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1 Introduction

The linear time varying descriptor system

E(t)z'(t) + F(t)z(t) = f(t) (1)

plays an important role in the growing understanding of descriptor systems.
It is a bridge between the well understood linear time invariant problem

Ex'(t) + Fz(t) = f(t) (2)

and the general nonlinear implicit differential equation

G(x', x,t) = 0 (3)

Many of the difficulties that separate (2) from (3) already occur in the linear
time varying case (1). On the other hand, the linearity of (1) makes possible
a more complete analysis. Understanding developed from analyzing (1) has
proved useful in developing numerical and analytic techniques for (3) [6].

The first general numerical method for (1) is developed in [21,[3]. This
method is based on working with arrays of derivatives of E, F, f. It has the
advantage that all differentiations are performed directly on the coefficients
of (1) without any time varying coordinate changes. Theoretical character- %
izations of solvability [4] for (1) and a numerical procedure for computing
a state space realization [5] have come out of this approach.

Simultaneously, there has been progress in studying implicit differential
equations using the ideas of geometric control theory. In particular, [11]
considers realizations utilizing Lie derivatives.

Intuitively, there is a close connection between realizations and numeri-
cal methods. Many numerical ordinary differential equation (ODE) integra-
tors are based on being able to estimate x' given z, t, whereas a realization
is often in the form of an ordinary differential equation x' = Q(r, t).

This paper is the beginning of our effort to unify these two approaches.
There are several potental beneits to this effort. Hopefully, this will make ' ']

the tools of geometric ccntr- I tlierry av,,ailable in trying to develop and ana-
lyze numerical method, f:r 13: ',nv#ersely, the results from the numerical
theory will suggest bettt'r ... t, r.) ,cmpute the geometric objects. Also.
as will be shown in thin ti,-r _'zim: tdeas from the numerical theory. we -
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will be able to extend some of the geometric theory thereby obtaining new
theoretical results.

Section 2 will quickly summarize the geometric method of realization
given in [11]. Section 3 summarizes the key ideas from [4]. In Section
4, we develop the relationship between the ideas in Sections 2 and 3 and
establish extensions to the theory. Finally, Section 5 contains concluding
remarks and discussion.

2 Geometric Realizations

This section will give an outline of part of the method of realizations for (1)
developed in [11]. An exposition of the underlying nonlinear control theory
can be found in [9].

Consider a nonlinear state system, x E 1 ;
,n

X/ = go(z) + E Ujgj(W (4)
J=1

A submanifold X C IV is controlled invariant if there exists a smooth
feedback u, = ai(c) such that when applied to (4) it makes the vector field
for (4) tangent to X. That is, solutions starting in M, stay in V. For
a scalar function T(r) = T(zi,..., x,) from 1Z' to 1?, and vector valued
function s(z) from R" to IV, let L,T be the derivative of T along the
differential equation z' = s(z). Thus,'4

d n T Tz O7LT= T = n , -sT =

Notice that LT is again a scalar valued function of x so that LT =
L,(L,T) is well defined and similarly LT is well defined for nonnegative
integers r.

We are interested in the case when (4) satisfies constraints

H(x) = 0 (5)'

where H has values in R. As in [11] consider p output equations

y H(X) (6) -
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Let y, - HI(z) be the ith equation in (6). For i = 1,... ,p, let pi be
the smallest integer p such that Lg,LPHI(z) $ 0 for some x and some
j E {1,... ,m} Assume, as in [11], that pi exists for i = 1,... ,p. Now let
the p x m matrix A(z) be defined by

A,3 = Lq LP'Hi (x) (T)

The next assumption in [11] is that A has constant rank p. Then the
maximal controlled invariant submanifold of H(x) = 0 exists and is given
by

A/' -= {x I L kH,(x) = 0, k =- 0,...,p,, i 1 1... ),P} (8)

