985, pp. 724-727.

Ramamoorthy, C.V. and Gonzalez, "A
Survey of Techniques for Recognizing
Parallel Processable Streams in Computer
Programs,” 1969 Fall Joint Computer
Conference, Vol. 35, Montvale, NJ: AFIPS
Press, pp. 1-15.

Reddaway, S.F., "The DAP Approach,” in
Infotech State of the Art Report on
Supercomputers, Infotech Ltd.,
Maidenhead, 1979, Vol. 2, pp. 309-329.

Wolfe, M.J.,, "Optimizng Supercompilers
Jfor Supercompufers,” PhD dissertation,
Department of Computer Science,
University of Illinois at Urbana-
Champaign, October, 1982.

-
.

- - » -
o S RN AT NN

RPN S A
3 .__\..'\‘\j

I'\ {
&J“{
Lay N

S

a_x

h 2 3R
Py
-

;.S

;’v{'va'o(;r‘:r“- S
«_8_ 8
1 &

P&l:- :.n".}“" ;

AR

“
Y

v
s %
L]
’
.

..{‘:'u:".‘fx:'.:;"r;/ri
XN
.."." -".q.',’l' [A x' [L

o ed
BN S J-w-:-- W)
) 'L (A .w»-n..c-«- "8 h— TP III--...
ﬁ PN LA

%Y ...-....fl_......
e .\\\\-.. PRt
[] . - \A.- \\-
w......... BRANSS S AALL S, VLI)x.......f....\... S ,..». l.......(r.f...... Y xa.....\fﬁ\w\..\... oL g
onn..l. L] l-l.-l " n-I
RO AR R A RS S 2 S A XN ..\...\,.\........,.\.......\.x..Q\\..
b, = T =
g SR e -
3 z = 3 =
£ = &
. =t “ 3
. «
: E - R
i [-
i D - ~ .
| = s S B
n 5
',] O o
_ £ = ¢ =
1 L » b ‘e
o m o m o
o 8 20
- Y] o
Qo .Alm @) <
S Come o
P © Y C >
g = v 3
] ey M = = i
¢ : & 3 m nm
4 0 pO.. .“u. [
] N = © S 9
.. Py > = w
P @] 0 &
N 1“ ap & Q b
- & £ E R e &
L] R ®) U = o - o
" 3] z o 0 - n Q
e .87 - m At
: B 45T &g 3
~ . £ w ., B &
" < g <% 35
. .0 0 Y
] — o, n vlm [oH =
. . o% 8 > ® B
g = O w RO
- $ Y O
) . =R S
o s w T
. -)
=g 2 & E 3
‘ v 83 © &3
) g n kR o v S
S > N o ™)o
: ~ w0
: 9 F A
. c O . O
: 2R Y B oS
- = «
s g = 9 Y - —
Qo &
8 £& § 5=
1 L] [= =) ‘M“ [=] m
& 0 © & O &
(ORR G S] o O
H
~ hl - W -] LN . - i-yy T oamay) . N
- -~

.n‘. 1)

- 't'-'h‘-\t‘

QR &

* AL

A
L

NS
."‘f(lt' ‘I. -~

L}
AR A

SSS

P AP ek o]

el

M
\{‘-'

ALt

FPr 42

< d

On the Performance of Combined Data Flow and Control Flow Systems:

Experiments Using Two Iterative Algorithms

William W. Carlson and Jose A.B. Fortes’
School of Electrical Engineering
Purdue University
West Lafavette, IN 47907

Abstract —~ Improved multiprocessor performance can be attained by combining
data flow and control fow concepts. This type of combined architecture is
characterised and several examples of previously proposed machines are given.
A new model is presented that permits the analysis of such systems and perfor-
mance measures are defined. This model is then used to analyze the perfor-
mance of the algorithms under a wide variety of combined systems. The results
of these experiments show that partition size is a major factor in the perfor-
mance of such systems and an optimal size may be found for given system
parameters.

1. Introduction

This paper investigates the performance of architectures that combine concepts of both
data flow and control low computers. [n particular the relationships between the granularity of
program partitions and the architecture’s performance in terms of execution space and time
requirements are examined. These relationships are determined by studying the performance of
two iterative algorithms. It is shown that, for these algorithms, partition size has a major effect

on the performance of combined architectures and that an optimal partition sise may be found.

Recently, there has been considerable interest in combining some of the concepts associ-
ated with data flow computers with some of those from the realm of more conventional control
flow multiprocessors. This interest seems well founded. While data flow concepts offer the
promise of much increased execution speed by removing artificial sequencing constraints, their
advancement is slowed by seemingly insurmountable problems [GaP82|. Meanwhile a large por-
tion of the thirty years work devoted to the study of control flow methods does not appear

directly applicabie to data low computers.

This paper proceeds by quickly reviewing some previous work in combined systems,
describing both existing and proposed systems. Next, a model to facilitate the performance
evaluation of multiprocessor systems is described. With this background the paper describes
several experiments performed to illustrate relationships between granularity and performance.

Finally, several conclusions based on the results of these experiments are given.

" This work was supported in part by the National Science Foundation under Grant DCI-8419745 and in
part by the Innovative Science and Technology Office of the Strategic Defense Initiative Organization and
was administered through the Office of Naval Research under contract No. 00014-85-k-0588.

Y
,
.

N

-.n .
-

[NSSANNY O Sl

Sty
" .o

L T)

AT

L JTN

W e’/

LAY

*.":. (NN

[/

.

e

',

& S

L3]

X

.
h]

[y

Y
L]

) LX, 4
'.'."".r"l 2/

-
Pl

<

s
5L & 8%

of o 3"
Y

~ 3"

.
D
-
7%

* F. - - \‘- AV auVe v «tx - - ---‘-1 _ll‘ _-.A- .- N A.L ., ‘ < . _ \‘ I,) h -. u- - . .- \\. \ \. 'Q' ‘I ¥, ’ L)
& -
) .

-2.

[] - -t
: o
|| A
v . . A
¢ 2. Combined Architectures N

A
Y We define data flow and control flow as schemes to determine the ordering of computa- 'f'_:;-,,
. . . SRS

¢ tional steps in parallel programs. A pure data flow scheme sequences operations based only on -’ |_

the availability of their operands and adequate computational resources. In this sense pure

| data flow is a fully decentralizsed system. Conversely, a pure control flow scheme is based on a

schedule independent of the availability of an operation’s operands. In this sense pure contirol

flow is a fully centralised system. Of course a ‘“good’” control flow scheme will generate a

Py

sequence of computational steps that guarantees data availability. A combined system is sim-

9 ply a mix of these two models of computation. :.:.":.
. While most parallel systems are not “pure’” in their ordering scheme, we will be studying ;::'.r:
N only those systems that combine wide variations in their ordering scheme. In such systems there :::__::
¥ is, in general, a division of labor between various nearly pure ordering schemes, with the division S
. based on the granularity of partitioning. A graphical illustration of this combination is the ord-
‘,' ering scheme graph, shown in Figure 1. The ordinate defines the level of granuiarity, with
. smalier values representing smaller granules of space and time. The abscissa represents the
: degree to which ordering is decentralised. The range on this axis is arbitrarily set from sero to
: one, with zero representing a pure control flow ordering scheme and one representing pure data
3 flow. The resulting graph is a set of coordinate points showing the level of centralisation at
: each level of sequencing.
N
N 2.1. Examples of Combined Systems °
) Recent research efforts have produced numerous proposals that combine the concepts of "';-:':
) data flow and control low. This section describes several, showing an ordering scheme graph for ::::
‘ . each. The purpose of this section is to point out the variety of current proposals, not to discuss :::.'; :
their relative merits. :.:,
| The Piecewise Data Flow Architecture [ReMB83| uses a two level approach, with distinction -v:,_..r,_-
X occurring at the granularity level of the basic block. A basic block, a term commonly used in f::t
' compiler theory, is a sequential program section that has only one entry point and one or more :’.\EL
. exit points. Internal to a basic block a data flow scheme sequences operations, while the collec- :"‘_;:;.:'_
tion of basic blocks that make up a program are executed sequentially, with possibie overlap «
between two blocks. In addition to the data flow scalar processors, an SIMD processor is "-:-i
included to allow fast execution of vector operations. This makes this machine an example of a ::'
truly combined architecture, with the combination being segregated into data flow and control "_-':_:
flow sections. The goal of the architecture is to allow sequential portions of scientific programs e
3 to enjoy the speedup that vector portions already receive on systems like the Cray-1. :\:2.:
: The ordering scheme graph for the Piecewise Data Flow architecture shows all low granu- E:-:’\:'
{ larity operations, up to the level of the basic block, have a high level of decentralisation as they ._‘.‘
| are sequenced using data flow concepts. Operations with larger granularity would be almost _:‘:"
completely centralised, as they are sequenced serially. A possible ordering scheme graph for this d
A architecture is shcwn in Figure 2a. As a basic block can have a range of granularities, the ~',¢:,
: RGP
! i
WA

2

N

Y
~

g

R T I R R e R
o P A A PN AN AN NN N I NN TN AN

o! W

w
RS PN

e

o v v
AERAR AR

I .. , .
c’;’ 'N;‘;‘f PEa . ;'.l'.;.;';;:.

P]
.

L]) _.-’l. ,‘

ER

+
L

A .'..w'.‘f_ :'.‘.

AT
PR

e \‘,\ { &I‘:"ﬂ

A

transition between data flow and control flow is shown as a region instead of a point and sym-

bolised by the dotted area on the graph. When considering this system, there are several impor-
tant features that our study of combined systems must consider. The first is obviously the com-
bination of data flow and control flow at different levels of granularity. Another important
feature is the level of granularity at which the transition is made. This will have an important
effect on the performance of such a combined system. Finally this architecture limits con-
currency by allowing only one block (perhaps overlapped with the setup of one other) to execute

at any given time.

The Cedar project 'Gal.84| proposes another split level control scheme, with division at
the compound function level. The granularity of compound functions [GaK81} is slightly greater
than basic blocks, with operations like array primitives, linear recurrences, FORALL loops, pipe-
line loops, block assignment statements, and compound conditional expressions. The architec-
ture consists of a global control unit and several processor clusters. The global control unit
sequences compound functions according to data How principles. Processor clusters are assigned
compound functions to execute according to the principles of control low. Thus, in this sense,
Cedar is the mirror image of Piecewise, as Cedar uses data flow to sequence large granularity

items and control flow to sequence low level operations, while Piecewise does the opposite.

A scheme graph for Cedar shows all levels of granularity below that of the compound
function with a low level of decentralisation. Operations above this granularity would have
higher levels of decentralisation. Figure 2b shows a possible ordering scheme graph for Cedar.
Important points about Cedar are similar to those observed for Piecewise, namely the change in
ordering scheme is directly related to the granularity of operations, and the level of granularity
of where this change occurs. [Finally, this architecture’s parallelism between compound func-
tions is limited only by the parallelism available between them and the availability of processor
clusters. Parallelism within a compound function may be limited by the control flow scheme
used by the processor cluster, although the compound functions have regularly structured paral-

lelism that may be easily exploited.

Remps (HwX85| has the same goal of both Cedar and Piecewise, i.e. scientific computation.
The global structure of the architecture is similar to Cedar: a collection of interconnected pro-
cessors and a global controller. The key difference is that Remps allows reconfiguration of inter-
connection and control to emulate a variety of architectures. On a global level the machine is a
data flow computer and at the low levei each processor is a reconfigurable control fow com-
puter. The level of change in ordering scheme is the granularity of a task. While the term task

is nebulous, it seems to describe a levei of granularity slightly larger than a compound function.

Drawing a scheme graph for Remps requires the understanding that, as in Cedar, all low
granularity items show low levels of distribution. Large granularity objects may be sequenced
centrally {called macro-pipelining), or sequenced in a distributed fashion (called macro-data
flowing). A possible scheme graph is shown in Figure 2c. The major interesting feature of this

architecture i8 the two schemes that exist simultaneously for large granularity iteras, although

only one is used in the sequencing of a single set of operations.

ey "Nt NS YD
WA AR 1..-.
\"{ fal sl . “l: <

@

(‘rr

S

At
SN

v r "
(AT
l' l‘ l‘ l‘ i)

]

LIRS

.
X4

A -‘.'- "..

l:."

IO
BORAS

el

’l.! ’
« -
()

e,
'.t' ‘l

'
s

cnn

T X

P
L e N
PR

2
st a s 2

Cd e
[P
PRt

e] L '7.
P

s
P L

L J _'l "n "‘n N

< u R ¥
f Yy

.« -
7y

}.‘.
£ Y

»
¢
D

(.

The Rediflow multiprocessor (KeL84| contains a complex combination of data flow, control
flow and reduction concepts. Reduction is another decentralized ordering scheme in which the
demand for the result of a computation causes its execution. Rediflow consists of interconnected
Xputers that combine processor, memory, and packet switch elements, The Xputers function
under a reduction ordering scheme. As with the previously described architectures, Rediflow
exhibits a change in sequencing at some level of granularity. Here the granularity is medium or
function-level. This level is taken to be about the same as basic blocks. Higher granularity
items are sequenced by either reduction, data flow or control low. Data flow provides efficient
sipelining, while reducticn may be more adaptable to programs requiring unpredictable
buffering. In addition, control flow sequencing is available by so called ‘“von Neumann
processes”.

In drawing an ordering scheme graph for Redifiow, reduction presents a new issue to be
represented. The basic ordering scheme graph is augmented with the abscissa extending from -1
to ~1, with +1 representing pure data flow as before. The negative range represents demand
driven schemes. This extension shows the degree of decentralization by the absolute value of
the abscissa, while the sign determines if the operations are executed on demand (negative) or
availability (positive). This is a proper extension of the ordering scheme graph in that a “pure”
demand driven system is also fully decentralized (represented by -1) and any given operation
will be executed under either demand or data flow, never both. Figure 2d shows a possible
scheme graph for Rediffow. All operations below a medium granularity are given a high level of
decentralisation in the negative portion of the graph to show demand driven computation.
Above this level, three possible schemes exist, resulting in the levels for data flow, reduction, and
von Neumann processes. When seen in this light, the sequencing characteristics of Rediflow
appear somewhat similar to Remps as large granules may be sequenced in one of several
methods. Obviously low level sequencing is totally different. This brief survey can be concluded
by reiterating that the ordering scheme graphs show a wide diversity in the approaches used in
combining data flow and control flow concepts. Many other combinations are possible, conceiv-

ably as many as possible ordering scheme graphs.

2.2. A Variable Combined Architecture

This study does not investigate previously proposed combined systems, but concentrates on
one extremely flexible hypothetical architecture. This hypothetical system consists of intercon-
nected processing elements each capable of communicating and controlling each other. An equal
delay and infinite capacity communication path exists between each pair of processing elements.
The ordering scheme for this system is a variable, two level approach. Larger granules are
sequenced according to either data fow or control flow principles, while smaller granules are
sequenced by the opposite approach. The size at which the switch occurs, as well as the relative
costs of performing various operations are left as variables in the experiments.

This approach has several distinct advantages over analyzing specific systems, and a few

shortcomings. The greatest advantage is the availability of the complete range of systems

between data flow and control flow, approaching these by either increasing or decreasing

7,

A, & O 8
T

24
2 XS

ELLPLEL S

Ry

o
1 4

,.
s
l-{
L §

»
P

L
<

L

P

IR

e

Sa N St te

L2
{n

l‘, 2

[

P4

e
& fe
I

S 44
':".

(NS
e
P

l;
pulk

e
“(‘:,“
2eEL00

-

‘

PR

4

.;',

L4
L

T]

" l' “ l’
" -l

P A

PR NS

" ‘
,l

=

Fats

G4y

R
2"

LR

1

et
ol
.

.
L)

PR I 24

: ,\1 '.‘.

\
P
.
«
»

",
P
L LU Y

O " ™ ¥

PP RIIRTS

a s A w

EAAAA

22l

Y

(Il e

I LI

AR

v

va R e e N,

. D
hH NS

¥ ’l 0
,n}l.l..‘. LY n

A AL L

- L"', A,

-.

AR B% DA NGt 20 fa il Sl St St LAY W M fnt AN o W VW AW L VWLWPURY,

partition size. In addition, this approach avoids the problems associated with comparing two
distinct systems, concentrating instead on the underlying differences between ordering schemes.
Finally, this approach limits the problem by ignoring, at this point, such issues as network
topology. Of course, this advantage can also be a shortcoming when these particular issues play

a dominant role in the system. This topic is currently left for our further research.

3. The COSMIC Performance Evaluation Model

To .nalyze the performance of combined data flow and control flow systems we have
developed COSMIC, the Combined Ordering 3cheme Model with Isolated Components.
COSMIC consists of both formal parameters describing a multiprocessor system and the algo-
rithm it executes, and analysis techniques producing performance measures. The underlying
principles of this mode! are the isolation of individual performance issues and the study of sys-
tems under conditions close to those encountered when a system is performing useful calcula-

tions.

Previous work ir modeling multiprocessors has centered in several distinct areas. Program
behavior models endeavor to model the fundamental properties of a program without regard for
hardware considerations or performance measurement. They center on the important areas of
investigating such problems as the determinzcy, boundedness, and termination of programs.
Models fitting this category include Petri nets ‘Pet88] and Parallel Program Schemata KaM88).
Petri nets have been augmented with the notion of time in either the deterministic [RaH80,
Ram74] or stochastic Mol85| sense. The second major category of current models we call
machine behavior models as they describe the behavior of machines in their execution of pro-
grams as opposed to the behavior of programs themselves. Examples of this class include Turing
Machines, Functional Programming Systems, and the von Neumann Model Bac78]
Classification models describe the configuration and operation of multiprocessors, including
Flynn's Model Fly686], Handler's Classification System Han77], and the “essential issues” of
Gajski and Peir {GaP85).

COSMIC builds on these previous efforts, but is fundamentally different from them in that
it combines both program and machine descriptions, as well as performance measures. The use-
fulness of this model is in this combination, allowing the study of complete systems under varied
conditions. This section briefly describes COSMIC and its operation. A more complete descrip-

tion is available in CaF87..

3.1. COSMIC Parameters

The parameters of a system S include O, the system’s organisation; G,, 2 dependence
graph describing a specific algorithm; and OS, the ordering scheme used to execute algorithms
on the organisation. Included in a system’'s organization parameter are such features as the
number and capacity of processing elements, e amount and organisation of memory, and the
interconnection amongst processors and memory. The dependence graph is simply an operation

level precedence graph for a certain algorithm. This graph includes only algorithmic

o
-|
o

P o
e

L I
A

A

C 14 r
o @

AL

A
[

Shhaial,

s N
n

%

3

VANSNA

g

[¢

. U gl o)
LN
(;§52ﬁ- °

,1.
A

)

&
.

AN
’ﬂ“\\aﬁ‘

PIAN AT A AP

T e P
LT @ Y
Pt

—aral

.,

>/

"~
.

. ..-,
K h
o
v _»

CAAL YR g
AN XA

!
«

A SN

*
v

e T8 Y e ¥
v LSS
e

e "

s“(. "l"
.'ff-'(.f(".

‘f'f(!.f(v' I e

e T

o
5

IR s

[y
y

WA

)

k)

oy
-P%I

)

il e]
%

d constraints, not those induced by operation sequencing or programming languages. Finally, the

Xz

.’.
)

ordering scheme describes how algorithms are executed on the organisation. The ordering

%

L4

W
\9

scheme is further segregated into descriptions of a system’s mechanisms for partitioning,

@
, @

sequencing, resource allocation, and memory utilisation.

'y

SN
e

v,

by]
"

N 3.1.1. Organisation (O)

X
g

>
e

The organization represents the arrangement of hardware elements in a system. Every

multiprocessor has three basic components: processing elements {PE), memory locations, and the

interconnections between them. Input and output devices are simply treated as specialised pro-

cessing or memory elements. Consequently, our model for organization is represented by the tri-

ple 0 = (P, M, I).

- P .. A set of processing elements. Each processing element has a set of instructions

] that it can execute and a relative speed.

b - M -- A set of memory locations.

X - I -- An interconnection function M X P — M X P. This function defines the possi-

ble interconnections, and with each outcome there is'a reiated cost function that

describes the cost of traversing that connection. Local memory on a PE can be

modeled by a low cost {perhaps zero) of traversing the connection. Inaccessible

memory (some other PE’s local memory) can be modeled by a partial function.

3.1.2. Data Dependency Graph (G,)

The data dependence graph is an arc and vertex weighted directed graph in which vertices

represent operations and arcs represent data dependencies between operations. The weight of a ::;:'_
vertex represents the relative time that it will consume when executed. The weight of an arc ::::::;'_::
represents the sise of the data needing transfer to satisfy the dependency. These weights can . _.'
also be viewed as the number of “‘atomic operations’ required to conﬁpletc the computational or ::"t;:
transfer operation. This graph is acyclic, as any loops in a program are unfolded in creating the :.::::
: dependency graph. Currently data dependent behavior is not considered, but will be a topic for -\.'.'::r_

future research.

~ ""\
) .":-.',)-'
_ 3.1.3. Ordering Scheme Function (OS5) ::.‘::f
3} . . .-."'\"' ,
The ordering scheme for any system is a function mapping the dependency graph intc an ‘-.‘;\:
)
ordering net, based on the organization parameters. An ordering net is a timed Petri net ERE
‘Ram74| which depicts ordering constraints placed on the execution of operations, as well as the ~\,'.'-_'.
. . . L R
cost of each operation in the modeled system. The ordering scheme for an organisation, O can SN
A
be defined as: STt
l}-t‘.-
X 0S(0):G — N, RPN
.
where G is the set of all possible dependency graphs and N is the set of all possible ordering ;‘. .{:_..
Al
nets. This functicn is composed of several smaller, more easily defined functions. Thus the ;_-.:\
PR
L *' ‘
f&-\

. e - B AN 2 A .
ey W, o T T (W RRY TR S, \ N R ph Sat, a8, S ns ~ WL WL LWy

TR TR LIS X I S LR S S S A WD A R MR
e et e e T Y P Y P e AL W S YL R SR LA ERRRC RN CR NS
AN ol 's Luls, "J‘-u"-a’\"-‘r’-. N O e A RTRI A

ordering scheme function,

O0S(0)=+(0) - u .\ o(0) : 70),

where the usual composition notation implies that (f - g)(z) is equivalent to f (g (z)), contains

the component functions:

=G, —~ N Creates an ordering net from G,
OV N — N Adds partitioning constraints,

N = N Adds sequencing constraints,

wr V=V Adds memory access constraints and time,
O N — NV Adds resource constraints.

The next sections briefly describe each function.

Computation Function ()

The computation function creates an ordering net from a data dependency graph. I[ts sole
purpose is to change domains from data dependency graphs to ordering nets and is scheme
independent. Scheme independence implies the function itself never changes over all possible

ordering schemes. Formally the computation function is

N, = 7(04]1

where V. is the computation ordering net for a given G, produced by r. The process used is to
transform vertices in G, to transitions in N,, and arcs in G, to places in V,. Connections in
N, are created to preserve the structure of the dependency graph. Finally, appropriate weights
are assigned to places and transitions, based on the speed of processing elements as defined by

the organisation parameter.

Partitioning Function (o)

Partitioning is the process of dividing a program into segments to allow their execution on
possibly distinct execution units. This division requires the addition of explicit synchronization
operations between segments to preserve data dependencies. The partitioning function creates a

new ordering net based on these added synchronisation requirements:

*Tnart

Vo = 0[0, N,

Unlike the computation function, the partitioning function is scheme dependent but always fol-
lows a similar form. First the net is divided into segments by a scheme dependent algorithm.
Next, any transition connected via a single place to a transition in another segment is synchron-
ised by a place-transition-place sequence between the two transitions. The transition models
the computation required to complete the synchronisation, while the places model data transfer
required to perform this function. Finally, weights are assigned to the newly created places and

transitions, commensurate with the cost of synchronisation on the system. This function may

=7
gy

- &
- <
oy @ A

[
4 %y 4

»
’'
.

- ',",/'-)'. .
Ry
P>

TS

"

-1
.\'\1

»
»

l':-n':’ll;'
l. S \

% .‘
s
* .-

L
AL PR L

-.:‘ s;%;ﬁ N
Se ey .
Sie

.
.
L4
A
»
-

.;.

»

v

L
.
L4

s
D
DA
o
’
>

.
*, .

N4

PACIP AR
I
PPN

be applied recursively to segments to mode] multi-level ordering schemes.

Sequencing Function (\)

The sequencing function is responsible for adding constraints to the model induced by the
sequencing of segments and operations within those segments. This function causes the interpre-
tation of either control low, data flow, or combined schemes. Formally, the sequencing function

produces a new ordering net from its input:

Nseg = \ [Npm]

Again, this function is scheme dependent, and must be specifically defined for each ordering
scheme. Several levels of sequencing strategy may be modeled, based on the recursions in the
partitioning function. At the lowest level, place-transition-place sequences are inserted between
transitions within a single segment to model their sequencing. In a data flow scheme these will
be in parallel with each place, as sequencing occurs on each data transfer. In a control flow

scheme, they are placed between traasitions along some execution trace.

At higher levels, segments are sequenced by creating place-transition-place sequences
between segments. The details of this placement are dependent on the scheduling strategy being
modeled. Again, appropriate weights are assigned to all places and transitions added by this

function.

Memory Access Function (i)

Recall that in a data dependence graph an arc was weighed in accordance with the
amount of information transfer required over that arc. These weights were transferred to places
in the ordering net. The memory access function produces a new ordering net reflecting the

added costs of memory access and interconnection network traversal:

Now = (N]

This function is scheme independent and simply replaces each non-sero weighted place with a
place-transition-place sequence. The new transition is given a weight equal to the weight of the

place it replaces.

Resource Allocation Function (%)

Resource allocation is the process of assigning sets of transitions to sets of resources (pro-
cessing elements and memory locations). This function produces a new ordering net limiting

concurrency within these sets:
N =30 N
The resource allocation function is organisation dependent and must be defined for each system

modeled. [n general, a resource allocation function will assign groups of transitions to resource

pools modeied by the addition of places to the ordering net. This allows concurrency between a

AN Aoty e g

s
.;"‘.'\"

A

S

Ry
(n’.‘“{’

L
L™

S5

'S

f:s

l. l.
4.5 % Y
v

LA SASS
A
LN S
RS

,.
S S
.".',.ro.

Py

y Iy
1‘1.‘(;’ 7 s
5 &

1]

Te v
AN
ys

o
:
o &
.

"l "l.

s NN

set of transitions to be limited by the availability of a limited resource. It should be noted that

this also allows the modeling of resource contention for memory devices.

3.2. Analysis and Measures

After a system has been described by the parameters of COSMIC, it is analyzed to deter-
mine several performance measures. This analysis involves the determination of the time
between the firing of the initial and final transitions in an ordering net. Computerized analysis
tools aid in this determination. The analysis begins by creating ordering nets using a high-levei
description language that enables the specification of parameterized nets. Generally, these
parameters include the problem size and relative costs for computation, sequencing, and syn-
chronisation. A compiler then fixes values for these parameters and produces a set of intercon-
nected places and transitions. Next, a net anaiyzer determines the various wmeasures by firing
the net following the rules of timed Petri nets Ram74:. Finally the results of many analyses are
gathered into a database for further off-line studies. The entire system is capable of analyzing
nets up to about 50,000 places and transitions while consuming reasonable amounts of computa-

tional resources. This enables the analysis of moderately large problems.

Three values are associated with each performance measure: the serial time, the critical
path time, and the number of resources required to achieve the critical path time. These values
describe both the time and space requirements of the modeled system for a given configuration.
Two classes of measures are used: primary measures represent consumption of resources directly
related to the algori hmic requirements of the system, and overhead measures show the con-
sumption of resources unreiated to any algorithmic requirements. The analysis conasists of the

application of two analysis functions. The sertal analysis function is:

ANgpuy : N = R,

where R represents the set of real numbers and .V the set of ordeting nets. It computes the
time required to fire all nodes in an ordering net, with the added constraint that no two transi-

tions may fire simultaneousiy. The critical path analysis function is:

AN-,, N — R < N,

where R represents the set of real numbers, IV the set of non-negative integers, .V the set of
ordering nets, and x the zross product. [t computes the time required to fire all nodes in an
ordering net, with only the constraints presented by the net, as well as the number of resources

required to achieve that level of performance. Finally the general analysis function,
AN: N - R - R « N,

simply combines of the two previous functions, the resuit of which is a triple of values: (Serial

Time, Critical Path Time, Critical Path Space).

If we let M he such a triple, the total execution measure for a model with organization O,

ordering scheme OS, and data dependency graph G is:

M,

execntion

- an|0s|G,, 0]]

a:f;f
I
S S ey

PR

‘
f ',

f
s
[

)

P A AR R

‘@

* :r %
"I
? a1t

(]
"
.

I3
.

e IR
)
»

|]
K

rr
’y

-

SRS

Lol 4 S
L, RN

(,.l [A B N
Y'lﬁﬂ.‘. /‘1".'4" ’

b
Yy

[
A

PRy
by
[4

. >y
/?/:'5'1
By & 5 "H"’
A4
LAAAN

B T2 30 4
L4
7’

fj‘

LA#

"f‘,
h %
e

e
LA AR N

. ®x s
.-"‘. "-k.' W "- '.;
N %S

PR R Ay
PR]

5

- 10 -

The execution measure is also, by definition, the sum of the five previously defined measures:
M’CCI"OI = M + M.n + My, + ‘Mru + ‘%m

where M, is the computation measure, M, , the partitioning costs measure, M, , the sequencing
costs measure, M,, is the memory access measure, and M,,, is the resource allocation costs
measure. All the submeasures are also triples, the addition of which is defined in the usual
manner by adding corresponding entries. These measures represent the analysis of an ordering
net resulting from the application of a subset of the ordering scheme function. M, is the pri-
mary measure, while the others are overhead measures. Overhead m‘easures may contain nega-
tive entries for Critical Path Space: when the critical path time grows, the space required to

achieve that performance may decrease.

4. Experiments and Results

This section presents results gauging the effect of partition size on combined system perfor-
mance. The performance of two simpie algorithms is studied in the environment of a hypotheti-
cal architecture capable of executing instructions under the control of a variety of ordering
schemes. The organisation, data dependency graphs, and the various functions of the ordering
scheme that manipulate them are described. Numerical results from experiments are presented
graphically and as polynomial equations. As a compromise between the infinite variability of
our hypothetical architecture and the availability of computational resources to analyse our
systems, several restrictions are imposed on the experiments. Specifically, the scope of analysis
is limited by assuming that resource allocation and memory access constraints are ignored. This
will lead to resource allocation and memory access functions being set equal to the identity
function. The resource allocation limitations can be justified by assuming equally fair and
efficient implementations on all systems. The memory access limitation can be justified simi-
larly, aithough different nambers of memory accesses may be required by the various ordering
schemes. However, these factors may effect system performance and ongoing research is aimed

at eliminating these restrictions.

4.1. The Organisation

First, the organisation parameters for our hypothetical architecture are described. As
memory access or resource allocation are not considered, the organizational parameters of
consequence are the number and speed of the processing elements. Both are treated as variables
in these experiments. [t is also assumed that all processing elements are interconnected, with a
communication cost of zero from any source to any destination. Future research is planned to

investigate the effects of interconnection topology and cost on combined system performance.

4.2. The Dependency Graphs

The frst aigorithm studied is for matrix-vector multiplication using the algorithm shown

in Figure 3a, in which the matrix has sise (SIZEXSIZE). In forming the data dependency graph

for this algorithm, note the central operations in the algorithm are the multiplication of two

oy
‘1‘!‘ ‘.
AT

%

ol

[2 70 T8 N
C2E Bl rd

\
l‘lt"ﬂ..\‘“_ﬁ';._{

<
;]

'\"_‘v\ A
oy

L4
o &Yy

h]
*
t o

v,

f

Y
<

v o
s I‘:

F {
kg

PP
LY
-

LY 'l‘r ('r ['v l::-": ‘,:-': 'v ° f". e
ANERARAT P

ot el
Y .‘{I"l“l.t. .
% & 4 Y

@

R

aw
')

e
L} A

I
P2 e

» 4

3

\\\ﬁ"lq
1°¢’w

+

e
g
»
A

%
"1
-

Te_wy,
.
S

-

9 .y YT s,

i AP A
CANS

1.}"- v.n

’.;' AL -'.'l" S
XN
“- 4G H 5 :- .'\ .'n

i v T

=11

numbers and the addition of the resuit to a running sum. This central operation will occur
SIZE® times in the dependency graph. Therefore a base structure consisting of two vertices con-
nected by a directed arc is created. The vertex at the tail of the arc represents the multiplica-
tion operation, while the vertex at the head represents the addition. Two arcs enter the multi-
plication vertex, representing the matrix/vector input values, and one additional arc enters the
addition vertex to represent the previous valae of the running sum. The addition vertex has a
single output arc. Therefore, creating a dependency graph for the algorithm involves replicating
this structure SIZE” times and interconnecting appropriately. Added to this graph are SIZE
vertices representing the input vector and SIZE- vertices representing the input array. Figure

3b shows such a graph for the case when SIZE = 3. In this figure the computational vertices

are represented by circles and the input matrix/vector vertices by squares. Note that the input
vertices are connected to the multiplication operation and the addition operations are chained

to form the complete dot product operation.

The second algorithm studied computes a 4-point iterative relaxation function, using the
algorithm shown in Figure 4a, in which the matrix has size (SIZEXSIZE) and ITER iterations
are computed. When all loops are unfolded into their basic components, a central computa-
tional block repeats many times throughout the algorithm. Here, the computational block con-
sists of three additions and a division, therefore resulting in a 4 vertex graph with 4 inputs and
one output. This basic graph is repeated SIZE* x ITER times and appropriate interconnections
are made. As the dependency graph for the complete algorithm is complex, Figure 4b shows
only the central computational block. In this algorithm out-of-range indices in array subscripts

“wrap-around” using the modulus function, and for simplicity initial input arcs are ignored.

4.3. The Ordering Schemes

Our experiments investigate two classes of ordering schemes. Both two level combined
approaches require an ordering net partitioned into segments, with the number of segments
being a variable for experimentation. The first ordering scheme, denoted Cpart, sequences par-
titions using a control flow ordering scheme, while individual operations within a partition are
sequenced using data flow concepts. The other ordering scheme, denoted Dpart, sequences parti-
tions using a data flow ordering scheme, while individual operations within a partition are
sequenced using control flow concepts. This section discusses the specifics of the partitioning
and sequencing functions for each case. The computation function, -, agsigns firing times to the
transitions it creates based on a parameter of the experiments called the computation time
Again note that v and u, the resource allocation and memory access functions, are the identity

function.

The same partitioning function, @, is used for both the Cpart and Dpart ordering schemes.
As both algorithms have a grid structure, the ordering net is partitioned first by columns in that
grid of operations, and then if required by rows. For example, if 3 partitions were to be created
from a matrix example with S/ZE = 3, each column in the grid of operations (see Figure 3a)
would be placed in its own partition. If six partitions were required, then each of the original

partitions would be divided in two. This strategy keeps operations that communicate most

v _ e

ORI PR ANEAL Y
& LA
('_i \J g YIRS ".‘

v"t“vf"
s % '

. « r
li"'.

'l

.!' '._
AN

':«".‘:'.:-,"x’- h
a n

ey

Pl R g

R AN
e ety
s M Ve e 5
s

s o
el
I.l

¥

@

li"l“ . "A’
S,
J

p, -t

a

LB

-

T

B

"
s

AN
LS
l' ’.A’ .y .l

’
-’\4'

LN LA L N

.

'

P
v
»

.

.12 -

often in the same partition whenever possible. Synchronization operations are then placed
between each pair of connected computational vertices that reside in different partitions. The

firing time of the additional transitions is the variable called synchronization tsme.

The sequencing function for the Cpart ordering scheme, \~, places a data flow sequencing
operation in parallel with each unsynchronised place. This enforces a low level data flow
scheme. When more partitions are created than columns in the grid structure of operations,
groups of “number of columns” partitions must be sequenced by “plies”. To this end N\, also
forces each ply of partitions to complete execution before the next is started. This is enforced
by adding a single transition between the plies. In effect this function implements the control
flow synchronisation strategy called “Barrier Synchronization”. The firing times of the addi-

tional transitions are set to the sequencing time variable.

The sequencing functior for the Dpart ordering scheme, \p, places a control flow sequenc-
ing operation between operations within partitions to assure that no concurrency will take place
within a partition (i.e. a single trace of operations is executed serially). The previously added
synchronisation operations already ensure data flow sequencing among partitions. The firing

time of these additional transitions is again called the sequencing time.

