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1. INTRODUCTION

This is the final report for the project entitled "Computer
Tomography and Hybrid Optical/Digital Methods for Aerodynamic
Measurements" sponsored in the Department of Mechanical
Engineering and Applied Mechanics at The University of Michigan
b the Army Research Office during the period 1 January 1984

chrough 31 August 1987.

2. PROBLEM STATEMENT

During this program of research we have explored several
topics dealing with the use of hybrid optical/digital methods for
recording, visualizing and measuring complex flow fields. The
ultimate intent of this research was to develop a system based on
digital holographic interferometry and computer tomography to
determine the distribution of density in the cross section of
complex three-dimensional aerodynamic flows. We have been
successful in this endeavor.

Our work had three basic components. The first was the
development of a hybrid system to record interferometric data for
subsequent tomographic analysis. This system used digital
holographic interferometry (also known as quasi-heterodyne
holographic interferometry or discrete phase-step holographic
interferometry). The system had to be capable of recording the
data with a pulsed laser, had to record data for a large number
of different viewing directions simultaneously and had to be

interpretable in a relatively automated manner.
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;3: The second component of our work dealt with development of
.f reliable methods for tomographic reconstruction of flows which

g: give rise to significant refraction, or ray bending, of the laser
r: light used to probe the flow. Ordinary computer tomography is

% based on algorithms which assume that probing rays are straight
fh lines. 1In flows containing shocks or other steep gradients this
;ﬁ assumption is not valid because the consequent variation of

:j refractive index causes the probing rays to bend. The resulting
:: problem of tomographic reconstruction is both nonlinear and ill-
3' determined. A thorough study of both the optical and

12 computational aspects of this problem was conducted and the

':; techniques developed were compared in detail with previously

Eé developed methods appropriately modified to apply to aerodynamic
5: measurements.

'3{ The third component of our research was the establishment of
E% an appropriate computer tomography code for the analysis of

;T complex flow data. Although the literature of computer

&3 tomography is extensive, exisiting codes did not appear to be

Eg satisfactory for our purposes. Therefore we set out to develop a
:; new technique for iterative reconstruction of such fields.

is Physical experiments were planned and carried out using a

é? turbulent free jet of helium as the test flow. Although not

'3 originally anticipated, digital holographic interferometry turned
;§ out to form the basis of a useful new flow visualization system.
:; This avenue of research was also explored and reported.

o
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3. SUMMARY OF IMPORTANT RESULTS

In this section we outline the key results obtained during
the research program. In most cases the results have been fully
documented in journal articles, which are referenced in the text

of this report.

3.1 Digital Holographic Interferometry

3.1.1 System Description

Digital interferometry is a recently developed hybrid
optical-digital metrology technique combining two-exposure
holographic interferometry with digital image acquisition and
computer processing to determine the interferometric phase
directly from a set of image irradiance measurements. The
technique is similar to heterodyne holographic interferometry in
that both manipulate the interferograms phase in a known manner
to determine its magnitude. Because this technique requires only
the recording of a sequence of irradiance values of each pixel in
an image grid, it is particularly well suited to recording by
vidicon or photodiode arrays and processing by digital computer.
It bypasses many of the problems associated with analysis of
interferometric fringe patterns and readily yields the sign as
well as magnitude of phase shifts.

In this type of interferometry, a two exposure holographic
interferogram is recorded. One exposure is made of the flow of
interest and a second exposure is made with the fluid quiescent.
Physically different reference waves are used for each of the two

holographic recordings. At the time of reconstruction, the phase

of one of these waves is changed by a known amount. Such

Ve

-

Vo d

ey
e

-
>

“.--

P L

ALY F,
WRNCEIY

¥

o, }.-_A‘

-

1

Lo JA Yl ol ol i s SN 8
AR

-
B

LI T T T i A AN

£ _KE_3
5
)

. s

[ .‘. S

[
PCPUPLIT M AT S

A NI A
AP

bR IA4
o




W E W S W -

o - - PR Ty vy ey ™
1 flatafty” aiaole DRy QAL fUa i) ) p : & Aal ot An" et Sl s S a i AN

discrete phase changes are made at least three times and the
consequent change of irradiance of each pixel of the image is
recorded. Elementary mathematical manipulation enables one to
calculate the unknown phase shift (optical pathlength change)
caused by the flow at each image point. More than three
measurements can be made thereby providing computational
redundancy and supressing some errors. The usual complicated
fringe counting procedure is replaced by a simple, computational
sorting operation.

In this research our ultimate objective was to make
tomographic measurements of a turbulent jet; therefore, our
system needed to instantaneously record interferograms
corresponding to several different viewing directions. oOur
system was based on the use of a pulsed ruby laser. 1In the
course of the experimentation it became clear that this laser
needed to be modified in order to perform satisfactorily. A
temperature-stabilized intracavity etalon was installed and
thereafter the laser produced sufficient coherence and mode
structure to perform the experiments.

The test section was a rectangular area through the center
of which a free helium jet flowed. In order to maximize the
number of viewing angles available, two sides of this rectangular
test section were glassed difusers illuminated from behind by the
pulsed laser. The other two walls of the rectangle held glass
photographic plates on which the holograms were recorded. 1In
order to get these holograms as close as possible to the jet
thereby maximizing the solid angle of view available one of these
holograms was a traditional transmission hologram while the other

4
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was a reflection hologram. A reflection hologram is one in which
the reference wave and object wave enter opposite sides of the
holographic plate and the holographically reconstructed object
wave is formed by reflection from the developed plate rather than
by transmission. The development of this system required a
significant amount of experimentation with reflection holograms.
A variety of chemical processing techniques for development and
bleaching of reflection holograms was tried and comparatively
evaluateqd.

A reconstruction system using a helium-neon laser was
constructed on a separate optical table. This system included a
mirror mounted on a piezo-electric crystal with a feedback
control system for varying the phase by known amounts and holding
that phase stable during the reconstruction process. Irradiance
data were recorded using a high quality Cohu video camera.
Digitized images recorded in this manner were stored in a local
LSI 11/23 microcomputer which was also used to analyze the phase
shifts and to display computed images. Tomographic
reconstructions were carried out either on The University of
Michigan’s mainframe IBM 3090 computer or on an Apollo computer
workstation.

This basic system and technique is described in more detail
in a paper entitled "Digital Interferometry for Flow
Visualization" which is included in the appendix of this report
and will be more fully described in a journal article currently

in preparation.
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3.1.2 Flow Visualization

An interesting and very useful sidelight of the research
program was the development of a flow visualization technique
based on digital holographic interferometry. Recall that the
optical pathlength change, or phase shift, at each point in the

' image of the flow is a computed value. This 1s different than
ordinary interferometry which directly results in an analog

; interference fringe pattern. It therefore is possible to display
results in a number of ways. Ordinarily, one would display
contours of constant phase shift, that is calculate an

interferogram. However, if one displays a simple gray scale

image, for example setting a value of zero to the largest phase

e %5 " T e
. ]
B PR

! shift occurring and a value of one to an undisturbed region of

s

the flow, a remarkably clear visualization of the flow can be

£

displayed. Such images are very similar in appearance to images E

. <
y formed by techniques such as laser induced fluorescence. The .
. N
properties of such images are similar to traditional shadowgraphs ~

- 2 .
e

except they are sharply in focus in the object plane of the

P

camera used to record the image. Such images may be particularly
useful for relatively weak flows, because the digital f
interferometric system is very accurate and can be used to record Eﬁ
images that would result in less than a single fringe in an }:

ordinary interferogram. This technique is recorded briefly in a

L
| paper in the appendix to this report as well as in the PhD thesis ;E
X of David W. Watt, and will also appear in a journal article S%
: currently under preparation. ii
. ) i
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3.2 Tomographic Code: Consistent Iterative Convolution

In the current study we attempted to compute cross sectional
images of a turbulent helium jet. This flow is relatively
complex and requires a considerably greater amount of data than
have been used for previous reconstructions in this laboratory.
The question of how best to effect the tomographic reconstruction
is not a simple one and was investigated in some detail during
this research. We settled on the use of iterative convolution.
This means that the fundamental reconstruction technique is the
classical convolution algorithm. However, this algorithm assumes
that experimental data are available for a full set of equally
spaced viewing directions distributed over 180 degrees. This
requirement could not be met in the experimental set up developed
for this research, nor is it likely to be in most fluid dynamic
experiments. Hence we developed an iterative technique in which
the missing data are effectively replaced computationally. Such
an iterative convolution technique was originally proposed by
this laboratory under a previous ARO contract. However, the
basic iterative convolution technique was not sufficiently
accurate to handle the complexity occuring in this experiment,
and its convergence properties were poor and poorly understood.

In order to analyze the data from this experiment we
extended our previous work by developing a technique of
constrained iteration between the estimated image of the flow
and its Radon transform. (The Radon transform is the appropriate
mathematical term for the set of line integrals of flow density
obtained interferometrically.) We found that for certain test
functions used to study this technique, the estimated image
7
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diverges from the actual function. This divergence was shown to

result from the algorithm’s failure to enforce consistency between

the image estimate and its measured Radon transform. Such
consistency in the new approach is enforced using a routine based
on the direct inversion formula and on decomposing the image into
its measured and missing components. This routine was used to
develop a new iterative algorithm which converges absolutely for
all test functions studied.

The consistent iterative convolution technique and its
behavior are described in detail in a journal article currently
under preparation and also in the doctoral thesis of David W.

watt.

3.3 Measurement of Turbulent Helium Jets

The total system for holographic recording, digital image
aquisition and processing, and tomographic reconstruction was
developed and studied by examining free helium jets in air. The
jets studied had Froude numbers varying from 160 to 37,500 and
Reynolds numbers varying from 250 to 1250.

Prior to conducting tomographic reconstructions, we examined
flow visualization images of several of the jets. These images
tended to confirm contentions previously appearing in literature
that such turbulent jets are organized into large scale motions
whose length scale is of the order of the local flow width. The
tomographic images of the cross sections of the jets clearly
confirm the presence of nearly unmixed ambient fluid within the
jet boundaries and indicated that these inclusions are

responsible for steep concentration gradients within the jet.
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These images also seem to show the presence of vortical motions g;
in the off-center jet regions which result in medium scale (half &”
the jet width or less) inclusions of ambient fluid. They also E:i
seem to confirm that the jet scalar field is divided into regions gE;

. of largely constant concentration. It must be recognized that we i?é
did not conduct a detailed study of this turbulent flow and that i§-
the system we have constructed can "freeze" the entire three- Eé-
dimensional flow field at an instant of time, but does not ﬁj
document the time dependent behavior of the jet. The images also :;ﬂ
are imperfect and contain certain experimental and EE
reconstructional artifacts. Some of these difficulties stem from Ei'
the fact that we used lasers of different frequencies for 5"
recording and reconstruction. Although we designed the setup to Eég
minimize apparent deformations caused by this wavelength shift, éf.
they are not eliminated entirely. Nonetheless, we consider these E;
experiments to be highly successful and to show the practicality Ez

.\“-
Y

of making instantaneously three-dimensional measurements in

VA

complex flows. :
-

N

3.4 Tomography of Strongly Refracting Flows xg
",

When strong density gradients occur within the flow field 2;

N
under examination, the probing optical rays may be significantly :ﬁ:
\":.
bent. In this case the well-known computer tomography ~
algorithms, which assume probing rays to be straight lines, are 3
not applicable. During this research program, we carried out ¥f
an extensive study of tomographic reconstruction in the presence ES
of such strong refraction. Related problems are somewhat better 4
I'\ (

Lt
explored in the context of acoustical and ultrasonic problems. i:r
")
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Distinct differences arise when optical problems are considered.
In this research we posed the problem in the optical context.
The resulting mathematical problem is highly nonlinear, and we
approached it by two iterative techniques and a perturbation
analysis.

