
AD-R9 069 THE COORDINATION OF MULTIPLE ROTIC RNIPULTORS(U) 1/2
RHY MILITARY PERSONNEL CENTER RLEXRNDRIR YR R F YOUNG

UNCLRSSIFIED, F/G 13/6 M

smhmhhhhhhhml
Ehhhhmmmhhhum

.. I - o 2-831

IWI 125 1111114-0
'"'~ 14i

1*

~3cw Kr

ll FILE COB
00 ~[EGR

THE COORDINATION OF MULTIPLE ROBOTIC MANIPULATORS

Reed F. Young, 1LT
HQDA, MILPERCEN (DAPC-OPA-E)
200 Stovall Street
Alexandria, VA 22332

ELECTE
JAN 2 8 19

11 Dec 87

Approved for public release

MISTIUTION STATEMENT A
Approved for public release

Distribution Unlimited

A thesis submitted to Duke University in partial fulfillment
of the requirements for the degree of Master of Science

88 1 26 021

SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMBNo 0704-0188

Exp Date Jun 30, 1986
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

DUKE UNIVERSITY I
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Durham, NC 27706

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

US Army (TEP Program) I
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO

11. TITLE (Include Security Classification)

THE COORDINATION OF MULTIPLE ROBOTIC MANIPULATORS

12 PERSONAL AUTHOR(S)

YOUNG, Reed Fisher
13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Master's Thesis FROM TO 1987 Dec. 11 174
16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
, In this thesis, the problem of the coordination of multiple robots is investigated at length. Included in

e discussion are the position control, path planning, and collision avoidance strategies involved in the control
)f two robots rutually holding an object. The theories and algorithm presented in this thesis are tested and
ir,!lremnted in the ccaputer simulation toordSim. " '

Major results frzIl tiis thesis include a verification of the resolved position control theory as it drives the
-ots to any position and orientation. Also, a concatenation and adaptation of various single robot theories is

de and introduced as the'-"Striving Technique." ' This solution is a complete noveient algorithm %4kich drives the
robots mutually holdinc, an object through a field with obstacles. The algorithm also generates a path function

liven only tie start and end positions and orientations. Finally, the concepts of the"coordinated work envelope'
ind 'tvisting collision' are derived and discussed. , -- " , (, .. ;

- (\ ' , , '*

20 DISTRIB JTION 'AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED E- SAME AS RPT El DTIC USERS
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECiJRITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

_loci

THE COORDINATION OF MULTIPLE ROBOTIC MANIPULATORS

Reed F. Young

Department of Mechanical Engineering
and Materials Science

Duke University

Date: >'g|t Y9C7 Accesion For

Approved: NTIS CRA&!
OTIC TAB
Urit;0c ' cc-e,

Devendra P. Grg, Supervisor

s,,,,

A thesis submitted in partial fulfillment of the ,
requirements for the degree of Master of

Science in the Department of Mechanical Engineering
and Materials Science in the

Graduate School. of Duke University

1988

ABSTRACT

In this thesis, the problem of the coordination of

multiple robots is investigated at length. Included in the

discussion are the position control, path planning, and

collision avoidance strategies involved in the control of

two robots mutually holding an object. The theories and

algorithms presented in this thesis are tested and

implemented in the computer simulation "CoordSim".

Major results from this thesis include a verification

of the resolved position control theory as it drives the

robots to any position and orientation. Also, a

concatenation and adaptation of various single robot

theories is made and introduced as the "Striving

Technique". This solution is a complete movement algorithm

which drives the two robots mutually holding an object

through a field with obstacles. The algorithm also

generates a path function given only the start and end

positions and orientations. Finally, the concepts of the

"coordinated work envelope" and "twisting collision" are

derived and discussed.

yi

ACKNOWLEDGEMENTS

I would foremost like to thank my advisor, Dr.

Devendra P. Garg, Professor of Mechanical Engineering, for

all of his effort, help, and guidance throughout this work.

I would also like to thank my family for the support and

encouragement they have given me.

My gratitude to the United States Army for the funding

of my master's education. I can only hope to serve them as

they have served me.

Finally, my thanks to Dr. C. M. Harman and Prof. Jack

Rebman for their input and participation on my committee.

You have all made it possible for me.

iii

DEDICATION

1
This thesis is dedicated to all of my friends who made

my stay here at Duke University such an enjoyable one and

especially to Carmen--you made it all that much better.

iv

TABLE OF CONTENTS

ABSTRACT .. ii
ACKNOWLEDGEMENTS iii
DEDICATIONS ... iv
LIST OF FIGURES vii
NOMENCLATURE viii

CHAPTER I INTRODUCTION 1
1.1 Motivation for Study 1
1.2 Outline of Thesis 1

CHAPTER II BACKGROUND IN COORDINATION 4
2.1 Introduction 4
2.2 Background 4
2.3 Multiple Robot Control 7
2.4 Justification of Coordinated Robots 11
2.5 Difficulties Encountered in

Coordinated Robots 14
2.6 Work Envelopes of Coordinated Robots 15
2.7 Applications................................ 19
2.8 Available Algorithms and

Scheme Prototypes 21
2.9 Concluding Statements 24

CHAPTER III COLLISION AVOIDANCE IN
COORDINATED ROBOTS 26

3.1 Introduction 26
3.2 Stationary Obstacle Avoidance 26
3.3 Avoiding Obstacles in Motion 30
3.4 Navigation of Robots Through

Unknown Terrain 32
3.5 Mutual Collision Avoidance of

Coordinated Robots 33
3.6 Concluding Statements 38

CHAPTER IV PATH PLANNING IN COORDINATED ROBOTS 39
4.1 Introduction 39
4.2 Path Planning in Coordinated Robots 40
4.3 Available Algorithms 44
4.4 Two-dimensional Approaches 49
4.5 Concluding Statements 56

CHAPTER V SYSTEM MODELING 58
5.1 Introduction 58
5.2 Hardware Modeling 60
5.3 Transformations for Coordinated Robots 62

v

5.4 Collision Avoidance and Path
Planning Algorithms 70

5.5 Concluding Statements 79

CHAPTER VI COMPUTER SIMULATION AND GRAPHICS 80
6.1 Introduction 80
6.2 Program Features 81
6.3 Utilization of Modeling Techniques 85
6.4 Subroutine Definitions 100
6.5 Concluding Statements 104

CHAPTER VII RESULTS AND CONCLUSIONS 106
7.1 Discussion of Results 106
7.2 Conclusions 112
7.3 Suggestions for Future Work 113

REFERENCES ... 115

APPENDICES ... 118
APPENDIX 1 Program Listing 118
APPENDIX 2 User's Guide to CoordSim 163

vi

.~
]p

LIST OF FIGURES

2.1 Coordinated Work Envelope 17

3.1 Configuration Mapping in Translation 28

3.2 Polygon Representation of Obstacles 30

3.3 Twisting Collision 37

4.1 Schematic of an Activity Controller 45

4.2 Implementation of a Distance Function 50

4.3 Local Dynamic Path Generation 53

4.4 Shadow and the Virtual Obstacle 55

5.1 The Unimation PUMA Robot 61

5.2 Representation of Satellite and
Reference Frames 63

5.3 Transformation Vectors and Coordinate Frames ...65

5.4 Configuration Mapping 72

5.5 Robot Nodes 74

6.1 Program Output 82
6.2 Routine 1 86

6.3 Routine 2 88

6.4 Routine 3 90

6.5 Flowchart of Routine 3 91

6.6 Routine 4 92

6.7 Flowchart of Routine 5 93

6.8 Routine 6 94

6.9 Routine 7 95

6.10 Routine 8 97

6.11 Flowchart of Routines 7 and 8 99

vii

NOMENCLATURE

A projection of the satellite's z-axis onto the
reference frame

AC Activity Controller

AP alternate point

F() a generalized function

J Energy Function

N projection of the satellite's x-axis onto the

reference frame

0 projection of the satellite's y-axis onto the
reference frame

P position of the satellite's origin in the
reference frame.

T standard transformation matrix

t time

u system input

x state variables

a roll angle

5 pitch angle

r yaw angle

T finish time

vi

viii '

CHAPTER I

INTRODUCTION

1.1 Motivation for Study

One of the emerging areas of research in a rapid

advance of robotic technologies has been concerned with the

coordination of multiple robotic manipulators. This

technology proves to be very useful for many reasons as the

coordinated robot scheme has several capabilities which are

not found in systems utilizing only a single robot. These

capabilities include factors such as: increased payload

rating; manipulation of long, heavy, irregularly shaped, or

unbalanced objects; and allowance for an extremely dynamic

work-cell.
In this thesis, a complete position control algorithm

is presented in the "Striving Technique" which provides for

the resolved position control, path planning, and collision

avoidance of two coordinated robots simultaneously holding

an object. Along with this technique, the concepts of

coordinated work envelope and twisting collision are

introduced and discussed.

1.2 Outline of Thesis

Chapter 2 presents a literature search into the

various aspects of coordinated robot systems. Discussion

is included which describes applications, justification and

benefits of multiple robot systems, some potential problems

which may be encountered in the implementation of these

systems, and various algorithms which are available in

literature. Also, the concept of the coordinated work

envelope is introduced and discussed at length.

In chapter 3, a summary of collision avoidance

techniques in single robots is presented as well as means

by which these algorithms can be adapted to control

coordinated robots. This chapter also introduces the

concept of twisting collision and methods for solving this

problem.

Chapter 4 discusses the path planning of coordinated

robots, and presents available algorithms. This chapter

also contains a comparison between the concepts of path

planning and collision avoidance and how they can be

combined in a control structure for the coordinated scheme.

Contained in chapter 5 is the system modeling

implemented in this thesis' work. Included are the

position control, path planning, and collision avoidance

algorithms which are actually implemented in the computer

simulation. Also, a description of the simulated robot

hardware is included.

2

V N -b

p

Chapter 6 describes the computer simulation CoordSim,

and how the program utilizes the algorithms presented in

chapter 5. The definition of the various program

procedures and routines used are also included.

The last chapter, chapter 7, discusses the results and

conclusions obtained from the testing performed in this

thesis. Along with this discussion, several suggestions

are made for work which could extend the knowledge gained

by this thesis' work.

Appendix 1 contains a detailed listing of the computer

simulation. Appendix 2 is a guide for potential users of

the simulation.

:4.

3

fti* f . * * *f*

CHAPTER II

BACKGROUND IN COORDINATION

2.1 Introduction

This chapter will provide background information in

the area of robot coordination and control. In addition,

a discussion of the motivation and practicality of

coordination will be given. Some benefits and setbacks

that are characteristic of coordination as well as some

real world applications which have utilized more than one

robot will also be given. Finally, the discussion will

focus on the various algorithms which have been set forth

to control the desired motions.

2.2 Background

Many of the same principles apply in coordination of

multiple robots, as do in the control of a single robotic

manipulator. The obvious difference is that instead of

having to calculate the joint angles and various paths of

the single robot, one has to calculate these factors for

several coordinated robots, as well as calculate other

added complexities. These complexities include such things

as the avoidance of collision with each other or insuring

motion in unison if the robots are to share a task

cooperatively.

4

The degree to which robots can be considered in

cooperation has been divided into three general categories.

These are; uncoordinated, loosely coordinated, and closely

coordinated (1, 2, 3].

The uncoordinated robots scheme implies the types of

systems which are most recognizable as the production or

assembly line robots; for example, systems which are

designed to paint or weld. These robots simply follow a

pre-defined motion with no knowledge or concern about the

objects which may be present in their working envelopes.

In this sense the robot is completely blind to the

surroundings. However, for the simple, repetitive

functions which they are required to perform, this setup is

more than adequate.

Another classic characteristic of uncoordinated robots

is the fact that they usually have non-overlapping work

envelopes. This is used as a safety precaution, since no

matter how well planned a motion is, there is always the

possibility of collision due to a malfunction or operator

error. Since the uncoordinated robots cannot communicate

with each other, separating their work envelopes is an
'S

effective way of insuring that no collision takes place.

Loose coordination is the name given to the scheme

whereby the robots maintain a dynamic communication link

5

JO,

with a higher level intelligence device such as a computer.

Here two or more robots determine their own motions via a

set of commands that a coordinating computer gives to them.

At this level comes the first indication of some sort of

intelligent control. The coordinating computer monitors

the actions of the two robots and provides decisions as to

their progress. One also begins to observe overlapping

work envelopes with two or more robots sharing work space

in the process, and even working simultaneously on the same

workpiece since in this case there is an ability to prevent

collisions and determine mutual paths intelligently.

Since loose coordination is usually accomplished via

another controlling computer, there is an inherent time

delay caused by the extra data transmission. Thus, this

type of coordination is usually limited to projects such as

two robots operating in an alternating fashion performing

similar functions. A typical example may include a series

of fed parts where the communication is kept at a minimum.

It is also beneficial if the cycle periods of the overall

processes are large so as to allow enough time for those

communications to occur.

The third type of coordination is called close

coordination. It encompasses the field of two or more

robots truly communicating with one another and

simultaneously striving towards a common goal. Here one

6 9

finds the robots sharing a direct communication link which

transmits information on factors such as location, force,

and speed constantly among the manipulators. The

controlling algorithms dynamically adapt to changes in the

environment such as obstacles, or even new processes

altogether. In this manner, the system acts in a

completely adaptive fashion towards any conflict situation

which may arise. Finding a solution to the close

coordination problem is a current topic of much research

interest. Most work is geared towards handling such

problems as gripping an object simultaneously using

multiple grippers or performing different processes on a

single workpiece at the same time.

2.3 Multiple Robot Control

Along with the various levels of coordination are

associated various ways in which to approach the problem of

control of the robots. New methods must be developed to

handle the control of several robots beyond the capacity of

their individual controllers [1].

Uncoordinated robots will not need much effort in the

way of advanced control beyond the capability of their own

controllers. Simple task planning and some provision for

appropriate timing and triggering usually suffices to

provide the system with enough information to carry out

7

.

conventional tasks such as welding or painting. However,

these types of systems are limited to relatively simply

tasks and usually do not have the capability for complex

movements and calculations.

In one method of control, Chimes [18) suggests that a

single controller may be used to drive the various joints

of all of the robots involved. For example, for two six

degree-of-freedom manipulators, a coordinated controller

would provide signals for all twelve joint motors. Several

problems arise in this connection. First, the same

computing device must now perform over twice as many

calculations since there are now twice as many joint angles

and motor signals to solve for. Thus, there is a need for

twice as much time to perform these calculations and this

added time may degrade the overall performance of the

system. Secondly, due to the limitations of the joint

angles, there is no concern with a collision occurring

since it is a physical impossibility for a robot to collide

with itself unless it exceeds its own constraints. With

another robot added, a new problem arises since assuming

that the two robots share a common workspace, now they can

interfere with each other's motions and collide. Thus, the

controller must be fitted with an automatic collision

avoidance mechanism which prevents the two manipulators

from coming in contact with each other. This extra

8

computation also takes additional time and again slows down

the overall speeds of the two manipulators.

A possible solution to the problem mentioned above is

to employ parallel processing techniques where an

evaluation of the individual robot's joint angles is

accomplished at the same time by different electrical

devices. Thus, there are two computation machines working

on the same amount of data that was being manipulated by

only one computer. This appears to be an easy solution but

the same problems of communication remain.

A second method of control is to have the robots

control themselves through their individual controllers

while simultaneously communicating with a coordinating

device such as a computer, in a hierarchical scheme (19].

From the definitions set forth, this method appears to be

analogous to the definition of the loosely coordinated

system presented earlier. The one major problem here is

involved again with the speed of the process. The process

can soon become a lengthy one if for every motion a

controller must first communicate with a central

coordinator and obtain permission to move as well as inform

the controller of its actions at each step. Thus, this

scheme only lends itself to situations where most of the

processes can be achieved without much knowledge of the

activities of the surroundings. The robot's own controller

9

is able to make decisions with only limited communication

with the coordinator for factors such as parts location,

availability of shared tools, or breakdowns. As a

consequence of limiting communication, very little time is

spent in the actual communication between the devices and

the loose coordination can be achieved with little increase

in cycle time.

A process which is well-suited to hierarchical control

is event sequencing [3). Event sequencing is commonly

found on routine assembly line operations where several

robots are arranged to sequentially work an a belt-fed

part. In this scheme, each of the robot's controllers is

connected to a central controller which monitors the

location of the parts and their progress. The only time

that a controller needs to communicate with the coordinator

is when it needs permission to start a process and to

indicate when it is finished with its present piece. In an

assembly operation, this structure is very attractive for

inventory control as well as for diagnostic intelligence

since each piece is closely monitored throughout the

process and system characteristics such as bottle-necks or

throughput can easily be accessed by the coordinating

computer without disturbing the operation of the individual

manipulators. The individual robots also have quite a bit

of freedom to perform their tasks as they can work with no ,

10

%F 'L', % %..-%. '%' .'-2\%+ .%.%- . . % '.. '.'* % - ' '- . " x; " "p

concern for their surroundings until a new part is to be

presented or the completed part is to be moved on to the

next station.

The third method of coordination consists of the

robot's individual controllers being able to talk directly

with one another. This mode requires the application of

true coordination where the motion of one robot is

constantly a function of the progress of its mate. Many of

the excessive time related problems are now alleviated

since there is no intermediary computer to slow down the

processes. However, this method requires algorithms which

are well-designed and very adaptable since each machine not

only has to be concerned with its own path generation and

progress, but it has to be conscious about its partner's

progress at all times. The algorithms must be very

adaptable to changes to the point of simulated intelligence

and must be able to handle the extremely dynamic situations

which are presented.

2.4 Justification for Coordinated Robots

In order for tomorrow's factory to be able to keep up

with competition from abroad and the consumers' high

demands, it will have to be able to find ways to

significantly reduce costs and operation times while still

improving the product's overall quality. One of the ways

11

_'.

to solve these problems is to utilize the technology of

coordination of robots.

There are many financial benefits of the multiple

robotic systems. For almost any robotic process, only 20%

to 30% of the setup cost is in the actual robots themselves

(4]. The remaining 70% to 80% is tied up in peripheral

devices such as conveyor belts, tool holders, and vices.

This means that whenever a new operation is implemented,

quite a bit of the start up cost must be incurred in the

procurement of peripheral devices. While the robots

themselves can be adapted to most any operation, the other

devices bought or built to support the robots are usually

very specialized for the job and cannot be easily adapted

to new functions. With two robots however, much of this

cost can be eliminated since the functions of the

peripheral devices are now accomplished by the utilization

of the multiple robots. In general, the robots are easily

adapted to new functions and can be set up to perform a

vast variety of holding or feeding functions. Therefore,

when new processes are implemented, only a program change

needs to be made with much less capital investment in

extraneous hardware [23].

There are many other benefits of the multiple robot

system as suggested by Grossman et al [21]. These systems

can perform tasks which were perhaps impossible for only

12

one robot such as lifting a very heavy, irregular, or

oblong object. Many of the resources which were used by

only one machine can now be shared by several. These

shared devices include items such as floor-space or working

envelopes, material handling equipment, tools, and parts

feeders. Several of the process characteristics are also

changed. The cycle time of an operation can be reduced

since several robots work on a single work-piece instead

of just one. This increase in cycle time could also mean

that bottleneck processes in an assembly line could be

overcome [25].

The sharing of tasks also increases the reliability

of the overall system also. For example, if one of the

robots were to break down, the other could continue the

process perhaps at a slower speed, but the process would

not stop. In addition, choosing robots which have

different specialties and having them utilize each other's

benefits increases the potential for work of the overall

system. For example, one robot could be a heavy-duty V

machine to be used as a vice while its mate might be a

precision machine to be used in a drilling process. Thus,

a very versatile programmable fixture is developed which

greatly increases the variety of tasks that the work-cell

can accomplish.

13

|i

2.5 Difficulties Encountered in Coordinated Robots

S
Along with the many benefits of the multiple robotic

systems are also some disadvantages. However, these are

few and are usually outweighed by the benefits.

Since there are now several robots to be controlled,

there will be a problem in the speed of execution. Many

calculations must be performed in order to control the

movements of a single robot. This number will more than

double with the addition of another robot since now such

items as mutual collision avoidance as well as

communication must be dealt with. This problem has been

partially overcome through the use of parallel processing

and a hierarchical structure. However, with an increase in

the amount of hardware and software needed to drive a

coordinated system also comes a possible increase in cost

and system downtime.

One of the more complex problems presents itself

through the mechanical characteristics of the system.

Since the work-cell in a multiple robot environment

consists of several devices, the accuracy to which a robot

can define it's own location becomes a very important

consideration. This accuracy is usually defined by factors

such as motor resolution and repeatability as well as a

load, possibly causing a mechanical deflection in the robot

14

'S.

arm itself. These deviations from a desired position

affect the job performance since under these conditions new

problems arise such as a stress being applied to a mutually

held part. Since there will be a deviation from true

desired coordinates, a deflection or bending may occur in a

part leading to the extreme case of damaging the piece.

These problems can be solved through the use of such

complex systems as a wrist force sensor but there is a

definite trade-off between accuracy and cost.

There will also be a need for more complex path-

planning and collision avoidance algorithms. Instead of a

single robot avoiding a stationary object or even an object

in a pre-defined motion, the several robots must avoid each

other dynamically as well as any obstacles in their

workspaces. All of these new calculations as well as

communication steps add to the size and complexity of the

controlling algorithm, and thus, affect the motion speeds

and reliability.

2.6 Work Envelopes of Coordinated Robots

The calculation of the work envelope of the

coordinated robot scheme is a non-trivial problem since it

plays an important role in deciding the extent of all

motions that can occur in the system. Since the robots are

usually mounted at different locations, the work envelope

15

- = & - - ... |

of the coordinated robot scheme will be considerably less

than the sum of the two robot's work envelopes since one

robot will not be able to reach the far side of the other's

work envelope and vice-versa.

The object's work envelope is defined as the locus of

points which can be obtained by the coordinate system

located on the object (refer to figure 2.1). It is first

assumed that the robots are fully extended in order to

achieve the most distant set of points in the work

envelope. This configuration is called the "extended arm"

configuration. The distance between the base and the end

point of the extended arm is a constant called the

"extended radius". Note that the individual work envelopes

can be separate or overlapping with no consequence to this

discussion.

The two dimensional work envelope of the x--z plane is

bounded by four curves (refer to figure 2.1). Curve a is a

circular arc whose radius is the sum of the extended radius

of robot 2 and one-half the length of the object. Curve b

is also a circular arc whose radius is the sum of robot l's

extended radius and one-half the length of the object. The

centers of these arcs are located at the particular robots

base coordinate system. Curves c and d are irregular arcs

and are traced under the midpoint of the object as the

object end points follow around the work boundary of the

16

%..

II
CC)-

CU C3 0

CJ=-

-Li

C3 C-
cn CD 2u

=U
L~0

wi. CD-
.4.-' a

-M m-'--
C: cu

C_-

coC

LLJC

I.-4

17

individual robots. Since this exact same shape is produced

as the work boundary in the x-y plane, the actual work

envelope can be generated by spinning the x-z work boundary

around a line oriented parallel to the x-axis and traveling

through the geometric center of the shape.

A sample calculation is now presented to illustrate

the relative size of the work envelopes. Assume that the

extended radius of both robots is one meter, the robot

bases are mounted two and one-half meters apart, and that

the held object is one meter long. If the robots'

individual work-envelopes are assumed to be half-spheres

the total volume of the sum of the work envelopes is:

Volume = 4/3 n r3 (2.1)

where "r" is the extended radius of the robots. If the

object's work envelope is estimated as the upper half of an

ellipse-like shape rotated about its long axis, the volume

would approximately be:

Volume 2/3 n xx2 2 (2.2)

where "xi" is the long radius, and "x2" is the short radius

of the ellipse-like shape. For this example, "r" equals

one meter; therefore, the volume of the robot's combined

work envelopes is 4/3 n M 2 . Also, through measurement of a

scaled diagram, "xi" equals 3/4 meters and "x2" equals 2/3

18

meters producing a volume of 2/9 n M 2 . This is an

estimation, but does emphasize the vast difference in the

volume of the work envelopes.

