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This project is a multidisciplinary effort between three departments and principal
investigators. It combined pattern recognition, image understanding and artificial
intelligence techniques for space-based image processing. A special feature of this effort )
is the attempt to use both optical an digital processing methods. Subpixel target ot
detection and tracking algorithms are analyzed and conclusions are presented regarding
their suitability for this application. We also present an adaptive subpixel delay -

estimation method using Group-Delay Functions. Image understanding techniques for
i 3D scene interpretation are also discussed. v
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3D scene interpretation, Artificial Intelligence, Hybrid Processor, Image Understanding, 3

Space-based Imagery, Optical Processing, Subpixel Delay Estimation, Group-Delay
Function, Time-Change Imagery, Tracking. )
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Chapter 1

Introduction

1.1. Overview

This project is a multidisciplinary effort intended to combine methodologices
for image analysis and interpretation, and evaluate the application ol this

integrated approach to problems of space-based imagery. The project hus

brought together research teams from within the Department ol Llectrical and

Computer Engineering, Computer Science, Robotics, and Biomedical Engincering

of CNIU.

We have chosen time-varying space-based imagery as the applications
domain in which to evaluate our integrated approach. The two aspects ol this
domain are described below:

o Space-based imagery involves large amounts of information and
incorporates both structural and textural properties of a scene.
Efficient detection and representation of information in scene are
essential not only to interpretation but also to the storage and
transmission  of  information. Scenes  are  predominantly two-
dimensional although light and shadows affect Tmaging of both
structures and texture, and interpretution of scenes at increasingly
high optical resolution will require three-dinensional models.

o [nterpretation of time-varying dala is o primary ozl of space-Tiased
image analysis and adds an additional dimension of complexity 1o the
problem. We have chosen to look ot three time-frame scennrios which
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require somewhat different analysis tools. High spced tracking is

viewed as primarily a feature extraction problem and has DLeen

approached using optical methods. Medium and long-term time

change detection must be based on a more abstract description of the

scene and methods of representation and model-based interpretation
' must be brought to bear.

Within the context of the applications domain, we have addressed the

following methodological research issues:

o Optical feature extraction and detection

e Structural and textural representation and matching

‘
e Model-based image interpretation
o Hybrid optical/digital computer architectures
i I's . o » . . .
y These issues are fundamental to implementation and performance of
! analysis tools which could embed the inherently fast and parallel preprocessing
power ol optical techniques into a system which develops and tests hypothieses
) .
[ about scene representations and scene models.
)
. . . . . . ce
) In Chapter 1 of this report. we provide a more detailed overview of the N
AT
o . . . . e a
conceptual framework of our proposed hybrid optical/digital system, deline the e
R
. . . . . . ¢
space-based Tmage processing problem, and disenss the importance of this work e
". E
- . - . . - . o
to Air Force technology and to related Adr Foree programs. Seetion 1o provides T
._-.._:!
. v . . . . . .‘
' a summary of our research up to this yvear. Section L6 provides u suninary ol e
2,
our current vear of research. with details in Chaprers 2-5, o
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1.2. Conceptual Framework for Hybrid Optical/Digital

Image Processing

In Figure 1.1. we show the general structure for our proposed hybrid
optical/digital system using multiple methodologies for understanding space-
based images. As shown in Figure 1.1, input images are preprocessed and then
fed to parallel optical and digital channels in which multiple features ure
extracted. A parallel image modeling system is also shown which extructs
structural descriptions of the image. These data plus image registration and
target detection information obtained from an optical correlator channel are then
used by an AI/IU system to modify the parallel input processing channels. to

assemble and interpret a time-history track file on objects of interest in the

image and to provide the necessary textural and graphic output reports.

1.3. Problem Definition

Advanced space-based sensor systems will provide us with high-resolution
real-time multisensor data acquisition in the near future. This will totally pollute
present processors unless we address how to intelligently and thmely process and
handle the projected data rates. NASA and others have already verified that the
United States is capable of collecting more data than we can intelligently process

{less than 197 of all NASA data has even been looked ar),

The key issue in space-Based Tmoage Understanding (sDBIUVY i~ nor 1
transmit every feame of duta (with 5000 X 5000 scnsor elements in three baneds

with ten bits of data per pixel, and 030 framessee rate, this is oodata enlloesog
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! rate of over 10° bits/sec). No existing technology can accommodate such a high ;‘V

! o

A . ’ . . . . Aol

Ly data collection rate. Therefore, attention should be given to the alsorithms >

S

. . - - ‘. " A

1 required to achieve this. But first, here are several facts about SBIU problenis: e

) i 2%
1. In space-based image acquisition, we are monitoring certain areas and ~

L) . . o « . - . .

& regions for diverse well-defined missions. We are only concerned with o

’ changes and do not need to know that nothing new has occurred in

" the image being looked at. When we transmit only the associted

" change information, we achieve a quite significant bandiddth

u‘. 1 &

" reduction. Thus, we should process the data from space-based sensors

: on-board the platforms, determine image changes on-line, interpret

"y the results and transmit only textural and graphic output reports.

R 2. We know rather well where the satellite is and where it is looking and

L . . . . .
by we know that the scene being imaged correlates with the prior image
I3 frame or with our stored reference. The problem is thus different
A from the often discussed unbounded and unsupervised rtarget

’ recognition problem. We can and must utilize this « prior
information that the frame we are investizating correlates with a

S B . . .

N previous one in our processing algorithms. .
) 3. To provide better lmnage registration accuracy and to facilitate ":
o pointing of secondary sensors at given arcas of interest. it is often NN
. 3 . . . . 3 L]

necessary to locate key landmarks in the image. This is also uselul in ,:s:
. . . . i

- determining geometrical corrections needed. ;\" )

LY
3 e

. . o . N
4. [t is also useful and necessary to register two successive image frames e
. for inter-frame integration to decrease the variance of the noise and ;‘.~
. . . . . - . J
>, to improve the image quality. This is essential to accommodate ;':
g platform variations with time and background drift. Often, subpirel ):'S
s . . . . i
s image registration is necessary., e

. v W
. P
»* (% %

3.0t is obviously essential to subtract successive frumes sinee this ,:.,

. provides the necessary change detection or time-varving target data. _‘.'{

- LNl
! '_-.'
- . . , . : . KAt
- 6. However. in most cases. the image registration in (4) is subpixel and o

. thus before performing (3). we must (nferpolate the imuwes, A
LW .

; o Once time-history track fides of candidate objeets of interest in the
. field-of-view of the sensors have bLeen obtained, o mualtitnde of
¥ discrimination analysis techniques, AL UL pattern recognition and
¥ human perception algorithims are nccessary to classity, understand
- and interpret the thne-change activity noted.
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_ 8. In advanced sensor systems. 3D information on the scenes will be
p available from sterco satellites or other techniques. In sueli cases, we
N can fully capitalize on the available image information ouly by the
) use of advanced 3D scene modeling and (nterpretation. I'lic key polnt
' ic the extraction of scene information (3D) from time-histories of 2D
. images.
}.
f 9. To detect and describe detailed changes in the 3D structure of scenes,
J it is useful to first generate 3D scene descriptions from the 2D
] (mages. and  then to compare the descriptions for  changes.
: Conventional 2D change detection approaches are not as useful for
! high resolution images of complex scenes since they do not take into
§ account factors such as different viewpoints and differeut lighting

conditions for the different images of the scene. In order to detect
o4 changes over successive images of a given scene obtained over time. it
*

is useful to maintain a 3D model of the scene and automatically
update the model as changes occur. This requires the ability to mateh
K the model with each new view of the scene. Matching (n 2D is more
desirable than matching in 2D since the 3D information is represented

.
l in a manner that is independent of viewpoiut and lichting conditions. ’-s.:
N :‘-'5-
X A i , N
; 10. The 3D scene model is a useful central component for many aspects ,.‘-:.::
» . r . . . . . . L
of the change detection task. Not only is it useful for determining sl
L8 . . -
b whether changes have occurred, but it also permits model-bused °®
» interpretation of new images and serves as a central representation -
for accumulating 3D scene information from various low-level experts. :
.~ Our new research addresses these aspects of time-history 3D scene
. information.
[ al . . . . - .
Items 1-6 address the high throughput signal processing aspects of SBIU.
- whereas items 7-10 address the advanced image understanding aspects of this
problem. Table 1-1 summarized objectives which must be attained to achieve the
L 3
- overall goal of SBIU. In Table 1-2, techniques required to attain these objectives
- are listed, and Table 1-3 lists the disciplines which will conrribute to the
. 3 . . vy
- achievement of our goals. As well as image processing per se. we st study the o
ol A
9 . . SO . . . . . -,
- mmportance of efficient database organization and manipulation since storage or -
; i
, transmission of a very large database will be required tor SBIU, t
i
)
"d]
1
s,
o
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To properly address understanding of time-varving space-based images, we
fell that three different SBIU time-varying image processing scenarios {(Table 1-4)
must be separately addressed. \We distinguish the three cases by the change rate
and the domain of analysis. In the first case (rapid time-variations)., we can
consider a missile launch. In this application, the objective is to track the time-
history of the missile and to transmit the information that a missile has been
launched (from subsequent sensors, the missile’s trajectory ete. can be obtained
from our system techniques and algorithms). The second case (medium time-
variations) can concern monitoring of key sites such as airports. railroads and
harbors and known areas of anticipated concentrations of troops or armor. In
this case. troop or armor movement and air. land and sea activity can be
obtained from time-varying image data. This second scenario is typical of a case

in which extensive Al and IU techniques are appropriate (i.e.. the use of

information on the locations of hangers, runways, railroad tracks, terminals.

switching wvards, harbor channels, docks, piers. etc.). This also requires the

O LK

locations and registration of these items in sequential image frames. The third

%
-.'

case (slow time-variations) addresses urban development and agricultural or land

s

use activity (as in Landsat and ERTS case-studies).
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The three scenarios noted in Table 1-4 constitute our Jdefinition of the SBIU

LR

e

problem. All cases require the techniques and disciplines noted in Tables 1-2 and

S v

1-3.  The first case (rapid time-variations) requires primarily subpixel image

!

2,

registration, frame integration, frame interpolation. and image differencing. The
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second  case requires techniques involving image interpretation. 3D scene
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Detection of image changes

Use of a priort knowledge

Location of kev landmarks

Time-history track file acquisition
e Interpretation of time-history data

e 3D scene interpretation

Efficient storage and retrieval of information from datalase

Table 1-1: Objectives of Space-Based Image Processing

Image enhancement and preprocessing

o Image registration (subpixel) for frame integration
o Image subtraction for time-history extraction

o image interpolation for image subtraction

Image segmentation

Feature extraction

Image modeling

3D scene modeling and interpretation

Hierarchical database design

Table 1-2:  Image Processing Techniques Required for SBIU
modeling. 3D matching and comparison., plus  knowledge-based  geometrie
reasoning. The third case needs more statistical techniques and statistical image
models. more so than do the others. All cases require object and scene modeling,

image preprocessing and enhancement plus sezmentation, feature extraction and
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e Pattern recognition
e Image understanding
e Human perception

e Artificial Intelligence
e Optical Processing

e Digital Processing

Table 1-3: Disciplines Required to Achieve Real-Time Space-Based
Image Processing

TINE CHANGE  ENXAMPLES DOMAIN OF ANALYSIS
Rapid Missile Launch Image Pixels
Medium Railroad, Airport, Scene Structure

Harbor, Troops, Armor

Slow Agricultural, Land-use, Statistical Image Modeling
Urban Development

Table 1-4: Time-Change Scenarios
classification. Figure 1.1 depicts these aspects and the interactive

multidisciplinary feedback required to solve these SBIU problems.

1.4. Benefit to Air Force Technology

With our three scenario problem definition (Table 1-4), we now consider
the myriad of Alr Force programs and technology that can benefit from our

proposed research. First, we note that our research is directed toward the

development of new algorithms and their realization in a hybrid optical/digital
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architecture. However, devices and architectures being developed in related Alr
Force programs in VIHSIC and VLS systolic array processors,  Josephison
junction devices, ete, can also be used for Implementation ol these algorithms,
Our work will thus provide problem definition and direction regarding algorithms
for such parallel processor architectures and technology programs. Large data
storage requirements and studies of what constitutes a valid database are also
integral parts of this program. Similar Air Force efforts toward data storage and
database acquisition are thus of direct concern to this program. The Air Force
programs in: intelligent sensors, intelligent task automation. automated
manufacturing, image understanding, human perception and visual psychophysics
will directly benefit from the inter-disciplinary nature of our research. The large
Air Force effort in optical data processing will directly benefit since real-time
spatial light modulators and holographic optical elements will be needed for
impiementation of our algorithms in real-time. The Air Force programs in missile
guidance require a new set of algorithms and attention to the database
requirements and performance measures used and thus they will likewise benefit
extensively from the program. DARPA/AF programs such as HALO and

HICAMNP will clearly benefit from our chosen time-varving SBIU tasks.

The monitoring of changes and developments at cultural sites, such as
urban areas military bases, is a very useful application ol space-based sensors.
The techniques we develop will aid in detecting and deseribing both large-scale
an detailed chianges. Furthermore, the techniques dealing with 3D matehing and
comparison. and knowledge-based geometric reasoning will enhance Alr Force

programs in sensing and roboties,
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1.5. Summary of Research Done So Far

e "
55
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1.5.1. Year One Research

'k"

In our first vear of research. we focused on the development and evaluation

i

Tt
T

wx

of methods which yvield representations of structural and textural information in

an image and relate these representations to object and surface contour

~
"l A‘
At

X

properties of the scene. The techniques studied included Probabilistic Graph

% v
v
‘u

o
TRy

v SR

I Mutching, Multiple Resolution Structural Buasis Functions, and Textural

1%

-E"g‘ ®

y Surfuce Models. The structural basis function and textural models were found to

= .;'.: -
-
-

be particularly well suited to parallel or optical processor implementation. Two

g
s

digital processing facilities for use in this program were also assembled: the

F
7@ ;

'.-
XX

RAPIDBus architecture, and an Optical Data Processing, Digital Processing and

'(;.r

27

Simulation Facility.
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W
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We also achieved a major effort on the extraction of time-varyving subpixel

A

i e &t
T r e
5,1“
L

L ¢

target in noise. This time-change scenario concerns applications such as the

rd
f~‘

detection of missile launches or aircraft in flight. In the first vear, we successfully

5

S ARNS
» b

demonstrated the conceptual ability to detect and track subpixel targets.

g,

e
o,

In the low-level processing. we have described techniques for extracting
’ building structures from high resolution aerial images of urban scenes. Edge
points are first extracted from an image. and then straight line sesmments are -I“'"
fitted to them. Junctions are then formed from the line segments.  These ®
8 junctions are used to assign the segments to a struetural model of buildings. A
search using o Hough transform is then performed 1o look for new line segments A

predicted by the model,
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A fundamental problem in interpreting complex images is to relate image
features to scene features. In our context, this involved distinguishing two classes
of image line segments, those arising from building boundaries and those arising
from texture or shadow boundaries. \We handle this problem by utilizing task
specific knowledge. \Ve assume that lines forming junctions arise from building
corners only if one of the lines is vertical in the scene, i.e.. is directed toward the
vertical vanishing point. These lines are then labeled as part of a building model
that consists of an arbitrary number of connected vertical faces covered by a
roof. Lines that are not consistent with this building model are assumed to arise

from texture or shadow boundaries.

In the low-level processing, we have also described experiments which

Lo R N 4

-

determine how to efficiently search a line image in order to form junctions. Each

-

line segment in the image is represented as a unique unit containing the x.v

v

coordinates of the two end points. The set of line segments are stored as a list.

LY

A simple but inefficient way to determine the lines that lic within a smull

‘:

.
%

%
(A XA

NN

window in the image is to test each line in the list. The access the can be

SN Yy

improved by dividing the image into a number of small areas culled sectors.

a ey
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Each sector has a list of the line in its area. The search now requires only that

f"":l
X
1@
AhS

the lists of the sectors containing the window be searched. We have empirieally

P
5 %
5

‘.I
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determined that the fastest access time is obtained when the image is divided

f‘ [ 4 A I 4
'
v
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o

into sectored areas forming from 6 to 8 rows and columns.

In the high-level processing we have described, techniques for representing,
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constructing, and updating the scene model. The scene model is o surtfuce-based
deseription of an urban scene, and s inerementally acquired from a sequence of
images. Each view of the scene undergoes analyvsis which results inoa 3D wire-
frame deseription that represents portions of edges and vertices of building. The
initinl model, constructed {rom the wire frames obtained from the first view,
represents an initial approximation of the scene.  As cach successive view is
processed, the model is inerementally updated and gradually becomes more
accurate and complete. Task-specific knowledge is used to coustruct and npdate

the model from the wire frames,

The model is represented as a graph in terms of symbolie primitives such as
faces, eduoes. vertices, and their topology and geometry.  This permits the
representation of partially complete, planar-faced objects. DBecause incremental
modifications 1o the model must be easy to perform. the model contains
mechanisms to (1) add primitives in a manner such that constraints on geometry
imposed by these additions are propagated throughout the model, and (2) modify
and delete primitives if diserepancies arise hetween newly derived and current
information.  Thie maodel also conrains meechanisms that permit the ceneration.
addition, and delerion of hypotheses for parts of the seene for which there is litt]e

data,
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1.5.2. Year Two Research

This optical feature extraction effort in vear two included attention to
moment, chord and other optically-generated feature spaces. Architectures for
each of these methods were devised and initial results were obtained.  These
showed: the ability to optically implement various feature extractors:  the
architecture for a hybrid optical/digital moment processor, successful initial tests
of this architecture on a ship image data base and a robotic pipe part data buse;
new results on the accuracy of distortion parameter estimation with this
processor. an advanced correlation SDF syvnthesis method and most sueccesstul
initial test results of it on ATR veliicles. Our time-change detection work has
achieved various significant results and demonstrations of the ability to detect
subpixel target: the development of new single differencing methods that prove
promising for clntter suppression: the initial formulation of seneral space/thne
filtering for target enhancement and hackground suppression: the investigation of
detector limitation effects. Our efforts have also pointed towards more

sophisticated space/time processing methods for better clutter suppression.

The hybrid optieal/digital representation and matehing effort o the project
in year two has focused on the development and evaluation of methods which
vield representation of struetural and textaral information inoan imase, and moy
be nsed for matehing imuge to ~scene modeis, For Probalidlsstie Geaple Natehidng.
we hiave investigated methods of saburaph decomposition which permie beanehi-
and-bound senreh of the matehing reee ad provide elivient
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MRD (Multiresolution Difference) transform have been introduced to extract
structural and textural features of images for use in matching and interpretution
phases of analysis. The MRI is a complex operator derived from derivative
expansions of Gaussian kernels and has magnitude of response independent of
feature orientation and phase angle of response which provides information about
orientation. The spatial and frequency domain properties of these operators have
been studied and an approximation MRI operator which uses difference of shifted
Gaussian kernels has been derived and shown to be computationally efficient due
to the scaling and shift properties of the Gaussian kernel. The MRI operator have
been applied to aerial images of objects and textures. The MRI operators have
been used to characterize and classify textures from aerial images, This set of
multiresolution operators permits classification of texture independent of the size
and orientation of the texture pattern itself. The statistical distribution provides
information on the relative scale and the relative orientation. Experiments on
textures from aerial images and textures from siimple patterns have been carried

out and compared to previous texture energy operators.

