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Abstract 

A surface panel method suitable for the analysis of marine propellers is developed 
and applied to various geometries to demonstrate its e:Tectiveness. A reliable pressure 
distribution around a marine propeller, especially near the leading edge of the blade, 
is obtained. Hub effects are naturally included by distributing panels on the hub 
surface. 

Detailed study of the flows at the trailing edge near the tip suggests a pressure 
Kutta condition, which requires the pressures of the last panels at the trailing edge 
be equal. Due to the nonlinear aspect of the pressure Kutta condition, an iterative 
process is employed. An efficient approximation of the ultimate wake is achieved by 
replacing it with a sink disk at the beginning of the ultimate wake. 

The sample geometries include an ellipsoid at zero angle of attack, a circular 
planform wing, a rectangular planform wing with varying sweep angles, a wing-body 
configuration, a long axisymmetric duct, and a marine propeller. Calculated pressure 
distributions around the wing-body configuration are in excellent agreement with the 
experimental data. Calculated thrust and torque for the propeller agree well with 
experimental results. 
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Chapter 1 

Introduction 

Calculation of the pressure distribution around a marine propeller is a fundamental 

goal of many naval architects, yet a successful calculation of a reliable pressure dis- 

tribution, especially near the leading edge and the blade tip, has not been reported. 

Not only should the thrust and the torque, which are calculated by the integration 

of the pressure distribution on the blade surface, be accurate, but the local minimum 

pressure at the leading edge of the blade should also be accurate to calculate cavita- 

tion inception and extent. Moreover, the locations of the local stagnation point and 

the minimum pressure point at the leading edge of the blade are essential inputs to 

the calculation of the boundary layer on the blade surface. 

Most of the design and analysis of marine propellers rely heavily on lifting surface 

theory. Many lifting surface codes, which use a discrete vortex/source line represen- 

tation of the blade on the mean camber surface, have been developed and used in 

the prediction of the steady/unsteady performance of marine propellers [141,[5]. As 

a consequence of the linear superposition of the thickness and the lifting problem in 

lifting surface theory, the prediction of the pressure distribution at the leading edge 

is not valid. Lighthill's correction may be applied to the local flow around the leading 

edge, however the validity is questionable for general three-dimensional flows. More- 

over the complete exclusion of the hub in the numerical model of the lifting surface 
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theory has been questioned. Recent research on the effect of the hub on the perfor- 

mance of a propeller by Wang [23] showed that the effect could be significant in those 

propellers with a large hub radius or a snaall number of blades. These difficulties can 

be resolved naturally by adopting a surface panel method and distributing panels on 

the exact propeller surface including the hub surface. This becomes possible as high 

speed computers, with large capacity, become more commonly available. 

Many kinds of panel methods have been in use for aerodynamic/hydrodynamic 

applications since Hess [8] proposed the surface source method. Although all the 

properly formulated panel methods are exact in the sense that the numerical solutions 

converge to the common solution as the number of panels is increased, this does not 

imply that all the panel methods are equally successful. Indeed, vast differences exist 

with respect to the prediction accuracy versus computational effort and the reliability 

for extreme geometries. 

In the present paper, the characteristics of the various panel methods are reviewed 

and compared. As a result, a low order panel method based on the perturbation 

potential is chosen because of its robustness with respect to extreme geometries, and 

its relatively smaller computational effort. 

Extreme geometry of the blade of marine propeller had prevented the surface panel 

method from being applied to the marine propellers. To the author's knowledge, only 

two attempts have been made to apply the panel method. Hess [9] extended his 

surface source method to this problem. But the surface source method suffers as the 

thickness of the blade becomes small, and the results toward the thin blade tip become 

questionable. Koyama et. al. [15] applied a Morino type low order panel method 

to marine propellers. But his pressure distribution near the tip showed a spurious 

positive loading at the trailing edge. This is due to the failure of the Morino's Kutta 

condition which does not account for the three dimensional cross flow effects. In the 

present work, extensive attention is given to the three dimensional trailing edge Sow. 
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As a result, a pressure Kutta condition, which requires the pressures of the last panels 

at the trailing edge be equal, is suggested. Due to the nonlinear aspect of the pressure 

Kutta condition, an iterative solution procedure is employed. 

Numerical calculation is performed for various geometries using the selected panel 

method with the pressure Kutta condition. The examples selected in the present 

work include an ellipsoid at zero angle of attack, a circular planform wing with vary- 

ing thickness, a rectangular planform wing with different sweep angles, a wing-body 

configuration, a long axisymmetric duct, and a marine propeller. 
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Chapter 2 

Fundamentals of the panel methods 

2.1     Introduction 

Panel methods have been in use for certain aerodynamic/hydrodynamic applications 

since Hess [8] proposed the surface source method in 1964. Since then, various other 

formulations have appeared which offer advantages in terms of accuracy, computa- 

tional efficiency or versatility. Although all the properly formulated panel methods 

are exact in the sense that the numerical solutions converge to the common solution 

as the number of panels is increased, this does not imply that all the panel methods 

are equally successful. Indeed, vast differences exist with respect to the prediction 

accuracy versus computational effort, reliability and simplicity. 

In this chapter, the basic mathematical theory behind the various panel methods 

is reviewed and the characteristics of each method are compared in order to determine 

the most suitable method for the analysis of marine propellers. The common basis of 

the apparently different panel methods will then be evident, suggesting the following 

grouping of the panel methods. 

• Potential field formulation. 

- Perturbation potential method. 

- Total potential method. 
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• Velocity field formulation. 

- Mixed source and dipole method 

- Dipole method. (Equivalently, vorticity method) 

- Source based method. 

2.2     Statement of the problem 

Consider a closed three dimensional domain V with boundary S, the unit normal 

vector n to 5 being oriented into V, as shown in Figure 2.1. The boundary S is 

composed of the body surface SB, the wake surface Sw, and the outer control sur- 

face 5oo surrounding the body and wake surface. The body is subject to the inflow 

velocity Uoo- With the assumptions that the fluid in V is incompressible, inviscid, 

and irrotational, there exists a perturbation velocity potential <^ which satisfies the 

Laplace equation, 

VV = 0. (2.1) 

A boundary value problem can be constructed by specifying boundary conditions 

on the boundary S as follows: 

• The kinematic boundary condition should be satisfied on the solid body surface 

SB, 
d(f> 
— = -Uoc-n. (2.2) 
an '-■ ^     ' 

• The wake surface Sw is assumed to have zero thickness. The normal velocity 

jump and the pressure jump across Sw is zero, while a jump in the potential is 

allowed. 

{^P)cns^ =p+ -p- =0, (2.3) 

(A —),„s. = h-r-   F- " =0- (2-4) on on on ■ 
16 



Figure 2.1: Notation for a general body for the application of Green's theorem. 
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For the steady lifting problem, the potential jump across the wake surface is 

the same as the circulation around the body, and is constant in the streamwise 

direction on Sw- 

{^<i>)onS,=<f>^-r=T. (2.5) 

• A Kutta condition is required at the trailing edge to uniquely specify the circu- 

lation. In its most general form, it states that the flow velocity at the trailing 

edge remains bounded: i.e., 

\V(f>\T.E. < oo. (2.6) 

• On the outer control surface S^o, the perturbation velocity due to the body 

should vanish in the limit where this surface is an infinite distance from the 

body. 

V(f>^0,   as Soo ^ oo (2.7) 

According to Lamb [16], this boundary value problem for the velocity potential 

outside the body surface can be transformed into an integral equation, upon consid- 

eration of a fictitious fluid in V, which is the domain internal to the body surface Sg. 

Thus for the field point p in V 

OB 

Sw 

where        <^ = perturbation velocity potential in V, 

<f>' = perturbation velocity potential in V, 

p{x,y,z) = field point where induced potential is calculated, 

9(^)'7>f) = source point where singularity is located, 

■^(Pi?) = distance between point p and q, 
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g;;^ = normal derivative with respect to the point q. 

This equation may be regarded as a representation of the velocity potential in 

terms of a normal dipole distribution of strength {(f> - 4>') on the body surface SB, a 

source distribution of strength (f^ - |^) on 5B, and a normal dipole distribution of 

strength A(^ on the wake surface Sw 

Since the fictitious fluid inside SB does not have physical meaning, we can choose 

the internal velocity potential 4>' to suit our convenience. Thus, by choosing an appro- 

priate (f>' in Equation 2.8, we can formulate various panel methods which use different 

sets of singularities. 

2.3     Potential field formulation 

If we choose the fictitious potential as (f>' - 0 on SB, Equation 2.8 for the field point 

p on the body surface SB becomes 

d        1 d6{q)      1 l7r4>{p)    =   II ^{Q)- dS 

^//^*'''ars^^^- (^-9' 

dn^R{p;q)        dn,   R{P\q). 

_a 1_ 
s^ dn,R[p\q) 

Here the surface integral on SB must be defined to exclude the immediate vicinity of 

the singular point. By choosing the internal potential on SB ^^ cf)' = 0, the internal 

flow can be shown to be an undisturbed flow of $' = (}>^, where the total internal 

velocity potential is defined as ^' = (i>^ ^ ^'. 

Because |^ is known on SB from the boundary condition (Equation 2.2), Equa- 

tion 2.9 is a Fredholm integral equation of the second kind for the dipole strength 0, 

which is also the potential value on the body surface SB- The potential jump across 

the wake surface can be set equal to the difference between the potential values of 

the upper and lower surfaces at the trailing edge, which replaces the Kutta condi- 

tion. Discretization of Equation 2.9 will lead to a linear system of equations for the 
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unknown </>. The surface velocity, hence the pressure, on SB can be calculated by a 

numerical differentiation of the potential distribution. This form of panel method was 

introduced by Morino [20], and adopted in the present paper. We will refer to this as 

Morino's method or the perturbation potential method. 

If there exists an inflow velocity potential, <f>oo, such that V<^oo = ^oo, we can 

formulate another form of the panel method by choosing the internal potential in 

Equation 2.8 as a negative of the inflow velocity potential, i.e., (f>' = —4>x- The 

source strength in Equation 2.8 becomes zero because of the boundary condition 

(Equation 2.2), while the dipole strength, which is the difference between (^ and <p', 

becomes the total potential, 

<P-<i}' = <f> + <f>ao^^. (2.10) 

As the point p approaches the body surface 5^, the contribution from the imme- 

diate surface 5^ on SB in the first term of Equation 2.8 is 

J;!?o Ji% //(* - ^"II;R^)'' = ^^'* - *'' = 2'*-      (^■"' 

The resulting equation is 

27r$(p)    =   i7r4>^{p]+    ^{q)--— -dS 
JJ dnqR[p\q) 

SB 

Sw 

This equation can be regarded as a representation of the total velocity potential 

in terms of a normal dipole distribution only on the body surface SB and the wake 

surface Sw ■ Given the inflow velocity potential values, this is also a Fredholm integral 

equation of the second kind for the total potential $. Discretization of this equation 

gives another form of panel method, which we will refer to as the total potential 

method. 
.20 



2.4    Velocity Field Formulation 

Instead of forming an integral equation in the potential field, we can alternatively 

construct one in the velocity field. Taking the normal derivative of Equation 2.8 with 

respect to the field point p, the resulting equation, when the field point p is on 5^, is 

onp JJ dup   R[p;q) JJ dUpdn^ R(p-q) pdn^R{p-q) 
SB 

+ // A<^(<7)-^—^(i5, ,      . (2.13) 
JJ dupdn^ R{p; q) ^        > 

where     a = g - |^     and /i = <^ - 0'. 

It can be shown that a dipole distribution on a closed body surface is equivalent to 

a vorticity distribution with strength 7, which is calculated as a vector product of the 

local surface gradient of the dipole strength and the normal vector, (see Appendix 

B) Thus we can alternatively write Equation 2.13 as 

SB ' SB 

+ 11 np-i{q)xVp=^dS, (2.14) 
Sw 

where     7 = n, x V2_^{(f> - 0') . 

