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ABSTRACT

This project is a multidisciplinary effort between three departments and principal .5

investigators. It combined pattern recognition, image understanding and artificial
intelligence techniques for space-based image processing. A special feature of this effort
is the attempt to use both optical an digital processing methods. Subpixel target
detection and tracking algorithms are analyzed and conclusions are presented regarding
their suitability for this application. We also present an adaptive subpixel delay
estimation method using Group-Delay Functions. Image understanding techniques for
3D scene interpretation are also discussed. 4 4
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Chapter 1

Introduction

1.1. Overview

This project is a multid-fisciplinary effort intended to cominlne melt hololo-ies

for iniage analysis and interpretation, andl evaluate tlte ippliatijon o1' t hi

integrated approach to problems of space-lbased imagery. The project hiri

lbrowlit togetheri research teams from wvithin the Departmnent of' Llect neal zind

Computer Engdineering' Comnpue Scienice, Il'loti-, and Binidci En-Ineerin-

of CNML.

S We have chosen time-carying .space-based bnagery aLs the applicationse.

donmain in which to evaluiate our integirate1 ap~proach. The two aspects of this

* (donmain are described below:

* * 'pacc-ba~sed Un (Iery involves lar-ge amou nts of iii form it ion and
* . incorporates both structural and textural properties of a s cene.