Our effort of year two has also resulted in techniques dealing with two
levels of processing required for the tusk of deseribing 31 scene: the 2D image
level detecting features, sucli as edues, lines, ol corners o imevees aad the 3D

scene level representing, constriueting, and apdating the 3D scene mcde.

In the low-level of processing, we have determined o set of 3-D line

secments dn the seene which corvespond to ot ding bonndaries, Foro this
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purpose, we have developed a stereo algorithin using the technique of dynamic

programming. We have explored a method to mateh the epipolar line pairs in a
stereo pair and determine a rather dense depth map of the scenes using intru-

and inter-scanline search.

Intra-scanline search determines the correspondence between edges in the
same scanline of the left and right images. This scarch can be treated as the
problem of finding a matching path on a 2D search plane whose axes are the
right and left seanlines.  Vertically connected edges in the images provide
consistency constraints across the 2D search planes. Inter-scanline search in a 3D
search space, which is a stack of the 2D search planes, {inds the vertically
connected edges and applies the constraints. By considering both intra- and inter-
scanline searches, the correspondence problem can be cast as that of finding in a
three-dimensional search space the matching surface that has the Lest mateh

scores from intra-scanline search and also satisfies the consistency constraints

from inter-scanline search. This problem is solved using dvnamic programming

for both searches.

In the high-level of processing. we have investigated model buitding using
rangeflinder data, which is already three dimensional, bypassing the problem of
generating a 3D description from 2D data, We have developed techinignes for
representing, coustriueting, and updating the scene model. The model s in the
fornme of 3D Tacesy edgess vertices, and their topolosy and 2eometry, A range

image is secptented into edee poinrs to which Bnear scoments e i The orteinal
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v
line segments ave refined to eliminate gaps. Faces are then fit to the line drawing,.
The final model is represented as a graph in terms of the symbolic primitives
line, face. edge, and vertex. Although the final description is three-dimensional.

most of the processing is done in the two-dimensional image spuace.

1.6. Research Progress in Year Three

The reduced level of effort of each portion of this contruet allowed only
limited support. Thus we have chosen to emphasize only the following research

issues in our vear three effort.

1.6.1. Subpixel Target Detection and Tracking
The objective in processing time-sequential imagery obtained from a staring
. mosaic sensor is to detect and track dim and small-area targets in the presence of

additive noise (due to sensors) and background (e.g., cloud) movement between

o

the frames. We investigated the use of six algorithms (Single Differencing. Double

.

Differencing.  Linear Interpolated  Differencing,  Parabolic  Interpolated

rAELLL

7,

Differencing, Spatial Differencing and Spatial Filtering) using a well-controlled

LA
hY

X _3_31?

set of svnthetic imagery. These results are detailed in Chapter 2 of the report.
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- 1.6.2. Subpixel Delay Estimation Using Group Delay Functions P
5.
' An important aspect of the space-based himage processing ix the estimation oo
’ 7’
A N
of background movement so that it can be effectively compensated for in the .

processing. This background shift between successive frames is tyvpically subpirel.
. e ., . . . e 3 ... . . N _\
K, e the shift between the image will be a Traction of a pivel. We lLave

investicated the use of the recently introdiced Gronp-Deloy Function(GDIS) for e
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this problem. The GDFS provide the delay information as well as the Signal to

Noise Ratio (SNR) information simultanconsly. Based on this. we huve come up
with a new aduptive delay estimation procedure.  The details ure provided in

Chapter 3 of this report.

1.6.3. Detection of Target Trajectories using the Hough Transform
Once the time-sequential space-based imagery are processed on a frame by
frame basis. we can identify the target movement from frame to frame. In the
ideal scenario of constant-velocity, unoccluded single targets, the target locations
from frame to frame form a straight line in 3D. But because of changes in the
target velocities and because of occlusions and multiple targets, it is important to
track curved trajectories. \We present a new technique for this in Chapter 4. This
involves a straight-line Hough Transform (explained in detail in Chapter 4),

thresholding and simple transformation in the [ough spuce and an inverse HT.

The transformation are easily achieved by merely shifting the Hough space along

one of the axes. The peaks in the Hongh space identify the type of trajectory and

provide its location. Experimental results are presented.

1.6.4. Image Understanding Techniques for 3D Scene Interpretation
The problem of detecting three-dimensional change in a complex urban

scene is a very diffieult one, particularly since any informution extracted from

the complex images is highly incomplete and contains many errors, Theretore, we

have thus far concentrated mainly on the problems of extracting nformation
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In this report. we describe results in two aspects ol these problems:  low ek

. . . . P . . 'l *"

level image analvsis and high level model maintenance. The coul of low level tat]

. . . . . 2
image analysis is to generate a set of reliable line segments in the scene which 7 N
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correspond to building boundaries.
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In order to purse the problem of high level model maintenance independent
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of the current state of the low level image analysis rescarch, we have chiosen to
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investigate model building using rangefinder data, which is already three

o
AN
diniensional. Specifically, we have developed a method of generating a '
v
” . . ‘ iy A
recognition strategy of an object from its 3D model. The recognition strategy A
» 4
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uses only the 3D boundaries which are fairly easy to extract. therchy reducing L9
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the segmentation time. Thus, an object description to e used at run time is {\i\

b

first precompiled from its model. The description includes the possible aspects of

the occluding boundaries of the object. which we call 3D-profiles. when it is
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observed from all the possible viewing directions. In addition. it contains all
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Subpixel Target Detection and Tracking
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2.1. Introduction

"~

The objective in processing time-sequential imagery obtained from a staring
mosaic sensor is to detect and track dim and small-area targets in the presence of

additive noise (due to sensors) and background (e.g., cloud) movement between

I.A ‘. N
o)

the frames. Several algorithms have been suggested in the literature for detecting

ARAR
s
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moving targets. In this chapter, we compare six of these algorithms using a well-

L)

controlled set of synthetic imagery generated by a computer.

Before presenting the algorithms, a few remarks about the peculiarities of

(‘;1
e

L
o

this problem are needed. (i) The targets are small in size (occupying a few pixels
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at most) and have radiances comparable to the background radiances. (ii) The
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targets move relatively fast compared to the background (iii) The background

»

movement between successive frames is usually less than a pixel. (iv) The sensor

n
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noise level is usually low (20 to 30 dB below) compared to the target intensities.

x I

Because of these size peculiarities, our algorithms must be capable of estimating

a4
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subpixel shifts and compensating for them. Thus our numerical experiments pay

special attention to the generation and processing of subpixel shilts in images.
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b, This chapter is organized as follows. In the next section. we outline our ,-.::
. . . e
o procedure to generate the desired imagery on the computer. This also helps set X",
L,
» - 3 3 3 3 ‘ .
y up the notation used. Section 2.3 provides the equations and explanations ok
3 R
N . . . . . - . . )
W connected to the six algorithms (Single Differencing, Double Differencing, Linear NN
1R - "
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X . . . . . o . o
Interpolated  Differencing, Parabolic Interpolated Differencing, Spatial 8
‘\,’
V.o Differencing, and Spatial Filtering) we will investigate. Section 2.4 introduces the o
& "
>~ . . . . "
= measures of effectiveness we will use to carry out this performance evaluation. o
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Extensive numerical results are then presented in Section 2.5 in a condensed d
o
i 3
‘ . . . . . . \
) : form. This is followed by our conclusions and comments in Section 2.6. d.;
N *
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Vi 2.2. Generation of Synthetic Imagery -
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N We can evaluate the algorithms properly only if we can generate extensive :-_1:
o, ot
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’ imagery that represents various possible parameters. Towards this purpose, the .
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h
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reneration of images is carried out at two levels, namely, the ground (high A
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3 resolution) level and the detector (low resolution) level. A
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v 2.2.1. Ground-Level Imagery :-.i;
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respectively at time A. In the high resolution image, the target Tk(x) occupics a

few pixels of area and is assumed. without loss of generality, to have magnitude
1. Let At denote the time interval between the snapshots. If v denotes the speed

of the target, the target moves by (vrfst) between successive snapshots. This

EeERIT OIS SN

target movement is easily simulated by shifting T,(x) to T,(x—vpit) between

4
e

successive frames.
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We model the background Bk(x) in the high resolution image as a sample

< bl

realization of a 2-D random process with zero mean and the following non-

A

isotropic covariance function.

RAL
<

2 T T
Rplr.r)=op -le r"pyl o

where {p | < 1 and ]py| < 1. In the above, aBg denotes the background variance

e
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and p, and Py denote the correlation coefficients in x and y directions. Small ’,

P .
A J
A -

and Py values imply sharper covariance functions, larger spectral bandwidths and

R
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more fluctuations in the background. Prior work [l, 2, 3] indicates that the
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infrared images of the earth’s background in 3-3 pym and 812 um can be
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characterized by the above 2-D Markov model. While the zero mean assumption
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is not entirely accurate, we can justifv its use because the optical processing
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systems (that we plan to use) do perform an automatic DC removal [4].
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Movement of the background between successive frames is usually small

A
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e

compared to the target movement and can be simulated in the same way.
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However, this background movement appears as a subpirel shift in the detector
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(low resolution) image thus forcing us to use speeinl algorithms capable of
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subpixel shift estimation in the processing stages. The background image Bk(x) is

TR E N, WY

obtained by passing the 2-D white noise (available through standard subroutines)

. . Y
through first-order Infinite Impulse Response (IIR) filters in both x and v e
directions. By changing the coefficients of these 1R filters. we c¢an obtain fox

. . A 1
different °, and Py values.
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2.2.2. Detector Imagery
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The imagery available for processing is not the high resolution imagery

2,
740®

discussed above, but rather is the low resolution output of the mosaic sensor

5

e
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] array. We assume this to be an array of 60x60 pixels whereas the high resolution
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image contains 512x512 pixels. We assume the detector footprint to cover a
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| region equivalent to an 8x8 region in the high resolution image. However, the
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atmospheric effects cause overlap between adjacent detector footprints. This
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overlap is modeled by the Gaussian blur function shown in Figure 2.1. Thus, the
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60x60 detector image is obtained by convolving the high resolution image with
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the blur function in Figure 2.1 and then summing the pixer values in non-
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overlapping 8x8 regions. This summing operation has many effects. The first is

~
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that the target now appears to be of a subpixel size in the detector image. The

S

second effect is that the background movement between successive snapshots will

be subpixel. Finally, the correlation coefficient of the background noise changes

because of the summing. In fact. if the background noise has a correlation
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X coefficient py, 10 the high resolution image. the correlation cocfficient ppinthe low
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resolution image (obtained by adding  pixels) is given by
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Ph (1 - Ph)

2
d(1=0pp) =20, (1 =)

where we have omitted the intermediate steps due to length constraints. To
illustrate the reduction of the correlation coefficient, consider p, = 0.99. After
8x8 pixel detector integration, we obtain p; = 0.90. Similarly p, = 0.95 becomes
= 0.76 after detector integration. Thus, the conversion from the high

resolution to the low resolution image causes a decrease in the correlation

coefficient, or equivalently, an increase in the spectral bandwidth.
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Figure 2-1: Detector Blur Function
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Finally, the sensor noise in the mosaic sensor array is simulated as additive,
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white, zero mean Gaussian noise with variance o, This noise is uncorrelated
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from one snapshot to another unlike the background noise which is related
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through simple shifts between image frames. The uncorrelated noise (UCN) level N
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» is typically 20 to 30 dB below that of the background or correlated noise (CN).
, This UCN is easily generated on the digital computer and added to the detector
image. This procedure for imagery generation is summarized in the block
\:', diagram in Figure 2.2.
) } 4
~ Correlation Background
Y Ramn m .
: Seed —» Generatoh:u Generation Scene (CN)
n Process 512x512
i v Detector Detected Simulated Detector
Ny Effect [ ° Background Image with
3 + Target CN+UCN+Target .
o Image 60x60 o
) Target Size b
- . Uncorrelated a3
.. Magnitude Noise (UCN) o
o & Location R
*. b
: L
R
: Figure 2-2: Block Diagram Representing the Synthesis of the Imagery :;.
- Y
! s
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.. 2.3. Processing Algorithms :‘_
. ;.-::
y We consider six different algorithms designed to extract the point targets :-*_-:
L4 -1-'\'..'.
from the slowly moving background and uncorrelated noise. These algorithms are ,...
" KR
i characterized by the fact that only a few snapshots are used for processing. This r:'_:-:'
: . e
- is necessary because of the memory constrains on the processor. Each snapshot o
represents 512° bytes of data and thus it is desirable to keep the number of
Yy
‘_: snapshots required at any time to as Jow a number as possible. These algorithms
"_\ also make use of the fact that the target is moving faster compared to the
o
~
‘-:! .
N
: - —m = N
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background. Let I,\,(I) denote the detector image at the thme insta. t A \We DN

| consider only 1-D analysis for simplicity.

1 2.3.1. Single Differencing .'3:.

This is the simplest of the algorithms and subtracts one snapshot from the

ﬁ{%}

next one to produce the output image Dk(.r) as below.

WNTYY
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: D, (r)=[I,(z) =T _ ()] /2. (2.4)

S 4

&,
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. . . op Sy
: It is easy to see from the above equation that the output D,(x) is zero if the T
CaN
-.\;
input I (x) is constant. Thus slower backgrounds are attenuated more than the el
:
faster targets. The uncorrelated noise is obviously doubled in variance by this L
. algorithm. This simple algorithm is an approximation to the time derivative PN
hAta
d -.-‘..
\ operation and thus enhances | nages changing faster in time. This is very simple Rt
; ®
x and thus easy to implement optically. P~$ s
e
+
One can also consider the above temporal filtering operation as spatial 3 "
R ®
filtering, i.e.. Equation (2.4) can be viewed as the description of a linear. time- -
¢ o i" {
DN
AN
invariant system with input I (z) and output D (x). If At denotes the sampling A
- k k ° DA
v, i R
- interval between the snapshots and v denotes the speed of the background or the i
= object of interest, the snapshot at time k& is related to the image at time {A=1} by
:'
»
3 I_,(x)=I(r—2x). (2.5)
l-
: where
! A= 1A (2.0)
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Using the results in (2010, we can view the single differencing iz vithim as o

spatial filter with the tollowing teansfer funetion

Hiv )=~ pTIU ST

. (2.7

where w_is the spatial frequency. The magnitude response ean be easily shown 1o

be

H, ()l = {(1 — cosw,ar) / 23! =, (2.%)

This transfer function clearly demonstrates that as (ll‘s_\.l‘) decreases. H (e ),
also decreases. Thus, images with low w, spatial frequencies (broad extents) and
slow movements (Axr or v) will be attenuated more than smaller and faster
objects. This is what makes this algorithm distinguish slower backgrounds from
faster targets. One disadvantage that must be pointed out is that this algorithm
and filter have the fixed structure in (2.4). (2.5). and {2.7) and is thus not

—-ad

capable of adaptively changing its transfer function.

2.3.2. Double Differencing

If single differencing is an approximation to the first time derivative, the

double differencing algorithm.

1 1
D (x)= -3 Jo)+ L (x) - 51,\‘_2(.1‘). (2.9)

is an approximation to the second derivative in time. Once again, the output is
zero for stationary objects and the output increases with the movement of the
object. A frequency domain analysis of the above transfer function vields the

following rransfer function
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! H )= ==+ ¢ /02T~ = p7 /2020 {2.10)
i 2 = o) ) /
FFor the masnitude of the ahove rrunster function, we obtain
L
Ut
1 . 1 8 N
H,(w )| = {—) (3 —Hdcosuw Ar+ cos2uw Jrx)p . (2.11)
The above magnitude response clearly shows that the gain is very stall for simall
. (e Ax) values as derived. The computational requirements of this algorithn are
!' . . on 3 3 . . -
. slightly more than for the single differencing algorithms in that it requires three
L . .
N image frames for processing. But it has the same drawback as the single
N
L) o« pp . . . . . .
differencing algorithm in that it is not adaptive.
'
3
2.3.3. Linear Interpolated Differencing
.
The two previous algorithms do not adapt to different background shifts. A
»
simple algorithm that seems to have been overlooked in most literature is bhased
: on the block diagram in Figure 2.3. In the first step, the subpixel shift 35
. between the two successive image frames is estimated as Ag. This shift is mainly
‘4 due to the large background and thus requires subpixel shift estimation. Severul
: methods [3, 6, 7. 8, 9] have been suggested for this purpose. A cuareful study of
a these had indicated that simple parabolic subpixel delay estimator outlined in
.I
. references [5] and [9] is the best compromise between the estimation acevrucy and
M case of implementation. In this method, the two images of interest. namely I ()
-
and I, _ (x) are cross-correlated to obtain C(x). This correlation surface is then
o searched for the peak value. A second-order polyvnomial is then tiltered to the
o
. correlation values near the peak. The coefficients of thisx second order polvnomial
[}
D

W T A A ~. a8l e A ar ..--\- .\' "
B . . 8 . B o] M

:

.

l"' A
*
Ny

*u S
Ly

'y

)
-..

o -I .l 'l '.7'

l..
. {5 ’\’\{‘a h)

S

’i,?‘-'.}; .

a-":‘,ﬁ‘f‘)
Ay 5%

55
& Ty

s

-

T
-

A "':.ﬁJ
e

st
el

N
’ .

p
r

A%

A T
P A
&

.? quf re

.:- "\




* e 9a’ Aa® T U ~— —
'y $Ta AR R 0"t SRl Rt A S RS Rt el s Rl . ha® Ba® ® et e’ e ket Ba' Mt ¥ b Ba® o) g he* tn e Vo' Jlntates o be b oRe et gt gin e A By o)

'y
&

7

P

A
A

F

30

s,j.

.
%’(l

can then be used in a straight forward manner to obtain the subpixel shift

W

5L

estimates.
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Ik-(1x) Background 28 Y Single D,
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Estimation l_. polation erencing

Ls{
xr

Figure 2-3: Block Diagram Indicating the Various Steps in Interpolated
* Differencing
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The subpixel shift estimate AB is then used in an interpolator to obtain a

@
N8
shifted version of I (z). If the interpolation and estimation are carried out ).-::f_'v,
q N
accurately, the background in the interpolated image will be identical to that in N
S
I._,(z). The differencing operation indicated in the last block of Figure 2.3 will :,g,
.'-,'_:
) then force the background term to zero while retaining most of the target :\f.:
: A e
. . : i . . . A
information. In reality, neither the subpixel delay estimator nor the interpolator AT
LR Tt
- . . .9
works perfectly. Thus. it is of interest to compare the performance of d*‘ferent ¢
J l'-
D -r.-\
. . by,
interpolation schemes. A
i g
Il 'l‘{
[ ¢
In the linear interpolated differencing method. the output D,(z) is given by -_;.;\
i
s, Y
4 . - el
D (x)=1 (r)~1,_ (2)]/2. (2.12) o
>
X where fk(x) is obtained from Ik(l‘) and I, (x—1" according to the following linear
"
A
, interpolation rule.
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L(r)=(1—-25 L (x)+ a0 (r=1) (2.13)

where 3p denotes the shift of the background between two successive franes.
The cascading of the interpolator and the single differencing represents a linear

time-invariant filter with the following transfer function.

