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1. Introduction

A high-resolution process timing facility, called HRTIME, has been implemented for the
Cedar system. HRTIME is an extension of the Concentrix™ USER and SYSTEM process time
measurements. It times both execution and non—execution process states with 10 usec accuracy.
e In addition, HRTIME provides individual processor timing measurements to give a detailed
account of the time spent in various states of sequential and concurrent execution.

lar, the manual discusses how to access the timing data, to correctly time a program section, and
to interpret the resulting time measurements. Although a brief overview is given describing what
! the time measurements are and how they are produced, the user should refer to [BELMS87| for a
complete discussion of the HRTIME design and implementation.

':_' The main purpose of this manual is to explain how to use the HR TIME f[acility. In particu-
¢
Y

i
"b
_: 2. HRTIME Design Overview
-
o The goal of the HRTIME facility is to provide high-resolution, detailed timing measure-
- ments of process operation. HRTIME is based on measured process timing with all times meas-
; ured at 10 pusec resolution [Malo86]. The Concentrix USER and SYSTEM process states are
o extended to four execution states, and the measured times spent in these states are kept on a per
B processor basis. Non-execution states are also defined to track the time a process spends ready,
N blocked or idle.
" w
™
; 2.1. Execution States
',:: Four execution states are defined by HRTIME: USER, SYSTEM, OVERHEAD, and KER-
:' NEL. The USER state is active when user code is being executed. Processing of system calls
[~ occurs in the SYSTEM state. Interrupt processing that can be attributed to the current process
o falls into the OVERHEAD state; this includes interrupts for page faults and general exceptions,
- such as a floating point exception. Interrupts not directly associated with the current process are
‘.: processed in the KERNEL state; cross-processor interrupts, device interrupts and timer inter-
s rupts are considered part of the KERNEL state. Actually, the KERNEL state is not a "process”
Y, execution state at all, but a situation where the operating system itself is executing. For this rea-
‘ son, only the USER, SYSTEM and OVERHEAD states are timed for a process.
y In a multiprocessor system such as Cedar, it is possible for a process to be executing sequen-
5 tially on one processor or concurrently on several processors. To further audit execution time,
:: HRTIME keeps time measurements on a processing resource basis. In Cedar, a sequential process
’ »
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' executes on an [P, a detached-CE, and/or one CE of a cluster. HRTIME maintains a USER, ::

SYSTEM and OVERHEAD timer for each of these "sequential” processing resources as part of
the overall process time measurements. ¥

. All concurrent processes execute on the computational complex of the Alliant FX/8!. How-
ever, it is possible for processors participating in a concurrent computation to be in different
states of execution. For this reason, the execution states should really be monitored at the pro-
cessor level. For concurrent processes, HRTIME measures execution times per processor per

‘ state?. USER, SYSTEM and OVERHEAD timers are defined for each of the eight CEs. o,

Although the execution state timers defined above give detailed timing information, a com-
plicated calculation must be made to determine total elapsed time, especially in the case of a con-
current process. For this purpose, a VIRTUAL execution state is defined; when any processing
resource is executing in USER, SYSTEM or OVERHEAD state, the process is in a VIRTUAL
execution state. A single timer is defined for the process VIRTUAL execution state. \

- e e
- - - P

2.2. Non-execution States

-

';ﬂ.

In addition to the execution states, three non-execution process states are recognized:
READY, BLOCKED, and IDLE. Obviously, when a process is ready to execute, but not

! currently running, it is in the READY state. Similarly, a process is in the BLOCKED state when '?;
it is blocked from execution. The IDLE state occurs when a process is waiting for something to ’::
do. Because the process is not executing, only one timer is needed for each of these non- 5
) g Y )
execution states. o
. . Y
2.3. State Timing N
HRTIME works by detecting changes in execution and non-execution states, updating the =)
time spent in the old state, and beginning the measurement of the delta time in the new state. '
The high-resolution, real-time clock is used to mark the point in time of the beginning of a new
state and the end of the old state. Simple calculations are then made to update the old state Y
times to their new values. For further description of HRTIME implementation see [BELM87). Ny
L
3. HRTIME Data Structures )
The HRTIME facility is always enabled. The operating system maintains the time meas- A
: urements as part of the process’s state. The state timers are stored as 64-bit integer values indi- ",
cating the number of 10 usec time units measured. The timer data structures are allocated as s
part of a larger process measurement structure in the process’s read-only address space. This -3
allows reference to any of the timers directly from the user’s program. Yy
The process timing data structures are declared in <sys/csrdetc.h>. The C data structure )
definitions of interest for this document are reproduced below?: :
! A process is said to be concurrent if it requires more than one CE during its execution. :\
! This is not done by Concentrix. Whenever Concentrix detects any processor to be in SYSTEM state, the whole "
process is ccnsidered to be in SYSTEM state. USER time accumulates only when all processors are in USER state. .'
¥ The hreval structure contains two 32-bit unsigned integers which together form a single 84-bit unsigned in-
teger.
1
LY
"]
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struct exectime