Here again, by choosing different values for the internal potential 4>', we can express 

the normal velocity on SB in terms of different sets of singularities. 

If we choose the internal potential in Equation 2.13 as (f>' = 0, it can be shown 

that 1^ =0 on 5B. Then, 

ip JJ drip 
C_ '■^ c r H 

5^ 
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where     •^ — 5^     ^.nd n — 4). ■ .. 

The right hand side of the Equation 2.15 can be regarded as the normal induced 

velocity at p due to the mixed distribution of normal dipoles of strength 4> on Sg, 

sources of strength |^ on 5s, and normal dipoles of strength A(^ on Sw- The source 

strength and the left hand side of Equation 2.15 is given by the kinematic boundary 

condition on the body surface. Thus Equation 2.15 is an integral equation of the first 

kind for the unknown dipole strength /x. 

Discretization of Equation 2.15 gives another form of panel method, which we will 

refer to as the mixed source and dipole method. This can be regarded as the velocity 

field formulation of the perturbation potential method. 

An equivalent formulation derived from Equation 2.14 leads to a mixed distribution 

of sources and vortices instead of dipoles. 

P •'/ drip 

+ //"p-7(9) >: Vp^<i5, (2.16) 

Sw 

where     cr = ^^     ^^^ 1 = ^q '^ ^2-d<f>- 

If we choose the internal potential on 5^ as |^ = |^, then (i>' can be shown to be 

equal to —(^00 throughout the inside of the body. Then the source strength becomes 

zero and Equation 2.13 becomes 

4, ^ = // .W^i^S + // M.)^^^S, (2.17) 
dup        JJ oripdn^ R JJ dupdn^ R 

SB SW 

where     ^ = (j> + 4>oo = ^■ 

This is also an integral equation of the first kind for the unknown dipole strength 

^.   The panel method derived from Equation 2.17 will be referred to as the dipole 

method. This can be regarded as the velocity field formulation of the total potential 

method. 
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Due to the equivalence between dipoles and vortices, Equation 2.17 can be written 

in a different form, 

47r -^ = // ^P • ^(9) X ^P-^"^^ ^ I! ^'' ^(') ^ "^^T"^^' ^^-^^^ 

where 7 = n, x V2_,i$. We will refer to the panel method derived from this equation 

as the vorticity method. 

If we choose the vorticity strength in Equation 2.14, such that it has a given shape 

function g(t) along the chordwise panels and the spanwise circulation r(5) is yet to 

be determined, then 

+ 11 np-^xV,^dS, (2.19) 

where 7 = T{s)g{t)t^, t^ is the direction of the vorticity, and 5 and t are the spanwise 

and chordwise coordinates. Given the vorticity shape function g{t) and the normal 

velocity on SB from the boundary condition, this is a Fredholm integral equation 

of the second kind for the unknown source strength a and the spanwise circulation 

distribution T{s). This is the form of the original surface source method by Hess '8]. 

We will refer to this form as the source based method. 

2.5     Comparison of the characteristics of the vari- 
ous panel methods 

To compare the characteristics of each panel method, the above described methods are 

implemented as numerical codes for the analysis of the two-dimensional flow around 

a hydrofoil. It is assumed that the characteristics of each panel method are preserved 

for the two-dimensional case, even though the principal objective of the present study 

is to compare those for the three dimensional case. 
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Numerical implementation of the panel methods involves approximations of vari- 

ous sorts and inevitably introduces discretization errors which would decreeLse as the 

number of panels is increased. The principal approximations involved with any panel 

methods can be summarized as follows: 

• Discretization of the geometry, *    . 

• Discretization of the singularity distributions, 

• Boundary conditions are satisfied at discrete collocation points, 

• A numerical Kutta condition must be imposed. 

The simplest discretization will be used in the numerical implementation of the panel 

methods in order to compare the characteristics of each method. 

Of the five different panel methods which were described in the previous sections, 

the source based method has been used most widely and is known to be accurate for 

most geometries. However, the source based method is also known to be inaccurate 

for relatively thin foil sections. For marine propeller applications this is a severe 

disadvantage because a typical thickness/chord ratio is as little as two percent near 

the tip. Moreover, the source based method is known to be inaccurate for internal 

flows, such as the flow inside a long duct. 

Because the characteristics of the source ba.sed panel method are relatively well 

known, four other panel methods are actually implemented. They are the perturbation 

potential method, the total potential method, the mixed vortex and source method, 

and the vortex method. A brief description of each method will be given, and the 

more detailed numerical implementation is included in Appendix A. 

In the perturbation potential method, the foil geometry is replaced by an N-faced 

polygon, where N is the number of panels. The singularity strength on each panel 

is assumed to be piecewise constant.   The collocation point, where the discretized 
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integral equation is satisfied, is selected as a midpoint of each panel. A numerical 

Kutta condition is satisfied by requiring that the potential jump in the wake be the 

difference between the potential values of the upper and lower trailing edge panels. 

The above treatment results in a system of linear equations for the unknown dipole 

strengths. 

The surface velocity, hence the pressure, is calculated by a second order differen- 

tiation of the resulting perturbation potential. Finally, the lift and drag are obtained 

by summing the element pressure forces which are calculated by multiplying the pres- 

sure at the midpoint by the arc-length of each panel. Alternatively, the lift can be 

calculated from Kutta-Joukowsky's law as pUT, where T is given as the potential 

jump on the wake surface, and the drag should be zero. 

The computer code is applied for a typical hydrofoil section with a thickness/chord 

ratio of four percent and a camber/chord ratio of two percent. The thickness form 

is chosen as the NACA 66 mod. form and the camber distribution is chosen as the 

a=0.8 mean camber line, which is widely used in marine propeller blades because of 

its good performance with respect to cavitation inception. The panel arrangement 

for 40 elements is illustated in Figure 2.2. 

Convergence characteristics of the perturbation velocity potential distribution and 

the pressure distribution obtained by the perturbation potential method are shown in 

Figure 2.3 and 2.4, where number of panels is increased as 20, 40, 80 and 160. The 

results with 40 panels, which is a typical number of the chordwise panels in three- 

dimensional application, are shown to be very close to those with 160 panels. The 

pressure distribution with 160 panels is considered converged and will be used as a 

standard datum for comparison with the other panel methods. 

Geometric discretization for the total potential method is the same as that for the 

perturbation potential method. Instead of distributing sources and normal dipoles, 

only normal dipoles are distributed on the foil surface.   Since the kernel of Equa- 
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tion 2.12 is the same as that of the Equation 2.9, the influence coefficient matrix, 

which is the left-hand side of the linear system of equations, is identical to that of 

the perturbation potential method. Only the right-hand side of the linear system is 

different and the unknown is the total potential rather than the perturbation poten- 

tial. The potential jump on the wake surface is equal to the difference of the total 

potential values of the upper and lower trailing edge panels. 

Convergence characteristics of the total velocity potential distribution and the 

pressure distribution by the total potential method are shown in Figures 2.5 and 2.6. 

Comparing Figures 2.3 and 2.5 we notice that the convergence of the total potential 

method is much faster than that of the perturbation potential results. However, the 

potential jump in the wake, or the circulation around the foil, by the total potential 

method converges at the same rate as that of the perturbation potential method. 

The fast convergence of the total potential in Figure 2.5 is attributable to the fact 

that the inflow potential is included in the total potential. The disadvantage of the 

total potential method is that for a non-uniform inflow velocity, the inflow velocity 

potential is either not defined or difficult to define. In such a case this method can 

not be applied. 

Table 2.1 provides a comparison of the computed values of lift and drag coeffi- 

cients obtained by an integration of the pressure distribution, with the lift coefficient 

calculated by Kutta-Joukowsky's law. 

The velocity field panel methods are also implemented as numerical codes. Since 

a constant strength normal dipole is equivalent to a pair of point vortices at the 

panel edges, a distribution of point vortices is used instead of the piecewise constant 

dipole distribution. In the mixed source and vortex method, point sources are also 

distributed on the same location as the vortices. The collocation point is selected 

on the exact foil surface instead of the midpoint of each panel. An explicit Kutta 

condition is imposed at the trailing edge by setting the tangential velocity equal to 
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Table 2.1: Effect of the number of chordwise panels on computed lift and drag co- 
efficient for the two-dimensional foil section. (NACA 66 mod. + a=0.8, t/c=0.04, 
f/c=0.02, a=1.5 deg.) 

N 
Pert, potential Total potential 

CL CD {CL)T CL [CL)T 

20 0.394 0.0027 0.389 0.374 0.395 
40 0.410 0.0019 0.407 0.407 0.413 
80 0.420 0.0006 0.419 0.401 0.422 

160 0.425 0.0002 0.425 

zero. The direction of the tangential velocity is defined to be normal to the bisector 

of the upper and lower surface at the trailing edge. With this arrangement of point 

vortices and sources, both methods give exact pressure values at the collocation points 

for a circular section, regardless of the number of panels. But for a thin section the 

pressure distributions by both methods give erroneous results. 

Pressure distributions by the velocity field panel methods are shown in Figure 2.7 

with 40 panels for the same foil geometry. Both the vortex method and the mixed 

vortex and source method give erroneous pressure distributions, even though those 

results converge to the correct pressure distribution as the number of the panels is 

increased. One reason for this erroneous result is that Equation 2.14 is a FredhoLm 

integral equation of the first kind, and the influence coefficient matrix resulting from 

this equation is not diagonally dominant, which makes the solution unstable. Another 

explanation might be the fact that the kernel of the equation for the velocity field 

methods is one order more singular than that for the potential field methods. 

From the comparison of the results by different panel methods, the following con- 

clusions are made: 

• While practically all methods work well for thick sections, the potential mpthod 

is substantially more accurate for very thin sections.   This is particularly im- 
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portant for marine propellers, where thickness/chord ratios typically vary from 

twenty percent at the root to as little as two percent near the tip. 

• The influence coefficients for the potential induced by unit source and dipole 

distributions are one order less singular than the corresponding influence coeffi- 

cients for the velocity. As a result, potential based methods are expected to be 

less sensitive to errors caused by irregular panelling. 

• The computation of the panel influence coefficients, which is a major contributor 

to the total computing effort, is faster for a potential method than for a velocity 

method. 

• Since the potential influence coeflficients are scalar quantities, the required stor- 

age for the potential method is one third as great as the storage for a velocity 

method. 

• Both the perturbation potential and the total potential methods give accurate 

results with similar convergence characteristics. However, in the case of non- 

uniform inflow velocity, the inflow velocity potential is difficult to define, hence 

making the total potential method difficult to apply. 

• For a marine propeller application, the perturbation potential method is chosen 

and will be implemented for three dimensional cases in the following chapters. 

• In principle a high-order panel method should be more accurated than a low- 

order method for a given number of elements. However a properly formulated 

low-order method can achieve similar accuracy by increasing the number of 

elements. Since the high-order method requires more computational cost per 

element, the choice is determined by the trade-off between the cost per element 

and the accuracy for a given number of elements. Youngren et. al. [24} claims 
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that a low-order potential based panel method is more efficient than a high-order 

potential method in the case of a subsonic flow and an incompressible flow. 
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Chapter 3 

Numerical formulation 

By comparing the characteristics of various panel methods, the perturbation potential 

method was chosen in Chapter 2 as the most suitable method for the application of the 

marine propeller problem. In this chapter, the detailed numerical implementation of 

the perturbation potential method for three dimensional problems will be presented. 

A discretized form of the integral equation (Equation 2.9) can be applied to an 

arbitrary general body in potential flow. The body and wake surfaces are replaced by 

a large number of plane quadrilateral panels, and the singularity strength distribution 

on these surfaces is approximated by a piecewise constant distribution over the panels. 