H,(w )= {{1 + 3g(cosic = 1) — cos(w Ap)] +

Jlsin(wAg) — Apsinw |} /2. (2.14)

wlere we assumed that dp is estimated perfectly. Once again, we see that H;;(ws)
is small for small values of (w Ag). If A or w_is zero, we find Hg(w ) to be
identically zero. Thus the background will be suppressed by the above method.
The above shift estimate :\B is accurate only for the background and not for the
target. Thus the target which moves by more than Ap will not be suppressed by

the linear interpolated differencing method.

2.3.4. Parabolic Interpolated Differencing

Obviously, the effectiveness of the previous algorithms depends not only on
the subpixel shift estimation method, but also on the interpolation. In order to
address this issne, we have also included the following parabolie interpolation

scheme in onr algorithms. This method uses three neighiboring hmage pixels for

interpelation
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Once again, the cascade of the interpolator and the single differencing can be

r
P 'd
N Y
}\}\f

L.

W

viewed as a linear time-invariant filter with the following transfer function

Ho

7

H (v )={1+ ABe(cosws—l) — cos(w, Ap)) +

Jlsin(w,dp) = agsinw ]} /2. (2.16)
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» This transfer function becomes zero if either Ag or w,

&

zero. Thus, the :
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l background will be suppressed more than the target. A complete analysis based

e
.

»

on the spectral characteristies of the target and the background are necessary to

AE

%5

decide which interpolated differencing method work better and wleun.

y Fd
5

B,
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Both interpolated differencing methods are adaptive in the sense that they

attempt to align the backgrounds before subtraction. While this may be

7,

computationally more involved, it should yield more consistent (as well as better)
results over a range of background shifts. We believe that the required subpivel
shift estimation as well as the interpolation-shift operation can be carried out
using optical processing methods. We did not consider higher-order interpolation

such as cubie splines because they cannot be easilv implemented in optical

processors,

The interpolated differencing methods have not received much attention
previously because of the amount of computation required for interpolation
before shifting. But optical processors are inherently continuous and the point
spread functions associated with them cause automatic interpolation using the

. . g -I ‘I
sine function kernel (for square apertures).
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2.3.5. Spatial Filtering

In this method proposed by Wang [3]. we consider only one image frame at
a time and use the fact that the background has adjacent pixels highly
correlated, whereas the target pixels exhibit less spatial correls .ion. This is used
to design an optimal spatial filter that yields minimum mean square error.lThis
is achieved by estimating an average 3x3 covariance matrix estimated for each
image snapshot and using this to solve for 9 coefficients that are used in a 3x3

filter mask. \While this is mathematically elegant, it has a few practical

drawbacks. First, this method requires the estimation of the covariance matrix

AP
RS
which can be quite time consuming and not easily amenable to optical B R
o
. . o . . . . LS
implementation. Second, this method requires that we specify a desired vector A
.‘:\"w.
. . e . . AN
before the filter coefficients are obtained. Specifving the desired vector requires sy
".rt.r‘
. . o . . . :’-"-“
that we know whether the target is in the region of interest or not. This is not ®
I
always feasible. Finally, this method does not make use of the temporal N
: , : X
information at all. It ignores the fact that the targets move faster than the T,
Y
»

background. WWe included this algorithm in our study to see if the image
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parameters of interest are sufficiently tolerant that this algorithm can perform
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2.3.6. Spatial Differencing

J The last algorithm we consider is a nonlinear algorithm recently »
o
W ¥ . . . . .
\ proposed [10]. This method works by considering 3x3 windows centered at the e
? Loy
o - o - : , Ay
:"-, same point in successive image frames. The center pixel value from the current .u‘
]
l E)

frame is subtracted from the nine pixel values of the same window in the

R R
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previous frame. The output of this algorithm is the magnitude of the smallest of
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e
et
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»
ey

~ o
> these nine differences. Because of the sorting operation inherent in this. it is a s
‘”".: ;-'
nonlinear operation. In that sense, this algorithm is very different from the b
I it,
i gl . :‘\
o previous five. ™~
‘.
o ot
A7) n
To understand how this method works, we note that the targets move L4

.

faster than the backgrounds. Thus if the 3x3 observation window does not
contain the target, there should be little difference between successive frames
thus vielding very small values for the difference. On the other hand. i the
window in one frame contains a target, it is probably not seen in the same

window in the next frame. Thus simple subtraction will thus not eliminate this

o target. While this method is attractive because of its robustness to small amounts
- "
\ e
" of noise, it also has two drawbacks. First, because of the nonlinear ranking "
.y A
. Ve N
'« operation needed. an optical implementation is difficult. The second problem is ®
% : . : e
RS that targets that do not move by more than 1 pixel between frames {essentinlly
o, N
) . N . . - 9
] those that do not move out of the window) will be suppressed by this algorithm.
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’ 2.4. Measures of Effectiveness -2
N bRY,
\ . L g g . . ~(~
A [t is necessary to quantify the performance of the six algorithms proposed £
. . ®
[ ]
L
> . . . Y .
e in the previous section before we select among them. To enable us to do this. we J:'_
42 oA
f-' e p « o . 3 ‘.u.\‘
N define the following measures of effectiveness. As always Tk(.r) denotes the target A
r’ OyS )
o
image. B () denotes the Background image and N, () denotes the sensor noise .
o
o image at time instant k. \While the measures we will use do not convey ull the o
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N 2.4.1. Background Suppression Factor n]
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o A commen goal of all six algorithms is to suppress the background while e
N retaining the target. To evaluate the ability of an algorithm to suppress the o
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it )
3 background, we define the Background Suppression Factor (BSF) as the ratio of 2
o
¥ \ I‘_‘-
. . . . . . . L4
the variance of the background-only image after processing to its variance before S !
‘.N', ,:.‘
c - -~ . . v':c
-7 processing. Obviously, BSF depends on many variables other than the algorithm 4
itself. These include the background size. shift and its spectral content. This Pes
Z
"o measure has been used before [2] for this purpose. A word of caution in the use o0
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2.4.2. Target Detectability

As discussed above, we must payv attention to what happens to the targets

as various algorithms are applied. While several possibilities exist for

characterizing the target effects. a simple and useful measure is the ratio of

target radiance after processing to the radiance before processing. Good
algorithms should keep this ratio large while vielding large BSEF values. Another
way we can evaluate how targets are affected is by plotting the receiver
operating characteristics such as the probability of detection versus the
probability of false alarm for various target detection thresholds. While the

latter approach may provide more complete information, it is difficult to use

such information as it is not a single number.

2.4.3. Uncorrelated Noise Variance

A third quantity usually ignored in the analyvsis of the algorithms is the
variance in the output image due to input uncorrelated noise. While the
uncorrelated noise in the input is 20 to 30 dB below the correlated noise.
algorithms based on differencing increase the variance of uncorrelated nolise while
decreasing that of the correlated background. Thus it is important to measure

the variance at the output due to uncorrelated noise also.

Of the six algorithms considered, only spatial differencing method is not
linear. Thus. we can analyze the effects of the five linear algorithms on the
target, the background and the uncorrelated noise separately and combine the

results, This is not the case for the nonlinear spatial differencing schemes, It is

T A ST RV ST Sy N
T S -,

RS, Sy AR SRR e v

e Pe 2

-

RECTNEEE LN

-

i_.' .

N VYl
','I,‘ ,"I‘:‘"I" :' l':

S BN
A -
e %

A%y
/
1]

]
27

L
~ 9

s R A d T N N
J. :’5{‘,‘- LN . }“ y
< ALl o

. "3




also better to consider ratios of the above measures rather than the absolute
measure. This prevents the occurrence of rather unrealistic measures when some
of the coefficients are arbitrary. For example, the single differencing in (2.4) uses
the coefficients -1/2 and +1/2. By using coefficients -1. +1 instead. we will still

obtain single differenced images, but with both the background and the

o
. . . . . Y
uncorrelated noise variance going up by a factor of 4. Thus, use of ratios is more G
D
_\".\'
b . . e A
’ appropriate. N

2.5. Experimental Results

In this section, we will summarize the results of an extensive effort to
evaluate the performance of the six algorithms. First, a few words about the
choice of the experimental parameters are needed. The high resolution image was
chosen to be 512x512 pixels. With an effective detector footprint used of size &x8
pixels, we obtained a low resolution detector image of 60xG0 pixels (after edge

pixel effects were ignored). The target size was chosen to be 8x8 pixels in the

high resolution imagery (or equivalently 1 pixel or spread over 2 pixels in the low

%

RIS

TSR . . . . ™y
resolution image). The target radiance was assumed to be 1 in the high resolution .‘:\j
~"'\
.:_\"

image and it averaged out to be small (0.3706) in the low resolution image NN

because of the detector effect. The correlation coefficients for the background T..
noise were assumed to be the same in x and y and either 0.99 or .95,

Substituting these , values in (2.3) yvield py values of 0.90 and 0.76. respectively.

We considered tliese two correlation coefficients. as they were reported 6] to S

.

'
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model real IR images well. The uncorrelnted noise level was kept at o level of 20
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s or 30 dB below the target and the background noise level. Various subpixel

<
e @

4 4
’k’

background shift values for Ap were considered. We next provide the observed

-

results in a concise form. All values (shifts, p, etc) are given for the final low

ANy o

5

resolution detected image.
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2.5.1. Background Suppression Factor (CN only present)
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Table 2.1 shows the BSFs obtained by the six algorithms for the two

(NI S

»
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.

choices of p, (namely 0.90 and 0.76) and for three different shifts (all subpixel) of
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5
o0

L. the background.
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Back- el Nonlinear
ground| ¢, Linear Processing Processing

Simple Ditterencing| Interpolated Differencing
. Spatial Spatial
Singie Double Linear Parabolic Filtering Diterencing
(0 0.125) 1209 15193 2435 3645 1249
0.90 | (©.250.25) 160 546 397 515 25416 441
(0.5 0.5) 44 52 226 234 282
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-, Table 2-1: Background Suppression Factor for Only Correlated Noise
s Background (No Target or UCN Detector Noise)
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obtained by spatial filtering. The origin of this large BSF values is based on the

fact that the coefficients of the spatial filter are rather small (of the order of
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outputs very small. In fact. these filter coefficients cun all be scaled up or down
by the same factor without affecting its optimality. Thus it is very huportant
that we consider that ratio of this BSF to the variance of the uncorrelated noise
or the target intensity, We note that this algorithm is independent of background
shift and depends only on p as expected. We also note that a small p value
broadens the spectrum and thus more suppression is observed for the smaller p

0.76 value (as expected).

It can also be seen from Table 2.1 that deercasing p causes a general
decrease (expect for the anomalous spatial filtering case) in the BSFs observed.
Tlis is consistent with our understanding that it is more dilficult to suppress
backgrounds varving more (smaller p values correspond to more white-noise like
situations, i.e., containing higher spatial frequencies w ). Another obvious and
expected general trend is that larger background shifts (for the same reasons as

above) also causes the achieved BSFE to decrease.

All methods seem to vield very good BSFs for small background shifts. But
as this background subpixel shift approached 1/2 pixel. interpolated differencing
performed nearly five times better than the uninterpolated simple differencing
methods. This is expected since the interpolated ditferencing nsed the correct

background shift whereas no shifting is included in the simple differencing.

The nonlinear spatial differencing algorithm <lichily owperformed  the
interpolated differencing schemes for the case of bhoth smaller » values and Targer

backaronnd <Lifrs, But the performance of the spatial differencing method s
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much inferior to that of the interpolated differencing for smaller hackground

shifts (for both small and large p). Recall that for target shilts ubove one pixel,

spatial differencing will suppress the target also.

Since we do not know a priori the background shifts to be expected. we
should use the algorithm that performs best for all background shifts. thus use of
parabolic interpolated differencing is recommended on the basis of the fact that
it vields reasonably large BSF value at very small background shifts and vields
better BSF values than other methods (except for the anomalous spatial filtering
algorithm) at larger background shifts. Thus, the consistency of the parabolic

interpolated differencing method makes it very attractive,

2.5.2. Target Effects (Target only present)

While the six algorithms are designed to suppress the background
correlated noise, it is desirable that theyv do not attenuate the target. To
understand the effect of the various algorithms on the target, we show in Table
2.2 the "target amplification" (actually a loss, since all values are less than one)
of various methods for different shifts. This quantity is simply the ratio of the
target intensity after processing to the intensity before processing. We do not
include the spatial differencing methods results in this table. because the
nonlinear nature of this algorithm prevents us from analyzing the target and the
noise separately. The spatial filter coefficients, of course, depend on the
background correlation coefficient and thus we consider the performance for r=

.90 and 0.76. The target (in the final detected image) is abont one pixel in these
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o data. As can be expected, the larger the target size, the better the target gain is N
Ny
expected to be. The results for subpixel targets may give preference to the ;'-
interpolated methods. _.:
b
~
Pl
>
Target .

movement | Simple Differencin%lnterpolated Differencing| Spatial Filtering
(in Pixels)

?2’?322" Single Double| Linear Parabolic| p= 0.90 | p= 0.76
(Horiz Vert )

(0,0.5) | 0.0265 0.0217 | 0.0301 0.0344 | 0.1157 0.0028

(0,1.0) | 0.0695 0.1207 0.0634 0.0777 0.1157 0.0028
(0,1.5) | 0.0928 0.1835 0.0810 0.0971 | 0.1157 0.0028
(0,3.0) | 0.0972 0.1943 0.0841 0.0945 | 0.1157 0.0028
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Table 2-2: Target Amplification Due to Various Algorithms

(g
S

The first trend to note in this table is that increasing target movement 5.

- h:.

';N results in less target degradation (indicated by larger target amplification values). :-'
. o
:,' This is as expected because faster targets are more easily detected by these i
\ »
algorithm than slower targets. \WWe also note that the spatial filtering results are A

. »

g .':':"‘l{

independent of target movement. This is expected because the spatial filtering
Y procedure considers only one image frame at a time and ignores target movement

f between frames. This also reiterates cur earlier observation that the very large

BSFs shown in Table 2.1 for spatial filtering are not very meaningful. This is e
" seen from the fact for p, = 0.76, the target intensity after processing is 0.0028 ®
o times its intensity before processing. f::-f
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I spatial filtering, the target iantensity is reduced 50 times more than by
other methods, but the background intensity variance is reduced 100 thines more.
Thus the (BSR/Target gain) ratio is better for the spatial filtering algorithm for
many cases. To employ the same units, the target gain should be squared. In this
case, spatial filtering performs poorly. The large reduction in the target strength
is expceted to cause practical problems when the target strength and size are
varied and when limited dynamie range and various error source effects are
included. The practical problems: estimating the covariance matrix (with its large
computational requirements) and not knowing if the target is present (and its
effect on specifyving the desired vector) seem to be the dominant reasons to
consider this algorithm only in specific cases. This merits further attention. The
ease of implementing each algorithm (in optical technology, becanse the high

computational load of each algorithm) is another issue of concern.

Once again. both double differencing and parabolic interpolated
differencing seem to outperform the others for larger target shifts. Then
parabolic interpolated differencing seems to yield cousistent (low target
degradation and high BSF) results over a wide range of paramecter variations
(although simple double differencing may perform best for some background
shifts, tirger shifts and p values). Note that for smaller target movements (below
= 0.75 pixcis), the target amplification aclhieved with interpolated differencing is

better than with simple differencing,

We carried out a o similar evaluation of the nonlinear spatial differencing
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algorithm effects on the target. However, because this is a nonlinear algorithm,
we introduced the target and the background together. The target amplifications
obtained for different p, values and different target movements are shown in
Table 2.3. These values are one order smaller than those of the interpolated
differencing methods. Whereas the BSF values for this algorithm are similar or

less. Thus, spatial differencing does not seem to be preferable to the interpolated

differencing methods.

Target 's ve- Target Amplification
locity, (h,v)

pixels/frame p=0.90 p=0.76
(0,05) 0.0060 0.0082
(0,1.0) 0.0072 0.0120
(0,15) 0.0402 0.0240
(0,3.0) 0.1038 0.0678

Table 2-3: Target Amplification for the Spatial Differencing Algorithm.
(Target and CN present)

2.5.3. Uncorrelated Noise Effects

One aspect overlooked by the previous simulation is the effect of the
algorithms on uncorrelated noise. We now consider the normalized ratio of the
variance of the UCN to the variance of the CN background for the algorithms.
Let 3 denote this ratio in dB. A large 3 value thus denotes more UCN than CN.
For the images used in these tests, 3 = -30 and -20 dB for the original images.
Table 2.4 contains the difference (in dB) of the 3 value after processing to that

before processing. Larger entries in this table denote higher background CN
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suppression factors, thus indicating more suitable algorithms,  (i.e. less CN alter

processing and thus a larger 3 alter processing, from which when we subtraet the

®

N

orizinal necative 3 we will obtain a larger and more positive 3 difference). If the Y,
= > 3 ~

UCN value (before and after processing) remains unchanged, the above remarks

hold (and large values in Table 2.4 denote better suppression of both CN and

. ~'
et . . AN A IS . H '-’
UCN). All algorithms generally increase UCN. This will lower 3 after processing AN
s
:I:f
) (poorer performance considering UCN alone) and lower the values in Table 2.4 A
N

1
»
8
»

(poorer performance). Thus, in all cases, larger values in Table 2.4 correspond to
more suppression of both CN and UCN and hence better results (ignoring target

' effects).

