
-R19 *9" NIGH RESOLUTION PROCESS TIMING USER'S rNURL(U) 1/1
ILLINOIS UNIV NT URIANA CENTER FOR SUPERCOMPUTING
RESERRCH MID DEVELOPMENT A D MALONEY 36 OCT 6?

t LWCLSSFE CSRD-6 R OSRTR-9?±fF4962 
B6 C 36 F/O 12/5 NL



0 2.

"IIle

'4-le



Afl-A19'4 8u IWbCUMENTATION PAGE 4J,

lb. RESTRICTIVE MARKINGS N1~rr~

i 2a. SECURITY CLASSIFICATION AUIT CT W U J (
IAN 19 IM3.ISTRIIUTIONIAVAIIABILITY OF; REPORT

2b. ECLSSIFCATON/OWNGAOI ULEdistritutionl unlicited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5S MONITORING ORGANIZATION REPORT NUMBER(S)

CSRD Report No. 676 v

6a. NAME OF PEFFORMING ORGANIZATION r6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

The Board of Trustees of the (If applicable)
University of Illinois ____________________________________

6L. ADDRESS (Oty. State, and ZIP Code) 7b- Ajfl Wa. State, and ZIP Code)

506 S. Wright St.' B WdW41

Urbana, IL 61801 Blig 10 C 03244

&a. NAME OF FUNDING/ISPONSORING rb FFC SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Of aplcbi)MG F49620-86-C-0136

AFOSR NM_____ _____________________

BcAState, and ZIP Code) 10. SOURCE OF rUNDPING NUMBERS
Blg40PROGRAM PROJECT TASK WORK UNIT

BligABD 202-48ELEMENT NO. NO. No. CESSION NO.
* g0 12.4gAFBDC 2332-6~61102F I2304 ,P'I

11. TITLE (Include Secunlty Zlawf catron)

High Resolution Process Timing User's Manual

12. PERSONAL AUTHOR(S)
Allen D. Malony

13a. TYPE OF REPORT 13b. TIEn OERDI. OAT OREPORT oaVnA.ODay) LI. AE ONT
* Internal Report FROM 0, 11 TO -F

16. SUPPLEMENTARY NOTATION

- -COATICOES 10. SUBJECT TERMS (Continue on, rewri it' necenaty and fdenwmlly by block numbrer)
FIELD GROUP SUB-ROUP

*19. ABSTRACT (Continue on reverie if neceuary and mentufl' by block nmumber)
4 Ahigh-resolution process timing facility, called HRTIME, has-.been implemented for the Cedar
system. HRTIIE .1. an extension of the Concentrix USER and SYSTEM process time measurements.
It times both execution and non-execution process states with 10 1usec accuracy. In addition,

* HRTII(E provides individual processor timing measurements to give a detailed account of the
time spent in various states of sequential and concurrent execution. The main purpose of this
manual is to explain how to use the HRTIME facility. In particular, the manual discusses
how to access the timing data, to correctly time a program section, and to interpret the
resulting time measurements. Although a brief overview is given describing what the time
measu'iements are and how they are produced, the user should refer to [BELM871 for a complete
discussion of the HRTIME design and implementation.

20. DISTRIBUTION IAVAILABIUITY OF ABSTRtACT 21. ABSTRACT SECURITY CLASSIFICATION
OUNCLASSIFIED1UNLIMITE0 0 SAME AS RPT 03 OTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPMONE (OInclude Anto Code) 22c. QFtESYMBOL
Maj. John P. Thomas 0 16 - 1 K

00 FORM 1473.684 MAR 83 APR edtionl mfay be used untilO tilUSt~d. SEC1URITY CLASSIFICATION OF -HIS PAGE
All othe.r editions are obiclot.

................



AFQhk- IX. d 7 - i9 7 0

High Resolution Process Timing
User's Manual

Allen D. Malony
Center for Supercomputing
Research and Development

1. Introduction

A high-resolution process timing facility, called HRTIME, has been implemented for the
Cedar system. HR TIME is an extension of the ConcentrixIO USER and SYSTEM process time
measurements. It times both execution and non-execution process states with 10 psec accuracy.
In addition, HRTIME provides individual processor timing measurements to give a detailed
account of the time spent in various states of sequential and concurrent execution.

The main purpose of this manual is to explain how to use the HR TIME facility. In particu-
lar, the manual discusses how to access the timing data, to correctly time a program section, and
to interpret the resulting time measurements. Although a brief overview is given describing what
the time measurements are and how they are produced, the user should refer to [BELM87] for a
complete discussion of the HRTIME design and implementation.