4.4. The Experiments

Experiments were conducted to determine the system's sensitivity to changes in problem
sise and the relative time required to execute computational, synchronisation, and sequencing

operations. [n each experiment, the measures that comprise the triple M, were deter-

zecsulion
mined. Each experiment consisted of setting the problem sise and various time requirements
constant and varying the number of partitions over the range of “uniform” sises (i.e. those in
which each partition had an equal number of operations to perform). The results of numerous
experiments of varying time requirements and problem size were combined to understand the

interdependence of all these factors on the performance of the systems.

After numerical results from the experiments were obtained, those related to the critical
path execution time were fit to polynomial curves based on the number of partitions. Except for
a few “off by one’ errors at extreme partition sises, all cases exhibit a piecewise linear relation-
ship between the number of partitions and the critical path performance of the algorithm.
Next, several equations from experiments corresponding to variations of the cost variables were
combined to obtain polynomial equations for each measure based on both the number of parti-
tions and the cost variables (e.g. sequencing time). Again all equations could be combined in a
piecewise linear fashion. At this point in the analysis several equations represent each measure,
one in terms of each cost variable. These equations were then unified to a single equation for
each measure in terms of all the cost variables and the number of partitions. These equations
can be verified by substituting appropriate constant for the cost variables to obtain the com-
ponent equations. Finally, the results of experiments on different problems sises were combined

to obtain the final critical path equations for each measure.

' 3% P P I P P B T P % 9] LI T I A I A - - D I T At AL
N A B A N R e P N A P A N N R A A A R N i I e A A S MLt R N AT LR
=~ o AN N oY e ~ L - - BRI S N S T Nt e a e e
._h__ Ny, ,;. .p‘\.- .r & -.-,‘.r R NI s ..«._,_. _\.r.f\.___. _-.-_\ ,..r-__w\ o \._':\

.’:J' 1
&

BV
5
| d

."(.‘.\;'i '}f Fy
P
N e

e o
LoD
(' l. l" -

V.
i

P
" @)
L @

LR

Y
oy

AN A

J
P
R

=)

s

L)
PP
5

LI S A
Lol

.

LI
heh
gy

.ot
e e

" .. & .‘ . A' lr
v/ .’lil"l"" '.

L)
Y
%

4
o

y % "
.

* .

)

-
o

L tets
.

,;-.

3,
»
.
3

7'

....,
PR AT
LS Yo I
LA

":-"'u::;
e
4 Y 's 'i'r"

R

)

« (’.
vy,
‘}

va'y 4
A
e

I) ;
Pt
L

5

’
XA A

B S |

- 13-

The criticai path measurement equations are shown in Tables | and 2 for the matrix mul-
tiplication and iterative relaxation algorithms respectively. In these tables (and the remainder
of this paper), IV represents the number of partitions; SIZE the problem sise; T, the computa-

tion time; T, . the synchronisation time; and T,., the sequencing time. Also, note the ceiling

function | z| represents the smallest integer > z and # represents the unit step function:

0 if z<0
Nz) = 1 if z2>0.

Figures 5 through 8 are graphical representations of the equations for the execution time meas-
ures {obtained by summing appropriate submeasures). The figures contain three graphs, each
varying one of the cost variables. Figures 5 and 8 show matrix multiplications results while Fig-
ures 7 and 8 are {rom the iterative relaxation experiments. Figures 5 and 7 are for the Cpart
ordering scheme while Figures 6 and 8 represent the Dpart ordering scheme. In all cases the
problem size and default values of the time parameters are taken to be 8. Circles on the graphs

indicate function values at uniform partition sizes.

Examination of the measure equations yields a good understanding of the performance of
these two algorithma, While space limitations prevent complete analysis of these functions,
available in [CaF87|, this paper endeavors to provide both the flavor and some interesting

resuits from the analysis. The matrix multiplication algorithm’s computation measure is
[SIZE' + 1] T,., which is easily explained by examining Figure 3b. The length of a critical path
is one greater than the sise of the problem, and each computation requires 7T, to complete.

This algorithm’s partitioning measure contains three components. The first two indicate
that two synchronisation operations will enter the critical path when N < SIZE. This number
increases with N after N exceeds the problem size. Two initial operations result from the syn-
chronisations required to start and end each segment. The increasing factor that exists when
there are mcre partitions than columns of computations (SIZE) results from added synchronisa-
tions needed between serial partitions. Note also the special case of one segment requiring only
one synchronisation operation. This increase produces the staircase nature of Figure 7 and
resuits when a single partition is added to a ‘“uniform” number causing critical path length to
increase. The final factor results from a synchronization operation in parallel with a computa-

tion operation becoming more dominant, within a range of partition sizes.

The Cpart ordering scheme’s sequencing measure, obviously the most complex, consists of
four parts. The first indicates a sequencing operation and an additional computational vertex

)

per “layer” will enter the critical path, while a synchronization operation leaves. The next
component indicates SIZE — 1 additional sequencing operations are in the critical path, one
between each stage of the computation. The final factor is similar to the final factor of the par-

titioning measure, adjusting which operation are in the critical path as their costs vary.

The Dpart ordering scheme’s sequencing measure also consists of four parts. The first fac-
tor indicates that indicates that as the number of partitions increases, added computational

operations will drop out of the critical path, to the point where no additional operations are

T VAN L et P LT e DO SIS DR R I i it S0 N QW P Wy LE'Yan"t a0 .8 0 g 0

'
L
B
.
*
. .

B

AP

FabR
.
Eagh

[
3

-

TN A
RS

o

o

":;'."y]
Xy wal]
X2, X

1"1
'

l. l‘

o

v.' 3
‘e

.
kl a_
AR
- 'l I.-h
P A

I.. ;
3

P
[Y Y
&

<‘ ‘
R 4"
e a’s
v
L A

1’.‘1
 §

A

4

]
SN

L&

-‘lv'-'- L)
.*,

!.? -‘

7
5’ e

5 %%

S v 2 '-.‘
e, |
AR

A

e

o LN 8%y

v
1 3
:"r\r‘k‘& A Yy

‘-“\ ®
)

N
»

' e B S
\\.\5_:".,(,
AL

l"‘)"',
® A

%
x

AP
W
NS

x

%y
EX A
., »
L/ -

/l
2

. - - . e - . . v o L a " Ay L o wg e, W, v AN ""_‘TI‘I_
s, " A . i S g, Bt A% P LV SRt gt piahfe e et i Sat Sl SO A A Al SRR -'-".'.'.'.-..'..'.‘-\.'-.\-"-"J\..

»
y
.

.“l

.

v .
s
‘I

’%'

- 14 -

h]

}
P
'@

‘l,
-

h e R

o
s

h

placed in the path by the sequencing function when N = SIZE*. The second factor shows the

4

same trend and that there are two sequencing operations associated with each computation,

Ly
P
27

-

with sequencing operations dropping out of the critical path as the number of partitions

increases. The final factor are similar to that in the Cpart ordering scheme. v
. *nt)
‘ g
| Now consider the iterative relaxation experiments. In these experiments, three iterations \-,.:-':
) Y

of the algorithm were run {i.e. ITER = 3) which indicates that the critical path {using a wave-

o

S

) front strategy) will be four times the size of the problem, minus 1. Since the critical path

through a single operation in 3 operations long, the resuitant computation measure is just that

given. The partitioning measure indicates that when N < SIZE three synchronisations are :_-':
T A

required for each partition: between each stage of the wavefront. Again the "ply” criented syn- ,:::
. . - . . - . . . 2 v C-' > »
chronizations exist above this level. Again as in the matrix multiply algorithm, there is a spe- :-\.

.
‘,

cial case when N = 1 with 2 fewer synchronisation operations required.

~..
-

The Cpart sequencing measure consists of three components, one for each cost variable.
The first component indicates that as sequencing constraints are added to the model more of the
computational operations fall along the critical path. When there are fewer partitions than the
problem sise this is a constant factor, and above this number a linear increase is seen. The
second component shows the sequencing operations that fall along the critical path, which has
similar form to the added computational operations. Finally we again see that several syn-

b chronisation operations are removed from the critical path.

The Dpart sequencing measure is similar in form to the Cpart measure, except that the :;.:")
weight of the computational and sequencing terms decreases linearly above SIZE partitions ® ;
instead of increasing. These factors are also responsible for the discontinuities that exist at _.: .'_\

! SIZE partitions. The final two terms of this expression indicate the removal of synchronisation "‘,‘_‘: :
operations is limited, as in the matrix multiplication sequencing measures. ;JE::‘

The following observations result from the outcomes of our experiments, as depicted in ““:.
Tables 1 and 2 and Figures 5-8. ‘3::\'-)
. The relationship between granularity and execution time. ::?._E

Figures 5 through & show that granularity has a noticeable effect on the execution :-"Q"
time performance of these algorithms in the combined environment. In Figure 5 we ‘N:.
see that, as NV increases, the execution time increases. This is a logical outcome for '_-"S(i.
the Cpart scheme, as parallelism is restricted when the partition sise drops below the :E::-::.
sise containing a complete coiumn of the calculation. Figure 8, however, shows :-:::__
decreasing execution time with increasing V. Again, this is logical as the Dpart f-‘?‘:‘

scheme restricts parallelism when there are many calculations in a single partition.
Interestingly, we see that analogous general trends hold in the relaxation aigorithm,

as illustrated by Figures 7 and 8. Tables 1 and 2 confirm these results.
. The effects of changing the relative costs of computation, synchronisation, and sequencing.

Tables 1 and 2 show the relationships between execution time and T,, T,,,, and

T,,a are ail linear for a given problem sise and number of partitions.

‘o o s

e v g o wm a4 A&

) The dominant costs in the performance of these algorithms.

Figures 5 through 8 show that computation and sequeacing time are the dominant
factors in the performance of these algorithms. The effect of increasing or decreasing
their cost by a constant term increases or decreases the execution time by a factor
at least three times the effect of changing the partition sise by the same amount.
Tables 1 and 2 confirm these results as we see larger factors associated with the T.

and T,,, terms than the T, terms.
. The optimal number of partitions.

In each experiment, the optimal number of partitions varies and is dependent on the

relative costs of computation, synchronisation, and sequencing operations.

- Matrix Multiplication, Cpart Ordering Scheme -- Figure 5 shows the optimal number

in all cases is a single partition.

- Matrix Multiplication, Dpart Ordering Scheme -- Figure 8b shows that as synchroni-
zation time increases the optimal number of partitions changes from 64 (SIZE*) to

one.

- [terative Relaxation, Cpart Ordering Scheme — Figure 7c shows that as sequencing
time becomes dominant, the optimal number of partitions is 8 (SIZE), while Figure
7b shows that when the synchronisation time becomes dominant the optimal number

is one.

- Iterative Relaxation, Dpart Ordering Scheme -- Figure 8b illustrates that as syn-
chronisation time becomes dominant, the optimal partition sise moves from 64

(SIZE*) to 1.
. The effect of changing problem sise.

Examining Tables 1 and 2 we see that problem sise plays two roles in the perfor-
mance of these algorithms. The first is the linearly increasing critical path execution
time with increasing problems size, which is the critical path performance of these

algorithms. The second role is the determination of the “uniform’ number of parti-

terms throughout these tables.

N
SIZE

tions as evidenced by the

6. Conclusions and Further Work

COSMIC has been used to study combined systems, and was illustrated by studying the
impact of partition size on a system’s performance. This allowed the identification the optimal
partition sise in relation to given system parameters. While these results apply directly only to
two iterative algorithms (differing mainly in their interconnectivity), they provided hints to
what factors effect the performance of combined systems. Future work will focus on efforts to

generalise these results to other algorithms and include the effect of memory accessing and

resource allocation.

Fd
Wy

s

T

F
%
£
=
v

Y 'I'S' . Ve D
yvele
S @

[o o8 B g)
S
LY

- "‘n‘,l'l,"l‘x
O
'N'l ".l'." "'.
JeL S LS

i
P d

e
5

Ty
P
”-.:s’t.‘.

£

o
'-u’\.,s

by T 2 P T 5 |
LA At
Ly NG
l"'l‘,

e,
Y 4 4,
'rll

o
-
T

Al

. d
=
e et

.7
.
'
v M

-
<

NNy

Pt

<

. .

@
- N M
.

.
-

el

s ('.-.l'
R .
A
¢
N s
s, ta fe 'l
2 ey

o N
.
«

P g
D

.;. ‘;I ‘i{'h-;ll'\ .
t
U

ff(-"f

e
L 3

" .'
P A
A

Pl L

- -

g ! . . oAk A AR RS AP
S0 A A A A A A AR AL DL AR DEEAS AL AL S AN BRI AP R i R i i AL P

- 18 -

8. References

Bac78|

[CaF87|
(Fly68]

‘GaKs8t|
‘GaLs84|
[GaP82|
GaP85)
‘Han77)

(HwX85|

[KaMs8|

KeL84|

Molss|

Pet88)

RaH80]

Ram74]

ReM83|

J. Backus, “Can Programming Be Liberated from the von Neumann Style? A Func-
tional Style and Its Algebra of Programs,” Communications of the ACM, Vol. 21,
August 1978, pp. 813-841.

W.W. Carlson and J.AB. Fortes, COSMIC: A Model for Multiprocessor Per formance
Analysis, TR-EE 87-13, School of Electrical Engineering, Purdue University, 1987.
M.J. Flynn, “Very High-Speed Computing Systems,” Proceedings of the [EEE, Vol.
54, December 1966, pp. 1901-1909.

D.D. Gajski, D.J. Kuck, and D.A. Padua, “Dependence Driven Computation,” Proc.
Compcon Spring, February 1981, pp. 168-172,

D.D. Gajski, D.H. Lawrie, D.J. Kuck, and A.H. Sameh, “CEDAR,” COMPCOM
Proceedings, Spring 1984, pp. 306-309.

D.D. Gajski, D.A. Padua, D.J. Kuck, and R.H. Kuhn, “A Second Opinion on Data
Flow Machines and Languages,” JEEE Computer, February 1982, pp. 58-89.

D.D. Gajski and J-K. Peir, “Essential Issues in Multiprocessor Systems,” I[EEE Com-
puter, Vol. 18, June 1985, pp. 9-27.

W. Handler, “The Impact of Classification Schemes on Computer Architecture,” 1977
Int’l. Conf. on Parallel Processing, August 1977, pp. 7-13.

K. Hwang and Z. Xu, “Remps: A Reconfigurable Multiprocessor for Scientific Super-
computing,” 1985 Int’l. Conf. on Parallel Processing, August 1985, pp. 102-111.

RM. Karp and R.E. Miller, “Properties of a Model for Parallel Computations: Deter-
minacy, Termination, Queueing,” SIAM J o f App. Math, Vol. 14, November 1968, pp.
1390-1411.

RM. Keller and C.H. Lin, “Simulated performance of a Reduction-Based Muitipro-
cessor,” IEEE Computer, Vol. 17, July 1984, pp. 70-82.

M.K. Molloy, “Discrete Time Stochastic Petri nets,” IEEE Transactions on So ftware
Engineering, Vol. SE-11, April 1985, pp. 417-423.

C.A. Petri, Commaunscation usth Automata, Supplement to RAD C-TR-65-337, Graffis
Air Force Base (translated from Kommunikation mit Automatin, Univ. Bonn, Bonn,
Germany, 1962), 1968,

C.V. Ramamoorthy and G.S. Ho, “Performance Evaluation af Asynchronous Con-
current Systems Using Petri Nets,” IEEE Transactions on So ftware Engineering, Vol.
SE-5, September 1980, pp. 440-449.

C. Ramchandani, Analysis o f Asynchronous Concurrent Systems by Timed Perti Nets,
MAC-TR-120, Project MAC, MIT, 1974.

J.E. Requa and J.R. McGraw, “The Piecewise Data Flow Architecture: Architectural
Concepts,” [EEE Transactions on Computers, Vol. C-32, May 1983, pp. 425-438.

A

.,
2

ol
-

%

B P
@l

LAlNENLS

»
-

Fra
ALY
LN N Y

> @

"l
LYY
58 5N

L AL

hnd

v
Sl

A
"‘lb
A
N

S T T
! .

-
o

"
'

J{.

l.{-w.'-
Q@{%

_.Ig
WAl

i

'.,"; 1e
Lolay °

e
PRt ts
T T

5

'.';.}')
s
’l ‘l ‘.

.
Yl
P

PN R

4 % v "I jl k3

s
TAA

‘2
)
At

¥
¥

l. l. l. l,]
AR s
NN,

x
LJ

)

.I
P
J

-
v

“ .

s

Table 1
Matrix Multiplication Critical Path Measures

b i .
. __Measure | Equation

|
1

- Computation lSIZE +1] T.

——— 4

PUSEEEUSUE S S—

(:
! , N 3

Partitioning : TW + 4 ll\’ - 2] SIZE TSWC ,
|

o+ aIN - 51213]6!512E2 ~ N)H[Tsym - T, HTW - T, '

S . j N T , (J
equencing : _SIZE [seq +T, — Tsync] + | SIZE—1 Tseq l

PART) | + (N - s1zE|p | s128% - V]

{9[1‘,!,,,c _oT, — Tuq][TW Y - T,,q]

~ — 6 (‘TW _T,](TW _T,]}

yl_‘

{

' Sequencin 51z — |-N_Wr voisize +1- |l
, Seauencing size || "¢ SIZE ||

|
]

(DPART) | + 6 [Tm, ~ Ty] [T,,q — T e]

‘ e ['N - SIZE]G [SIZE2 - N]f’ [Tsync - T][TW - T] 'a

! _

; 0 if <0
z) = .

1 if £2>0.

[x] = Smallest integer > z.
e e
AT T T A NI U BT S e e Tt T T e e e e e e T e T et
N AR R A RSN RS R R R A e Y WL AT AT T
AT VA A R N RS SRt RN LN SCOUONG NN AN N A A A,
oo ~ “ . RS

.....

v
(]
*
o

CR A
LA X
ARARRRES

P
%

VAP RILES
L) 'ﬁ,

f(:",.l',

0
&" "

4'1"

o
Y, Sty
£

%

.

"L
LN

LY
i
W

gﬁ

2y

o

‘74

2Prs
3 ’::
-'.:t":l

<,

MY

.,_..
e
4

XXX JERAICKANA

x

(o S /.
-]
’, ﬁ{‘—'rlx ""' 5

s o e g Bl e g - . i oA , e mm L. ol ne aa. ” —, .
. - L A e oS SN L v N o PR e Y L L S W S S A A L T S T R T A RO Ad Ml Nad O

Table 2

Iterative Relaxation Critical Path Measures

' @

hf]
{b
e

Measure Equation

&

N

et
*e'y
Il

1 Y

i Computation [12 SIZE — 3], T,

!

| |

F v
N

) [o]
mlnl[.3N—-3], lA-SI_Z—Eﬁ_BSIZE-‘;, T syne +9[N—2 2TW

r -
W
i

¥ &

)
14

Lol 4

L
afe)

5

‘Y Partitioning

(a2
MONNLNLRE

’
.

N

SIZE — 9
9 IZE

— 2SIZE + 6

Sequencing

-’5 LI

o

T.

G
S x '
AR

— 4
]
[}
"-

N

8SIZE —-6]
SIZE [S

9 SIZE +

8
-]

Ir

. .’\f‘:{
L)

. 't' -~ l’,
5595

(CPART) | + max{ [ISSIZE -6 — 3N],

* SIZE

[SSIZE ~ 4] - 20 ~ G{N - 2]2%3!,“

N

——

SIZE

1 :
" Sequencing | { 3 SIZE -3 + 20 (SIZE —~ N]}Tc

N

siz6 | T 40 [_SIZE — N}}T,,q A

_. ~ [DPART) | + [14 SIZE —1 ~6

N

-2-2
2SIZE SIZE

+

~ 4 [SIZE - N] [25125 -2 - 2N] + 26 [N - 2]}T,,,,. e

. b‘f'\ <\
p 0 if z<0 NI
(@) =1, if z>0. e

(r‘ = Smallest integer > z.

-19 .

Y e

«

Bt 4 b

.\vsx\u\

Sy . ;.n.a...-.r.r.. R g
A 1y P, Zﬁﬁﬁﬂp:. ..s.?ha:}

e

Increasing
Granujarity

igure 1
Ordering Scheme Graph

Fi

Granularity

Decentralization

Increasing

Scheme

a?

_fncqn -f.v-v-

.

PO s AN

: Pl
RS S e %
T\.-.--\-..N. Yy
Py rantly Sl S o

2 ,. - PO -.q M
LN N .
YA

g N

wW
]
e Sk
]
L
b
3
S
i
g
(&)
R B
- (=]
]
a
3
mw
]
o Sp
L]
........................... 3
o
- - m--J o
)

.
a8
a
b3

- -y l-)-\!
.\-i\.n

-.- P I
m«m«k s ® itk

Yy

Graaularnity
2%
- rdering Scheme Grapa for the Cedar Architscture

-~
bl

Gragularity
gure 2a
Orderiog Scheme Graph for the Plecewise Datadow Architecture

—
&

-

‘Data

.
<]
.
E-]
]
n

Consrol
vlow

.
3]
-]

a
U
(il

ti00 Level

£ unc

ask Leve:

-
L

Graauianty

Geranulanty

Figure 2d

QOraenng Scheme Grapa lor the Rediflow Arcaitacsure

Fgure 2¢

Oraering 3cheme Graph [or the Remps Arcaitecture

ﬁvv

L e = e

-21 -

For'! From 1 To SIZE Do

l

For j From 1 To SIZE Do (|

result(i] = resultji] — aii.j] * bljj; !

EndDo |
EadDo

Figure 3a Figure
Matrix-Vector Multiply Algorithm

Forr From 1| To ITER Do
ToriFrom | To SIZE Do
For j From 1 To SIZE Do
afij] = (ali-1.j] + ai+1J} = i1
EadDo
EndDo
EndDo

Figure 4a
[terative Relaxation Algorithm

Figure 4b
[terative Relaxation Data Dependency Graph Fragment

Sl N N I AN A) - - L D'E IR -
o A T S T B T O T
WO, R N R S LN COS e aa L
- o R e ! p¢ M, W R N N AT ey
® A A E 1 Ry By X N o

3b
Matrix-Vector Multiply Data Dependency Grapin

— a1 /4

Yy

~r

L
»

Pl S R o

h Fo Tt T)

PR e®
SR

"
&
P

Ayl

o
S

>

"
'Jl’!

X o m_a e~
AALTLY
Ll L L
ey s"s-;'-.(

W

"_' ’.f
.
1

y ~

. -'n' A

v s Cety
1

’e,

’
)

> e
<

v

'\)'

AR TRY

TSN
[

'l

NN
'l l'
AR

<

Yo

Alar

-r.....

- PR N 4
@ 17w
:\‘.'n

X

TH LS
v

.
£

4

4 o ” T

e
ey

’

7

R

¢
A

Wy

’

'

., | . - \d ‘.k .“' * \ .“- --- - ‘. '. . .A . ‘r o _F.- - - 'l‘- - L
'
\ -22.
§
)
1500
Execution 1000 (a) Computation
Time . Time Experiment
¥
500
, 7]
; 248 18 32 64
4 Number of Partitions
J 1000 —
800 j
Execution {a) Synchronisation
Time 600 — Time Experiment
400 -
Number of Partitions
2500 —
2000 —
‘ Exefution 1500 — (a) Sequen.cing
Time Time Experiment
1000 —f
b
500 4
/ r)
LRI 1) | I
24 8 16 32 84
Number of Partitions
i Figure 5
(CPART Matrix Multiplication Critical Path Execution Time
S R N T I N T o T O Y » . N R Na Myttt mann .
N h Cal " C v',t' iy o ".f -~ W P Y *V {v'q¢‘ "‘"~'-“. . {a Mo -
S R R S e

xE
A
. @

‘..,
IR
5%

LAY

X

v
-
w
%
™
-

%
L4

«

e
XY

'ul'f{? %’i’(n’f
» S™ Y NS
:;",-:1'. .', o & 1?':" S’_'bl AT)

s

5

':‘

. ﬁ1;\
® 35
.

l. .I " .l.‘,
STl
AT

S .

DR

-

BV @t

(Y

vy

" aa

Rt i

Enoat

ss..s...?_‘ 5
AL ...-

(a) Computation
Time Experiment

Q..v.w

il

1000

Execution
Time

32

16

24

0"“-

V.WW«.%L

(a) Synchronisation
Time Experiment

- -bhh b-
Ay By A A Ay
* LR [N
..&; \...n --.-.. g

2 A

h

Number of Partitions

800 -
600 -

Execution
Time

400 —

N

o s

.~.-a..‘.-.\. WS

Number of Partitions

---\-

(] ‘ -~ . T e e "
r»_,.xf....\..\ ‘.)

Sequencing

)

Time Experiment

{a

.-w.n

Ve

.,.x._\ .\x.

ity Tl

I.l-

LI [
24 8 18

1000 —

Execution
Time

64

Number of Partitions

Figure 8

DPART Matrix Multiplication Critical Path Execution Time

>\

L @y
..rnm*uu.v

R RO R G D ;. et T OV R V.V rAtste gt : : 0 Y v
, ~
W, :'. :
b - 24 - %2‘
X N
')
._u: ':‘.-
' o, 50000 — ',‘- a
[} ‘-p-
b 40000 — P
o oy
Ay Execution 30000 — {(a) Computation o :
%) Time Time Experiment :N
N 20000 A
10000 - -
. 2
o e 5
-, ? RS
% R 1 T 1]
- 24 8 16 32 84 i
b Number of Partitions :‘_ :
: \
> B4 Eats
’ 25000 X
‘-‘ — - v
o]
ity T
A 20000 — :16 3
Execution {(a) Synchronisation g, R
' _'; Time 15000 - Time Experiment Y
oo o
Y, f'\.f
o 10000 — ool
o '\d‘ * oy
LAl ‘.
“ :‘- A
* 5000 — ®
,-" ‘\.’ y
. mr T T T] NN
o~ 24 8 18 32 84 o
res “
": Number of Partitions W
o o
~ ey
) 40000 — o
x 0."\'
.. "}-
o 30000 — %
ey . . a
-, Execution {a) Sequencing i
N . . .)
- Time 20000 — Time Experiment ®
) e
j 10000 — :
: A
o a
248 18 32 84 %
:- Number of Partitions _\-C _
& , %
N Figure 7 N
. CPART Iterative Relaxation Critical Path Execution Time -
A Lo
]
;t ("r- .
“ ‘-.‘ >
~ .
r NN
:
y oA
“f 'ul"-
P~ ;)
‘ol »y
':' i
AN AN NN NN SO AN N R S TN N : R NN
R A A A A A N SOl B . TN

W

g o -
1] -2
o =
o o
: = =
s 3 L]
a. [«9)
-3 %5 s -~
1= E)
-3 (%
el e
g8 2]
5 5
o 7 z. 2
—
- a0 -
= S =
>] =
] | { T 1 | I 1 I)
o o o o o o o
E § B g g 8 g & g & § &
o © oy - - (2] o~ oo ~] -
—t -
o 5
S, S, S .
RG] 7 g N
(2 Y] g st
'Rl o = © -
" x "
= [44] £
s AT AL YIS ™ TR An.u RN IR YR Y N _m w_ e -
TR PN f tﬁ.\., 2 SRRr,.r P PRASRADIAL # NSNS LT Pt

(a) Computation
Time Experiment
{a} Synchronization

Time Experiment

ekl .r N . & 4
N& , oy " \W.uv 2V ’.\ .-.-.\._.\-.\ .x k

. 't e

{a) Sequencing
Time Experiment

l--.4-

¢ \\-
\\.-\\.\..M). A~\)

64

32
Number of Partitions

18

24 8

" ,
.'- -(\-nl\- .\\ .

Figure 8
DPART Iterative Relaxation Critical Path Execution Time
o

WS

5,08 % N
.vur\ \. e \.\.\

NN R A

s s N A

; Pt Dt o e Ty T ——
S0 @S S SR G e EINNINE @B SR @I L LA, @SR @i S5 @l e bt a A
=
c
2
! <
e
=
Ny 3]
o
Pt
y 2
a
, S
—
)
o
-
-
a,
[«$]
o
3 = ~/.
o
D
B C 9
—
: E
1 -
RS
1 O 2w
Z &
» = 1
- &N
a E A 4
. O o &
Z = A
& 3 o
4 [+ 3
[64) w3z
)] F “ p
&) - E
3] -
« A =
/ - g
; 9 .9
« -~
3 z 3
P o
o
a o
Q -
=)
. L]
’ m »
2 .5
2 < =
b . O
-
., I <5
2 v
- - (Y]
. 2
3 S O
F N
2
P » - gty ” - -~ ™ g g . taty a, KPR ooy o P v L > n -
i o A R TR S g A R 2 6 A R B

e

José A.B. Fortes

Purdue University

Benjamin W. Wah

D SR WENE—

University of Illinois at Urbana-Champaign

Systolic arrays have
regular and modular
structures that match
the computational
requirements of many
algorithms. Their
implementation
requires that a wealth
of subsumed concepts
and engineering
solutions be mastered
and understood.

Yal

ystolic arrays are the result of
advances in semiconductor tech-

nology and of applications that
require extensive throughput. Their reali-
zation requires human ingenuity combined
with techniques and tools for algorithm
development, architecture design, and
hardware implementation.

[nvariably, the first reaction of people
who are exposed to the sy ;tolic-array con-
cept is one of admiration for the concept’s
elegance and for its potential for high per-
formance. However, those who next
attempt to implement a systolic array for
a specific application soon realize that a
wealth of subsumed concepts and engi-
neering solutions must be mastered and
understood. This special issue attempts to
provide insights into the implementation
process and to illustrate the different tech-
niques and theortes that contribute to the
design of systolic arrays.

Characteristics of
systolic arrays

Since 1978, when H.T. Kung and C.E.
Leiserson' introduced the term *‘systolic

OE-9162/37 07000012301 00 19R7IEEE

P T R R T VPPl o e A e I
RN 0L L 2
i 8 AL\ A

S

array’’ and the concept behind the term,
much research has been done and much
has been written about the des:ign of
algorithms and architectures suitable for
such structures. Today, the idea of a sys-
tolic array is as familiar to many computer
scientists and engineers as that of a com-
piler or a microprocessor.

Theterm *‘array’’ originatesin the sys-
tolic array’s resemblance to a grid in which
each point corresponds to a processor and
a line corresponds to a link between
processors. As regards this structure, sys-
tolic arrays are descendants of array-like
architectures such as iterative arrays,” cel-
lular automata,’ and processor arrays *
These architectures capitalize on regular
and modular structures that match the
computaticnal requirements of many
algorithms. Table | 1s a list of applications
ror which systoiic designs are available.
Systolic arrays belong to the generation ot
VLSI/WSH (Very Large Scale Integra-
tion/Water Scale [ntegration) architec-
tures for which reguiarity and modularity
are important to area-efficient layouts.

Although the array structure character-
izes the interconnections in systolic arrays,
1t is the term ‘‘systolic’ that captures the
innovative and distinctive behavior of

COMPUTER

-,
v

(:l [d ;

b%

s 1. ThY

(AN

s

W g e W
(4 \.‘
. e

%y

'
»

VW LW WA W e~

l.

IR -

-

these systems. **Systolic’’ in this contex.
means that pipelined computations take
place along all dimensions of the array and
result in very high computational through-
put. In other words, systolic aigorithms
schedule computations in such a way that
adata item is not only used when it is input
but also is reused as it moves through the
pipelines in the array. This results in
balancing the processing and input/output
bandwidths, especially in compute-bound
problems that have more computations to
be performed than they have inputs ana
outputs. Convenuonal processor designs
are often limited by the mismatch of input
bandwidth and output bandwidth. which
occurs because data items are read/writ-
ten every time they are referenced.

One reason for choosing *‘systolic'’ as
part of the term *‘systolic array’’ was to
draw an analogy with the human circula-
tory system, in which the heart sends and
receives a large amount of blood as a result
of the frequent and rhythmic pumping of
small amounts ot that fluid through the
arteries and veins. Ir this analogy, the
heart corresponds to a source and destina-
tion of data, such as a global memory, and
the network of veins is equivalent tn the
array of processors and links. Another
explanation of the term is that in many of
the first proposed systolic architectures,
processing elements alternated between
cycles of *‘admission’’ and *‘expulsion’’ of
data—much in the same way that the heart
behaves with respect to the pumping of
blood.

In the article **Why Systolic Architec-
tures?'"® H.T. Kung presents an excellent
introduction to the basic ideas, the advan-
tages, and the open problems of systolic
arrays. Today, this article is stil] essential
reading for those interested in learning the
tundamentals of systolic arrays. Qur intro-
duction endeavors neither to replace nor
to repeat the contents of that pioneering
article. However, it is appropriate to
elaborate briefly on the three factors that
characterize systolic arrays as they were
originally proposed, namely rechnology,
parallel/pipelined processing, and appli-
cations. These factors also identify the rea-
sons for the success of the concept, namely
cost-effectiveness, high performance, and
the abundance of applications for which
systolic arrays can be used.

Technology and cost-effectiveness.
Nowadays, mature VLSI/WSI technology
permits the manufacture of circuits whose
‘ayouts have munimum feature sizes of 1 to

July 1987

I mucrun. The effecuve vields of
VLSI/WSI fabrication processes make
possible the implementation of circuits
with ur to half a million rraasistors at
reasonable cost—ever for relauvely small
production quantities. However, the
advantages of this technology are nut fullv
realized unless simple, regular, and mocu-
lar layouts are used. Systoiic arrays
attempt to meet these topolowcal con-
straints by using simpie processing ele-
ments that, together with a simple
interconnection pattern, are replicated
along one or more dimensions. Cost,
regcularity, and modularity are factors
leading (0 the design and optimization of
individual processing elements and their
respective interconnections. Considera-
tion of these three factors indicates that
processor arrays are cost-effective engi-
neering solutions to the problem of build-
ing systems with many processing
elements.

The inain difference between the design
of systolic arrays and that of other inte-
grated systems of comparable complexity
ts illustrated in a general way in Figure 1.
The Y-chart shown in the figure is a con-
venient and succinct description of the
different phases of the process of design-
ing VLSI systems.®” The axes of the Y-
chart correspond 1o orthogor.al forms of
system representation, and the arrows rep-
resent design procedures that transiate one
representation into another. A top-down
design procedure (that is, one that
progresses from more complex compo-
nents 1o simpler subcomponents) can also
be indicated—by arrows drawn along each
axis and pointed toward the origin. Whiie
many different design approaches and—
their corresponding Y-charts—are possi-
ble, design is typically carried out through
successive refinements. In this process, a
component’s functional specification is
translated first into a structural represen-
tation and then into a geometrical descrip-
tion in terms of smaller subcomponents;
the functional description of each of these
subcomponents must then be transiated
into structural and geometrical descrip-
tions in terms of even smaller parts, and so
on. The line arrows shown in the tigure are
intended to convey, in a general way, the
flow of this process for systolic arrays
versus more conventional systems. Since
asystolic array consists ot a large number
of a few types of modules, the process of
refining the overall system and designing
every subcomponent is faster and simpler
than it is in systems with the same size but
a much larger number of module types.

Table 1. Applications for which systolic
designs are avsilable.

Signal and Image Processing and
Pattern Recognition

FIR, lIR filtering, and 1D
convolution

2D convolution and correlation

Discrete Fourier Transtform

Interpolation

1D and 2D median fiitering

Geometric warping

Feature extraction

Order statistics

Minimum-distance classification

Covariance matrix computation

Template matching

Seismic signal classification

Cluster anaiysis

Syntactic pattern recognition

Radar signal processing

Curve detection

Dynamic scene analysis

Image resampling

Scene matching

Matrix Arithmetic

Matrix-matrix muitiplication

Matrix triangularization

QR decomposition

Sparse-matrix operations

Sofution of triangufar iinear systems

Non-Numeric Applications

Data structures—stacks and queues,
sorting

Graph algorithms—transitive closure,
minimum spanning trees

Connected cecmponents

Language recognition

Dynamic programming

Arithmetic arrays

Relational database operations

Algebra

This is conveyed graphically in Figure 1 by
means of large arrows showing that in the
design of a systolic array, one can proceed
faster and more directly to the design of
lower-level components of the system than
in traditional design.

Commercially available systolic-array
chips with 10 to 100 simple, 1-bit proces-

13

AACAAAMNAEL CASLA A AL O LS LN LA N S

|* 0
{(::-E\?
+ &

o
L 8
(S

<,

»

A

S

‘l
LN
AP

[4

.
.

[P
L4

{1.‘:%? 5

W s
S AR

".

.
“
.

et
LN NN
"

e B S
L
o S0
TN

®
Yy

e L
RAANEY
W
ha®, -‘J‘
WA
4 -
.