{ struct hrcval user:; /* user time */
struct hrcval system; /* system time */
struct hrcval overhead; /* overhead time */

}

struct crestime

{ struct exectime ccein]; /* CE times */
struct exectime ip: /* IP times */
struct exectime dce: /* detached CE times */
struct exectime cl; /* cluster time */

}

struct hrtimers

{ struct hrcval pvtime: /* process virtual time */
struct hrcval tvtime; /* task virtual time */
struct hrcval notready; /* time not ready */
struct hrcval ready: /* time ready. not running */
struct hrcval idle: /* task idle time */
struct crestime executlion; /* execution times */

}

The hrtimers structure defines all time values HRTIME keeps for the process®.

Together with the process’s time values, a second set of timers is maintained for the
process’s children processes. Whenever a child process of the current process completes, it adds
its children process times plus its own times to the children process times of its parent, the

current process. The current process will likewise propagate is times to its parent when it com-
pletes.

4. Using the HRTIME Facility In A Program

The HRTIME facility is intended to be used is the same manner as the standard Concentrix
timing facility. That is, routines to access the HRTIME measurements, similar to calling etime()
and dtime() to retrieve USER and SYSTEM times values, are to be used in the same way for tim-
ing program sections and measuring overall program execution. However, unlike normal Concen-
trix timing, HRTIME provide significantly more detailed timing information. Interpreting the
HRTIME measurements is the subject of a later section. Using the HRTIME facility is discussed
in this section and the next.

4.1, Accessing HRTIME Measurements

Although the timers are in the user’s virtual address space, because the process states are
dynamically changing, it can be difficult to read a consistent set of timer values directly. More-
over, the user will have to perform update calculations, which the operating system normally

-
EJ

LA WS

Dmﬂj

"
does upon a state change, to produce up-to—date time values. The recommended way to access Y
the HRTIME measurements is to use the system call gethrtimers() provided as part of the c¢srd -—- »
1
%
¢ totime is discussed in a later section. (e, Codes o
T i
- e )
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The format of the gethrtimers() system call is shown below:
gethrtimers (type, hrtimes)
int type: /* HRTIMERS_SELE (O) x/
/* HRTIMERS_CHILDREN (1) */
struct hrtimers *hrtimes;
) Being a system call, gethrtimers() causes a change of state from USER to SYSTEM on the calling
processor. In addition, gethrtimers() forces all currently active timers to be updated to a con-
4 sistent state. The appropriate time values, current process or children, are then transferred to

d the user’s buffer, pointed to by Artimes, and the process continues.

Raw timing data are returned by gethrtimers(). If the user wants decimal time values in
seconds, the csrd library routine Arésecs() can be called. The format of the Artsecs() function call
is:

N double hrtsecs (hrtime)
‘ struct hrcval *hrtime:;

4.2. Time Measurements of a Program Section

! The general procedure for making time measurements of a section of a program is shown
below®:

gethrtimers (type, hrtimesl):

<execute program section>

gethrtimers (type, hrtimes2);

<calculate the time difference between hrtimes2 and hrtimesl>

As is obvious from above, the time to execute the program section is really the difference between
two struct hrtimers samples, hrtimesl and hrtimes2, determined before and after the program
section. Following this procedure, time measurements for various program sections can be made.
In fact, if the time samples are saved, a time-sample trace can be kept during program execution
and a post-processor used to calculate the desired incremental time values.

4.3. Program Compilation

To use the HRTIME facility, the user program must include the following files:

sys/time.h
sys/csrdetc.h

In addition, the user program must be compiled with the ¢srd library.

' This document does not explain how to deal with the consistency problems involved in directly accessing the
HRTIME data structures. Further discussion of this issue might be documented at a later time depending on need.

