
AD-R19N 684 CONCURRENCY EFFICIENCY USER'S MANUAIAU) ILLINOIS UNIY 1/1
AT UROANA CENTER FOR SUPERCOMPUTING RESEARCH AND
DEVELOPMENT A D NALONY 30 OCT 67 CSRD-675

UNCELASSIFIED AFOSR-TR-07-i965 F4962S-06-C-SI3 F/G L2/5 ML

L2=8\

M 2ROW4
L6 112.0

1111l I I II - 1 1 i 8

"-
,

/ 'A

I.

N *1'

AD-A190 884DOCUMENTATION PAGE
_ _, RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION A wam-.,L- L 3. OISTRIBUTION/AVAILAILITY OF REPORT

2b, DECLASSIFICATION / DOWNG m m livni S F9 Approved r3 ' ,01'Iic .'.lease.;

I% disritutiO.l unlimited.
4. PERFORMING ORGANIZATION -- NUMBER S. MONITORING ORGANIZATION REPORT NUMBER(S)

CSRD Report No. 675 AOFt Th. 8 7" 9 8
6. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
The Board of Trustees of the (If appliable)
University of Illinois , AFOSR/NM
c.ADDRESS (City, State, and ZIP Code) 7b AfdES Wit. Statt, and ZIP Cock)
506 S. Wright St. Bldg 410
Urbana, IL 61801 Boiling AIB DC 20332-44a

S,. NAME OF FUNDING1/ SPONSORING I 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMeER
ORGANIZATIONI (If apOliabld)

AFOSR NM = F49620-86-C-0136

State, and ZIP Cod*) 10. SOURCE OF FUNDING NUMBERS
ils40PROGRAM PROJECT TASK WOR UNIT

Bldg 410 ELEMENT NO. NO. NO. CESSION .

Boll~flAFBDC 33~~461102F 2304 6 I
11. TITLE (Include Securiy Clanification)

Concurrency Efficiency User's Manual

12. PERSONAL AUTHOR(S)
Allen D. Malonv

134. TYPE OF REPORT 113b. TIME COVERED 14. DATE OF, REPORT (YeA, M e ,O $. PAGE COUNT
Internal Report FROM .4 I TO

16. SUPPLEMENTARY NOTATION

17. COSATI COOES 18. SUBJECT TERMS (Continue on rverse if necessary a
FIELD GROUP -UBGROUP

19- ABSTRACT (Continue on reverse if necessary and identify by block number)
"a Thib document explains how to use a facility for measuring concurrency efficiency on the

lliant FX/8 implemented as part of CSRD's modifications to the Concentrix operating system.
brief overview of the concurrency efficiency analysis is presented first. The CSRD imple-
ntation is then described to point out the measurement's limitations. Concurrency efficiency
asurements are directly controlled by the user program. Instructions for determining CEFF

alues from within a program are given. Concurrency efficiency statistics for the entire pro-
ram are often desired. A tool for generating this data without requiring user program modi-
fication is described. Finally, we give some suggestions on the use of CEFF results in
ssociation with other program performance information. /

- , ..-

20. DISTRIBUTION I AVAILASILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
D: UNCLASSIFIEORJNLIMITED C SAME AS RPT 0 OTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. GEFICE SYMBOL
MaJ. John P. Thomas I A - I kiN

DO FORM 1473.84 MAR 3 APR 0ition may be used until e haulted. SECORITY CLASSIFICATION OF 7IS PAGE
All other editions are obWolte.

Ip

Concurrency Efficiency User's Manual

Allen D. Malony
CSRD hFOf R-1M. 8 7 -19 8,5

1. Introduction

Knowing the time spent by a parallel program in various modes of concurrent execution is
important for characterizing program performance. A basic performance metric derived from
measuring the amount of time i processors are active, where i=l,n and n is the total number of
processors available, is the concurrency eficiency, or CEFF. Essentially, CEFF shows the mul-
tiprocessor utilization obtained by the program. It is an interesting performance metric because
the inverse represents a bound on the maximum speedup possible for the measured program run.
However, concurrency efficiency results should be interpreted in relation to other measurements
such as the actual speedup obtained.