The first procedure is called straight line inversion
with modified data (SLIM) and is based on previous work by Bates
and McKinnon and by Cha and Vest. This is essentially a method
of successive approximations in which an initial estimate of the
field is computed by ignoring the refraction effects and then
iteratively corrected by using computational ray tracing to
effectively calculate an interferogram which can be compared with
the measured data. The second iterative technique is refered to
as the curved ray algebraic inversion (CRAI). This is based on
earlier work of Johnson and of Schomberg. In this procedure the
current estimate of the index of refraction is used to generate a
system of algebraic equations where the unknowns are corrections
to this estimate at each pixel. In a sense it is a modified
version of the well-known ART procedure.

The third procedure studied was a perturbation approach
which does not involve iteration. Such an approach was orginally
developed for ultrasonic problems by Norton and Linzer. It
assumes that the index of refraction at each point varies only
slightly from its value in the surroundings and that the ray
tradjectory deviates very little from a straight line. We
modified the original analysis to properly represent data
acquisition by holographic interferometry including an imaging
system. This results in a very simple computation. We found

10
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that both the the SLIM and CRAI techniques tend to initially

converge to a more accurate estimated reconstruction and then
diverge. Through our study we gained some understanding of the
causes of this divergence. We also found that although the CRAI
approach is more difficult to implement and slower than SLIM, it
is to be preferred in that it generally produces less pronouned
divergence.

The primary conclusion drawn from this work, however, is
that under most circumstances the simple perturbation technique
performs admirably. Particularly in the case of aerodynamic
flows where strong divergence from straight optical paths is

usually small, this would appear to be the method of choice.
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preparation, 1987).

6. D. W. Watt and C. M. Vest, "Measurements of Turbulent Jets by

Digital Interferometry and Computer Tomography" (in preparation,
1987) .

4.2 Doctoral Dissertations

1. I. H. Lira, "Correcting for Refraction Effects in Holographic
Interferometry of Transparent Objects", Ph.D. Thesis, The
University of Michigan (1987).

2. D. W. Watt, "Turbulent Flow Field Visualization with Integral

Interferometric Imaging and Computed Tomography, Ph.D. Thesis,
The University of Michigan (1987).

4.3 Presentations at Technical Meetings

1. D. W. Watt and C. M. Vest, "Quasi-heterodyne holographic
interferometry for flow visualization", parer TUS7, 1985 Annual
Meeting of the Optical Society of America, Washington, D. C.,
December 1985.

2. I. H. Lira and C. M. Vest, "Tomography of mildly refracting
media by interferometry and perturbation analysis", paper TUSS6,
1985 Annual Meeting of the Optical Society of America,
Washington, D. C., 1985.

3. D. W. wWatt and C. M. Vest, "Digital interferometry for flow
visualization in the presence of gross periodic noise", paper
MW8, 1986 Annual Meeting of the Optical Society of America,
Seattle, WA, 1986.
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APPENDIX

This appendix contains copies of journal articles based on
this research which have been published to date. Two more
comprehensive articles are in preparation.
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Tomography for properties of materials that bend rays:

a tutorial

Charles M. Vest

When tamaography is performed with electromagnetic or acoustical radiation, refraction may cause sufficient
bending of the probing rays that ordinary reconstruction algorithms, which are based on the assumption of
straight rays, do not vield accurate results. The resulting problem of reconstructing the refractive-index
distribution of an object from time of flight or optical path length data is nonlinear. Various approaches to
solving this problem approximately have been proposed and subjected to modest numerical studies. These
include iterative algorithms and technigues based on linearized inverse scattering theory. One exception is
the case of axisymmetric objects for which an exact solution is known.

I. Introduction

The classical technique of computed tomography is
based on the assumption that the probing or emitted
rays of radiation are straight lines. This assumption
leads to the now well-known problem of reconstruction
of some density function from experimentally collect-
ed values of its line integrals. This problem is linear
and can be approached with the mathematics of the
Radon transform and associated techniques. Here we
are concerned with cases where the probing or emitted
rays are bent by refraction associated with gradients of
speed (refractive index) within the object. Hence the
density function must be reconstructed from mea-
sured values of path integrals along generally unknown
curved paths. This problem is inherently nonlinear
and is not generally associated with known mathemati-
cal transforms.

In this brief tutorial paper, I will discuss several
aspects of the problem of computed tomography of
objects that bend rays and will outline some of the
approaches which have been taken to reconstruct such
objects. These problems are associated primarily with
ultrasonic and optical tomography. In most applica-
tions of tomography using x rays and nuclear sources,
the wavelengths are too small for such phenomena to
be important. My use of the term rays in the title and

The author 1a with University of Michigan, Department of Me-
chanical Engineering & Applied Mechanics. Ann Arbor, Michigan
18109
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Sec. I displays a personal tendency to think about the
problem in terms of ray optics. Other approaches
summarized herein are based on wave theory and in-
verse scattering.

In applications to both ultrasonics and optics (or
other domains of electromagnetics), the objective usu-
ally is to reconstruct either the distribution of an at-
tenuation (or emission) coefficient or of refractive in-
dex. In the case of ultrasonics the measured data are
time of flight, intensity, or complex amplitude (real
amplitude and phase). In the case of optics the mea-
sured data are complex amplitude or intensity. The
intensity may in fact be a fringe pattern when the data
are gathered interferometrically.

Particularly in the case of ultrasonics, refraction
may cause secondary problems—if one is measuring
attenuation, refraction can cause divergence of the
beam as it travels from the transmitter to the receiver,
thereby giving rise to an apparent attenuation. Such
problems are compounded if the signal detection is
phase sensitive, because phase cancellation effects can
occur. Problems of this class have been studied by
several authors, and a variety of approximate correc-
tion schemes have been developed; see, for example,
Farreil,! Pan and Liu,? Klepper et al.,* and Itoh et al .4

Refractive effects can be distributed continuously
throughout the object volume, or they can be discrete,
as at an object boundary. Forexample, Eberhard® has
dealt with ultrasonic time-of-flight tomography for
nondestructive testing of turbine blades. To over-
come errors due to very strong bending of the rays at
the object boundary, he encapsulated the blade in a
rectangular block of material whose refractive index
nearlv matched that of the blade. Because of this
simple rectangular cross section, an algorithm could
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easily be developed to correct for the effects of refrac-
tion at its boundary.

In this paper, we are primarily concerned with re-
fractive effects that are distributed continuously
throughout the object. Data are assumed to be either
time of flight or optical path length.

l. Axisymmetric Objects: Reconstruction from Path
Length Data

It is useful to consider tomography based on optical
path length measurements of axisymmetric objects.
This case has an analytical solution under modestly
constrained conditions. It, therefore, gives insight
into the more general problem. Also, experience with
interferometry of axisymmetric objects shows the im-
portant role plaved by the physics of the data gather-
ing method. imaging in this case.

A typical ray traversing a cylindrical object with
axisymmetric refractive index distribution n(r) is
shown in Fig. 1. If refractive effects were negligible,
the rays through this object would be straight lines.
We then would measure the optical path length (line
integral) of all rays in a given direction. say parallel to
the v axis. This path length, which we denote as ¢(x),
is given by

"o f(rirdr

¢l1l=?] 2)1/2' (N

r (rP-x
which is an Abel integral of n(r). The inversion of Eq.
(1) is well known:

firy= - L

x

=it (2)

j"’ (de/dx)dx

ro(x

Thus by measuring one projection we can reconstruct
the refractive-index distribution. Note that this is a
linear problem. A large number of numerical algo-
rithms have been devised to approximate this recon-
struction when data are discrete.

Now let us return to the case where refraction is
strong. By definition, the optical path length of the
ray shownin Fig. 1 is

= .i' nds, 3

where ds is the differential length of the rav. Al-
though we do not know the rav curve, we do know that
it is governed by the ray equation

d (n d')=v~, 4
ds ds

which has asimple solution, for the axisymmetric case,
termed Bouguer's formula®:

rrdr) sin(e = p 151

Note that the ravs are parametrized by the constant, p,
sometimes called the impact parameter. Byvintroduc-
Ing a new variable,

n = rntr) (6}
together with geometric relations derived from Fig. 1.
the tollowing expression for the optical path length can
be found:

“fnd Iy dninedn

= Y ‘ .

L
in P
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Fig. 1. Optical ray passing through a strongly refracting axisym-

metric object.

It is quite interesting to note that although the prob-
lem we are solving is highly nonlinear, Eq. (7) is the
Abel integral of the quantity [nd In{r)/dn|; hence its
solution is of the form of Eq. (2):

ﬂ(d lnr) -_1 f“’ (d¢/dp)dp .

“dn * ) (pr- 12 8)

If desired, this can be integrated to give

L. exp[l ]'0 cosh™! (E) (.i_‘f d_g} . 9)

ro LS x/dp p
Thus given the set of path integrals and the values of
the impact parameter (i.e., the entrance or exit direc-
tion and the refractive index at the boundary), the
refractive-index distribution is reconstructed implicit-
ly and can be determined as long as the quantity rn(r)
is a monotonic function of r. Further discussion of this
type of reconstruction can be found in Bullen,’ Phin-
ney and Anderson,® and Vest? in the context of geo-
physical acoustics, radio exploration of planetary at-
mospheres, and interferometry of gases, respectively.

An interesting effect occurs when axisymmetric
strongly refracting objects are studied by interferome-
try. In this case the data are recorded in the form of a
fringe pattern formed by the interference of a refer-
ence plane wave with an initially plane wave that has
heen distorted by travelling through the object. From
this fringe pattern one can determine the distribution
of phase across the test wave. If the refraction is
negligible, all rays involved are essentially straight and
parallel to each other. We again have a simple Abel
problem which can be solved for f(r} = n(r) = ny, where
n, is the uniform refractive index of the medium sur-
rounding the object.