2. HRTIME Design Overview

The goal of the HR TIME facility is to provide high-resolution, detailed timing measure-
ments of process operation. HRTIME is based on measured process timing with all times meas-
ured at 10 jisec resolution [Malo86]. The Concentrix USER and SYSTEM process states are
extended to four execution states, and the measured times spent in these states are kept on a per
processor basis. Non-execution states are also defined to track the time a process spends ready,
blocked or idle.

2.1. Execution States

Four execution states are defined by HRTIME: USER, SYSTEM, OVERHEAD, and KER-
NEL. The USER state is active when user code is being executed. Processing of system calls
occurs in the SYSTEM state. Interrupt processing that can be attributed to the current process
falls into the OVERHEAD state; this includes interrupts for page faults and general exceptions,
such as a floating point exception. Interrupts not directly associated with the current process are
processed in the KERNEL state; cross-processor interrupts, device interrupts and timer inter-
rupts are considered part of the KERNEL state. Actually, the KERNEL state is not a "process"
execution state at all, but a situation where the operating system itself is executing. For this rea-
son, only the USER, SYSTEM and OVERHEAD states are timed for a process.

In a multiprocessor system such as Cedar, it is possible for a process to be executing sequen-
tially on one processor or concurrently on several processors. To further audit execution time,
HRTIME keeps time measurements on a processing resource basis. In Cedar, a sequential process



- 2

executes on an IP, a detached-CE, and/or one CE of a cluster. HRTIME maintains a USER,
SYSTEM and OVERHEAD timer for each of these "sequential" processing resources as part of
the overall process time measurements.

All concurrent processes execute on the computational complex of the Alliant FX/8 1 . How-
ever, it is possible for processors participating in a concurrent computation to be in different
states of execution. For this reason, the execution states should really be monitored at the pro-
cessor level. For concurrent processes, HRTIME measures execution times per processor per
state2 . USER, SYSTEM and OVERHEAD timers are defined for each of the eight CEs.

Although the execution state timers defined above give detailed timing information, a com-
plicated calculation must be made to determine total elapsed time, especially in the case of a con-
current process. For this purpose, a VIRTUAL execution state is defined; when any processing
resource is executing in USER, SYSTEM or OVERHEAD state, the process is in a VIRTUAL
execution state. A single timer is defined for the process VIRTUAL execution state.

2.2. Non-execution States

In addition to the execution states, three non-execution process states are recognized:
READY, BLOCKED, and IDLE. Obviously, when a process is ready to execute, but not
currently running, it is in the READY state. Similarly, a process is in the BLOCKED state when
it is blocked from execution. The IDLE state occurs when a process is waiting for something to
do. Because the process is not executing, only one timer is needed for each of these non-
execution states.

2.3. State Timing

HRTIME works by detecting changes in execution and non-execution states, updating the
time spent in the old state, and beginning the measurement of the delta time in the new state.
The high-resolution, real-time clock is used to mark the point in time of the beginning of a new
state and the end of the old state. Simple calculations are then made to update the old state
times to their new values. For further description of HR TIME implementation see [BELM87].

3. HRTIME Data Structures

The HR TIME facility is always enabled. The operating, system maintains the time meas-
urements as part of the process's state. The state timers are stored as 64-bit integer values indi-
cating the number of 10 psec time units measured. The timer data structures are allocated as
part of a larger process measurement structure in the process's read-only address space. This
allows reference to any of the timers directly from the user's program.

The process timing data structures are declared in <sys/csrdetc.h>. The C data structure
definitions of interest for this document are reproduced below 3:

A process is said to be concurrent if it requires more than one CE during its execution.

£ This is not done by Concentrix. Whenever Concentrix detects any processor to be in SYSTEM state, the whole
process is considered to be in SYSTEM state. USER time accumulates only when all processors are in USER state.

The hrceval structure contains two 32-bit unsigned integers which together form a single 64-bit unsigned in-
teger.

June 26, 1987

V V - - - .w V~V~ ~



struct exectime
{ struct hrcval user: /* user time

struct hrcval system; /* system time */
struct hrcval overhead: /* overhead time */

} .
struct crestime

{ struct exectime ccei ;] ; /* CE times
struct exectime ip: /* IP times
struct exectime dce: /* detached CE times */
struct exectime cl: /* cluster time

}%

struct hrtimers
{ struct hrcval pvtime: /* process virtual time

struct hrcval tvtime: /* task virtual time */
struct hrcval notready: /* time not ready

struct hrcval ready, /* time ready, not running */
struct hrcval idle; /* task idle time
struct crestime execution; /* execution times

}4

The hrtimers structure defines all time values HRTIME keeps for the process4 .