A few trends are obvious in this table. Decreasing py causes a decrease in

. . o N
the 3 improvement factor for all methods. Similarly, larger background shifts NN

y . . . . . = .
result in smaller improvement. These results are expected. A surprising result is P

I

‘e &

I

. . . . \

. that the double differencing algorithm yields numbers comparable to the AN
I

. . . T g

interpolated differencing schemes. (This may be due to quantization issues, such ata

o

s

~ . . . C . N . R

as the fact that our subpixel shifts are limited to the multiples of 1/8 pixel). A

A
Sty

More tests and anmvsis are necessary to answer this. For pp = 0.0, small e
ASY

. e . . " > 'N“'-‘.

background shifts yvield 3 improvement factors of about 30 dB and larger

:_\:-‘t-

o . . . . UL

background shifts yield a 20 dB improvement. Once again, the parabolic TN
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interpolated differencing algorithm and others perform well. NP,
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. | Sub-Pixel Noniinear :
g:)?nd Shift Linear Processing Processing
Simple Differenc Interpolated Ditferencin Spatial Differencin
P | horiveny P ng_fmem 9! Spatig | SP3talDi 0
Single  Double Unear Parabolic | Filterin -20 .30
(0 0.125) 28 44 30 33 25 30
0.90 | (0.25 0.25) 19 29 21 24 30 22 26
(0.5 0.5) 13 19 18 19 20 25
0.76 (0 0.125) 23 as 25 27 18 23 27
) (0.25 0.25) 14 23 16 18 20 23
(0.5 0.5) 9 13 13 14 19 22
Table 2-4: Improvement (in dB) in the Ratio of the Uncorrelated Noise
Variance to the Correlated Noise Variance with Processing
2.5.4. Case Study
While the previous methods summarize the performance of several aspects
of the various algorithms, they do not present the total picture, i.e. will targets g
be detected. Towards this purpose, we carried out the following simulation. In ;:::.-
e
the first case study, the CN background was modeled as having p; = 0.90 and a 5
[ ]
variance of 1. The subpixel movement of the target between successive snapshots :::
-
was taken to be (0.5, 0.5) pixels. The targets were assumed to be of size 1x1 in :
c:.‘-
the detector image with radiance of 1. The targets strength was the same .
-
Y
compared to the strength of the background. Eight targets were randomly '_:'5
~a
A
dispersed in the detector image of size 60x60. All targets were assumed to move :.;-;
M
by (3. 4) pixels between successive image frames. In each image frame, !
uncorrelated noise with strength -30 dB below that of the correlated noise was ',:;
2
added, "-:'
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N
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Differencing Method of Hits
Single 1
Double 6
Linear Interpolated 8
Parabolic Interpolated 7
) Spatial 2

Table 2-5: Number of Hits (Out of 8 Targets) for the Five Methods

These images were thus input to the five algorithms (excluding spatial
filtering which does not use time information) and the resulting processed output
images were then searched for the 8 largest output values. If the algorithm
worked perfectly, the 8 outputs should correspond to the 8 targets and should
vield the correct target locations. In reality, this does not happen. Since we know
a priori the correct location of the targets, we can decide how many of the
targets have been correctly located. The 8 largest target output values obtained
are shown in Figure 2.4. In this figure, the crosses denote the targets correctly
located whereas the squares denote output peak values that do not correspond to
correct locations of targets. The number of correct targets for the five algorithms
is listed in Table 2.5. This table reveals the inadequacy of the single differencing
and the spatial differencing methods. On the other hand, the other 3 methods
seem to perform equally well. We were surprised to see that linear interpolated
differencing vielded 8 correct targets (1 better than the more exact parabolic

interpolated differencing). These results must be investigated fnrther for more

seenarios.
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[For the second case study, we removed the uncorrelated noise and chanced
the background correlation coeflicients py to 0.6, All other parameters remained
the same. The corresponding thresholded outputs are shown in Figure 2.5, All
algorithms fail. However, the parabolic interpolated differencing method is able
to locate 1 of the 8 targets. Only double differencing is able to loeate a single
target correctly. All other algorithms cannot locate even one target correctly,

This case study clearly demonstrates that the parabolic interpoluted differencing

alzorithms yields more consistent results for a wide range of scenario purameters,

It thus appears to be preferable (and quite suitable for optical realization).

1o

N A
@ XA,

2.6. Conclusions

5"‘
Py

o
g

2 We have investigated six different algorithms (five linear ones and one

PR o & % g% o
7’

nonlinear one) for their ability to detect small targets in slowly moving

27,
P

backgrounds. Analysis and simulation results are presented. Overall. parabolic

b "'\ u
';.
l.l

»
.

interpolated differencing seems to outperform all others and is suitable for

parallel real-time realizations.
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Chapter 3

Subpixel Delay Estimation Using Group
Delay Functions

3.1. Introduction

Time Delay Estimation (TDE) has reccived much recent attention as
evidenced by a journal special issue {1] devoted to this topic. TDE involves the
determination of time delays between signals or coordinate shifts between images
and finds applications in many diverse areas including Radar and Sonar signal
processing and image sequence processing. In image sequence processing. the
tvpical objective is to extract the desired information from a sequence of
snapshots of a dynamic scene. An important application of image sequence
processing is the extraction of target tracks in the presence of clutter in staring
mosaic sensor imagery [2,3]. Another application involves the registration of two
successive images [4] prior to their subtraction in Digital Subtraction

Angiography.

An important feature of the above delay estimation problems is that the

shifts to be estimated are typically subpixel, ie.. the delayv between the two

observed digital signals may not correspond to an intecer multiple of the

sampling interval.  Accurate determination of this subpivel shift s essentinl Tor
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proper alignment leading to good background suppression. A popular approach A
to subpixel delay estimation is based on fitting a second-order polynomial to the s
cross-correlation between the two digital signals. The coefficients of the second-
order polvnomial are then used to obtain an estimate of the subpixel delay. This N
method uses the quadratic interpolation inherently and hence its delayv estimation
accuracy is limited by the accuracy of the second-order interpolator [5.6]. The
bias and variance associated with such an estimate were anulyzed earlier [7]. In
this chapter, we investigate the use of recently proposed [8] Group Delay

Functions (GDF's) for the subpixel delay estimation problem.

The GDF of a signal can be viewed as the derivative of its Fourier phase

with respect to frequency. We will show in the next section that two types of N
GDFs can be defined. Gp(;.)) is the GDF based on the Fourier phase and G (v) )
. . . . . . L]
is the GDF based on the Fourier magnitude. The GDF representation allows us s
- l'
.‘_\.;‘;-
. . . . R
to consider the phase and the magnitude of the Fourier transform on an equal o]
basis. Gp(wv) encodes the delay information whereas ¢ (v) contains the Signal- v
.
v . . ~ W T . . 4 . . - RN
to-Noise Ratio (SNR) information. We present in this chapter an adaptive N
NS
. . . . . e . ‘(-‘J‘
subpixel delay estimation technique using these features. This adaptive NN
7
procedure weights the delay estimates from the high-SNR regions more heavily \‘.‘

than those from the low-SNR regions.

After defining the GDFs in the next section, we outline the procedure tor

their computation in Seetion 3.3, This is followed by our presentation of the

.
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adaptive delay estimation algorithm in Section 3.0 A comparison of e

l" "
R
2

-::".’ ..:
'-':l . "' Y °
- o

¥

.

o
»

(l('
7

'y %a

r -
3

Jo

]

<




o ¥ Bub e Ae® da® gt SNt Sa" JAaulatu At st /N AU AA g 2O AL A A S RAC L R A Dl Al Sl Sl Al A A A < LR .

- >
.’ o
e ~
et . .
computational effort of the proposed method with that ol the cross-correlation 3
o

. . . - . - . kS

based method is provided in Section 3.5. Simulation results are then presented >
’

in Section 3.6 to illustrate the adaptive delay estimation algorithm and o
-

~

concluding remarks are provided in the last section. N
N,
%

. - ¥y

3.2. Definition of GDFs =
’\

‘X

A discrete-time signal z(n) can be represented in many different ways. One e

IN
N

. . ~ . - . A o,

of the most popular methods uses the Discrete Time Fourier Transtorm (DTFT) ;‘
“!
(9] defined as below. v
h
oY

O :..

X(w) = E x(n)exp[—jnu] )

n=-—o0 Ry

(3.1) )

> ’ >.,

= |[X()| ezp[—jo(w)] )

N’

N
where [X(«)| and #(w) are the magnitude and the phase of the DTFT. | 3P
)

. . . kel - . . '~
respectively. It is very easy to verify that X(w), |X(«)] and ¢() are all periodic o~
~

functions in w with a period of 2x. An alternate description of x(n) is through its -~
GDFs Cvp(«v) and G (v). The phase-based GDF GI‘(,J) is simply the derivative ol g
the phase function #(.) with respecc to frequency .. On the other hand. the 9
S

magnitude-based GDF Gm(w') is the derivative with respecet to o of the phase of a -~
L]
minimum phase signal whose Fourier transform magnivwle equals "N A s
X

minimum phase signal [9] has a z-transform with all it~ poles and zeroes inside -

.

the nunit cirele in the z-plane.

I N

While the above definitions of GDEs are correct, cortain sabtictios are not

. , . » R . . , SN
apparent. Ninee the phase funetion dlog exhibits s of 250 a0 pliese
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unwrapping procedure [10] must usually be carried out prior to the derivative NN
o,
» s
o
operation in the definition of the GDFs. Let ¢/(.) be the unwrapped phase -i'_...
. N . NN
corresponding to 6(.). Then the phase-based GDF is defined as A
= "\‘.
oA
N
(/0'(w) . N
G) = - —= (3.2) N
p dw

Note that one can obtain the unwrapped phase ¢/(w) comnpletely (except for
an additive constant) from Gp(..)) by integration. The definition of & (.} is
prompted by the result that for minimum phase signals, In|NX(.)] and 6(.) form
a Hilbert transform pair [9]. Let &(w) be the unwrapped phase [unction of a

minimum phase signal with magnitude transform |X(v)|. Then

G (o) = = M (3.3)

duw

It the signal x(n) is a minimum phase signal, then C’p(*-) and G (~) are
tdentical.  For a maximum phase signal (all poles and zeroes outside the unit

cirele), GV(.J) and & () are negatives of each other. But for a general signal. no

bt

simple relations exist between C'm(,;) and G’p(@). If Gm(.;) is known. then J'(.)

P N
']
e

can be obtained except for an additive constant.  Then the Hilbert transform

Iy
L

o

relations [9) can be used to determine [N()! except for a multiplicative constant,
Thus X(2) can be reconstrueted completely (exeept for a multiplicative ceniplex
sealar) from the knowledge of the two GDFs. Of course. the two GDFx do not
contain any more information than is available in the conventional Fourier
rransform-hased representation. The GDEFs simply represent another possibile
method of deseribing the sional, and seem to LU potential benelit 1o the delay

estiation problem,
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Betore we consider the computational procedures for the GDIs in the next
section, we introduce the GDFs for two-dimensional signals. The 2-D DTFT ol
2-D signal .1'(111,712) can be characterized by the Fourier Transform (IF7T)

magnitude function {X{w .w,)| and the F'T phase function #(s .v,). Then two

phase-based GDFs are defined as below.

80'(.‘11.“}0)

Gpl('w'l.;.;q) = - —_—, (3.1)

[

PO AT

Ve
a, 8 1,
.

and

Q
-
©
=
3
s
PRI
il O Y
-"}‘I’?-fff

Gpaloyg) = = —— . (3.5

a
.
y

Similarly, two magnitude-based GDF's Gml(,.)l,w'_,) and Gm-‘(”'l'*'-’) can he

defined as the appropriate partial derivatives with respect to “ and o of

J’(—Jl....',,). Thus we have four GDFs associated with the 2-D signal 'I'(”l‘”-*)'

Throughout the rest of this chapter, we confine our attention only to i-D signals

for the sake of simplicity. Our conclusions can be easily generalized to the 2-D

case.

3.3. GDF Computation

The GDF of a sequence 2(n) can be obtained by tuking the derivative of s
Fourter phase. In practice, this approach suffers from two niajor prablems. The
first is that it requires the computationally cumbersome phase-unwrapping. Tlie

second problem is that the derivative operation ean only he approximated on a

dicital compnters We ean circumvent these problems by exploiting the
- - - - - - - - - - .- . -t . .- .-, - N LR I LIPS P ..-- v--._-.-p.----v l.‘-_i:--'.“h'i-‘..\-
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relationships between the GDFs and cepstral coefficients [11].  Since In|X(2) SV

and ¢'(.) are periodic in w with a period of 2=, their Fourier serics decomnposition 4

s .{

'
h)
Lo

can be written as below.
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where a, (k) and ap(lc) are the Fourier series coefficients.

l,'l"'i"
5 %
PN A4

If the signal x(n) is real, then In|X(w)| is even in w and ¢(4) is odd in ..

S

Ay @

P&
,S

: Thus Equations (3.6) and (3.7) can be rewritten as

v
.;’;ﬁ{\ ;

Tt
LJ
ALl d

.
A
4

LRy
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)

v

‘.

In[X(w)] = @, (0) + 2 Z a, (k)cos(wk), (3

Y
Nt
)

Ern
[

—
»

and

o
A

NS
e
DR

Asg
LA

A
L

. n,g,
Y )

V(o) = - 2 Z ap(/c)sin(dk). (3.9)
h=1

AN
» l' u' LY

Substituting Equation (3.9) in Equation (3.2). we obtain

. -, ,'. A As
s 1 - . *
‘-'_\ o, . t.:l 5t

Sediy i 10)

x
G () = 23" bu (kleos(k).
=1

. s'/s'
e,
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P
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For the log magnitude fanction in {(3.8), the minimum phase equivalent pl

Silliser s
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given by
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x
) = =2 > a, (K)sin(k). (3.11)
k=1

and substituting Equation (3.11) in Equation (3.3). we obtain the following

)

expression for G (w
m

2 )" ka, (k)cos(wh). (3.12)
k=1

Above equations provide the basis for the method to compute the GDFs of
a given signal z(n). To determine G (). we first obtain In[N'(2)] from 2(n) by

Fourier transform. Then the Fourler series coefficients am(A*) of the periodic

function In|X(»)| are obtained through inverse Fourier These

transform.
coefficients are then multiplied by & and the resulting sequence is Fourier
transformed to vield the desired &, (w). The computation of GP(.J) also proceeds
in a similar manner. The phase function ¢'(w) is first obtained from the Fourier
transform of xz(n). Then an inverse Fourier transform is carried out on j#'(L) to

obtain the coefficients ap(lc). These are then multiplied by A& and the resulting

sequence is Fourier transformed as in Equation (3.10) to yield G,‘(w-). The
coeflicients (l’,l(/\f) and n,p(/c) are obtained by the inverse Fourier transform of the
logarithm of N(w). These are known as cepstral cocfficients.  Thus GI‘(*-) aned
¢/ el ean be obtained from the complex cepstral coetlicients of w{n).

The varions Powrier transform operations indicated can be earried ot
- the Fast Fourter Transform (FFT) alegorithms. Flowever, we  must
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3.4. Adaptive Delay Estimation DG
N
To understand how GDFs ean be used for subpixel defay estination, ler us
y consider the GDI's of two signals .rl('n) and o (n). where
T,(n) = x/(n—ng) (3.13)
. and ngy is the delay to be estimated. Strictly speaking. »g must be an integer for
Equation (3.13) to be valid. But we will allow nj to be non-integer and interpret
: Equation (3.13) as below. Let .1‘1a(t) and x, (t) be two continnous-time signals
related through
\d
—_ — . v, 1
To,(t) =z (t=t,). (3.14) RO
AT
)
. . . . LN,
where ty is the time delay between the two continuous signals. Assume that y
A
v .rl(/z) and x,(n) are obtained from .rla(t) and .1‘,,“(1‘) by uniformly sampling them X
. at intervals of At. Then ny=(t;/At) can be an non-integer. With this
interpretation, the DTFTs are related as below,
No(w) = X («exp{—jen,}. (3.15)
q‘ -
) This indicates that [\ ()] and {.\'2(;): are equal, resulting in identienl e
ool
. N ~ e . . . . e
maguitude-based GDEFso Thas the 7 (L) does not cuarry the delay information. NN
f\':'.'
- . . - . " PANAS
Ou the other hand, the phuse-based GDEFS contain the delay nfermation. To AS
Rty
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illustrate  this, let 0’(*) and /)")(.4) denote the phnse of ,\'l(g) e ‘\’._,(_,-)_
respectively. FFrom Equation (3.15). we have
o) = ) = ey (3.16)

Remembering that G’p(;) is the negative derivative of the pliase function with

respect to o, we obtain the important result that

2 A -
Gp(w-) = GP(,;) + ng (3.17)

) A 2 . . p
wlhere Gp(wv) and GP(,J) are the phase-based GDFs for o (n) and x,(n).
respectively. Thus the delay ny between x (n) and x,(n) can be obtained as the
constant difference between their phase-based GDFs. In practice. the ditference

2 A . .
hetween (",;(“’) and Gp(.J) will not exactly be a constant and n can be estimated

by the following average.

€ 1 T 2
= 5 / G3e) ~ Ch)lde (3.18)

where we used the fact that the GDFs are periodic in w with a period of 2=z,
Another departure from ideality in practice is that we can only compute G'P(/)
and & (1) which are sampled versions of G;;(‘“) and ¢ (w). respectively. Then
the integral in Equation (3.18) can be replaced by a summation and realizing
that GP(‘*') in Equation (3.10) and G (<) in Equation {3.12) are eren functions of

<. we cnnestimate the delay ny as helow.

1 (N 2) 1
oot S N ’ \1 .
I’() - l“’—.\'/”'_) Iz l(rp(/) C']J(\/)‘“ (';1(”
=0

where N odenotes the Size of the FET.

hd " ‘| ': «
‘l“ L l:.l.

]
v
s

'ﬁﬁﬁ&
o gy

\
[
'

R,
5’

e

XXM
2ol ® B

2
5y
Ny

A

Yi'x
L ]

L
P}

-
<, %
N

’

/]
-
77

.

']

5y %Y
\'S;l, t's- «
Yo A RRAR

ven
SO e

‘e s
Pt

PIEIANS
L )
o

r0.0.00 ®

" N
r ',

" f
)
1 ] . 2

.

?Q;
NS 'y'

PRSI
% e l,l
Py *

-

TRAEAl

Lot
.
"‘l‘l

.
’

AP A
55"
'’

."
y
P

.
LY
-.“

«
!
Tl
.

T T



t aa an

i,

61

An interesting feature of the proposed method is that the delay estimate is
obtained as the averaged difference between the GDFs of the two signals, Sinee
thie GDFs can take on a continuum of values, the n:) in Equation (3.19) can tuke
on all possible values including non-integer values.  Thus, this method treats
both integer and non-integer shifts on an equal basis and requires no special
effort to obtain subpixel delays. On the other hand. the cross-correlation hased
methods require the interpolation of the digital cross-cerrelation fuuction to

obtain the subpixel delays. The accuracy of the interpolator thus determines the

accuracy of the delay estimates.

The delay estimates discussed so far were based only on the phase-based
GDFs. We now explore how Gm(.u) can help the estimation procedure. To see
this. let us assume that the delay estimation problem is to estimate n from a(n)

and y(n). where

yln) = z(n—ngy) + w(n). (3.20)

In the above equation, w(n) is a sample realization of a random process with zero
mean and represents the noise always present in any measurement. When w(n)
is zero for all n (no noise), the situation is the same as discussed betfore and
G {~) does not help the estimation procedure in Equation (3.19}.  But the

magnitude-based GDIEs can be used to advantage in the preseace of noisc.

It has been shown elsewhere [12] that the negative derivative of the phase
spectrum  and the Fourier magnitude are very similar to each other for a

minimmn phase siannle Reealling that 7 (L) B indeed the necative derivative of
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the phase spectrum of a minimum phase signal with magnitude spectrum | X(.)]. .
, . x Y i

we see that G (w) tracks the FT magnitude. Let G (&) and &7 (&) denote the

magnitude-based GDFs of x(n) and y(n). respectively. Then the following can be

written.

