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Introductory Remarks

K

This document is the final report of work performed under the project entitled
"Design and Evaluation of Fault-Tolerant VLSI/WSI Processor Arrays* supported by ,,

the Innovative Science and Technology Office of the Strategic Defense Initiative Organi-
zation and administered through the Office of Naval Research under Contract No. '
00014-85-k-0588. With the concurrence of Dr. Clifford Lau, the Scientific Officer for
this project, this final report consists of reprints of publications reporting work per- S
formed under the project. In the attached list of publications, items 1, 2, 3 and 7 are
papers where fault-tolerant systems for processor arrays are proposed and studied. Stu-
dies on algorithmic and software aspects relevant to systems are reported in items 4, 5,
8, 12 and 13. Research on hardware and reconfigurability issues for fault-tolerant pro-
cessor arrays is reported in items 8, 9, 10 and 11. _.
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Gracefully Degradable Processor Arrays A

JOSE A. B. FORTES. MEMBER. TEEE. AND C. S. RAGHAVENDRA. MEMBER. IEEE

Abstract -A new approach to the design of gracefully de- (without fault tolerance) is a potentially disrupting event to
gradable processor arrays is discussed. Fault tolerance and grace- this "'isomorphism" and may result in severe, if not total.
ful degradation are achieved by simultaneously reconfiguring the performance loss. Because the large size of processor arrays
processor array and the algorithm in execution. Two types of pipe r oss Becaus he lrgeaize of process ay
algorithm reconfigurability are considered, namely, row recon- and their tasks imply a high probability of failure, this may
figurability (RR) and row-column reconfigurability IRCR). Cor- become an important limiting factor to the use of such corn-
respondingly, two array reconfiguration schemes are discussed, putational machines.
i.e., successive row elimination (SRE) and alternate row-column Redundancy can be used to add fault tolerance to processor
elimination 1ARCE). It is shown that the computations of any arrays. i.e., spare components are added to the system and
algorithm executable in a processor array can always be they cnepace fomponits tre evto the origial
lre)orgainized so that the resultant algorithm has the RR and/or they can replace faulty units, thus preserving the original
RCR properties. Upper bounds on the increase in execution time computing structure and algorithm mapping. An alternative
of an algorithm due to reorganization of computations for recon- and equivalent way of thinking about redundancy solutions
figurability are derived. Detailed analysis of performance and consists of programming algorithms which are smaller than
reliability is done for both SRE and ARCE reconfiguration those requiring the use of the full array and sparing out extra
schemes. These reconfiguration techniques are applicable to any unused processors 130). A distinct but vet related benefit ofprocessor array and suitable for VLSI technolog.,unsdpoesr 3.Aditctbtyteaedeeito

redundancy is the possibility of improving VLSI array fabri-

Index Terms -Algorithm transformations, computational cation yields [141-[20], and several redundancy techniques
availability, dynamic reconfiguration, graceful degradation, per- used for this purpose are potentially applicable to fault-
formability, processor arrays. reliability. tolerant array computation. For a critique and appraisal of

some of these schemes the reader is referred to [141. The
1. INTRODCTION amount of redundancy used in a system s limited by eco-

A recurrent theme in the quest for efficient high-speed nomical and technological constraints (e.g.. in 1161 it was .,,_

computing systems is the need for matching the struc- observed that yield improvement saturates above 10 percent

ture of algorithms and the configuration of parallel com- of redundancy). and the minimization of redundancy for a

puters. In these systems, successful fault tolerance and given fault tolerance level is an important research problem

graceful degradation schemes must disturb minimally the [121. Limited redundancy has been proposed or used for the

conformability of algorithm and architecture. These brief MPP [31, [Iliac IV [121, CHiP [6], and Diogenes arrays [14],

ideas underlie this paper's approach to the design of pro- among others. The main observation is that. by definition.

cessor arrays where graceful degradation is achieved by si- redundancy solutions still require a fully operational replica

multaneous reconfiguration of algorithm and architecture. of the original array, i.e.. no degradation is possible Alter- % %
The pervasive consideration in the efficient use of processor native approaches to fault tolerance include error-correction

arrays [ 11-[ 101 is the careful development of algorithms that techniques 121] and algorithm rescheduling strategies [22].

allow the allocation or pipelining of data and instructions so The former explores mathematical properties of the algo- .

that the right data can be made available to the right processor rithm and is specialized in nature. The latter is algorithm de-

at the right time by using the limited interconnection capabili- pendent and does not explore the possibility or limited array ",

ties of the array. In [11- 10] the reader can find a sample of reconfigurability. An algorithm independent approach to

problems, solutions, and experience on mapping algorithms fault tolerance oriented towards preserving the connectivity

into processor arrays. In these works, the prevalent real- of VLSI multiprocessor systems has also been reported [131

ization is that dynamic reallocation of data and instructions is In this paper we present a novel approah zo fault tocrance "",'-

a difficult and time-consuming task. A duality argument can and graceful degradation in array processors. Fhe main idea
be used to claim that dynamic reconfiguration of an array Is discussed informally in Section 11. It consists ot using "r ".

with fully rearrangeable interconnections can be just as hard. algorithm mapping strategies and simple hardware mecha-
In act, at a more abstract level, both problems reduce o nisms which make it possible to preserve conformability of

dynamically achieving isomorphism'" between algorithm algorithm and architecture despite the removal ot tault pro-

and architecture. Any component tailure in a processor array cessors. It will become clear that our approach can be used kir
together with previously proposed redundanc., solutions, and

Mtanuscnpt receiveu September - :994, retued \larch 14. 1485 and such hvbrid" schemes ibrietlv discussed in the last ectioni
Apni ,. 1985 would have the ad, antages ot both approacnes. Section Ill

;. B F,>nes s with the Scol ,) E!e r.at Eng,,neenn,,. Purdue tnver- describes in a torma ,etting the theory behind the two main
1t,. West Liiavete. IN 4-1WeC S RaihaIendra iN Aith he Department it Electricat Enineennk- algorithm reconfiguration strategies. Arra, reconfiguration

Svstems. tnivers tv it Southem (:ajliomia. Us \ngeies. CA x~) schemes are dismussed in Section IV and their perlormance is

(X)18-9340/85,1 I1X)-103350I iX) k, 1985 IEEE
N?
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studied in Section V. Reliability. performability. and corn- 2 ,

putational availability studies of our techniques are presented % d

in Section VI. Section ViI is dedicated to conclusions. a T,.

11. BASIC IDEAS 4
xin - IWe consider two different approaches for achieving lira- 1), ".... ,

ited dynamic reconfigurability of processor arrays and algo-

rithms. The first approach to array reconfiguration consists of
logically removing rows containing one or more faulty pro- ]?A,
cessors, and is referred to as successive row elimination ()o) )
(SRE). The second Approach consists of removing either -
rows or columns with faulty processors (starting with rows). Bond I Bond 3 '4 Ion aI Bn 2

and is referred to as alternate row column elimination TO o' 0.

iARCE). Both schemes require the addition of programmable Bo" 2

switches and interconnections to the original array architec- -'.
ture and assume that "'peripheral'" processors are cyclically "--I-

connected via "'wrap-around" links (like in [Iliac IV and ", i, ,:

MPP) or external memory (which is always possible). In , /

correspondence with the two possible array reconfiguration "Z - Bond4

schemes. we consider two algorithm reconfiguration strate- j" " -
ies. namely, row reconfigurability (RR) and row-column 2

reconfigurability (RCR). Interchanging the words -'row" and (c) (d)

"column" in the definitions of SRE. ARCE. RR. and RCR Fig. 1. Partioned algonthm on processor arrays of four sizes. (a in, x n,)

yields the dual reconfiguration schemes SCE. ACRE. CR. (pani ioningnot required). b) (In , I- )X n!). (c)((n - x x in -i )).
• - ~~(d) (in,- 1x n .

and CRR. Due to this duality, we will not discuss them. The
next paragraph introduces informally the basic ideas on algo- 4

rithm reconfigurability. cographical order without violating data dependences
Consider an algorithm with (T, < n, x n.) computations [Fig. I(c)1. It is important to compare this situation with the

which is executed in time T,. in an array with in , x n,) pro- case when the array has ((n, - 2) x n_) processors for which
.essors. To each computation associate the time of execution the algorithm would still be partitioned in only two bands
and the coordinates of the processor where it is executed. [Fig. l(d)]. The remaining considerations on data commu-
i.e.. index each computation with an integer vector (t.Ii.).). nication are similar for RR and RCR with the exception that
1 :5 t :5 T,,. 1 -5 j, - t,. 1 !5 j2 S n-. The resulting index RCR may require additional wrap-around connections or ex-
set of the algorithm is geometrically represented in Fig. [(a). ternal memory.
If. during execution, data move in a direction for which the The ideas underlying our approach to algorithm recon-
value of j', does not decrease, then we say that the algorithm figurability are also useful for the problem of partitioning an
has the RR property: if the values of j, and j_ do not de- algorithm for execution in fixed-size VLSI array architec-
crease, then the algorithm satisfies the RCR property. tures. From the discussion above, it is clear that RCR is a
Assume that our algorithm has the RR property and due to sufficient condition for algorithm partitionability, ([9],
a fault we remove the last row of the original (n, x n:) array. [101, [23]). Similarly. one can also think of RR as a sufficient
Then, we must also reconfigure the algorithm for exe- condition for the partitionability of an algorithm along a

cution in an wi - I) < Pi.1 array. This can be done by par- single direction.
titioning the algorithm into two "subalgorithms"' or "bands" Not all algorithms executed in processor arrays have the
separated by the plane i, = n: - I [Fig. Ilb)l. First. the RR or RCR property. However. in the next section we show
reduced array executes the subalgorithm for which I :S j, !-- that for any such algonthm we can always find an equivalent
t? - I and the RR property ensures that no computations algorithm which satisfies such properties.
require data "rom the other hand. Next. the second sub- '

algorithm is executed. possibly using data generated in the II11. *ALGOR TH M RECONFIGURATION SCHEMES

previous hand and recvcled through wrap-around or external
memory connections. Note that potentially slow external ,RR AND RCR)

memory communication can be done concurrently with the We see a processor array as a two-dimensional grid in
execution of a band. In fact. data generated in some order by which each integer point is a vector index of a processor and
a band will 1,e used by the next band in the same order Ii.e.. a set of vectors (the interconnection primitives) which de-
FIFO stacks are suitable memory structures for this purpose). scribes the (regular) pattern of interconnections of the array.
Similarly. ii the algorithm has the RCR property and an Definition 3. 1: A processor array is tuple iL'-. P) where
In. - I) ( pn - In array is used. then the algorhm can

be partitioned by the planes],= n, - ,andI. = ,- I into Z and / denote the wi, or integenrs and nonnegailve integers. and Z' and ".

tour bands which can be executed in increasing lexi- denote their respective nth Cjnesian powers.

%r~~4 W-re,,,": ¢ "''-'<""""-" :"':'":"":' '" "'"""" " " "" " " " '"""""' """ " " " '
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L C Z" is the indexset of the array and P E Z'' is a matrix
of r E I interconnection primitives.

Thus, in a processor array (L". P). the processor with index [ 3 j )

S L- is connected to a processor with index 7 = 7 T-

E P, if7' E L and is connected to an input-output port
otherwise. This definition does not account for "wrap- - -

around" external connections. which, however, are assumed 2 - 2 i- -3 -

to exist between input and output ports.
Example 3.1: The structure of orthogonal arrays like the

Illiac IV, MPP, WAP. and others can be described by (L.P) - t - - .02 -- 3--

where -_-..-

L i= (l,.:,'):O ! !,-/,I -< .V - l

F0 1 0 - 01 t t 2 to 1 ,

L0 0 1 0 -12

where N = 8 for the Illiac IV. .V 128 for the MPP, and .V
is variable for VLSI arrays. Fig. 2 shows a (4 < 4) square Fig 2. 4 4" quareorthogonaTavrr'

orthogonal array. End of example.
The execution of an algorithm on a given array can be

thought of as an ordered set of instantiations of the array. In this definition of array algorithm we represent onv the
each of which contains an assignment of computations to structure of the algorithm and abstract from the aczua! corn-
processors at a particular tme of executon. Consequently. putations being performed. This is adequate because we are .r

we see an array algorithm as a three-dimensional grid in essentially worried with problems of matching coiputaionai ,
which each integer point indexes a computation at structures. Also. input and output data are not .xpicitly "
timeh and processor tJzj) , and a set of vectors (dependence represented because they can be treated as generated data 0

vectors) which is related to the pattern of generation and use (i.e.. for a given processor receiving data from other pro- ?,6

of data in time and space. In other words, if a computation cessors there is no distinction between data generated and
with index generates a value used in computation with index data 'passed" by those processors). Finally, the uescrpton
.thenj- jis a dependence vector. Clearly. the first entry of dependences would be more precise if to i tven Je-

or any dependence vector must be -Ii ii.e., at least one unit pendence vector we associate the index point where the
of time separates generation and use of a variable,, and the dependence is valid. This complication turns out to be unnec-

vector corresponding to the other two -.ntries must corre- essary for the derivation of our main results. ainw
spond to a linear combination of interconnection primitives Example 3.2 In I-i the following c (mputaton was
(i.e.. a path connecting the processors where the variable is performed on the MPP as a filtering procedure required to

avoid nonlinear instability in the solution ot Navier-Stokes W*generated and used). Assumig that communication (over a ,i
single interconnection primitive) and execution of a com- equations
putation takeone unitoftime.: the numberofinterconnection = ql.., - 2q,- - q... ,-I

primitives used to communicate a result from computation t ...-. I _ t .V.I -j - N
%b with index j to computation with index j must also be less

tianorequal tothe first entry of the dependence vector] -i where N 128 = number of processors along one dimen-
ii.e.. the interval of time between the computations). These sion of the MPP. The structure of the \IPP is described in
considerations translate into the following definition of array Example 3 I. This computation correspond\ to an MIPP array _
algorithm, algorithm because

Detintion 3.2: Consider an array (L-. P ). P = Z': - An
arravalgorithm isa tuple J'.D) wherei' P Z' is the index I
et of the algorithm. and D E Z"- is a matrix of tn D I B 0 i) i(it = PK P

* , dependence vectors ,uch that - 0 1 I ) .,
Il > I : = i. - . il) il , i)"

and r- o I -• i) I7 ) i) - I i) t )
PK ,or K -- uch that k,Sd,, I

S=I . 2) In other words. this algorithm maps trivially into the MPP

because the number ot comoutations matches the number of
We toiow 'he j~uai as,,umptlon chat .n ,)ne unilt tt time. i processor ,an . . .. and the n., ..... c n e r

read he output -egisters ot r ghbonng proe sors, proes, iata it necessary., p a t - c n i a p
antj nte esuits .nit i. ,%kn output registen formed in one unit ,t time End ot example I

% N+ ) ,, • .% , • . , , % 1 ..
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Example 3.3: In [71 it was shown that the following algo- transforms that algorithm into an array algorithm because the
inthm. which describes a simplified version of a standard resulting dependence matrix is
relaxation computation. is not amenable to parallel execution ,
(unless transformed as described later in Example 3.4): I

I-,<L. I :- j :-. W. 1<5k - N. -_
for which the first row has only positive entres andN

• Here we note :hat. because the first enmes of the last two%
), dependence vectors in 0 0 0 0

I lt 0 1 0

S0 1(j) 0 0 I 0 1]
0 - 1 0 ll ; W 0 00

0 1 0 O

are smaller than 1. this algorithm is not an array algorithm.
. End of example.) Fig. 3 shows three steps of the execution of this new algo-

As illustrated by the last example. not all algorithms are rithm. Empty squares represent unused processors. The index

array algorithms. In other words, they must be transformed. of the variable generated is shown for each busy processor.

or equivalently, their computations must be reorganized so Arrows indicate data communication required for the compu-

that an equivalent array algorithm is obtained. The reor- tations. and broken lines identify computational wavefronts.

ganization of an algorithm can be seen as permutation of its The total execution time is Tr[L - I. M - I. N - I r +

index set. and hence. it can be described as linear trans- I = 13 units of time. (End of example.)

formation T Z"'  such that T is nonsingular and T = [fl The problems of selecting T for general case algorithms

where -r i Z ' '' "s referred to as a time transformation are out of the scope of this paper. and the interested reader is

andS E Z:' iscalledaspacetransformation. In other words. referred to 191. Here. we concentrate on the problem of

T reorganizes the computations so that a computation with selecting T for array algorithms so that the transformed
index j !s executed at time -,ry and processor Sj. Due to the algorithm satisfies the reconfigurability properties. i.e., the '

lineanty ot this type of transformation, the dependence matrix RR and RCR property. These properties can now be defined

ot a transformed algonthm is simply TD where D is the depen- very simply in terms of the dependence matix of an array

dence matrix of the original algorithm. Hence. Tcan be selected algorithm.

so that the new dependence matrx makes the transformed Definition 3.3. An array algorithm (JP.D) has the
aionthm an array algorthm. The fact that (1) must hold for RR property -if the entries of the second row of D are

the new matrix ensures that data dependences are not violated nonnegative:

(i.e.. T yields an array algorithm which is equivalent to the RCR property - if the entries of the last two rows of D are

original one) This type of transformation was introduced in nonnegative.

(271 where T is denoted R and referred to as reindexing trans- Example 3.5. The algorithm of Example 3.2 has the

formation. Subsequent work in reindexing transformations is RR property. but does not have the RCR property. (End of

reported in 191,1101.1281.1291 and their references. In this example.) .,

paper. we add to the knowledge of algorithm transformations Example 3.6: The algorithm of Example 3.4 does not

by ,howing that there exists always some T which yields an have the RR and RCR properties. However, if T is rede-

algorithm with RR and RCR properties (Theorem 3. 1) and fined as %

how to derive upper bounds in the execution time of such 7" F3 I 1"
algorithms Theorem 32) Next. we illustrate how a rein-
dexinL transiormaton can be used to transtorm an algorithm T = S, = I 0 )I.

into an array algonthm. S., 0 0 1.

Etample _ 4. Assume L = l = V = .. in the algorithm
o Example 3.3. and consider the array ,hown in Fig 2. the resultant algorithm has the RR prope-rty. In fact.

In j71. the ranstormation 2 2 11•
- TD 1 0 01. %

T=I 0( )0 -10 I

0 I
and it is interesting to note that communication associated

a,, u,,ed to ottain an equivalent algor;thm ,uitable (or petal- with the first two dependences takes two units of time. and
i .omputation. The slightly different trar, st ormation for the second one it requires the use of two interconnection 0

S'2, I I -primitives, namely. ( I 0W and (0 - I). Three steps of the
execution of this aleonthm are shown in Fir. .4 where arrowsT=5 0 1 1) 1

;' I indicatn data communication which takes two units of time

S- 0) ) I are labeled with a f The execution time is now ,r[L - I.

. ... . 5

,P w ,," ,," " ,' , ,' ," , ,, .,'. ," .. ;,," .,, .,- ," ,' ,'. ',.,'.'''. " '.. ,. , , .,. ,. - , ,- . . . . . . . ., " 5
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Fig. 3 Three steps of the execution of the algonthm of Example 3 5
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Fig. 4. Three steps of the execution of the algonthm of Example 3 6

M - 1, N - Ir I = 16 units of time. (End of example.) only the class of square orthogonal arrays. The methodology
Next we prove that we can always reorganize the corn- used can be easily applied to the derivation of similar bounds

putations of any array algorithm so that the resultant algo- for other classes of arrays. , al
rithm has the RR and the RCR properties. Theorem 3.2: For any (n x n) orthogonal array algorithm _,

Theorem 3.1: Given an array algorithm A, it is always with execution time To there exist equivalent orthogonal array
possible to reorganize the computations of A so that the algorithms with the RR and the RCR propertnes and with execu-
resultant array algorithm has the RR and RCR properties. tion time T* < 2TO/n 4- 3T -- n and T* < 3T,/n S

Proof: We show that we can always find T such that the 9Tx/n + 67's, respectively.
new dependence matrx has no negative entries. By definition Proof: Assume that the original orthogonal array algo- \%.

of array algorithm. the dependence matrix D of A must have nthm does not have the RR property and consider the worst
only positive entries in the first row. This means that there case possible. i.e.. the case when at every instant of time all
exists a convex set which contains all dependence vectors of processors and interconnection primitves are used. This cor- -

A. Hence. using convex set theory, there exists an infinite responds to an algorithm for which
number of separating hyperplanes. In other words, there ex-
ists an infinite number of vectors S E Z' 3 such that Sd - 0 rl I 1 1"
foralld C D. Furthermore. because the subspace outside the D = ) I 0 -1 ')1.

convex set is not degenerate. from that set of vectors one can () --

always choose three linearly independent vectors for rows of and it can be transformed into an equivalent algonthm with the
T so that T is nonsingular. It is also clear that they can always RR property by choosing T as %
be chosen so that the new dependence matrix satisfies (21 for %
some K. Hence. the new algonthm is still an array algorithm. :rT 0
and its dependence matnx has no negative entries, thus im- T = S = I 0 (1 so that
plying that the RR and RCR properties hold. Q E.D S 0 0 .,

The next theorem provides an upper bound on the exe- .2 3 2 1 21
cution time of the reconfigurei algorithm as a function of the TD= I I I
execution time of the orginal algorithm. This upper bound is .0 0 1 0 -H
valid for arrays with a matrix of interconnection primitives
identical to that of Example 3 I. In other words, we consider Given that the original algorithm has T, K , < n) com-
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putations. the new algorithm requires

-r, n n] - -[ I I 1] - I = 2T) - n- - 2 (3)

units of time to execute in an array with Tn rows and n
columns (due to the values of S, and S.). Given that the actual
array has only n rows. we must partition the algorithm into ,TnlIn < Tvin I bands (i.e.. now S allocates computa- IT, ... . ,"'

tion with index / to processor [(Sj mod n)Sj I), and each -3 3 ===
band takes at most the time given by (3). Hence. the total , .,
execution time of the new algorithm is

T* < 12T) - n - 2)(T,/n -4- 1) < 2T1/n 4- 3T, - n. (4) 4

Choosing =[ 3001,S =[1101, andS= [0ll leadstoa " a..

similar proof for the RCR case.

Q.E.D.
We remark that the upper bounds derived in the last theorem

may be too high. and how to find (for any array) a trans- n-',', LJ-dv.a. ,
formation T which yields exact upper bounds for T* is an -- - ns.,c .."lion.1 on ,,uo, army

open problem. Nevertheless, typically. algorithms executed in - 0 a.wCW s, r

(n x n) arrays have execution time linear in n, which implies (a)
that. according to Theorem 3.2. reconfigured algorithms also %
have linear execution time.

Example 3.7: The algorithm of Example 3.4 does not have 01 Ills

the RR and RCR properties and executes in 13 units of time, . .
whereas the equivalent algorithm in Example 3.5 has the RR %
property and executes in 16 units of time. However, . .T,.
the value of the upper bound given by Theorem 3.2 is
r* < ZT2/jn -1- 3T, - nT,-,3..- = 85. This discrepancy -r-= O= i- =between the values of the upper bound and the actual execution.. "'.".."."...'".. ". ".

time is also due to the fact that the algorithm of Example 3.4 %,
is not a worst case algorithm like the one considered in the . ..
proof of Theorem 3.2. This is easily realized from Fig. 3, • , T "..
which shows that not all processors and interconnection .
primnutives are used every time. (End of example.) ,.-... . --- '

IV. ARRAY RECONFIGURATION SCHEMES (SRE AND ARCE) ,.s

This section describes the architectural features of pro-
cessor arrays capable of SRE and ARCE reconfiguration. In - . a,, ,,
both cases. limited reconfigurability is achieved by using "'. et.s1,O
redundant interconnections and switches. The figures used to ...... WCO' ft " O,.f
describe these architectures display the logic organization .
and functional characteristics of the architectures and their b

components. Their physical layout and implementation de-
pend on the technology used and may take different forms. as .,.
discussed in [14]-f20). [26). ?

A. SRE Recontiguration, " -L L %

The basic idea of SRE is as follows: if a fault occurs in a,.,Io, 0 s,,. % -'-
processor it.j). then eliminate logically the ith row of the c )
array. The logical elimination of a row is done by setting FaS c i
identical programmable switches to certain states and using reFonigrayion. icc States and srucen of switches used.
redundant interconnections to bypass the eliminated row.
Fig. _5a) shows the additional interconnections and switches O
for a 14 1' -1 array. The broken lines represent the original external memory due to further partitioning of the algorithm
hardware. In eeneral. in, - I )n, interconnections I -50 per- because external memory is usually available or inexpensive '
cent interconnection redundancy) and in, - l)n, switches to add. '% ,
are required. The structure and possible states of each switch The reconfiguration of the array is done by setting the
are shown in Fig. 5(ci We ignore the need for additional switches to certain states. Let the ith row of switches be such

-".% % -
%~ %
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that it connects the (i - l1th row and ith rows of processors. the worst case happens when the algorithm nas exactly
Let X, = I when row i of processors is eliminated from the (T, x n, X n,) computations, i.e.. all processors are always
array because it contains at least one faulty processor, and busy. We consider this as the worst case in the sense that any i

X, = 0 otherwise (i.e.. row i is present). The ith row of single processor failure results in the largest numoer of corn-
switches has its state determined by X, and X,-,. i.e.. each and putations that are not performed. Consider the case when this
every switch in row i is in state X,_ ,. It is easy to see that worst case algorithm must be exe..uted in an arrav of size
the above rule can be implemented with simple logic distrib- in, - m,) x n - rn). 0 - M, < n,. 0 < m < n,. This S

uted across every row or every processor. Thus. additional smaller array will need at most time T,, to compute each of the
control hardware is minimal and can be ignored for practical n,/ i n - mo" n_/ (n, - rn.)", partitions t the orginal algo-
purposes. Furthermore. note thatcomplete isolation of faulty rithm. each of which has at most . < mn. - mo '
modules is provided by the switches and the control rule used. in, - rn,) computations Taking computation time as a mea.-

B. ARCEReconfiguration sure of performance. the performance of any array with
m, rows and m, columns eliminated is

In describing ARCE reconfiguration, we assume without
loss of generality that in an in, x nt) array we have n, - n. .
all the following discussions remain valid when n. 2: n, if we Let T, denote the computation time for an array with k faulty
interchange n, and n: and replace the word ARCE by ACRE. processors. Let the ratio TT, be a normaiized measure of
ARCE removes either the row or the column of the array performance when k faults occur and let P. dercte a lower
containing a faulty processor according to the following rule bound on L..:h ratio i.e . consider worst cas. aigorithin..
remove a column if and only if n n: roy.< have been elimi- Depending on the distrbution of faults in the array. P, can
nated after the last column elimination (if anv). Note that for take distinct values for a fixed k. For SRE. k faults cause the
n, = I orn, = 1. ARCE reduces to SCE and SRE. respec- elimination of at most k and at least -k./n,& rows. From (6) it
tively. As for SRE. logical elimination of rows or columns follows that
uses additional switches and interconnections. Fig, 5(b)
shows this additional hardware (full lines) and the original PSRE
array ibroken lines) with (- x 4) processors. In general. " n,, ,
(n, I )n. - ni(n. - 1) additional interconnections n, - k -k

100 percent redundancy) and (n, - )n. - n,n,-- I) n.
switches are required. As for SRE. additional external
memory and internal control logic can be ignored. The struc- For ARCE. in the worst case fault distribution. %
ture and states of the switches are the same as for SRE [ Jk
[Fig. 5(c)). To reconfigure the array, the scheme used for k - rows and columns
SRE reconfiguration is also used in ARCE for row elimt-
nation. For column elimination the rule is similar except that j Ii
the word -row" is replaced by the word "column." Thus, are removed. In the best case fault distribution, the numbers
simple distributed logic can also be used. and total fault of rows and columns removed satisfy complex expressions.
isolation is also guaranteed. and we prefer to use simpler conser an .2stimates. Clearly.

the number of rows removed is less than -k, fn,)'., and the
V. PERFORMANCE ANALYSIS number of columns removed is less than kn(In,-nn.

A consequence of the simultaneous use of SRE with RR Hence. from (6) we have
and ARCE with RCR reconfiguration is graceful perfor- I
mance degradation as the array size is reduced. In this section
we give a lower bound for array performance as a function ofF_ ______. ~
bound is exact in the sense that there are worst case algo- n

rithms for which such lower bound performance results. n,
Assuming worst case algorithms for which the RR and RCR
properties hold, we also derive exact lower bounds for the < X I

*performance as a function of the number of faults for the best r..
and worst case fault distributions. The best case fault distri- - ______

butons can also be thought of as the case when an ideai array In _7 -T n "has the capability of reconfigunng itself so that faulty pro-

cessors can always be grouped in the same row or column.
For simplicity, we only present the reasoning leading to these Note that for both SRE and ARCE the lower bound on per-
bounds, and the reader can use simple inductive rules to formance reduction (i.e.. for the worst case algorithm and
verify their correctness. worst case fault distmbution) is always less than or equal to

Any algorithm executed in an in, x no array in time T, 0.5 for k 2 I Fig. 6 shows these bounds as functions of the
will perform at most (T, x n, < ti computations. Thus, number of faults for the case when n, n- =r.

"q .4 ., ¢2q . .' -2 2, .' ,,' ¢$ 2 ',t.' ',."': 'a-' . Y 1 ,'''_.-"€ ",$ .'.", ".' ". ", ., . . . , , ".', , "","
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S A it was initially functional, is e where A is the failure rate.
)s In our analysis the unit interval of time [0. tI is such that

- At = 1. i.e.. we use a failure rate that is normalized with

respect to the time unit (e.g., A = 10" failures/h. t =
10' h). The assumption of exponentially distributed failures
is also convenient because it will allow us to use Markov

.s L -- models for arrays with SRE and ARCE reconfiguration
33), (exponential distributions are memoryless). This is justifi-331-- '

2St able for arrays with independent processor modules. We also
consider the possibility of imperfect reconfiguration by using

1?-/2 .i K .)o of fault,) a parameter c. the coverage, which is the conditional proba-
bility of a successful array reconfiguration given that a failure
has occurred. This parameter incorporates the effectiveness

(') asof both the fault-detection and switching mechanisms used
r ,,

h " fi ,1 and we assume it to be the same for any fault in any processor.
' ' Next, we give the number of possible array configurations

(also called degradation states, or simply states) for SRE and
ARCE schemes. This number also measures the number of
faults that such schemes sustain before total array failure

2sr L... (assuming worst case fault distribution).
The number of processor failures tolerated in an (n, x n,)

16r,_.,..,.__array with SRE or SCE reconfiguration is. respectively,
2 ,a.I '2,,'2 nc i1aI

2aa (n, - 1) -< (K)SRE -- (ni - l)n (9)

Fig. 6. Worst case pertormance reduction. ia) SRE 4bi ARCE as a function
ot the number of faults in 4n in x n) arrav.

(n, - I) S (K)s S in, - ln,. (10)

Example 5.2: Assume that. due to the occurrence of
faults, the algorithm of Example 3.6 must be executed by The left- and right-hand sides of (9) correspond to the cases
a a3 < .Jarrayandb a2 x 4)array. Fig. 7 shows three when all faults occur in distinct rows and in the same rows.

steps of the execution of the algorithm in case b). The total respectively. This comment also applies to (10) if we replace
execution time is 21r[ . M - I . .V - 1) -+- I) = 20 unts of the word "rows" by the word columns. Clearly, SRE is more P

time where ,r. Al. and N are as in Example 3.6. The normal- fault tolerant than SCE if and only if nj > n,. This is a

ized execution time or performance is 16/20 = 0 8. which is criterion as to when to use SCE or SRE.
For ARCE, the number of processor failures tolerated in an

higher than the value of 0.5 predicted by (7). The same can For C the numbe ol
be said for case a), and full details can be found in [311. This (n1 X n:) array is
example also illustrates the execution of a reconfigured RR
algorithm in an SRE recontigured array. In Fig. 7. the wrap- 4 n - S - K !5 n,(n - 1)
around arrows are labeled with (5) to indicate that commu- .1,
nication takes 5 units of time. This illustrates our claim that N 4

this scheme allows the potentially time-consuming use of
externai memory for recycling data. i End of example.) - (1l) 0

VI. ANAL'rSIS OF RELIABILITY PERFORMABILITY ND-

COMPU.TATIONAL :YAILABILITY where the left- and right-hand side expressions correspond to

In this section we evaluate SRE and ARCE reconfiguration the case when all faults occur in distinct rows and columns
schemes in terms of the following commonly used measures and to the case when they occur in the rows and columns

1) reliability RM. i.e.. the probability of no array failure already eliminated, respectively.
in the interval of time [0. 11: Without loss of generality, we consider an in x n) array

2) performability Perf(B. t) (24). i.e.. the probability that and analyze its reliability, performability. and computational
the array performs above some performance level B: availability when SRE and ARCE reconfiguration is used.

3) computational availability Ait [251. i.e.. the expected The Markov state diagrams for these two cases are shown in
value of the computational capacity of the array at time t (in Fig S. The number of degradation states is given by the
this work, computational capacity means the number of pro- left-hand side of 0) and (ll) wheren, = n, = n. i.e., n - I
cessors that have not been removed from the array). for SRE and 2n - 2 for ARCE. In the same figures. every N

We use the common assumption that the processors of the state is represented by a circle showing the state number and
array have exponentially distributed failures. i.e.. the proba- the number of processors in the reduced array for that state:
bility that a processor has not failed before time t. given that the state transition rates are also indicated. An arrow starting

. . ++ r t"]l .... Ja ...... ..... *....... . . . i
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Fig Six steps of the execution ot the alizonthm ~t Example 1 . .ie 1))
a 42, x 4) array). For i = -5and I= 6 (he :omputaons. pr oceed a,', iwn
in Fig. 4

in state #i goes to state 0 1 to indicate that a failure of in .- RCE
the array in state #i is covered i e., detected and recovered -

successfully). An arrow starting in state #i goes to state F to A n
indicate that the array in state #i failed to recover from-
failure. Each arrow is labeled with a state transition rate. and trom *tt to state *11 1)
this is

in SRE nI -1 1-v ) ,
,,= cnin O fA from state #t to state #(i 11I from state #i to state F, 1 0., - - 3 1l31

i I - O)A, 1 I-ciflnf - i )A In both ARCE ind SRE there is a single possible transition

from state # i to state F,. 0. - n -2 412) from the last deeradation state !o tratcF For SRE. the state

%~* IS %
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*performabilitv = Perf(8.t)o ,P~f
wherej is such that the performance P, - B fork = 0. • • • J;

n computational availability = Alt) = -Prdt.Ck
where D is as above and Ck is the number of processors in

state k. i.e.,

C, = n(n - k) for SRE

and

C, - n - -~ for ARCE.

We can also compute the reliability improvement factor

(RIF). defined as RIF(t) = I - R,tz/I(l - Rft)). where
R.,tt) is the reliability of a nonreconfigurable array, and

*-2 thus. R,,lr = Prowf.
We used the above expressions to evaluate the following

arrays using SRE and ARCE: a (5 x 5) array for the cases
0,' Ok ." >./when Ic = 1.B = 0.5). (c = 1,B = 0.25). and a (10 X

10) array for the cases when (c = 1.8 = 0.5). Ic = 1,
B 0.-25) (c = 0.-95. 8 = 0.-5). (c = 0. 98,.8 = 0. 5), and

\, /.* (c = 0.99.B = 0.5). We considered the operation of the
array during five intervals of 0. 1 units of time starting at
F = 0. The results summarized in Tables I and 11 allow us to
conclude the following.

ARCE has better reliability than SCE when fault cover-
hIb age c = I (see Table 1).

Fig. 8. Matrkov state diagrm. (a) SRE. (bl ARCE reconfigutio. ° ARCE and SRE have comparable reliability when fault

coverage c - 0.99 (see Table 11).
w For high performance (i.e.. large values ofr), SRE has

transition rate is A_, = A. whereas for ARCE it is A-= better performability than ARCE (see Table 1).
A. The Markov models for SRE and ARCE differ only in the • ARCE has better computational availability (see
number of states, and they are described by the differen- Table 1).
tial equations ° Reliability for both SRE and ARCE degrades signifi-

dPr0 (:) candy as coverage decreases (see Table 11); this is particularly
d- -(cA 0 - II - c)A0)Pro(t) = -AWPrO(t) drastic for ARCE.

Table IlII compares SRE and ARCE qualitatively and

dPrIt) -,the following comments complement the information of

dt- =  AtPr*() + cAkPrk(). k = 1 .D that table.

(14) * The amount of additional hardware can be measured in
terms of the increase in the number of a given type of compo-

where D = n - I for SRE and D = 2n - 2 for ARCE. nent of the array or in terms of the chip area taken by that

Pr,(r denotes the probability of the array being in state k at hardware. The first approach may be unrealistic for VLSI
nime r. and the A s are as in (12) and (13) for SRE and ARCE. arrays, whereas the second is dependent on the technological {
respectively, process and the size of each cell used. We used the first ap-

Assuming the initial conditions Pr,,I = 1. PrkO) = 0, proach to account for the additional number of inter-
k = I . D. the solution to (14) can be obtained by using connections and the second to measure the effect of adding "

Laplace transforms and partial fraction expansion as switches. We assumed that every switch takes 20 percent of ,

Pr n e " the area of a cell ilike in [201).
. A. * Fault coverage is a critical parameter for the reliability of . .

Prht- e .. ARCE and SRE. Two important conclusions can be made. V. ,.
-A, A,) First. if fault coverage is not very good. then the difference

in reliabilitv for SRE and ARCE is negligible. This, in turn.

After evaluating the state probabilities, the reliability, per- means that SRE is preferred to ARCE because it requires less

formability. and computational availability can be computed additional hardware. The second conclusion is that the fault S

using the following expressions: detection and recovery schemes used should be as simple and
reliability = Rnt) = A..,Pr, t) reliable as possible so that fault coverage is very close to

where the number of degradation states is D = n - I for unity. The fact that our reconfiguration schemes use only a

SRE and D 2n - 2 for ARCE; reduced number of interconnections, switches (which can be

", , _ , ¢ ." -' ";, , , % - . , : -. " , "" *, . -" "" * " .. '"
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TABLE I testine and fault recovery :echn iques and adequate tCcLh- -

RELIABILITY. PERFORMABILrrY FOR PERFORMANicE LEVELS OF 8 = 1) 5 AD nooilyfesbehrweipeenaon.Det m-
- 0. 25. AND COMPUATiONAL AViAiiT FO S kAN RCE I N oial esbehrwr mlmnain.Det il

!5 iiNO110 X 10)ARRANS ICOVERAGE c = 1,tations in space we do not elaborate on these isiues here. and '1

AmpI~. RE ARCE ror a brief discussion on some of them the reader IN referred

%. RMiti 'Y(S Si Pedi 25.i AIt RiO PnfI SO& Pu4i 1 1 & Ai% In summary. this paper proposed and anal\ zed wot pos-

10990 ') 803 0.9105 I am 01 4J b. e ible approaches to the design or -_racefull\ cle'eradable array
%iiS 3 0717 '72.10 -eon0.311 1 7 jm 0.1111 1i. Olz , 0 ~ processors Thev thriveo the 2 aeait n s implicity of

020 IG!,Oti1 0130 330 :04m1 144*20' 0314 435 reconfiguration schemes Ahich make it possible !(o preserve
10348 4.87. 10 1107 ,06 0m0 2,A2.10' a'302 i~ the coniormabilitv oi the processor array and mie algorithm%

I.80 N 02. 0*1 0 0 0_. A*11O 2'30" 28 24.8 being executed .We showed that any aieoritrt.m 2an he
10%101 3 10390 48.13 1 13.i10 4 67 '040M '00 (25 -S 6 retimapped into a processor array so that it .:in be partitioned

4 0,1611 o SON 4 0*0 13 0M 000 It38% 10' ~~~~~1 017 ~ ~ ~ TIP . o reconfieured alone one or both ortho~yonai dirtctionN ot the
plane. -krrav reconfiguration :s achieved h~ otgical ehimi-

TABL II ation At rows andor ;olumnns with faulty ;t1Ci:sors The
REUOIrrYIMROVME TABRLORE 1 N RC N switchingv mechanism isolates tailed module, and >s ex-

.ARRAY FOR COVERAGE C = 1. C 0 99 u M. 04DC L 095 tremely simple ind cost effecti\se We analzecu and esemn-
plified the use ot our techniques ;n detailed e\,impies, Closed

Ti. RIFits (orSRE RIFIt? for ARC E r .form expressions were derived for r;_,liabiltt'. pcrtorrabiiitv
=o. = 9 ss go ~= 9 and computational availability. and they were used to evalu-

1 28 141 742a 358 12.210ll" 153 0334 ate 15 s 5) and i 10l ( lt array systems. Besides its sim-
2 438 3.39 254 2.01 17 48ti' 104 i44 2,49
.3 1 00 17 'iS 1 $0 13A47,91* 74 4.02 ' 1 plicity and g!eneralitv, our approach has another siinificant
4 i 20 1 1ii 16 Iiij 120 0W72 4 21 201 advantage over previously proposed solutions,. ,e .the pos-

IU 20 i 0620 27:10' 62 34 101 ibiljt\v of -raceful deeradation. Our schemes tolerate at least ~ i7

in -Ii ) aults in an i n i I array, whereas redundanc, solu-
TABLE [H1 tions tolerate a small constant number ot taults and -equire

COMPARISON OF SRE AND ARCE larger amounts of additional hardware. The nove lty and iupe-
AddceN R~bb~hp S,.I:.I Piformodjy Ciopiu~~ jnoritv ot our schemes results from the tact tathey explore

5V6 ~ ~ -ml iorv i .z1b*I he characteristics of both the alvorithm and the architecture. 0
iRE Woo0 1.habe Ioo foriy .our approach :in be used together Ai th othter solu- -

20"1,Irml ions based on the use ot reclundarnc% )r more _- mple ( okrtfs
A 0VE iiti I dof: Vyo ot array recontieuration. In these bvbriu ,:bemnes. redun- 1

~ ~ . ~ . dancv could be used to preserve the size and struc:ture ij, :he % .'

array as long as possible. followed by proeressioc e imple and
f -ast SRE or *ARCE reconfigurao tp itrprsdwt

designed conservatively). and a Very simple control rule -~ tp nesesdwt
matches this need. This may not be true or feasible in fully ohrcmlxtm-osmn eofgrto rcdrs
reconfigurable arrays.

oSRE has high performability for high performance REFERENCES

levels, whereas ARCE has high performability for low per- KHah idF\R~s urie .'r~e rneir

formance levels. This suggests that SRE should be used York. %6Grash.Hill. 1984

in real-time applications where execution time is critical. 21 L Lhr. iiAmpuier 4rravs and Vemrkis St'orithm-Strstc-urea Parallel
whresAREisaeqae o apicton eqiin on rchietur~es New York -\cidemnic. i992 '~~

whereas~~~~~~~~~~~ AREi dqaefrapictosrqiigln K E Baicrer. 'Destian iit jdxxI parallei proces~or IM-E Frarns
periods of operation le.g. . remote systems)i. I m,: ClQ)7p lto-l) 

5 t"l 8

*Computational availability is used here to measure the -41 H T Kaing andi C E IsL,'ilo. \ikonthfns :ir ' t-s os essor 117-
capacity :t theju array a/ul ~ " ~ ~ .1 l,qem I : ju ini L (Inwas,. %*potential computational caalVo h ra.The acul d Readlini! MA. \ddiwtn- IWesiex srI. %

computational capacity depends also on the method used to 51 S 't Kuntz, K 'S Viim. R (;jdi-Ezer. ar.,l D) 3 Raci. \w3terront

explore the potential c apacity. In other words, there may be il-as processor Lanizudgie irchiiecture Ind jvpitailinx.i ALEans .'-
1'Mr7uf . xwi C s. 'p_ %14 re ~x 'i

other algorithm partitioning techniques or computation-to- I L Smr Inirodu!W '0 I1V -nTieurdriie "iri'irjile! orputer
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A High-Level Systolic Architecture for GaAs

J. A. Fortes R. J. Dick
V. Milutinovie W. A. Ilelbig
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Purdue University Microelectronics Laboratory

West Lafayette, Indiana 47907 Advanced Technology Laboratories
RCA/Aerospace and Defense
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I. Introduction later 4K-bit versions were presented Several coinianies
were working on 8K-bit designs in 1985. Gate arrays

This paper describes the design of a high-level GaAs have advanced from a 1000-gate design presented in 198-1
systolic architecture intended for use in a new generation to a 2000-gate design announced in 1985. Wkith this
of advanced communication and radar systems. The pur- enormous progress underway, it is now appropriate to
pose of the systolic array is to provide those systems with consider the use of this new technology in the implemen-
a real time adaptive filter signal processing capability tation of high-perfornance systolic arrays.
with very large throughput and short response time. The
high performance characteristics of the architecture

described here result from the use of fast GaAs technol- primarily because of two advantages it enjoys over Sili-~~con. These are higher speed and greater resistance to

og., an efficient and numerically stable algorithm, and an cn ese eiher send gs
adverse environmental conditions.

innovative systolic array architecture. The following sec-
tions of this paper describe these design choices and how GaAs gates switch faster then Silicon bipolar

they interplay and converge into a solution which meets Transistor-Transistor Logic (TTLI gates by at least an

the stringent requirements of communication and radar order of magnitude [21. These switching speeds are even

systems of the 1090's. faster than those attained by the faster Silicons, CMOS IN.

Section 11 summarizes the basic advantages and and bipolar ECL but at lower power levels [2] I3] For
this reason, GaAs is seen to have applications in corn-d is a d v a n t a g e s o f G a A s . S e c tio n I II e x p la in s in m o r e p u e d si n i n e v r l c m t a o a l y n e s v r a .

detail the adaptive filter signal processing problem as it puter designs in several conputationally-intcnsive areas.
occurs in the targeted applications and describes the algo- In fact, it has been reported that the Cra%-3 will contain
rithm used for its solution. The global systolic architec- GaAs parts.
ture is described in section IV, as well as the design of the GaAs also enjoys greater resistance to radiation and

individual processor elements of the array. Section V is temperature variations than does Silicon. Ga.As success- ,%

dedicated to considerations on fault-tolerance, modularity fully operates in radiation levels of 10 to 100 million

and extensibility, and, architectural impact of GaAs tech- RADs 12). Its operating temperature range extends from

nology. Section VI is dedicated to conclusions. -200 to 200 degrees centigrade f21. Consequently, GaAs
has created great excitement in the military and
aerospace markets.

II. Why Ga ,s? Unfortunately, GaAs is also characterized by some

Gallium Arsenide (GaAs) technology has recently undesirable properties. Two significant arca where GaAs

shown rapid increases in maturity ill. In particular, the is inferior to Silicon are cost and transistor couit capabil-

advances made in digital chip complexity have been enor- ity.
mous. This progress is especially evident in two types of The higher cost. of (GaXs chips is largely the result of
chips: static RAAIs and gate arrays. In 1083, static the higher cost of (;aAs material it.elf and the lower

RAMs containing lK bits were announced. One year yield of GaAs chips. GaAs material is more expensive

Proceedings of the 1986 International Work&hop on High-Level Corn- than Silicon. Also, since GaAs is a compound material,
puler Architecture, Honolulu, Hawaii, January 1986. additional processing is required to create it and to verify
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its composition. The lower GaAs yield is also due to each antenna element within the receiving aperture are

multiple influences. First, although improvements are adjusted to control properties of the far field antenna

being made in this area, GaAs is characterized by a pattern such as maximum gain, low sidelobe levels, nar- -

higher density of dislocations than Silicon. Second, in row mainbeam and pattern nulls in the angular direction

order to achieve working devices with adequate noise of interfering signals. In adaptive doppler/spectral filter-

margins, very fine control of circuit parameters is ing, the phase and amplitude of each waveform sample in

required, and this is not yet easily achieved (2]. Finally, the time domain are adjusted to control properties of a

the high brittleness of GaAs contributed to its high cost filter in the frequency domain such as maximum gain at

due to its increased breakage 141. Currently, GaAs chips the desired frequency, low filter sidelobe levels, narrow

are roughly two orders of magnitude more expensive than main filter response and sidelobe nulls at the frequencies

their Silicon counterparts, however, this difference should of interfering signals. In both cases, the amplitude and

narrow to possibly one order of magnitude or less by the phase adjustments (i.e., complex weights) are determined

end of this decade. by processing all voltage samples in real time. In either

Transistor count limitations of GaAs are attributed case, an adaptive Discrete Fourier Transform filter 0

to both yield and power considerations. The relatively operating on a number, N, of complex voltage samples

low yield of GaAs chips forces designers to consider chips may be used. The N input samples, frequently multiplied

with smaller area (therefore lower transistor count) in by a window weighting function to control filter sidelobe

order to remain cost-effective. Although GaAs gates levels in the transform plane, form a complex N-

require less power than their Silicon counterparts when dimensional vector, x. The filter output is formed from

operating at similar speeds, GaAs gates do consume con- the product of the weight vector, w, and the signal vec- 7 1*

siderably more power than slower Silicon MOS gates. tor, x. The optimum weight vector is -1%

Because of the thermal management problem this creates, w = R-s" = M- tv.

fast GaAs chips cannot match the transistor count poten- where s is the N-dimensional steering vector defining the

tial of Silicon chips. antennadirection or doppler frequency peak response and .

It is believed that these four GaAs-Silicon differences R = x'xt is the N by N covariance matrix of the signal,

are not of a temporary nature, but instead result from whose ij-th component is ri = x i xi . M and v are res-

inherent differences between GaAs and Silicon materials. caled versions of R and s, respectively (for full details,

Conclusions which are based on these four fundamental the reader is referred to 15]).
characteristics will remain valid even as GaAs technology The adaptation process requires tbe inversion of an ,

Thn atpato prcs reqire NhN ierin ofa
mnatures. NaN complex matrix in real time or, equivalently, the

Because of these GaAs-Silicon differences, it is not solution of a set of simultaneous linear equations. This

sufficient to merely copy existing Silicon designs into problem has been one of the main concerns in numerical

GaAs in order to obtain optimal GaAs performance. The analysis and control theory for many years. A number of

GaA.s environment presents the computer architecture algorithms have been developed and studied with the %.,P

designer a new set of challenges. However, the rewards of adaptive array application in mind 15-61. However, for

successfully exploiting this new environment are substan- the size of the future systems for both communications

tial. With the high speeds which characterize GaAs and and radar applications, the complexity of solving the

the recent examples of GaAs chips with VLSI levels of associated equations grows rapidly, implying the need for

integration (>10,000 transistors), we are presently on the utilizing only the most efficient algorithms. Tradeoffs .%

verge of achieving, with a single-chip processor, speeds for between hardware complexity and convergence time, .%

scalar operations typical of present-day supercomputers. maximization of signal-to-noise ratio and minimization of N

the effect of error sources on the adaptive process must

be seriously considered for each application. After ..%

EI. Applications and Algorithms ror Adaptive analysis and simulation of the candidate algorithms, one

Filter Signal Processing of the direct Matrix Square Root (MSR) algorithms pro-

Two similar adaptive filter signal processing applica- posed in (64 was selected as the most adequate.

tions exist for the proposed systolic array processor; The MSR algorithms involve directly updatir.g the

adaptive antenna array beamforming and adaptive sample matrix square root factors U, D that evolve from 0

doppler/spectral filtering. In an adaptive antenna array, a Cholesky factorization of the positive semi-definite M . ,

the phase and amplitude of the waveform incident upon matrix.