Together with the process's time values, a second set of timers is maintained for the
process's children processes. Whenever a child process of the current process completes, it adds
its children process times plus its own times to the children process times of its parent, the
current process. The current process will likewise propagate is times to its parent when it com-
pletes.

4. Using the HRTIME Facility In A Program

The HRTIME facility is intended to be used is the same manner as the standard Concentrix
timing facility. That is, routines to access the HRTIME measurements, similar to calling etime0
and dtime( to retrieve USER and SYSTEM times values, are to be used in the same way for tim-
ing program sections and measuring overall program execution. However, unlike normal Concen-
trix timing, HRTIME provide significantly more detailed timing information. Interpreting the
HRTIME measurements is the subject of a later section. Using the HRTIME facility is discussed
in this section and the next.

4.1. Accessing HRTIME Measurements

Although the timers are in the user's virtual address space, because the process states are £]
dynamically changing, it can be difficult to read a consistent bet of timer values directly. More- El
over, the user will have to perform update calculations, which the operating system normally ...........
does upon a state change, to produce up-to-date time values. The recommended way to access
the HRTIME measurements is to use the system call gethrtimers( provided as part of the csrd

4 Ivitme is discussed in a }ater section.

.. . . . . .. . . . . . ..........---

copy

June 25, 1987 4'tPL

0 -



106

4

5library

The format of the gethrtimers() system call is shown below:

gethrtimers(type, hrtimes)
int type: /* HRTIMERSSELF (0)

/* HRTIMERSCHILDREN (1) */
struct hrtimers *hrtimes;

Being a system call, gethrtimers( causes a change of state from USER to SYSTEM on the calling
processor. In addition, gethrtimers( forces all currently active timers to be updated to a con-
sistent state. The appropriate time values, current process or children, are then transferred to r
the user's buffer, pointed to by hrtimes, and the process continues.

Raw timing data are returned by gethrtimersO . If the user wants decimal time values in
seconds, the csrd library routine rtsecs() can be called. The format of the hrtsecs( function call
is:

double hrtsecs (hrtime)
struct hrcval *hrtime;

4.2. Time Measurements of a Program Section

The general procedure for making time measurements of a section of a program is shown

below8 :

gethrtimers(type, hrtimesl); %
<execute program section>

gethrtimers(type, hrtimes2):
<calculate the time difference between hrtimes2 and hrtimesl>

As is obvious from above, the time to execute the program section is really the difference between
two struct hrtimers samples, hrtimesl and hrtimes2, determined before and after the program
section. Following this procedure, time measurements for various program sections can be made.
In fact, if the time samples are saved, a time-sample trace can be kept during program execution
and a post-processor used to calculate the desired incremental time values.

4.3. Program Compilation

To use the HRTIME facility, the user program must include the following files:

sys/time. h

sys/csrdetc. h

In addition, the user program must be compiled with the csrd library.

This document does not explain how to deal with the consistency problems involved in directly accessing the
HR TIME data structures. Further discussion of this issue might be documented at a later time depending on need.

Usually, the type argument to gethrtimers() will be HRTIMERSSELF; i.e., the current process.

June 25, 1987

-- -' V -' .. ... -~ ". .~ . .~



5LV V WT K- -1 o109

5. Automatic Program Time Measurements

In some cases, the user will want to time a program as a whole. A program, hrtime, has
been written to run the user's program and print out timing statistics7 without requiring any
program modification. The Artime command format is:

hrtime <user program> <user program arguments>

The timing results ,roduced by hrtime include the execution and non-execution times. The exe-
cution times ar.. -- wn as individual processor times. An example of the hrtime output for a con-
currently executing program is given below:

PROCESS / TASK TIME
process virtual 5.89677
task virtual : 5.89677
not ready . 0.18924
ready 1.64093
idle . 0.10224

IP, DETACHED CE and CLUSTER TIME

User System Overhead
ip : 0.00000 0.00000 0.00000
dce 0.00105 0.05764 0.01262
cluster : 0.00000 0.00000 0.00000

