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Preface

This study was prompted by the need for expert systems to perform in real-
time for systems like the Robotic Air Vehicle. Speedups are necessary if expert systems in
the form of production systems are to be used. This study looks at simple production
system control rather than at the complex Rete algorithm. It is hoped that through sim-
plicity, speed can be gained and can be predicted. The predictability is important in real-
time were additional processing power could be brought to bear to increase the response
time.

This work would not have been possible without the assistance, advice and
support of many people. In particular, I would like to thank my thesis advisor, Dr. Gary
Lamont, without whom's help this effort would have been impossible. Also my committee
members, Major Steve Cross and Captain Nate Davis, have provided guidance and influ-
ence at key stages of my effort. None of this would have been possible without the sup-

port and understanding of my family and friends.

Donald J. Shakley
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Abstract

State space search is an important component of many problem solving meth-
odologies. The computational models within Artificial Intelligence depend heavily upon
state space searches. Production systems are one such computational model. Production
systems are being explored for real-time environments where timing is of a critical na-
ture. Parallel processing of these systems and in particular concurrent state space search-
ing seems to provide a promising method to increase the performance (effective and
efficient) of production systems in the real-time environment.

Production systems in the form of expert systems, for example, are being used
to govern the intelligent control of the Robotic Air Vehicle (RAV) which is currently a
research project at the Air Force Wright Aeronautical Laboratories. Due to the nature of
the RAV system, the associated expert system needs to perform in a demanding real-time
environment. The use of a parallel processing capability to support the associated compu-
tational requirement may be critical in this application. Thus, parallel search algorithms
for real-time expert systems are designed, analyzed and synthesized on the Texas Instru-
ments (TI) Explorer and Intel Hypercube. Examined is the process involved with trans-
porting the RAV expert systems from the TI Explorer, where they are implemented in the
Automated Reasoning Tool (ART), to the iPSC Hypercube, where the system is synthe-
sized using Concurrent Common LISP (CCLISP). The performance characteristics of the
parallel implementation of these expert systems on the iPSC Hypercube are compared to
the TI Explorer implementation.

The implementation on the iPSC hypercube points out the feasibility of imple-
menting a production system in CCLISP and gaining performance improvements over the
TI Explorer. This study shows poor performance speedups due to poor load balancing

combined with a large communication overhead in contrast to the problem size.
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Parallel Artificial Intelligence
Search Techniques

For Real-Time Applications

7 |

- 1. Introduction

'

) Real-time applications exist that involve “hard” problems that currently defy
) generic algorithmic approaches. Thus, problem solving paradigms from Artificial Intelli-
52 gence (Al) are being applied to these applications. Due to the computational compiexity,
. however, these approaches have poor computer performance characteristics (Gupta,
" 1986). Parallel processing seems to offer a possibility to improve computational perform-
Al ance for hard real-time problems. The purpose of this first chapter is to provide a back-
g ground for the major components of this study: Artificial Intelligence, Parallel Process-
A ing, and Real-Time Processing. This chapter also defines and scopes the problem and

the approach used in this study.

¥

"' Artificial Intelligence

?': Artificial Intelligence (Al) is concerned with the designing of computer systems
. that exhibit intelligent characteristics of human behavior. These methods are used when
’ other direct approaches start to deteriorate due to a lack of generality of solution. Exam-
< ples of such behavior include language understanding, reasoning, and problem solving
) (Barr and others, 1981). These problems are studied in Al by using a computational
Q.'} model. Many computational models exist for Al problems. A computational model is a
o formalism used to describe a method of solution. These models present different ways to
- represent the problem domain. Examples of these models include production svstems,

