AD-A190 882 DERIVATIVE ARRAYS GEOMETRIC CONTROL TNEDRV M 171
EHLIZRTIONS OF LINEAR DES.. (U) NORTH CRROLIIM STATE

¥ AT RALEIGH CENTER FOR RESERRC 5.
UNCLASSIFIED S L CAMPBELL ET AL. 24 N F/G 12/2




L » ¥ ) : \ WTRUN T
T (0t T T R I I,
T O N A N W R R SN A S R L | bl o T D o H”' ah'h'»‘?’.sl".tﬂ'hl:,:):"t:,
e A PR s o s bty
LA
LAARL AN )

*

/ A

= |
s |
- :»E.
FER
'

¥

=

1

rrFrEEB

E
=
m.r.o

[}
5_* e

B

er
z
FF

m

~ [
|

22 s e

——

T

o R

! . O . b - - -

[ ]
) O H R ]
R
'.\'.‘I I. ¢
LN 950,
‘.::*'ﬁ‘k‘!‘tﬁ.n‘!"‘.‘.u";u il

e

ol A AV T
SRR AR 5@
N AR R RS

W



s 2.0 1t fab. We® Rt 00t W a" 20 et 0y o fat UaT et Uty U e gl ty ottp aep atd o i B a'he* 808" S0 ™ b .8 " o4 " §, TRl Fa® #uf < 0 W4 wo§ 44 ¥

: | AD-A190 882 *erorT DO‘CUME‘NTATION PAGE

n
;e:»:,
R ' 3. OISTRIBUTION AVAILABILITY OF REPORT
p¥e . .
Appravcd for ouhlic ~2lease;

e £ DECLASSIHCATION! . scueoute distritutionunlisited,

’ A o e e e e v T+t . e ————
::r'lf 1 4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING. ORGANIZATION REPORT NUMBER(S)

U
wi i’“&m 87-197g
& S —
i 6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMEOL | 7a. NAME OF MONITORING ORGANIZATION

] (tf appiicable)
,::;, % North Carolina State University AFOSR/NM
L 6c. ADORESS (Cty, State, and ZIP Code) 7o ADEBESE ey Stave. ena 2P Cod)
L .
o0 Raleigh, NC 27695-8205 Bldg 410
* .
N Bolling AFBDC 20332-8449
1 : ™ gms O{A ;L'J:DONGISPONSORING sb. (smcs sm:ou. 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBSER

LN . RGANI N . applics
o HE] - .
;.0" : 8 ARRAEFMEY. State. and Z1P Code) . o 10. SOURCE OF FUNDING NUMBERS
TR 410 PROGRAM PROJECT TASK WORK UNIT
R Bldg 2 ELEMENT NO. [ NO. NO. ACCESSION NO.
: 5 Bolling AFBDC 20332-8448 - b1102r 2304 Al ;

(11, TITLE (include Secunty Classification)

e st .

Derivative Arrays, Geometric Control Theory, and
Realizations of Linear Descriptor Systems

12. PERSONAL AUTHOR(S)

s X

Dr. Stephen L. Campbell and William J. Terrell

> & EEAETm

{ 13a. TYPE OF REPORT 135. TIME COVERED 14. DATE OF REPORT (Year, Month, Doy) NS. PAGE COUNT
..; p ; EROM T0 November 24, 1987 14
" 16. SUPPLEMENTARY NOTATION .
. “
't 17. COSATI COOES 18. SUBJECT TERMS (Continue on revene :f necessary and identify by biock number)
FIELD GROUP SUB-GROUP
L .
D
W 19 ASSTRACT (Continue on reverse if necessary and dermafy by biock number)
5 . , . . . .

w —>The relationship between numerical methods for realizations of

) E(t)x'(t) + F(t)x(t) = £(t) based on derivative arrays and geometric

E} control realization procedures based on Lie derivatives is examined. &—-
- DTIC
b o
"

o ELECTER®

- JAN1 9 1esll K
.:» i
o, e
D
o ’
¥y

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21, ABSTRACT SECURITY CLASSIFICATION

57 Quncuassipeounumteo O same as reT  [Joric useRs
4 “ g

- 228. NAME OF RESPONSISLE INDIVIOUAL 22b. TELEPHONE (Mnclude Ares Code) | 22¢. %glcs SYMBOL
M Ldal Janes M. Crovley |
? 2 00 FORM 1473, 84 Mar 83 APR edition may be used unt!l exhausted. SECURITY CLASSIFICATION OF “HIS PAGE
w A _ All other editions are 0bIOlete.