Now suppose that the object strongly refracts the
test wave, as in Fig. 1. It then is important to intro-
duce an imaging lens between the object and the plane
inwhich the fringe patternis tobe observed. Thislens
can be focused on anv plane parallel to the observation
plane. It has heen shown by extensive numerical ex-
periments," ! that if the lens is focused on the center
plane of the nbject, and if one applies the Abel inver-
sion to the data as if no refraction had occurred, the
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reconstruction will be very accurate, even if refraction
is extremely strong. If another plane, away from the
center, is imaged, this procedure will not give a good
result. Hence imaging, or an equivalent data process-
ing operation, essentially eliminates the problems as-
sociated with strong refraction in interferometry of
axisymmetric objects.

M. Asymmetric Objects: Reconstruction from Path
Length Data

Consider the data gathering system shown in Fig. 2.
It is assumed that the field of interest is two-dimen-
sional and lies in a circular region. Data are collected
by interferometry; the fringe pattern is formed in the
image plane by an imaging system focused on a plane
located a distance ry from the center of the circle. The
unknown refractive-index field is represented by
n(r,¢), the optical axis is aligned so that in the absence
of refraction the projection direction would be speci-
fied by the angle A, and the optical path length value is
recorded at a point P’ in the image plane, which is the
conjugate of the point Pin the object space. Asshown
in the figure, two rays meet and interfere at point P
one travels a curved path through the object because of
refraction due ton(r,¢), and the other is a reference ray
which travels along a straight path through a medium
with uniform refractive index ny.

Using elementary geometric optics it is seen that the
corresponding optical path length difference is given
by

]
Abipi = I nir.g)ds + no(BC - DE = EF)

A

= Plntre) nyl. . (10)

Cha and Vest!' have termed this the optical path
length transform. |Note that if ray bending is negligi-
ble. it reduces to the line integral transform, Aé =
Pln(r.#); n,| to which the usual teckniques of comput-
ed tomography can be applied.] Two approaches have
been proposed to obtain reconstructions from data of
this general type: iterative algorithms and perturba-
tion analysis. Both take as a starting point an initial
reconstruction made by ignoring refraction. To dis-
cuss these, a deviation function which is the difference
between the path length transform and the line inte-
gral transtorm of the object, or of an estimate of the
object, is defined:

Dp.d) = As(p) ~ Aptpf) (n

The iterative procedure was devised by Cha'=and is
discussed in detail in Ref. 11. The algorithm is as
follows:

(i) Make an initial estimate of the deviation func-
tion D(p,f).where i = 0. (Note that we need not start
with D, = 0; if one has some a priori knowledge about
the general structure of the ohject, convergence mav be
speeded by guessing the rough structure of the devi-
ation function.)

(i) Calculate the corresponding estimate of the line
integral transtorm:

QBJECT

v PLANE

Fig. 2. Formation of an interferogram of an asymmetric refracting
object.

Ad(p.f) = Adip.8) — D,(p.o). (12)

(iii) Reconstruct the object approximately by com-
puting the inverse line integral transform:

n(rf) —n,= P '(49,). (13)

(iv) Using computational ray tracing,'? calculate
the path length transform of the estimated distribu-
tion:

Ad(p.A) = Pln(re) ngl. (14)

(v) Compute a new estimate of the deviation func-
tion:

D(p.8) = Ad, — A, (15)

{vi) Return to step (ii) and continue the process
iteratively until some measure of D,(p,¢) is sufficiently
small.

Cha and Vest!! have applied this algorithm to sever-
al numerical experiments in which data computed for a
specified object are used as input to the algorithm, and
its convergence toward an accurate reconstruction was
studied. The algorithm did indeed produce rather
accurate reconstructions in the specific cases studied;
however, some operator interaction was needed to de-
tect computational ray crossing. Path length data
contaminated by this effect were eliminated. They
also applied a modified form of this algorithm to ex-
perimental data obtained from interferometry from
strongly refracting electrochemical boundary layers.
Related work on iterative correction for ray bending
has been carried out by Greenleaf and Johnson (see,
e.g.. Ref. 14) and Glover and Sharp.!®

Another iterative approach was developed by
Schomberg.'® He devised a modified ART procedure
to determine refractive index at discrete pixels. For
each iteration, the coefficients of the algebraic equa-
tions are determined by ray tracing using the values of
refractive index from the previous iteration. This pro-
cess is continued until the computed and measured
path integrals are in good agreement.

McKinnon and Bates!” have presented another iter-
ative algorithm that does not require ray tracing at

1 December 1985 / Vol 24, No 23 / APPLIED OPTICS 4091

e e gt

N S T AL S At R O O gy N AR N S Sy
L] - . L

ot




L ST Py
A 2

e rpelria pia an e a0 e S e I AR ety R

each iteration. Thev accomplish this by the less time-
consuming task of solving an approximate form of the
eikonal equation.

To summarize, several iterative algorithms have
been proposed. Each has been demonstrated to pro-
duce improved reconstructions in a small number of
experiments or numerical simulations. On the other
hand, each of these is a somewhat ad hoc procedure for
which no proof or convincing argument for conver-
gence under general conditions has been given. In
fact, McKinnon and Bates!” indicate that in the com-
mon format for recording ultrasonic data, refracting
objects have forbidden regions which cannot be recon-
structed, and that it may seldom be feasible to improve
significantly images beyond those reconstructed bv
ignoring refraction. Although this may be overly pes-
simistic in view of some of the successful applications
to smoothly varying objects. it is clear that such proce-
dures must bhe applied with caution, and that more
study of convergence and algorithm behavior is need-
ed.

Although iterative procedures are an ohvious ap-
proach to the problem under consideration, thev are
inherently slow and expensive because ray tracing is
computationally time-consuming. Hence there is mo-
tivation to seek more direct approaches. Norton and
Linzer!® have carried out an extensive study of the
application of perturbation analysis to the problem of
reconstruction of objects that bend rays. In essence,
they also start with a deviation function representing
the difference between data received from the refract-
ing medium and that which would be received if the
probing rays were straight lines. However, they then
seek a single operation which can be directly applied to
this deviation function to generate an accurate approx-
imate reconstruction.

Because Norton and Linzer's analyvsis is designed to
be applied directly to time-of-flight ultrasonic data
with no imaging or interferometry. it is convenient to
use their notation. which differs from that above. Itis
assumed that the ultrasonic refractive index deviates
from unity by only a small amount:

nied =1+ chir), (16)

where ¢ <« 1 is a small parameter. Correspondingly, as
indicated in Fig. 3. the actual ray path £ deviates
slightly from the straight path L. If R is a vector
extending from the transmitter 7 to the receiver R, the

time of flight through the object is

', (Ry = [ nirids. (17)

1Ry

where the subscript reminds one that this time is asso-
ciated with the curved path £, as opposed to the
straight path .. Now let A(R) be an estimate of the
refractive index obtained from a straight line algo-
rithm. i.e.. a reconstruction obtained by neglecting

refraction,

T, R = niRds. (18)

LI
A time-delay correction, or deviation function, is de-

fined as
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Fig. 3. Rav passing through a mildlyv refracting object. It origi-
nates at transmitter T and impinges on receiver R.
e(R.A) = T, (R) = T,(R). (19)

The objective of this technique is to derive a directly
calculable expression for e(R,n).

Because the ray path is assumed to deviate only
slightly from the straight line L, and because the re-
fractive index along £ differs only slightly from that
along the line, each can be expanded in power series in
the perturbation parameter ¢ as

yix) = ¢f(x) + O(d) (20)

and

nixy) = 14 ehglx) + Ffixdh(x) +.. ., (21)

where y(x) is the trajectory of the ray passing through
O and R and where

holx) = hix.0), h (x) = (3h/3Y)], oq- (22)

Bv applying Fermat's principle and the calculus of
variations. Norton and Linzer!® minimize T, with re-
spect to v(x) and obtain the explicit expression for the
deviation function e:

1
o= ﬁf (/hv + %/'Z)dx. 23)
b 2
where f(x) is the solution of
d*f/dx? = h (x) (24)
subject to
fto)y = f(1) = 0. (25)

There are several assumptions which must be con-
sidered if one wishes to apply this technique. First
and foremost, because it is based on a perturbation
analysis, variations of refractive index must be small.
Numerical simulations suggest that velocity variations
should be limited to about +5%. which suggests. for
example, that it should be applicable to soft tissue
measurements. Variations of refractive index also
should he smooth. The application of ray optics must
he appropriate, and the transducer width w should be
sufficiently small:
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Jul « a. (26)

where a is the characteristic scale of the inhomogenei-
ties of refractive index, and 1 is the propagation dis-
tance across the object.

{V. Methods Based on Diffraction and Inverse Scattering
Theory

Rather than utilizing a ray-optical approach, it is
possible to view reconstruction of refractive index as a
problem in inverse scattering theory. If diffraction is
mild, this can be approached by using the Rytov or
Born approximations to the wave equation. Iwata and
Nagata!? first applied this approach to problems of
reconstruction from optical data in 1975. Kenue and
Greenleaf? recently considered the use of the Rytov
approximation for reconstruction from ultrasonic
time-of-flight data. Theirapproach is briefly outlined
below.

Figure 4 depicts a plane wave of radiation impinging
on the object f(x,y) of interest and being refractively
distorted as it propagates through it. At some plane
beyond the object the complex amplitude

Utr) = expliK, ()| (27)

of the emerging wave is measured in an observation
plane. This is repeated for a number of different
propagation directions. It is assumed that the Helm-
holtz wave equation applies:

T r) + [Kon(0)]2U(r) = 0. (28)
The eikonal then must obey the relation
1K' T = (Vo) +n2=0. (29)

Remembering that the variation or refractive index
n(r) is small, it is appropriate to write

n=1+n, &=y + oy (30)

where ¢, is the eikonal in the undisturbed medium.
For the entering plane wave,

o= K-R. (31

Integrating across the object we obtain the line integral

(th-ar
hp b= nte.vids. (32)

When Eq. (30) is substituted into Eq. (29), we obtain to
first order

Tioy + Ky = 2K 0, (33)

For a fixed frequencv K. and direction 4, the 2-D
Fourier transform solution of this equation is

ALY = e 2a K explitAL, = wt X (X e, (4

where 1 and ¢ are the transform variables in the direc-
tion of K and normal to K, respectively.

The complex log of the measured values of [7(r) is
calculated to give o). whose 1-I) Fourier transform is
then computed and suhstituted inta Eq. (34). This
gives the 2-1) transform along a circle in the 2-1) trans-
form plane. Note that to obtain values around the

‘ Ulxq.y)

0 - Xg
Fig. 4. Complex amplitude of a wave (initially plane) that has
propagated through a refracting object.

entire circle requires both transmission and reflection
data. If this is repeated for several different propaga-
tion directions, the entire Fourier transform plane can
be filled in. The refractive-index distribution can
then be computed by inverse transformation.

It is interesting to note the analogy between the
above result and the central section theorem of ordi-
nary computed tomography.