semantic networks. frames. and logic (Fischler and Firschein, 1987).
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w2 For each of these representations the method of solution can be formulated as NN
[F- AN
| a state space search. A state space should be defined for the problem domain as an NN
. . . . o )
i, essential paradigm component. State-space definition also requires a set of initial states, el
A
NASKS
o a set of goal states and a set of rules for getting from one state to the next state. The state )
X , : . RO
space can then be thought of as a graph with nodes (vertices) corresponding to states. An ';.-:.-:'_::
! example of a state space can be seen in Figure 1-1. The explicit graphical representation oy
‘ R
A
(P ?:,'.\:.\:_
o A SN
_’- - :\-_\ Py
. LSRN
®
oy
}:‘, e o N
o Initial State ot
it
- et
": S .o :.:':.-\."
g tate Transition ’.-’
/ \ ' \:.\"_
LS ~ '--_'--‘
- A,
- c) Forward States R,
Backward Chaining RS
p \ Chaining “fa
L - .
'.‘:\"'\"
- --"-\ -“ :
. RS
. @ RGN
' Goal State Goal State -;-"
g RN
- AR
e ) ) N
- Figure 1-1. State Space Representation. NN
’. '\'c.\‘,}'
b
F.‘
'_\
. of a state depends upon an individual selection of an associated data (node) structure.
‘
The problem solution can then be determined by searching the graph either from an
. initial state to a goal state (forward chaining) or from a goal state to an initial state
LY
: (backward chaining). NSRS
. NN
.-‘ The production system fits the definition of a state space search in the most DN

generic terms. A production system consists of an initial set of facts and a set of rules that




:- A '
s -
S h
- A
N operate on the facts. Only the goal states are not explicitly defined. The production sys- N
- ~
i‘ tem stops when no rules can be applied. This is the basic formulation of a production N
R system with its roots dating back to Post in 1943 (Rich, 1983). A production system has :
Y the ability to represent any Turing computable function (Post, 1943). This class of func- R
VR J
tions include all the primitive recursive functions as well as partial recursive functions
o (Manna, 1974). Most, if not all, practical functions are primitive recursive functions. :
) Since any of the other representations used in Al are primitive recursive functions they .
can then be formulated as a production system. .
> Production systems are most prevalent in Al as expert systems. These systems \
v, '
~ can be used in different application areas. Application areas for production systems in- _
;:.' clude prediction, diagnosis, design, planning, monitoring, debugging, repair, instruction, K
o and control (Waterman, 1986). )
o, <o
", >, {
d::' - ’
:_-' Parallel Processing , P,
1-.' -
4 0 .
o Parallel processing is the use of more than one processing element to compute ..
S . : : - : :
o the solution to a problem. By using more processing elements, it is hoped that the time to "
; solve the problem will be reduced over the time to solve the problem on a single proces- *
]
sor. This is done at the expense of space efficiency. However, sometimes a parallel archi- -
RN tecture could add space that would not normally accessible on a serial architecture. N
'-. -- N |\
'... - . - . '\
- There are several ways to achieve performance improvements in computer sys- .
NI tems besides parallel architectures: faster hardware technology, improved serial architec-
. ) tures, better algorithms and code optimization. There are several reasons for looking
; toward parallel architectures. First, parallel architectures can evolve as fast as hardware
;::i technologies become available. Second, many problems associated with Al are computa- ]
_:: tionally “hard” (exponential time-order) or NP-complete (see Appendix C). If a problem
) ‘ is NP-complete, this implies that time-order improvements in solution algorithms are ‘
. unlikely due to many vears of computational studies (Aho and others, 1974). It should be .
N -
o .
A -3- -
¢
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5 :
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noted that parallelism can not produce polynomial time solutions to exponential time

e

problems (Norman, 1985). But, it is possible to improve the constant term of the time

complexity. Also, the exponential time bound is often times worst case. In Al problems, :