Efficient let ection anid repi resent ation of' in form ation *iii scene are
- ~~~~essential not on ly to interpret ation] but alsoI to thle and4rm~ iii

trnmiso of iformIIa tion. Scelies are.( predoilil uti 'ily It%.o-

dimensional ltlioivli li-lht and Alosafctii i~o hot 11
structures andi textulre, aind IilterpretzJti)of nr n~i icraiil
high-1 optical re()l ItI lo ll eo-11ii ze thn-cree il inensioii Ii als

* Inter-preititioii of t /III eI-(Ir d (l/(1, is, :1 priil:Irvy -o2I (fA' ;cl:
image aiii lv i a I ~ IIs :Iii li io :1 i a ieliol A 1 il i

prok uil. W eto ()ok :11 t t 11(- , 1:1 hiS

%.*~ % -



reqluire s-omewhat different alyitos.Hgspe rackliu"'s

viewed as primarily a feature extraction prob~lem :111( has Ibeeii
approached usig optical nmethods. M edium and long-teirin timen-
change detection must be based on a more abstract descriptio oil(3 thle

scene and methods of representation and model-based interpretation

must, le brought to bear.

Within the context of the applications domain, wve have adldressed the%

following methodological research issues:

* Optical feature extraction and detection

e Structural and textural representation and miatching-

* Model-bas-ed image interpretation

9 H-ybridi optical/dligial computer architectures

Thiese issutes are fundamental to implementation and peritorilaice oF 4

analysis tools which could embed the inliereiitlv fast and parallel preprocessling

power of' optical techiniqutes into a system which develops and te~sts Ilypot 1iezcs

%. .
about scene representations and scene models.

In Chiapt er i of thiis rep~ort. wve provide a more (let ailed (Arewo tile%

eoiCiptiil rrminevorik of our proi)osed l hybrid Coptical/digit:1l dy.1-ill. thii Ile

to Air Force telinolO.-v aiil1 to related A-ir F'orcei rls.wI I1' '\Pie> '

a1 sum11mary of* our researichi 111 to t his Vy ir. Sect iI 1.6;poiw ~ liilV'

onr litel v~l ()1rseiei.Wt i let iil-s in (Ill a t ers 2-5. 0



3 1

1.2. Conceptual Framework for Hybrid Optical/Digital

Image Processing

In Figutre 1.1. wve show the general strutur11e for on11r proposed lyr

optical/digital system uising m1ultiplle mnethodologies for' 1) cilit ei Ii nIFpi

based imiages. As shown in Figuire 1.1, input Iimares are preprocessed anid then

fed to p~aral lel optical and l igital channels in which inn ilti p I l*Va-tt i re:,I,( . .'%

extracted. A p~arallel Iiage modeling system is also shiowni which etat

strutctural descrip~tions of the image. These data plus Iiage regist ration n

target dletection information obtained from an optical correlator channel are t liwi

used by an AI/jW. systemn to mnodify the parallel iput process~ing channels. to

alssemible and interpret a time-hiistory track file on objects of interes t in the ,-.%

iiage and to provide the necessary textuiral and graphic ot put rep)orts.

1.3. Problem Definition

Advanced space-based sensor systems Nvil pI1rovidle us wvith1 hiighi-resol ition

real-time nltiseiisor dlata acquisition in the near f'uture. This, wvill totallY 1iolln

present processors uinless we address how to initelhigently and timiiely p roceS' kni

handle the projecte d dat a rates. NASA and othiers have alria v yen ro Iithli

Uited States is, capable of collectiiig mlore l'ita. ian11 we cnII itfinlvI*e

0

% .% .. ....
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rate of over 1010 bits/see). No existing technology can accommolate such a high P
data collection rate. Therefore, attenltion should be given to the al goi01>-

required to achieve this. But first, here are several facts about SBIU prolciim.-:

1. In space-based image acquisiti an, we are monitoring cert-alin reas anl
regions for diverse well-defined missions. We are only concerned with _

changes and (to not need to know that nothing new has occurred in
the image being looked at. When we transmit only the associted
change information, we achieve a quite significant b1tand'ibltlh.
reducttion. Thus, we should process the data from space-ba-sed sensors
on-board the platforms, determine image changes on-line, interpret -"-,

the results and transmit only textural and graphic output reports.

2. We know rather well where the satellite is and where it is looking and
we know that the scene being imaged correlates with the prior image
frame or with our stored reference. The problem is thus different
from the often discussed unbounded and unsupervised target
recognition problem. We can and must utilize this a )riorit .
information that the frame we are investigating correlates with a %,
previous one in our processing algorit hils.

:3. To provide better image registration accuracy and to facilitate
pointing of secondary sensors at given areas of interest., it is often p
necessary to locate key landmarks in the image. This is also useful in
determining geometrical corrections needed. %

-1. It is also useful and necessary to re-ister two successive image frames

for inter-frame integration to decrease the variance of the noise and
to improve the image quality. This is essential to accommodate
platform variations with time and background drift. Often, . u 'pi.'el
image registration is necessary.

.. It is obviously essential to .s ub 3ne s ccc~sice fine.s si lce this 0

provides the necessary clhnge letection or t*iuinc-varvi ng tirget lita.

6. However. in most cases. the m inage regist'ratio in (4) is >iiljlixil ai"'
ithus betore perforliiig (5). we mlit indt erplohtte the im.

O(n e /im te-11 i./ ory i,_l /He. o' c.:i ii : , ,ccl s I' nit crc.>t inc t()I li
['Ield-ot-view of, the sensors l ave le.ol oit:1in eI. : i u1111ltitlildI (f.

hiitnan percel)tion algorithills are niecC(s1 'y to cla.Kfy. un iert :iid,
and iiterret tie time-change activity not,,.

U'
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S. In advanced sensor systems. :3D) i lorination oil thle scue C vil 1 )(2
available from stereO satellites or Other tcellhniq les. III 11(.Ii ea .v~e

can full\- capitalize on thle avail able li i ge itnloruiat ion i (Il.\ hy Ieh
use of advanced- .,3D scene muodeli'nj and I'llt erprft (it '0 /1. '1' i key Vo IjIit
i,- the extract ion of scene inform ation (:31)) fron tlie-liist iries ()f 21)

9. To dletect and~ dlescribe dletailed changes in the 3D) strict ire of seis
it is useful to first generate 8D scene deIcrl'ptions froia. thc .2D1)

un ages. and then t~o compare the descri ptionis lI*() 0laag~ ~f~
Conventional 2D change (detection approaches are not asii.selal fhoc

high resolution images of complex scenes siiice they doltu IILUke Into

account factors such as different viewpoints and diffei'eIII l1,ilti tig
conditions for the different imag-es of the scene. In ordler to lctect
changes over successive limages of a given scene ob~tainied over time, It
is useftil to maintain a 3D model of the scene and :ititoinaticea lv
up~date the modlel as changes occur. This requires the ibility to m:It cl
the model with each new view of the scene. Matchl ta .1 ,D is iir
dlesirable than matching in 2D since the :3D) iniiormatioii is. relpreseiit e:d
in a man ner tliat is independent of view poi lit anld light i ui coil, lit ions.

10. The 3D Scene Model is a tuseful central component for many aspects
of the change detection task. Not only is it tuseftil f'or determining,
whether changes have occurred, but it lso permits iiiode-baset

interpretotion of' new images and serves as a central represeiitation
for actumulating 3D scene information from various lowv-level experts.
Our- new research addresses these aspects of time-hiistory 3D) sceiie
informiation.

0
Items 1-6 adldress the ighI throughiput signal processing a-spects of S IU.

ft w\hereas items 7-10t addIress the advanced image uinderst a di hg as pects ohr t his

problem. Table 1-1 summarized objectives \v liich in ist be at tai ite to achieve t lie

o)verall goal of' SBIU. In Table 1-2, technhique is eoi dto aIt I al i t liese( objeci

are listed, and Table 1-:3 lists tlte (lisciplihies Nvliieliwill coat IIt-1,1c T,) 1tie

achievement of our- goals. As well as imaige pre piig cr . mc w ort ily III,

I Inij)()rtl ce of ofliciet da:tabas e or~a'- it o vii 11d 111:111i11 i It *i I 11ce ()I* . 0

t iauiinissor oh a xcv large da1ta1base wvill lhe reyiicd or IAI.'-

, N AN N



To properly address understanding of thne-varying space-based images. we

fell that three different SBIU time-varying image processing scenarios (Table 1-])

must be separately addressed. We distinguish the three cases by the change rate

and the domain of analysis. In the first case (rapid tile-variations), we can,

consider a missile launch. In this application, the objective is to track the time-

history of the missile and to transmit the information that a missile has been -

launched (from subsequent sensors, the missile's trajectory etc. can be obtained

from our system techniques and algorithms). The second case (medium tune- 0

variations) can concern monitoring of key sites such as airports. railroads and

harbors and known areas of anticipated concentrations of troops or armor. In

this case, troop or armor movement and air, land and sea activity can be

obtained from time-varying image data. This second scenario is typical of a case

in which extensive Al and IU techniques are appropriate (i.e., the use of

information on the locations of hangers, runways, railroad tracks, terminals.

switching yards, harbor channels, docks, piers. etc.). This also requires the

locations and registration of these items in sequential image frames. The third

case (slow time-variations) addresses urban development and agricultuiral or land

use activity (as in Landsat and ERTS case-stu(ies).

The three scenarios noted in Table 1-4 constitute our lAiinitioii of the SI3IU "

problem. All cases requiire the techniques and disciplikiic noted iii Ta bles 1-2 and"

1-3. The first case (rapid time-variations) requires priiiiarily silpixel iimage

registration. frame integration. frame interpolation, andi nage Ii fferencihig. The %

secondi ca-se requires techniqiles inuvolvihg i1in:age2 iliterpret: ati l. 3D sc(Iene

".'4' ,

VW N. %

N. % % pw
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" Detection of image cnanges

" Use of a Priori* knowledge -

" Location of key landmarks

" '1 ie-istory track file acquisition

" Interpretation of time-history dlata

" 3D scene interpretation

" Efficient storage and retrieval of information from database

Table 1-1: Objectives of Space-Based Image Processing

P.P

" ima enacntoatin prprcesng tin

" Image segmentation N

" Feature extraction

Image modeling

* 3D scene modieling an(I interpretation

" Hierarchical (latal)ase (lesign

Table 1-2: Image Processing Techniques Required f'or SBIU

mo)(eli ng. 31D miatching and. corniparis on. pl us knmow ledge- based geomietric

reasonig. The third case needs more st atistical techiniqiics 11id Istatis:tiwal imiage

mod els. more so than do the others. All ca-ses requ ire ol j cct : i~d cenle imodelin eg

in age prep)rovessing and enlian11celieiit plis s Cgnilmit:tioll. Va mm Xt ract ion aild

J . 14

.*%Z.

VS N~I~ n.N%
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* Pattern recognition ,-

" Image understanding

* Human perception

* Artificial Intelligence

* Optical Prccessing

" Digital Processing

Table 1-3: Disciplines Required to Achieve Real-Time Space-Based
Image Processi ng

TIME CHIANGE EXAMPLES DONLMN OF AN.ALYSIS

Rapid Missile Launch Inage Pixels

Medium Railroad, Airport, Scene Structure
Harbor, Troops, Armor

Slow Agricultural, Land-use, Statistical Image N lodeliing
Urban Development

Table 1-4: Time-Change Scenarios

classification. Figure 1.1 depicts these aspects and the interactive

multidisciplinary feedback required to solve these SBIU problems.
7. ,

1.4. Benefit to Air Force Technology

With our three scenario problem definition (Table 1-4), we now consider

the mvriad of Air Force programs and technology that can benefit from our

proposed research. First, we note that our research is directed tow-rd the

devl\,elorcint of new :llgorithms and their realization in a h:yhrid oltic l/ligitaI -

0 % .O_

. . . ... .. . ... .. .. . . . . . .. .. .. . ...- , . .. . ., .... .. . -. . . . . -. .. . .. . .::%":%
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architect ure. H-owever. (levices andl atrchit ect Itres bet hg develope l i tel tte A ir

Force programins it XlIS I C andt I >I. vstoic :1ie 1-1v prc..os 1* (.J.sl

junction dlevices, etc. (ain also be utsedl rI l1t j)V 111 tt tt( IIe :11 (oit 11 inls. O

OIi~ur work willI thu is providIe p roblenm (efi tii tloti and dlirectiotn reg~itdittg allgotitlis

for such parallel processor architectures and technology progtatms. Large (lata

storage requirements an(I studies of what constitutes a valid databa-se are also

integral parts of this program. Simiilar Air Force effots toward data storage and

database acquisition are thus of direct concern to this program. The Air Force

programs in: intelligent sensors, intelligent t as k automation. automated

manufacturing, image undIerstanding, human percep~tion and visual psychophysics

Will (Iirectly benefit from the inter-disciplinary nature of out' research. The large

Air Force effort in optical data processing will dlirectly benefit since real-time

spatial light modulators and holographic optical elements "vill be needed for

imimnainof our a ot1 in real-time. TIe Ai Force prgasit missile I

gruidance require a new set of algorithms and attenitioni to thle database

requtiremnents and performance measures used atul thus the., will likewise beneit

extensively frotm the program. DAifl-A/AI' programts such as HLALO and ~

IIICAA\ P wvill cleatly benefit from our chosen ti me-varvinhg SBWU tasks. % 0,

The monitoring, of changes and I evelop mleit s at cu til itl sites. sulch as

It rbal u a rPas lui 1it arv 1ases. is aI very useful n ipplieatiloti of space-based selnsors.

The techiniques we develop will aid 'ili det ectitng and 1 l~iin-ti both larg"e-s~cale AV

*'In detailed chnges. Fuirthertmore, the teclituilytes le:11lii' with It 1) titatchltti anlld

CWAll [)rlt( )Il. and I now led ge-bse I get(tuft ttie renasonl-, \%-will enhlmtce AirI Force

1)r"raIl III sewlti :iii rooti's.

-it



1.5. Summary of Research Done So Far

1.5.1. Year One Research

In our fi rst year or researcli. wve focwise I oil the developmiienit an e valuat ion

of methodls which yield representations of struct ural and textural information in

an imiage and relate these representations to object and surface contour

properties of the scene. The techiniqlues studied Included Probablistic Graph

A latch11*11g A fliple R~esoluti on Structural Basis Euntcti'onis, and Textunral

Snurface M odels. The structural basis function and textural models wvere found to

be particularly well suited to parallel or optical processor iminplemnentation. Two

digital processing facilities for use in this programl wvere also assembled: the 0

RAPIDBus architecture. and an Optical Data Processing, Digital Processing and

Simulation Facility.

\Ve also achieved a major effort onl the extraction of timie-varying subpixel

target in noise. This time-change scenario concerns applications such as the -

detection of missile launches or aircraft in Iflighit. In the first year. wve sucecessfully

(demonstrated the conceptual ability to (detect and track subpixel targets.

In the low-level processing, wve have described techiniques for extracting-

bi di ng st ruct ures from ihgh resolultion aerial iiages of urbani scene-. Edge

points are first extracted fromn anl Image, and t lien st raiglit Iiline segmients are

fitted to tliem . Junictioiis are tlhen formed fromn t li line segmnents. T liese

junictions :1-C uIsed to a~inthe -egnmmots to aI -,trncturial Illdcl of udlgs

lre hicem i Lv t. lie Inod Id.
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A fundamental probleml ill ilItlt cr iing comnplex images is to relate i in age

features to scene feat ures. In ou r cont ext. t his involved chist i nguislii lig two ci asses;

of imiage line segments. t hose arising fromn bili ing 1)11 Idarles ali t hose a r-isi hg

from texture or shadow bouindaries. W\e hamdlie this problen by uit ilizing task

specific knowledge. We assume that lines forming jilnetions arise fromi building-

corners only if one of the lines is vertical in the scene. i.e.. is directedl toward thle
V .

Vertical vanishing point. These lines are then labeled ais part of' a bulildinhg mlodel

that consists of an arbitrary' number of connected vertical faces covered byva 0

roof. Lines that are not consistent wvith this building model are assumied to arise

from texture or shadowv boundaries.

0

In the low-level processing, we have also described experimnts which

determine how to efficiently search a line ima~e in order to formn junctions. Each

iline segment, in the image is represented as a uii te un ilt conit aiing thle x.N-'I

coordcinates of the twvo end points. The set of line segmients are stored as a lit

A simple but, inefficient xvav to determine the lilies that lie wit lii i a 51:1

wvindowv in the image is to test each line in the list.iThe acce.s tile caln be

imlprov'ed by dividi iig the imiage into a numinber' of' sina:ll arv:i- cal led sectors.

Each sector has a list of the line in its area. The search nwreqiries only t hat

the lists of the sectors containing the xvi niow be searchet I. We lmive em piricai ly 6.P.F

J.
dfeteri ned thIiat the fastest access time is ob tai ned whlen thle ilii age is di vidIe)d

into s.ectored are.s forming from 6 to 8 rows and~ coil-iil..

In the liigli-levol pr'(wessin- we haxe de(-'-rilt('I. t(cli 111e5' 1(I lpr ~I)(-se in-.

IN %
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coiistriict ill- , 11( uiiplat 'll-, t he S~ene I I I(),t1. Thle Seelie Model( is :I 'ilrla1,Ce-)-Cd

dCle 1pil of'l ail~iisee :11id is Illcreiiilt:111\' acqiiredl l iii -is(plence o1 -

ifliag's. E~ach Iview o' thie --,ent- lii ergoe, 1 lvi which '.111 etill i a 3D w~i ie-

traic desc'riptioni t ivit represents pwOtitois or elgesanid vertice-S (A1 lnildiiig. The

iliti~l iiiofeI. rolist ructedl Ii the Wvile liaiiies (iltailid troiii tile trtview.

repr(.m.I11 :llInitiail apIf)i'oxi ill itifln ()I tile scenli. As each sucilcessive view is

accurate andI comp let e. TaLsk-speeifie k how edge~~ is used to cc lst ruct and iiup late

thle Imo' el f'roml thle \%Ire franlies.

Th ju"dlI is re:i.-tlis :1 gripli '111 tehlw. ()I Synllolikc primitives such asu

faces. ed-es. Vetic(-;. and Their topology-,\ and geo)metry~. This permits thle

represent at e ii (I* plit ial lv comp lete. p lan m- Iae I ohjects. Because incremental

inoi lf~i al to the iio el mnust h e eIlsuv to per-form11. tile mlodel conitainls

rnechanisnis to add I prim ni tives in aI mnan nr suich that constraints oil g-eonet .y

imiposed by tliese :i'hhitiomis aure propag-atel thlroughiout the Imndll aind (2) nIodhify-

and helete piiitivos if' discre f:luii'- arise hetween nwl derived aiih Current %

inf1or-in:1ti-ic. Tlw- tn1fI also -owt iis- nwn''imii's t hat permnit the g1enleration. Ste,

addition, :m-1 iii tiprbe !"w pi1t
- Of, ibe scenw for)I whirih h 'ris little

%*~ %"



1.5.2. Year Two Research1

'flils optical featurle extracetioti eflort iniva tWvo iiillited it teiitioit to -

ijt(.)injent . cliord andl atlher optically-ele feaItIIre -sncs Arlietle for N

eachi of these ictliods \ver-e dlevisedl antI initial r-esults Wvere ohtiiued. 'Illese

shiowed(-: lie ahi litty to optically iinp lerienit vatlot is feat nrce exti-actors: thle

architectm -ie foi- a hyvb rid op i a / i- t l m om ent processor, 11 initial teOt

of thiis r-citect tire onl a sipi imagie dalt1 :i ; ae inl ,I r-olotic pip. parlt datai ba. e:

new\% resul ts on the accuracy of distor0ition parailieter, est in :itin fl Wt i tiii,

pr-ocessor. ain a(lvanced correlation SDF sv ntliesis metlhot I and ii i(t sticceSSli I 1

initial test r-esults of it on ATRZ v-eicles. Our ti in-change detection wvork ha:1s

acliieuvetl Xvariouls significaniti results and leinonstra.ttions of thle ability todtet),.

subhpixel target, the leveldopint of ne\% slingle diflfenieiiii itict lio(.I t1: harrv

~ttctttiiti Ion clittiet uIppirvssioil: the inlitini f*(i-Intilatio1ii (If -t1ieal Ilte;tt

filter-ing for- target eniinceinent 'nmid back gri-lml suppit es.sioti tlie ii tlv Ili lot of

det ector- 1,1 itation effeet s. Our effor-ts have ails-o pointced t ()\% :i Isf k n mcrc

Soph11isticant el -zpace/t itie pr-ocessinlg mlet hatis fot, bet ter* Chitter sitpt-essit ni.

ti ie fr itcpigiu:uig it:1ct nlk.1tfru,!i1!(rq .T th i, 1

III have 1vct:1.,fwlf- i tk 'c detl.1oiilien lmidl,.t i\ ul ill l'lItcl-

yield~~~~.,, mi II IIAld1.

he~~~~~~~~~~'a 1.S ,)-rmt.1l" i r .,-t I /

xvfa.

%
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NIRD (N UltiresoIL tion Difference) t ransform have been introduIcI I to extr-at"

structuvral and textural featuries of images for use in m i t hin aniid ~- ain

phases of analysis. The NIRI is a complex operator dlerivedl fromi derivative

expansions of Gaussian kernels and[ has imagnitude of response indlepenldenit of

featurie orientation and phase angle of response which provides information about

orientation. The spatial and frequnencv domain properties of these operators have( :0,

been studied and an approximation NIRI operator which uses difference of !shifted

Gaussian kernels has been derived and shown to be computationally efficient due