¥
%‘-‘-"’ T T T GV AT T R AR Y A A e g s ot
L P - . - a » - pa o A B . -, - » . b » . » . . » - - o > M -




R R R R R O R R R O T O R AR S AR TUR FRR B S UL A E Y T R RN TR b (TRIF RN VY OWONTER

KFOSR-TR. 87-1975 5

DERIVATIVE ARRAYS, GEOMETRIC '
CONTROL THEORY, AND N
REALIZATIONS OF LINEAR ;
DESCRIPTOR SYSTEMS

Stephen L. Campbell* :."‘
o X
William J. Terrell
o
‘.
Department of Mathematics ::::
U
and .:o:
Center for Research in Scientific Computation 7
Box 8205 f":';
North Carolina State University N
\)
Raleigh, NC 27695-8205 i
' ‘
CRSC Technical Report 112587-01 N
November 24, 1987 RS
!
)
(-l
Abstract ol
" U
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} 1 Introduction

L
’ The linear time varying descriptor system
' E(t)z'(t) + F(t)z(t) = f(t) (1)
. plays an important role in the growing understanding of descriptor systems.
It is a bridge between the well understood linear time invariant problem
EZ(t) + Fa(t) = £(2) 2)

and the general nonlinear implicit differential equation
G(d,z,t) =0 (3)

Y Many of the difficulties that separate (2) from (3) already occur in the linear
' time varying case (1). On the other hand, the linearity of (1) makes possible
a more complete analysis. Understanding developed from analyzing (1) has
proved useful in developing numerical and analytic techniques for (3) [6].
The first general numerical method for (1) is developed in [2],(3]. This

, method is based on working with arrays of derivatives of £, F, f. It has the
advantage that all differentiations are performed directly on the coeflicients
; of (1) without any time varying coordinate changes. Theoretical character-
R izations of solvability [4] for (1) and a numerical procedure for computing

a state space realization [5] have come out of this approach.

Simultaneously, there has been progress in studying implicit differential
equations using the ideas of geometric control theory. In particular, [11]
considers realizations utilizing Lie derivatives.

Intuitively, there is a close connecticn between realizations and numeri-
cal methods. Many numerical ordinary differential equation (ODE) integra-
tors are based on being able to estimate z’ given z,t, whereas a realization
is often in the form of an ordinary differential equation z' = Q(z.t).

This paper is the beginning of our effort to unify these two approaches.
There are several potential benefits to this effort. Hopefully, this will make °
the tools of geometric contr=l theory available in trying to develop and ana-
lyze numerical methods tr 31 (cnversely, the results from the numerical
. theory will suggest better ways 12 compute the geometric objects. Also.

A as will be shown in this pap~r csing 1deas from the numerical theory. we - —w._--—-—‘i
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" will be able to extend some of the geometric theory thereby obtaining new ;
! theoretical resuits. S'.:
Section 2 will quickly summarize the geometric method of realization L
given in [11]. Section 3 summarizes the key ideas from [4]. In Section ,
4, we develop the relationship between the ideas in Sections 2 and 3 and by N
establish extensions to the theory. Finally, Section 5 contains concluding n
remarks and discussion. it

v L 4
(4 [d [ |‘i
2 Geometric Realizations 0
by
This section will give an outline of part of the method of realizations for (1) \ ":
developed in [11]. An exposition of the underlying nonlinear control theory %“
can be found in [9]. =
Consider a nonlinear state system, z € R"; -""_
{
m !
2 = gol2) + Y u,0,(2) (4) §

=1 »
A submanifold ' C R" is controlled invariant if there exists a smooth 5:‘
feedback u; = a;(z) such that when applied to (4) it makes the vector field :'5.
for (4) tangent to A. That is, solutions starting in A, stay in A'. For e
a scalar function T(z) = T(z;,...,2,) from R" to R, and vector valued oY
function s(z) from R™ to R", let L,T be the derivative of T along the o
differential equation z’ = s(z). Thus l’

.

o

d 20T de;, & OT
ol =—1 = —_—= —_—; =VT-

LT=20T § bz, dt = Oz, (z)=VT-s(z) &

1 4

Notice that L,T is again a scalar valued function of z so that L:T = :“
L,(L,T) is well defined and similarly L;7 is well defined for nonnegative t;
integers r. t._
We are interested in the case when (4) satisfies constraints o
H(z)=0 (5) =
where H has values in R?. As in [11] consider p output equations :::\:
y= H(x) (6) o
l*
3 N
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Let y; = Hi(z) be the ith equation in (6). For i = 1,...,p, let p; be :;§:
the smallest integer p such that L, L, Hi(z) # 0 for some z and some ..f
J € {1,...,m} Assume, as in [11], that p; exists for i = 1,...,p. Now let ‘
the p x m matrix A(z) be defined by =
A = Ly, LG Hi(3) (7 e
e

The next assumption in [11] is that A has constant rank p. Then the -
maximal controlled invariant submanifold of H(z) = 0 exists and is given e
by .‘l‘:
N ={z|LEH(z)=0,k=0,....p, i=1,...,p} (8) nh
’l
Furthermore the needed feedback is computed as follows. Let a(z) satisfy ™
p.