“a*s a8

A ats L g

LAY

functional

logic operatons

/ initial specitication

Lo A A A AN A A AN . LA AR A NS

geometrical

Figure i. A Y-chart that shows the process of designing algorithmically specified

VLS digital systems.

sors exist; these chips sell for less than one
hundred dollars apiece. Other chips,
including microprocessors and digital-
processing chips, both of which can be
used as building blocks in systolic arrays,
are also available—at even lower cost. Sys-
tolic arrays with thousands of processors
can be built by assembling many such
building blocks (chips) at total prices that
range from ten thousand to a hundred
thousand dollars and depend on the com-
plexity of each processor.

Parallel/pipelined processing. Sysiolic
arrays derive their computational effi-
ciency from multiprocessing and pipelin-
ing. Muitiprocessing 1s a natural
consequence of the activiuies going on
simultaneously in various processing ele-
ments of the array. Pipelining can be
thought of as a form of multiprocessing
that optimizes resource utilization and
takes advantage of dependencies among
computations. [n systolic arrays, data
pipelining reduces the input/output-
bandwidth requirements by allowing a
data item to be reused once it enters the

14

array. Typically, inputs enter the array
through peripheral processing elements
and are propagated to neighboring
processing elements for further process-
ing. These movements of data through the
array take place both along a fixed direc-
tion in which a link exists between neigh-
boring processing elements and in a
periodic manner.

In addition to data pipelining, systolic
arrays are also characterized by computa-
tional pipelining, in which information
flows from one processing element to
another in a prespecified order. This infor-
mation can be interpreted by the receiver
as data, control, or a combination of both.
Each output is computed by the
execution—at different times and in a
predetermined sequence—ot several oper-
ations 1n a number of processing elements;
the execution is performed in such a way
that the output generated by one process-
ing element is used as an input by a neigh-
boring processing eclement. While
operations can occur as data flows through
each processor, the overall computation is
not a dacaflow computation, since the
operations are executed according to a

scheduie determined by the svsiobic-array
design. Atter a processing eiement pener-
ates an tntermediate vutput and sends this
output 10 rhe clement’s newgnboring
processing elements, the elenient cormputes
another intermediate ourp e As g result,
processing resourcey dre unilized ctfr-
ciently. In the general case, each provess-
ing element can he .onstructed as 1
pipelined processor Such -onstrucion
resulty in the so-cailed fwo-wevel pineitned
svstolic arrav are onooven neher
throughputs.

Appiications and algorithms. Mgo-
rithms sunable formniementalon in svs-
tolicarravs can be tound in manvy 2ppuca-
tions, such as digital senu and vmage
processing, linear algebra, Juttern recoy-
nition, linear and dvnamic progremming.,
and graph problems. in tact. most ot the
algonthms in the iisted apphoauons are
computationally intensive and require sys-
tolic architectures tor their implementa-
tions when used in reai-time znviron:menis.
The acceptance ol ths tact is evidenced by
the existence of prototype and production
systolic arrays for modern real-time digi-
tal signal processing svstems. The
manulacturers of these arrays include,
among others, companies such as ESL-
TRW, Hughes, NCR. GE, Hazeitine, and
Motorola. When systolic arrays were first
proposed, they were intended tor applica-
tions with two important sets of charac-
teristics. First, these applications require
high throughput and large processing
bandwidth, possibly at the cost or
increased response time. [n other words,
it is more important o keep up with the
flow of data than tc generate a set of out-
puts for a given set of inputs as quickly as
possible. Second, these applications can be
efficiently supported by algorithms that
can be implemented on arrays consisting
of a few tvpes of simple processing ele-
ments; the arrays have stmple contrels and
input/output ports 1n the peripheral
processing elements. These algorithms are
characterized by repeated computations of
a few types of relatively simple operations
that are common 0 many input data
items. Often the algonithhms can be
described by programs with nested loops
or by recurrence equations that describe
computations performed on indexed data.
[n addition, the pattern of generation and
usage of data by different operations dis-
plavs some regularity and uniformity,
which means that the resulting communi-
cation requirements can be met bv the
localized interconnections.

COMPUTER

- "J'~'ﬂ'¢'
,'{ I;f ' I“

LY

oA
y -~ M‘

N

‘, l'.
LY

‘ --
-f.'ff:'-"
FEr

<o

‘-;‘._

o)
g
o,
.t

1
4
:
‘
i
&
3

A% t';‘
S t'\- ‘. [R

l'.ﬂ
o5

<
l.
<

et 5T
Sl

S

."'- 8 A&

2]

AL

P AN R Ce - t. . P

Implementation issues

Given the technical and economic prin-
ciples that assure the soundness of the
systolic-array concept, one needs to con-
sider the issues involved in implementing
a system for a specific application. Some
of these issues are briefly discussed here.

General-purpose and special-purpose
systolic systems. Typically, a systolic array
can be thought ol as an algorithmically
specialized system in the sense that its
Jesign retlecs the requirements ol a spe-
cific algorithm. However, it may be desir-
able to design systolic arrays that are
capabile of efficiently executing more than
one aigorithm for one applicaton or more.
Two approaches are possible in designing
these ‘‘large-purpose’’ systems, and a
compromise between the two is often
found 1n many actual implementations.
One approach is based on adding hard-
ware mechanisms so as to reconfigure the
topology and interconnection pattern of
the systolic array and to emulate the
requirements of a specialized design. A
concrete example of this approach is the
Configurable Highly Parallel computer
(CHIiP),® which has a programmable lat-
tice of switches for reconfiguration pur-
poses. The other approach uses software
to map different algorithms into a fixed-
array architecture. As is the case with the
approach behind other general-purpose
parailel computers, this approach may
require the use of programming languages
capable of expressing parallel computa-
tions, as well as the development of trans-
lators, operating systems, and pro-
grammng aids. These requirements apply,
tor example, 1n the case ot Warp,” a sys-
tolic array developed at Carnegie Mellon
University. For each algorithm, the
designer needs to 1dentify the efficient sys-
tolic designs and mappings and the appro-
priate techniques to use. The issue of
approprniate techniques 1s ot great impor-
tance, since the tinal pertormance, cost,
and correctness of the design are governed
by these techniques.

Design and mapping techniques. To
synthesize a systolic array from the
description of an algorithm, a designer
needs a thorough understanding of and
familiarity with the principles behind four
things: systolic computing, the applica-
tion, the algorithm, and the technology.
Such skilled designers can provide excei-
lent heuristic designs for important

July 1987

algorithms. However, the process is slow
and error prone and may require extensive
simulations, and the resulting designs are
not guaranteed to be optimal or correct.
Progress has been made in the develop-
ment of systematic design techniques to
automate this process.'® These techniques
are unlikely to replace the designers com-
pletely; instead, they will provide tools and
formal concepts to assist designers in
searching for diverse and desirable designs
for a given application. Most of these tech-
niques are concerned with the derivation
of a relatively high-level specification of
the array architecture from a description
of the algorithm. Typically, such a speci-
tication includes the size and topology of
the array, the operations performed by
cach processing element, the order and

Many specialized
arrays can be seen as
hardware
implementations of a
given algorithm.

timing of data communication, and inputs
and outputs. To a limited extent, these
techniques can take into account techno-
logical factors and the relationship of the
systolic array itself to the rest of the sys-
tem. However, they are not complete; they
can only be used at the specification
level—and only in an indirect manner
there. Until more is learned about design
techniques that can be used conveniently
for detailed integration of system and tech-
nology, such integration problems will
continue to be left for the designer to solve.

Granularity. The basic operation per-
formed in each cycle by each processing
element in the various systolic arrays can
range from a simple bit-wise operation, to
word-level multiplication and addition,
and even to execution of a compiete pro-
gram. The choice of granularity is deter-
mined by the application, or the
technology, or both. For example, appli-
cations that use algorithms with basic bit-
level operators and data structures natu-
rally suggest that processing elements be of
a corresponding complexity. The same
choice of processing elements might, how-
ever, result from considerations such as
input/output-pin restrictions and the tech-
nology that may be used. In programma-
ble systolic arrays, the granularity may
also be determined by trade-offs between

2%0.8° 0000 0a8°04™Y

- - b - - - R_l X U

the desired degree and level of program-
mability. The Saxpy Matrix-1"" is an
example of a programmabile systolic com-
puter with large granularity, whereas bit-
level systolic arrays, like those discussed by
J.V. McCanny and J.G. McWhirter,® are
special-purpose designs with low
granularity.

Extensibility. Many specialized systolic
arrays can be regarded as hardware
implementations of a given algorithm.
This view holds when there is a direct cor-
respondence between the operations and
variables of the algorithm and, respec-
tively, the processing elements and wire
links of the systolic array. In such a case,
the systolic processor can execute only a
given algorithm that is designed for a prob-
lem of a specific size. If one wishes to exe-
cute the same algorithm for a problem of
alarger size, then either a larger array must
be built or the problem must be parti-
tioned. The first approach is easy to con-
ceptualize and simply requires that more
processing elements be used to construct
an enlarged version of the original array.
However, as regards implementation, one
must remember that there may be factors
that do not affect performance in small
arrays but might affect it in larger systems.
These factors include clock synchroniza-
tion, reliability, power requirements, chip-
size limitations, and input/output-pin
constraints.

Clock synchronization. [n large syn-
chronous systolic arrays. clock lines of
different lengths can introduce clock
skews and may require that a slower clock
be used. Possible approaches that avoid
this problem of clock skews include
designing systolic arrays that do not allow
data to flow in opposite directions and
using efficient layouts of the clock distri-
bution network.'* An alternative to the
design of a globally synchronous array is
to achieve a self-timed system through the
use of asynchronous handshaking
mechanisms established between neigh-
boring processing elements. These self-
timed implementations are commonly
referred 10 as wavefront arrays. H

Reliability. Simple laws of probability
can be used to explain why increasingly
large arrays are decreasingly reliabie unless
redundancy is incorporated and fault-
tolerance mechanisms are available. In
fact, the reliability of an array of proces-
sors is equal to that of a processor raised
to a power of the number of processors in

XX

]

3o

crs s
AW

T LS A
5""1}‘1'- LI

S

5!

A
,\&-

S L

"y 1" e "V
.

.

"% %Y

‘I;,’I

NNy
AN

N,
LR

2

}.4
'y

e
<

’
.,
(A
i

2,
27

)
’2‘)‘:’
Pxs

=
‘o

P

S
y

2

;“‘_'._.,\

the array. Since the reliability of a proces-
sor is a value less than one, the reliability
of the global array quickly approaches
zero as the number of processors increases.
Fault tolerance requires that faults be
detected and located so that faulty process-
ing elements can be replaced by opera-
tional spares through an appropriate
reconfiguration scheme. A fault-tolerant
systolic array may need additional hard-
ware to meet these requirements. [n addi-
tion, if time redundancy is used or system
operation needs to be suspended for test-
ing purposes, the fault-tolerant array can
be slower than the original one. A good
fault-tolerant design has as its goal max-
imizing reliability while minimizing the
corresponding overhead. In systolic
arravs, possible approaches to fault toler-
ance include simpie extensions of weli-
known techniques used tn conventional
digital systems. However, these techniques
do not take advantage of the characteris-
tics of either systolic arrays or the
algorithms they execute. Novel and suc-
cessful, though general, fault-tolerance
schemes'! that take advantage of these
characteristics have been proposed for sys-
tolic arrays.

Partitioning of large problems. When it
is necessary to execute a large problem
without building a large systolic array, the
problem must be partitioned so that the
same aigorithm can be used to solve the
smaller problem and so that an array of
small, fixed size can be used. The main
concerns are to avoid rendering the parti-
tioned algorithm incorrect and to avoid
increasing the compiexity of the design sig-
nificantly. One approach identifies algo-
rithm partitions and an order of execution
of these partitions such that correctness is
preserved and the original array can be
used to execute each partition.'® The per-
ceived result of this approach is that the
array ‘‘travels’’ through the set of compu-
tations ot the algorithm in the right order
until it ‘‘covers'’ all the computations.
Another approach attempts to restate the
problem to be solved so that the problem
becomes a collection of smaller problems
that is similar to the original one and that
can be solved by the given systolic array.'®
While this second approach has less gener-
ality and is harder to automate than the
first approach, it may have better perform-
ance when it is applicable.

Automated design tools. The processing
elements and module libraries play an
important role in making the process of

16

designing special-purpose arrays of
processing elements faster and more cost-
etfective. In addition to the many existing
tools for designing VLSI and WSl systems
that can be readily used in this process, the
regularity and algorithmic nature of sys-
tolic arrays permits the use of high-levei
silicon compilers.” At this me, the devel-
opment process is not tully automated; the
process will depend on future progress in
design automaton and computer-aided
design tools

Universal building bfocks. Systolic
arrays cost less to implement than other
arrays because of their extensive replica-
tion of a small number ot simple, basic
modules and because of their highly dense
and efficient layouts. [t is worthwhile for

Integrating systolic
arrays into existing
systems may be
nontrivial because of
I/0 bandwidth.

the simple building blocks to be carefully
designed and optimized, since the costs
involved are amortized over a large num-
ber of replicated circuits. The modular
design of systolic arrays allows designers
who want rapid prototyping of their ideas
to use off-the-shelf devices, such as
microprocessors, floating-point arithmetic
units, and memory chips. However, these
parts may not be designed for implement-
ing systolic arrays and may therefore be
inadequate 1o meet the design require-
ments. This has led to the development of
‘‘universal building blocks''—chips that
can be used for many systolic arrays. The
cost of such development is, therefore,
amortized over replicated modules in
many arrays rather than concentrated in
simply one array. Commercially available
chips that are worthy of consideration as
basic modules include the INMOS Trans-
puter, the TI TMS32010 and TMS32020,
the NEC datatlow chip uPD 7281, Analog
Devices’ ADSP2100, the Fujitsu MB8764,
and the Natonal LM32900. Problems
involved i1n the use of programmable
building blocks include developing pro-
gramming tools to aid designers and
providing support for tlexible intercon-
nections.

Integration into exisiing systems.
Although systolic arrays provide extensive

throughput, their integration into existing
systems may be nontrivial because of the
extensive input/output bandwidrth
involved, especiaily when a problem has o
be partitioned and input data have to be
accessed repeatedly. Additional problems
that have to be solved for systems with a
large number of systolic arrays include the
interconnections with the host, the mem-
ory subsysiem t¢ support the systolic
arrays, the buftering and access ot data io
meet the special input/output data distri-
butions, and the multiplexing and demul-
tiplexing of data when there are
insufficient input/output ports. The prob-
{ems that must be faced are exempiified by
Mosaic, u project being carried out at
ESL. The system consis's ot a statically
scheduled crossbar switch that connects
multiple Warp processors, cach with local
memory modules, into a macropipeiine.
The local memory modules are used to
store input data and restructure them into
the required input format.

The future

By the year 2000, it will be possible to
build integrated circuits with one billion
transistors—more than one thousand
times the number of devices available in
today’s densest integrated circuits.'
These incredibly large circuits will use
0.1--micron geometries made possible by
advanced optical, electron-beam, ion-
beam, or X-ray lithography. While the
high cost of setting up integrated-circuit
factories that can handle these technolo-
gies will certainly impact the initial cost per
chip, the main manufacturing limitations
will be in the design, verification, testing,
and packaging of such large circuits. In
addition, the percentage of the chip area
dedicated to interconnections could
increase to .more than 80 percent. Systolic
arrays will take 1dvantage of submicron
technologies withou: suffering from the
problems just mentioned, since they are
modular, have reguiar interconnections,
and are extensible. By the vear 2000,
mature design and programmung toois and
extensive knowledge ot suitable appiica-
tions and algorithms will probably render
systolic arrays the architecture of choice
for submicron circuits designed for digital
signal processing, fast anthmetic, sym-
bolic processing, and intelligent databases.

Systolic arrays have triggered extensive
related work and research in the areas of
processor-array architecture, algorithm

COMPUTER

004

r &

na R T,
vy ry
LS

HANSANNL
PO T L
P P Y L

'-.,"(.“". 1o

’

X,)

design and analysis, and parallel program-
ming. These areas are often identified as
systolic architecture, systolic algorithms,
and systolic computing, respectively. Asa
consequence, the principles behind systolic
arrays have gained an enlarged scope. That
is, systolic architectures are not necessar-
ily arrays of processors; systolic
algorithms may be very complex and may
not necessarily be executed in simple
processing elements; and systolic comput-
ing can take place in computers other than
systolic architectures. The prominent fea-
tures of systolic arrays are the processing
elements, which implement processes, and
the regular interconnection of multiple
processing elements. The processing ele-
ments and the interconnection of process-
ing elements can be implemented in
software, general-purpose microproces-
sors, or specialized hardware. Because of
this variety of implementation possibili-
ties, systolic arrays have, since the late
seventies, evolved to become cellular com-
puting at the algorithmic, programming,
architectural, and hardware levels. We
are, therefore, witnessing a trend in which
systolic computing is becoming a pervasive
form of multiprocessing.

Acknowlcdgments

We would like to thank the authors and
reviewers for helping to make this special issue
a ecality. We are also grateful to Bruce Shriver,
the editor-in-chief of Computer, for his gui-
dance, directions, and help in preparing this spe-
cial issue.

Despite the large number of articles in this
special issue and despite our efforts to solicit
manuscnpts on major systolic-array projects for
it, we were not able to cover all major projects
because of page limitations and the tight sched-
ule involved in preparing the issue. We realize
that there are many researchers, too numerous
to mention individually, who have made nota-
ble contributions to the development of systolic-
array research. We apologize for any inadver-
rent omissions, and we would like to
acknowledge their efforts here.

Last but not least, we would like to
acknowledge the pioneering study on systolic
arrays by H.T. Kung and C.E. Leiserson. With-
out their study, this special issue would not exist.

This project was supported by National
Science Foundation Grants DCI 84-19745 and
DCI 85-19649, as well as by the [nnovative
Science and Technology Office of the Strategic
Defense [nitiative Organization under Office of
Naval Research Grant 00014-85-k-0588.

References

1. H.T. Kungand C.E. Leiserson, '*Systolic
Arrays (for VLSI),"" Sparse Matrix Proc.
1978, 1979, Academic Press, Orlando, Fla.,

July 1987

ta

pp. 256-282; also in **Algorithms for VLSI
Processor Arrays.'’ which is Section 8.3 of
Introduction to VLSI Systems, C. Mead
and L. Conway, eds., 1980, Addison-
Wesley, Reading, Mass., pp. 271-292.

. F.C. Hennie, lterative Arrays of Logical

Circuits, 1961, MIT Press, Cambridge,
Mass.

. J. von Neumann, ‘‘The General Logical

Theory of Automata,'’ in Cerebral
Mechanisms in Behavior— The Hixon Sym-
posium, L.A. Jeffries, ed., 1951, John
Wiley & Sons, New York; a more recent
work on cellular automata is Modern Cel-
lular Auiomata Theory and Applications by
K. Preston, Jr., and M.J.B. Duff, 1984,
Plenum Press, New York.

. D.L. Slotnick, W.C. Borck, and R.C.

McReynoids, ‘‘The Solomon Computer,”’
Proc. AFIPS Fall Joint Computer Conf..
1962, Spartan Books, Washington, DC, pp.
97-107.

. H.T.Kung, "*Why Systolic Architectures?"’

Computer, Vol. 15, No. |, Jan. 1982, pp.
37-46.

. J.V. McCanny and J.G. McWhirter,

**Some Systolic Array Developments in the
United Kingdom,"’ Computer, Vol. 20, No.
7, July 1987 (this issue).

. Computer {special issue on new VLSI

tools), Vol. 16, No. 12, Dec. 1983.

. L.Snyder, “‘Introduction to the Configura-

ble. Highly Parallel Computer,”’ Com-
puter, Vol. 15, No. 1, Jan. 1982, pp. 47-64.

. M. Annaratone et al., ‘*Warp Architecture

and Implementation,”” Proc. [3th Int’l
Symp. Computer Architecture, June 1986,
Computer Society Press, Silver Spring,
Md., pp. 346-356.

. J.A.B. Fortes, K.S. Fu, and B.W. Wah,

“*Systematic Approaches to the Design of
Algorithmically Specified Systolic Arrays,”
Proc. 1985 Int’l Conf. Acoustics, Speech,
and Signal Processing, 1985, IEEE, Piscata-
way, N.J., pp. 8.9.1-8.9.5.

. D.E. Foulser and R. Schreiber, **The Saxpy

Matrix-1: A General-Purpose Systolic
Computer,” Computer, Vol. 20, No. 7,
July 1987 (this issue).

. A.L. Fisher and H.T. Kung, ‘‘Synchroniz-

ing Large VLSI Processor Arrays,’’ /[EEE
Trans. Computers, Vol. C-34, No. 8, Aug.
1985, pp. 734-740.

.S.Y. Kung et al., "“Wavefront Array

Processors: From Concept to Implementa-
tion,"* Computer, Vol. 20, No. 7, July 1987
(this 1ssue).

. JLA. Abraham et al., ‘‘Fauit Tolerarce

Techniques for Systolic Arrays,’ Com-
puter, Vol. 20, No. 7, July 1987 (this issue).

. D.1. Moldovan and J.A.B. Fortes, ‘‘Parti-

voning and Mapping Algorithms Into
Fixed-Size Systolic Arrays,”’ /EEE Trans.
Computers, Vol. C-35, No.1, Jan. 1986, pp.
1-12.

. J.J. Navarro, 1.M. Llaberia, and M.

Valero, ‘‘Partitioning: An Essential Step in
Mapping Algonithms Into Systolic Arcay
Processors,”* Computer, Vol. 20, No. 7,
July 1987 (this issue).

. F.C.Linetal., "*“MOSAIC: A Heterogene-

ous Architecture for Signal Processors,’™’

Proc. 12th DARPA Strategic Systems
Symp.. Oct. 1986.

18. B.C. Cole, ‘‘Here Comes the Billion-
Transistor IC,'’ Electronics, Vol. 60, No.
T, Apr. 2, 1987, pp. 81-85.

<

José A.B. Fortes has been with the facuity of
Purdue University’s School of Electrical Engi-
neering since 1984,

He 1s interested in all aspects of parallei
processing, including the systematic design of
algorithmically specialized processor-array
architectures, parallel programming languages,
automatic parallelism detection and exploita-
tion techniques, and fauit-tolerant computing.

Fortes has published over 20 technical papers
in journals and conference proceedings in the
areas of parallef processing, fault-tolerant com-
puting, and VLSI architectures. He has worked
on several projects in these areas in !
with or with funding from NSF, ONR, AT&T,
RCA, and NCR.

Fortes is a member of IEEE and ACM.

He received his MSEE and PhD EE degrees
from Colorado State University and the Univer-
sity of Southern California in 1981 and 1983,
respectively,

Benjamin W. Wah is an associate professor in
the Dept. of Electrical and Computer Enginecr-
ing and in the Coordinated Science Laboratory
of the University of Illinois at Urbana-
Champaign.

He was on the faculty of the School of Elec-
trical Engineering at Purdue University betwcen
1979 and 1985.

His current research activities include paral-
lel computer architectures, artificial intelligence,
distributed databases, computer networks, and
theory of algorithms.

Wah was a Computer Society Distinguished
Visitor between 1383 and 1986.

He is an editor of the [EEE Transactions on
Software Engineering, and the Journal of Par-
allel and Distnbuted Computing.

He received the PhD in computer science
from the University of Califorrua at Berkeiey in
1979,

Readers may wnte for informanon about the
special issue 10 Jose Fortes, Purdue | niver iy
Schoot ot Electrical Engineerng & e
Latavette, IN 47907 or to Beriamr » ar

versity ot {llinows at L rhans « harmpeig .e
dinated Scvience [avoran . -
Springhieid Ave | chana LY

x2x v 2y
e)
5%y
e

'.‘_'.l‘f

€ r
)
v

[
A
'

i d a_x & ‘.. ¥ _¥ " ? l

i I T T) O
rere s o

AXAAL '."'.'?'g L AALON

) -,.‘/l "I
I

e

<
o »)

i
oy

S

s rEl LT w ey

LA L
g

L L A A

"n’
i

I'¢

.
v

w
o

'/
oA

:-:f

b AP A

) § L *

(., k"l.?l'(l'
S

e
PP,

MD-A198 910 DESIGN ﬂND EVHLURTION OF FRULT TOLERANT VLSI/HSI
RO ESSOR ARRAYSC(U) PURDUE UNIV LAFAYETTE IN
FORTES 31 DEC 87 N99914-83-K-8388

UNCLASSIFIED F/G 12/6

) \
~

Ty et .'ﬂ.‘u‘:ﬁo

J

*

L O O W X N A A AU LRGN

S Y

QQ('

ia SE 3B =jf
Loy = =
d3ay

daa m_.._u.._tm

—

I
il

O R

:.
ol .ﬁﬁ.
...v....n.r..a X

o

3
v

I

e

I

1.4

—
—
—_—
—_—

I

1.25

AICT AN
H.M.m\..n.fhm.«c

]
—_

Pl =

%

SASAN,

A

‘

[AE T ot AT S Y

.JJ})‘I”.

;’ J i I

R AN T P TN W I W P W R W T T e QO NGO T R P RS

REFERENCE NO. 8

Rau, D., Fortes, J. A. B., Siegel, H. J., “Destination Tag Routing Schemes Based on a
State Model for the IADM Network,” Technical Report TR-EE 87-39, School of Electri-
cal Engineering, Purdue University, West Lafayette, Indiana 47907, October 1987.
(Submitted to IEEE Transactions on Computers, October 1987).

) - wo - - s N

LI R R P | . N =~
ORI \J‘.“:\-.\l“_'!\-le_. R S

; Ol 0o hag €afy’lag ¢ RN “of
-) S A B b »l‘ PP

4, |'.'

ALY S

o
3

.t
LI

P AT "
L] .,
I."o‘lfc';'."

P
.,1.

h Ni-"
LAY

Destination Tag Routing Techniques Based on a State Model
for the IADM Network’

Darwen Rau and Jose A. B. Fortes
School of Electrical Engineering
Purdue University
West Lafayette, IN 47907

Howard Jay Siegel
Supercomputing Research Center
4380 Forbes Blvd.
Lanham, MD 20706

ABSTRACT

A "state model" is proposed for solving the problem of routing and rerout-
ing messages in the Inverse Augmented Data Manipulator (IADM) network.
Using this model, necessary and sufficient conditions for the reroutability of
messages are established, and then destination tag schemes are derived. These
schemes are simpler, more efficient and require less complex hardware than pre-
viously proposed routing schemes. Two destination tag schemes are proposed.
For one of the schemes, rerouting is totally transparent to the sender of the
message and any blocked link of a given type can be avoided. Compared with
previous works that deal with the same type of blockage, the timeXspace com-
plexity is reduced from O(log/N) to O(1). For the other scheme, rerouting is
possible for any type of link blockage. A universal rerouting algorithm is con-
structed based on the second scheme, which finds a blockage-free path for any
combination of multiple blockages if there exists such a path, and indicates
absence of such a path if there exists none. In addition, the state model is used
to derive constructively a lower bound on the number of subgraphs which are
isomorphic to the Indirect Binary N-Cube network in the JADM network. This
knowledge can be used to characterize properties of the JADM networks and for
permutation routing in the IADM networks.

Index terms - cube network, data manipulator network, destination-tag routing,
fault tolerance, interconnection network, multiprocessor, parallel processing,
state model.

lThil research was supported in part by the National Science Foundation under Grant DC1-8419745, by the
Innovative Science and Technology Office of the Strategic Defense Initiative Organisation and was
administered through the Oflice of Naval Research under contract No 00014-85-k-0688, and by the
Supercomputing Research Center under contract MDAS04 85 €0.5027

LS LIPS IR N

RGOS

[l"-‘s‘. W,

SRR (N AR U R N A N A A o SO A AT N AT VT AR AT LR AR E LS I W RS T

e

[4
. '.*"z‘_
hY .‘- t{"l

.,_
&t
s

LY

v .

5%
\.& »

T AR LT r'.,-‘,-.-.i'l'u PRI R l!‘l'u ¢ a8 a0 ot gk

1. Introduction

This paper discusses novel and efficient techniques for routing and rerout-

ing messages in the Inverse Augmented Data Manipulator (IADM) network [9).

These results are based on a new approach, the "state model," which character-
. izes and correlates the topologies of the [ADM and Indirect binary n-cube net-

works, and leads to efficient exploitation of the redundancy available in the

IADM network.

; Considerable research has been dedicated to the design of multistage inter-
connection networks for multiprocessor systems. The class of data manipulator
\ networks, introduced in (3}, includes, among others, the Augmented Data Mani-
pulator (ADM) network [17], the IADM network [9] and the Gamma network
(13][14). The IADM network and the ADM network differ only in that the input
side of one of them corresponds to the output side of the other and vice versa.
The Gamma and the IADM networks are topologically equivalent; however,
they use switches of different types. Each 3X3 crossbar switch used in the
Gamma network can connect simultaneously all three inputs to all three out-
puts whereas each switch used in the IADM network can connect only one of its
three inputs to one or more of its three outputs. The main interest of this
paper is the study of the JADM network; both the one-to-one and permutation

routings are considered. The schemes proposed for routing and rerouting mes-

sages in the JADM network are also applicable to the Gamma network.

Perhaps the most popular class of multistage networks is the multistage
cube-type networks such as the Indirect Binary N-Cube [15], Omega [6], Baseline
[20], Generalized Cube [18], STARAN flip (2] and a special case of SW-Banyan
(4] networks. Among the main advantages of these networks are their very

efficient destination tag routing schemes, partitionability. O(/Nlog,/V) cost and

[P

---------- \..'\'.'-.;.-: GRR LIS
A NN

........ d

o~y

!
. Py

'y
L

e
s

‘_l.;,-.',;(;
4.1“1‘

‘j B
s @

LT
“
o

L o
'y -
T

.l,"
s

n"‘ ..";.'-.
"-’o

""‘l'rl.
L AR
"y Yy

‘;.
o'e

Pl Sl
LA)
AANA

‘Jé". P
: h I
224 ..

‘b
\-'

.

>,

LR A G 2 A N A ST I 'n‘\-
.- '.r"f\'\ N N ‘)\-\.-\-“."‘ A ?‘ \]

LT T R R N O R R R R R T R S R s X A N O T IV T WU WO N

-3-

ability to pass useful permutations [16]. Some results of this paper are based on
characteristics of the Indirect Binary N-Cube network (hereon referred to as the
ICube network). Since the cube-type networks men‘;ioned above are all topologi-
cally equivalent [16)[17][20][21], the results in this paper are also relevant to any

of them.

The ICube network is composed of n = logN stages labeled from 0 to n—1.
Each stage consists of 2N connection links and N interchange (switches) boxes.
The structure of the network is such that two input links of an interchange box
differ only in the i-th bit of their labels; the upper links have a "0" in the i-th
bit and the lower links have a "1." Figure 1 illustrates an ICube network of size
N=8 and two possible states of an interchange box, "straight" and “exchange.”
Since this paper considers only one-to-one and permutation routing, broadcast

states are not shown.

The IADM network is composed of n stages labeled from 0 to n—1. Each
stage consists of 3N connection links and N switching elements. An extra
column of switches is appended at the end of the last stage as the output
switches and is referred to as stage n. Each switch j at stage 1 has three out-
put links to switches (j—2') mod N, j and (j42') mod N of the succeeding
stage. Each switch selects one of its input links and connects it to one or more

output links. Figure 2 illustrates an IADM network of size N=8.

In a multistage interconnection network, the path connecting the source of
a message to its destination is determined by a routing scheme that specifies the
switching state of each switch in the path. Routing schemes are considerably
simpler for the cube-type networks than for the data manipulator-type net-
works. In cube-type networks, the interchange box at stage 1 needs to examine

the 1-th bit of the binary representation of the destination address of an

A A N AR I N I N S R R R o L N N A R T L L R LA G B Y R T
e S g S R i i i A i e P A Vi e N S R S
B S e B A R i

PRSI Ny

St LV

'™
.

 }
"
1%

L)
7

5

Y P I
X
[

4
P,

7

2,

2

ok

(3

Tty

A

-

51
".

%
- R
[

l’b&'

v’ ‘?
AL

R
S

) "‘

‘»
\‘P'V
.

A R N R WL S WL T e Y 02 0%0 R 80 10080 1 0u8"p 8% R0 gta TRl g8t e et a0 0k Vet Gak s ave, TAA'A Nt e e av s,

‘e

Kce

4 i
- - OEON

¢

incoming message. If the 1-tA bit is 0, then the upper output of the box is f

e

taken. If the i-th bit is 1, the lower output of the box is taken. These schemes -
Y
are known as destination tag routing schemes [6] and are extremely efficient and """‘

simple to implement. Unlike cube-type networks, in the JADM and other data b u"(.:"
manipulator-type networks there are several paths between any source s and “&‘_
destination d (s#d) and each switching element has at least three switching E“f’:
states. Previously proposed routing schemes |9][10]{13] for the IADM network EEC
can be thought of as distance tag schemes; that is, they require calculation of r‘:
the distance from source to destination in order to generate routing and rerout- '::;:::
ing tags. The rerouting schemes in these works are basically finding an alter- _. 0
nate representation, which specifies an alternate routing path, for the distance. :3__
McMillen and Siegel [9] proposed three dynamic rerouting techniques for -_:\-_;
the IADM network for avoiding faulty or blocked +2° (nonstraight) links. The .S:.{EE
first and the second schemes require that switches be capable of performing ;_l.,
two's complement and +2' addition operations, respectively. The third scheme :EE .\
requires one extra tag bit which is dynamically updated as the message pro- :Eé.i:
pagates toward the destination. In [10]|, the work of [9] was expanded, and a s,
single-stage look-ahead scheme was proposed to avoid certain type of straight ;:E:
link faults. This improved scheme also requires two'’s complement operations. E.:_:\
Parker and Raghavendra [13] used redundant numbe.r representation and '-F:‘?f
proposed an algorithm capable of finding all routing paths, which, effectively, \:Ei'j:
are the redundant number representations for the distance between the source \;’.
and the destination. Because of the complexity of the algorithm, the cost of o;"
computation is prohibitively large so that it is infeasible to implement the algo- 52.'
rithm in order to achieve dynamic routing [19]. In addition, although the algo- .":‘.
rithm can generate all routing tags for any distance, there is no specific work on ';:
g,
)
NAH
R
e T e e

-

o
~

S0

-5- L

R

. Ay
rerouting schemes in (13][14]. iih oty
Ay

'

Lee and Lee (7] proposed signed bit difference tag and destination tag local -

Y
control algorithms for the ADM and IADM networks that require no computa- 5 'a:
U
A
tion for the distance between the source and the destination. But their local ?Q‘.t
v o

control algorithms can only find one routing path for each source and destina- .
. |"'
tiv.. .air. If the need for rerouting arises, they still resort to the distance tag NG
=y W)

Ny

schemes to find alternate paths. N4 A:::Z
._:.“__.‘,

Past research has shown interesting relationships between data manipula-
tor and cube-type networks. For example, because it is possible to embed the
Generalized Cube network in the ADM network [1]{17], the set of interconnec-
tions implementable by the ADM network is a superset of that of the General-
ized Cube network. This fact and the existence of multiple paths between any
source s and destination d (s#d) in the ADM network suggests that the ADM
network can be thought of as a fault-tolerant Generalized Cube network.
Analogously, the IADM network can be regarded as a fault-tolerant ICube net-
work®. Since the permutations realizable by cube-type networks are well stu-
died, the identification of possible embeddings of the ICube network in the
IADM npetwork can help characterize the permutation capabilities of this net-
work. A contribution to the precise understanding of these notions is made in
this paper; it consists of the identification of a large number of distinct sub-

graphs of the IADM network that are isomorphic to the ICube network.

AT et
Section 2 of this paper introduces a state model to describe and correlate Ny
]
topologies of the ICube network and the IADM network. Necessary and ~—
FAENED,
- RN
Lo S
2 While topologically equivalent, the ICube and Generalised Cube /O ports are .-:-:.-
addressed so that their inter-relationship is the same as that of the JIADM and ADM '_‘:'-‘_'_\"_
network, i.e. the input and output sides are interchanged. -1:::.:::..:
]
g
Y
W)
Wy
-
KSCY,
.:-'vl"."n"
- e e - . . e g . - . . R Y
N A 2N A R N N o P wP NP BN S R S R L et N L P S i o O LA A e LN ol P o e e M TS L o ST L T RPN AT RN AR A o
IS A T A R e e A AT e P N N e T N IR) PR ".-"x."-\..'.."-\.-‘\l“n-‘-.'\.‘q\\ SN N
3 A N T R RSNy o Ay S G S A A N ’

e drd

GOV AE R

[

sufficient conditions to perform rerouting in the JADM network are derived in
Section 3 . In Section 4 two routing and rerouting schemes are proposed based
on the theory developed in Section 3, together with a discussion of their merits
and implementation considerations. A universal rerouting algorithm is proposed
in Section 4, which can deal with any combination of multiple link blockages.
A class of subgraphs in the [ADM network that are isomorphic to the ICube
network are identified in Section 6, and it is shown how to reconfigure the
IADM network under certain link faults to pass the cube-admissible permuta-

tions. Finally, Section 7 summarizes the results presented in this paper.