to the scaling and shift properties of the Gaussian kernel. The NIRI operator have

been applied to aerial images of objects and textures. The NIRI oper:ttors have

been used to characterize and clas,;sify, textutres from aerial imiages. This set of ~ '

Multiresolution operators permits classification of text ure independent of' the s-ize

and- orientation of the texture pattern Itself. The statistical dlistrH1 ibt ion provides

nformation onl the relative scale and the relative orientation. Ex periments on

text ures from aerial images aind textuires from siminple patterns have bwen carried r

ouit andI comnparedI to previous textulre e nergy operators.

Our ff11111 oIf veari two ll:i.'s jkq) [e(uiltc'd ill teclIhi(les (1c:kLlill \\itl two

0

If~v I dv et~t ll , fo tilles, Stic :v 1111(- t'V :i

:111, upd 0 1li til- :d

11:i '. d it-.111 11- :i T -D l lt(

.P J
tht- f-lw , I. hia

ft- - A, 2.



purpose. we have developed a stereo algorithm using the techiiiu )I' dyvlymnilii(

programming. \We have explored a method to natch tl el 'iI ol'ii lime priirs in

stereo pair and determine a rather dense leptlh map of' the 1eel , iii jt':-

and inter-scanline search.

Intra-scanline search determines the correspondence let wc-n e egs in the

same scanline of the left and right images. This search ,:mn th'e:it,'I a.- lie

problem of finding a matchi ng path on a 21) searh Ii \%1homie :Wi(Ixe, are the

right and left seanlines. Vertically eonmilecte I edges in the iiia'.es pr'vi he

consistency constraints across the 2D search planes. Inter-scaniie search in a 31)

search space, which is a stack of the 21) search pllanes. findls tire ver'tically

connected edges and applies the constraints. By eonsilering loth intra- and int er-

scanline searches, the correspondence problem can be cast as that oI' finding in a

three-dimensional search space the matching surface that h'as the hest match

scores from intra-scanline search and also satisfies the consistency constraints

from inter-scanline search. This problem is solveI using dynamic progi'am mi ng

for bot h searches.
"%

3'2

In the high- level of proees_- uig. we have i'ivestigate.l nio,,hel hilliuni iig

rangefinm der data. which is already three ,Imieiisioinal. theti- >i,. l ,r(tdlhI j ()I"*

genlerating a 3D description from 21) data. \e lilve hveli ,,liibines fL".

3,,

dl ' i 3 1*:''(l.. S. X-4 ,l ' t I :i ih t it.I I' I, .a ,. I i . . i Ihe
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line seients~ are retine I to eliinate gaps. F:aces are then flit to thve linve driaw ing. N

'rle final- ilio tel is rep~resented as a grajp I in termis of' be sy in boli c p~rimitives

line, face. e(dge. and vertex. Alt bough thle final dlescrip1tion is t Iiree-d(i i ienviional.
M C5

miost of the processing is done in the two-dimiensional imiage space.

1.6. Research Progress in Year Three

The red 'iced level of effort of each ponrtionl of this co rictIlowe I only

limnited suprport. Thus we have chosen to emiphasize only the f'ollowiiig reseairch
0

isies in ouir %xear three effort.

1.6.1. Subpixel Target Detection and Tracking

Thle objective in processing time-sequItential imiagery obtai vie I I'roiii a staringT
. %

* mosaic ,sensor is to detect and track dimi and smiall-area targets Iii the p)resence of :

additive noise (duhe to sensors) aiid] backgrounid (e.g., clould) mnovemient between

he framies. \\'e inetg tedlte use of six algorit bins (Siiigle Dit'ferencinig. Dolible %3

Differencin-i. Linear Interpolated Differencinvg. Parabolic Interpolated
71. %

I)i I'ere vici vi. Sp~atial Di ff'erenci vig andI S patial F-iltering) uising a wel l-coiitrol le(.d

set of' synhetic inma-erv. These results are detailed in ('ha pter 2 of' thle rel)ort.

1.6.2. Subpixel Delay Estimation Using Group Delay Functions

An i ni port ant as,;pect of thle space-based i nange processing iv thle estimnation

backgr-nw nI ovemient so that it can be effectively coi pevisated f'or in the .

processing. This backgroiiuI shift betweenl successive framnes is typI)ically- s ubpixel. -

i.e.. thle shif't bjetw(en the imiage wvill ie a, frctioji of a I)Iixel. W\e have .

iivetig thle u1se of, the recently introlu1cf-h (fll'-l)c L~v Fitilc H%~)I

S

0

%3.. '*~"\~ -~~5 ~ ~~ 3 &. ~ ~ ~ 3~'..i
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his problemn. The GDFS providle thle lavinforliionuas well as-, thle Signal to

Noise Ratio (S NR) in form at ion sum uI lta neowsly. BaIsedl Oil t is. w, Ii axve Collie LI P -

with a new (Idaptice dlelay esti IIIat 1(1)11 procedlire. 'I'le let:,1iLs :11ie lwovilvi: ill

Chiapter :3 of this report.

1.6.3. Detection of Target Trajectories using the Hough Transform .:

Once the i inc-sequential space-bhase~ I imagery are processedl onl a fraiie by

framie basis, we canl identify the target ioveineult from in mne to franiw. InI thle-a

idleal scenario of constant-velocity, uinoccliu(ledl single targets. tie target locations

fromi framne to fraine formn a straigh;lt line in :3D. Buit because of chianges in the

target velocities andI becauise of occluisions andl in ult ipIc targ;ets. it is mpotatto

track curived trajectories. We present a new techiniqupe foi- this in Chiapter -4. This

involves a straighit-line Hough Transformi (explained] in (letnil in Chanpter 4I)

thresholdfing andf simiple transformiation in the Ilouuhi. sjpace andl an inverse I-IT.

Thie transformnation, are ea-sily- achiievedl LvN mlerely, shifting~ the Hoti-h space along

one of the axes. The peaks in the I Ioiugli space idJentify the type of trajectory and(

providle its location. Experimiental resuilts- are 1)resente(h. A

1.6.4. Image Understanding Techniques for 3D Scene Interpretation

The problem of dletecting tlii'ee-liuneuisioiiil chiange in a1 coillx tlrl.)an

s5cene, us a very difficuilt one. pINrIClllaul\% 5111ice Ill\ 1 iiiorii1:iti 'oll extractedl froml

lie Coim plex i nia_,es is i ighIlv nomlt :111(1 cout O1ils lll:1iI villIns. 'Ilieteone. we

IrIve thusl f:1i. (:uiltlti:1ty ll il\ Oil thtiialii .1tev 112. uilriuiatoii

froilla S11.1

lrtuu or(1iiat nIaelil~tu2 11 iti~jI l 1 tltiiii
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Chapter 2 .

Subpixel Target Detection and Tracking

2.1. Introduction

The objective in processing time-sequential imagery obtained from a staring

mosaic sensor is to detect and track dim and small-area targets in the presence of
r .-

additive noise (due to sensors) and background (e.g., cloud) movement between -

the frames. Several algorithms have been suggested in the literature for detecting

moving targets. In this chapter, we compare six of these algorithms using a well-

controlled set of synthetic imagery generated by a computer. •

Before presenting the algorithms, a few remarks about the peculiarities of

this problem are needed. (i) The targets are small in size (occupying a few pixels
*. .. ?

at most) and have radiances comparable to the background radiances. (ii) The .'".
". ". ,,

targets move relatively fast compared to the background (iii) The backgrouind

movement between successive frames is usually less than a pixel. (iv) The sensor _

noise level is usuallv low (20 to 30 dB below) compared to the tairget intensities.

Because of these size peculiarities, our algorithnis inu-t be cap a le of ' "st imiatim.-

sulbpixel shifts and compensating for them. Thus our nuien erical cxpemen ts pay

s~ecial attentilol to the generation and processing of subpiXel il'ts in intlge.

%a..'
-. ,,+",,,

a.' ,, ?
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This chapter is organized as follows. In the next section. we outline our Iprocedure to generate the desired imagery on the computer. This also helps set

up the notation used. Section 2.3 provides the equations and explanations

connected to the six algorithms (Single Differencing, Double Differencing, Linear

Interpolated Differencing, Parabolic Interpolated Differencing, Spatial

Differencing, and Spatial Filtering) we will investigate. Section 2.A introduces the

measures of effectiveness we will use to carry out this performance evaluation.

Extensive numerical results are then presented in Section 2.5 in a condensed

form. This is followed by our conclusions and comments in Section 2.6.

2.2. Generation of Synthetic Imagery

\Ve can evaluate the algorithms properly only if we can generate extensive

imagery that represents various possible parameters. Towards this purpose, the

-. generatioi of images is carried out at two levels, namely, the ground (high

resolution) level and the detector (low resolution) level.

2.2.1. Ground-Level Imagery

1. This represents the high-resolution imagery and consists of two parts. Let

H.(x) denote the hight-resolution image at time k where x denotes the 2-D space

variable (x.y). The image Hk(x) consists of two parts. namely, the target and the

background.

Hk(x) - Tk(x) + B.(x). (2.1)

where TA x) and B,(x) denote the t'arget 'himng :111d tle Lwkl, li :.
k.

'..5

':";I
ID o , , %O
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respectively at time k. In the high resolution image, the target Tk(x) occupies a

few pixels of area and is assumed. without loss of generalit, to h ave ,iniude,

1. Let .It denote the time interval between the snapshots. If vT (enotes the speed

%~i: of the target, the target moves by (v,.t) between successive snapshots. This

target movement is easily simulated by shifting Tk(x) to Tk(x-v7.lt) between

successive frames.

%\\:e model the background Bk(X) in the high resolution image as a sample

realization of a 2-D random process with zero mean and the following non-

isotropic covariance function.

R2.P I-rX1.P 1 Y (2.2)
RB(rYT,) = B ' (2) "

where Ipxj < 1 and lp1I < 1. In the above, aB denotes the background variance

and p and denote the correlation coefficients in x and v directions. Small p

and p,, values imply sharper covariance functions, larger spectral bandwidths and

more fluctuations in the background. Prior work [1, 2, 31 indicates that the

infrared images of the earth's background in 3-5 jm and S-12 pin can be -

characterizedl by the above 2-D Nlarkov model. \While the zero mean assumption

is not entirely accurate, we can justifv its use because the optical processing

systems (that we plan to use) do perform an automatic DC removal [-I].

l -ovement of the background between successive frames is usually small

compared to the target movement and can be simulated in the same wa..

-'-- tI owever, this background movement appears as a sibi.re1 lrft in the detector

r ih.I-

-:'S

.-.

' :.:
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Subpixel shift estimation in the processinrg stages. The backgrou nd iiiage BA.(x)

obtainedI by pasing the 2-D white noise (available throtigh stalldird si b roit i ties)

through first-order In'inite Impulse Pesponse (III1) filters Im Lothl x :11nl v

directions. BY changing the coefficients of these 111- filters, we (.:ii o.itain"

different p and p values.

2.2.2. Detector Imagery

The imagery available for processing is not the high resolution imagery

discussed above, but rather is the low resolution output of the mosaic sensor

array. We assume this to be an array of 60x60 pixels whereas the high resolution,..

image contains 512x512 pixels. \Ve assume the detector footprint to cover a

region equivalent to an 8x8 region in the high resolution image. However, the % -

atmospheric effects cause overlap between adjacent detector footprints. This

overlap is modeled by the Gaussian blur function shown in Figure 2.1. Thus, the

60x60 detector image is obtained by convolving the high resolution image with

the blur function in Figure 2.1 and then summing the pixei values in .lon- 9
b i1S

overlapping 8x8 regions. This summing operation has many effects. The first is

that the target now appears to be of a subpixel size in the detector iniage. The

second effect is that the background movement between stccessive Srialshots will

be subpixel. Finally, the correlation coefficient or the backgroui, noise changes

because of the summing. In fact, if the backgrounI noise Ihas :i c rrelation

coefficient ph in the high resolution image. the correLathon coetficient 1 in the low,

resolution image (obtained by adIdIing d pixels) is given v

e CNZ!
,0
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,(- , (2.3)

d (1 -p) - 2h (1 P d,

where we have omitted the intermediate steps due to length constraints. To %

illustrate the reduction of the correlation coefficient, consider Ph 0.99. After

8x8 pixel detector integration, we obtain p, = 0.90. Similarly Ph = 0.95 becomes

Na.

P1 = 0.76 after detector integration. Thus, the conversion from the high

resolution to the low resolution image causes a decrease in the correlation

coefficient, or equivalently, an increase in the spectral bandwidth.

4' p..

Figure 2-1: Detector Blur Function .0 .

] ~~Finally, the sensor noise in the mosaic sensor array is simulated as additive, -:''

white, zero mean Gausian noise with variance au  . hi nie s ncrelte

from one snapshot to another unlike the background noise which is related -N..

through simple shifts between image frames. The uncorrelated noise (UCN) level :..,,

c~0
Figue 2-: Deecto Blu Funtio

Finally, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ , th"esrniei h msi esrarvi smltda diie

'.', '' % ' , ' ?= ' '''= " ' " ' " i "-*] -i " ] : I ] -i ' I | 2
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is typically 20 to 30 dB below that of the background or correlated noise (CN).

This UCN is easily generated on the digital computer and added to the detector

image. This procedure for imagery generation is summarized in the block "I

diagram in Figure 2.2.

Correlation Background
Seed Generation Scene (CN)

Generat0 Process 512x512

+ Detector Detected Simulated Detector
Background + Image with
+ Target CN+UCN+Target
Image 60x60Target Size Uncorrelated !"..

Magnitude Noi tN 1
& Location Noi(UCN

Figure 2-2: Block Diagram Representing the Synthesis of the Imagery

2.3. Processing Algorithms

We consider six different algorithms designed to extract the point targets

from the slowly moving background and uncorrelated noise. These algorithms are

characterized by the fact that only a few snapshots are used for processing. This

is necessary because of the memory constrains on the processor. Each snapshot -

represents 5122 bytes of data and thus it is desirable to keep the number of

snapshots required at any time to as low a number a)s possible. These algorithms

also make use of the fact that the target is mlovinigia faster compared to the

% %,=
.5n
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bak rud Lt-~ T,(r) denote the detecor~~ inarCe at the tune n~ tk. We

('0ns-ler onily 1-1) analysis for siminplicityv.

2.3.1. Single Differencing%

T his is the siminplest of the algori this and subtracts one snapshot fromn thle

next one to prod uce the output iiage Dk(i asbl%

Dk(.) = [Ik(x) - 'k 1(.r)J/ 2. (2.A)A

.r

It is easy,, to see fromn the above equation that the out put Dk) is zero0 if' thle

in1put Ik(.r) is constant. Thus slower backgrounds are attenulatedl inure than the

faster targets. The uncorrelated noise is obviously doubled in variance by t his

algorithim. This simple algorithm is an approximation to the time dlerivative

operation and thus enhances *n ages changing faster in time. This Is very simple

and thuis easy to implement optically.

One can also consider the above temporal filterig operation ais spatial

filtering. i.e.. Equation (2.4) can be viewed as the descriptioni ol a linea-r, time-

Iiivariant system wih input I.()anouptD.).I teioestle:Inhg

initerval between the snapshots and L, denotes the speed of thle hackgroi i or thle

obj ect of interest, the sn apsliot at time k is related to tlie iiage :it t i i (.*- 1) 1N

k~~~~ - k(r x

(2.4

AA .
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This tranisfer function clearly demonstrates that as (t ii3.r) lecrewises. H f-
$k

also decreases. Thuis, Iiages with low w~ spatial freunclieils (broaid mdets n

slow movements (.3x. or e?) wvill be attenuiated more than smnaller and faster

objects. This is what makes this alg-orithm (listinigiisl slo % er lhnckgrou id s from r.

faster targets. One disadvantage that must be poinited ot is that this :il-orit bin

and filter have the fixed structure in (2.4). (2.5). anid (2.7) antld is thuis niot

capable of adlaptively hnin t transfer function.

2.3.2. Double Differencing

If single diflerencing *is- an approximation to the firs t time di-ivative. tie

(lotible differeliciiig algorithut.

D k(') 2 Ik*(X) 'k- I(X) 2 'k- 21 x

is anl app roxi iat ion to the s econld derivative in thi c. One t a n.he ul it put is r

zero for station a r ohbjects and the ouitputt inlcreases wit Ii thle nilove lne ut of tle

Olbject. r-edllielicy (llriainl analysis of thle above tr:mi-rer hilt'!ioii yields the If%

fol lowip trizlrawser funlctionl

NIP
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1 -jj2,vr3x

H.(,,- cos +- ro- w -. r (2.11)

IP iah~ ove ri giid e jc(-5por-se clearly shows t hat t he t~ ii 'r 'ia I iil

Or I, ir) v:illil5 a-, diiv.'(. l~c e()in[)itatioiial ireqiiirelneits of tis l.'i orj0-tliii1 11re

lghlvmor-e than for- the single differencing- algor-ithmns in that it r-eqili es thlie

image fr-ames for- [)rocessing. But it has the same dr-awback ats the single

differencing algor-ithminm that it Is not adaptive.

2.3.3. Linear Interpolated Differencing

The two previous algor-ithms do not adapt to differ-ent, backgr-ound sis.A

simple algor-ithm that seems to have been overlooked in most liter~atur-e is ha"sed

on the block (flagr-am in Figur-e 2.3. In the first step, the subpixel shift

between the two successive image fr-ames is estimated as ^3D This shif1t is nininly

due to the larg-e backgr-ound and thus requir-es sithpixel sift tiiiitin.e\rl

methods [5, 6. 7. 8, 0] have been suggested for- this pur-pose. A\ c:urefiil St udy of'

these had 'indicated that simple par-abolic suhp~lixcl dlyes ti iii:it ii out ll iid ill 0

* references [5] and [0) is the best compr-omise between the estiinatioil aeci: rac

ease of imiplementation. In this method, the two ofaes0 inIteres t . imi holyI

and Ik- 1(x) ar-e cr-oss-corrielated to obt. 1iii Ck( X). This coirrel atiii sti ,f~ iciI li

se-ar-ched for- the peak value. A second-order. polvioiniml is llien t*iltered.( to the

('Oi'e-laticon xviluies neiu- the Th~i.'Ile coefficients oF 1 lii secoi i trei j,1Yiw111

OV
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can then be used in a straight forward manner to obtain the subpixel shift

estimates. ..

kX)Background AnBr (x) Sigl' Shift Inter- r ifShif !:E f -:::
Estimation polation erencing-.

k0

Figure 2-3: Block Diagram Indicating the Variotim Stops in Interpolated

Differencing

The subpixel shift estimate AB is then used in an interpolator to obtain a

shifted version of Ik(x). If the interpolation and estimation are carried out

accurately, the background in the interpolated image will be identical to that in

_l(x ). The differencing operation indicated in the last block of Figure 2.3 will S

then force the background term to zero while retaining most of the target

information. In reality, neither the subpixel delay estimator nor the interpolator

works perfectly. Thus. it is of interest to compare the performance of d"ferent

interpolation schemes.

In the linear interpolated differencing method. the output Dk(x) is given by 

Dk(x) = .(x)- I (X)] / 2. (2.12)

where f .x)is obtaine, from I(r) and Ik(x-1tawi to the following linear

interpolatio)n rule.

N'~~~ V VV.VV

1 0,N
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I ~(.r) (1-AD) 'k( ) + Lka1.(1)

w.here *- f enlotes thle shift of the backgroi ri betwevin two ~i~Si\ rifis

Th cscading or the 'nterpolatoi- aldtesnll(ifrrcri er~ri. ilna

tiire-riarrntfiltei- with the followinjg tr-ansfer- funcetionl.

S+ cow- 1)- Cos(lcvf9+

j [S 112(?v s: A -A Bs l / 2. (2. 1])

wher-e we :assumed that -A is estimated per-fectly. Onice again,. we see thant H (Ic,)

is small for- small values of (tvB) If BA O1* 11 is zero, we findl H3 (it) t o b)e
B B

idlentically zero. Thus the background wvill be suppr-esse(l by the above methodl.

The above shift estimate 3B is accurate only for- the backgr-oundi and iot f'or lie

arget. Thus the target which moves by more than -3will niot b~e srlesedby

thle liiear' 1iiterpjolated1 dliferencing methodl.

2.3.4. Parabolic Interpolated Differencing

Obviously, the effectiveness of the pr-evious algoithrns (lep~eni(s niot oily onl

the subpixel shift estimation method,. but also onl the inter-polation. Inl order to

al Ir-ess t his i.ssue. we have also in1c1ldedI the followingl)1rl)l(iitroi~

schrerie ill oun algor'it hms. This riietlrol iest himee fi'..ilei-irig 11ii:1"(' 1,1Xcl, fb

i 1 ert fl .1a tni

f IkY
k kV
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Once again, the cascade of the interpolator and the single differencing can be

viewed as a linear time-invariant filter with the following transfer flunctioll A

H 4(a.') = {t + -( o -)- coS(I ) +

j[sin(w .) -1B S / (2.16)

This transfer function becomes zero if either B or w is zero. Thus, the

background will be suppressed more than the target. A complete analysis based

on the spectral characteristics of the target and the background are necessary to