As the robots are mounted farther apart, the object's

work envelope decreases proportionately and it would seem

that mounting the robots close together would be optimal

situation. However, as the robots are mounted closer and

closer together, a cluttering of obstacles will occur due

to the robot joints and the bases. Thus, an optimal

solution can only be found when specific tasks, and

collision avoidance and path planning restrictions are

considered and the trade-offs between the object's work

area and the cluttering are weighed.

2.7 Applications

Several specialized uses of coordinated robots have

been mentioned in literature to include lifting very heavy

or long objects. One of the main advantages and

applications for the multiple robotic system comes in its

ability to be dynamically adaptable [3].

A dynamically adaptable system is a type of production

system which is able to change its function with very

little change in hardware. This change in function could

be necessary due to a variety of situations. One situation

would be an operation where the same type of function is

19

a

performed on several different types of a similar product.

Examples of such systems would include a welding robot on

an automotive assembly line which can perform body welding

on a variety of randomly presented cars. Another situation

would be where the operation changes altogether. For

example, a setup in which a new product may have to be

manufactured utilizing the same machinery as was used for

the manufacture of the old product.

In normal circumstances both of these situations would

require extensive hardware and peripheral device changes.

With the implementation of a coordinated robotic system,

the solution to these and many other problems can be

realized easily. Since the system emulates the functions &
of the peripheral devices, a change in the make-up of those

devices will simply mean a change in the software of the

robots with very limited hardware changes, perhaps mainly

in the grippers or parts feeders.

The true utility and functionality of the coordinated

system is realized and can easily be identified as

dynamically adaptable, since in a much shorter period of

time and with much less difficulty, a new procedure with

varying requirements can be conveniently carried out.

20

I

2.8 Available Algorithms and Scheme Prototypes

I
There are several mathematical algorithms which are

discussed below in order to provide some cognition as to

the controlling scheme of the coordinated robots. While

these methods do not indicate a specific programming

routine, they do provide a systematic procedure for a

programmer to follow while setting up the various

operations.

One of the most common of these algorithms is called

the master-slave relationship (5]. The basic premise of

this routine is to define one of the several robots as the

master and then base the movements and operations of the

other devices from the master's position and progression.

This method has proven to be very effective and

efficient in several different situations. First, the

slave can be directed to simply copy the exact motion that

the master is programmed to perform. This is a useful

control scheme in pick and place operations since both the

master and the slave robots can be programmed to perform

the same task but a time delay between the two cycles.

Thus, twice as ch work can be accomplished through the

same program si :e two robots perform a task in an

alternating fashi n. In the same sense, this application

can also solve the problem of bottle-necking as several

21 '

.o % ,- ~

-r X- IV 6- NF w- -e - j w-

robots can perform similar operations simultaneously and

speed up the cycle time of a particular station.

A second situation would be to have the second robot

generate a symmetric motion function relative to the first

robot, for example two robots turning a wheel. The master

would base its position function on the location of the
wheel and the desired angular speed. The slave would

simply calculate its motion as the master's reflection

through the middle of the wheel. This requires much less

calculation than if both robots were to calculate positions

relative to the wheel and thus lends itself to being an

operation to occur in real time.

Another situation would be synchronous motion where

the slave would perform a motion similar to the master's

but at some offset distance. An example of this would be

two robots carrying a long bar. The desired path of the

bar would provide the master with a path to follow. The

slave robot would simply follow the same direction and

orientation as the master knowing that it must first place

itself at a distance offset equal to the length of the bar.

The relative locations of the bases will not become a

hindering factor in the path generation since only the end

effector position and orientation need be known, not the

individual joint angles which would be a function of the

bases' position.

22

1

The master-slave routines can be very effective for

simple or repetitive tasks but they may fail to perform

satisfactorily when complex motions are presented such as

movement to avoid obstacles. The slave tends to lack

information since it bases its motion on the motion of the

master and thus does not inherently recognize problems

arising in the surroundings. a

A more complex and intelligent algorithm is one where

there are effectively two slaves and no masters. The

algorithm here stipulates that both robots have equal

intelligence and thus need to determine their own paths and

collision avoidance schemes independently from each other.

The input for determining these paths is based upon some

sort of external reference, perhaps the center of mass of

the carried bar, and thus acts as the master to lead the "'

slaves through the desired motion. This is the algorithm £

which has been implemented in this thesis and will be f
discussed in detail in a later chapter. a

Another scheme is that of the Activity Controller £6,

31. This scheme is analogous to the hierarchy control

algorithms since work is divided up into a series of levels

with the underlying assumption that sequentially

intelligent functions are to be performed at increasingly

higher levels. The low intelligence functions such as

stepper motor signal generation occur at the lowest level

23
a-

in the robot controller, path generation and collision

avoidance schemes occur at the next higher level in an on-

line computer, and more complex functions such as

coordination of multiple robots and supervisory control

occur at even higher levels perhaps in a mainframe

computer.

This theory utilizes a hierarchical scheme but also

adds some underlying assumptions to the intelligence of the

motion. It makes allowances for much more complex

functions and defines the various levels at which certain

decision making processes are to occur. With this scheme

one has the power to simultaneously make decisions for

problems such as process scheduling, robot scheduling,

optimization of sequences and even jobs themselves for

particular robots as well as guidance through collision

situations and recovery algorithms. A more detailed M

discussion is provided in chapter 6.

2.9 Concluding Statements

Coordination of multiple robotic arms is a relatively

recent topic of concern with most of the advancements

having been made in the past few years. The industry is

starting to actually implement the truly coordinated

machines in real world situations. With the development of

inexpensive and very fast computers comes the ability to

24

Z- - -! Z. ..

implement the lengthy and cumbersome algorithms needed to

intelligently control the several robots. It will not be

unrealistic to dream of systems which can carry out

extensive self maintenance or perhaps even become

intelligent enough to determine their own motions through

manufacturing processes with no "a priori" knowledge or

help from the humans.

This chapter has provided a general overview of the

coordination of multiple robotic arms.

The discussion started with the general theory

concerning coordination followed by the benefits and

setbacks involved with implementation of multiple robots

and concluded with a presentation of typical applications

and examples of some algorithms which have been developed.

25

.?

N.' ' ' ' ' ' o ''" '''" " - - . '..- - " ", . , , ,, , ,

CHAPTER III

COLLISION AVOIDANCE IN COORDINATED ROBOTS

3.1 Introduction

This chapter provides a synthesis of information

derived from several published sources in the area of

collision avoidance. It describes a chronological

progression of the technology starting with a robot

avoiding a stationary object or objects, through avoiding

moving objects, and ultimately leading to two coordinated

robots avoiding each other.

3.2 Stationary Obstacle Avoidance

The task of having a robot avoid a stationary object

located within its work envelope can be usually

accomplished through off-line scheduling. Alternatively,

an operator could manually guide the manipulator through

-, the task with a teach pendant, and record the man: pulator

sequence, keeping in mind that the obstacles must be

avoided. At that point the motions can be played back and

parameters such as efficiency and cycle time can be

evaluated and improved, if desired.

For a variety of simple tasks, this technique is

generally effective; however, there are two distinct

disadvantages. First, the cost of the "teaching" process

26

IL w- Pk Kr IL w 77717N

is high since it must occur either on the assembly floor

where production lines must be stopped, or in a simulation

laboratory where the equipment itself may be expensive.

Secondly, there is always the risk of damaging the

equipment, the environment, or even injuring the operators.

The solution lies in the progression of computer graphics

and numerical analysis where different algorithms can be

developed and tested through simulation long before they

are implemented at the assembly line. Using this approach,

downtime is held at a minimum and any chance of accident or

damage can be realized in advance using the computer

simulation (7].

An efficient algorithm tested in a computer simulation

was set forth by Lozano-Perez in "Configuration Mapping"

[8]. In this scheme, the manipulator is shrunk to a point

and the objects are grown appropriately to account for the

shrinkage. Thus, as long as the manipulator point is out

of the grown obstacle region, no collision will occur.

Figure 3.1, which is taken directly from this paper,

illustrates their example of the mapping. Note that since

the object in this case is only translating, the objects

need only be enlarged on certain surfaces.

This process is justified due to an improvement in

speed of data processing. Instead of comparing each point

on the manipulator to each point located on the various

27 ,

,

objects (a large mass of data), one can simply compare the

single point of the shrunken manipulator to the enlarged

objects. However, there are also certain disadvantages

associated with this scheme. The main disadvantage is that

,.,

A, A

ENO

GROWN OBSTACLE

I/'I

A

START
OBSTACLE

Figure 3.1
Configuration Mapping in Translation

if there are many objects located in a congested area, the

enlarging process may choke off all of the available

pathways for the manipulator to follow.

In light of the above potential difficulty, another

solution is referenced where instead of refining an

algorithm, a brute force "calculator" is developed where

28

iI

the mass of data can be processed in real time. This was

realized through the utilization of a controller consisting

of sixty-four microprocessors whereby the on-line control

was accomplished through parallel processing [9). In this

process, an object's location and dimensions are provided

as input information. Through various path planning

algorithms, a suitable movement is determined and

implemented. Note that in this case a starting point,

ending point, and obstacle characteristics can be

externally entered into the machine which calculates

possible paths and implement the "best choice".

A method for significantly decreasing the amount of -,

needed calculations is to represent objects by simple

polygons such as circles, squares, and trapezoids (refer to

figure 3.2). Thus, the object itself is defined by a

simple equation which is easily and quickly compared in a

program as opposed to, say, a large locus of surface points

which must be analyzed one by one in a lengthy process.

This too has its drawbacks in that again certain shapes are

poorly represented and take up large amounts of extra

space. For example, a jagged, spindly, star-shaped object

has a small total area yet if one encloses it in a square,

a much larger polygon would develop.

29

.. jJ k^.

3.3 Avoiding Obstacles in Motion

The next order of complexity in solving the collision

avoidance problem occurs when of a manipulator moves

through a field where the obstacles are in motion. This

creates the additional problem of having yet another set of

data to process. It was remarked by Kokaji [9] that the

sixty-four parallel on-line microprocessors are able to

Obstacle

-Polygon
Representation

Figure 3.2
Polygon Representation of Obstacles

30

a-,7

- 77M7- 77 - 7777-3 7077 -Y - --

handle this situation. An effective algorithm was also

suggested by Khatib which is based on the "Artificial

Potential Field Concept" [i0]. Here, real-time collision

avoidance by a robot is achieved by utilizing visual

sensing in an environment with moving obstacles. The

theory set forth is to assign an attractive charge to the

desired destination while assigning a repulsive charge to

obstacles along the way. Thus, not only the end effector

is involved in the process, but each point of the

manipulator is also considered.

The advantages of the process are many. Most

collision avoidance algorithms are implemented at a high-

level control whereby the speed of process is paced by the .5

time cycle at this level. This is several orders of

magnitude slower than the real time process of the robot,

thus limiting the speed at which the robot can perform its

work. This algorithm is implemented at low-level control

thus allowing feedback from a complex environment while

still maintaining high process rates. Note that this is

not meant to replace high-level processes, but to better

utilize those at lower levels.

A second advantage is that different potential field

functions can be tested so as to provide different levels "

of avoidance. For instance, objects may provide a linear

function of distance versus force to have large or small,

31

positive or negative function slope. They may also have

some sort of exponential relation where the force is a

function of distance raised to a prespecified power. A

disadvantage is that the path chosen is a function of these

forces alone which may not be the optimal choice. Here, a

higher level control may be influenced by this algorithm in

that the potential field functions provide a partial

decision as to the path. Then, it can be used in

conjunction with other optimal path algorithms.

3.4 Navigation of Robots Through Unknown Terrain

The next step of complexity is to move a manipulator

through a field with no prior knowledge of the obstacles

located in that field which may also include other robot

arms. The actual research was motivated not to control

multiple robots, but to navigate a mobile robot through

unknown terrain (11]. However, a very good analogy can be

made and the theory will transfer to multiple robot

coordination well. The two underlying concepts here are

the fact that first, the manipulator needs an external

sensory system to detect the obstacles; and second, once

the robot realizes this object, it must "remember" its '

location and size in order to make better judgment

decisions for the next sequence of movements.

32

,0
0a,

a-

• i~* ~ ~ ~ W.>. * ***. C ,.*~,-4

L

For the sensing aspect, several methods are introduced

to include vision locally and globally as well as tactile

proximity sensors. The feedback from coordinated robots

may be utilized to have one robot communicate with the

other about its location, and vise-versa. However, this
-I

problem is more relevant for the computer vision and sensor

specialist. For the purposes of this thesis, it will be

assumed that an accurate set of data has been produced.

The real problem now arises in that the controller must be

able to manipulate vast amounts of data which is constantly

changing. One approach is "Quadtree-Based Path Planning"

(12, 26]. Very simply stated, this approach assigns

various gray-scale values to locations in the area of

movement. These values are thresholded and immediately

values over the threshold are ignored, thus decreasing the

number of computations. This process is adaptable so as

new information is received, the "picture" will be changed

to reflect new possible or more effective pathways.

Through this method, a learning algorithm can identify

obstacles quickly and ignore their location's computations

to speed up the movement process.

3.5 Mutual Collision Avoidance of Coordinated Robots "

This discussion has been geared to lead into an

analysis of two coordinated robots working towards a common

goal and simultaneously realizing each other's actions and

33

locations so as to prevent any possible collision. Note

that this algorithm must be implemented in real time and

must be automatic enough so that a programmer will be able

to identify a new process (say an assembly) to the robots

and not have to worry about their collision. The name

given to the process of two coordinated robots avoiding

each other is "Dynamic Avoidance" as opposed to static

avoidance where a robot is avoiding stationary or well-

defined objects. One method of dynamic avoidance is to

simply have the controller always program the robots to two

completely separate paths. This becomes unrealistic as it

would make the problem of path planning much more complex,

if not impossible, and probably at least greatly increase

the required amount of computation time.

Two very feasible alternatives arise when the concept

of dividing much of the work among several controllers is

evoked. The first is an adaptation of the "Artificial

Potential Field Concept" (10] using two controllers. Here

one can have controller 1 calculating the attractive and

repulsive forces for robot 1, where it assigns a repulsive

charge to the dynamic robot 2 and at the same time have

controller 2 doing vise-versa for robot 2. This way, there

are no more added computations per controller and real time

calculations are still maintained. This algorithm is also

a very useful since the two controllers can provide

3

34N

b

feedback to the coordination controller thus decreasing the

work load at that level. Note that the corollary of "if

one robot avoids the other, only one collision avoidance

mechanism is required" is false since each robot must also

independently avoid other obstacles at the same time.

However, there would be a time savings if instead of having

both robots check each other's position, only one of them

performed the mutual collision avoidance schemes. Both

would still search for obstacles in their paths but only

one would be able to detect the other's presence. The

setback here is that this tends to be a master/slave

situation where the slave would be checking the master's

position and the master would move with ignorance to its

mate's position. Thus, it may unknowingly cause the slave I

to drive towards an obstacle. For the savings in

computation time, the small loss in intelligence may be

acceptable.

A second alternative is the permission technique.

This algorithm also lends itself well to real time since

many of the processes can be divided among various

controllers. The idea here is that each robot seeks

permission to enter a particular "space" before the actual

motion takes place. At a first glance it seems that this

is a very "last minute" process, but in reality the

permission process occurs over a much larger scale in that

35

permission is requested to perform a sequence of movements

and the entire sequence is checked against obstacles and

the other robot. This lends itself to speed since one of

the ends has permission being requested from two separate

robots, and the opposite end has a constant influx of

information as to presence/absence of devices, sensors,

input, etc.. In addition, in the controller there is an

intelligent decision making algorithm which is very

straightforward and capable of real time calculations.

Another physical problem encountered in coordination

is that of twisting (refer to figure 3.3). In this

situation the two robots which are holding an object, may

be directed to rotate in a horizontal plane thus causing

the links of the robots to twist upon themselves and

perhaps collide.

There are several ways in which this problem can be

solved. The most straightforward, yet most limiting,

format is to restrict the roll, pitch, and yaw of the

object to angles between n and -n radians as compared to

the world frame. This effectively prevents the robots from

twisting to the point of contact but does limit the

movement of the object from obtaining certain possible

orientations.

36 ,"

7'

.5

-im-

CD

cci
age,

>-

CO C

CD C
CC-3

CDl
r -- 4

37.

"6.

The second solution is to implement the Graph Node

Search algorithm not to the robots and their surroundings

but between certain nodes along the length of the robot's

arms. Thus, at every iteration the distance between each

of the nodes is compared to some minimum value and when

this value is crossed, a recovery routine takes over.

3.6 Concluding Statements

Collision avoidance can be considered to serve a dual

purpose. First, it provides vital information regarding

the whereabouts of obstacles present in an area so as to p

allow a computer to make intelligent decisions about the

path planning problem. Secondly, it provides safeguards 5-

from the catastrophic occurrence when robots come in

unintentional physical contact with an object to cause some

sort of damage. In order to maintain efficient, cost

saving robotic operations, the concept of collision 0

avoidance must be well understood and implemented in the

process.

3.

I.

- o.-

38.

5..

CHAPTER IV

PATH PLANNING IN COORDINATED ROBOTS

Wa 4.1 Introduction

Path planning involves the determination of an

object's trajectory between a prespecified start point and

some end point while attempting to minimize the cost of the

movement in terms of time, or energy spent. Path planning

techniques must also take into consideration such problems

as finding tne minimum horizon or in other words, the most

efficient path to follow while still satisfying a variety

of through-points.

There exists a fine line between the ideas of

collision avoidance and path planning. This is mostly due

to the fact that the two are dependent upon each other for

calculations. Also, there is rarely any utilization of one

without a similar implementation of the other. As shown in

one of the solutions to the path planning routines below, a

combination of both path planning and obstacle avoidance is

suggested since they are so closely integrated.

This chapter deals with the problems encountered in

the planning of routes for the coordinated robots to

follow. These problems include timing, deadlocks, and

recovery actions as typical examples. In addition to the

39

IN-

discussion of these problems, a few examples of path 0

planning techniques which are utilized in industry are

presented.

4.2 Path Planning in Coordinated Robots

Path planning for a mobile robot or a single robot arm

takes several variables into consideration. The choice of

these variables depends on considerations such as what

types of tools are being used, what are the tools'

availabilities, how close can the manipulator approach the

workpiece or the boundaries of the work environment, and is

there a timing sequence involved where a closely controlled

process is occurring. These factors provide a firm base

and a well defined set of restrictions on which the rules

for path planning can be formulated. Thus, path planning

at this level is a relatively easy process which simply

requires some prior thought as to effective and efficient

paths for the robots to follow given the guidance of the

constraints.

The coordinated robots also have these types of

problems and solutions. However, since there is more thane 'S.

one manipulator in the work envelope, some other problems
present themselves to the path planning scheme.

The most apparent of these problems is the fact that

the path of one manipulator will constantly be a function 0

40

.5I

- -, ; : . _. - S 6 a a . -_ - -

of the path of the second manipulator and vise-versa.

Thus, in order to determine the route that a robot must

take, the robots not only have to monitor obstacles in the

work envelope, but they also have to take into account the

movements of the other robot. In the discussion of

coordinated collision avoidance, many of the complexities

of data processing and computation speed were identified as

being inherent problems with limited solutions. Since in

path planning there is the same situation of multiple

robots communicating to each other, these same problems

apply for the same reasons. A vast amount of data must be

manipulated for intelligent, on-line path planning, and

efficient and powerful algorithms must be developed in

order to effectively process this data.

The second major problem is that of proper timing

[22]. With one manipulator, the exact moment in time that

the manipulator occupies a position usually is not as

important as the fact that it must travel from a start

point to an end point smoothly along a predefined path.

With multiple robots, this timing becomes a very important

factor as each of the robots must be aware of the other's

movements at all times if it is to generate collision free

paths. In the case of a mutually held object, the mutual

timing is important for the obvious reason that the part is

being rigidly held. If the timing is not very close to

41

r V'-r

perfect, the robots may damage the part. While it is true

that the collision avoidance schemes would provide checks

against collision, a prior knowledge of the motions' timing

could provide a much quicker means for the individual

robots to perform their path calculations.

There are at least two solutions to these problems.

First, if the process is simple enough, it can be stripped

of its intelligence and made into a hard automation

process. Thus, all of the path planning can be performed

off-line and tested for accuracy. Since this discussion is

geared toward intelligent manipulators, this solution is

trivial.

A better solution is to implement the simple path

planning techniques developed for single manipulators and

rely upon the collision avoidance routines in order to

prevent catastrophic failure of the manipulators. This is

advantageous in the sense that since those collision

avoidance routines are being run at all times, they might

as well be utilized to help generate paths. Thus, these

collision avoidance schemes will allow simpler path

planning algorithms to be as useful and complete as the

more complex algorithms. Also, a decrease in computation

time should be realized due to the use of the simpler

algorithms. The combination of path planning and collision

avoidance techniques provide very straightforward solutions

42

• - . • % - U . .

as the manipulators ultimately reach their destinations in

a collision-free movement. However, there is an inherent

cost in attempting to attain path efficiency.

Since the obstacle avoidance schemes do not consider

the "a priori" knowledge of the obstacle's positions, there

is no guarantee that the path that is forced by the

collision avoidance schemes will minimize energy or time.

This becomes increasingly true as the workspace becomes

more clustered with obstacles as the manipulators spend

more time trying to avoid obstacles than they do trying to

follow efficient paths towards their goals. But again each

problem is very independent and trade-offs such as these

must be weighed to find an appropriate solution to

individual problems.

The third problem is that of deadlocks. Imagine a

process where two manipulators share workspace and tools

but perform different operations on the same part. The

rate at which they do their work may be different;

therefore, they start and finish a part cycle as they are

able to. The deadlock in the process may occur when both

robots reach for the same tool. If both need to use the

tool, at the same moment in time, they effectively prevent

each other from continuing the process. A conflict

resolution strategy is required in this instance.

43

%~~~~- .~

The solution to this problem is the implementation of

recovery algorithms which provide an intelligence to decide

upon appropriate actions and direct control to the more

qualified manipulator. A more complete discussion of this

issue is included in the following section.

4.3 Available Algorithms

Two path planning routines are discussed which provide

real-time, proven solutions to the problem of path planning

in a work-cell with only one robot. These routines do lend

themselves well to implementation with multiple robots and

thus will be extended to be implemented in work-cells which

contain multiple robots. These routines are the Activity

Controller Scheme [6, 24] and Resolved Position Control

[13).

The Activity Controller Scheme is a structure which

has been set up in order to provide guidance in developing

a large scale system (refer to figure 4.1). In general, an

activity controller (AC) (usually a dedicated computer) is

assigned to each work-cell in a plant. Each of these

microcomputers is in turn linked to a coordinating computer

at the plant level which in most instances, is some sort of

mini-computer. The plant controller can effectively

control the processes of the entire operation as it has an

44

9fl

indirect communication link with every device in that

plant.

FEEDBACK
PLANT CONTROLLER <--- FROM
(Mini Computer) ACTIVITY

CONTROLLER

t FEEDBACK

ACTIVITY CONTROLLER <--- FROM
(Micro Computer) ROBOTS

AC I AC I I
*Path Planning <- *Collision Avoidance

*Optimization i * Potential Conflict
Situation
Identification

* Recovery

O CONTR-

4L4

I I

Figure 4.1
Schematic of an Activity Controller

The activity controller receives instructions from the

plant computer as to the tasks it is required to perform.

Thus, its goal is to create specific instructions for the

robots to follow in order to accomplish that specific task.

This instruction generation process takes into

consideration available tools and stock, time requirements,

the particular characteristics of the manipulators, the

coordination of the manipulators, and their path planning.

45

'S I
44°.