A(z)a(z) + b(z) = v(z) (9) 7
l.. ’

where -
bi(z) = L;;HH((Z) (10) N
and v is a vector of functions which are zero on N*. We shall take v = 0. !'
Let 3(z) be m x (m — p) with rank(3) = m —p such that A3 = 0. Then the :;

feedback law u = a + Av applied to (4) gives a control system with m — p

inputs v which leaves A™* invariant and thus can be reduced to a control
system on N'*:

R A0 ol

m m-p
' = go(z) + ) os(z)g,(z) + D we
J=l k=

(i Bn(z)m(r)) (11)

1 J=1 ;""

s

Notice that this theory provides two key objects. The manifold A" [
consists of solutions of (4) that satisfy the constraints H(z) = 0 for some "

control u while (11) gives a control system, defined on the whole space, -
which leaves A'* invariant and on V* agrees with the solutions of (4).(5).

This theory is applied to implicit differential equations in [11] as follows.
Suppose that we have the kth order descriptor system,

Rlw.w'. . .. w1=0, weR' i=1,.... £ (12)

........
......

A AT DA T R A T A M A Sty A S S
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This is rewritten as o
’
: w 070 0][ w 0 %
d ‘u/ * . -w’ .
‘ E . = * 0 -+ v (13) p’
N 0 I . é
! l_ wl® 0 0 w®) I o
with output '
‘ z = Rlw,v/,..., w")] (14) A
:‘ Here the derivatives of w are considered to be variables. Note that w 3
is a solution of (12) if and only if there is a § so that the solution of ~
(13) makes the output (14) zero. Writing (13),(14) as (4),(6) using z = »
(w,w,...,w*), we have N
> -
w 0 N
. . . ~
¥ )= : , (r) = : 15 >
. 0 e, o
. ’;
Y where {e;} is the standard basis for R", and *
H(z) = Rlw,vw',...,uw™") (16) .
ot
O Th
' - dR, - é
, A(z) = = (z) (17) 2
; Ow, \
' Assuming that the rank of A(z) is £, there then exists a feedback u = ey
a(z) + B(z)v so that 2/ = go(z) + u,9,(z) leaves V* controlled invariant iy
and hence will generate a realization in A" coordinates. :
A We shall illustrate these ideas with an example of a simple singular -
i system. This example will be referred to again later.
' Example 1 Consider (2) with :
; _fo1 _[-1 0 4
. f2a] w72




T, = o +Yy
0 = 24y,

and f = u. Letting w = [z,u] = [z1,2;, w1, u;], v = [2', /] we get that
(13),(14) are

d| w 0 I w 0
alwl=[o o] 2]-[2]: w
and
Ri(wvw') = zh—z, -y (19)
Rg(w.w') = T4 Uz (20)
Also

’ ! 0 .
.go(w,w)=[t;]‘ g,=[ } i=1,....4

€;
To simplify our notation, let 0, be an r dimensional zero vector and let ;
separate the blocks of n entries. Then

Ly, L3R =Ly R =[-10 —10;0100][04;¢]]T = &;

9, g0

Hence py = 0 since Ly, R; = 1 # 0. However,
Ly Ry =[0101:0[04;el)" =0

and
L90R2 = [0 1 0 1:04][.1,‘,1’1"2,1"1’1‘;;04]7' — rI2 + u;
Hence
Ly LRy =10,:0101][0;€T)T

1811if j = 2,4 and zero otherwise. Hence pp = 1 and

L]0 oJ
L0101
Furthermore A™ is given by
2= - -u =0
= fi~up=0 (21)

L~uy =0

'\-'._'v ) "-"‘h". N

P, Ty

\"’\ -F~




.....

or equivalently,

EaC It A

y T, = —u — U (22)
T = —up (23)

N

which is exactly the solution manifold of (2) for this example. Continuing,

we compute that
-2 -
b - 1 1

Let ¥ = 0. Then one solution for a, 3 is

0 10

_ | T4y _|0 o0 .