Furthermore the needed feedback is computed as follows. Let a(z) satisfy

A(x)a(x) + b(x) = -(() (9)

where
bi(x) = L ,'HI(z) (10)

and -y is a vector of functions which are zero on ,V*. We shall take -y = 0.
Let O(z) be m x (m - p) with rank(3) = m - p such that A 3 = 0. Then the
feedback law u = a + Ov applied to (4) gives a control system with m - p
inputs v which leaves M" invariant and thus can be reduced to a control
system on A(*:

go() + E (X)9 )+ + E ( (X)9,(X11)
J=- k=1 j=1

Notice that this theory provides two key objects. The manifold .A"
consists of solutions of (4) that satisfy the constraints H(x) = 0 for some
control u while (11) gives a control system, defined on the whole space,
which leaves MOf invariant and on V*f agrees with the solutions of (4),(5).

This theory is applied to implicit differential equations in [11] as follows.
Suppose that we have the kth order descriptor system,

R[w, w' ..... wkL = 0. wE7Z' . i1. (12)

4
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This is rewritten as

d V/ * wl

* 0 + (13)'0 1 0 i
[~k w( 0 . 0 W( k)  I ,j

with outputl wthout utz = R~w, w',..., w(I )]  (14)

Here the derivatives of w are considered to be variables. Note that w
is a solution of (12) if and only if there is a V so that the solution of
(13) makes the output (14) zero. Writing (13),(14) as (4),(6) using z =
(w',W , w( )), we have %

WI '

go (X) = (k). , (X) 0 (15)
,0 

el J

where {ej} is the standard basis for 7Z, and Jk

H(x) = R[w, w' ... , w( ')] (16)Then 0_ , (R.
A(z) = - (z) 

(17)
.

Assuming that the rank of A(z) is 1, there then exists a feedback u =
af(z) + (z)v so that z' = go(x) + F ug,(z) leaves ." controlled invariant
and hence will generate a realization in M" coordinates.

We shall illustrate these ideas with an example of a simple singular
system. This example will be referred to again later.

Example 1 Consider (2) with

I
E 0 0 F

0 01-
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so that
=

0 = X2+ U2

and f = u. Letting w = [z,u] = [zI,X 2 ,u1,u 2], w' = [x',u'] we get that
(13),(14) are

w' =/ 0 0 W, I V (18)

and

R,(w, w') = 2 - X:- uI (19)

R 2 (w, w') = X2 + U2  (20)

Also

go(ww 0 g -[j, j=,...,4

To simplify our notation, let 0, be an r dimensional zero vector and let ;
separate the blocks of n entries. Then

L= Lo R, = [-10 1 o
LgL0 Ri )- 0 00 0][4 62j

Hence p, = 0 since L, R, = 1 : 0. However,

-,, R2= [0 10 1: 04][0 4 ; eT]T = 0

and %
L0 R2 =[0 10 1: 04][.,x' , u', u;0 ] = +u 04 2  2

Hence
L, LR 2 = [04:0 10 1][0; e]T

is 1 ifj = 2,4 and zero otherwise. Hence p2 = 1 and

0 1 0 1

Furthermore ," is given ,

r" : t , x --u, 0

" = -u 2 =0 (21)

U,.' '. : ,".-''= O-

% 0 e
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or equivalently,

= - (22)

Z2 = -U2 (23)

which is exactly the solution manifold of (2) for this example. Continuing,
we compute that

b = 0 -- u I
Let -y = 0. Then one solution for a, ,3 is

0 1l 0i X/ + U, 0 0
a= z0 1 1 0= 0 1

-X 1 0 0

Applying the feedback v = a + 3V gives the explicit control system (11)
which after deleting the redundant equations is

X,

X 2  - i +r U1

U - (24)
U2 -X, - U,,

This explicit system, for the correct choices of VI, V2 includes the solutions
(22),(23) of the original implicit descriptor system if the initial conditions
satisfy the IV conditions (21).