! Usually, the type argument to gethrtimers() will be HRTIMERS_SELF; i.e., the current process.
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5. Automatic Program Time Measurements

In some cases, the user will want to time a program as a whole. A program, hrtime, has
been written to run the user’s program and print out timing statistics’ without requiring any

program modification. The hrtime command format is:

hrtime <user program> <user program arguments>

The timing results .roduced by hrtime include the execution and non—execution times. The exe-
cution times ar. «~ ,wn as individual processor times. An example of the hArtime output for a con-
currently executing program is given below:

PROCESS / TASK TIME
process virtual
task virtual
not ready

ready
idle

.89677
.89677
.18924
.64093
.10224

O+ O U v

IP, DETACHED CE and CLUSTER TIME

ip

dce
cluster

CE TIME

ce
ce
ce
ce
ce
ce
ce
ce

8. HRTIME and Fortran

Although the above discussion uses C for describing HRTIME data structures and routines,
accessing the HRTIME facility from Fortran is no problem. The user only has to declare an
equivalent struct hrtimers data structure whose address will be passed to the gethrtimers() rou-

(0]
(1]
(2]
(3]
(4]
3]
(el
(7]

User

0.00000
0.00105
0.00000

User

. 73250
.73529
. 73540
.73318
.73358
.73354
.73285
.71049

uoOononononn

System

0.00000
0.05764
0.00000

System
.00092
. 00000
. 00000
.00416
. 00000
.00000
. 00000
.02005

OO0 O0OO0OO0OO0OO0O0

OO0 O0OO0OO0O0OO0OO0

Overhead
0.00000
0.01262
0.00000

Overhead
.00737
.00335
.00393
.00863
.00436
.00264
.00282
.00373

tine. The following shows a suggested Fortran declaration and a call to gethrtimers():

integer

type
integer*4 hrtimes (2, 38)

" A manual page is available for the Arfime program on the CSRD Alliant machines.

AP,
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call gethrtimers (type, hrtimes)

In this case, the Artimes array is organized as:

process virtual time : hrtimes(1:2,1) :v’:
task virtual time : hrtimes(1:2,2) J
time not ready : hrtimes(1:2, 3) "
time ready, not running : hrtimes(1l:2,4) .|
task idle time : hrtimes(1:2,5) o
Py
user system overhead By
1 ce{0] : hrtimes(1:2,6), hrtimes(1:2,7), hrtimes(l:2,8) 2
ce[l] : hrtimes(1:2,9), hrtimes(1:2,10), hrtimes(1:2,11) )
ce[2] : hrtimes(1:2,12), hrtimes(1:2,13), hrtimes(1l:2,14) Ay
ce[3] : hrtimes(1:2,15), hrtimes(1:2,16), hrtimes(1:2,17) ; :s
ce{4] : hrtimes(1:2,18), hrtimes(1:2,19), hrtimes(1:2, 20) \
ce[5] : hrtimes(1:2,21), hrtimes(1:2,22), hrtimes(1:2,23) .
ce[6] : hrtimes(1:2,24), hrtimes(l1:2,25), hrtimes(1l:2, 26) }
ce(7] : hrtimes(1:2,27), hrtimes(1:2,28), hrtimes(1:2,29) ,
W
user system overhead ‘t":
ip : hrtimes(1:2,30), hrtimes(1:2,31), hrtimes(1:2, 32) "':,
detached ce : hrtimes(l1:2,33), hrtimes(l:2,34). hrtimes(1l:2, 35) p '
cluster : hrtimes(1:2,36), hrtimes(1:2,37), hrtimes(l:2,38)
-~
As before, all times are 64-bit unsigned integer values indicating the number of 10 usec .’_:
, time units measured. Again, the hrtsecs() function can be called to convert the integer time ’
) values to floating point values. :-;
7. HRTIME and Xylem e
Xylem supports multitasking of a process for concurrent execution across multiple Cedar ;
clusters. Concentrix runs on each individual cluster and schedules Xylem tasks for execution. X
The question is how the HRTIME facility performs time measurements of Xylem tasks. Because ¢\
Xylem tasks are essentially equivalent to Concentrix processes, the time measurement mechan- ,.
ism is exactly the same. Hence, all previous discussion also applies to Xylem tasks. However, )
some additional HRTIME measurement mechanisms for Xylem processes are provided. ..J-

A Xylem process is made up of one or more tasks. A Xylem process represents a logical exe- -
cution environment; that is, only the tasks actually execute. However, HRTIME also measures C.
time for a Xylem process. This is done by adding the execution time resuits of the Xylem
process’s tasks to its HRTIME time totals when the tasks complete. Thus, the execution time

measurements for a Xylem process are the sum of all its tasks’ execution times. }’-
For a normal Concentrix process, the process VIRTUAL time, pvtime, is equivalent to the K

task VIRTUAL time, tvtime. However, for Xylem tasks and processes, these two VIRTUAL ;';
times take on different meanings. Task VIRTUAL time for a Xylem task is analogous to process )

VIRTUAL time for a Concentrix process. That is, task VIRTUAL time accumulates whenever o
any processing resource used by the task is in USER, SYSTEM or OVERHEAD state. Xylem o

.‘~

o
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tasks do not use the process VIRTUAL timer.