decide which interpolated differencing method work better and when. NI

Both interpolated differencing methods are adaptice in the sense that they •

attempt to align the backgrounds before subtraction. \Vhile this may be

computationally more involved, it should yield more consistent (as well as better)

results over a range of background shifts. We believe that the required subpixel 0
.-% .% .

shift estimation as well as the interpolation-shift operation can be carried out

using, optical processing methods. We did not consider higher-order interpolation ., -e

such as cubic splines because they cannot be easily implemented in optical

processors.

The interpolated differenci ng methods have not received much attention ,

previously because of the amount of compuitation retuired for int Q' ol:ttiol

efore shifting. But optical processors are inherently conltinuouts and the lint

prea(ld functions associated with theni calse ant t intcrl. ion usin1g the %

sine function kernel (for SpI. are apertulres).

%

%0

%" or
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2.3.5. Spatial Filtering

In this method proposed by Wang [3], we consider only one image frame at - ]

a time and use the fact that the background has adjacent pixels highl l

correlated, whereas the target pixels exhibit less spatial correkl ion. This is used

to design an optimal spatial filter that yields minimum mean square error. This

is achieved by estimating an average 3x3 covariance matrix estimated for each

image snapshot and using this to solve for 9 coefficients that are used in a :3x3

filter mask. \While this is mathematically elegant, it has a few, practical

drawbacks. First, this method requires the estimation of the covariance matrix

which can be quite time consuming and not easily amenable to optical

implementation. Second, this method requires that we specify a desired vector

before the filter coefficients are obtained. Specifying the desired vector requires

that we know whether the target is in the region of interest or not. This is not

always feasible. Finally, this method does not make use of the temporal

information at all. It ignores the fact that the targets move faster than the

background. Ve included this algorithm in our study to see if the image

parameters of interest are sufficiently tolerant that this algorithm can perform

successfully. .

" .. , % " ,

5' %
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2.3.6. Spatial Differencing

The last algorithm we consider is a nonlinear algorithin recently

proposed I101. This method works by considerling 3x3 windows centered at the

same point in successive image frames. The center pixel value from the current

frame is subtracted from the nine pixel values of the same window in the

previous frame. The output of this algorithm is the magnitude of the smallest of

these nine differences. Because of the sorting operation inherent in this. it is a

nonlinear operation. In that sense, this algorithln is very different from tile

previous five. -

To understand how this method works, we note that the targets move P,

faster than the backgrounds. Thus if the 3x3 observation window does not

contain the target, there should be little difference between successive frames

thus yielding very small values for the difference. On the other hand. ir the

window in one frame contains a target. it is probably not seen in the same

Nwindow in the next frame. Thus simple subtraction will thus not eliminate this

target. While this method is attractive because of its robustness to small amlounts ,

of noise, it also has two drawbacks. First, because of the nonliner ranking

. operation needed, an optical implementation is difficult. The second prolcin is

that targets that do not move bv more than 1 pixel between frallies (csscit:lllly -
t4. .

.,'

those that do not move out of the window) will be suppressed by this alg rih .

%.-
/ p

4.4-
I
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2.4. Measures of Effectiveness -

It is necessar-y to quaiintify the performnance of the six algorithms rC)ose( I,

in the previous section before we select anong them. To enable us to (Io this. we

(lefine the following me-sures of effectiveness.-As always T denotes the
the measures As Tk~x) targ'et

image. Bk(X) denotes the Backgroutnd image and Nk(.) denotes the sensor noise

image at time instant k. While the measures we will ise dlo not convo+v All the

nuances of the algorithms, they can serve as tiseful measures of the averange

performance of these algorithms.

2.':

2.4.1. Background Suppression Factor ,.

A common goal of all six algorithms is to suppress the backgotund while

retaining the target. To evaltiate the ability of an algorithm to suppress the

background, we lefine the Background Suppression Factor (BSF) as the ratio of .

the variance of the background-only image after p-oce,sing to its variance befo)e

processing. Obviously, BSF depends on man' var'iables other than the algorithm.

itself. These include the backgrmound size, shift and its spectral content. This

measure has been used before [2] for this purpose. A word of cau.ition in the use
".

of this measure is that it must always be accompanied by a measure of target

dtetectability. Otherwise. we can obtain an infinite BSF by simply setting all t lie

- filter coefflicients to zero. This, of course. destroys any talrget that m,.y e ,

:...

.%
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2.4.2. Target Detectability

.- ds discussed above, we must pay attention to wlt halfeis to the ta:rgets

as various algorithms are al)plied. While several possibilities exist for

characterizing the target effects. a simple an(I useful measure is thle ratio of

target radiance after processing to the radiance before processing. Good

algorithms should keep this ratio large while yielding large BSF values. Another

way we can evaluate how targets are affected is by plotting the receiver

operating characteristics such as the probability of detection versus the
6

probability of false alarm for various target detection thresholds. While the

latter approach may provide more complete information, it is difficult to use

such information as it is not a single number.
B-.

'%

2.4.3. Uncorrelated Noise Variance

A third quantity usually ignored in the analysis of the algorithiis is the

variance in the output image due to input uncorrelated noise. \Vhile the

uncorrelated noise in the input is 20 to 30 dB below the correlated noise. -

algorithms based on differencing increase the variance of uneorrelated noise while

decreasing that of the correlated background. Thus it is ii iport: nt I() inaes5'lr cc

ithe variance at the output due to uncorrelatedt noise also.

Of the six algorithins considered, only spatial litferencing method is not

linear. Thus. we can analyze the effects of the five Iinear a Igorithnis on the

target, the background and the uneorrelatel olis,( s(j araltelv a1,il Comfi iie the
-J

l' esullts. Thiis Is not the c-se f()r. the nonmlinear spatial ,li'frfelcnig schemes. It is

Vp.

S....'
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also better to consider ratios of the above measures rather than the absolute %-I

measure. This prevents the occurrence of rather unrealistic r .ic. r he i -orole -iD

of the coet'ficients are arbitrary. For example, the single diterencing 11 (2.-1) uses,
4

the coefficients -1/2 and +1/2. By using coefficients -1. +1 Iistead, we will still

obtain single differenced images, but with both the background and the

uncorrelated noise variance going up by a factor of -1. Thus, use of ratios is ijiore

appropriate.

2.5. Experimental Results

In this section, we will summarize the results of an extensive effort to

evaluate the performance of the six algorithms. First, a few words about the

choice of the experimental parameters are needed. The high resolution image was *I.'"
. ,, ;-,

chosen to be 512x512 pixels. With an effective detector footprint used of size 8xS 0

pixels, we obtained a low resolution detector image of 60x60 pixels (after edge

pixel effects were ignored). The target size was chosen to be 8x8 pixels in the

high resolution imagery (or equivalently 1 pixel or spread over 2 pixels in the low

resolution image). The target radiance was assumed to be 1 in the high resolution

image and it averaged out to be snall (0.3706) in the low resolution image

0
because of the detector effect. The correlation coefficients for the backgroindl

noise were assimed to be the same in x and v and either ).9) or . 5.

Substituting these p1 values in (2.3) yield p, values o()0.)() and, 0.76. relectivcly.

\We consideredl these two correlation coe 'icielts, as thV %\('c e r ' 'el 6. to

model real IR images well. T lie uncorrela('l noise hevI \V:is \% kelt :it :L lV, .i 2I).

"%- --1
%,% % %-
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or 30 dB below the target and the background noise level. Various subpixtl

background shift values for ,IB were considered. \Ve next provide the observe I

results in a concise form. All values (shifts, p, etc) are given for the final low .%,
.,

resolution detected image.

2.5.1. Background Suppression Factor (CN only present)
"5,

Table 2.1 shows the BSFs obtained by the six algorithms for the two

choices of p, (namely 0.90 and 0.76) and for three different shifts (all subpixel) of

the background.

"Back- Sub.Pl Nonlinear •

grnd Shift Linear Processing Processing
S (r., Simple Differencing Interpolated Differencing

p (hoz.,Vert.) Spatial Spatial"
Single Double Unear Parabolic Filtering Differencing

(0 0.125) 1209 15193 2435 3645 1249

0.90 (0.25 0.25) 160 546 397 515 25416 441

-, (0.5 0.5) 44 52 226 234 282
,__.__.,., p.

(0 0.125) 415 4126 709 1060 446

0.76 (0.25 0.25) 50 124 119 143 539898 156

(0.5 0.5) 15 13 61 64 120

/._

-, Table 2-1: Background Suppression Factor for Only Correlated Noise
Background (No Target or UCN Detector Noise)

The most prominent observation from this table is the large B3SF values ,

., obtained by spatial filtering. The origin of this large BSF values is based on the

fact that the coefficients of the spatial filter are rather small (of the order of

10 - - or less, depends on the background correlation coefficient). thl is making the

% )

%0
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Out puts very small. In fact. these f ilter coefficienits Canl all be scallcil 1ij) or. down

b" the same factor withiout affecting" its opt in alit 1v. Thu s it is v Iry pii ort antilt

that we consider that ratio of this 13>1 to the varimnce of the' iiiii'iti ilise

or the ta rg('t intensity. WeI note that this algorithmis I- iiilepenuleitt of liack-roiiiLm

Shift and depends only onl p as expectedl. W\e also not e hamt a in all p va lie C

broad!ens the spectruiim and thus more sit p pression is ob served for Tie sii icr =

0.76 valute (as expected). 8

It canl also he seen from Table 2.1 that decreasing p causes a gaeneral .%

decrease (ex\pect for the anomalous spatial filtering case) in the B'SFs observed.

This 'is consistent withi outr uinderst andling that it is more di fficuilt to sitp press

backgrrounids varying more (sinai ler p values correspond to more white- noise like

situnations. i.e.. containi-ing higher spatial frequencies, to: ). Anot her obvious and

expected general trend is that larger backg'oiind shifts (for thle same irensois as

above) also causes the achieved 13SF to decrease.

All methods seem to vield very good BSFs for sin all background shifts. But V'

as t his background s-tihpixel shift approached 1/2 pixel, interpolated differencing

per-formIled nlea 1.1 v five timtes bet ter' thiian thle uinihiteriol at ed siminple di ffereiici ug

met hodls. This is expected since the Interpolated dfifferencimii used thle correctN

backgrou ml shift whetreas no sti fting 'Is i nclutded in thle sin plc di flere uci ii g%

Tflo inijiineat' spaitial lilrfe iein.ll -'lili ()lit the

ii[l it lliiiiig Schll'iies !('i' the ea:se ol' litli s>tillei \:i laildlo~i

hurk-r~4uitl ~lit.llit thejrornn i tw In p:iti:11 hti'nin i oil is

%

%C'.*
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much inferior to that of the inaterpolated di fferenci ng for smiialler 1,acklgroind -

shifts (for both sinall and large p). Recall that for target shifts albove one pixel.

spatial differencing will suppress the target also.

Since we (1o not know a priori the background shifts to be expected. we_

should use the algorithm that performs best for all background shifts. th us use of

parabolic int erpolatel differencing is recommended on the basis of the fact that

it yields ireasonnllv large BSF value at very small backgiound shifts and yields -

bettei BSF values than other methods (except for the anomalous spatial f'ilter-ing

alg;orit ini) at lage ackgr-ouncl shifts. Thus, the consistency of' the pai-aiolic

interp()late I di f'erenciag method makes it very attractive. -

2.5.2. Target Effects (Target only present)

\While the six algorithms are designed to suppress the background

correlated noise, it is desirable that they do not attenuate the target. To %

understand the effect of the various algorithms on the target, we show in Table

2.2 the "target amplification" (actually a loss, since all values are less than one) ,%0

of various methods for different shifts. This quantity is simply the 'atio of the

target intensity after processing to the intensity before processing. \Ve do not

inclde the spatial differencing metlhods results ill this table. because the

nonlinear nat iire of this algorithm prevents us fiom analyzing the target anl tihe

noise separately. The spatial filter coefficients, of course. lepentl on the 0

backgroulnd co'relation coefficient and th'us we consideer the lpeifiiincire kor -

()..W() and 0.76. The t:urget (in the final detectedl image.Iis nboiit onec pl.\(21 ill tlese .

S::"'
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data. As can be expected, the larger the target size, the better the target gain is

expected to be. The results for subpixel targets may give preference to the

moveeM impl~~ed mifehod: Interpolated Differencing Spatial Filtering :

(in Pixels) _______ ______ _______ ________ _______ _ _____

Be %~
Frams Single Double Linear Parabolic p = 0.90 p = 0.76

(0, 0.5) 0.0265 -0217 0.0301 0.0344 0.1157 0.0028
(0, 1.0) 0.0695 0.1207 0.0634 0.0777 0.1157 0.0028

(0, 1.5) 0.0928 0.1835 0.0810 0.0971 0.1157 0.0028

(0 ,3.0) 0.0972 0.1 943 0.0841 0.0945 0.1157 0.0028

Table 2-2: Target Amplification Due to Various Algorithms

The first trend to note in this table is that increasing. target movement

results in less target degradation (indicated by larger target amplification values).

This is as expected because faster targets are more easily detected by these

algorithm than slower targets. We also note that the spatial filtering results are

independent of target movement. This is expected because the spatial filteriiag

procedure considers only one image frame at a time and ignores target movement

*..between frames. This also reiterates cur earlier observation thatr tile? veryN larae

BSFs shown in Table 2.1 for spatial filtering are not very meaningfil. Thliis ts

seen from the fact for p1, 0.76, the target 'intensity after processing is 0.002S

timnes its intensitv before processing.

tell
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In sp1:11 -11 I!QLIg., the target 'iittensitv 'Is reduced 50 times more than by -

o:tlher methods, bitt thle backg-round intensity variance Is reluced 100 tlme.s mtore.

Thus the ( EVSl/Target gain) ratio is better for tite spatial filtetitig algorit lint four P

m'Lany cases. To em ploy the same units. the target gain should lie squaired. lin this

case, spatial filtering performs poorly. The large reduiction *in the target strength

is expectii 1 to cause practical problems when t he target strutel i anth size I re-

v-arted andI wi ic n Ii nii ted dyna mic range andl varioits error on rce eff cts- ire

nclitded. 'Fhe practical problems: e-stitati ng the covariance inati tix (wvith its lar-ge

computatiotnal r'equirtem~ents) andl not knlowing if the target is prescefit (an itts

effect on specifying the desired vector) seem to be the dlominant reasons to

consider this algor1ithml only in specific cases. This metits fitrt her attention. The

ease of un plementing each algorithm (in optical technology, becautse the i-h

* computational load of each algorithm) is another issue of concern.

Once again, bothI double differencing and parabolic interpolated

differenicing seem to outperform the others for larger tar-et shiifts. Then

parabolic interpolated differencing seemis to yield consistetnt (low targ'et

degradation an I. high 13SF) results over a wvide range of' pam ni eter vairtat ions

(althou,-I simple dotble differencing1 many perform best fot Somte 1backgrouiind

shifts. ~ "11I t~i!si~ lp\aie. Note that for sitiallet tatget tiIOV(IIIeI(its(lw

S0.75 thxls.le n~re itiplificatiot achileved with 'intero Ite diffcrucnctn i

b~etter thai ! i t 1 111ple di 1,(1c icin-g. 0

1..1 ,1 1 1 11 1: r ev t IIn tl ) I )t I I, Ti ) *1 1 S t I:i f t~ ,, 1 (110

%
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algorithm effects on the target. However, because this is a nonlinear algorithm,

we introduced the target and the background together. The target amplifications

obtained for different p, values and different target movements are shown in
., .,

Table 2.3. These values are one order smaller than those of the interpolated

differencing methods. Whereas the BSF values for this algorithm are similar or

less. Thus, spatial differencing does not seem to be preferable to the interpolated

differencing methods.

Target's ve- Target Amplification
locity, (h,v)pixes/fame P = 0.90 p =0.76.,.:';z
pixels/frame

(0 , 0.5 ) 0.0060 0.0082
(0 , 1.0 ) 0.0072 0.0120
(0 , 1.5 ) 0.0402 0.0240
(0 93.0 ) 0.1038 0.0678

Table 2-3: Target Amplification for the Spatial Differencing Algorithm.
(Target and CN present) S2":.

2.5.3. Uncorrelated Noise Effects

One aspect overlooked by the previous simulation is the effect of the

algorithms on uncorrelated noise. We now consider the normalized ratio of the 0

variance of the UCN to the variance of the CN background for the algorithms.

Let 3 denote this ratio in dB. A large 3 value thus denotes more UCN than CN.

For the images used in these tests, 3 = -30 and -20 dB for the original images.

Table 2.4 contains the difference (in dB) of the 3 value after processing to that

before processing. Larger entries in this table denote higher background CN

A. V., -.



sulppress ion faItors. thus. indicating mo(re ,ititahk- algorithms. (ie."es C'N after -

proccs-I 112,, a in d thu : 1 ,15 iIre r .3 af1ter prcesng roml which %%licii Nv slibtract the

Orl'111,11neg:tiv .3we wIIIohtl a hrger and Iiloi'e positive .3 (lill1ereie). If thee

UC vlu -h r an afte proces sin) remai uncaned the above reiark

hold( (and large value,_ In Table 2A- denote b~et ter suppression of b)0t1 C N a nd

UCN). All algorithims generally increase UCN. This will lower .3 after proces sing

poorer performance considering VCN alone) and lower thle values in Talble 2.4%

poorer performance). Thuls. in all cases, larger values In Table 2.A correspond to

r%

more supessonbl ofirboth cN n(1 a nd hien ber rls (ignringe targe -

a.Ah fect tha rensure obhioiis inrt s ale. Dcrei tg pe aultpes of decreaieeli.

heckrom 3 it il 3n pmprovement factors for allu met Il113 Sian ry are akrud lii- fts

resultoind smallers ioement Tha resuils aroellt expecte ..- \11 thpesii ,Irsl i
%

hnterolthed(ol dIfc (Iin fereni g anor t ic yies nu inherscill.rbI t i
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Bad- SUb-PIX0I Linear Processing Processing !

grun Shift Poesn
ground Shift. Simple Differencing nterpolated Differencing Spata DifferencingSpatial

(hori.Ver_. Single Doule Unear Paraboic Filtering -20 -30

(0 0.125) 28 44 30 33 25 30
0.90 (0.25 0.25) 19 29 21 24 30 22 26

(0.5 0.5) 13 19 18 19 20 25

(0 0.125) 23 38 25 27 23 27
0.76 18

(0.25 0.25) 14 23 16 18 20 23 ."
(0.5 0.5) 9 13 13 14 19 22 0

Table 2-4: Improvement (in dB) in the Ratio of the Uncorrelated Noise
Variance to the Correlated Noise Variance with Processing

S

-C." 2.5.4. Case Study

While the previous methods summarize the performance of several aspects

of the various algorithms, they do not present the total picture, i.e. will targets

be detected. Towards this purpose, we carried out the following simulation. In

the first case study, the CN background was modeled as having p, = 0.90 and a

variance of 1. The subpixel movement of the target between successive snapshots

was taken to be (0.5, 0.5) pixels. The targets were assumed to be of size lxi in

the detector image with radiance of 1. The targets strength was the same

compared to the strength of the background. Eight targets were randomly

dispersed in the detector image of size 60x60. All targets were assumed to move

by (3. 4) pixels between successive image frames. In each image frame, t.

uncorrelated noise with strength -3(0 d3 below that of the correlated noise was

ad"ed

%,. -. , S
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Num-. -e
Differencing Method of Hits

Single 1
Double 6

Linear Interpolated 8
Parabolic Interpolated 7

Spatial 2