2. State Model Descriptions for the ICube and IADM Networks

Multistage networks can be modeled as graphs by treating interchange
boxes (also called switching elements) and links of the network as nodes and
edges of the graph, respectively. Another equivalent graph model {1}[8} results if
interchange boxes are associated with edges, and links with nodes. Both models
are exemplified in Figures 1 and 3 for the ICube network. The IADM network is
shown in Figure 2 according to the first model. The design of switches based on
both models is discussed in [11]. Clearly, the ICube network in Figure 3 can be
regarded as being a subgraph of the IADM network in Figure 2. Henceforth,
the second model is always assumed when referring to the ICube nctwork (i.e.

Figure 2) and the first model is assumed when dealing with the IADM network.

With respect to these graph models, the nodes and the edges of the graph
refer to the switches and the links of the networks, respectively. The number of
switches at each stage of a network is denoted N and n = log,N refers to the
number of stages. The switches of each stage are labeled from 0 to N—1 from

the top to the bottom. Any integer 7 has a binary representation

oL e

'Y ,‘- R
N
e

<

CRNN

VRN LN RN R NEANW] W MW WY VaMahTy? TN TVRLUW UL WU W .y S Rat 0.8 £40 4,800 92 00" 0 4" * 20°0.8% 2%2°8% 2% 1% e, "ah et U l’~‘|

JoJ1 " " " JIn—1» Where 3, _, is the most significant bit and n denotes the number
of bits. The notation j,,, means the bits of j starting at j, and ending at z, N
where p < ¢. Bit J_, is 1's complement of bit 3. Throughout this paper, ; and pYA
7+a, where a is some constant, are reserved to represent labels of switches. S
Also modulo N arithmetic is assumed, e.g. j+a implies (j+a) mod N. The .
notation j€ES; is used to indicate that a switch j belongs to stage : and y r'.
(F€S; , 7€S;,,) is used to represent a link at stage ¢ joining 7 €S; and j €5;,,. : ::'::
A sequence of switches of contiguous stages (j'ES,- , j"ES,-Jrl , T,]""G.S',-+k) is

used to represent a path from j'ES,- to jH'ESi +k- Sha!

Notation and terminology required for the characterization of network

topologies and destination tag routing schemes are introduced next. A switch 5

LRTLAAT Y,

of stage 1 is an even, switch if 5; = 0 and an odd; switch if j; = 1. Figure 2 >

-&

iaa
e

identifies even; and odd; switches at different stages of the JADM network of -

size V=8. Define the functions AC; and AC_‘; that represent connection links at

o
[

Pl
L A
Ay

stage 1 as

I‘f' I
S
L 4

'Y

e_n

LY

P, [

if 7 is an even; switch and ¢;,=0,

oy
o'
L,

7

L

or if j is an odd; switch and ¢;=1

AC;(5:4) = —92' if j is an odd; switch and t;=0

» (s
‘r{'v,ﬂr'r

5\

.

LY

+2' if 7 is an even, switch and ¢;=1

v .
1 4

o

AC;(5,4) = —AC(5,t)

L] "-',5 '
DAL

'..'l.l.'

Also, define the functions C;(7,t;) =3 + AC;(4,4;) and

By

y oy 'v..'v
(A

Ei(j,ti) =3 + AE’,-(j,ti). These definitions imply the following lemma of funda-

)

- o

Lol

mental importance to the results of this paper.

o Y

gl

S
7

PR
'y

Lemma 2.1 3

L]
»

C,~(j,t,') = jo/:‘- ltija'+1/n~—l

::\".

v‘l."' v NIRRT TS i AT RO AP AL IR N R R NS o P IR R PR T S T VTN ~ -~ - -,':.'.
1,~Y.,-.vf,v,-_/,”_~‘-‘~.f!.-.-_-,-.-__\\\-','\,\,‘._4 P S [\. {(\ A S ~ NN
ARG e At P A L A A BT It B A AU A AT Y g A A v v v O R I aN S)
WA ey Ty o S T NN NS R N T i Y N ANA RN MRNNNS

OO A R U U R RS RO R A O I R O R qre vy “6gp e et B fak g vy

———
-

Ci(ht) = J'o/i—xtiQ.'H/nq
for some value of ¢;,/, ., which depends on j and ¢,. ©y

Proof: If j is an even; switch and ¢; =0, then C;(J,¢;) = C—',-(j,ti) =j3. If jis ..";

an odd; switch and ¢; = 1, then C;{J,¢;) = Ei(j,t,») = j. If jis an odd; switch i
and t; =0, then C;(j,t;) results from subtracting 1 from j;. Since j is an odd;
switch, 7; =1, no borrow is generated and all remaining bits of j are

unchanged; however, C—',-(j,t,-) adds 1 to j;, changing the i-th bit to 0 and alter-

(]
«
-

XS

ing some of the bits in positions 141, . . . ,n—1 due to carry propagation. Simi-

-~ m =

=

lar reasoning applies when 7 is an even; switch and ¢, = 1. O

o
=

The notation and terminology just introduced can now be used to describe Y '
the networks of interest in this paper. The foliowing description for a network ::
in terms of AC;, AC—',-, C; and 6_’, is called the network state model. .:‘

het'ot

The ICube network is composed of n stages Jabeled from 0 to n—1. Each '3.‘ '

.
stage consists of 2N links and N switches. An extra column of switches is :_-E:
appended at the end of the last stage as the output switches (Figure 3) and is Eg;.g
denoted S,. A switch jJE€S; is connected to switches C;(7,t;)€S;,,, for .\‘:;f
0<:i1<n-1,0<j3<N-1 and t; =0 or t; =1. When using destination E?":“"
tags, switch 3 €S; routes a message to switch C;(7,d;)€S;,,; where d; is the i-th 'E;
bit of the address of the message destination. :é:"

AN

The IADM network is composed of n stages labeled from 0 to n—1. Each ::E:
stage consists of a column of /V switches and 3N connection links. An extra ;‘
column of switches is appended at the end of the last stage as the output ..::;
switches and is denoted S,. A switch jES, is connected to switches E.S'..:f-
C,(7,4,)€S;,, and C,(j,,)ES;,, for 0 <1 <n—1,0< j < N—I,and ¢, =0 or '::_;E‘
t, = 1. In other words, threc links connect a switch yCS, to the switches (]'-—2‘), : '

o

RSN

RO

v

e

T R T A N T R R N R

W W W

- S A

Y da 6a% Catal el AN

J and (j+2i) at stage i+1. Sometimes +2' and —2* are used to represent links
(F€S; , (j4+2')€S;41) and (JES; , (—2')ES.,,), respectively. The terms a
straight link refers to link (JES; , j€S;,,) and a nonstraight link refers to links
+2°.

According to the model, two types of switches, even; and odd,, are required
in the IADM and ICube networks. Figure 4 illustrates the connection links of a
pair of even; and odd; switches for an ICube and an JADM network of size
N=8. The AC; function describes the ICube connections. For the IJADM net-
work, the connection links can be described by the union of the functions AC;
and Aé_',-. In practice, even; and odd; switches can be identical and easily pro-
grammed (at power-up or system configuration time) to behave differently.

There are two possible routing behaviors (or states) for each switch in an
IADM network. A switch is said to be in state C if the routing is decided in
accordance with the function C;(7,t;) and it is in the state C if the function
(Z(j,ti) applies. On the whole,‘the link on which a message is routed depends
on whether the switch is an even; or odd; switch, in state C or C, and the
value of tag bit ;. Also the term state of the network is used to denote collec-

tively the states of all switches in the network.

The notion of switch state is only conceptual; it can be implemented by
designing the switches with actual logic states as well as by using tags with n
added bits specifying the states of the switches on the routing path. In Section
4, these and other aspects of the actual implementation of the proposed

schemes are discussed in detail.

)t~ [LR RN S} A N R G L B R el P R ML . T
B e P e P T P e L S e
S N A R e A A A A i e o e A A N A P AN I A AL A RN

s
aa @

"
'}"J‘

o
s

“y v 7w

v

v,
LAY
‘I

v
CHS NS
L]

A

B v5 l.' .1 l‘

Ry
P
%

i
¥

7’71
[I

QLA

%

o

4

‘I
P4
"M

’

<

'h

,__
UNTNN
AR

.

7
“f'_ X

s

N
hrA ek

-

-

NN

Lyl

-
»

&v‘
X

oo

RN

5

Ry

.

P4
* g

“"c""‘ S8 tat MeY L) 0, .'I"(l‘l ‘. ".'. .'l‘ h v ") " 'Y ¥ * - - ., L] A g S Galh. - e ol

2

f 1
i o
»
- 10 - ;‘-..'
e,
3. Theory behind the State-Based Destination Tag Routing Schemes 2“
’
Based on the framework developed in Section 2, routing problems in the .
IADM network are now examined. [t is clear that when every switch in the §
IADM network is in state C', the JADM network behaves like an 1Cube network .5:
and, therefore, the destination address dy/,.; can be used as a routing tag, i.e. N
t; = d;. More generally, the following theorem can be proven. ?;
Theorem 3.1 Let d = dg;,_; be the destination in the IADM network to which 5"
Ny a message is to be sent. Then t = dO/n—~l is the unique cCestination routing tag :
Wy to the destination d regardless of state of the IADM network. t
| ’ Proof: Consider an arbitrary tag fg/,_; 2nd assume that the IADM network is :\3
E" in an arbitrary state. Let ty/,_; = fq/n-1- Then each switch will route the E;
?:‘ incoming message to either C;(7,f;) or (7,-(]',]‘). From Lemma 2.1, it can be :E:“:‘.
, reasoned by induction that, at stage ¢, (C;(7,fi))osi = ((_J_i(j,fi))o/,» = foss at 5-
.:: the last stage, C,_((7,fpn-1) = an—l(j’fn—l) = fo/m-1- Thus the address of E-f‘
::’ the destination of the message is the same as the routing tag. This proves both .n.
N
: the validity and the uniqueness of do/n-1 as a routing tag. 0O ;.:
:; It is implicit in the reasoning underlying Theorem 3.1 that any link on a :‘:
'2 given path results from the appropriate choice of the state of the corresponding ':
‘_ : switch, i.e. the use of "link"” AC;(7,t,) results from setting jE€S; to state ¢ and !
- i
:-;E the use of "link” AC,(J,t;) results from setting jES; Lo state C. Thus, given a ih
_"\ path to the destination d, there is at least one network state for which the use :'
'.:: of d as the destination tag results in the routing of a message through that !
path. 5;:
- W
: The implication of Theorem 3.1 is that the use of a state model for the t‘
[IADM network reduces the problem of finding alternate routing paths to that of .,..
51'3 A
A -
% ; :
¢ K
e
B A A T e e L I N A e L I RS

ORARND Can-taB bl gl ol Vot Od 0.t tah] UB 0 Gt Bet 80 S0 WU UW LY W LY

11 -

controlling the states of the switches in the network. Capitalizing on this idea,
the following theorems show how alternate routing paths can be found in order
to evade blockages in the network. A straight link blockage occurs if a straight
link on the routing path is faulty or busy. A nonstraight link blockage is defined
analogously. The third type of blockage, called double nonstraight link blockage,
occurs if both nonstraight output links of a switch in the routing path are
faulty or busy. A surtch blockage occurs if the switch itself is busy or faulty. A
switch blockage has the same effect as blocking all of the switch’s input links
and can be transformed into a link blockages problem accordingly. The discus-

sion on rerouting in this paper is concerned only with link blockages.

Theorem 3.2 In the IADM network, a change of the state of switch jES; results
in a different routing path to a destination d if and only if a nonstraight output
link of 7 is used on the original routing path to d. Moreover, the other non-
straight output link of 7 is used on the new path.

Proof: Changing the state of j implies that the "link" AC;(j,t;) is used instead
of AC;(j,t;) or vice versa. However, if AC;(7,t;) =0 then AC_'i(j,t,-) =0 (ie.

both use a straight link) and vice versa. O

With regard to the rerouting schemes proposed in this paper, the implica-
tions of Theorem 3.2 are twofold. First, the "if" part of the theorem implies
that dynamic rerouting for a nonstraight link blockage can be achieved by
changing the state of the switch whose output is the nonstraight link, which is
equivalent to rerouting the message through the oppositely signed nonstraight
link connected to the same switch. Thus, the same subset of destinations is
reachable from the two switches whose input links are the two oppositely signed
nonstraight links. Second, the "only if" part of the theorem implies that

dynamic rerouting for a straight link blockage is impossible. This is true in

............... ey A e g e e v
P e e T e e e TR e TR e TR AT e -1‘\1'_._‘._1'.. -1'\-._-\ A A T I T AT T AT NN
RN TS Rt A N R SRS Y RGN RIRG b NN NN
N N A SR AR AR RS ARG ARG RN

Lae
™
A

QuisiiitaehpiaaiA R Sul A A N Y

\Q;\.:;\:_\:;'\"\

e x®
Ry

ale, 1 & -
P

L4
fad

v Wl .".‘
[-," [alal Ay

=Y
SN

. Vet vaB Yab. - 2da- A o a Attt bR X " Ty
FOV R A Y MY W W P A ke s, Bal Sal ot 09" et et ie) i a e ath g0t guh gt Rata’d C d 2t O >l St . NN

PAYSYN
SN

S8

-12 -

=y

>
P

7,
&
"(

L

general since every routing path in the IADM network can be the result of set-
ting the network to some state. Moreover, if a path from stage i to stage 1 ; ,.i
consists of all straight links connecting j€S; and j€S,,,, ; < i <i', then there N

exist no alternate routing paths from jES; to jES; for otherwise there would .

exist an alternate routing path branching from j€S; and ending at the destina- -

})\~
.'\

tion. The only resort, if any at all, to bypass the straight link blockage is to

b

RO F 7 EEE Y WY R BV R B R, i T v ®
x_®
Sl
Py

oy &

Ry

LY

P,

backtrack to a switch connected to a nonstraight link on the routing path at
some preceding stage and to reroute from that switch. It remains to show that \.
an alternate routing path always exists, provided that such a nonstraight link gs.’.
K exists. In fact, the existence of an alternate routing path partly results from j,::,,
Theorem 3.2, as stated in the next theorem. Figure 5 illustrates the situation in Py

; Theorem 3.3. ROLNy

Theorem 3.3 Consider a routing path in the IADM network to a destination d S
that contains a blocked straight link at stage 1. There exists at least one net- o~
work state which results in an alternate routing path that avoids the same AV,
straight link blockage at stage ¢ if and only if the original routing path to d thd

contains a nonstraight link at stage 1 —k for some k, ¢+ > k > 0.

e a2
»

el
A“A' R

Proof: See Appendix Al1. O

P4
Py

»

Previous work [7](9]{13] implies only the "if" part of the theorem, i.c. the

'I
N N

}
e

possibility of using nonstraight link of opposite sign in order to reroute a mes- o
o

sage in the case of a nonstraight link failure. However, the "only if" part of the .
",

L S)

v
s

theorem also implies that, in addition, it is not possible to devise a new rerout-

o)
]

ing scheme capable of avoiding a backtracking (or look-ahead) mechanism in

1.8 x
A

P ‘t\'\\»

TN

(4
45N

order to deal with straight link blockages.

O S g8 SV o8 N 4
1 4
b4

hd

From Theorem 3.2, (for a given source/destination pair) if the straight out-

A

7/
14 l,;,{{.

put link of a switch is on some routing path, both nonstraight output links of

D T T P .

~
»

1

LT e O P AP P N T G O P PO I A AL AT I AP
V’- % 2% _r-w_f'\-\.-‘u :'x‘.;. x*\,: .-':}w*:. SN Y

.
»

e '-"."J‘_Q!"-"'-"'—-P'f o A ATy
A A T T

W y AN
RO o Gl L h#&':ﬂ\f A

.-

- 13-

the switch cannot be used for routing; if one of the nonstraight output links of
a switch is on some routing path, the other nonstraight link of the switch is also
on another routing path and the straight link of the switch cannot be used for
routing. So for a given switch, the output link blockages that affect paths from

a given source to a given destination can only be (a) a nonstraight link block-

age, (b) a straight link blockage or (c) the double nonstraight link blockage.? :j:':
NGNS
Theorem 3.2 can be used to avoid case (a) a nonstraight link blockage and :::",:
N

Theorem 3.3, case (b), a straight link blockage. If case (¢) occurs, then Theorem

3.2 cannot be used to find a rerouting path. A backtracking scheme proposed
later in Corollary 4.2 based on Theorem 3.3 can be adapted to overcome this
type of blockage. The adapted backtracking scheme is based on Theorem 3.4,

which is illustrated in Figure 6.

Theorem 3.4 Consider a routing path in the IADM network to a destination d
that contains a switch at stage ¢ whose both nonstraight output links are
blocked. There exists at least one network state which results in an alternate
routing path that avoids the same blocked nonstraight links at stage &+ if and
only if the original routing path to d contains a nonstraight link at stage 1 —k

for some k, 1 > k > 0.

%

Proof: See Appendix Al. O

o

[}
t
"

4

Say

>3

»
.

»

SOOIy
’
4
L

wAN

10

4
L4

3Physically it is possible to have any combination of blockages of the output links of a

Y
given switch. However, the possible routing paths for a given source/destination pair \- "-:
can be affected by either a straight link blockage or a double nonstraight link blockage b ':.:'j
in a given awitch but never both types of blockage. :.::,_-r_

o

A N e e 'I-'}\-'-.f\l’\ .ﬁf‘.f—'d.ﬁr*":* 'f V- ‘(‘:"';-‘--.*\".‘:{;’-".-.'..-— --fl:{':(-..,'.‘;" ';' R
N N O K N O TR (YL N A A 'G‘\).;-.-‘)a.-,.“.-'.,' DRSS
R A R A, NI,

2 0l 0.0 1% 08 0,% 050 0at 8.7 0,0 .07 00" Fat Bat S B ta¥. 0 1% 1e® Da® Ba® 027 0,5 Wt 2¥ gt WU WO o, W WU " s

- 14 -

4. State-Based Routing and Rcrouting Schemes

In this section, routing and rerouting schemes are discussed based on the
theory developed in Section 3. As mentioned earlier, the novelty of the ideas in
this paper lies in the state model of the routing behavior of each switch. In pre-
viously proposed approaches, routing is determined solely by tag bits. Accord-
ing to the state model, the switching action of each network element is concep-
tually determined by its relative position (i.e. an even; or odd; switch), its state
(i.e. C or C) and a destination tag bit (i.e. 0 or 1) (Figure 4). This conceptual
separation of routing information makes it possible to devise the simple routing

schemes described in this section.

In the first scheme, each switch is initially set up to behave as an odd, or
even; switch. In addition, each switch can dynamically be set to one of the logi-
cal states C or C. In other words, this scheme corresponds to a direct imple-
mentation of the conceptual view of switch states. Destination tags are used
and, according to Theorem 3.1, the state of the network is transparent to the
sender of the message since it only affects the path of the message and not its
destination. Consequently, rerouting is also transparent in the sense that it
results from a change in the network state. In practice, the implementation can
be such that, for instance, state C' (or 5) is used as the default state for each
switch in the IADM network and the switch regards the other nonstraight link
as a spare link for rerouting; if a nonstraight blockage is detected, then the
switch changes state to C (or C) so that the spare link is used instead. This

scheme is called the Self-Repairing State-Based Destination Tag (SSDT) scheme.

Rerouting is useful not only when one nonstraight link in a switch is faulty
or busy, but also if both nonstraight links are busy. For example, when consid-

ering a packet switching environment, rerouting may be decsirable as a means of

L2 AR S N i Y oS RSN g o o Bl N R o P TP AT SRR VY R SN SN N DR R L R S " L S S R S
S S AT ARG A LR SRS COE U QI Bl WL Tl AN LG R AL S S L
\ LAt _ AN \w'(\-.\‘:\""x AT AN R T A

2t ety
T O
‘t‘\'\""

%

T s ,

h =
ff
Pl

1‘

i

2

x

.

& A

[y

s

»
»

X

-
»

f:f;f" '.c"‘fl
???74.
[y,

iy

e,
)

P ITARRE

NN A
‘ "'l’ '-"1 "‘." ?
PP ARy

"{ balancing the message load throughout the network. The scheme proposed here ! :

‘ is well suited for this purpose. Assume that each nonstraight link has an associ- KN
; ated buffer (queue). When both nonstraight links are busy due to message \'\?,_
:' traffic congestion, a switch can choose which nonstraight buffer to assign a mes- 't ,
sage to (i.e. which state to associate with that queued message), based on the :-_\. .0.":

number of messages present in the buffers in order to evenly distribute the mes- e

. sage load to the nonstraight links. f::f.:_
‘ The proposed SSDT scheme has the advantages that it uses simple n-bit -;‘:'
\ destination tags and is capable of rerouting messages when blockages occur in ":‘iz.i'.:
nonstraight links. In addition, rerouting of a message is transparent to its ?:

sender since the path of the message is determined by the state of the network. ;"'):“'

For a given destination tag, the routing behavior of each switch on a possible E‘&:

i path is determined by the state of the switch, i.e. the SSDT scheme is fully dis- ES?E
: tributed and rerouting is done dynamically. Each switch requires a negligible ;:?
amount of extra hardware for the detection of blocked links and the representa- ::E;_. ‘

tion of two possible states. :-_E:ég

The second scheme is called the Two-Bit State-Based Destination Tag hﬁ;’

(TSDT) scheme and it uses 2n-bit routing tags, which specify both the destina- .'-EEE

) tion of the message and the states of switches on the corresponding path. The EEEE
TSDT scheme has the advantage that rerouting is possible when blockages tf:'..

occur for straight as well as nonstraight links. ;:'::l
As with the first scheme, the TSDT scheme assumes that each switch is ",:EE}
appropriately initialized to behave as an odd; or even; switch. Each "digit" of ‘*.

the routing tag is represented by two bits b, ., and b,, called the state bit and :Nfg-_:
the destination bit, respectively. For this scheme, the state of a switch of stage aiz\':;

1+ is specified by b,,, : if b, ., =0, the switch is in state C and if b, ;=1 , the f‘:\
Had

S

A

LGN

@
At
N A e g e AT g e A

&

o PN 'i KA, L A, sk 0 A iy '1",‘4‘,‘
2 AV A S e R ‘f‘
I "l' LS IR AL 4 oy ey, % v NN, 8 . W LW " : * 'y % ; R\ L% NN

e 2a s o

- 16 -

switch is in state C. For all 1, 0<i <n-1, b, =d;. In general, if ; is an
even; switch, b;b,,,=00 and b;b, ;=01 direct the message through a straight
link, b;b,,;=10 through link +2' and bibn ;=11 through link —2'; if j is an
odd; switch, b;b, ;=10 and b;b, ,,=11 directs the message through a straight
link, b;b,,;=01 through link +2' and b;b,,,=00 through link —2‘. In general,
given a switch, the destination bit specifies use of a straight link or a non-
straight link while the state bit determines the choice of the positive or the
negative link (if the chosen link is a nonstraight link). Since state information
is carried by the routing tag, switches are not required to determine and
remember their own states, i.e. the design of the switches does not need to

implement the logic states C and C.

From Theorem 3.2, a nonstraight link blockage at stage 1 can be bypassed
conveniently by complementing the i-th state bit while the destination bits
remain unchanged. For convenience of reference, this is restated in terms of the

TSDT scheme as Corollary 4.1 below.

Corollary 4.1 Let b, /5,_; and bln/z,hl be the state bits of the routing tag and
the rerouting tag, respectively, for the IADM network. In order to bypass a
nonstraight link blockage at stage ¢, state bit b, ,; needs to be changed to l;_n+,-.
That is, b'n/2n—l = bn/n+i-1b—n+ibn+i+1/2n 1 0

Figure 7 illustrates an example of routing from s =1tod =0 in an IADM
network of size N = 8. Let by/; = 000000 be the routing tag and b(')/s and b(','/s
denote the rerouting tags. The original tag bg/; = 000000 specifies the path
(1€S,, 0ES,, 0€S,,0€S;). If (1€S,, 0€S,) is blocked, the rerouting tag
boss = 000100 is obtained by complementing by, and link (1€S,, 2€S) is used
for rerouting. This tag specifies the path (1€S,, 2€S,, 0€S,, 0€S,;). If

(2€S,, 0€S,) is also blocked, the rerouting tag b(;’/_r, = 000110 results from

L S -'\

. - A 8

.I.f

1, ", ./

O T T e N T e A RO AR R A R PR 20 2 N A P R i AT U AT AL A A R RS
e e ,._\ AN ‘.':._.';_. WAL S ,\,V'\ PN NN N X

e,
P)
§ 8 &%

T

et

s,

R
[
LS

® !,',,

s

o
-
o

| 4
R
RS

v,
e a4

L

o a8
.'}/‘(

EA A
=
s % 2

%
o v,
- '.

5.

[SR
L % Y
PPN
)ﬂ &

AT
YN S
L

/‘-
A

uJ
U
)
’
L}

A e -

_C_V_ T VN

P T - Ba? Ua® Fa® St 8% 02" fa® a” Na" But 200" 0a", Bat Gath av 0af a¢ at o’ 0" 0a® A 00" 02" Uat ha¢otetoBa’ it e dnt L0eTodexba’ iy aln’ B atst

-17 -

complementing b,, and link (2€S,, 4€S,) is used for rerouting. This tag
specifies the path (1€S, , 2€S, , 4€S, , 0€S,).

As discussed in Section 3, a straight link blockage and a double nonstraight
link blockage cannot be overcome easily; implementing a backtracking (or look-
ahead) mechanism is a must in order to evade these types of blockages. Since
all links in the routing path from stage i—k+1 to stage ¢ consist of only
straight links, backtracking of at least k stages is required to find the switch
from which an alternate routing path branches. That is, at least k£ state bits
need to be considered for change. Due to the similarity between Theorems 3.3
and 3.4, the TSDT schemes for finding the rerouting paths from Theorems 3.3

and 3.4 are exactly the same, which is stated as Corollary 4.2.

Corollary 4.2 Let b, /5, and b'" /2n—1 be the state bits of the routing tag and
the rerouting tag, respectively, for a source/destination pair in the JADM net-
work. Let 1 —k be the largest stage number for + > & > 0 such that a switch at
stage 1—k is connected to a nonstraight link on the routing path. In order to
bypass a straight link blockage or a double nonstraight link blockage at stage 1,
only state bits by _kymaia need to be changed; (i)
b,n/n+(i—l) = bn/,H(‘-_,k)_,J,'_k/,-_l if the nonstraight link at stage 1 —k of the ori-
ginal path is link —2'*, and (ii) b's /(1) = bn/n+(i—k)-18i—k/i—1 if the noD-
straight link at stage i—k of the original path is link +2' *. The state bits

b n1ijan-1 have arbitrary values in both cases.

Proof: See Appendix Al. O

The example in Figure 7 can be used to illustrate the TSDT scheme for (a)
a straight link blockage and (b) a double nonstraight link blockage. (a) Again
the tag bo)5 = 000000 specifies a path (1€S,, 0€S, , 0€S,, 0€S;). If the

straight link (0ES, , 0ES,) is blocked, the rerouting tag can be 000110 which

o _ &S o, " - ' [(" G R A A o o i o ﬁ\r\u’ u’\i'\l ‘\J'.\f~w‘$~ \' “
Sy *\ v L m LS il Sl W S L T R - L N T e S) » Y "
T A B R R A A A AN AR T A

“v,

2

-

S AL
Ay
5 ¢ 240

«

”.

L4

[

Vol e

J'".'/J'/f

RAPIP I oY 4

."ﬁ

A
s :,\,,.'.
v

c‘l.l

v

AL

YN AN

. I‘-’“} ¥
A S >,

)
+

’s

8
LY
- ",*-(‘-5

.;.'

WLNL W U WU W WU AN VA S XA M Y W™ VY AT OV T T Y WL WL L Y)

- 18 - !

specifies path (1€8, , 2€S, , 4€S, , 0€S,) by having

b;wbéﬂb;” =d_0¢Ilb3+2 = 110. Since state bits b;+lb;+2 can be arbitrary,

000100, for example, is also a valid rerouting tag; it specifies path E:
(1€S, , 2€S, , 0ES, , 0€S3). (b) Let the tag by/5 = 000110 specifies a path ,'
(1€S, , 2€8, , 4€S, , 0€S;). If both nonstraight output links of 4€S, are T
blocked, the rerouting tag blo/s can be 000100 which specifies path :é?
(1€S, , 2€S, , 0ES, , 0CS,) by having b'3,0b 34103412 = bs,od dy. Since state ﬁ,
bits b;+2 can be arbitrary, 000101 is also a valid rerouting tag which also v
specifies the same path. ;'%
y
The rerouting path computed from Corollary 4.2 is blockage-free from ';:'2!
stage 0 to stage :. While the rerouting path is different from the original rout- Ei\;
ing path from stage ¢+ —k to stage i, the routing path from stage 0 to 1—k—1 EE;E
remains the same. This results from the fact that backtracking always ;'.::
proceeds backward along the original path until it stops at stage 1 —k, and the :.:E._
rerouting path only changes course from stage 1 —k onwards. Although state %3'::
bits b, ,;/2,_; remain unchanged, the routing path from stage i to n—1 may NG
still be altered due to the changes from stage 1—k to 1. For example, in Figure :.E::;
5, the switch on the original routing path at stage 141 is j€S,,, whereas the Eggg
switch on the rerouting path at stage :+4+1 may be (j+2”l)€SHl, which may :bi\
further induce changes at higher-order stages. 'E'?.
Ay
In the TSDT scheme, the tag can be computed by the message sender E
which is assumed to know the location of faulty links and switches in the net- ‘_IO’
work. Thus, rerouting is transparent to the switches in the sense that the tag {é;;
computed by the sender of the message simply avoids the usage of faulty links :‘}: ;
and switches. Therefore switches do not require any extra hardware for rerout- :'..*
ing purposes. An alternative is to implement dynamic rcrouting for the TSDT :;sr-
ey

5

A
Y
P S - B . e a e s o et e e e te et e et el et e e e et e .
% .'4’&"‘-""‘:' ’“:':f "":(\'N J::,‘d RN :v'é'-f\"'."-‘.:’\" "'."".‘.‘."."'.':"\'- N T e L -"’-\"—. W
A A o R A AT AR LN NI NN O N NN RN N N N N N N NIRNNR I N NN

RN O LA T l‘l‘l.._l‘l'l."' B 00", 04% $at. o gat $at §40 ja? Jat N R W v gL N Aga il f . Al Bt 'Rl A"

J.\'\

[]

-19 - %?:«g

scheme. Since backtracking is indispensable for avoiding a straight link block- E::::J'
age, it is required that each switch can detect the inaccessibility of any output ey
port (connected to a switch at the next stage) and signal the presence of the :‘::r'
blockage back to the switches of previous stages [10][12]. Whether rerouting is :"_'\:\'_
done by the sender or dynamically is an implementation decision which depends Sl
on how many stages of backtracking are allowed. When the sender computes :'_'--_::;:_‘_
the tag, it must be able to identify and track the switches and links on the N\:}
corresponding routing and rerouting paths (the next paragraphs explain how - .
this is done). If any of the switches or links in the path is known to the sender ':":'.‘::‘i'.
as being faulty, then the sender computes another tag by changing the state "‘
bits as described in Section 5. f~%
v

Locating the switches on the routing path is straightforward. For a given ‘.,,_é\
source s and a destination d, the initial routing path can be specified by setting E&i’:

state bits b, 9n_y = 0,2, (a string of n 0’s), equivalent to setting every »-._.-.‘
switch in the JADM network to state C. Then every switch on the original },E;é-.::;
path has label dg/;_;5;/,1€S;, 0 <t < n—1, since now the IADM network .;‘;,)';:
functions like an ICube network [6}[15]. ~ '\.:
To find the switches on the rerouting path, let jES; be the switch whose '.\
output link is blocked. First consider the case where the blocked link is a non- . _‘
straight link. It may be an (a) positive or (b) negative link. In case (a) the :,:'%_:
switch at stage i+l reached by the positive link is (5+2')€S,,, and, from EEE:::

(
Corollary 4.1, rerouting can done through switch (j—2')E€S;,,. In case (b) the

switch at stage t1+1 reached by the negative link is]'~2‘)€S,~+, and, from

(
Corollary 4.1, rerouting can done through switch (j+2')€S,,,. Let the switch

at stage 1+1 on the rerouting path be wg/,_;. The state bits b, (41)/m-)

remain intact (equal to 0's) because it corresponds to having every switch from :-'_‘_ !
o

......

AR

B A
% X
i A

y [4

U ¢ 9 4"
y - 20 - 3
o)
" stage :+1 to n—1 remain in state C so that the IADM network from stage 141 -4

to n—1 can emulate the ICube network from stage 141 to n—1. TVus, the bits

I, i+1 <1 < n-—1, of the label of a switch on the rerouting path are wy;, .

From Lemma 2.1, bits 0 to [—1, 1 <1 {141, of the label of a switeh on a path

to destination dg;,.; must be dg/ . Hence the switeh on the rerouting patn

from stage 1+1 to n—1 has label dg,y ywy,, 0 bL 0 n-L N

Next consider the case where the hlockage of jE&, is a straight link block-

age or a double nonstraight link blockage so that backtracking is necessary.

aw
v o)
P " s . . L0 ¢
) There are two sub-cases for each type of blockage: (i) the nonstraight link x;
» A
o
o’ Gy e, .. . ey
: found in backtracking is a negative link and (i) it is a positive link. Here only N
i] sub-case (i) of the straight link blockage is considered; the other cases can be z
) . ¥
’ cr e . ,) . e)
, dealt with similarly. From the proof of Corollary 1.2 {case (i) only), the switch N
Y o . - . | 0
oy on the rerouting path is (7+2°)€5,, 1 —k T < ¢. The switeh of stage 241 on w
¢ L
~ the rerouting path is jES,,, if b,., == 0 and ;€S | is an odd, switch or if v
. w ‘v
-' ! . ~ . . . - B — . ! .
N b,,, =1 and JES, .| is an even, switch, and is (y42° ‘)g—.s, g ifb, ., =0 and :::
A’ Y
Vol -
r e . p oy Ve . - v
JES,,, is an even, switch or if b,,, == 1 and JE€S,,, s an odd, switch, The Iy
»
) . . . g e
;:. identification of switches on the rerouting path frony stase ¢ 41 to 1 is done Y
G -
i.-:' \':
I as in the case of a nonstraight link blockage described above. o
N \f
~. .\:
' The blocked link can be represented by the two <witehes joined by the link. .‘
- Since every switch on the original routing path and the rerouting paths ean be
. easily identified as described above, it can be readily determined whether or not -
the blocked link is on the current path. !
g -
b7 , . . . 29
"vf;: In summary, for both SDT schemes, the binary representation of the desti- N
X \'.
- -
:: nation address can be used directly as the routing tag. Tu the SSDT scheme, N4
N
L% N
- rerouting tags are not needed and in the TSDT scheme, reronting tags result »
» v\
) from simple bit complementing operations. In terme of complexity of the N
» "] V\
o >
[~ };
. Ya
"‘..' 21-
A =
‘ . . BN .r\:-
Cal -I':. -I'\':-

- 21 -

computation for a rerouting tag, the SSDT scheme and the TSDT scheme for
one instance of nonstraight link blockage require timeXspace complexity O(1);
an improvement over previous proposed schemes [9] dealing with rerouting for a
nonstraight link blockage that require timeXspace complexity O(logN). In [10]
a single-stage look-ahead scheme for rerouting of a straight link blockage was
proposed; it requires use of two’s complement to compute the positive and nega-
tive dominant tags so that the scheme has timeXspace complexity of O(log/V).
Note that the single-stage look-ahead rerouting scheme is valid only for some
cases of the straight link blockage; it cannot be applied to any case of the
straight link blockage. From Corollary 4.2, k-stage backtracking is needed for
a straight link blockage and k bits of the state bits needs to be changed; thus
the complexity of the TSDT scheme for a nonstraight link is O(k). If only
single-stage backtracking (corresponds to single-stage look-ahead) is necessary,
rerouting can be done dynamically and the complexity is O(1), an improvement

over the scheme in [10].