On the other hand, Xylem processes do use the process VIRTUAL timer for determining
total elapsed execution time for the Xylem process. A Xylem process is in a VIRTUAL execution
state whenever any of its tasks are executing in USER, SYSTEM or OVERHEAD state; this is
analogous to the Concentrix process VIRTUAL state definition except on at higher level.

8. Interpreting HRTIME Measurements

HRTIME provides significantly more detailed timing information than the standard Con-
centrix USER and SYSTEM times. In fact, in nearly all cases, the HRTIME facility can take the
place of Concentrix timing for process time measurements; certainly, HRTIME will be used for
non-execution timing and Xylem process/task timing. However, together with the benefit of
more information comes the problem of understanding what it all means. This section makes a
few comments on interpretating HRTIME measurements. An all-inclusive discussion is impossi-
ble since the time measurements will be used for different purposes. However, as users gain more
experience with HRTIME, they will become more confident in their understanding of the meas-
urements, and further consensus on standard timing measurement methodology is expected.

One aspect of HRTIME that might be curious is why the definition of USER, SYSTEM and
OVERHEAD states instead of staying with USER and SYSTEM. Some system processing actu-
ally occurs on behalf of the user and, therefore, should be measured separately from the overhead
of general OS operations. Doing so provides the user with a measurement of how much overhead
processing the program is really experiencing during its execution and also how much system sup-
port the program is requiring. By monitoring the OVERHEAD times, as well as the USER and
SYSTEM times, the user can get a sense of how vulnerable the program’s performance is to the
overhead processing.

4555

\
"
‘
5_-\
o
-

-

Non-execution time measurements might be regarded as superfluous by some users. How-
ever, these times have real meaning and can reflect interesting process operation behavior. For
instance, the READY time is a good indication of the amount of waiting a process experiences in
the scheduling queue. The BLOCKED time is even more versatile in that it encompasses all
dependent waiting (blocking) time encountered by the process. This time not only includes
blocking due to I/O operations but also represents waiting due to inter—process and inter-task
synchronization. IDLE time is particularly interesting for Xylem tasks because it can be used to
compute a task utilization measure indicating the percentage of time a task was executing some
portion of the user’s program.

.-

RILLLLN

For the most part, the execution time measurements have clear definitions; e.g., the time
spent executing in SYSTEM state on CE 5 or the total process virtual time. The complication
comes when trying to work back from the measurements to what the program is actually doing.
For sequential processes, the HRTIME measurements are not too difficult to understand. The
breakdown across the different sequential processing resources is interesting because it shows how
the process was scheduled during its execution. To determine the total USER, SYSTEM and
OVERHEAD times the user could sum the IP, detached CE and cluster values. However, when
the execution takes place on different physical processing resources, as in this case IPs and CEs,
the user may want to regard the execution times differently.

- A ." . -'I -" "‘

The HRTIME measurements for concurrent processes are in some ways easy and in other
ways difficult to interpret. On the one hand, the measurements are just a simple extension of the
one CE cluster execution times to multiple CEs. On the other hand, the actions of multiple CEs

June 25, 1987
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o have to be determined instead of just one. The goals of the CE execution time measurements is
W to give some indication of CE resource usage. Ideally, a single global state space would be
N defined where each point describes a different combination of the CE execution states. Time
':fn' spent in each global state could then be measured. However, the implementation of this meas-
;;r,.' urement model is impractical. Thus, the individual CE measurements are provided.

A“EA: Using the individual CE measurements, it is difficult to determine the amount of time CE 0
' is in USER state when CE 1 in SYSTEM state, and so on, with the other CE state combinations.
- However, it is unclear whether such a time value has much meaning. Because the computational
Y complex is assigned to a process as a single resource, it is more important how the individual CEs
i S themselves are utilized. The HRTIME measurements show this as a breakdown between execu-
) tion states for each CE. Unfortunately, HRTIME is unable to detect when a CE is idling. Other-
N wise, the time spent in a non-execution state could be measured for each CE and complete CE

utilization statistics calculated. As it is, when a CE is idling, the CE appears to be in USER
state and USER time is being accumulated.

b
)

MY 9. Conclusion
-

The HRTIME facility is a new tool for timing programs on the Cedar multiprocessor. It is
possible that significantly more questions will be raised about the HRTIME facility than were
o answered above. Being a new tool, this is to be expected. However, the additional detail of the
N HRTIME measurement should be a benefit over the simple USER and SYSTEM times currently

» reported by Concentrix. As user experience with HRTIME grows, it is hoped that standard tim-
S': ing practices will be developed.
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