Table 2-5: Number of Hits (Out of 8 Targets) for the Five Methods

These images were thus input to the five algorithms (excluding spatial 0

filtering which does not use time information) and the resulting processed output
N,.

images were then searched for the 8 largest output values. If the algorithm

worked perfectly, the 8 outputs should correspond to the 8 targets and should

yield the correct target locations. In reality, this does not happen. Since we know '

a priori the correct location of the targets, we can decide how many of the

targets have been correctly located. The 8 largest target output values obtained

are shown in Figure 2.4. In this figure, the crosses denote the targets correctly

located whereas the squares denote output peak values that do not correspond to

correct locations of targets. The number of correct targets for the five algorithms "Or

is listed in Table 2.5. This table reveals the inadequacy of the single differencing

0and the spatial differencing methods. On the other hand, the other 3 methods

seem to perform equally well. \We were surprised to see that linear interpolated

differencing yielded 8 correct targets (1 better than the more exact parabolic

0
interpolated differencing). These results must be investigated further for more

senarios.

0

v.,..2 p
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F or the second case stmudv. we removedI the 1i ucorrel it el :111d n clia iged

lhe lack groiund correlation coefficient-, P1 to 0t6 -.\ItA ot(Aher pr eei e ind-

he samne. TIhe corresriondling tliresliolded outpuits lre sliowiil ill Ii ic-f 2.. .. \Ill

Si gori th ms fail. However, the parabolic Int erpolatecd di llerenici hg iiwth110 is nbLe

to locate -1 of the S targets. Only doule differenicing is abhle to loeoitc a single

target correctly. All other algorithms cannot locate even one t a rget correct ly.

This case study clearly demonstrates that the parabolic 'iterpolaite I liffeietinig

algorithms yields more consistent results for a wide range of scenario pa:rameters.

It thiis appears to be preferable (and quite -sui'table for optical realizat ion ).

2.6. Conclusions A

* \\We ha:ve in1vest igated six clilferent al gori thm is (five Ii hear ones and one

hlollllaronie) for their ability to detect small targets Inl slowly Inlovilig

1):Ick.goihils . Aialii :l slimulation results are p~resented. Overall. parab~olic - -

ini orI ohat el id reniu seems to out perform all othlers and is siitable for

p1ar:hlbl rea-,l-time re alizations.

0
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A Chapter 3

Subpixel Delay Estimation Using Group
Delay Functions

3.1. Introduction

Time Delay Estimation (TIDE) lvs received much ( nolt att atioli as

evidenced by a journal special 'issue [11 dev oted to tis~ topji '1DE inv olves the

* determination of time delays between si-nals or coordinate shifts between iima-es

% and finds applications in many diverse areas including Radar and Sonar signal

processing and] imnage sequence processing. In Image sequence 1)rocessling. the

tvypical objective is to extract the desired information from a sequence of

snapshots of a dynamic scene. An important application of im-age Sequence

processing is the extraction of target tracks in the presence of clutter in staring

mosaic sensor imagery [2.3J. Another application involves the registration of two

successive images [4I] prior to their subtraction in D i it al Subt raction

.-Angiog rap by. %~

-- An important feature of the above deiay estimation pru)ltmiis is t hat thle

shifts to bc, esti mated are typi cal ly .subie.i.e.. tlc Ii ddi !-t weea t hw two

observed digital signals may1 not correspond t) anI int' 1 niitiplk, (4fh

W %
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proper alignment leading to good backgrounI suppression. A popular approach

to subpixel delay estimation is based on fitting a second-order polynomil to the

cross-correlation between the two digital signals. The coefficients of the second-

order polynomial are then used to obtain an estimate of the suiI pixel delay. This• .,

method uses the quadratic interpolation inherently and hence its delay estimation

accuracy is limited by the accuracy of the second-order interpolator [5.6]. The

bias and variance associated with such an estimate were analhzed earlier [7]. In

this chapter, we investigate the use of recently proposed [8] Group Delay 0

Functions (GDFs) for the subpixel delay estimation problem. NO

The GDF of a signal can be viewed as the derivative of its Fourier plha e

with respect to frequency. We will show in the next section that two types of

GDFs can be defined. G ) is the GDF based on the Fourier phase and G,
p

is the GDF based on the Fourier magnitude. The GDF representation allows us •

to consider the phase and the magnitude of the Fourier transf'orIn on an equal

basis. G (,) encodes the delay information whereas Gi(.) contains the Signal-

to-Noise Ratio (SNR) information. \We present in this chapter an ldaptim'e %

sim)pixel delay estimation technique using these features. This adaptive

procedure weights the delay estimates from the high-SNR regions more heavily

than those from the low-SNR regions.

After defining the GI)Fs in the next section. we outline the ,oc,,hliie t'o[

their Complit:itioi ill Section 3.3. This is followed bY our preseznt:itioi (X thle-

4 . . . . . . . . . . ..*.:::
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%

com putational effort of thle proposed method withI that of' thle %i~-orlto

based metho 101is provided *in Sect ion 3.5. Si miiat iou resi i tsae thle ii I rese uted

in Section :3.6 to Illust rate tite adaptive delay estlimation ilgorit Iiin nnd

concluding remarks are provided in tile last section.

3.2. Definition of GDFs%

%A discrete-time signal .r( ) can he represented in inmy nvlifl'creuit waysN. Onie

of the most popular methods uses the Discrete Time Fourier Trmis1ormi (ITT)

[91 defined as below.
*1..

00

= z (n)Pxp[-jn1L.]

(3.1)

IX(@)I expH-jojw)1

w here X(w,)I and 0( ,)) are the magnitude and the phase of the DTFT. I

respectively. It is very,. easyv to verify that X(w), X-(w)j and 0(.) are all periode1c P

functions in ) wvith a period1 of 2-r. An alternate description of .r(ii) is th~roiugh its

GDFs G& (-,) and G; ... Th phs-we D ssmly thle di :it ive ()I

t he phase function 0(..) wth e ihseccs toD requencysin the otlic lii n th le

rn-igitue-a~sd DF G,,(,.;) is tihe dlerivative with respewct to (d The lii~ol a

* . 11~11111MM1? U1 Phase signal hoeFomrier t aso i IIIii 'Vtidc us V .

1n ulimul in phiase signa:1 I9 lmhas a z-trainsforin %Hit ill pi i> .Ies ii r1t:> inside

the uni1t cir1cle iii1 the Z-plituuc. p

%
..- .0-



unirapping procedure [10] mnust usually be carried out prior to the derivative

operation In the definition of the GDFs. Let 0'(.;) be the unwrapped phiase

corresponding to 0(.) Then the phase-based GDF is defined a~s

Note that one can obtain the unwrapped phase 0'(,J) completely (except for

an additive constant) from G K ) by Integration. The deflinition of Gll(.,) is
p

prom pted by the result that for minimum phiase signals. Inl X(-)l and o(-,) form J

aI libert trainsforim pair [9[. Let 2'(w) be the unwrapped pliase funiction of a INi

minimum phase signal with magnitude transform IXK( )]. Then

It' ilhe s'ign a r(n) Is a ni iin u m phiase signal, thenl G and CG K are

idi Iicu/1. For a maximum phase signal (all poles and zeroes otitside the unilt

circle). G ~ and G ... are negatives of each other. But for- a general sna.no

siminplIc relations exist bet ween G,,(~ and G (-,). if G )Is, known. thlen Y('K)
p

ca:n be obtained except for an additive constant. Thecii the Ilillwrt taii~fom

rt'latiows 10] ca-,n be used to leterininie IX(-,)! except for. :I mul11tiplicative coas-t :lnt.%

Thus i_(j) ca,,n he reconstrumcted uoinphetelY 1exeeIt :ur an lilt iplic:1 ive cuiuulcx

sralar) frm the knowled,(e of' the two GDF's. Of coumrse. thet two GIM'> do not

(c)iit:lm~ sumv iiu()Ie iiurl-riiatiuii timiu is -lv:lilahhll ill I cuuulut'i-u l'uuuieri

[lfthol '1 l riiI~ tlt, >iu :ul ii eu to I 1"'t~u l'u l III
0
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Before wve consider the coimpuitational proceduI res for thle (I)VS ill the iii~t

section, we introduce the GDFs for two-dimensional s ignals. The 2-1) )TF T ol' a

2-D signal x( nf'n) can be characterized by the Fourier Tim iisfortn (F T) %

niagnitulie function JX( ,1 . )I am I the FT p~hase function f)(., Then two

phase-hbasedl GDFs are defined as b~elow.

G (3. 1)

and

G~

Similarly. t-wo magnitude-based GDFs G,~ 1 .'..w and G, h.1.' a e
1 2)

defined as the appropriate partial dlerivatives with respect to andi . of

~'~ *~')*Thus wve have four GDFs associated with thle 2-11) signal .4, I?))

Ibroigitoit the rest of this chapter. wve confine our attention only to i-D signals

for the saike of sim plicity. Our conclusions can be easily generalized to the 2-1D

c ase.

3.3. GDF Computation

The DF of a sequence .4ni) can be obtained by t:ikiui2 , tI hZ ivtse l ts

I olirl I Il 1. Ill practice. this approach sit 11(15 Iroti 1%%() I rpha-. I

I t h l t it m ii res the coin Ptaztioiial lv ('1 ill h roli his i i r2. Tht

(0('Ol prohli Is that the 1eiaieoperaitioli (.:11il I hi~o~ah(I

li~ta ntipit. WO canI Cii''ln1Ven h-e Moh In "Y h*



relationship~s between the Gvis and celpstral coefi iclent-S [tij II *-(-

and '(~)arePeriodlic in with a periodl of' 2,-,. their Fourier series Loi ni f

can be written as below.

In~~. (I.. (.

and

=a Z (k)e- ir

pp

if the signal x(n) is real, then In IXHI~ is euen in and o'()is O(1d ill

Thus Equations (3.6) and (3.7) can be rewritten as

In IX( .)I a,,,(O) + 2 a11 (k)cos(.,&). 38

and(

= - 2 ap(k)sin(,,k). (39
k= i

Su bsti t uting Equiat ion (3.9) in Eqiuation (3.2), .we obtain

G 2 ka~~o~A) .10)

k=i

l()r the 1()" 1n :1-nit u e f,11nitionl ill (:3.8), the mi iil m iil p I i I iit .

m"!venl hv

'w N .e op.

% % %
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k-= 1-

and( su bst ituting Equation (3.11) inEquation (3.3). wve 01)taini thle f'ol lowig rl

expression for G KL().

G )= 2 ka (k)cos(_.k). (:3. t2)
k~i

A-bove equations provide the basis for the methlodl to computIIe the GD17s of'

a g-iven signal x(n). To determine Gm .. w),Ne first obtain hInX(.,;)j from r(?u ) by

Fourier transform. Then the Fourier series coefficients ci (k) of* the periodic

function In X(,)) are obtained through Inverse Fourier transf'orm. These -

coefflicients are then multipliedl by k and the resulting sequence is Fourier%

transformed to yield the desired G~() The computation of G j... also proccecs

in a similar manner. The phase function o()is flirst obtained from the Fourier

tranlsf'orm of .r(n). Then an inverse Fourier transform is carried out onl jt;'(.) to

obtain the coefficients a (k). These are then multiplied by k and tile resu illtli ig

sequence is- Fourier transformed as in Equation (3.10) to yield G 'Fil Te

%01I i ntsa(k and al (A-) are 01)t ai ned by the iverse Fouirier~ t raiusfori o tihe
% 12 p

logritbinof X(-). Thesec are kniown as ccp.sfra'l coefficients. uiw G;( :irid

Gr (:uI ho ol~tu1il rroun Th irmoillex cep'stral cod I'llcils- (4 .r(oi).

'u-~II I :i>-I lFu~rier 'Tr:1i-t(wri I. (FT) :lrihu. [o(v .we 1)1)1S t

)I 11 111 -:o io l ' -4 1:1 1 ()1 II Im ~ y ,11 11 o0
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3.4. Adaptive Delay Estimation

Conlsider the GDFs of twvo sIimklxr(ri 1( V.(1) i

r2 (n) =x 1 (Pz-11) (3.13)

all(d? is the delay' to be estimated. S'tlictlV paig 'l05 h 11itgrlt0 0

Equationi (:3.13) to be valid. But we will allow i1o to he 1nilc(' i~ nepe

E ciuat io n (:3.1:3) as below . Let x 1  (t) and .,~ t) i o c i il 11I-ill i n l

related through

-~~t X 1a (-t 0 ), (:3.14)

wvhere tis the timie delav between the two coitit-mous si-iials. Assuilme that

.r1 (t) and r<,(n) are obtainled from x,1 (t) an~d a'.,(t) Lx' Iiifori'II s:imlding theii

at kilt ervals of . t. Thlei iio=( f0 / t ) canl be aIi 1W1- i rgI. \ithl this

iiterpret ation. thle DTFTs are relaited as I)QIow.

= A1(~.'exp{-;~ntj}1.(15) -

()i t C woti r 11:11nid. Ille Ih ' - (;DF1'- 'I P Ii I '' :I\' i. 'I itp'P V
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iist 1%te t Ills, let :11dI It e t lie' 1-di 11 Is 1' _V :III] A .(j

t'ri ct to - we lob-im j teimpotan (r1)) es I that -

L. %

b etweifen~ th( and G (.,)) ill th negatlye deiacoati .of d lii Calbe nesoi wth
1) ~ p0

bv c ti) w ota the iolwi- iavetrntaeget.ia

IT

0p p S.

and Gc () which are thmp e phaio se- ase an d~s fr .GI .. ) :1111(1 1 .i. the

tepecte-l inh Euten dea(3. eten18() n *~) can be relae by ai aumaio tm hedii

ctn t difrec beutween their) phae-a1 d G Ds Iqi n pra.t2ceate di ti ' rtice f

(,:II e till~lte the dell o :s Ilow
* a-a0

1) a 6

letwe Er(f.. an" Cf" (I xvii not exatl be a coFtn anF.ca eesiae

p pI
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;\ni interestinig featiire ol the proposed method 1-, that the lIclav es tlmiate Is

oht aintied as thle ave rn-e I difference bet ween thle GDFs- of t he tw SO 1i1 riaI.~ ie

lie C D17s can take on a cont in ium of \-a Ilies, the n" 'ii Equation (3.19) can tAe V

on all possible valules Inlu ding non-i nt eger valutes-. Thuis. this- meth1od( tre ats

bot h integer and non-integer shifts on an equal basis and reqiires t-) special

effort to obtain subpixel delays. On the ot her hand, the cros-s-correlition lbasedl

methods require the interpolation of the digital cross-correlat ion function to

obtain the subpixel delays. The accuracy of the inepl tortuis determines the

accuracy of the delav estimates.

The delay estimates discussed so far were based only 011 the pha-se-based

GD]Fs. \We now explore how G ~ can help the estimaation procedure. T1o see

his, let uts assuime that the del av estimation prolem is to estimate 11 frmxn

and y(n). wchere

y(n) =X(11-11 0 ) + w'(1). (:3.20)

In the above equlation, w( n) is a sam pie realization oh' a random proces s with zero

mean and represents the noise always present in an\- measurement. Whlen tu(n)

is zero for all ni (no noise), the si tuation is thle samin as di.scuI ised I Ie P )e andi

G . dues n(It help the estimation procedurle in ELqiiitioii (3.1N). [iut the

matitl~lel~ae~lGIDFs caii be used to adlvantage ii the lit(iitL'nu ot' ioisc2.

It, has been shown elsew here 121 that tihe iieg:tive leiivative ()'thle pliase

sJP'11trllf an1d the Eoiiritr maan'-itilde ale verv iii~ to 'iw t Ilit 1"w a

11 ,'lUi j t

n,

%
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the phiase spectrum of a mini mumi phase signal with magnitudle sJpectruin %A~)

wve see that G(~ tracks the FT magnitude. Let Gx(~ and Gy,(-) delnote the%

niagnitude-based GDFs of x(n) and y(n). respectively. Then the following cain be

NN, IIt t en1.

andc

In(P) I)I IXHI) + /'f-). (:3.22)

Wvhere f ',) Is the spectral dlensity [131 of the random process ir(i'l. In writing

* Equation (3.22), wve assumed that the noise process is lindependent of Thle signal

x(n). From Ecquations (3.21) and (3.22). a crude estimate of the .-NP, can he

obtained in terms of the mnagni tude- based GDFs as below.

NR ((3.23 K

Thius the del :iv between t he signals x(n) and y(n) c-,in be estil:ted iS l)w

NY 2 N 2 ;X

00
1=0 ....

O f' co l-,, e. ." . . .-..--- -rf.-ic --~l -l( e l ilw o



A .-\gco(1 choice for t he weiguiting fn ntionl 7: the u 'gje tilea hl

f [1 11C t 1* 0 H

I~R = if S NR > T0 %.

wher'e Tis a preselected threshold value. Wit h this weighling funict ion. n III

Equation (3.2-1) can be seen to a simple average of the phiase-based GD F

difference only over those frequencies for which the SN\R exceeds T If T' is0'

chosen too small, then essentially all frequencies will be considered leading to a%

00

chosen too high, then very few frequencies will contribLute to n mad t le resulting

estim-iate may be 'inaccurate dlue to insufficient averaging. Thus the choice of 7

is imp~ortant. In practice, one may wvant to obtain a sequence otf 4 mite '.N

based on a sequence of choices for and seette0s osset tonti

seciuence. We will discuss this issue some more when pres entinig liesi laio

results. Of course, other positive functions call also beC used for)I t lie \%vei~hi in

function 711 . A desirable property of this weil~hiiiig funlction)I is4 lou it t:ik(S onl

%--duecs close(- to 1 when its arg 1il ent is lahrge an ake's onilue leTo (1wen

he -argumient is sml.The ada-ptive delaly estimlationl o' 11 given Ii h' 1\%,

.r( ) and y(ii) can be suimmarized as below.

Stij I: Derinine G(l ), r (1) froum I-( 1to :uii'l G~' l), (""' /, 1 111

N -z t.I. . . . . I ae(oi'(li 11- to t lie, (ID '' Ol I t t i , 1:1 . II r' 1 11'

tS



>tp2: For a pr'eselected s\I) t hi-' 1hIl 7' ( /(7()(1]

'I'll" plpp~ d :111((lto ll ~ t o s t

(. 1t ln li. S h ixl )(.) ll'( : s Fi le fir:st is ) its )i i la i itIo s t

Iii:1t sI,iT I ehiftSM ros. We~ flrs I ii htiirI :ii tlieix seciiio ttle riceiX2

I !'(I hi-,IW t\\' :nixt IIe 1s the roi'eaed p011jit :it o~l()oI plexit v.S

3.5. Computational Considerations

Ili ti> ec-tion, wve cotnpnre the roilpiltationial woplexit Y ()I oilIllpo ze
%

111 it ii th~at or the conventional cio ss-corrlatilonlil F.)llo Let is fiiit

luthe nliniher of operations inivolved in1 esiitirgIhe Iel () i c tweVeii

.r.1 I aIrid U( i) sn the adaiptive delay (sIrIIat loll proce1~dure. Asdsciss I in

on:3.3. fol lowinrg operations are needed to corn pumte G (1) anad ci ,(1) fromn
P

'I.ni N-p~oint EFT to obtain (.)

1 ( CoitJiptx log:truitlhni to obtain Il IX(,:)l I joQ.).

) \At \-loinlt iniverse fiei to oijtaiti the cepstrai coofi1iclit (I ..(- n

-- \ii -jiIT T ' A()t La (k) an1d A-I (A.) ti. oltilt t hc2 two Cl)I-.

i li iiti(Ii (.()III Iiiltiti()iiii1lo a il i ll( th ah0\u stops, laiboi4s to tli't lilac N-

1)'' I t T l tl> Illf 11 1:11 e r )I' 1 , .,Io to

1* 1 1 X 11 -3 N t :0 N 1., :tli 'lil, :

I, HI

-'r ' e '.
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pow)\er of' 2). Looking back at the adaiPtIve (1e1ay est Iimiat ion pr0cedure ii thlIe

previous sCifwe note that the maim computational burden101 IS lroiitly-

UjN log., N (faIr thle comnput at ion of thle GDlF's of x ,i?) andI y(na) ).

The cross-correlation based subpixel delay msiit o iethod 1 first

comnputes c(k). the cross- correl ation b~etween a-( ) and y(oi). Thiis correlat ion

sequence c(k-) is then searched an1 its peak is located. Tfie three correlltion

values centered at the peak are fitted wvith a cquadratic polynoiakl and thle

subpixel delay is estimated from the coefficients of this polynomnial. The mainm

comnputationlal load of this method is tile determination of' the cros.s-correlatlori

between x(n) and y(ir). This can be obtained by taking thre inverse 'Tof, t i e

produrct of the FFTs of x(n) and y(n). This amounts to three N-poimi FFTS ..

resulting In a computational load of 3N log,~ N oper-ations. We did rlct irnclude .
%

the computations needed for locating tile correlation peak in this analysis.

% Ab

Our simple comprutational analys is seemis to indlicate t hat thle adiptiive

(lelav estimaation pr-ocedu ire requiries irouighly I ict/ce as ma ny oprti as the

conventional cr-oss-correlation b ase(Id .e la v e st ii ia t i oni. Offs e t t i rig t hIs

coin p utational disadvantage are the two advant ages mntionled earlier. T111se aire-

(itile nat ural inan ner in which sub pixel (10ns re ha id le I. and ()t lic, ability

to em phia-d ze high-SN, 1egion..

%

%p ~

% 0
r- e-



3.6. Simulation Results

1 n tis section. Nve present our! inl ti al ~iiiii o (1 t o i : i

fnctijoni ng of the adaptive del ay e-st iiniation al gori t Iini. 'low ' Is eni cid. we

Selected the discrete-tin-me inear frequency moduliat ed (L-FN 1) sign iI ( known d-co ) w

as the chirp signal) as the reference signal. The miathemnaticl cxpress-ion for I his

.1'* is *f.

*~4

00

wereo a(l ae eintal frequency and t.. terie chlairp rated ofte chir sinal

.ff%

s-and wa s islegth. Thcie sp tetrimplct of t the il abov sigall exendenfrte tond

00

2.p

b1ieyond asdigital fr eec of 0.5.nen n Oter i-lang woy l reutXhs

Gassa 0.05. Tw di0.000 ren type of 200.( Forr lthis chice, the sperum ise

nonzer i the riternoal (.0.5h 0.25) ellwit-lv bi e aIlled Ii mts The tli ichirp

inafl was seted becaus o the spiiywt\hhitcnegnradad

-vf
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gencrator's Th.Ile second type ()r liise is t he codu-e'I Ohi: lt ~Iiid 1,

select I tlIlle rL)h(Iwi i trs t -orle elI -si v Iit ii fI-1t er.

n -s 'I I 1 .

Whiee- < p <( 1 dlenotes t lie wrel i tii (U ji1t lit \\teil :,ljwIett

_S:ii-11les ill t he correlated noise. It (:Ill he eaell Lr'n Ijl:hrioi (3.27) t haLt p=()

Yields White noise. Increasing p valw lie (' resjol a to I 0 icreas il gl l(-\w P:Lss

spectra for colored noise. Since ir( ri) is of un1it varianlce, it is easy to show that

n~ii is also of uni t variance. I n ourI si n ilt In weNv chose p =0-..

For the first simulation study(1. wec employed 1? 20. XV 200 and (I .*

512. Recalling that A' denotes the FFT size used for GDF conmputation. Nve note

hat the signals are padded with the a ppropriate a urn er of zeroes to yield length

N.We show in Table 3.1 the delay estimates for various choices of threshold 7

and for 'ar-inls 11/ole in1put noise variances. S-inice the chirp iga is ofX length

200 and aimplitutde 1. its energyV is- appra.Xiiii:1telv 1(00. NOIs-e Of' vai7iie tT lld