The control point, where the discretized integral equation is satisfied, is selected as 

the centroid of each panel. This results in a system of linear algebraic equations for 

the unknown dipole strengths which are also potential values. From the solution of 

the linear system, any flow quantities of physical interest can be calculated. 

Because our main object of interest is a marine propeller in steady flow, the nu- 

merical procedure in this chapter will be focused on the case of marine prooeller. 

However the numerical procedure for a general body would be similar to this. 
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3.1     Blade geometry 

The propeller consists of K identical blades and an axisymmetric hub. For the steady 

flow problem, both the geometry and the singularity distribution is repeated iden- 

tically on each blade and on each inter-blade segment of the hub. In order to take 

advantage of the rotational symmetry of the propeller problem, only ^ portion of the 

propeller, i.e., one blade and an inter-blade segment of the hub, is discretized. Effect 

of the other portion of the propeller is included in the calculation of the influence 

functions, as will be explained in section 3.5. 

The propeller geometry problem consists of finding the Cartesian coordinates of 

points on the actual propeller surface, given the usual propeller geometric descriptions. 

The geometry is specified with respect to a right-handed, blade-fixed coordinate sys- 

tem, with the i-axis pointing downstream and the y-axis at some arbitrary angular 

orientation relative to the selected blade. The 2-axis completes the right-handed 

system. Cylindrical coordinates [x,r,0) are defined as usual, with 

r = ^Jy^ + z^ (3.1) 

and 0 being measured clockwise from the y-cixis when viewed looking downstream. 

The blade is formed starting with a midchord line, which is a space curve defined 

parametrically by the radial distribution of skew 6^[r), and rake x„(r). By advancing 

a distance ±^ along a helix of pitch angle 4>[r) passing through the midchord line, 

one obtains the blade leading and trailing edges.   The nose-tail line is defined as a 

helical line between the leading and trailing edge at each radius.   The blade mean 

camber surface may then be defined by adding the camber, /(r), at right angle to 

the nose-tail line at each radius. Finally, thickness t{r) is added symmetrically with 

respect to the mean camber line at each radius, again in a cylinder of radius r, and 

at right angles to /. The coordinate systems and the notations described above are 

illustrated in Figure 3.1. 
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Figure 3.1: Propeller blade geometry notation. 
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Ne panels are distributed on each chordwise strip of the blade. The chordwise panel 

arrangement is the same as that of the two-dimensional hydrofoil, and cosine spacing 

is again adopted. The radial distribution of panel size is determined to concentrate 

the elements toward the tip. In this case, the radii for Mr panels are, 

r^ = R, + {R-R,)smC^'^~^^),    m = 1,2,... ,M, + 1 (3.2) 

where /?/, is the hub radius, R is the tip radius, and M^ is the number of panels over 

the radius. Panel arrangement for a three bladed propeller is illustrated in Figures 3.2 

and  3.3, where panels are distributed over the full propeller. 

3.2    Hub geometry 

The geometry of the hub is defined by a profile curve, which can be anything from a 

constant diameter cylinder to a complete aocisymmetric body on which the propeller 

is mounted. A realistic geometry may be a semi-infinite cylinder on the upstream 

side, with a given fairwater geometry downstream of the blades. The geometry of the 

hub which is used in the sample calculation in Chapter 4 is shown in Figure 3.4. Here 

the profile curve of the fairwater is given &s a quartic function of the nondimensional 

distance from the tail of the hub. 

The geometry of the hub can be determined by the following input parameters: 

• Maximum hub radius, i?/,. 

• Computational ajcial distance in the upstream region, X^. 

• Axial distance from the trailing edge of the blade to the beginning of the fair- 

water, Xd- 

• Axial length of the fairwater, Xt. 
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Figure 3.2:   Panel arrangement viewed from upstream for a three bladed propeller 
with a hub. (7Vc=40, Mr = lO, N^ + Nk + Nd + Nt=39, M«=8) 
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Figure 3.3: Panel arrangement viewed from downstream for a three bladed propeller 
with a hub. (A^,=40, M, = 10, iV„ + A^6 + A^<i + A^t=39, M«=8) 
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Figure 3.4: Geomertry notation of the hub. 
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The axial distance between the leading and trailing edge, Xb in Figure 3.4, is deter- 

mined from the geometry of the blade at the root section. Xj and Xj in Figure 3.4 

are the distances from the origin to the upstream end and to the downstream end of 

the hub. 

The number of panels on the hub can be determined by the following integers: 

• Number of circumferential panels in the non-redundant region of the hub, Mg. 

• Number of axial panels in the upstream of the blades, iV^. 

• Number of axial panels between the leading and trailing edge of the blade, A''^,. 

• Number of axial panels from the trailing edge to the beginning of the fairwater, 

N4. 

• Number of axial panels in the fairwater region, A''^. 

Here, A^;, is determined from the blade panel arrangement, N^ and Nt are determined 

from the wake panel arrangement, while Mi and A''u are given as inputs. 

The arrangement of hub panels is selected to minimize the possible discretization 

errors due to the mismatch of the hub panels and the blade or wake panels. Over the 

axial location between the leading and trailing edge, the hub panels are arranged to 

match the blade panels at the intersections, and the circumferential panels along the 

hub are selected to have an equal circumferential angle of j^. 

The panelling on the hub upstream of the propeller leading edge is purely helical, 

with a pitch matching the root section pitch of the propeller. The axial spacing is 

chosen to provide a fine spacing near the propeller and a coarse spacing upstream. In 

this case, the axial coordinates of the panel boundaries are, 

.       i„ = -X„^ + X„sin(^^^),     n = l,2,...,.V„ + l. (3.3) 
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The arrangement on the hub panels downstream of the trailing edge is similar, except 

that the pitch is required to match the corresponding pitch of the wake at the hub 

intersection. 

The axial coordinates of the intermediate panels between the blades must be ad- 

justed, particularly near the leading edge, in order to avoid badly shaped panels in 

this region. Since finite thickness is superimposed to the mean camberline, the axial 

coordinate of the panel vertex in the suction side of the leading edge can be less than 

that of the leading edge. If the axial coordinates of the upsteam panels were required 

to be the same in the circumferential direction, panels near the leading edge could 

actually turn inside-out. To avoid this, the panel boundary, which intersects the suc- 

tion side of the blade panel boundary and the upstream hub helix at the leading edge, 

is selected to be a bisector of the upstream helix and the blade panel boundary. 

Once the vertex of the first panel at the leading edge is obtained by advancing 

the same circumferential interval, the axial coordinates of the intermediate panels 

along the hub are obtained in a smooth manner as illustrated in Figure 3.5, where 

the expanded plan view of the hub panel arrangement is shown. 

The influence of the upstream hub with semi-infinite extent can be accounted for 

if X^ is increased until no significant change in the potential values near the blades 

is detected. However it is observed that the dipole strength on the far upstream hub 

becomes a constant as the value of X^ is increased. While the source panels in the far 

upstream hub have no influence because of their zero strength, the dipole panels of 

constant strength over the cylindrical surface of a semi-infinite circular cylinder can 

be replaced by dipole panels over the circular disk at the beginning of the cylinder. In 

this way, the computational axial distance of the upstream hub, X^, can be reduced 

significantly. 
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3.3     Geometry of the trailing wake 

The influence of the trailing wake on the blade potential is a function of both its 

strength and geometry. The strength can be related to the radial distribution of 

circulation on the blade. The geometry, however, follows in an indirect way from the 

requirement that each element of the trailing vorticity must be aligned with the local 

flow. Since this local flow depends on the trailing wake geometry in a nonlinear way, 

an iterative procedure must be employed. Greeley and Kerwin '5] developed a wake 

alignment scheme which is extremely fast, yet capable of providing the aligned wake 

geometry. The wake model in the present work follows that given in [5], and only a 

brief description will be given in this section. 

The propeller wake is divided into two parts: 

• A transition wake region where the contraction and deformation of the slip- 

stream occurs. 

• An ultimate wake region which is composed of K concentrated helical tip and 

hub vortices. 

The axial variation of the radii of the trailing wake can be determined by a limited 

set of parameters, chosen in accordance with experimental data. 

• The ultimate radius of the contracted slipstream, R^. 

• The radius of the hub vortex at the end of the transition wake, R^h- 

• The length of the transition wake region, Xt^. 

• The contraction angle of the tip vortex as it leaves the blade tip, 6c. 

The radius of the outermost trailing vortex in the transition wake is set by a 

smooth curve consistent with the above wake descriptors. 
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The radius of the innermost vortex is set to that of the fairwater until it becomes 

smaller than R^s- Near the apex of the hub where the radius of the fairwater is 

smaller than Rwk, the radius of the innermost trailing vortex is set to R-u,h- The radii 

of intermediate trailers are obtained by an interpolation in the same manner as was 

described in [5]. Figure 3.6 illustrates the axial variation of radius of a set of trailing 

vortex elements derived by the above description. 

The pitch of the transition wake must be allowed to vary to match the local fluid 

velocity calculated on the wake element. An iterative procedure is required at this 

stage since the convection velocities depend on the geometry of the wake. In the 

present work a fully converged wake geometry, obtained from the lifting surface code 

with the wake alignment scheme [5j, is given as an input. 

Since normal dipoles are employed to represent the wake, dipole panels, instead 

of vortex lines, are distributed on the wake surface in the present work. 

3.4     Approximation for the induced potential of the 
ultimate wake 

The concentrated tip and hub vortices in the ultimate wake region must, in principle, 

extend downstream to infinity. Because dipole panels, instead of vortex lines, are used 

to represent the wake surface, helical strips of dipole panels also must be extended to 

infinity. 

Because the ultimate wake is located far downstream of the blades, the induced 

potential due to the ultimate wake panels can be approximated by that of a sink disk 

at the beginning of the ultimate wake region. This will save much computing effort, 

particularly for the present method which is bcised on the potential field formulation, 

since the induced potential due to a dipole panel goes to zero at a slower rate than 

the induced velocity as the distance between the field point and the panel becomes 

large. 
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Consider K equally spaced identical helical vortex lines of semi-infinite extent 

with a strength T and a pitch angle (^ on a circular cylindrical surface of radius R^, 

as shown in Figure 3.7. These vortex lines are connected to the center line vortex via 

radial vortex lines at the capping surface of the cylinder and downstream at infinity. 

This system of vortex lines is equivalent to K helical strips of normal dipoles with 

their axis normal to the helical surface. 

For a field point far upstream, the influence (i.e., the induced velocity or potential) 

due to the system of these vortex lines can be approximated as that of an axisym- 

metric distribution of helical vorticity on the cylindrical surface and a radial vorticity 

distribution on the capping surface of the circular cylinder, which is connected to the 

centerline vortex. This system of vorticity can be regarded as a vorticity representa- 

tion of a propeller with infinite number of blades. The helical vorticity has the same 

pitch angle as the vortex lines and has strength 7 = 2rfl^^in»• 

This system of the vorticity can be decomposed into two components (Figure 3.7): 

1. A system of vorticity on the cylindrical surface with its direction chosen as 

parallel to the i-axis, the radial vorticity on the capping surface of the cylinder, 

and the centerline vortex. The strength of the helical vorticity is '^s'liKp. 

2. A distribution of ring vortices on the circular cylindrical surface with its strength 

-7 cos (f). -, 

The system of i-vorticity is equivalent to a distribution of dipoles, with their 

axis in the —6 direction, inside the circular cylinder. The induced potential at the 

upstream field point due to this dipole distribution is zero, because 

On the other hand, the distribution of ring vortices on the circular cylinder is 

equivalent to a distribution of x-directed dipoles inside the cylinder.   The induced 
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Figure 3.7: Far-field approximation of the ultimate wake. 
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potential due to this dipole distribution is equivalent to that due to a sink disk of the 

same strength at the capping surface of the cylinder, since 

/      dr /     Td6 /     dx^-4 = dr        rd^l-f 1!° = / / ^dA.     (3.5) 
Jo Jo Jo        dx R      Jo Jo ^ R^°      J        J R ^     ' 

capping surface 

As a result, the ultimate wake surface is replaced by a sink disk at the beginning of 

the ultimate wake region. 