“= 0 C A=100 ;
00

/ /
-, - U

Applying the feedback v = a + 37 gives the explicit control system (11)
which after deleting the redundant equations is

g
5 = 4

" ' '
' n = ity
e "o =

"o ’ ’
b = 5~ Y

This explicit system, for the correct choices of ¥, U2 includes the solutions
(22),(23) of the original implicit descriptor system if the initial conditions !
satisfy the A* conditions (21). ‘

3 Derivative Arrays

As in [4] we assume that £ F f are infinitely differentiable to avoid tech-
nical difficulties. The systern 11} 1s solvable on an interval 7 if for every
f, there is a solution r .i«tit=¢ on all of 7 and for a given f, solutions are
uniquely determined by th-ir value at any to € Z. See [4] for a more careful

o
o
o

-------------------------

b
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definition. Let ¢ = i"),m for c = E, F, f,z. Then for any j > 0;

Ef 0 .0 zl
EW 4 FlO 2E0)
* * « 0 .
EU-1 4 pU-2 9pU-2 4 Fli-31 4 ;g 2l |
o Flol
= |-t @ [ (25)
fl-1 FU-1

where 7% = z. We rewrite (25) as

£ix; = £; = F;z (26)
The matrix &; is said to be 1-full if there is a nonsingular matrix © such
that [ o .

OF; = [ 0 M ]

where [ is n x n. From [4] we have the following fundamental result;

Theorem 3.1 The system (1) with E,F infinitely differentiable, 1s solvable
if and only if there is a j such that

(i) &; has constant rank on I
(ii) &; is I-full for everyte I
(iii) R(E)+R(F)=C" forallte I, 1<i<j.
Furthermore, of (1)-(it1) hold for jo, then they hold for any j > jo. Also,
J =n+1 satisfies (i)-(i11).
The result we shall need from [3],[4] is;

Theorem 3.2 Suppose that (1) 1s solvable and j satisfies (i)-(111) of The-

orem 1. Then the manifold of consistent initial conditions at time t 1s
characierized by

E()x, =1£,(t) - F,(t)z(t) (27)
18 consistent. That is, £, — F,r € R(E,).
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A numerical method utilizing these Theorems is developed in [3]. But
for our purposes here, it suffices to recall that we can multiply (26) by a
nonsingular © to get

b L. 0 0 a(?) Q1(?)

: 0 M M |x;=|q@l)|-| Q@)= (28)
X 0 0 O g(t) Qs(1)

) The first row of (28) is

: 3, = —Ql(t)l‘ + ql(t) (29)
A

i: which is an explicit ordinary differential equation whose solutions include

7 the solutions of the original implicit differential equation (1). The third
h row of (28),

Qs(t)z = ga(t) . (30)

characterizes the solution manifold.

4 Discussion

'. We begin our discussion by considering the simple solvable system in Ex-
ample 2.

Example 2. In (2), let

4 1 -1 10
L E‘[l-l]’ F‘[01]

If the procedure in Section 2 is applied, we get py = p, = 0 and
X 1 -1 00

’ A= [ 1 =100 ]

which does not have full row rank.

Example 2 shows that the procedure of Section 2 can experience diffi-
: culty with solvable systems Of course, for this example. a constant coor-
; dinate change would convert 1t to Example 1. However. the general case

N
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is much more complicated. There may not exist any smooth coordinate
changes that put a solvable system into a nice structural form. Even if
there are such coordinate changes, they will be time varying, even nonlin-
ear in the case of (4), and thus sometimes difficult to compute. In general
then, if time varying coordinate changes are not computed and the method
of Section 2 is being used, we would expect the matrix A to have varying
rank or be rank deficient, unless the system (1) has a well defined structural
index.[8] This does happen with some systems of physical importance, such
as some of those in mechanics [1],[7],[10] but is not a general characteristic
of solvable systems.

The approach of Section 3, like that of Section 2, produces a description
of the solution manifold (30), and a differential equation defined on all of
R™ (29) whose solutions include those of the singular system. However, in
Section 3, no attempt is made to take the minimum number of differenti-
ations. Rather a sufficient number are taken. Then all needed algebra is
performed pointwise so that it is never necessary to differentiate computed
quantities which is numerically unstable.

In this section, we shall discuss the adaptation of these ideas to the
approach of Section 2. Our long range goal is two fold. First, we want
to extend the theory of Section 2. Secondly, we wish to utilize the insight
gained from the method of Section 2, in order to extend the approach
of Section 3 to general nonlinear descriptor systems. Any approach which
generates an explicit differential equation from an implicit one is potentially
useful in making possible the application of explicit differential equation
numerical integration schemes to implicit differential equations.