3 Derivative Arrays

As in [4] we assume that . F f are infinitely differentiable to avoid tech-
nical difficulties. The 6ysttn I I is solvable on an interval I if for every
f, there is a solution z ,.tiz:, cn all of I and for a given f. solutions are
uniquely determined b t'.-:r .. lue at any to E 1. See [4] for a more careful

J7
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definition. Let ' - c for c - E, F, f, z. Then for any j > 0;

E[°1 0 0 1 1
Efl] + Fl 2E(o1

* * * 0

[- 1 + F~i 2 I 2EV2-] + FI - a  , jEI~ 0 'l.'.

flo] F(O0 1
= 1 O (25)

fU -1 FU -1

where z[o = . We rewrite (25) as

S, :xj = fi - F3 X1°] (26)

The matrix .6 is said to be 1-full if there is a nonsingular matrix e such
that

egj= 0 M

where I is n x n. From [4] we have the following fundamental result;

Theorem 3.1 The system (1) with E,F infinitely differentlable, is solvable
if and only if there is a j such that

(i) 6i has constant rank on Y
(ii) Sj is 1-full for every t E I
(iii) TR( ) + IZ(.F) = 0'" for all t E .1, 1 < i < i

Furthermore, if (i)-(iii hold for jo, then they hold for any j > jo. Also,
j = n + 1 satisfies (i)-(:it).

The result we shall need from [3],[4] is;

Theorem 3.2 Suppose that (1) is solvable and j satisfies (i)-(z) of The-
orem 1. Then the manifold of consistent initial conditions at time t is
characterized by

= f'(t) - F,(t)z(t) (27)

is consistent. That is, f, - .F,z E 1Z(&).,

8



A numerical method utilizing these Theorems is developed in [31. But
for our purposes here, it suffices to recall that we can multiply (26) by a
nonsingular ( to get

0 k M = q - Q2( M X (28)
0 0 0 q3(t) Q3 (t) j

The first row of (28) is

X/ = -Q(t)a + q1 (t) (29)

which is an explicit ordinary differential equation whose solutions include
the solutions of the original implicit differential equation (1). The third
row of (28), Q(

Q3(t)X = q3(t) (30)

characterizes the solution manifold.

4 Discussion

We begin our discussion by considering the simple solvable system in Ex-
ample 2.

Example 2. In (2), let E F1 0] 0

If the procedure in Section 2 is applied, we get p, = p2 = 0 and

1-1 0 0 .

A 1 -1 0 0 ii
which does not have full row rank.

Example 2 shows that the procedure of Section 2 can experience diffi-
culty with solvable systems Of course, for this example. a constant coor- I
dinate change would convert it to Example 1. However. the general case

I.r
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is much more complicated. There may not exist any smooth coordinate
changes that put a solvable system into a nice structural form. Even if
there are such coordinate changes, they will be time varying, even nonlin-
ear in the case of (4), and thus sometimes difficult to compute. In general
then, if time varying coordinate changes are not computed and the method
of Section 2 is being used, we would expect the matrix A to have varying
rank or be rank deficient, unless the system (1) has a well defined structural
index.[8] This does happen with some systems of physical importance, such
as some of those in mechanics [1],[7],[10] but is not a general characteristic
of solvable systems.

The approach of Section 3, like that of Section 2, produces a description
of the solution manifold (30), and a differential equation defined on all of
1T (29) whose solutions include those of the singular system. However, in
Section 3, no attempt is made to take the minimum number of differenti-
ations. Rather a sufficient number are taken. Then all needed algebra is
performed pointwise so that it is never necessary to differentiate computed
quantities which is numerically unstable.

In this section, we shall discuss the adaptation of these ideas to the
approach of Section 2. Our long range goal is two fold. First, we want
to extend the theory of Section 2. Secondly, we wish to utilize the insight
gained from the method of Section 2, in order to extend the approach
of Section 3 to general nonlinear descriptor systems. Any approach which
generates an explicit differential equation from an implicit one is potentially
useful in making possible the application of explicit differential equation
numerical integration schemes to implicit differential equations.