S = IX(w)] (3.21)

) GY (W) =~ MW =~ |X()| + VAL (3.22)

m

where P(v) is the spectral density [13] of the random process w(n). In writing

Equation (3.22), we assumed that the noise process is
x(n).

obtained in terms of the magnitude-based GDFs as helow.

independent of the signal

From Equations (3.21) and (3.22). a crude estimate of the SNR can be A,
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where T} is a welgnting function designed to emphasize the higlhi-SNR regions.
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OFf course, we also require that the denominator in Fopmtion (3,211 he non-sero.
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3 Sunction
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Y - b
N . 1 if SNR > T, ) >
. TSN\NR| = ) (3.25) e
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g . - . C . . € . e
- where T is a preselected threshold value. With this weighting function. n, in ot
Equation (3.24) can be seen to a simple average of the phase-based GDF ?
>
e - N
N difference only over those frequencies for which the SXR exceeds Tj,. If T, is o=
: \n'. (]
. . . . oy
s chosen too small, then essentially all frequencies will be considered leading to a '\‘f.\
v > [
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2 . . . . . € . y
- is important. In practice, one may want to obtain a sequence of "y estimates :';\
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o . . . . N
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:" NN
sequence. MWe will discuss this issue some more when presenting the simnlation ®
Y
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function 7). A desirable property of this weighting function is that it takes on .
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power of 2). Looking back at the adaptive delay estimation procedure in the
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previous scetion, we note that the main compnutational burden is approximately

O
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6N log, N (for the computation of the GDI's of x(n) and yln)).
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The cross-correlation based subpixel delay estimution method [50 first ~
computes c(k). the cross-correlation between x(n) and y(n). This correlation
sequence c(k) is then searched and its peak is located. The three correlation

values centered at the peak are fitted with a quadratic polynomial and the

=
. . . . . . - . "
subpixel delay is estimated from the coefficients of this polyvnomial. The main o

]
“»
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computational load of this method is the determination of the cross-correlation N

O™

g

P's
¥

between a(n) and y(n). This can be obtained by taking the inverse FFT of the

'
r
AL ®

e
k product of the FFTs of z(n) and y(n). This amounts to three N-point FFTs Y

. - - . - . . Ya e
resulting in a computational load of 3N log, N operations. We did not include (N

the computations needed for locating the correlation peak in this analyvsis, N

Our simple computational analyvsis seems to indicate that the adaptive N
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delay estimation procedure requires roughly fwice as many operations as the

L

L

.-
Cae

[N
Py

conventional cross-correlation hased delay estimation. Offsetting  this
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computational disadvantage are the two advantages mentioned carlier. These are
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(i) the natural manner in which subpixel delays are handled, and (ii) the ability =
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3.6. Simulation Results
[n this section, we present our initial shimulation results to illnstrate the
functioning of the adaptive delay estimation algorithm. Towards this end, we
selected the discrete-time linear frequency modulated (LFNI) signal (known also

as the chirp signal) as the reference signal. The mathematical expression for this

.(7‘.

x(n) = sin2m(fy, + an)l. 0<n < (N-1) (3.20)

where f; and a are the initial {requency and the chirp rate of the chirp signal
and Ny s its length. The spectrum of the above signal extends from fy o
f() + '.’.'aA\'O in digital frequencies. Since the sampling interval is 1, the
parameters fo, a and .\"0 must be chosen such that the spectrum does not extend
bevond a digital frequency of 0.5. Otherwise, aliasing would result. We chose
fo = 0.05. a = 0.0005 and N, = 200. For this choice. the spectrum is
nonzero in the interval (0.05, 0.25), well within the allowed limits. The chirp
signal was selected because of the simplicity with which it can be generated and

with which subpixel delays can be simulated.

The second signal y(n) is obtained by delaving 2(n) in Equation (3.26) by a
desired amount ny and adding a sample noise realization w{n}) to it. The random
noise is assumed to be of zero mean and variance o=, \We also consider only
Ganssian noise. Two different types of noise correlations are considered.  The
first is the white noise which has successive noise samples that are statistieally

independent.  This white nolse is generated by standard random number
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generators [14). The second type of noise is the colored noise zin) obtained by
passing the white noise w(n) of it varinnee though o digival iver. We

selected the following first-order reenrsive dicital filter,

dn) = p :(ll—l) + \/1—/)2 win)

where =1 < p < 1 denotes the correlation cocflicient hetween adjucent
sumples in the correlated noise. It can he <een from Fouation (3.27) thut p=0
vields white noise. Increasing p values correspond to inereasingly low pass

spectra for colored noise. Since w{(n) is of unit variance, it is easy to show that

z(n) is also of unit variance. In our simulation we chose p =0.%.

For the first simulation study. we employed ny = 20. .\, = 200 and N =
512, Recalling that .\ denotes the FFT size used for GDI computation. we note
that the signals are padded with the appropriate number of zeroes to vield length
N, We show in Table 3.1 the delay estimates for various choices of threshold T,
and for various white input noise variances. Since the chirp signal is of length
200 and amplitude 1, its energy is approximately 100, Noise of varianee o and

- . . ~ v B e Al . ~ . . . .
length N oresults in noise energy of No®. Thus the input SN in B is given hy

_ , 100
SNI{I = 10log (—)

T 50,
Thus a noise variance of 1079 corresponds 1o approximately 53 B input SNR.
From Table 3.1, we see the obvious trend that the estimation acenrney decrenses
as the input noise variance inereases. We also see from thix talle that the clojee

of the threshold affects the obtained accuracies, \While 1o e relition seets 1o
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exist between the optimum Ty and the input SNR. we can observe the general g
. DAY
~ % "
| trend that lower input SNR values require lower threshold values. This makes Lot
s sense because by setting a high threshold value for low input SNR ease. we will
»
: be tneluding very few frequencies in the estimati- 1. process. Thus when we are
\
[} . . . . -
sure that the input noise is very low, we can use a high threshold value. Note
LY -
» o5

: . Spoage - .. . - T
y from Table 3.1 that the possibility of obtaining very accurate estimates (19971 e
. . R = . e
s € L,

.',\):
h . . S . . . P ENT N
. instead of 20) exists for even large input noise variances (1G77) i o proper A
“ “nn g

threshold (60} is chosen. Of course, selection of proper threshold depends on o« 7.

' \-‘,
) . . . I
o priori knowledge of the input SNR. NG
. d"t

Ny,
A 1 \':\‘
Y The above experiment was repeated next with identical purameters except ®

\v'
. that a colored noise with p = 0.8 was uzed in place of white noise. The vy
.l

J
2,
.
P
)

o R pm,

4

corresponding results are shown in Table 3.20 Note once again that increasing
L]

e
®

noixe varinnee lewds to generally poorer delay estimutes. We ulso note rhe

:.Q-f':.
.’::‘_
. . w - . ">
. general trend that lower threshold values are better for lower input SNRs. We e
o -';.-‘.
-t -.-'
. observe very good estimation accuracy once again (19.617 instead of 200even for AR
large inpat noise varianee with proper threshold {35) seleetion. Compuaring the
‘N results in Tables 3.1 and 3.2, we see that the estimation acenracies seem 1o he
‘2
)
~ somewhat better for eolored noise case than for white noise case, This mav be a
;- consequence of the ability of the weighting funetion to enr-hasize the hizh <NR
et
. regions available when the noise is of low pass type.
,
g
. The two siimalation examples considered so fur nsedd ny=200 s dnteser
2 delave Toodbomonstrate the subpivel delay esthinion capubiliny of the propaosed
,
'
-

f

P e T T T P
- IS AR
N e el St R L,




b

* PR ~ L] .'"
Yy o
' G
2 23
L 4

o “u
73N () e
(\: :’
N v
A alzorithm, we next simudated ng=>5x"This ix cosily welieved by replacing by N
e N,
O (=350 in the right hand side of the equality in Fonation (3,260, The resnlting ’

, . . o -
: estimates are shown in Table 3.3 for the ease of white naise. While the resalis N
R ho
- , A
I are not as good as expected, we see the ability of our alzorithm 1o estimare the _':
' L] h .
v N .-.:\.
- subpixel delays for high-SNR situations. The algorithm exhibits poor estimation
o
wlien given low input SNR signals. But in all four cases, the hest delay estimates N
(5.783. 5.773. 5.766 and 5.60»1) were very close to the correct valiue of 5.80 These o
results demonstrate the capability of the proposed adaptive delay estimation ~
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. . . Y=
_,\_J procedure to estimate the subpixel delay between two signals. e
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o, 3.7. Conclusions
A
" i
::,-_ In this chapter, we have presented an adaptive delay estimation procedure .
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w7 . . . . - . Ny
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N v
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s NS
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DELAY ESTIMATES AS A FUNCTION OF WHITE NOISE VARIANCE

[ J
X
TRUE DELAY = 20 RN
N
NOISE VARIANCE e
THRESHOLD Ry
T — N 7 RILE)) 1)) WA
0 107 103 1074 1073 °
0 19.758 19.559 16.580 -0.697 RASAY
5 19.710 15.869 20.601 15.320 RN
10 19.859 20.007 20.429 19.553 AN
20 19.901 20.067 20.485 18.945 Ko
50 19.895 20.222 19.854 18.982 e,
100 19.896 20.192 19.72% ND _.'
200 19.910 20.852 19.341 ND AN
500 19.458 20.040 ND ND .
1000 19.370 20.115 ND ND . .
2000 19.028 o ND ND foe
5000 ND ND ND ND
®
ND: Nondeterminable because no terms existed above the threshold. RCSLN
RASAS
(1) The best delay estimate (20.007) occurred for a Ty of 120, RS
R
(2} The best delay estimate (20.007) occurred for a T4 of 10. '.;:‘
(3) The best delay estimate (19.980) occurred for a Tg of 45. N
o
(4) The best delay estimate (19.971) occurred for & T of 60. v
o
o
Table 3-1: Delay estimates as a function of white noise variance )
RIAN
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DELAY ESTIMATES AS A FUNCTION OF COLORED NOISE VARIANCE

TRUE DELAY = 20

NOISE VARIANCE
THRESHOLD
¥ T 199) ) (&) (3]
0 106 10°% 107 103
0 20.04] . 19.875 19.549 19.401
> S 20.029 19.815 19.978 18.076
d 10 20.056 19.819 19.650 17.718
20 20.041 19.641 19.491 19.040
- 50 20.050 19.736 19.090 15.377
100 20.040 19.753 18.328 20.761
] 200 20.12% 19.345 20.839 20.761
. 500 20.199 20.195 ND ND
: 1000 20.006 20.195 ND ND
2000 20.085 ND ND ND
5000 ND ND ND NO
ND: Nondeterminable because the threshold T fs too high.
(1) The best delay estimate (20.004) occurred for a Ty of 110.
: (2) The best delay estimate (19.875) occurred for a Ty of 0.
) (3) The best delay estimate (19.978) occurred for a Tg of 5.
-, (4) The best delay estimate (19.617) occurred for a T, of 35.
- Table 3-2: Delay estimates as a function of colored noise variance .
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SUBPIXEL DELAY ESTIMATES IN WHITE NOISE

“d
o

)

) TRUE DELAY ¢ 5.8

o
L

€ 2
X

L

A

3

el

sy NOISE VARIANCE
v THRESMOLD
N Y S5

b 1 99) )
" 10-6 1075 10 10

i \ 0 5.731 5.664 2.600 -22.738
: 5 5.424 5.429 5.766 - 2.160
y 10 5.837 5.491 5.158 0.657
s 20 5.868 5.773 7.085 1.932
50 6.527 5.333 6.237 3.938
100 6.955 4.112 6.830 3.938
200 7.621 2.949 ND 3.938
500 5.909 6.036 ND ND
000
000

o R
ll.l.x

..

S0y
l‘l

L
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SR

b Y DR I
P LY
I.l.lx‘l

Sasvg "

Sl Ot

Talal
A

1 ND : ND ND ND
2 ND L 1Y) ND ND
$000 N L1y ND ND

Sl
~

L4

S
<

4

-.qj
A

ND: Nondeterminable due to 70 being too high.

I B 4
¢ .
.

(1) The best delay estimate (5.785) occurred for & Tg of 15.

(2) The best delsy estimate (5.773) occurred for a Tg of 20.

7\:\::.:. [l
ey
AN
C XA

<

(3) The best delay estimate (5.766) occurred for & T, of 10.

.

7

’
<

(4) The best delay estimate (5.604) occurred for a To of 15.
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Table 3-3: Subpixel delay estimates in white noise
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Chapter 4

Detection of Target Trajectories Using the
Hough Transform

4.1. Introduction

The Hough transform [hough] (HT) was originally proposed as a means of
detecting straight lines in the input image. The transformation can he casily
implemented both digitally [Duda. NMerlin] and optically. [Eichman. Gindi} Tt has
been later modified so that it can be used to locate cbjects of other shapes (e.g.
circles, Kimme] ellipses {Tsuji] and parabolas. [Wechsler] The so-called
generalized Hough transform can theoretically handle objects of any shape i.e..
objects of both analytical and non-analytical shapes. Ballard] However. these
techniques require much pre-processing such as gradient detection and edge-
following. They also require that the list of the positions and orientations of the
small segments that compose the object be stored. Noreover, the generalized
Hough transforms require that one deal with problems of high dimensionality,

which minkes peak detection very difficult. [Brown]

The Hongh reansform and the generalized Hongh reansform have also been

previousiyov=ed for the deteetion of moving target tracks, Cowart, Padzert!

Thiese appdicarions, boowevers also saffer trom the drawbaeks mentioned above,
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One wayv of overcoming some of these problems is to consider only subspuces of

the malti-dimensional Hough space. [Ballards3] One ean also make use ol some of

the propertios of the particular type of curve to mitigate the problem. Ivision!
Yet another approach Krishnall uses certain transformations in the 2-D Hough
space to achieve dimensionality reduction. It has also been shown that this
method ean be very efficiently extended for the detection of curved objects of
any arbitrary shape. Casasent1] In this chapter. we show that this particular
appreach can be used as a new technique for the detection of moving target

tracks.

In Section 1.2, we review the straight-line HT and siniple transtormations
that one can apply to this space to deseribe input translations and rotations. We
alzo provide the general theoretical basis for our new approach to the detection
of  target  tracks. Section 4.3 deseribes how  missile  trajectories ean be
parameterized <o that our technique ean be applied for their detection. Section

4.0 provides the experimental results of the performance of our techinigue on

stimlated missile tarcet track images,

4.2. Use of HT for Locating Maneuvering Object Tracks

As has been pointed out, I('m\':\ri. Padeett] thivd-order <dlifferencing can

produce reasanably cood track images of a4 omoving targets Adreralt ond missiles

[in certain phases) very often follow straight-line trajectories, T atlier wordsoif

the target is n non-manenvering tvpe, then the traek cun quite often be

approximated beoa set of stpndahit-line secments. Nloreover, noltipie tarsets
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produce multiple straight lines in the track image, which cun Le ensily detected

by a simple Hough transform. The position and heading can also he aeenrately

" .\ ‘s "2 ‘_‘n{'i{'-

[

determined. [Cowart] It has been suggested [Cownrt! and illusteated Pudgett]

that the same technique can be extended to the detection of maneuvering (non-

! 13 ard
Ll XA

straight-line) tracks. These present techniques for curved tracks, however, suffer
from the disadvantages pointed out in Section 4.1, An alternative way of
parameterizing the Hough space in order to overcome some of these problens is
presented in this section. In what follows, we assume that the target trajectory

can be described by a second-degree curve. It must bhe noted, however, that the

same technique is valid for more general trajectories. [Casasentl]

LI ]

The HT maps the points (z.y) in the input image to a sinusoid in the

B
L)

transformed (8.p) domain (p < 0, 0 < §<2x) given by
p = xrcosd + ysin 4.

The above equation can also be written as

B o

p = (£"+y°) Zcos (h—tan "ly/x). (4.2)

Let the trajectory of the target in the reference position be deseribed by the

second-desree equation

P

_v/:+ e+ be + ey + . {1.3)

D AR R N )
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The reference position s usually ehiosen such that the carve is <vunmetsie with
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respect to the origin (I possible). The valnes of the parameters of the earve (e,

£o
Iy
i‘)-‘ Pel

a.heand ) are determined by the reference position and the tvpe ol cneve, For
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o example, if the curve is a circle centered at the origin, then a=1, b=¢=0 and

Y ’
2l
v 7

4

v

d=—r

|
L4

. where ris the radius of the circle. The equation of the curve can also be

2

expressed in terms of the perpendicular diatance p from the origin to the tangent

X o o 4
-’IJ&.‘:
X

»
»

. of the curve at any point (x.7). and the angle ¢ the perpendicular makes with the

558N

L

P

r-axis. (See Figure 4.1). We thus write (4.3) as

Lol o g
Ve
2,2,

: p = TNa.b.c,.d.9) or p — TMa.,b.c.d.9) = 0. (4.4)
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where the function T describes the curve and its parameters.
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It can be shown that this description of the curve can be obtained by

"

i
P

RS
.

.

: Hough transforming the input image and thresholding it. [Casasentl] Thus, the

.
\
'
(2n)
By
P
AA

thresholded Hough space of the curve can be described by (4.4). Given this

< e
[N
."-.'(l'-
e

3
P

o
description of the Hough space H(4.p) of the curve, it can be shown [Casasentl] by
D

L}
S
Py

that if the curve is rotated by an angle ¢ about the orighi und then translated to

h ) ‘q.
J")l. !

a new origin point (x,.5,). the resulting Hough space [/(#.)/) (after thresholding) ~

x

<
o
A

&

can be described either by

-’,ﬁ
o~
h Y

F. p' =t cos(0'—a) + Ta,b.c,d,0'—5)

Q
<
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’
[N
3

-

@

s Pl ==t cos (0'—a—r) — Na.b.c.db'—o—r)
. = t cos(0'—a) — Nab.c.d.d—o—r), (4.
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where

a0

Py

- L2 2, -1 L 3
. b= (r)"+y,") 7 a = tan (Yol 2y)- (1.6)

We choose the equation in [-1.5) that gives a positive valie for /.
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A If a rotated and translated version of the curve in (4.3) appears as the input e

LS '-.\_’

: K3
image trajectory of a target, then the Hough space of the trajectory is described >

u:\\-

43 by (4.3). It can be shown [Casasentl] that at least one of following R

- .h._'l

' . ‘0-% .

N transformations ol

n' {

-Q

A

o Lo

p' — Na,b,c.d.f'—o)

4
S
H

-,
--'
3 p=p + Mab,c,df—o—n) (4.7)
from the H(¢',p') to a new H(#,p) space will yield a sinusoidal pattern in this new
.
Py . 1
K',': H(8,p) space. The inverse Hough transform of this new F(¢.p) space (with a
N
‘o sinusoidal HT plane pattern) will then give a peak at (.To,yo) in the inverse HT
'
- space. (If both equations in (4.5) give positive values for p', then both .’_.‘
N Y
."‘- . . . . . . . . '-‘.'
transformations in (4.7) will yield a sinusoidal pattern in the new Hough space. -::-
':. \,:‘:
In that case, we apply both the transformations in (4.7) simultaneously to the ‘.-"
. =
d e
‘:" Hough space, add the transformed spaces together, and invert the resulting HT P
' e
-, RS
- space). This determines the (:r:o,yo) parameters for the curve. The parameters e
~ (a,b.c.d) of the transformation in (4.7) that yield a sinusoid in the new H(4.p) [
] =
. "W
.- . . . AN
b". space (or a peak in the inverse HT space) define the parameters of the input G
8 %
TN curve. The transformations in (4.7) are easily achieved [[Krishnal, Casasentl] by o
-, o
v
shifting the Hough space along the p-axis with the amount of shift being. in -.
j-.'j' general, a function of 9. If the wvalues of abe/ and o are known, the :“_
b i
L transformation in (4.7) can be applied and the location of the trajectory is easily e
9.
. determined by searching for peaks in the inverse HT space. RO
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inversions are carried out for several values of a.b,c.d and o over the range of

S
P A4

expected values for ¢. Organized search procedures for this have been

@

%y
)

'y
7
X

detailed. [Krishnal, Casasentl] The values of o and other curve parameters that

o
L4

give the best peak in the inverse Hough space are taken to be the input curve

oy
s
N

3

parameters. The height of the peak in the inverse Hough space (compared to a
threshold) determines if the curve is present. It is to be noted that the
transformations are completely specified by the thresholded HT of the trajectory
Ta.b,c,d,9) in the reference position. If several translated trajectories with the
same parameters are present in the input, then these would appear as several
! peaks in the inverse Hough space at locations corresponding to the (.to.yo)
parameters of the centers of each curve. The peaks will also occur in the inverse
Hough space even if only parts of the trajectories are present. (The strengths of

. the peaks are proportional to the amount of each trajectory present in the

r

\| ;".‘;
input). Examples of this are provided in Section 4.4. AR
\:’."‘_ '

A

NS

. . L] . - L] |x h-‘..