,. ?f



M =UDUT One notes that waves 1 and 2 can be run simultaneously,

but wave 3 must wait for the completion of the previous "
where U is a lower triangular matrix with unit diagonal two to start backward. Not only that, wave 3 has to
elements and D is a diagonal matrix with positive or zero operate on old covariance values: as an example, when

n Dwave 3 reaches the last row at the top, it expects to find

M KD K x the U values that wire there when the data vector X, for

1=1 wshich the weights are now being computed, first entered

and are recursively updated as the array. This requires memory within the array.

Given the array fully populated with processing ele-
DKUK = UK-IDK- -I K-+ XKbK ients awl, neces.sary inenrory, each algorithm iteration

where b is a scalar set to one initially. The matrix inver- will perform two pases through the array (Figure ).

sion needed to solve for the optimal weights, w0 , can be

reduced to a single back-substitution. Distinct MSR - The first pass (including waves I and 2)

algorithms differ only in the values used for the diagonal proceeds from the top and left, down and right ,

at a .15 degree angle The data vector is fed in %

elements u and/or d. The chosen MSR algorithm parallel and at a .15 degree angle into the array,

i.e.. each data eleriwnt in a sane ector enters

the array one cycle after the input of the previ-

IV. The Basic Systolic Architecture ous data element in the same vector. The pro-

cess then proceeds at an array clock interval

The algorithm lends itself to a systolic array realiza- deteriiined by the longest computation time in

tion. The triangular structure of the array reflects the any array element, which, in this case, happens 0

matrix triangularization step, characteristic of the algo- to be that of the diagonal element. Con-

rithm. The array consists of a triangular grid with N(N- currently, the updated covariance matri' U

1)/2 nodes or elements (N being the size of the original values are stored into each cell, as in a shift d,-.

matrix). With regard to the computation involved at regi.ter..

each of them, the elements are of two types: the ele- the second pass (gneration of the weights ws) 9
ments along the diagonal and the others. th"eon as(gnrtino hc eghsws

hcan start at the same time the last diagonal ele-

ment 1) is proc'ssed (same clock); now the com-

Three Systolic Waves putation proceeds backward also at a 45 degree

angle starting from the last column and last row

Assuming initially a fully systolic realization, the on the right. At each clock a new weight is

algorithm iteration requires three systolic waves of com- comtputed. Note in Figure 4 the uneven but

putation (they are shown for the simple case of N=6 in predictable length of the "shift register" in each

Figures 1 through 3): array element.
%

I) Wave 1, covariance matrix updating, starts From Figure 4, one can assess easily not only the

from the top-left element and propagates irrniory requrirements but also the latency tie (of the

toward the right and the bottom; the data (,rder of 2N) between the time a new data vector enters

vector x enters the array from the top, the array and the time the last of tire weights w's is %

released.
2) Wave 2, first step of the back substitution, F"trire 1 also shows the organization of the l(s

propagates, as wave I, from the top left ele- within the systolic processor. The processor clhnients are

ment and generates an intermediate vector 2 arranged ;s a right triaigle. (alcuilitirs withii tre tri-

used next to compute the weights w, angle ripple from toqp to l,,ttomn (ro,,t .ovariane uptlate

3) Wave 3, second step of the back substitu- aid first step of bak substituton) ain( frri right to left .%' %

tion, propagates backward from the bottom I'ecniid si el  of back substituit iin). I)ata fl, 'rS Y

element of the array, and generates the horizontally, vertically, and downward along the outside

weights sequentially. diagonal One important feature of the array is that the

%
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autocovariance values remain stationary within the array, column can be bypassed and the corresponding degree

so that no busses are required to transmit them to other of freedom ignored. Notice that a reduction in

parts of the array. throughput may require the system to ignore some sam-

The array is constructed of two cell types, which are pls but the degradation affects all weights instead of

designated SAA-I and SAA-2. The SAA-1 cells perform simply eliminating one.

calculations needed by the root covariance update and An alternative to the use of test vectors and complex
the first step of the back substitution. diagnostics for the detection and location of faults con-

The SAA-2 cells are involved in both the root covari- sists of using actual receiver sampled data and time

ance updates and both of the steps of back substitution, redundancy. The basic idea is to multiplex the systolic

The root covariance values are kept within the SAA-2 array in time so that the same input samples are pro-

cells. For purposes of pipelining the second step of the cessed twice. lowever, for the second processing cycle,

back substitution, each SAA-2 cell contains a FIFO regis- the samples are circularly shifted so that column i of the

ter which delays these U-values for the necessary cycles, array receives the same data received by column i-I in
the first processing time (column 1 would receive the
saine data received by column N in the previous step).

V. The Fault-Tolerant, Expandable, GaAs Sys- Internally, each processor can then compare its result

tolic Array with the result computed by the neighbor processors for
the same data.

Fault-tolerance is achieved by periodically testing Figure 7 shows a (6x6) square array module as an

the array and dynamically reconfiguring it when a fault is extension of the (6x6) basic triangular array. Note that:

detected. To avoid performance degradation, spare (1) the diagonal elements are capable of performing as

columns and rows are provided to allow for the logical SAA-I or SAA-2 cells and (2) the upper triangle of SAA-2

removal of faulty processing elements. If a cell in row i elements in the basic array is replicated below the diago-

fails then both row i and column i are bypassed and logi- nal of square array module. The basic idea underlying

cally replaced by the neighbor column and row, respec- the extensibility and universality of this square array

tively. Figure 5 show the basic array augmented with module is illustrated in Figure 5. This figure shows how 0

spare rows and columns and figure 6 illustrates the a large triangular array can be generated by replicating

reconfiguration of a (128x128) triangular array with an the square array module. The replication can be done in

extra row and one extra column and one faulty processor. time, i.e., by time multiplexing the square array so that it

In the worst case fault distribution (i.e., all faults occur in emulates the large triangular array. The replication can

difftrent ro%%s and columns), up to K faults can be also be done in space, i.e., several identical modules are

tolerated if K spare columns and K spare rows arc pro. simply tiled together until the large triangle is covered.
vided. To tolerate K worst-case faults in a system for N Partial space and partial time replication is also possible.

degrees of freedom the percen*age of additional hardware Thus, the square array module can serve as the building %

required is 100 x K(2N + K + 1) L For example, for block the systems with different customer requirementsN(N-I), -N:I2 and K=I, 20 redundancy is required. On-cell and intended for different applications. These basic ideas

multiplexers set by the array control system are used to are similar to those discussed in [7[.

bypass rows and/or columns of the systolic array. Fault
detection is done by interleaving test vectors with the

input data and checking the output generated by the VI. Conclusion%

array for the test inputs against the expected results. We described the design of a high level systolic

The occurrence of a fault after all spare rows and architecture for adaptive signal processing in high perfor-

colunins have been used does not have to cause the crash mance advanced communication and radar systems. The

of the system. Graceful degradation is possible in two main characteristics are extremely high throughput, fast
ways: (a) by reducing throughput and (b) by eliminating response time and high reliability as result of marrying ,- .

degrees of freedom. If processor in row i and column j advanced GaAs technology, a sophisticated algorithm and .- %*.

fails then (a) the row i can be bypassed and a neighbor innovative concepts in computer architecture and fault-

row is time-multiplexed to replace row i or (b) row i and tolerance. .

%.,
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3.6 ALGORITHM RECONFIGURATION
TECHNIQUES FOR GRACEFULLY DEGRADABLE
PROCESSOR ARRAYS

Jos~e Fortes

INTRODUCTION

Operational fault-tolerance in VLSI/W il processor arrays remains an Important obstacle to tbe
widespread use of such -irciterturri In particular. graceful degradation is bard to achieve, thus
implying the need for large amounts 4f re-dundcancy Without graceful degradlation. after redundancy
is exhausted. any additional fault causes the entire system to rail, a unacceptable fact for the very
large processor arrays inade possible by \I/ 'S ome solutions have been proposed for this
problem In these relatively few fault tolerrance schemes graceful degradation is achieved at the cost
of large !osses in throughput or response time , stly Ldditional initerconnect, complex switching
mechanisms and/or involved control schemes

.A promising approach to this problem relies on using simple on-line algorithm reconfiguratico
techniques together with simple hardware reconfiguration mechanisms In essence, algorithms are
reconfigured so that they can execute on the same processor array 3fter the occurrence of faults and?
possible removal of processing elements

In the spare allowed, this paper shows how rational quasi-affine llQ)A I algorithm ttranskrMa-

tions can be used to devise such reconfiguratito schemes. It descru~es the mathematical framework
underlying iur techniques, discusses examples and three approaches hased on a common RQA pX.j

transformation which Yields optimal graceful degradation and briefly discusses extensions of our
approach to 2-dimensional arrays.

MATHEMATICAL FRAMEWORK

In the following discusiocn we use Z. and I to denote the set of integers and the set of nonnega-
tive integers, and use Z* and In to refer to their corresponding nth Cartesian powers. We will con-
sider only q-dimensional processor arrays, where q = 1.2. We see a processor array as a finite q-
dimensional grid in which each integer point is a vector index of a processor and a set of vectors Ithe
interconnection primitives) which describes the regular pattern of interconnections of the array. The
following definition formalizes this view.

Deflitlon I - N proc'zzor .orray is a tuple fL'T) where q1 is the dimension of the array. L 5CZ7, is
the inde tef and PEZ" '" is a matrix of rEl intcrronnertion primitives.

Thus, in a processor array (lnp), the processor with index 9 ELt is connected to a processor

with index 9' V + ujP. if V EL', and it is connected to an input-output port otherwise

The research was grippsored 's par% by the innovative 'uesicr &ad Technoiogy Office ofthde Strategic tDefes~e

Initiative ()egasiaiv and man &dvvn-iter-d ihrough the (dice of Naval Re-ar under contract no 00014-,

%~ r

%~ %



260 SYstolic A rrat's

Example 1: The linear processor array shown in figure I(a) can be described by (L',P) where "1
L' = (Q : 0 < 9 !< 3) and P [0 1 -11 . The square processor array of figure 1(b) can be described
by (LP) whereL 2  ((i,f-) 0 < I,, V. 31 and

P=l 0.2 0-,3

)- 2,0 2.1 2.2 2,3

- 3.0 3.1 3,2 3.3

(b)

Figure 1 (a) - A linear processor array; (b) - A (4.4) orthogonal processor array S.,

The execution of an algorithm on a given array can be thought of as an ordered set of uta-
tiations of the array, each of which contains an assignment of computations to processors at a partic-
ular time of execution. Consequently, we see an array algorithm as a (q+l)-dimensional grid in *

which (a) for q = 1, each integer point (j2)T indexes a computation at time j, and processor j2 and o

(b) for q = 2, each integer point Ujljhj3 )T indexes a computation at time ji and processor (j j) T . In
addition, we associate with each array algorithm a set of vectors (called dependence vectors) which
describes the pattern of generation and use of data in time and space. In other words, if a computa-
tion with index j generates a value used in computation with index ?, then j' - - is a dependence
vector. Clearly, the first entry of any dependence vector must be > I (i.e., at least one unit of time
separates generation and use of a variable), and the vector corresponding to the other entries must
correspond to a linear combiuation of interconnection primitives (i.e., a path connecting the proces- " .

sors where the variable is generated and used). Assuming that communication (over a single inter-
connection primitive) and execution of a computation take one unit of time. the number of intercon-
nection primitives used to communicate a result from computation with index " to computation with
index j' must also be less than or equal to the first entry of the dependence vector j' - j (i.e.. the Nl
interval of time between the computations). These considerations translate into the following
definition of .rr,- ""rithm.
DefinItlor. .r an array (L5,P), PEZ"' r). An array aigorithm is a tuple (Jq+iD), where,. , .

Jq+IC:q+I . nde: set of the algorithm, and DEZ'i(+i ')" is a dependency matris of mEl depen-

dence vec such that

d11  1 i=.m (I,

and

[d 1, i =2, +J 1 PIK for KEor, such that 1:kji !5 dii i =1".'m (2)
J=i

In this definition of array algorithm we represent only the structure of the algorithm ad % IF
abstract from the actual computations being performed. This is adequate because we are essentially %

worried with problems of matching computational structures. Also, input and output data are not

V..
. % ,% % %% % % , % % % , - ,% .. ' , .,.'.. % *. , - -. . " %,- - -. , -. j'. ,... .,, .
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.1 % m

explicitly represented because they can be treated as generated data li e for a given procesor
receiving data from other processors there is no distinction between data generated and data
"passed" by those processors). Finally, the description or dependences would be more precise if to a % ,
given dependence vector we associate the index point where the dependence is valid. This complica- %
tion turns out to be unnecessary for the derivation of our main results.

Example i1 Consider the linear systolic array showin in figure 2 for convolution computation (pro-
posed in 1Li & Wah 851). It computes the recurrenceiSk 4!tk-i

I +i al3)~

ai t a 5 ~ r_

y= + k 1 0 < < 0, 0<a !m WP

for m=3 and n=-S. The algorithm executes in 9 units of time and some processors are idle only dur-
ing the initial and final phases of the computation. Variables 'a" stay always in the same processor
and variables -y- and -"" move to the right neighbor processor every ,oe and two units of time.
respectively. This array algorithm can be described by !J.D) where j2 = {it.4 1T 0 < j2 < 3.
i2 < Ji < 55 + I - e.. 1 i, time and j2 is the processor index, and

(a) = 0 l iy)

where the secnd row corresponds to

I0 Oil)
PK 1 I -11 1,, I 1l

Sq .%
Step 2 Y" 46 a' Vts II5

Y0 ;; % ,
S .Yi YI y y- Y

Figure 2- Systolic array for convolution In . = 3)

Since we are interested in general purpose algorithm reconfiguration schemes, we will consider
"worst case 'array algorithms. In other words, we will consider ;lgorithms which, at any time d ir-
ing execution, use all processors and all interconnection links of the array Thus. for 3 linear array 1.
algorithm which takes T units of time to execute on a linear array with N processors we have ( )
where ,

J2 = (0 1 J2)T : 0 < <T-1 , 0 < <N-I and D = l 1 _
/

Figure I(a) illustrates this for T = , N = 4. Similarly, for a square orthogonal array algorithm with 1 l
execution time T and (N N) processors we have (JSD) where

JS N<<T-I and D 0 01 ?
0 0-10

Ilereon and unl-ss otherwise stated, we use the term array algorithm to mean a worst case
array algorithm. We are interested in the case when, due to the failure of one processor, the original
array algorithm must be executed by a smaller processor array This requires that the algorithm be
reconfigured, i.e.. that operations initially allocated to faulty processrs be remapped into the %

54%
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-5

operational processing elements. This is equivalent to saying that we need to obtain a nlew array
algorithm by transforming the original array algorth.. Algorithm transformations have been stu-
died extensively and are reported in (Fortes & Raghavendra 851 and [Moldovan & Fortes 861 and the
references thereof. In [Fortes & Raghavendra 851 it was shown that a simple transformation can be '

used to reconfigure array algorithms with unidirectional data movements. It was also shown that any

array algorithm can be transformed into an equivalent array algorithm with unidirectional data
movements, thus making that scheme generally applicable. One of the disadvantages of this
approach is that the equivalent algorithm may be slower than the original one. Another disadvam-

tage is the requirement for wrap-around" links between processors at the boundaries of the array.
To show the impact of this approach on the "degraded" performance of the array with faulty proces.
sore we need to discuss this scheme in more detail. Consider the case of a linear array algorithm
which executes in T units of time on N processors. Assume that data movements are unidirectional it.

and one processor fails. The remaining operational processors have virtual indices ranging from 0 to e.

N-2. The reconfiguration is done by simply mapping a computation originally performed in processor

J2 at time it (i.e., point (,J 2 )) into processor j2mod(N-l) at time it + li.J(N-2)J T. This means that ,

response time is doubled and that the average throughput is halved.

The reco figuration technique proposed in this paper does not suffer from the drawbacks dis-
cussed above. It evolved from the theory of linear algorithm transformations ([Fortes & Raghaven-
dra 85 , JMoldovan & Fortes 861) whose basic ideas are explained next. The reorganization of an:
algorithm corresponds to a permutation of its index set and can be described as a linear transforma.
ion TEZ"

+ 
'1

1 +  such that T is nonsingular The first row of T. denoted ,r, is referred to as time
transformation and the remaining submatrix of T. denoted S. is called a space transformation. In
other words. T reorganizes the algorithm so that a computation with index j in the original algorithm
is executed at time -1 and processor S7 (i e.. the Index in the transformed algorithm is (X,.SJ)T). Due
to the linearity of the transformation, the dependence matrix of the transformed algorithm is simply
TD, where D is the dependency matrix of the original algorithm. Of course. T must be selected so
that the new algorithm is an array algorithm. i.e., (1) and (2) are satisfied. To illustrate this it

approach the reader can verify that I.-4Y

T = 0 "-

can be used to transform the algorithm described by (3). for which

D = 01

into the array algorithm of figure 3 for which the dependence matrLx is (I). i.e.. TD. 0
%r ,P

NEW RECONFIGURATION SCHEMES

In this paper, we consider rational quasi-affine (RQA) transformations of the form ITJ + L I.
where TEQ(i Q+l ) ' q +

ii. tEQ(q+" and Q denotes the set of rational numbers. As for linear transfor-
mations, T consists of a time transformation s and space transformation S. Time transformations of
this type are discussed in (Fortes & Parisi 841 and a full discussion of RQA mappings will appear in a
forthcoming paper Clearly, the class of RQA transformations is a superset of that of linear map-
pings mentioned in the previous section. However, RQA transformations for which T is nonsingular -

do not necessarily correspond to one-to-one mappings. Thus, before considering an RQA transforms.
tion. one must show that it indeed specifies an inlective mapping. In addition, conditions similar to
those used to select linear transformations must also be used to choose RQA mappings. As men- --.

tioned before, a valid algorithm transformation must yield a new algorithm for which the dependen-y ---

matrix satisfies (1) and (2). For a linear transformation T. the new matrix is simpl' TD where D is
the dependency matrix of the original algorithm. For RQA transformations, this is not true. How- k.

ever, it is still possible to define conditions which ensure that (I) and (2) are satisfied. Note that for
any X. Y and W the value of LX/Wl - LY/Wi is either L(X-Y)LWLor I(X-Y)/Wt Hence. for the
transformation R mentioned above and any dependence d = - j', we have that the value of

S.- ,-

- 1%;
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R(j) - R(? ) is [ITJU where T is as defined above and the notation ii means that any entry in Td
can be replaced by either its ceiling or floor value Thus, a valid RQA transformation must be such

that rITDU satisfy (1) and (2).

We start by discussing the case of linear array algorithms. Hleren. we will only consider RQA

transformations of the type introduced in the next theorem. The theorem shows that such transfor-

matbons are injective and. in addition, reversible in the integers Afterwards we show that RTDU %

satisfy (I) and (2). We use the symbol IR to denote the set of real numbers and IR2 = 1 IR.

Theorem I

Let J*CIR 
2 and J = J ["L Consider the RQA transformation R J-L such that

w eeR j) = jT i + tJ (6)
where

I -! a I aEl, a > 2 (7

and

and aIj-j:.

L L'ni. L" " T7 + LJ. 

The transformation R is a bijection.

Proof

We show that R is both ai injection and a surjection and thus it must also be a bijection.

(a) R is an injection - By contradiction. Assume that j, j' EJ. ij-j' and 
= R(j) = R ? =

We show that this implies j', i e, o j - 0, RIj) can be reexpressed as "" J

+ol['j [ [ I [ = I' IJ

and. because (-(x + /k = -[ + x/kJ] for al x and k, we have

ji + 1(Ji + j 2)/(a-lI and V- = J2 - 1 + j2 /(a-1) 1 .(8)

The assumption 9 = }' implies '5%

+ I +-l j 6 -..

61 +i i+12 -2 + JIL=0
6- a-I --

Substituting for 61 + 6.& in the floor functions of the above equations implies i, = 1 = . ie . 0.

lb) R is a surlection - Since I TI = 1, L' has the same area of J" Thus. L' cannot contain
more integer points than J' does. Since R is an injection it must also be a surjection (pigeonhole

principle). Q ED ."_.
.-N5 5.
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";iw we -how that fITDII satisties Il) and 1-) In fat we have

Ia 1 111 1 1 la a+ 3-Il
T D = - H a -. J - 1 --" 1 -I I - 3 - a- jl,

The wor.t -ase occurs when we take the floor or the first row entries and the ceiling of the
absolute values in he second row This corresponds to the case when the least time is available for
data communications to take place The resulting matrLx is

[-" :!j(10)
which clearly -atifles II) tnd (2). Another possible matrix resulting from [LTDIJ corresponds to the
case when the ceiling and floor functions are applied to the first and second rows, respectively. The
resulting matrix i,

0 -1

which. expectably also satisfies (1) and (2). It also becomes obvious that. at different execution
times, the same variables could move every tnit of time, or move every two units of time or stay in
the lame processor for two units of time. This may suggest that data timing and movement are hard
to predict Fortunate y this is not the case and much information can be derived from our formal-

m Fr example t -an he hown that for any dependence d. the only values of [IT4 which occur
in the new algorithm rorreopond to those where the ceiling function is applied to one entry of d and
the floor function is applied to the other entry (a consequence of 01+Q2 = Jt +j. from (8)). In other
words, the new dependencies correspond to vectors present in the matrices

c m t c ) and 1 I e

\n important implication is the fact that buffering (local memory) is required (for the first two
columns 4 he ,eccind matrix). As, another example, consider the first 2 entries of the second row of
(9) and consider the question of finding out when. for a given processor, the corresponding variable
moves or remains in the processor (i.e., when the ceiling and floor values are valid) It is possible to
,how that the ceiling function is valid (a-2) out of every (a-I) times for the first entry and (a-3) out
cf every (a-l) times for the second entry (in a periodic manner). Similar deductions can be done with
respect to timtng and data movement for other individual processors and variables. 5

ts for linear transformations, graphical representations of RQA mappings are quite insightful.
For linear transformations, the locus of ! = constant in the index set of the original algorithm
corresponds to a plane or line which describes a computational wavefront (i e.. the execution of com-
putations whose indices belong to the wavefront takes place at the same time). Likewise, the locus
of Sl = P0 contains the indices of computations executed by processor P0. For the case of RQA map- %

pings. the locus or + t-j = constant corresponds to several consecutive wavefronts which are 'X

computed simultaneously. The locus of [S" + t. PO, contains all indices of computations executed -

by processor 0.
The transformation R given by (61 is the basis for three reconfiguration schemes to be described e

later in this paper. In general, when reconfiguring an algorithm for execution on a linear array witb ,% ,
N processors, one of which is faulty, we assign the value N to the parameter a in R. In order to
illustrate the concepts introduced above, we now discuss an example for which N a = 5. Thus, we .

have. from (6),

1 5 I _ lI 6 C , .
RF L I)= 'l. - - and TD]= iI -Lz.

Figure 3 llutrate several ideas discussed before, Figure 3(2) shows the original worst casealgorithm before any fault occurred. The dots represent computation indices and the arrows depict

% -. _.e

.0 'o I" .. ,'. % %'. %" 'r "4,,1.'". ', ' ' ' .. "..,. ', " . ,..-. , 
%

% % 
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data movement. \'ie X'SUiMP An PeeIitioif torm. Ja- I 4 uiaio! m (the rAson will lenpls
later). Figure 11b) depicts the computational wavefrotits (runl ins) aind (he timie when the * ire ek-sc
euted as determined by R (the .vmboj r leniotes execution time in ibe new liig,,rithm) The broken
lines contain indices of COMPUraliins executed by' the, same procetsor (we 1Vse tie -%ITt-1 (,)r pro-
ressor indices) Figure ' )c) shows the same Information as figure lqb) in dlifferent form together 'sub
the movement of data The *crotihatched- bars -ontain indices of conputai ionis executed at the
same time The dotted 'bars contain indices if c-omputations executed by (be 'ame processor The
following properties ,f the reconfigured algorithm iliscussedf previously are siowi readily apparent.
First, notice that orili -I= I processors are used, i e. the faulty processor is nit required "Ceond
no arrow rrlifie 3 diotteid bar. i pe all communication occurs between operational neighboring prOces-
sors (we will comment on necessary reconfiguration hlii_,, ire later). Third. 'ome data must beP, s
buffered In each processor for twio units if time. This occurs whenever an arrow crosses .1
crosshatched bar As predicted, stationary data in the original algorithm remains in the same proces-
sor three out or four steps in the new algorithm It e . 1a2/al /), data shifting to the right%
,;ta " s in ihe amp prorcssor two out of fur steps It , a-:l/(a--I) 0/ and data shifting left mrhcs
in every step Finails. friom figure 3(bi. it is; clear that each time -and space wavefront contains a
single Index. i p . ach 'omputaUti belongs to a different wasefrint. Sinoce the smallest entry in the
first row of the matrix given by ((4 is a-I =I. we know that at most that many coMputations r-an
oiccur simultaneisI, (:Fortes & Piarisi '11). Hence, oinly ihat many processors :ice needed

"cote that 1hi' reciutuiguritin -. renie I, -ptimal tt- ni .perationAl pre'sr i, -ver Ale
(he execution time is increased the eatpossible. i p . by a factor gis en by the rsit -if the numbetr of

Ail procps!sors over tOr number .), operational processors )/l in this caiej It ,interesting to note
that a necessary r(ondition for a transformation to preserve the product if the number if pr -'essors -

by execution time is that it be reversible in the integers Theorem I proved that it satisfies this con-
dition. With respect to throughput. assume that the original algorithm acepted a new input ande
generated a new output every unit or time. The new algorithm accepts I new inputs and gienerates I
new outputs every ]i units of time, which is also optimal.

Now let us nonsider the general casep when the original array algorithm has exerution time
larger than a-I I units of time The algorithm which results from apply' insk .1 hais the same
characteristics a~s before including the fact that at most 4processors are used ait Any i However,
the indices of these processors are not restricted to range from 0. to and mire thin I processorsP
would be required To solve thin problem. we consider three possible schemes based 'in the tranisfor-
mation R. We describe them next and discuss their characte-ristics afterwards. Let (- sl il-note the u
image in the reconfigured algorithm of the inde.x I lil in the origrnai arrayt algtorithmi. The three
possible schemes are as follows: %

Scheme I - ( r) olt j 2 foda-) where III'~ It(~))

Scheme ' - )r.M) = l~t+ a pt~- J.~Iwhere tO I ) = =ljmda I 2

Scheme 3 - (r.Q) = )QP + a Vj/alI. Q) where

Rjimod~al J i ia-l -l l mod 2=0I

R'ilooli0)otherwise .

where R' is such that -.

Though it may be possible to analyre the three ichemes mathematically, it is easier to explain
them by referring to figure 3 For execution times of the original alsorithm larger than a-I fa=5 for .

the example), scheme I essentially replicates figure I every adiitial a- I units of time. (However, fot
every replica, in addition to changes in the time indices, the processor indices are increased by

J5.
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p -%



266 Systolic A rrqys 
~

9(.0 (0,1) 0 (3,2) * (0,3) 0(0.4)%.I

CIA.) 00.1) 0(1.2) 0(1.3) 0(1.4)

0(2.0) 0(2.1) 0(2.2) 0(2.3) 024

0(3,0) !(3) 0(3.2)!(3.31 1(3.4)

(a)

L (b)

(.1

Figure 3 - (a) Original worst case algorithm

(b) Time and $Pace wivefronts defined by R

(c) Timing, Procewto allocahion and data movement in the reconfigured algorithm.

% %%
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jr/la,-I a modla- I). For example, computations with indices (a-1.0) througo aI a2 are executed at
time -" by processors with indices 3. 0. 1 and '2 in this order, Computation at indles a-I 3-1) is
executed at time 6 b 'y processor 2. It is easy to see that ibis scheme will require a 'wrap-aroound'
link between the first and last processor of bhe array.

Scheme 2 also generates a replica or figure I every a-I units of time. I4 this case the replica is
exact for the proce,,sor indices. iHowever, at the interface between consecutive replicas the move-
menit of data associated with the original dependence 11 11' does not occur between adljacent Opera-
tional processors. If' 5urh dependence is not present (e g ,in an Ailgorithm which is not a worst -ase
computation) then this scheme is acc'ptalile For example. comnputatiiins with indices (a-1.0) through%
la-l a-2) are executed at timki 5 by processors with indices 0 through 3 and computation with
index (aaI is executled at time 6 by processor 3. %'

Scheme I also generate,% a replica of figure 3 every a-I units of time. Hlowever, successive repli- .
cas are mirror images of each Other (except, of course, for the arrows depicting data movement).
This scheme does not -have any of the disadvantages of previous approaches Note that R' is
obtained from R by -hanging the sign of the off-diagonal entries of T and changing the value of t
from ((0, Ia2/l- T to 1aI1l-l ))T = 11 01T Graphically, the net result of these .hanges is V
the reversal of the -ign of the slope of the wavefrnats shown in figure INh This, in turn, yields the
mirror image of the figure ',(r) generated by fl. For example. computations with indices (3-1,1)
through la-la-I) ire executed at rine by procevsors 0 through 3. and, computiation with inde-x

a-11)is execici hi procesor 1i s i ne

it remaiins to fliscu~s the ,ase when there -ire XC faulty processors where *\ in h~e largepr than ~ '

one The solution is simple and c-onsists of recursively applying the prOposed -chemel..l', times
Clearly. N-I faults can he tolerated with minimal performance degradaticr in a linear processor wthb
N processing elements.

HARDWARE REQUIREMENT-S

imple additional hardware is required to support the .slgorithm reciinttgurattsn cheotes dov-
cussed here it must he possible to hypass each faulty processor Thus. %wit,-ning hariw are ;s
minimal. A

5lsio additinal local memory is required for P:ach processor ;n an amoitunt proportional to
the number Of faults to be tolerated. The ciinstant factor is rather small and the r-ader a n a.stlv
verify that fir 'he systolic array Of example -- this cOnstant is !In fact if we rev erse the sign f the
coordinate j, Of he index set for that example. this ronstant is -1 For the resulting ilg-rifhm V,4
Finally, one must al'o oOnsider the implications 4f implementing in-line the reconiguratin schemes
on the complexity ,if the control and host interface hardware It must be possible timplcinet It in%

real-time ks mentioned in the proof 4f t heorem I , N ~ I ittipties t hat0
Il/l I1 and - J. tl Thus IRlj) -an be computed with at mn,, Ift")

two adders, one divider and ine subtracter Note that the dtoor runctions and the modulo oprtations
which are also required for each scheme are easily lone by discarding or masking hits of a number.P

In addition to the computation of R, scheme 3 also requires the computation cf R It is relatively-1 X
easy to show that f qjjj= R*ljl implies that i + I aliI./aII nd '

12 fI-9/3 f hus, the 5 ame hardware can be ied1 to 'Impute P~ and I ence

hardlware requirements ire rather small. %?-

TWO.DEMsENSIONAL ARRAYS

since our formalism and basic tdeas -are applicable to 2-dimn"fEsional arraYs. Izt~k traonsforms-
tions can also) be qsed to devise reconliguratton schemesi for these arrays% <everal typesi if RqA
t ransform at ions are useful dppondig in the degtree of ha? waire reconfigurabtltty assumed In gIn-
eral. Optimal graceful legradatiiin is harider to achieve than for linear arrays, unless relatis ly corm- *.

plex reconfiguration hirdware is used This seems to b~e inherent to the nature of the intercoinnection

structure if 2.'limensiiinal arrays. %%hen considering very simple fiorms of hardware reconfig~uration.

N.

% .
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it may be necessary to logically remove operational as well as fat Ity processors. We have studied
several schemes with advantages over previous approaches which tequire hardware mechanism& at
comparable complexity. Due to space limitations, a discussion of these schemes and their relative .
merits is not done here and will appear in a forthcoming paper.

CONCLUSIONS

This paper described three related algorithm reonfiguration schemes which, together with Sim-
ple reconfiguration hardware, can be used to achieve optimal graceful degradation in lineal processor
arrays. These schemes are based on a class of RQA transformations, a new type of algorithm
transformations introduced in this paper. While our results have general applicability, their practical d
advantages will undoubtedly depend also on the nature of the implementation and intended applica.
tion of the processor array. The gene-ral approach described here can also be applied to 2- ,

dimensional processor arrays and is also useful for mapping arbitrarily large algorithms into arrays of
fixed size.
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Three sets of parameters are used to characterize a systolic array: velocities of data flow.
data distributions, and periods of computation. The velocity of a datum x is the directional
distance passed by that datum in one clock cycle and is denoted by iF,. The distance between
two PEs is defined to be one. Thus, id must be less than or equal to one because broadcasting
is not allowed in pure systolic arrays. "A

Data distributions are defined using row and column displacements. For two-dimensional
input and output matrices, the elements along a row or column are arranged in a straight line
and the distance between adjacent elements in a row or column remains constant as the data
flows through the array. To define the row displacement of array X, suppose that the row and
column indices of X are i and j, respectively. The row displacement of X is the directional '
distance between x,(,,) and x,(,,, ) and is written as i,,. Similarly, the column displacement
is the distance between x (,il and x,(,, . 1) and is written as is;,.

Periods of computation are described using two functions, r, and r,. r, is defined as the
time at which a computation is performed. whereas r, defines the time at which a variable is
accessed. The periods of i and j for two-dimensional outputs are defined as

t= r~1z,L..2) - r,(z, ,) 12.1.31
,(2.1- r.3)) 1 1•4)

t k = r,(z,"'J - rz,) (2.1.5)

It will be assumed that tt is positive. If this is not true for a given recurrence, the

recurrence can be rewritten to satisfy this condition. In computing z,, x 0, k) and Y,.k o
are accessed and two additional periods can be included to describe this interaction. They are

tkx -- (Xi(,k t)) - r,(x(k~l 12.1.0)

r= r(Y 1( ) - r.(Y (k1)) (2.1.7)

Depending on the order of access. t and tk, may be negative. Since operands to be used
in a computation must arrive at a PE simultaneously, the magnitude of the periods must equal
tt, i.e. it must be true that

tk =Itl = tkyl (2.1.81)%

The periods are independent or the indices i, j, and k. and they must be greater than or
equal to one to prevent broadcasting.

These parameters (velocity, data distribution, and periods) can be combined into a set of •
equations which describe the operations of a systolic array. These equations, for the two-
dimensional case, are

tk'Yd + Yik, tkyld (2.1.10)

t,Xd +' -
t

Yd 12.1.11)

td + A, = t, (2.1 12)

tYd + Y,1 = t)id (2.1.13)

tild + = t 1

The parameters and equations described previously can be used to formulate the design
process as an optimization problem. In the following equations, the expression p I represents
the magnitude of the vector quantity . The design problem is formulated as fol ows:

minimize #PE , T2 or #PE - T or T (2.1 15)

subject to (2 1.9- 2.1.14)

-A~,~ L e i 0- 2""J -'. #a, %/.• .. ....% . )%... . .%., . % . , . -% .% %% , , %% .% . %% ,

. . . . .. . ... l ' a 'I I - I ,' " " .. . . ... ... . . . . ' -
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and -

< Xe, I or ejI f) t1 I N)

<i. i,< r i

j~ tI or. ~ 01 17)

< < (2 1,191

< t tmk, t, aej k- < (-1 0

/0 = , ) j, #0 12 I1

xA 0 o ~ oi I 52

and the recurrence dletermines the relative igns of t, and tk.

H ecall that ti eSCrIheS the oum her of clock etlswhirh elapse bet wcei two conts ., %

computations rising . ariable :.and that i', repreveset he dire.ctional dii-i we traver-d~ b

datum . in one clock --ile. Thu, lit in f2 1 20) represent' the inagniturde of ili dirntin
distance traversed by a datum n between its use in two conseciitive conipiiiation niIal
k, and kj represent 'his same distance for variablesi yj til z. respectivelY kj , .And lk,
describe the spatial distance covered by a datum hetween its use in two consecuttit.e
computations. Tbe ,'M - and tk., values ire the maximum periodi values ronsidlr~d

in the optimization. Periods equal to or g-reater than t liese maximum values result in
completion times which aire equal to or greater than the 4erial processing time i 'onstraint J*

equations (2-1.21 ) and (2.1.22) prohibit multiple inputs from entering a P'E in oine vcie-.

Clearly, if a data distribution vector is equal to zero, two or more data elements are eparaied
by zero distance and must enter a PI' simultaneously, Thus, the formulation of the lvira
problem as an optimization problem as given in equations )2 1.9-2.1A 1)I anil (2'.1 lci2.1 25
ensures that tbe resulting array satis ies the constraints of systolic processing.

The optimal sy' stolic array for at given recurrence can be found by ytitcal
enumerating the possible solutions using a search order that guarantees that the lirst feasibtle
solution found is. in fact, the optimal one. Consider optimizing T, the total time needed to
complete the computation. First set k, = k, k, = I or. if a particular variable p is to
remain in the same P'E. set the assoriated k, =0. Then, set the magnitudes of the period,

tt,,and 1k equal to one and determine if a feasible solution exists If a feasible solution is
round it is the eptimal solution for T because T is a linear futiction of the periods that
increases monotonicallv with increases in the magnitude of these periods. If no feasible sohitioni
is found with t, = t, tk =I. one of the periods is increased by one and the search for %

feasible solution repeats. If no feasible solution can be found with k, = k, =k one of A

thbe k, 1 1 3. is increased by one and the search begins again. % flowchart describitig iis

optimality procedure is shown in 121

Consider optimizing AT" ,. First, use the above procedure to find a scotitiot with optiiaI
execution time T, which uses P, processing elements. Then. let the largest dimensioin 'if the

input or output matrix be In x ns) antI assume that the smallest number of PEs that can lie
used in a solution is n-. Then, solutions with completion time T, such that 0-T--, > PTi-

T. > (2-T 1 .21

need not he considered and the search ii carried out only fir values ma;ller thban T PI I,
reason for ignoring uesigos which have completioti times g-reaitur than T .is that. if T

multiplied by the minimum possible number of lIFs is greater than the AT- measure, for the .

TI, then the T solution cannot have a smaller Av 2 measure When all possible designs with

%

%J

% % % % % %
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execution time between T, and T, have been found, the AT measure is compared to find the
minimum solution. .

This optimization procedure has been applied to find optimal systolic arrays for matrix
multiplication, FIR filtering, discrete Fourier transform and other algorithms. 19J.

2.2 Data Dependency Method [1]-[81
Let Z' denote the nth cartesian power of Z. the set of nonnegative integers To describe

an algorithm A,. a five tuple A = (J . C . D , X . Y) is used where .P C Z' is the index set. WO.
C is the set of computations. D is the set of dependence vectors, X is the set of input
variables, and Y is the set of output variable The data dependencies describe the structure of .e

the algorithm and are given as a set of trples (dv.j) such that the computation indexed by
requires the variable v. generated at index - d. as an operand.

As an example, consider the two-dimensional recurrence
a~j~jf) = + alj)-l.j 2 +l), ajt-.j 2-lH] . 0 < j, < I .0 <j2 < .1. where f is some function
WecandescribeitasA=W.C.D.X.Y) wherej 2  I 0<j,:5 4., 1=-.2 Cs
the set of all computations on the right-hand side of the recurrence equation. te,.
C = -I f3(i-I.j. - 1 1 - .j-l) I I:( it J2 ) T .J- , and D, a set of triples ,-.
d..J), can he described by a matrix whose columns correspond to the first element of each
triple and v, I need not have an exlicit representation Thus. the columns of D correspond to
the vector difference between IJi.j and the indices or the references to a on the right-hand
side of the recurrence. (j1-I.j' + I I and 1jII --I)I' , which yields

DS

X is the set of input variables and Y is the set of output variables. i e .
X = a4-Il l):-l 5 U aIl,,lk): 0 < 1, < 3., = -l.5 . Y= {a lj 1 .dJ 1.0 <J l

Linear indexing functions ill describe how variables are referenced. \ linear Indexing
function F:J" - Z' is defined by an equation of the form F( j I = C + Cj where
Co E Z ' ' is called the index displacement and C E Z" " ' is r alled the indexing matrix. For
example, the variable a(j - j2 - I.J - Ji) has a linear indexing function for which

C = -1 l 0 0
C = I! and Co - I.'%#

j00

Data broadcasting is not allowed in systolic arrays and the data dependency method can
detect, remove or reduce broadcasts from algorithms to be implemented on systolic arrays 1I4.
During the execution of an algorithm, a variable needs to be broadcasted if and only if both of
the following conditions are satisfied: (1) at least two computations use the variable and (21
such computations are scheduled for execution at the same instant of time. To determine if
the first condition is satisfied, it is clear that a variable with indexing function F is used by
computations indexed by'j and ? if and only if

)- I ) i.e.. F((I -- (2.2 1)

where F -J- 7-.-From the definition of Fequ. (2.2.1) can be rewritten as

Cr = d (2.2.21

In essence, the dependency method finds a reindexing transformation which, when applied to
the original algorithm, yields a new r,-equivalent algorithm which maps easily into a systolic
array. A transformation matrix T can be used to describe a linear bijection which transforms
the dependency matrix and index set of an algorithm so that it can be executed in a VLSI
array. T can be partitioned into two matrices, jr and S: .It

T = ["I

The r matrix defines the time transformation whereas S defines the space transformation to be
applied to the dependence matrix and index set of an algorithm. The time at which a ..
computation indexed by o is executed is determined by r j, while S i speciies which processor -.
is to execute this computation. In other words, the transformed equivalent algorithm is such

.P

NC
't .. ',%, %"%'.%' .- " '." .,, . ,qr, % % ,, .',r ' %." iP% " /". i%" ' k.11m.-t ,al..'. a - , 9, , . a,.. r-- - = % . ,'.,.%. " *" " J'"" ,,"'.. . ,% . ,. -. . ...',,. , ' '" " "'P''P " 

J
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that the first coordinate Of Lbe index of any computation determines its. execujtion time mid lie
remaining coordinates determine which processor is to be ased 0f rcourse 9t' nd S IIiu'.i
satisfy certain conditions ir they are to he considered valid trinsformation% Let r, bie thi
number of columns in the dependency matrix Trime ir:insforniations tltii '
irid, > 0=1,2.. .. m, where j, is a robin n vector in the dependence mtat rix l'ii ciuti riiiv
results from the requirement that i variable in u't be getnerat ed i or, it o' 'i,.i it
computation The time of execution of a computation with index I is -:%en by

flj j K - int + I~f~l

where disptr. _the displacement of the ordering detertined by -r. in uxt atxf
dispyr :5 minii i'd, :i I...i. Intuitively, the displacement dlecrihes th e nuni ber of pirAl
wavefronts that simnultaneously sweep over the index set to complete the romputation In this
paper, unlesi, otherwise stated. tie displacement is considered Tn be one. since te parameter
method considers only this case.'

The space tracmsformation S maps the computation indexed by itiio procexxor Sj -1,1ti"
asisumes a processor aruray model consisting of a grid which hasv The disineti'oion -lit Y of il- 'r
Each point ol' (he grid correspoinds to a processor -ind the roordinaics of t he point ire T he
index of the processor Certain restrictions most be placed on poqsible, oilut iong (or S Nli (,,
the limited interconnections available in VL.SI arrays. Theste restrictions ca-n be -mbodied i h'.
P aind K matrices The P matrix dlescribes (he intercontiertion primuitivesis Laalle wittii o
:vrray, i.e., hbe sector differences let ween nilices of -'onncfed procexsor, Fir '. onpl
,q~uare array with only sort h-ott. e:Lst-wesi . ne:ircst-oteighbor ronrrti on %-did Ito it,
following P mat nv

0o -l 0 I 0%
t)0 -1 0 1

where each column of P describes one interconnection priutiie to he iisei To -11iior ric,'
data from at next-neighbor processing element. Thbe primitise with all 7ero "riri'- .ndi, it-
that a variable can ali be stored in tile processor The itt lizt iion itmirix K 'lesc-rih- '..
interconnections Til by the transformed aligorithm during exectition iThe rel.ai, nlip fei . .....
K. P, S. and D is

SD =PK 1

where the entries of K must satisfy the following constraint

This last constraint requires that the time bet ween the generaltion aid ii-e if :i s aril ii i
he greater than or equal to the number of interconnection primitives neededl by the &Wlitl 1"i,
travel from the PE in which it wait generated to the PE in which it will be useid. In fNci . thtc
inequality in ('2.2.1I) can be replaced by equality If the numbher of primitives is less than t(fet,
time allowed for communication, the d'atum must he stored for the remaining time,. thus usitig
the all zeros primitive. An additional constraint. can be added that reflects the limited ciinirol
available within the simple PEs. This means that, in general, data must trravel along thle Same
direction as it flows through the array. Thus, only one entry in each column of the K miatrix
can be nontero. These restrictions can be relaxeid to reflect advances in % LSI Technology

The design problem in the data dependency mttethod can be formulated as follows find ti
suitable it., which then deies possible solutions for K (2.2.41. Examine the solution lor 5'

solutions) for S corresponding to each K and determine which S requires the smallest number
of PEs. A procedure is available for finding the optimal ir in terms of the -smallest execution *.

time 15). There is no guarantee that a solution for S in the equation SID = PK exists fior The
matrices K associated with the optimal Tr If no solution for S can be found for thr optimal in.
certain heuristics :31 catn be applied to finid a ituboptimal w o that a spac:- transformation S
exists. However, note that these results refer to a% space of solutions where lisp it tisas be
equal to or larger than unity. This greatly complicates the optttmiiation procedure

." .$ '?~ - --- -- - - * *e .
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II- Equivalences between the Parameter and Data Dependency Methods , -

The two methods discussed in this paper each contain sets of equations which describe the
flow of data in a systolic array. The data dependency and parameter methods have, ,i-'.
respectively, the space equations (2.2.3) and the systolic processing equations (2.1 9-2.1.1 1). In %

the following analysis, the relationships between the two sets of equations will be established.
Lemmas 1-3 provide equivalences between the different parameters of the two methods, while
Lemma I describes the form of the dependency matrices for algorithms considered in the data
dependency method. These lemmas are then applied in Theorem I to show that the space -P

equations and systolic processing equations are equivalent. The proofs are omitted here but
can be found in [12"

The first lemma gives expressions for the data distribution and velocity vectors of the
parameter method in terms of the transformations and indexing matrices of the data
dependency method.

Lemma I
Let S, ;r be as defined previously in section 2.2, and let r be any of the variables z. Y.:

as given for the parameter method. Also, let C' represent the indexing matrix for variable t,

Then the following relationships hold for the two-dimensional case:

S IC I '. S I , , S I1 - '
*±1

For the one-dimensiona case, the following relationships apply- -p

ri-I 1±11 IC'! 1

The next lemma describes the relationship between the x vector of he data dependencyN
method and the periods t. t . tt of the parameter method. The relationship will prove to be
remarkably simple. .%

Lemma .

Thus,. the periods of the parameter method are the elements of the i" matrix The next
lemma relates the elements of the data dependency method's K matrix and the constants.
k, (I < i < 3), as defined in equation (21,20)1 ,e. Itkl ad = k, . kt,, [ =
' tj I = k, . Let k, be the single noniero entry of the i'th column of K.

Lemma ."

k. k, <i<3

The next lemma describes the form of the dependency matrices for the class of recurrences
considered in the parameter method. J, 

%

Lemma '

The dependency matrices for the cla.ss of recurrences considered in the parameter method "
have the following structure: 9

Two-dimensional Recurrence: .

±1 0 0 ...,:

D 0 ± 1 0 d .. . . .

00 ±.

% % %0



%" %1

Two St steatic design met
h
odologiei for Sistolic arravt 3 1

One-dimensional Recurrence:

[±1.0 c, 1

where d,..d are dependency vectors which are a function or the recurrence, as is r. the total 4.. _.

number of these additional dependencies.

The following theorem shows that the equations used in both methods to describe the
operation of a systolic array are equivalent.

Theorem I

The constraint equations (2.1.9 - 2.1.14) of the parameter method are equivalent to the
space equations. SD = PK, of the data dependency method. .

IV - Optimisation Procedures and Examples

Optimization Procedures

Optimutation procedures for the parameter method were discussed previously in sietiot I% r
By directly translating the parameters and constraints of this method into the rorrempoindmt i
elements of the dependency method. we can devise a similar procedure which is applicable it) -_-0

the recurrences considered in J91. Ilowever. by using a slightly different approach. it ,s posibile "
io propose a related optinization procedure" applicable to all ca:ses or which lispr- in ih.
dependency method. It differs rrom that proposed for the parameter method in that it check, 0 . W.
all possible values of IK before considering longer execution times (ie. different r 's. The
flowchart of Figure 2 describes the new optit.tzation procedure. In words. it starts bv findinu
all transformations r which minimize execution time. This is relatively easy, since only beh
case ,ispir=l is considered anti execution time is therefore a monotonic function of the entries
of ,r. Ilence. one can start with all entries of v being zero anti progressively incr,-ase their
absolute values consiering all possible combinations of signs and magnituds (while. of course
checking for the validity of each it). Possible rs, which might result from rur, her increases iii -A
the absolute value of the entries of a particular Yr for which execution time is larger than the
known minimum, need not be considered due to monotonicity property mentioned abtov e
Thus, the search space is finite, and. in fact. rather small for most cases. i)nce the set of ,r s i ,
known, it is necessary to check if there exists a solution to the equation SD=PK for at le.ast

one of the possible values of K. If a solution is found, then the corresponding T (as well as " ,
design determined by tr and S) is optimal with respect to execution time Otherwise, a new set
of r's must be found which increase execution time by the least amount and the process i4
repeated again. The procedure always terminates, since, in the worst case, serial execution i,
reached as a feasible solution.

..% -.*s.
A similar reasoning can be used to optimize measures combining area and execution tine. %

e.g., AT or AT2. Figure 3 illustrates such a procedure. It differs from that of figure 2 in that ""
the search space is reduced to the set of r's which result in execution time bounded above by "
T, as given by 12.1.24). In this finite space, all valid values of ir and S are considered and those ,-

which optimize the combined measure of area and time determine the optimal solution. This is

exactly the same approach used in the parameter method The key idea consists of limiting
the search space by choosing bounds for s- and. thus. for the execution time. Many different
criteria can be used to choose the bounds. For example, in (I I , the same approach is used and
? is bounded by limiting the values of 7rd (which can be thought of as the number of buffers for
the data associated with the dependence d) for all dependencies d in the matrix D,

Examples- Systolic Designs for the Convolution Algorithm . .'