lengt h~ A, rfi*> Ill iminise enrf o i2  hstle ili N ,I, I s.diil

1001
X = 10 log -

Thins a noise %V-iriaice of 10~ COrreP!oiids to apoiaey5 1 i~i N?

From Table 3.1. we see the obvious trend that the es tiniatiali ehiu i/i.e

-Ls th in( 1)put nloise variance iicri.'es WVe alsO eeI toiii I his t alLf hiii tIl(e e

O f 1 T111(. Il ld ,1 'r-'e s I(, bt iled ~ l I, 1') 1-1-11 -1 >, -11 I'

%-



e it e w en I i (pt'Ii i i l. - tle ilp t - ' Nv .: 11 .t li eieIa
a, - S.%

trend~~~~~~~~~~~~~~~~~~~~ Il.* -oe.*1pl ;N ~lw eur o~(rtr-odvtw.T lie

1411se wc~s(. v "l-tll" ll~h hreholdforlow '111,11 wewil

I'c 11clu in vey ew fre llllcc' n t e stiliG . p oc-'s. h~s %illl e tr

eit- lctQI -lhde o theinpunt TV Ni u n'i ecntu ee
I I'§I~ *i,*ei\

tiT het 'hove niuut SNR viliiWas reeate ne wth Ie-hlio ale. iisiiae

~(H~t'l~eC rcs( Iv sn a shown thu Teshol .I 2 v iN ote lo tw ii~t, t>Ill1P.\Ytt

IC iiehliI trend that ' lowethesholds inareetfli 1)t(,. fIor eS %. lluis li i W te

SU( tht hefpit nis I er lW.W cn s ahf 'll hi5 h t'IelolK vilu N the

fromil( :able :3..1 t( hate t i o~~l fotaInin eryli t1(1 tourt hsei~tes( .

thehli(,0 schn Of couse select1t orn ohe t:oje tluilo Ileeuso

regoi(is knovaihh ofli te npuit is() owR.w

d.,



i-st iiitu :1.s -lelehd :),; x e te ,I.( e Lallt L b tiit l'I- o' ()liil- st \\"w li l I( itsll l ts h(

,arexe de LSh l s xpected.'N W;It H:It lie. Theli 01 F il exilt li I I -t In e t he

* ~ ~ ~~~~ h Xvii Fgivenlow mv il '-NR 'tigiials. But 'ill all rour (Ii.tilt le(st It-lay--t at

.).7,S5.. 5.77:3. 0.766 aI .0)WFF ey(oe oleM re iij 5.T ts

re,-,ili ts (lenionstrate the capability or the p~roposed~ adaipt ive It-I x (-stii at ion

procedure to estimate the subpixel delay between two signals.

4 3.7. Conclusions -.

Inl t his- chiapter, wve have presented ani adaptive delay estimation procedur'e

ii jig the Grou)p Del-ay Futictions of' lie slinals. WVhile it seems to be

(()hiplit:11ionaillY t%%!,e a-s bll-dellsone a.,. tlhe voniven1tional (r()-o-cotte-latioll lba.sed

Iliet he ts. ti s h a-s two :0 van t ages. Trhe first is th li ati ural way it accon modaItes

it,- fa-.:tional ()I sibjixel dly.The niext advant age is, that tie GDFs provide

t--thatsoF - k Is a funetioji or fhreqjueulc :1ntI thins dena estimaltes Fromi ig-

SP(-:111 1t tiili-izt-l. W\e haive lhtilel iitial siiii1ILationl resilts to

th . l e l

K%

%a %e .,W
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DELAY ESTIKATES AS A FIJNCTIIN OF WHITE NOISE VARIANCE

TRUE DELAY - 20

NOISE VARIANCE
THRESHOLD

T0 __0____________) 10 ___4__(3)_ 10- 4

0 19.758 19.559 16.580 -0.697

5 19.710 19.869 20.601 15.320 .

10 19.859 20.007 20.429 19.553

20 19.901 20.067 20.485 18.945.

s0 19.895 20.222 19.854 18.98

100 19.896 20.192 19.725 RDP

200 19.910 20.852 19.341 NO

Soo 19.458 20.040 NO No

1000 19.370 20.115 NO NO

2000 19.028 No NO NO

500 NO NO NO NO

NO: Nondeterminable because no terms exilsted above the threshold.

(1) The best delay estimate (20.007) occurred for a To of 120.

(2) The best delay estimate (20.007) occurred for a To of 10.

(3) The best delay estimate (19.980) occurred for a To of 45.

(4) The best delay estimate (19.971) occurred for a To of 60. .*-

Table 3-1: Delay estimates a-, a fuinction Of White no0ise variance
N.

%

%
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DELAY ESTIMATES AS A FIUNCTION OF COLORED NOISE VARIANCE

TRUE DELAY 20 %

NOISE VARIANCE
THRESHOLDTo  6 k) 5 4 (3) 3 .

10- 10-  10-  10-3

0 20.041 . 19.875 19.549 19.401

5 20.029 19.815 19.978 18.076

10 20.056 19.819 19.650 17.718 4, %

20 20.041 19.641 19.491 19.040 le

50 20.050 19.736 19.090 15.377 -

100 20.040 19.753 18.328 20.761 0
200 20.125 19.345 20.839 20.761

S0 20.199 20.195 NO ND

1000 20.006 20.195 No NO

2000 20.095 ND NO NO % %

5000 NO NO NO NO

NO: Nondeterminable because the threshold To is too high.

(1) The best delay estimate (20.004) occurred for a T0 of 110.

(2) The best delay estimate (19.875) occurred for a To of 0.* ,.% ,.

(3) The best delay estimate (19.976) occurred for a To of 5.

(4) The best delay estimate (19.617) occurred for a To of 35.

Table 3-2: Delay estimates as a function of colored noise variance

'.

%•. N,
...... '
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Tn 5 .)

-00

S~~~~~~ S.2 .49 576 .6
10 5.3 .41.15 .S

20 S.68 5773 .085 1.93

100 6.955 4.1 6.88 3.938

20 7.621 $64 2.949 -223.938 .'-

So 5.90 49 6.736 NO 2N1o ""e**

20 N.86 S.77 7.0o NO3 ,"

-.'. 0

500 RD NO . 3 No NO '.,

NO: Nondeterminable due to TO0 being too high.-,

(1) The best delay estimate (5.785) occurred for a T 0 of 15. "''

(2) The best delay estimaite (5.773) occurre~d for a To of 20. ..

(3) The best delay estimate (5.766) occurred for a To of 10.

(4) The best delay estimate (S.604) occurr~l for a To of IS. , v

Table 3-3: Subpixel delay estimates in white noise ..

i" l

.14.
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Chapter 4

Detection of Target Trajectories Using the

Hough Transform

4.1. Introduction

The Houg-h tr-ansform [hioughj (HT) was originally proposed asa inca as of

(letecting1 taigu lines *in the In put, Iminage. The t rainsfoirnation cain he ca- i lv

imnplemnented~ hothI di-itallv [Duida, Mer-lin] and! optically. !Eicliinan. Gind 1 It hlis S

been later, modified so that it can be used to locate objects of other- shapes (e.g.

circles. j-,iimelc ellipses [Tsuji[j and par-abolas. ]Wcse3 The so-called S

"eneralized Hough t ransform can theoretically handle objects of a.ny- shape i.e..

objects of hot h analytical and non-anaflytical shapes. 'Bal lard] flowever. tlies-e

tchlini ques requir11e in lie h pr-e- processing such as gridient (let ect ion :i nd edge-

following. They also re~qire that thle list of the Positions aliid orienli Iatlions of the

'rn ill Se'1iii eatS t Ii at corn po)(se the ohj ect he stoic I. M ore over. thle gnrlz

Hlouigh trainsfornms require tHat one hial with prohleins of hidl imen Viialitv.

whli ch iiakes peak ]detection very di fi-cl iIt. Br-osfl

Th'le I lccgh rr111,1ii thi le e-(Ionerlizel d 12 tr:iie4)-icwi lia 1eal Io l

Tlw , 11-

% % % %.



sp w a to nehev di esiottl ft i pdiobleIt his t o boel i i sow n thilat( thi

11i lo an heI~ilI~t~oii ver cfIiiiv sfle. BIl rS foi nt e dtctl ioll ofak Cur ed o ocsi of

any arl()perti shapte. :rtcia I this o h ptr Nive showitji tal pr t i. \ai-iulai-

tp-atell crallehedL aCzishna tiedmu c frai tansorma(tion i at loie2- Iitarget

1e1hd1a be 2 wer flI-ent v etee ri for the Iet ect io mi Io]eeso

Tat ritra,:yIhape.y toseI]I this spr od~ cha puter we showthat "IdrthiarticularW

al. p rvd ta h an e ued as- a e w tch n.is m] ief r thew Jet ppct c io o I loi leta elo

C i tar ee tio r: ck . 'we reie t13h e stcrai Iht-line III an e sIlIpI t I (.,or IaI Iis

that one c o apply tothi speh i to 11 decie input' tanlion hir I roaton.ct0e

als p'oi~e he general theoreIt:ica b~d or ou he e apr4ih o t(ie,.tiI)i

11111 1it e ais h t irget t rick I

4.2. Use of' HT for Locating Maneuvering Object Tracks

11:1 1 1-11 p )II~ed out (,)Nv ri. :10

tr~wk( r -I mov iiU ,.'ill

the I tv e, t '.11 th, tr~w c~m yl~l- h

"A

%rW

-U.,

-Ih7 Lml wh -M



* - A - -- & S - -- I-.. ,.
R5 -*c-

785*' .

produce mIultiple stiaih1t lines in the traek iiivig(, wldi hi :li ,, :silv ,'etectel
5,

by a simple I-Io1gh transform. The position and he:tliig .l : 1,o 1,

ihetermilned. [C'owart] It has been suggeste, I Cow:nt] nh i:111d r:U.h Ila:tt"

that the same technique can be extended to the detectioll f (i ne'ivriiig (non- M1
%

straight-line) tracks. These present techniques for curved tracks, however, suffer

fromn the disadvantages pointed out i11 Section -I.1 .\ n V r'hat x , a vofl

parameterizing the H-ough space in order to overcome somi, ()I' l.sej ildils is

presented in this sect ion. In what follows, we assu ile thiat tle lar Vt II :aj(,c(t-rv

can be described by a second-degree curve. It mist be riot e, however, t hat thie

same technique is valid for more general tr jectories. [Cnsa.sent i

The HT maps the points (x.Y) in the input image to a sinusoid in the ',

transformed (0.1)) domain (p < 0. 0 < O<2 r) given by

p - .rcos 0 + ysin 0. (-.1)

The above equiation can also be written as

p -- - - -) -cos (0-tan l /.). 12)

I.et tle t r eIl ojI-v (f the target in the reference position descrilv the ..w

second - (e 1 vitat ionI%-.".

2' 2

_;/ 2 - t, ' I .V-'- lr + fly Ii ,/ 0[. t l,3).,''

I' ' r.fl'', itio is usually choe n sueh tha l 1 , 'ai , I -vililI ' ir ith.

1i1,,j to tie 11-t (if 1 i ) s b hY 1). l e v:IuPT ' s o1 t i I ih .II :I i ll , ri...

-%

' . •

s.ib'mm 1 mcd'rundb 4emc epoiim I \ a.P
i'",:. "'". "'.-.> " -F - -, -, -"-. '- "'' " ' ' " ."',-" '-" " ', '< ,'[% -. " ' ',% ," """' ",'" " :" " " " "0
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exampie. 'if the cur ve a circle ceintered at thei origin, thein aI= 1, b=c=O and

d1=-12 where r is the radlius of t he circle. The equation of thle cuirve can also be

expressed in terms of the perpendicular diat ance p) from. the origin to thle tangent

of the curve at any point (xK.and the angle 0 the perpendicular makes with the

x-axis. (See Figure -1.1). We thus write (41.3) as

p = T~a,b~c,d,O) or p - T7ci~bx,d.0) =0. (4.4)

Where the function To-describes the curve and its parameters.

It can be shown that this description of the curve can be obtained by

* I-lauguh ti-ansforming the input image and thresholding it. [Casasenti] Thus, the 5-

thresholded Hlough space of the curve can be desciribed by (4.4). Given this -

description of the Hough space H-(O.p) of the curve, it c:t i be shown [Casasentil

that if the curve is rotated by an angle 6 about, the orlii, and thein trans5lated to7

a nw omn oin (x.L13'.the res ultig Hough space II(V.p') (after thresholding)

can be dlescribed either byv

p, t e os to -c) + lka,b~c,d,O-o)

oir I)%-

J) =-t Cos (o---)-

t cos (0'-a) - a7~ic,d.O'-o--T), (0.5)

Wvhere

(.1. ~ 2 2a-J a tan Y/x)

We (liooase tie e quation in (1.5) t hat, gives a positive valtic foi .

N -N- "

55 -. 5' - ~ . 5- .. '.. .- -* ..
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so -

If a rotated and translated version of the curve in (4.3) appears as the input

inage trajectory of a target, then the Hough space of the trajectory is described

by (4.5). It can be shown [Casasentli that at least one of following

transform ations

p = p' - 2a.c.aO -)

p = p' + T(a.b,c,d,O'-o-7r) (4.7)

from the H(o',p') to a new H(O,p) space will yield a sinusoidal pattern in this new

H(O,p) space. The inverse Hough transform of this new H(O,p) space (with a

sinusoidal HT plane pattern) will then give a peak at (xo,yo) in the inverse HT .,.

space. (If both equations in (4.5) give positive values for p', then both

transformations in (4.7) will yield a sinusoidal pattern in the new Hough space.

In that case, we apply both the transformations in (4.7) simultaneously to the

Hough space, add the transformed spaces together, and invert the resulting HT

space). This determines the (xoYo) parameters for the curve. The parameters

(ab.cd) of the transformation in (4.7) that yield a sinusoid in the new H(o.p) 0

space (or a peak in the inverse HT space) define the parameters of the input

curve. The transformations in (4.7) are easily achieved [IKrishnal. Ca-,asenti] by

shifting the Hough space along the p-axis with the amount of shift being, in

- general. a function of 0. If the values of a.b.c.,I and o are known, the

transformation in (4.7) can be applied and the location of the trajectory is easily

0
determined by searching for peaks in the inverse iT space.

If tiie c urve parameter 'alhies are not k no~ n thlen the t ra nsfor'n ations anl

V

N

, aa... . . .. . . .. . . .. . . .. . .
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inversions are carried out for sever alu f abc,d and o over the ranie of
inversons ae caried ot s.xia.e."..,,

expected values for o. Organized search procedures for this have been ,_

detailed. [JKrishnal. Casasenti] The values of o and other curve parameters that

give the best peak in the inverse Hough space are taken to be the input curve

parameters. The height of the peak in the inverse Hough space (compared to a

threshold) determines if the curve is present. It is to be noted that the

transformations are completely specified by the thresholded IT of the trajectory

T(a.bc,d,o) in the reference position. If several translated trajectories with the

same parameters are present in the input, then these would appear as several

peaks in the inverse Hough space at locations corresponding to the (x0 ,y0)

parameters of the centers of each curve. The peaks will also occur in the inverse V

Hough space even if only parts of the trajectories are present. (The strengths of
K

the peaks are proportional to the amount of each trajectory present in the

input). Examples of this are provided in Section 4.4.

4.3. Parameterization of Missile Trajectories .

As a specific ca-e study, we consider the trajectories of ballistic missiles.

These can be divided into several phases. The missile is initially expelled from its

storage canister 1v a steam generator. The missile then ignites its first, stage

motor which burns out at an altitude of about 22 kmn. The second and third

stage motors operate until the missile reaches an altitude of approximately 200

K in at the end of the 3-minute boost phase. Since this boost phiase part of the .

missile trajectory is short in comparison with the range of the missile ( 10.00"

kin). it, c: : e alIpproxiinated hy a straight line.

% •N
S , 2
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The second phase lasts from the end of boost phase until the missile reaches

its apogee. During this time. the missile uses its thrusters to make sinall %

adjustments and after each adjustment, it releases a re-entry vehicle. These re-

entry vehicles have different trajectories and travel independently to different

destinations. All of these trajectories (as well as the missile's trajectory in this

second phase) can be approximated by second-degree curves. If we know 6 and

.-. -the parameters of one or more of these second-degree curves, we can apply the

transformation in (A.7) to the HT of the track image and then invert it to

determine the existence (and the parameters and location) of that part of the--
J

trajectory. If o and the curve parameters are not known, several educated guesses

at these values are used and from the results in the inverse HT space we can

determine the final parameters after several iterations. In practical situations, the

range of values that the missile's parameters can take is limited by the various

geometrical and aerodynamic constraints on the missile path. In addition, the

'a, detection of some parts of the trajectory places constraints on the parameters of

the other parts of the trajectory. These facts are used to reduce the search space.

For example, we consider three common apogees used for ICI3I , 'a
a-' -,4..

trajectories: (i) a depressed trajectory which has an apogee of about 900 ki and

a re-entry angle of 150, (ii) the normal miniii m energy tr iajectory with an

apogee of about 1200 km and a re-entry angle of 2:30 andt (iii) a lo'ted trajectory

with an apogee of' 2300 km and a re-entry angle of 350. The trajectory of the

., isbil after the boost phase can be adequately modelc( as a circle. In this case,

't rl, f' ulue cir'le is determined by the type of ipogee and re-entry angle.

4',3

i"p%. .

N%
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The type of apogee itself Is constrained by tie parameters of the I-tj-ctoryV inl thle

boost phiase. In fact, the constraints m-ay be such that we need to coinpute onily a

part of the HT and/or its inverse. This saves additional computational t~lime -ndlid

is a significant advantage and feature of a HT space.%

4.4. Experimental Results

A computer program was used to simulate track images of miissile

trajectories. The program Is capable of producing straight-line -and second-degree

curve images with any given translation, rotation and any- desired curve

parameters. The sampling rate of time pixels comnprising thme curlve call also he -d
06

changed. These 128 X128 imnages were used to (leuontrate the techiniques in

Sections 4.2 and 4.3. Foir all lloiigli spacfes. :ampigitra of I was used for

both p and 9 and all peak valuies in thle I c qh~ace andI time inverse Hlough space

were coiputedl as thle -,lii of the M l i 3x>K3 win low.

Fig;ure -1.2 shows data f r tim -iailtin trajectories i rig the boost%
J%

phiase. M~issiles are Immiclel fr(oum ri-lit toj lirt :iil time three tracks are at launch

angles of 1630. 1.150 and 1500f withI res lee t to thle pos itive x- axis. Ili order to

dlemnonst rate the eff2ctiveness of lie tecli iiii pie ili the presence of breaks in thle

tracks, a samingi rate of 2 (I.e., every other p)ixel) us~ ede for traicks i amid :3.

The central 1-15' track has a samnpling rate' of 1. Figure -1.2(1,) Thows-, the I louth . -

transformn of thle original in i.si I e track 'ii images iii l'gmr 12(ul lgue .2

Shows the thresholded version of Figure -1.2(h) with the thtreshIwld seot at 10. The

nuniher of poiiit.s inl a trajectory dictate the tlmre-sloll choseni. Thme pe~ks ini the

% *

V N. N
.. ,. .



hreshioIled 11I'' space viel I the associ atedl curive parnmet ers. Three peAks are

clearly visible in the final out put pattern of Figure -1.2(c), corresponding to thle -

9 V
three tracks in the image. The first track produced a peak with a st rengthI of 60

at 0==750 and p==35 in the 1lough space. The 0 and p values agree with the*

theoretical values. The second track produced a peak with a strength of 137 at

0=540 and p=61. The theoretical values are 0=540 and 1)=61. This peA

strength is approximately twice that of track 1. which agrees5 withi the fact that

there are twice as many pixel points or samples on track 2 as compared to track

1. The third track produced a peak with a strength of 66 at 0=600 and 1)=64.

The theoretical values are 0==600 and p=64l. The peak streng-th for this track :3

peak is about the same as that for track 1, as expected.

N~ ..

Figure 4.3(a) shows three circular trajectories corresponhiiig11 to tilie Second

phase of flight, with three different apogees. The radli of the tracks a je So, 1006

and 120. their centers are located at (64.-20), (6-1,-55) and (6-1.-S5) re4)Eoctivelv

and all tracks are approximately of eq~ual lenqth. Figuire -1.3(h) hm%-ow' l ['uh

transform of the input. It can be seen that wve need to coimput e tilt, Hlough

transform only for 0 values between 0' and 1St)0 . (The values, ii thie I1T1'r el

1800 and 3600 are practically zero. becaus-e only thle top pa its of t liecil were

present in the input). Since the values, of the raidii of th ie j(ectude c-:m I

predicted from the apogees and the re-entr vangls lie ofIuc thle r:li* iw

assuimed to be known. (The apogees and the re-entry unl 1iiu-uuh\kwi

advance, as noted in the previous s ection). Thus. (ivI% three differetu v:ihes for

the radii weie tried in the ,ransformaltion giveiilv 1)- .7). 111 111c( s of :1 Circle.

% % %0
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".Ij,b.c,c,o) is a straight horizontal line [CKasasent l at p= r (wihere =(_,l) is

the radius of the circle) and is tlus iorepenent of 0. Tlerc'ore. in1 tlie c-e ()r -

circle, (-.7) becomes

p = P' TF = 7' r,. (1.8) r.
0

These results (Figures 4.2 and -1.3) clearly show the ability of the systenm to

process and distinguish target tracks of different r and apogees. The

transformations required in IT space involve shift'ng the ttough space vertically 0

(uniformly for all o) by a distance equal to the r being searched for. To carry out %

the transformation for several possibilities for r, we merely shift the FIT by

0
different amounts. The maximum value in the Hough space was 19 in Figure

4.3(b). The Hough space was thresholded at 10 and the transformations in (A.S)

were applied for different values of r (i.e., r=80, 100 and 120). (The threshold in %
0

the Hough space is usually selected at about .50% of the expected peak value. hut "---

it is increased if noise is present). The results of the inverse FIT processing are

shown in Figures 4.3(c), 4.3(d) and 4.3(e). One dominant peak is observed in each

of the inverse Hough spaces, indicating that the r value selected for that space

was correct. The location of the peak is within one pixel of the actual (x 0 .-.

values. The strengths of the three dominant peaks are, as expected. 0

approximately the same, since all three track lengths are roughly the same. The

inverse space was computed only for 0 < x < 128 and -12S < ,i < 0. since thisis

the range in which we expect the peaks to lie. - -
%°

Fig re - .1(a) shows three circu lar ares. slightly dlislp laced wit i iesi ect to .,.'..

e.



one a not her. T1hese are tvpical or the tracks of' t hree re-ent ry vehicles released h v

lie same iisisi Ic. AllI three tracks have the same radius(=SO). b)ut thle cent ers are -

locat ed at * h fircre t point ((61 .-20). (8-1,-20) and (1241,-20)). Fi giure 1.(b) sImv Nws

the H-oughl t ranisforin of' the i niage in Figuire 4.4I(a). The m aximnim valuie ill thle

H-ough space was 3:3. This is niich higher than that of the previous case. becauise

parts of all Three curves lie on the same horizontal line. The Hiough space wa-s