5. A Universal Rerouting Algorithm for Multiple Blockages

The TSDT scheme can be applied to not only one instance of some block-
age, but also can be applied repetitively each time a new blockage is encoun-
tered as the message propagates along. This section considers the derivation of
an algorithm to deal with any case of multiple blockages. The backtracking
schemes proposed in Corollary 4.2 find a rerouting path for a straight link
blockage and a double nonstraight link blockage. Nevertheless, it is possible
that blockages also exist on the rerouting path; then further backtracking to a
lower-order stage is needed. Since this phenomenon can recur, repeated back-

tracking may be necessary due to blockages on the rerouting paths. The

ST, b

Pl I A 2 P 3P e O L P
oful o , vy @

.'17."’.'. ® -\}\.b{lf-fﬁ ;

."',;..S:y "y "y af
YAAYR
£

[
W

(,(N !:\";\-';.
:'“a‘_.- X
PR

o,

L]

s
[

e o

LY
AR

CR R A}
‘v‘-'hl I".

S
D,

N,

13
LY

% % Y .
e :;_a v
£ Jate

~
[d
»

L]
- ¢
‘

LG RN

AT O RN e TRy 40t B2 it At 20,44 BAA'4 274 2" a's

-992 .

algorithm BACKTRACK described next performs iterated backtracking to find
an alternate routing path. It underlies a universal rerouting algorithm (called
REROUTE) to be shown later that can find a routing path, if there exists any,

to bypass multiple blockages in the network.

The inputs to algorithm BACKTRACK are the current routing path P, the
stage number z where a blockage occurs, and state bits b'”/‘:ﬂ,l representing
path P. The algorithm returns updated values of the state bits b'n/zn,,1 which
specify a rerouting path that is blockage-free from stage 0 to stage 7 if such a
rerouting path exists, or returns FAIL if the blockages on the current routing
path and the rerouting paths eliminate the possibility of communication
between the source and the destination. It is assumed that the blockage on the
original routing path at stage i is a straight link blockage or a double non-
straight link blockage and JES, is the switch whose output links are the
blocked links. Informal explanations for the algorithm will be given following

the algorithm and the correctress proof of this algorithm can be found in

Appendix A2.

Algorithm BACKTRACK (and REROUTE) presumes existence of the
knowledge of all blockages in the network. The network controller is responsi-
ble for collecting this information and maintaining a global map of blockages,
which is accessible to every sender of the messages in order to compute a path
to avoid the blockages. In addition, since it may take several iterations before a
blockage-free path can be found or it can be concluded that no blockage-free
paths exist, the sender of the message needs to maintain and update the loca-

tions of switches on the rerouting path in each iteration.

Algorithm BACKTRACK (P, 7, b, 2, 1)

LITSLIF RNEINENY

LA RS R AT AE ARSI AR R A O
AT T AT -7
P A N J-' R ST At e N N AT

T
5
A

1

R
- r, 2 1
L

i'?ﬁ

PEIELPLE

oLl fl,’q.’l.’t.-’l,-. (Y
X U YA,
‘-Atl.l, 'y V& ’}

v

b

I EL L
i

y
.'
‘

]
-
i@
A

S

.
Pl
e

‘."'r '.- "l‘ et
\:t ‘v}‘i A Y
N

F]

5
[P)
"."‘1.
a 4

v d

‘
“

2
A
£

o,
8

PR R
L)

£ v f.'.‘"":'
ECRXXAN T X

ML Tl N At] 2

PN FAAAS .

P e S

~

Y80 0.8 8.8 Paf V.2 Pag ¥ g Vol Sed v Sak gl i § % AVa 4 ¥y P

4a:

4b:

-923.

g = stage number where a blockage occur.

g + 1.

P= the current routing path.

Backtrack on path P from stage ¢ to find a nonstraight link. If no non-

straight link exists at any preceding stage, return(FAIL); otherwise assign

to r the stage number where the first nonstraight output link is found.

If the nonstraight link at stage r on the routing path is +2", assign flag

linkfound value 0; if it is —2", assign linkfound value 1.

If linkfound =0, b'y/pn_1 = b'n/nir 18y /g 10 'n1q/zm—; if linkfound =1,
b,n/‘.’.n—l — b'n/n+r—l‘z/q—lb’n+q/2n~l'

This step applies only when the blockage at stage ¢ on path P is a straight
link blockage.

If linkfound = 0, set b'n+q =d; if ((-2%)es, , (]’—2q+l)€Sq+1) is blocked,

change bl,Hq to d—q; furthermore, if ((j—2)€S, , J€S,,,) is also blocked,

return(FAIL). If linkfound = 1, set bniq = dg; if
((j+29)€S, , (j+2q+l)€SqH) is blocked, change b',Hq to d,; furthermore, if

((]-+20)65q ' JES,, 1) is also blocked, return(FAIL).

This step applies only when the blockage at stage ¢ on path P is a double
nonstraight link blockage.
It ((j—29)€S, , (1—29)€S,,,) is blocked for linkfound =0, or

((7+29)€S, , (7+27)€S, ;1) is blocked for linkfound = 1, return(FAIL).

Let é denotes the part of the rerouting path (specified by the tag in step
3) from stage r +1 to g from step 3.
If linkfound = 0, 0 =

((]‘—2'”)68”1 ’ y (J'_‘Zqil)esq -1 (J.—zq)Esq); if hnkfound =1,

......

-

N

rss
it &

2
[

.2
)

)
"?

~»
2
g

L4

o'y
"’
‘

W

. *
»

- .". '., ". ”]
WONL ST NS
L -."

X

& A v . x |2
X 5

=

P A,
o .-é' ;

Y

5

¥,
)
1

Ps!
2o

Ly

9

o
L %

1- .’l

o"_ []

'.‘t) o

1
v

A

o

-

’ «

oo

A e g

S
A
[

@~
.

oy
~’:’${‘-
s’ P

L] .{
b J

h
“;'.-'5

;

4
55
7,4

-~

o

&4

¥

v 0¥ Sat gat 0.0
e .

.

. s . e] P . -
el o040 2R R AN % ety 2% WUw W i v R S La i\ 0 ' 0'4 0"t

- 24 -

Q = ((7+2™MES, 4y, -, (7429 7NES, _y , (74+29)€S,).
If a blockage occurs on path é, return(FAIL).

6: If hinkfound =0 and ((j—2")€ES, , (7—2"*HES,,.) is blocked, or if link-
found =1 and ((7427)€S, , (i+2""1ES, ,,) is blocked, go to step 7; else

return(b , 5, 1)-

~3

J— g2, g .
8: Backtrack on path P from stage ¢ to find a nonstraight link. If no non-
straight link exists at any preceding stage, returu(I'AIL); otherwise assign

to r the stage number where the first nonstraight output iink is found.

9: If linkfound =0 and the nonstraight link at stage r is --2", or if link

found =1 and the nonstraight link at stage r is +27, return(FAIL).

'

10: If linkfound =0, b9 1 = b'njn ey 14,410 it fmkfound = 1,

r/qg-10nig/n b

b n/2n—1 — b n/n #r*'ldf/q—lb n+q/2n~l' GO to SLCP “b.

Step 0 is the initialization step. From Theorems 3.3 and 3.4, an alternate
path exists for avoiding a straight link blockage or a double nonstraight link
blockage if and only if there exists a nonstraight link at some stage preceding
stage 7; step 1 of the algorithm searches backward for such a nonstraight link.
If not found, it results in premature termination of the algorithm, reflecting the
fact that no alternate paths for rerouting exist. Step 2 is used to differentiate
the cases when the nonstraight link at stage r found in the first backtracking is
a positive link and when it is a negative link; flag linkfound is assigned 0 for
the former and 1 for the latter. If a nonstraight link exists at some stage
preceding the blockages, in step 3, Corollary 4.2 is applied to find vhe stage bits
specifying the rerouting path; cases (i) and (ii) in Corollary 4.2 correspond to

hinkfound = 1 and linkfound = 0, respectively, and ¢ and r correspond to 1

' o
%

-
Yrrre

] LA
Sl PR 2
N Ny 53'

Ay

k]
P

Ay

1)
A
trl

ripte?

N

2aet L
NN Ay

'-W ""I.I ‘I
1.:».':\ RSN
%

fa

‘sd
(N
(.', M

-

Pt
;'.l‘:l
oo)

Y
. &

5
P
'\‘k‘

%Y
£

g . s
AL UL T 4
A
WSVe
.

AR R IR |
el
Fd

A4
b AN

o
sCns® 5,
28 " gt

el o -

-
......

- 95 -

and 1 —k, respectively.

Steps 4a and 4b deal with the link blockage at stage ¢ on the rerouting
path computed in step 3. If the blockage of a switch at stage ¢ on path P is a
straight link, the possible rerouting links at stage ¢ are two nonstraight links.
In step 4a the default link is negative link if line found = 0 and a positive link if
hinkfound = 1. If the default link is blocked, step 4a attempts to reroute the
message through the other nonstraight link. If both nonstraight links are
blocked, there exist no blockage-free paths. Step 4b applies if the blockage of a
switch at stage ¢ on path P is a double nonstraight link blockage. The rerout-

ing path must use a straight link at stage ¢. If it is also blocked, no blockage-

free path exists.

Step 5 checks blockages from stage r+1 to stage ¢—1 on the rerouting
path; if any blockage falls on QA, there exists no blockage-free path. In step 6,
if the blockage falls in the link of stage r on the rerouting path, further back-
tracking is necessary. Otherwise (no blockages on the rerouting path), the algo-
rithm terminates with the state bits specifying the rerouting path. Step 7
updates the stage number ¢ and the switch label 7 where a blockage on the
rerouting path occurs, initiating a new iteration of backtracking. Step 8 is the
same as step 1, searching backward at lower-order stages again for a non-
straight link. Step 9 of the algorithm dictates that if the encountered non-
straight link in the first iteration of backtracking is a positive (or negative) link,
the nonstraight link found in each subsequent iteration of backtracking must be
also a positive (or negative) link; otherwise no blockage-free paths exist. If the
condition in step 9 is satisfied, step 10, which is the same as step 3, computes a
rerouting path. After the rerouting path is found, the algorithm returns to step

4b, to check for further blockages on the rerouting path.

T AR R A R T L) FRRLTLE R R A 4 _-\'- MU IR \-‘. IR IR e - .
AT e AT T e - NN NN NN AP SARE ~
“~ \-"\ -~ ..f_.-l'\- Ny _.',-'\. ,‘-I'\- \'{'\ ' ‘{.‘u \-\ S A Y .\- \f o . ."“ \ *

O
52

.‘l
’

71;";’1. l.';l: l"_l,

r
A

._
NN
.

LA

«

P I
Por oL bl
Pl ~L

oK
i

.‘..ﬁ.l “

’

A
1..‘:.

’?’l
[]
XA

e
" l'f"’
Py

'('.'

”

l‘ l;l. '.
rig

o
cave
PR

4

.-1 '.'.'
" a_»
MO A
A

e SRR
P
‘. ‘b".’

"'\“'Ill'l

AL

Pa
P

-(.

-
-}'\-

3

BN

CACS 4
~ *\ ¥ -t‘\)‘

- 26 -

For each source/destination pair, a link on some routing path for the
source/destination pair is called a participating link. As a direct resuit of
Theorem 3.2, the set of participating output links of a switch is composed of
either its straight output link or both of its nonstraight output links., but never
all of them. So the output link blockages of a switch, for a given
source/destination pair, can only be a straight link blockage, a nonstraight iink
blockage, or a double nonstraight link blockage. Algorithm BACKTRACK
deals with the first and third kind of blockages, and the sccond kind of block-
age can be overcome by applving Coroliary 4.1. Algorithin BACKTRACK and
Corollary 4.1 can be used to form a universal aleorithin capable of rerouting
messages when multiple blockages exist in the IADM network. This algorithn.
called REROUTE, returns state bits b,n/'._’n | specifving a blockage-free rorout-
ing path if one exists, or returns FALL otherwise.

Algorithm BERQUTE (P, b, /2 1)
0: P= the original routing path.
bn /2n 1= the routing tag specifying the original routing path.

bln/znhl——— the rerouting tag specifying the rerouting path.

b n/2n-1 ¢ bn/2n-l‘

1: Let 7 be the smallest stage number such that there exists i blocknwe

stage t on path P. If no blockages ocenr on path P, n-Lurn(b'nl.}n)

2: If the blockage at stage 1 on path P’ is a nonstraight link blockawe wnd th
other nonstraight link is not blocked. apply Corollary 1.1 to find state bits

b’n/gn__l and go to step 1.

'

3 bhjamy — BACKTRACK(P, 7, by,)

L e o B B T e A T L A S T
'\.i-.--. N e T S Fa T NN S S NN B N L R Pl e
~ a*"*’ W *1 S S A \{~~~z “a):W\J_ > f fbf, f\'**\’%ﬁm N

had
ol ol LA

>

h‘f:.l(-“

7 ®

xa

X

')

Ve P
i et
@' .'.l.n‘l'l

f"r‘.r.'v..}-;.
- t"(‘ ey

4
L-'\(

. .
.
.

AT '2 -.’

b
P
v

YA A

> 0

S S g
o P T oLt te]

x
-
v
=

4

’:‘
o
-}

7,
"
27

e

L% g
'-"'if'- hY
Y

SELLS
YLAA S

v @
/. \J"'-'-’-

Pd
Ps

-'-/\
’/ G %\

@

l'! 'L
.

f "." «

oy
A

PN
1]

[

e ..:-.;-.’_s"x';.'.
ALY PO
R AT '\“\-_‘.

.

‘o

. l. (‘ i‘
AR
a a1

P

.I u : |
Lo
2ol

oy
e y
.10
>~

I3

., 1
]

@ = the rerouting path specified by state bits b'n/%_,.

P «— @ and go to step 1.

Step 0 is the initialization step. At the end of each iteration, a blockage-
free path from stage O to stage ¢ is found. Then a new iteration starts and 1 is
given a new value in order to find a path avoiding the blockages at a higher-
order stage. The only terminating conditions for algorithm REROUTE are that
a return of FAIL from step 3 indicating that no blockage-free paths exist and
the return from step 1 indicating a blockage-free path is found. Algorithm
REROUTE is executed iteratively to evade blockages from lower-order to
higher-order stages. The correctness of this algorithm follows from the correct-

ness of algorithm BACKTRACK and Corollary 4.1.

6. Permutation Routing and Cube Subgraphs of the IADM Network

The results discussed so far are a consequence of the existence of spare
nonstraight links in addition to the ICube network embedded in the JADM net-
work. This section pursues this issue further by showing that there exist multi-
ple distinct subgraphs in the IADM network, each called a cube subgraph, that
are isomorphic to the ICube network. Two cube subgraphs are considered to be
distinct if they differ in at least one link. As mentioned in the introduction of
this paper, the cube-type networks have been studied extensively in the litera-
ture and shown to be topologically equivalent. Together with results from these
studies, the knowledge of how to identify cube subgraphs can help the under-
standing of the capabilities of the IADM network and be useful for permutation
routing in the JADM network.

Since cach switch can be in state C or C, there are as many as gN'n

(= NN) network states, although each does not necessarily generate a unique

has ST
. " A
"'r}' . ".'..' vl " o .- \
oY

. 2
7
']

<y

v s,"
Sy
.‘?I,:

ra
S
"v

o
Y

RN $0e® 120 00 Wa¥ (a0 0a% 0g" 1r% Bet lntolaty 0 0a¢ o 0e® Bt Byt Sn’ Satata’ e Sut ia® a0 00" R0 S et et o SE"aBatata e J0n s et Ayt A
N
)
b
()
[X
- 98 -

permutation. Setting a switch to a certain state indicates that one of its non-

Qg e

straight output links can be used for routing (i.e. it is active) while the other

3 cannot. Thus, each network state can be associated with a subgraph of the
: IADM network which contains only the active links. When all switches in the
| IADM network are set to state C', the IADM unetwork functions as an ICube

E‘ network; this network state corresponds a cube subgraph. The constructive

E derivation of a lower bound for the number of cube subgraphs of the TADM net-

'{ work uses the two basic ideas discussed in the next paragraphs.

; Since 42" ! = —2" "V mod N, C, (5,1, 1) = C, (7.t) P.e. the state of

each switch of stage n—1 is irrelevant in the sense that any switch at stage

:‘ n—1 is always connected to the same two switches at stage n. Consequently,

j given any cube subgraph, there exist (2N=l) subgraphs isomorphic to it which
.‘ differ only in their choices of the nonstraight link +2" ' or —2" ! at stage n—1.

Therefore, the total number of distinct cube subgraphs is given by the product
of 2 and the number of distinct subgraphs of the TADM network from stage 0

to stage n—2 that are isomorphic to the same stages in the ICube network.

* WA

E The calculation of the number of subgraphs in the first n—1 stages uses an
N idea similar to that proposed in {5 for reconfiguring the DR network so that it
"y performs as a Generalized Cube network. All switches of the IADM network
-.;; are logically relabeled by adding a constant z, 0 << z < N—1 to the original
'-'; labels, i.e. switch j becomes j == 7 + z. By setting cach switch to be an even,
o or odd; switch according to its new label and having all switches be in state €,
.: a cube subgraph results for each rclabeling. However, of the N possible sub-
~

_‘ graphs, only ?N are distinct as far as the first n - [stages are concerned. This
- result is stated in Theorem 6.1, A graphical interpretation of cube subgraph
’E isomorphism for an IADM network of size N8 is illustrated in Figure 8 In
o)

A,

T A AT T

L ws, o o« RN | - LI BRI R 1 « " - LRI
AN, A SN RS Y RN 2 5% SRR SR A . PRI R A AT A RSN AP I N
", Sotot f\-h.""‘\f'\"'\’-"*. A IR AT AN NN AN i NN

% %N
."H.'w{'

®

e
..(.!,l

L

2

Y

o
& %%

n}-’

P’
e

L4
&

'y

PN
SARAR

‘.
A

.“ -"‘-"’-"‘ -“
‘ .'- .'- "l

:‘ ° |“".l..

TN
.{n {',’5' '.)‘i

®r,

> "a"."1

TR

v
._.'.;'.
2

"~ 7y

< .
P

.
1
'{l [

L4

. 0
(AN

.
1
3
L4

c e
£ 4
’

7’0

'}
13 'l ..
l' l‘ €

l“.)'
‘A5 S

'I".'5 []
e 2 2 A®
SRS

Sy
P R4
5%

Rl
2ot

<

10's

AN

.’
P

« s
.l

b

S
»

2590,

§ LT LTy W LY LW L Y L T T
NP O I I NP

~

L% L % 'a 1% V5

.99 -

Figure 8, each physical switch 7 acts as a logical switch j' = (7+1) mod 8. The
isomorphism to the ICube network can be easily visualized by moving switch 7
to the top of each stage as shown in the figure. Notice that setting some switch
to state C according to its logical label may be equivalent to setting the switch
to state C according its original label. For instance, switch 0€S, (logical label

1) is set to state C in Figure 8.

Theorem 6.1 There exist at least -QNQN distinct cube subgraphs in the IADM

network.

Proof: See Appendix Al. O

In order to reconfigure the IADM network to one of its cube subgraphs,
each switch of stage 1, for 0 <1 < n-2, neceds to know the i-th bit of its logi-
cal label. This can be done by sending the same logical label to every switch in
the same row at system reconfiguration time. Each switch is set as being an
odd; or even; switch by examining the ¢-th bit of the logical label. All switches
operate in state C according to its logical label with the exception of those at

stage n—1 for which different states correspond to different subgraphs.

The results of this section can be used in different ways. One usage is in
characterizing a class of permutations performable by the IADM network. Per-
mutations passable by the ICube network are discussed in [15] and adaptable
from [6]. Thus, the IADM network can perform all of these permutations plus

the same set of permutations with a given z added to both the same source and

destination labels, 0 < z < sz- Another use of the results of this section is

that the IADM network can pass the permutations performable by the ICube
network when the ICube network embedded in the IADM network experiences

nonstraight link failures. This is done by incorporating a reconfiguration

T N T g e o I AL e)
S e N IC AN POy
~ '\"\.SN A ?'\3.‘ e

(gl ATt AT TN
VAN I
.s.o..o.o-

T R T SN

rLY
5,
}:?\r b

,
<

-
b

57

Caty "2{
ELIZE,

v,'_,'::-‘;..-,;{ L o
L%

»,

-

NSNS
4 » LS
.l‘.}‘.' '::.‘::\ (s

A vy S e
;’.w"sj'&fsj-’%(:._._- ; % ®

YAy

s 5" ’,s.:'f: .‘: :.'\(_:{
f .b‘h"- AT

Il
's Y

e

P
y a s
LAy

e
e
AN

v
p;

\".

»

‘.f-
7

.
'\,'

.:":.l-‘ .
P A
’ w.;.;.k w)
7, v

c L
Sy

K,
4

5w m -8
o
77,

%

780!
5
:’\4"{ ®

1
u
‘o
.
',
5
Pl
l'
I'd
-

'y
ly

o,
v

2

ral

T -

e —

- T]

I, ¥

Yoo

Ay

« e w 8 2 2,

b

LY

AT
5

et

N

NN

l. - *
"'\ 3
D

- 30 -

function in the system that reassigns each switch j to (j+z) and reconfiguring
the JADM network to a corresponding cube subgraph which does not include the
faulty nonstraight links. In [21] it is shown that any of the cube-typc networks
can pass the permutations performable by the others by incorporating appropri-
ate reconfiguration functions. By the same token, the IADM network with a
nonstraight link fault can also pass the permutations performable by the cube-

type networks by including these reconfiguration functions in the systern.

7. Concluding Remarks

One of the main contributions of this paper is the identification of destina-
tion tag routing schemes for the IADM network. They are simpler and more
efficient than previously known approaches, thus requiring less complex switches
and reducing message communication delays due to routing overhead. In the
SSDT scheme rerouting can be done when nonstraight lfinks fail and in the
TSDT scheme both the straight and double nonstraight link blockages can be
avoided. As for the SSDT scheme, routing and rerouting are transparent to the
source and only negligible hardware and time are used by each switch for rout-
ing and rerouting purpose. These are considerable advantages over previously
proposed schemes which do not use destination tags and require extra hardware
or delays of O(log/V) complexity instead of O{1). In addition, previous works all
deal only with certain types of blor”™ ... Based on the TSDT scheme, a
universal rerouting algorithm is deri 1, which is capable of avoiding any com-
bination of multiple blockages if therc :xist a blockage-free path and indicating
absence of such a path if there exists none. The rerouting capabilities of the
new schemes can be readily used for fault-tolerance and load balancing pur-

poses since they adequately exploit the redundancy available in the IADM

G A A '\,’ L N Y I R A I I -lf A AT I R R T I T BT e L
~ Ty v - L { AT e AT e fl
T B N N e N R R

3
Lo
Ll

,'.'_,'.', ‘e
S,

[]
Py

LYY,

e P l,‘lf\ l':
e "2 & 0

IR R RN SARE N AR A W WA TWOIR R N * _eat _het * et Ba® U

network.

Another contribution of this paper is the constructive derivation of a lower
bound on the number of cube subgraphs of the IADM network. While it was

previously known that the ICube network is a subgraph of the IADM network,

. . N _— .
this paper shows that there exist at least —2—-2N distinct cube subgraphs. This,

combined with previous multistage cube network studies, can help characterize
some of the permutations performable by the IADM network. As other use of
the subgraph analysis, it is shown how to reconfigure the IADM network under

nonstraight link faults to pass the cube-admissible permutations.

Perhaps the most fundamental contribution of this paper is that of the net-
work state model used for the IADM and the ICube networks. The essence of
this model is in the recognition that the routing action of each switch is concep-
tually dependent on its position in the network (topological information), its
state (functional information), and the destination of the message (routing
information). Topological information is fixed and, when using destination
tags, the same can be said of routing information for a given message destina-
tion. Consequently, the routing path is solely determined by the state of the
network. These basic concepts are applicable to networks other than those con-
sidered in this paper; the state model can help devise new designs, solve routing

problems, and understand relationships among networks.

References

1] D. Agrawal, "Graph Theoretical Analysis and Design of Multistage Inter-

connection Networks," IEEE Trans. Computers, Vol. C-32, No. 7, July 1983,

pp. 637-648.
N e, e A BV m Lty Y . .
NP TR A AT A NS TP PR L L ST
O R R I S B O o WA W i i,)

-

. e v M’ aaat Bt _ha
T W W N T W et Ve uMal T ug

";z,'.'. 5 Y
g ’ 'I _
AR

; .

SRR
s{'&’-
LEETNNS

i0 33

i

!

N A
SN
2
l"

.

fe "

“

-

~

g e V)
LA

.‘r,‘u’ﬁ'
; Y

N

[d

LN
PR
LYY YN

;
4@ .

77

RN
f~r": ,:
7,

U 4
by
7
L5
-

..10,,

e

2]

3]

4]

5]

(6]

7]

8]

9]

10

_— Can - ae Ae AR Y
(AN 04 2 O AL L L U LR A e T B, o B D Al Rl A7 A T N A A N S

- 32.-

K. E. Batcher, "“The Flip Network in STARAN." 1976 Int’l Conf. Farallel

Processing, Aug. 1976, pp. 65-71.

T-Y Feng, "Data Manipulating Functions in Parallel Processors and their
Implementations,” IEEE Trans. Computers, Vol. C-23, No. 3, Mar. 1974,

pp- 309-318.

L. R. Goke and G. J. Lipovski, "Banyan Networks for Partitioning Mul-
tiprocessor Systems,” Ist Ann. Symp. Computcr Architecture, Dec. 1973,

pp. 21-28.

M. Jeng and H. J. Siegel, "A Fault-tolerant Multistage Interconnection Net-
work for Multiprocessor Systems Using Dynamic Redundaney,” 6th Intl
Conf. Distnbuted Computing Systems, May 1986, pp. 70-77.

D. H. Lawrie, "Access and Alignment of Data in an Array Processor,” TELE
Trans. Computers, Vol. C-24, No. 12, Dec. 1975, pp. 1145-1155.

D. Lee and K. Y. Lee, "Control Algorithms for the Augmented Data Mani-

pulator Network,” 1986 Int'l Conf. Parallel Processing, Aug. 1986, pp. 123-
130.

M. Malek and W. W. Myre, "A Description Method of Interconnection Net-
works,”" IEEE Tech. Committee Distrib. Process., Quart. Vol. 1, Feb. 1981,
pp. 1-6.

R. J. McMillen and H. I. Siegel, "Routing Schemes for the Augmented Data
Manipulator Network in an MIMD System,” IKEE Trans. Computers, Vol
C-31, No. 12, Dec. 1982, pp. 1202-1214.

R. J. McMillen and H. J. Siegel, "Performance and Fault Tolerance
Improvements in the Inverse Augmented Data Manipulator Network,” 9th

Ann. Symp. Computer Architecture, Apr. 1982, pp. 63-72.

5%,
%)

5::%{-

&

L

hY

h]
S P o]

Ao
ALY

s

SEN5N YN
Ny

4

.:'
2

i
re

L
Y4

K y
e

L4
«

&

NS
P
X

\r.q
ey “)

ALY
L/

oy,
A

Lg% o o
L/
LRTe

sf‘.f' ,r e
s

AARK

(2

v ed
v, ALY @

)
<

v vV vV ww

e

[11]

[12]

[13]

[14]

15]

16

7]

18]

[19]

20]

- 33 -

R. J. McMillen and H. J. Siegel, "Evaluation of Cube and Data Manipula-
tor Networks," J. Parallel and Distributed Computing, Vol. 2, No. 1, Feb.

1985, pp. 79-107.

K. Padmanabhan and D. H. Lawrie, "A Class of Redundant Path
Multistage Interconnection Networks,” IEEE Trans. Computers, Vol. C-32,

No. 12, Dec. 1983, pp. 1099-1108.
D. S. Parker and C. S. Raghavendra, “The Gamma Network: A Multipro-

cessor Interconnection Network with Redundant Paths,” 9th Ann. Symp.

Computer Architecture, Apr. 1982, pp. 73-80.

D. S. Parker and C. S. Raghavendra, "The Gamma Network," IEFE Trans.

Computers, Vol. C-33, No. 4, Apr. 1984, pp. 367-373.

M. C. Pease, III, "The Indirect Binary n-Cube Microprocessor Array,"

IEEE Trans. Computers, Vol. C-26, No. 5, May 1977, pp. 458-473.

H. J. Siegel, Interconnection Networks for Large-Scale Parallel Processing:
Theory and Case Studies, Lexington Books, D. C. Heath and Company,

Lexington, MA, 1985.

H. J. Siegel and S. D. Smith, "Study of Multistage SIMD Interconnection

Networks," 5th Ann. Symp. Computer Architecture, Apr. 1978, pp. 223-229.

H. J. Siegel and R. J. McMillen, "The Multistage Cube : A Versatile Inter-

connection Network," IEEE Computer, Vol. 14, Dec. 1981, pp. 65-76.

A. Varma and C. S. Raghavendra, "On Permutations Passable by the
Gamma Network," J. Parallel and Distributed Computing, Vol. 3, No. 1, pp.

72-91, Mar. 1986.

C-L. Wu and T-Y. Feng, "On a Class of Multistage Interconnection Net-

works," IEEE Trans. Computers, Vol. C-29, No. 8, Aug. 1980, pp. 694-702.

ff-’f-'l‘:"}
wAl@
I..t"\l'~_ LA

o
A

k

]
“To.
= 2

2,

b

\
P LN

L]
"

by

s

LY

AL TR T S,
» .-:.-.'.-‘.
.‘\.* PR

-
»
[

XX

‘.’ ‘-/ L
"I'-f‘r *y (l/' .
A
_.’l.“'."- '.I s ey

e T
7
‘%

.v".

*
\l
o

~ -
&

‘l‘l"l e "%

L AN L A
ALY NN
L P
AN

5

. P N ..
RIS RS
M ‘e . Lt
- . P

-.' . ‘. "‘_‘ y Wt
e el

CpLre
.'."1,0/
'l"“.“l

-
P

X
Z

~1 =

P h L L gy I ; ', et PN P OO i
el PR SRR R L A e AL VL oy AL
F.....s....-.\.-x_ ‘F\P\#\P\ F\f ‘ ER NN A-.-f..h- [Y .J..—....-I..—-....... @))..-)\»-\.r\\l‘ s @i, .I

"2 o

A ks -
A 7~
1 7z
’ m ”
b b7
. - .
) = =
Z ol
: IS
— P
. < X
s - ~
. -
) b jo
Y4 <
) = S
b .
h = =
] >~ -
» o
’ = g
]
) < .
& 3
: = =i
> '
* ' > -
>
» el et .
™~ B~
. c
v -
=
— o
) K3 N
- Y]
' -~
4 Y
R (=} =
@ =
- Ty
d CTRE
R A d
-~ o
N ! =
p =
, < T
5, (=]
K o w
. o K
~ o
» = .
- . i
- .
' =]
. @] 3
=~
QS

Tror PRI IS TRARIRA ITRTIRRS T Y YAONPRRCLTINC: « SRRRRAY GO P QEARI NSNS, NSNS,

-
P 4
-
s
[
r
.,
)
1
.
[§
r
[§
.
[
.
| 4
[3

-
.

]
-
.~
.
-

e

oy - 35 -

7
LY e

.

Appendix Al

(Y

Proof of Theorem $.9

The “only if" part follows immediately from Theorem 3.2 To prove the "if”

XX

357
N
A LA

‘a0 part, let €S, be the switch whose straight output link is the blocked link on

»
'Il

L

the routing path and 1 -k be the largest stage number for ¢ 22 k - 0 cuch tha:

")

:" a switch at stage 1—k has a nonstraight ovtpnt hink on the routing path, { ,‘

o 7

e Assume that the nonstraight link at <tave @ &k found in backtracking -~ link ‘_.:‘
—2' 7k Clearly, as illustrated i Figure . the pat :

3 !

(F4+275)ES, & (42 " NES, oo (208 0N) B rerontine

[

e

path for path ((7+2' X)ES, & . 7ES, o1 JOS kg ey JOS L0080 I

Assume that the nonstraight link at stage 1 & found in backtrackine 2 link

Qi PP s & e
e

o
< t k . o
~ +2' *: similarly puth -

: Y

N -
~:' N 3 -k ot k v 1 < ot ¢ . R :‘. :
oo ((7—2" 7)es, 4, (h-2 JES, kor e 2NES L ON) is s reronting “

x_ 8 ‘:.‘
{' path for path ((7-2" "JCS, ¢, 765 . - 108 4 FES, LS '®
~, N
N

e Proof of Theorem % e

s oo

v " < pett s . .)

A The “only if" part again follows immediately from Theorem 3.2, To prove the

o
N “if" part, let notations 1, 1-k and JCS, be the same as those in the proof of ':.

o .
f{ Theorem 3.3. The proof is illustrated in Figure 6. From Theorem 3.2, [’_:
~ N
N D

Y (7—2")ES, ., and (;+2")ES, ., can reach the same subset of destinations so that ::::
.]
it does not matter which is on the reroutine path. 1) Assume that the on ~
RS
’!

. straight link at stage t1—k found in backtracking is link -2° %t is .elf

2 - explanatory thint path
. o e e)

': : (742" B)ES, (5 +2 l)GS, koo e L7 H200S () R2Y)0S,) i o reront- T

"-::: :J‘
> ing path for both paths ((7+2°)¢S | . 568 4. . L JES (32 S) Ny
3 by
> - > ~ . . .o ‘o
" and ((J+2' ")E,S‘ ko JES kol LIS () 2" S0 (1) Ascume that -
2 W I - L
N the nonstraight link at stage 1 -k found in bucktracking i< link +2° 0 Gmilarh o

:

N
"
)

'

(‘-

,\

(v s

ARt Lt e v R S P P T P RV L VLR WV VoUW b A A A

- 36 -

path ((7=2'"*)ES; 4. (1=2 *"NES, k.1 \ s (F-20€S) (1-2)ES,) B a
rerouting path. Note that the participating input link of €S, may be a non-
straight link; however, this is just a special case for k = 1. O

Proof of Corollary 4.2

First two lemmas are presented, which are to be used to prove Corollary 4.2.
Lemma Al.l In the TSDT scheme, the links +2' and —2' connected to a switch
JES, are specified by tag bits bb, ,, =]_1]4 and b;b,,, = ;,;, respectively, and
the straight link is specified by b;b,, ., = 5,5 or b;b,,,, =],]—1

Proof: Follow immediately from the definition for the TSDT scheme. O

Lemma A1.2 (i) Let j€S; and (j+2')ES,,, be two switches joined by a positive
nonstraight link +2' and they are on a path to the destination do/n-y1- In the
TSDT scheme, the routing tag can be set to b;b,,; = d,d_, to control routing to
send the message from jES; to (7+2')€S;,,. (ii) Let j€S, and (j—2")ES,,, be
two switches joined by a negative nonstraight link —2' and they are on a path
to the destination dg/, ;. In the TSDT scheme, the routing tag can be set to
bib, .; = d,d; to control routing to send the message from jES, to (j—2")€S,, .
Proof: Only proof for (i) is given and proof for (ii) is similar. From Lemma 2.1
and the proof for Theorem 3.1, the switch j'(:]'+21)€S,H has the label
jloﬂ,,n 1 = doy 1w yyyn 1 where wy 0 depends on network state. So
j’, = d;,. Additionally, j’, =]—', because ; = j+2'. Hence n= J[By Lemma
ALL bb,,, =dd,. O

Proof of Corollary 4.2:

Only proofs of (i) for (a) a straight link blockage and for (b) a double non-
straight link blockage are given; proofs of (ii) for cases (a) and (b) are similar.

Since the destination bits always remain unchanged, only state bits need to be

',f. P AL - . f-f‘f_f LA A P AL I . . - v,
2 L "L PR N At mt ar LI S T N o . % -
- " B S A Y SN

e
30 Y

'
VY
n

% ol

P LT T
- I
""‘l:"..l'&!'

Y,

XA\t

v

3

g

&

>
W

R,

X

-
A Y

[}
v

™
~

l‘ 'l.‘
2
4@

b

LI
P
L] ‘.

]

A

LA
”

@

2oré <
APy

Y Y

2
L

"j_{‘.‘{

|]

I.“ !