This document explains how to use a facility for measuring concurrency efficiency on the
Alliant FX/8 implemented as part of CSRD's modifications to the ConcentrixO operating sys-
tem. A brief overview of the concurrency efficiency analysis is presented first. The CSRD imple-
mentation is then described to point out the measurement's limitations. Concurrency efficiency
measurements are directly controlled by the user program. Instructions for determining CEFF
values from within a program are given. Concurrency efficiency statistics for the entire program
are often desired. A tool for generating this data without requiring user program modification is
described. Finally, we give some suggestions on the use of CEFF results in association with other
program performance information.

2. CEFF Analysis

If T is the amount of time a program spends executing with i processors active, where
i=l,n and n is the total number of processors, CEFF is defined as:

CEFF [i*Tj /n T 100o%

i--n

where T=ET0
i-'N

Given the concurrency timing information, Tj, it is simple to derive concurrency utilization

A
• "" "l m I w m • I • w w m • ,. . m " "-' " m' % % m% ' ''% "0

2

results, CU,, as the percentage of time i processors are active:
-5

CU; = T 10oo%

By definition, a processor is active when it is is executing user code. However, there is no
differentiation in the measurement of the type of user code being executed. The CEFF metric
indicates the average percentage of the processors used by the program and the CU values give a

breakdown of execution time spent in each concurrent execution state1 . The inverse of CEFF
gives the upper bound on program speedup possible for this run. It is an upper bound because
portions the user code executed may not contribute to the overall program progress; such is the
case with synchronization operations. Whereas a low CEFF value implies a low level of con- S
current processor activity and, therefore, a poor speedup situation, a high CEFF value is only an
indication of high processor concurrency and does not necessarily reflect good parallel perfor-
mance. As will be seen later, CEFF and CU values must be considered with other performance
metrics to determine the degree of effective parallelism being achieved. "9
3. CEFF Implementation

Ideally, changes in the number of active processors should be detected to measure the time
spent in the different concurrent states. However, this measurement procedure is undesirable for
the FX/8 since it could severly restrict parallel program performance. Instead, an approach N

based on the same sampling mechanism used for profiling is implemented. 4

When concurrency efficiency measurements are enabled, the program is interrupted every
10 msec and the state of the processor complex is sampled. The number of active processors is
easily determined by comparing each processor's program counter to a known idle PC. A
counter associated with each concurrent state is kept for the program; initially, the counters are
set to zero. For each sample, the concurrency counter associated with the current number of •
active processors is incremented. The time spent in concurrent state i, T,, is calculated by multi-
plying the ith concurrency count value, N, by 10 msec. The CEFF and CU values can then be
easily computed as shown above. P

Because of the 10 msec sampling procedure, the concurrent state timing data is only a sta-
tistical approximation to the actual concurrency timing information. The primary assumption is
that the concurrent state indicated by the sample is the same throughout the entire sampling
period. Obviously, for a single sample period, this assumption is invalid. However, the negative % :

effects of the assumption lessen as the number of samples increase. Only when the total con- ---

currency measurement time is significantly greater than the sampling period can statistical accu-
racy be achieved. It is important to remember the statistical accuracy when interpreting the
CEFF results.

%

A concurrent state is defined for each possible number of active pror-ssors. Concurrent state i is the state

where only i processors are active.

S A!,

June 17, 1987 i

-- A,'

4. User-Controlled CEFF Measurements

Because of the need to periodically interrupt program execution, concurrency efficiency

measurements pay a high system overhead. Thus, concurrency measurements are made only

when enabled by the program. This section describes how a program enables concurrency meas-

urement, accesses the measured concurrency data, and computes the CEFF statistics.

4.1. Enabling CEFF Measurement

The system function configceff() in the csrd library should be used for enabling and disa-

bling CEFF measurement. The C description is given below: I.

configceff (flag)
int flag; /* 1 - enable, 0 - disable */

configceff(1) enables the measurements and configceff(O) disables the measurements; a negative
value is returned if already enabled or disabled, respectively. CEFF measurements are disabled
upon program entry.