a- gal n t Iiresh!l led at 10, the transformnations ini (4.8) were ap plied withi r=80 and

then inverse LHouigh t ransfornied . The final result is shown In Figure i .i(c).

Trepeaks5 are crly vi il adter (.o. pa ra meter locations are wvithlin 1

pixel of the aetuial values.

P To seeI how the technique performs in the presence of noise, the image in1

Figu 1re -1. WO % v as corruipt ed wvi th noise, as show n In Figure i4.5(a). A G au isian

randloim noisje gr ej* tor was used to gepnerate noise with a zero mean. The noise

values ver-e added to each pixel inthe orliinal binary image and the resulting

image wvas reli narized by thresholdi ng at 0.3. Figuire 1.15(a) shoxvs the result wvhen

the variance of' the noise xvas a-=0.3. (Noise xvithi variances- of 7=0.1 and 7=0.2

Wol~ wP1te xi ti no noticeable difference in thle pprforuu nieof li t cc

Fig urie i .15(h) shlows the LIT of thle iiaginFigure -1.5(a). T1he unaxiniui v,, 1it,

in the I [oulii s5pae xvas 4-1. Figure -1.5(c) showvs the result of' threslIiollng the IIIT

at 15. (a thiresh old highder than 10 is u~sed wvhen nois e is pre',eut ). t~ntii a

inl hA.) ni iixs tr:1ii4oriiii'g The transfdormation usdii(.)was again a

sim1ple verlft1 icil sift :.Iiid the amlount of shiflt (=radiiis of' Circle) u1sed xvas SO.

Figure <Ii(1 sowvs the result or tlieloliu th%)i ita 5.I alI]~i

1*C I1(I(!11 t e o tp it ( . I (,Il h >(eS
%I %.

e, 0%

% . *i
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liat the peaks ar-e still (Iiscern lle. The P cit ions of thle peniks :ire alIso

uilcliangned. Thus.-, this technique alppears to 1w qui1to rolt ill the rw(s elwe of

consider'able noise. 0 %a

4.5. Summary and Conclusions

A new tech tiiqtie for- the detection of trajector-ies of targets has been%

presented. The technique involves a straigt-liine 1-lough transform (I-IT).

thresholding and simple transformations in thle Hough space, and an inverse HT.

The tr-ansformnations are easily achieved by merely shifting the H-ough space along

the p)-axis-. The amount of shift is in general a function of 0 and is giveni by a

A control function Ta,/.c,,) which is slimply the thresholded IIT of thle curilve inl

the reference position. This new techniqute ciricu nvents the prob~lems of stoiIng

the cur-ve as a list of line segmnents along with their oilentations and also

p-olenis of igh dinensilonal'itv.

In the exIperimenital results pr-ovidled, the tr-ajectory w\as aissumned to- he

cit her a straig-line or- a circle. It must be nloted that the techinique is muich

more g-ineral aiiad is vald for aiiy type of curve. It' the trajectory coaisists of

Several piece-wise continuitous curives, each pamrt cii he detected separa telv and

lhe detect ion of onle part used to place coaistiiits- oil lhe po ' e ro thle ot her

parts.' th us reducing thle sear-ch spa1ce. Perf rmiiwae of thle tc Ii iqe in the

prcesenice of noise was also deilmoast rate I qi it e siticcc:sf ill v.

el

mr %
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List of Figures
-'o

Figure 4-1 Straight-line HT (6,p) parameterization of a curve.

Figure 4-2 Representative boost-phase missile tracking example:

(a) Three straight-line trajectories during the boost-phase with the
central track having a sampling rate of I and with the two other
tracks having a sampling rate of 2 (every other sample included).

(b) The Hough transform of (a).

(c) The thresholded Hough transform.

Figure 4-3 Representative second-phase missile flight circular trajectory S..

processing example with three different trajectory apogees:

(a) Three circular trajectories typical of the second phase of a missile
flight.

(b) The Hough transform of (a).

(c) The Inverse HT space when a trajectory radius of 80 was used in
the transformation.

(d) The Inverse HT space when a trajectory radius of 100 was used.

(e)The Inverse HT space when a trajectory radius of 120 was used.

Figure 4-4 : Data for typical tracks of multiple re-entry vehicles:

(a) Three circular trajectories of re-entry vehicles.

(b) The Hough transform of (a).

(c)The Inverse HT space when a trajectory radius of 80 was used in
the transformation.

Figure 4-5: Performance in the presence of noise:

(a)The circular trajectories of Figure 4-4(a) when noise was added.

(b)The Hough transform of (a).

... ... ...... .. ..- .-. -.- .......... ..-.- .



89

(c)The Inverse HT space when a trajectory radius of 80 was used in
the transformation.

(d)The Inverse Hough space thresholded at 60. .
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Chapter 5

Image Understanding Techniques for 3D

Scene Interpretation oS

5.1. Introduction

In this chapter, we present results in two aspects of the 3D change

detection task: the low-level problem of analyzing images, and the high-level

problem of developing an optimal recognition strategy with using the description.

For the low-level processing, we describe a new method of generating edge

description. For the high-level processing, we describe a new method of

generating a recognition strategy of a object. The basic idea is to reduce the

complexity of the observed scene description by designing a model which includes

a complete description of the geometry of the 3D object to be recognized. The

description of the scene uses only the 3D boundaries which are fairly easy to

extract, thereby reducing the segmentation time. This model includes the

description of the possible aspects of the occluding boundaries of the object,

which we call 3D-profiles, when it is observed from all the possible viewing

directions. In addition, it contains all explicit description of the order in which

the search tree must be explored at run time. .

Z.



5.2. Improvement in Edge and Line Extraction from Images

Extraction of lines and edges is one of the most fundamental techniques for -

image understanding. Previously, we have been using a technique based on

modified Nevatia and Babu algorithm. During the last year, we have improved

the technique for more reliable extraction of detailed structures from images.

Instead of Nevatia and Babu operator, the Canny operator is used to detect edge

, namely, abrupt intensity changes. The operator generates pixel sequences

where the intensity change are steep. Figure 5.1 shows the original intensity

distribution. Figure 5.2 shows the result applying the modified Nevatia and

Babu edge operator to the distribution. Figure 5.3 shows the result applying the

Canny edge operator to the same distribution. The Canny operator generates

the only important edge segments and less noise elements than the Nevatia-Babu

operator does. Thus, the result is much easier to handle by later processing

modules.

To generate line segments, we have to track the edge pixels and to detect

corners so that we can obtain line segments connecting two corners. Corners

may' be rouiid using the angle between three adjacents pixels. Let us define

Directioi-before as a vector from Pixel-now to Pixel-before and Direction-next as

a vector from Pixel-now to Pixel-next over an edge pixel sequence. If the angle

between Direction-before and Direction-next is larger than a certain threshold,

then Pixel-now is considered as a corner point. This method is simple and easy

to calculate, but unfortunately, generates too many corner points due to noise. ,4

On the other hand, if we increase the distance from Pixel-now to Pixel-before "'r

%0 Ur
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Figure 5-2: Result by the Nevatia-Babu operator

In order to get stable but exact corner points, we prtopose a multi-level

detection method. WVe will generates corner points using various size of the -

detection distance. The coarsest level gives the search area of cornet's, while thee
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finest level gives candidate positions of corners. Several rules are prepared to

interpret the finest level of description based on the description of the coarsest

level.
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Figure 5.4 shows the angle distributions over the edge sequence using four

levels of the detection distances. The upper one is the result by the largest -L

distance (the coarsest level). The bottom one is the result by the smallest

distance (the finest level). The dotted lines indicate the threshold level. Extreme

points over that value are considered as corner points. Dots indicate indicates

candidate locations of corners at each level. Figure 5.5 shows obtained line

segments, where the bold lines indicate the confident lines and the thin lines

indicate the less confident lines.

5.3. Extraction and matching 3D structures in range images

5.3.1. Introduction %

Once 3D scene information, either in the form of a depth map from stereo %e,

or range data from an active radar device, is obtained, the next step of scene

understanding is to extract 3D structures from it. In this section we explore the

problem of efficiently recognizing and positioning objects with a known 3D model

in a range image. This problem is important for such tasks as 3D change 0
C5.

detection and target recognition: in target recognition 3D structures which match %

with the target model must be detected, and in 3D change detection 3D structure ,P. p.

which were previously identified must be located in the current image. Several

solutions to this problem have been proposed: the general approach is to describe . -.*:

the objects in terms of simple primitives such as 3D edges, surface patches or I,.

isolated points in the case of sparse data. and then ma:teh the sets of primitives .

describing the model and the scene.

N No
W
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5.3.2. Search Strategies

\Ve denote by e. and e'. by the primitives (jump edges) of the model and -)

rsetv. Is 2' 0-

the scene respectively. w is the current viewing direction, w and w are the
$2

canonic x- and y-axis associated with a direction w. a is an inner product of a

model edge and the viewing direction w, r is the inner product of an edge and

the canonic x-axis of a viewing direction w, l(e) is the length of e. N

Most of the 2-d and 3-d vision algorithms dealing with rigid objects can be

described bv a "hypothesis/prediction/verification" scheme. This general type of

algorithm can summarized as follows:

" Hypothesis: ,
Select a primitive e of the model and a compatible one e' of the
scene, the pair (e,e') is the initial hypothesis.

* Prediction:
Try to derive a estimation of the location of the object based upon
the hypothesis. Use it to predict the remaining scene primitives that
could be instances of model primitives.

e Verification:
Explore the solutions generated by the Prediction step in order to find 0
the best one according to some criterion.

Since the initial hypothesis may not provide enough information for the

prediction of solutions, the last step may require another hypothesis/prediction .

step. This situation arises typically when the position of the object can be only

partially predicted from a single hypothesis (e.g. only the orientation), the

prediction phase provides only a guide for the choice of a second hypothesis but

~eaerates too many possible solutions. In any case. the prediction phase provides

a search region for the remaining primitives in the scene space (See Figure 5.6).

VVY
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Figure 5-6: The prediction step

The exploration and classification of the viable solutions in the Verification
r* %

step can be achieved by various methods like tree-search, relaxation, dynamic

programmic..etc All these methods try to find an optimum of a criterion among a

(expected) small set of possible solutions.

.-

The HPV scheme as described above can be efficient only if two conditions

are verified by the scene and model representations: 0

The model contains detailed informations about the order of
determination of hypotheses and numerical data allowing to reduce
the cost of computation of the "search region".

* The representation of the scene allows a fast retrieval of the
primitives lying inside the "search region" during the prediction step.
This condition is important because a naive implementation of this
step requires the exploration of the whole set of scene primitives for 0

S . ,
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each model primitive even if no compatible matching exists. In other
words, the cost of the prediction step should be related to the number

of solutions compatible with the first hypothesis and not to the total

number of primitives.

The H/P/V scheme is quite general and does not make use of the properties

of the actual problem. In the following section, we try to find a representation of

3-d objects suitable for this kind of algorithm.

5.3.2.1. Using low-level features

The idea of using an elaborate description of 3-d contour edges of a solid

comes from two observations:

In most of the 3-d recognition problems, the recognition part can be 06

made relatively efficient by using a small number of reliable high-level :.*.*

primitives. Unfortunately, the segmentation of the observed data into
this kind of primitives is time consuming and the reliability of the
resulting description is discutable when using higher level primitives
(think of the segmentation in quadric patches).

An alternative is to use low-level features which are easy to extract .Q
and to manipulate. These features cannot provide a complete
interpretation of the data because of their poor quality and the %
ambiguities they cannot resolve.

Vhen 3-d data is available, the simplest features are the occluding (or
jump, or silhouette) edges. They are simple to extract and can be
used to perform a first analysis of the scene data. So, the idea is to
reduce drastically the time of segmentation while dividing the
recognition process into several processes instead of having only one S
tree-search-like process working with the unstructured sets of model
and scene features.

9 The number of possible configurations of contour edges is generally
small and the number of edges in each configuration is also small.
The idea is to decompose the whole matching problem into smaller
ones by using the fact that some combinations of object features
cannot be observed at the same time which reduces the combilatorial.,
complexity of the problem.

_0]
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Generally, a solid cannot be described entirely by its possible silhouette

appearances. So, the contour edges cannot provide an identification of the object

and a verification procedure using a surface description but Without any

combinatorial search should be used:

;..

I,

%' 
' :
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+ ------------------- +

scene

-Iv
+ -------------------- +

- -------------------------

*V possible confligurations

+ -------------------- + of the model silhouette

edge and constraints

description + ----------------------- +

+ -------------------- +

+ -------------------- +

identification hypotheses + ----------------------- +

and rough surface model

position estimations and characteristic features

+ -------------------- + + ----------------------- +

+ -------------------- + At

final identification

and position

+ -------------------- 1 +'

.%d
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5.3.2.2. Dividing the recognition process

The search strategy can be further decomposed by observing that the

geometrical aspects of the model can be divided in four categories:

Attributes characterized by:

connectivity and length configuration

of the silhouette edges

angle with the viewing

direction and projected viewing dir.

lengths and mutual angles

3-d orientations of

edges rotation around the viewing dir.

3-d position of edges spatial location of the viewer

The problem is to chose which geometrical feature should be used at the

various steps of the search. A highly invariant feature requires less complete

hypothesis to be applied but induces a weaker constraint, on the other hand a

i- highly constrained one (e.g. the 3-d position and orientation) induces a strong

constraint which might reduces the search but requires more evidence to be

applied.

,,. %"
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So, the idea is to use the various levels of constraints as their evaluation

becomes possible. Actually, this is a very natural approach since it means that we

recognize first an "aspect" of the object (i.e. a particular silhouette of the

object), we check the 2-d consistency (i.e. rotation around the hypothesized

viewing direction), then the 3-d consistency (i.e. 3-d position and orientation),

and at last we resolve possible ambiguities by checking the predicted surface %

configuration (e.g. discrimination between a circular coin and a sphere.).

5.3.3. Model Formation

5.3.3.1. Compilation of the Model

One of the problem of 3-d vision is the weakness of the model description.

More precisely, the model should contain an explicit description of the search

strategy for the particular shape to be recognized. In other words, the model

represents not only what is the shape in terms of a list of features but also how

to recognize it. Following the general hypothesis/verification scheme, the model

should include: %
0

" The order of exploration of the search-tree. For example, the model
could include a piece of knowledge like:

"if the feature e is identified, then the best one to try next if feature

el.1

This kind of knowledge avoids searching for irrelevant features or
" finding the relevant, one at recognition time.

The numerical constraints at the different levels of the search. For

instance, a condition like:
if we e. belongs to a configuration j then the :ingle of the next edge

should be between a and a,. -.

This kind of knowlelge is beneficial in the pre liction ph-me.

,.

.'
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The term "model compilation" comes from the original Goad's work who

described a way of generating a special-purpose Lisp program froin a 3-d object. F

This program allows to recognize efficiently the "compiled" object by using an

optimal search strategy.

In the next section, I try to build a model representation of 3-d objects

based upon the decomposition sketched above.

5.3.4. Computing the Configurations

5.3.4.1. Occluding edges and silhouette configurations ,"

Ve are interested in the simplest 3-d features, the occluding edges. An

occluding edge is defined as an edge between the object and the background or

another object in the frontal plane. We will call a configuration of edges a set of

edges which can be occluding edges at the same time (i.e. for at least one view
.-

direction). Notice that this definition is not exactly the definition of a silhouette

in a strict sense since a possible occluding edge could be hidden by another part %

of the object. Besides. the strict definition of the silhouette increses .

dramatically the number of configurations while not reducing significantly the

number of edges in each configuration.

5.3.4.2. Computing the occluding edges of a planar-faced object

In the ca.se of a planar-faced object, the (lA' et ren t7 (1 t the occlti'ling

edges in fairly simple:

Ai\n edge e bounding faces f and f' of norzm ls n :tit n' is :i (ccl linm- o..

if:.

,j1"
a" :-

I",., 4,.* ,,, ..
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* e is not a concave edge.

And

o (n.w)(n'.w) < 0

Or
o n.w = 0 and the viewpoint is in front of f'. -

(The normals are oriented from the interior to the exterior of the surface as

usual) _

These simple rules allows to compute the possible occluding edges

corresponding to a viewing direction (Recall that we do not consider possible self-

occlusion for the moment).

5.3.4.3. Determination of the configurations

Two methods can be considered for computing the conflgurations:

* Analytic method:

The condition for an edge to be occluded defines a portion of the unit
sphere of possible directions which is bounded by curves of known
equations. The possible configurations are obtained by tracing all %
these curves on the sphere which bound a set of regions. each of
which corresponds to a configuration.

The advantage of this method is to ensure that all the configurations
will be found, moreover it allows to remove degenerate configuirations
corresponding to degenerate regions on the sphere (curves or vertices).

The major drawback is that this algorithin requires the nianipulation
of analytical curves and patches on the sphere which is lifl'icult to
ni plement. Nloreover. we don't need a precise description ()' the

region of the viewing sphere corresponding to a conltgiratio)I.

" En iimeration met hod: '

, eSd I
RI...

a'.€ "4" J "," " 4 , " ,O i ' %}
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The simplest method is to discretize the sphere of viewing directions
as regularly as possible and then compute the occluding edges for
each directions. The final description is obtained by enumerating the
different configurations. Id

The only drawback is that some configurations can be missed if the
digitization is not fine enough.

The second algorithm has been implemented using the icos package of the

university of Rochester. .- .

X