Consider again the linear time varying singular system (1). Differenti-
ating the equation j - 1 times yields

E 0 0 X'
E' + F E ." "I

E" + 2F' 2FL+F E
• * * * 0

E (j - ) + (j- 1)F (: - )  • * * E .rX

ii
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F1F' f' a

- + (31)

where the ij-entry of (31) for i > j is ) 1 + (
We write (31) as

Ej~ij YJ x+ f,(32)

Let Di =Diag{1, 1, 1., ... , , -0!}, Dj =Diag{l!,2!,... j!}. Then

Di.j = ', Df'j = fj, Di*2 = xj, DJj. E)

Thus Theorems 3.1,3.2 hold using (32) instead of (26). A

Now consider (1). Again let u = f and w = [x, u], and rewrite (1) as

(33)
R(r,w,w') E(r)x'+F(r)x-u=0 (34)

If we were following Section 2 we would let k = 1 since there are only first
derivatives'in the R equation. However, we know that in general additional
derivatives are needed. Consider then the system

W W/ 2(j+l)nd -4/v, 0 (35)
i .11) =l ei,,

w )  0 V
U;j

z R[r. u. (  E)] = E(r)x'+ F(r)x - u =0 (36)

Let

1 1-
S,e,

. ,a



Then

R 0

Lgo R= 0

(37)
L IR = 0 k

is the same as I
d()*.(t) + ,-(r)X(t) - = (38)

Thus Theorems 3.1, 3.2 show that the extended family of Lie derivatives -

(37) will determine a solution manifold and a flow in all of IV. However, this
fact is expressed in terms of Section 3. We wish to exploit the information p
in these theorems to extend the approach of Section 2.

If a solution of (35) is to leave (36) invariant for a control v, we need
that d

(L-0R) = L+ R +(L L'R)v = 0 (39)-- g o 9 0

for r = 0,..,j - 1, (j < n) where the ith column of LjL'R is L_,,L' R.
The equations (39) may be rewritten as

+±A&= 0 (40)

and A = [., -I]P where P is the permutation matrix that lists the x(')
first and then the u( ) . Notice that .A has full row rank by Theorem 3.1. As
before, define the feedback v = d + 3 , by A& = -6, A,3 = 0. Using these
theorems, observe that not only is there such a feedback, but that in 3 we
may take u arbitrary and then x is determined by u1 ,Xo.

Alternatively, we may let w = x. and rewrite (1) as

1
' (+1)n

= ' + Z ,i (41)

L 0=
Z=R[7, x. Z= E-' -F(-r)x-u(-,)0 (42)

12 '



!h

Again (37) becomes (38). This time A = [.Fj,E] and the equations (39)
are

+ =(43)

From Theorem 3.1 we again have that A has full row rank and hence
& exists. Furthermore, in this case, the second n components of 3 depend
only on the first n components of /,

Another variation of the preceding approach would be to consider

E(t)x' + F(t)z = B(t)u (44)

In (35),(36) and (41),(42), we have introduced the variable r to make
the resulting systems time invariant, and thus more closely resemble those
in Section 2. However, this is not necessary.

Which of these alternatives is the best way to view (1) remains to be
determined. ,

5 Conclusion

In this paper we have briefly discussed two approaches concerning descrip-
tor systems and observed that they deal with similar derivative arrays.
The approach of Section 2 is part of an evolving elegant differential geo- ,
metric control theory. The approach of Section 3 is computationally simpler
in that the only needed symbolic manipulations are derivatives of known
functions. Numerical linear algebra routines may then be used pointwise.
The assumptions of Section 3 are also somewhat more general than those
of Section 2.

In subsequent papers, we hope to exploit this relationship more fully,
especially in the nonlinear case.
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