4.3. Parameterization of Missile Trajectories ROANA

r As a specific case study, we consider the trajectories of ballistic missiles.
These can be divided into several phases. The missile is initially expelled from its
storage canister by a steam generator. The missile then ignites its first stage
motor which burns out at an altitude of about 22 km. The second and third
stage motors operate until the missile reaches an altitude of approximately 200
km at the end of the 3-minute boost phase. Since this boost phase part of the
missile trajectory is short in comparison with the range of the missile (=10.000

knj. it can be approximated by a straight line.
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%_\\, The second phase lasts from the end of boost phase until the missile reaches N
~
3 %
<. its apogee. During this time. the missile uses its thrusters to make small
~
o adjustments and after each adjustment, it releases a re-entry vehicle. These re- N
4 j )
e entry vehicles have different trajectories and travel independently to different e
1
.' b :\
destinations. All of these trajectories (as well as the missile’s trajectory in this
) : v A
- second phase) can be approximated by second-degree curves. If we know ¢ and
- i
R the parameters of one or more of these second-degree curves, we can apply the o
.‘:‘ Pyl
" . . - . . . [
transformation in (4.7) to the HT of the track image and then invert it to X
A I~
' . . . Yy
,,“‘"E determine the existence (and the parameters and location) of that part of the ‘A
G N
Aty trajectory. If o and the curve parameters are not known, several educated guesses o
A ’
at these values are used and from the results in the inverse HT space we can ‘:
~ ‘:'h
-, . o . . . . J
8L determine the final parameters after several iterations. In practical situations, the o~
» |:'
- . TR e e, i s )
s range of values that the missile’s parameters can take is limited by the various
?
o geometrical and aerodynamic constraints on the missile path. In addition, the .
o ‘x
IS . . . X e
+>e detection of some parts of the trajectory places constraints on the parameters of -,_-
e 2
In . Tk
¢ the other parts of the trajectory. These facts are used to reduce the search space. ?
=
-

- N
"f‘ >
*+ f‘

. . o1 )
:-i- For example, we consider three common apogees used for ICBMN] T
--"'- ':f.'
. . . . . . ) ) o
b, trajectories: (i) a depressed trajectory which has an apogee of about 900 km and »

oo -0 s . . . :::.:
o a re-entry angle of 15° (ii) the normal minimum energy trajectory with an Y

. D
¥
*.:.' apogee of about 1200 km and a re-entry angle of 23% and (iii) a lofted trajectory
B .

- .
N A
'/ . S - . .

- with an apogee of 2300 km and a re-entry angle of 35° The trajectory of the g
,.{- :‘:N
o missile after the boost phe an be adequately leled as a circle. In this cns N
2y ssile afte > st phase can be adequately modeled as a cirele. In this case, W
- -
:;-: the rodius of the cirele is determined by the type of apogee and re-entry angle. 3
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- The type of apogee itsell is constrained by the parameters of the trajectory in the f:-':._v
» '.l -
E N
boost phase. In fact, the constraints may be such that we need to compute only a
part of the HT and/or its inverse. This saves additional computational time and
P, . e
P is a significant advantage and feature of a HT space.
4.4. Experimental Results o
- e,
¢ AT
. . . R
A computer program was used to simulate track images of missile -::-,:.

A
*
[

[

i

trajectories. The program is capable of producing straight-line and second-degree

. . . . . . o
3 curve images with any given translation, rotation and any desired curve t'da
A ¢
oy
‘ . ; .. \w&:’
! parameters. The sampling rate of the pixels comprising the curve can also be NN
2 iy,
N changed. These 128X 128 images were used to demonstrate the techniques in ..
DI
~
. o R
. Sections 4.2 and 4.3. For all Hough spaces, a sampling interval of 1 was used for ;-.jq
LY > t
N
. . -~
{ both p and ¢ and all peak values iu the Hough space and the inverse Hough space I
: -
.
were computed as the sum of the values in o 3x 3 window, ’
N
e
1 T
Fieur 2 shows dat: . . : e - R RNy
y izure 4.2 shows data for three <traicht-line trajectories during the boost N
>
e
S phase. Missiles are launched from right to left and the three tracks are at launch ;,-2-\
.
id re
- ) -0 -0 - . L.
angles of 165°, 145° and 150° with respect to the positive r-axis. In order to )
'-’_n‘.
Y demonstrate the effectiveness of the technique in the presence of breaks in the A
tracks. a sampling rate of 2 (i.e.. every other pixel}) was used for tracks 1 and 3. R
L] ..’ ---
L] ..':--',
The central 145° track has a sampling rate of L. Fignre 4.2(h) shows the Hongh N
., N . . . . . . . an ~
- transform of the original missile track images in Figure £.2(a)0 Fianre 4.2(¢) -
. - : N
shows the thresholded version of Figure -£.2(1) with the threshoeld set at 100 The Py
. v .
- .
number of points in a trajectory dictate the threshold chosen. The peaks in the IN'Y
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thresholded HT space yield the associated curve parameters. Three peaks are
clearly visible in the final output pattern of Figure 4.2(c). corresponding to the
three tracks in the image. The first track produced a peak with a strength of 69
at =75° and p==35 in the Hough space. The ¢ and p values agree with the
theoretical values. The second track produced a peak with a strength of 137 at
#=>54° and p==61. The theorctical values are #=51° and p=061. This peuk
strength is approximately twice that of track 1. which agrees with the fact that
there are twice as many pixel points or samples on track 2 as compared to track
1. The third track produced a peak with a strength of 66 at §=60° and p=06-.
The theoretical values are §=60° and p=64. The peak strength for this track 3

peak is about the same as that for track 1. as expected.

Figure 4.3(a) shows three circular trajectories corresponding to the second
phase of flight with three different apogees. The radii of the tracks ure S0, 100
and 120, their centers are located at (64.-20), (64,-55) and (641.-85) respectively
and all tracks are approximately of equal length. Figure 4.3(h) <hows the Hangh
transform of the input. It can be seen that we need to compute the Hough
transform only for ¢ values between 0° and 180°. (The values in the HT between
180° and 360° are practically zero. because only the top parts of the circles wore
present in the input). Since the values of the radii of the trajectories can be
predicted from the apogees and the re-entry angles, the values of the radii were
assumed to be known. (The apogees and the re-entry angles are usually known in
advance. as noted in the previous section). Thus., only three different values for

the radii were tried in the transformation given by (1.7) In the case of a cirele.
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o,
Na.b.c,d.8) is a straight horizontal line [Casasentl] at p=r (where r=(—d)' = is
the radius of the circle) and is thus independent of o, Thercfore, in the cuse of u

circle, (4.7) becomes
p=1p FOré)=p Fr (1.5)

These results (Figures 4.2 and 1.3) clearly show the ability of the system to
process and distinguish target tracks of different r and apogees. The
transformations required in HT space involve shifiing the Hough space vertically
(uniformly for all 4) by a distance equal to the r being searched for. To carry out
the transformation for several possibilities for r, we merely shift the HT by
different amounts. The maximum value in the Hough space was 19 in Figure
4.3(b). The Hough space was thresholded at 10 and the transformations in (4.8)
were applied for different values of r (i.e., Y==80, 100 and 120). (The threshold in
the Hough space is usually selected at about 50% of the expected peak value. but
it is increased if noise is present). The results of the inverse HT processing are
shown in Figures 4.3(c), 4.3(d) and 4.3(e). One dominant peak is observed in each
of the inverse Hough spaces, indicating that the r value selected for that space
was correct. The location of the peak is within one pixel of the actual (.ro.yu)
values. The strengths of the three dominant peaks are, as expected.
approximately the same, since all three track lengths are roughly the same. The
inverse space was computed only for 0 < xr < 128 and —123 < <0, since this is

the range in which we expect the peaks to lie.

Figure 4.4(a) shows three circular ares, slightly displaced with respect to
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one another. These are typical of the tracks of three re-entry vehicles released by
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the same missile. All three tracks have the same radius(=30), but the centers are
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located at different points ((6-4.-20), (84,-20) and (124,-20)). Figure 4.4(b) shows
the Hough transform of the image in Figure 4.4(a). The maximum value in the
Hough space was 33. This is much higher than that of the previous case. because
parts of all three curves lie on the same horizontal line. The Hough space was

3 again thresholded at 10, the transformations in (4.8) were applied with r=380 and

then inverse Hough transformed. The final result is shown in Figure 4.4(c).
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r

N
\I
-gf_n, °

\‘l
..

considerable noise.

o
e
)

\
WD
!

R

4.5. Summary and Conclusions

> A new tecl nique for the detection of trajectories of targets has been
presented. The technique involves a straight-line Hough transform (HT).
thresholding and simple transformations in the Hough space, and an inverse HT.
T
. . . epy e %,
The transformations are easily achieved by merely shifting the Hough space along e n)
! ‘
Y g
. . . . - . . \ ~
the p-axis. The amount of shift is in general a function of ¢ and is given by a

control function T a.b.c.d,8) which is simply the thresholded HT of the curve in
“e . . . . YRS
the reference position. This new technique circumvents the problems of storing S
. . . . . . - ‘- .*
the curve as a list of line segments along with their orientations and also :

problems of high dimensionality.

In the experimental results provided, the trajectory was assumed to be
either a straight-line or a circle. It must be noted that the technique is much

more general and Is valid for any type of curve. [f the trajectory consists of

several piece-wise continuous curves, each part can be detected separately and
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the detection of one part used to place constraints on the parameters of the other
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parts, thus reducing the search space. Performance of the technique in the

» L]
P

5hh

.'/&1 ..:

presence of noise was also demonstrated quite successfully,
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List of Figures

Straight-line HT (6,p) parameterization of a curve.

Representative boost-phase missile tracking example:

(a) Three straight-line trajectories during the boost-phase with the
central track having a sampling rate of 1 and with the two other
tracks having a sampling rate of 2 (every other sample included).

(b) The Hough transform of (a).

(c¢) The thresholded Hough transform.

Representative second-phase missile flight circular trajectory
processing example with three different trajectory apogees:

(a) Three circular trajectories typical of the second phase of a missile
flight.

(b) The Hough transform of (a).

(c) The Inverse HT space when a trajectory radius of 80 was used in
the transformation.

(d) The Inverse HT space when a trajectory radius of 100 was used.

(e)The Inverse HT space when a trajectory radius of 120 was used.

Data for typical tracks of multiple re-entry vehicles:
(a) Three circular trajectories of re-entry vehicles.

(b) The Hough transform of (a).

(¢)The Inverse HT space when a trajectory radius of 80 was used in
the transformation.

Performance in the presence of noise:

(a)The circular trajectories of Figure 4-4(a) when noise was added.

(b)The Hough transform of (a).
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] Chapter 5

| Image Understanding Techniques for 3D
Scene Interpretation

5.1. Introduction

In this chapter, we present results in two aspects of the 3D change

b detection task: the low-level problem of analyzing images, and the high-level
‘q problem of developing an optimal recognition strategy with using the description.
For the low-level processing, we describe a new method of generating edge
’ description. For the high-level processing, we describe a new method of
3 generating a recognition strategy of a object. The basic idea is to reduce the
4 complexity of the observed scene description by designing a model which includes
‘ a complete description of the geometry of the 3D object to be recognized.. The
) description of the scene uses only the 3D boundaries which are fairly easy to
. extract, thereby reducing the segmentation time. This model includes the
\, description of the possible aspects of the occluding boundaries of the object,
»' which we call 3D-profiles, when it is observed from all the possible viewing
< directions. In addition. it contains all explicit description of the order in which
the search tree must be explored at run time.
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5.2. Improvement in Edge and Line Extraction from Images

Extraction of lines and edges is one of the most fundamental techniques for
image understanding. Previously, we have been using a technique based on
modified Nevatia and Babu algorithm. During the last year, we have improved

the technique for more reliable extraction of detailed structures from images.

5
,'
F
a

Instead of Nevatia and Babu operator, the Canny operator is used to detect edge
r '~ 3, namely, abrupt intensity changes. The operator generates pixel sequences
where the intensity change are steep. Figure 5.1 shows the original intensity
distribution. Figure 5.2 shows the result applying the modified Nevatia and
Babu edge operator to the distribution. Figure 5.3 shows the result applying the
Canny edge operator to the same distribution. The Canny operator generates
the only important edge segments and less noise elements than the Nevatia-Babu
operator does. Thus, the result is much easier to handle by later processing

modules.

To generate line segments, we have to track the edge pixels and to detect
corners so that we can obtain line segments connecting two corners. Corners
may be found using the angle between three adjacents pixels. Let us define
Direction-hefore as a vector from Pixel-now to Pixel-before and Direction-next as
a vector from Pixel-now to Pixel-next over an edge pixel sequence. If the angle
between Direction-before and Direction-next is larger than a certain threshold,
then Pixel-now is considered as a corner point. This method is simple and easy
to calculate, but unfortunately, generates too manyv corner points due to noise.

On the other hand. if we increase the distance from Pixel-now to Pixel-before
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Figure 3-1:  Original intensity disteilntion
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Figure 5-2: Result by the Nevatia-Babu operator
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Figure 5-3: Result by the Canny operator
finest level gives candidate positions of corners. Several rules are prepared to

interpret the finest level of description based on the description of the coarsest

level.
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Figure 5.4 shows the angle distributions over the edge sequence using four
levels of the detection distances. The upper one is the resuit by the largest
distance (the coarsest level). The bottom one is the result by the smallest
distance (the finest level). The dotted lines indicate the threshold level. Extreme
points over that value are considered as corner points. Dots indicate indicates
candidate locations of corners at each level. Figure 5.5 shows obtained line
segments, where the bold lines indicate the confident lines and the thin lines

indicate the less confident lines.

5.3. Extraction and matching 3D structures in range images

5.3.1. Introduction

Once 3D scene information, either in the form of a depth map from stereo
or range data from an active radar device, is obtained, the next step of scene
understanding is to extract 3D structures from it. In this section we explore the
problem of efficiently recognizing and positioning objects with a known 3D model
in a range image. This problem is important for such tasks as 3D change
detection and target recognition: in target recognition 3D structures which match
with the target model must be detected, and in 3D change detection 3D structure
which were previously identified must be located in the current image. Several
solutions to this problem have been proposed: the general approach is to describe
the objects in terms of simple primitives such as 3D edges, surface patches or
isolated points in the case of sparse data. and then match the sets of primitives

describing the model and the scene.
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Figure 5-4: Angle distributions using four levels of corner detectors

One critical issue is to extract reliable primitives from the section in a
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reasonable time and to ensure that the primitives contain enough information for
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the identification of the object. In this section we propose the 3D-Profile method
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which allows the recognition of 3D objects by using a very simple processing of
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the scene, namely the extraction of the 3D occluding edges. The basic idea is that
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object provided that the model contains a complete description of the geometry

LR At

s

of the object. So, our goal is to "compile" the object in order to produce a

L 4 -"'-P

model which includes all the information that can be extracted off-line. It
includes the possible aspects of the object when observed from different viewing

directions and the order in which the search tree should be explored at runtime.
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We denote by e, and e’.i by the primitives (jump edges) of the model and

the scene respectively. w is the current viewing direction. w, and w, are the
H - - . . 3
'.; canonic x- and v-axis associated with a direction w. o is an inner product of a
.
model edge and the viewing direction w, r is the inner product of an edge and v,
A
" . _— N . N
the canonic x-axis of a viewing direction w, 1(e) is the length of e. I
' -f‘_:‘
Rt
Ky e d
b AT
H. . . . . . . —.-.
Most of the 2-d and 3-d vision algorithms dealing with rigid objects can be

described by a "hypothesis/prediction/verification" scheme. This general type of

algorithm can summarized as follows:

e Hvpothesis:
Select a primitive e of the model and a compatible one e’ of the
scene, the pair (e,e’) is the initial hypothesis.

e Prediction:
Try to derive a estimation of the location of the object based upon
the hypothesis. Use it to predict the remaining scene primitives that
could be instances of model primitives.

4 4

":

LY

e Verification:
Explore the solutions generated by the Prediction step in order to find
the best one according to some criterion.

Since the initial hypothesis may not provide enough information for the
prediction of solutions, the last step may require another hypothesis/prediction M
step. This situation arises typically when the position of the object can be only
partially predicted from a single hypothesis (e.g. only the orientation), the
prediction phase provides only a guide for the choice of a second hyvpothesis but
generates too many possible solutions. In any case. the prediction phase provides

a search region for the remaining primitives in the scene space (Sce Figure 5.6).
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Hypothesis

Prediction

Search Region

- attributes space

Figure 5-6: The prediction step

The exploration and classification of the viable solutions in the Verification
step can be achieved by various methods like tree-search, relaxation, dynamic
programmic..etc All these methods try to find an optimum of a criterion among a

(expected) small set of possible solutions.

The HPV scheme as described above can be efficient only if two conditions

are verified by the scene and model representations:

¢ The model contains detailed informations about the order of
determination of hypotheses and numerical data allowing to reduce
the cost of computation of the "search region".

e The representation of the scene allows a fast retrieval of the
primitives lying inside the "search region" during the prediction step.
This condition is important because a naive implementation of this
step requires the exploration of the whole set of scene primitives for
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AN
each model primitive even if no compatible matching exists. In other i
words, the cost of the prediction step should be related to the number :"";:: :
of solutions compatible with the first hypothesis and not to the total > .
number of primitives. |:"=”
Nty
e
o : e,
The H/P/V scheme is quite general and does not make use of the properties N :1.,':,
N2
of the actual problem. In the following section, we try to find a representation of TR
2 ot
4 3-d objects suitable for this kind of algorithm. :::::“.'
e
a8 5.3.2.1. Using low-level features NN
) o
The idea of using an elaborate description of 3-d contour edges of a solid "'1:'.',
e
comes from two observations: ; 'o
e In most of the 3-d recognition problems, the recognition part can be '.‘?::t
made relatively efficient by using a small number of reliable high-level .»-_..-‘
primitives. Unfortunately, the segmentation of the observed data into '.':;::"
this kind of primitives is time consuming and the reliability of the ::"':‘
resulting description is discutable when using higher level primitives Y \
(think of the segmentation in quadric patches). At
"y
An alternative is to use low-level features which are easy to extract “‘.r"\'.r
and to manipulate. These features cannot provide a complete '{:}"
interpretation of the data because of their poor quality and the ‘.j::;;
ambiguities they cannot resolve. A
When 3-d data is available, the simplest features are the occluding (or ":'!:
jump, or silhouette) edges. They are simple to extract and can be :::::'V
used to perform a first analysis of the scene data. So, the idea is to ;'Sr
reduce drastically the time of segmentation while dividing the :—:::-
recognition process into several processes instead of having only one .0
tree-search-like process working with the unstructured sets of model ::-:::\'
and scene features. :"'_\
S
e The number of possible configurations of contour edges is generally AN
small and the number of edges in each configuration is also small. ';
. The idea is to decompose the whole matching problem into smaller '?\J.'.;
ones by using the fact that some combinations of object features :'::r:
cannot be observed at the same time which reduces the combinatorial ::':f:'-
complexity of the problem. :,:';\

. . - . e bR R e
w o "y A R T T .r,_.f-"J\f,_- _v'._.',_-’\-r\- v et R GRS P
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Generally, a solid cannot be described entirely by its possible silhouette

25
5
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appearances. So, the contour edges cannot provide an identification of the object

and a verification procedure using a surface description but without any

combinatorial search should be used:
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5.3.2.2. Dividing the recognition process

The search strategy can be f{urther decomposed by observing that the

geometrical aspects of the model can be divided in four categories:

Attributes characterized by:
connectivity and length configuration

::- of the silhouette edges

N

o

AN e

angle with the viewing
) direction and projected viewing dir.
¢
lengths and mutual angles

':"

'\., ______
e
o . .
- 3-d orientations of

edges rotation around the viewing dir.