Recent work by Devaney?!-22 has treated this type of
inverse problem for weakly scattering objects using the
Born approximation. Again the fundamental result is
that by computing 1-D Fourier transforms of the com-
plex amplitude of the scattered field it is possible to
determine the 2-D transform of the object’s refractive
index along circular arcs. He has generated a filtered
backpropagation algorithm that operates in a manner
somewhat analogous to the well-known filtered back-
projection algorithm of ordinary computed tomogra-
phy. Thisinteresting and important techn jue is dis-
cussed in a paper by Devaney.?3

V. Closure

In this paper I have outlined some of the techniques
which have been proposed for reconstruction of re-
fracting and diffracting objects from data obtained ina
manner analogous to ordinary computed tomography.
Emphasis has been on cases where time of flight or
optical path length data are recorded for radiation
passing through a continuous refracting object. Be-
cause this problem is nonlinear it has been approached
by iterative schemes or by linearized inverse scattering
theory. Only a few empirical studies of these ap-
proaches have been carried out to date. Although
some of these studies have been successful, there is
much to be learned about their convergence hehavior,
reliability.etc. Thesubjectis challenging, interesting,
and of potential importance in applications ranging
from plasma diagnostics to medical ultrasonic imag-
ing.

Readers should note that I have not discussed close-
lv related topics such as electromagnetic and seismic
geophysical exploration?*** or addressed the related
problem of refractive errors in ultrasonic tomography
based on attenuation measurements.

I would like to thank Richard Gordon for suggesting
this review and for helpful comments. This work was
sponsored in part by the U.S. Army Research Office.
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Tomographic reconstruction of a function from the values St
of its line integrals is a well-known diagnostic technique for [ ]
use in various fields.! Several reconstruction algorithms ‘.
have been developed with the assumption that the probing .:-”.‘
radiation propagates along straight lines. However, if re- RS
fractive-index gradients normal to the direction of wave Nl

“nd
n,
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Fig. 1. Schematic representation of the formation of an interfero-

gram with appreciable ray bending. Ray DEFP: first exposure,

taken with the index of refraction nn uniform everywhere. Ray

ABCP: second exposure, taken with an ohject of unknown index of

refraction n{x,y) varving inside a circular zone of radius ro. [maging
system focuses on plane 0 — 0.

propagation cause significant ray hending, the use of straight
line inversion algorithms may lead to unsatisfactory recon-
structions. Ways to correct for refraction effects have been
the subject of active research,? ¥ and, at present, this pheno-
menom may he taken into account through the iterative use
of lengthy digital rav tracing algorithms.2-5 Alternatively, a
perturbation technique is available which does not require
the use of computational ray tracing. This approach was
originally developed by Norton and Linzer? for use in ultra-
sonic imaging. In this Letter we present a modification of
that technique. applicable to holographic and Mach-
Zehnder interferometry of transparent abjects.

Figure 1 is a schematic representation of the formation of
an interferogram by two initially parallel plane waves. It is
assumed that outside the circular region, and throughout
during one of the exposures. the index of refraction has the
uniform value no. The undeviated ray DEFF”, representa-
tive of that exposure, interferes with ray ABCP’, which goes
through the object. Thelensin Fig. 1 isfocused on the object
plane & — . Point P in that plane is the apparent origin of
both ravs. Point Cis defined on the refracted ray so that its
x coordinate is equal to that of the unrefracted ray at the
point where it leaves the test section. Point F is defined on
the unrefracted rav so that distances I’C and PF are equal.
The optical pathlength difference (OPD) hetween the two
rays is given by

.
.\'t’=] nds — nylxg — xp), (1)
A

where n is the unknown index of refraction of the object and
where. if (7 is a generic point in Fig. 1, x; denotes its x
courdinate. Suppose there was no refraction. Then the
OPD would be
N e
Ad = ’ (n = nydx, (2)
TF
where F i< the point at which both ravs enter the test section.
Following Norton and Linzer." we now determine a relation
between A and Ad.

Assuine that the index of refraction deviates only slightly
from the ambient:

n(x.y) = n, + ch(x.y) .

where ¢ is a small parameter. Assume also that the curved
trajectory can be expressed as a small perturbation of a
straight line:

v =ypll + ef(x)], (3)

where vpis the v coordinate of point P. If the function h(x,y)
is expanded about the line ¥ = yp and if we use Eq. (3), an
approximation to the value of the index of refraction along
the ray trajectory is obtained. Substitution of this approxi-
mation into Eq. (1) and use of Eq. (2) yield, after some
rearrangement,’

Ad = Ad -,

where

c= ’ ¢ Eyplfhp + %noypf’z)dx = nolxp = x¢)
4
and where h}, denotes the partial derivative of h(x,y) with
respect to y evaluated at y = yp.

Norton and Linzer? obtained an expression for f(x) by
using Fermat's principle to minimize the integral {§ nds and
using standard techniques from the calculus of variations.
The result is

1 x
fx)= — ] (x = whplu)du + ayx + a0, |-
noYp | Jsg

The integration constant ay is easily evaluated by noting that

f{(x) =0forx < xg,sothata; =0. Todetermine the value of
the constant a; the following geometric condition is used:

dy
dx

Yc—XYp
=25 7.,
r=xc x(, -— xP

After some algebra, the perturbation of the trajectory is
found to be

No¥p | Jze i

fix) = —) U (x = whplu)du — ]“ (xp-u)hi,(mu]. @)

which differs from the expression developed by Norton and
Linzer for ultrasonic imaging because different boundary
conditions apply. Equation (4) can now be used to evaluate
the term ¢. Noting from Fig. 1 that

1
xr”(‘:("c"‘P)[m' l]-
that for small ¢
L.
cos(¢) 2

tan’() =~ %[eyp/'(xc)]z
and defining

% 2
H(x)Enolmf’ml“‘l‘U "“r‘“’d"] '
ng 1y
we obtain

c= %I:(x(- — xpHlxe) - [ ‘ H(x)dx] . (5)
b 3
The computation of this correction term is based on a first
estimate of n(x,v) obtained by straight line inversion of Ad.
After c is computed, the modified OPDs are determined and
straight line inverted to yvield an improved estimate for the
index of refraction.
Consider, as an example, a refractive-index distribution of
the form
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Fig. 2. Root-mean-square error of the uncorrected (solid line) and

corrected (dashed line) straight line reconstructions vs object plane

selected by the imaging system. The location of the object plane
relative to the center of the field is constant for each experiment.
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Fig. 3. Crosssection of the test field through line x = 0. Solid line:
actual profile. Dashed line: straight line reconstructed profile.
Focusing plane at xp = 0.0.

n, N

095n, b

Fig 4. Crosssection of the test field through line v = 0 Solid line:
actual profile. Dashed line: perturbation corrected profile. Same
focusing plane as in Fig. 3.

n [r2+ (v =—0.1Y] [x?+ (v + 0.5V
=1.0-005exp— - - =0.0bexp— BT
e Texp 0.09 ' 0.04

in which the coordinate u:.its are arhitrarv. The OPDs were
simulated by numerically integrating the rav equation to
find the actual rav trajectories through this field. We traced

776 APPLIED OPTICS / Vol 26.No. 5 / 1March 1987

thirty-two rays per view for each of thirty-two viewing direc-
tions. It was found that with ry = 1.0 the maximum bending
angle is 8.5°. To use Eq. (5), xp needs to be specified. We
varied this distance from —rg to +ry and kept it constant for
each computational experiment. For all reconstructions we
used the well-known filtered-backprojection algorithm'® on

a40x 40grid. Theroot mean square error of the reconstruc-
tion is defined as

- 100 1 < g
e maxjn,-,—nd ;;(nu nl'r) '

where n;, is the exact value of the field in pixel i, n;, is the
reconstructed value in that same pixel, and m is the total
number of pixels. The error resulting from reconstructions
ignoring refraction is the solid line in Fig. 2. No results are
shown for xp < —0.2rg as ray crossing occurred beyond that
position of the object plane. After the perturbation correc-
tion for refraction is applied, the error, as shown by the
dashed line in Fig. 2, decreases significantly.

Another way to visualize the performance of this method is
to compare a cross section of the reconstructed refractive-
index profiles. This has been done in Figs. 3 and 4, for which
we have chosen xp = 0. In those figures the actual profile is
the solid line, while the dashed line is the reconstructed
profile. Figure 3 shows the result of the reconstruction
ignoring refraction. It can be seen that the corrected recon-
struction shown in Fig. 4 is much closer to the actual profile.

If the index of refraction varies along one space coordinate
only, as in a boundary layer, the above equations reduce to a
muchsimpler form. Details and an example for this case will
appear in a forthcoming paper.

This work was presented at the OSA Annual Meeting, Wash-
ington, DC, Oct. 1985. This research is sponsored by the
Army Research Office.
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Refraction correction in holographic interferometry and
tomography of transparent objects

ignacio H. Lira and Charles M. Vest

In this paper we review and extend the state of the art in the algorithms that have been deveioped to
tomographically reconstruct 1-D and 2-D refractive-index fields in the presence of significant refraction. A
perturbation approach and two iterative procedures were tested and compared in numerical simulation of
holographic interferometry experiments. Due to the nonlinearity of the problem. it is very difficult to draw
general conclusions with respect to the behavior of the iterative algorithms. which is divergent in the examples
presented here. [ncontrast, the perturbation technique, which is the easiest one to implement and the fastest
to run, is shown to be very powerful in reducing refraction errors.

. Introduction

Inverting the data acquired through holographic in-
terferometry to reconstruct refractive-index fields is a
well-established diagnostic technique.! By and large,
the underlying approximation in the development of
the conventional reconstruction algorithms is that the
probing radiation travels along a straight line, chang-
ing in phase but not in direction, as it crosses the
refractive-index inhomogeneities. In reality, when
light encounters a refractive-index gradient normal to
its direction of propagation, it is refracted. There are
many situations in which, for practical purposes, ray
bending may be neglected. However, ignoring refrac-
tion often produces appreciable reconstruction errors.
This has been shown to be the case not only in interfer-
ometry? but also in related areas such as geophysical?
and ultrasonic*® imaging.