CE TIME

User System Overhead
ce [0] : 5.73250 0.00092 0.00737
ce [1] . 5.73529 0.00000 0.00335
ce [2] : 5.73540 0.00000 0.00393
ce [3] : 5.73318 0.00416 0.00863
ce [4] : 5.73358 0.00000 0.00436
ce [5] : 5.73354 0.00000 0.00264
ce [6] : 5.73285 0.00000 0.0028P
ce [71 : 5.71049 0.02005 0.00373

8. HRTIME and Fortran

Although the above discussion uses C for describing HRTIME data structures and routines,
accessing the HRTIME facility from Fortran is no problem. The user only has to declare an
equivalent struct hrtimera data structure whose address will be passed to the gethrtimersa( rou-
tine. The following shows a suggested Fortran declaration and a call to gethrtimers):

integer type

integer*4 hrtimes(2,38)

A manual page is available for the hrtme program on the CSRD Alliant machines.

June 25, 1987



call gethrtimers(type,hrtimes)

In this case, the hrtime8 array is organized as:

process virtual time hrtimes(1:2,i)
task virtual time hrtimes(1:2,2)
time not ready hrtimes(1:2,3)
time ready, not running hrtimes(1:2,4)
task idle time : hrtimes(1:2,5)

user system overhead
ce[O] hrtimes(l:2,6), hrtimes(l:2,7), hrtimes(l:2,8)
ce[l] : hrtimes(l:2,9), hrtimes(1:2,i0), hrtimes(1:2,i1)
ce[2] : hrtimes(1:2,12), hrtimes(l:2,13), hrtimes(l:2, 14)
ce[3] hrtimes(l:2,15), hrtimes(l:2,16), hrtimes(l:2,17)
ce[4] hrtimes(l:2,18), hrtimes(l:2,19), hrtimes(l:2,20)
ce[5] : hrtimes(l:2,21), hrtimes(1:2,22), hrtimes(l:2,23)
ce[6] : hrtimes(l:2,24), hrtimes(1:2,25), hrtimes(l:2, 26)
ce[7] : hrtimes(l:2,27), hrtimes(l:2,28), hrtimes(i:2,29)

user system overhead
ip :hrtimes (1:2,30) , hrtimes (1:2, 31) , hrtimes (1:2,32)

detached ce : hrtimes(1:2,33), hrtimes(1:2,34), hrtimes(1:2,35)
cluster hrtimes(1:2,36), hrtimes(1:2,37), hrtimes(l:2,38)

As before, all times are 64-bit unsigned integer values indicating the number of 10 Asec
time units measured. Again, the hrtsecs( function can be called to convert the integer time
values to floating point values.

7. HRTIME and Xylem

Xylem supports multitasking of a process for concurrent execution across multiple Cedar
clusters. Concentrix runs on each individual cluster and schedules Xylem tasks for execution.
The question is how the HRTIME facility performs time measurements of Xylem tasks. Because
Xylem tasks are essentially equivalent to Concentrix processes, the time measurement mechan-
ism is exactly the same. Hence, all previous discussion also applies to Xylem tasks. However,
some additional HRTIME measurement mechanisms for Xylem processes are provided.

A Xylem process is made up of one or more tasks. A Xylem process represents a logical exe-
cution environment; that is, only the tasks actually execute. However, HRTLME also measures
time for a Xylem process. This is done by adding the execution time results of the Xylem
process's tasks to its HRTIME time totah when the tasks complete. Thus, the execution time
measurements for a Xylem process are the sum of all its tasks' execution times.

For a normal Concentrix process, the process VIRTUAL time, pvtime, is equivalent to the
task VIRTUAL time, tvtime. However, for Xylem tasks and processes, these two VIRTUAL
times take on different meanings. Task VIRTUAL time for a Xylem task is analogous to process
VIRTUAL time for a Concentrix process. That is, task VIRTUAL time accumulates whenever
any processing resource used by the task is in USER, SYSTEM or OVERHEAD state. Xylem

June 25, 1987

. . ... r - c ar *



7

tasks do not use the process VIRTUAL timer.

On the other hand, Xylem processes do use the process VIRTUAL timer for determining
total elapsed execution time for the Xylem process. A Xylem process is in a VIRTUAL execution
state whenever any of its tasks are executing in USER, SYSTEM or OVERHEAD state; this is
analogous to the Concentrix process VIRTUAL state definition except on at higher level.