The activity controller deals with these complex and

complete tasks through its division into two separate

units. The two units have unique functions, but rely upon

information which is received from the other half. This

information is transmitted through a feedback

communications network which links the activity

controllers, the manipulators, and the plant controller.

i
The first unit, or AC I, deals mainly with the

planning and optimization of the paths in ways similar to

those which have been discussed. Routes, paths, through-

points and the such are all generated .ind sent to the

robot's controller.

The creativity comes in the implementation of the

second half of the activity controller or AC II. This

section has the ability to not only handle impending

collisions but it looks ahead in the process to identify

potential collision situations. This effectively operates

as a path planning routine as the path is generated with

the knowledge of the these potential collisions about to

occur.

AC II implements itself in a three step process. The

first step is to identify those items which both robots

must share in the process and with this knowledge develop a

set of potential conflict situations which may arise due to

46

the acquisition of these shared resources. This is done

simultaneously as the process progresses and allows for

real time implementation as the robot can perform its

manipulations independently of AC II and will not be

hindered by its progress or lack thereof.

The second step is the use of "prevent" and "detect"

algorithms. The first of two alternate approaches is to

have the computer monitor potential conflict situations. If

one is detected, the computer will direct the robot to

choose an alternate route or to simply wait. The second

alternative is to have the robots ask for permission before

they can proceed on with their tasks, thus providing a last

line of defense against any collision from occurring as

alternate routes can be chosen.

, The third step simulates intelligence as it provides a

recovery algorithm for the system to follow in case all of

the other safeguards have been unsuccessful. The situation

occurs where the manipulators progress to a point where

there is an impending collision to occur. For example, the

two grippers may want to retrieve the same part or tool.

Up until this point however, AC II does not detect the

impending collision due to the fact that it has been

- occupied with other computations. Here, AC II will be

interrupted and forced to implement the recovery algorithms

where it provides the manipulators with an intelligent

47

- - - - - - - - --

means by which they can control themselves in order to

regress away from this situation.

The most optimistic of recovery algorithms provides

answers for two problems. First, it will be the decision

maker as to which of the robots is to continue on with its

routine as planned. This is a relatively simple process as

it would be able to easily evaluate which robot has the

more important task at hand or which is in more need of the

device. Second, and a much harder problem, is to instruct

the waiting robot as to some other work which it can

perform while it is waiting for the tool to be freed. This

presents itself as a fairly difficult task since there are

many variables which would influence this decision. The

waiting robot may be able to use another tool, since

another function may still need to be performed. This

action may help the first robot speed its routine thereby

making the tool available sooner, or in the worst case

scenario it may simply be directed to wait until the tool

is once again available.

While this provides groundwork for the implementation

of multiple robots, the same problem of computation speed -

arises. This is a complex algorithm and the extent to

which it can be used is definitely a function of the

computing power available. -

48

The second algorithm which is available is called

Resolved Position Control. Here, the path function is

generated via some external reference. This reference

could be the center of mass of a mutually held bar or

perhaps the point of contact between a part and where it is

to be drilled. This algorithm is discussed in detail in

Chapter 6 as it is the algorithm which was implemented for

this research.

4.4 Two-dimensional Approaches

Along with these two algorithms, two two-dimensional

methods are discussed which provide insight into the basis

of path planning. While they do not readily provide

complete solutions to the problem of multiple arm path

planning, they do give guidelines to follow in specific

aspects of the path planning problem. These techniques are

based upon the Distance Function (141 and the Local Dynamic

Path Generation theories [15].

The first of the two theories is the Distance Function

Theory. A brief discussion of this approach is given

below. This topic is included in this thesis since it

emphasizes several points which provide useful information

when applying various path planning algorithms.

49

lo-

.4 *5 *~ % ~ % S..r ~ *% .* S2

*~~W7 47 -iZ- -- * .P. ..

The use of distance functions basically entails an

optimal-control problem which requires that the following

energy function be minimized:

J = Fo(x(0), x(T)) + F(x(t), u(t)) dt (4.1)

.....0

where "F" is a predefined, arbitrary cost function, "x"

represents the state variables, and "u" represents the

system's input. Time t runs from 0 to finish time T.

The state variables in equation (4.1) would be both

the position and the velocity of the manipulator. ",

Therefore, the minimization of "J", which is indicative of

the movement's energy, would be directly related to the

route which the manipulators follow.

'Vi

Figure 4.2."

Implementation of a Distance Function"°

5 0 .%
.

4..

Figure 4.2, which is taken directly from Gilbert's

paper on Distance Functions [14], is a graphic illustration

of a path generated with the minimum energy stipulation.

This figure shows actual output from a numerical

simulation that he performed and vividly demonstrates the

intelligence with which the path is chosen. Note how the

object rotates counter-clockwise at the high point of the

path in order to allow a vertical threading through the

obstacles. Also note the smooth path taken. This path

does not necessarily skirt directly around the obstacle,

but rounds the corners in a continuous motion.

These calculations point out several properties which

allow for intelligent movement. First, since the actuator

moments and torques are proportional to the energy, a

minimization of that energy will decrease the proportional

torque and moment at the individual joints. This has the

effect of causing the motion to be smooth and fluid as -\

opposed to being sporadic.

Secondly, since energy is a function of distance,

minimizing energy will be directly related to a

minimization in distance. There are many paths that a

manipulator can follow between the start point and the end

point. The minimization of the distance of that path will Iv

most obviously provide an optimal solution.

51

The second of the theories is the Local Dynamic Path

Generation Theory. Note the use of "generation" versus

"planning". This indicates that the path is being chosen

only at the local level in the vicinity of the manipulator

and that there is no "a priori" knowledge of the obstacles.

Two underlying assumptions are made at the onset of

this type of movement. First, the entire body of the robot

is able to detect an obstacle as if the robot is sheathed

in some sort of tactile blanket. This function could be

realized through many sensors or perhaps more realistically

through numerical calculations but regardless, the

information is assumed to be available. Second, once the

robot detects the said obstacle, there is an inherent

ability to skirt the obstacle. This not only includes the

end point of the effector moving around the obstacle but

also the individual arms of the robot. Thus, the solution

is not to simply have the end effector feel its way around

the perimeter of the obstacle, but to have the entire body

sense around the obstacle.

Once these assumptions are made, the theory is very

simply stated. There is a known start point and end point

in space. The most desirable path to follow is a straight

line between these two points. The robot follows that path

until an obstacle in detected. Upon this detection, the

robot uses its blanket of sensors to skirt around the

52

,% N

-! K-h 72 - - . 77 w"& t

perimeter of the robot until it reaches the original path

on the other side of the obstacle whereupon it continues on

with its motion.

End Point

Route
7

6

Obstacle

Start Point

Figure 4. 3
Local Dynamic Path Generation

Figure 4.3 illustrates the motion described above.

The manipulator starts and travels along its most desirable

route (positions 1 and 2). Once the obstacle is detected

53

(position 3), the sensors on the end effector allow the

manipulator to skirt around the obstacle (positions 4, and

5). Note in position 6 that the body sensors now provide

the input for avoidance. Once again, the robot finds its

original desired path (position 7) and continues towards

the end point.

This theory brings up several interesting points.

First, there are two possible alternatives of travel in

order to avoid the obstacle. The manipulator can skirt

either to the left or to the right. Since there is no "a

priori" knowledge of the obstacle, an intelligent decision

cannot be made as to the most feasible choice and a default

direction is chosen. This thesis suggests that even

minimal knowledge of the obstacle in the field would

provide enough information to make an intelligent decision

and that this information should be included in the

formulation of the theory.

Secondly, the concept of the "virtual obstacle" is

introduced. The virtual obstacle not only includes the

space occupied by the physical obstacle itself, but it also

includes that space which is unobtainable by the

manipulator due to the presence of the obstacle. This

extra space is referred to as the "shadow" of the obstacle

(refer to figure 4.4). The virtual obstacle for a simple

two degree-of-freedom robot is minimal when compared to

54

that of two robots mutually holding an object. Thus, a

point well made is that when dealing with more complex

systems or those cluttered with obstacles, movement may

become very limited if not impossible with fields deemed

simple for certain representations.

ENVELOPE _

. ,

OBSTACLE

'

Figure 4.4
Shadow and the Virtual Obstacle

Third, is this routine's solution to obstacles located

on the boundary of the work space. If the manipulator

happens to skirt to the intersection of the obstacle and

the boundary, there must be recovery from stopping at the

55

boundary. In this situation, the boundary is not

considered to be an obstacle. The joint angle limitations

and the singularities will prevent the boundary from

imposing a discontinuation of movement. The manipulator

will continue to skirt around the perimeter of the obstacle

using the body sensors. Note that the end point of the

robot does not have to be the point to contact with the

obstacle during the skirting process. The body points can

provide this function since they are equally well-equipped

with sensors.

The main point to be emphasized by this theory is that

when dealing with an obstacle field in motion or one where

the exact locations of the obstacles are unknown, a local,

dynamic path generation scheme can provide good solutions

to the problem of movement. These solutions may not be the

time or energy optimal but they do indicate possible and

reliable paths for the manipulators to follow.

4.5 Concluding Statements

While the problem of path planning is closely related

to collision avoidance, there are distinct differences.

The presence of obstacles do affect the generated path.

However, instead of being concerned solely with the

avoidance of obstacles in the path, path planning

56

techniques can be designed to determine the path of least "

energy or time spent given the location of the obstacles.

This chapter gives a summary of some of the theory

behind the path planning techniques employed in the

manipulation of multiple robotic arms. Several example

algorithms are discussed in addition to some of the

problems encountered while attempting to perform these

calculations.

7,

.

*1

tehiuscn5edsge to deemieth at fes

CHAPTER V

SYSTEM MODELING

5.1 Introduction

The general theory behind the coordination, path -*

planning, and collision avoidance of coordinated robots has

been presented in the previous chapters. Several examples

of viable algorithms as well as benefits and drawbacks of

those systems have been discussed. This chapter will

concentrate on a specific task and set of algorithms which

have been implemented in computer simulation. In addition,

it will describe the various technologies and theories on

which the present work has been based.

The specific task presented in this thesis is to guide

two coordinated robots holding an object, through a work-

space having obstacles. The motion of the system is only

to be defined by the start and end positions as well as the

orientation of a coordinated system which is located

arbitrarily on the object's surface.

Several other assumptions are made which further

define the problem to be solved:

1) The two robots are to have a shared work

envelope. This means that there exists the '

possibility of collision between the two

58

5p

robots as well as the problem of twisting

collision of the two robots holding a bar.

Twisting collision is the situation whereby

the object being held by the robots rotates

in such a manner as to cause the robot arms

to twist upon each other and collide.

2) The two robots are to rigidly hold an

object and coordinate that motion as opposed

to two robots working simultaneously on a

work piece as in the case of the vice/tool

scheme.

3) The initial grasp that the robots have

on the object is predefined. This grasp can

be in any combination of positions and

orientations possible on the held object.

4) Every conceivable position and

orientation within the shared work envelope

is to be obtainable by the configuration.

5) Path planning and obstacle avoidance in

a space with obstacles is to provide

intelligent motion. Intelligent motion in

this case describes a successful, and

efficient motion which is derived solely

59

',

from the arbitrary data field information

and with no external help from human input.

Along with these assumptions, several realistic

situations have been introduced which make the problems and '

solutions compatible with real-world problems encountered

in industry. These examples will be illustrated in a later

section.

5.2 Hardware Modeling

The PUMA (Programmable Universal Machine for Assembly)

Robot arm made by Unimation was chosen to be the model for

the work conducted in this research (Figure 5.1). This

choice was made for many reasons including its readily

available parametric values, kinematics, inverse

kinematics, and Denavit-Hartenberg representations.

Another reason for this choice was that the PUMA robot "

possesses six degrees-of-freedom. The work which was

performed by Lim and Chyung [13], utilized two Rhino robots

each having only five degrees-of-freedom. As a result, the S

range of motion possible by the coordinated robot scheme is

limited to cartesian movements in the work envelope and

only one of the roll-pitch-yaw angle changes (depending on

how these angles are initially defined). Note that these

position and orientation changes refer to changes in the

grasped object's coordinate frame, and not the robots'.

60

60 ,.

,2

For example, if the z-axis is oriented perpendicular to the

floor, a motion with the two Rhino robots would be limited

AX3

'S.%

-

,.

Figure 5.1
The Unimation PUMA Robot

to a change in the x-y-z cartesian coordinates and a

rotation only about the z-axis. No rotation around the x-

axis or y-axis would be possible except under very limiting

situations.

In contrast, the PUMA has full six degree-of-freedom

capability and is able to reach any position and

61

.5 '' ''-'"% ."" , . *. ". e w " %". -. -. - . -. . . .

orientation in the work envelope. This introduces many

more possibilities of motion and functions in operations

such as, for example, picking up a piece and then drilling

on the underside of that piece.

5.3 Transformations for Coordinated Robots

The primary goal in this position control scheme is to

be able to generate the robots' transformation matrices

given the transformation matrix of the mutually held

object. This way, the motion can be described by a series

of the object's transformations. This section draws upon

the Lim and Chyung paper [13] with the extension being that

it will be simulated and tested on six degree-of-freedom

PUMA robots instead of five degree-of-freedom Rhino robots.

Let T define the standard homogeneous transformation

matrix which describes the position and orientation of some

satellite coordinate system with respect to a reference

coordinate system (refer to figure 5.2). In Denavit-

Hartenberg representation [20], the 4 by 4 matrix T is

defined as:

[x Ox Ax Px
T = NY Oy Av Py (5.1)
- Nz Oz Az Pz

0 0 0 1

62

,'J

XS

Satellite
Frame-

Yr P

Az '
Ay

Re ference Xr

Frame
Zr

#.4 Figure 5. 2
Representation of Satellite and Reference Frames

where N, 0, and A are the projections of the satellite's

'axis onto the x-y-z base axis. For example, Nx describes

the projection of the N-axis of the satellite coordinate

63

.%4

. .. ,.> , ," ,"," -; "...,- ." ,', "."".,," "," ", ,-,."'." ..."-.-.- ...". .,.'.". ..."."-. .""". .-. " ". ".'.-i..

p

I

system upon the x-axis of the base coordinate system. P is

the position vector of the satellite's origin in the base

coordinate frame.
'4.

A standard notation must also be developed to describe

the transformations between the world reference coordinate

system, the mutually held object, and the robots' base and

end effector coordinates (Figure 5.3). To accomplish this,

the notation Tab (rob, t) is used. Here, "T" indicates

that this is a transformation matrix. The subscripts "a"

and "b" indicate that this transformation is from the ''a '

coordinate system to the "b" coordinate system. Subscripts

and ''b can be replaced by "'" for the reference

system, "o" for the object's system, b" for the robots' p
base system, and "b" for the robots' hand system. Argument

"rob" indicates which of the several robots is being

referenced (e.g., 1 for robot number 1 and 2 for robot

number 2). Symbol "t" is the present time progression. As .'

an example, Tbb (1, 35) indicates a transformation matrix -a

from the base coordinate system to the hand coordinate

system of robot number 1 at the thirty-fifth time

increment.

Another transformation matrix takes the form of

Tro (t). Here, there is a transformation between the

reference and object's coordinate systems at time increment

64

% % % %

LL-p

CC)~

C3.

C3S

Liz4

ca5

1T) =

CC)
Ct,

_~ Lm

65o

%"'%

t. No robot is identified since none are involved with

this matrix. Both of these notations may also be enclosed

by brackets and followed by a superscripted "-I" to

indicate an inversed transformation matrix.

With this notation, several factors can be reinforced:

1) The motion of the system will be

described by the object's transformation

matrix or Tro (t).

2) Since the grasp that the robots have on

the object is rigid:

Toh (rob, t) = Tob (rob, 0)

for rob = 1, 2 (5.2)

3) Specified initially as the data are the

initial and final object transformations or

Tro (0) and Tro (final).

Referring to Figure 5.3 and using simple vector

algebra, the following equation can be derived:

Tr b (rob) * Tb (rob, t) Tro (t) * Tob (rob, t)

for rob = 1, 2;
and all t > 0 (5.3)

Setting t = 0 and rearranging equation (5.3):

66

S.

S

Tob (rob, 0) = (Tro (0)] - * Trb (rob) * Tbh (rob,0)

for rob = 1, 2;
and all t > 0 (5.4)

Substituting into equation (5.4) from equation (5.2):

Toh (rob, t) [Tro (0)]-' * Trb (rob) * Tbh (rob,0)

for rob = 1, 2;
and all t > 0 (5.5)

I

This result is substituted into equation (5.3).

Rearranging and solving yields:

Tbh (rob, t) = Tro (t) * [Tro (0)]- 1 * Trb (rob) *

Tbbt (rob,0);

for rob = 1, 2;
and all t > 0 (5.6)

Thus, a closed form solution is obtained for the

robots' transformations. Note that this solution can be

used for any robot for which the Denavit-Hartenberg

transformations can be obtained. Now, the joint angles can

be solved for using the inverse kinematics approach and the

transformation calculations above.

As defined above, the problem states that Tro (0) and

Tro (final) are the initial specifications provided. A

method is needed to generate the Tro (t). At this point,

the influence of path planning and collision avoidance is

ignored but the method of generation will remain the same.

67

6 7 [[V.

A- .

Any transformation matrix is basically composed of a

rotation and a translation matrix. The translation matrix

is simply generated by dividing the linear motion into an

appropriate number of steps. In a computer simulation,

each frame on the screen represents a particular instance

in time. Thus, the number of steps between a start and end

point is a function of the simulated speed of the robot. A

robot in quick motion would have large changes in distances

between frames or a low number of steps for a motion. A

robot moving slowly would have a large number of steps

effectively making the distances that the arm travels

between frames be small. Therefore, the number of steps is
V

chosen as a function of the desired speed.

The rotation matrix, however does not lend itself

directly to an incremental change since it is composed of

orthogonal vectors. Therefore, the orientation must be

generated by other methods and then converted into a

rotation matrix. One method is to represent the rotation

matrix in terms of the six joint angles of an imaginary

PUMA robot whose base is located at the reference

coordinate frame and whose end-effector is located at the

object's coordinated frame. Given these angles, the

rotation matrix can be calculated through forward

kinematics and installed for the rotation matrix of the

object. This procedure proves to be a useful one for

68

situations where orientation changes similar to those of

changing the wrist angles of the robot are desired.

Unfortunately, the formulas for the kinematics are lengthy

and require extra computation time.

NA second method is to simply define the orientation

through a standard scheme such as the roll-pitch-yaw

system. Here, a rotation matrix is inserted into Tro at

the appropriate location to define the orientation. Thus,

the roll, pitch, and yaw of the start and finish points can

be calculated from Tro (0) and Tro (final) and then these

angles are incremented as the motion progresses. The

rotation matrix for the roll-pitch-yaw scheme is defined

a3:

[C crS5Sa - srCa crS5Ca + SFSc
ROT (a, ,) = SC SFSS + crCa srS1Ca - crS]-so COSa cC

(5.7)

where "C" and "S" indicate cosine and sine functions, "a"

is the roll angle, "3" is the pitch angle, and "r" is the

yaw angle [17]. Therefore, given the locus of roll-pitch-

yaw angles of the entire motion, the rotation matrix needed

for Tro (rob, t) can be calculated at each step through the

use of equation (5.7)

69

5.4 Collision Avoidance and Path Planning Algorithms

Several previous sections have discussed a variety of

path planning and collision avoidance algorithms. At this

point, the specific methods that were implemented in the

simulation presented in this thesis will be discussed in

detail.

Human beings have an incredible ability to decide

their route of motion. Data is collected by sensors such
.

as the eyes for vision and the fingers for touch. Using

this information humans can almost instantly compute a

route which will take them quickly and easily to their

destinations -- not to mention the generation of signals to

the hundreds of muscles to accomplish that motion.

It has proven to be quite a challenging task to

develop a mechanical system to simulate the actions of a

human being. Until this time no one has completely and

satisfactorily accomplished this task. By identifying

computational features and cognitive processes, a

programmer can attempt to simulate the intelligent actions

of the human via computer control.

There are several factors which influence the choice

of algorithms in the control of robots. These factors

include such aspects as the speed of computation,

effectiveness, and reliability. The computer must be able 0

70

," . .°, .', , . ." ', . . -. . . . , .- ,. . , . - . . - . , , , ' . ' . - . . . i
-... - . :. :- - : - .- -, -- . -. : . .: . -. :. - : . : : : .-'

to identify the obstacles and route through-points quickly,

then determine an acceptable path, and finally generate the

joint angles needed to drive the robot through its motion.

A combination of several algorithms was developed

which provides a quick, and reliable method from which the

computer can generate a collision free path.

This thesis introduces the term "Striving Technique"

in order to describe the method by which path planning and

collision avoidance are implemented for the movement of

coordinated robots. The basis of this theory is to combine

several of the more practical and successful features from

other well known algorithms such as the Artificial

Potential Field Concept (10] and Configuration Mapping [8].

Whereas these algorithms were designed to drive a single

robot, the Striving Technique has been designed to drive

multiple robots.

The equations derived in section 5.3 require that the

matrices Tro (0), and Tro (final) be specified at the onset

of movement. Therefore, the task for the path planning and

collision avoidance algorithm is to generate an intelligent

motion for the object's frame while moving from the start

point to the end point.

The Striving Technique first redescribes the obstacles

in the field of movement. Since the coordinate frame

71 I"

-', ', -- ," " % • " "- -U- -"-""-""-""-' " " "" "" ""'-'-" '" " '%'" "-" " "' " " -- ' '<" "'. <"-"'"- :"- -- """-

located on the obstacle is closely controlled during the

movement, it is most feasible to represent the object by

." this single point as opposed to representing the entire

volume of the object. Thus, the dimension of the object is

shrunk to a point located at the origin of the object's

coordinate frame. As in the Configuration Mapping

a., Firal K --..• Position

Malo

OBSTACLE\ \ Iote

ENLARlGED DBT[EIaisi
OBSTAGLE

Dimension

Figure 5.4
Configuration Mapping

72

";.

V.

C,.•

S- ' % V - -. a,. .' a ~V A VA ~ A

technique (8], a shrinking of the object to a point must be

complemented by an appropriate enlarging of the obstacles

(refer to figure 5.4). Since the object has the ability to

attain any orientation, the outer perimeter of the

obstacles are increased by an amount equal to the major

dimension of the object. The major dimension describes the

distance from the object's frame to its farthest point on

the perimeter.

Configuration Mapping has the potential problem of

"choking". Choking is a situation whereby the obstacles

have been enlarged to the point of eliminating all possible

routes for the robots to take as the enlarged obstacles

extend from boundary to boundary separating the start point

from the end point. The problem of choking is relatively

rare since it requires a large number of obstacles or

physically large obstacles. Therefore, an obsLacle field

is to be chosen which will allow complete motion and the

problem of choking will not become a prohibiting factor in

the movement.

Thus, the Striving Technique defines that only the

origin of the object's reference system need avoid the

enlarged obstacles in order to prevent collision to occur.

Due to the configuration mapping, this avoidance only

involves comparing one point to the perimeter of the

73

A- A

V T7%-- 1U .r VW S t-

,5.

obstacles as opposed to comparing all of the points of the

object to all of the points of the obstacles.

In the discussion given above, collision avoidance has

only been concerned with the object striking an obstacle.

The potential collision of the robots are not included in

this algorithm. The problem of robot collision avoidance

is solved with the implementation of the Graph Node Search

14 15
12

13 15

10

NODES

4

.

3

Figure 5.5
Robot Nodes

74

I.

4,

algorithm [16]. This algorithm first identifies nodes

(Figure 5.5) which are located along the individual arms of

the robots starting from the base and continuing up to the

ends of the gripper parts. During the motion, the distance

is calculated between the nodes of the first robot and the

second robot, as well as the distance between the first

robot and the obstacles. Then, the distances are a

calculated between the second robot and the obstacles. If

any of these distances fall below a "safe" value,

permission to perform that movement (as described in the

following paragraphs) is not granted.

The obvious problem is that of computation speed due

to the large number of nodes needed to describe the robots

and the obstacles. If each robot has twenty nodes and two

obstacles have ten nodes each, a total of twelve hundred

distances will need to be calculated for each movement.