Convolution can be expressed as the following recurrence equation "4"- I

y,° O i < i n

y, y,k I + ax . - 1 i < n, 1< k <m, x,=0 for j>n (11

Another possible description with the order of access of the input terms reversed is

-- .%.. %" . " " * . " '

J. .ne . .-

% % % % %k S$
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Two cases were considered for the convolution design problem [121, but only one is shown"- ,,

or.,.-'.

here. Letting m -4, n=0, the first case will have periods t, = I and tk = tkK = -. . .Substituting these values into the systolic equations results in four equations in 6 unknowns..' ,.For FIR-filtering applications, the a.3 are constants that can be loaded into or fixed in the PEs +e
before the computation begins. Thus ii~d = 0 and from the systolic equations , = tk'd = -i'd.
To achieve the fastest solution Y d can be set to I or -1. A possible solution is shown in Figure --'.3 Four PE are reqired; m + n-I=9 time units are needed for computation and the-.

preloadig of values xj. x...X ' The !ime to completion is therefore 2m + n-1=13 time -.,units. 
'.

Design using the dependency method %-""Now consider the problem in terms or the data dependency method. To do so, the
dependency matrices that are valid 'or recurrences (4.1) and (4.2) must be 'ound. Pipelining -the variabie-i in (4 1) and (4.2), we have. respectively, % %' _

I k kbI

"..'.p

X % P

~kY, ' Y+ Y."~k , + an1<~ .- k~m (2)k-

q %
Si.

. , . .. . -here . Letting m 4-. , n.' t", the, , , fir-s case + wil hav perod. .... nd ~
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Figure '2- Optimization procedure for obtaining a systolic array design With minimum '..y

area~execut on ti'ne (AT) using the dependency method.

hchyedthfoownfomfrallowable dependency arce.respectively. .. ?,

Dt = IJ and D. -- ±11" .-

Note that the only difference hetween D1 and D, is that elements in the depend<ency cector

Sfo mut have different igns for D 1  and Ihe ame signs for D . \ccording o the .

dependecy method. the frst it to be considered is it : l I. Multiplying wr by D1  nd D.- r,%

yields sD1 = 11 1 0], srD: = (1 1 '21. The zero entry in rD, indiicates the a"selected violates ihe,,/k %

dependencies of recurrence (.4.1) as it is neces.sary to provide broadcasts. Thus, the recurrence,,,r"
(1.2) is selected and the space transformation corresp.ding to the systolic array of figure 1 is " ,,

S.=(0 -II which yields S..D = 0 -I -I ' '

Verification that both methods yield the same design

L em m a '2 can be as iy erified . i e . t. 'k I - I '. T o ,er f y" th att ie siiact' .

trnfrainS orsod othe same systolic array of figure 3 and. thus, to the celocit is .

and data distributions of the corresponding solution in the parameter method. l.emma lecan be ,., d~

verified as follows

,. .'
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Figure 3 - Systolic array for convolution 191
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Systolic Design for the Deconvolution Algorithm

Deconvalution is the inverse or FIR filtering and can be expressed 191 as the followingWO
recurrence with temporary variable z,~

k -1% 7k-t V

1< k < m-I1. 1 < i < a. x, =0 for > a

Design Using the Parameter Method

The parameter method was applied to develop a systolic array which performs
deconvolutian 191. The array must perform d'.vision to obtain x,, and x,'s are used in tbe
computation of the z,'s. The division operation may take more time than multiplication, and
tbis fact should be considered in the design process. Assume the delay of a division PE is w
and the delay at other P~s is 1. This yields the equationItI=w+IAnlssoth
feedback condition ar datum x, yields an additional systolic equt+o

w iuation*

These two equations must be included in the optimizahion; letting w = 2. id =0, S' -t
-3. and observing that tkj tk,, a possible solution to the constraint equations yields tj
-3/2, Zfd =2/3, F, 2. i' = -2/3. and W, =-2. Note that the velocities at data flow have been * .

averaged over three clocks cycles. A systolic array corresponding to these parameters. with m
-,n 5, is shown in Fig. 41a).S
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b'.

% % % % %



Two stvstematic design metodoiogies f()r sitolic irrai s %~

-6

- NN

aa , l .

Figure 4 - Systolic array For deconvolution. mIl a=!, (a) l'arameter me!thod 'chit ion.f
-:3. tit =.3/2. (b) Dependency method solution. if =I 'L3 13ad S 0 11

% in-

Design Using the Dependency Method

The Following depruddency matrTix can be derived from the reciirrence "(;11:01011 for
deconvol ution

-~k-mi

Df k-mn+ 1J

LvI'amining the recurrence, the critical dependence occurs between the -- neration of i, Alid

the ise of x,, this '-crS with k~rm-l. 'ieldin g 1-1 ;s Ihe depeiirhuct e ci r Tlie u.'i.dli *

broadcasting analysis s then Applied to pipeline %ariable x r-uiltiiig iii d11. tirce -ci orLI Since division requires w t ime unit. r i(1.)jw + I and wit h w =2. -I -ing 'It-

proposed optimization procedure. ir, = . the smallest possible %alue; possible %v:nius- iniliidi

S = 0 1), which optimizes space. This means that the generation and usage or z and .

respectively, occur in ihe same PE. This array is optimal with respect to completion time T
.11d #P, x T' It could be developed using the parameter tmethod, where, from Lemma '. i.
-3 and it, = . A systolic array which conforms to this if and S for in =.n 5.is shown in ~
Fig. 41b); the completion time of this array is I r I n-Il I+ Iifrj (m-1 + w i. The iheconvolution% .
arra of Fig. l(a) has ir [-3 3/21 aInd S = 0o il. The same process of verification used for
convolution can be applied to bow equivalence between the ileconvolution arraYs designed
using the different methods.

New systolic equations

Theorem I showed that the systolic equations of the parameter method are equivailent to the
.space equatis. SD = PK. of the idata dependency method. Systolic equations for the one-%
dtmensional case are equivalent to Sd Pk, and Sd, = Pk,, respectivel 'Y. The subscripts on
the vectors i and j indicate which variable is associated with a particular vector. Thus, the
Sdx, Pik, spare equation is not contained within the systolic equations of the parameter
method for the one-dimensional case.

The systolic equiat ions for the z dependency will take the general form

'nail + i, = Id IIl

ford + 97, = 4111 .

where f, and f, are linear Functions of t, and tk. To determine the functions f, f,.the .

equivalences defined in L~emmas I and '2 are applied to (4.13-4 141) resulting in%

+ t I Yr j I fT[J
cyl~ '1J + SIC,'f[1 isC' i

jrYS f0

I )r 0i9 1.1.

% V V
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Selectinig recurrence (I 2) yields C' C'-I [0 -11 anti C' r I 01 then.

Ii I (ti,+ t) i, 1 ) [t, 1Th 0i

ICI kI=1 1

0 .I

VUsing these inverses in 1.15-1.16) gives f,= -It, + 1k) f, . I k) and equations 1 13- a
11 become

(t, + Yky-1 + i, = (tk + tjxe,

The above analys Was applied to the recurrence of equation (4.21. N similar analysis of the
recurrence expressed in equation (4.1) results in f, = Itk - t,) and f, -Itk - r,) in equations
1.13) and ( 1.11). This new set of systolic equations. derived from the data dlependlency method

through dhe equivalences described in Section III, can be added to the .5et of systolic equations.
From this new et. only four equations are needed to provide equivalent 'olutions to thome
derived trom the original tour equations. J.a
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Using RAI3 to Map Algorithms into Bit-Level Systolic Arrays -'

Valerie E. Taylor and Jose A.11. Fort, e 5".

1%

School of Electrical /ag7iucerrng %

Purdue Universily
West Lafayette, IN 47907

ABSTRACT Processor arrays generally consist of a collecti,,i of
RAB, a Reconfiguration Algorithm for Bit-level processing elements (lPE's) with a regular interconection

code, is a large program which sys ternatically maps a scheme. Systolic arrays, as characterized by JFig
class of numerical algorithms into bit-level processor jlung82j, are a special case of processor arrays io which
arrays. This paper explains the purpose of HAil, data flows from one l'E to another in a rg,0lar aind

outlines its overall organization, presents the underlyvig synchronous fashion. Generally, a systolic array is va.~v
ideas and techniques of the main components of RAli, to implement and extend because of its regularity and %
and discusses some implementation details. The input modularity. Due to simplicity of local processor ,

to RAB consists of C programs with word-level and advances in VLSI technology, relatively general

computations. Each arithmetic operation in these purpose bit-level arrays are becoming comnmon [e'.,

computations is first replaced by several bitwise GAPP DaThn4o, Ml's )atc8om, DAP wrd-791, (Il'P
operations (i.e a bit-level expansion) which implement IluWa75f and others). As compared to word-level

that operation. Dependencies are then detected in the arrays, bit-level arrays require simple processing

bit-level code and represented as a dependence matrix elements (e.g., processing elements composed of a full

which is used in the synthesis phase of RAB to generate adder, sonic simple logic, and a number of registers) and

an algorithm transformation. In the final mapping provide high throughput rates (i.e., bit rates). These

phase of RAB, each bit level operation in the characteristics also make bit-level processor arrays %-cry
transformed algorithm is replaced by a corresponding attractive for special-purpose applications, e.g., digilal

microprogram ( i.e., a microcode expansion). This signal processing(fMcMc82J. Mcetal8.lj, IMcetal =2) a,
microcode is also optimized in this phase to produce the Despite being ideally suited for various applications N
output of RAB, an algorithm executable on the and VLSI implementation, processor arrays can he
processor array. Currently, prototype processor arrays difficult to program (in the case of an existing general
composed of severnl NCR Geometric Arithmetic Parallel purpose architectu.re) or design (in the case of a special %
Processor (GAPP)rchips are the targets for the otput of purpose architecture). This is a particularly acute P Pe
RAIl. problem for ,it-level systolic arrays where the goal is to

implement high- level computations (e.g., matrix 0
computations, convolution, etc) using bitwi', operations. _'

I. INTRODUCTION In order to solve this problem, it is desirable to develop

RAB is a program which maps a class of numerical methodologies and tools which enable the systematic

algorithms programmed in C into bit-level processor mapping of algorithms into processor arrays. In the .-

arrays. It can be used to derive a full design past, several research efforts have been pursued in this

specification for an algorithiically-detined processor direction and a survey can be found in jFoetal851. Many :% % P

array as well as to identify full (partial) mappings of an of those methodologies, which were intended for word-
algorithm into an existing processor array cf ti,, level processor arrays, are applicable to bit-level arrays.an rih size - 'l'i pxstn p ro sin I lie o fi Al, llowever, besides some of the limitations tat sI ill(vrabe 9ie hi nerep~i. teprp'PofPl , ararterize those nmet hodo fogies, systematic hit leve l
(liltliles its overall organization, presents the underlying r ie e y t l
ideas and techniques of the main components of Il, designs present additional problems. IHAll represents aTI

and discusses some implementation details. In order to attempt to develop an automated tool for the design
illustrate the concepts and operation of RABl, we show and programming of bit-level arrays and to understand Ptand solve the open questions and problems involved in
how two algorithms for convolution are mapped into a this process.
variable size processor array composed of NCR GAI'l'
chips (i.e., each chip is a (12 x 6) processor array In practice, potential users of processor arrays are
Il)aTh~dla). given an algorithm andi must devise a means for its .

execution using one of the following options: (I) to rise 5.-,

i k a an existing processor array, (2) to design a special %
116.q work was siipported in part by the National Science purpose processor array, or (3) to design an array that.

Forndation under Crant I)MC-9419745 and in part by the uses a number of existing smaller" processor array
b-nova-ine Sr'ien-, and *T'-'hnJ,,gy ofli or tt1  .riirategj I)ew'1- muodi les as the basic components. Option (I) requires

Initiati, Orx-aniv.ation and was admiristered tthrgtht tile (fic-e or mapping of the algorithm into an existing array taking
Naval [riarch under ontract no. 00014-85-k-0585. into consideration size limitations, fixed interconnection a,

ICAI't' is a trademark or NCtI Corporatin. schemes, and prelesigned processing elements. In this
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option, which we refer to as full mapping, the U. ALGORITHM MODEL AND P %
programming decisions a.e totally subordinated to the REPRESENTATION P%.,%
characteristics of the array. Option (2) allows the user Al h R

to design the hardware taking into consideration only Algorithm Representation
the characteristics of the algorithm and perhaps some RAB accepts as input a program which uses a e

rather general VLSI design constraints (i.e., planarity, subset of C constructs. Since algorithms that run
limited pinout, etc). This option is referred to as full efficiently on a processor array are likely to have a
design. Option (3) is a compromise between full repetitive and regular structure, the input to RAB
mapping and full design, where the designer can decide consists of programs which typically contain loops. For
the overall organization (i.e., shape, size, interfaces) of this reason, RAB is capable of efficiently analyzing
the array, but uses given basic blocks which are loop-like programs with static behavior. In addition to %l, A
themselves fully defined "small" processor arrays. We the fact that pointers and function calls cannot be used,
refer to this option as partialmapping/design. the structure of the loop-like programs accepted by RAB %,

The input to RAB consists of C programs which must exhibit the following characteristics: %L
implement word-level algorithms. In section II of this - the lower and upper bounds of the outermost
paper we characterize the class of algorithms for which loop must be integer constants.
RAB is intended, present the algorithm model, and
describe the representation of dependencies in an the bounds of the nested loops must be linear
algorithm. RAB first expands the computations in the expressions of the outer loop indices or integer %
input program into bit-level operations as shown in constants.

figure 1. This expansion phase, which is described in - the step of each loop must be one. .he-'i
section III, replaces word-level computations with a bit- - no two loops can have the same nesting level.
level implementation of the arithmetic operations. This
phase is followed by data dependence/broadcast analysis arrays of any dimensions are allowed; the
which uses techniques discussed in section IV. The range of each dimension must be an integer
results of this analysis can be used to generate an constant.
algorithm transformation which yields a full design of an - the boolean expression of a conditional a,,

algorithmically-defined array or full (partial) mapping statement must be a linear expression of the
for a fixed (variable) size array correspording to the outer loop indices.
third level of modules in figure 1. In section V we - all subscript expressions used when referencing
present the methodology for the generation of a partial elements of arrays must be linear expressions
mapping and discuss how a full mapping or full design of the outer loop indices.
can be obtained. The last two modules in figure 1, Example 2.1
microcode expansion and microcode optimization, T fc it n
comprise the mapping phase which is discussed in The following convolution algorithm is an example .'.
section VI. In section VII we review the status of the of a program which satisfies the criteria of the
implementation effort and present some concluding algorithm representation. %,o..'.
remarks about the project. for(j1 = 1; j, <= Nn; jl++){

for(jU2 = 1; j2 <= N2 ; j 2++){-
YJDI = YD1J + w-Dl * x0 1+j 2-1"

where wj ] is the sequence of weights, x[jl+j2 - 11 is

the sequence of inputs and y[jJ is the result

bit-level sequence.
expaTnsin End of example. 0

Other programs such as matrix-matrix

depe d ./broadcast multiplication, matrix-vector multiplication, and FIR
[ a"1yis ]and 1111 filtering satisfy the constraints of our algorithm -

representation. A broader list of suitable programs can
be found in the concluding remarks of jKung82I. Many
programs which fall outside of this class can be

NuIT design full mnpping transformed to satisfy the above constraints, using such 0
techniques as normalization or loop fusion [Wolf82. .1.
Conceivably, such techniques could be easily

microcode implemented in a preprocessing step for RAB. F-lowever,
it is assumed that input programs have been normalized
and loop fusion is not needed. The next subsection
presents the formal definitions of dependencies.

Modeling Dependencies in A.gorithms

The parallel execution of independent operations r
requires knowledge about the existing dependencies in

, Ally iable sie an algorithm in order to preserve its semantics. There
d .n..arra arrayare two types of dependencies that can occur in an

algorithm: machine dependencies and algorithm
dependencies IKuetal8I. Machine dependences result

Figure 1. Flow diagram of RAB. from the limitations of the particular architecture used 0
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for execution of the algorithm; algorithm dependencies in a dependence matrix which is representative of the ,,
result from the structure of the algorithm. The first algorithm dependencies in a program. This matrix and ,
category of dependence, machine dependence, also called other algorithm parameters are essential features that
resource dependence, is defined as follows, are represented in the algorithm model defined below.

Definition 2.1 (machine dependence) Definition 2.3 (algorithm model)
Statement Sj, denoted as the head or the nn algorithm is a 5-tuple, <J', C, D, I, 0> where

dependence, is machine dependent on statement Si, Z, is the index set (Z represents the set of all -

denoted as the tail of the dependence, if and only if integers), C is the set of computations, D is the set, of
1. statement Si precedes statement Si and dependencies represented by distance vectors, I, is the
2. res(Si) fl res(Si) d 0 set of input variables for the algorithm, and 0, is the

where res(Si) denotes the set of resources needed to set of output variables for the algorithm.
execute statement Si. An example of the algorithm model is given iv section , '

Machine dependencies can be divided into two IV. .

categories: explicit machine dependence and implicit The dependencies represented in the dependene
machine dependence. Explicit machine dependencies matrix, D, must be satisfied by the execution ordering of
result from the apparent limitations of the architecture, an algorithm defined below. ".
For example, statement S is explicitly machine '..
dependent on statement Si if tboth statements require a Definition 3.4 (execution ordering)
write to two different memory (RAM) locations and the
given architecture only has one RAM port. Implicit A partial ordering is an excution ordering f t all

resource dependencies are inherent in the semantics of distance vectors are positive in the sense of that

the instructions. For example, in a GAPP array, the ordering.

arithmetic and logic unit (ALU) of each PE always In other words, the execution ord-ring of an -

executes a "full add" operation every clock cycle, algorithm restricts the generation of a variable to 4
regardless of the instruction being executed. As a always precede the usage. RAB replaces an executionregarliesofurhe depnstrucieing exthed se a th ata.Tu h riia itnevcosrerne! -

consequence, the architecture of each PE exhibits ordering which is total by an execution ordering which is
implicit resource dependencies with the use of the partial. Thus the original distance vectors repregented
calculated variables sm, bw, and cy (which denote sum, in the matrix D must be positive in the sense of the .c'
borrow, and carry respectively). Thus, if a statement lexicographical ordering.
explicitly uses a calculated variable, it will always Now that we have presented our algorithm modl S
depend on the previous statement. and representation, we will describe the various module,;

The second category of dependencies, algorithm shown in figure 1. The next section discusses the bit-
dependence, consists of the three classical dependencies: level expansion of the word-level computations. %

output dependence, data dependence, and anti-
* dependence. These dependencies are defined in the

following definition. HI. BIT-LEVEL EXPANSION

The first phase of RIAB systematically replaces the
Definition 2.2 (algorithm dependence) word-level computations with bit-level implementation ..r

Statement S., denoted as the head of the of the arithmetic operations. These bit-level
dependence, is algorithm dependent on statement Si, implementations are hereafter referred to as expansions.
denoted as the tail of the dependence, if and only if The actual expansion for a given arithmetic operation is

1. statement Si precedes statement Si and not unique. For example, there are several expansions
2. one of the following conditions is satisfied: for the multiplication operation, e.g., Booth's algorithm

i. out(S) n out(Sj) # Bootl] or the shift-add algorithm Ilnwan7g). The bit-

ii. out(Si) n in(Sj) / o level arithmetic expansions used with RAB were chosen

iii. in(S;) fl out(S) 7, due to simplicity since RAB is relatively new and in the

where out(Si) denotes the set of output variables of initial stages of testing. Conceivably other expansions
statemet Scan be used with RZAB to investigate the optimnality of
statement 5,, and in(Si), the set of input variables, different bit-level algorithms. RAB currently implements

It is assumed that the reader is knowledgeable the bit-level expansions for addition, multiplication,
about algorithm dependencies for which an example division, subtraction, and all possible pairwise
would be redundant. In RAIl, only algorithm data combinations of these operations. Actually, RAB
dependencies are detected in the dependence analysis for provides two types of expansions for each operation or S
use in the generation of the algorithm transformation. operation pair. The first type is used for running the
The reason for the detection of only data dependencies expanded algorithm as a conventional C program. This
will become evident in the discussion on the algorithm provides the user with a means for gathering test data.
transformations. However machine dependencies and all In these expansions, statements are included which
three algorithm dependencies are detected in the explicitly convert the initial data values to their bit-level
microcode optimization module to be discussed later in representations. These conversion statements are not
this paper. contained in the second type of expansion which is used

Distance or dependence vectors provide a in the dependence analysis module of RAB. In order to S
particularly convenient way of representing algorithm facilitate the analysis, the second type of expansion '.',

dependencies between statements referencing arrays. eliminates output and anti-dependencies using such
We define the distance vector as the vector difference techniques as renaming and expansion ([GaetalShl,

d between the index of the computation where a variable [KuetalSil). Two different bit-level implementations of
is Used and the index of the computation where the the convolution algorithm (given in example 2.1) are
same variable is generated. These vectors can be placed shown in figure 2. These two algorithms result fron the

%
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tor(j1  1; j, <= N1 ; j, ±+)(
for(j 2 = 1; j2 <= N2; j2++)(

fort 3 = 1; j3 <= N3; j3 ++)( %

for(j 4  1; j4 <= N 4; j 4 ++){

if(j4 = W

cy2bjilJ=ljlIo ]j3  = (cy2IJillJ2l[J3-1[oI & sum1j1Ilj21Ij 3-1J) 0
(cy2[ji[Ij2[j3-]loa & suin2[h1(Ji2jz-I 3 -I),
(sumlj 1jJj2 1j3-1J & sum2ljj NO]-1));

sum 2lil][D2]1j-1] -= ey2ijdz ] [j3l~ -I11O] " m 1IJdlh lj21 ll 3-1-

sum2lilI,-1 1J3-1i;

else
if(( > 1) && ( 3 < N)){

cylI[jI1[j2lja1j4-1 = (sumliji[jzI[j3 +j4 -2 & (w[j 2 jJ% & x~ji+j 2 -1l[j 4 -1)))1

(sum [j,1Ljl2Ij3+j 4-21 & cyqjiI1j2Ij 3l1j4-21)
((wlJzJ2j3l & .x[Ij+j2-11j4-1) & cylljidllIjzilJ4 -21);

sum[j1 1[j2 11j3 +j4 -2j = sumlfj1[j21[j 3+j4-2 ^ cyl[jIz1j[j31[J_214-
(wf 2jfjill & Xfj 1+j2-1111J;

else
if( j4 > 1) && ( 3 ==N

cy21jiJltjl2jlj 4-1 = (cy2ljitjdj2j 3 j4 -21 & sum] IJlldl+j -l3+ 4-2j)
(cy2j11j 2l j3llJlj 4-2l & sum2IjJ1lj2-1Ij 34l 4-2l):
(slimljIljj210 4-21 & sum2ljjijj2-1I1j3i j4-21);

sum2ljlljzlj 3+j4-21 = cy2Jl[j2jlj 3 j4-21 suml J1J11 211i3+j4-21
sum21jijl i2-l[j 3 +j 4 -2j; I

} '

Figure 2a. A bit-level expansion of the convolution algorithm.

use of two distinct expansions of the operation pair (+, 2. given that condition 1 is satisfied, the
functions which specify the subscripts of the

The algorithm presented in figure 2b is currently array references must have the same value
Used in the expansion phase of RAIl. However, the user for some index value(s).
is not required to input an algorithm into the expansion 3. the index value(s) for which condition 2 is
module; facilities are provided whereby a user may satisfied must belong to the iteration space. %,.
bypass this module and input a bit-level algorithm This module is invoked when the parser detects that
different from the one generated in the expansion condition 1 has been satisfied. Kuhn's Dependence Arc
module. This is the case with the algorithm presented Set Analysis (DASA) technique [KuhnS0 is used with
in figure 2a. Both algorithms correspond to the second RAB to verify conditions 2 and 3.
type of expansion mentioned above and can serve as
inputs to the dependence analysis module discussed in Dependence Detection
the following section.

DASA utilizes five relations represented as convex
sets to gather information about the possible

IV. DEPENDENCE/BROADCAST ANALYSIS dependencies and to determine whether conditions 2 and
3 are satisfied. Dependencies are considered in relation *.

The dependence analysis module detects to the Cartesian product of the loop indices and the
dependencies between statements referencing arrays. In nesting level of the statements involved in the possible
order for a dependence to exist between two statements dependencies. Two of the five relations, T and H, define
referencing arrays, the following conditions must be the control structure of the loops surrounding the tail
satisfied: statement (i.e., the point where the data is generated)--

the array references in the two statements and head statement (i.e., the point where the data is
must have the same name. used) of the possible dependence, respectively. Two 0

%
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K for(ji - 1; J3 <- NI; j1 -+){

torbz2r 'I; .32 <= 2 ; i 2 F4
* forj 3 = 1; j3 <= N3; +){

for(j 4 = J;J4 <= N J f-+
eyljlJ 2 l 3 lj 4 1J = (wJ 21]J31 & suifJj ljaa 4-1l) (cyt]jHj 2 1[j3hhj 4-1 ' Z

(w13211j31 1 surnj -34 - 1)
sum j 1J3 liJ-

t - ( wDJ2JJ13 - 5"n i [ 3 ij 4 -11 cylJ[d 2 1i J4
- 
11

Xlj+J 2- l 1 j 4 ) (sumhjI1h 3 iJ4-J & xjlj 2-11 J) -4

".

Figure 2b. The bit-level expansion of the convolution algorithm used
in the expansion phase of RAB. -

other relations, S. and SU, respectively define the the representation of the subscript relation for the input
indexing function of the generated and used arrays variable xij+j 2_-1[j4 -11 is given by the following:
referenced in the tail and head statements. The fifth
relation, Fib, represents the forward relation which is i. P
used to test different conditions of the loop indices for r2
the existence of a dependence. These relations are 1i 1 0 0 j
represented as convex sets in matrix format that is 0 0 0 0 -1 =
easily implemented and manipulated in software. If a i.?-
solution space results from the convex analysis of the ,.
intersection of the relations, T, II, Ftb, and S 9 composed
with S,- 1 , then a dependence exists for the conditions r 1 [1
defined by the forward relation, Fth. The inequalities of I 110 -%

the solution space of a dependence are then ordered to where Sit = 0 0 and ri - .
form an upper bound matrix, U, and a lower bound 01-1
matrix, L, to be used in generating distance vectors.
Further details about DASA can be found in JKuhn8 rank(S') (or rank(C) = n-I) then broadcasting can by
a yeliminated be including the distance vectors for the

Broadcast Analysis input variables in the dependence matrix used to
A is ougenerate an algorithm transformation. These vectors for

D An analysis scheme similar to the one used with the input variables are hereafter referred to as buffering
DASA is used to discover when a broadcast exists. Since vectors. The buffering vector is defined as the vector
only one relation is required for the broadcast analysis difference between the two points of the iteration space
we will elaborate on this concept to introduce the reader using the same variable. This vector can be generated
to the representation of relations as convex sets and the in the following man,'er.
analysis scheme also used with DASA for dependence Tn.deecio.Two comnputations indexed by ]iand use the
detection. c

A data item requires a broadcast if and only if the subscripts are the ga m en ol i cth aof s arr
datum is needed to simultaneously execute two or more sr This c
computations in distinct processors. In (Fort841, by the equation Si i' - S i j" - a. or

sufficient and necessary conditions for a broadcast are Si' (i' - j")=O (4.1) 3
provided- in_.relation to an array index functions,
F(j) = C3 + Co, where C is the indexing matrix and CO  where j' - J" = d is the buffering vector. Equation 4.1
is the index displacement. In order to remain consistent can be represented by the following convex set:

S, with the representation of the relations involvedl in sit -sit
DASA, we represent the array indexing function, F(j), by 0 (4.2[)J.the subscript relation, Si, which is defined below. _Si Sit 0

Definition 4.1 (subscript relation)

Let the subscript relation of the 9 dimensional array The intersection of the five relations used in DASA is
Abe reprelationb represented in a similar manner. The solution to tile

re7esete bfhj convex set in (4.2) is found using an analysis proc(dure
S I S  i = (Ti  similar to the one used with DASA. First tile variables

are eliminated using a reduction procedure. If at'l consistent solution resul ts from the elimination steu, tile

where V represents the array subscripts, Si' Z ( , is variables are projected onto the space Zn × Z . A

called the subscript matrix, I is the identity matrix, detailed description of the reduction and projection
,C P "  is alled the constant vector, and n is the procedures can be found in 1Kuhn80] and i'ayla6]. In

dimension of the iteration space. the projection step the inequalities defining the solution
The subscript matrix, Sit, is equivalent to the space are ordered to form the L and U matrices

- mentioned in the previous subsection. The results of tihe
indexing matrix, C, and the constafA vector, ,, is broadcast analysis for the input variable,
equivalent to the index displacement, CO. For example, xj4-cj- l are given below.

.. 11 r "0 ,%'
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The resultant L matrix is shown as the coefficient the intersection of the control structure with the
matrix in the following convex set which specifies the relations Sg, Su, and Fib, along with the results of the
lower bounds of the solution space: broadcast analysis are combined to form the following

jdependence matrix (ror the algorithm given in figure 2a).

jl 0 0 0 01 1 -

iV1  0 0 10 0 -1~ill100-1 10 j i 0' ]10 0
00 1 0 0 0 -1 n" [0j 0 0 0I -1 0 0 0 0

00010 00 j I ,-=I

j21
j,,# Column I of the dependence matrix corresponds to the

used variables cy2[ji1 1iJ2blJa-1l0j and the input variables
xlj,+j 2 -11 4-11, column 2 corresponds to the used

Similarly, for the upper bounds of the solution variables sum jj l[j21[j3+j 4-2j, column 3 corresponds to
space, the U matrix is as shown in the following convex the used variables sum21j][j2-j[j 3 +j -2, column 4
set: corresponds to the used variables cy2[i J l 3I][4-11 and

cyllJjJJjJljlJ4-2] and the input variable wijJli3 , and,.
the last two columns correspond to the input variables

Ja' wli2llJ3l and xiJ+j-11[j4 -1j. The set of computations,
01 j3' < 01. C, used in the algorithm in figure 2a correspond to full S

1 -1 0 0 1 1 0 J4' add operations. The set of output variables for this y.
0 -1000 1 " 0 algorithm consists of the results of summing the

products that is stored in the array sum2. The set of
21in pul va rib bilex ronstis ip of the we'ig Io Is, loip Ii ts , in.h il.,

* j:11M kigd .r rrl-.s wichw r, 4 .f - r i . I.-fhili.

The algorithm model parameters for the algorithm
given in figure 2b are similar to the ones presented

Similar matrices result from the dependence analysis above with the exception of the dependence matrix, D,
(however, typically, 1, - U). The generation of the given below. %

. I Ii. g.n i.. ve vert r iior Ow iapu. v itrlii ,ti PIvm K il them
generated variables involved in a dependence are 0 0 0 1 1 0

. discussed in the following subsection. 0 0 1 0 -1 00.D 1 -- 0 0 1 ' i3 1,...,N3 given N3 N4.

Distance Vector Generation

The distance vectors can be extracted from the L 1 -1 j3 0 0 0
and U matrices by inspection and enumeration. The Column 1 of this de endence matrix corresponds to the
enumeration step is only necessary when the elements of
the distance vector are functions of the outer loop used variables cyj 2  nd corj[rjesp and the input variables

indices instead of constants. This step consists of vwia lun 2 and cr s t the us
substituting each point in the solution space of the variables sumWjU211+J3-, and the last three columns
dependence (defined by the L and U matrices) into the corresponds to the input variables wj111j3I and
given functions and keeping only the distance vectors x[j-l-j2- 4l"- f.-

with integer elements (fractional entries cannot result The distance vectors for the generated data items
from the difference of integer vectors), are used in the synthesis phase to preserve the semantics

The buffering vectors for the input variables are of the program; the buffering vectors for the input data
extracted in a similar manner. The L and U matrices items are included in the dependence matrix in an
resulting from the broadcast analysis of the input attempt to schedule different execution times for the
variable xl4-ij2-1)j 4 -1 represent the equations computations requiring the same variable. The next
(ii' -ji") - (02' - j 2 ') = 0 and J4'-i4" = 0. The section describes the methodology used to generate an ".%.

" number of buffering vectors resulting from the broadcast algorithm transformation for a variable size array.
analysis is equal to n-rank(Si') (which for our example is
2 since n=4 and rank(S,') = 2) corresponding to the
number of free variables. For the equation above, the V. TRANSFORMATIONS
buffering vectors are the transpose of the vectors (1 -1 0 The synthesis phase of RAB utilizes a well known
01 and 10 0 1 01 corresponding to the case when transformation methodology hereafter referred to as
J I, (ji3 -j)"3 ) = 0 and (j1 -j') = 0, Linear Algorithm Transformation (LAT). This
(J3'-J3") 1, respectively. These vectors are not unique; methodology, which is described in (IFoPa84I, IFoMo85l,
the value ±1 may be used for each of the free variables and rererencqs therein) generates a transformation
H However, this is not the case with the dependence "ti T = i " "h-

analysis. The distance vectors resulting from 1)ASA are matrix, '[ = , which maps the index point.s of the
unique since the control structure of the tail and head e algorimintstaemetsarerepesnte inth anlyss.bit-level algori ito the space-time domain. The

statements are represented in the analysis. LAT methodology uses the dependence matrix, D, to
The relations defining the control structure of a insure that generated and input data are available for

dependence in DASA correspond to a subset of the usage by the scheduled PE at the qcheduled time of .- ft

iteration space or a subset of J,. For the algorithm execution for a given computation. Due to this fact,
given in Figure 2a, the iteration space is the set of the only distance vectors for data dependencies and
points (j1, j2, j, 4 ) J for I < j < Nj. The results of buffering vectors for input variables are extracted in the P.

A'e.
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dependence/broadcast anajlysis module. The first the matrix of interconnection primitives, R is the set of
component of T, 7r E Z "', corresponds to the time resources available in each PE, and T is the local
transformation; the second component, S ) Z(i - )

.S
)
, execution time of a computation.

corresponds to the the space transformation. These Each point P EL q corresponds to the relative
components are described in the following subsections. location of a processing element in the systolic array.

The matrix of interconnection primitives is-sucLthat ifTime Transformrations = ip c6 P then foir any 9 c-. Lq, 9) is connected to 9 -i

The linear time transformation, it E ZCI1" maps the E LF and 9 is connected to an input-output port if
index set of the algorithm into the unidimensional time ' f Lq. The set consisting of the resources available in
space, ir:J. t. Given the time transformation, ir, the each PE, R, is used in the microcode optimization phase
time of execution of a computation indexed by j is given to detect machine dependencies. If two instructions
by: require resources beyond those given in R (i.e., the case

[ ~ ~ 1when two RAM ports are required and only one port is
J d sp + (5.1) given in R) a macline dependence exists between the

disp ir two statements. The local execution time, T, representsI the worse case time for the execution of an instruction.
where disp 7r - min{lrd,, di E D} (di corresponds to the This value is used to calculate ,5 in (5.2) to determine
ith column vector in D) and 0 = -min(,rj: j c JD} + 1. the worse case execution time.
The constant 0 forces the first computations to be
executed at time t=1. The parameter disp 7r represents The two parameters of the architecture model, l,'-

the maximum number of parallel arithmetic and P, define the global topology of the systolic
computations executed in each processing element. We architecture. The other two parameters, 1 and T,
restrict the value of disp , to one. This restriction is define the local architecture of each P1 comprising the
representative of the systolic array used with HAb systolic array. The parameters of the .ystolic
(GAPP) and some other available architectures (i.e., architecture for the GAPP array (shown in figure 3) are
MPP, DAP, CLIP). Given disp 7- = 1, the total given below.
execution time of an algorithm is represented by the
expression Example 5.1

( in The CAPP array shown in figure 3 i4 a sysiolic
I + i (Ni - L .6 (5.2) architecture which can be represented by the frur-

I tuple <L q, P, R, T> where the index set of one

where N, and Li correspond to the upper and lower chip is given by

bounds of the loop variable ji respectively and 6 L2  (P 9,) 1 < 91:12 <9
represents the number of clock cycles needed for the L ,) < '<2 1 < 92
execution of the arithmetic computations. To insure
that the ordering determined by it is an execution
91dering, we impose the restriction that ,rdi > 0 for all
diED D BLOCK DIAGRAM OF CONNECTIONS BETWEEN

FOUR PROCESSOR ELEMENTS
The time transformation, ir, is found by trying to 0

minimize the function (5.2) which is monotonic in terms cUNw E-J H1
of the entries of r. Due to the monotonicity of the NTN

%function, we use a heuristic approach to generate it, r
similar to the one presented in IOKFo86I. We start with ,
all entries of ir being zero and progressively increase the Of
sum of the absolute value of the entries of each 7r. All -n.' a

possible combinations of signs of each 7r are considered
with the exception of those obtained by negating m--i* -- - --- OE

previously generated 7r's. We then check the validity of .N

each of the ir's. The valid time transformations, i.e. OVY,
those for which 7rdi > 0 for all di E D, are ordered O-f. _

according to the execution time (5.2). Possible ir's, %.' A
which might result from further increases in the absolute ,r, .

value of the entries of a particular it, for which ' ,

execution time is larger than the known minimum, need ,'-***
not be considered due to the monotonicity property
mentioned above. The ordered list of it's is used to ---. '%

*" generate the space transformations.

The space transformation, S, determines the " T

spatial mapping of the algorithm into the systolic array. Of - .t

'This mapping requires knowledge of the essentialcharacteristics of the given architecture. These -

characteristics are represented ir, the architecture model k . -, uC..'c,.OEw-.

d e fine d in th e fo llo w in g d e fin itio n . . ..... .- , -. C , .0 , ., . 0 S - ,. -F)

S- n Onn, nId k~nC
0

*4 - . .0 INS

D e f i n i t i o n 5 . 1 G O ., ..... .. .. ... N S .. .. .. .... I

The systolic architecture is a four tuple <, q, P, R, Figure 3. Representation of CAPP interconnectimo
T> where Lq is the index set of the processor array, P is scheme jl)aTh.i.

N,.,,

j. % % %% %% %N%% %
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The matrix of interconnection primitives is to the one used with the generatior, of buffering vectors 4
0[ O for input variables. If the conflict vector exists within

1 0 0 - the given iteration space, we disregard the corresponding

P 0 1 -1 0 T and check the next transformation matrix in theordered list. We continue this procedure until a ,
The set of shared resources available in each odrdls. W otneti rcdr ni
processing element is given by conflict-free algorithm transformation can be found for

s ethe partial mapping of the bit-level algorithm into the
variable size array. Further details about the conflict -

R cm reg., ns reg., ew reg., c reg., ram port, ALU vector can be found in [Tayl861. The conflict-free
) transformation matrix for the two convolution expansion

and the worse case execution time of a are given below.
computation, T, is assumed to be three clock cycles %
(one clock cycle to place data in proper registers Example 5.2
and execute a "full add" operation, and two clock For the algorithm given in figure 2a, the conflict-
cycles to place data in the proper register for free transformation matrix for iteration space
shifting purposes)- defined as {1 jj_ 3, l<js 3, 1<j 3 

3 , 1<j14<5) is

end of example. 3 121

In mapping an algorithm into a systolic array, the
main goal is to insure that the data communication 0 1
between processors can be accomplished using the given with execution time of 176 and aspatial requirements

interconnection primitives. In other- words, if a of I GAPP chip.
computation performed by processor 9- at time tj
depends on data generated by processor 92 at time t2 , The conflict-free transformatir - matrix for the
then there must be a composition of interconnection algorithm in figure 2b with the same iteration space
primitives that connects 92 to 91 in time t 1 -t 2 . The is
composition o int ronnection primitives is given by the1
matrix K E Z~m). To insure that a direct path is 5 21
taken for the movement of data, we restrict all entries T - 1000
in a column of K to have the same sign. Given these 001 1
parameters, the spatial transformation, S, must satisfythe following set of diophantine equations with execution time of 276 andI spatial requirements ,. "

of 1 GAPP chip. Both transformations optimize the

SD = PK (5.3) measure A x T, where A corresponds to the number %

where S N ), D E Z(n x m), p E z(q r), and of GAPP chips.
K E Z(r m. end of example.

The sum of the absolute value of the entries of
column i of the K matrix represents the total number of A full design of an algorithmically-defined array can
data movements for the corresponding data item be specified by generating a transformation matrix using
associated with column i of the dependence matrix, the interconnection primitives for a planar array and

This sum is upper bounded by 7rdi, the upper bound on modifying the local systolic architecture parameters, R "e.
the propagation time. We require the column suj and T, to model a general processing element. The

equal ird i since we include the buffering primitive, 0 generated using the same techniques described for a
,Ij partial mapping, with the exception of the selection of

in our set of interconnection primitives. Only one an S which satisfies the given spatial constraints of the
interconnection primitive for each unique data link is fixed size array. For the case where an S cannot be
included in the P matrix, i.e., even it a data link is bi- found which satisfies these constraints, algorithm %
directional, we include only one primitive corresponding partitioning is required. The next section discusses the ."" ..

to one of the directions. Consequently, the matrix of last phase of RAB-mapping.
interconnection primitives used with RAB for the GAPP
architecture contains only the first three columns of the ,.
P matrix given in example 5.1. VI. MAPPING •

If no solution exists to (5.3), we select another 7r The mapping phase of RAB consists of the last 2
from the ordered list with minimal increase in execution modules of the flow diagram shown in figure 1,
time. If solutions exists to (5.3), we order the microcode expansion and microcode optimization.
transformation matrices (composed of an S and the Microcode expansion consists of the replacement of the .

corresponding 7r) according to the AT (area x time) given transformed computations with GAPP code (or the ',
criteria. We then choose the first transformation matrix code unique to the architecture used for execution).
in the ordered list for which a conflict does not occur. A This code is then optimized using a modified version of a
conflict occurs when two or more computations are technique developed by Ramamoorthy (IRama66J, 0
mapped into the same PE to be executed at the same [RaGo69]) known as Precedence Partitioning. The
time given that only I ALU is available in each PE. In straigIt-line microcode is parsed in a sequential manner
other words given two comphutations indexed by j' and placing used and generated variables in a symbol table.

a conflict occurs when T j' - T j" - 0 or If a used variable is encountered, the optimization

T(j' - j)---0 (5.4) function checks the symbol table to see if this variable
has been generated in a previous statement resulting in

where j' - j" represents the coiflict vector. The conflict a data dependence. The same applies for the other two
vectors are generated using an analysis scheme similar algorithm dependencies. For the statements which are

,%, %WC e_
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algorithm Independent, we pairwise check the resources both expansions performed the same task, one expansion
required for the parallel execution of two statements. If was more suitable for parallel execution as evident by
the required resources exceed the resources available in the total execution time (both expansion required only I
R, then a machine dependence exists between the two GAPP chip).
statements. The algorithm and machine dependencies
are represented in a ((v-i) x v) connectivity matrix,
where v is the number of statements in the straight-line ACKNOWLEDGEMENTS
code. The element c.. has value I if statement j is The authors would like to acknowledge Weijia

dependent on statement i and it has value 0 otherwise. Shang for introducing the conflict concept and coining -
The precedence partitioning algorithm uses this matrix the term "conflict vector". We are indebted to Steve
to partition the set of computations into independent Hand, Timothy Guinter, Daniel Wong, Wei-Min Lin, and
groups by locating columns containing zeros and deleting M. David Fields for their assistance with the ,.,p.
the row corresponding to the partitioned statement, implementation of RAB. .V
The partitions are executed serially but the statements .rV
within the partitions are executed in parallel. An
example of the precedence partition for straight line REFERENCES
code is given below. An example using GAPP
instructions would require detailed knowledge about the [Batc80] Batcher, K.E., "Design of a Massively
CAPP architecture, which is beyond the scope of this Parallel Processor," IEEE Transactions on
paper. Computers, Vol. C-29, September 1980, pp.

Example 6.1 836-840.

For the following straight line code lBoot5ll Booth, A.D., "A Signed Binry J%-

2l D A B + C o .~h a and Spp ied I BI nary natic',
III

A = B + C  Multiplication Technique," Quart. Journal 0
FDA+ E of Mechanical and Applied a'Iohermatzcs,
F= + i Vol. 4, 1951, pp. 236-240.

DaTh84l Davis, R and D. Thomas, "Systolic Array
0gChip Matches the Pace of igh-Spe

C =-l 00 10 . Processing," Electronic Design, October

0000 1984, pp. 207-218.

The following partitions result from this matrix. [DuWa751 Duff, M.J.B. and D.M. Watson, "CLIP3: A
{ 1,4}, (2, ( 3). Cellular Logic Image Processor," in New %

Concepts and Parallel Information
end of example. Processing, Noordhoff, Leyden, pp. 75-86.

VII. CONCLUDING REMARKS IFoPa84l Fortes, J.A.B. and F. Parisi-Presicce,
"Optimal Linear Schedules for the Parallel

In this paper we presented the overall organization Execution of Algorithms," International
of RAB and discussed the concepts necessary for the Conferenre on Parallel Processing, 1984,
mapping of a class of numerical algorithms into bit-level po. f2 n r l ci 1
systolic arrays. We also presented a method for pp. J22-329. ..

Identifying and possibly eliminating the occurrence of a
conflict. A conflict is more likely to occur with bit-level IFoMo84" Fortes, J.A.B. and D.I. Moldovan, "Data

algorithms, since bit-level expansions usually result in Broadcasting in Linearly Scheduled Array

the addition of 2 or 3 nestings of loops to the original Processors," 11th Annual International

algorithm. Thus the iteration space of the bit-level Symposium on Computer Architecture, June

algorithm with dimension greater than 3 is mapped into 1984, pp. 224-231.
the space-time domain consisting of 3-dimensional space.
This mapping of n-dimensional space (where n > 3) into [FoMo851 Fortes, J.A.B. and D.I. Moldovan,
3-dimensional space generally results in serializing some "Parallelism Detection and Transformation
of the loops of the iteration space. With the use of the Techniques," Journal of Parallel and """,
conflict analysis, we search for a transformation matrix Distributed Computing, August 1985, pp.
in which a conflict occurs outside of the given iteration 277-301.
space resulting in a bijective mapping.

RAB currently maps numerical algorithms into [Foetal851 Fortes, J.A.B., Wah, B.W., Fu, K.S.,
variable size arrays composed of GAPP chips. However, "Systematic Approaches to the Design of
this tool can be used to investigate the optimality (in Algorithmically Specified Systolic Arrays,"
terms of spatial requirements and total execution time) IEEE International Conference on
of different expansions of the same task. The results of Acoustics, Speech and Signal Processing,
these investigations can be used to efficiently design 1985, pp. 300-303. !
algorithms for parallel execution. In this paper, two
different expansions for convolution were transformed [Gaetai81I Gajski, D.I)., Kuck, D.J., Padua, D.A., ,".t
via RAB into algorithms for parallel execution. The "Dependence Driven Computation," P V,"
expansion given in figure 2a resulted in an execution COMCON Spring 1981, pp. 168-172.
time of 176 and the second expansion given in figure 2h
resulted in an execution time of 276. Thus, even though J.,
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On the Performance of Combined Data Flow and Control Flow Systems:

Experiments Using Two Iterative Algorithms

William W. Carlson and Jose A.B. Fortes'
School of Electrical Engineering

Purdue University
West Lafayette, IN 47907

Abstract - Improved multiprocessor performance can be attained by combining
data flow and control flow concepts. This type of combined architecture is
characterised and several examples of previously proposed machines are given.
A new model is presented that permits the analysis of such systems and perfor-
mance measures are defined. This model is then used to analyze the perfor-
mance of the algorithms under a wide variety of combined systems. The results
of these experiments show that partition size is a major factor in the perfor-
mance of such systems and an optimal size may be found for given system
parameters.

I. Introduction

This paper investigates the performance of architectures that combine concepts of both

,.5 data flow and control flow computers. In particular the relationships between the granularity of

program partitions and the architecture's performance in terms of execution space and time

requirements are examined. These relationships are determined by studying the performance of

two iterative algorithms. It is shown that, for these algorithms, partition size has a major effect --

on the performance of combined architectures and that an optimal partition size may be found.

Recently, there has been considerable interest in combining some of the concepts associ-

ated with data flow computers with some of those from the realm of more conventional control

flow multiprocessors. This interest seems well founded. While data flow concepts offer the

promise of much increased execution speed by removing artificial sequencing constraints, their

advancement is slowed by seemingly insurmountable problems GaP82]. Meanwhile a large por-

tion of the thirty years work devoted to the study of control flow methods does not appear

directly applicable to data flow computers.

This paper proceeds by quickly reviewing some previous work in combined systems.

describing both existing and proposed systems. Next, a model to facilitate the performance ,>

evaluation of multiprocessor systems is described. With this background the paper describes

several experiments performed to illustrate relationships between granularity and performance.

Finally, several conclusions based on the results of these experiments are given.

This work was supported in part by the National Science Foundation under Grant DCI-8419745 and in

part by the Innovative Science and Technology Office of the Strategic Defense Initiative Organisation and
was administered through the Office of Naval Research under contract No. 00014-85-k-0588,
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2. Combined Architectures %

We define data flow and control flow as schemes to determine the ordering of computa- .. .-.

tional steps in parallel programs. A pure data flow scheme sequences operations based only on %

the availability of their operands and adequate computational resources. In this sense pure

data flow is a fully decentralized system. Conversely, a pure control flow scheme is based on a

schedule independent of the availability of an operation's operands. In this sense pure control

flow is a fully centralized system. Of course a "good" control flow scheme will generate a

sequence of computational steps that guarantees data availability. A combined system is sim-

ply a mix of these two models of computation.

While most parallel systems are not "pure" in their ordering scheme, we will be studying :".

only those systems that combine wide variations in their ordering scheme. In such systems there

is, in general, a division of labor between various nearly pure ordering schemes, with the division

based on the granularity of partitioning. A graphical illustration of this combination is the ord-

ering scheme graph, shown in Figure 1. The ordinate defines the level of granularity, with

smaller values representing smaller granules of space and time. The abscissa represents the

degree to which ordering is decentralized. The range on this axis is arbitrarily set from zero to

one, with zero representing a pure control flow ordering scheme and one representing pure data S

flow. The resulting graph is a set of coordinate points showing the level of centralization at
each level of sequencing.

2.1. Examples of Combined Systems

Recent research efforts have produced numerous proposals that combine the concepts of

data flow and control flow. This section describes several, showing an ordering scheme graph for

each. The purpose of this section is to point out the variety of current proposals, not to discuss

their relative merits.

The Piecewise Data Flow Architecture [ReM831 uses a two level approach, with distinction "

occurring at the granularity level of the basic block. A basic block, a term commonly used in

compiler theory, is a sequential program section that has only one entry point and one or more

exit points. Internal to a basic block a data flow scheme sequences operations, while the collec-

tion of basic blocks that make up a program are executed sequentially, with possible overlap

between two blocks. In addition to the data flow scalar processors, an SIMD processor is

included to allow fast execution of vector operations. This makes this machine an example of a

truly combined architecture, with the combination being segregated into data flow and control

flow sections. The goal of the architecture is to allow sequential portions of scientific programs

to enjoy the speedup that vector portions already receive on systems like the Cray-i.