A simple numerical verification of the above approximation was performed, and 

the results are summarized in Table 3.1. 

Table 3.1:  Comparison of the induced potential due to the helical dipole strips and 
that due to the sink disk on the capping surface. 

Field point 

(2:,y,2) 

Helical dipole strip, A'',^; x A''„„ Sink disk, N, 
20 X 10 80 X 10 40 X 10    40 X 20 40 X 40 20    1 Analytic 

(-1.0,0,0) 3.703 3.748 3.739        3.848 3.905 3.849 3.902 
(-1.0,1,0) 2.932 2.974 2.966         3.074 3.131 3.144 3.191 

For the purpose of numerical verification, three helical strips are equally spaced 

inside the circular disk and the pitch/diameter of the outside helix is given as one. 

Each helical dipole strip is represented by iV^^ x Nrev panels, where A''.^ is the number 

of panels in one revolution of the helix, and Nrev is the number of revolutions of the 

helix. The sink disk is replaced by A'^, triangular panels at the beginning of the helical 

strip. Axial distance between the field points and the beginning of ultimate wake is 

given as 1.0. 

Induced potential due to the helical dipole strips are calculated by summing the 

individual contributions from each panel. The analytic result of the induced potential 
KTcosi* due to the sink disk of the strength ^^^"'^^, where /C = 3, F = 1, i?^; = 1, is a 

given as a reference. 

so 
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The first field point is located on the extension of the center line of the helix. 

Since induced potential divided by the number of the helical strips is constant for 

any number of helical strips on the field points along the center line, the replacement 

of the ultimate wake by the sink disk does not involve any approximation. This is 

numerically confirmed in Table 3.1. The induced potential due to the helical dipole 

strip on the first field point converges to the analytic induced potential due to the 

sink disk as A^^ and iV„« are increased. It is also shown that the result by 20 sink 

panels on the capping surface of the cylinder is as accurate as that by 40 x 20 dipole 

panels on each helical strip, which is equal to 2400 panels. 

The second field point is located at the same radius as the wake cylinder, where 

error due to the farfield approximation is maximum. The difference between the result 

using 40 X 40 dipole panels and the analytic result from the sink disk may be regarded 

as an error introduced by the farfield approximation. Again, 20 .nk panels on the 

capping surface of the cylinder is sufficient to give a very accurate result. 

3.5     Discretization of the singularity distribution. 

The solution of the boundary value problem consists of determining the strength of 

singularities representing the propeller and the trailing wake, so as to satisfy the 

integral equation (Equation 2.9). The continuous distribution of singularities on the 

propeller and wake surface is approximated by a stepwise distribution over the quadri- 

lateral panels. Since the strengths of sources are prescribed by the kinematic boundary 

condition (Equation 2.2), only the dipole strengths are to be determined. 

As described in section 3.1, surface panels are distributed only on the selected 

blade and the inter-blade segment of hub. Eff"ects of the other portions of propeller 

are included by summing the influence functions calculated by rotating the control 

points an angle ^ about the propeller axis until all blades are accounted for. This is 

equivalent to having equal panelling on all blades. 
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The four vertices of the panel are located on the exact surface of the propeller and 

the wake, which in general are not on a plane. The vertices of the plane panel are 

constructed as follows. Assuming that four offset points are specified on the exact 

surface, adjacent offset pairs are connected by straight segments. Their midpoints 

can be shown to lie on a plane. The plane vertices are then obtained by projecting 

the offset points on that plane. This construction minimizes in a mean-square sense 

the distance of the offsets from the quadrilateral plane. In addition, the sides of 

adjacent panels only contact each other at a single point, so their interior surfaces do 

not intersect. 

The influence functions for the quadrilatral source and dipole panels are computed 

using the formulation developed by Newman [21]. The induced potential is computed 

exactly for nearby panels, while it is approximated by a multipole expansion for more 

distant panels. Finally, the panels which are sufficiently distant are treated as point 

sources and dipoles. This is really the heart of any panel code, and it is essential that 

the computer code for the influence function be both robust and efficient. 

The dipole strength of each panel, which is also a potential value on the panel, is 

determined by satisfying a discretized form of the integral equation (Equation 2.9) on 

the control point, which is chosen as the centroid of the panel. Adopting piecewise 

constant singularity strengths on the plane quadrilateral panel, the integral equation 

can be expressed as a system of linear equations. 

^panel A'lr ■''pon«( ^ JL 

E   A;'^;+E^.m(A^)^=   E   '5.;(/);.     t = 1,2,... ,AU.;, (3.6) 
; = 1 m=l ; = 1 °^ 

where Npanti is the total number of panels on the blade and the hub, M, is the number 

of radial panels on the blade, £),j is the induced potential at the I'-th control point due 

to the j'-th dipole panel of unit strength, 5,j is the induced potential at the t-th control 

point due to the j-th source panel of unit strength, W,^ is the induced potent"il at 

the t-th control point due to the M-th streamwise dipole strip in the wake, and (|^)j 
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is the source strength at the j'-th panel given by the boundary condition. Since the 

strength of the M-th streamwise dipole strip, (A<^)„, can be related to the potential 

values on the blade by a numerical Kutta condition, Equation 3.6 is sufficient to 

determine the unknown potential values. 

3.6     Kutta condition 

A numerical Kutta condition must be imposed to specify the circulation around the 

body, which is equal to the potential jump in the wake surface. An approximate 

Kutta condition for the potential based panel method, which was first introduced by 

Morino [20], required that the strength of the dipole sheet in the wake be equal to 

the difference in the value of the dipole strengths of the two panels adjacent to the 

trailing edge. 

Morino's Kutta condition gives accurate results for thin two-dimensional foil sec- 

tions with small trailing edge angles. However, it is found that this form of Kutta 

condition contains a fundamental error when the free stream contains a component 

in the direction of a line connecting the control points of the two trailing edge panels. 

Therefore, for three dimensional problems with significant cross flows, a new form of 

Kutta condition is needed to satisfy the zero loading condition at the trailing edge. 

For two-dimensional problems where no cross flow component exists, a Kutta 

condition can be the requirement that the potential jump in the wake should be equal 

to the difference in the total potential values, instead of the perturbation potential 

values, of the upper and lower panels at the trailing edge. 

(A,^),,t. = $"-$'= ^"-(^' +C/^^.r-,, (3.7) 

where f, j is the vector between the the control points of the two trailing edge panels. 

The correction term to Morino's Kutta condition, Uoo • ft.t., represents the potential 

jump between trailing edge control points due to the inflow velocity and vanishes for 
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cusped foil sections as the upper and lower control points approach the trailing edge. 

Figures 3.8 and 3.9 show the perturbation potential and the pressure distribution 

for a circular cylinder at 90 degree angle of attack, calculated by the two-dimensional 

panel code with and without the additional correction for the potential jump. Without 

this correction, the circulation converges to about half the correct value regardless of 

the panel density. With the correction term, the potential and pressure distributions 

recover the analytic results. But it should be noted that the differences between 

the results obtained by the original Morino Kutta condition are very small for thin 

two-dimensional sections. 

For three dimensional problems with significant cross flows, this is still not satis- 

factory. For the region near the tip, where the cross flow component around the tip 

from the pressure side to the suction side of the blade is prominent, the result by the 

modified Morino Kutta condition shows a spurious non-zero loading at the trailing 

edge. A new form of Kutta condition is required which enforces the zero loading 

condition, as explained below. 

Figure 3.10 shows the fiow at the trailing edge near the tip. Total velocity on 

the pressxire (lower) side, V', has an outward component, while that on the suction 

(upper) side, V", has an inward component due to the cross flow around the tip. They 

should have the same magnitude to satisfy the zero loading condition, since the static 

pressure in steady fiow is the same on the upper and the lower side of the wing at the 

trailing edge. 

Define a local coordinate system, where s is chosen as the direction of mean ve- 

locities of the upper and lower surfaces, and n is chosen normal to s toward the tip. 

The trailing edge velocities can be decomposed into into s, n directions, and for a 

zero loading at the trailing edge, the following equations must be satisfied. 

V; = VJ (3.8) 

V;" = -7^ (3.9) 
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Figure 3.9: Pressure distribution for a circular cylinder at 90 degree angle of attack. 
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Figure 3.10: Magnified flow at the trailing edge near the tip. 

where V;",V;",V;', and V^ are s,n components of 7" and V\ respectively. 

In general, the calculated velocities at the trailing edge using the modified Morino 

Kutta condition do not have the same magnitude. As a result, the pressure values 

on the upper and lower surfaces do not match. This non-zero loading at the trailing 

edge becomes large toward the tip, where the three-dimensional cross flow component 

becomes large. 

In the present work, an explicit pressure Kutta condition is employed, which re- 

quires the pressures on the last panels at the trailing edge be equal. The potential 

jump in the wake surface is expressed as. 

(A<^),aib« - 4>L. - 4>\.,, + U^ ■ ft.,. + K{/\C,) Pitt (3.10) 

where (ACp)t.,. is the diff"erence of the pressure values of the upper and lower par Is at 

trailing edge and /C is a parameter to be found to ensure the zero loading condition. 
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Due to the nonlinear aspect of the pressure Kutta condition, an iterative solution 

algorithm is employed. 

In the numerical implementation, the potential jump at the m-th dipole wake strip 

is 

{M)l^^ = {4>':' - 4>'J'^ + {Uoo ■ r-.jL*^ + K{AC,Yt'\ (3.11) 

where <f)^' and 4)]^ are the potential values of the upper and lower panels at the trailing 

edge. Then Equation 3.6 becomes 

Z     D,,<f>^      +       E^^r.{<i>l'-4>1)^'^=     E     5.;(|^); 
j=l m=l j=l 

-   Yl^'rn\{U^-rt.e.)mK{AC,)i^-%       i =  1,2, ..., N.^.U) 
m=l 

During the iteration process, the value of ACp is obtained from the previous iteration, 

and the value of K is determined by the Newton-Raphson method. However, the 

influence coefficient matrix is unchanged in the process. The initial guess, {A(t>)l^\ is 

taken by setting the value of K to zero. 

On the other hand, the difference of the n-direction velocities at the trailing edge 

panels in Figure 3.10 is related to the magnitude of the trailing vorticity. The trailing 

vorticity is in the 5-direction and the magnitude of it must be equal to the spanwise 

derivative of the circulation: 

7 = I'7| = |V^„"-V;!|cos0 = -^, (3.13) 

where t/^ is the angle between n- and ry-coordinates. This is the compatibility condition, 

which is a measure of the consistency of the panel method. 

3.7     Linear system solution 

The unknown dipole strengths are determined by the solution of the system of linear 

equations.   For a small number of unknowns, such as two-dimensional problems or 
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simple three-dimensional problems, Gauss reduction can be used at the outset to 

decompose the matrix into lower and upper triangular forms for subsequent solutions 

with different right hand sides. But for complex three-dimensional geometry, the time 

required for the Gauss reduction method would become prohibitive. 

Since several iterations are required to satisfy the pressure Kutta condition, an ef- 

ficient matrix solver is an essential feature of the present panel method. In the present 

work, an accelerated iterative matrix solver developed by Clark [4] is employed. This 

method is found to converge very rapidly for the kind of influence coefHcient matrix 

encountered with the present potential method, and requires very small computing 

time compared to the Gauss reduction method even for a linear system with small 

number of unknowns. 