This could computationally become very cumbersome. In

trying to decrease the number of calculations, several of

these distances which will never fall below the safe value

can be eliminated. These distances, include for example,

the distance between the bases which obviously will not

present a problem unless the robots are located on a

sliding base track. Even with these reductions, real-time

data processing can still only be achieved on a very fast N

computer.

75

.5
-',

| . : : _- - - - ~

Now that the collision avoidance algorithm is

implemented, a complementary path planning algorithm is

introduced in a combination of the Potential Field Concept

[101 and the Permission Technique. This combination is

then adapted to use with multiple robotic systems.

The name given to this concept, Striving Technique, is

derived from the underlying assumption that the priority of

movement is geared towards the ultimate goal location as

opposed to intermediate through points. This assumption is

made for the purpose of allowing the algorithm to be

applicable for fields of movement where only local

detection of obstacles is known perhaps through sensors or

a vision system.

The motion is initiated by first determining a point

in space which is situated an incremental distance from the

present location and on a straight line between the

object's present location and the end point. This next

point is then run through the various collision avoidance

algorithms to determine if it is achievable. If this

location is safe, then the movement is performed and the

next location is determined and checked. If the location

is not safe, then an alternate location must be found.

The choice of the alternate location is limited to the

immediate area and can become very complex for several

76

) ; ... ,v..' ." ,/' 2 ;€,' ; . - .5,. , -.. .- - '. .W5 " ,. &\' ' _. 'L ..

reasons. The need for an alternate location was determined

due to a possible collision but the nature of the collision

is unknown. It could be an overhang that the manipulators

must regress from and go over. Or it could be a slot that

the manipulator has fed the edge of the obstacle into,
which again must be backed away from and jumped. For each ,

individual type of situation, different recovery algorithms

would need to be implemented.

Due to this complexity, a simpler general algorithm

is chosen to determine the recovery path that the

manipulator is to follow. This algorithm handles most

situations but does have some difficulties with the most

complex of problems. Once the desired next-point is deemed

unsafe, the recovery algorithm is called. Here, the

computer checks a series of locations to investigate if

these locations are safe. The first safe location that is

found defines the next location that the object is to move

to and at that point, control is passed back to the normal

path planning algorithm.

The choice of the appropriate series of locations

mentioned above is a function of both the types of

situations the manipulator is required to handle, and the

speed desired. The speed is increased by having the points

positioned with more distance between them. A less number

of iterations will be required for points which are farther

77

apart, but poorer solutions (e.g., longer paths) will be

provided than if the points were very close together; which

is another trade-off in this process.

The types of situations will also dictate this series

of locations. A field where only blocks orthogonal to and

on the floor may require the recovery algorithm to go "up

and over" the obstacle. It may be valid to state that in

certain types of obstacle fields, the manipulators will be

able to skirt counter-clockwise around the obstacle. This

series thus becomes quite dependant upon the individual

task at hand.

The specific recovery algorithm implemented in the

computer simulation is set up with the criterion that

movement is to occur generally along the x-axis in the

negative direction. Thus, the algorithm stipulates that if

the desired position is not available, then the next

desirable position will be in the positive x-direction. If

that position is also not available, a point down from the

first alternate position is chosen. Finally, if this

second position is also not available, then a position in

the positive y-direction is chosen. More of the local

alternate positions could be added so there would be no

limitations in the types of movements, but there would be

extra computation time required. Therefore, in trying to

78

increase the execution speed of the program, only these

three alternate steps are defined.

5.5 Concluding Statements

The specific theory implemented in the computer

simulation was discussed at length. Methods for path

planning, collision avoidance, and transformation

generation were presented which will provide the computer

simulation with intelligence to move two robots mutually

holding an object with an intelligence to move the object

through a field in which obstacles are located. The

obstacles may be of regular shape and size or may have

overhangs. The object is represented as a rectangular box

but may be of any size or shape which allows for a firm

grip.

79

; S

CHAPTER VI

COMPUTER SIMULATION AND GRAPHICS

6.1 Introduction

The previous chapter presented several algorithms and

theories which can be utilized in controlling multiple

robotic manipulators. These theories included appropriate

transformation generation techniques, and path planning

and collision avoidance algorithms. The purpose of this

chapter is to describe the implementation of these various

techniques in a computer program and to describe the actual

processes which occur on the computer screen.

The use of computer simulation to analyze the motions

of robots is a standard procedure in industry today for

several reasons. A manager can review several different

types and styles of robots and choose among them to find

the one which suits the needs of the particular task at

hand. Once the appropriate model is chosen, extensive off-

line testing can be performed to identify conflict

situations, areas of possible collisions, and the most time

or energy efficient paths. Also, if the robot is to fail

and collide with a person or object in the work envelope,

there could be extensive injury or damage. If in the

simulation a collision with an object takes place, lights

may flash and buzzers may sound but no actual damage would

80

occur and nobody would be hurt. The ultimate advantage is

that of cost. It is simply less expensive to view computer

simulations than it is to actually run a machine in the

testing phase of the research and purchase.

The computer simulation "CoordSim" developed for this

thesis research is written in TurboPascal, a pascal

programming language developed by Borland International for

use on a personal computer. This language was chosen for

its complete graphics capabilities, ease in program

development, and available library of commands. Refer to

appendix 1 for the program listing.

6.2 Program Features

CoordSim is set up as a computer generated simulation

of two PUMA robots each of which partially share a portion

of the other's workspace.

The screen output (figure 6.1) is set up to display

most of the pertinent information which the programmer or

user needs for analyzing the motion of the robots. The

main screen depicts a vector model of the PUMA robots. The

individual lines represent vectors which travel along the

center-line of the robot arms. The scale of the robots is

exactly that of the actual PUMA robot in order to maintain

the relative size of the work envelope and the locations of

the singularities.

81

... "r V

CNJi

-M -M -44 ci z

c c- -" CD

4-- CD ciciC -- DciC) C;C

aj cz

=3 _i --

C= .c ci

CNJ

-Mi
CD

-X .- 4-
4-'J

C- D
M: -- E-L

-44 Ll C-

crc

-- 4m C 3

- c

ci C

4--2

C4.) 4-)

CDi ca

C=; C=
CC3

03 C'-
aC C=

A, CU --)J
C- c

a82=
CL3 -4

L- -0 (

CU L-I.

' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 4 CD- (a .'A A''*~" .~ ' N~ .. .'. .
a ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ a c3 L-- .- - - .VW A . ~ W q NAA ~ '.* .*.* ~'.*:

.A

N

Around the perimeter of th. screen are several sets of

numbers. Starting with the bottom, left hand corner of the .

screen one finds the rotation matrix of the left hand

robot, called Robot 1. The next matrix to the right is the

appropriate rotation matrix of the right hand robot, called

Robot 2. These rotation matrices describe the orientation -

of the hand coordinate system in reference to the base

coordinate system. In the bottom, right hand corner are

the absolute, world frame coordinates of the two robots.

The origin of that frame is located in the plane of the

screen at the bottom left hand side of the robot window.

The user is looking at the x-z plane with the y-axis

directed orthogonally into the screen. The final sets of
'.w

numbers are the joint angles located on the right hand side

of the screen. These numbers are output as degrees and

represent the values of the joint angles of the six joints

of each PUMA robot.

From the keyboard, the user can control several

inherent functions of the robots (refer to appendix 2,

User's Guide). These functions include increasing or

decreasing any of the six joint angles of either robot as

well as generating cartesian movement of the end effector

frame of either robot. This way, the robots can be placed
"S

at any position and orientation in the appropriate work

envelopes.

83

!,

• """- " "", "" " "- ," " "a ', " '-.'.-"". .,. . ..-.""."."". -"". ." . " . " "" . " " '- . . .-"- -- "", . . -

There are several characteristics of real-world robots

which were not represented in this simulation. These

characteristics are briefly outlined below:

1) There is no limit on the value of the

joint angles. In other words, a particular

joint can rotate around indefinitely with no

effect on the generation of data.

2) No force, acceleration, or vibration

considerations are made. The purpose of the

simulation presented in this thesis was to

test position control strategies and not

velocity or force control functions.

3) There is absolute position control.

Real world robots have characteristics such

as compliance, weight, and inertia which

affect the actual position of the robot.

Therefore, the position which the robot

thinks it occupies is not necessarily the

position it actually occupies due to these

inaccuracies. The computer generated robot

has no weight or compliance. Thus, it can

be assumed that the indicated position is

completely accurate as obtained from the use

84

of kinematic and inverse kinematic

calculations.

4) Since the speed of computations does not

allow for a series of movie-like movements,

each frame represents approximately a scaled

ten millimeter displacement of the end

effector, or at most a ten degree change of

a particular joint angle. These values were

chosen as they seem to provide a realistic,

real-time movement on the screen.

6.3 Utilization of Modeling Techniques

There are eight basic motions which this coordinated

robot scheme has been programmed to perform. These

functions utilize various algorithms which have been

developed in previous chapters and illustrate the generated

motion of the manipulators on the computer screen. The

purpose of these functions is to index the level of success

of these algorithms and test them under various situations.

They are presented below in increasing order of complexity.

Routine 1 is a graphic illustration of the

capabilities and range of motion of the manipulators

(figure 6.2). In this series of movements, the robots are

directed to perform a drilling process on a cubical object.

Robot 1 first moves to a hover position over the cube while

85

1941

1.3

-11.2l

1F 5 5147 1511

66611 .09 6 06S 01 IT -466611 .006 I 6.645 6.1 865-i1.19 5.1

9.666 6.606-1.666 6.119 -1.805 OA 3.19 .1 9..91 0 .60 -1. 606ioo I. lit -6.645 6.03 43.1 21.61

Frame 1 Frame 2

-97.912-41.312
-3.57 3.27
-6.29-37.11

-129. -14.14

Frame~ 33rm

'31.21 -3.2
10.24

74.4 .Til

16 1.0 -. 7 -. 972341 3SA 110 OA 6 199 9.9 0,?I.1 -362.37 31 .1

-11

]l1 - 9.06 10 -0.040 .1 - .075 ~ -5123 3-549 -3M -: ii04 Mv44

Figure

A-RiM 969 THE COCADINATION OF NULTIPLE ROBOTIC MANIPULRTORSCU) 22
AMl MILITRY PERSONNEL CENTER RLEXANDRIR YR R F VOUNO
11 DEC 9

UNCLISSIFIED F/0 13/0I M

mhhhhhmmmml
no-"hmhhmOWhhhhhm

,1111 B llg

14M'1

I-

robot 2 moves to its drilling position and waits (frame 1).

Then, robot 1 drops down onto the cube and grasps it (frame

2), and returns to the hover position. Next, robot 1 moves

(frame 3) to the vice position where it holds the cube for

a drilling operation (frame 4). Robot 2 then drills two

holes simultaneously into the cube (frame 5) and retracts

the drill (frame 6).

I
This routine also illustrates the use of coordinated

robots where one robot is a tool and the other robot is a

smart vice. The vice is able to assume many positions and

orientations and thus makes a very versatile machine with

which to perform intricate operations.

The execution of this routine utilizes the procedure

RobMov as described below. The routine is designed to move

the robots from their present location to a new location as

defined by the new set of joint angles. Therefore, the

motion of routine 1 is generated by specifying a series of

points and then moving the robots to those points

consecutively via RobMov. In this sense, the routine

simulates the use of the teach pendant where each of the

robots is taught a series of locations to travel to with

the time the robots reach those through-points being

closely controlled since the robots are to be coordinated.

'

87

6 17-.

Routine 2 introduces the type of coordination where

the two robots are simultaneously holding an object (figure

6.3). The purpose of this series of movements is to

illustrate the accuracy of the transformation generation

theorem as presented by Lim and Chyung [13]. As they

showed with their Rhino Robots, routine 2's series of

frames indicates a progression of movement composed of a

-48.86 -25 72{,0I If#31.10 2.41
-21.357 I 77

_-11T.43 14, 4I 18.50 l.
I21.11 \24

I.-IN I.M6 I.884 LO.1 19 8-0.899 3.31 422.21 1.88 I f1 .6.8.14 6W 1NI8 1 9 11821 412.21_.!' 1.1 16. -1.12- -48.1 -42. -. o" No-1.N1 I.066 .0 01 .018 .Mo . -46.1. -48.17
8.8 .8 181 -.8 ~g -.n5.6 5.7 88f8881No 4461 88.8 -1.0 50.4 58.47

Frame 1 Frame 2

4.762 -QI

I -. 1
* .17 2.84 ,,

-40 .767 -45.127

__________ 162.251

i.4,i l.,, ,{I i' 1.10{ "IW -2.13a -41.11{ -40.'7 1 1 w -I.m{ 1.66 6.162 -1.4y, + 4; -42.11 -4 11.
6.{, a.16 -I.iN -i.16i LOW -1.006 56A4 50.4'7 VONi l~I' - -1.i1% i.MU-IM1 50.41 5i,47

Frame 3 Frame 4

Figure 6.3 .Routine 22.

88

',n,
)" %' '", " 5, % % " ",,'",'",, ,_%, _ %, ",,',",, "_, _ ,",_ _ __ " __ ' " " " - '.

translation, and rotation only about an axis perpendicular

to the x-y plane. The start and end points, and

orientations are arbitrary values located within the

object's work envelope.

This routine also graphically illustrates the object's

work envelope as defined in chapter 2. In the last frame

of the motion, three arcs are drawn to represent the volume

from which the object's coordinate frame origin cannot

exit.

The method used in routine 2 simply increments the

position vector of Tro, then calculates the robots'

transformations via NexTran, and finally draws the robots

and the object in a loop for however many steps are

desired.

Routine 3 represents motion which is extended to

include any rotation of the object's coordinate frame. In

this routine, the representation of PUMA joint angles is

utilized to identify the orientation of the object and to

calculate the rotation matrix of Tro (refer to section 5.3

for a detailed discussion). Figure 6.4 illustrates the

start and end point of the motion which includes a

translation between arbitrary points as well as a change of

thirty degrees in theta 5. As can be seen, this rotation

is not simply a single change of the roll-pitch-yaw angles

89

but it effectively performs a combination of two or more of

those angles.

18.58-38.331

33.8-12.1

2.051 -13. 1
-131.43 -11.4

11.43 .9

!.111 8.833 LORD338 1.33 391 -8131 332.30 422.31 8.104 -+.42 -1.414 8.534 -1.862 -1,424 255.32 133.1
3.iii -:34W I.3M 3.34 *1.B14 -B.4 11.3 -3 1 -4. 3.858 +10.5 AI 8. 1 .951 -8.511 3.21 -42.11 -17.35

CO A 1. 3 +11 .111 -1.111 54.41 31.47 -1.425 -1.214 -1.161 -8.425 -1.214 -1.31619 1 11.85

Frame 1Frame 2

Figure 6.4
Routine 3

The basis of this routine is similar to that of

routine 2 with the addition of calculating the new rotation

matrix of Tro while incrementing the position vector.

Refer to figure 6.5 for the corresponding flowchart.

Routine 4 (figure 6.6) uses a roll-pitch-yaw angle

change instead of the theta angle change in order to

generate the orientation matrix of the object's coordinate

frame. Here, a thirty degree increase in roll, followed by

a twenty degree increase in yaw, were implemented with a

translation. Again, the figure shows the start and end

points.

90

LETROUTINE

i
v

Determine number of steps for movement to final positioni

V

Determine change in representative theta

v

Calculate rotation matrix from representative thetas

EForm Tro from rotation matrix above and* I incrementation of translation vector

v

Calculate robots' transformation matrices from Tro!

v

------------ rloop for number of steps

v

EXIT ROUTINE

Figure 6.5
Flowchart of Routine 3

91

-25,352 -55.?1
19.55; -12.58

-Il. 5J -3.71
e.g.-3.6

-25.3)57 -2. 27

"-f!,43 -16.11

17. 141,
-L .4 14.417-*",443 35.48)

-i-rn.-{ -8.533

gi 6 .91 1.161 9,12 .09. " 332.39 422.36 1.90 -.342 -8.142 1.110 ,.4 4.24- 275.15 ,6.14a wa -e.. .6. 0 .9oo -18o 9 -sm .1. -4..17 9.3 -,.4 -o.o .o .- ,5o-. -74.4 -4".,,
I..i .8-I -* 9 .8o8 . U . 4 .,'4 -6 M-6.OO -O.I -6.259 -.O0 -1.16 1. 4.15

Frame 1 Frame 2

Figure 6.6
Routine 4

The procedure used in routine 4 follows the flow

chart of routine 3 (figure 6.5) with the exception that

instead of using the represent itive joint angles to

calculate the rotation matrix of Tro, it uses the roll-

pitch-yaw representation and equation (5.7).

Routine 5 (figure 6.7) demonstrates the use of the

coordinated graph node search algorithm. The movement is

similar to routine 2's except at each iteration the graph

node search is performed to test whether or not the pre-

determined nodes on each of the robot arms are likely to

collide. This routine also illustrates the increased

computation time required between the frames in order to

calculate the distances between the various nodes.