One benefit of user-controlled concurrency measurements is the ability to determine CEFF
results for different parts of the program. Each section of the program to be measured should be
bracketed by configceff(1) and configceff(O) as shown below:

<read CEFF measurement data>
configceff(l);
<program section>

configceff (0);
<read CEFF measurement data and compute results>

Reading the concurrency measurement data and computing the results are discussed below."e

4.2. CEFF Variables

As described above, the operating system maintains CEFF measurement data using n con-
currency counters; one for each concurrent state - eight for the FX/8. Actually, there are two

sets of concurrency counters which exist as part of a larger structure containing additional pro-
cess measurement information. One set coktains the counters for the current process. The

second set of concurrency counts are the summed CEFF measurements for child processes 2. The "

process measurement data structures, which include the CEFF measurement variables, are
declared in <sys/csrdetc.h>. The declarations of interest for this document are reproduced
below:

struct ceff

(u-ong cpuutiil[8]; /* concurrency counters /,

If the program does not fork any child processes, the children concurrency counts will alway be zero.

I

June 17, 1987

L O W . IV %.w * w %

4

struct csrdetc
/* other measurement fields

u_char csrdceffon; /* CEFF measurement enable flag */
struct ceff csrd-ceff; /* current process CEFF counts */
struct ceff csrd-cceff; /* children CEFF counts */

}

extern struct csrdetc csrdetc;

The csrdetc data structure has been implemented as part of the user program's read-only
virtual address space. This allows convenient access to the CEFF measurement data from within
the program. However, the write-protection requires configceffO to be a system call because it
must set and reset the csrd-ceffon flag. csrd-ceffon can be referenced directly for testing pur-
poses.

It should be noted that children concurrency counts are not updated until a child process
completes. Also, each child process will get its own copy of the csrdetc data structure. The
csrdceffon variable is set to whatever it was in the parent process. However, the csrdce"ff and
csrd-cceff concurrency counts are initialized to zero.

4.3. Accessing CEFF Measurement Data

Accessing CEFF measurement data is very simple. Three global symbols have been defined
in the csrd library that are accessible in C programs using the following declarations:

external struct ceff ceff: /* &ceff =&(csrdetc.csrd-ceff) */
external struct ceff cceff; /* &cceff =&(csrdetc.csrd-cceff) */
external u-char ceffon: /* &ceffon=&(csrdetc.csrd-ceffon) */

Notice from the comments that the external names are defined to have the same address 's their 0
corresponding csrdetc fields. Using these external names, the concurrency counters can be
accessed directly. The following operation copies the children concurrency counters to a local ceff
variable, ceff.Jocal:

struct ceff ceff-local;

cefflocal = cceff;

A similar operation will copy the current process concurrency counts. Although the concurrency
counters can be accessed individually, the procedure of copying the concurrency counts to a local
buffer should be followed when the user wants the counter values to be consistent in time.
Remember the counts are dynamically changing during program execution and computing CEFF
statistics will require time consistent concurrency counts.

4.4. Computing CEFF Statistics

Returning to the procedure for performing CEFF measurement on a section of the program,
there are two places where the concurrency information should be sampled: immediately before

June 17, 1987

S ,

enabling CEFF measurement and immediately after disabling. This reason for this is clear. The
concurrency counts show the total time accumulated in the concurrent states for the current pro-
cess and its children. To determine the concurrency efficiency for a particular program section,
the difference in the two concurrency count samples must be computed.

Assuming we have a set of concurrency count values representing either a program section
or the accumulated counts for the program, there are various values that can be computed. If N
represents the concurrency count for i processors active, T, = N * 10 msee. CEFF and CU
values are computed from the above formulas. Knowing CEFF and the number of processors,
numprocs where numproc8<n, the average number of processors active, CA VG, can also be com-
puted as CA VG = CEFF * numproca.

Because of the simplicity of these concurrency calculations, the user is left to implement the
CEFF statistics of interest 3 . Obviously, the user will decide whether to use the current process
concurrency counts, the children process concurrency counts or both for computing CEFF statis-
tics.

4.5. Program Compilation

To perform CEFF measurements, the user program must include the following files:

sys/param. h
sys/resource.h

sys/csrdetc. h
machine/vmparam. h
machine/mpcpiadr .h

sys/mplock.h

The user program must then be compiled with the csrd library.