As the number of unknowns becomes large, the computer memory to store the full 

influence coefficient matrix increases in proportion to N^, where A'' is the number of 

unknowns. Instead of storing all of the matrix elements into the computer memory, 

they are saved in the outside storage and retrieved when neccesary. In this way, the 

computer memory required can be significantly reduced even though more computer 

time is required for storing and retrieving the matrix elements. 

Table 3.2 provides a comparison of the computing times of the Gauss reduction 

method and the accelerated iterative method using a DEC MicrovcLX 2. Here, the 

computing times required for memory resident Gauss reduction are given for the 424 

and 724 panel cases, while those for 840 and 1680 panels include the time required 

for external storage and retrieval of the matrix elements. The computing time for the 

matrix solver is for one iteration of the pressure Kutta condition. The eff"ectiveness of 

the iterative solver is clearly shown here. The accelerated matrix solver will be used 

for all the sample calculations in Chapter 4. 

Table 3.2 also tabulates the required computing times for the calculation of the 

influence coefficient matrix. Here again the computing times for 840 and 1680 panel 
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cases include the time required to store the matrix elements. 

Table 3.2:  Comparison of the computing times of the influence function calculation 
and the matrix solver. 

N Inf. coefficient Matrix solution 
Gauss Iterative 

424 330 sec 330 sec 30 sec 
704 800 1510 77 1 

840 2100 180 
1680 5300 670 

3.8     Calculation of velocities, pressures, forces and 
moments. 

Once the potential values have been determined, surface velocities can be calculated 

either by numerical differentiation of the potential or by direct calculation of the 

source and dipole panel influence functions. The latter approach is found to be not as 

successful since the velocity influence functions are more singular and therefore more 

sensitive to the position of the control point within each panel. 

A local second order distribution of the perturbation potential is assumed on the 

five panel centers (i.e., a central panel and its immediate neighbors), and a local 

tangential perturbation velocity is obtained by differentiation. The total tangential 

velocity is obtained by a vector sum of the perturbation velocity and the undisturbed 

inflow velocity. 

As shown in Figure 3.11, where u,v-coordinates are formed by connecting the 

midpoints of the sides of a panel and ^, ry-coordinates are chosen as local orthogonal 

coordinates, the calculated perturbation velocites in the u,v direction are not at right 

angles to each other.  Each velocity component is a projection of the velocty vector 
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Figure 3.11: Summation of the velocity component. 

onto the u,v directions, respectively. The r^-velocity component is calculated as 

d(t> d± _  3± 
—  llL. 3u sin rp 

(3.14) 
dr] cos 0 

where t/i is the angle between the rj and u-coordinate. The perturbation velocity and 

the inflow velocity are added in the local orthogonal coordinates. 

The pressure coefficient is calculated using Bernoulli's equation, and the non- 

dimensional pressure coefficient is defined as, 

C„ = P-Po 

' ~ ip^4 
(3.15) 

Finally, total forces and moments are obtained by summation of individual panel 

force vectors. In order to obtain practically useful results which can be compared with 

experiments, a viscous drag correction is needed.   On each panel, a viscous friction 

force is added in the direction of the inflow velocity. The viscous friction coefficient 
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is given as 0.003 for the calculation at the design condition and that at the off-design 

condition is determined from the two-dimensional section drag coefficient curves. 

Integrated thrust and torque coefficients are calculated by 

where x,, y,,«,, (rii),, (n^jj, (n,),- and A,- are, respectively, control point coordinates, 

unit normal vector components, and area for I'-th panel. These sums can be performed 

separately over blades and hub. The propeller efficiency is defined as 

\ J KT ,      \ 
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Chapter 4 

Numerical results 

Three separate codes for different problems, i.e. a wing, an axisymmetric duct and a 

propeller problem, are implemented in order to verify the theory given in the previous 

chapters. 

Instead of writing a general purpose code which would take coordinates of the 

panel vertices as inputs, each code is written for a specific geometry with specific 

inputs which are defined in a natural way for the geometry. In this way each code is 

kept to a reasonable size, and the possible occurence of fatal errors due to inconsistent 

inputs can be minimized. A perspective view of the configuration with the hidden 

lines removed can also be plotted in order to check the geometry before calculating 

the influence coefficients. 

Numerical results by each code will be presented in separate parts of this chapter. 
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Part I 

W ing problem 
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The wing-body configuration is regarded as a two bladed propeller with infinite 

pitch, and accordingly the geometric part of the code for the wing problem is written 

as a special case for a propeller problem. An option for a fuselage is given in order to 

calculate the performance of the wing-body or wing-only configuration. 

However, the wing problem possesses a lateral symmetry with respect to the center 

plane, while the propeller problem is rotationally symmetric with a separating angle 

of ^. Reduction of the system of equations is obtained by exploiting the symmetry. 

A frozen wake geometry is assumed on the surface formed by the extensions of the 

nose-tail lines of the wing sections. 

4.1     Ellipsoid at zero angle of attack 

The first example is chosen to verify the code by comparing the results with the known 

analytic results for a simple geometry. The example is an ellipsoid at zero angle of 

attack with semi-lengths of its axes given as a=b=l and c=0.1. The coordinate system 

and the panel arrangement with 20 chordwise and 10 spanwise panels are shown in 

Figure 4.1, where cosine spacing is chosen in both directions to account for the rapid 

changes in the geometry and the singularity strength near the leading and trailing 

edges and the tip. 

The analytic expression of the perturbation velocity potential on the surface of 

the ellipsoid is given in Lamb [16], and that of the surface velocities in the desired 

directions (u,v-directions in Figure 4.1) is given in Appendix C. 

The chordwise potential and the u-velocity are compared with the analytic solu- 

tions in Figures 4.2 and 4.3 at four spanwise locations. The abscissa is taken as the 

nondimensional chordwise parameter s, which is zero at the lower trailing edge, 0.5 

at the leading edge, and 1.0 at the upper trailing edge. The agreement is excellent 

except for the velocities at the leading and trailing edges. 

Since the velocity is calculated by a difference formula from the velocity poten- 
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Figure 4.1: Coordinate system and panel arrangement of the ellipsoid. 
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tial, a small error in the potential distribution would be magnified in the velocity 

distribution. These magnified errors in the velocity distribution at y/b=0.980 are 

shown in Figure 4.3, but the effect of these errors is localized. The discrepancy at the 

leading and trailing edges is due to the error in calculating the distance between the 

control points, which increases near the rounded edges. This error would decrease at 

the trailing edge if a conventional section were chosen instead of the elliptic section. 

The velocity at the last panel at the trailing edge is linearly extrapolated from the 

previous two values. 

The spanwise distribution of the potential and the v-velocity are illustrated in 

Figures 4.4 and 4.5 at three chordwise locations. The pressure distribution is cal- 

culated by Bernoulli's equation using the (u,v) velocities, as described in Chapter 3. 

Figures 4.6 and 4.7 provide a comparison of the chordwise pressure distributions by 

the present method with the analytic solution at four spanwise locations. Again, the 

agreement is excellent except for those very close to the tip. 

4.2     Circular wing at finite angle of attack 

The next example is a circular planform wing with an NACA four digit section at 

an angle of attack of 0.1 radian. Thickness effect for the wing is investigated for the 

cases of two different thickness/chord ratios of 0.01 and 0.05. The analytic result for 

the lifting circular wing with zero thickness was given by Jordan [12], which can be a 

standard of comparison for the present method as the thickness goes to zero. 

The circular planform wing is particularly important for the propeller problem, 

because a magnified flow near the propeller tip is similar to the flow around the 

circular wing. 

The coordinate system and panel arrangement are the same as those of the ellipsoid 

case in Figure 4.1, only the section shape is the NACA four digit series instead cf the 

elliptic section. Both the chordwise and spanwise panelling are cosine spacing. 
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Figure 4.2: Chordwise potential distribution of the ellipsoid. {a=b=l, c=0.1) 
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Figure 4.4: Spanwise potential distribution of the ellipsoid. (a=b=l, c=0.1) 
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Figure 4.7: Chordwise pressure distribution of the ellipsoid. (a=b=l, c=0.l) 
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A series of computations is performed for the circular wing with an NACA 0001 

section. The radial circulation distributions for varying numbers of chordwise panels 

(Nc) are presented in Figure 4.8 with Jordan's result for zero thickness circular wing. 

The effect of the number of spanwise panels {Mr) on the circulation is shown in 

Figure 4.9. For the circular wing case, the spanwise convergence is relatively slow 

compared to the chordwise convergence, which is a typical characteristic of low aspect 

ratio wings. The results with 40 chordwise and 40 spanwise panels are considered 

converged, and the calculation is performed with this number of panels hereafter. 

As described in Section 3.6, the pressure Kutta condition is applied for this lifting 

problem. Figure 4.10 provides a comparison of the pressure distributions calculated 

by Morino's Kutta condition and by the pressure Kutta condition. The pressure 

differences between the upper and lower surfaces for the circular wing with an NACA 

0001 section are shown along the chordwise panels at a radial position of r/R=0.916. 

The pressure difference at the trailing edge by Morino's Kutta condition has a positive 

value, which should be set to zero by the pressure Kutta condition. 

The pressure difference distributions for the wing with an NACA 0005 section 

at the same radial location are shown in Figure 4.11. The positive loading at the 

trailing edge by Morino's Kutta condition is seen to be increased compared to that 

for the thinner section. Again, the positive loading is set to zero by the pressiire 

Kutta condition. 

The non-zero loading at the trailing edge near the tip ha^ annoyed many re- 

searchers in this field [15],[24]. When the usual Morino's Kutta condition is applied, a 

positive loading at the trailing edge near the tip results for a wing with large negative 

sweep angles, while a negative loading results for a wing with large positive sweep 

angles. This can be explained as follows. 

Figure 4.12 shows a magnified flow at the trailing edge near the tip for a wing with 

large negative sweep angles.   A tip cross section profile parallel to the trailing edge 
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Figure 4.8:  Effect of the chordwise number of panels on the circulation distribution 
of the circular wing. (t/c=0.01, a=5.73 deg.) 
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Figure 4.12: Magnified flow at the trailing edge near the tip, 

is also shown. The inflow velocity can be decomposed into the z- and 2-components. 

Due to the z-component of inflow velocity, a cross flow around the tip results, which 

is locally similar to the flow around a wedge. The cross flow component is outboard 

on the lower surface and inboard on the upper surface. The magnitude of the cross 

flow velocity becomes larger for a thicker section. 

The cross flow is added to the i-component inflow velocity. With a negative sweep 

angle, the magnitude of the resulting velocity on the upper surface is larger than that 

on the lower surface, which results in positive loading at the trailing edge near the 

tip. Since the trailing edge region of the circular wing toward the tip is geometrically 

similar to a wing with negative sweep angles, the loading distribution there behaves 

similar to the negative sweep case. For the case of a wing with large positive sweep 

angles, the situation is reversed and negative loading at the trailing edge results. 

If a wake alignment scheme were adopted, the trailing vortex wake would leave the 
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trailing edge in the mean direction of velocities on the upper and lower surfaces, and 

the trailing wake would contract for the negative sweep case. Since the contraction 

of the wake would increase the downwash velocities at the control points in the inner 

radii of the trailing vortex, a fully aligned wake model would alleviate the positive 

loading at the trailing edge. The frozen wake model in the present method does not 

account for the wake contraction. Only the positive loading should be set to zero by 

the pressure Kutta condition. 

As the thickness of the circular wing increases, the magnitude of the cross flow com- 

ponent increases and the positive loading at the trailing edge with Morino's Kutta con- 

dition increases. In order to satisfy the pressure Kutta condition, the dipole strength 

in the wake is reduced during the iteration process. As a result, circulation is re- 

duced as the thickness is increased, which contradicts the trend for two-dimensional 

cases. This trend is shown in Figure 4.13, where the radial circulation distributions 

are illustrated for the wing with NACA 0001 and NACA 0005 sections. 