The ordering scheme graph for the Piecewise Data Flow architecture shows all low granu-

larity operations, up to the level of the basic block, have a high level of decentralization as they .

are sequenced using data flow concepts. Operations with larger granularity would be almost

completely centralized, as they are sequenced serially. A possible ordering scheme graph for this 0

architecture is shown in Figure 2a. As a basic block can have a range of granularities, the
r%'.
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transition between data flow and control flow is shown as a region instead of a point and sym-

bolised by the dotted area on the graph. When considering this system, there are several impor-

tant features that our study of combined systems must consider. The first is obviously the corn-

bination of data flow and control flow at lifferent levels of granularity. Another important

feature is the level of granularity at which the transition is made. This will have an important

effect on the performance of such a combined system. Finally this architecture limits con-

currency by allowing only one block (perhaps overlapped with the setup of one other) to execute

at any given time.

The Cedar project GaL84i proposes another split level control scheme, with division at

the compound function level. The granularity of compound functions GaK811 is slightly greater

- ~than basic blocks, with operations like array primitives, linear recurrences, FORALL loops, pipe- i-

line loops, block assignment statements, and compound conditional expressions. The architec-

ture consists of a global control unit and several processor clusters. The global control unit

sequences compound functions according to data flow principles. Processor clusters are assigned

compound functions to execute according to the principles of control flow. Thus, in this sense,

Cedar is the mirror image of Piecewise, as Cedar uses data flow to sequence large granularity

items and control flow to sequence low level operations, while Piecewise does the opposite.

A scheme graph for Cedar shows all levels of granularity below that of the compound

function with a low level of decentralisation. Operations above this granularity would have

higher levels of decentralisation. Figure 2b shows a possible ordering scheme graph for Cedar.

Important points about Cedar are similar to those observed for Piecewise, namely the change in

ordering scheme is directly related to the granularity of operations, and the level of granularity

of where this change occurs. Finally, this architecture's parallelism between compound func- .r

tions is limited only by the parallelism available between them and the availability of processor "*

clusters. Parallelism within a compound function may be limited by the control flow scheme

used by the processor cluster, although the compound functions have regularly structured paral-

lelism that may be easily exploited.

Remps [HwX85i has the same goal of both Cedar and Piecewise, i.e. scientific computation.

% The global structure of the architecture is similar to Cedar: a collection of interconnected pro-

cessors and a global controller. The key difference is that Remps allows reconfiguration of inter-

connection and control to emulate a variety of architectures. On a global level the machine is a

data flow computer and at the low level each processor is a recontigurable control flow corn-

"' puter. The level of change in ordering scheme is the granularity of a task. While the term task
is nebulous, it seems to describe a level of granularity slightly larger than a compound function.

Drawing a scheme graph for Remps requires the understanding that, as in Cedar, all low

granularity items show low levels of distribution. Large granularity objects may be sequenced

centrally (called macro-pipelining), or sequenced in a distributed fashion (called macro-data

flowing). A possible scheme graph is shown in Figure 2c. The major interesting feature of this

architecture is the two schemes that exist simultaneously for large granularity iteras, although

only one is used in the sequencing of a single set of operations. •
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The Rediflow multiprocessor [KeL841 contains a complex combination of data flow, control %1.

flow and reduction concepts. Reduction is another decentralised ordering scheme in which the

demand for the result of a computation causes its execution. Rediflow consists of interconnected

Xputers that combine processor, memory, and packet switch elements. The Xputers function

under a reduction ordering scheme. As with the previously described architectures, Rediflow %

exhibits a change in sequencing at some level of granularity. Here the granularity is medium or ,e

function-level. This level is taken to be about the same as basic blocks. Higher granularity

items are sequenced by either reduction, data flow or control flow. Data flow provides efficient

.ipelining, while reduction may be more adaptable to programs requiring unpredictable

buffering. In addition, control flow sequencing is available by so called "von Neumann --

processes". ,

In drawing an ordering scheme graph for Rediflow, reduction presents a new issue to be

represented. The basic ordering scheme graph is augmented with the abscissa extending from -1 0

to -1, with +1 representing pure data flow as before. The negative range represents demand

driven schemes. This extension shows the degree of decentralization by the absolute value of %
the abscissa, while the sign determines if the operations are executed on demand (negative) or

availability (positive). This is a proper extension of the ordering scheme graph in that a "pure" S

demand driven system is also fully decentralized (represented by -1) and any given operation

will be executed under either demand or data flow, never both. Figure 2d shows a possible

scheme graph for Rediflow. All operations below a medium granularity are given a high level of ,,

decentralization in the negative portion of the graph to show demand driven computation.

Above this level, three possible schemes exist, resulting in the levels for data flow, reduction, and

von Neumann processes. When seen in this light, the sequencing characteristics of Rediflow

appear somewhat similar to Remps as large granules may be sequenced in one of several

methods. Obviously low level sequencing is totally different. This brief survey can be concluded

by reiterating that the ordering scheme graphs show a wide diversity in the approaches used in

combining data flow and control flow concepts. Many other combinations are possible, conceiv-

ably as many -s possible ordering scheme graphs.

2.2. A Variable Combined Architecture

This study does not investigate previously proposed combined systems, but concentrates on .

one extremely flexible hypothetical architecture. This hypothetical system consists of intercon-

nected processing elements each capable of communicating and controlling each other. An equal

delay and infinite capacity communication path exists between each pair of processing elements. .

The ordering scheme for this system is a variable, two level approach. Larger granules are
sequenced according to either data flow or control flow principles, while smaller granules are

sequenced by the opposite approach. The size at which the switch occurs, as well as the relative "P

costs of performing various operations are left as variables in the experiments.

This approach has several distinct advantages over analyzing specific systems, and a few S
shortcomings. The greatest advantage is the availability of the complete range of systems .,4..4

between data flow and control flow, approaching these by either increasing or decreasing

% . . . .. .. . . . . . "
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partition size. In addition, this approach avoids the problems associated with comparing two

distinct systems, concentrating instead on the underlying differences between ordering schemes.

Finally, this approach limits the problem by ignoring, at this point, such issues as network

topology. Of course, this advantage can also be a shortcoming when these particular issues play -i

a dominant role in the system. This topic is currently left for our further research.

%

3. The COSMIC Performance Evaluation Model

To .nalyze the performance of combined data flow and control flow systems we have

developed COSMIC, the Combined Ordering Scheme Model with Isolated Components.

COSMIC consists of both formal parameters describing a multiprocessor system and the algo-

rithm it executes, and analysis techniques producing performance measures. The underlying
principles of this model are the isolation of individual performance issues and the study of sys-

tems under conditions close to those encountered when a system is performing useful calcula- 0
tions.

Previous work in modeling multiprocessors has centered in several distinct areas. Program %

behavior models endeavor to model the fundamental properties of a program without regard for

hardware considerations or performance measurement. They center on the important areas of 0

investigating such problems as the determinacy, boundedness, and termination of programs.
Models fitting this category include Petri nets ?etB61 and Parallel Program Schemata iXaMWoi.

% th

Petri nets have been augmented with the notion of time in either the determiristic ;RaH80,

Ram74] or stochastic "Mol851 sense. The second major category of current models we call

machine behavior models as they describe the behavior of machines in their execution of pro- 0

grams as opposed to the behavior of programs themselves. Examples of this class include Turing

Machines, Functional Programming Systems, and the von Neumann Model "Bac781.

Classification models describe the configuration and operation of multiprocessors, including

Flynn's Model Fly6d], Handler's Classification System 'Han771, and the "essential issues" of

Gajski and Peir GaP85 "

COSMIC builds on these previous efforts, but is fundamentally different from them in that

it combines both program and machine descriptions, as well as performance measures. The use-

fulness of this model is in this combination, allowing the study of complete systems under varied
conditions. This section briefly describes COSMIC and its operation. A more complete descrip-

tion is available in CaF87'.

3.1. COSMIC Parameters

The parameters of a system S include 0. the system's organization; G1, 3 dependence 0

graph describing a specific algorithm; and OS. the ordering scheme used to execute algorithms

on the organization. Included in a system's organization parameter are such features as the

number and capacity of processing elements, e amount and organization of memory, and the

interconnection amongst processors and memory. The dependence graph is simply an operation

level precedence graph for a certain algorithm. This graph includes only algorithmic

• . ,. % . % ,,. ,% %%% % , . • . . % . . .- , %% % - -- , .. ,, % % %.=- • ,"a.
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constraints, not those induced by operation sequencing or programming languages. Finally, the

ordering scheme describes how algorithms are executed on the organization. The ordering r

scheme is further segregated into descriptions of a system's mechanisms for partitioning,

sequencing, resource allocation, and memory utilisation. SW_-V

3.1.1. Organization (0) A %

The organization represents the arrangement of hardware elements in a system. Every

multiprocessor has three basic components: processing elements (PE), memory locations, and the

interconnections between them. Input and output devices are simply treated as specialized pro- *'"

cessing or memory elements. Consequently, our model for organization is represented by the tri-

ple 0 = (P, M, I).

P -- A set of processing elements. Each processing element has a set of instructions 0

that it can execute and a relative speed. A

.-- A set of memory locations. %

I -- An interconnection function M x P - M X P. This function defines the possi-

ble interconnections, and with each outcome there is 'a related cost function that

describes the cost of traversing that connection. Local, memory on a PE can be

modeled by a low cost (perhaps zero) of traversing the connection. Inaccessible

memory (some other PE's local memory) can be modeled by a partial function.

3.1.2. Data Dependency Graph (Gd)

The data dependence graph is an arc and vertex weighted directed graph in which vertices

represent operations and arcs represent data dependencies between operations. The weight of a

vertex represents the relative time that it will consume when executed. The weight of an arc

represents the size of the data needing transfer to satisfy the dependency. These weights can

also be viewed as the number of "atomic operations" required to complete the computational or - .-

transfer operation. This graph is acyclic, as any loops in a program are unfolded in creating the
dependency graph. Currently data dependent behavior is not considered, but will be a topic for N-2.

future research. -.

3.1.3. Ordering Scheme Function (OS) %

The ordering scheme for any system is a function mapping the dependency graph into an P%.t

ordering net, based on the organization parameters. An ordering net is a timed Petri net %

Ram741 which depicts ordering constraints placed on the execution of operations, as well as the

cost of each operation in the modeled system. The ordering scheme for an organisation, 0 can -

be defined as: .... '

OS(O): G - N,

where G is the set of all possible dependency graphs and N is the set of all possible ordering N'

nets. This function is composed of several smaller, more easily defined functions. Thus the

1. -% . 4.
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ordering scheme function,

OS(O), (0) 0(O - .

where the usual composition notation implies that (f - 9)(z) is equivalent to f( (z)), contains

the component functions: -i

-G V -. Creates an ordering net from G ,

(0 .: N N Adds partitioning constraints,

,N , Adds sequencing constraints.
,': ." .V Adds memory access constraints and time,

-1 .  
-: V V Adds resource constraints.

The next sections bredy describe each function.

Computation Function ) 0

The computation function creates an ordering net from a data dependency graph. Its sole

purpose is to change domains from data dependency graphs to ordering nets and is scheme

independent. Scheme independence implies the function itself never changes over all possible

ordering schemes. Formally the computation function is 0

'IV =""

where N. is the computation ordering net for a given G, produced by r. The process used is to

transform vertices in G1 to transitions in iV,, and arcs in G, to places in N.. Connections in 0
N, are created to preserve the structure of the dependency graph. Finally, appropriate weights

are assigned to places and transitions, based on the speed of processing elements as defined by

the organization parameter.

Partitioning Function (o) -

Partitioning is the process of dividing a program into segments to allow their execution on

possibly distinct execution units. This division requires the addition of explicit synchronization .

operations between segments to preserve data dependencies. The partitioning function creates a

new ordering net based on these added synchronisation requirements: 0

- o 0, N.

Unlike the computation function, the partitioning function is scheme dependent but always fol-

lows a similar form. First the net is divided into segments by a scheme dependent algorithm.
Next, any transition connected via a single place to a transition in another segment is synchron-

ised by a place-transition-place sequence between the two transitions. The transition models , .

the computation required to complete the synchronization, while the places model data transfer ,s "

required to perform this function. Finally, weights are assigned to the newly created places and

transitions, commensurate with the cost of synchronisation on the system. This function may

% % %
t je, --e,.*
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be applied recursively to segments to model multi-level ordering schemes.

Sequencing Function (N)

The sequencing function is responsible for adding constraints to the model induced by the .

sequencing of segments and operations within those segments. This function causes the interpre-

tation of either control flow, data flow, or combined schemes. Formally, the sequencing function

produces a new ordering net from its input:

Vseq =X p.--

Again, this function is scheme dependent, and must be specifically defined for each ordering

scheme. Several levels of sequencing strategy may be modeled, based on the recursions in the

partitioning function. At the lowest level, place-transition-place sequences are inserted between

transitions within a single segment to model their sequencing. In a data flow scheme these will

be in parallel with each place, as sequencing occurs on each data transfer. In a control flow

scheme, they are placed between transitions along some execution trace. Sf

At higher levels, segments are sequenced by creating place-transition-place sequences 0

between segments. The details of this placement are dependent on the scheduling strategy being

modeled. Again, appropriate weights are assigned to all places and transitions added by this

function. , t

* Memory Access Function (Ws) ,.

Recall that in a data dependence graph an arc was weighed in accordance with the

amount of information transfer required over that arc. These weights were transferred to places

in the ordering net. The memory access function produces a new ordering net reflecting the

added costs of memory access and interconnection network traversal:

:' N. . NP., . .

This function is scheme independent and simply replaces each non-sero weighted place with a

place-transition-place sequence. The new transition is given a weight equal to the weight of the

* place it replaces.

Resource Allocation Function ('v)

Resource allocation is the process of assigning sets of transitions to sets of resources (pro-

cessing elements and memory locations). This function produces a new ordering net limiting

concurrency within these sets:

The resource allocation function is organisation dependent and must be defined for each system ..- '

modeled. In general, a resource allocation function will assign groups of transitions to resource

pools modeled by the addition of places to the ordering net. This allows concurrency between a .

N 00
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set of transitions to be limited by the availability of a limited resource. It should be noted that '""

this also allows the modeling of resource contention for memory devices. . -.

3.2. Analysis and Measures I

After a system has been described by the parameters of COSMIC, it is analyzed to deter- %

mine several performance measures. This analysis involves the determination of the time

between the firing of the initial and final transitions in an ordering net. Computerized analysis

tools aid in this determination. The analysis begins by creating ordering nets using a high-levei

description language that enables the specification of parameterized nets. Generally, these

parameters include the problem size and relative costs for computation, sequencing, and syn- -

chronisation. A compiler then fixes values for these parameters and produces a set of intercon-

nected places and transitions. Next, a net analyzer determines the various measures by firing

the net following the rules of timed Petri nets Ram74;. Finally the results of many analyses are 0

gathered into a database for further off-line studies. The entire system is capable of analyzing

nets up to about 50,000 places and transitions while consuming reasonable amounts of computa-

tional resources. This enables the analysis of moderately large problems.

Three values are associated with each performance measure: the serial time, the critical

path time, and the number of resources required to achieve the critical path time. These values

describe both the time and space requirements of the modeled system for a given configuration.

Two classes of measures are used: primary, measures represent consumption of resources directly

related to the algori hmic requirements of the system, and overhead measures show the con-

sumption of resources unrelated to any algorithmic requirements. The analysis consists of the

application of two analysis functions. The serial analysts function is: .:

N - R, ..

where R represents the set of real numbers and N the set of ordering nets. It computes the

time required to fire all nodes in an ordering net, with the added constraint that no two transi- e

tions may fire simultaneously. The critical path analysis function is:

AN--,, : N - R N,

where R represents the set of real numbers, V the set of non-negative integers, .V the set of "

ordering nets, and X the cross product. It computes the time required to fire all nodes in an

ordering net, with only the constraints presented by the net, as well as the number of resources

required to achieve that level of performance. Finally the general analysis function, "

AN : V -- R .1 R , V,.

simply combines of the two previous functions, the result of which is a triple of values: (Serial

Time, Critical Path Time, Critical Path Space). . ".

If we let M be such a triple, the total execution measure for a model with organization 0,

ordering scheme OS, and data dependency graph G4 is: .

AN OS{ G, 0 I. ,.
P,. ,1%,%

% % %
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The execution measure is also, by definition, the sum of the five previously defined measures:

Asclo Al;c + A4.+ Moe- + V44Y

where M. is the computation measure, A4., the partitioning costs measure, M. the sequencing .P

costs measure, Af. is the memory access measure, and A4, is the resource allocation costs

measure. All the submeasures are also triples, the addition of which is defined in the usual

manner by adding corresponding entries. These measures represent the analysis of an ordering

net resulting from the application of a subset of the ordering scheme function. MV1 is the pri-

mary measure, while the others are overhead measures. Overhead measures may contain nega-

tive entries for Critical Path Space: when the critical path time grows, the space required to

achieve that performance may decrease.

4. Experiments and Results

This section presents results gauging the effect of partition size on combined system perfor- %

mance. The performance of two simple algorithms is studied in the environment of a hypotheti- %

cal architecture capable of executing instructions under the control of a variety of ordering * .- ,r

schemes. The organization, data dependency graphs, and the various functions of the ordering ,.

scheme that manipulate them are described. Numerical results from experiments are presented %

graphically and as polynomial equations. As a compromise between the infinite variability of "

our hypothetical architecture and the availability of computational resources to analyse our %

systems, several restrictions are imposed on the experiments. Specifically, the scope of analysis

is limited by assuming that resource allocation and memory access constraints are ignored. This

will lead to resource allocation and memory access functions being set equal to the identity .,

function. The resource allocation limitations can be justified by assuming equally fair and I %e%

efficient implementations on all systems. The memory access limitation can be justified simi-

larly, although different numbers of memory accesses may be required by the various ordering

schemes. However, these factors may effect system performance and ongoing research is aimed
P% N%

at eliminating these restrictions.

4.1. The Organisation

First, the organization parameters for our hypothetical architecture are described. As

memory access or resource allocation are not considered, the organizational parameters of

consequence are the number and speed of the processing elements. Both are treated as variables

in these experiments. It is also assumed that all processing elements are interconnected, with a

communication cost of zero from any source to any destination. Future research is planned to

investigate the effects of interconnection topology and cost on combined system performance. ... e

4.2. The Dependency Graphs

The first algorithm studied is for matrix-vector multiplication using the algorithm shown

in Figure 3a, in which the matrix has size (SIZEXSIZE). In forming the data dependency graph

for this algorithm, note the central operations in the algorithm are the multiplication of two

P~~~ % aVr -
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numbers and the addition of the result to a running sum. This central operation will occur '.-

SIZE" times in the dependency graph. Therefore a base structure consisting of two vertices con-
nected by a directed arc is created. The vertex at the tail of the arc represents the multiplica-

tion operation, while the vertex at the head represents the addition. Two arcs enter the multi-

plication vertex, representing the matrix/vector input values, and one additional arc enters the

addition vertex to represent the previous value of the running sum. The addition vertex has a

single output arc. Therefore. creating a dependency graph for the algorithm involves replicating %

this structure SIZE' times and interconnecting appropriately. Added to this graph are SIZE

vertices representing the input vector and SIZE-" vertices representing the input array. Figure

3b shows such a graph for the case when SIZE = 3. In this figure the computational vertices

are represented by circles and the input matrix/vector vertices by squares. Note that the input

vertices are connected to the multiplication operation and the addition operations are chained -.
to form the complete dot product operation.

The second algorithm studied computes a 4-point iterative relaxation function, using the

algorithm shown in Figure 4a, in which the matrix has size (SIZEXSIZE) and ITER iterations

are computed. When all loops are unfolded into their basic components, a central computa- I,,

tional block repeats many times throughout the algorithm. Here, the computational block con-

sists of three additions and a division, therefore resulting in a 4 vertex graph with 4 inputs and

one output. This basic graph is repeated SIZE' x ITER times and appropriate interconnections

are made. As the dependency graph for the complete algorithm is complex, Figure 4b shows

only the central computational block. In this algorithm out-of-range indices in array subscripts
"wrap-around" using the modulus function, and for simplicity initial input arcs are ignored. •

4.3. The Ordering Schemes

Our experiments investigate two classes of ordering schemes. Both two level combined

approaches require an ordering net partitioned into segments, with the number of segments

being a variable for experimentation. The first ordering scheme, denoted Cpart, sequences par-

titions using a control flow ordering scheme, while individual operations within a partition are

sequenced using data flow concepts. The other ordering scheme, denoted Dpart, sequences parti-

tions using a data flow ordering scheme, while individual operations within a partition are

sequenced using control flow concepts. This section discusses the specifics of the partitioning 0

and sequencing functions for each case. The computation function, 7, assigns firing times to the

transitions it creates based on a parameter of the experiments called the computation time

Again note that -, and pi, the resource allocation and memory access functions, are the identity

function.

The same partitioning function, ,D, is used for both the Cpart and Dpart ordering schemes.

As both algorithms have a grid structure, the ordering net is partitioned first by columns in that

grid of operations, and then if required by rows. For example, if 3 partitions were to be created

from a matrix example with SIZE = 3, each column in the grid of operations (see Figure 3a)

would be placed in its own partition. If six partitions were required, then each of the original -

partitions would be divided in two. This strategy keeps operations that communicate most
4.%I
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often in the same partition whenever possible. Synchronization operations are then placed .

between each pair of connected computational vertices that reside in different partitions. The

firing time of the additional transitions is the variable called synchronization time.

The sequencing function for the Cpart ordering scheme, Xr, places a data flow sequencing .',

operation in parallel with each unsynchronized place. This enforces a low level data flow

scheme. When more partitions are created than columns in the grid structure of operations,

groups of "number of columns" partitions must be sequenced by "plies". To this end XC also

forces each ply of partitions to complete execution before the next is started. This is enforced

by adding a single transition between the plies. In effect this function implements the control

flow synchronization strategy called "Barrier Synchronization". The firing times of the addi-

tional transitions are set to the sequencing time variable.

The sequencing function for the Dpart ordering scheme, XD, places a control flow sequenc- 0

ing operation between operations within partitions to assure that no concurrency will take place

within a partition (i.e. a single trace of operations is executed serially). The previously added

synchronization operations already ensure data flow sequencing among partitions. The firing

time of these additional transitions is again called the sequencing time.

4.4. The Experiments ''

Experiments were conducted to determine the system's sensitivity to changes in problem

size and the relative time required to execute computational, synchronisation, and sequencing "

operations. In each experiment, the measures that comprise the triple M were deter-

mined. Each experiment consisted of setting the problem size and various time requirements

constant and varying the number of partitions over the range of "uniform" sizes (i.e. those in

which each partition had an equal number of operations to perform). The results of numerous

experiments of varying time requirements and problem size were combined to understand the

interdependence of all these factors on the performance of the systems.

After numerical results from the experiments were obtained, those related to the critical

path execution time were fit to polynomial curves based on the number of partitions. Except for "

a few "off by one" errors at extreme partition sizes, all cases exhibit a piecewise linear relation-

ship between the number of partitions and the critical path performance of the algorithm. .

Next, several equations from experiments corresponding to variations of the cost variables were

combined to obtain polynomial equations for each measure based on both the number of parti-

tions and the cost variables (e.g. sequencing time). Again all equations could be combined in a

piecewise linear fashion. At this point in the analysis several equations represent each measure,

one in terms of each cost variable. These equations were then unified to a single equation for

each measure in terms of all the cost variables and the number of partitions. These equations

can be verified by substituting appropriate constant for the cost variables to obtain the com-

ponent equations. Finally, the results of experiments on different problems sizes were combined

to obtain the final critical path equations for each measure.
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The critical path measurement equations are shown in Tables 1 and 2 for the matrix mul-

tiplication and iterative relaxation algorithms respectively. In these tables (and the remainder

of this paper), N represents the number of partitions; SIZE the problem sise; T, the computa-

tion time; T,,, the synchronisation time; and Teq the sequencing time. Also, note the ceiling

function [xJ represents the smallest integer > x and 9) represents the unit step function:

( 0 if X < 0 
" "

Figures 5 through 8 are graphical representations of the equations for the execution time meas-

ures (obtained by summing appropriate submeasures). The figures contain three graphs, each .

varying one of the cost variables. Figures 5 and 6 show matrix multiplications results while Fig-

ures 7 and 8 are from the iterative relaxation experiments. Figures 5 and 7 are for the Cpart

ordering scheme while Figures 6 and 8 represent the Dpart ordering scheme. In all cases the

problem size and default values of the time parameters are taken to be 8. Circles on the graphs

indicate function values at uniform partition sizes.

Examination of the measure equations yields a good understanding of the performance of

these two algorithms. While space limitations prevent complete analysis of these functions,

available in rCaF87], this paper endeavors to provide both the flavor and some interesting -, .

results from the analysis. The matrix multiplication algorithm's computation measure is

SIZE I T,, which is easily explained by examining Figure 3b. The length of a critical path

is one greater than the size of the problem, and each computation requires T, to complete. '
0

This algorithm's partitioning measure contains three components. The first two indicate

that two synchronisation operations will enter the critical path when N < SIZE. This number

increases with N after N exceeds the problem size. Two initial operations result from the syn- .

chronisations required to start and end each segment. The increasing factor that exists when

there are mcre partitions than columns of computations (SIZE) results from added synchronisa- S
tions needed between serial partitions. Note also the special case of one segment requiring only "

one synchronisation operation. This increase produces the staircase nature of Figure 7 and .

results when a single partition is added to a "uniform" number causing critical path length to

increase. The final factor results from a synchronisation operation in parallel with a computa- ""%

tion operation becoming more dominant, within a range of partition sizes.

The Cpart ordering scheme's sequencing measure, obviously the most complex, consists of

four parts. The first indicates a sequencing operation and an additional computational vertex

per "layer" will enter the critical path, while a synchronization operation leaves. The next

component indicates SIZE - I additional sequencing operations are in the critical path, one -

between each stage of the computation. The final factor is similar to the final factor of the par-

titioning measure, adjusting which operation are in the critical path as their costs vary. .,.

The Dpart ordering scheme's sequencing measure also consists of four parts. The first fac-

tor indicates that indicates that as the number of partitions increases, added computational S
operations will drop out of the critical path, to the point where no additional operations are

%, V'
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placed in the path by the sequencing function when N= SIZEK. The second factor shows the

same trend and that there are two sequencing operations associated with each computation,

with sequencing operations dropping out of the critical path as the number of partitions '

increases. The final factor are similar to that in the Cpart ordering scheme.

Now consider the iterative relaxation experiments. In these experiments, three iterations

of the algorithm were run (i.e. ITER = 3) which indicates that the critical path (using a wave-

front strategy) will be four times the size of the problem, minus 1. Since the critical path

through a single operation in 3 operations long, the -esultant computation measure is just that

given. The partitioning measure indicates that when N < SIZE three synchronizations are -

required for each partition: between each stage of the wavefront. Again the "ply" oriented syn- .7..

chronizations exist above this level. Again as in the matrix multiply algorithm, there is a spe-

cial case when N = 1 with 2 fewer synchronisation operations required. 0

The Cpart sequencing measure consists of three components, one for each cost variable.

The first component indicates that as sequencing constraints are added to the model more of the

computational operations fall along the critical path. When there are fewer partitions than the 1/

problem sise this is a constant factor, and above this number a linear increase is seen. The

second component shows the sequencing operations that fall along the critical path, which has ,

similar form to the added computational operations. Finally we again see that several syn-

chronization operations are removed from the critical path.

The Dpart sequencing measure is similar in form to the Cpart measure, except that the e.

weight of the computational and sequencing terms decreases linearly above SIZE partitions •

instead of increasing. These factors are also responsible for the discontinuities that exist at

SIZE partitions. The final two terms of this expression indicate the removal of synchronization..

operations is limited, as in the matrix multiplication sequencing measures.

The following observations result from the outcomes of our experiments, as depicted in

Tables I and 2 and Figures 5-8.

* The relationship between granularity and execution time.

Figures 5 through R show that granularity has a noticeable effect on the execution

time performance of these algorithms in the combined environment. In Figure 5 we

see that, as N increases, the execution time increases. This is a logical outcome for .

the Cpart scheme, as parallelism is restricted when the partition sise drops below the

size containing a complete column of the calculation. Figure 8, however, shows

decreasing execution time with increasing N. Again, this is logical as the Dpart

scheme restricts parallelism when there are many calculations in a single partition. .

Interestingly, we see that analogous general trends hold in the relaxation algorithm,

as illustrated by Figures 7 and 8. Tables 1 and 2 confirm these results.

* The effects of changing the relative costs of computation, synchronization, and sequencing.

Tables 1 and 2 show the relationships between execution time and T,, T,,,, and -

T,,,, are all linear for a given problem size and number of partitions.

" Sq



" The dominant costs in the performance of these algorithms.

Figures 5 through 8 show that computation and sequencing time are the dominant"e
factors in the performance of these algorithms. The effect of increasing or decreasing

their cost by a constant term increases or decreases the execution time by a factor LA.

at least three times the effect of changing the partition size by the same amount. -r%

Tables I and 2 confirm these results as we see larger factors associated with the T.

and T, terms than the T,,,, terms.

* The optimal number of partitions. _

[n each experiment, the optimal number of partitions varies and is dependent on the

relative costs of computation, synchronization, and sequencing operations.

- Matrix Multiplication, Cpart Ordering Scheme -- Figure 5 shows the optimal number

in all cases is a single partition.

- Matrix Multiplication, Dpart Ordering Scheme -- Figure 6b shows that as synchroni-

zation time increases the optimal number of partitions changes from 64 (SIZE2) to

one. NO

- Iterative Relaxation, Cpart Ordering Scheme - Figure 7c shows that as sequencing "F.

time becomes dominant, the optimal number of partitions is 8 (SIZE), while Figure "

7b shows that when the synchronization time becomes dominant the optimal number

is one. ,"%".

- Iterative Relaxation, Dpart Ordering Scheme -- Figure Sb illustrates that as syn- ' . "

chronization time becomes dominant, the optimal partition sise moves from 84

(SIZE) to 1.
* tThe effect of changing problem size.

Examining Tables 1 and 2 we see that problem size plays two roles in the perfor-

mance of these algorithms. The first is the linearly increasing critical path execution

time with increasing problems size, which is the critical path performance of these

algorithms. The second role is the determination of the "uniform" number of parti-

tions as evidenced by the terms throughout these tables.
SIZE

5. Conclusions and Further Work

" COSMIC has been used to study combined systems, and was illustrated by studying the

impact of partition size on a system's performance. This allowed the identification the optimal

partition size in relation to given system parameters. While these results apply directly only to •

two iterative algorithms (differing mainly in their interconnectivity), they provided hints to

what factors effect the performance of combined systems. Future work will focus on efforts to

generalize these results to other algorithms and include the effect of memory accessing and

resource allocation.
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Table 1

Matrix Multiplication Critical Path Measures

Measure Equation -.

Computation rC

Partitioning T -- N ) [2TE 1 T sync

% ?

:%":

IN +TZ TO I± SIE N I sIZET-II, ,%

Sequencing +SIZE 1- se T + 2 STseq

(DPAR) + 0 Tseq -- TC Tsyn -- T , "T ,

(CPART) + OIN SIZEJ 1 SIZE2 2 %

T,- T Tseq Tsyjnc 2CT

~9T -T -T -T

~sync TC (sf c )

. . -.

, %

NI

Sequencing , I 2 SIZE + 1 Tseq1% %
(DPART) +9 [a (SIZE - "a..-.eq

N -9NSIZEIO SIZE-N)OT,,TI~.-T

10 iX<0Iz if X>O.

Smallest integer > x.

%*



Table 2 -z

Iterative Relaxation Critical Path Measures

Measure j Equation ,

Computation 12 SIZE - T .

Partitioning min +3SIZE -41ITsc + 0 2 2T

Sequencing 9SIZE - 9 [ - 2SIZE + 6.;

N i
(CPART) + max 18SIZE - 3N) 9 SIZE + 6 SIZE -6 Tq

{[IZE (3 SIZE4}OON}iSJ
N -3 4 20 (N 2)2 y

Sequencing 3 SIZE 3 + 20 SIZE -N T

(DPART) + SIZE_ N) T(DP.RT) + 14 SIZE -1 6 + 4 0 SIE - eq .,

+ 2SIZE - 2 - 2 1
0 SIZE - N 2SIZE -2- 2NJ +20 N -

10 if x<0
O(x) = if >0.

= Smallest integer > z.

0,"(i
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For From I To SIZE Do

Forj From 1 To SIZE Do
resu itfil = resu ltiij - a i.j , ,,"j;

EndD o ""
EndDo

Figure 3a Figure 3b -
Maftrix-Vector Multipiy -lgorithm Matrix-Vector Multipiy Data Dependency Graph

For r From I To ITER Do
r I From I To SIZE Do

For i From I To SIZE Do{~ l= fai{i-1.j] + i .i - i. -: - ii.9->;)/4 } '

End.Do
EndDo

EndDo ,

Figure 4a .
Iterative Relaxation Algorithm 8'

Figure 4b
Iterative Relaxation Data Dependency Graph Fragment
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Systolic arrays have C sto i arrays are the result of array" and the concept behind The term, .

4 avances in semiconductor tech- much research has been done and much
regular and modular LJ nology and of applications that has been written about the design of

structures that match require extensive throughput. Their reali- algorithms and architectures suitable for

zation requires human ingenuity combined such structures. Today, the idea of a sys-
the computational with techniques and tools for algorithm tofic array is as familiar to many computer

development, architecture design, and scientists and engineers as that of a corn-requirements of many hardware implementation. piler or a microprocessor.

alorithms hi Invariably, the first reaction of people The term "array" originates in the sys-
-- or.,,. s. hei who are exposed to the systolic-array con- tolic array's resemblance to a grid in which

implementation cept is one of admiration for the concept's each point corresponds to a processor and
elegance and for its potential for high per- a line corresponds to a link between

requires that a wealth formance. However, those who next processors. As regards this structure, sys-

of sbsu ed oncpts attempt to implement a systolic array for tolic arrays are descendants of array-like
a specific application soon realize that a architectures such as iterative arrays,: eel-

and engineering wealth of subsumed concepts and engi- lular automata,3 and processor arrays
neering solutions must be mastered and These architectures capitalize on regularsolutions be maistered understood. This special issue attempts to and modular structures that match the

and understood. provide insights into the implementation computational requirements of many

process and to illustrate the different tech- algorithms. Table I is a list ot'applications
niques and theories that contribute to the for which systolic designs are available.
design of systolic arrays. Systolic arrays belong to the generation ot

VLSI/WSI (Very Large Scale Integra-~tion/Wafer Scale Integration) architec-

Charcterstic oftures for which reguiarity and modularity
Charcterstic ofare important to area-efficient layouts.'

systolic arrays Although the array structure character-

izes the interconnections in systolic arrays,
Since 1978, when H.T. Kung and C.E. it is the term "systolic" that captures the

Leiserson' introduced the term "systolic innovative and distinctive behavior of

K 'q.-:,
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these systems. "Systolic" in this conhex, ? micrci' The effeztive yields of Table 1. Applications for which systolic
means that pipelined computations take VLSI/WSI fabrication processes make designs are available.

place along all dimensions of the rray and Dossible the implementation of circuits
result in very high computational througn- with ur to half a million ra,osistors at Signal and Image Processing and

put. In other words, systolic algorithms reasonable cost-ever for relatively small Pattern Recognitiong .n

schedule computations in such a way that production quantitiis. However, the -arR--

adata item is not only used when it is input advantages of this technology are nut fully FIR, IIR filtering, and ID

but also is reused as it moves through the realized unless simple, regular, and modu- convolution

pipelines in the array. This results in lar layouts are used. Systohc arrays 2D convolution and correlation %
balancing the processing and input/output attempt to meet these topolo-,cal con- Discrete Fourier Transform AP

bandwidths, especially in compute-bound stramts by using simple processing ele- Interpolation

problems that have more computations to ments that, together with a simple ID and 2D median filtering

be performed than they have inputs and interconnection pattern, are replicated Geometric warping

outputs. Conventional processor designs along one or more dimensions. Cost, Feature extraction
are often limited by the mismatch of input regulrtt, and modularity are factors Order statistics ,,.

bandwidth and output bandwidth, which leading to the design and optimization of Minimum-distance classification

occurs because data items are read/writ- individual processing elements and their Covariance matrix computation

ten every time they are referenced. respective interconnections. Considera- Template matching

One reason for choosing 'systolic'' as non of these three factors indicates that Seismic signal classification

part of the term "systolic array" was to processor arrays are cost-effective engi- Cluster analysis

draw an analogy with the human circula- neering solutions to the problem of build- Syntactic pattern recognition

tory system, in which the heart sends and ing systems with many processing Radar signal processing he e

receives a large amount of blood as a result elements. Curve detection

of the frequent and rhythmic pumping of The inain difference between the design Dynamic scene analysis

small amounts of that fluid through the of systolic arrays and that of other inte- Image resampling

arteries and veins. Ii this analogy, the grated systems of comparable complexity Scene matching

heart corresponds to a source and destina- is illustrated in a general way in Figure 1. Matrix Arithmetic .. ,.

tion of data, such as a global memory, and The Y-chart shown in the figure is a con- Matrix-matrix multiplication
the network of veins is equivalent t the venient and succinct description ol the Matrix triangularization .,.,,
array of processors and links. Another different phases of the process of design-
explanationofthetermisthatinmanyof ing VLSI systems.67 The axes of the Y- Srdecmati tion

exlntino tetrmi ha nmayo hart correspond to orthogoral forms of Sparse-matrix operations ''~
the first proposed systolic architectures, Solution of triangular linear systems

processing elements alternated between system representation, and the arrows rep- *
cycles of "admission" and expulsion" of resent design procedures that transiate one Non-Numeric Applications

data-much in the same way that the heart representation into another. A top-down Data structures-stacks and queues,

behaves with respect to the pumping of design procedure (that is, one that sorting
blood, progresses from more complex compo- Graph algorithms- transitive closure,In nents to simpler subcomponents) can also minimum spanning trees

In the article "Why Systolic Architec be indicated-by arrows drawn along each Connected components
tures?ui H.T. Kung presents an excellent axis and pointed toward the origin. While Language recognition
introduction to the basic ideas, the advan- many different design approaches and- Dynamic programming
tages, and the open problems of systolic their corresponding Y-charts-are possi- Arithmetic arrays
arrays. Today, this article is still essential ble, design is typically carried out through Relational database operations
reading for those interested in learning the successive refinements. In this process, a Algebra
fundamentals of systolic arrays. Our intro- component's functional specification is
duction endeavors neither to replace nor translated first into a structural represen- .. ,
to repeat the contents of that pioneering tation and then into a geometrical descrip-
article. However, it is appropriate to tion in terms of smaller subcomponents; ,.i"',,
elaborate briefly on the three factors that the functional description of each of these
characterize systolic arrays as they were subcomponents must then be translated
originally proposed, namely technology, into structural and geometrical descrip-
parallel/pipelined processing, and apph- tions in terms of even smaller parts, and so
cations. These factors also identify the rea- on. The line arrows shown in the figure are
sons for the success of the concept, namely intended to convey, in a general way, the -""" "
cost-effectiveness, high performance, and flow of this process for systolic arrays This is conveyed graphically in Figure I by
the abundance of applications for which versus more conventional systems. Since means of large arrows showing that in the
systoiic arrays can be used. a systolic array consists of a large number design of a systolic array, one can proceed

of a few types of modules, the process of faster and more directly to the design of 5
Technology and cost-effectiveness, refining the overall system and designing lower-level components of thesystem than

Nowadays, mature VLSI/WSI technology every subcomponent is faster and simpler in traditional design,
permits the manufacture of circuits whose than it is in systems with the same size but Commercially available systolic-array " 1
layouts have minimum feature sizes of I to a much larger number of module types. chips with 10 to 100 simple, I-bit proces-
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functional structural schedule determined hs tie '.,oi_-ar' b% I
design. After a processing eiement octier-
ares an intermediate ouput and sends this

output to 'ne =Icment , neignboring

aigonihms processing elements. :he element :oipute, V.)another iniermrediall: ,oill '!I .- .r A result.
n~tCIrSprocessing element aohrnemiti t'tA eu:

instrucios p processing resource are itilizcd c!ft-

register- tansfer ciently. In the general .ast. eac h p'UC, s-
arthmetic statements\ ing element can he -onstrucred - .1

Sates pipelined processor Such -onsiruc:ion ' 11-
ogic operationsresult, in the so-,ailcd ,wo-,,tel pi'euned

! : ) sySlO5tolic irrv .ir %T i;c het
// throughput..

transistor / /~'.
~ ~? Appiications and algorithms. Algo-

/ / , rtthms uikable tar rminementa:-n ir. s-
ceil ,, ~ O' / tolic arrays can be IuotuJ in many .,npi:ca-

final design / lions. such as digital n nu nd imae
processing, linear algebra. ,aitetn recov-

c/p nion, linear and d'.nam:c pronr-,mming.

and graph problems. in tact. ,ost oI 'he

board algorithms in the isted apoli:ations are
computationally inienstve and require sys-
tolic archite.tures tor their implementa-
tions when used in real-time viron:nenis.

geometrical The acceptance of this tact is eviderced by
the existence of prototype and productlon S

,n ,,'.,*Figure i. A Y-chart that shows the process of designing algorithmically specified systolic arras for modern real-time digi- ,
VLSI digital systems. tal signal processing systems. The 0

manufacturers of these arrays include, ,

among others, companies such as ESL- ',,.

TRW, Hughes, NCR. GE, Hazeitire. and
Motorola. When systolic arrays were first
proposed, they were intended for applica-

sors exist; these chips sell for less than one array. Typically, inputs enter the array tions with two important sets of charac- ."
hundred dollars apiece. Other chips, through peripheral processing elements teristics. First, these applications require
including microprocessors and digital- and are propagated to neighboring high :hroughput and large processing
processing chips, both of which can be processing elements for further process- bandwidth, possibly at the cost of '..t--'
used as building blocks in systolic arrays, ing. These movements of data through the increased response time. In other words.
are also available-at even lower cost. Sys- array take place both along a fixed direc- it is more important to keep up with the 0
rolic arrays with thousands of processors tion in which a link exists between neigh- flow of data than tc generate a set of out-
can be built by assembling many such boring processing elements and in a puts foragivensetof inputs as quickly as
building blocks (chips) at total prices that periodic manner. possible. Second, these applications can be
range from ten thousand to a hundred In addition to data pipelining, systolic efficiently supported by algorithms that
thousand dollars and depend on the com- arrays are also characterized by computa- can be implemented on arrays consisting
plexity of each processor. tional pipelining, in which information of a few types of simple processing ele-

flows from one processing element to ments: the arrays have simple controls and
another in a prespecified order. This infor- input'output ports in the peripheral

Parallel/pipelined processing. Systolic mation can be interpreted by the receiver processing elements. These algorithms are
arrays derive their computational effi- as data, control, or a combination of both. characterized by repeated computations of
ciency from multiprocessing and pipelin- Each output is computed by the a few types of relatively simple operations
ing. .Multiprocessing is a natural execution-at different times and in a that are common o many input data
consequence of the activities going on predetermined sequence-of several oper- items. Often the algorithms can e S
simultaneously in various processing ele- ations in a number of processing elements; described by programs with nested loops
ments of the array. Pipelinng can be the execution is performed in such a way or by recurrence equations that describe
thought of as a form of multiprocessing that the output generated by one process- computations performed on indexed data.
that optimizes resource utilization and ing element is used as an input by a neigh- In addition, the pattern of generation and
takes advantage of dependencies among boring processing element. While usage of data by different operations dis-
computations. In systolic arrays, data operations can occur as data flows through plays some regularity and uniformity,
pipelining reduces the input/output- each processor, the overall computation is which means that the resulting communi.
bandwidth requirements by allowing a not a dataflow computation, since the cation requirements can be met bv the,,.
data item to be reused once it enters the operations are executed according to a localized interconnections.
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Implementation issues algorithms. However, the process is slow the desired degree and level of program-

and error prone and may require extensive inability. The Saxpy Matrix-I is an % ;,.
simulations, and the resulting designs are example of a programmable systolic coin- % Nd

Given the technical and economic prin- not guaranteed to be optimal or correct. puter with large granularity, whereas bit-
ciples that assure the soundness of the Progress has been made in the develop- level systolic arrays, like those discussed by
systolic-array concept, one needs to con- ment of systematic design techniques to J.V. McCanny and J.G. McWhirter," are -

sider the issues involved in implementing automate this process."' These techniques special-purpose designs with low .. ,eF
a system for a specific application. Some are unlikely to replace the designers coin- granularity.
of these issues are briefly discussed here. pletely; instead, they will provide tools and

formal concepts to assist designers in Extensibility. Many specialized systolic "
General-purpose and special-purpose searching for diverse and desirable designs arrays can be regarded as hardware

systolic systems. Typically, a systolic array for a given application. Most of these tech- implementations of a given algorithm.
can be thought of as an algorithmically niques are concerned with the derivation This view holds when there is a direct cor-
specialized system in the sense that its of a relatively high-level specification of respondence between the operations and
design reflects the requirements of a spe- the array architecture from a description variables of the algorithm and. respec-
cific algorithm. However, it may be desir- of the algorithm. Typically, such a speci- tively, the processing elements and wire
able to design systolic arrays that are fication includes the size and topology of links of the systolic array. In such a case,
capable of efficiently executing more than the array, the operations performed by the systolic processor can execute only a
one algorithm for one application or more. each processing element, the order and given algorithm that is designed for a prob-

Two approaches are possible in designing __lem of a specific size. I f one wishes to exe-
these "large-purpose" systems, and a cute the same algorithm for a problem of
compromise between the two is often Many specialized a larger size, then either a larger array must
found in many actual implementations, arrays can be seen as be built or the problem must be parti-
One approach is based on adding hard- hardware tioned. The first approach is easy to con-
ware mechanisms so as to reconfigure the ceptualize and simply requires that more
topology and interconnection pattern of implementations of a processing elements be used to construct 0
the systolic array and to emulate the given algorithm, an enlarged version of the original array.
requirements of a specialized design. A However, as regards implementation, one
concrete example of this approach is the must remember that there may be factors .. '

Configurable Highly Parallel computer tirming of data communication, and inputs that do not affect performance in small
(CHiP), ' which has a programmable lat- and outputs. To a limited extent, these arrays but might affect it in larger systems.
tice of switches for reconfiguration pur- techniques can take into account techno- These factors include clock synchroniza-
poses. The other approach uses software logical factors and the relationship of the tion, reliability, power requirements, chip-,
to map different algorithms into a fixed- systolic array itself to the rest of the sys- size limitations, and input/output-pin 4.

array architecture. As is the case with the tem. However, they are not complete; they constraints.
approach behind other general-purpose can only be used at the specification %
parallel computers, this approach may level-and only in an indirect manner Clock synchronization. In large syn-
require the use of programming languages there. Until more is learned about design chronous systolic arrays, clock lines of '-

capable of expressing parallel computa- techniques that can be used conveniently different lengths can introduce clock
tions, as well as the development of trans- for detailed integration of system and tech- skews and may require that a slower clock -. 6%,

lators, operating systems, and pro- nology, such integration problems will be used. Possible approaches that avoid
gramming aids. These requirements apply, continue to be left for the designer to solve, this problem of clock skews include %
for example, in the case of Warp, a sys- designing systolic arrays that do not allow
tolic array developed at Carnegie Mellon Granularity. The basic operation per- data to flow in opposite directions and
University. For each algorithm, the formed in each cycle by each processing using efficient layouts of the clock distri-
designer needs to identify the efficient sys- element in the various systolic arrays can bution network. 2 An alternative to the
tolic designs and mappings and the appro- range from a simple bit-wise operation, to design of a globally synchronous array is
priate techniques to use. The issue of word-level multiplication and addition, to achieve a self-timed system through the
appropriate techniques is ot great impor- and even to execution of a complete pro- use of asynchronous handshaking . .
tance. ince the final erformance, cost, gram. The choice of granularity is deter- mechanisms established between neigh-
and correctness of the design are governed mined by the application, or the boring processing elements. These self-
by these techniques. technology, or both. For example, appli- timed implementations are commonly

cations that use algorithms with basic bit- referred to as wavefront arrays. : 3

Design and mapping techniques. To level operators and data structures natu- 41

synthesize a systolic array from the rally suggest that processing elements be of Reliability. Simple laws of probability .
description of an algorithm, a designer a corresponding complexity. The same can be used to explain why increasingly .', '.,

needs a thorough understanding of and choice of processing elements might, how- large arrays are decreasingly reliable unless
familiarity with the principles behind four ever, result from considerations such as redundancy is incorporated and fault-
things: systolic computing, the applica- input/output-pin restrictions and the tech- tolerance mechanisms are available. In
tion, the algorithm, and the technology. nology that may be used. In programma- fact, the reliability of an array of proces-
Such skilled designers can provide excel- ble systolic arrays, the granularity may sors is equal to that of a processor raised . , 4
lent heuristic designs for important also be determined by trade-offs between to a power of the number of processors in "A
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the array. Since the reliability of a proces- designing special-purpose arrays of throughput, their integration into existing
sor is a value less than one, the reliability processing elements faster and more cost- systems may be nontrivial because of the
of the global array quickly approaches effective. In addition to the manyexisting extensive input/output bandwidth 6,kW

zero as the number of processors increases, tools for designing VLSI and WSI systems involved, especially when a problem has to
Fault tolerance requires that faults be that can be readily used in this process, the be partitioned and input data have to be
detected and located so that faulty process- regularity and algorithmic nature of sys- accessed repeatedly. Additional problems
ing elements can be replaced by opera- tolic arrays permits the use of high-level that have to be solved for systems with a
tional spares through an appropriate siliconcompilers.' -t this time, thedevel- largenumberofsystolicarraysincludethe b
reconfiguration scheme. A fault-tolerant opment process is not fully automated; the interconnections with the host. the mem-
systolic array may need additional hard- process will depend on future progress in ory subsvstem to support the systolic
ware to meet these requirements. In addi- design automation and computer-aided arrays, the buffering and access of data to
tion, if time redundancy is used or system design tools meet the special input/output data distri-
operation needs to be suspended for test- butions, and the multiplexing and demul-
ing purposes, :he fault-tolerant array can Universal building blocks. Systolic tiplexing of data when there are
be slower than the original one. A good arrays cost less to implement than other insufficient input/output ports. The prob-
fault-tolerant design has as its goal max- arrays because of their extensive replica- lems that must be faced are exempiified by Ii"
imizing reliability while minimizing the tion of a small number of simple, basic Mosaic. a project being carried out at
corresponding overhead. In systolic modules and because of their highly dense ESL. The system consists of a statically
arrays, possible approaches to fault toler- and efficient layouts. It is worthwhile for ,cheduled crossbar switch that connects
ance include simple extensions of well- multiple Warp processors, each with local
known techniques used in conventional memory modules, into a macropipeine.
digital systems. However, these techniques Integrating systolic The local memory modules are used to
do not take advantage of the characteris- arrays into existing store input data and restructure them into
tics of either systolic arrays or the arrysthe required input format., 
algorithms they execute. Novel and suc-
cessful, though general, fault-tolerance nontrivial because of
schemes"' that take advantage of these 1/0 bandwidth.
characteristics have been proposed for sys- The future

tolic arrays.
the simple building blocks to be carefully By the year 2000, it will be possible to

Partitioning of large problems. When it designed and optimized, since the costs build integrated circuits with one billion
is necessary to execute a large problem involved are amortized over a large num- transistors- more than one thousand %.
without building a large systolic array, the ber of replicated circuits. The modular times the number of devices available in
problem must be partitioned so that the design of systolic arrays allows designers today's densest integrated circuits.
same algorithm can be used to solve the who want rapid prototyping of their ideas These incredibly large circuits will use ,
smaller problem and so that an array of to use off-the-shelf devices, such as 0. 1-micron geometries made possible by
small, fixed size can be used. The main microprocessors, floating-point arithmetic advanced optical, electron-beam, ion-
concerns are to avoid rendering the parti- units, and memory chips. However, these beam, or X-ray lithography. While the
tioned algorithm incorrect and to avoid parts may not be designed for implement- high cost of setting up integrated-circuit
increasing the complexity of the design sig- ing systolic arrays and may therefore be factories that can handle these technolo-
nificantly. One approach identifies algo- inadequate to meet the design require- gies will certainly impact the initial cost per
rithm partitions and an order of execution ments. This has led to the development of chip, the main manufacturing limitations
of these partitions such that correctness is "universal building blocks" -chips that will be in the design, verification, testing,
preserved and the original array can be can be used for many systolic arrays. The and packaging of such large circuits. In %
used to execute each partition.' t The per- cost of such development is, therefore, addition, the percentage of the chip area
ceived result of this approach is that the amortized over replicated modules in dedicated to interconnections could
array "travels" through the set of compu- many arrays rather than concentrated in increase to ,-'ore than 80 percent. Systolic
tations of the algorithm in the right order simply one array. Commercially available arrays will take advantage of submicron
until it "covers" all the computations. chips that are worthy of consideration as technologies withoL" suffering from the
Another approach attempts to restate the basic modules include the INMOS Trans- problems just mentioned, since they are

problem to be solved so that the problem puter, the TI TMS32010 and TMS32020, modular, have regular interconnections,
becomes a collection of smaller problems the NEC dataflow chip PPD 7281, Analog and are extensible. Bv the year 2000,
that is similar to the original one and that Devices' ADSP2100, the Fujitsu MB8764, mature design and programming tools and p
can be solved by the given systolic array. '  and the National LM32900. Problems extensive knowledge of suitable applica-
While this second approach has less gener- involved in the use of programmable tiors and algorithms will probably render ,

ality and is harder to automate than the building blocks include developing pro- systolic arrays the architecture of choice
first approach, it may have better perform- gramming tools to aid designers and for submicron circuits designed for digital
ance when it is applicable, providing support f'or flexible intercon- signal processing, fast arithmetic, sym.

nections. boilc processing, and intelligent databases.