5. Automatic Program CEFF Measurements

In many cases, the user will want to determine CEFF results for the program as a whole. A
program, cefl, has been written to run the user's program and print out concurrency efficiency
statistics. The ceff command format is:

ceff <user program> <user program argumentz>

The results produced by ceff include T,, CU, T, CAVG, and CEFF. An example of the output is
shown below:

CONCURRENCY EFFICIENCY RESULTS

active CEs seconds concurrency %

A program could be provided that reads concurrency count samples from a file and computes accumulated and
difference CEFF statistics.

June 17, 1987

~ ~. * *%

6

1 3.37 28.25%
2 0.39 3.27%
3 0.30 2.51%
4 0.51 4.28%
5 0.75 6.29%
6 1.02 8.55%
7 1.49 2.49%
8 4.10 4.37%

total seconds = 11.93

average concurrency = 5.05

concurrency efficiency = 63.07%

A manual page is available for the ce/l program on the CSRD Alliant machines.

6. Interpreting CEFF Results

It is important to remember the concurrency efficiency results only represent measurements
of processor activity. No analysis is made of what the processors are actually doing when they
are active. Thus, the CEFF results should not necessarily be interpreted as effective parallelism.
It is true, however, that concurrency efficiency does establish an upper bound on speedup.

Suppose whenever the program is executing concurrently, all active processors are executing
independently. In this case, concurrency efficiency will reflect effective parallelism because it is
assumed each processor is doing real work. However, if dependencies exist between processors
during concurrent execution, the processors will appear active even when they are performing
synchronization operations or waiting for dependencies to be satisfied. Because such activity
represents overhead and does not contribute to real work, the concurrency efficiency will indicate
a parallelism higher than what is effectively being achieved.

CEFF results can be used with other measurements to better characterize program perfor-
mance. For instance, speedups from 1 processor to n processors can help to clarify effective
parallelism. Suppose a program achieves a speedup S=6 going from 1 to 8 processors and a
CEFF value of 80% (CAVG = 6.4). Although only 80% of the processors are utilized on average,
almost all of the 6.4 average processor concurrency is being used effectively. In this case, the user
might conclude that physical parallelism, i.e. keeping more processors active, is the problem.
However, S=2 for a program with CEFF=80% indicates a low effective parallelism, likely due to
synchronization overhead or a large sequential component.

The CU measurements are interesting because they give a histogram of concurrent activity.
The CU, values where i<n are important because they represent periods of reduced parallelism
when processors are actually idle. CU is most important since it is the percentage of time the
program is executing sequentially. The CU, value can be plugged directly into Amdahl's equa-

d 4tion to get the projected maximum program speedup for p processors . For the results produced
by CEFF above:

We are using Amdahl's equation lim S. = 1 / (1-FP) where F, is the fraction of time all p processors

are active. We assume that the percentages of all concurrent activity are summed to get F,. Thus, the calculated
asymptotic speedup is actually optimistic.

June 17, 1987

p" ., P , P %, ""v-"..v .. . "-" , ,..v " .

7

1 1
limS,= = =3.54
-0 CU1 / 100% .2825

Although CAVG=5.05, the asymptotic speedup is limited by the significant sequential component.

7. CEFF and Fortran

All of the discussion above has been directed towards C programs. Slight modifications are
necessary for Fortran programs. The configceff() system call is used exactly as before. Likewise,
there are no differences in the CEFF statistics computations between C and Fortran once the
data has been retrieved. Only the accessing of the concurrency counts is different.

All Fortran programs must do to reference the concurrency counts is correctly declare the
external names described above. The following does this and should be included in Fortran pro-
grams:

byte ceffon
integer ceff(8) , cceff(8)

common /ceff/ ceff
common /cceff/ cceff
common /ceffon/ ceffon

As before, the external names address the current process and children process concurrency
counters, and the enable flag. Fortran can index the concurrency counter arrays directly to
access individual counters. However, the copying of the entire counter array to a local buffer is
still recommended.

June 17, 1987

................... ~ ~Pd'V ~.*---~ ~ . .a~f:.d.r..J.v

79 F

ano.

m t~mo

r.%. po