Analytical solutions to the highly nonlinear problem
of tomographic reconstruction of strongly refracting
objects have not been found, so one must resort to
computational techniques. In a tutorial paper, Vest?
discussed several aspects of the problem and outlined
some of the approaches which have been taken to find

When this work was done both authors were with University of
Michigan. Department of Mechanical Engineering & Applied Me-
chanics. Ann Arbor. Michigan 48109: . H. Lira is now with Pontificia
Universidad Catolica de Chile. Escuela de Ingenieria., Santiago.
Chile.
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© 1987 Optical Society of America.

an approximate solution. In this paper a more com-
prehensive and detailed review is presented. InSec.II
we address the 1-D case, which has been considered
extensively by previous investigators. Section ITI dis-
cusses the axisymmetric problem, which has also re-
ceived considerable attention. In Sec. IV the more
general 2-D asymmetric problem is considered. Sec-
tion V contains the results of numerical experiments
designed to investigate and compare the performance
of the refraction correction schemes. Section VI sum-
marizes the results obtained.

il. One-Dimensional Refractive-index Fieids

Weshow in Fig. 1 the geometry of the data collection
arrangement for the analysis of a 1-D boundary layer
using holographic interferometry with plane wave illu-
mination. Above a solid object of length L there is a
region with a refractive-index variation of the form
n(y) fory < 4. Itisassumed thatoutside the boundary
layer, and throughout the entire region during one of
the exposures, the index of refraction has the uniform
value ny. The undeviated ray DPCP, representative
of that exposure, interferes with a refracted ray ABP.
The lens in Fig. 1 is focused on the object plane o—o.
Point P in that plane is the apparent origin of both
rays. Point B is the point at which the refracted ray
leaves the test section. Point C is defined on the
unrefracted ray such that the distance PC is equal to
the distance P% Due to the presence of the lens, the
optical path lengths from B to P’ and from C to P are
equal. The optical path length difference (OPD) be-
tween the two rays is, then,

Abp = dp— b, ()
where

15 September 1987 / Vol. 26, No. 18 / APPLIED OPTICS 3919
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B
tpm= J niy)ds,
A

&g = noxc.

and where x. is the x coordinate of point C. The
subscript in the term ®p emphasizes the fact that, to
the observer, a fringe located at P appears to be pro-
duced by the interference of two overlapping straight
rays through point P. The ray path AB is obtained
from the ray equation®

d dr
_ —|=%n.
('l X ) n (2)

which, in 2-D Cartesian coordinates, reduces to

fafn_on . 2
ny (ay axy)[l*'y]. (3)
where y = v(x) is the path of the ray and the super-
scripts indicate derivative with respect tox. Usingthe
initial condition y' = 0 for x = 0 and assumingn = n(y),
the integration of this equation gives

L+y?= (1)2 ‘ (4

s

where n 4 is the index of refractionat y = v;. Since the
ray path element is ds = (1 + y7, the optical path
length of the refracted ray through the test section
can be expressed as either

L
p=n, J (1+ y?dx, (5)
0

or

1 (¢, d
"p = "": nax.

One of the earliest papers to assess and correct for
the influence of refraction was that of Wachtel.” That
work was subsequently extended and modified by the
research of Howes and Buchele.?-11 Other papers in
which this situation has been considered are Refs. 12
17.

Howes and Buchele!! based their analysis on a Tay-
lor series expansion of the index of refraction around
its value at the point where the rays enter the test
section, i.e.,

n-n4+2b,(y—y,.)'. (6)

te]
The general analysis!! is quite invoived and ne. .. -
berepeated here. Theequations are verysimple
ever, if only two terms in expansion (6) are kept, tis,
if
=, tn =y )]

where n’, is the derivative of the index of refra ion
evaluated at v = v4. Therayequation has, in this case,
the following exact solution:

vy L, [cooh (i) - 1] - (8)

where [, = n4/n’4. Ifit can be assumed that L/l, « 1,

3920 APPLIED OPTICS / Vol. 26, No. 18 / 15 September 1987
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Fig. 1. Interferometric analysis of a 1-D boundary layer-type re-
fractive-index field.

expanding the hyperbolic cosine and keeping only the
first two terms in the expansion, Eq. (8) becomes

1x?
y=yst 2 a . 9)
To this first level of approximation, then, the ray
traces are parabolas. Differentiating Eq. (9) and sub-
stituting the result into Eq. (5) give the following ap-
proximation for the optical path length of the refracted

ray:
2
epan |1+ 1{EY]. (10)
3\,

On the other hand, from the geometry of Fig. 1 it is
readily seen that the optical path length of the unre-
fracted ray is

®o = ngxe = nyfxp + (L = xplV1 + tan-g], (1)

where ¢ is the exit angle of the ray. Using Eq. (9), we
can approximate the tangent to this angle by

tang = L . 12
[A
Putting this expression into Eq. (11), expanding the
square root, and substituting the result, together with
Eq. (10}, into Eq. (1), we obtain

Abp  n, Ro L\?
l‘lA HOST ?[2—3!((;) (H) . (13)

where we have defined K =1 — xp/L.

The index of refraction at y = y, may now be ob-
tained from Eq. (13) provided n’,4 is known. Howes
and Buchele suggest that n’4 can be found by differen-
tiating Eq. (13) and assuming that the derivative of the
second term on the right-hand side is small compared

qith that of the first term. Doing this we find

B'Aﬂz—&T’_yp- (l‘)
so that the refractive-index gradient is proportional to
the measurable fringe-shift gradient. Alternatively,
the effect of the second term can be accounted for by
using Eq. (14) as a first approximation to n’,4, substi-
tuting this value into Eq. (13), and differentiating
again to obtain a refined estimate. This process can be
repeated if necessary.

The problem with this method is that the actual

entrance coordinates are unknown to the observer. If
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Fig. 2. Schematic representation of the formation of an interfero-
gram in a 2-D axisvmmetric refractive-index field.

one uses coordinate vp, the resulting distribution be-
comes distorted. Recognizing this problem Howes
and Buchele® showed that within the linear approxi-
mation the difference yp — v, disappears when K =
1/2, i.e., when the imaging system is focused at the
center of the test section. This can easily be seen to be
the case. From Fig. 1 we have

tang = 227 (15)

Xg = Xp

Taking x5 = L and using the parabolic approximation,
Eqs. 19) and (12), we tind

_\.P__“:E(l_;\-). (16)

la

which verifies the assertion.

In summary, if the linear approximation, Eq. (7), is
valid for the range y 4 < y5, Howes and Buchele recom-
mend using Eq. (13) together with Eq. (14) (with itera-
tion, if necessary) to find n(y). The data should be
obtained with the imaging system focused at the center
of the test section.

Higher-order refraction correction is possible if
more terms in Eq. (6) are included and higher-order
derivatives of the fringe order number are calculated.
Because the fringes are obtained experimentaily, the
accuracy of these derivatives becomes increasingly du-
bious.

A different approach to account for refraction was
taken by Svensson.’? In his analysis he conciuded
that, with the proper choice of the object plane, the
fringe data could be inverted satisfactorily as if no
refraction had taken place. Vest! simplified Svens-
son’s analysis, but his derivation contains an error in
an intermediate step. The correct equations are as
follows. Let A® be the actual OPD and let A¢ be the
OPD that would be observed if no refraction had taken
place. Clearly,

Adp = in, = n,L, (17
but, from Eq. (7),

npan,+n vp= v, 118)

Combining Eqs. (17) and (13) and using Eqgs. (18) and
(16), we find

Adp— Abn=n L[;—h( nn)](£> (19)
2n, Ly

TN e e NN AT T A
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Thus, it it can be assumed that no/ns ~ 1 throughout
the boundarv layer, the difference between A® and A®
is minimized when K = 1/3, i.e., when the object plane
is chosen to be at a distance of 1/3 of the section length
from the window closest to the imaging system. In
other words, at that position of the object plane the
fringe count may be straight line inverted, as if no
refraction had occurred. Note that, contrary to
Howes's!® assertion. minimizing refraction errors in
this way does not result in a distorted distribution of
the index of refraction. Empirical confirmation of
this theory has been given in Ref. 15.

fil. Axislly Symmetric Refractive-Index Fieids

There are many instances of practical importance in
which the index of refraction may be considered essen-
tially constant along one direction, while having axial
symmetry in a plane perpendicular to that direction.
This occurs, for exampile, when forming interfero-
grams of density in flames, thermal jets, and plumes, or
of plasma electron density around exploding wires, arc
discharges, or laser beams.

Figure 2 shows a circular test section of radius r,
being probed by two plane waves. One of them, with
representative ray DPC, corresponds to the exposure
with uniform index of refraction n. evervwhere. The
other wave, with representative ray AB, corresponds to
the exposure taken with the object present, for which
the index of refraction is of the form n(r). We assume
that during both exposures the index of refraction in
the medium outside of the test section has the value n,,.
The imaging system—not shown in the figure—is fo-
cused on an object plane 0-o0 located a distance xp from
the center of the field. Point P is the conjugate of the
point in the image plane at which both rays interfere.

Kah! and Mylin®® wrote the OPD of these rays in the
following form:

Adp = &p + 2npx, + Ny, tand + nyxpiseco — 1), (20)

where p = ﬂ n(r)ds and where the refraction angle ¢
must be taken as positive if the ray bends upward, and
negative otherwise. The first two terms on the right-
hand side of this equation represent the OPD that
would be obtained if no refraction had taken place. the
third term is a contribution due to refraction, and the
fourth term is an additional focusing effect. Interest-
ingly, this equation shows that all refraction contribu-
tions are known if ¢ is known. The OPD given by Eq.
(20) is a function of the yp coordinate given by

Yp ™ y,9eco + xptang. (21)

According to Kahl and Mylin, if a conventional Abel
inversion algorithm is used to reconstruct the refrac-
tive-index field, it is better to focus on the center of the
test section, so that the third contribution in Eq. (20) is
eliminated and the difference between the refracted
and unrefracted OPDs is kept small. Vest?! conduct-
ed an extensive computer simulation of interferomet-
ric experiments using several analytic functions n(r).
All the functions studied had zero slope at r = 0 and
smoothly approached nqatr = r,. He found that Abel
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inversion of the actual interferometric data A$p pro-

duces remarkably accurate reconstructions when xp =

0. The above argument explains in part this result.

Vest’s findings were later confirmed in Refs. 22-24.
In Ref. 21 it is shown that

o n-

dr, (22)

e
CRAL

where 1 = rn(r), p = naya, and r, is obtained by solving

n(r,) = p. In the same reference it is also shown that

the an-‘e between OA and OB subtended by the re-

fracter. -1y is given by

0 =2 [’“ 2 (23)
orynt = p*

Using the Abel transform, Vest?! inverted Eqs. (22)

and (23). He found that the index of refraction could

be obtained from either

% ae
rin) = r ex }-{ cosh"(e)l—’,dp .
LS n)p dp

"o [ do
rinp=r exp{l{ cnsh“(IJ-)Edp}» 124)
T n

provided r(n) is a single-valued function of radius.

It is easy to show that, if the exponent in Eq. (24) is
integrated by parts, the following simpler alternative
result is obtained:

r() = ryexp [-% f i dp] : (25)
IRt

The index of refraction can then be obtained from this
equation if the central angle 6 is known. This result
was derived by Maruyama et al.25 and independently
by Zimin and Frik.®6 The former authors recommend
the following procedure to find 6. First, obtain the
refraction angle ¢ from the derivative of the fringe
pattern:

or

dad,

avp

sing =

Next. calculate the incident angle i» by means of the
following geometric relation:

ro8illg = | Tp + Yp8in (o +tan™! 1:—:) .
Finally, obtain the central angle from 6 = = — ¢ — 2io.
Maruyama et al. successfully tested this procedureina
simulated experiment in which n(r) was given analyti-
cally?s and with an acrylic homogeneous cylinder im-
mersed in a fluid with a slight mismatch in the index of
refraction.<
Zimin and Frik.® manipulating Eq. (25), putitina
form more convenient for calculations. Their result is

% P
nin) =n, exp[—% ] _f___‘ dp] .
noNpT T

They used this equation to measure the temperature
profile in the thermal boundary layer around a heated
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vertical copper cvlinder. Comparison with thermo-
couple measurements gave excellent agreement.