Automated design tools. The processing Systolic arrays have triggered extensive
elements and module libraries play an Integration into existing systems. related work and research in the areas of
important role in making the process of Although systolic arrays provide extensive processor-array architecture, algorithm -
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Destination Tag Routing Techniques Based on a State Model
for the IADM Network'
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ABSTRACT A'

A "state model" is proposed for solving the problem of routing and rerout-
ing messages in the Inverse Augmented Data Manipulator (IADM) network.
Using this model, necessary and sufficient conditions for the reroutability of

messages are established, and then destination tag schemes are derived. These
schemes are simpler, more efficient and require less complex hardware than pre-

viously proposed routing schemes. Two destination tag schemes are proposed.
For one of the schemes, rerouting is totally transparent to the sender of the Pr

message and any blocked link of a given type can be avoided. Compared with
previous works that deal with the same type of blockage, the timeXspace corn- 0

plexity is reduced from O(logN) to 0(1). For the other scheme, rerouting is

possible for any type of link blockage. A universal rerouting algorithm is cont-
structed based on the second scheme, which finds a blockage-free path for any
combination of multiple blockages if there exists such a path, and indicates
absence of such a path if there exists none. In addition, the state model is used
to derive constructively a lower bound on the number of subgraphs which are 4 %

isomorphic to the Indirect Binary N-Cube network in the LADM network. This
knowledge can be used to characterize properties of the IADM networks and for
permutation routing in the IADM networks.

Index terms - cube network, data manipulator network, destination-tag routing,

fault tolerance, interconnection network, multiprocessor, parallel processing,
state model.
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1. Introduction

This paper discusses novel and efficient techniques for routing and rerout-

ing messages in the Inverse Augmented Data Manipulator (IADM) network [9].

These results are based on a new approach, the "state model," which character-

izes and correlates the topologies of the LA4DM and Indirect binary n-cube net-

works, and leads to efficient exploitation of the redundancy available in the

IADM network.

0
Considerable research has been dedicated to the design of multistage inter-

connection networks for multiprocessor systems. The class of data manipulator

networks, introduced in [3], includes, among others, the Augmented Data Mani-

pulator (ADM) network 1171, the IADM network [9] and the Gamma network

[13][14]. The IADM network and the ADM network differ only in that the input

side of one of them corresponds to the output side of the other and vice versa.

The Gamma and the IADM networks are topologically equivalent; however, %

they use switches of different types. Each 3X3 crossbar switch used in the

Gamma network can connect simultaneously all three inputs to all three out-

puts whereas each switch used in the IADM network can connect only one of its

three inputs to one or more of its three outputs. The main interest of this

paper is the study of the IADM network; both the one-to-one and permutation
0

routings are considered. The schemes proposed for routing and rerouting mes-

sages in the IADM network are also applicable to the Gamma network.

Perhaps the most popular class of multistage networks is the multistage

cube-type networks such as the Indirect Binary N-Cube 1151, Omega [61, Baseline

1201, Generalized Cube 1181, STARAN flip [21 and a special case of SW-Banyan

14] networks. Among the main advantages or these networks are their very

efficient destination tag routing schemes, partitionability, O(Nog 2N) cost and

.... .% . . . %
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ability to pass useful permutations 116]. Some results of this paper are based on

characteristics of the Indirect Binary N-Cube network (hereon referred to as the

ICube network). Since the cube-type networks mentioned above are all topologi-

cally equivalent [16][17)[201121J, the results in this paper are also relevant to any

of them.

The ICube network is composed of n = logN stages labeled from 0 to n-1.

Each stage consists of 2N connection links and N interchange (switches) boxes.

The structure of the network is such that two input links of an interchange box

differ only in the i-th bit of their labels; the upper links have a "0" in the i-th

bit and the lower links have a "." Figure 1 illustrates an ICube network of size

N=8 and two possible states of an interchange box, "straight" and "exchange."

Since this paper considers only one-to-one and permutation routing, broadcast

states are not shown.

The IADM network is composed of n stages labeled from 0 to n-1. Each

stage consists of 3N connection links and N switching elements. An extra "'.

column of switches is appended at the end of the last stage as the output

switches and is referred to as stage n. Each switch j at stage i has three out- r

put links to switches (J-2') rod N, j and (j+2') rod N of the succeeding

stage. Each switch selects one of its input links and connects it to one or more

output links. Figure 2 illustrates an IADM network of size N=8. •

In a multistage interconnection network, the path connecting the source of

a message to its destination is determined by a routing scheme that specifies the

switching state of each switch in the path. Routing schemes are considerably

simpler for the cube-type networks than for the data manipulator-type net-

works. In cube-type networks, the interchange box at stage i needs to examine

the i-th bit of the binary representation of the destination address of an

%
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incoming message. If the i-th bit is 0, then the upper output of the box is

taken. If the i-th bit is 1, the lower output of the box is taken. These schemes

are known as destination tag routing schemes [6] and are extremely efficient and

simple to implement. Unlike cube-type networks, in the IADM and other data

manipulator-type networks there are several paths between any source s and

destination d (s~d) and each switching element has at least three switching

states. Previously proposed routing schemes 191[1011131 for the IADM network

can be thought of as distance taq schemes; that is, they require calculation of

the distance from source to destination in order to generate routing and rerout-

ing tags. The rerouting schemes in these works are basically finding an alter-

nate representation, which specifies an alternate routing path, for the distance.

McMillen and Siegel [9] proposed three dynamic rerouting techniques for

the IADM network for avoiding faulty or blocked ±2' (nonstraight) links. The

first and the second schemes require that switches be capable of performing

two's complement and +21 addition operations, respectively. The third scheme

requires one extra tag bit which is dynamically updated as the message pro-

pagates toward the destination. In 1101, the work of [9] was expanded, and a

single-stage look-ahead scheme was proposed to avoid certain type of straight

link faults. This improved scheme also requires two's complement operations.

Parker and Raghavendra [13] used redundant number representation and

proposed an algorithm capable of finding all routing paths, which, effectively,

are the redundant number representations for the distance between the source -

and the destination. Because of the complexity of the algorithm, the cost of

computation is prohibitively large so that it is infeasible to implement the algo-

rithm in order to achieve dynamic routing [191. In addition, although the algo-

rithm can generate all routing tags for any distance, there is no specific work on

.~~'%. V. % % ?.%
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rerouting schemes in 11311141.

Lee and Lee [71 proposed signed bit difference tag and destination tag local

control algorithms for the ADM and IADM networks that require no computa-

tion for the distance between the source and the destination. But their local

control algorithms can only find one routing path for each source and destina-

ti ,.. ,air. If the need for rerouting arises, they still resort to the distance tag

schemes to find alternate paths.

Past research has shown interesting relationships between data manipula-

tor and cube-type networks. For example, because it is possible to embed the

Generalized Cube network in the ADM network [1][171, the set of interconnec-

tions implkmentable by the ADM network is a superset of that of the General- ,

ized Cube network. This fact and the existence of multiple paths between any."

source s and destination d (s~d) in the ADM network suggests that the ADM

network can be thought of as a fault-tolerant Generalized Cube network.

Analogously, the IADM network can be regarded as a fault-tolerant ICube net- 'A A

work 2. Since the permutations realizable by cube-type networks are well stu-

died, the identification of possible embeddings of the ICube network in the A

IADM network can help characterize the permutation capabilities of this net-

work. A contribution to the precise understanding of' these notions is made in-,

this paper; it consists of the identification of a large number of distinct sub-

graphs of the IADM network that are isomorphic to the ICube network.

Section 2 of this paper introduces a state model to describe and correlate .2 .-

topologies of the ICube network and the IADM network. Necessary and
2 %-.-.

2 While topologically equivalent, the ICube and Generalised Cube I/O ports are

addressed so that their inter-relationship is the same as that or the IADM and ADM
network, i.e. the input and output sides are interchanged. r."

40
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sufficient conditions to perform rerouting in the LADM network are derived in

Section 3 . In Section 4 two routing and rerouting schemes are proposed based

on the theory developed in Section 3, together with a discussion of their merits

and implementation considerations. A universal rerouting algorithm is proposed

in Section 4, which can deal with any combination of multiple link blockages.

A class of subgraphs in the [ADM network that are isomorphic to the lCube -

network are identified in Section 6, and it is shown how to reconfigure the

LADM network under certain link faults to pass the cube-admissible permuta-

tions. Finally, Section 7 summarizes the results presented in this paper.

2. State Model Descriptions for the ICube and IADM Networks S

Multistage networks can be modelkd as graphs by treating interchange

boxes (also called switching elements) and links of the network as nodes and

edges of the graph, respectively. Another equivalent graph model [11181 results if

interchange boxes are associated with edges, and links with nodes. Both models 4

are exemplified in Figures 1 and 3 for the ICube network. The IADM network is

shown in Figure 2 according to the first model. The design of switches based on

both models is discussed in [11]. Clearly, the ICube network in Figure 3 can be

regarded as being a subgraph of the IADM network in Figure 2. Henceforth,

the second model is always assumed when referring to the lCube network (i.e.

Figure 2) and the first model is assumed when dealing with the IADM network.

With respect to these graph models, the nodes and the edges of the graph

refer to the switches and the links of the networks, respectively. The number of
switches at each stage of a network is denoted N and n = log 2 N refers to the

number of stages. The switches of each stage are labeled from 0 to N-I from

the top to the bottom. Any integer j has a binary representation

P%
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JJ 1 """J,-, where j,l is the most significant bit and n denotes the number

of bits. The notation .Ip/q means the bits of j starting at jP and ending at Jq,

where p < q. Bit j, is l's complement of bit ji. Throughout this paper, j and

j+a, where a is some constant, are reserved to represent labels of switches.

Also modulo N arithmetic is assumed, e.g. j+a implies (j+a) mod N. The

notation jESi is used to indicate that a switch j belongs to stage i and I'

(jGS, , j3ESi+,) is used to represent a link at stage i joining j'ESi and i ECi+1 .

A sequence of switches of contiguous stages (jASi, i"ESi+I  "'e+k) is

used to represent a path from j'ES, to i"'CSi+k.

Notation and terminology required for the characterization of network

topologies and destination tag routing schemes are introduced next. A switch .i

of stage i is an even i switch if ji = 0 and an odd, switch if ji = 1. Figure 2

identifies even i and oddi switches at different stages of the IADM network of

size N=8. Define the functions AC, and ACi that represent connection links at

stage i as

if .i is an even i switch and ti=0,

or if j is an oddi switch and ti 1 .. ..

AC(jt) -2' if j is an oddi switch and ti =0

+2' if j is an even i switch and ti =1

AC, (j,t,) = -Ac(j,t(,)

Also, define the functions Ci(j,ti) = j + ACi(j,ti) and

C,(j,ti) -- J + ACi(j,ti). These definitions imply the following lemma of funda-

mental importance to the results of this paper.

C i(j,ti) = Jo/- itiji+/,,-

V.. %
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Ci(jpti) =jo/i-1tiqi+J/nl

for some value of qi+l/n-1 which depends on j and ti.

Proof: If j is an even i switch and ti = 0, then Ci(j,ti) = Ci(j,ti) = j. If j is

an oddi switch and ti = 1, then Ci(j,ti)- C(j,t,) = j. If j is an oddi switch

and t i = 0, then Ci(j,ti) results from subtracting 1 from ji. Since j is an oddi

switch, ji = 1, no borrow is generated and all remaining bits of j are

unchanged; however, Ci(j,ti) adds 1 to J , changing' the i-th bit to 0 and alter-

ing some of the bits in positions i+1, . . . , n-1 due to carry propagation. Simi-

lar reasoning applies when j is an even i switch and ti =. F

The notation and terminology just introduced can now be used to describe S

the networks of interest in this paper. The following description for a network

in terms of ACi, AC, C i and C i is called the network state model.

The ICube network is composed of n stages labeled from 0 to n-1. Each

stage consists of 2N links and N switches. An extra column of switches is

appended at the end of the last stage as the output switches (Figure 3) and is -%

denoted Sn. A switch jCS, is connected to switches Ci(j,ti)CSi+,, for

0 <i < n-i, 0 < j < N-1 and tj =0 or ti = 1. When using destination

tags, switch jESi routes a message to switch Ci(j,di)CSi 1 where di is the i-th

bit of the address of the message destination.

The IADM network is composed of n stages labeled from 0 to n-1. Each

stage consists of a column of N switches and 3N connection links. An extra

column of switches is appended at the end of the last stage as the output

switches and is denoted Sn. A switch jCS, is connected to switches

C,(,,)E ,+1 and C,(J,t,)GS+ , for 0 < i < n-I, 0 <-- < N-l, and t, = 0 or

t= 1. In other words, three links connect a switch jC., to the switches (j-2'),

"%.%
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j and (j+2') at stage i+1. Sometimes +2' and -2' are used to represent links

(ES i , (j+2s')ESi+,) and (jESi , (j-2')GS+), respectively. The terms a

straight link refers to link (jES , jESi+,) and a nonstraight link refers to links

±2'.

According to the model, two types of switches, even and oddi, are required

in the IADM and ICube networks. Figure 4 illustrates the connection links of a

pair of even, and oddi switches for an ICube and an IADM network of size

N=8. The AC i function describes the ICube connections. For the IADM net-

work, the connection links can be described by the union of the functions AC

and AC,. In practice, evenj and odd, switches can be identical and easily pro-

grammed (at power-up or system configuration time) to behave differently. S
N*.* N

There are two possible routing behaviors (or states) for each switch in an r.

IADM network. A switch is said to be in state C if the routing is decided in ",

accordance with the function Ci,(j,ti) and it is in the state C if the function

Cj(j,t) applies. On the whole, the link on which a message is routed depends

on whether the switch is an even,, or oddi switch, in state C or C, and the
e

value of tag bit ti. Also the term state of the network is used to denote collec-

tively the states of all switches in the network.

The notion of switch state is only conceptual; it can be implemented by a-

designing the switches with actual logic states as well as by using tags with n

added bits specifying the states of the switches on the routing path. In Section

4, these and other aspects of the actual implementation of the proposed

schemes are discussed in detail.

%. %

-%. -
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3. Theory behind the State-Based Destination Tag Routing Schemes

Based on the framework developed in Section 2, routing problems in the

IADM network are now examined. It is clear that when every switch in the

IADM network is in state C, the IADM network behaves like an ICube network

and, therefore, the destination address do/n l can be used as a routing tag, i.e.

t, = di . More generally, the following theorem can be proven.

Theorem 11 Let d = do/,,_1 be the destination in the IADM network to which

a message is to be sent. Then t = do/n_ is the unique destination routing tag

to the destination d regardless of state of the IADM network.

Proof: Consider an arbitrary tag f 0 /,- and assume that the IADM network is

in an arbitrary state. Let to/n,_ = f 0/n-1. Then each switch will route the

incoming message to either Cj(j,fj) or Ci(j,fi). From Lemma 2.1, it can be

reasoned by induction that, at stage i, (Ci(j,fi))o/i = (Ci(j,fi))/j foli; at

the last stage, CI(j,f __ )= Cn-(J,fn- 1) fo/n-," Thus the address of

the destination of the message is the same as the routing tag. This proves both

the validity and the uniqueness of do/,_ l as a routing tag. C1

It is implicit in the reasoning underlying Theorem 3.1 that any link on a.-*. A

given path results from the appropriate choice of the state of the corresponding

switch, i.e. the use of "link" ACi(j,t,) results from setting JCS to state C atid S

the use of "link" ACj(j,t,) results from setting jS i to state C. Thus, given a

path to the destination d, there is at least one network state for which the use

of d as the destination tag results in the routing of a message through that

path.

The implication of Theorem 3.1 is that the use of a state model for the

IADM network reduces the problem of finding alternate routing paths to that of S.

""%
% %.

!Z&I L& !X .Z ,,r e %



-11-

controlling the states of the switches in the network. Capitalizing on this idea,

the following theorems show how alternate routing paths can be found in order -,

to evade blockages in the network. A straight link blockage occurs if a straight

link on the routing path is faulty or busy. A non.straight link blockage is defined

analogously. The third type of blockage, called double nonstraight link blockage,

occurs if both nonstraight output links of a switch in the routing path are

faulty or busy. A switch blockage occurs if the switch itself is busy or faulty. A

switch blockage has the same effect as blocking all of the switch's input links

and can be transformed into a link blockages problem accordingly. The discus-

sion on rerouting in this paper is concerned only with link blockages.

Theorem 3.2 In the IADM network, a change of the state of switch J.ES results S

in a different routing path to a destination d if and only if a nonstraight output

link of j is used on the original routing path to d. Moreover, the other non-

straight output link of j is used on the new path.

Proof: Changing the state of j implies that the "link" AC,(j,t,) is used instead

of AC(j,t,) or vice versa. However, if AC,(j,t)= 0 then ACi(j,ti)= 0 (i.e.

both use a straight link) and vice versa. .

With regard to the rerouting schemes proposed in this paper, the implica-

tions of Theorem 3.2 are twofold. First, the "if" part of the theorem implies

that dynamic rerouting for a nonstraight link blockage can be achieved by

changing the state of the switch whose output is the nonstraight link, which is

equivalent to rerouting the message through the oppositely signed nonstraight

link connected to the same switch. Thus, the same subset of destinations is

reachable from the two switches whose input links are the two oppositely signed

nonstraight links. Second, the "only if" part of the theorem implies that

dynamic rerouting for a straight link blockage is impossible. This is true in

-" -.--. - .--.- -- -
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general since every routing path in the IADM network can be the result of set-

ting the network to some state. Moreover, if a path from stage i' to stage i-

consists of all straight links connecting jES, and jES,+, i i < i", then there

exist no alternate routing paths from JESi, to jES- for otherwise there would

exist an alternate routing path branching from JES , and ending at the destina-

tion. The only resort, if any at all, to bypass the straight link blockage is to
backtrack to a switch connected to a nonstraight link on the routing path at

some preceding stage and to reroute from that switch. It remains to show that .

an alternate routing path always exists, provided that such a nonstraight link

exists. In fact, the existence of an alternate routing path partly results from

Theorem 3.2, as stated in the next theorem. Figure 5 illustrates the situation in S

Theorem 3.3.

Theorem U Consider a routing path in the IADM network to a destination d '"

that contains a blocked straight link at stage i. There exists at least one net-

work state which results in an alternate routing path that avoids the same

straight link blockage at stage i if and only if the original routing path to d -4-

contains a nonstraight link at stage 1 -k for some k, i > k > 0.

Proof: See Appendix Al. 0-

Previous work 17][911131 implies only the "if" part of the theorem, i.e. the

possibility of using nonstraight link of opposite sign in order to reroute a mes-

sage in the case of a nonstraight link failure. However, the "only if' part of the

theorem also implies that, in addition, it is not possible to devise a new rerout- 9-4.

ing scheme capable of avoiding a backtracking (or look-ahead) mechanism in

order to deal with straight link blockages.

From Theorem 3.2, (for a given source/destination pair) if the straight out-

put link of a switch is on some routing path, both nonstraight output links of %US

* 
- 4 -5..

-. 4.... 4*5*4*5-S54 U4*5-U4-~.-Ile~
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the switch cannot be used for routing; if one of the nonstraight output links of

a switch is on some routing path, the other nonstraight link of the switch is also -,

on another routing path and the straight link of the switch cannot be used for

routing. So for a given switch, the output link blockages that affect paths from

a given source to a given destination can only be (a) a nonstraight link block-

3age, (b) a straight link blockage or (c) the double nonstraight link blockage.3

Theorem 3.2 can be used to avoid case (a) a nonstraight link blockage and "%.
% . ,

Theorem 3.3, case (b), a straight link blockage. If case (c) occurs, then Theorem

3.2 cannot be used to find a rerouting path. A backtracking scheme proposed

later in Corollary 4.2 based on Theorem 3.3 can be adapted to overcome this

type of blockage. The adapted backtracking scheme is based on Theorem 3.4, •

which is illustrated in Figure 6. %

Theorem 3.4 Consider a routing path in the IADM network to a destination d

that contains a switch at stage i whose both nonstraight output links are •

blocked. There exists at least one network state which results in an alternate

routing path that avoids the same blocked nonstraight links at stage i if and

only if the original routing path to d contains a nonstraight link at stage i-k

for some k, i > k >0.

Proof: See Appendix Al. l,

0

3Physically it is possible to have any combination of blockages of the output links of a .-
given switch. However, the possible routing paths for a given source/destination pair
can be affected by either a straight link blockage or a double nonstraight link blockage
in a given switch but never both types of bockag,.

V-,",% % %
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4. State-Based Routing and Rrouting Schemes

In this section, routing and rerouting schemes are discussed based on the -7

theory developed in Section 3. As mentioned earlier, the novelty of the ideas in

this paper lies in the state model of the routing behavior of each switch. In pre-

viously proposed approaches, routing is determined solely by tag bits. Accord-

ing to the state model, the switching action of each network element is concep-

tually determined by its relative position (i.e. an even or oddi switch), its state

(i.e. C or C) and a destination tag bit (i.e. 0 or 1) (Figure 4). This conceptual

separation of routing information makes it possible to devise the simple routing

schemes described in this section.

In the first scheme, each switch is initially set up to behave as an odd, or

even, switch. In addition, each switch can dynamically be set to one of the logi-

cal states C or C. In other words, this scheme corresponds to a direct imple-
0

mentation of the conceptual view of switch states. Destination tags are used

and, according to Theorem 3.1, the state of the network is transparent to the

sender of the message since it only affects the path of the message and not its

destination. Consequently, rerouting is also transparent in the sense that it

results from a change in the network state. In practice, the implementation can

be such that, for instance, state C (or C) is used as the default state for each

switch in the IADM network and the switch regards the other nonstraight link

as a spare link for rerouting; if a nonstraight blockage is detected, then the

switch changes state to C (or C) so that the spare link is used instead. This -

scheme is called the Self-Repairing State-Based Destination Tag (SSDT) scheme.

Rerouting is useful not only when one nonstraight link in a switch is faulty

or busy, but also if both nonstraight links are busy. For example, when consid-

ering a packet switching environment, rerouting may be dosirable as a means of

%~~- % -%'PIP'
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balancing the message load throughout the network. The scheme proposed here

is well suited for this purpose. Assume that each nonstraight link has an associ-

ated buffer (queue). When both nonstraight links are busy due to message

traffic congestion, a switch can choose which nonstraight buffer to assign a mes- r

sage to (i.e. which state to associate with that queued message), based on the

number of messages present in the buffers in order to evenly distribute the mes-

sage load to the nonstraight links.

The proposed SSDT scheme has the advantages that it uses simple n-bit

destination tags and is capable of rerouting messages when blockages occur in

nonstraight links. In addition, rerouting of a message is transparent to its

sender since the path of the message is determined by the state of the network.

For a given destination tag, the routing behavior of each switch on a possible

path is determined by the state of the switch, i.e. the SSDT scheme is fully dis-

tributed and rerouting is done dynamically. Each switch requires a negligible

amount of extra hardware for the detection of blocked links and the representa-

tion of two possible states.

The second scheme is called the Two-Bit State-Based Destination Tag

(TSDT) scheme and it uses 2n-bit routing tags, which specify both the destina-

tion of the message and the states of switches on the corresponding path. The

TSDT scheme has the advantage that rerouting is possible when blockages

occur for straight as well as nonstraight links.

As with the first scheme, the TSDT scheme assumes that each switch is

appropriately initialized to behave as an odd, or even switch. Each "digit" of 0

the routing tag is represented by two bits bh+i and bi, called the state bit and

the destination bit, respectively. For this scheme, the state of a switch of stage

i is specified by b+i: if bn+=O, the switch is in state C and if bn+ =l , the S

Oak
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switch is in state C. For all i, O<I< n-1, bi =d i. In general, if j is an

evenj switch, bib,+,=00 and bib,,+i--O1 direct the message through a straight

link, bib.,+i=O through link +2' and bjb,,+j=1l through link -2'; if j is an

odd i switch, bib, 1+i=10 and bb,, +=11 directs the message through a straight

link, bib,+i=01 through link +2' and bjb,,+j=00 through link -2'. In general,

given a switch, the destination bit specifies use of a straight link or a non-

straight link while the state bit determines the choice of the positive or the

negative link (if the chosen link is a nonstraight link). Since state information

is carried by the routing tag, switches are not required to determine and

remember their own states, i.e. the design of the switches does not need to

implement the logic states C and C.

From Theorem 3.2, a nonstraight link blockage at stage i can be bypassed

conveniently by complementing the i-th state bit while the destination bits

remain unchanged. For convenience of reference, this is restated in terms of the

TSDT scheme as Corollary 4.1 below.

£mllary 4. Let bn/ 2ni and bn/2n-l be the state bits of the routing tag and

the rerouting tag, respectively, for the IADM network. In order to bypass a %

nonstraight link blockage at stage i, state bit bn+ i needs to be changed to bn+i"

That is, b 2n-I = b /n.+i-1bn++j +i+1/2 1. 0 •

Figure 7 illustrates an example of routing from s = 1 to d = 0 in an IADM-

network of size N = 8. Let bo/ 5 = 000000 be the routing tag and bo/5 and bo/.

denote the rerouting tags. The original tag bo/s = 000000 specifies the path

(1(So , 0(S 1 , 0S2, 0S 3 ). If (ICS o , O(SI) is blocked, the rerouting tag .-

bo/5 = 000100 is obtained by complementing b3, and link (ICS, , 2(SI) is used *S

for rerouting. This tag specifies the path (ICS 0 , 2C-, , 0(S 2 , 0($3). If

(2ES, 0(S 2 ) is also blocked, the rerouting tag bo/, = 000110 results from

•" % %, .%, % . % . .. - .-..-- S-- '- .o. -
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complementing b4, and link (2ES, 4ES 2 ) is used for rerouting. This tag

specifies the path (1ES 0 , 2ES , 4ES 2 , OES 3 ). -.

As discussed in Section 3, a straight link blockage and a double nonstraight

link blockage cannot be overcome easily; implementing a backtracking (or look-

ahead) mechanism is a must in order to evade these types of blockages. Since

all links in the routing path from stage i-k+1 to stage i consist of only

straight links, backtracking of at least k stages is required to find the switch

from which an alternate routing path branches. That is, at least k state bits

need to be considered for change. Due to the similarity between Theorems 3.3

and 3.4, the TSDT schemes for finding the rerouting paths from Theorems 3.3

and 3.4 are exactly the same, which is stated as Corollary 4.2. S

Corollary 4.2 Let n and bn/2n-1 be the state bits of the routing tag and

the rerouting tag, respectively, for a source/destination pair in the IADM net-

work. Let i-k be the largest stage number for i > k > 0 such that a switch at

stage i-k is connected to a nonstraight link on the routing path. In order to

bypass a straight link blockage or a double nonstraight link blockage at stage i, %

only state bits bn+(ik)/n+iI need to be changed; (i)

b n/n+(i-1) =bn/n+(i-)-1dji-k/i-1 if the nonstraight link at stage i-k of the ori-

ginal path is link -2 i- , and (ii) b '/n+(i-i)= bn/n+(i-)-jdj-k/j-j if the non-

straight link at stage i-k of the original path is link + 2 i- k . The state bits

b In+i/2n_ have arbitrary values in both cases.

Proof: See Appendix Al. 0)

The example in Figure 7 can be used to illustrate the TSDT scheme for (a)
U..,

a straight link blockage and (b) a double nonstraight link blockage. (a) Again

the tag bo/s = 000000 specifies a path (IES 0 , OES , OES 2 , OES 3). If the Z

straight link (OES1 , OES 2) is blocked, the rerouting tag can be 000110 which
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specifies path (1S 0 , 2C-S , 4ES2 , OES 3) by having

b3+Ob3+lb3+ 2  d0 dib3 +2 = 110. Since state bits b3+lb3+2 can be arbitrary,

000100, for example, is also a valid rerouting tag; it specifies path

(1ES0 , 2ES 1 , OES 2 ,0S 3). (b) Let the tag bol s = 000110 specifies a path

(IES0 , 2ES, 4ES 2 , 0ES 3). If both nonstraight output links of 4ES 2 are

blocked, the rerouting tag b o/S can be 000100 which specifies path

(lES0 , 2CS1 , 0S 2 , 0CS 3 ) by having b 3+0b'3+,b 32 = b 3+odld 2
• Since state

bits b3 +2 can be arbitrary, 000101 is also a valid rerouting tag which also

specifies the same path.

The rerouting path computed from Corollary 4.2 is blockage-free from

stage 0 to stage i. While the rerouting path is different from the original rout-

ing path from stage i-k to stage i, the routing path from stage 0 to i --- -1

remains the same. This results from the fact that backtracking always %

proceeds backward along the original path until it stops at stage z-k, and the

rerouting path only changes course from stage i-k onwards. Although state

bits bn+i/2n_ 1 remain unchanged, the routing path from stage i to n-1 may

still be altered due to the changes from stage i-k to i. For example, in Figure

5, the switch on the original routing path at stage i+1 is JES,4 1 whereas the

switch on the rerouting path at stage Z+1 may be (j+2'*1)C-S, ,, which may

further induce changes at higher-order stages.

In the TSDT scheme, the tag can be computed by the message sender

which is assumed to know the location of faulty links and switches in the net-

work. Thus, rerouting is transparent to the switches in the sense that the tag

computed by the sender of the message simply avoids the usage of faulty links

and switches. Therefore switches do not require any extra hardware for rerout-

ing purposes. An alternative is to implement dynamic rcrouting for the TS1)T

% %',.',. .
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scheme. Since backtracking is indispensable for avoiding a straight link block-

age, it is required that each switch can detect the inaccessibility of any output

port (connected to a switch at the next stage) and signal the presence of the

blockage back to the switches of previous stages 110][121. Whether rerouting is

done by the sender or dynamically is an implementation decision which depends

on how many stages of backtracking are allowed. When the sender computes

the tag, it must be able to identify and track the switches and links on the

corresponding routing and rerouting paths (the next paragraphs explain how

this is done). If any of the switches or links in the path is known to the sender

as being faulty, then the sender computes another tag by changing the state

bits as described in Section 5.

Locating the switches on the routing path is straightforward. For a given

source s and a destination d, the initial routing path can be specified by setting

state bits bnl2,-_ = 0
n/2n- (a string of n O's), equivalent to setting every

switch in the IADM network to state C. Then every switch on the original

path has label do/i-lSi/n-jESi 0 K i * n-1, since now the IADM network

functions like an ICube network [6][151.

To find the switches on the rerouting path, let JES be the switch whose

output link is blocked. First consider the case where the blocked link is a non-

straight link. It may be an (a) positive or (b) negative link. In case (a) the

switch at stage i+1 reached by the positive link is (j+2')ESi+l and, from -.

Corollary 4.1, rerouting can done through switch (1'-2')ESi+. In case (b) the

switch at stage i+1 reached by the negative link is (j-2')ES+1 and, from

Corollary 4.1, rerouting can done through switch (j+2')ESi+1 . Let the switch

at stage 1+1 on the rerouting path be Wo/,_ -. The state bits bn+(,+l)/_"'

remain intact (equal to O's) because it corresponds to having every switch from

-.-.
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stage z+1 to n-1 remain in state C so that the IAI)M network from stage 2-1-1

to n-1 can emulate the ICube network from stage 1z - to t -1. 'P _s, the bits

1, i+1 < l < n-I, of the label of a switch on the rerouting path are wt'/n -P.

From Lemna 2.1, bits 0 to l-l, I. I i -- , of the label of a switch on a path

to destination do/n__1 must be d0 1 1 . lence the switch on the rerouting patht

from stage i+1 to n-I has label doll lwl, 1-, z+ " l " -it I.

Next consider the ease where the blockage of jC$, is a straight link block-

age or a double nonstraight link blockagc so that backtracking is necessary.

There are two sub-cases for each type of blockage: (i) the nonstraight link

found in backtracking is a negative link and (ii) it is a po.Sitive link. IHere only

sub-case (i) of the straight link blockage is considered; the other cases can be .

dealt with similarly. From the proof of Corollary 4.2 (case (i) only), the swilch

on the rerouting path is (j42')eS1 . i--k I i. '[he sNitcli of stage .1 on

the rerouting path is J-S, if b 1,, 7 0 and j S,?,',1 i; an odd, switch or if

b, = I and jCS,, is an evrn, switch, and is (I/ , if b, ., 0 ( and

jES,,1 is an even, switch or if b,, I and JiC"Y, "is an odl, switch. The

idenitification of switches on tie rerouling path from I I to ?I I is dore

as in the case of a nonstraight link blockage described above.

The blocked link can be represented hv the tw<, t Wit heS joIined Lv 01he link.

Since every switch on the original routing path and i the rerouitinw, paths (a in he

easily identified as described above, it car he readIl dt e rtnined whether or not

the blocked link is on the current path. t

In summary, for both SI)T schenes, I lie binary rcpi 'Se itit :tion of the desti-

nation address can be used directly as the routing t at,'. III t1w' SSI)'l' scheri',

rerouting tags are not needed and in the 'l's IT chcnewi. r-roiiling tavgs rvoiI

from s im p le b it co rph ertnre tintg o p rat oi . II t ,ri w, f ,o iip h ,x iit o f t h , - ,

e5 % % %



-21 0

computation for a rerouting tag, the SSDT scheme and the TSDT scheme for 6 1
one instance of nonstraight link blockage require timeXspace complexity 0(1);

an improvement over previous proposed schemes 191 dealing with rerouting for a e o

nonstraight link blockage that require timeXspace complexity O(logN). In 110 e-F

a single-stage look-ahead scheme for rerouting of a straight link blockage was

proposed; it requires use of two's complement to compute the positive and nega-

tive dominant tags so that the scheme has timeXspace complexity of O(logN).

Note that the single-stage look-ahead rerouting scheme is valid only for some

cases of the straight link blockage; it cannot be applied to any case of the

straight link blockage. From Corollary 4.2, k-stage backtracking is needed for ,.

a straight link blockage and k bits of the state bits needs to be changed; thus

the complexity of the TSDT scheme for a nonstraight link is O(k). If only

single-stage backtracking (corresponds to single-stage look-ahead) is necessary,

rerouting can be done dynamically and the complexity is 0(1), an improvement

over the scheme in [10.

S. A Universal Rerouting Algorithm for Multiple Blockages

The TSDT scheme can be applied to not only one instance of some block-

age, but also can be applied repetitively each time a new blockage is encoun-

tered as the message propagates along. This section considers the derivation of 0

an algorithm to deal with any case of multiple blockages. The backtracking

schemes proposed in Corollary 4.2 find a rerouting path for a straight link

blockage and a double nonstraight link blockage. Nevertheless, it is poss;ble 0

that blockages also exist on the rerouting path; then further backtracking to a

lower-order stage is needed. Since this phenomenon can recur, repeated back-

tracking may be necessary due to blockages on the rerouting paths. The 0

VP.

- °° °V.
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algorithm BACKTRACK described next performs iterated backtracking to find

an alternate routing path. It underlies a universal rerouting algorithm (called

REROUTE) to be shown later that can find a routing path, if there exists any,

to bypass multiple blockages in the network.

The inputs to algorithm BACKTRACK are the current routing path P, the

stage number i where a blockage occurs, and state bits b ,,/ _ representin

path P. The algorithm returns updated values of the state bits b n/2n 1 which

specify a rerouting path that is blockage-free from stage 0 to stage i if such a

rerouting path exists, or returns FAIL if the blockages on the current routing

path and the rerouting paths eliminate the possibility of cornmuliicatiorI

between the source and the destination. It is assumed that the blockage on the

original routing path at stage i is a straight link blockage or a double non-

straight link blockage and JSt is the switch whose outpu link., at( th,

blocked links. Informal explanations for the algorithm will bp given follomwing

the algorithm and t he correct nes proof of this algorithm can he fo : in%

Appendix A2.

Algorithm BACKTRACk (and !0kROUTE) presumes existence of the %

knowledge of all blockages in the network. The network controller is responsi-

ble for collecting this information and maintaining a global map of blockages.

which is accessible to (very sender of the messages in order to compute a path

to avoid the blockages. In addition, since it may take several iterations betore a

blockage-free path can be found or it can be concluded that no blockage-free

paths exist, the sender of the message needs to maintain and update the loca-

tions of switches on the rerouting path in each iteration.

Algorithm B.ACKTRAC.K (!', 1, b ,/2, 1)

JS.

V. %% %
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0: q stage number where a blockage occur.

q -- .

1: P= the current routing path.

Backtrack on path P from stage q to find a nonstraight link. If no non-

straight link exists at any preceding stage, return(FAIL); otherwise assign

to r the stage number where the first nonstraight output link is found.

2: If the nonstraight link at stage r on the routing path is +2 r , assign flag

linkfound value 0; if it is -2', assign linkfound value 1.

3: If linkfound = 0, b n/ 2n-I 4b n/n+r-dr/q-b n+q/2n-1; if linkfound = 1,

b n/2n-I i bn/n+r-ldr/q-b n+q/2n-l"

4a: This step applies only when the blockage at stage q on path P is a straight .

link blockage.

If linkfound =0, set b n+q = dq; if ((j'-2 )ESq , (j-2q+)ESq+1 ) is blocked,

change b',+q to dq; furthermore, if ((j-2q)ESq j¢Sq+i)is also blocked,

return(FAIL). If linkfound = 1, set b = dq; if

((]+2)Sq , (J+2 +i)ESq+) is blocked, change b n+q to dq; furthermore, if

((]+2q ).Sq , JC-Sq 1) is also blocked, return(FAIL).

4b: This step applies only when the blockage at stage q on path P is a double -. '

nonstraight link blockage.

If ((J-2)ESq , (J-2 )CSq+) is blocked for linkfound = 0, or

((j+21)eSq, (3+2q)ESq+ 1 ) is blocked for linkfound = 1, return(FAIL).
% S..

5: L t Q denotes the part of the rerouting path (specified by the tag in step •

3) from stage r Hl to q from step 3. %

If inkfound 0, Q=
(J - 2 i)CSq , (j-2q)CSq); if linkfound = 1,

J.. Or" %

'Il %
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If a blockage occurs on path Q, return(FAIL). -

6: If linkfound = 0 and ((j-2r)-S,, (j-2 1 ) S+ )G5 is blocked, or if link-

found =-I and ((j+2r)ES, (i--2f )C"S5 r,)is Hlocke(I, go to step 7; else

return(b'n/2n-1I).

7: j *-- j+2r, q - r.

8: Backtrack on path P from stage q to find a nonstraight link. If no non-
n 0

straight link exists at any preceding stage, return(FAIL); otherwise assig "-

to r the stage number where the first norstraight output j,ink is found.

9: If lnkfound = 0 and the nonstraight link at stage r ;s -2', or if link

found = 1 and the nonstraight link at stage r is +2 , return(FAII,).

10: If linkfound 0, b n/2n- - b n/n ,-sdr/q-',b , qi, ; if' linkf,;rd -,

,, rq-1b n-q/2n-l GO to step ,I'.
b b n/ r--i -1b

Step 0 is the initialization step. From Theorems 3.3 and 3.A, an alternate

path exists for avoiding a straight link blockage or a double nonstraight link

blockage if and only if there exists a nonstraight link at some stage prece,!ing.

stage r; step 1 of the algorithm searches backward for such a nonstraight link.

If not found, it results in premature termination of the algorithm, reflecting the

fact that no alternate paths for rerouting (,xist. ' tep 2 is used to litlerenti atr

the cases when the nonstraight link at stage r found in the first backtracking is

a positive link and when it is a negative link; flag link found is assigned ( for

the former and 1 for the latter. If a nonstraight link exists at somie stage .-

preceding the blockages, in step 3, Corollary 4.2 is applied to find the stage bits

specifying the rerouting path; cases (i) and (ii) in (Corollary 4.2 corres)ond to %

linkfound 1 and hinkfound 0, respectively, and q and r correspond to i

.%,.

Z. Z
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and i*-k, respectively.

Steps 4a and 4b deal with the link blockage at stage q on the rerouting

path computed in step 3. If the blockage of a switch at stage q on path P is a

straight link, the possible rerouting links at stage q are two nonstraight links.

In step 4a the default link is negative link if line found = 0 and a positive link if

linkfound = 1. If the default link is blocked, step 4a attempts to reroute the

message through the other nonstraight link. If both nonstraight links are

blocked, there exist no blockage-free paths. Step 4b applies if the blockage of a

switch at stage q on path P is a double nonstraight link blockage. The rerout-

ing path must use a straight link at stage q. If it is also blocked, no blockage-

free path exists. 0

Step 5 checks blockages from stage r+1 to stage q-1 on the rerouting

path; if any blockage falls on Q, there exists no blockage-free path. In step 6,

if the blockage falls in the link of stage r on the rerouting path, further back-

tracking is necessary. Otherwise (no blockages on the rerouting path), the algo-

rithm terminates with the state bits specifying the rerouting path. Step 7

updates the stage number q and the switch label j where a blockage on the

rerouting path occurs, initiating a new iteration of backtracking. Step 8 is the

same as step 1, searching backward at lower-order stages again for a non-

straight link. Step 9 of the algorithm dictates that if the encountered non-

straight link in the first iteration of backtracking is a positive (or negative) link,

the nonstraight link found in each subsequent iteration of backtracking must be

also a positive (or negative) link; otherwise no blockage-free paths exist. If the

condition in step 9 is satisfied, step 10, which is the same as step 3, computes a

rerouting path. After the rerouting path is found, the algorithm returns to step

4b, to check for further blockages on the rerouting path.

%-
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For each source/destination pair, a link on somne routing path for thc

source /destination pair is called a part iripatituj link. As a direct resuilt of

Theorem 3.2, the set of participating output links of a switch is comnposed of

either its straight output link or both of its nonstraight output links. but never

all of them. So the output link blockages of a switch, for a giv-er

source/destination pair, can only be a straight link blockage, a iionstraiglit iink

blockage, or a double nonstraight link blockage . Algorithin RACiKTRACiK

deals with the first and third kind of blockages, aid( the second kind of block- 0

age can be overcome by applying Corollary 4.1. Algorithmn BACKTRACK mid

Corollary 4.1 can be used to form a universal algorithin capable of rvrolutl- %no%

messages when multiple blockages exist iHi t lie IAI)\l ne(twvork. This al~m;on uk

called REROUTE, returns state bits b 2 31pecifying";I I o cka-Ig e -fr'e r( r~wt -r

ing path if one exists, or returns FAIL ot lierwise.

Alg.rithn1RHEROQIT (1), 9n/2fl 1)

0: P= the original routing path.

bn/nl the routing tag specifying the original routing path.

bn2-= the rerouting tag specif'vin the rerounting path.

b n 2 o n /2n -1

1: Let I be the smallest stage number -urcli thlat t her(, exist.,; h h V :t

stage z on path P. If no blockagves oct inr on) pat *) Pt r( rn (6

2: If the blockage at stage 1' on path PI~ s a norist ralght link blockmace :tnh i

other nonstraight link is not blocked, apply ( orol~inrv 1.1I to flind !

b n/2n-1 and go) to tep) 4.

3: b n/2n-I B-IACK'[RACK(J", 21)

%

% % % % %
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4: Q = the rerouting path specified by state bits b n/2n-,

P -- Q and go to step 1.

Step 0 is the initialization step. At the end of each iteration, a blockage-

free path from stage 0 to stage i is found. Then a new iteration starts and i is

given a new value in order to find a path avoiding the blockages at a higher-

order stage. The only terminating conditions for algorithm REROUTE are that

a return of FAIL from step 3 indicating that no blockage-free paths exist and '-.0

the return from step 1 indicating a blockage-free path is found. Algorithm

REROUTE is executed iteratively to evade blockages from lower-order to

higher-order stages. The correctness of this algorithm follows from the correct-

ness of algorithm BACKTRACK and Corollary 4.1. •

6. Permutation Routing and Cube Subgraphs of the IADM Network

The results discussed so far are a consequence of the existence of spare

nonstraight links in addition to the ICube network embedded in the LADM net-

work. This section pursues this issue further by showing that there exist multi-

pie distinct subgraphs in the IADM network, each called a cube subgraph, that

are isomorphic to the ICube network. Two cube subgraphs are considered to be

distinct if they differ in at least one link. As mentioned in the introduction of

this paper, the cube-type networks have been studied extensively in the litera- .

ture and shown to be topologically equivalent. Together with results from these

studies, the knowledge of how to identify cube subgraphs can help the under-

standing of the capabilities of the LADM network and be useful for permutation

routing in the [ADM network.

N n
Since ,each switch can be in state C or C, there are as many as 2 %.

(= N N ) network states, although each does not necessarily generate a unique

% %
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permutation. Setting a switch to a certain state indicates that one of its nion-

straight output links can be used for routing (i.e. it is fictive) while the other
V.

cannot. Thus, each network state can be associated with a subgrapii of the

IADM network which contains only the active links. When all switches iii the

IADM network are set to state C, the LU\DM network functions as an lCube

network; this network state corresponds a cube subgraph. The conistruictivec

derivation of a lower bound for the number of cube suhgraphs of the( IAI)M net-

work uses the two basic ideas discussed in the next paragraph,.-

Since + 2 '-' =- -21 d N, Cn - 1 (J~t -) =C', 1 (0"t' -), i.e. the state of

each switch of stage n-i is irrelevant in the sense that any switch at stage

n-I is always connected to the same two switches at stage it. Coniseqjuently,

given any cube subgraph, there exist (2-)subgraphs isomiorphic to it which

differ only in their choices of the nonstraight link ±" or -2' at sta ge it - I

Therefore, the total number of distinct cube subgraphs is given by the produict

Nof 2 and the number of distinct subgraphs of the IAL)M network from stage 0

to stage n-2 that are isomorphic to the same stages in the ICube network.

uSThe calculation of the number of subgraphs in the first n-i Stages uses, anI

idea similar to that proposed in j5 for reconfiguring the D)R network so that it

performs as a Generalized Cube network. All switches of the IAL)M network

are logically relabeled by adding a constanit x, 0 __x < N-] to the original

labels, i.e. switch j' becomes jj + x. By setting each switch to be an even,

or oddi switch accordling to its new label and having aIll switchies be in state C,

5- a cube subgraph results for each relabeling. However, of' the N possible sub)-,

N -5*graphs, only - are distinct as far as the first ri - I sI ages are collcernedf. This
2

0
result is stated in Fheliorern 6.1. A graphical ink('i-pret attio or cubeo s nbgraphl

isorrorphism for an IA\DI) network of size N -- 8s is iIllustrated in Figure 8. InI

* 5~~ S~ .1.4' Ne%" 4VC le Wk - %E. - . .. .. .1 .. * < S ~ . . . . ~ ~~ .

~~ ?Sl..~IP
5 -
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Figure 8, each physical switch j acts as a logical switch j' (j+1) od 8. The

isomorphism to the ICube network can be easily visualized by moving switch 7

to the top of each stage as shown in the figure. Notice that setting some switch

to state C according to its logical label may be equivalent to setting the switch

to state C according its original label. For instance, switch OES 0 (logical label -

1) is set to state C in Figure 8.

Theorem 1. There exist at least - 2 N distinct cube subgraphs in the IADM
20

network.

Proof: See Appendix Al. 0

In order to reconfigure the IADM network to one of its cube subgraphs,

each switch of stage i, for 0 < Z < n-2, needs to know the i-th bit of its logi-

cal label. This can be done by sending the same logical label to every switch in

the same row at system reconfiguration time. Each switch is set as being an

oddi or even, switch by examining the i-th bit of the logical label. All switches

operate in state C according to its logical label with the exception of those at

stage n-I for which different states correspond to different subgraphs.