P P4
l,
5% %A

000

LAY

g

7’

[d
4

)

Al

3
N
- @
.
.

.,("(\r ‘l

T
@

A

P |

NG

N

LNANAN
.\J\‘."‘-\}‘) «

N o)

considered. (a) This proof first derives the state bits controlling the rerouting
path @* = ((j+2"’k)ES-_k , (j+2"k"l)65',‘kfl v (JH2Y)ES,) in bigare 5
(which illustrates the proof of Theorem 3.3). Since the links on path @ " are all
positive nonstraight links, by Lemma A1.2, b'nm, k)in s 1 J, Ckgro) TOprEsents
the state bits for path @ *. In addition, by Theoremn 3.2, the link of stage ¢ on
the rerouting path can be either link —2' {{y!12')es, . JES,)} or link +2'
(74+2")€ES;, , (J+2'*H€ES,,). Thus &, ,, can be 0 or 1. (b) Notice that the
rerouting paths from stage 1 —& to stare 1 found in Theorem 3.3 and Theorem
3.4 are the same except the the link of stage 1 on the rerouting path is a nou-
straight link in Theorem 3.3 (Figure 5) and it is a straight link in Theorem 3.4
(Figure 6). By Lemma Al.l, the state bit bln .o+ which specifies the straight hnk
at stage 7 in Theorem 3.4, can be 0 or 1. So the state bits specifying the
rerouting path from stage t1--k to stage ¢ are the same as those 1 lal

!

. i
b nia1)/2n-1 €20 be arbitrary because, regardless of the vaies of b1

as long as the destination bits are by, | = dg,, ., the path can reach the des

tination dg/p . U

Proof of Theorem 6.1
Consider two cube subgraphs generated by adding z and y, respectively, to the

original labels of all switches of the IADM network. It is shown that

i4

/ N . - .
z mod —2— # y mod - s a sufficient condition for these subgraphs to be dis
2

tinct in the sense that they differ in at least one link of the first n—2 stages (it
is also possible to show the neecessity of this condition). To prove that thie sub-
graphs are distinct, it is shown that, given the condition above, there exists
some physical switch j'(';Sn o such that (J"~+1) and (j'r+-y) differ in their
(n—2)-th bit, i.e. the switeh with logical label (j' tr)is an even, switch and the

switch with logical label (]'+y) is an odd, switch, or vice versa. This implies

e et e e e
T AT T AT T
N P,
S R A S LR R AR R R R TR -
PN A SEIE SIS DI S NI S AP AR A TN

b,

,.
‘ ('.“'-.: .
ey g

,'

{3
L4
e

Cd

o 3
PP PR
XN

5

LY

SRLENY
P XA,
& Ay

A

: 'b"}

=)

L4

b

&

',1‘
€
o oA
2

>

¥

2
”.

Q‘A)I

Pl g
4% % 7

5@1

S
s

e
AN

8T)

'y

i
5.
'rl []

AL

P
l"l

v

o
XN/

ko

.......

U4
‘9

o8
ok

- 38 -

s
A

-
L
P

%

o,

that a different nonstraight link is used and therefore the subgraphs are dis-

tinct. Let the h-th bit of zy,,_, and yg/,_, be the highest order bit such that

Ty FYn, 1-€. Thyy/n-2 = Yhe1/n—2- Here h < n—2 since only the topology of the
4 IADM network from stage 0 to stage n—2 is considered. Without loss of gen-
erality, assume that r, =0 and y, =1 and let].‘0,/n—2=00/h——11£h+1/n—2

(where 0g/, | is a string of h 0’s). Then

(J'I+I)o/n—2 = Zo/p 10+ 1)1h 1/n 2 = Zosh-11p/n-3l and

(5 +Y)ojn -2 = ¥osn 11+ 1) 41 /n -2 = Yo/h-10h/n-30

differ in the value of their (n—2)-th bit. Therefore there exist ?N distinct cube

o
subgraphs when considering only the topology of the IADM network from stage e
. o
V . '--_',-_‘
0 to stage n—2. For each of these —12— cube subgraphs, there exist oN subgraphs N
S
o : . . . ~®.
of the TADM network which differ from it only in the choice of the nonstraight RN
s
. - . N N, .. NN
. links at stage n—1. Thus, the IADM network contains at least —-2 distinct NN
NN
\.'.:"
cube subgraphs. O .o
NS
r o
Appendix A2: Proof of Algorithm BACKTRACK :',:}:::r
Terminology and two lemmas are introduced first in order to lay the R
N
- ‘.!,
ground for the verification of algorithm BACKTRACK. Given a source and a RO
destination, a switch on some routing path for the source/destination pair is '-.jf;':'_
called a pivot. Conversely, by the definition of a pivot, a path in the IADM net- :,:_%_
LI
'-“""
work can reach the destination if and only if it passes through a pivot at each AR
-
, ..‘I-..'
\ stage. The set of pivots at each stage varies with different source/destination ::‘:.

pair and is characterized by the following lemma.

% 0
)

- LT,
‘y “a

oy

.......

o N N s T o e N L R W R T T T W o T W™ A W™ Y XY ¥ g™
R N - Pl bafih 2ol \\

-39 -

Lemma A2.1 Let & be the smallest stage number for which there exists a non-

straight link on at least one routing path from a given source sy, | te a given

L destination dg/,_.; in the IADM network. For this source/destination pair,
there is exactly one pivot at stage K 0< k < k, and there exists exactly two
pivots at stage k, k+1 < k' < n-—1. The pivot at stage ki Aok 15 /n-1- The

4

! ok

"
pivots of stage k are dg, 18, | and cither (o S F250 or

k
(do/k'— 151:'/n—1—2)-

~

Proof: By definition of &, the routing paths frem stage 0 to & --1 constst of only o
[N 2\
. « o ~ . . N .. P.‘- >
straight links. From Theorem 3.2, there exists a anique path from staze O to ,.‘::.:_.
NN

N ~ NN

. ! - - . PN

stage k& and, therefore, the set of pivots at stage &, 0 = & <" k. consists of .f-:a_‘_:
- - l'\-l'\-

. - " a’s

exactly one pivot. Existence of exactly two pivots at stage kK, b+l - A 7 0 L L
. -'_'.r_:.'

. C eyt I A

and that their distance is 2% follow immediately from the single theorem i 13", ey
. e
N \ rreY
Since the IADM network functions like an [Cube network whern cvery switeh in s
G

the TADM network is set to state €, dg/p 18,0 (€50 0 <k Do -1 s onoa ;-.9.
routing path [6]{15]; the lemma follows. [LoD
e

- . . o . . o, ="
Lemma AZ2.1 captures a simple characteristic of routing in the IADM net- J':;:
work and, for each source/destination pair, it allows the discussion to focus enly ‘-;:‘c
[

o

LR

on the behavior of the pivots at each stage. A pivot is unreachable if all its par- M
RN

.

ticipating input links (defined in Section 3) are blocked. and it is closed if all its .'_:.-:

participating output links are blocked. A pivot of a lower-order stage can bhe A

e

- - . . ' h

closed due to the closure of pivots at higher-order stages. likewise, a pivot of NN
PG
higher-order stage can be unreachable due to unreachability of pivors at lower- ENEO,

order stages. From the definition of a pivot, an important lemma which
identifies the causes for the absence of blockage-free paths between a

source /destination pair is stated as follows.

Nttty
\:,\',\'.sj-.'.\f.\' e e
A ASA AT A A

e e BB B A f e A e A e e s D ED il et B A Bl At St A Bad Bl B st ‘B’ S i A B Bt I ‘Al e e e et B b AT s it
et - SaRis s hat Rel 0u® St ted. dub Bat S St et Sat At Aat et ol AP R AL SO A oy o et Jia® i At it le® ISt it AL A A A AL O AN PR N, g

..Is.'
:.:;\.'
)
-~ g y
- 40 - .v::.r:
AN
Lo
RS
Lemma A2.2 In the JADM network, for a given source/destination pair, if all -:.::.:
o
pivots of some stage are closed or unreachable, there exist no blockage-free _‘:‘
.-".-:'.
paths for the source/destination pair. O ::-:_
o
ALY
Lemmas A2.1 and A2.2 describe the behavior of the switches and the links o
in the set of routing paths for each source/destination pair. These lemmas o
'.r__.'_:
make it possible to ignore switches other than pivots and links other than parti- :::'_-:7:
‘.r:".-:'
cipating links at each stage for a source/destination pair. These results greatly ._:I
o
simplify the complexity of rerouting in the JADM network. 7]
ey
P
The correctness proof for algorithm BACKTRACK consists of two parts. ::':‘_
First is that the path found by the algorithm is a valid path leading to the des- {;‘-"l
o
tination and capable of avoiding blockages in the network. Second is that algo- ::{:}}
)
rithm BACKTRACK always finds a rerouting path if there exists any, which is ;:f\ '
RG%
equivalent to that algorithm BACKTRACK returns FAIL only if there exist no =4

)
v)

blockage-free paths. To prove these two parts, it requires examination of the

-
»

conditions that terminate algorithm BACKTRACK.

The rerouting path found by the algorithm can route the message to the
destination because the destination bits of the rerouting tags equal to the
binary representation of the destination address. The rerouting path’s ability

to evade blockages is a natural consequence of Corollary 4.2, on which steps 3

and 10, the only steps in the algorithm that generate rerouting tags, are based.

Notice that step 6 returns the rerouting tag if the rerouting path found from :'_:‘_-_L-_'_
step 3 or 10 is blockage-free. - !
The steps that return FAIL are steps 1, 4a, 4b, 5, 8 and 9. Steps 1 and 8 -\:_
return FAIL because no alternate routing paths exist. Steps 4a, 4b, 5 and 9 :_,
G

return FAIL because the communication between the source and the destination Lo
is broken due to the blockages in the network. So it is impossible for a ;
RO

""" P B N N U B N UL T P TR L L

NSRS "’-" e A e e e T e e

T AT i T e A e N T e e N N N e
S P AT T RO O A AP g P e A -y Kata oW 5

‘ﬁ\.'.".'.\\.lu (w0 W gy YV Y g Ny aflal i Ooiieb el i Jint gl val w P T N N RN OO0) N

] 3 - 41 -
“:’ blockage-free path to exist without algorithm BACKTRACK finding it and not
N returning FAIL. Validity of steps 1 and 8 was discussed. Therefore, the proof
,: for the second part is complete if steps 4a. 4b, 5 and 9 are verified.
'3
Proof of steps 4a and 4b
: 1 In the following discussion for :steps 4a and 4b, only the case where link-
“E found =1 is explored; the cases where linkfound — 0 ean be treated anaio-
:; gously. In Figure 5 (linkfound == 1 and ¢ = i), the blockage at stage ¢ on path
- P is a straight link blockage and the link at stage ¢ on the rerouting path I
.}: chosen to be ((7+27)€E5, , (5+2° H)Eﬁq 1) by setting b, o = (Iq (Lemma Al1.2).
'::; A blockage in ((7+27)€S, , (]'»F‘Zq‘l)(;b'q 1) can be overcome by rerouting the é}
- message through the other nonstraight link ((y+29)€S, , jeS;). This is done ,
e " '\°..
2 by complementing b',,,. If ((7+29)€S, , j€S,,)) is also blocked, links 3
b S
:- (]'ESQ ’ jesqﬂ)’ ((‘7'-{-2‘1)65‘1 :].E‘Sq v1) and ((]‘*2(1)65«; : (]'42‘1”)65() o) ae all .;E:':.
, blocked, thus both pivots at stage ¢, 75, and (]'-%2“)6.5'(7, are closed. Hence no .:‘
-\ blockage-free paths exist. The above explains step 4a. In Figure 6 (link- -:
f:‘ found =1 and ¢ =1t) both nonstraight links of jE€S, on path P, ‘:j
?: (]-eSq ,(J~_2Q)ES‘,H) and (]-E,S‘q ,(J‘+‘-’")C.S'q”), are blocked and thus pivot %.‘:
ég JES, is closed. If ((74+29)€S, , (1427)€S,,,) is also blocked, pivot (j+29)€S, ‘3".:;
:;: is also closed. Because both pivots of stage q. 7€S, and (74+27)€S,, are closed. ::::;
_, there exist no blockage-free paths. ‘This explains step 4bh. O :!:"
" N
:, The scope of the correctness proof for steps 6 and 10 is limited to the case :E
g where the first nonstraight link found in backtracking is —27 (linkfound = 1) '
‘E: and assumes that the blockage at stage 7 is a double nonstraight link blockage. j-:.;
:;‘_: Discussions for the cases where link 427 is the first nonstraight link found in :,:.Z
. backtracking and where the blockage at stage 1 is a straight link blockage can 3
gé be treated analogously. E\:‘
& -
N o
N
' e R A e I R RS

(AR ta v atn Run At paat S0-Ae 80082 biate ia-aiate i AR L A0 LA A S A g tui el /LA AL VLA AL AEACAMAELAMLAR AL LALE SULOAERICOOGOLE LR

- 42 - Py

An interesting property regarding the behavior of the pivots at each itera- A

Bt e g 4 g an Al J
\I
s
A

tion of backtracking is discussed here. This is to be used in the correctness

proof for steps 5 and 9. The discussions are associated with Figures 5 and 6 for 'o. ‘
¢ =1 and r = 1—k. Since the links on path P from stage r+1 to ¢—1 are all Al .:*
straight links, by Theorem 3.2, there exist no alternate routing paths from
JES, 41 to JES,. So the closure of JES, would effectively close every pivot Y
JES;, r+1 <1 < g—1. Hence if JES, is closed, every j&€5;, r+1 <[<gq, is
closed. Due to the closure of j€S, ., ((7+2")€ES, , jES,,,) is blocked. If
((F427)€S, , (7+2"*1€ES,) is also blocked (step 6), both participating output A b

links of (7+27)€S, are blocked and thus (j+2")€ES, is closed. After j and g are 2

r
-‘n‘i

updated in step 7 (i.e. j +— 742" , g «— r so that (j+2")ES, becomes jESq),

%yt
[t

¢ "1.
.

N
n
s

the same type of blockage recurs (i.e. both nonstraight output links of JES,

«‘..s\'"
LY
P

-

are blocked and thus j€S, is closed) as that which took place when the algo-

@

5P

rithmm was first entered (i.e. ¢ = 1) and thus a new iteration of backtracking

a4 _n_S
z'ﬁ.'::;_;

begins. For convenience of reference, the property described in this paragraph

X

o

is formally restated as a lemma. WA
2
Lemma A2.3 In each iteration of backtracking in algorithm BACKTRACK, on ':-Cg:'
]
path P every pivot JES, r+1 <1l <g, is closed; if :’,:j.
o
)
((742)€ES, , (7+2"11€ES,) is also blocked, (7+27)€ES, is also closed. O) é
R
o N : . N
Beginning from the second iteration of backtracking, the link of stage ¢ on \-;-,i\
NN
the rerouting path is always a straight link, since the blockage at the onset of :::.i:
\.'\,‘-
each iteration of backtracking is always that both nonstraight output links of -2
JES, are blocked (Figure 6). Hence only step 4b is concerned in checking the :::,:"
I
blockages of stage ¢ on the rerouting path. As a result, in Figures 5 and 6 ;ﬁ:‘_.:-‘_.
(inkfound = 1), the links on path P from stage r to stage i consist of only 1,:
straight links and negative nonstraight links; correspondingly, the links on the {:’_\I-,'
NN
NG
At

 aae_ pgud_gae
(3

iR R AN atE AAR
a My Wi ¥, ¥ A

EE AP N SR T I O i - EaRR g - [i e s o N TR . S R

S i A R T N S R R e . ST T, «“ ~ LA N VO kS SR Wl S
. R R - o - - * . A} . - y .. * et . -

A e T ST e TN AN \'r'-'.'-""-'r T :'\-' O -\"\'_\-{\ A SRR

- 43 -

rerouting path from stage r to stage ¢ consist of only straight links and positive
nonstraight links. Similarly, for hinkfound = 0, the Jinks on path I’ from stage

r to stage 1—1 consist of only straight links and positive nonstraight links;

correspondingly, the links on the rerouting path from stage r to stage « 1 con-

sist of only straight links and negative nonstraight links.

Proofof step 5

Proof of step 5 is illustrated iu Figure 6 for ¢ =7 and r = 7—k. Because of

Lemma A2.2, it suffices to show that, in each iteration of backtracking, o don-
ble nonstraight link blockage at stage ¢ and an additional link blockage in
(74+2YYes,, (7+2"°1¢S,,,), for some L, r4+1 < | < ¢ -1, effectively clowe pivol
JES;,; and make (7+2')€S,., unreachable. Fromi fouana A23, on purh [?
every pivot j€S;.,, r+1 <! < ¢—1, is closed. On path é, if 4 link blockaee
also occurs in ((7+2)€S,, (742" HES,,), pivol (j427°NCS becomn
unreachable unless 7€S5;, the other pivot at stage (, is also conneeted to
(j+2l+l)€S.,_H. This would occur only if link +2'"! is a legitimate link at stage
l,ie 21 = 2" =0 mod 2" (a straight link). But { < g1 < (n- 1)—1 so that
I+1 #n. ¢ <n-1 since ¢ is the stage number at which a output link is
blocked and stage n-—1 the last stage that has output links. Because pivot
JES,,, is closed and (j+2''1)ES,,, is unreachable, there exist no blockage-free
paths. O

Proof of step 9

From Lemma A2.3, at the end of each iteration of backtracking, (; +2")ES, and
J€S, ., are closed. After a new iteration of backtracking starts and step 7 is
executed, (7+27)€S, is relabeled as €S, and €S, ,; is relabeled as
(7—29)ES, 41 So the condition that y€S, and (5-29)€S,,, are both clc ~d is a

priori in the beginning of the new iteration. Since (j--29)€S, . one of the

3%

R g
WX A

L L K T ¢'¥
?1‘ Q:’l:'\’ .= }'.'}.

X/

’
2

T)
) q_.'ﬁ X

n’s{

Ly
/]
51

A SLS
R

PP

"y
2

\‘.' v,
. (.,J'
i)

L e

0

X g PR
A

'I
4G40

T
“t

A
o
b}

Aa
L

e
4

B !'l'l'»""".‘ 1
LA

L
.
)
PR

% s

’
R
A N

RN
RANA
"
L
X

- 44 - Ny

pivots at stage g¢+1, is closed, any rerouting path must pass through :‘,"”
(1427)€S,,,, the other pivot at stage g+1. It is shown below that such a e X
rerouting path does not exist if the nonstraight link at stage r found in back- :\
tracking is +2". The proof is illustrated in Figure 9. The current routing path "
is ((J—2")€S, , J€S,,1, -+, JES, , (1—2%)ES,,) and there exists a rerout-
ing path ((;-2")€S,, - - -, (]'—2‘74)65(1 a1, (1-29)€s, , (7-27)€S,,,). Thus AN
(7—29)JES, and jES, are the two pivots at stage q. Since pivot JES, is closed, I
any rerouting path must pass through pivot (j—27)€S,. But (j—27)€S, is not
connected to (j+27)€S, ,, since link +27*' is not a legitimate link at stage g, oYy
0 < ¢ <n-—1. Therefore, no paths that pass through (]'—ZQ)ESq and :-’?:':
(1+2%)€S,,, exist. Note that a].though further backtracking to a still lower- ;
order stage is possible, as long as the nonstraight link at stage r found in back- 'n':f"g
tracking is 42", the two pivots at stage ¢ never change. That is, further back-

tracking will not result in a path that passes through (j—29)€S, and

[N}
4 Al
27,
P
L 4

7’
Y
»

(J.+2q)ESq-H' s

Lav s]
AR
~-f/fl
SN Yy
P

o

R
%
L)

B)
T

x

o

P

v
[

s l"‘l‘~l“|

P v .
Yy %
AL

L)

L]
Ay
Ak

YN

«
s - a1

.)
et

R A
b

40

LI B
RS
SR .-"fzf.
NS SN
f-.'t,".l\ AR

L'y

." “y]
?;,:

N «
.................

......

2 e N - aa R AN et lh kA AR S Mac . - - aar
1 e AT ANTRT R o T LA Sl > LA L%t ae 29" W Ny W R P WL W PUWL W WA A Sal et o W

b X
K v 0
N
" - 45 - !
o)
[_:
-
) :'.
2 *
.' '
X f-_;
0
) y
. o
AN X
':,:: }".'\
al o
‘J ‘
& ': 0 0 4
I. o— "
o 1 — 4 2 ot
o
:o] 2 1 \/ :_,
) 3 >
N a & ’
\: Z & = 4 2 :” :
-'".Q. 5 6 8 p &
ON / \ 5 O <
L .
L
) 6 — a 4
B (7 bi g v
N L]
% 3
- ool
o N
N ‘ s f..
- I~ 2
¥ straight exchange o
- o
AT]
Py
::'.: ;\\ \
e r
AN \.
.~:.. ::
N
j.'f‘_‘ Figure 1. The Indirect Binary N-Cube (ICube) network for N=8 (according to '-
:::: the first graph model); two possible states for each box are shown (i.e.)
5y straight and exchange).

L]

DY)

X ?‘
AR

fl’f'(-' ‘.,.‘. L
ﬁséxs ,j PV INAN

F'.'
x
| " . '_ Caran "’ ._ *w v.- -‘-*van < ’ ¢v. {’ o AN
a $.ﬁ~"-&\\ '-'\v‘\-"-*.'-\\ AN AN 'Q‘\\-- RN (R AN AT
L 0.8 Sy A.LA.LS]\. 5.5." *h! P e W W, WP, Se vt \ '
. 8.5 \ﬁ.& \.-st'l.'hAnnn.\tn':'n.‘\u._\.‘- L

b .-.- e ~.-)Mur.. oty ., L .--.- NS o, J:-v-f.- L -. s, P
oy 0..:.......mﬁ......& v, O e ...H,....... AP Ow“......-\.... s Omau.‘. \a\h\.‘ AL A-f
T K o . " -.] r RV * 2l)
N I Y A A I X AN A A LN U IO CN /Y o
’
.
.-.
‘-
. T
: 53
. = g
-.. |m 73] w.
o m m -
y < 5
-
, & P @
. S B
o Qo o
A, &)
; 1Nd1NO Fas
, = v
,.n..) 2 gz S
; el
’ ofjrlv]w]je]wv]o]|~ o W
A\ ll“l//l\/ ~~ \\\\\\ t‘m..m
’ N < > <[5 - w g -
3 -< ~ SN N a 82
A PRITEIS (e AL S
£ P M) NS NN -m m a
g ofrjulmle]lw]o]~ S =
& NN 7 4 M X
] N ,
g ' PAS > A/ -y
© > - b1
8 - P4 v Vv N\ ﬁv e
é ' v 7 NN z Vi=
E. ol rja|[mlefwn]o]n~ L © 2
k- \] ’ S o @
? \/ \Y; \’ Y, \/ =
b o -
I\ N AN AN N ol
£y - — -
\- ’ / m w |w.u
olrlaulojeluv]o]n~ S q_u. o
: e =
, < ©
= ° &
. 10dNI =
1 a r
- O
25
= Qo 9
o
W
|
5 =)
R
Fx

SR AR A

@S EL @i
PRI XN N

L5 G0N b oI

YR

1NdNI

0

STAGE

(ICube) network for N=8 (according to

3. The Indirect Binary N-Cube
the second graph model).

Figure

. . o aaa . - R T VLT VOB vogrmrpeey “ . _SaN _Bat e -
L% LS S Fal N g - LSl Sal & AT TR T T e T T T R N] A A NS A R \\.\. ‘I\.l\.A '-\\L\

VY '.";
\,s’, -

®
-

- 48 -

ay
X,
-."-.{.

LA

H e Y
K

1 "
X

<~

e

A NI
Lt ol
Y

~
L]
n
X 3
“»
=3
~N
o
e
e
_,.

~
~N

“y
.‘

)
AR
Nt

£ w_n
.l
S
AN

& N

even

even even

L d
1

°|

.
VN
~

S
)
C
W
FY)

P

l' L]
PN A

L d
[}
-
> F_?
v
’Po
s h N

odd K———-

v

»

odd | odd

5

7
7
7
"'VI'A
7y

function AC; 1,20 \

4
7
Y %y
("
o
y]
~

¥

an

7
A

v"-‘
rprLS

\ -
tunction AC;

AL AS
’,
P A "

L]
L

g
2>

»
.
o
-

Figure 4. The connection links of stage 1+ of the ICube network can be described
by the function AC;. The connection links of stage + of the IADM
network can be described by the union of the functions AC; and AC,.

-

‘,

g

A
'J.&

DR S AR N

s SRR Ch g

\}".;\‘ L S AL '.; N Y
-r LRGN A

A N N N N I N S A N A I , IR O A \
RS A A A AU R A B N AN A A N A A AR GV N A A N T s -

LA
v

ey e,

1. AQ......,..\..
\%&lﬂf& i) Soh - -- .un
LA T T Y Sty

). Path

.7+ 5,0 i3 a segment of the original

o
— ul
¥ or Y
-) ~
0 v -
~ H .A\..l
& R
_ + -~
w3 - =
L —
bl e
— 3
t Lo
95} «
W 4
- o
<
£
)

' i , -~
= S i PER [=]
- ' R =

! z m \\ . 4

™ 4 - ™~ ..m
‘ .=
-~ 1%9]
) U R
W — «
- ~ —
- + -
L = »
n =
W ~ «
- +
1 T~
& -—
+
Ty

Figure 5. Rerouting for

A s, g€s,,,) and

path; ((74+2'7%)€S, 4, (742" " S 4y,

(F+27%)ES ¢ L €S, k1
((5+274)eS, 4 o (512"

o
«

Jos)

gy 4

-~

Jos (e

ot
P

NOK

)GSI kol

k41

the rerouting paths for it.

. . » v 4 ’ '1‘ v N > » a , ’ | I v.\ L] ~! .\ I' L] L

- A A o v v, 8, WY NN ARG Fd -i......-\.. NN A BN R R o AR L Ve Y LN
wih e -.T“r SAN \.. @ _w.. ¢..~¢\.¢ _m.v.u '_.. ».. .-........f r7 @ v.».. .“.' AT XYY \n\ ® .- o ._.v.f_.\f.._.; [AN\..\.. [) -..‘. SUNS .f.\f.\,. [] .,....... TORN ..s..w e .- :
R LY ..\..an.-. ot .\F\f\f(Thh) A V\J..I..J..-.--, F\F\F P s WA A A AL -ﬁ LY PP AL T SRS RPEERE N Lt et e [R R

-
.

d .00 i AG aathe Yhlid
Aa* A AP SR AN B

in
Path
is a

Y
and

paths

»

blockage

(JES; , (7+2")€S; 1)

(7 +2")€S; 4,

links
both

(1_2')€S.+;
]

()
JES,

- 50 -
JES ks JES, JES
id-G-0-E
(742" M)esS, 4
for a

((] +.2'»*)6‘5':7!& L (] +2'_k*l)eslfk+l ’
path
1l—k+l ’

,(742€S, , (7+2')€S, 1)

(7+2')eS;

for
' J.€S|¢| ' (1—2')651 #l)

nonstraight
L 1€S, 41 (j+2')€5,”)-
N

(7+2')€S,
double
and

(JGS. ’ (j‘zl)65|+l)

rerouting

(542" 7*)€S, .« 5€

((]-*2-‘&)65|_k ']{“lfk-&l '
:

Figure 6. Rerouting

1NdNI

STAGE

8
e .L:..-f

N
iz

)
-

o

2 e

.“..L--. f)f.n..dt-f ,\‘\-r “x f..-a-.n-...--. f) o Iy PRy .'... R «r DhNClariay f A -\.\...H-\.. g a-!.- sn- . LY, Ja |
W e .f....u.\ \..._.v.\ e . x.,.ﬂ..\ s;ww u WY AR 3 2 A L e ..”\.m.......\..\........ ° .xr....x..a.x..\»..w. @ @ !.....x...“..\... v
XN P S BEAAAAA AL VPV IOE S o R ARV BRI S AL AR A AT A A R NN PR R R A ORI A
] . .
_.. -”‘\.
1-..\
%, .\ -v
] ..- g
fa, v, .\
- ‘ -.‘-l
: o
f .-. -.
» . e
= o
w v
" A4
[5
[a) RS
Y - K
- — o
1S <,
& e
-2 AT
%) .
1Nd1NO ¢ <
= e
: = L
olr|nljo|ejwvjo|n~ -
NN~ P o et
NS s s v
~ ~ Ll
: ohYe SRINT =
~ .- .
~ \(A ~ NN ~ o
olrjan|olwlw]o|n~ S
oA P =
N v o/ .
by, ! Vv N - =
: o A v LVARN
(=]
: ;s 7 NN o
olr|aljo]le]lw]o]n~ W
\ /
\/ \ \/ \, \/ ° &
A N\ N 7o £
/ \
w
olrjlolwlwvn]jo]r~ =
_ : . «
5 a
; 8o b
-
=
)
[%Y
«
~
%]
[23
=
oo
(%

PR A
‘l.a-.

" L - X ~.
P @ L .m..,.. @
RASNS e

1nd1no

Wa01234567
! e

/
43

\

7K==17
\/
2

-52-
==/
/
- e 3

0

6 e

STAGE

A
Z
Q
~
‘n
—
©
A
[
o]
z
- AR
LY
a
M
[=]
«
[
&

Figure 8. A cube subgraph generated by relabeling each switch j to (j+1) mod 8

- . e Nl Y0 - P e @ ~ aey b 5 o (RO W L > v I3 - s e s - .- “ . . —aanean .= ‘ .

A O YT
e) PNl S AN
..-n-»- RO NN 1 . I-- R .\.\-.
. ,..\-\.-\.-\n--_-.. -v‘ ..,-.-\» .\~~\v-\f\u\ R .__ -\. .\-.n-- A

AT L DAL AP E AV

oA ..-\.- ... TN n.! . \.‘.
Ly RAPLN -
o nfe e a Ny P ol
LRI AN -\I\ uy

¢ O
LSz
B~ =
<
e
o g
W3
]ﬁ.m
o e O
o 1A
e
% W I
‘ .
=l flO]
X o -
4
4 2 S0 Uy
2 B0 N7
..m.].m
—
°© ©
58
-
~ e
g .o
— -lnd
- + L
2%
fv.ru_h\.n
= =
2 -
« g
A\ g
.war\lw
R
- .
[e -
MH\\.K +
g o .5u
2=
m.h Ty
fom.m -
o S eou
S X
3.8 &
ﬂgn_
‘o™
X o az
=)
Q
[=
=
oo
€

10 0r iy) ...1\ .2 R4 % . A YN gl
....xz....x..... ..f..f....rfo...\xr.n e ?..1... ..f..... \ LA ..w...wr\..sxx.
.\l‘&.\ -

2 I 3 S o
.J n- ! .-_ Ff\f-f\-v\nlff 1 \ -- -. \.-... ot &fﬁ\ﬂ-‘f} ,..‘ac %% .-\. s .- fﬁr\\ .wﬂ\n\\nﬂ\ -.x.&-.\.\.. ..

Il
i

, October 198

ion

¢ Computat

urren®

]
o
-

—
o
[

<
=
~
—
)
0
<
=
o
[o9)
~
1%
=
n

X
o
<

N

e

-
—
—
2

—
<o
<
=

o

~

REFERENCE NO. ¢
Rau, D. And Fortes, J. A. B., “Partially Augriented Data Manipulator Networks:

ture and Technology Issues for Models of Conc

Minimal Designs and Fault Tolerance,

-~
'f

2%

e

»®
L]

“»

(]
.

%NS
e

h]
L]

Partially Augmented Data Manipulator Networks: ?,:,',.
Minimal Designs and Fault Tolerance! ::.
0%

e

Darwen Rau and Jose A. B. Fertes

School of Electrical Engineering
Purdue University
West Lafayette, IN 47907

ABSTRACT

Augmented data manipulator networks are multistage inter-
connection networks which implen.ent at each stage interconnec-
tion functions present in the single stage network known as PM21
network or barrel shifter. These multistage networks include the
ADM (Augmented Data Manipulator) and IADM (Inverse Aug-

:': mented Data Manipulator) networks, which have been extensively
::: studied and proposed for use in multiprocessor systems. This paper
::: derives new partially augmented networks based on the solution tc
= the shortest path problem in the PM2] network. The new net-

works include: the HADM (Half Augmented Data Manipulator)
and HIADM (Half Inverse Augmented Data Manipulator) networks

which have half the number of stages of the ADM and IADM net- ::
works, the MADM (Minimum Augmented Data Manipulator) and -:::-
the MIADM (Minimum Inverse Augmented Data Manipulator) net- e
works which have the minimum link complexity required for one- :::::
to-one connections in a network of sise N with log,/N stages of uni- ;'\

form switches, and the Extra Stage MADM and MIADM networks S,
which are fault-tolerant versions of the MADM and MIADM net- {:
works that can tolerate at least three switch failures. The deriva- N
tions of these networks are presented and their properties and ‘-‘:,
advantages over other designs are analyzed. ;:

o

A ‘_'.
<
-~ "
'_'.-_ This research was supported in part by the National Science Foundation under Grant DC1.8419745 and in Ry
A part by the Innovative Science and Tecbnology Office of the Strategic Defense lpitialive Organization and .-.':
Oﬂ.'-

was administered through the Office of Naval Research vnder contract No. 00014-85-k-0588

AL
ShSS

AN
[
PR J.

P AR J
NSNS

g

. ,s;,-.i N

)
v
He
l. L]
:' :*.f:.‘ e e R P A T e T A W L T T R e A S R VN " b
YT " 'I"«'-.J‘- LA R IR RS LSRN CRAR SR SN L) , v '\".' LN N s B “‘-’(‘n"‘-"-‘ -“f“‘f" -f‘i’". AN
RS, - Y A A » il LI P A DA A T A ~ h - R
ARG A AN S R S R C G TN R L A B ":\"'1‘-‘:":": :{ﬁ\‘i&-':'*:-‘:':-f:f\-‘ K
i a - - - ' - e . - - .- e

o -~ PERTNy
e Vm Y e T aPut AT AN

1. Introduction

Multistage interconnection networks are often designed by implementing
at each stage interconnection functions characteristic of a single-stage network.
This paper proposes new multistage networks which offer advantages over previ-
ously known designs based on the PM2] network [Sie77]. The new networks are
derived from the solution to the shortest path problem in the PM2I network.
Further analysis leads to the derivation of designs with minimal link complexity
and fault-tolerance.

The plus-minus 2' (PM2/) network [Sie77] is a single-stage network defined
by the PM2] interconnection functions:

PM21,,(S)=(S+2)mod N 0<i<n-1
PM2I_{(S)=(S - 2)med N 0<i<n-1

where N = 2" corresponds to the number of network nodes and S,
0 < § < N-1, denotes a node address. Thus, in the PM2I network there exist
links from a node S to nodes PM2I,(S), 0 < i < n—1, as well as links to nodes
PM2I_,(S), 0 < s < n—1. These links are referred to as the +2' links and —2°
links, respectively. A PM2I network of N = B8 nodes is illustrated in Figure 1.

The class of data manipulator networks, introduced in [Fen74], are con-
structed based on the PM2I functions. It includes, among others, the Augmented
Data Manipulator (ADM) network [SiS78], the LADM network [McS82] and the
Gamma network {PaR82|[PaR84]. The IADM network and the ADM network
differ only in that the input side of one of them corresponds to the output side
of the other and vice versa. The Gamma and the JADM networks are topologi-
cally equivalent; however, they use switches of different types. Each 3x3
crossbar switch used in the Gamma network can connect simultaneously all
three inputs to all three outputs whereas each switch used in the IADM network
can connect only one of its three inputs to one or more of its three outputs.

The ADM network is composed of n = log/N stages labeled from 0 to n—1
from the output side to the input side. Each stage consists of 3N connection
links and N switches. The switches are labeled from 0 to N-1 from the top to
the bottom. An extra column of switches is appended at the end of the last
stage and is referred to as stage n. Each switch j of stage t+1 has three out-
put links to switches (j—2') mod N, j and (y+2') mod N of stage i. The link
joining j of stage s+1 and 5 of stage ¢ is called a strasght link, the link joining
(5—2') mod N of stage ¢+1 and j of stage i is a plus (+2') link McS82), and the
link joining (j+2') mod N of stage i+1 and j of stage ¢ is a minus (—2') link.
Each switch selects one of its input links and connects it to one or more output
links. Figure 2 illustrates an ADM network of sise N=8.