-:\ ......

-u

AKS

3-d position of edges spatial location of the viewer

~ _::. The problem is to chose which geometrical feature should be used at the
Za
o various steps of the search. A highly invariant feature requires less complete
flJ

G . . . .

e hypothesis to be applied but induces a weaker coustraint, on the other hand a ,
A

. :
:‘_{: highly constrained one (e.g. the 3-d position and orientation) induces a strong 3

constraint which might reduces the search but requires more evidence to be

applied.
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i 2
. . 1
“c' So, the idea is to use the various levels of constraints as their evaluation ’:
- wh
¥ . . N,
) becomes possible. Actually, this is a very natural approach since it means that we "
" d
. . . . . b
) recognize first an "aspect" of the object (i.e. a particular silhouette of the rj'. '
) .!
\l
, . - .
u'.:. object), we check the 2-d consistency (i.e. rotation around the hypothesized \ .:
D #,
W b
! i
L viewing direction), then the 3-d consistency (i.e. 3-d position and orientation),
B
. ",
; . o« ele . . i
o and at last we resolve possible ambiguities by checking the predicted surface ._"‘.:.
L~ ..:
- . -
\ configuration (e.g. discrimination between a circular coin and a sphere.). N
\
- ®
T 5.3.3. Model Formation ’ ‘::
I.i
. "
, 5.3.3.1. Compilation of the Model "':
o8 oS,
at One of the problem of 3-d vision is the weakness of the model description.
. .""-“
K v‘-

More precisely, the model should contain an explicit description of the search

<

RS
#‘l
%

P strategy for the particular shape to be recognized. In other words, the model '.'j:.'
. revy
(]

£ ' represents not only what is the shape in terms of a list of features but also how

to recognize it. Following the general hypothesis/verification scheme, the model

should include:

AL AN

e The order of exploration of the search-tree. For example, the model

S
»

could include a piece of knowledge like: N

3 -;’.'-
. . 3 . . . \

. "if the feature e is identified, then the best one to try next if feature 3 '

k- e’." s
. @
0 . . . . . A

- This kind of knowledge avoids searching for irrelevant features or x |

. . e . (% )

. finding the relevant one at recognition time. ]ty
- 37
'~ e The numerical constraints at the different levels of the search. For e
- instance, a condition like: %

. . . L
if we e belongs to a configuration j then the angle of the next edge ~
-::' should be between a and a,. N

2 D,
. N
: . . \
This kind of knowledge is beneficial in the prediction phase. ".-"
: g
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The term "model compilation” comes from the original Goad’s work who

described a way of generating a special-purpose Lisp program from a 3-d object.
This program allows to recognize efficiently the "compiled" object by using an

optimal search strategy.

In the next section, I try to build a model representation of 3-d objects

based upon the decomposition sketched above.

5.3.4. Computing the Configurations

5.3.4.1. Occluding edges and silhouette configurations

We are interested in the simplest 3-d features, the occluding edges. An
occluding edge is defined as an edge between the object and the background or
another object in the frontal plane. We will call a configuration of edges a sect of
edgzes which can be occluding edges at the same time (i.e. for at least one view
direction). Notice that this definition is not exactly the definition of a silhouette
in a strict sense since a possible occluding edge could be hidden by another part
of the object. Besides, the strict definition of the silhouette increases
dramatically the number of configurations while not reducing significantly the

number of edges in each configuration.

5.3.4.2. Computing the occluding edges of a planar-faced object

In the case of a planar-faced object, the charneterization of the oceluding

edges in fairly simple:

An edge e bounding faces £ and ' of normals n and n' Is an oceluding one
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3
e e is not a concave edge. vy
e
And i
S
° .'.';
B’:} o (n.w)(n'.w) < 0 4
A Or ':"
o n.w = 0 and the viewpoint is in front of {’, 5
S
N
. o . e
(The normals are oriented from the interior to the exterior of the surface as ,:i
&
usual) P
o
I.gl
"
These simple rules allows to compute the possible occluding edges .
:’
corresponding to a viewing direction (Recall that we do not consider possible self- !;
I
occlusion for the moment). 3
R
]
5.3.4.3. Determination of the configurations Lt
»
Two methods can be considered for computing the configurations: '!';:
%

e Analvtic method:

The condition for an edge to be occluded defines a portion of the unit
sphere of possible directions which is bounded by curves of known

o
. . . . . L%
equations. The possible configurations are obtained by tracing all e
these curves on the sphere which bound a set of regions, each of i
. . N
which corresponds to a configuration. o
'J{:'
The advantage of this method is to ensure that all the configurations L
will be found. moreover it allows to remove degenerate configurations e
. . . 4
corresponding to degenerate regions on the sphere {curves or vertices). NS
The major drawback is that this algorithm requires the manipulation -
of analytical curves and patches on the sphere which is difficult to
implement. Noreover, we don't need a precise description of the ::
region of the viewing sphere corresponding to a configuration. N
N
d

o [Lnumeration method:
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) The simplest method is to discretize the sphere of viewing directions
as regularly as possible and then compute the occluding edges for
each directions. The final description is obtained by enumerating the
different configurations.
N The only drawback is that some configurations can be missed if the
! digitization is not fine enough.
The second algorithm has been implemented using the Zcos package of the
. university of Rochester.
o)
5.3.5. Hypotheses Determination
R
0
We consider first the case of a description of the edges by line segments.
»
h The analysis of curved objects is similar except some transformations
3 computation. % y
tﬁ"' )
A \.»:'_
. Following the division of the recognition process described above, we have > °
two levels of hypotheses: A
< : R0
" o level 0: Select a configuration,current _config :-.:-\.*
. . o, . . . N N
(This level provides bounds on the position of the viewing direction) ';:\ v
e level 1: Select a first edge,e_ . ..
_— viewdir
(given a configuration hypothesis, this level gives a partial viewing
- direction estimation)
e level 2: Select a second edge.e
_— rottrans . g
(given a configuration, a first edge, a partial viewing direction ::“‘V
! estimation. This level provides a viewing direction. a rotation and a a.:’_-.\:
. . . “.
translation estimation) NN
DI
, NG
é A
[ J
v
emark: g !
. Remark At
I‘ 5
. . . NN
: If we used the endpoints of the segments, less levels would be required. oA
¥
. . o . . F‘.P\
unfortunately the endpoints of the segments are not reliable becanse of the ®
. . 8
ocelusion and the possible measurements errors, '\::
."f
[ h '~
] '\
A
N
RUANS
- [ ]
A
» ."" .
N
o P IO W . - 'q'-’-
p 'y J W% % ] T T I TS 1% U T Y Aty v\.,-.,- D> '4",".",-'. - '_',‘.v,f,'f‘( ,[".\d‘ ...f"-r\d“ o,
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We describe now the kind of information that has to be included in the

model in order to make these "select" steps as efficient as possible.
5.3.5.1. Configuration selection

There seems to be no guide for the choice of configuration. The only
information that could be carried by the model is to sort the configurations in

decreasing order of probability.

When current _config is selected, the order of selection of edges for the

following levels must be determined. In other words, the model contains a set of
lists:

(e}renlim1.k

These edges are only those appearing in current config. These lists

gives the order of search to the recognition program which tries to mateh with:

e e'2, for i=1..k.

—al —
€viewdir— €1’ Crottrans—

The choice of the first three primitives during the model construction
should obey the rules:

e The edges are the most reliable ones (e.g. the longest)

o The edges are linearly independent.

The current configuration corresponds to a region on the sphere of
directions, the boundary of this region cannot be used directly, but bounds can
be computed on the angle between an edge and the viewing direction. Therefore

an interval [a_. o | is attached to each edge. At recognition time, only the
min max N *

scene edges such that:
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viewdir < viewdir
. a a
min < max

¥,
e,

)

! 'b‘}r
o

are considered for the level one hypothesis.
5.3.5.2. Level one !

The selection of an edge e_. . .. determines an interval of search for the Q:"'H-
viewdir

possible scene edges e’viewdir’ once this edge is selected, the viewing direction can

v
I‘...‘.
ARy

’
. x

be predicted up to one degree of freedom.

o~ 5
&:‘-‘1_41‘&
Setee

L L

More precisely, the viewing direction w is in a cone:

2 1
€. .. =€ ., . = o
viewdir viewdir

-
<

viewdir

g

This cone provides the prediction condition for the second edge e’ this

]
HE

rottrans’

:_‘F'n
% &

edge must verify:

v
y 9 ? '\.‘
a . (a . . a’ . .
mm( viewdir max( wewdlr)

) < a < a
. . . AL
The bounds must be stored in the model representation, which means that for ;

b - .
each e . ... and a, the bounds on « rottrans 2r¢ precomputed. The values of a

-

e

«

a

must be discretized and a data structure must be designed to allow a fast access

Fait
b e

e -
A

LN

to those values.

~
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¢ S

o N
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T o

This solution implies that N . N2 . intervals are stored. where
config' step’” prims

is the average

S

g(a.)step is the discretization level of the angles and Npr.

mms .
Qooy
number of potential viewdir and rottrans primitives in each configuration. An e
,.h:'v-
. . - . 3 o "-...\‘
alternative is to derive these intervals by simple computations from a smaller set A
e
: : - - RN
of stored data (see Figure 5.7). '-:;-.
»
o
ha\t
. . . 3 Yy
We can associate a coordinate frame (e_. .. .a-.a ) to the current edge, N
viewdir' 071 S A
LS N
. . \J'\(
such that a,.e = 0. in this case we have: o
0’ “rottrans It
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| w = cos(aje ;. . + sin(a)cos(¢)a; + sin(a)sin(s)a,
i .

€rottrans ~ COs(w)eviewdir + Sln("/’)al
l So. the inner product W iians IS bounded by:

¢, = cos(v - o) and ¢, = cos(v + a)

And the angle afe

.

l‘Ottrans) .lS bounded by:
a;oit;rans - I\/Iax(OI;,ril?x:de’Mi“(?lcos(cl),BLcos(cz)))

tt . i d. ; -
a;?axrans — Mm(a:’r:i‘; “',L\'Ia).(acos(cl),aCOS(Cg)))

TV

The "acos" function used in these formula is simply an abbreviation for:

acos(x) = if 0<x<r then x else if x>= then 27-x else -x

;

o
These calculations are quite simple and provides the orientation prediction ?_-;Z‘y
o
™~
for e . The information stored in the model is the set of angles (e.,e.) for Y,
rottrans )

-
.

all relevant edges 1 and j.

<
o
s

<

AN
n e
5.3.5.3. Level two f‘}}'."
™ );
. . . , -
° . ge .
Orientation After having selected a scene edge such that o rottrans’ °
we are able to compute a first estimate of the object orientation T.‘,
. . . . . . . k 3,
which is decomposed in a first estimate of the viewing direction and :-;:,'ﬁ.-,
of the rotation around this direction. e,
N
o : : b
The direction is computed by solving the equations: ®
—_ 1z _ ] .
W-€liewdir = € viewdir — @ viewdir >
and
— a2 - L]
W€ ottrans — € rottrans — @ rottrans
We can associate with w a canonical frame (w,w,.w,). then the
rotation around w is entirely determined by the angular offset Ao
-'I
X s -,
WiCviewdir = € viewdir — @ viewdir -
and s
_ X 0 C
W1€rottrans — € rottrans — * rottrans "

AN

This information is used for the third level prediction by associating
with each potential e

v e

the angular intervals:

trans 5
e e e e T TR R TR
: P R O L L R R SN RV Y ;
O IR, R I O A, A NGRS »
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Figure 5-7: Angular bounds computation for the second level prediction

A

i
P

[a(erottrans) T a(erottrans) + G]
lo(erottrans) +ab-e, o(erottrans) +af+ e]
Where ¢ is a tolerancy factor used to take into account the
discretisation level and the measurements precision.
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- The viewing direction and the offset angle provide only a rough
A estimate of the orientation, but they can be easily computed and they
)

. can be combined with the model structure without any operations :1
. (only the addition of 4¢).
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In summary, the model must contain a representation of the "\:
discretized sphere with for each cell: bt

.‘..;

r. o A list of occluding edges (Which is the same one for the whole :fi\
A configuration) T

v
»

{.,;‘flf
I‘:'('

] o The canonic frame corresponding to the discretized direction.

L4

o The angle g[a] and ¢ for every edge. Ny
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The position of an edge is entirely defined by the "normal® vector: ®
. n = OP - (OP.e)e »
‘o8 . . [} 'a
N If we apply a rotation and a translation to the edge. the new normal o
B . \
vector T(n) is: ,{E )
. T(n) = R.OP + t - (R.OP + t).e)e LAY
i In a simpler way: S
v m
2 T(n) = n + (t - (t.Re)Re) o
; (T(n) is only a notation for the normal vector of the transformed \:”,
- edge, it's not the transformed normal vector.)  Therefore, the ::;:‘:
translation can be estimated from the second level hypothesis by '*.‘
solving the set of six equations: W
e ’ . o N
\ N viewdir = Pviewdir (t'Reviewdir)Reviewdir :,"
, ]
= - R o
N rottrans Diottrans (t Rerottrans)Rerottrans :, W
) 1 "]
2]
. . . . (™
The resolution of these equations requires the calculation and
application of rotation R. Fortunately, we can express the
. coordinates of n and e in the current local coordinate system -
j N (w.wl,w2) which means that R is simply a rotation of angle ¢ and .
d ..‘-'-
s axis X. So, the estimation of t requires only a few computations. -:::-:
. ak
_ Similarly, we can use t to reline the search region already built from
% the rotation:
o+,
s
< For every edge e .., the search region in the scene is the set of
' e remaining
N edges such that the above relation between n’ and n . ®
~ remaining g
J verified. Since we must add a tolerancy factor e , the search -
- v trans R,
L region for e .« is defined by: Y
remaining ' I
‘A . . -t
- axis 1ax1s . ® Cd
~ |T(n)remaining n | < €4pans [OF aXis = x.y.z. Y
>, te
Notice that the normal vector T(n) must be computed for cvery ;’5
> " . e . . . .. '
remaining edge but the rotation is very simple thanks to the local '_»:.:
: . )
o coordinate system. ’on
. i I,
- o
PN
- Remark v
.  J
e
n\ ..-
L [t might seem strange that we need two levels for estimating the NSy
NS translation because the relation between n and T(n) provides three R
* equations with three unknowns but. unfortunately, the linear system oy
~ Lo . . . y
", is singular. More precisely, the matrix of the svstem is A-Id. where A AT
o ®
¥
I
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N
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is the matrix: Aij = e'e). A simple verification shows that A has an ’s”:’
eigenvalue 1 and thus the system is singular. i s

5.3.5.4. Summary of model structure ol

The model structure as sketched above can be summarized as: (see Figure Wi

Ut
o 4]
~—
r
¥
s

C

1°°'“n :r g
current _ config N

Configurations : C
| 3
Vv A

Order of hypotheses

- .
ol i ek
viewdir : : €yiewdir o

rottrans : rottrans Ca

rot : . e 9

R ‘x"
trans ) : e O D'
"‘ .

1 .

e .. . . C. ..
remammgl eremaunngl 'J“F"

1 . W

i Y

remainingj ' . remainingj ALY

Angular interval for e’ selection:

viewdir

.
L)

P
1@

b
N

P

FEL L

Discretized sphere SPH[i.j]:

Ay A B v v 1)
72
ey
ML

» "o
o

r .I
«'.?

L , I" ;
oy

',
l.:’__-’

Y
R

;

2

Ll o«

. - . . - - s 3
S N S SR SRR AR LA

NN -~ . . . DAL S
P PE DL oI, ST T, PRV ARYRLAR APV A7 (W DT W8 S5 WL g JRE DA o8 Vv

¥ a .

e a T
.




Rag Sap "ar - afatMia'Ate g~ Riatiie ) e W ViV ¥ T VNN ) Jdatd " ot datagef Mo’ T TV S A W W W W W W VAT W AT R T AT T
: Sah's A%e Iy

r

P
[} f,:."
B
y 122
hj
W .
; SPH[!.J]
)
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v
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P
N
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- Viewing direction w and canonic frame w; and w,.
i
"l
! List of model primitives with:
\ € .--vmeeee > a,f
1
3 »
8 oieemmeee> XIS
1 1
. Unary properties of primitives (array attrl)
attrl[l]
,. |
) V ;-_'_
; "
{ S fb'
" acceptable length (1_. |1 ) g
min’ max .\..
. e,
L
R Relations between primitives (array attr,[i,j]) L)
: attr,[i,j] .
- | -
. 5
4
e \4 ;"a
A L
T -
‘ angle (ei.ej) v
’ ' T
d W
_ oo
:: '.';'.'.
- 5.3.6. Implementation e
L
The major drawback of this model representation is the size of the data n
o o
structure which is related to the level of discretization of the sphere and the L
'- :.\
- resolution of the angle tables. The physical representation of the model should be -9
A
N carefully designed in order to avoid wasting time just for initializing the internal ez
. A Y
- . (_‘:
representation in the recognition program.  Two implementations can be -;.-:‘.
.
designed:
o
™ .
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. 1. 1
l current configuration min  max

T ¢
(Vi'wz)""“(vi'wz) max

edge attributes

%iovpoint

€rottrans

. |

order of ekploration
discretized sphere |

configuration attributes

€remaining

length consistency

Local spherical «

e ____> Jmin 1 max coordinates of v,

P

- - - - - -
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i x i vy i z

(local cartesian coordinates )

mutual angles

edge attributes

——

i silhouette description
el (e '€ j) local coordinate system:
- - -

Wy Wy W,

Global edges attributes

viewpoint attributes

Figure 5-8: Model data structure

¢ Program generation:
The first way is to represent the set of configurations and the
corresponding orders of exploration as a program by replacing the
generic model edges by the actual compiled edges, e

viewpoint'
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Py
e o ete in the general recognition program. The viewpoints b ,:_
attributes and the sphere are stored in arrays initialized at oy
compilation time. @
o
N
L . . . o POt
In that case. no file reading in required but the size of the resulting oy
program could be quite large. "‘
-~
. . A
e File representation:
- e » . - . 4
Another possibility is to store the entire data structure in a file which e
is read at recognition time. The worst way for doing that is to dump :-\.':.\\
- . . A
on a file the structure described above and read the entire data when :\‘;\-
. . . . iy
needed because the time required for reading would be much higher Qo
P « o . . . - T
than the recognition time and we would have no benefit in designing °
a detailed model. Moreover, onlv a small part of the representation is T
needed for a particular instance of the observed scene. For example, o
. . . . Y
only a few set of viewpoint attributes (w.wl.wz.el....en) ont of A
oo
. ar ecled, refore we ust diy lhe elemnents o fa
NSlzeOfSphere wre needed. Theref must divide the elemen I NN
the representation in two sets: "Ninimum Deseription™ and "On ®
. . AL
Request", the former being loaded by the program at the beginning, N
. . . .,
the latter being read when required by the actual arrangement ol R,
. . . l- -‘ *
scene primitives: NN,
N
- .. -.'.\".
o Minimnm Deseription: -
-The possible configurations with the order of exploration and :_',,'\-_
the min and max angles for e_, Lo Y
viewpoint o ¥,
. . e . . ()
-The discretized sphere. each cell of which contains the address N
(in the file) of the viewpoint attributes. -The unary constraints AN
. )
(length consistency..) o
L
.
-
° On Request: N
N . . AT
-The viewpoint description. e
N
NALD
. ‘T
5.3.7. Scene Representation °®
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5.3.7.1. The range search problem

The previous discussion shows that the general operation in the various

T sy WX

prediction step is the following:

e The scene primitives are described by a set of numerical valies
(a,...a

L)

e The hypothesis step provides a set of intervals,
(lamin.amax]....[amin.amax]|)
1 1 p p

e A scene primitive i lies in the search region if:

a{nin <a < amax

J J

This problem is known as the multidimensional range search. In fact, our
problem is much simpler than the general range search because we are dealing
with a static set of data, i.e. neither insertions nor deletions are performed

because all the primitives are known at the beginning of the process.