The results of this section can be used in different ways. One usage is in %

characterizing a class of permutations performable by the IADM network. Per-

mutations passable by the ICube network are discussed in 115] and adaptable

from j6J. Thus, the IADM network can perform all of these permutations plus .'.

the same set of permutations with a given x added to both the same source and

destination labels, 0 <. x < - Another use of the results of this section is

that the IADM network can pass the permutations performable by the ICube

network when the ICube network embedded in the IADM network experiences

nonstraight link failures. This is done by incorporating a reconfiguration

%."ZS -LZ N
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function in the system that reassigns each switch j to (j+x) and reconfiguring

the IADM network to a corresponding cube subgraph which does not include the

faulty nonstraight links. In [21 i it is shown that any of the cube-type networks

can pass the permutations performable by the others by incorporating appropri-

ate reconfiguration functions. By the same token, the IADM network with a

nonstraight link fault can also pass the permutations performable by the cube-

type networks by including these reconfiguration functions in the systein.

7. Concluding Remarks

One of the main contributions of this paper is the identification of destina-
S

tion tag routing schemes for the IADM network. They are simpler and more

efficient than previously known approaches, thus requiring less complex switches

and reducing message communication delays due to routing overhead. In the

SSDT scheme rerouting can be done when nonstraight links fail and in the

TSDT scheme both the straight and double nonstraight link blockages can be

avoided. As for the SSI)T scheme, routing and rerouting are transparent to the

source and only negligible hardware and time are used by each switch for rout-

ing and rerouting purpose. These are considerable advantages over previously

proposed schemes which do not use destination tags and require extra hardware

or delays of O(logN) complexity instead of 0(1). In addition, previous works all

deal only with certain types of bloc" Based on the TSDT scheme, a

universal rerouting algorithm is deri I, which is capable of avoiding any coin- .

bination of multiple blockages if thert xist a blockage-free path and indicating

absence of such a path if there exists none. The rerouting capabilities of the Nr

new scheines can be readily used for fault-tolerance and load balancing pur-

poses since they adequately exploit the redundancy available in the IADM

• .. ,. ,' ,....'" . .-- .', ,,a.-_
*.0
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network.
A,

Another contribution of this paper is the constructive derivation of a lower

bound on the number of cube subgraphs of the IADM network. While it was

previously known that the ICube network is a subgraph of the IADM network,

NN
this paper shows that there exist at least -'2 N distinct cube subgraphs. This,

combined with previous multistage cube network studies, can help characterize

some of the permutations performable by the IADM network. As other use of

the subgraph analysis, it is shown how to reconfigure the IADM network under

nonstraight link faults to pass the cube-admissible permutations.

Perhaps the most fundamental contribution of this paper is that of the net-

0work state model used for the [ADM and the ICube networks. The essence of

this model is in the recognition that the routing action of each switch is concep-

tually dependent on its position in the network (topological information), its

state (functional information), and the destination of the message (routing .

information). Topological information is fixed and, when using destination

tags, the same can be said of routing information for a given message destina-

tion. Consequently, the routing path is solely determined by the state of the
-C%- % **

network. These basic concepts are applicable to networks other than those con-

sidered in this paper; the state model can help devise new designs, solve routing

problems, and understand relationships among networks.
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Appendix Al "
"a.

Proof of Theorem 8.3

The "only ir' part follows irnniediatelv From Theorvii 3.2. To prove the "if"'

part, let JGS, be the switch whose straight olitput link i.s the b!oe hiT:ii or

the routing path and i--k be the large zt -tage nuruber for i > k ) 'uch ti :

a switch at stage i-k has a nonstrn-,_glt oW, 1 ,ut liik oTI th( roei i:q g palt . - I

Assume that the rionstraight link ai Irn k foIOi d in ,:ktr:,kr< -- "

-2 -  Clearly. a iliFst ,d , ['igure 5. g,. , .

( ,+2 ' )C ;, (j+2' ')CS, j.... 1 t 2') .,- 1( r or iir,

path for path ((j 2' j)(S, k C .s , JC-', k-2 .2........'

Assume that the nopstraight link at st agi i k- fond in h,'ktrk,', 1K:

+2' k' sitnila rly p: t h "i
S((j--2'k) . (-2' O  k'l)C k -I :" .* .]_ .;flg, .; , is 7, 7.uFiIing'

path for path ((j--2' K)( ' , ( . k .3 ( .'. i , . .

Proof of Theorem '7. ,

The "only if" part again follows iiiIl iacdi:LfCv frorii 'heorin 3.2. 'lo prove th,

"if" part, let notations I, 1--k and I.CS, br thc same as those in the pro,, o'

'Theorem 3.3. The p~roof is iillust ra+' (l i I i ilur( t. I roni '1'h rli ' .2, .%

(j-2')E, , and (.14-2' )Cr, ian reach tht. sa me su bset of destinations so t hat

it does not matter which is on the, r.rimu!'i pa iii. i A\sum ' I t the 'tIl

straight link at stage t--- k foind i backtrackin_ is link --2' . I! i f-

explanatory ' l,:i it 1

((J4-2' k) S, k (j-+2' k'*)CS, .-... : i7 , ( ')( ,',) t r Ir%t-

ing path for both paths ((.1 +2' , 1C ,i ,jf-. , , ( j 2' ..

and (()-+2' k k, 3 k i S ., . 3 2' K . 1 -it t, jr-.(i %I ~l ha

the nonstraight link at, sta e - k fI rI i. lcktrakini K link 2' If iIi r! %

I
,% ;,-,

./ =i *<, i " i ,, , % - " - '% ".... " % - '% % . ' % -,, -, =. % . . ,. . - . .,. . . -. .V '. ,. .,, - ,. - . - , < -,
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path ((j-2' -)ESt k (3-2' ")CES, k, I (J-2')CS,), (j-2')CS, + 1 ) is a

rerouting path. Note that the participating input link of .E,5, may be a non- -6

straight link; however, this is just a special case for k = . .

Proof of Corollary 4.2

First two lemmas are presented, which are to be used to prove Corollary 4.2. 4

Lemma ALI In the TSDT scheme, the links +2 and -2¢ connected to a switch

jC-S1 are specified by tag bits bib,,.+ = Iti and bib,,, = , j 3 respectively, and

the straight link is specified by bib n  l = )III or bibn, = III-

IProof: Follow immediately from the definition for the TSDT scheme. -

Leina A.2 (i) Let jCS1 and (3+21)CS, I be two switches joined by a positive
4%

nonstraight link +21 and they are on a path to the destination do/1 .-. In the %

TSDT scheme, the routing tag can be set to bib,,,, = didi to control routing to

send the message from jES to (j+2)ES, ,. (ii) Let jCS and (j-2)SI+l be S

two switches joined by a negative nonstraight link -2 and they are on a path ,%

to the destination d0 , 1. In the TSDT scheme, the routing tag can be set to

bib, - did, to control routing to send the message froin JCSI to (J-2)CS +.

lroof: Only proof for (i) is given and proof for (ii) is similar. From Lemma 2.1

and the proof for Theorem 3.1, the switch j'(5= j 12 )C. + has the label

oi,/ I =-doll 1dotI+ 1/n 1, where wl ,I/ depends on network state. So

I = di. Additionally, 3I I J' because j J+21 Hence j = di. By Lemma

AI.1, bib,,,, = did,. EC
.4.4

[rQm of Corllary 4.2,

Only proofs of (i) for (a) a straight link blockage and for (b) a double non-

straight link blockage are given; proofs of (ii) for cases (a) and (b) are similar. -

Since the destination bits always remain unchanged, only state bits need to be

r.~4 W.e.W W'

% .~ . ' .%- %

%' % 0'2

S, ,,l G k -ill . k . 44i-*.*."*4il :% % 44... ii . .. %~ . 44.j ]. "
4,~~~~~~~~~~~~~~ ~~~~~~~ r4. .. I ?,% ' 4..~.4 "4 4/.%4%4 % P .u% 4 ~% .
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considered. (a) This proof first derives the state bits controlling the rerouting

path Q+ = ((J+2'"k)GSik ,. 2'- "')C.b -k..... (j +2')ES',) in I' igire .5) -I
(which illustrates the proof of Theorem 3.3). Since the links on path Q ' are all

positive nonstraight links, by Lemma Al .2, b n 4, k)/n ., k/, r(res rt.

the state bits for path Q In addition, hy Theorem 3.2, the link of stage i oii

the rerouting path can be either link ---2' ((j !2')- , .S, or link -2'

((J'+2')ESi , (j+2' ')GCS, 1). Thus 1, can be (0 or I. (b) Notice that h e.r

rerouting paths from stlge z-] to stafe i found in Theorem 3.3 and Thcor, r)

3.4 are the same except the the linik of stage z on the rerouting path i,, a ne,-

straight link in Theorerm 3.3 (F'igure 5) and it is a straight link in "heorei 3.,.

(Figure 6). By Lerar fra A I 1 the state bit b which specilies the st ralht I n ,

at stage i in Theorem 3.A, can be 0 or 1. So the state bits specifying the

rerouting path frorn stag( z--k to stage I are the same, as those In (ai,

b n+(t-+)/2n-I can hf' arhitrary b(ccawse., rogard)ss of the Va iis of b ,, :. ' S

as long as the destinatior hits are bti do/' 1 the path can re::h hth.

tination do/n_ 1.  'j 
'' ;

Proof of Theorem 6.1

Consider two cube subgraphs generated by adding x and y, respectively, to the

original labels of all switches of the IAI)M network. It is shown that
rodN A:yro

xr -d y mod - i a suffici.,nt condition for thes, snuhgraplh; to 1,, dl %.
2 2 -,

tinct in the sense that they differ in at least one link of the first n -- 2 >t ges (it

is also possible to show t.he necessit.y of this co0(diti,). "To pro, e that -hi ,iih-

graphs are distinct, it is show n that, given the condition above, there. exiss

some physical switch j(i ., such that (+ +X) and (j +-y) difihr ii their

(n-2)-th bit, i.e. th. switch with logical label (J1 r) is an even, switch arid the

switch with logical lab.l (j -y ) is art odd, switch, or vice versa. This implies

% ~ * . . *..9.* *-**~*.~*.*.**.*-**. . *~* --..... -
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that a different nonstraight link is used and therefore the subgraphs are dis- %

-6
tinct. Let the h-th bit of X0/n-2 and Yo/n-2 be the highest order bit such that

xh*y h , i.e. Xh+/n2 = Yh+l/n-2" Here h < n-2 since only the topology of the

IADM network from stage 0 to stage n-2 is considered. Without loss of gen- _

erality, assume that Xh =0 and y = 1 and let o,/n-2 O0/h-IllXh+l/n-2

(where 001h I is a string of h O's). Then

(' +X)o/,2 = OX/h l1(0+1)1h 1I/n 2 = Xo/h-1lh/n-31 and

+Y)o/n = !O/h (1+l)1h+l/n-2 = Yo/h-1 0 h/n-3 0

N le

differ in the value of their (n-2)-th bit. Therefore there exist - distinct cube
2 0

subgraphs when considering only the topology of the LADM network from stage

0 to stage n-2. For each of these -_- cube subgraphs, there exist 2 N subgraphs

2

of the IADM network which differ from it only in the choice of the nonstraight .. J

N
links at stage n-1. Thus, the IADM network contains at least N 2N distinct

2

cube stibgraphs. El9

Appendix A2: Proof of Algorithm BACKTRACK

Terminology and two lemmas are introduced first in order to lay the .

ground for the verification of algorithm BACKTRACK. Given a source and a "

destination, a switch on some routing path for the source/destination pair is

called a pivot. Conversely, by the definit on of a pivot, a path in the IADM net-

work can reach the destination if and only if it passes through a pivot at each

stage. The set of pivots at each stage varies with different source/destination

pair and is characterized by the following lemma.

I I A"-

%* .* %%
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Lemma A2-1 Let k be the smallest stage number for which there exists a non-

straight link on at least one routing path from a given source SC/n I to a givenI

destination doooj in the INDM network. For this source/destinlation pair,

there is exactly one pivot at stage k ,0< k < k, and there exists exactly two

pivots at stage k, kI--- k' < n--I. T[he pijvot at st:)ge k Is do/k F1%-

pivots of stage k are do/r-Ikls, anihr( cikr ' or

Proof: fly definition of k , the routing paths from stage t Io k --1 vonisiit of on!.;S

straight links. Fromt Theorein 3.2, thmere exists a iriqi path front 0t~ Ct

stage k and, therefore, the set of pivots at stagec k 0 k -Kk. consists ofV

exactly one pivot. Exis,-tenice of exactly two pivots at stage k, I N 1 0

and that their distance is 2' follow immediately from thW -inle theorett, 1- '13'

SIice the LADIN network functions like art I(ube it ork wheni ,-vry ~

the IAI)M network is set to s3tate (fol0k i15
k/n i(: k

rou~ting path 161 151; the lemrma Follows.?

Lemmia A2.1 captures a simple characteristic of routing in thIe IAI)N net-

work and, for each source/destination pair, it allows the discussion to 'ocus, itly-

on the behavior of the pivots, at each stage. A pivot i' iurcrah if aill its par- d

* ticipating input links (deied in Section 3) are blocked, and it is clo.,ed if all its

* ~participating output links are blocked. .A pivot ol a lower-order slgjcai fw-

closed dute to the closure of pivots at higher-order stages. likewise, a pivot of

higher-order stage can be un reac hable d tie to u tir4 ac habtili y of pivw~s ,it lower-

order stages. From the definition of a pjvot,, an utliortant leiniia which

idlentifies the causes for the altsec( of blockai ge- trq- pathis between a1

source/destiniation pair is stated as follows.

.- %

Al Z -- a
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Lemma A2.2 In the IADM network, for a given source/destination pair, if all . .

pivots of some stage are closed or unreachable, there exist no blockage-free -

paths for the source/destination pair. 0_

Lemmas A2.1 and A2.2 describe the behavior of the switches and the links

in the set of routing paths for each source/destination pair. These lemmas . .

make it possible to ignore switches other than pivots and links other than parti-

cipating links at each stage for a source/destination pair. These results greatly

simplify the complexity of rerouting in the IADM network.

The correctness proof for algorithm BACKTRACK consists of two parts.

First is that the path found by the algorithm is a valid path leading to the des-

tination and capable of avoiding blockages in the network. Second is that algo-

rithm BACKTRACK always finds a rerouting path if there exists any, which is

equivalent to that algorithm BACKTRACK returns FAIL only if there exist no

blockage-free paths. To prove these two parts, it requires examination of the

conditions that terminate algorithm BACKTRACK.

The rerouting path found by the algorithm can route the message to the

destination because the destination bits of the rerouting tags equal to the

binary representation of the destination address. The rerouting path's ability

to evade blockages is a natural consequence of Corollary 4.2, on which steps 3

and 10, the only steps in the algorithm that generate rerouting tags, are based.

Notice that step 6 returns the rerouting tag if the rerouting path found from

step 3 or 10 is blockage-free.

The steps that return FAIL are steps 1, 4a, 4b, 5, 8 and 9. Steps I and 8 ..

return FAIL because no alternate routing paths exist. Steps 4a, 4b, 5 and 9

return FAIL because the communication between the source and the destination

is broken due to the blockages in the network. So i: is impossible for a

,.A. ")e

[" 'w ',.-O ., ',' " . -.. - -% -.t ..,. - t- . ,- . . ., - -. . .. xo .-. .. .- . .. .. .- ..- .- -.- .- . %- ° . .' -. % -" .".S -
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blockage-free path to exist without algorithm BACKTRACK finding it and not

returning FAIL. Validity of steps I and 8 was discussed. Therefore, the proof L!b

for the second part is complete if steps 4a. 41), 5 and 9 are verified.

Proof of steps 4a and 4b h1

In the following discussion for :teps la and 41), only the case where lnk-

found = 1 is explored; the cases where linkfooid 0 can be tre'-ted anao,.--

gously. In Figure 5 (linkfound = I and q i i), the blockage at stage q on path 'p

P is a straight link blockage and fhi. link at stage q on th, rerouti,g path i-

chosen to be j Es , (j+2'-1 , i .' ) by setting b .q d- (Lerinma A1.2).

A blockage in ((J+ 2 )eSq , (-+2q ' ) ) can be overcome by rerouting the

message through the other noristraight, link ((3"2 ').)(S ', -Sq . TIis is donec

by complementing bnq . If ((3"+2 )eNq, 'eq) is also blocked, links .

(jCSq , ]jGSq+i), ((j±'27)CSqCSq j) anid ,(42)S,(- q '~q~ l

blocked, thus both pivots at stage q, i(S. and ('+2 )(- ,' ,q, are closed. Hence no

blockage-free paths exist. The above explains step 4a. In Figure 6 ('ink

found =1 and q-i) both nonstraght links of jESq on path I',

(Sq (j'-2q)-Sq+) and (,q , (.+2 ),q l), are blocked and thus pivot

JESq is closed. If ((3+21)ESq , (J1 2 q,Is also blocked, pivot (J+2 q

is also closed. Because both pivots of stage q, jCSq and (3"+2 Q)CSq, are closed.

there exist no blockage-free paths. This explains step lb. E.

The scope of the correctness proof for steps 6 and 10 is limited to the case

where the first nonstraight link found in backtracking is --2' (linkfound - 1)

and assumes that the blockage at stage i is a double nonstraight link blockage.

Discussions for the cases where link 4-2" is the first nonstraight link found in

backtracking and where the blockage at. stage i is a straight link blockage can

be treated analogously.

%4

0- -'-z..
-a,.;
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An interesting property regarding the behavior of the pivots at each itera-

tion of backtracking is discussed here. This is to be used in the correctness

proof for steps 5 and 9. The discussions are associated with Figures 5 and 6 for

q = i and r = i-k. Since the links on path P from stage r-+1 to q-1 are all

straight links, by Theorem 3.2, there exist no alternate routing paths from

jESr+ l to jCSq. So the closure of jCSq would effectively close every pivot

JESI, r+1 < I < q-1. Hence if 3CSq is closed, every 'CSI, r+1 < 1 < q, is

closed. Due to the closure of ' (+2 7 )CS, , 'ES,+) is blocked. If

((J+2r)GS, , (j+2r')CSr,+) is also blocked (step 6), both participating output

links of (J+2)ES, are blocked and thus (J+2r)GS7 is closed. After J and q are

updated in step 7 (i.e. j 4- j+2" , q - r so that (j"+2)ESr becomes JESq),

the same type of blockage recurs (i.e. both nonstraight output links of .JESq

are blocked and thus j*Sq is closed) as that which took place when the algo- ,w
ILO

rithm was first entered (i.e. q = i) and thus a new iteration of backtracking

begins. For convenience of reference, the property described in this paragraph

is formally restated as a lemma. -

LemmA2.a In each iteration of backtracking in algorithm BACKTRACK, on

path P every pivot jES, r+1 < I < q, is closed; if 4.1

((+2r) S7 , (j-2r'l)S.+ 1 ) is also blocked, (J±2r)ESr is also closed. El

Beginning from the second iteration of backtracking, the link of stage q on

the rerouting path is always a straight link, since the blockage at the onset of

each iteration of backtracking is always that both nonstraight output links of S

J)Sq are blocked (Figure 6). Hence only step 4b is concerned in checking the

blockages of stage q on the rerouting path. As a result, in Figures 5 and 6

(linkfound = 1), the links on path P from stage r to stage i consist of only 5

straight links and negative nonstraight links; correspondingly, the links on the

-~ S. ~ %~ ~*. .*/ ~ % ~ ~% _.%.
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rerouting path from stage r to stage Z' consist of only straight links arnd positive
e- d

nonstraight links. Similarly, for linkfound -= 0, the linjks on path P fromr st"Age 176
r to stage i*-I consist of only straight links and positive nonstraight. liks;%%

correspondingly, the links on the rerouting path froii Aage r to stall,( I I ol-

sist of only straight links and negative riorstraight liiiks.

Proof of step 5

Proof of step 5 is illustrated in Figure 6 for q -- i anid r vs -- k, CCLU!aiC 0'

Lemma A2.2, it siffices to show that, In each iteration of back track; w., t (!wi-

ble nonstraight link blockage at stage q and an additional link hiockag'4 ;1

((±*2' )C8.I , (J+2' ) for some 1, r + < . <q -1I, eflect ivcly' PI%')!

CS, + n"ae(±')CSI j urerachable. F'rori I ( ia A.3 t, p):t I

every pivot jCS 1 1, r +I < I < q -1. is closed. On p~ath Qif a link :,Iockae,

also occurs in ((j+2' )CSLi (.+2 i)CS, 1), pivot (/J4 2) + I)

unreachable unless jE~,the other pivot at stage i, Ps; also coriirCUd r o

(i+2'+')C,,-,, This would occur only if link +2 1" is a leiimt ink af stap~

Ii. e. 2 2- =- 0 mod 2nl (a straight link). But I < q -- I ?I(- 1,1-I so that

1+1 -# n. q < n--A since q is the stage number at which a out put lird, is

blocked and stage n--I the last stage that has output links. Because pivot

j CS, is closed arid (.)+J21 ')ESI,l is unreachable, there exist no blockage-free

paths. [

Proof of step 9%

From Lemnma A2.3, at the end of each iteration of backtracking, (j -2~ C.ai

jES7 +1 are closed. After a new iteration of backtracking starts and step 7 is

executed, (j'+2 7 )CS7, is relabeledl as JCGq and JCS,i is rclaheledl as :

(J'- 2 q )ESq ,, So the condition that, j'CS5 and (J2 ) C' are both cVc "d is a

priori in the beginning of the new iteration. Since qj~2 )CS . o Ie of 1he

F%-

% 5.

%-
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pivots at stage q+1, is closed, any rerouting path must pass through -I

(j+29)ESq +, the other pivot at stage q+1. It is shown below that such a -I

rerouting path does not exist if the nonstraight link at stage r found in back-

tracking is +2w. The proof is illustrated in Figure 9. The current routing path

is ((J-2)ES , jES , '., JES, , (J-2 q)CSq+ 1 ) and there exists a rerout-

V %ing path ((j-2r)ES ', • (j-2qq')ESq J q )ESq , (J-2q)ESq+). Thus ."P

(J-2)ESq and jESq are the two pivots at stage q. Since pivot JESq is closed,

any rerouting path must pass through pivot (J-2 q)ESq. But (j-2q)ESq is not

connected to (j+2q)ES+1 since link +2 q+1 is not a legitimate link at stage q, .'N

o<q <n-1. Therefore, no paths that pass through (J-2 )ESq and
q~

(j+2 )ESq+l exist. Note that although further backtracking to a still lower-

order stage is possible, as long as the nonstraight link at stage r found in back- % F

tracking is +2", the two pivots at stage q never change. That is, further back-

tracking will not result in a path that passes through (J-2 )CSq and

(j+2q)ESq+,. C.

.,, ..

S. ,

-a . %+
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straight exchange

V.J

Figure 1. The Indirect Binary N-Cube (ICube) network. for N8 (according to
the first graph model); two possible states for each box are shown (i.e.
straight and exchange).
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Figure 2. The IADM network for N=:8 (according to the first graph model);

even, and odd, switches, 0 < i < 2, are enclosed with bold and regular

edges respectively. The solid edges (links) show the ICube subgraph.
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Figure 3. The Indirect Binary N-Cube (ICube) network for N--8 (according to
the second graph model).
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Partially Augmented Data Manipulator Networks:Minimal Designs and Fault Tolerance'

Darwen Ran and Jo,! A. 3. Fortes

School of Electrical Engineering
Purdue U-niversity

West Lafayttte, iN 47907

ABSTRACT

Augmented data manipulator networks are multistage inter-
connection networks which implenent at each stage interconnec-

tion functions present in the single stage network known as PM21
network or barrel shifter. These multistage networks include the
ADM (Augmented Data Manipulator) and TADM (Inverse Aug-

mented Data Manipulator) networks, which have been extensively
studied and proposed for use in multiprocessor systems. This paper

derives new partially augmented networks based on the solution to
the shortest path problem in the PM2I network. The new net-
works include: the HADM (Half Augmented Data Manipulator)

and HIADM (Half Inverse Augmented Data Manipulator) networks 0
which have half the number of stages of tle ADM and IADM net-
works, the MADM (Minimum Augmented Data Manipulator) and
the MIADM (Minimum Inverse Augmented Data Manipulator) net-
works which have the minimum link complexity required for one-
to-one connections in a network of size N with logN stages of uni- -

form switches, and the Extra Stage MADM and MIADM networks
which are fault-tolerant versions of the MADM and M/ADM net-
works that can tolerate at least three switch failures. The deriva- aS

tions of these networks are presented and their properties and 'e

advantages over other designs are analyzed. eS
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1. Introduction

Multistage interconnection networks are often designed by implementing
at each stage interconnection functions characteristic of a single-stage network.
This paper proposes new multistage networks which offer advantages over previ- V
ously known designs based on the PM21 network [Sie77}. The new networks are
derived from the solution to the shortest path problem in the PM21 network.

Further analysis leads to the derivation of designs with minimal link complexity
and fault-tolerance.

The plus-minus 2' (PM2I) network [Sie77] is a single-stage network defined
by the PM2I interconnection functions:

PM2I+,(S)= (S + 2')rnod N O< i < n-1

PM2J,(S) = (S - 2')rod N 0 < i < n-1

where N = 2' corresponds to the number of network nodes and S,
0 < S < N-I, denotes a node address. Thus, in the PM2I network there exist
links from a node S to nodes PM2I+,(S), 0 < i < n-1, as well as links to nodes
PM2I_j(S), 0 < i < n-1. These links are referred to as the +2' links and -2'
links, respectively. A PM2I network of N = 8 nodes is illustrated in Figure 1.

The class of data manipulator networks, introduced in [Fen74], are con-
structed based on the PM2I functions. It includes, among others, the Augmented
Data Manipulator (ADM) network [SiS78], the IADM network [McS82] and the
Gamma network (PaR82l[PaR841. The ,ADM network and the ADM network
differ only in that the input side of one of them corresponds to the output side
of the other and vice versa. The Gamma and the IADM networks are topologi- .

cally equivalent; however, they use switches of different types. Each 3x3
crossbar switch used in the Gamma network can connect simultaneously all
three inputs to all three outputs whereas each switch used in the IADM network
can connect only one of its three inputs to one or more of its three outputs. 0

The ADMnetwork is composed of n = logN stages labeled from 0 to n-1
from the output side to the input side. Each stage consists of 3N connection

links and N switches. The switches are labeled from 0 to N-I from the top to
the bottom. An extra column of switches is appended at the end of the last .
stage and is referred to as stage n. Each switch ij of stage i+1 has three out- 6
put links to switches (j-2') rod N, j and (j+2') rod N of stage i. The link
joining j of stage i+1 and " of stage i is called a straiMgh link, the link joining
(j-2') rood N of stage i+1 and j of stage i is a plus (+2') link [McS82], and the

link joining (j+2') rod N of stage i+1 and j of stage i is a ninus (-2') link.
Each switch selects one of its input links and connects it to one or more output %

links. Figure 2 illustrates an ADM network of size N=8.
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Because the only difference between the ADM and IADM networks is that .0

their input and output sides are reversed, the stages of the LA)M network are -.

labeled from 0 to n-I from the input side to the output side. Each switch j of -

stage i in the IADM network is connected to switches (j-2') mod N, ., and
(j+2') mwd N of stage s+1. A plus link in the IADM network from switch j of
stage i is connected to switch j-+2' of stage i+1 is the same link as the minus _-

link in the ADM network from switch j+2' of siage i+1 to switch J of stage i.
Similar relationship applies to a minus link in the IADM network and a plus
link in the ADM network. Due to the reversal of the input and output sides or
the ADM and IADM network, stage I of the ADM network corresponds to the
switches of stage i of the LADM network and the links of stage i-I of the
LDM network. be .

The results of this paper are based on the study of shortest path problem
in the PM21 network. The solution to the shortest path problem for the PM2I

network is derived from an algorithm ['aR82i that generates routing tags for
' .-. S.

the Gamma network. Because the IADM and Gamma network are topologically %
equivalent and the ADM and LADM networks differ only in their input and out-
put sides, the results in this paper apply to all of these networks. However, the
main interest of this paper is the study of the ADM network and the discussions 0
are centered on the properties of the ADM network.

Given a string of n digits, t = tot, . ..t.-1, the notation tr/ denotes the
digits of t starting at tV, and ending at t,. Throughout this paper, j and J-.a
(where a is some constant) represent labels of switches. Also modulo N arith- -

metic is assumed, e.g. j+a implies (j+a) mod N. The notation . is used to
indicate that a switch j belongs to stage i and (j,+ , j) is used to represent a
link joining fj' and j. A sequence of switches of contiguous stages %
U1 is used to represent a path from J"' to ."

Section 2 of the paper considers the formulation and solution of the shor- el-r

test path problem for the PM21 network. In Section 3 these results are used to
derive new networks that require less hardware complexity and transmission -

delay than other known augmented data manipulator networks. These new
networks are called partially augrmented data manipulator networks. Details of
routing schemes for these networks are also discussed in Section 3. Fault-
tolerant topologies are proposed in Section 4 by adding an extra stage to these

networks, with the result that four disjoint paths exist between any source and
any destination in the networks. Section 5 concludes the paper.
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2. Shortest Path Problem in the PM21 NetworkIF

Given a source node S and a destination node D in the PM21 network, the
shortest path problem is to find a path from S to D which contains a minimal

number of links. When circuit switching is used for communication between .

nodes, delays are identical for any link and transmission delay is directly pro- d
portional to the number of links on a path. Thus, the shortest path is also the

one for which transmission delay is minimum.

Given a source node S and destination node D in the PM21 network,

define distance A to be (D-S) mnod N; thus the range of A is 0 < A < (N-1).
Routing from a source S to a destination D in the PM21 network can be

characterized by the comnination tag nto I such that
a-I

L E (t.2' +~ ti(-2'-)) mnod 2'()
I.-.

where A is the distance from the source S to the destination D and ti's are non-

negative integers. A positive value of ti indicates that link +2', for

o < b < n-I, or link -2', for n < i < 2n-1, is used in the routing path
whereas t, 0 0 indicates that the link is not used. A combination tag, as sug-

gested by its name, specifies a combination of PM21 links that can be used to

cover the distance between the source and the destination. However, the combi-

nation tag to/., does not specify the sequence in which the links are used.
Several distinct paths can be derived from a combination tag and all these
paths contains the same number of links. Since the combination tag depends

only on the distance A, it is often identified as a corination tag of dstance A.-.
A shortest path is specified by a combination tag for which the number of links

w , is minimum and the problem of finding such a tag called miniurm %

weight cornbsnatn tag - can be stated as follows:

Poblemxh (P) Find etw such that t

Hain mn t
i-O

0-1 2n-I .

subject to A =E( tj2' + F, ti(-2'-")) mod 2ne

0 <t, Jbr 0 < i<2n-l

0 < a < 2'-1

A feasible solution to this problem corresponds to a combination tag, and an

optimal solution to it corresponds to a minimum weight combination tag. For
convenience of discussion, the terms (i) a feasible solution and a combination

tag, and (ii) an optimal solution and a minimum weight combination tag are..

% %-- %n- %-. %'

e. ~ ~ 'p -P 6.a
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used interchangeably.

The next two lemmas reduce the size of the set of feasible solutions.

Lamma 2_1 If t is the optimal solution to (P), then tE.0,11, 0 < ' < 2n-1.
Proof: The proof is by contradiction. Assume that the optirral solution t' con-

tains t :_ 2, for some k, 0 < k < n.-2 or n < k < 2n-2. Then there exist

alternate paths that, compared with paths defined by t', reduce traversal
through link +2 ' (or -2 - " ) twice and increase its traversal through link -,2'"'

(or -2* + -") once; i.e.

1;2 + t 2,2+= (22)2k + (t:+, + 1)2 '+'

Comparing with the total delay of the path defined by t', the total delay of the

alternate pathL is reduced by one, which is contradictory to the hypothesis that

* minimizes the routing delay. If k = n-1 (or 2n-1) such that t 2 (or
C,_, 2), a carry is generated in the highest order digit and t,_- is discotinted 0
by two, denoted t,-I = t, _,-2. The carry vanishes due to (mwd 2') operation
and the total delay of the alternate paths is reduced by two; again a contradic-

tion results. 0

Lemma 2.2 If I' is the optimal solution to (P), then t,"., = 0, 0 K i K- n-I;
i.e. the shortest path between any source and any des~ination in the PM2I ret-
work cannot contain both link +2' and link -2 for any i, 0 <i < n-1.

Proof: The proof is by contradiction. Suppose the opposite is true. Fzozr

Lemma 2.1, a digit of the tag representing a shortest path, can only be 0 or 1:

by assumption of having both -4 2' and -2' links on th. routing path

t, = t,+, = 1. The effects of +2' and --2' cancel each other. Thus the val, et.
for t,' and t:+, can be substituted by 0 and still satisfy the equality constraint

in (P) (also equation (1)). The routing delay is thus reduced by two. A contrad-

iction results. 0
From Lemma 2.2, either i," or t, . is zero, 0 <9* < n -1, so that tht two
%-I 2'. -I a

sums j ,2' and t t,(-2' - ) in equation (1) can be combined to form -t, 2',

with the extension of the values for t, to incl'ade negative integers. The result

in Lemma 2.1 confines the values for each ti of a tag representing a shortest
path to be 0 and 1. Together with the necessary extension to include negative

N
integers, the possible values for t, of an optimal solution are -1, 0 or 1. Thus,

the problem of finding a minimum weight combination tag can be reformulated

as follows:

.
%

I"
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PrAlhn (P) Find t =, such that

H. =min 1,1 - i ILI
" -I =

subject to A = (F,2') od 2"

Cfor 0 < i < n-i

0< A < 2*-1

A branch-and-bound approach is used to find the optimal solution for (P),

which is also a minimum weight combination tag. This approach is based on an

algorithm proposed in [PaR821 that can find all signed-digit representations for "

the distance between any source and any destination in the Gamma network. V

Each signed-digit representation corresponds to a routing tag for the N.r
source/destination pair. Moreover, since the IADM network and the Gamma k_%r

network are topologically equivalent, the routing tags generated by the algo- '_,

rithm are also valid routing tags for the IADM network. The Gamma network-,
is constructed based on the PM2I fun,'tions and a routing tag uniquely specifies

a path in it. In particular, each stage is composed of 2" switches, and at each
stage i, 0 < i < n-I, each switch is connected to three output links +2', -2.

and straight link, and only one of them is on the routing path; in addition, the -. -

path in the Gamma network traverses a distance of ((D-S) od 2") from S to

D. These corresponds to the constraints in (P): = ('t;2') rod 2", t E{-1,

0, 1) and -(2"-1) AK 2"-1. Thus a routing tag that specifies a path from
S to D in the Gamma network is also a feasible solution to (P). Note that

t, = 0 indicates that a straight link is used at stage i for routing in the Gamma
network.

A routing tag for the Gamma network can be converted to a combination 0
tag for the PM2I network: if the i-th bit of the routing tag is 1, t; = 1, if it is 1,

ti+U = 1 (hereafter the signed-digit representation T [Avi61] is used to represent
-1), and if it is 0, t4 = t,. = 0. A combination tag satisfying conditions (a)

t,0{-1,0,1) and (b) ti'ti,, = 0 can also be converted to a routing tag for the
Gamma network: if t, = 1, the i-th bit of the routing tag is 1, if 9j+. = 1, the
i-th bit of the routing tag is T, and if t = ti+, = 0, the i-th bit of the routing

tag is 0. The optimal solution to (P) certainly satisfies conditions (a) and (b)
and is also a minimum weight tag. Because we are only interested in the shor-
test path (which can be characterised by a minimum weight combination tag) ..

in the PM2I network, given the one-to-one correspondence between a minimum
weight routing tag and a minimum weight combination tag, they are used inter-

changeably. The algorithm in (PaR82] is stated as follows.

%~

., %"'

0.,.



Algorithm ALL - TAGS (A,t %)

for t -- to n- I do

if A , is even then t, :-0 L ~ --

2%%

.2
else .

2

end if
enddo

In the algorithm, t, is uniquely determined (-0) if A, is even whereas free

doam exists in choosing the value for t, (1 or 1) if A, is odd. An cxamph i,

shown that generates all tags for routing from q = I to D 4 in the 1AIM

network of size N 8. In this case, A 3 -5 rod 8. %

[31 1 (1] 1 [01 0 (=3)

13] 1 li] 3)I I(s~5ot
[3] 1 (2] 0 [I I • ". .
[31 [2] 0 [] 1 (--- ,od 0-

As mentioned previously the focus of this paper is the ADM network, the

tags generated by algorithm ALL-TAGS can also be used in the ADM network

because the ADM and 1ADM network differ only in that the input side of one of

them corresponds to the output side of the other and vice versa. In the LAPM .-'-

network routing is from a switch of the lowest order stage to the highest order

stage while routing in the ADM network is just the opposite. Therefore, the
lowest order digit of the tag is first examined by a switch for routing in the
LDM network and the highest order digit is first examined for routing in the %

ADM network. At stage i, 0 < i < n-1, of both networks, if t, is 0, straight % .

link is used for routing; if it is 1, link +2' is used; if it is I, link -2' is used. In .*% -.. *'

particular, routing from .57' to D" in the LADM network is equivalent to routing

from D" to S" in the ADM network. Let Ld/. be the tag for the routing from
S' to D" in the IADM network, it can be readily verified that tag t,!_, where

S-t_0 < i < r.-I can be used for routing from D" to S" in the ADM net- -

work, The two tags i,/I_ and ',,_ represent the same path, with different

interpretations in the ADM and LADM networks. For example, the tags 110,
ilil, ill, 101 and l01 for the LADM network in the above table can be" -

0

% -
..; .....":''--." -.-. '."--'"- ---.-5. . -,.-..--"-,, -,."----
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converted to -0, Dil, Il1, 101 and 101 for the A.DM network, respectively.
Figure 3 illustrates the routing from D- = 4 to F' = 1 in the ADM network -

using these tags.

The possibility of having two values, I and 1, for (,, if A,is odd can be
used to find the optimal solution to (P). It is shown below how to choose the
value for t, so that t,+, can be pre-determined as desired.

Lernma 2, In the process of generating tags in algorithm ALL-TAGS, if A, is
odd, it is always possible to make t,,, = 0 by properly choosing the value for t,.A, +1 A, - 1 --
Proof: Since - and differ exactly by one, one of them is even and

2 2

the other is odd. Suppose that, without loss of generality, - is even. Then .' .,-
2

t, can be chosen to be -1 so that A,. 2 which makes t, 0. 0

For example, one of the paths illustrated in Figure 3 is represented by a
tag tol/ = 10 of distance A = A, = 3; in this case ti, is chosen to be 1 so that
t, = 0.

Theorem 2A There exists an optimal solution t' to (P) which has no adjacent
nonsero digits; i.e., t,+. 't,' = 0 for 0 < S < n-2. If t' = 0 then t is the
unique optimal solution with no adjacent nonsero digits; otherwise, there exists %
another optimal solution t' with no adjacent nonzero digits, where t' = ti,
0 < i < n-2, and t'_ = -i:_]
Proof: The proof consists of three parts. Part (i) finds a minimum weight tag,

part (ii) proves the uniqueness of the minimum weight tag when t:_, = 0, and

part (iii) finds another minimum weight tag if t, * 0.
(i) An algorithm which results from modifying algorithm ALL-TAGS is first
given to construct a minimum weight tag; it is followed by a proof of its
optimality.

Algorithm SHORTEST -PATH (A,t "/.)

for i =0 to n-I do
A, i,, .

if A, is even then t=0 , A+==-0
A-I A-I

else if is even then t,' = 1 , A,+ - S
2 2A, + 1 " .¢

ese t,'= T ,A,+ 1  2

endif
endif

enddo
Since the set of tags generated by algorithm SHORTEST-PATH is a subset of
those generated by algorithm ALL-TAGS, algorithm SHORTEST-PATH

%S

- ." . o -p " .- -- . . . - . . . . . . . . . . .... . . . . ... .. ".
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*Figure 3. Routing from 4" to 1' in the ADM network for N S. The solid lines are the links

on the routing paths and the dotted lines are other links of the ADM network.

Labels on the links are digits of the routing tags.
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correctly generates a tag of distance .1. It remains to show that the tag has
minimum weight. The strategy used in the algorithm SHORTEST-PATH is to
generate a zero digit whenever possibie (for A is odd, f, is chosen to be such

that ,, is even, which maker , 0). To see why this is a good strategy, let
abe the smallest index such that Ais odd, and let t' and t be the solutions

found by applying this strategy and and by not complying with this strategy,

respectively. Assume that, without loss of generality, is even. It is
2

shown that there are four possible cases and the terminating conditions for each
case can be continued by applying the discussion for one of the four cases recur-
sively.

C~AM I
The table below illustrates the discussion for case 1 based on this assumption.

case 1I , I A. 1  ~ A..

2 4
2 4

Since n= ,, for C, denoted n,, +,(t is assumed to be even, 1," = 0.* 2

Because 1,J0() is odd, there are two possible values, I and 1, for t,+,.
2

If t, +~I, A I +,* A .1,.(t. The discussion for case I terminates here.

C~Ase 2
.4The alternative is that t,,=T, which is illustrated in cases 2, 3 and 4 in the

tables below. In case 2, is assumed to be even.

2
cae -IA I A, 1  + [ 3~

A-[AA-I I I I
2 4

Case 2 terminates here with A, +(t being even and 'I, jt) being odd.0

CAst 3

In cases 3 and 4, is- ~ assumed to be odd. Case 3 is illustrated in the fol-
4 %

A, +3
lowing table with the assumption that is even.

%* %

e,~ ~ ~ -,,e.*),,
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.5 1 A,3 5 ,

./

case 3 A 2 At , ,

4

5* 2. I 3-1

Since A.t 4 Js odd, ,. - or 1, and t 0. Since - - is even,

tl.e algorithm chooses t = 1. and Z,,%) \,, (t'). The discussion for case

3 terminates here

d"%.

Case 4 for which---- is even is illustratd in the table below. %

case 4 A f, A,.,

* . l1 A,-3 A,-S

' 2 :A1 4 8
-5. , 5IL, - 3

24 8-
if 8 is even, the algorithm chooses ,=. In this case, "t )

and . (t) - . T.e discussion for case 4 terinirates here.

To conclude, cases I ar, d 3 have the terminating cor-ditions that 'k

A,:(t J= A5, (t) and A (t* ) - A,. (e), respect iely. The discussion for

A. (t') = ,(t), which is the condition where the discussion for all cases begin,

can be applied again to these terminating conditions. lit cases 2 and 4, the ter-

minating conditions are that A5 ) is even and .. (t)is odd, a-ad . .,Jt') is
even and A,,(t) is odd, respectively. The discussions done for each case for

iteration i . I when A, ,(t') is even and A,..(t) is odd can be applied again to I

them. Let it,/, denote the number of nontero bits of t,,. In case I.

It I, l = 1 and It, I = 2; in case 2, It' : 2 and It,/,.j = 2; in case 3,

It',/, = I and It,,,,j = 2; in case 4, It ,/,, = 2 and It,/,+i Zr 2. Thus all
possible cases are exhausted and no t yields a tag of smaller weight than t.

(ii) Next the proof of uniqueness for the tag generated by algorithm ,

SHORTEST-PATH is shown; the proof is by contradiction. Suppose there exists

another tag t,/,_ that also has no adjacent nonsero digits. Let t be the lowest

index such that e i ,'; thus t. , t',,, so that A,(t) = A,(t ). There are
three possible cases, (a), (b) and (c), for t, t,. (a) t, 1 and t,' = I (or vice

versa); then t,, = 0 s t,,, since t,-t.. =- 0 and 0,"t = 0. But this is irnpos-

sible because A,0t) ,(') is odd so that only either t,. 0 or 1,'. 0

(Lemma 2.3). A contradiction results. (b) t, 1 and t,' 0 (or vice versa).

5'
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Then A()is odd and ~\g)is even. But this is impossible because

1, (1 *). A contradiction results. (c) t, = I and t,' = 0 (or vice versa).

The discussion is exactly the same as case (b).

(iii) Existence of the other optimal solution is shown for t._, = 1. The case

that t.-, = 1 can be treated analogously. If t,_,- = 1, then A = ( t,'2'

+ 2 - ') aod 2" = (V,2' + 2 - 1 - 2') ,od 2" = (E't,'2' -2"') ,wd 2;

so f, _, can also be I and the rest of digits remain unchanged. 0

Actually the proof of Theorem 2.4 has a much stronger implication regard-

ing optimality of a tag than just verifying existence of a minimum weight tag
that has no adjacent nonzero digits. It is stated as Corollary 2.5.

Corollary 2.5 A feasible solution to (P) is optimal if it has no adjacent nonzero ,% ,

digits. .4 "

Proof: From the process of generating each digit in algorithm SHORTEST-

a. PATH, the feasible solutions with no adjacent nonzero digits are either unique *-..

or different only at t,,-, (1 or I). There exists an optimal solution to (P) that

has no adjacent nonzero digits. So the feasible solution with no adjacent

nonzero digits must be also an optimal solution. 0

Corollary 2.5 only guarantees optimality of a tag that has no adjacent

nonzero digits; a tag with adjacent nonzero digits may as well be a minimum
weight tag. For instance, for n = 4, A = -6, the tag of distance L can be

OTTO or t,/, = 010-; both tags have a minimum weight of two.

Cor' lar Z& The maximum number of links on the shortest path in the PM21 .- -

network from any source to any destination is Jn/2] i.e.

max = n/2]
< ' < {N

Proof: From Theorem 2.4, there exists a minimum weight tag with no adjacent

nonzero digits for every distance A. The maximum number of nonzero digits of

such a minimum weight tag is [/21; i.e. the tag consists of alternating 1 and 0

digits. C

Algorithm SHORTEST-PATH is capable of finding a minimum weight

routing tag for the ADM network, which can be converted to a combination tag
for the PM21 network, and also deduces that the number of hops is bounded

above by n/2 This knowledge can be further used to investigate properties

-An equivalent result is reported in IHwB84] We were unable to identify the original reference which first '' ."

reported this result 0

n..
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of the ADM network. %

S. Construction of Half Augmented D~atai Manipuihtor Networks

Corollary 2.6 indicates that the shortest path between any two nodes in

PM21 network uses at most n/2 links, which implies that n/2 is the least

number of stages needed in a multistage network based on I'M21 furtirs.

where any source can be connected to any destination in one pass. FurLhpr-
more, from Theorem 2.4 it is possible to infer how such a network can be con-

structed. For convenience of discussion, assume n to be even hereafter. The f
path in the ADM network defined by the routing tag that has no adjacent

nonzero digits includes only one of the links -2 --'2 - , 2 ,  2' - and
straight link, for every stage k, 0 < k < (n/2)-1. This implies that the Nnks of ." -

two adjacent stages 2k and 2k+1 in the ADM network can be coalesced intt,
one stage and thus the total number of stages is reduced to n/2. The network
is called Half ADM (HADM) network The HADM network consists of n, 2
stages ordered from 0 to (n/2-1 from the output side to the input side. Ar

extra column of switches is appended in the input side and is referred to as
stage n,/2. A source is a switch at stage n/2 and a destination is a switch at
stage 0. Switch i of stage k+1 has five output liniks to switches of stag,: k: •

j .+2-+'), (j+2-*), j, (j-2-2) and (j-2 225). An HADM network of size N 16

is shown in Figure 4.

The tag generated by algorithm SHORTEST-PATH -an be used as a
routing tag in the HADM network. Close examination of the topology of the
HADM network reveals that there exists latitude in using tags other thar. th+
ones with no adjacent nonsero digits to control routing in the HADM network; .
i.e. two adjacent digits of a routing tag can be both nonzero. Since, for a givrn
source/destination pair, only one of the links -2"', -2s, 42 : 42 ' and .',-

straight link is used for routing in the HADM network, as long as the tag ,
satisfies the constraint that t-,'t..+, = 0 for 0 < k < (n/2)-1, it is a valid
routing tag in the HADM network. There are five possible combinations fr-r
such a pair of digits t,'ktk+l: T0, 10, 00, 01 and 01. If t.t - +, = 10, link -2' is
used; if t'kts +, 10, link + 2 -* is used; if te tt..+1 = 00, straight link is used; if
t tt' 1+1 = 01, link +22" + ' is used; if t 2kt.k,+I= 01, link -22' -

41 is used. The rout-
ing tags representing the same distance A in the HADM network are called the r

equivalent routing tags. The multitude of equivalent routing tags suggests that
there may exist multiple paths for some source/destination pairs. If a routing
tag has no equivalent routing tags, it i. unique, and only one routing path exists
for the source/destination pair.

Recall that algorithm SHORTEST-PATH always generates a zero digit
whenever possible. If A, is even, t, is uniquely confined to be 0; if A, is odd (for
which t, can be I or I), then it chooses the value for t, such that t,., 0. This

W..01 -
a.% •
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constraint can be relaxed for generating equivalent routing tags for the HADM.

network. For t: =0 and -..., odd, two subsets of equivalent tags can be gen-
erated by choosing 1 for t. , for one of thern and by choosing 1 for t. + for the
other. That is, if tt ,t, 01 or 01, both I or T can be considered for t_,, to
form equivalent routing tags, since it's always possible to make ti zero b)

prpel chosn a€ vaLe o f,
properly choosing a value for 9, (Lemna 2.3) and satisfy t0e constraint %
U'1 = 0 and t., - 0. For example, there are two paths from S - 3

to D = 13" in an HADM network of site A' 16, which are specified b) the tags
t,/:,= O-O (A -6) and t 0 = 0101 (* 10), respectively. In this examph,
t,41 can be 0 or 01; particularly the tag 1,/ OfJO is obtained by choosing 'e

t. so that t:, = 0.

Similar to the relationship between the ADM and LADM networks, the
Half L4DM (HIADM) network has the same topology as the HADM network with
the input and output sides exchanged. A tag t for routing fr-,m S' to [

in the HADM network can be conveniently converted to I . wl,tre

9' =-t,, 0 < I < n-1, for routing from D" to S - in the Half IADM network.
Note that tag t< 1,i.-, also satisfies the constraint t. 0,
0< k < (n/2)-1.

It was show-) that for some source and some destination in the AD\1 net-
work, there exists only a path between them; so does in the HADM network.
For example, routing for a distance A = 0 in a HADM network of site N 16 ...

has a unique tag t,l/ = 0000, which represents a path consisting of all straight
links. Thus the HADM network is not fault-tolerant. Tt is interesting to
attempt further reduction of the network complexity while maintainirg the con -
nection between any source and any destination. It is shown in Theorem 3.1
that actually only four output links for each switch would suffice to provide
connection for any source/destination pair in the lLADM network.

Consider a quad-tree that consists of logN levels and N leaves. Clearly
the out-degree of four for each node in the quad-tree is the smallest out-degree
such that the root can reach any leaf; it any node except a leaf has an out-
degree less than four, some leaves can not be reached by the root. Similarly, for
a network of site N that consists of logN stages of uniform switches, at least
four output links for each switch are needed so that any source can communi-

cate with any destination. Such a network has the minimum number of output .."
links for each switch required for one-to-one connections and is called a
Ainimum ADM (MALDAI Network It consists of n/2 stages of 4x4 switches. 0
Each switch of stage k-l, 0 < k < (n/2)- 1, is connected to four output links:
straight link, +2-*, -2-* and +2-*+I. Figure 5 illustrates a MADM network of
size N 16.