Consider again the linear time varying singular system (1). Differenti-
ating the equation j — 1 times yields

E 0 - -0 z
E'+F E S "
E" +2F 2E'+F E
* * * = .
EU-D 4 (j - 1)F-2 * « = F Pl
10
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P O il o N v TN A AT TN A -."\.\- \ A \.-s.-. -. TR
TPy e Y AR e A VY S ot MR,




4 f 3
Q

s F’ fl

J = - . T+ . (31)

FU-1 Fl=1) 3

"_“i ) E(i-j)+< i—1 > Fli=i-1). -
j- j '

, where the ij-entry of (31) for i > j is (
We write (31) as

! £k, = —Fiz +1; (32) /
' : Let D; =Diag{1,1,%,..., -2}, D; =Diag{11,2!,... j!}. Then \

D,¥; = F;, D,f; =, D;%; = x;, D;§;D; = &,

) Thus Theorems 3.1,3.2 hold using (32) instead of (26). X
: Now consider (1). Again let u = f and w = [z, u], and rewrite (1) as "3

!

r =1 (33) ’ :
R(r,w,vw') = E'(r)z' +F(r)zc—u=0 (34) 3

N

~»
If we were following Section 2 we would let k¥ = 1 since there are only first N
derivatives'in the R equation. However, we know that in general additional -

derivatives are needed. Consider then the system

KA L o P o ol g

Rlruw uW=E(mz +F(Hz-u=0 (36)

P S TS YT ST T IS TO IR IS TS TS
f\'., if-.q. -.—‘{',* ‘. “ W -'\" & Ao "\v |F I ' ™,

¥ [ ] ( 1 ] -
+ w w/ ) .+l)n ::
: 2w | = S (35) "
dt - » =1 ' € l
w'd) 1=
i wld) ] |0

I A RN AN




Then
R
(37)
L;O’IR = 0
is the same as ) A
Ei(M)x;(t) + Fi(m)z(t)—4; =0 (38)

Thus Theorems 3.1, 3.2 show that the extended family of Lie derivatives
(37) will determine a solution manifold and a flow in all of R". However, this
fact is expressed in terms of Section 3. We wish to exploit the information
in these theorems to extend the approach of Section 2.

If a solution of (35) is to leave (36) invariant for a control v, we need
that

%(LQOR) = UM R+ (L;L,,R)v = 0 (39)

for r=0,...,j =1, (j £ n) where the ith column of L;L} R is L, Ly R.
The equations (39) may be rewritten as

b+ Aa=0 (40)

and A = [F;,&;, —I]P where P is the permutation matrix that lists the z(?
first and then the ul"). Notice that 4 has full row rank by Theorem 3.1. As
before, define the feedback v = o + 3%, by Aa = —13,.43 = 0. Using these
theorems, observe that not only is there such a feedback, but that in 3 we
may take u arbitrary and then r is determined by u,, zo.

Alternatively, we may let w = z. and rewrite (1) as

1]
[ i ] { 4 (741)n
S : +ZL’,[O‘J (41)

€i

r(.ﬂ
t
L0

= L =F(r)jzg—u(r)=0 (42)

e
]
X
~—
=
L]
[
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Again (37) becomes (38). This time A = [;,£,] and the equations (39) [
; are
) b+ u; = [ﬁj, é,]& (43) !

. From Theorem 3.1 we again have that A has full row rank and hence
& exists. Furthermore, in this case, the second n components of 5 depend
only on the first n components of 3

Another variation of the preceding approach would be to consider

-

. Il P I ALY
c -

E(t)d' + F(t)z = B(t)u (44)

In (35),(36) and (41),(42), we have introduced the variable 7 to make
the resulting systems time invariant, and thus more closely resemble those
in Section 2. However, this is not necessary.

: Which of these alternatives is the best way to view (1) remains to be _‘
5 determined. 3
! N

»
. 5 Conclusion L

In this paper we have briefly discussed two approaches concerning descrip-
tor systems and observed that they deal with similar derivative arrays.
The approach of Section 2 is part of an evolving elegant differential geo- >
metric control theory. The approach of Section 3 is computationally simpler .
in that the only needed symbolic manipulations are derivatives of known
functions. Numerical linear algebra routines may then be used pointwise.
The assumptions of Section 3 are also somewhat mere general than those
of Section 2.

In subsequent papers. we hope to exploit this relationship more fully,
especially in the nonlinear case.

RN i
A

v v
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