5.3.5. Hypotheses Determination

We consider first the case of a description of the edges by line segments.

The analysis of curved objects is similar except some transformations

computation.

Following the division of the recognition process described above, we have

two levels of hypotheses: %

" level 0: Select a configuration,current config 1 - P

(This level provides bounds on the position of the viewing direction) %

" level 1: Select a first edge,e

(given a configuration hypothesis, this level gives a partial viewing
direction estimation)

* level 2: Select a second edge,erottrans 0
(given a configuration, a first edge, a partial viewing direction
estimation. This level provides a viewing direction. a rotation and a % .

translation esti m at ion)

Remark:

If we isedI the endpollints of tile segmients, less levels wotilld Ibe re(Iii re I.

unfortunately the endpoints of the segllleiits aIre [tot reliahle 1,,cauise of tile

()(('luiiOri lal(l the l) .ill( nle:la I'(,In(,ots etrors.

.J f

. -

%
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We describe now the kind of information that has to be included in the %

model in order to make these "select" steps as efficient as possible.

5.3.5.1. Configuration selection

There seems to be no guide for the choice of configuration. The only

information that could be carried by the model is to sort the configurations in

decreasing order of probability.

\Vhen current config is selected, the order of selection of edges for the

following levels muse be determined. In other words, the model contains a set of I

lists:

(eI ....en'~ ..

These edges are only those appearing in currentconfig. These lists

gives the order of search to the recognition program which tries to match with:
i.=e for i=l..k." "

evlewdir-el, erottrans 2' ",foi

The choice of the first three primitives during the model construction

should obey the rules: 
-

" The edges are the most reliable ones (e.g. the longest)

* The edges are linearly independent.

The current configuration corresponds to a region on the sphere of

directions. the boundary of this region cannot be used directly. but. hounds cazi *.1 ,

be compted on the angle between an edge and the viewing direction. Therefore .

an interval [a ie
va min.'max] is attached to each edge. At recognition tile,. oily the

scene edges such that:
-PAC,

%,,.-

I r m

SN
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viewdir Viewdir

min max

are considered for the level one hypothesis. -

5.3.5.2. Level one

The selection of an edge eviewdir determines an interval of search for the

possible scene edges e' wdir' once this edge is selected, the viewing direction can
viewdir'*

be predicted up to one degree of freedom. .

More precisely, the viewing direction w is in a cone: S

w.e e7 Ceviewdir viewdir viewdir .%

This cone provides the prediction condition for the second edge e' rottrans this

edge must verify: S

a min(a viewdir) < a' < a max (a 'viewdir)

The bounds must be stored in the model representation, which means that for

each eviewdir and a, the bounds on a rottrans are precomputed. The values of a

must be discretized and a data structure must be designed to allow a fast access

to those values. ,

This solution implies that Ncofigt prims vals are store where

g(a)step is the discretization level of the angles and Nprims is the average

number of potential viewdir and rottrans primitives in each configuration. An •

alternative is to derive these intervals by simple computations from a smaller set

Or stored data (see Figure 5.7).

We can associate a coordinate frame (e. e .a0.a ) to the current edg'e

>nl. that. a. e rottrans 0 0. in this case we have: ,r

r '.
,- - ., . . . ,, ,, • .- ,. . ,, .: .... ... -. -: .. .. ... :,.:,--,--..:.--.. ., -



w cos(a)eviewdir + sin(a)cos(o)a 1 + sin(a)sin(o)aO
ecos(,)e. + sin(,aettrans ie wdir1

So. the inner product w.e ~~ is bounded by:

= cos(o - a) and c 2  st/ '

And the angle a(erotas is bounded by:

rottrans Ix in cscao~W
a = na(a axi iN~ (acos(cJ, cs

rottrans d i i )coc))max max 1 2)

The "tacos9 function used in these formula Is simply an abbreviation for:
acos(x) = if O<x<ir then x else if x>r then 27r-x else -x

These calculations are quite simple and provides the orientation prediction

for erottrans. The information stored in the model is the set of angles (e..e.) for

all relevant edges i1 and .j.

e 5.3.5.3. Level two

9 Orientation After having selected a scene edge such that a'otrn
wve are able to compute a first estimate of the object orientation%
wvhich is decomposed in a first estimate of the viewving direction and
of the rotation around this direction.

The direction iscomputed by solving the equations:

w~ei. =eviewdir =aviewdir

and

w.e =e = .*

*rottrans rottrans rottrans

WVe can associate withi w a canonical framne (w,w 1.w 2)' thien the

rotation around w is entirely determined by the angular offset -3:

w ~ I 9.ed. -w Vveewdirir viewdir
and

w, rottra = rottrans a'rottrans

This in form at ion is used for the t ir'i( level r relict ionl Iby esait
withi eachi potential e~ the ag t riievis

trans

%

0J



, 119 S

Possible positjons of

the direction w

4-

;%"

min

Figure 5-7: Angular bounds computation for the second level prediction

[a(erottrans) - f a(erottrans) + E] el-:

[O(erottrans) + '6 - f O(erottrans) + Am + %]
Where e is a tolerancy factor used to take into account the 09-.1%
discretisation level and the measurements precision. A

The viewing direction and the offset angle provide only a rough
estimate of the orientation, but they can be easily computed and they
can be combined with the model structure without any operations % %
(only the addition of m).

In summary, the model must contain a representation of the
discretized sphere with for each cell:

o A list of occluding edges (Which is the same one for the whole .%
configuration) •

o The canonic frame corresponding to the discretized direction.

o The angle g[a] and 0 for every edge.

%U

%
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9 position %1

The position of an edge is entirely defined by the "normal" vector: -i

n = OP - (OP.e)e 'p

If we apply a rotation and a translation to the edge, the new normal
vector T(n) is:

T(n) = R.OP + t - ((R.OP + t).e)e

In a simpler way:

T(n) = n + (t - (t.Re)Re)
(T(n) is only a notation for the normal vector of the transformed
edge. it's not the transformed normal vector.) Therefore, the
translation can be estimated from the second level hypothesis by
solving the set of six equations:

n vewdir nviewdir (t e . dir)Re . ,.
n' n - (t.R- )R

rottrans = rottrans (t'Rerottrans )rottrans

The resolution of these equations requires the calculation and
application of rotation R. Fortunately, we can express the
coordinates of n and e in the current local coordinate system
(w.w,w 2 ) which means that R is simply a rotation of angle .3 and
axis x. So, the estimation of t requires only a few computations.

S"imilarly, we can use t to refine the search region already built from
the rotation:
For every edge eremaining' the search region in the scene is the set of

edges such that the above relation between n' and n remaining is

verified. Since we must add a toleraney factor trans' the search .4r

region for eremaining is defined by:
IT(n) axis - n'ax I<

remaining I trans' for axis = x.y.z.

Notice that the normal vector T(n) must be compated fo r every.•
remaining edge but the rotation is very simple thanks to the locd

coordinate system.

Reimark

It might seem strange that we need two levels for e.>iiating the
translation because the relation between n and T(n) providhes three
equations vith three inkoowans but. mufortmiately. lhe linear sytem
is singular. N[ore precisely, the ill lt ix of tlie systemn is A-Id. ' A here A

'I
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is the mnatrix: A.N e'eJ. A simiple verification shows that A has an

eigenvalue 1 and thuis the system is singuilar.

5.3.5.4. Summary of model structure N

The niodel structure as sketched above can be sium marized as: (.see Figure

Conflgurations : C i,.., C
current _config

Order of hypotheses6

1 iwi eviewdir

e e'
rottransrottrans

Or -

erotro

etrans tran

remaining1  remaining1

eem ai ningj e remaining. jI

Angular interval for e' iedrselection:

e-

e. >. %

Discretized sphere SPIij]:

%
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SPH[i.j.

'iewing direction w and canonic frame w 1 and w 2.

List of model primitives with: 'V

e.--------.> 0,0
e.-...> nax is "A.%n i ----- > n•'

Unary properties of primitives (array attrl)

attr 1 ]

V -,

VV

acceptable length (lmin'Imax)

Relations between primitives (array attr2 [i,j1) 0

attr2 [ij] r

V

angle (e...

0 Ve

II. N

5.3.6. Implementation ]

The major drawback of this model representation is the size of the data

structure which is related to the level of discretization of the sphere and the

resolution of the angle tables. The physical representation of thle model should he -

carefulh" designed in order to avoid wasting time just for initializing the internal %

representation in the recognition program. T\o i ll pem elit l ions (:Il be

,% %
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1.
current configuration min max

(v.W )inin(v.W) Mign

edae attributes

order ot erotoratlo

discretized sphere odro ilrto

configuration attributes rmiin

length consistency .. 0Local spherical 4-%

coordinates of v

d .w d v' d .w
mutual angles i A I y z

(local Cartesian coordinates

edge attributes-
ei~

(el e j)silhouette descriptionej (e e j)local coordinate system:%

WAX W y WZ

Global edges attributes
viewpoint attributes

Figure 5-8: Model data structure

*Program generation: S
The first way is to represent the set of configurations and theN
corresponding orders of exploration as a program by replacing the
generic model edges by the actual compiled edges, eviewpoint'

7 -
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e .etc, in the general recognition p rog ram. The viewpIoi nts

attributes and the sphere are stored in arrays initialize I at.
compilation time.

In that case. no file reading in required biut thle size of tile resullt in'

program could be quite large.

e File representation:
Another possibility is to store the entire data structure in a ile which

is read at recognition time. The worst way for doing that i's to dim p)
on a file the structure described above and read the entire dat a wh len

needed because the time required for reading would Ie mutch higher
than the recognition time andl we would have ito benefit in designintg
a detailed model. Moreover, only a small p~art of the representation is

needed for a particular instance of the observed scene?. For exampiile.
only a few set of viewp~oint att ribiutes (w~w W 2 e 1 .. e)oto

N are needed. Therefore we mwi1t divide tIl( eIlmitllts ofSizeOfSphere
the representation in two sets : "Miliiiiii DescriHj~loti" andl "()ii

Ifiequest '' the formner beintg loaded Ihy t lie Ir )grali ait the l.iaiiir,

the latter being read whlen required bv the actual arr:i 1 it-ilit tof

scene primlitives:

" M i nimn in Description:%

-The p)ossible confligurations %xit Ii the order of' explorationl :11d
C),

the min and max angles for e viewpoint*

-The discretized sphere. each cell o)f w~hich cont aiti, ie :Il re~s

(in the file) of the view poiniit at tribit es. - The uina ry cc)litr:iiit,

(length consistency..)

o Onl Rewwest:
-The view point descrip~tion.

5.3.7. Scene Representation

Ir0

.7% %
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5.3.7.1. The range search problem

The p-revious discuission shiows thiat the general operation ii thie various

predict ion step is tHie following:%

* Trhe scene prHi it ives are descr'ibed b)y a, set of n unierical valute's

* Thie hvpothesi's ste p providles a set of i nt ervals, %J
(am i n, arn ax .,am i n. am axl

. A scene prim-itive i lies in thie searchi region if:

amin < a. < amax

This p)roblem is known as the in ultidiniensional ran.,e searcli. InI fact, our

problemn is mnuch simpjler than the general range searchi because we are dealing

wxitlh a static set of dat a. i.e. neitlher insertions nor leletionrsar e p~erforned

b~ecause all the prim-itives are known at the b~eginning of thie oes

Several structures were proposed for solving tHie range seareli g proldeni:

k-d trees, range trees, super b-tree..etc. Thiree costs f unctio0ns5must l)e considered

whien selecting a particular structure, the p~reprocfe.sin time, the it onige

reqiiiremieits andl the timie recquiredi to answer a query. It cani Iw provxe I liat the

0 )ti InI alI s t ruIc t i r e requires an tint racta ble storage s, ize (A * 1 '"'' 'I nd

pi e p o)s. in g tinme. InI thlat respeoct. the best s ollitiil sec-(ilis to 1- lie 1*11111 ftee

Nvwlic Ii allows a wvorst-ca-se be li avior xe rv near11 lit1w ojt i: in 11 : and mo les't

1 reprocessing mtne. The range tree 'is describ~ed *in AppenlI't\ 1.

Tlierefore,. aL eiieinit !(fcti lF~isto c:11 beQ built for colmnjmitlig

quick ly t li set o)f iimtie. itg n: redlctoI sea'rchl regh m)I I v uwd v

Tit-re' llkTi
r %a\
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"Find the edges such that the length is between Imi and

max
and the angle with the Z-uxis is bettween mn alnld ( " -

max

5.3.8. Results 
Pr

The program has been tested on several objects in order to validate the Z"Z

method. The models have been generated by the prioceddlires lescribed above,
and the geometric description of the object waNs enteredI by hand. The out put of

the modeling program is a set of C files that are linked with the standard model- •

independent recognition program. By doing this we avoid the problem of fast

access to a large file containing the model description. The size of the model for

the previous examples is about 2001KB.

Example 1

The first example has been obtained by using synthesized range images to

which uniform noise is added. The two other examples use range data obtained

rfrom a laser range finder (The WVhite Scanner).

This exami)les uses the linage of Figure 5.10 which was svntlhetized from

the object of' Figure 3.9. A noise was added to the depthIi image. The result of

t e recognition p rograi is displayed in Figure 5.11. It shows the su pen'inposition

of the identified scene edges (solid lines), the recognized edlges of the iioel "

dat:shed lines), andI the other edIges of the moel (dotted lines). The sam isplay ,

convention is isel for the next two examples.

0

"

*~% ~ .%



,- .6,

127

~Figure 5-9: Example of a 3D object'p4

Jkl

'...1

Figure 5-10: Example of a range image

Exam ple 2 F r - E p o r g m

Figure 5.12 shows the range image of a planar-faced object, Figure 5.13 -,-.

shows the polygonal segmentation of the occluding boundary. The meauring ..

device uses a light-stripe technique with one laser and one camera. The range

image is observed from a direction which is halfway between the directions of the ,

laser and the camera. The points are then transformed into the ]aser coordinate '.
0--

A..
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Figure 5-11: Result of the recognition program
0

system in order to obtain meaningful occluding boundaries (i.e. the z-axis used in

the segmentation and recognition is the direction of the laser).

.5.

.5%

Figure 5-12: Range image
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The solutions produced by the recognition algorithm are displayed on

Figure 5.14. This result leads to several observations. First, the correct solution

rI
(solution 1 of Figure 5.14) is fou'nd despite the poor quality of the data - the

scanner introduced a systematic geometrical distortion-. Second, only a small

number of solutions is produced even though the thresholds are large, the

number of primitives is small and there are several parallel edges. This result

indicates that the occluding edges contain enough information for recognizing a

3D object and also that the structure of the model provides a good control of the S

search.

The recognition time is 7 sec. cpu time on a VAX. The model contains 40

edges and twenty configurations (all the configurations were examined by the

recognition program).

,. -::--

Figure 5-13: Occluding boundary

Example3 

% 

This example uses another view of the previous object. The polygonal -

A.

. .. . . . . . "°.-°

, , . , . .,: -' .' ,:.,.'.. .... %..% ,.......,-..:. % - :. : -- . % : .. . .. . -.- - . . . . . .'5..
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Figur'e 5..-14: R~esult of the recognition program !

'U.

;J.

Figure 5-15: Range image '

segmentation (Figure 5.16) presents a strange edge which is due to the erroneous

measurement by the range finder. The solutions are presented in Figure 5.17,

the correct one is the first one.

-- illI

S%",
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Figure 5-16: Occluding boundary ...

I~v~on3 SUoA04
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4s..% .:

... . ....

_____..................

Figre -17 Reultoftherecgniionprora
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..............................................
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Figue 5-7: esul ofthe ecogitin prgra
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5...Conclusions :

We have presented a new miethod for buildingrcgl mi- reu l io es-

oft 3D obj cets by rep resenting explicitly the viewer-dJependent geolinet ry of lie 0tObject and by Including explicit guidelines for the tree-search proced nre. The

struicture of' the mnodel leadls to a fast recognition prourarn which reqiries onla

sinile preprocessing of the measured data. The method has been proved feisible

on a samlple set of moderately complicated objects-. We are now iii the poesof

testing the program on more complicated scenes and objects.

Future work Includes the design of an eveni more complete model byv adding

informnation about the symmetries of the objects. the auitomnatic generation of

%
verification proceduires for removing possible extra solutions pro(lllced by the%

recognition program (this is usually closely related to the symmetries of the

ob~ject). the extension to Objects ithL curved surfaces by usng1olygolial

approximatio~ns of the 3D edges and the profile edges.

PS %

%A
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Chapter 6

Summary

In Chapters 2-5, Nve have described on- progrf-oi tow:irdk aclnevi ag a

comnbination of pattern recognition. imiage understanding and artiflcial1

intelligence tech niques for space-based i in age processing. ilsi ng I othI op tical and~

dig-o al processi ng mtet hods. The x ariolis resuilts aclevel '1n t he p ast \ei1are

soinmn aized below.

We irvestigaited the Ilse of six lifferent a11rthusflelitir :Iil ()ne

f 1 11ll'l) r[ their ahillity o d tcv1111il v l, hICk\.,i()IlHds,.

Afrly~lsi, tlld 4ilit!l reuls ere- preseilt~ . ()v'itl.:11 a.:L ih i ft ('rplt4

litr i~en~scetsto oitj1orn l otlier :ilI 1, fort~ I lu i:aleI r;1!-ti mw

(;roip IDeIlv Fititiocn. UTis Iliol ha!s I\%, t : vt tltiti

shiifts naturallv. 'l _tc second is th-a (I' tV t'-n '2t.Sti-to-

Noise ILatios a-s a function of' frc ,luten\ -ilith lt :-I -2f t t

% rI

t*~i, new% deny11
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A new technique for the detection of trajectories of targets hias been

presented. This involves a straight-line IHough Transrorm (lIT). thresholdtinhg :iid

si in ple transformat ions in the tIough space and an Inverse liT. This new

technique ci rcuivents the problem of storing tie curve as a list or line segients ,u -e

along with their orientations and also problems of high diniension-ility.

Performance of this technique in the presence of noise was also demonstrated

quite successfully.

Our effort this year has also resulted in techniques dealing with two levels

of processing required for the task of describing 3D scenes: the 2D image level

detecting features such as edges, lines and corners in iniages, and the :3D scene 0

level extracting and matching 3D structures in range images. Our principl-

results include:

I. Description from edge information (2D Image Lecel) The method to
generate a scene description from edge information is explored in
order to find line segments. The Canny operator is used to obtain
abrupt intensity changes instead of the Nevatia-Babu operator. To
generate stable and exact line segments, we have tracked the edge

pixels to detect corners using various size of detectors. We will
generates corner points using various size of the detection distance in
order to get stable and exact corner points. The coarsest level gives
the search area of corners, while the finest level gives candidlate

positions of corners.

2. Extraction and matching 3D structures (3D Sccne Lecel) \\e have
investigated a method for building recognition-oriented models of 31)
objects by representing explicitly the viewer-dependent geoletry of'
the object and by including explicit guidelines for the tree-search
procedure. The structure of the model leads to :i fast reco gnition
program which requires only a simple preprocessing of the ineasured
data. The method has been proven feasible on a sample set of'
moderately complicated objects.

N-,-- % JI.,.
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Chapter 7
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