The MADM and HADM networks differ only in that each svitch of stage k
in the MADM network is connected to only one of the 4-2" + and -2-: links

k0I -
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while each switch of stage k in the IIADM network is connected to both links.
So only a subset of routing tags for the HADM network are valid routing tags
for the MADM network. In addition to the constraint that t ,: ,I for -
0 < k < (n/2)-1, which a routing tag for the ADM network must satisfy, a
valid tag for the MADM network must also satisfy the second constraint that,
for . odd, t.,,, must be 1 if link +2+-"" is used and t., must be 1 if link
-P" is used. The se-ond constraint does not specify which of links -2 and, .. *.

-22 ' + is used at stage k; each stage can choose Ireely a plus or minus link. As.
a result, there are as many as 2'i- types of MADM network; they differ in their
choice of link -t2-" ' or -2"' at some stage k. The algorithm MADM-TACS
below demonstrates an example of generating routing tags for a particular type
of MADM network that contains 12:" ' link at every stage k'

0 < k < (n/2)--1. For convenience of discussion, this network is referred to as "P-

the MADM network.

Algorithm MA)M-- TAGS IA,t ,.
A, =A

for i 0 to n- I do

if A, is even then t, =-0 A
2

else if i is even then if -- is even then t, 1
2

22 --1.", -.

else - 2.

endif
endif

endif
enddo

The difference between the proces-es of generating tags for the HADM net-
work and for the MADM network is that, for A. odd, t k+1 can be I or f for

the HADM network while t.,,, can only Le I for generating routing tag for the
MADM network. So each digit is uniquely determined in algorithm MADM-
TAGS. This indicates that there exists a unique tag for each distinct A, which .

corresponds to a unique path for each source/destination pair in the MADM

network.

Since there are only tour output links for each switch in the MADM net-
work, two bits per stage suffice to represent the choice of one of the four output

links of a switch to send data. A total of n bits are needed to implement the
signed-digit representations for routing tags. Let r/, be such a routing tag,
in which i digit can be represented by a bit. Each switch at stage k in the
MADM network examines bits r.4 r, to determine the output link via which :,.

WP
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data are routed. One possible implementation is shown below.

11 - +2:'~ 2A +)-A

00 - straight
r~kr-k+l = 01 - +2 for 0 < k < (n/2)- 1

'%10 - 2-:_

where -. means "en route".

However, for the generation of tags in algorithm MADM-TAGS, two bits

may be needed to represent a digit of the routing tag and thus a total of 2n

bits are needed. Once the computation is done, the tag can be converted to

r., for actual routing, which requires only n bits per tag.

Theoremn 31 There exists a unique path between any source and any destination

in the MADM network.
Proof: It is shown that a routing tag / for the HADM network that con-

tains t '+I = 01 can be recoded to become t such that t.,k 2k+1 = 01 and

t,.+ = 0, for 0 < " (n/2)-1. Case (i) If t .,++= 0 such that 0

=010, then t.k1.j+3= Olt'.2,k+ or 011t.. Since A..+.__ is odd
( I = 1 or 1), from Lemma 2.3, either 011 t.+ or O1Tt ,+:, has t1. +A = 0.

Case (ii) If 1
k,+ 0 then t.,1 must be equal to 0, because a tag for HADM

network must satisfy the constraint t.,k+'t ,1 +:, = 0. If t.k/1*+ = 0110,

1 =,0100, and if TO= O then t12'k+. = 0101. The discussion for

recoding t.k+1.t., = 01 is analogous to that for recoding 9 t., .k_+1 = 01. Next

uniqueness of the routing path is shown. Since the out-degree of every switch in r

the MADM network is four and there are n/2 = (logN)/2 = logN stages, each

source switch and all switches connected to it form a quad-tree. The source
switch is the root and the switches connected to it are the nodes in the quad-

tree, with the switches of stage 0 as the leaves. There exists a unique path from 0
a root to a leaf in the quad-tree and thus also a unique path from a source to a
destination in the MADM network. r-

The topology of the Minimum Inverse ADM (MIADM) network is the same

as the MADM network, with the input and output sides reversed, much like the
relationship between the ADM and IADM networks and between the HADM and

HLADM networks. Especially the routing tag conversion technique used for the
HADM and HIADM networks can be readily applied and the proposed routing

scheme for the HADM network can also be used in the HIADM network.

..... _,
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4. The Extra Stage MADM Network

Complexity of the MADM network is minimum in the sense that, given the

constraint of network size N and log N stages of uniform switches, it car) F"-"

vide communication for any source/destinatior pair in the network by using"A

minimum number of interstage links per stage. However, this kind of topology

has a drawback that it does not provide fault-tol.:rance; a switcl failure v'oul,

prevent some source/destination pairs froin comrmunicating each olit r. The

lack of fault-tolerance sugge:.ts the use of augmentation techniques AdS[ 1 to

improve fault-tolerance for the MiADM network. First an important observa-

tions for routing in the MADM network is made.

Theorem 4-1 In the MADM network, the paths from a source S. to destia.ions

D, (D+(Ni'4)), (D-(N/2)) and (D-(N14)) are all disjoint.

Proof: The proof shows only that the two paths from S to D and from S to

(D-(N/4)) are disjoint; the other cases can be treated similarly. The proof con- •

sists of two parts: (A) given the tag t,,, for routing from S to D, a tag t

for routing from S to (D-(Ni'4)) can be derived from it and they differ oniy in

digits n-2 and n - 1, and (B) proof of disjointness of the two paths based on th.-

results in (A). "N
(A) Since i,, is the routing tag from S to D () *)

(Vt, 2'-+f, ,2"') mod 2". So (D-S- V, 4)) -

( ' t,2' t,. 1)2 - t... 2"-') -nrod 2'. There are thr.l . possible valS, 1, 1

and 0, for t.__, which are discussed in cases (i), (ii) and (Iii), respectiv 1y, as fl-

lows. (i) If t , (D- S-(N/4)) = (': ,2'-0"2"--+t_ -2 ) rwd 2'. Tbat

is ,ll/ - _ t (ii) If t__ 1, . must be 0 because t. _ ..-i 0 and

(D-S-(N/4)) f(,Vt 2' + 02" +t,, -1)2"-) n-md 2'. Then t . =

t(Z', 2'+0-2"- 2"-')md2" = ('t,2'+02"--2"-+2")mod2" =

(Et,2'+0-2"'-+2" - ') od 2". So t,/._ I to, ._,01. (iii) If i . 0,

(D-S-(NI4))= (t, 2'-2"-"-+t,2"-') od 2". There are two possible

values, 0 and 1, for i,_,, which are discussed in cases (a) and (b), respectively. S
t.- can not be I because it is assumed that link ±2" -' is used at stage n/2 in

the MADM network. (a) If t._ 1 = O, 10/._ = t/_'1 0. (b) If t-_ =,

(D-S-(N/4)) = (Et,2'-2"-+2") mwd 2' = (EIt,2'+2"-402"-1) mwd 2"

so that t'<,,,_ ! = t, ,/ . .

(B) From (A), it is seen that the two routing tags for the two paths from S to D

Sd..
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(B) From (A), it is seen that the two routing tags for the two paths from S to D
and from S to (D-(N/4)) differ only in digits n-2 and n-1; i.e. t, = t', for -.
0 < i < n-3. The two tags are the unique tags for routing from S to D and

from S to (D-(N/4)), respectively. Let F and Y be the two switches at stage
(n/2)-I on the paths from S to D and from S to (D-(N/4)), respectively.

Since t, =t, , for 0< i < n-3, Et,2' = Et',2' (i.e. the distances that the .

two paths traverse from stage (n/2)-I to 0 are the same), and the distance
between the two destinations D and (D-(N/4)) is ((N/4) od N); hence the

distance between F and Y must be also ((N/4) mod N), denoted
[F--YI = (N/4) od N. The intermediary switches at stage k,
0 < k < (n/2)-2, on the two paths are F+6k and F+6, respectively, where

= (C,2 2 '+t.j,+ 1 22 "). But (F+ 6 ,) * (F
4

k) od 2" because

IF-Yl = (N/4) mode N. That is, the two paths never share a common
intermediary switch and thus are disjoint. 0

The identification of disjoint paths from a source to different destinations
in Theorem 4.1 can be used to improve fault-tolerance for the MADM network. S
The technique is to add an extra stage to the MADM network. The extra stage '..-

can be placed in the output side of the MADM network such that each switch

D at the extra stage is connected to four switches at the first stage of the
MADM network: D, (D+(N/4)), (D-(N/2)) and (D-(N/4)). Data can be sent
from source S to any of the four switches and then to the destination via the
extra stage. Thus there exist four disjoint paths from any source to any desti- -
nation in the extra stage network. Such a network with an extra stage in the
output side of the MADM network is called an eztra stage MADMnetwork. An
extra stage MADM network consists of (n/2)+1 stages labeled from 0 to n/2
from the output side to the input side, with an additional column of switches in
the input side referred to as stage (n/2)+l. The extra stage in the extra stage S
MADM network consists of the switches of stage 0 and the input links of the
switches. The topology of the extra stage MADM network from stage 1 to
(n/2)+l is the same as that of the MADM network from stage 0 to n/2. The
extra stage MADM network is three-fault-tolerant because of the existence of
four disjoint paths for every source/destination pair and thus can withstand at
least three switch failures (except the input and output switches). Since each
destination in the MADM network has at four input links, which are connected

to four switches in the preceding stage, at most three-fault-tolerance is possible.

By appending an extra stage to the MADM network, the optimal fault tolerance
is achieved. .-

Since the four output links of a switch at the extra stage are straight link ,

and links -2 -" (= N/4), +2 -2 (= N/4) and -2 " - ' (= -N/2), the extra stage

%~ %" % %,
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(n/2)4. I to stage I in the extra stage NW)I) network Using the tags of dis-

tances A=(D - S), A (D-S-(N4)), 4A == (D-S -(N12)), and

A = (D-S+(N14)), respectively, a source S (a switch at stage (n/2)±l) in the

extra stage MADM network can send data to any of the four switches D,

(D-,-(N/4)), (D -0A'/4)) arid (1D- (A'12)) at stage "' and then reaches the desti- %,.

nation D at stage 0. The routing fiim D' to ' i s controlled by tag bits 00, :

from (D-+ (N/ 4))' to D", by 10. from (D (N%/2)l) to D'', by 01, and from -

(D- (N14))' to D)' ,by 10. So in the extra stage NADMt network, n , 2 bits are

needed to represent a routing tag. Note t~.at since the four tags of dstancei,

A-(D-SJ, A (1)-S -N4)), (1-,, - S- (/),and (D -(- S±N )

differ only in digits n -2 and rn--1I, once one of then, is corr~puted, the other can

be readily computed by recoding the last two digits. The proof of Theorem 4.1

demonstrates the example of recoding the tag of distance A(D S) to) a tag

of distance A (D-S-(I'/4)). The table below suruniariwes the recling of ~~tt\f
digits i__t of a tag into the other three tags that are of distance N15f.

-A/4 and AN/2 from it.

4 N/4 -NA4 -V 12

00 10 10 ('. I
01 To 10 00

10 1 01 00 10
10 00 01 10

Figure 6 illustrates an extra stage M.ADM netwr.'k of sire .N 16. It0

also shown the four disjoint paths froum S -- 3 to D = 12' They at

represented by the tags of distances .- g,.. 5 and A: 3. whic

are (1,,/ =)1001, 1010, 1000 and 1010, respectively The roliting pathis are

(3,112, 121 ,12 1, (3 .7 -,8. .1 2 ), (3 3-,4',1 2') and (3 .15-'C .12 ), respectively. Rout-

ing from 12 to 12 is controlled by tag bits 00, from 8 to 12 , by 10, frc~m 4 to

12', by 01, and from 0' to 12'', by 10.
%f *

It can be similarly shown that an extra stage can also be appended in the
input side of the MADM network such that a switch S at the extra stage is con-

nected to four switc hes at stage n /2 of the MADNI network: S, (S-p+ 1), (S -I)%
and (S+2). Four disjoint paths result from addition of such an extra stage to

the MADM network. In this type of extra stage network, the extra stage con-

sists of the switches of stage (n/'2) +I and the output iriks of the switches, anid

stage ns/2 to stage 0 has the same topology as the M.ADM network. The extra

stage apperdled in the input side has the same connection patterns ast stage 1 of

the MADIM network. A source S at the extra stage (an send data to an-, of the

four switches at stage n /2: S, S ) (S - 1) and (S - 2) that are directly con-

nected to it and uses tags of distances A1 L) - S) 9 -)

An6 (D-l -S) and A (V 2-S), respectively, to send data to the destinations

a,-
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D at stage 0. The routing from S "' to S"/- is controlled by tag bits 00,
from S'"-l 4 to (S-+ 1)""' , by 10, from S1 " -4' to (-)/;by 10, and from V

to" (S+i2) 1-. by 01.
Apparently adding an eytra stage to the input side of an MADIM network

is equivalent to adding the extra stage to the output side of the MIALIM net-
work and vice versa. Thus ail discussions associate~d with the relatiunr'p1
between the MADM arid MvLAI)M networks can be applied for the extra stage
networks as wfll.

5. Conclusion

This paper addresses the problem of designing multistage networks whiich
are based on the implementation of PM21 functions at each stage. This type of
multistage networks i! re~erred to as augmen~ted data manipulator Tetwoiks
and includes the well known ADM and IADM networks. Since ',he design. plk-
posed in this paper use fewer stages and links than the ADNIM anid LAI)\1 ret-.
works, they are referred to as partially, augmented data manipulator networks.
The HA-DM arid HIADMI networks derived in this paper have the least number
of stages required in multistage networks (based on PM21 functions) where any '
source can be connected to any destination in one pass. The MW)M and
ML4DM networks also have the least number of stages and, in addition, have
the minimum number of links per switch required for one-to-one connections.
The extra stage MM)MI and MIADNI networks contain one more stage thayi the
M.AD% and NIUAD netw*orks, respectiv-ely, and are fault-tolerant ve-sions cf
the MAi)M network capable of tolerating at least three suitcl, faults.
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Destination tag controlled fault-tolerant networks
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instances of a single switch failure; i.e., the communication for some source/destination pairs may be eliminated due to a
switch failure. To achieve one-fault-tolerance for the Gamma network, yet another extra link is added to every switch of
the Gamma network, which results in the Kappa networks . This is equivalent to adding two extra links to every switch
of the [Cube network and the Kappa network can tolerate at least one switch failure. A Kappa network and its relation-
ship with the Gamma network is shown in Figure 3.

This paper is concerned with the construction of DN's that have multiple paths for each source/destination pair,
called fardt-tolerant DN's (FDN's), as well as unique-path DN's (LJDN's). In particular, it unifies the principles that __
underlie the construction of the ICube, Gamma and Kappa networks and shows that a plethora of other DN topologies
car, also result from adding extra links for each switch of the ICube and Gamma networks, respectively.

Notation used in this paper is delined next. Any integer t has a binary representation t,-_10 = t,-t, to,.
vlere t. _1 is the most significant bit and n denotes the number of bits. The notation (.,lp denotes ilIe bits of t starting %.P%

at t, and ending at t q ''o indicate the L's complement of bit u,, the notation i7, is used. Throughout this paper, u and
u-ra (where a is some constant) represent labels of switches. Also modulo N arithmetic is assumed, e.g. U+a implies
(u+a) mod N. The notation u' is used to indicate that a switch u belongs to stage i and (n ' , + ) is used to represent
a link at stage i joining u' and v + . The out-degree of a switch is the number of output links of the switch and tie in-
degree, the number of input :inks. .* '

Section 2 of the paper examines the structure of the cube-type networks and proposes binary tree structures for con- -;
structing DN's. D-constructs are presented in Section 3 as building blocks of binary tree structures and UDN's are con-
structed by using the D-constructs. Because UDN's are not fault-tolerant, improved topologies have b'en proposed in the
past which, by adding one extra link per switch, provide some redundant paths. These and other similar networks are
referred to as enhanced DN's iEDN's) and are considered in Section 4. However, EDN's may still fail to tolerate a single
fault in a switch or link. In Section 5 fault-tolerant D-constructs are proposed to construct FDN's that are capable of
tolerating at least one switch failure. Merits in routing and rerouting schemes and fault-tolerance advantages are also OM
discussed for UDN's, EDN's and FDN's, respectively. Section 6 concludes the paper. %.vh?

2. 'UlIE BINARY AND FAULT-TOLERANT TREE STRUCTURES

,lhis ;vcLiol examines the structure of the cube-type networks, which are known LDN's, in order to derive and pro-
vite .isihts into a systematic approach to construct DN's.

Tlie structures of all coe-type networks consist of n = logN stages of N/2 2:<2 switches. Because there are m.
stages of switches and each switch is connected to two switches at the next stage, for each source there exists a binary ,

tree that contains the source as the root of the tree and the switches reachable from the root as the nodes of the tree 1 . " ,.
A <witch ;s said to be reachable from the other if there exists a path between them. The N = 2' output switches at the
iast stage are the leaves shared by all binary trees. For example, Figure 1 shows a binary tree in an ICube network. !t
includes the source 00 as the root, switches 00 and 01 of stage 1, and all switches of the last stage as the nodes of the
binary tree. The [Cube network can be regarded the coalescing or partial overlapping of N binary trees, each of which
has a distinct root (source) and may or may not share with other trees switches of stage i, 0 < i < n-i-; for i = a-1,
'he V destinations are the leaves shared by all N binary trees.

The binary tree structure was used to assign labels to ,rminal links.' 7 The label can be obtained by assigning a •
label 0 for the upper output link and I for the lower output link and concatenating the labels along the path from a ter-
minal input link to a terniinal output link. This is also illustrated in Figure 1.

Notice that in the ICuibe network a source has two terminal input links and a destination has two terminal output %
links. In the ICibe network, any arbitrary terminal input link can be connected to any arbitrary terminal output link
because there exists a path -hat connects the switch (source) of the terminal input link and the switch (destination) of
tlie terminal output link. .\ far as one-to-one routing is concerned, only the interstage connection patterns affect the
connection between a source and a destination and the number of terminal links of the source and the destination is
unimportant. lhis allows this work to concentrate on the study of the interstage connection patterns and simplilies the
disc ussions tior tihe construction of DIN topologies.

The above observations suggest tie following sullicient conditions for a network of size N×N to be a DN: (a) there 0

exist at least N embedded binary trees and at least one such tree is rooted at each input switch of the network and has
the N output switches as its leaves, and (b) each of the two output links of a node of the binary tree is assigned a label 0
or I and the unique address of any destination of the network is formed by concatenating the labels along the path from

he root to the destination. [lhe l)N may have different nunber of switches at each stage, switches of dilferent stages do %W
not necessarily have the same size, and even the switches of the same stage can be of varied sizes. A binary tree has
logAT levels and thus the I)N has logN stages (the basic idea is also applicable to networks with arbitrary numiber of * '
stagles but this case is out of the scope of this paper.)

The notion of block structureg was used to describe the topologies of the cube-type networks and can be regarded as
a subset of the binary tree structures. The concept of the block structure can be best explained by the illustration of the 0
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structure Or a Baseline network in Figurei 4. The entire network is regarded as an NVYX blork and then it ;q 'ljviden orto
a stage and two subblocks. The stage is the first stage of the block and the remaining stages are divided inito two qlib.

blocks. The process is repeated until the last stage is reached where a block consists of a single switch. ileca-ie a switch
of the first stage of a block is connected to two switches of the first stage or the two subblocks. an iniput switch and ail
switches reachable from it constitute a binary tree. In other words, the block structure can be formed by properiy

*coalescing binary trees. However, many possibfle structures which are not niecet,.arilv a block structulre ran -esilit rIn-
* coalescing multiple binary trees. That is, the block structure employs more retitdconnections for constr-ictinL; net-%
* works than those resulting from coalescing multiple binary trees.

One of the irmpotant 7criteriaL in vlocring a switvir size is tie' work modularity. A module is a lIidii ii; ii

work that can be formed by c-ascading these building blocks. In order to reduce 'design and nianuiacturinKi~7$
desirable that a network can be modularly constructed and the number and size of modules stiolid be rmnhirze'i vin-
form switch size for the network (anid thus hle saute niuzribr of 9wit ches for every 'tage) can farilitate noiuia- 'esiq-i1.
For this reason, only DN's of size V< that corisist of tiniform sWitches3 Arec trsidercd ill thia P i-er.

If the number of output inks (if everY iswitch of a D N ;s two, the"n 'h:ere exists % iqu~pe pr tli in tli I)N .r %VerY

*source/destination pair because there exists a uinique b*1nn re tree o, which thei soiree 5 the root a11d there ex'StCF 1 11;W
* path from a root to any leaf in the tree. -35icli a i)N is a Vf) N. Tlin inabilitN- oi Cho~ 1,lN to tolerate rar its Crr 2

can be improved by adding redundiancy to it. This paper 'considersi tle special ',,,p(-. Of at,-fui'e rTt !rrrs"sti ;r
*adding one and two extra lin ks to every node of thte erribedded 'i nary t recs of(i) ' aniud Ithe D N s'nv o '. im t-

coalescing N such fault-tolerant trees. Because todliar dlesignis are souglit, oriv L N s iun ifo-in 3. : or 1i 74,,i tc t'S
are considered. Merits and advaritai, s of ths esgswihreect to faulIt-toierrilice nd roliting u'l roi:. 'td

are also discussed in later sections.

3. TH~E -YNTtC[AND) 'D.N

The interstage ,onriectiori patterns of a O)N are represevytted by labeling ,f iiiterim-klnarv ,' 'itch- of he 0%N
ex~tremes of a DN are the source and decstinalion which !iave addresses .i ~and 'i.. 5  De>C't~vetv N

* reayed via 'itterrn'oiiary sw jt-lc"', a b ei!!- t~lefi S-NitrcI'-S ~iet t i 7PIaC! A ''rtw'-syie -o:iv,!rt;ofi i:.a

SOllrree addtress bi's to at Stit 'i ail Jz~~~a:' ireszs i'ut!z \V til 'his i:n tiil , ill,; 'ie ls":o ''e .,r'
'- a .S oas C 1 ) 'lN' 1. 1' 1J o 1 i''I!I wy!"e I" .

1,,'ie sequlencn it ' . C a ; riit itatioii lhv t m R(ifonc' t ..
I 0....i-1. iDetine a conn ctoni function D)' miappinlg l, switchi 'I' 'o ,sIci J)r h .1.t

' for t'

IN %

and the vailues for ph, andl( '1k 7z" -I. are deterniined according to u' arid ti, and nione i:5icr owr'.r.~ 'ir

example, if k, 0 <I i r i -t, arid pk, (k 1k, 1+ ?L, t K nm-1, tha- mapping function D)' sg:

= n 1/ 44 1". il fo r t, 0

' ~ -r~i-r Iui~r ro fr '

As9 a more complicated example, if k, n-i-I, 0 < i < n--I, and Ph, qk = Uk, i+1' n -I, liw the T1apping,1

function D' is:

* -. ',0lt,1.',,, 0  for t
nt-i 0

Th'lese two examnples correspond to Alie iiiapiiig f tictioiis for filie It.. oe and the. modified ADM)N rii worku.tp'i.'
- explained later in thtis section.

*For a pair of switches joined by a- link, the switch at bhe lower-order stage is called a prcrb'cessor and .ie( ;w.0chi at
the higiter-order stage is called a ,successor. '[he dlefinition of D.' inrdic.ttes that, 'or each sw itch it', tlv, ore t', t it(ii,-
7veisors at Atage i-4-1, p'+ anid qr and la-belS Of 'L', p"' atirl q-are in ibits ko, k An'd k. Thie -two w t p'l
links (U' T amnd(u',q' are called a 0)'lrnk aud a 1-/ink, respectively, and switches P' ~Ii1 1,'1 are -ailed 1 t

-sucesorart a -. uccs~oresecivey.T his naming reflects the fact, that the k, -th lit of the abelI of tie 'st ii a'
* sage t +1I connected to u' is I) (or I)I ir mnessages are sent via a1 0-flnk (or I-I ink). Note that, a mituppilig ','irii'i)n 0'

definers Only tile thle connections between a switch oif stafe i arid] two switches of Stage 1+1 aii'i sw'%itcli's of 'i~ t ;tIlieV%

itage may have different iriappirig functions. M

Thle sept of functions 1D, 0 i n-I1,, henceforth called] the D-eloostruct, specifies coninection patternsg 1etween P~

%-"'
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adjacent stages iand i+I and therefore can be used as building blocks to construct networks. The definition of the D-

construct specifies the number of successors for every switch to be two and the constraint of network modularity deter-

inines a uniform switch size for the network. Therefore, a switch or the network has exactly two input and two output

links and all stages have the same number of switches. Routing in the network is such that a switch at stage i needs to

examine the k,-ih bit of the routing tag to determine through which output link messages are sent. If the bit is 0, the W

message is sent via the 0-link and if it is 1, the message is sent via the 1-link. An interesting relationship between any
routing tag and the labels of the switches on the routing path specified by the routing tag is stated next.

Property 3.1 In a network constructed by using the 1)-construct, let t,._.110 be a routing tag and v be a swvitch on the %k

routing path specified by it,_,. 10, then vk, = tk., for 0) < j i.

Proof: Let s,,/ be the source of the path specified by t,_110.o By dlefinition of the 1)-construct,

(D(,0tk)k,= v~,= 
t
k,

(D1DOs',t,~tt)kL= V ,= t,(D '(D0 (s'.),t,,))k, Vk2= ,

(D' D 1 '(D0 (s)J,),tk,), ))k. =v W )k. = tk. fo I %

Property 3.1 indicates that bits k,), ki,, k, of the ;abels or the switces at stage i+I of the routing path specified

by a routing tag are equal to the corresponding bits of the routing tag. By specifying the routing tag t,-110 = 4- the1 the

label of a swvitch (n. 1 ),0 <i < n-I, on the routing path has Uk, = 4k, 0 < j i-I, and at the last stage

(i+1 =n), the destination of the path has the address equal to d,_ 110. This is true regardless of the address of the

source sendinig the message. Thus a network constructed by rusing the D-construct is a DN. In addition, because the

out-legree of every switch of the DN is two, there exists a unique path from any source to any destination; so the net- J
work is also a UDN.

It is implicit ini thle construction if the 1JDN using the 1)-construct that for each source of the UDN, a binary tree
of 'hr, muirre arid ;ill switches Qeachble froin the sourcer is cenhedded in Lte. LDN. To show t hat a1 binary tree

oxiifs C''r ,ac"i ,olirr-, it 11eeds !o he Shown that ait ;tago ,0i) n, all Lte 2' switches reachable fruim .te samne souire

ire iistijnct ;v.itclies. Fromn the definiition of the 1-conistruict, the two -successors (at stage I) of tie source havet their

'I 5it ,qita to I) anid 1,espertively; so these two switches roust be dlistinct switches. By Property :3.1, Ltre fouir

stsiesat :3 tage 2 reachablle from thie two successors mnusit have the hits of their label in positions ;.-( andl k,'iir to 1)1.

01. Il0. aild It. respectively; so thecy -are distinct switchecs. Bly simple induictive reasoning, ait stage I. the Ilbels iif all
swil chf's vacimable from Lie ;iccessors ait stage i -1 must fliffer in at least one bit in bits kc, k, _or k,,,. I lence aill

switcheq at stage it reachable fromn the source are distinct switches.

Th'
1 e following disicussions demonstrate the construction of a UDN based on the 1)-construct. It is shown hiow to con-

strict interstage connection patterns between two adjacent stages; by repeating the same procedure for every stage, a
t'l)N resuilts. Let A1' be a subset of switches of stage i such that bits k0, k1 ,..., k, of the label of every switch ini Lte

saesubset have the samne value and BO(u') and I31(u' ) be subsets of switches of stage i+1 defined as follows:

14 1 '(r - 1 uk. 0 < <r-I1, and Vie 0 and u' E.4'

1110t - it)'L'k r ()< < 1 i-1, aiiil ?';k 1 and tt'E-t'

Bry definitioiis of [10(uI') andi I (ti' ) they are Lte subsets of possible suiccessors for lt' aiid can be connected to ui' through

OIlinks and1 I-links. rvnpectivelv. Since we always refcr to (,.-I,B0(u')( or .t0(u fur which u is ant clenrenit of A1'.

notationi A , J3, anid 13, are used henceforth to represent V,' 13,(ur') and ?1,(u'), respectively. For a given value of I

0 _zr -[. there are 2' so hsnts of .4 , e:ach srubset consisting of 2'-' switches; annd 2' subsets of 13c and 2' soubsets of
I'l, Oach subsitL cosnsistinig oif " switches. A connlectin pattern between .1 arid 13 (or between .1 anrd 13 1) is a set of'
0-links (or I-links), vach of the Iiniks (or I-links) joining a switih of A anid a switch uof HO, (iir a switch ofi A anid a .switirl
of /1) snoh rfal 1111 in-degree of e'very switch of /,, is two arinh urne link leaves frorii every switch 'if .1 .Since .1 is ron-ii-

iteul to broth 13() aiiI 1) unhe it -iegree irf every switch of' .4 is two inLte resulting connrrection prattern. .Note that cnn-
i(-(tioir patterns of all 2' pairs 'if (A 1, 11 ariil," .1, ;carl Ine foinul irndepnrdenrtly. Thne following algorithimr is usedl to

find~ conirection patterns for ),A .13,:. ( 'irnnectioni patiti'rfis for JA1, i; cari Im! found siriilarly. ~'.

_Ugnritl n ('I'NNE.CTIO N-I
stLevp 0: i i-degree (vu) = for all n'E/U0 .
s;tehr 1: If A1 ' done.
step 2: C.onnect ii E Ii to j1 and ini-iegree(r') iin-nlegren'(v )J I.
stevp 3: A - )lit aoil if iu-hngree(r') =2. IH, 13B () 8 go to step 1.
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Step 0 is an initialization step. Since in the resulting connection pattern for (AB 0) every switch of A is Crct.i -"*

to only one switch of Be, a switch is removed from sets .I as soon as it is determined in step 2. Hlowcver,..
B o is connected to two switches of A so that a switch is not removed from B,) until two connections are :15.0 :',.

the switch and two switches of A. The algorit.hm repeats steps I to 3 iteratively for every switch of A

In step 2, for a given uEAi, v can be any of the switches of DB). Because each switch in Bo can tie 'eiected t, i,-e

a switch of B 0 is connected to two switches of A), the size of 10 can be regarded as 2 2 . o . hert are 2' .

ble connection patterns for {A,Rq). In addition, because there are 2' pairs of 'A Do and 2 pairs of : I ' %

there are a total of ((2n-')!)2- ' possible connection patterns between stages I and ;+1. Thus. ter: :r, a

((2n-)!)2' distinct topologies for the UDN's.

The ICube network' 4 and the modiied augmented data manipulator ADM) nict,.ork 17 fail iito 1 his I- , "

* The topology describing rules of the two networks can be readily transforied into i)-costrmct exiressiiiw In , -

works, any switch at stage i has pk, qk., 0 L' _ " -L except :or t. o 'Lhe [)--onstruc ,f both ::,.aorks .. :..

expressed as:
D'(u',tk.) = uIllitk,,, , for the ICube network

D'(u1,tk,)= _/ ,u.,, o , for the inodilird ADMi network

and the mapping of k, is i and :,-i-I, 0 -1 i '.--I, for the !(tubc network and the riloditlc,' ,'. :.A D ... .

tively.

4. FAULT-TOLELANT IMPROV ENT FOR l)N'S A.

This section considers the siii:plest tyNpe o fault-lolerait tree in w hich oivy o e ,xtra iink is addhd "o .e'rv

the binarv tree and the class of networks, called enhanced DN)s (EDV'sI, h.t are crinstricte: by 1,.1hI! .\ .

fault-tolerant trees. As a res,:lt, an EI)N h.as 3X3 s%itrhcs ani corres,)onfis 
t
o lie rntet rk d.iia rsi, ,

extra ontplit hink to every switch ni a LI)N deof ed S i >1etion ,

"'li , ,xtra link -au ie 'it ,r a i i-; , ,)r : l-i) in. "l'h ,L ,, .1 S it h -;' l ,. )N , s It :,,- o .l , ,: ,

woL 1-iinks, or I. --',lk 1wi t .o i- i i, -ii ' :o , I "! or )-'!: ',o' I ,' a" h' ..

:dditioiial 0-link o()r 1-lin k ) for t e sw it,'ii ::rni h r, t cr ralle o ru e i rv ' k i ,'M: h 1 10r.

Thie eyd ,ilord L)-cori , ct 'isid to iim ii5Arlht , )N a -is hir) .--4

or , t 1 l or I-I

%where Pk '/k ,k Uk _ - I~ a nid pk. 0, qk an md k, 1 if thle i-otpjlgat l l, 01. o 5;tc ,r: -

arid k = I if the conjugate links are 1-links. The values for "'k , '1k. aLl' iid l I + 41 n -1i are 'Itermirneul acc-dP~ '

to u' , tk and it . "

}p

Routing in EDN's can also be controlled by the destination routing tag. If tk, 0, messages can liv rouied via anv y if

the conjugate 0-links and reaches the same destination; if tk, messaes 'aa lie routed vma any of :he conjugate I-

links. The bit t,+, determines which of the conjugate links is used for routing. If at some stage a conjugate 0-link 'or

I-link) is blocked, rerouting can be done by sending messages via its conjugate link. A 0-link (or 1-link) being nozconju-

gate means that the 0-link (or -link) is the only 0-link (or I-link) of the switch. If i nonconjugate link on a path is
blocked, rerouting from the switch to which thc blocked link is an output link is impossible and combnm:cation betwee1n

the source and the destination of the path is clinilnated.

If a nonconjugate link is blocked, the only resort for rerouting is to backtrack along the routing path (t ,at -I i

the blocked link) to find a conjugate link at a lower-order stage, from which there may exist an alternate routing pain'

that can avoid the blocked link. Backtracking can also implemenited as a look-ahead schemcre", Hlowever, backtracknf;
(or look-ahead) techniques require each switch to be able to detect inaccessibility of any output port (connected to S

switch at the next stage) and signal presence of the blockave back to the switches of previous ;tagces i  Even if -
tracking is available, an alternate routing path may not exist if no onjugate links exist at a loiver-orer :IQ o . e

routing path.

"°d The Gamma network' 3 . falls into the category of EDN's. A switch rz' of the Gamma network has three sucessors
• "-, at stage -+1: (ut +2')'+t , 

u
t 

Iand (u-2')' t, 0 : t-l. The D-construct expressions for the ainnia network ire as

" 4.' follows.

.16W
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(i) For it, - 0, p,-,1/ = un -,/, .10u, -10 q. -1/ ii, U , - 114- q/ , ., = un, ,, -21+1 and j,/0 - lt, .

(ii) For ii, i , q._110  - n 11# 111-/ , 1/0  = In, -1/03, , & _1/1 p , I/, - u5 ,,-/ ,+2' and - (Ju,.,.
PIrom the D-conntrucL expressions for the Gammia network, it is clear that links (u' ,p" ) and (u' ' are the conju-
gate U-iinks of u' (for u, - 1), and links (u' ,q'+') and (ui' , j ) are the conjugate I-links or ui' (for it, - 0). Compnr.
ing with the 1)-construct expressions for the (Cube network, it is readily seen that the D-construct expressions for the
[Cuhe network is a subset of those for the Gamma network. Links Cu' j )for ut, = U and (u',$i for ui, = I of the
(Garrua network are the extra links added to the lCimbe network. Past routing schemes for the Gamma network are comn-
pficated istance tag routing schemes 11.3 that require the computation of the distance between the source and the desti-
nialion n order to generate routing tags; by decomposing the Gamima network into faul-tolerant tree structures, it is
readily realized that destination tag routing can be used for the Gamma network's.

The Gainma network is topologically equivalent to the IADNI networks"i; however, they use switches of different
types. Since this paper is concerned with only one-to-one routing, the results in this paper equally apply to both of them.
it wag observeds127 that the Gamnma and 1A1)tvI networks did not have onie-fault-tolerance. Iy transforming the topology,
of the (;amnuna network into D-construct expressions, it is easily seen that each switch of the Gammna network has only
conjugate U-links or conjugate I-links huit never both and thus the Gamnma network dloes not have one-fault-tolerance.
Past techniques rely on distance tag schemnes'2 and topology comparison 8 to show this property and derive only one
faitlt-tolerant topology for thie Gamm~a network8 '-2 . It will be 9hown in Section 5 that a great number of fault-tolerant N
topologies for the Gammua network can be systematically derived based on binary and faul t- tolerant tree structures.I

5. FAULT- TOLERANT D-CONSTRUCT AND FDN

Thie lack of adequate fault-tolerance for EDN's determines the addition of a second extra link to every node of the0
binary tree in order to Form a fault-tolerat tree, which :an be used to construct fault-tolerant networks. Also, ilue to
fletwork modularity requirement, the network so construc ted corresponds to the omnc resulting from adding two extra
links, one U-link an'd one i-link, to every switch of a LV N derived in Section 3. Thus every switch of the network has one
pair of U-links and one pair of I-links. In order to maximize the fault-tolerance improvement, it is desirable to have each %
orf the (i-links (and I-links) be connectedI to a different switch at the niext stage; otherwise a faulty successor may block

othi0-u ks or -lins).Thus ,ac switch is connected to four switches at thle [text 9 tge aInd each stage of the nietwork
-vat fiNi s h wr s ain UVN that -:x n tolerate, atlt one Swvitch failuire (except Lte fa ilures in input

mu ndI wiutl -.A tches, -.06hii are sources and ulestiuiat.;M :11 uitl c apaide' 4 pWrforiuimg dynatnic rerooflug. Thius is true
keranse vero'uing ",an alwaysiv he lone by Sendjing neissatg's trirogl thke iuujugate link of a blocked link.

The fault-tole rant D-construct used to construct the FDINs is as Follows.

p fror k,~41

pfor tn,k t
k, = 1

D'u ,~kt) q for 1,k,k 01

m~for t,,ktk = 11

where pk fPk. qk, 4k,"0',, UK<i-l, and Pk, fk ,q = k 1. In addition, to make each of 0-links (or
1-links) he connected to a different switch at the next stage, the following conditions must be satisfied: pk, %* fi and

,- , for some j, i+1 < j < n-I. So p,0 1 TYL qn- 1 /0 # ie. u' is connected to four distinct
9witches at the next stage. The pair of switches p'+' and ~''and the pair of switches q''+ and 4 are called conju-
gate switches. Wu, Pi) and (ut', fi5+4) are conjugate U-links and (u, q ~ and (u', Q arc conjugate 1-links for u'. A
pair of conjmmgate switches are on two distinct routing paths to the same destination; thus they can reach the same subset
of destinations.

Algorithm CONNECMON-1 can he adapted to find conjugate links for and form FDN's from a UDN. Let UI'u) be a
successor of a switch it in the UI)N, F(it) be a successor of the switch 11 selec te(l For the FDN, and the (lefinitionq for A

* and 13, he the same as those for algorithm CONNECTION-I. Also define A to be a set of switches that contains the
* switches of A whose connections with switches of Do were made and which were removed from A for the construction of

an FDN. The following algorithm CONNECTION-2 finds a conjugate U-link for every switch of A of a UDN.

* Algorithm CONNE CTION-2
step) 0: in-degree(v) = U for all vEB, and A 4

*step I: If A = h, done.
step 2: If P4, = 1, let BO = {v4), and if v 17U(u), ueA, connect it GA' to vEGB 0 such that u#U(u), disconnect

ut EA and F(u ), and connect u EA to Fpt'); in-degree(v) = in-degree(v) +I; go to step I.
* sep 3: Connect ut E A to v E Bf such that v 4 U(u) and in-degree(v) =in-degree(v) +1.

step 1: A= A - (iA' A+ 1,u and if in-degree(v) 2, B0 B0 1- v ~ ot tp



Algorithm CONNBICTION-2 has a more stringent constraint For selectinjg J-;iriks -han jLu 'Or aigorit:tlri ~
CONNECTION-I. It is prohibited fronm chuosing the samne iuccesso, (if a siwitch in th e I1)N -is the cctij IIgate I) s cresi~or A

of the switch so that each switch is connected to two djistine'. 0-s ,::ss'lri inl the FD"; V Nt oc 'hat .,ie% -., 'r,

one switch v left in B30, there may have one or two switches left in i nld v mray. aiso be the sliccesso- of ',w Sw tc- ''Itft.

in A in the UDN; thus the only possible connection is to joili tile switciie!s left inl A all the 5.arne saccesi -f .i irg n I
the UDN (i.e. v ). Step 2 adopts a rerm.dial apiproach t.o exchanige the 'ole In Vt I" he 11,taI vaI

previous iteration and w hose sw itch of 130 is no' - sucecessorr of the siItc ovi !eft * t I to i:, 11) N. 6'
always possible from stage 0 to ri -2 because (a) if 'here! are two swi teaca -(t III A %d th% .i r-, :ie ,
the UI)N, then any of the (2'--2) switches inl A can Ihe Chjosf-r ,or the .'xCiialio': Illii i if Ll- j Ji- %in A1 (so there are 2--I switches inl .6 t nd :t is also tic iiredecpsauor I)" iii I~- I) N. t iii 'IC7- Wi. ''' fl
switch in .1 that is also a -predecessor of vin the tLUN ,-Or iiet oit.-C~r." .if *'rr itchi o. , ,-' :1 1 *p

Pattern of the UDN), and aniy of the (24-' -1)-l swViLtcie III A -ai :i~iQVeI '.r V 'W.l~t- V
(i - n -I), JA J4 2 and 1B, I1, so both conjugate 0-links --- d 1-hiksI ,i a1 swite a .' tir( -olnielv ,o N fic t

put switch (destination).

Assime that at the last iheratiori, the !Last switch : :eft ;:, if, q aLiways4 the siucceIsor if ; ~a.c 'ii

UDN, then at each iteration aI switch in .A ,an chloose unki, ill 'At t:Ie 'Ai ie iI3. , . .i zuccriz;W 1.'>

that at each iteration of the alg-orithm for .viiicib. for --c Oltli L ' Lil A, a un~ . ( ,r'a

can choose only one of the switclies in 1 0 nr i as its siccessor. .sn-e tlie a rlITFIrrach i idar !iou'i '-Q r

compting the total number of possible I ThN lopologie'i %a c i~t ~ r 'aS t ~ 2 *

ble MIN topologies for a given UD.N.

Examples of FDIN's are i~e I-' liel.work' and th!e i' ampa 'tlr La i-V:.zti? i -J -'<

these two networks are as £uiluws.

Mi For the F retwork., p, ~ OIL -I.u V , i

ii) For the KaIP pa rlewok P. Li %v ol, r k,

Ilit o a tlrl(Va i-r i a -cslilt ofi :i

rinnailficr Ilasc-irie" networKs. IBY eliibedIhhiii li'rodlc t l. iK

eddancy iii the Gainial ne11twork w o.s isrv'dil adliealtoi-ia 5 i.r~-;.

worke wiva proposed to achivve3. iynictric redi i a nd~li )C!iit~l al. t ' i ~ .

aiit-tolcraut tree itr1,ctiires ad transforming Its topotogy iescribii ile nol-crs"i

* fatilt-toleranice In h (imcima aetwxork biecomies evident 1;. .somle --vr ilcq iav' to C''

I I ((2' 'y faii-tolerai: iopoloips (by !haktch1,; all ,vthe :v ~;igt -

the [Kappa nietwork is mcireiy onle.

'lucer(! are two possible! iupiemntatiois for roultilln iheilMwr ",)N D ! iii~ 1eV L~ ~li5~ iC' '5 .

gra p ',s. T[he first schemei r-qil:rcs no corrpuitation for rerouting talas alil tan ' ail I hViii lis i ll '

'Thle second scheoie requires the com puttatLion for rernouting tags bv (lie 9-u-ce o01 mIessaves bhit ii as t lieaiclt'i '

capable of handling more comiplicated multiple faults inl the networkc.

* ~It, tile irst schemie thle destination addresscnb ie ietl st,'m ii ag;ie . -i~ hssbt~

aisumes that each switch u, luses Ia' i)anld ( ' I) as thue default (h-link and 1-!iok. rcspectively, for rio tim, Ines-

*sages. if 1k 0, link (u', p' ") is used for routing and if 1 , link (I' too ')'is ulsed for routing-. li-nks l'L I il~
(it't~ + are regarded as spare links. If a fault in thle default link is detected ur thle link is blocked (tiie to failure iii the*

M sitch to which the link is an input link, the switch automatically reroutes messages via the conjugate link of thle blocked
lin1k. 'Thus rerouting is trantsparent to the source of the mlessages awlh no reroiutiniig tags niedu -( 1i o- iitl.E

switch requires negligible extra hiardlware For the detection of blocked ittiks.

'The second scheine re'lifires the source cif miessages to courinie a rotting tag. The nourtee is assu-illle-d ti ow tie

locations of faulty links and switches in the network so tha t they- can lie rotrpareri against, thle ilnks and switIeb" on1li

routing path to decide whiether faults occur on the routing pathi ariul rerotitkig i iCersar, A. ro :ing tar co-sis of 1
digits. the k, -f1 digit of the rouiting tag being represented bY two bIiti i" and ", .LMled tlie -'ae !it arli tie IcqVhlIIlro

lilt, respectively. 'he destitiatioi b)it s;peciisteOe i-linK or 1-link for routingt an1i t, !t . ) ii i I aid

I) '- i n.r-I. If t,, - 0), a 0-ink is used1 anul if tk.1 a t-lirik is -sed. T[hle state hi' is ulsed i f' viefy IVlich orv )r 'li

kroutgh othueftter rar. 'tOpologies9 for the (,1aboreua nletwork are also possible hased oi1 lie -oinparisori of tlouo-
les thnLha derivedl b) uising the approachl proposed ili [Ilhis paper. 'I'lis is beca-use tile

I block strttilre9 is orliy a sulbset Of thle biru.'iry tree ,tacituarpq, as expiaiiied ill > iin2
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conjugate 0-links (or -links) is used for routing. If t,+k, = 0, messages are routed to p'+I or q'+ I and if t,,+k =1, mes-
sages are routed to p,+' or 4'+. In general, if t..1tk, - 00, link (u', p+) is used for routing; if t tk = 10, link (u

1 i'+') is used for routing; if t,,t = 01, link (u', q'+') is used for routing; if 1t, t, - 11, link (u', 4' +) is used for rout-

inMg. Because the destination bits decide the message destination, it always remains unchanged. Only the state bits need

to be changed for rerouting. Control of the rerouting can be done by complementing the corresponding state bit, which

effectively sends messages via the conjugate link of the blocked link.

Because the F network belongs to the class of FDN, its routing can be controlled by the first arid second routing

schemes proposed in the paper. These schemes are more cllicient than the previous algorithm, which requires compli-

cated recursive procedure to compute routing tags.

Since any link on a given path results from the appropriate choice of the corresponding state bit, each path in the N.1p

FIDN can be specified by a routing tag computed by using the second scheme. Therefore. the second scheme can always

find a fault-free path in the FDN, if such a path exists. That is, the second scheme can deal with more complicated

faults :hat cannot be avoided by using the first scheme. For example, if the two 0-successors of a switch of stage z on

some routing path are both faulty, it is impossible to reroute messages in the first scheme. However, if the conjugate

switch of the switch that is the predecessor of the two if-successors is not connected to the same successors, rerouting can *

be done by sending messages through the conjugate switch of stage 1, which is on a path that avoids the two faulty 0-

successors.

6. CONCLUDING RELARKS

The :nan contribution of this paper is the derivation of a systematic approach to construct network topologies that

"in be controlled by destination tag routing. it can be used for the construction of fault-tolerant network topologies as

well as unique-path ones. The essence of the approach lies in the decomposition of the structures of UDN's into binary

tree structures and in tire fact that new DN topologies can be derived by coalescing binary trees. While past rault-

tolerant techniques are applied to a complece network topology, this approach allows for the enhancement of underlying

strnctures of networks and uses the enhanced structures to construct fault-tolerant topologies. In this sense, the

approach presented in this paper has a liner granularity than previous ones.

!.is ihilos)phv i. rellected ill lie Ludv of IC0 he and (3aoma networks. While iL was previously shown that ie.-

(;.hmfna enutork 'an be considered a superset of the ICbe network and the Kappa iietwork was derived as a fault-

toerat version of tile G.amrma network, by decomposing the ICube and Gamma networks into binary and fault-tolerant

tr. ztrirctures, t is easily realized that the [Cube network is a subset of the Gamma network and at least

--2lT faiit-toierart topologies for te 1ainia network --an be derived. lI addition, more Pfficient routing

slliies ar derived for tle (; aniroa arrdl tie F networks.

This paper considers oily tho addition of one and two extra links to the underlying binary trees of UDN's in order to ".-

erliaice the UDN's fault-tolerance capabilities. It is certainly possible to add more extra links to achieve higher degree of

fault-tolerance. As for the cases of EDN's and FI)N's, it is desirable to have pairs of conjugate 0-links and -links for

a ,,h switch. For every two extra links (one 0-link and one I-link) added to every switch or a DN, one more switch V-ult-
tolerance can be achieved.

:he building blocks for constructing DN's in this paper are the binary trees arid their fault-toleran. versions and the %

iiiibrr of input/output switches of the DN's are assumed to be a power of 2 (N =2'). Similar ideas can be applied to -,
,iiiraiized b-ary tree structures. . generalized network can be constructed by coalescing N = b' b-ary trees, its

nubler of input/output switches is a power of b, labeling of switches in the network can be represented in radix b, and
its routing can then be controlled by the destination tags represented in radix b. This possible extension is now under

investigation. ."

This paper ,xperinients on the addition of extra links to the underlying binary trees of a UDN to improve its fault-
tolrajice ':tpability. ',viiioh. due to the modularity requirement, correspond to the fault-tolerant techmniuine of adding extra % or
links to the UDN. There are other fault-tolerant techniques such as adding extra input/output switches', extra stageI

etc. The structures of these fault-tolerant topologies may also be explained under the scope of binary and fault-tolerant
tree structures. In addition, the results presented in this paper can be explained and extended in terms of a generaliza-

tion of a network state model1 5 . This extension is presented in a forthcoming paper.
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F'igure 1 A hinary tree exists in an AX8 lCtibe Figure 2. The Gamma network for N S . Trhe
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Hkrarchicrtl Appronchc's to liult 'I oleryttice in Prorcesor Arrays

I A l141(7 and Jo, A. 11. i'or'Xs
Sc hool of lI(ct ic al Eltigiriering, P'undue Un oversit y

We mt 1, afaye tte, IN 47907 .