A similar reconstruction procedure was derived by
Hunter and Schreiber.”® They showed that the index
of refraction can be obtained directly from the fringe-
shift data by using the following equation:

1 (™ _ 1 dAd,
nin) = n, exp [—;Jf cosh '(s); a5 dp | - 126)
n

Note that the data are taken as a function of yp but the
derivative is with respect to y4. However, Hunter and
Schreiber tacitly assumed that the apparent and actu-
al entrance coordinates are equal. From the geometry
of Fig. 2 it may be seen that this situation wiil occur for
a certain location of the object plane, but this location
is not the same for all ray pairs. The applicability of
Eq. (26) is therefore restricted to the case in which
refraction is very small.

IV. Asymmetric 2-D Fields

We turn now to the more general case of 2-D asym-
metric refractive-index fields. This problem has re-
ceived little attention in interferometry, the oniy
works known to us being the iterative algorithm or Cha
and Vest-? and the perturbation approach of Lira and
Vest."¥ Additionally, another iterative approach has
been proposed in the areas of ultrasound tomogra-
phy®3! and in geophysics332 but, to our knowledge, it
has not been used in interferometry. The techniques
are as follows.

A. Straight Line inversion with Modified Data (SUM)

This procedure was first introduced in ultrasound
tomography by Bates and McKinnon3334 and in inter-
ferometry by Cha and Vest.?? Let us first define Ad as
the actual OPD including refraction, obtained by nu-
merical or physical experiment, and A$ as the OPD
that would be obtained in a hypothetical experiment
involving the same object, but where no refraction
occurs. Thesubscript P has been dropped for concise-
ness. Chaand Vest's procedure consists of an iterative
scheme in which a series of estimates of A® are ob-
tained, hopefully converging to its exact unknown vai-
ue. The algorithm is

AP = APt 4+ (AP - AdY) with k=12..., n

where A®* is the kth estimate of A, n* is the refrac-
tive-index distribution resulting from the straight line
inversion of A®*, and A®* is the OPD obtained compu-
tationally through digital ray tracing’® routines over
the field n*. A

It is usually convenient to start by letting Ad! = A,
i.e., refraction is initially ignored and the data are
straight line inverted to vield n!. Chaand Vest? were
very successful in applying this technique to 1-D re-
fractive-index fields. However, in two dimensions the
results were less conclusive. It was found from nu-
merical simulations that this algorithm will tend to
decrease the reconstruction error in the first few itera-
tions, but eventually it diverges.
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B. Perturbation Approach

A similar, but computationallv much simpler tech-
nique, has been presented by Norton and Linzer’ for
ultrasonic applications. In their approach it is as-
sumed that the index of refraction differs only slightly
from its value at the surroundings and that the ray
trajectorv deviates very little from the straight line.
With these assumptions an improved estimate of Ad is
obtained and subsequently straight line inverted.
without the need for the computational expense of ray
tracing and iteration. We3 have modified Norton and
Linzer’'s analvsis due to differences between the data
acquisition systems used in ultrasonic imaging and in
holographic interferometry. Qur result is

Ad ~ ab —c.

where

c=- [(xr - xpiH(xe) — [ CH(x)dx] '

e

eS|~

and where

x 2
Hix) = 1— f npfuddu | -
Mol leg

In this expression ni, is the derivative of n(x.y) with
respect to v evaluatedaty = yp. PointsC, E, and Pare
defined in Fig. 3. The computation of H(x) must be
based on a first estimate of n(x,y). As in the SLIM
algorithm, this estimate may be obtained by straight
line inversion of the actual OPD data Ad.

If the index of refraction varies along, say, the y
coordinate only, the above equations reduce to a much
simpler form. Using the points shown in Fig. 1, it is
easy to show’" that

2 11 1
c=(n£xs)2n—[§x5—;xp]- (28)
o 2

Note that in this case ¢ becomes zero if the object plane
is chosen such that xp = 2x5/3. This result supports
the discussion following Eq. (19).

C. Curved Ray Algebraic Inversion (CRAI)

A second iterative technique to obtain the index of
refraction, also in the context of ultrasound, was first
suggested by Johnson et al.’ and later by Schomberg.3!
The basis of this procedure is the utilization of the
current estimate of the index of refraction, n*, to ob-
tain a system of algebraic equations, where the un-
knowns are the corrections for this estimate at each
pixel. Since this technique has not been used in inter-
ferometry, we proceed to describe the algorithm in
more detail.

The optical path length for a digital ray inside the
test section is approximated by

K-1
nie b+ h N nfir ) + h;n"(r,,\v‘}. (29}

—
-2

P* ~

[ of

where points r,; with [ = 1,2,....K, are obtained by
digital ray tracing*® over the field n*. In this equation
subscript i identifies a particular ray and h is the
distance between the points. The length h, depends

Fig. 3. Schematic representation of the formation of an interfero-
gram in a 2-D asymmetric refractive-index field.

on the location of point rg, with respect to the circle
boundary. Since in general the points r,; will not
coincide with the pixel centers, interpoiation is needed
to find the values of the index of refraction at those
points. In general, we can write

ntr) = N At 1= 1200 K, (30)

et

where n is the value of the index of refraction at pixel j
in the jeth reconstruction and m is the number of
pixels. The coefficients cf‘,l depend on the interpola-
tion scheme. Forexample, with bilinear interpolation
only the coefficients corresponding to the four nearest
pixels are nonzero. Substitution of Eq. (30) into Eq.
(29) gives

ﬂgZMM (31
where

Yot hely (32)
-2

The ray whose optical path is given by Eq. (29) inter-

feres with a straight ray for which an appropriate dis-

tance [* must be found, such that

&4 = nyi*. (33)

We now form the difference between the optical path
lengths given by Eqs. (31) and (33) for several rays in
each viewing direction and arrange the result as a
vector which we will call A®*. Thus,

Adh = Atp* - n )t (34)

where A® is a matrix whose components are given by
Eq. (32), n* is a vector formed by the n",‘ pixel values,
aknd 1* is a vector whose components are the distances
Is

Equation (34) suggests that the actual OPDs can be
written as

Aé = An - nyl, (35)
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where n is the vector of exact pixel values. Matrix A
and vector [ are unknown quantities.

Let us define a correction for the index of refraction
as follows: 6nf = n — n® We now substitute this
definition into Eq. (35) and assume that A >~ A* and
that1 =~ 1*. If the result is combined with Eq. (34) we
obtain

AMn* = Ad — AP (36)

This svstem of equations must be solved for the correc-
tion én*, after which the next estimate of the index of
refraction is computed according to n**! = n* + jn-~.

We conclude this section by noting that. since Eq.
(36) represents a system which will usually be large,
sparse, and either under or over determined (depend-
ing on the number of rays traced and on the grid size),
the solution should be obtained with a series expansion
method.?8

V. Numerical Experiments

In this section the behavior of the refraction correc-
tion algorithms is compared and evaluated by means of
computational experiments involving two simple trial
functions. Additionai resuits are presented in Ref. 37.

A.  Two-Dimensionai Example
Consider the following refractive-index field:
(x4 (y=0.D3
0.09

I+ v e 0,5)2]} i
0.04

nixy) = n,—0.0ln, {exp -

+ exp (37)

The OPD data for this double Gaussian distribution
was generated using the ray tracing procedure in Ref.
37, with fifty rays for each of twenty viewing directions,
spaced 9° apart. If the interferogram is formed using
an imaging system focused at the center of the test
section, there will be about thirty-six fringes across the
object using a He-Ne laser and with the millimeter as
the unit of length. This fringe number corresponds to
a view in the direction of the v axis. [t was found that
the maximum bending angle at the exit of the refrac-
tive-index field is 1.73°,

In the following study we assumed that the imaging
system was kept fixed while the object is rotated about
the center, so that the same value of xp results for all
viewing directions.

Figure 4 shows the straight line reconstructed re-
fractive-index profile for xp = 2.0. In this figure the
ordinate axis represents the difference 1000 X (n - ng)
in a cross section through the plane x = 0, in which the
solid line is the exact profile and the dashed line is the
reconstruction. The reconstruction error was mea-
sured in terms of both the rms and maximum error
percentages, defined as

eirms) = _1001__ L A n, —n,?°,
maxin,, — n,l m
maxin,, ~ n_i

e(max) = ———— X 100,

mazxin,, - n|
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Fig.4. Straight line reconstructed profile {(dashed line) of the dou-

nle Gaussian distribution compared to the actual protile (solid line).

The focusing plane is at xp = 2.0. In obteining this figure, twenty

viewing angles were considered, with fifty rays per view. Resolution

13 40 X 40 pixeis. The root-mean square error of this reconstruction
18 1.76% and the maximum error is 8.74%.
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Fig. 5. Perturbation-corrected reconstruction (dashed line) of the
double Gaussian distribution compared to the actual profile (solid
iine). Root-mean square error is 0.35%, maximum error is 2.97%.

where n,,. is the exact value of the field at the center of
pixel i, n,, is the reconstructed value at that same pixel.
and m is the number of pixels. For this reconstruction
the rms error is 1.76% and the maximum error is 8.74%.

1. Results with the Perturbation Approach

After the perturbation correction is applied. the re-
constructed profile looks much closer to the actual
profile, as can be observed in Fig. 5. In the corrected
profile the rms and maximum errors are 0.35% and
2.97%, respectively, which means a factor of 5 in error
reduction. In obtaining these figures, both straight
line inversions were done with the filtered backprojec-
tion algorithm?® with a Shepp-Logan* filter on a grid
of 40 X 40 pixels.

The quality of the uncorrected reconstruction varies
quite significantly as the object plane changes. Figure
6 shows the rms and maximum errors as a function of
the object plane. In this figure the solid lines give the
errors obtained for the first (uncorrected) reconstruc-
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Fig. 7. Reconstruction error as a function of inversion number for
the reconstruction of the double Gaussian function using the SLIM
iterative approach. The solid line gives the rms error, while the
dashed line shows the maximum error. For comparison. the pertur-
hation-corrected errors tor the second inversion are shown as white
ind black svmbols for the maximum and rms, respectivelv. The

focusing plane 18 xp = 2.0.

tion, while the dashed lines are the errors for the inver-
sion obtained after the correction is applied. The
plain lines give rms errors, while the lines with aster-
isks are maximum errors. Results are shcwn only for
~2.5 < xp < 7.5, as ray crossing occurred beyond those
positions of the object plane. From this figure it may
be seen that the error caused by refraction is almost
negligible when the object plane is slightly in front of
the center of the field, and that the uncorrected errors
are very sensitive to the location of the object plane.
In fact, these errors are very nearly directly propor-
tional to the object plane distance from the plane
where refraction error is minimized. Thus, to mini-
mize the refraction error the imaging system has to be
focused very carefully close to the center of the distri-
bution. The perturbation corrected errors are not as

Error percentuye

INnversion
Fig. 8. Reconstruction error as a function of inversion number for
the reconstruction of the double Gaussian function using the CRAIL
The solid line gives the rms error, while the dashed line shows the
mazximum error. For comparison, the perturbation-corrected errors
for the second inversion are shown as white and black symbols for
the maximum and rms. respectively. The focusing plane is xp = 2.0.

sensitive to the object piane location. As Fig. 6 shows,
they are aimost constant over the range =2 < xp < 2.