92

~~~~~~ 'V * f. . ..'% o %' w



Routine 6 illustrates a potential collision as

discovered by the graph node search (figure 6.8). The

motion is a translation plus a gross yaw rotation of n.

ENEROUTINE

v

Determine number of steps for movement to final positionN

-------- --- ---- ---- --.> (
v

Calculate Tro of the next frame1

v

Are any pairs of nodes within the safe distance?

no yes
v v

IPerform movement Stop moveent

v

Loop for number of steps

v
IEXIT ! .N]

OUTINE -

Figure 6.7
Flowchart of Routine 5

This yaw rotation causes the arms of the robots to spiral

and twist upon themselves (a twisting collision). At a

certain point in the progression of movement, the algorithm

93

. * * -%~I'. I, -~- -. \*.p-.p!U ':~ ' ** ~ UI ~ *~~ * -~ % ~



detects the potential collision and causes the movement to

halt (frame 4).

Routines 7 and 8 introduce the implementation of the

collision avoidance algorithm (refer to figure 6.11 for the

flowchart). The difference between the two is the series

-11352 -21 .5
1.51 1.45

-43.58 -29.22

2I,.o 27.71
-21.357 14.25

-16!.43 -111.41
21.51 14.29

-1 1.42 - .413

1.99 0.gO 1.000 1,11 0.091 -1.1"8 322.36 422.31 11. 1 -1.511 1.11 1.1" -t,51i -0.9 325.42 311.5
8.08 o-1.88 -9. oo698 o8 . l -6..6H- 0. 1 7 -. - .690 -1.511 -o.101 .96 -17.70 70.51
.91.1-N 1 ARANW - 8.1 0 1 -1.689 5U4 5647 9.96911 0 -1.98 -089 -9.89 -1.088 50.7 SU.2

Frame 1 Frame 2

NOD[ COLLISIONMWILL OCC10419DX., IIAS 1IN rICU[N

-15.52 -27.29
104.2

-44,27 451.62
I 42.&5 54.17

1.46 134.71

.21 25'.6

27.6 98
____ __.36.663 -1.263

- 51 .{ -9 839 -,151 9.939 344.2 317.0. -11 6 10 0 -9.51 -9.390 8.08 35.53 264.14
-i 5: 1 3a -1.61V -0.151 9.31 9.8 -6.2 -14.17 +.391 0,951-i.988 -90.1 0,151 -9806 -44.11 -71,13
S i -4.16 -1.681 -9.8 -1.88 -1.18d I. 0. 901 -8.88 -1.M -I.8i -+.64 -1.1011 77.14 77.4

Frame 3 Frame 4

Figure 6.8
Routine 6

94

p.



39,9931.41
21,25-27.23

-191.42-112.1
list * 6.9

21.11 27.1U

-32.41-14.52

C -191.42 1i1,

1.99 .99 999 199 9.94-999 ~ 231 422.39 1 -9.946 9.999 9.119 -8.946 -9.909 325.12 414.72
1.909 -1.961 1.14) C.9N -1.099 -9.90 -49.11 -49.17 -1.941 -911 9.9992 +1.41 -9.111 -9.999 -31.13 -42.21
9.909 CHO0 -1.900 -1.91 C.HO -1.90 51,46 $9.47 9.938 I.909 -1.909 -1.166 9.99 -1.999 57.0 57.71

Frame 1 Frame 2

VOI ISH Mt9I 9911 SSIAC

-11.19 -22.52
-11.39 -2.61

22.44 26.29
-23.27 -22.27

-13913112.6
-3.54 -11 .25
31.74 46.73

-1 -33.29 -21.49
___________ 122 i9 --122. it

0.Al9 -9 14009 MP 10 -9.140 -9.199 312.96 !?.57 1,110 -. 14 9.9 1.11 0 149 99 2.l6 M3.5
A9.140 -i I!; I.093 -9.149 -0.119 -0,899 -34.99 -46.2 f~ fa -6.119~,9 1 - c.4-.0fei0 -2416 ~z~ .09-.99-9.641 9.900 -1.900 72.15 12.16 0.Oi L.W0 -1.90 -0~ 99 .09d -5902.15 12.16

Frame 3 Frame 4

-34.11 , -49
1.9 ,f.

25.017 I-

-It 8 -1,54"1'

9.7 -. 92-.99 9.7-92?M 6.22 391.47 9.961 -9.9 Sig 9 cl.pI1Il -9.599 -1.601 211.12 391.17
96292 - 971 9.99W -9.292 -z '0 -C2 .1.25 -42.17 10510 -9.966 -60 -9I56 -4.966 -9M9 -17,51 -62.41
a99 OR 91.999-I f -9a.9up J. Ui -1.90 196.71 196:5 to 090i 9-.99 - 9999 -1.999I'M-1.9 121.91 13690t

Frame 5 Frame 6

Figure 6. 9
Routine 7.4

95

-~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ f WU,>% 'Xor~ p 
4 ~5~ gf~



of recovery steps taken once a potential collision is

identified. Routine 7 (figure 6.9) shows the object

driving towards the goal position (frame 2) until an

obstacle is identified (frame 3). It is assumed for this

routine that all of the obstacles are box-like in shape and

orthogonal to the floor so the recovery routine states that

the manipulators are to move up and over the obstacle

(frame 4). Therefore, each of the alternate points is

simply 10 units upward along the z-axis. Once a clear path

is found, the computer regenerates a route to the goal

location, and the robot continues on with its motion (frame

5) until the goal is reached (frame 6).

Routine 8 implements a more intelligent recovery

routine (figure 6.10) in that the obstacle shape is no

longer limited to cubes. Here the possibility of

overhanging obstacles is introduced and thus the assumption

that simply moving up will provide a solution to the

avoidance routine is no longer valid. Frame 1 illustrates

the obstacle field. Note that the obstacle size has been

enlarged in accordance with Configuration Mapping

techniques. The shaded box is the actual obstacle and the

box surrounding the obstacle indicates the boundary which

cannot be crossed by the object frame's origin. This

boundary is not increased uniformly around the obstacle .9

since this motion as defined, only has an object yaw angle

* 96



IL

aIOIgG OI7CLZ

-29.35 -27.14
-141.43 -124.1

31.11 22.23

-111.42 -1 11

21.1 -4 .11 ", .I

117611931.43_19 990 385 -1W

.AN 1.816 -8.1888524 I I2.6 -1..11 860 8.9 _11 04 88M -31.57

Frame 1 Frame 2

-24.05 -21.27
1.13 12134

3 7 41 .2

'I'M
-11.41

+;i 4 M 4( 11 -i.13 +W9 13.45411. 4 ' M1i 1560 1.004 e0.50I 1.22e 756.8 214 7,-

i iik8 1i iol..~ i.89 -1 1 i3183 0.1 I'889 W 8894- 800 1 .09 2 9-I l N5.o ~ .

Frame 5 Frame 6

4.7!.

A9. l-.13-1e- n i.i- l W *%\ %. .. **'%. W4 1.6 - 1.61 -1.5 -0. 41
wi %~i I.V -!I I./

4 - .1 :31.14 .. IN COW -Al 1 O-.11 5.1 161



change. The purpose of this limitation is to provide a

more vivid means to illustrate the output. This does not

constrain the algorithm in any way.

The motion initiates (frame 1) and progresses until

the next desired position is deemed unobtainable as it is

occupied by the obstacle (frame 2). At this point, the

computer searches successively to the following points:

1) Alternate Point 1 (API) is located 10

units in the negative x-direction and 5

units in the positive z-direction from the

unobtainable point.

2) Alternate Point 2 (AP2) is located 15

units in the negative z-direction from API.

3) Alternate Point 3 (AP3) is located 10

units in the positive y-direction from AP2.

The alternate points are referenced from the

unobtainable location as indicated above due to the

fact that theoretically this unobtainable point is closer

to the goal position and near the boundary of the obstacle.

Thus, it provides a more desirable reference point from

which movements may be calculated.

Frame 3 indicates that progression to AP2 provides

movement under the obstacle and then frame 4 shows that

98

A*

. .0

le b . ~~ ~ *0 ~ ~ ~ ~ P''V.~V.:.~..>' .m,~b



[E7TROUTINE

II

i < - - - - - - - - - - - -

v

v

enlarged obstacle boundary? -

yes 1
v

no
Is AP 1 within the ---> Set Tro to AP i

jenlarged boundary? ,

yes 1
V

no 1
Is AP 2 within the --- Set Tro to AP 2 ------->1

enlarged boundary?

yes v
noI s AP 3 within the --- )> Set Tro to AP------------>i

enare boundary? Iiv
II

yes Perform movement
v

V

Stop movement 
v

Loop until <-
EXIT RO <--- goal is reached

Figure 6.11
Flowchart of Routines 7 and 8

99

.5



progression to API allows movement up the side of the

obstacle. Once the manipulators clear the obstacle (frame

5, the movement is again initiated towards the goal (frame

6).

Note that while the object is in the enlarged

obstacle, no collision occurs unless the origin of the

object's coordinate from crosses that boundary.

6.4 Subroutine Definitions

The following is a summary of the various functions,

procedures (subroutines), and programs utilized by the

simulation. Refer to appendix 1 for a complete program

listing and variable list.

Function Atan2: TurboPascal does not have a math

function for the four-quadrant inverse tangent function.

Therefore, this function is written to input the numerator

(num) and the denominator (den) as real numbers and returns

the Atan2 value as a real number.

Function Pow: Again TurboPascal has no routine for

finding a number's power greater than two. This function

inputs a real number (x), and the real power (y) and

returns a real which is x raised to the y power.

Procedure Envelope: This routine draws the object's

work envelope onto the screen.

100

%S



II'Kn]L X A n • I..

File Graph.p: This file is compiled with CoordSim in

order to provide several TurboPascal graphics functions

such as drawing lines (Draw) or filling an enclosed shape

with a color (FillShape).

Procedure Coordinate: This routine inputs the joint

angles (theta) and the transformation matrices (trans) of

both robots and returns the world coordinates of the nodes

on each of the robots (coord). The nodes are defined as in

figure 5.4

Procedure Node: This routine inputs the reference

coordinates of the nodes (coord) as found in procedure

Coordinate and returns a Boolean value (collision) which

when true, indicates that a node on robot 1 is coming close

to contact with a node on robot 2. This routine is used in

the graph node search algorithms.

Procedure CalcRot: This routine inputs the roll-

pitch-yaw angles (rpy) and returns the appropriate rotation

matrix (rot).

Procedure CalcTran: This routine inputs the joint

angles of both robots (theta) and returns the appropriate

transformation matrices of each of the robots (trans).

Procedure Step: This routine inputs a start and end

position of an end-effector (start, finish) and returns an

101



integer which represents the approximate number of ten unit

steps that there are between the start point and end point.

The purpose is to have a uniform, ten step movement on the

screen when a robot is to move.

Procedure InvKin: This routine inputs the r
1'

transformation matrices and characteristics of both robots

(trans, chars), performs inverse kinematic calculations,

and then returns the joint angles (theta). The

characteristics of a PUMA robot describe the arm up/down,

wrist flip/no-flip, and shoulder left/right situations.

Procedure Border: This routine draws a border around

the screen and divides the robot window from the numbers

which are displayed on the screen.

Procedure DrawIquad: The graphics functions of

TurboPascal reference the upper left hand corner of the

screen as the origin with positive x values increasing to

the right and positive y values increasing downward. This

routine transforms the origin to the lower left hand corner

of the screen and emulates the first quadrant of an x-y

coordinate system. Also, this graphics screen is 640

pixels x 200 pixels; therefore, a point (100,100) will not

be located equidistant from the lower and left hand side of

the screen. This routine also numerically compensates to

make the scale on the x-axis equal the scale on the y-axis

102
4 -

.4. m& . . 5



and produce a graphically correct picture for the user to

see.

Procedure CircleIquad: This routine draws a circle on

the screen in the coordinate system described above.

Procedure DrawFrame: This routine inputs the

transformation matrices, joint angles, and node coordinates

(trans, theta, coords) and draws the robots on the screen.

Procedure MulTran: This routine multiplies two four

by four matrices (tranl, tran2) and returns the product

(prod).

Procedure Nextran: This routine inputs the

transformation of the mutually held object (Tro) and

returns the two robots' transformations (trans).

Procedure InvTran: This routine inputs a

transformation matrix (tran) and returns the inverse of

that matrix (invtran).

Procedure DrawBox, DrawSquare, and DrawBox2: These

routines draw the various objects which are being held by

the robots. It also identifies the origin of the object's

coordinate system with a circle.

103



Procedure Thetalncr: This routine is similar to Steps

except that the number of steps is a function of the

largest change among the joint angles.

Procedures DrawObst and DrawObstl: These routines

draw various obstacle which are used by the main program.

Procedure Robmov: This routine moves a robot

automatically from its present location as identified by

joint angles (theta) to a new location as identified by the

new joint angles (thetaNEW) in a uniform motion.

With the definition of these various procedures

contained within CoordSim, and the routines described in

this chapter, the implementation of the algorithms in the

code should be apparent.

6.5 Concluding Statements

This chapter has described the computer program

CoordSim. Included in that description is an explanation

of the purposes of the various procedures and routines

located within the code and the manner in which the

algorithms developed in past chapters have been implemented

by the computer simulation.

The program has been tested under numerous situations

and has proved successful under all of those tests. Thus,

a complete, and viable simulation tool has been developed.

104

% %*



-w ri -41J1FIV 1. WMWI1 UT -AWJ WIII W

The following chapter discusses the level of success

which was achieved by each of the routines as well as the

theory it supports.

ie,

105

0- -e e o



"*- I. W S.7 W a- v- - - ----. -~.

CHAPTER VII

RESULTS AND CONCLUSIONS

7.1 Discussion of Results

There are several problems present in industry today

which at a first glance seem to be easily solvable with the

use of robotic manipulators. However, due to limitations

such as maximum payload, maximum reach of the individual

robots, and the single robot work-cell's dynamic

inadaptability, the use of a single robot can prove to be

ineffective in certain work environments. The following

section presents some of these situations and their

possible solutions as derived using the various algorithms

and theories contained in this thesis.

There are many examples of processes which require the

manipulation of large, oblong, or heavy objects. imagine

attempting to rick up a 10 foot, 200 pound bar by one of

the two ends--not an easy task by any means for one robot

to perform due to the tremendous torque produced by the

weight. If the robot had a maximum payload constraint of

150 pounds, then even trying to lift the bar in the center

would prove impossible. This problem is easily solved

through the use of two robots, each grasping the bar at an

end. Assuming the bar to be a rigid structure, the moment

at the robot hand disappears and a single robot need only

106



lift one-half the total weight of the bar. In this

situation, the two robots with maximum payloads of 150

pounds each, now effectively have a 300 pound lifting

capability which would be enough to lift the 200 pound

shaft.

Also, with a two robot work-cell, one of the robots

can function as a smart vice while the other performs some

sort of operation on the held piece. The advantages of

this type of work-cell are numerous. The smart vice can

attain many more positions and orientations compared to a

vice developed for a specific purpose. Moreover, the smart

vice can easily be adapted for new processes which need to

be implemented.

The uses of multiple robot systems are many. The

problem is to control such systems easily and accurately.

Routine 2 (chapter 6) presents and illustrates the

successful implementation of a coordinated position control

scheme. This routine simulates a process where, for

example, a long, heavy shaft is to be loaded into a lathe.

The robots are able to pick up the shaft and move it from a

start point (perhaps a stock bin) to an end point (the

lathe) by simply controlling the motion of a coordinate

system located on the bar.

107

- - . .v -.. .- . ..; -' .'s... d . V.d.



Many processes on assembly lines utilize single robots

which have been "taught" a function. Teaching is a process

whereby the robot is led through a motion by a human

operator. The operator records joint velocities, through

points, and other function-specific characteristics, and

the robot cycles repeatedly through the motion to perform

the task at hand (such as an assembly). Using the position

control scheme proposed in this thesis, the same teaching

process can be implemented to teach coordinated robots. In

this case, the operator references the mutually held

object's coordinate frame to define the motion of the

system. If a bar is to be loaded into a lathe, the

operator need only teach the path for the bar to take and

the computer automatically calculates the joint angles and

velocities given the bar path information. Routine 4

illustrates this scenario. The bars path is defined by a

start point (a stock bin) and an end point (the lathe).

The computer then takes the bar through this displacement

with an appropriate change in the roll-pitch-yaw angle for

proper loading into the lathe.

With the algorithms presented in this thesis, not only

is it physically possible to lift this bar and control its

motion via a teach pendant, but the bar can also be moved

intelligently. This means that the two robots holding the

bar can be moved from a starting location and orientation

108



to an end point and orientation through a computer

generated path which accounts for obstacles located in the

work envelope. This scenario is futuristic as it

represents a problem of the work-cells of tomorrow. In

this highly dynamic work-cell, the processes can be

extremely complex. Thus, it may become quite ineffective

to teach each individual motion for the robots to perform.

The work-cell must be able to adapt to changing

environments and perform functions given only a set of

parameters. The cell's controlling computer should

intelligently ponder the problem at hand, decide upon

appropriate actions, and implement those actions

accordingly.

The following is presented as an example scenario.

The process controller has decided upon the task of this

particular work-cell. This task is to move a long rod from

a centralized stock bin to a cutting machine. The cutting

machine is located opposite the stock bin with a pathway
.%

for Automatically Guided Vehicles (AGV's) running between

the two. Thus, the robot's path contains obstacles. The

computer must therefore control the coordinated robots

through the motion and avoid the AGV's as they move along S

the pathway. Routine 8 (chapter 6) illustrates this type

of movement. The robots successfully navigate from the

start point (stock bin) to the end point (cutter) with the

U.

109 "

-W LNV '

Ni'



W

avoidance of obstacles located in the field occurring

dynamically with the motion.

Another situation may arise where the bar to be loaded

into the cutter has been inadvertently placed into the

stock bin backwards. The robot senses this mistake and
.6

tries to correct it by rotating the bar around so it can be

loaded correctly. Unfortunately, this motion is impossible

since the arms of the robots will twist upon themselves to

the point of collision. Routine 6 (chapter 6) illustrates

the detection of this type of problem through a graph node

search scheme and prevents the robots from damaging

themselves. With these algorithms, new motions can be

introduced in the work-cell without any danger of collision

as the computer contains the intelligence to anticipate and

prevent various types of collisions from occurring.

There are many situations where processes are feasible

only as completed using multiple robotic systems. This

section presented some of those processes and the means by

which the concepts presented in this thesis can be

implemented to achieve those processes.

In summary, following are the major contributions of

this thesis' research:

1) The resolved position control theory V

presented by Lim and Chyung (13] which was

110

'A



implemented on five degree-of-freedom Rhino

robots is proven to be valid and effective

for six degree-of freedom PUMA robots.

2) Through contribution 1, the coordinated

robots mutually holding an object are able

to attain any position and orientation

within the object's work envelope.

3) The object's work envelope is defined as

the locus of points obtainable by the origin

of the object coordinate frame. The method

by which the work envelope can be derived is

also documented.

4) The Artificial Potential Field Concept

and Configuration Mapping are combined and

altered to provide a collision avoidance

algorithm for the coordinated robot scheme.

5) The problem of Twisting Collision is

defined and potential solutions are

presented.

6) The "Striving Technique" is introduced

as a combination of collision avoidance and

path planning algorithms. This technique

provides intelligence for the coordinated
b

111

9,,



r?.Jk73MV'.' W"KII W'I. T4 -IO .11- llvI No 177 -. 7r T- **7, T.U 77 T, ~ -- 7 V 7 r.,

robots when moving from a start position and

orientation to a final position and

orientation through a field with obstacles.

7) The computer simulation CoordSim is

presented to graphically illustrate the

motions and implementations of the various

algorithms.