A IIS TR A( 'T..P

Because processor arrays have o-nis hi (Ir co- lie ti )is 1'( t 4 e l igibori:41. pr4''''rs. faillt -A, ! .If!"i

reqoirt' additional interconnei-t, s-X4rhirig ?jI,t 441ri liriT-d-'.ar.' in oH''r i4, ;IIlow% For recofic'iralon akf- I)-' far e'"
In gene ralI, the larger t he( rt'confi gI I It iOnI C4 1 iI' i IIIh li, gr( :0r is thei prohat kiit N thami a lirm ( sor -ar ay cr i r~ i'
given distribuition of faults. InI (.'44r %%orVl. "', I'.' r:,vof 1' rToe 4 i4rm2, o r loure in F'4-'"'h'iV .4 l
anlolun. of extra Iad~r'r( 1 ir4 i, %o ,'r' ~ 4 '41 '4
Fo r tIs reason anitd If peln g on it il, -T''' - i E,,I ' 4 1 1) 1' ;11 orI *:1 0

t tirct rc fii'g4rit4 44" -IT(4'4' IJ Va'. I" I"' 2! .iw , 'l 0, IT Y T'- Ar-t ''i ' o' I,

still rrstili l IIDi C 0 111c-1111Y I'xk% r'4i:'lilih -III ( r 1 r i IT" :T

T ltii Imapevr 1)ro poses aI I-tc . r rt '-o.!i( J' hidi . o li Ia% r: '' r, ho i ii 400 'wr r ig0 4

approach, ' -.. .. ,,,.-m arra i ', ;); iar imi I r 1-r !i -tr s% q ald 4'44; , nait, )- ; r o h ); f ira 'T %

place within each of the Fularra ' s 4 0 yrh rv f':toi a'rc' ;an''4 'o-i~ "d. hpe'.io' fti!! rir;r'Tf5a,(x'o'

Spare siiharra. Arrays of tis type, arc r''furr'I i as IT;Ii I,% F;lilt tolrrant proc( s-( r 4irrayq II41, i0' ailfmiu,- -vN' ra! 1ev-
,'Is of r-omfltgratioti, -jIrtil.',4 1r~v- ':T ''~44 1414'l 'iIc"'\'~i 4v's o ,iiis.tI r )'il ;'. I)~ :

ill0 Ir Iw 41I -s e ~ If v ci ( 44 45 4j r 4444 cj4 I,1 f,( t I :i 4 - .I 2l ,%c i1I ' o ft(~ gj; ,!
Ca e r 0 V VS isVnJI;I14 ll W 1: i .rwrf ), i i i 5ir4!T' 'r ''ab Irr 'it 1-n;1

*idetical. 1 T i, l Id In:4'45 f ITij'rairl i, :C r4'4441hg ; :I4 4144444', i plrovidel TitIi t ighr ~irt I i i 14 pr, k io44'4
4
y . rip

ones. particularly in the f4MeO %4rr Ia rg- n ~

Tro design a hierarchical rv -onfi 4 ira Tti0i -t he:ni' fr n g;,,en processorn array it 44"0i 5 rwosr- 1( ,!in( - I 4.e 9i: !) tif.

stiharnays for every leX'eI in the hierarchy a -s %-1i ri- the revon figiir t len sch'tte at T hat lev eV A drl;i" 711l'lg
provided which nlatllernalica 1-olv es 411054';.il!'s i.e. it vlm;hies the rho pi '-f The T-iharr. -'' 7i-i -IIT

rerou'igir:ti4on s-lvrne to he iC4ed :0 Pach ''%v st, f, obh! 240n proce-qor arra^y wvif 14 044 4:41rlald

1. INTiROIDl.CTION-

4 Tn a fault-tolerant processor array I V'TPA I redidrir 44a1 44in Y or may not, he prov ied for o'C tv' pc1' of comorl 1vt of
t1he array. As atypical poqssihie caise, an ['"IPA mi i-i( iepoooghl i oi o ,-

switchecs, and control logic to imptvinrint ffi,' F4 4 4 [-l Io4~ulrfi 5fl4I44. Tii 4!4fV d 'i''<'l l' wii 104 4 ??IP .0,~ %4 0.
hnr 11 r i the reliahitY (If 'iilll'AA anld '-ow hat IllTPA's 'visicrir rrliahK~fv r,-1 1' it the, fri-I 4  'H'.-

sc licip4 it; I'4. t l:is a Iliiera rrh 'a t rtmi I r ,'i'. 1f -4" I I A'f ' t'1'( (hi,' /ii'' 0" m'/ Irv";l p 0 )''' 1'v 4 'iJ
thle d1-4n )f Iptilnmly relilie \11 AI PA'" is A,,, pi''r ''1'ih 2r.

A'It,' rI'V'vam'ce of 1llr(0I'5sr 2 ff4i %' (I,\'sj -t, 4445 444l 144th f4 '40~ their 214111! l' to4 444' ti,4'4o'44 4': I ilmn:4'415 '4
mianly rval-tilti. -kr14li(atil' !1il ;11 ,o f~l roill 1- ir Iiahliv r,, r etlici'wii i 4 4'ii I-rn at14iow 4ii 4L \ I'r\ L.,rgI', -l
Integral ion /\Vi fo-r Scale Intugra 441444 ( Vl, 4 1'/V I) 1cc t414Ilogy . 'i,44 ing' lAs ca'l !V itilplemirlt el Iy% repli,-iti'ng I14'l t!11'
a small basic hardware mn(i(de wThidh mlightl iIncluc no04 only' fie, proce~ssors I-ii! also Some Ilardw r( fe'fr OwMt chiiif, con~trol

andineron14c ins 'he design oIf the hasir , r44114 Ic )_ iih 'P'tIve ptrizl4, therefrore, it ("i1), V~v I')1
mrnt area- andl tirne-eflicient array'; of arlill rarv si7e %%tih -1 IoNTI r c415, I14 tIhis i44444cr it is 415"4i1i4' 4 Iurt a l' ;, t 1lod114
corrrspo4dJs to a single proferss4r. I JowIf 4cr, 54444I 414'W I -144 4441'" SVi4d4Ig 1 cofro444441 14gcm 'r1 4 14l4'44vicIiiI' 41
r04441111eg. the( results 4Of this p:lpI'r '1 ' to '.[i, 144 tir K so-s , 4 i'ieg are' n45041 A i.4 e the r''ialll I al ii'lt

- is~1 1 . tie rla'lt fP i m iodhile is r , -aIict i tn o' raftlier low% wh~en N i. very big. 'lf's i '4n -V4let2t Ito Ill'

statement thlat, regardless of the relia bility pe(r 'm it, of arca o~f the PAT the relialtilit.N of a P A wNith1 large area is %Pry'
Small, unrless fault-tleance is provird.~ From ir4ll, perspecctive, it hcoesclear tlhat th~e first S~ atrnolit is trire irld(pert-
dent ly of the type Of niodule Used liji~e whait re'- lk 4144444 i's 5til"er tall 17TIoOTt. of aria talen ll 4111' array and 1411, asim
Ing no fault-tolerancev, thle reliablility of a l:4rc, :ir'-, 'o~ i~I 4 Tt rno'14t4' is the 504, ais 41hat of nil 2 rrniv ,,J'I! thf- .)!ie

*area h -i lrger rnodulV'S. 'll4 Js r't:'h)IutN' *~'. 4,4 Iie c ''~ia 111,4 n (f l''iil 4d''it'g' o p4'se r

*ice., mr'odidlaritv a144 extetnsilit N'

Extensive, work has heen done toward's (]ll,' is ig, I'llA (it ,igns and4 a nrit-vxlmwatis4e list of r1'i'4" is 1 al till'

references therein. Reconligiira' ion n1pproarce; 4Hint rre ~I'441t Itiose ilescrilied irl someii of theerei ene acIle 41itis
trate the! basic ideas and resuilt-, of this papi'r. 'I'l1 s( 44' ia14041s irirlide C'olumn4 ltltidoaricy (1 r' 44id Wors), l)V~g''iie

Complex 'su441t Stealing 7an4d 'i'riplljcatrd Nloilir 4 ?4'imdit','4c '_,urrirf Ilescrill! 1444s 4If'(1 414' aplr0llaIWS fIlao r-l'Sit
tileSe M~ethodls are miade in Sectioni 3t of th'b j,,j

Typically, previously prop'44;cI [''IPA 1leqigls Il44l4't 4' Ii1444.rI'4l144l4444 tiardl\farI' i.., 4144 links, swijtrhjeq ls ar44l-
trot logic nv(-r fail ti~riing 2 rr'v "I4'ra"t1144 11 2, ''-i--i44f I lint Ht-, (411ii '4445d arc s444441 :i4441 511144114' and Cr~ii

%therefore l,r, degigned CartFJIIIl , l 44. lo4'e'a itii'4,41'4
1c ' ll( robn!4'X . ofo erto alf444. W~oialY

approachl findls its origins in 411'444 i linre 4'f niea rl: r 41-frofii 4' vtp 'Ii4'4' P:l4t 14-4 ~" ~l~lit 1 'lI 1 .g ai t. ig

tsiie of logic Il'yfs,114kv scrj'. , lolj i4 fi425 44444-I l i t 1, 4 44-i 544i214 'r '4''! 4'4i r-414i44 11, 44it p42'sif 444 oii 4

tiotis andr sim1ple switches. -\4o4fl'e jiil''4 44 fr I10 i v t't. '4 144,, talil -r''- oit -r,,o0 lll( -'4 II~p 44' i l lt~~ 1" t' ''lif
That tlie relial'ilitv of itite1r,.qlri v- at aia' 4' i r'' t 't''44 4'4 - i'" 4' h4''r,-:,4 mt4'ri- (tt44-2'
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schemes with limited redundancy are required for flip *expensive" logic. With some current technologies the same type of I
assumptions may still be valid in somec cases, e.g., fabrication faults in the wafer-scale integrated systems described in is

occur with probability of 97% in wires versus 50"C it) processing elements (P'.s) anti reconfiguration mechanisms are
9099"n reliable. Hlowever, it is well known that thes a99111riptiOnls rouist be re-ealated in light of avaial er ag
Scale Integration/Wafer Scale Integration Vl'/ l)technology, particularly wheni operational faults (instead of
mianuifacturring defects) are to be considered it. fit Fact, in VLI.S/WSI systems1, interconnect can take ilip to 50' of the
total area anid, ill simple termgi, it is Made by uin g processes nrd miaterials siriilar to those liqed for active logic. 'Thus,
it is more appropriate to characterize the tifet ii- retini bitt of ifitere it types of roinpotienit s of a 9VysfT en inl terms of the
:i na hlit li ol Ii- r uii m Ilic rt6ii lii 1),r imi d' :r(:, H- to i i t I- d For flii i ple, It ii:I ii

The uinderstanding of the inipact of the opuerat ionial reliauilit y .of nion-reduindant hard ware in the overall operational
reliability of an FTI'A it, one of the goals of t hii' paper. Simnilar stutdies have beenx done for other type of systemns (for
exaniple,' in20 ~ but, to our knowledge, they have not been reported for F'l'lA's. 'The idea of considering multi-level
F'1IA 's is a consequence of thle iinderstanding just mientioined,. in the sense that the hierarchical structure of these
FTI'A's reduces the amnount of nonI-redundant hardware iii thle overall array. It is appropriate to mrention here that
related or stimiilar concepts have been independenitly prlopuisei before in 10 13 ;however, the moictivationq for putting for-
%vard thlose illeas, wifle valid.j J()u to( liflilfterprll frr'nuu tilie rl'asliis presenteil ill t his pripej*.

Section 2 of this paper presents thep basie ideas arid models that underly the approach and studies reported in this
paper. In Section .3, the reliabuility characteristics of single-level FTPA's are discusseri. Four different type of FTPA's are
described and area and reliability erstirnuates for these FTI'A's are presented and discuissed. Trhe approach used to cool-
pute these estimates is also explain(,.(. Section i introduices the concept of multi-level FTPA's and provides reasons why
their reliability is potentially higher tIlan for other single-level i'TPA's. The issue of how to design optimal bi-level
FTPA's is the topic of Section 5. It is shown that it is not feasible to attempt to derive optimal design parameters
directly frrin thle analytical expresqions that describe thle reliability of a hi-level FTI'A. 'To solve this problem, accurate
functional approximations of those expression.- are proposed arid used for optimization purposes. A case study is briefly%
described that illustrates the very high reiiahility irmprovemuent achievable by hi-level FTPA's in contrast with 4'he very%

ploor reliability possqible withI a single-level l"ITA.' Section 6 is dedicated to conclusions.

2. BhASICIDEAS AND MODELS

Avery3 genra model is uised to represent chainracteris tics of FTI'A's that are relevant to the purpose of this paper. A
processor ara ishesc ribedu by a 1-turple (P, 1L, S, C) where I) co~rresponds to the part of the array used for processing, 1,
denotes all thie link components. io tHir array, S is thre set of switching components, and C denotes the set of control logic
comnponents responsibile for the cointrol (If process;ing, linking and switching elernents. Clearly, in order for an array to be
fully Operational, each of these comnponent parts of an array muust operate correctly. Ini general, a component can belong

%to onlly one of thle sets P. L, S and C. Hlowever, inl order to introdulce fault-tolerance in the component P of a
* P.A -- (P.L,s.(), a new array (I", L', S', (") is obtained wvhere not, only P' buit also V', S' and C' result from adding elements

to P, L. S and C, respectively. ('oTustqurently, tlhe reliabiility oif L', S' arid C' may also differ from that of L, S and C. The
differencer ill reliability dlep~ends oil1 1)1 il tflie, adl eitIlvillitS 'Il Ilie logical arid physical organization iif the cot~nponemnts
of the arra v.

\Vitlit loss of generality, asslirrre that, anl PI'A (,lSC)contains (nxii) +l k P'E's, where k corresponds to the
-numbrler of spare. Let A,(n,k), A1(ru,k). A,(m,k) arid A,(n,k) leriote. the are-as used to imrplemnent P, L, S and C, respec--

tively, and let. A(n,k) -Ap(n,k) I A(rr,k) I Aj(ru~k) iA,(mu,k) (]eiote- the total area of tile array. Let r., rj, r5, and r,
denote the reliability of the unit, of area of an lemnienit in P', L. S; and C, respectively. Similarly, let Rp(n,k), Rt(n,k),
li nk) ril 11,,n,k) refer to the reliability of P', L, S andi U. 'tell ie reliability of a processor array is given by

ll(ru~k) = Rjk)-1? 1(r,k) -Rjnr,k) - 1?(ru ,k) (2.1)

an frlith overall reliability of tile array is at mustf as good as the lowest of the reliabilities of P, L, S and C.

4 ~In general, proposed reconfigu ration scheries adopt as the basic replacement unit a module and assume that the
hardware ouitside tire basic mnodule ip. the riori-redrrndarit hlardware) is fault-intolerant. This suggests that the model

.r jusqt propou'el earl lie generalized fuirt her. Ini etsencev, the area of a F'IPA consists of somte fault-tolerant area Aft(n,k) and
hel( rerrialiirlig a rva Afi(ti,k ) -: ri .k) -Antri,k) whir h is fa tilt -inut oherarit . Denoiting the reliability of these.( areas by Rfj(n,k)

-iill Rr,(r,k), rcspeeiivly thep reliability oif HIip I'llA is

ll(ru~k) -- r,(r,k) - Rfi(rr~k) .(2.2)

Iri ot her word,,, given ant F"IPA wit Ii (i ii) I k rrodulies (where k is ( lie number of spares arid the unit of area is defined a.s
the area of a miodule) andi letting c, ilenote, tlie prohbilift hat the F'IPA can recover from thle failure of i modules,S

- k. erluration (2.2) becoirles

~Ik] k n2 k k
R(ni,k) ')~ I~ (I - rfi, (2,3)

Expressions (2.2) a rid (2.3) aire va lii for ainy t ype oft lll'A. Withlimt loss of generra lity arid in order to facilitate thle
presentation and discussqion of f lie idreas anrd resuilt5, 5e'. ral assiiptlions apply to the remainder of t his paper and are
(lesc-rille', next. Given1 anyT FTIP A ( 'l. ,it i, a-siirei t hat , (1) P' is fault tolerant, anrd l,,S and C are fariit-
intolerant, i.e., Nfi(r,k) - A1(mu~k) 1- A,(n~k) 4 A,(uu,k). Rr ll(A~l(~)H(ul...rtn~k) -Ap(n,k). rft r,, and%
1?(ll.k ) -. ljfiruk); (2) at flt- exceptioun oif Itlier rr iiraii-ni rihveioe uuseih, all othter priiceilires rrired for fault 'olrr-
ane rr erfec leg., la jilt il,-fclio vid ori,:Oiwi) m Til. thiir,,F're. r' ill eu~inlt i (2'.3) rorrrspiindql to thle probability of



S'M

FromI uirator) (23) it ik po'qiil t(Io jtif' r i-:tI-,r! antl -i:, "r'z'i that, appl% To all F I[A.li particular. it is; ,,r
inter vit to a vqwrr t.he (Iftcst if r of I'ow It i ' tie ~- %I w iri - ;Ir. T 'o~ P t'-:-' 1Ito th II i 11\ so that (a) thle ratIio
bet we.ri t 1w I i ithelir of pror ssor it I t I~ t 1, i 1 1, i''-r i r,- -i (f Ie 't it 1 fl r' r cikirdil fi( r..dviodrc ri, Ino
p-(ri 2 t kt);k stavs constanit~ or (h)j fill nilmnI~r W p- or, ,, rilt p 'ii itn I- rse ies ij-ionjifl, thf -i-i-

tiwis of lffll,k) itnd 14(rkj %ijll in ri. lik m - Ir~ ei
T ~l ai I? rI, - -l: Iha thi 'r-. %

Iecrr'ases itt lhitlt 10'e i r(,,:, Pi 11 1''n t I rn ;l ('2 1: -:cf- it' .~rji- l ;el ti-, -
iihrn r, rqurilc a ronsrant c frr 'I'i I L- I, T i't.r ;(, '~~-'u- 'b ~i

5thirflil larg 21 2ii f(I ,)fo ,II~l ,"

I t is clea r thIa t I It i k) I i:l o 'ici-'r TIr~ U" I'i'' i rt. ', k t2,1 - ik Ik 4ki for c Ilftii fit % a-rL- if

i ror large it awt k

'This ineanq tIi' overall reliabilit Y IP(211, tk) It2:i, I t Iln 1k) will FP' diwo! fl' I a nd k sti fi fit11y la. f, it-ac
It r,(2n , Ik) .- I ?,,(ii, k). 'I'l :it''r- th- e li c in 1ut ' ,p- ',itI o lfie i-i (- lr i i ott-eel1 '171 hC k wi'1i T rl rr i- I

osing aI.Iroi.i ii i (2. 1 ifain,. alIf,, it r1oill 'i, 'ii Ie t I.,'v.

'This indicoti's that irrcr'ar;iTig tl( he -rt-ibir oF -if!' tic above ;t ci r'ait ritier do00S Doit ie c r '--N~ ii re i iit ,;.
imnprovemiot, 1ii'akici' lit(, restl~tiii rPe1.ioi i Ii. k) tiv I)e nuin' slvi~riat thztt 411,,iroiti-T i it ti I' 11 r0

b e roncliudedi itow, a v( ry largi- I''T \in .t' re-iu It A I lt rci't al.kk- re lin tt[it v vi i sitg Iiiw sam weihirn ru t do itnd ic Tfif 1;I
* small FTP.-. and anl extendt ed vcr-Hoi of :it i I A where the, Irdihiticy rntl i vpr '-vt may vt hie li-c rIiabilit v liarn

the original I-lEA sinco a rednt iwt vi Rrtk (nmkIrut I,, mor.- <iifivqt 'hmr, rmoqiii 'ttiproV('rTvI-ttr :Iih q

* 'Ihe next setion ilc-sil--t vrl-1--l 1 ItA'c, -i di -osi-b-n -ii 1 i\Ttjl' t-If Cotitir'n ''I! -i! -te-i
Irhe cnrlislions rcai'heil ab~ove.

ilenoteil (11, DI, (T-; ;)Tiil 'IN I? nr' COTrcilji-r,'f! Pt - It t t iiilnirtaiit 0:i:1 1 I tin' ,-it if, , ueceril, d 'l Ibfis p- i , i

Itot; Crnr-tlitii vari v to) I li 1!- '' pton our r ~i-r iiiirli-4 im the rifrer - '; iti-t iri ii - 'I I[(, 0C7U tie . , 1
r,-"ilis of tliv -'twt ire qfi-rierall ut,1i ri-gnrIli -c of ii--11-irtto hn(ow t li l-'it- pne:-d ill 11i'I"-" r,r'
nre itt-rtri-t-i arid imptritilrt '-'L

faxit it, a 1%I' ili a gis-emi voltirti of thre -a rn, it-- iitpli'tu- i-il'ii Ic re'lii-d-'I l i 1,cl rf, eolt~ii. I1 It
S!ici-r-nls if arid( only if faults occuri in a niurulur (If Uii'jtrriic Iisq thIan or ettial to t'he tiiitili-r of rtt i '

and -additional links are required for ec-h iro or' -t o That ;I flill colmiiiit .iil Ili, liliascei. Acw
rieeili'i to ;vr-h rl eaholunin of viuie:thii sig i, ir-i \61a wit -( rIwc~t to (lilT i'hiiuin t h tiitm

samea cohuirym. :\rldional s.it ells Tiv Ti " c i''i tiI ". 'aIi i I hie jillrit U1( owi :iI ( .- '
liic wit u-ies reclruiri iihiilnial i-inrill Iitrt hitl at, F1,-t-- (;. t -i-iitt

above the fiull array . 'ITe l'r-I.iuiiuttii i' I - -. .

ithrotighi '%iliches thtat aIitiii~pnjrin i-ini I' -

of failt'f, a tiir'ttitut I ii i il', r: t-ui,- rr 'K--------------
rv-solra Unttil ru-ulutnlatkyr. i-, e'I;- _-' I. I
%% ire; to iti lertte il -l r i, ..;.1 4 r ,

proei'ssmr. I Iuiwe(v~r, all -,, it -T,:..
IDiogene a'pp Iriu;iu Ic titer- r' -ii -Ill
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column and each row. Two extra busses and corresponding switches are added to allow for the "alignment" of input and
output. ports with operatioal 1/0 processors. All switches are individually controlled according to a distributed algo-
rithin. Switch control signals are generated by neighboring logic whose inputs are originated from similar control logic
associated with four next- neighbor processors. The reconfiguration algorithm is successful as long as the number of
faults is not very close to the number of spares and, otherwise, the success rate decays as the number of faults increase.

In an FTPA using the TMR approach, each processor is triplicated and its outputs are voted, This corresponds to a
static form of redundancy and there is no reconfiguration. Therefore, the only extra hardware added includes the voting
logic and the minimal wiring required to link it to three processors. This "naive" TMR approach is not to be confused
with the more elaborate approach proposed in .

A precise estimate of the areas required by FTPA's is possible only if their designs are carried to completion. How-
ever, the conclusions of this section do not. depend on extremely accurate area estimates because relative rather than
absolute information about area is sought. In particular, it is the goal of this section to illustrate (a) how the reliability
of each FTPA design varies with the array size and the number of spares used and (b) how the reliability of different
FTPA designs compare with each other for different array sizes. Thus, it suffices to guarantee that the rules and assump-
tions used to estuiatv area are consistent across different FTPA designs and capture the variation of reliability with
array size and number of spares. "lhrse riles arId :assurrrptions are described next.

The unit of the area is defined as the area of a PE, i.e., Ap(n,k) = n24-k = total number of PE's in the FTPA. The
ltc

total area taken by links is AI(n,k) = aI _li, wlhre n, is the number of links, Ii is the length of the ith link and a, is the

area of a link with unit length (aj can also be thought of as the wire width.) The length of the links depends on the S
geometry of the FTPA layout. Assuming that PR's correspond to points in the Cartesian plane, the length of a wire is
assumed to be the Manhattan distance between the source. and destination of the wire. The total area taken by switches

is A, as  inixout i where n, is the number of switches, in and out i correspond to the fan-in and fan-out of the ith
it

switch, rrspe'tive.ly, and a, is Ow arhe a of switch for which r ii - itu - I.

The area taken by control circuitry consists of the area taken by the logic that generates the control signals and the
area taken by the links that propagate those signals. In the case of locally generated control signals the area taken by
links is assumeed to he zero. Also, it, is assumed that the area of the logic necessary to control a switch is proportional to

the size of the switch. rhen, A, A,,a + Aa 101 .,1 , where Acjr ,jI = ac inixouti, nc is the number of the switches with

local control and a is the area of the smallhst logic element (e.g., a lx1 switch in which case ac = a,), and

Aglohli = (acyinixouti -- alxl,,), where n, is th. niiber of global signals, ini aiid out i correspond to the fan-in and

fan-out of the switches controlled by the ith global control signal and I, is the length of the wire used to propagate that
signal.

Several area estimates were derived-for F'ITA's using CR, 1)1, CFS and TMR approaches, assuming different values
for al a, arid a, and using different assumptions about the geometry of the layout. These area estimates and equation
(2.3) wi.re ,r,,r to oht a in reliahilith vetiriates n-r'iingr different values for rr, - rp, rr,, r,, r,, and r, These estimates were
then piot iel as firn.ions of the rinuimlber of spares k n d as functions of the nuni1iiber it2 of processors in the logical array.
Figures 1. 2 show soine of these curves and addilional ones are reported in 24. Two general conclusions resulted from these
studies:

(I) as predicted by the analysis done in section 2, the overall reliability of an FTPA increases as the number of spares %
increases up to a certain numnber and then starts to decrease due to the reliability of non-redundant hardware; this is
clearly illustrated in Figure I where the reliabilities of the fault-tolerant and fault-intolerant areas (Rft and R, %
respectively) for an FTPA using the C11 approach are plotted as function of the number of spare columns; in this %
particular example, the FTPA reliability (i.e., the product of h1t and R5 ) shows no improvement as the number of
spare columns is increased beyond 29 because lr, decreases faster than Rrn increases after this value:

(2) The choice of an FTI'A design with the erst reliability depends on the size of the array, on the number of spares and P.
other technological paraneters (rfi, rp, a, a, etc.); in other words, FTPA's of different size May require different
design approaches in order to achieve maxinral reliability with a given technology, number of spares and layout
geometry; this is illustrated in Figure 2 where. CFS and l approaches may or may not provide better reliability
depending on the array size.

4. MULTI-LEVET FTPA'S

The basic idea behind the design of a inilti-level FTI'A is best explained if the particular case of a bi-level FTPA is ;
considered first. A bi-level !7'J., consists of a fault tolerant array of FTPA's. In other words, the full array is parti- e

1,ioned inrto subarrays and can be thought of as ,it array of subarrays. Both the subarrays and the array of subarrays use
sotic fault-tolerance scheme. The siuharrays nre. hereon denoted as fat-evel J'TI''s and the array of subarrays is
referred to as the
Pnd-level IT 'A. A 2nd-level F'rPA can be th,,uicht of as arn lTI'PA where the basic modules are themselves FTPA's and, S

physically, it is fhe same as the hi-levvl FTI'.,\. The exteisiron to inulti-level ITI'A's easily made by realizing that an n-
level T'A corsists of an vT'VA whse basi,, muuteui are (ri-I)-hcvel /"TPA's which are /'T'A's cotrlosed of (n-2)-level
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FFTPA's, etc. For convenience of p~resenitationl, lu-level arrnyq nre iassumed herpori and, unless stated iii lerwise, thfe bici
d nd results apply to multi-level arrays as well.

When faults occur in a hi-level array, reconfiguration is first attempted at the 1st-level FTPA's, and, when
reconfigu ration fails at the 1st-level, then reconliguration at the 2nd-level FTPA is attempted. Inti-itively. hi-level
FTPA's can be expected to have better reliability than single-level YTPA'9 for two reasons: (1) the area of noni-
redundant (fault-initolerant) hardware in hi-level F-TA's is Sm-aller than that in singlef level FTPAi's and (2) the size of

arrays ani the reconfiguration approach used at earlh level can bev chosen so that optimnal reliahility results, t lois avoiding
the inevitable reliability degradation that arrswlreo thle size if single-level a rra yr grows too la-rge-.

Reason (I) can be restated in differenit Lerrrrq in order to provide additional insight. One can think of the striicture
of "extra hardware" (non-redundant hardware, e.g., switches and control logic) in single-level FTPlA's as a Series "success"
diagram231 where individual extra hard ware ele~ments crreisponid to the iradiles oif the' dia gra or (not to hte 'oii fscd %it iv
the FITA miodules.) fIn this tv (if serial St io-I ire, ai failre in a single mioiiil irliplies failure of the complete Systein.
DO the (fiter hanl, the stritctire of Oiw extrnr tImri-,rr 41n irrilt i-level FVli is ;tich that fte correSpondling slrcrfs
diagram is a series-parallel diagramn withI as ina InY si 'ges as there aire levels ii tilie ouilti-level FTllA. ( l-arty, the failure
of any fmodnule riow resuilts in fte failuire of It, -4o sinftei ri-iahility paths 2' ht riot. ier-essarily n lol al f:uillire. Io ri:
tion to reason (2) above, the advanrtage of being able toi choose the Size anid fal t- tolerance nietlio' uised at ercli lev-l is
that it becomes possible to uise tile best fanilt-teleranco method for a given Size of array or, given te atiod, firndi ftr
array size which is the best, or hothi. In othter wkords, thre d'pvendu'nCv on array size. diScussed in svcthrr' I a riri-t ~ u

tage or single-level FTrPA's, can be ndvanagoirshy exploited in echli level of mrilti-levl I"'TA's,

Having realized the potential henrefits of irrriti-level 1FTPlA 5, froin an engineering point of view, it is essential to fira
a systematic and Formal approach to the design 0hese systerils so to Optinize thre reliability of tlbe overall F'l'IA 'lTrs
approach is described in the remnainder of this paipor.

5. OPTIMAL l31-LEiET._TPA'S

For the purposes of this section, it is crmvenlierrr to refer to the reliability of an FT1lA as given by (2.3) as an explicit
function not only or n arid k hut also of r <- cf, Lt teszorhIs-el an 'iv A ,s lie Tr1'201 ) Ik, ;,rd

(n2yn 2) + k,, respectively. Here, ki arid k2 correspond to thre irritrher of spare proees-,ors in tire 1st-lvel FTl'A air'1 tire

nonhrof ,.ie s-lev.* FTiAv in t(,- hyr-If %0 i'A, -inid i-air ie v'x-r-il - friritiorr of n, arnd rr,, re-iir fr-,
Also, the winrrirr of processuors iii tlir bi level arraY is (i- t) I k wrvr n - nt it, Ir nd k --- ir n7 1k,2 (11, kj). 'Ilii r-
ability of the hi-level FTPA is essenrtially tire relia Iilit y of thre Fnllee l-''A, I-.1?, =-R (n2.k?,!?, r here 1 r is t lie rehIi-
ability of one, 1st-level FTPA, i e., Pf 1 H (nikir,). Ia order tor findl tire valueq 4f n,~ arid !12 fri wich I?, is urplivi itfi

A necessary to solve ftre equiationi

dH :l l2  in. r ), )k.,(

Once the solIntion n; is obtained, n Canl he fain rd h)eea. n ; 1 ii s t Srirneld to ire knonr. I lirfort rirt fil% , for sent tie liit,-

plest hi-level FTPA design, erratiorr (5.1) is very lIrard tor solve. An examplei 01ist ra1ting tire 'opsiii fii
aipproach for a simple case is, disrnisse in -1. i rder to deal Nsith t1Iri problemr a Tire' anpriro.'rll 11 iiroprd lier, -li-i
uses very goodl frinclional apprixirrat iows of III arid ll2 111"t ireltauelet-

The type of frnction chosen to aipproxirniate H, as a frnirtion of it, is the wepll known Wnibrill reliability fuinction, i.e. %

where (k n 3aera oiierntnqwwevalue depenrds On, amnong other characteristics of lie FTPA, thre

reconfiguration method used. With this type of rrpproxitnatiori it has been possible to approximtate withl negligible errors%
all the reiblt siae icvsdi eto hthv enat~p ofr hl ti o ayt hwanralyti-

clythat R, (given by equation 2.3) carl always 1e approxilnateri Iry a \%eibnrll function, tire geireral characteristics orftire
curves obtained for R, and tire expe'rience gained so far indicate t hat it is highly like-ly that this ig possibleC in general". -

- ~~Thc approximation used for H,2 as a fir etio er n i,7 I- niore inrvol veid thr that vised for I? r as a fuiri ac f m in Ti 'hr is I

because R, is approximlated as af fitictinr Cor n, loire (t ir remrainfing variables are ftinc tions of ril or ixeil while 1 2 nilist
-be approximated as a frinctiin oif i, andl Rl (Ien-aii, for thIr 2rrilevvl FTlPA, r,,-I?1 ik - fuinctionr o1 n,2  nl/n). F romi

(2.2) andl (2.3) it. results that It, can lie exprv-sr- i s

where

'11w foror Of the a pproximration frinct ion for (T).1) l iso ~o-err rliuseir to ire flhrnt of a Weibril reliabuilityv firtinction ,

ON % V .% % %
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1? fi( 2 k 2 ) *. rn ' e(n re;L . (5.6)

where a' and b are some positive real constants, and a =(In ri)-a'. From (5.4) and (5.6), it is clear that this amounts to
approximating Ag(n2 k2) by a-n b, i.e., the area of frtilt-intolerant hardware is assumed to grow proportionally with some
power of the number of processors in the array. Stich an -approximation may not suffice when Afl(n2,k2) varies in a more
complicated way. Hlowever, in the worst case, it can always he ap~proximuatedl by a polynomial expression on n, in which
case R5i(n2 k2) would be approximated by a product of Weihull functions. However, experience shows that (5.6) provides
rather good approximations and is assumned hereon,.

The approximation used for Rrt(n 2,k:,1lY)a function of 112 and Itt (the k2 used here is a function of n2) is also in
the form of a Weibull function, i.e.,

Rrt(n 2,k2,1?,) = Rtlr(' 2,Rl) -- C'_ -. " n"~ (5.7)
where u, v and w are positive real constants. In ordjr to justify (5.7), consider the expression of Rrt(n2,k 2,Rl) as a func-
tion of time for fixed n2, k2 and 111, i.e., Rrt(t) , v " for some positive real constants X, 65 . This is a commonly adopted
Weibull app~roximnation to the reliability of a systemn as a function of time. Similarly, consider the expression of R3 as a
function of Lttle as Itl (t) e e for soin positive reaIl conistant f. and /-. 'It(, vakri.%ble t cal, he. exjre'isei as a functioln

of R, and replaced in the expression of Rrt(t) to obtain Rft(n 2,k2,Ri) as a function of R, as

and, since lRft(n 2,k2,Ri) depends on n2 according to another Weibiill function (just as R, depends on ni), it results that

for some poitive real constants x and y. Substituting the expression (5.8) for Rrt(R1 ) in (5.9) and letting u 611
v =\xj#and w =y yields (5.7).

In summiary, the approximation used for (5.3) is

1?2 -_e -J e * (.0

Since um, =-~ n/n 2 , and letting v -n'~ (5.2) ran be rewritten as
R,'

Replacing R, in (5. 10) according to (5.11) yields I*

Equation (5.1) can now be solved, i.e.,

dR 2  b-1 Pu(Z~ n') b_
d n2 = Ia-bn 2  + -~ v(w - ~ flu)n~ +1 -0 e 0 (5.13)

dn 2

---1 ".v ~~w u) . 0 (5.14)N

A sufficient and necessary condition for the existence of a real positive solution to (5.14) is that

w - 1
3

u i < 0 (.5

If there exiqtsq no real positive Solution to (5.14) then there is no bi-level FTPA (using some fixed fault-tolerant schemes in
each level) with better reliability than a single-level schemne lsing one of the fault-tolerant schemes used in the 1st and
2nd-level arriys. Equation (5.14) can he rewritten as

and letting 0f w - .?u and 6 '~v./a) the qsolution is

n - (5.17)

Substituting (5.17) in (5.12) yields the expression for the manximnum reliability attainable with a hi-level F TPA using two
given fault-tolerance schemes as

ll~ ~ a A'"' d 6d(h #)I 5.8

In rde toverfythe potential gains in reliability of ui-eve "Tm-A's several cases studies were undertaken. As an
example, one of these studies lookrd at the problem of designing a logical (36,,36) processor array (i.e., the number
(36.36) does not include spares). If was decided that the simiple CR approach would be used for 1st-level FTPA's while ..
the I scheine would be us-ed for the 2nd-level Vl'l'. in order to tnaximize utilizition of spare 1st-level FTPA's. For both
CHl and DI1 schemes a column of spnre prcs~r is ivusel. The a rca arnd reliability estirruatve were couruptted for hot h thv
CI? and I )1 mthlods and the rlialuilities for each of t he levelq 'N rr a1pproxina ted as

-16 LIU i.



R2 P t (5. 20)

The following parameter values were used - r f = 0.09, a, =-a., = 1/800 and a, = 1/400. The values or the variables

in (5.17) are 0 -11.24, b -1.26, 1)cz .14,11,10 and the optimal value Of n2 is n2 5.3 5.Thsndatstt

n, 36/5 = 7.2 7. Since the targeted array has t size of (36.,36), i.e. n -36, and since it F nit =1 315, one calli

decide to build ai slightly smaller array using thle extra processors; as spares or change n; 6 and n; .R When n;, 7

and n; = 5 the actual physical array (ieincluding spares) contains 1690 processors, i.e., a redundancy factor of 1217.

When It, = 6 and n; = 6 there are 1764 processors, i.e., ai redutndiancy factor of 1.36. The reliability for the last case is
0.75, where for a single-level array using thle D)1 'lft-roarbl or the ('1 a pproach with the same retllundfl nrY ratio the relia-
bilities are 0.08 and 0.31 respectively.

6. CONCLUSIONS.

Several important related conclusions can he mlade fromt the wvork reportedl ill this paper. First, it has been shown
that non-reduindant hardware ind extra logic ridded for fault.-tolerant purposes do limit the usefulness of single-level
FTPA'q above a. certain size. A second conclhision~ is that, based oil reliability est iiatc.s for different types of FTl'A's for
different array sizes and different area. arid technology paramncters, there is not a sirugk, type of FTPA which is universally
optimal. lIn other words, FTPA's based on different fanllt-toleranCe meIthods art, optimal for different, array sizes for a
given technology. A third conclusqion is, that liltlti-level lF'1A 's do niot stiffer from the( disadvantage pointed -lirt in the
first conclusion for single-level FTPA's anid cant take advanitage of I hc fact. pointcd out in the second ecullsion - thle itt
result being a. highly reliable P'IP.

To achieve the third conclusion irienitionled abhove, thle prolemv of designing opti boa I hi-level ['I'PA's was addressed
and a methodology for its solution has been duscribed. Thle key tot this miethlodlology is the, realization thlat., bly i'lillg

accurate functional approximations of the reliability or F"TP-A's at different levels, the complexity of the exact analytical
expressions is avoided. These approximnations are based] on Weviblull reliability func-tiorls.

-~ The work reported in this paper re~presenOR significant. prtlgress towards a t henry and soltutions for vTI'A desiqn.
Hlowever, it also opens a very large numbller of quti ions which relate to bow better area and reliability estimates can he
obtained, variations of the optimization criteria (e.g. compound nipastires of performance, area and reliability) subject to
other constraints (e.g. fixed reduindancy ratio), extension to moilt i-level F'1'l A' imprl'riutiryatm,io tte developntwint of
tools, etc. It is our belief that. the framework prv-i'nted in this paper provides the basis and some ingred inkI for a son ;d
theory that might lead to the sohil ion of these new prolins. Wonrk in this directio nis nlow inl progress.
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a, =0.02. Figure 1. The reliability R(40,k) of an array using

Z rfi=rL=099,ac ,t,=0. 1, the CR1-method is the product or )?f(40.) and
Arfi(,1) l fd,k); it decreases with k for k/40>28.

0 20 40
Spare Columns (k/40)

rj1 =r, =0.95, a, =a, -tl.25x 10 ~
n1---5.0xl0.

TIMI? 2 'igtire 2. The reliability of' different single-level
k=2n2  ~FTlPA's schemes with (nxn)+lk processors; different ff.

1) 1 approaches are optimal for different values of n and
k2n low reliability resuilts for large arrays.-*.
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Current Architectures and a Tool for the Design and Programming " 1

of Bit Level Processor Arrays

-I

Jose A. B. Fortes and Matthew T. 0 'Keefe

School of Electrical Engineering a- N.
Purdue Univerasu g'

West Lafayette, Indiana 4 7907

Extended Abstract ..,.

This paper surveys current bit level processor array architectures and describes a..

tool for designing and programming these arrays. The survey emphasizes arrays IN

that have been implemented rather than proposed architectures. The essential -. '

features shared by these arrays, and those that differentiate them are characterized ".-

the paper discusses programming tools, with an emphasis on RA, a large program e .

used to map a class of algorithms written in 'C' onto bit level processor arrays. The •
basic components and extensions to R.AB are discussed, along with examples which -"'

include the mapping of arithmetic, numeric and neural network algorithms onto
processor arrays. Directions for future research and design of bit-level processor '"'

array architectures and their programming environments are also discussed. '''

"This work was supported in part by the National Science Foundation under Grant DMC-8419745 and in part by ...
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the Offce of NaEal Research under contract no. 00014-85-k-0588

Thispapr srvey curen bitlevl pocesor rra arciteturs an decries%
too fo deinn an prgamn ths ars Th% uvyephszsary



- - -- - --- p '
-

I. Introduction

The rapid pace of innovation in VLSI has provided an implementation medium for highly
parallel computer architectures. To fully realize the tremendous computing power of VLSI
technology requires that its characteristics, often subtle and complex, be understood. First, the %
design complexity introduced by the increasing chip size and density calls for architectures

composed of repetitive, modular structures. Second, interconnections between devices consume

more power and require more area than the devices (transistors) themselves. Third, the
computing environment offered by VLSI is I/O-bound, not compute-bound, due to the limited

number of I/O pins available in comparison to logic gates. These considerations have led to
the development of highly parallel bit level processor arrays, which are distinguished by their ,.'...'

communication strategy - digital signals are transmitted bit sequentially on single wires as
opposed to simultaneous transmission on parallel busses - and their large number of simple 1- Nr
bit word processing elements (PEs). This leads to efficient communication both internally and
between chips and provides a high degree of parallelism. The regular, repeatable structures -
inherent in bit level arrays have the following advantages over other structures implemented p
using VLSI:

(a) design complexity is reduced, an important feature as VLSI densities reach millions

of transistors per chip;
(b) several techniques for introducing fault-tolerance into such structures are available, " .

and this aspect is particularly important in wafer scale integration implementations;

(c) functional verification of the design is simpler;

(d) high packing densities are possible as the chip designer can concentrate on
optimizing a single cell which is then repeated, as is done in memory circuits;

(e) the arrays are scalable to higher VLSI densities and can be pipelined to the bit level.-

to provide very high throughput rates;

(f) measures of active resources, i.e., the percentage of logic gates and memory involved

in a computation, favor large bit level arrays and indicate that they have the potential ..

for very large throughput.

The advantages from an algorithmic standpoint, resulting from the flexibility at the bit level, S

include:

(a) using symmetries and optimizations that are possible at the bit level to reduce
computation time, e.g., squaring can take one-half the time necessary for

multiplication;

(b) the precision used in the array can be matched to that necessary for a particular

computation;
(c) some of the more flexible processor arrays can change the level of parallelism

available to match the parallelism contained in an algorithm.

% % % ve~t '% ii
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H. Current Architectures

Bit level processor arrays are characterized by a set of four features:

* the basic building blocks are simple, modular, and repeatable processing elements
that can be placed in large numbers on a single VLSI chip

" computation and communication are performed at the bit level

" SIMD (single instruction multiple data) control, with some variations, is used reduce
the complexity of control for these very large arrays and amortize the expensive
control hardware over many PEs

the dominating feature of these arrays is potentially massive concurrency realized

through VLSI architectures.

Within the context of these features, we will discuss five classes of bit level arrays and S -

architectures representative of each class. These five classes, shown in Table 1 with
representative systems, are: ._

1) systolic arrays; ,

2) image processing arrays;
3) reconfigurable, or adaptive, arrays;
4) associative processing arrays;
5) high level network arrays.

Bit level systolic arrays have been developed to perform several digital signal processing
tasks, including convolution and correlation, rank-order filtering, and the Discrete Fourier
Transform (DFT) (1]. Several of these chips are now sold as commercial products. These
arrays are specialized to perform one particular algorithm, and each processing element is .

optimized for the particular algorithm being implemented. This fact, along with the systolic
concepts of extensive pipelining and local communication applied down to the bit level yield
extremely fast clock speeds, as the clock cycle time is reduced to that of the bit level
processing element.

liage processig arrays include the .. %PP chip (2], Goodyear Aerospace WPP [31,
GEC GRID chip [4), and the University Co' -. London CLIP [5]. These bit level arrays are
oriented towards image processing as air primary application, and have special image -

manipulation features in hardware suc. as data reformatting buffers, bit plane 1/O, and
processing elements optimized for certai. image transformations. PAPIA [6] is a processor

array using a pyramid architecture to rea se multiresolution pipelined image processing; each

PE in PAPIA operates at the bit level, and has connections to 4 PEs (sons) on a lower plane
and a singe PE (father) in a higher plane.

--rp

%*.
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Reconfieurable arrays have the ability to adapt to the different degrees of concurrency

available for different algorithms and within the same algorithm. Bit level processor arrays
representative of this clas include the ICL DAP [7], NTT's A.AP chip [8], and the University
of Southampton RPA [9]. In the latter two arrays, part of the microcode word is held locally '.5

within each PE, allowing some degree of independence in both computation and in
communication with other PEs.

Associative processing arrays include the Brunel University SCAPE [10] and the Airborne
Associative Processor (ASPRO) [3], a VLSI version of the STARAN associative processor [11].
The salient feature of these processors is a content-addressable memory that is used to
perform bit level operations in parallel. These arrays are particularly adept at fast and
efficient searching.

High level network arrays have the same basic architecture as other bit level processor 0
arrays, but in addition to a nearest neighbor network these arrays will have, for example, a
hypercube, cube connected cycles, or multistage cube interconnection network. These high
level networks provide high bandwidth communication paths between non-neighbor processing .
elements, a requirement for many algorithms. Examples of this clas include the Connection

Machine [12] (hypercube), the DEC Massively Parallel Architecture [13] (multistage cube), and
the Boolean Vector Machine [14] (cube connected cycles).

Future architectures could combine the features of reconfigurable arrays with high level
networks to provide arrays with varying degrees of parallelism and flexible communication.
This approach holds the promise of efficiently mapping a broader clas of algorithms onto
these arrays.

A more comprehensive survey and elaborate taxonomy will appear in the final paper.

Bit Level Processor Arrays _e

Systolic Image Processing Reconlgurable Associative Processing High Level Network

OFT GAFP AAP SCAPE DEC WPA \.

Rank-Order Filter MPP RPA ASPRO Connection Machine

Convolution Grid DAP Boolean Vector Machine -,

C'-A-

PAPIA -%

Table 1

'A-'-

0
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Mfi. Progarmrning and Design Tools

Despite the advantages of bit level processor arrays in both VLSI implementation and
algorithm execution, they can be difficult to program (in the case of an existing general -

purpose architecture) or design (in the case of a special purpose architecture). This problem is

accentuated by the need to implement high level computations (e.g., matrix computations,
convolution) using bitwise operations. For the architectures described previously, several

approaches to this problem have been used. These include:

* subroutine libraries accessed through a standard high-level language which have been %

optimized for a particular architecture

* parallel languages, which are often architecture or machine dependent

o microcoded routines to handle standard word level operations in a general way,
without using bit level symmetries or optimizations.

These approaches lack portability among different machines and sometimes :gnore
optimizations possible at the bit level. It is often difficult to prove the optimality of a given :PIP
mapping using these methods. In order to solve the problems associated with current
approaches, it is desirable to develop methodologies and tools which enable the systemacic

mapping of algorithms onto processor arrays. In the past, several research efforts have been

pursued in this direction and a good survey can be found in [151. Many of these methodologies,
which were intended for word level processor arrays, are applicable to bit level arrays.

However, besides some of the limitations that still characterize those methodologies,
systematic bit level designs present additional problems. RAB (Reconfiguration Algorithm for
Bit level code), an automated design tool which maps a class of algorithms programmed in 'C'

into bit level arrays, represents an attempt to understand and solve the open questions and ".':,.i-,

problems involved in the systematic design of bit level processor arrays.

In practice, potential users of processor arrays are given an algorithm and must devise 0
means for its execution using one of the following options: (1) use an existing processor array,
(2) design a special purpose processor array, or (3) design an array that uses a number of
existing small processor array modules as the basic components. Option (1) requires mapping
the algorithm into an existing array taking into consideration size limitations, fixed
interconnection schemes, and predesigned processing elements. In this option, which we refer

to as full mapping, the programming decisions are subordinated to the characteristics of the
array. Option (2) allows the user to design the hardware taking into consideration only the

characteristics of the algorithm and perhaps some rather general VLSI design constraints (i.e.,
planarity, limited pinout, etc). This option is referred to as full design. It corresponds to the

front end of a silicon compiler, and could provide the structural and behavioral description of ..

an array to the placement and layout tools of the silicon compiler. Option (3) is a compromise
between full mapping and full design, where the designer can decide the overall organization

(i.e., shape, size, interfaces) of the array, but uses given basic blocks which are themselves fully
defined "small" processor arrays. We refer to this option as partial mapping/design.

% %.

% %" % %

. . . ,
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The input to RAB consists of C programs which describe word level algorithms. These

algorithms correspond to nested for loops with static behavior. RAB first expands the

computations in th. input program into bit level operations as shown in Figure 1. This ,

expansion phase replaces word level computations with a bit level implementation of the

arithmetic operations using a library of macro expansions. This phase is followed by data

dependence and broadcast analysis using the Dependence Arc Set Analysis technique [16]. The

result of this analysis is a formal description of the internal structure of the bit level

algorithm. This structural information is used to generate an algorithm transformation which
yields a restructured algorithm suitable for mapping onto a bit level processor array. The

mapping may be a full design of an algorithmically defined array or full (partial) mapping for

a fixed (variable) size array corresponding to the fourth level of modules in Figure 1. The 4Z

transformed algorithm structure is then converted into an intermediate representation which

can used to generate code for several different architectures. The last two modules in Figure

1, code generation and code optimization, comprise the phase in which code is generated from

the intermediate representation for a particular target architecture. This code is then

optimized using a standard compaction technique. RA.B has been applied to numerical,

arithmetic and neural network algorithms.

IV. Summary '.

Thi. paper describes bit level processor arrays and the characteristics that make them

ideal for VLSI and high speed computations. It presents a taxonomy for current bit level

arrays that provides different perspectives on this class of architectures. The design and ,

programming problem is addressed, and an automated design tool, RA.B, is presented as a
solution to some of these problems. RAB has the twin advantages of portability among .

different architectures and systematic optimization techniques down to the bit level. CA
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