L L A R L A N I SV -
\ L. \. \ -. - '. NN N, . - \.. L} . .- b (n - f.f .r- LM - {-. v b e
A A A TRt N A AT A g T e TN S
e TN ST A SRR LS R SR

" vy e ar ; R Ak
v Rl et'..-.-Qn\-LL'L-\.'.\\"-."-__

’3%1“'

L

o

(o
-{'.{"j o

5 %

)
u

LA R oh g
ERARAR
'r’t 'l

q
AL J

'."u '—'{ 'f‘
ey
R .l - P
I‘ I. l‘

Y
R
. 5 %

.
P

5@

4

l.‘ ." NG
e
DO

Y

e

v

'.l'ff
y .t
* WA
f&!."'

e
. l-l‘

‘s

’ Pd

/‘ /'. e
-
L]

1

.z
L 2
,.I’ll"

o
Al B0 o

LSl f‘f-l'l‘l!
PLE

2

Pd
Yo
ot

b Y
A

7 7,

L
s

WA L - " 0 ’ = “ 3
@ e .¢{xu-n OB s Ay ' ® “ Afdﬁxnnﬁ.ofthrrar W..
] o ’

i . oA
UUST REANSANN WASAY RS WA PRI WS e
b LR W I B O O < uwu«mf..ﬁ- , (NS A W A SN M St hd SES TR n....\-.\............r\. : pf..,. AARAAY .\,

..‘:] . ""Y"‘

Y,

4

3

3

7

,

A 3

3 S

M 5,

: O

w -~

3 o~

3 =
m

olajafu
8. A:PM2],

-] 1]
] r3
(-] [}
.] 1-]]
_ o bl ||EH p
I b] B 3
] H |6 E
& |\ @ 2
< @ © s

DAL AE ALt el 60 08 g 6n b 0°0 20

-

”
]

o

-.x -‘ 0y -, a M “ . " . Y v v ~ . B - N - ™y . . . N . -
' .) A AT TRy g ol LASA AR A AR IR SO AT Rt i 2t Aea AEA GRS GV SR gt

y
RN
4@ N5 0y

I A
% T P

P d
‘fﬁ&%

. 'v. ;'

INPUT
SIDE S

OUTPUT
SIDE

LA
;iﬁ:'
LA

1,9, Y4y T,

*a
<
"

' ’'e
‘% A e
RN XA

A ;.;\
hg.

o
s
'l -\

£

L
v a

stage 0 1 2 3 N

N
3\'-

Pl

»
,
ML

Figure 2. The ADM network for N = 8.

.
P
s
-
.--
.
-
-
e

L ..."\

e
o

s
]
2
r
-
.

"’l

'y r
e

ff(n;ff(
»
L "‘

L

.
D e T T T R R VL L TR Y L I T N N ST VA -~ - . B ~— ‘-‘\".\
AN T B e N ST R NN N S T T N St gt S St == DAY
R i N R o A L S SR RO I T S (R L RS (S AT SA S
LTI OCIC N A A I A A B 2 O A A A v A A A G T A A O I A A A A A A N AL AT N A

PN A AT AN AN NNV

Because the only difference between the ADM and IADM networks is that
their input and output sides are reversed, the stages of the JADM network are
labeled from 0 to n—1 from the input side to the output side. Each switch j of
stage ¢ in the IADM network is connected to switches ()-2') mod N, ;7 and
(7+2') mod N of stage 1+1. A plus link in the JADM network from switch j of
stage t is connected to switch 7+2' of stage 1+ is the same link as the minus
link in the ADM network from switch 7+2' of stage v+1 to switch J of stage 1.
Similar relationship applies to a minus link in the JADM network and a plus
link in the ADM network. Due to the reversal of the input and output sides of
the ADM and IADM network, stage 1 of the ADM network corresponds to the
switches of stage ¢ of the IADM network and the links of stage 1—1 of the
IADM network.

The results of thic paper are based on the study of shortest path problem
in the PM2] network. The solution to the shortest path problem for the PM21
network is derived from an algorithm [FaR82| that generates routing tags for
the Gamma network. Because the IADM and Gamma network are topologically
equivalent and the ADM and IADM networks differ only in their input and out-
put sides, the results in this paper apply to all of these networks. However, the
main interest of this paper is the study of the ADM network and the discussions

are centered on the properties of the ADM network. .'\-;:_
Given a string of n digits, t = t,t, - - - t,_,, the notation t ,, denotes the :::’_:_'-::
digits of t starting at t, and ending at t,. Throughout this paper, j and j+a '::'“:-:'
(where g is some constant) represent labels of switches. Also modulo N arith- :"-'}.'_:\
metic is assumed, e.g. j+a implies {j+a) mod N. The notation 5 is used to AN
indicate that a switch j belongs to stage 5 and (/"' , 5) is used to represent a ~ R~
link joining ;'*' and ;. A sequence of switches of contiguous stages :.:':.
(7, 57", - -+, 7)is used to represent a path from ** to 5. f{:";::
Section 2 of the paper considers the formulation and solution of the shor- :::'\:'
test path problem for the PM2l network. In Section 3 these results are used to K ~.":"
derive new networks that require less hardware complexity and transmission @
delay than other known augmented data manipulator networks. These new ::-"\ _'_'
networks are called partially augmented data manipulator networks. Details of :_".::.
routing schemes for these networks are also discussed in Section 3. Fault- :\:,.h:
tolerant topologies are proposed in Section 4 by adding an extra stage to these t:t‘-;
networks, with the result that four disjoint paths exist between any scurce and ~ ;

Pl
.
v

any destination in the networks. Section § concludes the paper.

cet

v 4
.

e e
0

«fn
.
P

A A A
A ALY
WA
e TR
DALA

s

LY
.‘
X

A

,'1
S

.
.
AN

’5": (LR

0

’ L
< %

_‘{A

’)

l;l

3

]
srle

&
’

kg

",
g
*p
[
AY
4

i A Rl S AR A R L Sy ¥ o S MO N N A S L T P T I A S
2P - - ~ [P R, YA SR SE R A R NS R
A A A

2. Shortest Path Problem in the PM2] Network

Given a source node S and a destination node D in the PM2] network, the
shortest path problem is to find a path from S to D which contains a minimal
number of links. When circuit switching is used for communication between
nodes, delays are identical for any link and transmission delay is directly pro-
portional to the number of links on a path. Thus, the shortest path is also the
one for which transmission delay is minimum.

Given a source node S and destination node D in the PM2I network,
define distance A to be (D—S) mod N; thus the range of A is 0 < & < (N-1).
Routing from a source S to a destination D in the PM2] network can be
characterized by the combination tag t,/.,_, = tyt, - - t,,_, such that

A= (f}:j‘t.?" + Uilt,(—2"“')) mod 2" (1)

where A is the distance from the source § to the destination D and ¢;'s are non-
negative integers. A positive value of {, indicates that link +2', for
0<i<n-1, or link =2, for n <1 < 2n-1, is used in the routing path
whereas {,= 0 indicates that the link is not used. A combination tag, as sug-
gested by its name, specifies a combination of PM2I links that can be used to
cover the distance between the source and the destination. However, the combi-
nation tag ty/,_; does not specify the sequence in which the links are used.
Several distinct paths can be derived from a combination tag and all these
paths contains the same number of links. Since the combination tag depends
only on the distance A, it is often identified as a combination tag o fdistance A.
A shortest path is specified by a combination tag for which the number of links

<n—|
Yt is minimum and the problem of finding such a tag - called minimum
tod)
weigh! combination tag - can be stated as follows:
Prohlem (P) Find t* = t'(,/,_, such that
n—| 2n—|
Hy=min ¥ ¢,= Y ¢
sud)

¢t

»—] n—)
subject to A = (62 + T 4(-2""")) mod 2"
o= f=n

0<t, pr0<i<2n-1

0< A <21

A feasible solution to this problem corresponds to a combination tag, and an
optimal solution to it corresponds to a minimum weight combination tag. For
convenience of discussion, the terms (i) a feasible solution and a combination
tag, and (ii) an optimal solution and a minimum weight combination tag are

»

L S

Vs
L}

e,
N e NN,
LY '| LY "l\ A

l

7 @

ANy
’ ?
SN

LR
.*ll Pd

gl

[d
5 N

7
1'.1'

&

X
s

ANRANY YN
@

DY Lttt
"f‘f‘lf"fsf‘, A
@ 'I. “n

. »
]
a
o

P
. @
s

3
LA

." \' .

)
LT

5 '.:-'.I
.I'J.“I.':

BT

'® e
! -

l"il
g
A

ll.’l"".lﬁ;l :-)
: [N
L -.’-.‘1. NN

' a

'
)
>

SeTet)

~
T
A]
i

13
»

.
P
-

".“v'\
Y
2 S
S

4

e '

~0 w0

..
[N

l.-}.
PP N

P
>
-

CAy
A

R R N R T T T N e T R R o o N YTy e Bat it

Y

(I
2Ll

" ~.‘,

RN

<,

>

used interchangeably.

The next two lemmas reduce the size of the set of feasible solutions.

Lemma 2.1 If t* is the optimal solution to (P), then t,€(0,1},0 < ¢ < 2n-1.
Proof: The proof is by contradiction. Assume that the optimal solution t~ con-
tains ¢, > 2, for some k, 0 < k < n-2 or n < k < 2n-2. Then there exist
alternate paths that, compared with paths defned by t', reduce traversal
through link +2% (or —2"7") twice and increase its traversal through link +2"*
{or —2**'7") once; i.e.

025 4+ 4,20 = (4 -2)28 4 (t,, +1)2F

Comparing with the total delay of the path defined by t', the total delay of the
alternate path: is reduced by one, which is contradictory to the hypothesis that
t" minimizes the routing delay. If k = n—1 {or 2n—1) such that t,_, > 2 (or
t.,_; > 2), a carry is generated in the highest order digit and t,_, is discounted
by two, denoted t, _, = t,_,~2. The carry vanishes due to (mod 2") operation
and the total delay of the alternate paths is reduced by two; again a contradic-
tion results. O

Lemma 2.2 If t° is the optimal soluticn to {P), then t,t,,, = 0,0 < 3§ < n-1;
i.e. the shortest path between any source and any destination in the PM21 ret-
work cannot contain both link +2' and link —2' for any 5,0 <y < n-1.

Proof: The proof is by contradiction. Suppose the opposite is true. From
Lemma 2.1, a digit of the tag representing a shortest path, can only be 0 or 1;
by assumption of having both +2' and -2' lJinks on the routing patn.
t' =1, =1. The eflects of +2' and --2' cancel each other. Thus the valie:
for t’ and t,,; can be substituted by 0 and still satisfy the equality consiraint
in (P) (also equation (1)). The routing delay is thus reduced by two. A contrad-
iction results. O

From Lemma 2.2, either ¢, or ¢ ,. is sero, 0 < ¢ < n -1, s0 that the two
n~i 2n-1 . [
sums ¥ t,2' and ¥ t,(—2""") in equation (1) can be combined to form Y t,2,
[\ = 1 -(}
with the extension of the values for f, to include negative integers. The result

in Lemma 2.1 confines the values for each ¢, of a tag representing a shortest
path to be 0 and 1. Together with the necessary extension to include negative
integers, the possible values for ¢, of an optimal solution are -1, 0 or 1. Thus,
the problem of finding a minimum weight combination tag can be reformulated

as follows:

L 4

v AN

1M

Lo

/5SS

oy

XX

v s
"{‘(

P,
b3

oL

o
o

t?;

e

L 4

R

(LA ok SN

g

‘¢

.
KR X

CeY LT,
Sp

[g% 1 l'..
't"‘\r,% 'v‘-.‘
[N

FyR s g
-

AA
I&.’ v~

e v vy
, /"/'.f'"t": o
“ate 8|

[

L Ry
"v :.l,

[4

-
»
»

277

ot RPN
< vl

v

hd
L

o,
v s

%
(AL NN

.
.

Al e

D
s
. 8>

PAAL

e
el ol

R 4

4

’

e
A

o
LAy

3
-

L e

-~ - -
- N

Pl "N e i]

P

o ¥

02 Ba” q : § ‘6. 2°6.8¢.8 Ha - ey
AL N T (W (W) U Sah i) Uad toB St Vit Ay} NN OSSOV LN Y N R Paspiattfer AV,] DA I R) achad ah o

"n g A
&8
h T oY

oo
e
o
("f.'.' 4

P
l‘

o
s

P

Problem (P) Find t* = !'“/,,_, such that
n—1 a—I|
H.\=min z !tr| = Z llll
o} .t you()
subject to A = (Y ¢,2') mod 2"
i oal)

LE{-1,01) for0< i< n-1 Koy

Rty
XY
-4

0< A< 21

A branch-and-bound approach is used to find the optimal solution for (P),
which is also a minimum weight combination tag. This approach is based on an .
algorithm proposed in [PaR82| that can find all signed-digit representations for
the distance between any source and any destination in the Gamma network.
Each signed-digit representation corresponds to a routing tag for the
source/destination pair. Moreover, since the IADM network and the Gamma
network are topologically equivalent, the routing tags generated by the algo-
rithm are also valid routing tags for the JADM network. The Gamma network
is constructed based on the PM2I fun:tions and a routing tag uniquely specifies
a path in it. In particular, each stage is composed of 2" switches, and at each
stage 5, 0 < § < n—1, each switch is connected to three output links +2°, -2
and straight link, and only one of them is on the routing path; in addition, the
path in the Gamma network traverses a distance of ((D—lS) mod 2") from S to

D. These corresponds to the constraints in (P): & = (Y ¢,2') mod 2", ¢; € {-1,
0

i
0, 1) and —(2"-1) < A < 2"—~1. Thus a routing tag that specifies a path from A
S to D in the Gamma network is also a feasible solution to (P). Note that ::-:'-’.'-'
, = 0 indicates that a straight link is used at stage ¢ for routing in the Gamma :-:::-:-.,
network. \\' 1
A routing tag for the Gamma network can be converted to a combination .o
tag for the PM2I network: if the i-th bit of the routing tagis 1,¢t, = 1,if it is T, :*::-‘ '
t,.. = 1 (hereafter the signed-digit representation T [Avi61] is used to represent :::__.'
—1), and if it is 0, ¢, = t,,, = 0. A combination tag satisfying conditions (a) ::.::f..
t,€{-1,0,1} and (b) ¢;'t,,, = 0 can also be converted to a routing tag for the _.;-' \
Gamma network: if t, = 1, the i-tA bit of the routing tag is 1, if ¢,,, = 1, the '.'
i-th bit of the routing tag is I, and if ¢, = t,,, = 0, the ¢-th bit of the routing N
tag is 0. The optimal solution to (P) certainly satisfies conditions (a) and (b) .-"
and is also 3 minimum weight tag. Because we are only interested in the shor- ";v';
test path (which can be characterised by a minimum weight combination tag) Ll
in the PM2] network, given the one-to-one correspondence between a minimum R
weight routing tag and s minimum weight combination tag, they are used inter- .9,
changeably. The algorithm in [PaR82] is stated as follows. \‘;:::
A
NN
bt
AT
E\:"
e
;(-.."\
. PR \::'.:'-_‘-
o R T T e T U S S P ST - . e . . L S S =
A e T Ay

TRy

e

WYY vy N vy

S aatasa:

Algorsthm ALL - TAGS (A,)
A,=0
fort =0 ton-1do

if 3, 1s even then t, =0, 2 & ~~-—

endif
enddo

In the algorithm, ¢, is uniquely determined (=0} if O, is ever whereas free
dom exists in choosing the value for t, {1 or 1) if A, is odd. An example is
shown that generates all tags for routing from § =1 to D = 4 in the 1ADM
network of sise NV = 8. In this case, 5 = 3 = —5 maod 8.

[B 2] ¢ S U S O R VR
B 1 noa o] o (=3)
(3] 1 1] 1 [1] 1 (=3)
3] 1 1] 1 nl 1 =~5 mod R)
I 2 o . (+:3)
(3] 1 2] 0 i { + {=~5 mod 8)

As mentioned previously the focus of this paper is the ADM network, the
tags generated by algorithm ALL-TAGS can also be used in the ADM network
because the ADM and IADM network differ only in that the input side of one of
them corresponds to the output side of the other and vice versa. In the IADM
network routing is from a switch of the lowest order stage to the highest order
stage while routing in the ADM network is just the opposite. Therefore, the
lowest order digit of the tag is first examined by a switch for routing in the
IADM network and the highest order digit is first examined for routing in the
ADM network. At stage ¢, 0 < 1 < n-1, of both networks, if ¢, is 0, straight
link is used for routing; if it is 1, link +2" is used; if it is I, link —2' is used. In
particular, routing from S' to D" in the IADM network is equivalent to routing
from D" to S" in the ADM network. Let ¢, . be the tag for the routing from
5% to D" in the IADM network, it can be readily verified that tag t°/n—1» where
t/ = ~t,0 <s < r-1can be used for routing from D" to S” in the ADM net-
work, The two tags t,,._, and t’,,., represent the same path, with different
interpretations in the ADM and IADM networks. For example, the tags 110,
111, 171, 701 and 107 for the IADM network in the above table can be

Pl Rat St Sl 2.0 4 2t

P L
:' :"‘?"a"q
LAy l®

-
’
Pd

IRIR

R
AR,

""’
.\‘t‘, '

.
2,

-

.
)

Cowst ey
-

‘ “»
"
¢ o

.{\(\
N)'\
NN
.v":f“'
‘w s

e .
@

Ll

.

¥ -
4 converted to 110, 111, 111, 101 and 101 for the ADM network, respectively.
l Figure 3 illustrates the routing from D- = 4 to " =1 in the ADM network
i using these tags.
[The possibility of having two values, 1 and 1, for ¢, if J,is odd can be
\ used to find the optimal solution to {P). It is shown below how to choose the
r value for t, so that t,, can be pre-determined as desired.

Lemma 2.3 In the process of generating tags in algorithm ALL-TAGS, if 4, is
n: odd, it is always possible to make t,,, = 0 by properly choosing the value for ¢,.

A +1 a,-1

: Proof: Since 7 and 5 differ exactly by one, one of them is even and
: A, +1

the other is odd. Suppose that, without loss of generality, is even. Then

4,+1

t, can be chosen to be -1 80 that &, = , which makes¢,,, =0. O

For example, one of the paths illustrated in Figure 3 is represented by a
tag t,. = 10T of distance A = A, = 3; in this case t, is chosen to be 1 so that

t, = 0.
Theorem 2.4 There exists an optimal solution t ' to (P) which has no adjacent
nonsero digits; i.e., t,,, 't =0 for 0< i < n-2. If t,_, =0 then t is the

unique optimal solution with no adjacent nonsero digits; otherwise, there exists
another optimal solution t° with no adjacent nonsero digits, where ¢’ =t/
0<i<n-2,andt,_, =t _, .
Proof: The proof consists of three parts. Part (i) inds a minimum weight tag,
part (i) proves the uniqueness of the minimum weight tag when t/_, = 0, and
part (iii) finds another minimum weight tag if ¢, _, = 0.
(i) An algorithm which results from modifying algorithm ALL-TAGS is first
given to construct a minimum weight tag; it is followed by a proof of its
optimality.

Algorithm SHORTEST —PATH (At '.,/,, _1)

Ay=D

fors =0ton-1do

) A
if A, is even then t, =0, A'“T

A -1 . A1
is even thent, =1,4,,, =

A +1
2

else if

else t'=1,48,,, =

endif
endif
enddo
Since the set of tags generated by algorithm SHORTEST-PATH is a subset of
those generated by algorithm ALL-TAGS, algorithm SHORTEST-PATH

OO

DA 4

t

" h S

P eSS
‘l

N

LN Se 0
ol

-
.

-

ER I

[N
.'/./.-’,
5 .':‘..‘_

n/ I‘{"ﬂ ;./'-/'-/'
v Ps FAP)

[

P,
»

.',:1_
e

f,'
¢

A

o
. . tat
PP A

v
o

{ f.." »
3 "2’

<

P XS

4
R

4, &

e

PR

[

" - e _y
D 4 7 o S ,

@ SN @ S o A IR O ? AT :
IRl A ; AR R R LAY 6 A AR WA o A SO LA
IS ANASANRS TN Bk ARRANE TL R E AR TURRATPNS .v\.....h...-..

Ao e L A '\.;.C...m.\w.

-
—
£ o
B
[VI =4
= @
- =
)
L)
5 Z
+ BM
T =
a = e
5o - =
Pl -
“; ©
=gy %
o 0O
@
v %
=z
- kY © -3 — o~ o L) Tnh..
< -
o v
_~
[
No
- ~ <« © -) ~ & s
e - &
54 ®
B - b a
o : . @
, SR - v
,,,... R ! rng
L e wr....m
. -
o w ~ o - — - o 2
B EELB T 3
;) C - =
. N b
- . R
. o~
. . . Z o =
. . : wma
BEEE - ° 2~ 2
‘=
- U 'y
e .2
£ 8%
- . wm @
=) —~ =<
2 & % o
~ 2 - S 3z
ta 2 el
o - w0 D
[=4
B o
g5 £
mu‘
f..-Onn
o0 [}
s ¢ o
3= 2
O = o
a o

Figure 3.

e -3 > - - £ - o e A > . . -

-
2.

LA

-

4N N

]
’

DY T

e B R Ry

PLPLPRE Y G A A

e R N

LR b A AL N A

B i il

o PLA

-~

correctly generates a tag of distance J. It remains to show that the tag has
minimum weight. The strategy used in the algorithm SHORTEST-PATH is to
generate a tero digit whenever possibie {for J, is odd, t, is chosen to be such
that A,,, is even, which makes t,,, = 0}. To sec why this is a good strategy, let
i be the smallest index such that) is odd, and let t* and ¢ be the solutions

found by applying this strategy and and by not complying with this strategy,
a,-1

respectively. Assume that, without loss of generality, is even. It is

shown that there are four possible cases and the terminating conditions for each
case can be continued by applying the discussion for one of the four cases recur-
sively.

Case 1

The table below illustrates the discussion for case 1 based on this assumption.

case 1 ' A1 ¢ [4a,4] ty o 84

¢ lal o B e 12y
R N e e~

A'-— . . .
(= 4,,, for t°, denoted A, (t)) is assumed to be even, ¢,,, = 0.

Since

Because &, (t) = is odd, there are two possible values, 1 and 1, for ¢, .

Ife,,=1,4,,(t)=4,,{t’). The discussion for case 1 terminates here.

Case 2

The alternative is that t,,,=1, which is illustrated in cases 2, 3 and 4 in the

is assumed to be even.

tables below. In case 2,

case 2 1 A A4 by (D4

. A, -1 A, ~1
t a) 1 | o [
. [-3.] 1 [A,2+1 |1 [A,4+3 |

Case 2 terminates here with A, .(t") being even and A, ,.(t) being odd.
Case 3

In cases 3 and ¢4,

is assumed to be odd. Case 3 is illustrated in the fol-

A +3

lowing table with the assumption that is even.

R N P S AR I S A ARSI
Tl LT ARSI ER SN RO

v'_‘\r'\v"_v'... AiaA ?'\. ..

Y
E
S
.:‘
_‘1
‘..‘
."‘
‘4

o e e
-/'r~‘. ot -.. '_.
2, o 5w

\f-'f{
et

s «
v, ®

af w = =
Vs

o2

oo
4 3
.

s
A g%

Y "c A
SRR

» e
.
»

\
Sy

e

» e
e

R
PR

A

LA L
P

L J
N

" A l' "
-\ l.'

N A

e
b TaTh e

1 lﬂ

IS"':’ 'y
[\

'Sr"‘
“

£
v

o
.

Y

@
?H

W

P
YN,

.,
b7
"l
5 Yy

A A A e e T L T L P Y vy . vy LA = Ehe X ‘Gd S Al o -

\: -
> e
v ’\-f
N Ny
., 13- 5
. -
b M
e ':
i~ o~
N A
" A ' ’\
: cased ot vt 2., b Bl N
o= A1 2,43
ag t P =10 el ' | ;‘
e : 2 4 g ey
~ ‘ N) K 343 Ny
) t RS S e [~—=-1 © — - 2
'~ ! ' 2 4) o
-~ (" ., 3
e . . < -1 Lo . - +3 -\
Since A, {t)= ~——— sodd, !, = 1orl,andt, = 0. Siner ~— is even, LA,
K 4 . g b
'\ the algorithm chooses t, = 1. and 2, (t)- A, {t). The discussion for case o
Sy 3 terminates here :__
-.-- \"
't-.‘ Case 4 :-.
s -~
- - >
" Case 4 for which ~—— is even is Hustrated in the table below. .P:
e
S case 4 Jay { t (AL t (A ®
™ case 4 o BURSIINS TS L E T 1T :
:.: L R A, -5 .
3 Cooa T B
SO : B 3 A, 43)
"y [P {) W
i t S 1 S 0 s }.‘ .
Y
- A,-5 .) . .o, b L
NN if g s even, the algorithm chooses t,,.=1. In this case, &, .t)f~—g o
v, e
b '.: _\‘*3 . . . -"‘-
K> and A, {t)=- — . Tke discussion for case 4 terminates here. -
. AL
- . . N
P To conclude, cases 1 arnd 3 have the terminating corditions that KA
oo A,,_.(.t) = A, (1) and &, (¢ } = A, (t}, respectively. The discussion for !
- A.{t)= A (t), which is the condition where the discussion for all cases begin, e
:-: can be applied again to these terminating conditions. In cases 2 and 4, the ter- {::
-l‘: minating conditions are that A, {t') is even and 3, (t) is odd, aad &, ,.{t") is O
" even and A, {t) is odd, respectively. The discussions done for each case for ‘.-
h iteration ¢+1 when 3, (t") is even and 5, ,{t) is odd can be applied again to s
i them. Let jt ;| denote the number of nontero bits of t,,. In case 1. g p
[. . . . "
“a Jt ./,*,l =1 and It,/,*,) = 2; in case 2, |t '/v+-“ =2 and It,/,ﬂl = 2; in case 3, :_.
‘: It ol =1 and Jt,;, ;) = 2; in case 4, |t",)2l = 2 and |t,,4.| = 2. Thus all _'_’
. possible cases are exhausted and no t yields a tag of smaller weight than t . o
b {(ii) Next the proof of uniqueness for the tag generated by algorithm g
-, SHORTEST-PATH is shown; the proof is by contradiction. Suppose there exists »
". another tag t ,,_, that also has no adjacent nonsero digits. Let t be the lowest R0
?'.-'. index such that ¢, = ¢} thus t., _, - t'.,“/,_l so that A (t) = A (t7). There are o
- three possible cases, {a), (b) and {c), for t, =t . {(a)t, =1 and t' =1 (or vice o
- versa); then t,,. = 0 =1t,, since t,{ . =0 and t,"t,',, = 0. But this is immpos- _',.
’ sible because A {t) - A {t') is odd so that only either t,, =0 or t.. - 0 -
o (Lemma 2.3). A contradiction results. (b) t, =1 and ¢t = 0 (or vice versa). '__.
v o
R o
k) .:,:.
»
. "1
‘-P_
v
v,
"
.
\
l“l
'y
RS TS, t ‘l" Y S R SRR -\1 N AT N e - el .\ 2
. Ea

Pa¥ v b by Ay a1

5™y .

Ll g W g Wy

LI i R Sk R L N

+ i)

- 14 -

Then A,(t) is odd and A (t') is even. But this is impossible because
A,(t) = A(t7). A contradiction results. (c) t, =1 and ¢, = 0 (or vice versa).
The discussion is exactly the same as case (b).

(i) Existence of the other optimal solution is shown for t,_, = 1. The case
that t,_, =1 can be treated analogously. If t _, =1, then & = (Z—t,'Z'
¢ o)
+ 2 Y mod 20 = (42 + 277 < 2") mod 2" = (472 — 2°7') mod 27;
ot} 1)

so t, _, can also be T and the rest of digits remain unchanged. O

Actually the proof of Theorem 2.4 has a much stronger implication regard-
ing optimality of a tag than just verifying existence of a minimum weight tag
that has no adjacent nontero digits. It is stated as Corollary 2.5.

Corollary 2.5 A feasible solution to (P} is optimal if it has no adjacent nonsero
digits.

Proof: From the process of generating each digit in algorithm SHORTEST-
PATH, the feasible solutions with no adjacent nonsero digits are either unique
or different only at t,_, (1 or T). There exists an optimal solution to (P) that
has no adjacent nontero digits. So the feasible solution with no adjacent
nonsero digits must be also an optimal solution. O

Corollary 2.5 only guarantees optimality of a tag that has no adjacent
nontero digits; a tag with adjacent nonsero digits may as well be a minimum
weight tag. For instance, for n = 4, & = —8, the tag of distance & can be
t,. = 0710 or L= 0101; bath tags have a minimum weight of two.

Corollary 2.8° The maximum number of links on the shortest path in the PM2I

network from any source to any destination is [n /2|, i.e.

n/2]

max H, =
0< A< IN-T)

Proof: From Theorem 2.4, there exists a minimum weight tag with no adjacent
nonzero digits for every distance A. The maximum number of nonsero digits of
such a minimum weight tag is |n/2|; i.e. the tag consists of alternating 1 and 0
digits. O

Algorithm SHORTEST-PATH is capable of finding a minimum weight

routing tag for the ADM network, which can be converted to a combination tag
for the PM2I network, and also deduces that the number of hops is bounded

above by |n/2|. This knowledge can be further used to investigate properties

“An equivalent result is reported in [HwB84). We were unable to identify the original reference which frst

reported this result

.
5 5

AL,

.)
oY%

.
.

PG, T LT,

WA GRS

.. ". .‘. -'. o .'-‘- « @
) A

O

a4
.
v

N S I I
N
'

[ALAREN

')'l

.";ﬂ
I‘JP v

b T ']
Lk
a_5

l"‘l'
r
P4

fr'-
7’ &
.5y

TR R TN T W Y W W L W WL WLV N

of the ADM network.

3. Construction of Haif Augmented Data Manipviator Networks
Corollary 2.6 indicates that the shortest path between any two nodes in

15 the least

PM2I network uses at most |n/2/| links, which implies that |n /2

number of stages needed in a multistage network based on PM2I functions,
where any source can be connected to any destination in one pass. Furiher-
more, from Theorem 2.4 it is possible to infer how such a network can be con-
structed. For convenience of discussion, assume n to be even hereafter. The
path in the ADM network defined by the routing tag that has no adjacent
nonrero digits includes only one of the links -2/, —2-% 2% 42-'* and

N

LI BV R
. ray Al

)
Y R

straight link, for every stage k,0 < k& < (n/2)-1. This implies that the links of :~:

two adjacent stages 2k and 2k+1 in the ADM network can he coalesced into T a

one stage and thus the total number of stages is reduced to n/2. The network

is called Half ADM [HADM) network. The HADM network consists of n,2

stages ordered from 0 to (n/2}1 from the output side to the input side. An

extra column of switches is appended in the input side and is referred to as

stage n /2. A source is a switch at stage n/2 and a destination is a switch at

stage 0. Switch j of stage k+1 has five output lirks to switches of stage k: .

(3427, (542°%), 5, (7-2°*) and (j—2%**'). An HADM network of sise N = 16 o

is shown in Figure 4. .
The tag generated by algorithm SHORTEST-PATH zan be used as a .

routing tag in the HADM network. Close examination of the topoiogy of the k

HADM network reveals that there exists latitude in using tags other thar the

ones with no adjacent nonsero digits to control routing in the HADM network; -

i.e. two adjacent digits of a routing tag can be both nontero. Since, for 2 given :c;.:

source/destination pair, only one of the links —-2°%*! -2 427 42 %' and o

straight link is used for routing in the HADM network. as long as the tag "

satisfies the constraint that t.,t.,,, =0 for 0 < k < (n/2)-1, it is a valid
routing tag in the HADM network. There are five possible combinations frr »
such a pair of digits ..t ,,,: 10, 10, 00, 01 and O1. 1f ¢t .t ,,, = 0, link -2-* is .
used; if ¢, 1.4, = 10, link +2°* is used; if to t.,,, = 00, straight link is used; if -
oty = O1, link +2%*" is used; if .t ,, = 01, link —2%*' is used. The rout- ‘
ing tags representing the same distance A in the HADM network are called the <
equsvalent routing tage. The multitude of equivajent routing tags suggests that
there may exist multiple paths for some source/destination pairs. If a routing
tag has no equivalent routing tags, it is unique, and only one routing path exists
for the source/destination pair.

Recall that algorithm SHORTEST-PATH always generates a tero digit

whenever possible. If A, is even, ¢, is uniquely confined to be 0; if &, is odd (for
which 2, can be 1 or 1), then it chooses the value for ¢, such that t ,, = 0. This

at
- - - - - -
AR Ch LTS L LT T,
.\f\.-' -f\f-‘-' "f\I:-f?I:'-':-‘:-'\':f\.":'". '.;_
A T N N

\lv\-nc\\. ' X X X _-.--.--!- ‘-* L9 .

PEOA, @ Py
>y\“ .,.xex..s PR g .e\u... A s @I J.ﬁ.u.\ o x x...,.\... MANNINI @ Il x 2 74
.-f.r T T S e T TN Sl S PN IR A\\\\. \. -\....I..-r \% \\
N) PP A A e i A t-\.\st\- g
» . S
b,
"/
i =
U E
[=]
: : 8
- = 223523 2E0RREREEREBEERERRE: - 02 o - .
“ 0 e 0 Pared et et o b he et g o g o gt e e Y e har et et e Yo 0 89 o 2
. N P A BN PPT i
. '(‘0."0.':0.030. x5 'Avohvoo.v 0 0.- v: o tere! Yeet et tene b ':0.0:0.0.0.0’\\ Pd
, SSSH KK X PPN :0‘0.0..0:0:0.0.0000 S&S N
¢ 0\\“.”.“.. .“u .“"..'“v..“v..“v 5 .“"...“v..“v RS XK <
- . v’.v’: .-’.-’3’3’.-’:’:’.-’3’3’3:’ / =
) g auaunwauaununuauauawaunvauau;w 5
] , ¢
o«
J 2 ,\:(:,\:(:(:(:(:/A (:(: '(~ '/& W W
3 .
‘. Qi 2
“ 3:\ ,:\ /:\ ,:\ ,:\ /:\ /:\ ,:‘ ,:\ /:\ /:\ /:\ ,:\ /:\ /:\ /:\ \ &
9 ~ 4 klEEIEIEREIHEREIEIEIEIBIEIE] - -~ ° -
. [V
v 5
v 5%
. & i

OUTPUT
SIDE

N T M T O A TR T T e Y N UYL VR T Y T T '.".""\‘Nx.“"l‘.‘WL’V'."'V"X'V‘"I'.F Ll st A" e e a2 e o
Ll BRI L sl PR a il e gie pun Jie ofs 074

constraint can be relaxed for generating equivalent routing tags for the HADM

' network. For t., = 0 and A ,,, odd, two subsets of equivalent tags can be gen-
4 erated by choosing 1 for 1, ,, for one of them and by choosing T for t.,, for the
other. That s, if ¢, t,,, =01 or 01, both 1 or T can be considered for t ,, tc
f form equivalent routing tags, since it'’s always possible to make t.,, tero by
properly choosing a valve for ¢, {(lemma 2.3) and satisfy the constraint
t 'ty =0and ¢, t, .=0 Forexample, there are two paths from § = 3

to D = 13" in an HADM network of site /V = 18, which are specified by the tags
ty = 0110 (A = —6) and ¢, = 0101 (3 = 10), respectively. In this example,
t.t, can be 0T or 01; particularly the tag ¢, = 0710 is obtained by choosing
t.=Tsothatt, = 0.