2. Results with the SLIM

The SLIM procedure yields the results in Fig. 7.
Since this procedure is iterative, it is convenient to
show its behavior by plotting the rms and maximum
error percentages as a function of the inversion num-
ber (where inversion 1 is the first, uncorrected recon-
struction) for a given object plane. Space limitations
preclude the presentation of equivalent plots for other
objects planes. We believe, however, that one object
plane should be sufficient to acquire a good idea of the
main trends in the behavior of this algorithm. InFig.7
the focusing plane has been selected to be xp = 2.0.
For direct comparison with the perturbation ap-
proach, all resuits have been obtained using twenty
views, fifty rays per view and 40 X 40 pixels. In this
example the SLIM reduces the reconstruction error in
the first few iterations, but after inversion 5 the proce-
dure diverges.

3. Results with the CRAI

In the following results we have retained the number
of views, the number of rays per view, the grid size, and
the focusing plane so that direct comparison between
the three approaches can be done. The CRAI algo-
rithm has some additional degrees of freedom, namely,
the type of algebraic reconstruction procedure, the
number of iterations in that procedure, and the relax-
ation factor to be used (which may vary from one
iteration to the next). In this example the reconstruc-
tions were obtained using the SART algorithm of An-
dersen and Kak*! with two iterations (i.e., the pixels
were updated at the end of the second SART iteration)
and a constant relaxation factor of 0.5.

As shown in Fig. 8, the CRAI algorithm yields a
mildly unstable solution when reconstructing the dou-
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Fig.9. Temperature distribution in the boundary layer surround-
ing a heated verticai rlat piate submerged in water. Plate tempera-
tureis 29°C and ambient water temperature 18 20°C. Plate width is
10 ¢cm and the resuits shown are for a plane | cm above the leading
edge. [n this figure the object plane 1s at the point where the actual
and apparent plate boundaries coincide. The solid curve shows the
temperature asgiven in Ref. 42, using which the interferometric data
was generated. The dashed curve shows the temperature obtained
with the conventionai straight line inversion of the data. The curve
with asterisks gives the perturbation-corrected temperature.

ble Gaussian function, diverging after approximately
the tenth iteration.

B. One-Dimensional Example

In this subsection the performance of the refraction
correction schemes for the case of 1-D ray bending is
investigated. The chosen example simulates the re-
fractive-index field resuiting from temperature varia-
tions in a natural convective boundary layer about a
vertical flat plate at 29°C submerged in water at 20°C.
The analytic form of this field is given in detail in Ref.
37 and need not be repeated here. Our ray tracing
model® predicts a maximum bending angle of 2.13° for
theinnermostray. Inthisexample we have chosen the
object plane such that the apparent and actual loca-
tions of the wall coincide.

1. Resulits with the Perturbation Approach

The resuit of subtracting the correction term as giv-
enby Eq. (28) from the OPD dataisshowninFig.9. In
this figure, the solid curve represents the exact tem-
perature profile. the dashed curve represents the tem-
perature obtained using the conventional straight line
inversion of the OPD data. and the curve with asterisks
gives the perturbation-corrected inversion. Thereisa
very noticeable improvement as a result of applying
the correction term.

2. Results with the SLIM

In implementing the iterative algorithms to reduce
refraction errors in the 1-D case, the discrete form of
the ray tracing routines require the current estimate of
the index of refraction in the form of a pixel array in
which each entry is the value of the index of refraction
at a given v coordinate. Here, and in the next subsec-
tion, 50 pixels have been used. Figure 10 shows the
rms error and the absolute value of the maximum error
for each straight line inversion of the corrected data.
The perturbation-corrected errors are also shown in
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Fig. 10. Reconstruction error as a function of inversion number for
the reconstruction of the 1-D temperature protile using the SLIM
approach. The solid line gives the rms error, while the dashed line
shows the maximum error. For comparison. the perturbation cor-
rected errors tor the second inversion are shown as white and black
symbols for the maximum and rms. respectively. Percentages are
based on 50 pixel values. All other parameters are as in Fig. 9.

Error percentuge

NVears on
Fig. 11. Reconstruction error as a function of inversion number for
the reconstruction of the 1-D temperature protile using the CRAL
The solid line gives the rms error, while the dashed line shows the
maximumerror. Forcompanson. the perturbation-corrected errors
‘or the second inversion are shown as white and black symbols for
the maximum and rms, respectiveiv. Percentages are based on 50

pixel values. All other parameters are as in Fig. 9.

that figure, as was done insec. V.A. ItisseeninFig.10
that the SLIM procedure produces a substantial error
decrease up to inversion number eight, but arterward
the algorithm diverges.

3. Results with the CRAI

Asshown in Fig. 11, the convergence of the CRAI for
this example is very fast compared to the SLIM proce-
dure. Thus, at the fourth inversion the errors are
0.22% rms and 0.93% maximum, and the resuiting pro-
file practically coincides with the actual one. A small
undulation in the reconstructed profile. however. leads
to computational ray crossing when we attempt to
continue the iterations after the fourth inversion.
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vi. Conclusions

Due to the nonlinearity of the problem, it is very
difficult to draw general conclusions. From the exam-
ples presented above, and from other examples dis-
cussed in Ref. 37, it is seen that the quality of the
reconstructions and the convergence and divergence
characteristics of each algorithm are strongly object-
dependent. The most interesting result of this re-
search is the fact that the perturbation technique.
which is the easiest one to implement, is quite powerful
in reducing refraction errors. This approach has the
important advantage of not requiring the use of digital
ray tracing, thereby significantly reducing computa-
tional costs compared to the iterative procedures.
Moreover. it is very appealing since it makes use of
straight line inversion, a technique supported by an
extensive body of knowledge.

The SLIM algorithm is essentially a less sophisticat-
ed attempt to find the difference between actual and
unrefracted OPDs. According to Eq. (27), the condi-
tion for the convergence of this algorithm is that the
difference AP — A$* must grow progressively smaller.
The examples presented here have shown. however.
that in some cases that assumption is not cocrect. To
explain this behavior. consider the following argu-
ment. Suppose that eventually the exact solution is
found. i.e., that for some k we have n* ~ n, Because of
discretization and round-off errors, the calculated
OPDs A®* will differ from the exact OPDs Ad by a
finite amount. The next estimate of the OPDs with-
out refraction, A$**!, will then be different from the
ones that produced the correct reconstruction. As a
consequence the resulting index of refraction, n#*i,
will be different from n. Since this difference is not a
product of refraction, it is not likely to be reduced after
further iterations.

The CRAI technique for reconstruction along
curved rayvs is based on a totally different approach to
the problem. It does not use straight line inversion
techniques, and theretore it is more difficult to imple-
ment and slower than the SLIM. Nevertheless, we
have showed that the CRAI is a very effective tech-
nique in correcting for refraction errors. According to
Eq. (36), the requirements for the convergence of this
algorithm are the same as that for the SLIM. Thus,
because numerical errors compound after the mini-
mum error solution is found, the CRAI will also tend to
diverge after an acceptable solution has been found.
The divergence of the CRAI is, however, usually less
pronounced than that obtained with the SLIM.

In conclusion. the evidence presented here suggests
that, if refraction becomes non-negligible. the pertur-
bation correction should be applied. For comparison,
it may be convenient to use one of the iterative ap-
proaches. in which case the CRAI algorithm is recom-
mended. We feel, however, that further research is
needed to establish the conditions in which the itera-
tive algorithms will converge or diverge.
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Digital interferometry for flow visualization *

D. W. Watt and C. M. Vest

Department of Mechanical Engineenng. University of Michigan, Ann Arbor, M1 48109, USA

Abstract. Digital holographic interferometry 1s a hybnd optical-
digital technique for determining the phase of an nterferogram.
This technique improves the accuracy of interferometric measure-
ment of fluid properties and enhances the utility of interferom-
etnc flow visuahzatuon. Displays of the interferometric phase
produce excelient images of weakly refracung two-dimensional
flows arnd can be used to produce integral projecuon images of
three dimensional flows which differ from and -omplement
schlieren and shadowgraph images. The technique 1s explained
herein and examples of its use in both continuous wave and
pulsed interferometry are presented.

1 Introduction

Schlieren, shadowgraph and interferometric flow visual-
1zation techniques use the integrated effect of a fluid
optical property on a beam of light passing through an
object to form an image of a flow pattern. These tech-
niques work well for a variety of flows but have limited
utility for three-dimensional flows and weakly refracung
flows. Schlieren and shadowgraph images are formed by
ray bending which is approximately proportional to re-
fractive index gradients and second denvauves of the
refracuve index, respectively. The latter two techniques
work well for two-dimensional flows characterized by
large refractive index gradients. such as shock patterns.
They also have been nsed to observe complex structures
like turbulent jets. Such images show qualitative flow
features such as the gross outline of the mouon. the fined
grained structure of turbulence (Crow & Champagne
1971), and the presence of large, two dimensional struc-
tures [e.g. the vortex-like structures of Brown & Roshko
(1974)]. but conceal other structural aspects of the flow
such as the presence of unmixed. entrained fluid in-
clusions within the flow.

Interferometric methods are based on the phase delay
of a plane wave passing through the object and produce

* This work was presented in part at the 1985 Opucal Society
of Amenca Annual Meeting
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an integral projection of the object’s refractive index field.
However. this phase delay 1s encoded in a {ringe pattern
which can be difficuit to interpret The fri1 -es are useful
for visualizing objects such as plumes and boundary
layers. but become complicated for three-dimensional
objects. None of these methods works well for weakly-
refracting flows because the gradients invoived produce
indistnct schlieren and shadowgraph images and yield
broad. ambiguous interferometric fringes.

Digital interferometry is a technique by which the
interferometric phase delay is determined very accurately
at a large number of points in the image. The phase may
be displayed as a gray scale, yielding an image that has
none of the ambiguities associated with Schlieren and
shadowgraph images. Furthermore. the technique may be
used to image weakly-refracting flows since direct deter-
mination of the phase allows one to enhance the contrast
of flow details that can not be resolved by conventiona}
interferometry. Finally, the technique may be used to
make distnbuted measurements of flow quantities, N
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2 Digital interferometry -

.