7.2 Conclusions

This thesis focuses upon the feasibility,

adaptability, and controllability of coordinated robotic

systems. The discussion starts in chapter 2 with a

literature review of the background of coordination of

robots. Chapters 3 and 4 are concerned with a variety of

path planning and collision avoidance algorithms and

methods whereby single robot algorithms can be adapted to

multiple robot systems. Chapter 5 sets up the modeling

techniques and specific algorithms which are represented in

the computer simulation. Finally, chapter 6 reviews the

computer simulation--CoordSim--and discusses the levels of

implementation of this software.

The "Striving Technique" is introduced as a means

whereby a computer simulates an intelligence in order to

move two PUMA robots, simultaneously holding a bar, through

a field having obstacles. The computer is able to direct

112

:



f

the robots to avoid obstacles of any size or shape and to

move between any two positions and orientations. In

addition, the problem of twisting collision is addressed

and solved through an adaptation of the Graph Node Search

algorithm. Finally, the Coordinated Work Envelope is

defined and a method is proposed to aid in the calculation

of that work envelope.

7.3 Suggestions for Future Work

There are at least three major areas which would

benefit from an extension of results presented in this

thesis. The first would be to implement the various

algorithms on real machines versus simulating their

functions on a computer. The advantages of this are many.

Variables such as inertia, friction, vibration, and timing

would not be ignored and as they are real-life problems,

they could be addressed, tested, and identified. Also, the

use of real machines would unequivocally demonstrate the

application of the proposed position control algorithms and

their implementation towards real-world problems.

Secondly, a type of motion which presents itself as a

complex problem is that of "snaking". This is a motion

where the bar must weave in between several obstacles

located in the field of movement. In other words,

implementation of a simple translation in order to avoid

113

.d . P J d V .4 * ~ ~ *-.. * I



collision would not be adequate. A rotation would also be

needed. Research into this type of motion would greatly

increase the capabilities of the motion itself due to its

great increase in flexibility.

Finally, it becomes obvious that recovery algorithms

designed to solve specific problems soon become cumbersome

as there are many situations which could be presented to a

system. While they may be very effective for specific

tasks where there is a limit on the motions possible, they

prove invalid for the types of systems where complete

independence is desired. Therefore, it is believed that

the direction for future work should concentrate more on a

general solution which is job-independent. In this way,

any conceivable motion or process could be solved.

Obviously, this type of general solution is a major hurdle
J.

to be overcome and will require much ingenuity, time, and

effort to arrive at potential solutions.

114



REFERENCES

[l] Morris, H. "Controlling Multiple Robot Arms",
Control Engineering, (9/86), pp. 144-147.

(2] Skirkhodaie, A., Taban, S., and Soni, A. "AI
Assisted Multi-Arm Robotics", IEEE International
Conference on Robots and Automation, (3/87), v. 3,
pp. 1672-1676.

[3] Maimon, 0. and Nof, S. "Analysis of Multi-Robot
Systems", IIE Transactions, (9/86), v. 18, n. 3, pp.
226-234.

[4] Saigo, M. and Sadao, F. "Coordinating a Dual-Arm
Assembly Robot", Robotics Engineering, (11/86), v.
8, n. 11, pp. 8-12.

[5] Hemami, A. "Control and Programming of a Two-Arm
Robot", Technical Paper (Society of Manufacturing
Engineers), (6/85), paper ms 85-600, pp. 2565-2586.

[6] Maimon, 0. and Nof, S. "Coordination of Robots
Sharing Assembly Tasks", Transactions of the ASME,

(12/85), v. 107, n. 4, pp. 299-307.

[7] Callan, J. "The Simulation and Programming of
Multiple-Arm Robot Systems", Robotics Engineering,
(4/86), v. 8, n. 4, pp. 26-29.

[8] Red, W. and Cao, H. "Configuration Maps for Robot
Path Planning in Two Dimensions", Transactions of
the ASME, (12/85), v. 107, n. 4, pp. 292-298.

[9] Kokaji, S. "Collision-Free Control of a Manipulator
with a Controller Composed of Sixty-Four
Microprocessors", IEEE Control Systems Magazine,
(10/86), v. 6, n. 5, pp. 9-14.

[10] Khatib, 0. "Real-Time Obstacle Avoidance for
Manipulators and Mobile Robots", The International

Journal of Robotics Research, (spring/86), v. 5, n.
1, pp. 90-98.

[11] Nageswara, S., Iyengar, S., Jorgensen, C., and
Weisbin, C. "Robot Navigation in an Unexplored
Terrain", Journal of Robotic Systems, (winter/86),
v. 3, n. 4, pp. 389-407.

115



(12] Kambhampati, S. and Davis, L. "Multiresolution Path
Planning for Mobile Robots", IEEE Journal of
Robotics and Automation, (9/86), v. RA-2, n. 3, pp.
135-145.

[13] Lim, J. and Chyung, D. "Resolved Position Control
for Two Cooperating Robot Arms", Robotica, (3/87),
v. 5, part 1, pp. 9-15.

(14] Gilbert, E. and Johnson, D. "Distance Functions andTheir Application to Robot Path Planning in the

Presence of Obstacles", IEEE Journal of Robotics and

Automation, (3/85), v. RA-1, n. 1, pp. 21-30.

[15] Lumelsky, V. "Dynamic Path Planning for a Planar
Articulated Robot Arm Moving Amidst Unknown
Obstacles", Automatica, (2/87), v. 23, n. 5, pp.

551-570.

[16] Zapata, R., Fournier, A., and Dauchez, P. "True
Cooperation of Robots in Multi-Arms Tasks", IEEE

International Conference of Robotics and Automation,
(3/87), v. 3, pp. 1255-1260.

[17] Craig, J. "Introduction to Robotics, Mechanics, and
Control", Addison-Wesley Publishing Company, Inc,
(1986), p. 41.

[18] Chimes, P. "Multiple-Arm Robot Control Systems",
Robotics Age, (10/85), pp. 5-10.

[19] Hawker, R., Nagel, R., Roberts, R., and Odrey, N.
"Multiple Robotic Manipulators", Byte, (1/86), pp.
203-219.

[20] Lee, C. "Robot Arm Kinematics", in Tutorial on

Robotics: IEEE Computer Society Press, (1/83), pp.

45-72.

[21] Grossman, D., Evans, R., and Summers, P. "The Value
of Multiple Independent Robot Arms", Robotics and
Computer-Integrated Manufacturing, (8/85), v. 2, n.
2, pp. 135-142.

(22] Lee, B. and Lee, C. "Collision-Free Motion Planning
of Two Robots", IEEE Transactions on Systems, Man,

and Cybernetics, (2/87), v. smc-17, n. 1, pp. 21-32.

116



(23] Acker, F. and Ince, I. "Troikabot--A Multi-Armed
Assembly Robot", Tecnical Paper (Society of
Manufacturing Engineers), (6/85), paper ms85-589,

pp. 2357-2376.

(24] Maimon, 0. "A Generic Multirobot Control
Experimental System", Journal of Robotic Systems,
(winter/86), v. 3, n. 4, pp. 451-466.

(25] Mayer, G. and Wood, E. "Multiple-Arm Control and
Assembly Operation", Robotics Engineering, (4/86),
v. 8, n. 4, pp. 18-25.

[26] Wong, E. and Fu, K. "A Hierarchical Orthogonal
Space Approach to Three-Dimensional Path Planning",
IEEE Journal of Robotics and Automation, (3/86), v.
RA-2, n. 1, pp. 42-53.

117

or D1



V, APPENDIX 1

--, PROGRAM LISTING

-J

m"

;:::

'SpJ.

PE op

.1

" 11

.~S.*5
S):...,* ,. ~ S~ % % .



N7 V.11 N-I-r - T.- r " - "; ,l VV -6c " .IT 7 W' %7W'k KR"V V MV VV6r

Program CoordSim;

IThis program is a simulation of coordinated PUMA
robot armsI

ISC-1 I allows for keypressed function

I include TurboPascal graphics functions I

procedure Graphics;
external 'GRAPH.BIN';

procedure HiRes;
external Graphics [6];

procedure HiResColor(Color: Integer);
external Graphics [9];

procedure Palette(N: Integer);
external Graphics [12];

procedure GraphBackground(Color: Integer);
external Graphics [15];

procedure GraphWindow(X1,Yl,X2,Y2: Integer);
external Graphics[l8];

procedure Plot(X,Y,Color: Integer);
external Graphics[21];

procedure Draw(X1,Yl,X2,Y2,Color: Integer);
external Graphics(24];

procedure Circle(X,Y,Radius,Color: Integer);
- external Graphics[33];

procedure FillShape(x,y,fillcol,bordercol: integer);
external Graphics[48];

procedure ClearScreen;
external Graphics [60];

label
FLAGi, FLAG2, FLAG3, FLAG4, FLAG5, FLAG6, FLAG7, FLAG8;

type I identify types of matricies I
matrix2x4x4 = array [1. .2,1. .4,1. .4] of real;
vector2x6 = array (1. .2,1. .6) of real;
vector2x3 = array [1. .2,1. .3] of real;
vector3 = array [1. .3] of real;
vector2 = array (1. .2] of real;
marxx ra 1.31.1o el

matrix~x3 = array [1. .3,1. .3] of real;

matrix2xl6x3 = array t1..2,1..16,(x,y,z)] of real;
matrix4x4 = array [1. .4,1. .4] of real;

var define variablesI

119



- P W

delrpy, I change in rpy angle I
rpy, rpy angles I
del I change in position I

: vector3;
deltheta I change in theta I

: array [1..6] of real;
trans, I transformation matrix from robot

base to hand I
Trb, I trans from reference to base I
Tinvrb, I inverse trans from ref to base I
NexTrans, { Next location's trans I
Transmnit, I initial trans from base to hand I
Tro, f trans from ref to object I
TroEND, I final trans from reference

to object I
Tinvinitro, I inv, initial trans from ref

to object I
T2, ( intermediate, dummy trans I
Tincr, f a dummy var for drawbox I
RotTrol I rotation matrix of Tro }

: matrix2x4x4;
RotTro I rotation matrix of Tro I

: matrix3x3;
theta I joint angle vector I
thetaTRO, ( thetas which generate Tro I
thetaNEW I new joint angle vector I

: vector2x6;
coord I node coords matrix I

: matrix2xl6x3;
chars { shoulder, arm and wrist char.'s I

: vector2x3;
i,j,k,l,m,n, I counters I
numsteps, I number of steps between start

and finish}
RobotID I identifies between robots I

: integer;
movementx, f change in x motion I
movementy, I change in y motion I
movementz, I change in z motion I
px,py,pz I position coordinates I

: real;
inkey ( key read from keyboard input I

: char;
grip, I tells if robot has grip on object I
collision I toggle for graph node search exec. I

: boolean;

FUNCTION Atan2 (num, den real) real; begin

120



I This program inputs the numerator and
demomenator of an inv. tan function and
returns the atan2 function. I

if (num = 0.0000) and (den = 0.0000) then
write('zeros in atan' function')

{ Y-axis I

else if (den = 0.0) and (num > 0.0) then atan2 pi/2

else if (den = 0.0) and (num < 0.0) then atan2 := -pi/2

I Vector close to pos x-axis. Adjust 0.0001 to
vector length I

else if (num < 0.0001) and (num > -0.0001) and
(den >= -1.0) then

atan2 := 0.0

I Vector close to neg x-axis I
else if (num< 0.0001) and (num > -0.0001) and

(den < -1.0) then
atan2 := pi

first quad I
else if (num > 0.0) and (den > 0.0) then

atan2 := arctan(num/den)

{ second quad I
else if (num > 0.0) and (den < 0.0) then

atan2 := pi - arctan(abs(num/den)) I.

{ fourth quad I
else if (num < 0.0) and (den > 0.0) then

atan2 := arctan(num/den)

third quad I
else if (num f 0.0) and (den < 0.0) then

atan2 := -pi + arctan(num/den)

else write('** error in atan2 function **');
end; I routine I

I**************************** "

FUNCTION Pow(x, y : real) : real ; begin

I This function returns a number to a power I

if (x > 0.0) then
pow exp(y*ln(abs(x)))

121

I



else if (x = 0.0) then
pow :=0.0

else if (frac(abs(y)) =0.0) then begin
if (odd(abs(round(y)))) then
pow -exp(y*ln(abs(x)))

else
pow exp(y*ln(abs(x)));

end Ielse I
else

write('bad numbers in pow routine');
end; I functionI

PROCEDURE Envelope;

I This routine calulates the work envelope and
draws it I

var
x, y :integer;

begin I routine I
for y := 0 to 300 do begin
x :=round (400-sqrt(sqr(250.0)-sqr(y-137.7)));
Plot (x, round (153-0.4*y),1);
x :=round (200+sqrt(sqr(250.0)-sqr(y-137.0)));
Plot (x, round (l53-0.4*y),1);

end; I for y I

for x := 215 to 385 do begin
y := round(137.0+sqrt(sqr(183.Q)-sqr(x-300.0)));
Plot(x, round(153-(0.4*y)Ll);

end; I for y I
end; I routine I

PROCEDURE Coordinate (var coord :matrix2xl6x3;
trans : matrix2x4x4;
theta :vector2x6);

I This routine calculates the intermediate
coordinates of the nodes I

const
scale =0.20; 1scale factor between true robot

values in mm and screen scale
scale2 25.0; 1 scale factor between rotation

vectors and hand size1

122



%I V

vari
integer;

begin I routine I

coord [1] (1] x] 200.0; Irobot base coordinates
coord (1][11(y] 0.0;
coord Cl] (11 [zI 5.0;
coord (2] (1] Cx] 400.0;
coord [2][11[y] 0.0;
coord [2]1][1z] 5.0;

for i :=1 to 2 do begin

coord [i] [2] Cx) coord Ei] l] Cx];
coord [i] (2](y] coord Ci]) ]y];
coord [i] (2)(z] (scale*660.4) + coord [i] Cl] z] ;

coord Ci] (31 x] coord [i] (21 x]-
sin (theta [i]C1])*
scale* 200.0; I

coord Ci] (3][y] coord (ii (2] Cy] +
cos (theta Cil~ll])*scale*200; *

coord [i] (31 Cz] coord Ci] (21] I;

coord [i]C14H[x) coord [i][3](x] +
cos (theta Ci] El) *
cos (theta Ci] C2])*scale*431.8;

coord Ci] (4](y] coord (i] (3] Cy]
sin (theta [i] C1])*
Cos (theta Ci] C2J)*scale*431.8;

coord [i](4] (z) coord Ci] (3] [z]
sin (theta Ci] C21)*scale*431.8;

coord Ci] CS] x] coord Ci](4] Cx] + scale*50.91*
sin (theta (i)[C1]);

coord [i] 5(5 y] coord Ci] (4]Cy]-
cos (theta Ci] Cl])*scale*50.91;

coord [i](5] Cz] coord Ci] (4] Cz]

coord [i]C6)Cx] i*200 + trans [i])1)4];
coord [i] [6](y] trans [i] (2](4];
coord Ci] 16] Cz] 5 + scale*660.4 +

trans [i) (3][(4];

coord Ci](7] Cx] coord Ci] (6]Cx] +
scale2*trans Ci]Cl] (2);

coord Ci] (7] y] coord Ci] 6(6Cy] +
scale2*transCi] (2] (2];.1

coord Ci]C7] Cz] coord Ci] (6]Cz] +
scale2*trans Ci][3](2] ;

123



coord [i] [8] [x] coord [i] [7] [x] +
scale2*trans [ii[1) [3];

coord fi] [8] y) coord [i] [7] [y] +
* scale2*trans~i] [2] [3)

coord [i] [8) [z] coord [i] [7] [z] +
scale2*trans [i) [3) [3];

coord [ii [9][xl coord, [ii[6] [xl -
scale2*trans [i] [1) [2]

coord [ii [9] [yJ coord [i] [6) [y) -
scale2*trans[i][2] [2];

coord [i] [9] [z] coord [i] [6] [z -

scale2*trans~i] [3] [2];

coord [i] [10] [xl coord [1] [9] [x +
scale2*trans~i] [1][3];

coord [il [10] [y] coord [i] [9] [y] +
scale2*traxs[i] [2] [3);

coord [i] [10) [z] coord [i] [9] [z] +
scale2*trans~i] [3] [3];

end; I i I
end; I routine I

PROCEDURE Node (var collision :boolean;
coord :matrix2xl6x3);

I This routine performs the graph node search

var
dist :real;
i,j,k :integer;

begin

collision :=false; I default value I

calc intermediate nodes for accuracy in node
search

for k :=1to 2 do begin
for j :=l1to 2do begin I nodel11andl12I

coord [kc][10+j] [x] : (coord [c] [2] [xl -
coord [k] [1][x ) *
j/3.0 + coord [k][1][x];

coord [k] [10+j] [y] (coord [k][2] [y] -
coord [k](1] [yl) *
j/3.0 + coord [k][1][y];

coord [k] [10+j] [z] (coord [Ic] 21]z-

124



coord [kI [1][z]) *
j/3.0 +coord [k] [ z);

end; ( forjI
for j :=1 to 2 do begin I nodes 13 and 14 1
coord [ki [12+j] [x] (coord [c] [4] [x) -

coord [kH[3J[x])*j/,.O +
coord [c] [3] [xl;

coord [kI [12+j] Cy] (coord [k] [4] [y] -
coord (c] [3] [y))*j/3.0 +.
coord [c] [3] [y];

S.. coord [c] [124-i][z] (coord [kc][4] Ez] -

coord [kc][3] [z])*j/3.0 +
* coord [c] [3] [z]

end; I for i I
for j 1= to 2 do begin f nodes 15 and 16 1

coord [k] [14+j] [xl (coord [kc][6] [x] -
* coord [c] [5] [x])*j13.0 +

coord [Ic][5] [x];
coord [c] [14+j] [y] (coord [c] [6] fy] -

coord [k1][5] [y])*j/3.0 +
co.ord [kI [5][y];

coord [c] [14+j] [zi (coord [k] [6][zI -
coord [k] [5] [z])*j/3.0 +
coord [k] [5] [z]

end; for i I
end; f for k I

I do graph node searchI
* gotoxy (2,2); write ('GRAPH NODE SEARCH');

for k 1= to 16 do begin
for j 1 to 16 do begin
dist sqrt (sqr (coord [1] [Ic][x]

coord [21][j] [x] ) +
sqr (coord [1] [I] [y]-
coord [2][j][y]) +
sqr (coord [1] [k] [z]-
coord [2] [j) [z)

I range for collision I
if (dist <= 35.0) then begin
gotoxy (2,2);

* write ('NODE COLLISION WILL OCCUR');
collision :=true;
exit; I return to main)I

end; (if I
end; f for ji

end; i for kc I

I delete words above I
gotoxy (2,2); write (

125



end; I routineI

PROCEDURE CaicRot (var rot :matrix3x3
rpy :vector3);

IThis routine calculates the rot mx given the rpy
angles

begin

rot [1][11 cos(rpy [3])*cos(rpy [2]);
rot (1] (2) cos(rpy [3])*sin(rpy [21)*

sin(rpy [1]) - sin(rpy [3])*
cos(rpy [1]);

rot [1113] cos(rpy [3])*sin(rpy [21)*
* cos(rpy [1]) + sin(rpy (3])*

sin(rpy [1]);

rot [2] [1] sin(rpy [3))*cos(rpy [2]);
rot [2112] sin(rpy [31)*sin(rpy [2])*

sin(rpy [1]) + cos(rpy [3])*
cos(rpy [1]);

rot [2] [3] sin(rpy [3])*sin(rpy [21)*
cos(rpy [1)-cos(rpy [3])*
sin(rpy [11);

rot [3] [1] -sin(rpy [21)
*rot [3] [2) cos(rpy [2))*sin(rpy [1]);

rot [3113] cos(rpy [2])*cos(rpy [1]);

end; froutinel

PROCEDURE CalcTran (var trans :matrix2x4x4;
theta :vector2x6);

fThis routine calculates the trans matricies
given the joint angles

const
scale = 0.20;

var
i :integer;

begin
for i :=1 to 2 do begin

trans [i] [1)][4] cos (theta [i] [1]) *(scale*

126



431.8*cos (theta (3.] [2])-.
scale*20. 32*cos
(theta [ii [2) +
theta (i])[3])-
scale*433.07*sin
theta [i] [2) +
theta i(3) -

scale*149.09*sin
theta (i] (1]);

trans i)2)[) sin (theta [i) [1]) *(scale*431.8*
cos (theta (i][21)
scale*20.32*cos (theta (i] (2) +
theta [i] [31)
scale*433.07*sin
theta [i] [2) +
theta [i) [3))) +
scale*149.09*cos
theta [i] [1));

trans il3)[) scale*20.32*sin (thieta [i] [2) +
theta [i) [31)
scale*431.8*sin
theta [i] [21)
scale*433.07*
cos (theta [i] [21 +
theta [i] [33);

trans [i] [1)[1.) cos (theta~i] [1)) *
(cos (theta(i] [2) +
theta Cil (3))*(cos
(theta[ i)I [4))*e
cos (theta~i] [5) )P*
cos (theta~i) [6])
sin (theta~i) [4)) *

sin (thetati] [6))]
sin (theta[i3 [2] +
theta~i) [3))*sin (theta[i) [5])*
cos (theta[i) [6])) +
sin (theta [i) (1))
(sin (theta[i) [4) )*
cos (theta fi) [5))
cos (theta~i) [6]) +
cos (theta~i) [4))*
sin (theta[i](6)));

trans [i) [2)][1) sin (theta[i [1)) *
(cos (theta[i) [2) +
theta~i)(3))*(cos(theta~i1[1)*
cos (theta~iI[5))*
cos (theta[i)[61)
sin (theta Ci) 4)) *
sin (theta[i) [61))
sin (theta[i) [2) +

127



thetal)[33)*

sin (theta~i) (5))*
cos (thetafi]6)
cos (theta(i) (1))*
(sin (theta( i][ 41)
cos (thetati] (5))*
cos (theta~i)(6]) +
cos (theta(i) (4])*
sin (theta[i[6D);

trans [i][(3)][1) -sin (theta [ii[2] +
* theta (i) (3] ) *

(cos (theta~i]E4])* a

cos (theta CiH 5]) *
cos (theta~i)(6J)-
sin (thetal] 4])*
sin (thetati) (61))
cos (theta(i) (2] +

d theta~i) [3])*sin (thetafi) [5])*
cos (theta (i] [61));I

trans [i][(1)[2] cos (theta~i](1]) *
(-cos (theta i[i(2] +
theta[i] [3])*
(cos (theta[i) (4] )*
cos (theta~ilt5))* a

sin (theta(i) (6)) +
sin (theta[i] [4])*
cos (theta~i][61)) +
sin (theta[i) (2] +

-~~ thetafi] (3])*p
sin (theta[i) [5fl*
sin (theta[i) (6))) +
sin (thetati] (1])*
(-sin (theta(i] (4])*
cos (theta( i]I f51) *
sin (theta ti)(6]) +

cos (theta~i](6]));
trans (i][(2] [2] sin (theta~i) (1))*

(-cos (theta[i) (2) +i
theta [i) (31)
(cos (theta[ iI [ 41)
cos (theta (] (5)) *
sin (thetati][63) +
sin (theta~i) (4))*
cos (theta~i)(6])) +
sin (theta Ci] (2] +
theta [i] (3] ) *
sin (theta~i) (5))*
sin (theta(i (61))
cos (theta(i (1)) *

128

7,0 w -



(-sin (theta[i] (4])'
cos (theta~i] (5])'

sin (thetali) [6]) +
cos (theta~i) (4])'
cos (theta~i][6]));

trans [i] [3) (2] sin (thetafi] (2] + thetafi] [3])'
(cos (theta~i) (4])'
cos (theta[ i I[51 ) * .
sin(theta~i) [6)) +
sin (theta~i] (4])'
cos (theta(i](61)) +
cos (theta[i] (2] +
theta [i] [3))
sin (theta[ i1 (5])
sin (theta[i] [63);

trans (i](1](3] -cos (theta~i](l])*
(cos (theta~i] [2] + p

theta [i) (3] )*
cos (theta(i] (4])'
sin (theta[i) [5]) +
sin (theta~i] (2) +
theta (i] (3))
cos (theta(i] [5]))-
sin (theta~i] [13) *
sin (theta(i) (41))
sin (thetati] (5));

trans [i) (2) [3) -sin (theta~i) [1))'
(cos (theta(i) (2) +
theta [i) (31))*
cos (theta(i) (4])'
sin (theta~i](51) +
sin (theta(i] (2) +
theta [i) (31))*
cos (theta(i) [5S) +
cos (theta~i) (1))'
sin (theta~i) (4])' p

sin (theta (i) [51));
trans [i] (3][(3) sin (theta[i) (2] +

theta[i] (3]) cos (theta(i](4)) *
sin (theta [i) (5))-.
cos (theta[i) [2) + i

theta [i) (3))
cos (theta~i)[5)); S

trans [i](4][1] 0.0;
trans [i)][4) 12) 0.0;
trans [i) (4] (3) 0.0;
trans 2i] (4) (4] 1.0; .

end Ii I

129

1.2w



end; I routine I

I*****************************I

PROCEDURE Step (var numsteps integer;
start,finish matrix2x4x4);

This routine determines a uniform number of
steps to take from a starting position to a
final position I

var
dist : real; I distance between start and finish I
i : integer; f counter I

begin
dist 0.0; linitialize I
for i 1 to 3 do ( calculate distance I
dist dist + sqr (start [1] [i] (4] -

finish (1] (i] [4]);
dist := sqrt (dist);

numsteps := round (dist / 10.0);
I where 10.0 is a predefined distance per step I

if (numsteps = 0) then case of pure rotation I
numsteps := 5;

end; I routine I

* * *** *** ** * **** * ** * **** * ** * *

PROCEDURE InvKin (var theta vector2x6;
trans : matrix2x4x4;
chars : vector2x3

This routine inputs the transformation matrix
and the char matrix to return the joint
anglesI

var