8. Interpreting HRTIME Measurements

HRTIME provides significantly more detailed timing information than the standard Con-
centrix USER and SYSTEM times. In fact, in nearly all cases, the HRTIME facility can take the
place of Concentrix timing for process time measurements; certainly, HRTIME will be used for
non-execution timing and Xylem process/task timing. However, together with the benefit of
more information comes the problem of understanding what it all means. This section makes a
few comments on interpretating HRTIME measurements. An all-inclusive discussion is impossi-
ble since the time measurements will be used for different purposes. However, as users gain more
experience with HRTIME, they will become more confident in their understanding of the meas-
urements, and further consensus on standard timing measurement methodology is expected.

One aspect of HRTIME that might be curious is why the definition of USER, SYSTEM and
OVERHEAD states instead of staying with USER and SYSTEM. Some system processing actu-
ally occurs on behalf of the user and, therefore, should be measured separately from the overhead
of general OS operations. Doing so provides the user with a measurement of how much overhead
processing the program is really experiencing during its execution and also how much system sup-
port the program is requiring. By monitoring the OVERHEAD times, as well as the USER and
SYSTEM times, the user can get a sense of how vulnerable the program's performance is to the
overhead processing.

Non-execution time measurements might be regarded as superfluous by some users. How-
ever, these times have real meaning and can reflect interesting process operation behavior. For
instance, the READY time is a good indication of the amount of waiting a process experiences in
the scheduling queue. The BLOCKED time is even more versatile in that it encompasses all
dependent waiting (blocking) time encountered by the process. This time not only includes
blocking due to I/O operations but also represents waiting due to inter-process and inter-task
synchronization. IDLE time is particularly interesting for Xylem tasks because it can be used to
compute a task utilization measure indicating the percentage of time a task was executing some
portion of the user's program.

For the most part, the execution time measurements have clear definitions; e.g., the time
- spent executing in SYSTEM state on CE 5 or the total process virtual time. The complication
.* comes when trying to work back from the measurements to what the program is actually doing.

For sequential processes, the HRTIME measurements are not too difficult to understand. The
breakdown across the different sequential processing resources is interesting because it shows how
the process was scheduled during its execution. To determine the total USER, SYSTEM and
OVERHEAD times the user could sum the IP, detached CE and cluster values. However, when
the execution takes place on different physical processing resources, as in this case IPs and CEs,
the user may want to regard the execution times differently.

The HRTIME measurements for concurrent processes are in some ways easy and in other
ways difficult to interpret. On the one hand, the measurements are just a simple extension of the
one CE cluster execution times to multiple CEs. On the other hand, the actions of multiple CEs

June 25, 1987



have to be determined instead of just one. The goals of the CE execution time measurements is
to give some indication of CE resource usage. Ideally, a single global state space would be
defined where each point describes a different combination of the CE execution states. Time
spent in each global state could then be measured. However, the implementation of this meas-
urement model is impractical. Thus, the individual CE measurements are provided.

Us:ng the individual CE measurements, it is difficult to determine the amount of time CE 0
is in USER state when CE 1 in SYSTEM state, and so on, with the other CE state combinations.
However, it is unclear whether such a time value has much meaning. Because the computational
complex is assigned to a process as a single resource, it is more important how the individual CEs
themselves are utilized. The HRTIME measurements show this as a breakdown between execu-
tion states for each CE. Unfortunately, HRTIME is unable to detect when a CE is idling. Other-
wise, the time spent in a non-execution state could be measured for each CE and complete CE
utilization statistics calculated. As it is, when a CE is idling, the CE appears to be in USER
state and USER time is being accumulated.

9. Conclusion

The HRTIME facility is a new tool for timing programs on the Cedar multiprocessor. It is
possible that significantly more questions will be raised about the HRTIME facility than were
answered above. Being a new tool, this is to be expected. However, the additional detail of the
HRTIME measurement should be a benefit over the simple USER and SYSTEM times currently
reported by Concentrix. As user experience with HRTIME grows, it is hoped that standard tim-
ing practices will be developed.

v'.

~June 25, 1987

% 0 .%* P- eSN

'ek. w



9

References

[Malo86] Allen Malony. Virtual High-Resolution Process Timing. CSRD Document #616,
Oct. 1986.

[BELM87] R. Barton, P. Emrath, D. Lawrie, A. Malony, R. McGrath. New Approaches to
Measuring Process Execution Time in the Cedar Multiprocessor System. CSRD
Document #622, Jan. 1987.

J

June 28 1987 .

a'

"'%



*-% ..

-,,.-,.:,.

. S M' ' ' m ", - . ' ' , ' Q'* **.. o ' ', - , .