Digital interferometry 1s a recently developed hybnd
optical-digital metrology technique combining two expo-
sure holographic interferometry with digital 1mage
acquisiion and computer processing to determine the
interferometnic phase directly from a set of image irradi-
ance measurements (Ddndliker & Thalmann 1985: Hani-
haran 1985). This technique 1s similar to heterodvne
holographic interferometry in that both manipulate the
interferogram’s phase in a known manner to determine 1ts
magnitude. The image intensity of a holographic inter-
ferogram is given by (Vest 1979):
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where /;(x. 1) 15 the background intensity, m(x.v) 1s the
fringe contrast and @ (x.y) 1s the interferometnc phase.
The term o 1s the uniform phase bias term which n the
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case of digital or heterodyne interferometry can be mani-
pulated. The image irradiance is recorded for several
different values of this bias phase using a digitizing
camera and 1s stored in computer memory.

The unknown phase @ can be calculated from the
values of the recorded image trradiance distribution and
the known values of ¢ using any one of a number of
Jlgebraic relationships reviewed recently by Hariharan
t1983y in this study, we recorded » separate airradiance
~atterns with the reference phase » evenly distributed
‘rom zero 1o 2z The phase @ may then be determined.
modulo 2z by: .

S Lxysing,

I EEEE—— (
S Iy cose,

Divv=tan™’

t9
~—

wnere

Fovar=1l ' T+mixy)cos[@(x v +ol) (3)
27y

and v = . n=number of exposures. The inverse tan-

n

2ent function maps the fringe pattern into a linear. dis-
conunuous funcuon. This enables one to eliminate the
phase sign ambiguily normally associated with cosinuso-
:dal fringes. The usual fringe counting procedure is
replaced by a simple. computational sorting operation.
A negative discontinuity indicates an increase in fringe
number and a positive discontinuity a decrease. Because
the phase 15 evaluated independently at each point in the
mage. 1's determination ts unaffected by spatial variation
.n the background irradiance or fringe contrast The
securacy of phase determination may be of the order of
{ S0-1-100 of a fringe, compared with 1/100-1/1.000 of
1 fninge for heterodyne interferometry and 1/5-1/10
‘-nge for convenuonal interferometrv. depending in ail
2ases on the nature of the object being studied (Didndliker
& Thaimann 985). The combined use of computational
‘ringe counung and high resolution image storage devices
enables one to resolve complex fringe patterns. Digital
:nterferometry i1s a convenient, accurate high resolution
:nterferometnic technique.

This method can be used for both real-ime (Hariharan
etal 19%2) and double exposure holographic interferom-
etrv. Because real-ime 1mages show temporal phase
»anation due to even small perturbations which are
nherent 1n many fluid mechanics experiments, double
exposure methods are preferred for most steady flow
studies and all unsteady flow studies. The double expo-
~ure technique requires two reference waves, one for each
exposure (Fig. 1). The first exposure 1s made without the
‘biect flow field) and the second exposure is made with
“he ohiect present. The film is developed and the image 1s
reconstructed by illuminating it with both reference waves
-smultaneousiv. Primary. conjugate and cross reconstruc-
“ons gre then present (Dandhiker etal. 1976). The con-

Expenments in Fluids 5 (1987)

jugate and cross reconstructions must be property com-
pensated for so that their presence does not significantly
reduce the accuracy of the technique (Ddndliker etal.
1982). The two pnimary reconstructions overlap to form
the desired interferogram with the phase bias term given
by:

o=kiri=r)=k(ri=ri) (4)

b

In . .
where k =— . = recording wavelength. r,. r- are the
A

reference source distances during recording. and r!. s} are
the reference source distances durning reconstruction. The
phase bias term ¢ may be shifted by changing the path
length of either reference wave bv a small amount. Jr.
Therefore the change in the phase bias termis Jp =4k 17,

This technique can be applied to flow visualization or
measurement with either plane-wave or diffused object
illumination. The plane wave setup (Fig. 2} 1s preferable
when laser power .s imited. When a plane object wave 1s
used. the two reference waves must have a wide angular
separation in order to eliminate troublesome overlap of
the cross reconstructions.

Diffused illumination (Fig. 3) 1s generally preferable.
however, because it allows the two reference waves to
have a small angular separauon. thereby reducing the
errors due t0 misalignment of the hologram with the wwo
reference waves. Although the cross-reconstructions over-
lap. they may be almost completely decorrelated 1if their
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Step 1: Recording interferogram
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Fig. 1. Schematic setup for digital interterometry of phase obiects
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! images are displaced in the image plane by an amount RN
i greater than the speckle size. This overlap reduces the N
orogram - ,1‘/5"‘:;9 5avemn fringe contrast. but does not significantly reduce the -
——————— . . S
T accuracy (Dindliker etal. 1982). The small angular
imaging <___—> g = )
Lens separaton of the two reference waves causes a regular. Tv
\/ - cnteo! visible fringe pattern to be present on the hologram o~
«cuage surface, which causes a periodic error. This effect 1s By
mimimized by placing a low f-number imaging lens very N
2 g \ + . .
: 81 0soiay | close to the hologram so that the regular fringe pattern 1s :
/_‘“} outside the field of focus. )
/ Breuckmann and Thieme (1985) used this arrangement
1o correct for errors due to wavelength shift when per-
‘ ":i;l:er forming digital interferometry when the recording and
reconstructon lasers had different wavelengths (see
) Fig. 4a and by, In this case. the bias phase 1s given by:
Fig. 3. Expenmental setup for diffuse-itiumination digital inter-
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=
l.‘
.
- I L P X \-

. R T T S
- Rt N P Y R T Il e e AN S L A NG oSk g gL o NN N N R L
AR ARG CHR GLCHCHOA S AL S TS SV S N VO A s RV PRGN

* .

&

« e e

[

PP A

A

y

P

PR A

. 0

R LI

.

g

L

4



LaiDed
"

N
-
U4

-~
.

b T AR, s

DN N Y

; ‘(", \._'. AT AR AT N o e, . At " - T LR TR PN A
o ’ [ X )

2n 2n .
where ky=— ky=— 4, = recording wavelength, /.
2 5]

reconstruction wavelength, or
Jo=ky(ry=r) = ky(ri—ri)+kydrs.

For reference beams separated by a small angle
whose bisector forms an angle ¢ with the hologram plane:

ri—r-=rcosfsing.
Thus:

cos¢ysind, cosfsinds
do=2nr - -

N + :.1/'3.
2 22 ‘

cos @ sin o

The terms of the form can be shown 10 be the

A

frequency of the fringe pattern formed by the two refer-
ence waves 1n the hologram plane. Therefore. by setting 4,
such that the fringe spacing of the reconstruction refer-
ence waves 1s equal to a pattern that wouid be formed by
the two recording reference waves. the chromatic errors in
the phase are eliminated. This allows the interferometric
phase to be evaluated in the usual way

Expenments in Fluids 5 (1987)

3 Experimental setup

A digital interferometer with a plane object wave is shown
in Fig. 2. The two reference waves are separated by about
20°. The hologram was held and developed in a real-time
liquid gate to reduce alignment errors. A second set of
experiments was made with diffused illumination (Fig. 4)
using a pulsed ruby laser for recording and a He-Ne laser
for reconstruction in a manner described by Breuckmann
and Thieme (1985). The second recording reference wave
was derived in this case by tilting a mirror in the original
reference beam by about 0.5°. The hologram is recon-
structed with a He-Ne laser using a Michelson interferom-
eter to create the desired fringe pattern. In both cases the
phase shifting is done by translating a mirror in one of the
reference beams a fraction of a wavelength. The mirror s
mounted on a piezoelectric cell, to which a control voltage
is applied. In both cases, the two reference waves are
brought together to form a fringe pattern which serves as
a measure of their mutual phase difference. A pair of
photodiodes are placed in the fringe pattern and the error
signal between them 1s used with a proportional-integral

Fig. 5. a Interferogram of strong plume from a heated wire 1n a cross flow. b phase display of interferogram in a. ¢ interferogram of

weakly-heated wire 1n a cross-flow, d phase display of interferogram in ¢
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Td
controller to generate the control voltage for the piezo- display, we can compute the total phase at each point in ‘ .
electric cell to maintain a stable fringe pattern (and the image. Displaying this total phase as a gray scale ::
therefore phase shift) in the presence of electnical, me- (normalized to 255 gray levels) yields the image in Fig. 6c. '::
chanical and thermal perturbations. The plane wave inter- This image represents a true integral projection of the  *a
ferographic 1mages were made with a 128 by 128 pixel density of the jet. Close examination of this image reveals :"‘.
. array CID camera while the diffuse-illumination images two interesting features. The first ts the axial distribution ':
were made with a video camera in conjunction with a 256 of areas of high concentration of helium. The second 1y
by 384 pixel video frame store. Each pixel has 255 gray the presence of large inclusions of unmixed ambient luid )
levels. Image computations were done on an LSI-11 based near the center line of the jet. Although the implications .
computer. which is interfaced with the camera. of these structures will not be discussed here. 1t 15 o¥n)
interesting to compare the absolute phase piot to the .\.-f'..
schlieren images of a similar jet made bv Crow und N
4 Resulits Champagne (1971) and the laser-induced fluorescence @
images of Dimotakis et al. (1983). The schlieren pictures "
The plane-wave interferometer was used to visualize the show an apparent fine-grained “surface™ of the jet with s‘: .
flow around a cylindrical heated wire. Figure Sa shows Iittle indication of the internal structure. The integral :.r
the digiized interferogram of a strong. laminar plume phase plot is similar to the centerline laser fluorescence '.:
while Fig. 5b shows the gray scale displav of the phase. pictures, in that both indicate areas of high jet fluid con- ::f
modulo 2z The conversion of the fringe pattern to a centration and large inclusions of unmixed ambient fluid. »
linear discontinuous function is evident. Figure Sc shows This 1s somewhat surprising because the integration wouid e
the digitized interferogram of a shightly heated wire in a tend to average out the effects of locally strong vanation _;
cross-flow. This interferogram consists of a few narrowly in the concentration field. Further study of such images N
spaced fringes near the wire and a single broad. indistnct could be used to examine the symmetry properties of the :;‘
fringe in the wake. The phase display of this inter- jets and other mixing phenomena. D
ferogram (Fig. 5d) has a greatly enhanced contrast that 2
clearly shows thermal vanation in the wake. which is not "o
apparent in the interferogram. S Applications :-..
The diffuse-illumination interferometer was used to :'-:
visualize a nominally axisymmetric, turbulent. helium jet These examples point out the potenual utility of digital o
injected tn sull air. The interferogram shown in Fig. 6a is interferometry for flow visualization and measurement. It ;.’
complicated and difficult to interpret especially near the greatly enhances the image contrast of interferograms of »
Jet center where the fringes become broad and indistinct. weakly refracting flows, removes the sign ambiguity as-
The phase display (Fig. 6b) is an improvement. producing sociated with conventional interferograms. and produces i
a contour map of the phase. Using a sorting procedure images that display rather subtly flow features. These L
based on the nature of disconunuities in the phase features could allow unique applications of interferometny ]
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to flow visualizauon, such as using small temperature
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