Figures 4.14 through 4.17 show the chordwise distributions of the pressure differ- 

ence at four different spanwise locations. Here the results for thickness/chord ratios 

of 0.01 and 0.05 are plotted with Jordan's result for the zero thickness circular wing. 

As one can see, the result of the 0.01 thickness-chord ratio wing agrees very well with 

Jordan's result. This indicates the robustness of the present method even for the very 

thin wing. Positive loading is shown near the trailing edge toward the tip for the wing 

with the NACA 0005 section. This would decrease if a he contraction model for the 

trailing wake were adopted. 

4.3    Rectangular wings with different sweep angles 

The next example is chosen to study the effect of sweep angles on the performance of 

rectangular wings. A series of computations is made for wings with 5.9 aspect ratio, 

8 degree incidence, and varying sweep angles of -45, 0 and +45 degrees.   For each 
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wing, the thickness effect is illustrated with the results of the wings with NACA 0001, 

NACA 0005 and NACA 0012 sections. 

The panel arrangements for the wings with three different sweep angles are shown 

in Figure 4.18. Here again, cosine spacing is adopted to account for the rapid change 

of the singularity strength near the leading and trailing edges and the tip. 

A convergence test is performed for the unswept wing with an NACA 0012 section. 

The influence of number of panels on circulation is illustrated in Figures 4.19 and 

4.20. The solid line in both figures is the result with 80 chordwise and 20 spanwise 

panels, which is considered as converged. The chordwise convergence is shown to be 

slower than the spanwise convergence for this relatively high aspect ratio wing. For 

a low aspect ratio wing, the convergence characteristic would be opposite, as shown 

in the previous example of the circular wing. Since the result with 40 chordwise and 

10 spanwise panels is reasonably accurate and requires much less computing time, 

computation is made with this number of panels unless otherwise mentioned. 

The force calculation can be done either by integration of the element pressure 

on each panel, or by considering the energy far downstream, which is the so-called 

Trefftz plane wake integration method. The lift and drag coefficients calculated by 

both methods are shown in Table 4.1, for the rectangular wing with aspect ratio 

5.9, with an NACA 0012 section at 8 degree incidence. A''^ represents the number 

of panels along the chordwise strip in the wing, while Mr represents the number of 

radial strips. The forces calculated by both methods converge to common values as 

the number of panels increases. Again the result using 40 chordwise and 10 spanwise 

panels is reasonably accurate. The pressure integration method is preferred because 

of its direct physical interpretation. 

The thickness effect for the unswept wing is illustrated in Figure 4.21. For this 

unswept wing, the circulation is increased as the thickness is increased, which is the 

same trend as in the two-dimensional Ccise. 
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Figure 4.20: Effect of the spanwise number of panels on the circulation distribution 
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Table 4.1:   Effect of the number of panels on the lift and drag coefficients of the 
unswept rectangular wing. (Aspect ratio=5.9, t/c=0.12, a=8 deg.) 

^c Mr (C'L)prej, [Clltrefftz (C'JD) pre », {CD)tTtfftt 
20 10 0.426 0.410 0.0189 0.0145 
40 10 0.429 0.426 0.0165 0.0154 
80 10 0.432 0.434 0.0161 0.0160 
40 20 0.424 0.422 0.0160 0.0148 
80 20 0.427 0.429 0.0154 0.0152 

The pressure difference between the upper and lower surfaces is shown in Fig- 

ures 4.22 and 4.23 at three different spanwise locations, for thickness/chord ratios 

of 0.05 and 0.12 respectively. The thickness effect is apparent near the leading edge 

where a finite pressure peak is shown. The ability to calculate the pressure peak is 

one of the major advantages of the present method over the lifting surface theory. 

As explained in Section 3.6, not only the pressure Kutta condition but also the 

compatibility condition should be satisfied at the trailing edge. Hirschel et. al. [U] 

claimed that a low order panel method, such as the present method, does not satisfy 

the compatibility condition near the tip. The radial vorticity distributions calculated 

by the difference of the cross flow velocities between the upper and lower surfaces 

are plotted with those calculated by the spline differentiation of the circulation in 

figures 4.24 and 4.25, for the unswept wings with NACA 0005 and NACA 0012 

sections. The agreement is clearly shown, and the compatibility is satisfied. The 

satisfaction of the compatibility condition shows the self consistency of the present 

method. 

The effect of thickness for the rectangular wing with -45 degree sweep angle is 

illustrated in Figure 4.26, where the distributions of the radial circulation are given for 

the varying thickness/chord ratios of 0.01, 0.05 and 0.12. Since the induced dowr-vash 

due to the trailing wake is large toward the tip compared to the rectangular wing, the 
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Figure 4.22: Chordwise distribution of the pressure difference of the unswept rectan- 
gular wing. (Aspect ratio=5.9, t/c=0.05, a—8 deg.) 
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Figure 4.23: Chordwise distribution of the pressure difference of the unswept rectan- 
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Figure 4.25: Spanwise vorticity distribution of the unswept rectangular wing. (Aspect 
ratio=5.9, t/c=0.12, Q=8 deg.) 

96 



overall circulation near the tip is reduced. The effect of thickness very close to the tip 

is shown to be the same as that of the circular wing, where the loading'is decreased 

as the thickness is increased. This effect was explaind in the section for the circular 

wing. However, for the inner part of the wing where the cross flow component is 

small, the circulation is increased as the thickness is increased. 

Figure 4.27 shows the radial circulation distributions of the +45 degree swept wing 

with the varying thickness/chord ratios of 0.01, 0.05 and 0.12. Here, the downwash is 

bigger near the inner part of the wing due to the positive sweep, and as a result the 

loading is reduced. The thickness effect is shown to have a similar trend to that of 

the unswept wing. 

Figure 4.28 provides a comparison of the the local section lift coefficients by the 

present method with those by other production panel codes, for the unswept rectan- 

gular wing with aspect ratio 5.9 and NACA 0012 sections at 8 degree incidence. The 

results by the production panel codes are taken from Margason et. al. [17]. All of the 

panel methods, including the present one, over-predict the experimental data. This is 

attributable to neglecting the viscous effect. The result by the present method agrees 

well with those by the production codes. 

The result for the +20 degree swept wing with aspect ratio 5.9 and NACA 0012 

sections at 8 degree incidence is compared with those by the production codes in 

Figure 4.29. Again, the result by the present method agrees well with those by the 

other methods. 

4.4     Wing-body configuration 

A wing-body configuration is examined to determine whether the present method 

can determine the interference effect of a wing on a fuselage pressure distribution. 

Figure 4.30 illustrates the wing-body geometry selected for this example. An e:;per- 

imental surface pressure distribution, which was made in the RAE 8 ft x 6 ft wind 
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Figure 4.29: Spanwise local lift coefficient distribution for the +20 degree swept rect- 
angular wing. (Aspect ratio=5.9, t/c=0.12, Q=8 deg.) 
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tunnel, was taken from Treadgold et. al. [22]. 

The geometry is symmetric with respect to both the wing chord plane and the zero 

butt line plane. The cross section of the wing is an uncambered RAE 101 section with 

thickness/chord ratio of 0.09. The planform has an aspect ratio of 6 and a mid-chord 

sweep of 30 degrees. The axisymmetric body has a nose profile given as a quartic 

function of the axial distance from the leading edge of the body, which is connected 

to the circular cylinder with a diameter/wing span ratio of 0.167. 

The Reynolds number in the experiment, based on the geometric mean chord of the 

wing, was 1.0 x 10®. A fixed transition mechanism to stimulate turbulance transition 

was attached at 12.5 percent of the chord. The experimental data corresponds to a 

free stream Mach number of 0.4. 

Panelling is established on only one side of the lateral plane of symmetry. The 

wing is modelled by 11 spanwise strips, which are located conveniently to match the 

spanwise locations of the control points with those given in the experiment. Each 

strip contains 20 upper and 20 lower surface panels. Axial panelling of the body 

is uniformly spaced except between the leading and trailing edge of the wing, where 

panelling is matched to that of the wing. The fuselage cross section panelling is equally 

spaced, with each panel subtanding an arc of 30 degrees. The panel arrangement of 

the half wing-body configuration is shown in Figure 4.31. 

The flow around the wing-body is calculated at 0 and 2 degree angles of attack. 

Neither compressibility nor viscous corrections are made to the calculated pressures. 

The calculated and experimental wing section pressure distributions at three dif- 

ferent spanwise stations are presented in Figures 4.32 through 4.34. Effect of the 

fixed transition is shown in the pressure distributions of the experiment at 12.5 per- 

cent of the chord. The agreement is excellent in spite of the fact that neither viscous 

nor compressibility corrections are applied. 

The calculated and experimental fuselage pressure distributions are presented in 
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Figure 4.30: RAE wing-body configuration. 
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Figure 4.32: Wing-body chordwise pressure distribution at r/R=0.25. 
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Figure 4.33: Wing-body chordwise pressure distribution at r/R=0, 60. 
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Figure 4.34: Wing-body chordwise pressure distribution at r/R=0.925. 
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Figures 4.35 through 4.37. The present method pressure distribution is of slightly 

lower magnitude immediately above and below the wing root. This is believed to be 

attributable to excursions from the normal azimuthal angles <p (see Figure 4.30). For 

the present method, the panelling at the wing-fuselage intersection is such that the 

actual values of ^ are approximately ±20 degrees instead of the nominal value of ±15 

degrees. 

Since the panelling of the fuselage is matched to that of the wing, which is highly 

concentrated at the leading edge, axial lengths of the panels change rapidly. This 

produces the steep variation of the calculated pressure near the leading edge. Again, 

agreement between the calculated and experimental pressure distributions is shown 

to be satisfactory. 
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Figure 4.35: Fuselage pressure distribution in the presence of wing. (i^=±15 deg.) 
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4.5     Axisymmetric duct 

The next example is chosen to assess the capability of the present method to predict 

the internal flow properties. The geometry is a very long axisymmetric duct generated 

by wrapping a NACA 0010 section around a circular cylinder where the cylinder 

length/radius ratio is ten. The minimum internal cross sectional area is a factor of 

four smaller than the corresponding inlet and exit areas. 

Results for this duct obtained with several panel codes were given by Bristow [2], 

and additional results were presented by Miranda [19] and by Hess [10] in a discussion 

to Miranda's paper. Predicting the pressure distribution for such an extreme duct 

is a very demanding test of a panel code. The mass flow through the duct, which is 

imposed by the Kutta condition, is extremely high in this case, and there is a tendancy 

for all panel methods to underestimate its value. 

Given an axisymmetric inflow, the solution is axisymmetric, so that the number of 

unknowns is equal to the number of chordwise panels. The geometry is specified only 

on the meridian section in the same way as a two-dimensional hydrofoil to exploit the 

symmetry, and the influence functions are formed by summing the individual panel 

contributions circumferentially. Panel arrangement for this geometry is illustrated in 

Figure 4.38. 

For this axisymmetric case, the dipole strengths on the wake surface are constant 

in the circumferential direction. The induced potential at the control point p on the 

duct due to the wake surface Sw can be expressed as 

(4.1) 
where So is a circular surface at the exit of the duct and S^ is a circular surface at 

downstream infinity. The contribution from the surface at infinity is negligible as the 

distance from the control point becomes infinite. As a result, the wake panels can be 
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Figure 4.38: Panel arrangement for an axisymmetric duct formed from a NACA 0010 
section with a chord/mean radius ratio of ten. (A^c=36, M^=18) 
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replaced by a circular dipole disk at the exit of the duct. 