interl, inter2,
inter3, inter4 : real; I intermediate answers I
param : array [1..4,1..4] of real; I robot params I

begin I procedure InvKin I

param [31 [3] 149.09*0.2; 1 set four parameters I
param (3] [2] 431.8*0.2; times the scale factor
param [4] [2] := -20.32*0.2;
param (4][3] := 433.07*0.2;

130



for i := 1 to 2 do begin
theta [i] [1] := atan2 (trans [i] [23 [43, V

trans [i] (1] [4]) -
atan2 (param [3(3],

chars [ih]*[1
sqrt (sqr (trans [i]1[I]4]) +
sqr (trans (i](2]4]) -
sqr (param [3]3]))) ;

interl (sqr (trans (i][1](4]) +
sqr (trans [i][2][4]) +
sqr (trans [i] (33 [4]) -
sqr (param (3](2]) -
sqr (param [43(2]) -
sqr (param (3] [33) -

sqr (param [4][3])) /
(2.0* param [3][23);

theta (i] [3] atan2 (param [4] [2,
param [4] [3]) -
atan2 (interl,
chars [i] [2] *
sqrt (sqr (param [43 [23) +
sqr (param [4] [3]) -e

sqr (interl)));

inter2 atan2 (trans [i] [3] [4* (-param [4] [2] L
param (3] [2]* .

cos (theta [i][3])) - ,
(cos (theta [i] (1)*
trans [i] [1] (4] +
sin (theta [i][1])*
trans i] [2] (43) *
(param [4] [3 - param [3 (23*
sin (theta (i] [3])),

trans [i] (33 [43* (param [33 (2] *
sin (theta [i](3])-
param (4] [3]) + (param [4] (2] +
param [3] [2]*
cos (theta [i](3]))*
(cos (theta (i][I])*
trans (i] (1] [4] +
sin (theta [i] [])* I b

trans [i] (2] (4])) ;

theta [i] (2] inter2 - theta [i] [3];

inter3 :=-trans [i] [1] [3]* sin (theta [i] [1]) + %
trans [i] (2] [3]* cos (theta [i] [1]);

inter4 -trans [i] [] [3]* cos (theta [i] (])*

131

,%



cos (theta [i] [2] +
theta [i] [33) - trans [i] [2] 3] *
sin (theta [i][1])*
cos (theta [i][2] + theta [i][3]) +
trans (i] [3] [3* sin (theta [i] [2) +
theta [i] (3]);

if (abs (inter3) < 0.001) and
(abs (inter4) < 0.001) then

theta (i] (5] := 0.0 ( Case of singularity
of theta 5. Assume
theta (4] equals its
old value I

else begin
theta (i3 (4] atan2 (inter3, inter4);

theta [i] [5] atan2 (trans [i] [3] [33*
sin (theta [i][ 2] +
theta [i] (3])*
cos (theta (i](4])-
trans (i](1[3]*
(cos (theta [i][])*
cos (theta (i] [2) +
theta [i] [3)) *
cos (theta (i](4]) +
sin (theta [i][])*
sin (theta [i][4])) -
trans (i] [23 [3] *
(sin (theta (i] (13)*
cos (theta (i] (23 +
theta [i] [3 )* 
cos (theta (i] (43) -

cos (theta [i][i)*
sin (theta (i][4])),

-trans [i] (1 [3] *
cos (theta [i][i])*
sin(theta (i] [23 +
theta [i] [33) -
trans [i] (2] (3]*
sin (theta [iJ [])*
sin (theta (i] (2] +
theta [i] (33) -

trans [i] (33 3]*
cos (theta (i] [2] +
theta [i] [3 ));

end; I else if I

theta (i] (63 atan2 (-trans [i](1] [1]*
(cos (theta [i] [])*
cos (theta [i] [23 + theta [i][3)*
sin (theta [i] (4]) -

132

a' 'T ,- 'i -l i l - b -- / .V ' Si" , - , 'S ,,



sin (theta [i][i])*
cos (theta [i][4) -

trans [i] [2] [i]*
(sin (theta [i]L1])*
cos (theta [i] [2] +
theta (i][3])* sin (
theta [i] (4]) +
cos (theta [i]l[])*
cos (theta [i] [4])) +
trans [i] [3] [1]*
sin (theta [i] [2] +
theta [i] [3])* sin (theta [i] [4]),
trans [i] [i] Li] *
((cos (theta [i l])*
cos (theta [i] [2] + theta [i] [3])*
cos (theta [i] [4]) +
sin (theta [i] [1])*
sin (theta i] [4]))*
cos (theta (i] (5]) -
cos (theta [i] l[])*
sin (theta Li] [2] +
theta [i] [3])*
sin (theta Li] [5])) +
trans Li] (2] L1]*

*. (cos (theta [i] [5])*
(sin (theta [i]L[i])*
cos (theta (i] [2] +
theta [i] [3])* cos
theta [i] [4]) -
cos (theta Li] [i]) *
sin (theta [i] [4])) -sin (theta [i] [I])*

sin (theta [i] [2] +
theta [i] (3])*
sin (theta Li] (5])) -
trans [ii [3] [1]*(sin
theta [i] [2]+
theta [i] [3])* cos (theta [i] [4])*
cos (theta [i][5]) +
cos (theta [i] [2] +theta [i] [3])*

sin (theta [i] (5])));

if (chars Li] [3] -1) then begin I flip wrist
characteristic I

theta [i] [4] theta Li] L4] + pi;
theta [i] (5] -theta Li] [5];
theta [i] [6] theta (i] [6] + pi;

end; I if I
end; (for i I

end; I routine I

133



I

PROCEDURE Border (UpperLeftX, UpperLeftY, LowerRightX,
LowerRightY,DivisionY, DivisionX
integer) ; begin

I This procedure draws the border of the screen }

draw (UpperLeftX, UpperLeftY,
LowerRightX, UpperLeftY, 1);

draw (LowerRightX, UpperLeftY, -.

LowerRightX, LowerRightY, 1);
draw (LowerRightX, LowerRightY,

UpperLeftX, LowerRightY, 1); I
draw (UpperLeftX, LowerRightY,

UpperLeftX, UpperLeftY, 1);
draw (UpperLeftX, DivisionY,

LowerRightX, DivisionY, 1);
draw (DivisionX, UpperLeftY,

DivisionX, DivisionY, 1);

end; I routine I

I* ** **** **** ****** ***** *******I*I

PROCEDURE Drawlquad ( xl, yl, x2, y2 real);

I This procedure converts coords in quad I to
screen coords for printing , *1

begin .'

draw (round(xl), round(153 - (0.4*yl)),
round(x2), round(153 - (0.4 *y2 )), 1);

end; f routine I

******************************..

PROCEDURE CircleIquad (x, y real ; radius, color .
integer);

This routine draws a circle in screen coords
given quad I coords .

begin
circle (round (x), round (153 - (0.4*y)),

radius, color);

**************************** Iend; IroutineI

134



a - .% - . -- K

PROCEDURE Drawframe (trans : matrix2x4x4; Theta
vector2x6; coord : matrix2xl6x3);

This routine draws the robot framework given the
vector of thetas and the chars. It updates the
trans matrix.}

var
i,j integer;
dist real;

begin I drawframe I I The variable coord [I[] [] is in
SCREEN COORDS I

for i := 1 to 2 do begin

I output WRIST coords to screen I

GotoXY ((60 + (i-l)*9),22) ;
write (coord [i [6 [xl : 7 : 2) ;

GotoXY ((60 + (i-l)*9),23) ;
write (coord [i] [6) [y] : 7 : 2) ;

GotoXY ((60 + (i-l)*9),24) ;
write (coord [i] [6 [z] : 7 : 2) ;

I output ORIENTATION matricies to screen I

GotoXY ((2 + (i-i)*23),22)
write (trans [i] [1] [1 : 7 : 3);
write (trans [i] [1] :2] 7 : 3);
write (trans [i [1] (3 : 7 : 3);

GotoXY ((2 + (i-1)*23),23) ;
write (trans [i] (2]1 [] : 7 : 3);
write (trans [i][2][2] : 7 : 3);
write (trans [i] [2] [3) : 7 : 3);
GotoXY ((2 + (i-1)*23),24) ;
write (trans [i]3][1] : 7 : 3);
write (trans [i] [3] [2] : 7 : 3);
write (trans [i] [3] [31 : 7 : 3);

for j := 1 to 6 do begin
GotoXY (73, 5 + j + (i-l)*7);
write (theta [il [j]*180/pi : 6 : 2);

end; I for i
end; f for i I

clearscreen; I clear previous picture from
screen I

for i I to 2 do begin

135

,.
S.,,-J!

-a, .,',''.",'. '',,N . .','I ',,. . " .",. .. "., '.,_ .- '.'., ",, v ,,,,,, .e , '","-" ,"- "'" " " " "" -"



drawlquad (coord [i] (1](xl ,coord (i] (1] z],
coord [ii (2] Lx] coord [i] (2] (I);

drawlquad (coord (i](2]Lxlcoord (i]L2](z],
coord [i](3](x],coord [iJ(3zD);

drawlquad (coord [i](3)[x],coord [i][3Hz],
coord Li] (4] (x],coord Li] (4][z]);

drawlquad (coord Li] (4] (x],coord Li] (4] (z]
coord (i] (5] (x],coord Li](5H[z]);

drawlquad (coord (i](5](x]1 coord (i](5]1z],
coord [i] [6] Lx],coord Li] [6](z]);

circielquad (coord [il (6] xl,
coord (i] (6] (zI, 2, 1);

drawlquad (coord (i)(6](x],coord (i)(6](z],
coord Liii(7] (x],coord Li] (7](zI);

drawlquad (coord [i] (7) Lx,coord [il (7] Lz],
coord (i] (8][x] ,coord (i] (8]Lz]);

drawlquad (coord Li] (6) (x],coord (i (6] (z],
coord (i) (9] (xl,coord (i] (9](zI);

drawlquad (coord (i](9](x],coord (i](9](z],
coord (i] (10] (xl ,coord [i] (10] [z)I

circlelquad (coord (i] [10) Lx],
coord Li] (10] (z], 1, 1);

end; I for i I
end; I routineI

PROCEDURE MulTran ( var trani, tran2, prod
rnatrix2x4x4);

I This routine multiplies two 2x4x4 matricies
the trans rnatricies I

var
i, j, k, 1 :integer; I counters I

begin
for k :=1 to 2 do begin

for i :=Ito 4 do begin
for j :=1 to 4 do begin
prod [kI Li] L) :=0.0;
for 1 :=1to 4 do

prod (kI Li) Li] prod (k] Li] Li] +
trani (k] Li] (11*
tran2 (k] (1] [i];

end; f for i I
4 end; I for i I

end; Ffor k I
* end; I routine F

136



PROCEDURE NexTran (var NexTrans matrix2x4x4 ; Trb,
Tinvrb, Transinit, Tro, Tinvinitro
matrix2x4x4);

I This routine inputs the next Tro and returns the
2 robot's trans }

var
prodl, prod2, prod3 : matrix2x4x4;
i, j : integer;

begin I procedure

multran (Tinvrb, Tro, prodl);
multran (prodl, Tinvinitro, prod2);
multran (prod2, Trb, prod3);
multran (prod3, Transinit, NexTrans);

end; I routine I

PROCEDURE InvTran (var tran, invtran matrix2x4x4 );

I This routine calculates the inverse of the trans
matricies using the formulas developed in the
Lee Tutorial pg 51 1

var
i, j, k : integer;
sum : real;

begin I routine }it
for i := 1 to 2 do begin

for j := 1 to 3 do begin I rot inverse I
for k := 1 to 3 do

invtran [i] [] (k] := tran [i] [k] (j;
end; I for j I

end; { for i I
for i := 1 to 2 do begin

for j := ito 3 do begin I trans inverse I
sum := 0.0;
for k 1 to 3 do
sum := sum + tran [i] [k] [j]*tran [i] (k] 4] ;

invtran [i] Li] [4] := -sum;
end; I for j .
for j := 1 to 3 do

invtran [i] [4] Lj] := 0.0;
invtran [i][4][4] 1.0;

137

S



o

end; ( for j I
end; I routine I

PROCEDURE DrawBox ( Tro matrix2x4x4 );

This routine draws the box to be held by the
robots. .

const
scalel = 75; 1 n scale factor ,
scale2 = 35; Is and a scale factor I

var
boxcoord : array L1..8, (x,z)] of real;
i, j : integer;

begin

for i := 1 to 3 do begin
for j := 2 to 3 do
Tro [I] [i] [j] := Tro [1] [i] [j] * scale2;

Tro [1] [i] Li] := Tro [i] [i] Li] * scalel;
end; (for i I

boxcoord [i] [x] Tro [1) [1] [4] + Tro [1] [1] [I] +
Tro [i] [.] [2];

boxcoord Li] [z] := Tro [1] [3] [4] + Tro [i] [3] [i] +
Tro I] [3] [2];

boxcoord [2] [x] Tro [1] [1] [4] + Tro [1] [1] Li] - S

Tro [i] [i] [2];
boxcoord [2] [z] Tro [I] [3] [4] + Tro Li] [3] [1] -

Tro [1] [3] [2];

boxcoord [3] [x] Tro Li] [i] [4] - Tro [I] [i] [I] -
Tro I] [i] [2] ;

boxcoord [3] [z] := Tro LI] [3] [4] - Tro [i] [3] [1] -
Tro Li] [3] [2];

boxcoord [4] Lx] := Tro LI] [i] [4] - Tro [1] [1] Li +
Tro [i] [1] [2];

boxcoord [4] [z] Tro (] [3] [4] - Tro [i] [3] [i] +
Tro Li] [3] [2] ;

boxcoord [5][x] := boxcoord [I][x] + Tro [I LI] [3];
boxcoord [5] [z] := boxcoord [i] [z] + Tro [i] [3) [3] ;

boxcoord [61 Lx] := boxcoord [21 Lx] + Tro 1 [i] [3] ;
boxcoord [6][z] := boxcoord [2][z] + Tro [i] [3] [3];

138

I



boxcoord [71[x] boxcoord [3][x) + Tro (1[1113];
boxcoord [71[z] boxcoord [3][z] + Tro [1][3][3];

boxcoord [81[x] boxcoord [4][x] + Tro 1111131;
boxcoord [8H[z] boxcoord [41[z] + Tro [11133]3;

drawlquad (boxcoord (1] [xl,boxcoord [1) [z],
boxcoord [211xhboxcoord [2][zD);

drawlquad (boxcoord [1][xl ,boxcoord [2) [z],
boxcoord [31[x],boxcoord [3][z]);

drawlquad (boxcoord [3] Lx],boxcoord [3] [z],
boxcoord [411x],boxcoord [4H[z]);

drawlquad (boxcoord [4] Lx],boxcoord [4] [zi,
boxcoord [1][x],boxcoord [1H[z]);

drawlquad (boxcoord [1] Lx],boxcoord [1] [z],
boxcoord [5llxl~boxcoord [5H[z]);

drawlquad (boxcoord [2] lx] ,boxcoord [2] [z],
boxcoord [6][x],boxcoord [6][z]);

drawlquad (boxcoord [3] [xl ,boxcoord [3] [zI,
boxcoord [7][x],boxcoord [7][z]);

drawlquad (boxcoord [4] [xl ,boxcoord [4] [zI,
boxcoord [8] Lx],boxcoord [8][z]);

drawlquad (boxcoord [5] l,boxcoord [5] [zl,
drawquad boxcoord [6] [xhboxcoord [6][z]);
drawquad(boxcoord [6] [xl ,boxcoord [6] [zI,

boxcoord [7] Lx],boxcoord [7] [zlk;
drawlquad (boxcoord [7) l,boxcoord [7] [z],

boxcoord [8] [x],boxcoord [8] [z]);
drawlquad (boxcoord [8] [xl ,boxcoord [8][Iz),

* boxcoord [5] Lx],boxcoord [5] [zI);
* circlelquad (Tro [1] [1] [4] , Tro [1]([3][4] , 2, 1);

end; Iroutine I

PROCEDURE Thetalncr (theta, thetanew :vector2x6;
var incr vector2x6;
var steps integer);

I This routine calculates the increment for the
thetas given the initial and final theta
vectors. The increment of the largest
change will be approx 5 degrees. I

var
i, j integer; :
maxdiff :real;%
diff vector2x6;

139



wI

begin I routine I
maxdiff := 0.0;
for i := 1 to 2 do begin

for j := 1 to 6 do begin
diff [i][j] := thetanew [i) [j] - theta [i] [j);
if abs (diff [i] [)) > maxdiff then
maxdiff := abs (dif. [i] [j]);

end; I for j I
end; for i I

steps round (maxdiff / (10*pi/180));
for i 1 to 2 do begin

for j := 1 to 6 do
incr Li][j] := diff Li] [j/steps;

end; I for i I
end; I routine I

I*****************************

PROCEDURE DrawObst;

I This routine draws the obstacle for avoidance I

begin { routine I
drawIquad (250,60,270,60);drawIquad (270,60,270,40);
drawIquad (270,40,250,40);
drawIquad (250,40,250,60);

end; I routine I

** * ****** *** ** **** * **** ** * ***S

PROCEDURE DrawObstl;

I Draw obstacle with shadow }

begin I routine I
drawIquad (210,130,375,130);
drawIquad (375,130,375,70);
drawIquad (375,70,315,70);
drawIquad (300,70,240,70);
drawlquad (240,70,240,10);
drawIquad (240,10,210,10);

drawIquad (210,10,210,130);
drawlquad (210,95,300,95);
drawIquad (300,95,300,70);
drawIquad (315,70,315,10);
drawIquad (315,10,240,10);

fillshape (215,120,1,1); 1 fill obstacle (units in
screen coord I

140

.* .. a . -.......... .. /....-..... .. . -. ... %,...S..'. .% . ',,,%-a'a- *%,- %,-,,,.*av '.,:



end; ( routine I

PROCEDURE DrawBox2 (trans matrix2x4x4);

I This routine draws a box for one robot to hold I

const
scalel = 25; n, s, and a scale factor I

var
boxcoord : array [1.8, (x,z)] of real;
i, j : integer;

begin I routine I

for i := 1 to 3 do begin
for j := 1 to 3 do

Trans [1] [i] [j := Trans [1] [i] [j]*scalel;
end;

trans [1] [1] [4] trans [1] [1] [4] + 200.0;
trans [i] [3] [4] trans [1] [3] [4] + 137.08;

boxcoord (1] [xl := Trans [1] [l] [4] +
Trans [1] [] [i]+
Trans [] [l] [2]

boxcoord [Il [z]: Trans [1] [3] [4] +
Trans El] [3] [i]+
Trans [l] [3] 2];

boxcoord [2] [x] Trans [1] [] [4] +
Trans [1] El] [1] -

Trans El] ] E2](;
boxcoord [2] [z] Trans [1] [3] [4] +

Trans [1] [3] [1] -

Trans [1] [3] [2];

boxcoord [3] Ex] Trans [1] [1] [4] -

Trans [I] [1] El] -
Trans [1] [1] [2];

boxcoord E3] Ez] Trans El] [3] [4] -
Trans [] [3] [] -
Trans [1] [3] [2]

boxcoord [4] [xl Trans [I] [1] [4] -

Trans [l] [1] El] +
Trans [1] [1] [2]

141

...-.



r.; .'J"V w. W

boxcoord (41](z] Trans (1] (3] (4]
Trans [11 (3)[(11 +
Trans [1] (3](2);

boxcoord (51(x] boxcoord [11(x) + Trans [13(1][3);
boxcoord [5] [z] boxcoord [1) [z] + Trans (1] (3][(3];

boxcoord (61(x) boxcoord (2][x] + Trans (11 (1] (3];
boxcoord (6] [z] boxcoord (2] [z) + Trans [1][(3](3];

boxcoord E711x1 boxcoord (3][x] + Trans (11(1](3];
boxcoord (71(z] boxcoord (3](z] + Trans [11[3][31;

boxcoord (81[x) boxcoord (43(x) + Trans (11(31;
boxcoord (81(z) boxcoord (41(z] + Trans (1](31(3];

drawlquad (boxcoord (1) (xl,boxcoord (11[(z),
boxcoord (2)(x],boxcoord (21(z));

drawlquad (boxcoord (21] ,boxcoord (2] (z),
boxcoord (3] [x),boxcoord (31(z));

drawlquad (boxcoord (3) (xl,boxcoord (33 (z],
boxcoord (41 [xl ,boxcoord (41 (zI);

drawlquad (boxcoord (41 (xl,boxcoord (41 [z],
boxcoord (1] (xl ,boxcoord (11[zI) ;

drawlquad (boxcoord (1) (xl,boxcoord (1) (z],
boxcoord (5] (x] ,boxcoord (5) [z));

drawlquad (boxcoord [1) xl ,boxcoord (2] (zI
boxcoord (61) ,boxcoord (63(z));

drawlquad (boxcoord (3) (xl ,boxcoord (3] (z],
boxcoord (7)(x],boxcoord [71(z));

drawlquad (boxcoord (4) (xl ,boxcoord [4)[z],
boxcoord (81] ,boxcoord (8] (z]);

drawlquad (boxcoord (5) (xl ,boxcoord (5) [z),
boxcoord (6) [xl,boxcoord (61(z));

drawlquad (boxcoord (6] (xl,boxcoord (6)[z],
boxcoord (71 (xl ,boxcoord (71(z));

drawlquad (boxcoord (7] [xl ,boxcoord [7] (z],
boxcoord (83 (x],boxcoord (8] (z));

drawlquad (boxcoord [8] (xl ,boxcoord (8)(z],
boxcoord (5) (x],boxcoord (5) [z));

end; I routineI

PROCEDURE DrawSquare;

IThis procedure draws the initial position
for the box to be held

begin froutine I

142

W 0'.
%~



S- '- j t M . .fl 1 h.

drawIquad (128.66,43.65,178.66,43.65);
drawIquad (178.66,43.65,178.66,18.65);
drawlquad (178.66,18.65,128.66,18.65);
drawlquad (128.66,18.65,128.66,43.65);

end; I routine I

f*****************************1

PROCEDURE RobMov (var theta : vector2x6;
thetaNEW : vector2x6;
var trans : matrix2x4x4;
var coord : matrix2xl6x3;var chars : vector2x3;

grip : boolean);

This routine moves the robots from a present
location (theta) to a new location (thetaNEW) I

var
i, j, k, steps : integer;
angle, maxangle : real;
delangle : array [1..2,1..6] of real;

begin

angle := 0.0; 1 calc maximum angle change I

maxangle := 0.0;
for i := 1 to 2 do begin

for j := 1 to 6 do begin
angle := abs (theta ti][j] - thetaNEW [i] j]);
if (angle > max-angle) then
max_angle := angle;

end; I for iI
end; I for i I

I determine num of steps I
steps round (max angle/(20.0*pi/180));
for i 1 to 2 do begin I calc angle change per

step
for j := 1 to 6 do
del_angle [i] [j] (thetaNEW [i) [j) -

theta [i] [j])/steps;
end; I for i I

for i := 1 to steps do begin
for j := 1 to 2 do begin I perform movement I

for k := 1 to 6 do
theta [j] [k] := theta tj] k] +

del-angle [j]k];
end; I for j I

calctran (trans,theta);

143



V,., m - wW J . .A-~FXu UW~ -. 9 jJ F Id~ .. w T

coordinate (coord,trans,theta);
* drawframe (trans, theta, coord);

if (grip) then
drawbox2 (trans)

else
drawsquare;

end; I for i I

end; routine I

begin I Program I

hires; set screen to high resolution I
hirescolor (15); 1 set color for drawing I
palette(3); I allows for draw command to

still be active with
graph.p included

chars [1] [1] 1;
chars [21 (1] 1; 1 shoulder left condition I

chars [1] [2] 1;
chars [2] [2] 1; 1 arm - up condition

chars [1] [31 1;
chars [2][3] 1; 1 no-flip condition in wrist I

for i := 1 to 2 do begin
theta (i] [1] 0.0; 1 initialize HOME thetas I
theta [i] [2] 0.0;

theta [i] [3] 0.0;
theta [i] [41 0.0;
theta [i)[5] 0.0;
theta [i][63 0.0;

end; I for i I

I initialize matricies to zero I
for i := 1 to 2 do begin

for j := 1 to 4 do begin
for k := 1 to 4 do begin
Trb [i]ji][k] := 0.0;
Tinvrb [i [j][k] := 0.0;
Nextrans [i] [i] [k:= 0.0;
Tro [i][j][k] := 0.0;
Tinvinitro [i] [i] [k] := 0.0;
TroEND [i)[j][k] := 0.0;

end; I for k I
end; I for j I

end; I for i I

144

I . N.



set all diagonal elements to one I
for i 1 to 2 do begin

for j := 1 to 4 do begin
Trb [i][j][j] := 1.0;
Tinvrb [i] [j) [j] := 1.0;

end; Ifor j I
end; I for i

{ set other constant elements of T matricies I
Trb (1] (1] (4] 200.0;
Trb [1] (3] [4] 137.08;

Tinvrb [1] [1] [4] -200.0;
Tinvrb [1] (3] (4] -137.08;

Trb [2] [1] (4] 400.0;
Trb (2] (3] (4] 137.08;

Tinvrb [2] [1] [4] -400.0;
Tinvrb [2] [3] [4] -137.08;

Border (5,5,635,195,160,555); 1 draw border I
GraphWindow (6, 6, 554, 159); 1 setup working window }

I draw initial configuration I
CalcTran (trans,theta);
Coordinate (coord,trans,theta);
DrawFrame (trans, theta, coord);

RobotID := 1; 1 initialize robot choice toggle I
4.

4.

while inkey <> #27 do begin
FLAG1:

read (kbd, inkey) ;
if (inkey = #27) and keypressed then

read (kbd, inkey)"
case inkey of -

#120 : goto FLAG7; I alt-keys functions I
#121 : goto FLAG2;
#122 : goto FLAG2;
#123 goto FLAG2;
#124 : goto FLAG2;
#125 goto FLAG2;
#126 goto FLAG2;
#127 : goto FLAG2;

#113 begin
if (RobotID 1 1) then RobotID := 2
else RobotID := 1;

end;

14544,

".

"." .

+ V'

4 44* I -



#59 begin I Fl
theta [RobotID] [1]
theta (RobotID] (11 +
10*pi/180;

CaicTran (trans,theta);
Coordinate (coord,trans,theta);
DrawFrame (trans, theta, coord);

end;
#104 begin I ALT-Fl I

theta [RobotID] (11
theta [RobotID] (11-
10*pi/l80;

CalcTran (trans,theta);
Coordinate (coord,trans,theta);
DrawFrame (trans, theta, coord);

end;

#60 begin I F2I
theta [RobotID] [2]
theta [RobotID] [21+
l0*pi/180;

CaicTran (trans,theta);
Coordinate (coord,trans,theta);
DrawFrame (trans, theta, coord);

end;

#105 begin I ALT-F2 I?
theta [RobotID] (21
theta [RobotID) [2)-A%
l0*pi/180;

CalcTran (trans,theta);
Coordinate %coord,trans,theta);
DrawFrame (trans, theta, coord) ;

end;

#61 begin I F3 I
theta [RobotID] [31
theta (RobotID] [31+
10*pi/180;

CaicTran (trans,theta);
Coordinate (coord,trans,theta);
DrawFrame (trans, theta, coord);

end;

#106 begin IALT-F3 I
theta (RobotID] [3]
theta [RobotID] [3]-
10*pi/180;

CaicTran (trans,theta);
Coordinate (coord,trans,theta);

1461



DrawFrame (trans, theta, coord);
end;

#62 begin I F4 I
theta (RobotlD) £4)
theta [RobotID) [41+
10*Pi/180;

CalcTran (trans. theta);
coordinate (coord..trans,theta);
DrawFrame (trans, theta, coord);

end;

#107 begin IALT-F4 I
theta (RobotID) (43
theta [RobotIDIl 411-
10*pi/180;

CaicTran (trans,theta);
Coordinate (coord,trans,theta);
DrawFrame (trans, theta, coord);

end;

#63 begin I F5 I
theta (RobotID) £5)
theta [RobotID) £5]+
10*pi/180;

CaicTran (trans. theta);
Coordinate (coord,trans,theta) ;
DrawFrame (trans, theta, coord) ;

end;

#108 begin I ALT-F5 I
theta [RobotlD] £5)
theta (RobotID] (5)-
10*pi/180;

CaicTran (trans,theta);
Coordinate (coord,trans,theta) ;
DrawFrame (trans, theta, coord) ;

end;

#64 begin IF6 I
theta [RobotID) [6)
theta [RobotID) [63+
10*pi/180;

CaicTran (trans,theta);
Coordinate (coord,trans,theta);
DrawFrame (trans, theta, coord);

end;

#109 begin I ALT-F6I
theta [RobotID) £6)
theta [RobotID) [6)-

147



10*pi/180;
CalcTran (trans,theta); p

Coordinate (coord,trans,theta);
DrawFrame (trans, theta, coord);

end;

#71 begin HOME I
trans [RobotID] [] £4]

trans [RobotID] [l] £4] - 10.0;