Similar to the relationship between the ADM and IADM networks, the
Half IADM (HIADM) network has the same topology as the HADM network with
the input and output sides exchanged. A tag 1., for routing from & Sto

in the HADM network can be conveniently converted to)., whtre
1", = —t,,0 <« < n—1, for routing from D" to S/~ in the Half JADM netwoerk.
Note that tag o also satisfies the constraint t -t ., . = 0, \
0 <k <(n/2)-1. LS
It was shown that for some source and some destination in the ADM net- "
work, there exists only a path between them; so does in the HADM netwerk. ._}_9.;
For example, routing for a distance A = 0 in a HADM network of site N = 1§ ::-I':.:
has a unique tag t,;, = 0000, which represents a path consisting of all straight ;:‘_::-
links. Thus the HADM network is not fault-tolerant. Tt is interesting to ‘j.::
attempt further reduction of the network complexity while maintaining the con- ,{:;\.-;
nection between any source and any destination. [t is shown in Theorem 3.1 ®
that actually only four output links for each switch would suffice to provide ;‘,_.:-'
connection for any source/destination pair in the HADM network. ;_.';:;
Consider a quad-tree that consists of log,V levels and N leaves. Clearly :.._:.::.-._
the out-degree of four for each node in the quad-tree is the smallest out-degree l‘:;.': ‘
such that the root can reach any leaf; if any node except s leal has an out- u ;
degree less than four, some leaves can not be reached by the root. Similarly, for A
a network of site NV that consists of log, /N stages of uniform switches, at least -:;'.‘_:\.
four output links for each switch are needed so that any source can communi- "_:::
cate with any destination. Such a network has the minimum number of output :\ :;
links for each switch required for one-to-one connections and is called a -',J-:H
Mnimum ADM (MADAM) Network. It consists of n/2 stages of 4x4 switches.) _C)
Each switch of stage k+1, 0 < k < (n/2)-1, is connected to four output links: RE
straight link, +2%, —2°* and +2"**'. Figure 5 illustrates a MADM network of ',
size N = 16. e
The MADM and HADM networks differ only in that each switch of stage & :‘:
in the MADM network is connected to only one of the +2°**" and -2-** links _
,_:.;\'
R
| e
: Pt
. »
: R
' .
| AN
: - O
.:,'."'Jf'-;\:\:‘-’s“'-." L et S I Jnena e P L P :ﬁ: 3

5 i

10

10
11

. B R S RPRRENTNS) SRR WA e R0 WA
Sl OS2 AN TR AL NSNS ﬂ...x. AN XA WY,
by B KA A AN\.. SRS T N ATy .n_. en...... ...\...v.,..vh. 0. g .<,. O...\”c”....... e O e 0........ ety
. AR ok AL P ARA Y LA AT ..I.-.r.-fa A KA RIS P...-I\...\“.
..JL
..«h
i
. L
m
[=g
)
ES
Z [
« = = = BIAFEREEEELEIEIEIRIEIE)e - 9 7 7~ < ©
B o\ -

i.l.!
&
3
&
i
0
1
2
3
‘
3
s
7
1

K é

.,:. W ,,;.,,

* 2 IR EEHAEEERISIEIEIEIEIEIE] - - °

Figure 5. The MADM network for N = 186,

stage

OUTPUT
SIDE

-9 -

while each switch of stage k in the HADM network is cornected to both links.
So only a subset of routing tags for the HADM network are valid routing tags
for the MADM netwerk. In addition to the constraint that t,-t,, = G for
0< k < (n/2)-1, which a routing tag for the HADM network must satisfy, a
valid tag for the MADM network must also satisfy the second constraint that,
for &, odd, t,,, must be 1 if link +27*"" is used and t_,,, must be 1 if link
—2* ") is used. The se~ond constraint does not specify which of links +2% *' and
—2°¥*1 is used at stage k; each stage can choose freely a plus or minus link. As
a result, there are as many as 2"/~ types of MADM network; they differ in their
choice of link +2-*' or —2-**! at some stage k. The algorithm MADM-TAGS
below demonstrates an example of generating routing tags for a particular type
of MADM network that contains +2°**" link at every stage k,
0 < k < (n/2)-1. For convenience of discussion, this network is referred to as
the MADM network.

Algorithm MADM-TAGS (At ,)

A=A

fort =0ton—1do

A
if A iseventhent =0, , = —2-

A

3,

else if iis even then if *——'2- 18 even then t, =1,

S 1
A= -
. A 1 i
else (, -1, 50, — ——
2
endif
endif
endif
enddo

The difference between the processes of generating tags for the HADM net-
work and for the MADM network is that, ior A, ., odd, t.,,, can be 1 or { for
the HADM network while ¢, ., can only be 1 for generating routing tag for the
MADM network. So each digit is uniquely determined in algorithm MADM-
TAGS. This indicates that there exists a unique tag for each distinct &, which
corresponds to a unique path for each source/destination pair in the MADM
network.

Since there are only four output links for each switch in the MADM net-
work, two bits per stage suffice to represent the choice of one of the four output
links of a switch to send data. A total of n bits are needed to implement the
signed-digit representations for routing tags. Let r,,._, be such a routing tag,
in which a digit can be represented by a bit. Each switch at stage k in the
MADM network examines bits r.,r ,,, to determine the output link via which

.

.

. S N
Natata e dan g

DR R
BRG]
AR

="

oL

",

Y e te e n

oy,

B

37

:.(ﬂﬂ‘i. e
A
SAEE,

[
&

L.

PR ST SN o

«eten

4

" A
]

195555, 58"

A

rfels

P AN
I\DS\

» .’

o P
AEOSNCERA
PO T

AR RO

ALl L
.
>

‘o
N

P 4
.
«

e
(N]
g
.

)
SRR

'.
g
)

F 2 T B
2 ey

7

-

SN

o s k- et a A s v
AR Jat 20t AN RSt e A SR L A A SRS A S WS o 4y)%

.20 -

data are routed. One possible implementation is shown below.

11— 4274
00 — straight
Tl = 01 — o for 0 < k < {n/2)-1

lo — _2'_1‘

where — means “en route”.

However, for the generation of tags in algorithm MADM-TAGS, two bits
may be needed to represent a digit of the routing tag and thus a total of 2n
bits are needed. Once the computation is done, the tag can be converted to
ru/m—1 for actual routing, which requires only n bits per tag.

Theorem 3.1 There exists a unique path between any source and any destination
in the MADM network.

Proof: It is shown that a routing tag t,;,_, for the HADM network that con-
tains t.. 1., ,, = 0T can be recoded to become t'(,/,,_, such that t'._.,,i"_,,“ = 01 and
t.t,,, =0, for 0<j<(n/2)-1. Case (i) If ty,.=0 such that
tor ok 4 = 010, then ok jokgs = 011¢',,4 or O1lt,,,. Since A.,,. is odd
(€164: =1 or T), from Lemma 2.3, either 011t 5 or 017t .. has o= 0.
Case (ii) If t.,,. = O then t.,,. must be equal to 0, because a tag for HADM
network must satisfy the constraint .t =0. If .. = 0110,
!'._,,/.JH;‘ = 0100, and if t,),y = OTI0 then t'.lk/._,kﬂ = 0101. The discussion for
recoding t.;,.t ... = 01 is analogous to that for recoding t.,t.) = 0I. Next
uniqueness of the routing path is shown. Since the out-degree of every switch in
the MADM network is four and there are n/2 = (logN)/2 = log,N stages, each
source switch and all switches connected to it form a quad-tree. The source
switch is the root and the switches connected to it are the nodes in the quad-
tree, with the switches of stage 0 as the leaves. There exists a unique path from
a root 1o a leaf in the quad-tree and thus also a unique path from a source to a
destination in the MADM network. O

The topology of the Minimum Inverse ADM (MIADM) network is the same
as the MADM network, with the input and output sides reversed, much like the
relationship between the ADM and IADM networks and between the HADM and
HIADM networks. Especially the routing tag conversion technique used for the
HADM and HIADM networks can be readily applied and the proposed routing
scheme for the HADM network can also be used in the HIADM network.

e
T
.x

2y

-y
Syt Ny tw
) 3

P’

%y Y v
Aty
SR SACY AL AT

Lol

[S
PP A
'-'r\.‘

“we

2
2y

AR
LT
e

55
TEX,

."\?

f‘,'l;l.
‘-_\-J..'.'.'s
AP Y

' Ay
P

P4

LAl

AR
NI

b 3

l“‘n'. i\ i
L]
N

VAN
MARRA

v
s’ @

TAANIN

2y
f)

s
o
\{N 54t

e

N Y

L s
Y

o
v

NN
N

L%

L
e
"
‘v

.21

4. The Extra Stage MADM Network

Complexity of the MADM network is minimum in the sense that, given the
constraint of network size N and loz /N stages of uniform switches, it can pro-
vide communication for any source/destination pair in the network by using
minimum number of interstage links per stage. However, this kind of topology
has a drawback that it does not provide fault-tolerance; a switch failure would
prevent some source/destination pairs from communicating each otier. The
lack of fault-tolerance suggests the use of augmentation techniques AJSRI to
improve fault-tolerance for the MADM network. First an important observa-
tions for routing in the MADM network is made.

Theorem 4.1 In the MADM network, the paths from a source S, to destinations
D, (D+(N/4)), (D—-(N/2)) and {D~(N/4)) are all disjoint.

Proof: The proof shows only that the two paths from S to D and from & to
(D—(N/4)) are disjoint; the other cases can be treated similarly. The proof con-
sists of two parts: (A} given the tag t,,, _ for routing from S to D, a tag t .
for routing from S to (D~(N/4)) can be derived from it and they differ oniy in
digits n~2 and n -1, and {B) proof of disjointness of the two paths based on the

results in (A).

(A) Since t.,_, is the routing tag from S w D (D &)=
(S 2 +1,_,2""") mod 2". So (D-5-(\N;4)) -

(Y6204, .—1)2"7"+t,_,2" ") mod 2°. There are thre~ possible values, 1, i
and 0, for t,_., which are discussed in cases {i), (ii) and (iii), respectively, as fcl-

lows. (i)1f¢t, =1, (D-S—(N/4)) = (Y 4,22402" -+, 2") mod 2'. That

t ol y

is, !'.,/"_, = t,.-0t, . () 1ft,. =1,1,_, must be O because t,_-t, , = 0and
(D~-S-(N/4)) = S ,240:2" 74t -1)2") mod 2", Then t . =
t ool s
(¥Y1,24+0:2"--2""") mod 2" = (Sj‘t,2'+0'2"""—‘2""+2")mod 2" =
[E) 4 -t
n--3
(56,2402" 42" Y mod 2". So oy, = to.-01. (i) If t,_.=0,
ol
n~3

(D-S—(N/4)) = (X t,2-2""+t,_,2""') mod 2°. There are two possible
1l)
values, 0 and 1, for t,_,, which are discussed in cases (a) and (b), respectively.

t._, can not be T because it is assumed that link +2" ' is used at stage n/2 in

the MADM network. (a) If ¢,_, =0, to,_, =t,._10. (b) If t,., =1,
n-=2 n=2
(D-S—-(N/4)) = (Lt2-2""42"" Y mod 2" = (31,2'42"7°40:2"" ") mod 2"

[B_1 ot |
so thatt ,,_ . =1,,.10
(B) From (A), it is seen that the two routing tags for the two paths from S to D

<@L
B

L T
A A

V]

.t
-
»

A %yt
3]

.
v
>

L
'A

. ‘-“.'-' 4‘;,'1

LTSI

7@

“a
T
s s v

g = 5
W
Vot

b

558 5

e

Pty

N I A
ANEN
" 7)

- I l- o -
B n‘ l‘ "
ole 'l

- o

S \.‘r".- N
.

[EARARNNT
4 0 'v.'n 'v;." .

R A

AR A
AL 4
-

. A A
Ml Sy S I
P

-
~

- PRk Tl Wy - L It A - -~_ .. - _ - - -- W - I‘.
v
sl a
2.
-22. AT
i R
L
3
AT
(B) From (A), it is seen that the two routing tags for the two paths from S to D ":" .
and from S to (D-{N/4)) differ only in digits n—2 and n—1;ie. t, = t, for ,.-.,_
0 < ¢ <n-3. The two tags are the unique tags for routing from S to D and ‘:‘_.-:'.-
from S to (D—(N/4)), respectively. Let F and F' be the two switches at stage :‘~_..\$
(n/2)-1 on the paths from S to D and from S to (D—(N/4}), respectively. _:’_-;"'
wit PR "
Since t, =t, ,for 0 < i <n-3, T1,2 = Zt',2' (i.e. the distances that the :"'::;
ol) tmad)
two paths traverse from stage (n/2)-1 to O are the same), and the distance oS
between the two destinations D and (D—(N/4)) is ((N/4) mod N); hence the \{::
distance between F and F must be also ((N/4) mod N), denoted _:-:::-_*"
|F--F| = (N/4) mod N. The intermediary switches at stage &, -ﬁ‘-’_ﬁ
0< k < (n/2)-2, on the two paths are F+5, and F+6,, respectively, where if}‘?
5, = l /z’: (2 2% +1.0,,2%). But (F+6,) = (F+6,) mod 2" because "'ﬁ?:‘v
Fm=t .
|F—F| = (N/4) mode N. That is, the two paths never share a common t'.. ‘
intermediary switch and thus are disjoint. O :_}k
The identification of disjoint paths from a source to different destinations we
in Theorem 4.1 can be used to improve fault-tolerance for the MADM network. __,\
The technique is to add an extra stage to the MADM network. The extra stage .\.':
can be placed in the output side of the MADM network such that each switch :‘:':‘\-.',-
D at the extra stage is connected to four switches at the first stage of the -‘:." -
MADM network: D, (D+(N/4)), (D—(N/2)) and (D—(N/4)). Data can be sent s
from source S to any of the four switches and then to the destination via the e
extra stage. Thus there exist four disjoint paths from any source to any desti- T
nation in the extra stage network. Such a network with an extra stage in the :-_:‘_:5}'
output side of the MADM network is called an eztra stage MADM network. An O
extra stage MADM network consists of (n/2)+1 stages labeled from 0 to n /2 “‘-: ‘
from the output side to the input side, with an additional column of switches in i
the input side referred to as stage (n/2)+1. The extra stage in the extra stage . @
MADM network consists of the switches of stage 0 and the input links of the -::-':::
switches. The topology of the extra stage MADM network from stage 1 to :"'_:'
(n/2)+1 is the same as that of the MADM network from stage 0 to n/2. The :::‘_"_\‘
extra stage MADM network is three-fault-tolerant because of the existence of :\-":
four disjoint paths for every source/destination pair and thus can withstand at - ‘;"
least three switch failures (except the input and output switches). Since each D ata
destination in the MADM network has at four input links, which are connected :"-‘:-'
to four switches in the preceding stage, at most three-fault-tolerance is possible. :_::::
By appending an extra stage to the MADM network, the optimal fault tolerance ,\';\:_
is achieved. “t-':-f

Since the four output links of a switch at the extra stage are straight link
and links —2"7° (= N/4), 42" " (= N/4) and 2"~ (= —NN/2), the extra stage

(n/2)+1 to stage 1 in the extra stage MADM network Using the tags of dis-
tances A= (D-8), A= (D-5-(N/4)), S = (D-8-(N/2Y), anc
A = (D-S+(N/4)), respectively, a source § (a switch at stage (n/2)+1) in the
extra stage MADM network can send data to any of the four switches D,
(D+{N/4)), (D -IN/4)) and (D- (N/2)) at stage I, and then ;eaches the desti-
nation D at stage 0. The routing fiom D' to [is controlled by tag bits 00,
from (D+(N/4)) to D", by 10. from (D -(N/2}) te D", by 01, and from
(D-(N/4)) to D", by 10. So in the extra stage A{4DM network, n+2 bits are
needed to represent a routing tag. Note that since the four tags of distances
A= (D-8), 2= (D-5S-(N/4), 3 = 1L-8-(Ny2)), and & = (D-S+{N/1))
differ only in digits n—2 and n--1, once one of them is computed, the other can
be readily computed by recoding the last two digits. The prool of Theorem 4.1
demonstrates the vxample of recoding the tag of distance A = (D - §) to a tag
of distance) = (D-S—(N/4)). The table below summarires the recoding of
digits t,_.i. ., of a tag into the other three tags that are of distance ~ A /1,
- N/4 and - N/? from it.

B Y 72 SR 12 SY. 17
00 1o 1o o1
01 | 1o 10 00
10 ; 01 00 10
10 00 01 10

Figure 6 illustrates an extra stage MADM network of sire N < 18 It &
also shown the four disjoint paths from S =3 to D =12. They ar
represented by the tags of distances & = 9. 2 =5 5 = and 3 : - 3. which
are (t,, =)1001, 1010, 1000 and 1010, respectively The ronuting paths are
(3,11°,12:,127), (3°.7-8",12), (3,3-4,12") and {3 150 .12), respectively. Rout-
ing from 12 to 12 is controlled by tag bits 00, from 8 to 12, by 10, frem 4 to
127, by 01, and from 0' to 12", by 10.

It can be similarly shown that an extrs stage can also be appended in the
input side of the MADM network such that a switch S at the extra stage is con-
nected to four switches at stage n/2 of the MADM network: S, (S+1), (§-1)
and (S+2). Four disjoint paths result from addition of such an extra stage to
the MADM network. In this type of extrs stage network, the extra stage con-
sists of the switches of stage (n/2)+1 and the output links of the switches, and
stage n/2 to stage 0 has the same topology as the MADM network. The extra
stage apperded in the input side has the same connection patterns as stage 1 of
the MADM network. A source S at the extra stage can send data to any of the
four switches at stage n/2: §, (S+1), (S-1) and {§-2) that are directly con-
nected to it and uses tags of distances A = {D-5), A+ (D.1-F)
A= (D-1-5)and A = (D-2-5), respectively, to send data to the destinations

[l

WA AN

e
‘
7.

rA
AN

P
LN
LY

l\ ﬂ
sy

‘

L84
LA
455N

R M At
VRN,
vy y

“.x_a_»

Y » RO Ay NS

< . i a v
@ [ttt @ NN @t
-’\F\A.\f\f!--\fJ-.)ﬁ-u AALN

DOORG
S v S

.

I v.-)
P IR APl ol

4]

s
S
-
Q-
...
-
. 3 B
' 2 2
. -
1] m"
4 = kA
: £
[-]
z @ —~ 2
o) __“
£ NO
. . =
=]
Yy x =2 =z = 2z = < I=2UH-UHH=-H-U=l:-H=1I=1EHZIZHEHIHEL . - &0 & = <« © - fnm
™ -,
° 4
> 3
R X v e
v e
£ g
) Md
ma
P 4 Y, i N . \ . 4
A = = o 4 - - = -~k M IR IR I IEZ I ES | 50] D™ T | BN Yl 2 -~ e ™M e L et ~ v
. me...m
1
-]
. “m
-
o~ 2 e
f - L
” o
5 v a
v
« =z =z Z - T < - - H-H-= - 1M1z -~ - = +« & == - - £ w
- =
» - -
. -
£ 35
)
2’!
Lol
- oS
& -
H e .
. <
- » O x
Y 7 = \ © - = 3
* = - 2 4 = -~ = 2 | ad EN TR R T R (258 | =% 1 B | Y £ e e A JREY SN S B - mk
% cck
A ."-IM
w ¥
£ aZ
4 = - < =
24 H g &
e g 2 @ =
h S @»
o
4

Figure 6.

D at stage 0. The routing from S'"/-'"! to §"/- is controlled by tag bits 00,
from S/ to (§41)"7, by 10, from S'"/-i*' to (S~1}"/-, by 10, and from
S*141 4o (S+2)/+, by 01,

Apparently adding an extra stage to the input side of an MADM network
is equivalent to adding the extra stage to the output side of the MIADM net-
work and vice versa. Thus ail discussions associated with the relation<hip
between the MADM and MIADM networks can be applied for the extra stage

networks as well.

b. Conclusion

This paper addresses the problem of designing multistage networks which
are based on the implementation of PM2] functions at each stage. This type of
multistage networks is relerred to as augmernted data manipulator netwoiks
and includes the well known ADM and IADM networks. Since the designec pro-
posed in this paper use fewer stages and links than the ADM and LADM ret-
works, they are referred to as partially augmented data manipulator networks.
The HADM and HIADM networks derived in this paper have the least number
of stages required in multistage netwerks (based on PM2! functions) where any
source can be connected to any destination in one pass. The MADM and
MIADM networks also have the least number of stages and, in addition, have
the minimum number of links per switch required for one-to-one connections.
The extra stage MADM and MIADM networks contain one more stage than the
MADM and MIADM networks, respectively, and are fault-tolerant versions of
the MADM network capable of tolerating at least three switch faults.

References

IAdS81° G. B. Adams 1ll and H. J. Siegel, "The Extra Stage Cube: A Fauit-
Tolerant Interconnection Network for Supersystems,” [EEE Trans.
Computers, Vol. C-30, No. 5, pp. 443-454, May 1981.

[Avi6l] A. Avizienis, "Signed-Digit Number Representations for Fast Paraliel
Arithmetic.” JIRE Trans. Electroniec Computers, pp. 389-400, Sept.
1961,

Fen74 T-Y Feng, "Data Manipulating Functions in Paralle] Processors and
Their lmplementations,” /FEE Trans. Computere, Vol. C-23, No. 3,
pp. 309-318, Mar. 1974,

HwB84 K. Hwang and F: A. Briggs, Computer Architecture and Farallel Pro-
cessing, McGraw-Hill Book Company, NY, pp. 345, 1984.

RSO
-

R AR . S .-
RS, AN SN A PRI FE AT,

g
f';'n’n"

P
‘.

A N)

'y
e
)

A
’

N

L

PR A
SE0
b

-
, e
")

L0
)

b

L4

LA

l“"
’

"' ". [}

.
0

e eleee

.

. a Py ‘.- "....

e

[McS82]

[PaR82]

[PaR84]

(Sie77]

[5iS78)

R. J. McMillen and H. J. Siegel, "Routing Schemes for the Aug-
mented Data Manipulator Network in an MIMD System,” /EEE
Trans. Computers, Vol. C-31, No. 12, pp. 1202-1214, Dec. 1982.

D. S. Parker and C. S. Raghavendra, "The Gamma Network: A Mul-
tiprocessor Interconnection Network with Redundant Paths,” 9th
Annu. Symp. on Computer Architecture, pp. 73-80, Apr. 1982.

D. S. Parker and C. S. Raghavendra, "The Gamma Network,” JEEE
Trans. Computers, Vol. C-33, No. 4, pp. 367-373, Apr. 1984.

H. J. Siegel, "Analysis Techniques for SIMD Machine Interconnection
Networks and the Effects of Processor Address Masks,” /EEFE Trans.
Computer, Vol. C-28, No. 2, pp. 153-161, Feb. 1977.

H. J. Siegel and S. D. Smith, "Study of Multistage SIMD Interconnec-

tion Networks,” 5th Annu. Symp. on Computer Architecture, pp.
223-229, Apr. 1978.

D

e, e 0t d

PR A
A

ARt

ad

¥ s 1 5 6 @

'l

a_»
MgV
LI A J

4

Ne

XA

0'.:’..1..

Y
NSNS
.27

o

P {.“.'l
SN
AL

3 AT

\
-,

!

P

-t
-

. |‘. l“ l'.

a " Wy
>
i

(A X4

-

LA

..x...V\vaJ).. : ateTK DOl DaaC y
1 . . _- 'Iflll J,-....-... -.. -.- -)- IJ -f- -(* Rdnﬂ (--4f-n ’ "
. L 'r RO‘.,.; . .\.J PLTAR I T o arsre B .r-..-.........\.\.-... \-.... ..-.\J.\J\-. - JNM\-%-M\ A-\.
4
b
4
b
,
b
r.\ <
N -
5 z
3 Cox
W. .4 I\U'.
s - -
g 2
9 S
" [=
3 ¢ o«
5 ° =
. = -
9 t ~
. hy 2
). = =
1 & °
3 =, S
7 T
4 o =
w”_ - g =
. . - =
c £ C
4 Z o z
13 —
g e S
\.. E (3o B4
gl -n.\ = ,‘M(
3 7. R
b, s v
b, = L o=
3 e ® =
N N « v
3 o [SEE-N
; 4z 2
-.. m DC m
x —
p. =
a r ©
5 = g
.oz
: ‘3
= £
, s =
. -~
! v
. e
' ° - n
[€ PR
. - &
A [=Ne]
. < =
[z
, -
o
., 8§ 5
2 0 s
J
s
'-

P

R [y
S, :..\..kr\,.....\

[LN . - ..
R MAR NS NN N R T
.. <, - \\.-A-..V\‘.- A .|-¢ * “ hl‘n . et / ‘...-\ -. L) .-‘- -n-uﬁ . R-._.-.---.. Aw\ -

Destination tag controlled fault-tolerant networks
Darwen Rau and Jose A. 8. Fortes
School of Electrical Engineering, Purdue University

‘West Lafayette, IN 47907

ABSTRACT

\ =yvstematic approach pmpmmi to ronstruct networks that can be controib-d by desiiiation faes,
ran be designed se that they bave a1 soicue path beteson any of 3 inputs and any ol s outon

destened o chat mdtipee parlis are jrovided, WS e

fani in the pavh does not preveut communicaticn throngh a reaundant path. This asproach s buse
for a lmique-puh aetwork of size N with log.V stages and 272 =witches, a1 hinary tree sfricture ean
each input swit The ‘tree is such that the -oat, nodes. edoes nud levels of “he tree correspond te
switches sonnect cd to the luput

structures can be devised and sed as the undes ving Uik
aation tags.

sopcark e fanitorolerange

Yonetitinge parths exisk, the o

h Hnhs betaeen these sw

S tanittolerant neiworgs 1

and map cto networks oy order Lo hmoiene
1

.' s oof Che apotonet ind experiiments are conspieiod of

routing. Flws ;npnr conFEntIaLes
works whose «vitehes are 2020 303 or 4
s and acvantages of chese dlesigns are discisieq
Several existing seemingly saried und indepenagent designz of :
zoverned by this approach. in parteular, Augmenied Dawe M favitnaror (ADMY netweris

Lnonsn Sinoswitehies ol varions e are o

aes aithoag!

reroties conemes

TeSDecl o Ton s

-path \1‘1 it Toiernt netwe

- ared
"1u‘~l aned Lnnroved with respect fo faultstoierince and moating and rerouting sciemes, and onew cies

wnlt-"olerance sapabiiities are suggested.
POOINTROCDUCTMON

This paper proposes a systeinadde approach 'o the desivn of muitistage inteccounection ne
sroiled by destination tas routing. Doth umq”n-vmm and fnuit-tolerans networgs are consules o
nn the observation that wiuch networks can be dorived by coaiescing maltiple trees, Several s

Vg iinding eads Lo nore eilisient ro

dent designs are Tonnd 1o be governot by Chis approaen:
and Letter fauit-tolerant topnmaies for them.

During the nast decnar, o plethora o0 interconnection netwarks ave been proposed P
of tadtistage networks s thau of muitistage cube-type setworks auch as the Indiceey Blaaey n-Onbe
Haseline™ | Moditied ADMY, STARAN Tipt ana a <pecial eace of SW.Banyan® networks, Smcng he
these :n:L\W)rks are their very eficlont destinn:ion ng reating sehemee. partitionability, QN o,
pass uselul permutations.

[h 2 cube-type network, the hinary representatinn of 1 destnation nddress san eoised iresti
for o

he interehange box at stage @ nesds only to examine ‘he - bit of the «-ust'xn:\mm TowLee
il the -t bit is 0. the upper output of *he box 5 taken and of the -0 bic is 1, the Joewer output of
These schemes are known as destinalion tag routing schemes'”

s and stages of the erwark, cespect)

e

ot

6 BN

et

(R}
e

Nyl
. L]
e . -
= i [
I v
—e

Tt

HNe enss

Hox s otaken.

and are extremely P,lIlChf:(‘.L and simpie to bnpietnent.

Due to the requirement for eilicient routing of data in interconnection networks used in real-time applications, a des.

ination tag routing scheme is a lesirable featire in interconnection networks. [t s interesting to n
‘here exivt network topologies that are aot neceesarily cquivalent to *he wnbe-tyne netwanrks and cap i
destination *ags. Uhe motivation of “his paper = oo fined a svsiemarie approach fo construct networks o
snierred to as destinalton-tag-contrnlled networks iDN's,

Let any inpat swit in the first stage of a network be called a souree and an owrput switch in
“orwork eoeallnd o destination. Input links of a source and ontput links of 2 lestinatior are eal

“vpe newworks have the property that a nnigue routing path oxists h“t.w('vn any courer and any clest

1

coprenes, aosingle switen fadf tre eiiminates the possibility of communication between some “oureedos
apalogy fnornder

'

s s onrapiem, A ponular approach ie to provide extra interstage fnks to an existing wnigue-path ¢

RSN

Do

[T

frd

hether or not

[APVE I

oo last stave ol

fervnmal finks.

ation: s o
'

nalon s o

;
©v iicinmal paths and thus provide an ability to tolerate fauits’ Mg faet, many actworks with sedundant par,
< inad as anique-path networks to which extra links have Heen added. [For exampie it las heen sinwn tha

v oetwarx' ! eap be regarded as a fault-tolerant version of the [Cube network where one extra link is ndded to
T eve [Cane network2158 An ICube aetwork is <hown in Figure 1 and a Gamma network and its relation-
ce cevwork Ce shown in Figure 20 The Gamma network has three output links for each awileh and

- e cenpree/degtination pairs. [lowever. the Gamma networg may not be able o survive some

P li*actie s T .
RIS AN A A gty t oy gt

A
L

A Y]
L AL N

52

22

-

St ¥

U R B I Mo 25, DA, a8, 2S, - W N .-h._‘._u o gtegte gt W X ey, YN R] » » .
ST TR TR e T e Te M Te . .\t"\:
2
Nt
: : . I o o . . NN
) instances of a single switch failure; i.e., the communication for some source /destination pairs may be eliminated due to a e
5 switch failure. To achieve one-fault-tolerance for the Gamma network, yet another extra link is added to every switch of . .,
V; the Gamma network, which results in the Kappa network®. 'This is equivalent to adding two extra links to every switch A
: of the [Cube network and the Kappa network can tolerate at least one switch failure. A Kappa network and its relation- St
ship with the Gamma network is shown in Figure 3. .,-"i :
WS
This paper is concerned with the construction of DN's that have multiple paths for rach source /destination pair, :".:"
called fauit-tolerant DN’s (FDN's), as well as unique-path DN's (UDN’sj. In particular, it unifies the principles that a4
underlie the construction of the ICube, Gamma and Kappa networks and shows that a plethora of other DN topologies ®
can also result from adding extra links for each switch of the ICube and Gamma networks, respectively. ,':.:':
) RHLY
N Notation used in this paper is defined next. Any integer ¢ has a binary representation !,y =, _|t, o tg, ::::
'\ where ¢, _; is the most significant bit and n denotes the number of bits. The notation tysp denotes the bits of ¢ starting ;\:\,
L at ¢, and ending at f;. To indicate the 1's complement of bit u,, the notation n, is used. Throughout this paper, u and]
u~a (where a is some constant) represent Iabels of switches. Also modulo V arithmetic is assumed. e.g. u+a implies A
| (u+a) mod N. The notation u' is used to indicate that a switch u belongs to stage 1 and (u' , »'*') is used to represent
s a link at stage ¢ joining u' and v'*!. The out-degree of a switch is the number of output links of the switch and the in- e
r degree, the number of input links. !
:
J Section 2 of the paper examines the structure of the cube-type necworks and proposes binary tree structures for con- T
- structing DN's. D-constructs are presented in Section 3 as building blocks of binary tree structures and UDN's are con- e
structed by using the D-constructs. Because UDN's are not fault-tolerant, improved topologies have heen proposed in the Ny
B past which, by adding one extra link per switch, provide some redundant paths. These and other similar networks are a
4 referred to as enhanced DN's (EDN’s) and are considered in Section 4. However, EDN's may still fail to tolcrate a single &,
4 fault in a switch or link. In Section 5 fault-tolerant D-constructs are proposed to construct FDN's that are capable of 2
il tolerating at least one switch failure. Merits in routing and rerouting schemes and fault-tolerance advantages are aiso N
Y discussed for UDN's, EDN’s and FDN's, respectively. Section 6 conciudes the paper. :.(«:f'r
o S
k 2, THE BINARY AND FAULT-TOLERANT TREE STRUCTURES Vg
k. ®
b This seetion examines the striucture of the cube-type networks, which are known UDN's, in order to derive and pro- :".:}
> vide insights into a systematic approach to construct DN's. .';\::'
' = v
:' The structures of all cuve-type networks consist of n = log/V stages of V/2 2x2 switches. Because there are =n :-:;'} J
3 stages of switches and each switch is connected to two switches at the next stage, {or each source there exists a binary :;,_'f_
tree that contains the source as the root of the tree and the switches reachable from the root as the nodes of the tree!’. R
[A =witch is said to be reachable from the other if there exists a path between them. The [V = 2" output switches at the [)
- insty stage are the leaves shared by all binary trees. [For example, Figure | shows a binary tree in an ICube network. It :S.-::.
[includes the source 00 as the root, switches 00 and 01 of stage 1, and all switches of the last stage as the nodes of the :q..:':'
: binary tree. The [Cube network can be regarded the coalescing or partial overlapping of N binary trees, each of which S
¢ fins a distinet root (source) and may or may not share with other trees switches of stage 1, 0 <1 < n~1; for ¢ = n—1, e
‘he .V destinations are the leaves shared by all .V binary trees. N,
~ LSS
The binary tree structure was used to assign labels to ‘erminal links.!” The label can be obtained by assigning a "
) label 0 for the upper cutput link and 1 for the lower output link and concatenating the labels along the path from a ter- A
. ininal inpue link to a terminal output link. This is also illustrated in Figure 1. .»_‘:-“"‘
A I- .l.‘ .
b Notice that in the ICube network a source has two terminal input links and a destinalion has two terminal output ';::\‘
tinks. Io the ICube network, any arbitrary terminal input link can be connected to any arbitrary terminal output link }‘\.’.\
beeause there exists a path that connects the switch (source) of the terminal input link and the switch (destination) of RGN,
thie terminal output link. As {ar as one-to-one routing is concerned, only the iuterstage connection patterns allcct the ®
’ ronnection bhetween a source and a destination and the number of terminal links of the source and the destination is ﬁ‘.;\:ﬁ
: unimportant. This allows this work to concentrate on the study of the interstage connection patterns and simplilics the hE AL
discussions for the construction of DN topologies. E""-R':
Nl
The above observations suggest the following sulficient conditions for a network of size Nx:¥V to be a DN: (a} there ~ "n;:
exist at least [V embedded binary trees aud at least one such tree is rooted al each input switch of the network and has 5‘.;‘,%
the V output switches as its lenves, and (b) each of the two output links of a node of the binary tree is assigned a label 0 A
| or 1 and the unique address of any destination of the network is formed by concatenating the labels along the path from iy
) the root to the destination. The DN may have different number of switches at each stage, switches of dilferent stages do "o
Y not necessarily have the same size, and even the switches of the same stage can be of varied sizes. A binary tree has '_':"~:_\
: log.V levels and thus the DN has logiV stages (the basic idea is aiso applicable to nelworks with arbitrary numver of ok
stages but this case is out of the scope of this paper.) -f.:-:{
Y 1\‘ i
‘I'he noticn of block structure? was used to describe the topologies of the cube-type networks and can be regarded as Ta
a subset of the binary tree structures. The concept of the block structure can be best explained by the illustration of the L
RN
SR
"n " 0N
=y
AN
N
] v.
=
S
e

E’-\';TSCFL R R g N A A AR Al AL 8 00 2 A b ge A e P At
- - b - - - . L] .

structure of a Raseline network in Figure 4. The entire network is regarded as an V.V block and then it is divided inte
a stage and two subblocks. The stage is the first stage of the block and the remaning stages are divided into two sub-
blocks. The process is repeated until the last stage is reached where a block consists of a single switch. Because 1 switeh
of the first stage of a block is connected to two switches of the first stage of the two subblocks. an input switch and ap
switches reachable from it constitute a binary tree. In other words, the block structure can be formed by properiy
coalescing binary trees. IHowever, many possible structures wwhich are not necessarily a block structure ran resit from
coalescing multiple binary trees. That is, the biock structure employs more restricted connections for constricting net-
works than those resulting from coalescing multiple binary trees.

oonn

ATEA

One of the important criteria in rhoosing a switeh size is uetwork modularity. A\ module is a4 building bie
work that can be formed by cascading these building blocks. In order to reduce design and manulaciuring rozte, i e
desirable that a network can be modularly constructed and the number and size of modules shouid he minimizes. A nni-
form switeb size for the network (and thus the saice number of switches for every stage) can facilitate moduiar iesign.
For this reason, only DN's of size N2,V that cousist of uniform switches are eonsiderad n this parer,

If the number of output iinks of every switeh of 2 DN is twe, then *here exists a unique path in thie DN Jor every
source/destination pair because there exists & unique binary tree of which the source is the root and there exists 1+ anigue
path from a root to any leaf in the tree. Such a DN is a UDN. The inabiiity of the UDN to tolerate faualts fue 2ie TN

can be improved by adding redundancy to it. Thiy paper considers the special types of fauli-toierant 'rees resiating from : \
adding one and two extra links to every node of the embedded binary trees of (DN's and the DNs counsirncted Gy e
coalescing .V such fault-tolerant trees. Because modular designs are sought, oniy I'N's with uniform 3.3 or 1.1 =uitcies P
are considered. Merits and advantages of these designs with respect to fault-toierance and routing and rerouting ~che ;’-"

are also discussed in later sections. e

3. THE D-CONSTRUCT AND UDN 7
s
The interstage connection patterns of a2 DN are represented by labeling of intenmediary switches of the 9N 0w »:: ‘:
extremes of a DN are the source and destination which have addresses 5,5 and d, 4 oospectively. As the it o
relaved via intermediary switcher, 'abeine o these switehes retflects roating o5 a progressive conversion o 1 300 g af :""t"‘
source address bits to 1 string of all destination ceddress Dite. With this in mind, *his section diseusses the eonsir 1’_\

2 cfass of VDN Dased on binary tree stoaetares

o od
a

Let the sequence kg, %, . - i . 0) be a penmutation 7 the seauenee (0010 T i
1 = 0.1.....n~1. Deline a conpeciion Tunction D' mapping o switeh «' to nswiteh De'f 2070 el g .
[p for t, =0 =, \-
DUt = T
&) iq for &, =1 o
: S
AN