The pressure distribution for various grids are shown in Figure 4.39. The first four 

calculations are for a fixed number of chordwise panels(iVj equal to 36, but with the 

number of circumferential panels {Ms) varying between 9 and 60. The results for 36 

and 60 circumferential panels are almost identical, and indicate a minimum pressure 

coefficient of -11.3. Increasing the number of chordwise elements to 60 reduces the 

minimum pressure coefficient to -12.5. 

Some results obtained with other panel codes are shown in Figure 4.40, which is 

taken from [19]. The exact solution, obtained with a special high order axisymmetric 

panel code [3] shows a minimum pressure coefficient of -13.8 which is slightly lower 

than the minimum value which obtained here. The results obtained by a high order 

panel code developed by Hess [7] and by QUADPAN [19], a low order potential based 

code, are similar to the present method. The results obtained by the Hess low order 

velocity based code [6] show pressure minima much closer to zero, which is evidently 

an inherent problem with that method for internal flows. 

An extension of the present code to the non-axisymmetric problem, with a pro- 

peller inside the duct in a non-uniform flow, is reported in [13]. 
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4.6     Propeller performance analysis in steady flow 

The final example is a marine propeller on an axisymmetric hub. The propeller is 

NSRDC 4118, which is a member of the NSRDC series propellers whose experimental 

results are available from [l]. The propeller is the unskewed propeller with three 

blades, and the section shape of the blade is an NACA 66 mod. thickness form 

superposed on an a=0.8 mean camber line. The geometry of the hub is a circular 

cylinder with a fairwater whose ordinates are given as a quartic function of the axial 

distance from the downstream end of the hub, as shown in Figure 3.4. Input geometric 

parameters in Figure 3.4 are given as 72^=0.2, Ar„=0.5, ^^=0.15, and X,=0.5. 

Since the geometry and the loading is repeated identically on each blade and on 

each inter-blade segment of the hub, one third of the geometry is discretized. Ten 

chordwise strips of panels are arranged to be denser toward the tip, and each strip 

contains twenty upper and twenty lower surface panels. 

Axial panelling of the hub is chosen to have eight panels upstream, twelve panels 

downstream, and twenty panels between the leading and trailing edges of the blades. 

Eight circumferential panels are equally spaced, with each panel subtending an arc of 

15 degrees. As explained in Section 3.2, replacement of the upstream hub with the 

dipole disk at the upstream end of the hub significantly decreased the computational 

axial distance, X„, without loss of accuracy. Panel arrangement of one third of the 

propeller is shown in Figure 4.41, and that of the whole propeller is shown in Figures 

3.2 and 3.3. 

Calculations are performed for three different flow conditions. The design advance 

coefficient for the propeller is J=0.833. For the computations described here the ap- 

propriate values of the ultimate wake radius(i?,,), ultimate hub vortex radius(ii!„;,), 

and tip vortex contraction angle((5,) were determined from the experimental measure- 

ments of Min [18]. They are given as R^=0.83, ii!^;,=0.1, and «5,=:15 degrees. Distance 

from the propeller plane to the beginning of the ultimate wake Teg\on{Xt^) is given 
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Figure 4.41: Panel arrangement of one third of the propeller. 
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as 1.5. 

The pitch distribution of the transition wake is given as an input from the results 

by a lifting surface code [5], where the wake is aligned to the resultant flow. Since the 

ultimate wake, which extends to infinity downstream, is replaced by the sink disk at 

the beginning of the ultimate wake region, only 8 panels between the helical dipole 

strips are required to represent the whole ultimate wake. The panel arrangement for 

the wake, including the panels for the sink disk, is illustrated in Figure 4.42 

The viscous drag coefficient is taken to be 0.003 for the calculation for the design 

condition, and that for the off-design condition is taken from the twodimensional 

section drag coefficient curve. 

The measured and computed open-water characteristics after the viscous correc- 

tion are shown in figure 4.43. Agreement is shown to be satisfactory. 

The perturbation potential distributions on the blade surface at three different 

radii at design J are given in Figure 4.44. The absissa is taken as a nondimensional 

arc-length along the chordwise strip, which is zero at the lower trailing edge and one 

at the upper trailing edge of the blade. 

Blade pressure distributions at design J are illustrated in Figure 4.45 at three 

different radii. The pressure distributions are shown to be smooth even very close to 

the tip. The positive loading at the trailing edge near the tip, which was experienced 

with the other low order panel method [15], is removed by adopting the pressure 

Kutta condition. The pressure difference between the upper and lower surface, which 

is the loading on the blade, is shown to have an a=0.8 loading shape at this design 

J. Unfortunately, there are no experimental pressure data to compare with these 
computations. 

The perturbation potential distributions on the hub surface along three different 

streamwise panels are given in Figure 4.46. The potential values at the far upstream 

panels are shown to be the same in the circumferential direction, which is the ji.stifi- 
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Figure 4.42: Panel arrangement for the wake. 
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Figure 4.45:  Computed chordwise pressure distributions for NSRDC propeller 4118 
operating at an advance coefficient J=0.833. 

125 



cation of replacing the semi-infinite upstream hub by the dipole disk. The potential 

jump at the trailing edge of the root section is preserved in the hub panels along the 

wake surfzu:e. 

Computed hub pressure distributions are shown in Figure 4.47 along three different 

streamwise strips. Due to the rapid change of the panel size near the leading edge, 

the pressure distribution at the leading edge is not smooth. 
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Figure 4.46:   Perturbation potential distribution on the hub for NSRDC propell 
4118 operating at an advance coefficient J=0.833. 
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Figure 4.47: Computed hub pressure distributions for NSRDC propeller 4118 operat- 
ing at an advance coefficient J=0.833. 
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Chapter 5 

Conclusions 

A surface panel method suitable for the analysis of marine propellers is developed and 

applied to various geometries to demonstrate its effectiveness. In the way of selecting 

the most suitable method for the marine propllers, basic theories behind the various 

panel methods are reviewed and characteristics of each method are compared. The 

perturbation potential method is selected because of its robustness to the extreme 

geometries, such as a very thin foil section and a long duct. The perturbation po- 

tential method also requires relatively smaller computing times and computer storage 

compared to the velocity method. 

The usual Morino's Kutta condition is found to have a deficiency for thick foil 

sections with finite trailing edge angles. Moreover, it does not account for the three- 

dimensional cross flow effects, which become large toward the blade tip. The deficiency 

for thick foil sections is removed by including a correction term, which is the difference 

in free-stream potential values between the trailing edge control points. 

Detailed study of the flows at the trailing edge near the tip suggests a pressure 

Kutta condition, which requires the pressures of the last panels at the trailing edge 

be equal. The non-linear aspect of the pressure Kutta condition requires an iterative 

scheme, whereby the initial dipole strengths on the wake surface are obtained using 

Morino's Kutta condition, and the successive dipole strengths are adjusted based 
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on the error in the computed trailing edge element pressures. Hence, the three- 

dimensional cross flow effects on Kutta condition are included by adjusting the dipole 

strengths on the wake surface during the iteration process. 

The compatibility condition, which requires the difference of the spanwise veloci- 

ties of the upper and lower panels at the trailing edge be equal to the differentiation of 

the spanwise circulation, is shown to be satisfied. This indicates the self-consistency 

of the present method. 

An accelerated iterative matrix solver is employed for the solution of the resulting 

linear system of equations. Computing time is reduced significantly compared to that 

for the Gauss elimination method. 

Comparison of the results for the ellipsoid at zero angle of attack with the analytic 

solutions provides a verification of the present method. 

Calculation for the circular wing with varying thickness is performed to illustrate 

the thickness effect on the performance of the wing. As the thickness is decreased, 

the analytic results for the zero thickness wing by Jordan [12] are recovered. This 

demonstrates the suitability of the present method for the analysis of a very thin 

wing. With the frozen wake model in the present method, the thickness effect near 

the tip is found to have a trend which is the reverse of the two-dimensional case, i.e., 

as the thickness is increased, the loading is decreased. This is due to the cross flow 

component around the tip, whose magnitude increases as the thickness is increased. 

The effect of sweep angles on the spanwise circulation of the rectangular wing is 

investigated. The circulation near the tip is decreased for the forward swept wing, 

while the circulation in the inner part of the wing is decreased for the backward swept 

wing, compared to the unswept wing case. The local section lift coefficients for the 0 

and 20 degree swept wings show a satisfactory agreement with those by the various 

production codes. 

The calculated pressure distributions around the wing-body configuration are in 
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excellent agreement with those found by experiment in spite of the fact that neither 

compressibility nor viscous corrections are made. 

The capability of the present method to predict internal flow properties is demon- 

strated by the example of a long axisymmetric duct, for which Hess's low order surface 

source method gives particularly inaccurate results. 

For the propeller problem, a rotational symmetry is exploited so that only ^ 

fraction of the geometry, i.e., one blade and the inter-blade segment of the hub, is 

discretized. By summing the influence functions for the symmetric panels by rotat- 

ing an angle ^, the same panelling on all blades is achieved. Substantial coding 

complication needed for different panelling on the other blades is thus avoided. 

A special far-wake approximation is employed for the calculation of the influence 

function of the ultimate wake. The semi-infinite helical dipole strip representing the 

ultimate wake is replaced by a source disk at the beginning of the ultimate wake. The 

computational axial distance in the upstream hub is reduced without loss of accuracy 

by replacing the semi-infinite upstream hub by a dipole disk. 

A reliable pressure distribution around a marine propeller, especially near the 

leading edge of the blade, is obtained. At the design inflow condition of the selected 

propeller, the chordwise loading distribution is shown to have an a=0.8 loading shape. 

The effect of the hub is naturally included by distributing panels on the surface of the 
hub. 

The viscous effects are included by including a tangential friction force on each 

panel with the two-dimensional section drag coefficient. The thrust and torque, calcu- 

lated by the integration of the element pressure on each panel, are in close agreement 

with the experimental results even for the off-design conditions. 
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Appendix A 

Numerical formulation of the 
various panel methods for 
two-dimensional problems 

To compare the characteristics of the various methods described in Chapter 2, each 

method is implemented as numerical code for the analysis of the two-dimensional flow 

around a hydrofoil. Since the Hess's source based method is widely used and its char- 

acteristics are relatively well known, four other methods are actually implemented. 

A.l     Perturbation potential method 

Two-dimensional form of Equation 2.9, for the field point p on the body surface, is 

H<i) ^— log R{p\ i)-^ log R[p\ 9) on, driq 
ds - TT <f>{p)      =     j 

SB 

/ri 
A<^{q) —log R{p;q)ds. (A.l) 

Sw ' 

Here the three-dimensional Green funcion, -^^, is replaced by two-dimensional one, 

^ log R, and the surface integral is replaced by a line integral along the body and 

wake surfaces. 
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The body geometry is replaced by an N-faced inscribed polygon, where N is the 

number of panels, as shown in Figure A.l. A logical choice for the panel arrangement 

is a cosint spacing, where mean line ordinate and thickness is first evaluated at the 

following points along the nose-tail line, 

'^; = ^(l-cos(^^^i^^)),    i = l,2,...,iV/2 + l. (A.2) 

The panel boundaries are then obtained by adding and subtracting the half thick- 

ness of the section at right angles to the mean line. This concentrates the elements 

at the leading and triling edges, where greater resolution is required. The nodes are 

numbered in clockwise order, starting at the lower trailing edge, and j-th panel is one 

between nodes j and j + l. 

Singularity strength distribution is assumed to be piecewise constant over the 

panels. The collocation point, where the discretized integral equation is satisfied, is 

selected as the midpoint of each panel. Then the discretized form of Equation A.l is 

N ' ' N 

ZD,j4>:+W,{A<i>U,, = J2S,A^h,    i=l,2,...,N, (A.3) 
;=1 ;=1 

where 

/a 

-—log R{pi,q)ds, 

Si:    =   J^ogR{pi,q)ds, 

Wi    =     [ ^-log R{pi,q)ds. 
Sw 

A numerical Kutta condition can be stated as the potential jump in the wake 

should be equal to the difference of total potential values, as explained in Chapter 3. 