InvKin (theta, trans, chars);
Coordinate (coord,trans,theta);
DrawFrame (trans, theta, coord);

end;

#73 begin PGUP I
trans [RobotID] £1] £4]

trans [RobotID] [] [4] + 10.0;
InvKin (theta, trans, chars);
Coordinate (coord,trans,theta);
DrawFrame (trans, theta, coord);

end;

#75 begin LT ARROW I
trans [RobotID] [2] 14]
trans (RobotID] [2] £4] - 10.0;

InvKin (theta, trans, chars);
Coordinate (coord,trans,theta);
DrawFrame (trans, theta, coord);

end;

#77 begin RT ARROW "
trans [RobotID] [2] [4]
trans [RobotID] [2] [4] + 10.0;

InvKin (theta, trans, chars);
Coordinate (coord,trans,theta);
DrawFrame (trans, theta, coord); .

end;

#79 begin END I
trans [RobotID] [3] [4]
trans [RobotID] [3] [4] - 10.0; .

InvKin (theta, trans, chars);
Coordinate (coord,trans,theta);
DrawFrame (trans, theta, coord);

end;

#81 begin I PGDN I
trans [RobotID] [3] [4] :
trans [RobotID] [3] (4] + 10.0;

InvKin (theta, trans, chars);
Coordinate (coord,trans,theta);

148

A.-



DrawFrame (trans, theta, coord);

end;

#68 halt; I Fl0 - terminate program I

end; (casel
end; (whilel

I******** ROUTINE 1 **I

I drilling operation I
FLAG7:

gotoxy (2,2); write ('PHASE I');
hover I I ready to drill I ..

thetaNEW [1] [1] -2.618; thetaNEW [2] [1] -2.385;
thetaNEW [1] [2] -0.524; thetaNEW [2 (2] 0.363;
thetaNEW [1[3] 0.524; thetaNEW [2][3] -0.023; N
thetaNEW [1] [4] 0.0; thetaNEW (2) [4] -2.431;
thetaNEW (1][5) 0.0; thetaNEW [2] [5] 1.835;
thetaNEW [1] [6] -1.047; thetaNEW [21 [6] -2.877;
RobMov (theta,thetaNEW,trans,coord,chars,false);

gotoxy (2,2); write ('PHASE II'); f pick up I -.

for 1 := 1 to 5 do begin
trans [1] [3] [4] := trans [1] [3] [4] - 10.0;
InvKin (theta,trans,chars);
Coordinate (coord,trans,theta);
DrawFrame (trans,theta,coord);
DrawSquare;

end; I for 1 1

gotoxy (2,2); write ('PHASE III');
I hover again I same I

thetaNEW [1] [1] -2.618; thetaNEW [2] [11 -2.385;
thetaNEW [1] [2] -0.524; thetaNEW [2] [2] 0.363;
thetaNEW [1] [3] 0.524; thetaNEW [2] [3] -0.023;
thetaNEW [1] [4] 0.0; thetaNEW [2] [4] -2.431;
thetaNEW [1] [5] 0.0; thetaNEW [2] [5] 1.835;
thetaNEW (1] [6] -1.047; thetaNEW [2] [6] -2.877;
RobMov (theta,thetaNEW,trans,coord,chars,true);

gotoxy (2,2); write ('PHASE IV');
I move to vice position I I same I

thetaNEW [1] [1] -0.721; thetaNEW [2] [11 -2.385;
thetaNEW [1] [2] 0.284; thetaNEW [2] [2] 0.363;
thetaNEW [1] [3] -0.649; thetaNEW [2] [3] -0.023;
thetaNEW [1] [4] 2.387; thetaNEW [2] [4] -2.431;

149



thetaNEW [1] (5] 1.300; thetaNEW [2] (5] 1.835;
thetaNEW [1] [6] -2.895; thetaNEW (2] [6] -2.877;
RobMov (theta,thetaNEW,trans,coord,chars,true);

gotoxy (2,2); write ('PHASE V');
I stay in vice position I I drill I

thetaNEW (1] (1] -0.721; thetaNEW [2] [1] -2.752;
thetaNEW (1] [2] 0.284; thetaNEW (2] [2] 0.294;
thetaNEW (1] [3] -0.649; thetaNEW [2] [3] -0.208;
thetaNEW [1] (4] 2.387; thetaNEW [2] (4] -2.826;
thetaNEW [1] (5] 1.300; thetaNEW [2] [5] 1.655;
thetaNEW 1][6] = -2.895; thetaNEW [2](6] -3.070;
RobMov (theta,thetaNEWtrans,coord,chars,true);

gotoxy (2,2); write ('PHASE VI');
I stay in vice pc:sition I I retract drill I

thetaNEW [1] (1] -0.721; thetaNEW [2] (1] -2.385;
thetaNEW (1] [2] 0.284; thetaNEW (2] [2] 0.363;
thetaNEW (1] (3] -0.649; thetaNEW (2] [3] -0.023;
thetaNEW [1] [4] 2.387; thetaNEW [2] [4] -2.431;
thetaNEW [1] (5] 1.300; thetaNEW (2] (5] 1.835;
thetaNEW (1 [6] -2.895; thetaNEW (2] (6] -2.877;
RobMov (thetathetaNEW,trans,coord,charstrue);

goto FLAG1;
i end of routine drill I

FLAG2: I routine IN MAIN to lead robots through specified

movement I

set thetas to an appropriate starting point I
theta [1 (1] -0.5123; theta (2] (1] -1.7703;
theta [1) 12] 0.1847 ; theta (2] [2] 0.1833;
theta [1]3] -0.8479; theta (2](3] 0.3838;
theta (1][4] 0.0; theta (2][4] 0.0;
theta [11(5] 0.6632; theta [2][5) -0.5671;
theta [1] 16] -0.5123; theta [2] [6] -1.7703;

I robot initial postition I
CalcTran (trans,theta);
Coordinate (coord,trans,theta);
DrawFrame (trans, theta, coord);

I set transinit mx to trans mx
transinit := trans;
for k := 1 to 2 do begin

for i := I to 3 do begin I initialize Tro I
for j := I to 3 do
Tro (k] (i] Ei] : trans (1] [i] [j];

150

1.'



Tro [k] [42.] := 0.0;
end; I for i I
Tro [k] [1] [4] 377.3;
Tro [k] [2] [4] -40.18;
Tro [k][3][4] 50.47;
Tro [k][4][4] 1.0;

end; ( for k I

f calc Tinvinitro for nextran

InvTran (Tro, Tinvinitro);

DrawBox (Tro); f draw initial box I

[******** ROUTINE 2 **( "

if inkey = #121 then begin I alt-2 key I

I linear movement without node search
- no obstacles I

px := Tro [1] [1][4] - 50.0;

I run through movement routine I -
for i := 1 to 5 do begin e

for j := 1 to 2 do
Tro ] [1] [4] := Tro Lj] [1] [4] - 10.0; N.

calculate next trans and draw robots .
Nextran (Trans, Trb, Tinvrb,

Transinit, Tro, Tinvinitro);
InvKin (theta, trans, chars);
Coordinate (coord,trans,theta);
DrawFrame (trans, theta, coord);
DrawBox (Tro);

( indicate Tro I
CircleIquad (Tro [1] [1] [4] ,Tro [1] [3] [41,2,1);
CircleIquad (px, Tro [1] [3] [4] ,2,1);

end; I for i I

end I else if I

I********* ROUTINE 3 **1

else if inkey = #122 then begin I alt-3 key I

I increase theta 5 of 30 degrees with trans being
incremented I

for i := 1 to 2 do begin I set final position I
TroEND [i] [1] [4] 340.0;
TroEND [i] [2] [4] := -40.0;

151

..................



TroEND [i] [3] [41 80.0;
end; I for i I

I calc Tinvinitro for nextran I
InvTran (Tro, Tinvinitro);

Step (numsteps,Tro,TroEND); I determine number of
steps for move I

I calc the increment on r-p-y m
deltheta [5] := 30.0*pi/180/numsteps;

I del x I
del [1] := (TroEND [1] [i] [4) -

Tro [2] [.] [4])/numsteps;
{ del y I

del [2) := (TroEND [1] [2) [4] -

Tro £1] [2] 4])/numsteps; 0

I del z I
del (3] := (TroEND [1] [3] [4] -

Tro [1] [3] [4])/numsteps;

for i := 1 to numsteps do begin

{ calc rotation mx of Trol
ThetaTRO := theta;
ThetaTRO [1) [5) := Theta [1] [5] + del_theta [5];
CalcTran (RotTrol, ThetaTRO);

for j := I to 2 do begin set ROT mx of Tro
for k := 1 to 3 do begin

for 1 := 1 to 3 do
Tro [j] [k] [1] := RotTrol [I] [k] [1 ;

end; I for k I
for k := 1 to 3 do { set translation mx of Tro 1

Tro [j][k][4] := Tro [j][k][4) + del[k];
end; I for j I

Icalc the robot's next trans mx's I
Nextran (trans, Trb, Tinvrb,

Transinit, Tro, Tinvinitro);

f calc robot positions and draw
InvKin (theta, trans, chars) ; -

Coordinate (coord,transtheta) ;
DrawFrame (trans,theta,coord);

DrawBox (Tro); I draw in object I

indicate end position and reference point .
CircleIquad (Tro [] [1) [4) ,tro [1] [3] [4) ,2,1);
CircleIquad (TroEND [1] [1] [4),

TroEND £1) [3] [4) ,2,1) ;

152

I



end; I i I
end I if I

(********* ROUTINE 4 **I

else if inkey = #123 then begin I alt-4 key I

I translation with roll (+30) and yaw (+20) I

rpy (l] := -pi;
rpy (2] 0.0;
rpy [3] := 0.0;

for m := 1 to 2 do begin

if (m=l) then begin { PHASE I of movement I

initialize del-rpy I
for i := 1 to 3 do
del_rpy [i] := 0.0;

for i := 1 to 2 do begin I set final position I
TroEND (i] i] [4] 320.0;
TroEND (i] (2] [4] := -60.0;
TroEND [i) [3] [4] 60.0;

end; I for i I

I determine number of steps for move I
Step (numsteps,Tro,TroEND);
(calc the increment on r-p-y I
delrpy [3] 20.0*pi/180/numsteps;
delrpy [2] := 15.0*pi/180/numsteps;

end I if I

else if (m=2) then begin I PHASE II of movement

for i := 1 to 3 do
del_rpy [i] := 0.0; 1 initilize delrpy I

for i := 1 to 2 do begin I set final position I
TroEND (i] [1] (4] 290.0;
TroEND [i] (2] (4] := -80.0;
TroEND [i] [3] [4] 70.0;

end; I for i I

I determine number of steps for move I
Step (numsteps,Tro,TroEND);

end; lif!

153



fdelx l
del [1] := (TroEND [1] [1] [4) -

Tro [I][1) [4])/numsteps;
del y

del [2] := (TroEND [1] [2) [4) -
Tro [1] [2) [4])/numsteps;

del z I
del [3] := (TroEND [Il [3] [4] -

Tro [1] [3] [4])/numsteps;

for i := 1 to numsteps do begin

calc rotation mx of Trol
for j := 1 to 3 do { incr rpy angles I

rpy [j] := rpy [j) + del_rpy [j];

CalcRot (RotTrorpy); I calc rotation mx of Tro I

for j := 1 to 2 do begin I set ROT mx of Tro
for k := I to 3 do begin

for 1 := 1 to 3 do
Tro [j] [k] [1] := RotTro [k] [1) ;

end; I for k I

set translation mx of Tro ,
for k := 1 to 3 do
Tro [j] [k] [4 := Tro [i] [k] [4] + del[k];

end; for j I

I calc the robot's next trans mx's I
Nextran (trans, Trb, Tinvrb, Transinit, Tro,

Tinvinitro);

{ draw frame I
InvKin (theta, trans, chars); 0%
Coordinate (coord,trans,theta) ;
DrawFrame (trans,theta,coord);
DrawBox (Tro);
CircleIquad (Tro [1) [1] [4],tro [1) [3] [4] ,2,1) ;
CircleIquad (TroEND [1] [1] [4],

TroEND [1] [3] [4] ,2,1);

end; I i I
end; Im I

end f else if

f********* ROUTINE 5 **I

else if inkey = #124 then begin 1 alt-5 key

154

j.%'



I linear translation with trans

being incremented , node search, no obstacles I

px Tro I] [1] [4] - 50.0; 1 final location I

run through movement routine I
ON ffor i := 1 to 5 do begin

for j := 1 to 2 do I increment Tro i
Tro [j] [1] [4 := Tro [j][ 1] [4] - 10.0;

draw tie frame I
Nextran (Trans, Trb, Tinvrb,

Transinit, Tro, Tinvinitro);
InvKin (theta, trans, chars);
Coordinate (coord,trans,theta);

N-'ie (colision,coord); I perform the node search I

I a collision detected by Nodel
if (collision) then begin

gotoxy (2,3);
write ('MOVEMENT HAS BEEN FROZEN');
exit;

end; I if I

I draw the frame I
DrawFrame (trans, theta, coord),
DrawBox (Tro);
CircleIquad (Tro [1] [1] [4) ,Tro [1] [3] [41,2,1);
CircleIquad (px,Tro [1 1[3) [4) ,2,1)

end; I for i I

end I else if I

I******** ROUTINE 6 **I

else if inkey #125 then begin I alt-6 key I

I yaw 180 degrees for node search failure I

rpy [1] -pi;
rpy [2] 0.0;
rpy [3] 0.0;

for i := 1 to 3 do J initialize del rpy I
delrpy [i] 0.0;

for i 1 to 2 do begin I set final position I
TroEND [i] (1] 4] : 300.0;
TroEND (i] [2] [4] -60.0;
TroEND [i] [3] [43 80.0;

155

?.%



end; ( for i I

numsteps :n 10;

I calculate the change in variable I

delrpy [3] :=-180.0*pi/180/numsteps;
del [1 (TroEND [1 I] [4] -

Tro [1] [1) [41)/numsteps;
del [2) (TroEND (1] (2] (43 -

Tro [1] [23 [4])/numsteps;
del [3) (TroEND (1] [3] (4] -

Tro [1] [33 [4])/numsteps;

for i := 1 to numsteps do begin

calc rotation mx of Trol
for j := 1 to 3 do I incr rpy angles .

rpy [j] : rpy [j] + delrpy [j];

CalcRot (RotTrorpy); I calc rotation mx of Tro I
a-

for j := 1 to 2 do begin I set ROT mx of Tro I
for k := 1 to 3 do begin

for 1 := 1 to 3 do
Tro (j] [k] [1 := RotTro k] [1] ;

end; for k I .4

for k 1 to 3 do I set translation mx of Tro I
Tro [j] [k] [4 := Tro [j] [k] [43 + del(k];

end; I for j I

I calc the robot's next trans mx's
Nextran (trans, Trb, Tinvrb,

Transinit, Tro, Tinvinitro),
InvKin (theta, trans, chars);
Coordinate (coord,trans,theta);

Node (collision,coord); I perform node search I

if (collision) then begin I stop movement if
collision is to occur I

gotoxy (2,3);
write ('MOVEMENT HAS BEEN FROZEN');
goto FLAG1;

end; I if

DrawFrame (trans,theta,coord);
DrawBox (Tro);
CircleIquad (Tro [1] [13 [4) ,tro [1) [3] [43 ,2,1);
CircleIquad (TroEND [] [1] [43,
TroEND [1) [3] [43,2,1);

156
'4



-
,S.

end; I i I
end ( else if I

I:******** ROUTINE 7 **I

else if inkey = #126 then begin f alt-7 key I

I linear x movement with upward obstacle
avoidance I

DrawObst; I draw in original obstacle I

for i := 1 to 2 do begin I set final Tro I
TroEND [i] [i] [I] 0.866;
TroEND [i] [i] [2] -0.5;
TroEND [i] [i] [3] -0.0;
TroEND [i] [i] [4] 300.0;
TroEND [i] [2] [i] -0.5;
TroEND [i] [2] [2] -0.866;
TroEND [i] [2] [3] := 0.0;
TroEND [i] [2] [4] -40.0;
TroEND [i] [3][i -0.0;
TroEND [i] [3] [2] 0.0;
TroEND [i] [3][3]= -1.0;
TroEND [i] [3] [4] 130.0;
TroEND [i] [4] [4] 1.0;

end;
I indicate end point I

CircleIquad (TroEND [1] [i] [4],TroEND [i] [3] [4] ,2,1);

I calc the Trans of the end position
(into nextrans) I

Nextran (Nextrans, Trb, Tinvrb, Transinit, TroEND, .

Tinvinitro) ; a.
'a

FLAG3:
STEP (numsteps, Tro, TroEND); I determine the number

of steps

for i := 1 to 2 do begin I calc. incremental step I
for j := I to 4 do begin

for k := 1 to 4 do
Tincr [i] [i] [k] := (Nextrans [i] [j] [k] -

trans [i) [] [k]) /
numsteps;

end; I i I
end; I i I

T2 := Trans; I set T2 (an itermediate dummy) I

157

60,



for i := 1 to numsteps do begin movement loop I

for j :=1 to 2 do begin I caic where desired

location T2 is I
for k := i to 4 do begin

for 1 := 1 to 4 do
T2 [j] [k] [1] := T2 [j] [k] 11] +

Tincr [j] [k] [1]
end; for k I

. end; I for

I calc dummy Tro coords for NEXT step I

px 0.5*(200+T2 [I] [1] [4]+400+T2 [2] [1] [4]);

py 0.5*(T2 [1] [2] [4] + T2 [2] 12] 14]);
pz 0.5*(133.08+T2 [i][3][4]+133.08+! T2 [2] [3] [4]) ;

I check to see if bar is in obstacle's range I
if (px > 170.0) and (px < 350.0) and I enlarged

obstacle I

(py > -135.0) and (py < 35.0) and
(pz > 30.0) and (pz < 95.0) then begin

I not as enlarged I

gotoXY (2,2); write ('AVOIDING OBSTACLE');

I increment z coordinate to go up and over I
Trans [1] [3] [4] Trans [1] [3] (4] + 10.0;
Trans [2] 13] [4] Trans [2] [3] [4] + 10.0;
Tro [1] [3] [4] Tro [1] 13] [4] + 10.0;

I reset Tro z coord I

Tro [2] [3] [4] Tro [1] [3] [4];

InvKin (theta, trans, chars);
Coordinate (coord,transtheta);
DrawFrame (trans, theta, coord);
DrawObst;
DrawBox (Tro);

I indicate end position I
CircleIquad (TroEND [1] [1] [4],

TroEND [1] [3] [4],2,1);

goto FLAG3; I restart loop I
end;

I calc trans and draw robots
InvKin (theta, T2, chars);

158

W'



CalcTran (trans,theta);
Coordinate (coord,trans,theta);
DrawFrame (trans, theta, coord);
DrawObst;
D( indicate end position I
CircleIquad (TroEND [11 [1 [4],

TroEND [1) [3] [41 2,1);

Tro := trans; I reset Tro

for j := 1 to 2 do begin I adjust Tro I
Tro [j] [1) [4] 0.5*(coord [1] [6] [x] +

coord [2] [6 [x]);
Tro [j][2] [4] 0.5*(coord [1][6][y] +

coord [2) [6) [y)
Tro [j] [3114] 0.5*(coord [][6[z] +

coord (2) [6] [zI ) ;
end; I for ii

DrawBox (Tro);

end; I for i I
end I else if)

aD (******** ROUTINE 8 **,

else if inkey = #127 then begin alt-8 key I

I movement withe intelligent obstacle avoidance I

DrawObstl; I draw in original obstacle with
overhang

for i := 1 to 2 do begin I set final Tro I
TroEND [i] [1][i : 0.866;
TroEND [i] [1]123 -0.5;
TroEND [i][11[3: -0.0;
TroEND [i] [1 [4) 295.0;
TroEND [i] [2] [1 -0.5;
TroEND [i] [2][21 -0.866;
TroEND [i] [2] [3) 0.0;
TroEND [i] [2] [4) -40.0;
TroEND [i] [3] [1] -0.0;
TroEND [i] [3) [2] 0.0;
TroEND [i)[3) [31 -1.0;
TroEND [i] [3] [4) 160.0;
TroEND [i][4][4] 1.0;

end;

I indicate end point I
CircleIquad (TroEND [1] [1] [4) ,TroEND [1] [3] [41,2,1);

159



I calc the Trans of the end position
(into nextrans)I

Nextran (Nextrans, Trb, Tinvrb, Tranisinit, TroEND,
Tinvinitro) ;

FLAG6:
STEP (numsteps, Tro, TroEND); I determine the

number of steps I

for i := 1 to 2 do begin I calc. incremental step I
for j := I to 4 do begin

for k := 1 to 4 do
Tincr [i [j] [k] := (Nextrans [i) [j] [k] -

trans [i] [j] [k)) /
numsteps;

end; I for j I
end; for i}

T2 := Trans; { set T2 (an itermediate dummy) I

for i := 1 to numsteps do begin I movement loop I

for j := 1 to 2 do begin I calc where desired
location T2 is I

for k := I to 4 do begin
for 1 := 1 to 4 do

T2 ] 1k] [1] := T2 U] [k] 11 +
Tincr [j] k] [11]

end; I for k I
end; I for j I

I calc dummy Tro coords for NEXT step I
px 0.5*(200+T2 (1] [1] [4]+400+T2 [2] 1[] [4]);
py 0.5*(T2 [i] [2] 14] + T2 12] [2] [4]);

pz 0.5*(137.08+T2 [1] [3] [4]+137.08+
T2 [2] [3] [4]);

movementx 0.0; ( initialize variables for loop I
movementy 0.0;
movementz 0.0;

for j := 1 to 5 do begin
if (j 2) then begin J Alternate Position 1 .

px px + 10.0;
pz pz + 5.0;
movementx 10.0;
movementz 5.0;

end I if I

I Alternate Position 2 1

160



else if (j = 3) then begin
pz := pz - 15.0;

movementz := movementz - 15.0;
end I else if I

I Alternate Position 3 1
else if (j = 4) then begin

py := py + 10.0;
movementy := 10.0;

end else if I

else if (j = 5) then begin ( stop movement I
gotoxy (2,2);
write ('movement frozen'); ,
exit;

end; I else if I

check to see if bar is in obstacle's range I
if (px >= 208.0) and (px <= 382.0) and

(py >= -135.0) and (py <= 35.0) and
(pz >= 66.0) and (pz <= 135.0) then

goto FLAG4
enlarged obstacle I

else if (px >= 208) and (px <= 320) and
(py >= -135) and (py <= 35) and

(pz >= 8) and (pz <= 72) then goto FLAG4

else begin
if (j = 1) then goto FLAG8
else goto FLAG5;

end; I else }
FLAG4:

end; for ji

FLAG5: !p
gotoXY (2,2); write ('AVOIDING OBSTACLE');

I incr trans to intelligent movement I
Trans [1] [I] [4] := T2 [1] (1] (4] + movementx;
Trans [2] [1] [41 := T2 [2] [1] [4] + movementx;
Trans [1] [2] [4] := T2 [1] [2] [4] + movementy;
Trans [2] [2] [4] := T2 [2] [2] [4] + movementy;
Trans [1] (3] [4] := T2 [1] [3] (4] + movementz; f

Trans [2] [3] [4] := T2 [2] [3] (4] + movementz;

InvKin (theta, trans, chars); I draw robots I
Coordinate (coord,trans,theta);
DrawFrame (trans, theta, coord);

Tro trans; reset Tro

161

a-



.0 %

for j 1 to 2 do begin I adjust Tro I
Tro [j][I][4] 0.5*(coord [1] (6] [x +

coord [2] [6] [x]);
Tro [j][2][41 0.5*(coord [1][6][y] +

coord (2] [6][y]);
Tro [j][3][41 0.5*(coord [1[6][z) +

coord [2] [6] [z]) ;
end; (for j I

DrawObstl;
DrawBox (Tro);
f indicate end position I

CircleIquad (TroEND [1] [1] [4],
TroEND [1] [3] [4] ,2,1) ;

goto FLAG6; I restart loop

FLAG8:
InvKin (theta, T2, chars); { draw robots I
CalcTran (trans,theta);
Coordinate (coord,trans,theta);
DrawFrame (trans, theta, coord);
DrawObstl;
(indicate end position I

CircleIquad (TroEND [11 Li [4),
TroEND [11] [3] [4] ,2,1);

Tro trans; ( reset Tro

for j i to 2 do begin f adjust Tro I
Tro [j][i][4] 0.5*(coord [1][6][x] +

coord [2] [6] x]);
Tro [j][2][4] 0.5*(coord [I][6](y] +

coord [2] [6] [y]);
Tro Li] [3] [4] 0.5*(coord [1] [6] [z] +

coord [2] [6] [z])
end; I for j I

DrawBox (Tro);
end; ( for j

end I else if I

else
goto FLAG1; I default if wrong alt code is entered I

goto FLAG1; I after a routine is finished I

end. I CoordSim

162

b



.

APPENDIX 2 -

USER'S GUIDE TO COORDSIM -

,

,4.

163

o -< a 'a ~ a 4 5.' ~ '**a ,' . v% - - * • a.



i > - ' .. j . . , ..1. , . . . -. - . •. . . - .*.

A2.1 Introduction

The following is a user's guide which describes the

use of the program "CoordSim". CoordSim is a computer

simulation written in TurboPascal (refer to appendix 1)

which graphically illustrates the coordination of two PUMA

robots.

Figure 6.1 is a sample output of the screen. It shows

the location of the rotation matrices, joint angles, and

absolute positions of each robot along with a stick figure

which represents the center-line of the robot

A2.2 Starting the Program

1) Boot up the IBM PC with DOS version 2.0

or later.

2) Place the floppy disk containing the

program "CoordSim.com" in drive A.

3) At the "A>" DOS prompt type "CoordSim".

4) The program automatically loads and

initializes the robots' locations to a home
%'.

position.

5) Keyboard input is now available as per

the following sections.

164



A2.3 Teach Pendant

CoordSim has the ability to control a variety of

motions of each robot. Initially, the keyboard controls

robot 1. The first six function key control the six joint

angles of the robot (refer to figure A2.1). Pressing F1

increases the theta . by 10 degrees, F2 increases the theta

2 by 10 degrees and so on up to F6 for theta 6. A decrease

in angle is obtained by pressing ALT-Fl for theta 1, ALT-F2

for theta 2 and so on up to ALT-F6 for theta 6. The toggle

to pass control to the other robot is the ALT-FI0 key.

+THETA 1 F1 F2 +THETA 2

-THETA 1 -THETA 2

+THETA 3 F4 F3 +THETA 3
-THETA 3 -THETA 3

+THETA 5 F5 F6 +THETA 6
-THETA 5 -THETA 6

F8 F7

F9 F10 EXIT PROGRAM

ROBOT TOGGLE

* Press function key alone to perform the upper
function.

* Press ALT-function key for lower function.

* Figure A2.1
Function Key Identification

165

14V

4.f,;4~~* - d A - A -. A, N 4~ . ~



V.~~W a -777--

J.

Along with joint angle control is cartesian

movement control. In this case, the numeric keypad

controls the cartesian movement of the end effector. At

the keypad, the "7" and the "9" move the end-effector in

the negative and positive x-direction. The "4" and "6"

control the negative and positive y-direction. Finally,

the "1" and "3" control the negative and positive z-

direction.

A2.4 Routines

The eight routines described in chapter 6 are started

by pressing the ALT key along with the number of the

specific routine desired. For example, routine 4 would be "

started by pressing the ALT-4 key. Each of these routines L

can be started at any time while in CoordSim and the teach

mode is still effective after a routine is completed. ,a

A2.5 General Information

The program is exited by pressing the F10 key.

166 1

'I..



f-PW

~% 4..
P%. ..

E..~-

LAI!

4 ol _. 'j._vp.1 1P b .0

&6cm , N o "-