Several structures were proposed for solving the range searching problem:
k-d trees, range trees, super b-tree..etc. Three costs functions must be considered
when selecting a particular structure, the preprocessing time, the storage
requirements and the time required to answer a query. [t can be proved that the
optimal structure requires an untractable storage size (A\'['.'”’""“’b””) and
preprocessing time. In that respect. the best solution scems to be the range tree
which allows a worst-case behavior very near the optimal and a modest

preprocessing time. The range tree is described in Appendix 1.

Therefore, a efficient scene represensation can be built for computing
quickly the set of primitives [ving in a predicted seareh region by answering

aqueries like:
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"Find the edges such that the length is between lmin ane

1

max
and the angle with the Z-axis is between o . and nax

5.3.8. Results

The program has been tested on several objects in order to validate the
method. The models have been generated by the procedures described above,
and the geometric deseription of the object was entered by hand. The output of
the modeling program is a set of C files that are linked with the standard model-
independent recognition program. By doing this we avoid the problem of fast
access to a large file containing the model description. The size of the model for

the previous examples is about 200KB.

Example 1

The first example has been obtained by using synthesized range images to
which uniform noise is added. The two other examples use range data obtained

from a laser range finder (The White Scanner).

This examples uses the image of Figure 5.10 which was svnthetized from
the object of Figure 5.9. A noise was added to the deptl image. The result of
the recognition program is displayed in Figure 5.11. It shows the superimposition
of the identified scene edges (solid lines). the recognized edges of the model
(dashed lines). and the other edges of the model (dotted lines). The same display

convention is nsed for the next two examples.
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Figure 5-9: Example of a 3D object
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Figure 5.12 shows the range image of a planar-faced object, Figure 5.13
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P

o G A
e

shows the polygonal segmentation of the occluding boundary. The measuring
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device uses a light-stripe technique with one laser and one camera. The range

P
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., image is observed from a direction which is halfway between the directions of the

5 4

) laser and the camera. The points are then transformed into the laser coordinate
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The solutions produced by the recognition algorithm are displayed on
Figure 5.14. This result leads to several observations. First, the correct solution
(solution 1 of Figure 5.14) is found despite the poor quality of the data - the
scanner introduced a systematic geometrical distortion-. Second, only a small
number of solutions is produced even though the thresholds are large, the
number of primitives is small and there are several parallel edges. This result
indicates that the occluding edges contain enough information for recognizing a

3D object and also that the structure of the model provides a good contro! of the

search.

The recognition time is 7 sec. cpu time on a VAX. The model contains 40

edges and twenty configurations (all the configurations were examined by the

recognition program).

Figure 5-13: Occluding boundary

Example 3

This example uses another view of the previous object. The polvgonal
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Figure 5-15: Range image .,j‘_
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segmentation (Figure 5.16) presents a strange edge which is due to the erroneous >

I
)

""'.l

measurernent by the range finder. The solutions are presented in Figure 5.17,

»

e
o .
)

the correct one is the first one.
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5.3.9. Conclusions

We have presented a new method for building recognition-oricnted models
of 3D objeets by representing explicitly the viewer-dependent geometry of the
object and by including explicit guidelines for the tree-search procedure. The
structure of the model leads to a fast recognition program which requires only a
simple preprocessing of the measured data. The method has becn proved feasible
on a sample set of moderately complicated objects. \We are now in the process of

testing the program on more complicated scenes and objects.

Future work includes the design of an even more complete model by adding
information about the svmmetries of the objects, the automatic generation of
verification procedures for removing possible extra solutions produced by the

recognition program (this is usually closely related to the svmmetries of the

)

object), the extension to objects with curved surfaces by using polygonal

approximations of the 3D edges and the profile edges.
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Chapter 6

Tewom N

Summary

In Chapters 2-5, we have described onr progress towards achieving a
combination of pattern recognition. image understanding and artiticial
intelligence techniques for space-based image processing. nsing both optical and
digital processing methods. The various results achieved in the past veur ure

summarized below,

We investigated the use of sixv different algorithims (five linear and one
nonlinear) for their ability to detect small targets in slowly moving backrounds.
Analysis aned stmulation results were presented. Overall, parabalic interpolated

differencing seems 1o outperform all others and is <uitable for parallel real-time

realization.
1 We proposed a new method for adaptive subpisel <hitt estiimation using
y
. Group Delay Fanetion. This method has two svdvants~ over the conventional
(eross-correlation based methods), The fiest s b it o ann Ges the subpixel
d
shifts naturally. The second is that GDEFs pronvide anoostinete F thie Stonal-to-
L)
\-‘\(
\." Iatine ac 1 " N - Pl N2 \ \J‘\-'
Noise Ratios as a function of frequency el thus BL-SNR pegion ean be KN
\u’\.f
LY
o 7
’ . [ . . [ S
emphasized. this new delav estirantion procednre B~ adapt NN
S
®
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X A new technique for the detection of trajectories of targets has been >

<
’

presented. This involves a straight-line Hough Transform (HT). thresholding und
simple transformations in the Hough space and an inverse HT. This new

technique circumvents the problem of storing the curve as a list of line segments

“w w =

along with their orientations and also problems of high dimensionality.

-

Performance of this technique in the presence of noise was also demonstrated

hY

quite successfully.

[

£ )
Sa,
4 4

Our effort this year has also resulted in techniques dealing with two levels

of processing required for the task of describing 3D scenes: the 2D image level
detecting features such as edges, lines and corners in images, and the 3D scene

level extracting and matching 3D structures in range images. Our principle

%
i

;.' )
.
’ s

results include:

'.'

Y, WY W T W A%Y O X IXF
AR Aok
o \.‘\ . s Tk _B_¥
e f.ll' ~7

FaChi Y
1. Description from edge information (2D Inage Level) The method to ,._,..J

generate a scene description from edge information is explored in :::t-:

9 order to find line segments. The Canny operator is used to obtain _‘-5:;

[.'. abrupt intensity changes instead of the Nevatia-Babu operator. To Tove
generate stable and exact line segments, we have tracked the edge :‘\:\:
pixels to detect corners using various size of detectors. We will
generates corner points using various size of the detection distance in g
order to get stable and exact corner points. The coarsest level gives A

’ the search area of corners, while the finest level gives candidate -

i_f, positions of corners.

3 2. Extraction and matching 3D structures (3D Scene Level) \We have ::'_:::b

b investigated a method for building recognition-oriented models of 3D :-::::
objects by representing explicitly the viewer-dependent geometry of :‘r:-r:

3 the object and by including explicit guidelines for the tree-search ::..-,_:r'

P procedure. The structure of the model leads to a fast recognition e
program which requires only a simple preprocessing of the measured

y data. The method has been proven feasible on a sample set ol

! moderately complicated objects.
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Chapter 7

Publications, Presentations, and

Staff Supported

Staff Supported

Electrical und Computer Engineering:

David Casasent (Professor), Principal Investigator

B.V.IK. Vijaya Kumar (Assistant Professor), Associate Principal
Yeou-Lin Lin (Graduate Student)

R. Krishnapuram (Graduate Student)

The Robotics Institute:

Arthur C. Sanderson (Professor). Principal Investigator

John Willis (Gradunate Student)

Nanda Alapati (Graduate Student)
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Computer Science
Takeo Kanade (Professor), Principal Investigator
In So Kweon (Graduate Student)

Ellen Walker (Graduate Student)
7.2. Publications

Electrical and Computer Engineering.. (from start of contract)

1. BN, Vijava Kumar and C. Carroll.  "Loss of Optimality in Cross

Correlators", JOSA-A. Vol. 1, 1984, pp. 392-397.

2. D. Casasent and V. Sharma. "Feature Extractors for Distortion-Invariant

Robot Vision"., Optical Engineering. Vol. 23, September/October. 1981, pp.

4902-498,

3. BVK. Vijava Kumar. "Lower Bound for the Suboptimality of Cross-

Correlators". Applied Opties, Vol.23, July 1984, pp. 20-48-209.

4. Do Casasent, AL Goutzondis and BN Vijava INumar. " Time-

Interaratineg Acousto-Optic Correlator: Error Source NModeling™, Applied Optics,

Vol23, September 1984, pp.32430-3237.

5. R.L. Cheatham and D. Casasent. "lHierarchieal Fisher and Noment-

Based Pattern Recognition”, Proe. SPTEL Vol 504, August 1981, pp. 19-26,
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6. D. Casasent and R.L. Cheatham, "Hicrarchical Feature-Based Object

Identification", OSA Topical Meeting on Machine Vision, March 1985,

7. D. Casasent. "A Recent Review of Holography in Coherent Optical

Pattern Recoguition". Proe. SPIE, Vol. 532, January 1985,

8. D. Casasent, "Hybrid Optical/Digital Image Pattern Recognition: A

Review", Proe. SPIE, Vol. 528, January 1985,

9. W.T. Chang and D. Casasent, "Chord Distributions in Pattern

Recognition: Distortion-Invariance and Parameter Estimation”, Proc. SPIE. Vol.

521, November 1984, pp. 2-6.

10. W.T. Chang and D. Casasent and D. Fetterly, "SDF Control of
Correlation Plane Structure for 3-D Object Representation and Recognition".

Proc. SPIE. Vol. 507, August 1984, pp. 9-18.

11. D. Casasent and R.L. Cheatham. "Image Segmentation and Real-Image

Tests for an Optical NMoment-Based Feature Extractor", Optics Communications,

51, September, 1984, pp. 227-230.

12. D. Casasent, "Coherent Optical Pattern Recognition: A Review",

Optical Engineering, 24, Special Issue, January 1985, pp. 25-32.

13. D. Casasent and V. Sharma, "Feature Extractors for Distortion-

Invariant Robot Vision", Optical Ensineering. 23. September/October, 1984, pp.

492-49x8.
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14. D. Casasent, B.V.IX. Vijava INumar and Yeou-Lin Lin, "sSubpixel Target

Detection and Tracking". SPIE. Vol. 726, October, 19806.

15. B.V.IX. Vijava Kumar and Srikanth Rajan, "Subpixel Delay Estimuation
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Using Group Delay IF'unctions", SPIE, Vol. 697, October, 19806.

[

i6. D. Casasent and R. Krishnapuram, "Detection of Target Trajectories

Using the Hough Transform", Applied Optics, Vol.26, Janurary 1987, pp.247.
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The Robotics Institute
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:
» 1. JL. Crowley and A.C. Sanderson, "Multiple resolution representation
K. and probabilistic matching of 2-D grey-scale shape," Proc. 2nd IEEE Soc.
X
Workshop on Computer Vision, Representation, and Control, May, 1934, pp.
§5-105.
- . .
; 2. J. Willis, "RAPIDbus: Design of an Extensible Nlultiprocessor Sy
P-'J'.‘
: Structure”, Master's thesis, Carnegie-Mellon University, NMay, 1984, ,-:,
LN
. E;\
=
;\‘_‘:-\.
. 3. J.C. Willis, A.C. Sanderson, N.UN. Alapati, "Rapidbus: Design of an oy
S
y i A
Extensible Multiprocessor Structure"™, Technieal Report 81-13. Carnegie-Nellon ®
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- Robotics Institute. o
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- syvstem:  Ineremental Reconstriuction of 3D Scenes from Complex Images", ‘.
Technical Report ONU-CS-8.4-102, Carnegie-NMellon University, February 1981, =
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2. M. Herman, T, Kanade and S, Kuroe, "Inceremental Acquisition of a 3-D

Scene NModel From Images", [IEEE Trans. PAMIL PANI-G. 1951,

3. T. Kanade(ed.), "Three-Dimensional Vision Systems", Kluwer, Boston

1985.

4. N Herman, "Representation and Incremental Construction of a 3-D
Scene Model", Technical REport CMU-CS-85-103, Carnegie-Nellon University,

January 1985,

5. Y. Ohta and T. Kanade, "Stereo by Intra- and Inter-Seanline Search
Using Dynumic Programming", IEEE Transactions on Pattern Analysis and

Muachine Intelliyence. Vol. PANI-7:2, 1985, pp. 139-154.

6. F. Tomita and T. Kanade, “A 3D Vision System: Generating and

Matehing Shape Deseription in Range Images", in Robotics Research 2, The \MIT

Press. TOR5, pp 35-12.

“. DosSmith and T, Kanade, "Autonomous scene description with range

imagery™, CVGIPL 310 1985, pp. 322-3341.

S. M Herman and T, Kanade, "The 3D MODAIC Scene Understanding
System", From Plrels to Predicates, A. Pentland (ed.). Ablex Publishing Corp.

198G, pp.. 322-358.
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7.3. Conference Presentations and Seminars

Electrical and Computer Engineering--

1. D. Casasent. "Fourier Transfer Feature-Space Studies™, Presented at

SPIE. November, 1983, Cambridge, MA.

2. D. Casasent. "Svnthetic Discriminant Funections". Presented at DARPAL

February 1984,

3. D. Casasent, "Robotics Applications of Optical Data Processinz™.

Presented at Polytechnic Institute of New York., February 1981

1. D. Casasent, "Optical Information Recoguition", Presented at the Air

Foree Office of Scientific Research, NMayv 19841,

5. D. Casasent, "Parallel Coherent Optical Processor Architectures and
Algorithms for ATR", Presented at the Workshop on Algorithm Guided Parallel

Architectures for Automatic Target Recognition, Leeshurg, Virginia, July 1984.

6. D. Casasent, "Hierarchical Fisher and MNoment-Based Pattern
Recognition”, Presented at the SPIE Conference in San Diego, California, August

LORA.

7. D. Casasent. "SDEF Control of Correliution Plane Structure for 3-D
Objeet Representation and Recognition™, Presented at the SPIC Conference in

San Dieco, California. August 1984,
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D. Casasent, "Research in the Center for Optical Data Processing,
Presented at Carnegie-Nellon University, ECE Sophomore Seminar. October

1981,

9. D. Casasent, "Advanced MNulti-Class Distortion-Invariant  Pattern
Recognition”, Presented at the University of Pittsburgh, Center for Multivariate

Analyvsis, Pittshurgh, PAL October 1084,

10. D. Casasent, "Optical Information Processing”. Presented at George
2 g S

AMason University, Washignton, D.C., October 1981,

I1. D. Casasent. "Chord Distributions in Pattern Recognition”, Presented
(=]

at the SPIE, Cambridge, NMA, November 1084,

12, D, Casasent. "A Recent Review of Holography in Coherent Optieal

Partern Recognition”, Presented at SPHE, January 1985,

13. D. Casasent, "Hybrid Optical/Digital Image Pattern Recognition: A

Review", SPILL Jannary 1985,

14, D. Cusasent, "Optical Pattern Recognition and Optical PRocessing”,

Presented at Fairehild Weston, Long Island. New York., January 1985,

15. D, Casasent, "Hierarchical Feature-Based  Obhject Ldentification”.

Presented at OSA Topical Meeting on Machine Vision, Lake Talioe, NV Nlareh

1ON5.

A 4
o
d
"

o 4 Ny g
»

e

AR '
3¢ Tole [
LN @0y

whY
LA
1 ..

r
o 7
[y

)

a,
2
Ll
7,

»

)
I‘J‘ ®

Pl 4t 4

\\\'ﬂ¢
2 <
;ﬁﬁy

KN

MR
AN,

]
.
a

. \..‘:."
G -\- o

L

e 2 & _ 8 1t W
%"ﬁ"‘.’. " I'I
[ ]
PP AR IA

)
[




W PN PR MIN T  TR TR T A T A T T AT

:

~.
J

116
16. B.VUKL Vijaya INumar, "Subpixel Delay Estimation Using Group Delay

Funetions", presented at SPIE, San Diego, August 1910

The Robotics Institute
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1. J.C. Willis, A.C. Sanderson. "Segmented Crosshar Switching: Design for

a Hyvbrid NMessage Passing Structure™. [CCD 1985,
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1. M Herman, "Represeuntation and Incremental Construction of a 3-D
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scene Nodel", Presented at the Workshop on Sensors and Alcorithms for 3-D

<@

/

A
g

Machine Perception, Washington, D.C.. August 1983,
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2. F. Tomita and T. Kanade, "A 3D Vision System: Generating and
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Matehing  Shape Description in Range Images". presented at  the 2nd
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[nternational Symposium of Roboties Research, Kyoto. Japan, Augnust 1081,
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3. D. Smith and T. Kanade, "Autonomous Scene Description with Range
Imagery". presented at the 15th DARPA Image Understanding Workshop.

October 1981,

4. ML Herman, "Generating Detailed  Seene Deseriptions from Ruange
Images". presented at the 1985 IEEE International Conference on Roboties and

Antomation, St. Louis, NO. Mareh 1985

5. Ohta and T. Kanade, "<terco by Intra- and Inter-Seanline Search
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Conference on Artificial Intelligence. Los Angels. Aug. 1085,
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6. M. Hebert and T. Kanade, "The 3-D Profile Nethod for Object
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Recognition™, Presented at IEEE International Conference on Computer Vision
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and Pattern Recognition, San Francisco, June 1985.

7. M. Hebert and T. Kanade, "Outdoor Scene Analysis Using Range Duta®.

sresented at  International Conference on Roboties and Automation. Suan
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Francisco, April, 1985,
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