{^<i>)wakc = $"-$' = 0;v - <^i + t/oo f COS a{xN - ii) + sin a{yN - yi) j ,       (A.4) 
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u. 

Figure A.l: Nomenclature of the potential methods for a two-dimensional foil 
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where C/QO (cosa(i/^ — ij) +sina(yAr — t/i) 1 is the inflow potential diff"erence between 

the control points of the two trailing edge panels. 

This results in a system of linear equations for the unknown dipole strengths. 

^A,j4>j = Z]^»j(^); ~ U^icosa[xN - Xi) - sina(y// -yi)),    i = 1,2,..., A'', 
;=1 ;=1 on \ / . 

(A.5) 

where      Aij = TT ,if t = J, 

= Dij ,if t' ^ ;, ' 

and Aij — Aij — Wi ,if i = 1, 

= A,j + Wi ;ifi = N. 

Solution of Equation A.5 yields the values of potential on the panels, under the 

assumption that the potential is constant on each panel. Surface velocity is obtained 

by numerical differentiation of the potential. A quadratic polynomial to the values of 

potential at three panel midpoints is assumed, and the velocity at the panel midpoint 

is obtained by differentiating it with respect to the coordinate that is tangent to the 

panel. The arc-length between two control points is approximated as the sum of half 

panel lengths of the panels. 

Once the velocity is known, the pressure is calculated from Bernoulli's equation, 

where the pressure coefficient is defined as 

C. p 

Forces and moments are then obtained by summing the element forces and mo- 

ments. An alternative lift coefficient, which is baised on Kutta-Joukowsky's law, is 

calculated by 
p     _ L _      [A^lujaU 

and the drag coefficient should be zero. 
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A.2     Total potential method 

Twodimensional form of Equation 2.12, for the field point p on the body surface, is 

"^{q)^—log R{p;q)ds 

/a 

^^[q]-^ log R{p-q)ds, (A.6) 
Sw 

where 4>oo = U^ ■ f =^ Uoo{xcosa + ysina) for uniform inflow velocity with angle of 

attack a. 

Discretizations of geometry and singularity strengths are identical to those for the 

perturbation potential method. Then the discretized form of Equation A.6 is 

N 

^ A;*y+V^,(A$)^^^. = 2C7«,(xjCosa-f y.sina),    i = l,2,...,A\ (A.7) 

A Kutta condition can be stated as the potential jump in the wake should be equal 

to the diff"erence of the total potential values. 

{^^)^ake = ^N -*i. (A.8) 

This results in a system of linear equations for unknown dipole strenghs. 

N 

H Aj^; = 2U^{xi cos a + y, sin a), (A.9) 

where       A,, = n ,if t = j, 

-A; ,if«/i, 
and Aij = A,j-W,    ,if: = l, 

= A,j + W,    ,if i = N. 

Here left hand side of the matrix equation is identical to that of the perturbation 

potential method. 
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Calculation of the surface velocity follows the same scheme of the perturbation 

method, except that total velocity is calculated directly without summing the inflow 

velocity. The pressure and forces are calculated by the same scheme of the perturba- 

tion method. 

A.3     Mixed source and vortex method 

Two-dimensional form of Equation 2.15, for the field point p on the body surface, is 

TF-—    =     I -^—^—log R{p;q)ds- I 4> \QgR{p;q)ds- 
OTip J   oug oup J     oupong 

SB SB 

/ A<t>——-]ogR{p;q)ds. (A.IO) 
J        anporiq 

Sw 

An equivalent form from Equation 2.16 is 

^1^    =     f <^i<})^^ogR{p;q)ds+ [ ^{q)---[-Q{p;q)]ds, (A.ll) 
dup J drip J drip 

SB Sg 

where 0(p; q) = arctan(^) is the two-dimensional vortex potential, a = |^, 7 = ff, 

and t is defined to be tangential to the body surface. Sign of the vorticity is defined 

to be positive for clockwise induced flow. 

Equation A.ll can also be derived directly from Equation A.IO using the Cauchy- 

Riemann relations for the complex potential of log R + iQ, 

d d 
-\ogR = —Q, 
ot on 

|-logi2=-^0. 
dn ot 

Since a normal dipole panel of constant strength is equivalent to a pair of point 

vortices at the panel edges, point vortices are distributed instead of the piecewise 

constant dipoles.    Point sources are also distributed on the same locations of the 

vortices. 
140 



Locations of the singularities are determined by first evaluating mean line ordinates 

and thickness at the following points along the nose-tail line, 

^S = 5(l-cos{^^))    ,, = ..2,....^/2, 

then adding and subtracting the half thickness. Locations of control points are deter- 

mined similarly, but x-coordinates of the points are 

In this way the control points are located on the exact foil surface instead of the 

panel midpoints which are chosen as the control points in the potential method.(see 

Figure A.2) 

Since an explicit Kutta condition is needed for the velocity method, tangential 

velocity at the trailing edge control point is set equal to zero. Direction of the tan- 

gential velocity is defined to be normal to the bisector of the upper and lower surfaces 

at the trailing edge. 

Discretization of Equation A.11 results in a system of linear equations for the 

unknown vortex strengths. 

I:G,T^--(^).-I:%(|^):,     .• = 1,2,-.,.V, (A.12) 

where       G,j = normal induced velocity at i-th control point 

due to the j-th point vortex of unit strength, 

5,y = normal induced velocity at i-th control point 

due to the j-th point source of unit strength. 

Equation A.12 is enough to determine N unknown vortex strengths. 

Surface perturbation velocity is calculated by dividing the obtained vortex strength 

by the arclength between the adjacent control points. The arclength is determined as 

an arclength of the circle which passes the vortex point and the two adjacent control 

141 



u, 
a 

■^ X 

Figure A.2: Nomenclature of the velocity method for a two-dimensional foil. 
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points. Surface velocity is obtained by adding the inflow velocity to the calculated 

perturbation velocity. Calculation of the pressure follows the same scheme of the 

potential method. 

A.4     Vortex method 

Two-dimensional form of Equation 2.18, for the field point p on the body surface, is 

ip J drip 

d<i> r d 
""""dZ = /M?)^[-0(p;9)M^. (A.13) 

where Q{p;q) = arctan(i^) is a two-dimensional vortex potential, 7 = ff, and t is 

defined to be tangential to the body surface. Sign of the vorticity is defined to be 

positive for clockwise induced fiow. 

Discretization of the vortex method follows the same scheme of the source and 

vortex method. Instead of distributing both sources and vortices, only the vortices 

are distributed on the foil surface. 

Discretization of Equation A.13 results in a system of linear equations for the 

unknown vortex strengths. 

^G.^T; =27r( —).,     t = l,2,--.,A^, (A.14) 

where G.j = normal induced velocity at i-th control point due to the j-th point 

vortex of unit strength. 

Surface velocity at the node point is calculated by dividing the obtained vortex 

strength by the arclength between the adjacent control points. Calculated velocity 

here is the total surface velocity, hence the inflow velocity should not be added. Cal- 

culation of pressure follows the same scheme of the mixed source and vortex method. 
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Appendix B 

Equivalence of dipole and vorticity 
distribution 

Consider a surface S in space bounded by a closed curve C, with the unit normal 

vector n. (see Figure B.l) The vector between the field point p(x,y,z) and the source 

point q(^,r?,^) on S is denoted R, and the length of this vector is denoted R. 

Let the surface S be covered with a normal dipole distribution of strength /z, then 

there exists the following relation between the dipole and vorticity distribution. 

THEOREM : The induced velocity at p due to the normal dipole distribution of 

strength ^ on S is equal to the sum of the induced velocities due to a surface vorticity 

distribution on S and due to a line vortex along C. The strength of the line vortex 

the local value of the dipole strength, T = M (on C). The vorticity on S is a vector 

tangent to the curves of constant /x and has a magnitude equal to the surface gradient 

of Ai on S, ^ = n, X V^^~^/i. Specifically, 

is 

//M(9)V,[ —(-)]./.    =    //(VrM9)xn,)xV,(:^)cf. 
s s 

+   f^{g)i',xV,{^]dl, (B.I) 
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R = ^J{^-0' + {y-r^y'iz-^y 

Figure B.l: Notation for a general surface. 
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where Vp is the gradient operator with respective to the point p, and V, is the gradient 

operator with respective to the point q.   PROOF : To convert the line integral in 

Equation B.l into a surface integral, start with Stokes theorem, 

JV ■tdl = jj{V xV).ndS. (B.2) 
c s 

Put V = ax P, where a is an arbitrary constant vector (a 7^ 0), then 

(ax P) ■f=a-{P xi), 

and 

V X (a X P) ■ n - ^ X V ■ (a X P) = -a • (n X V) X P. 

Equation B.2 becomes 

ja-{P xt)dl = -II a-{nxV)xPdS. 

Since a is an arbitrary constant vector, the following transformation from a line inte- 

gral to a surface integral is possible, 

lfxPdl = ll{nx^)xPdS. (B.3) 
c s 

If P is set to be P = /i(g)Vp(^) in Equation B.3, then 

/fx (^(9)Vp(^)) dl = II[n, X V,) X (;.(9)Vp(^)) dS. (B.4) 

■ The right hand side of Equation B.l is transformed into a form which involves only 

surface integrals on S, using Equation B.4. The integrand of the resulting surface 

integral is 

[V,n{q) X n,) X Vp(^)    +    (n, x VJ x (^^,[q)V,[^)^ = 

+    V,(n,.MVp(-i))-nJv,.LVp(^))l, (B.5) 
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where V, f n, • ;xVp(-^) j means that V, operates only on MVp(-^), not on n,. The 

last two terms of the right hand side of Equation B.5 can be expressed as 

and 

n. V,-(MVP(-^) = n. V,M-Vp(-^) + Tla MV,-Vp(-^) 

where V, • Vp(-^)   =  V^(^)   = 0 for p ^ 5.    Due to the cancellations of terms, 

Equation B.5 becomes 

/x(9)V,(n,-Vp(:^)) (B.6) 

Equation B.6 can be proceeded using 

"^^(^•"^pl-^)) =^«^«-^p(^) + '^»^ (v, X Vp(-^)), (B.7) 

where the first term is zero.  Thus the integrand of the resulting surface integral in 

the right hand side of Equation B.l is 

/i(9)n, X (^V, X Vp(-5^)) (B.8) 

On the other hand, the integrand of the surface integral of the left hand side of 

Equation B.l is 

M(9) Vp(n, . V,(-^)) = M(9) n,Vp • V,(-i) ^ n{q] n, x (v, x V,(-^: 

We can show that Equation B.9 is equivalent to Equation B.8, using 

Vp X V,(^) = -Vp X (^) = -Vp(ij) X i - (ij) Vp X R, 

:B.91 

and 

V, X Vp(^) = V, X (^) = V,(i^) X ^ -f (i^) V, X R, 

w here -Vp(^) = V,(^), and -Vp x .R = V, x .R = 0 
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Appendix C 
rOfU. 

Potential and velocities on  the 
surface of an  ellipsoid 

Consider an ellipsoid with semi-lengths of its axes a, b and c in an uniform inflow 

velocity C/QO parallel to x-etxis. Equation of the ellipsoid is ■^'    • -    ;• - 

x      y      z 
? + ? + ? = '•    • (c-i) 

Expression for the perturbation potential on the ellipsoid surface is given by Lamb 

[16], 

where 

4>{^,y,z) = U^xK, (C.2) 

K = ab c 
2-a„ D 

dX 

. A      '^0 = abc D 

The quantity Z? is purely numerical and can be calculated by a numerical integration. 

For brevity, set Uoo = 1, a = 6 = 1, then Equation C.l becomes 

,2 

x' + y' + — = 1. (C.3) 
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