:Q; the use of heuristics can reduce the time complexity of state space searches. Third, some :
- problems seem to lend themselves to parallel solutions because the problems decompose _
;;-i easily into independent, computationally equivalent pieces. Production systems seem to 7z
R fall into this category because of the large number of rules that must be matched during “
:.t‘ each production cycle. The state-space graphical formulation of a production system ap-
e pears well-suited for parallelism (Gupta, 1986). ‘
~ A complete examination of parallel architectures is contained in Appendix B.
: Briefly, however, it should be noted how the major categories -of parallef architectures ;
) map into the major types of parallel decomposition. The two types of practical architec- e
- -
:f- tures according to Flynn's taxonomy is Single Instruction Multiple Data streams (SIMD) g
N and Multiple Instruction Multiple Data streams (MIMD). The two ways to decompose a f;
I problem is by function (operations) and by data (objects) (Figure 1-2) (Jamieson and g
others, 1987). Another method related to data decomposition is object-oriented design E
(Booch, 1987). This is a method where data entities are viewed as objects. Messages are '
.,‘ used to communicate between the various objects. In some cases, a problem can be de-
composed in layers of these two methods. In other words, a problem can first be decom-
i posed into partitions by the data, and then these partitions can be decomposed by func-
Y tion (operations) (Figure 1-3). The mapping of decomposition methods to architectures is F
. obvious. The SIMD architectures are designed for lock-stepped operations on multiple
\ data paths that correspond to data decomposition. The MIMD architectures are designed
for potentially different operations on multiple data paths that correspond to functional N
. decomposition. The flexibility of the MIMD architectures is useful for the lavered decom-
o position approaches because it allows any operation to be performed on any processor :
c
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Real-Time Processing .
. There are several important issues in the ana..~.s and desien ! redi-Lme com- -
S N
. puter applications. One of the important characteristics i~ the Critical Sature of 1he ststem 25
Y execution speed in reference to external events Thic _an be viewed onofermes ot the to- \
o ‘_o ..'
. sponse time of the svstem to a particular input For a reai-ume svstem, e nme necdold X
T to make a calculation has to be less than the tme from when the need tor the calculaton -
v is recognized until the time when the response is needed o take action™ (Norman, 1985 N
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is definitely less than a second and often in the milliseconds or less (Ward and Mellor,

il
L\
®

1983). | ;::E&'::
:.": Another critical characteristic is limited memory capacity. Real-time software :E:E\
- tvpically needs to run in an environment where the size of the program can become a E'.;".Ej
. problem. A third consideration is the.correctness, reliability and integrity of real-time '""',;
. software. The system needs to run correctly and without failure a high percentage of the
2 time (Ward and Mellor, 1985). These represent the most critical issues dealing with real-
NS time systems.
> The problem with a real-time system on a serial architecture is that the execu-
.S: tion time and space requirements are relatively fixed for a given operation. A desirable
] feature of a real-time system would be a variable time and space performance based on
::'. the need. With parallel architectures this could be possible. If a problem needed a faster
solution hased on the time requirement, then more processors could be added to produce

the appropriate speedup. This could only be done if the speedup were predictable.

The need for production systems within real-time systems is growing. With
parallel processing of production systems, the execution speed is increasing. For real-
AN time systems this speedup needs to be predictable, so that at any given moment more

processors can be brought to bear on a problem to decrease the coefficient of the time

] '\)‘l.

s

complexity of the solution.

»

An example of a real-time application, which is a current research project at

s 8"

the Air Force Wright Aeronautical Laboratories, is the Robotic Air Vehicle (RAV). It is

Payay

an air vehicle with the capability of autonomous flight operation. This vehicle needs the
‘ capability for the “intelligent” control of an air vehicle, the capability to plan and replan

missions, and the capability to access flight data on various geographical locations (air-

¥ bases. airports, cities. etc). By “intelligent” it is meant that the system can react to
i ®
conditions rather than fly on a rigid preprogrammed flight path. A diagram of the system E:E,: ]
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can be seen in Figure 1-4. A complete discussion of the system components can be found

in Appendix A.

This study focuses on the “intelligent” flight control components of the system.
This component was selected due to its reliance on production systems and its maturity in
relation to the entire research project (Graham, 1987). The control of the vehicle can be
thought of as a search through a finite state-space over a time period of the vehicle's
operation. The problem of intelligent control of a robot is a control-type NP-complete
problem (Appendix C) that is best suited to be solved by a production system in real-time
(Appendix A). Therefore, this system makes an excellent tool for the study of parallel Al

search techniques for real-time applications.

Problem

The RAV system is an example of an intelligent real-time robotic control sys-
tem implemented using an expert or production system (McNuity, 1987). The purpose of
this investigation is to try to increase the performance of the expert system by reanalysis,
redesign and reimplementation of the system on appropriate parallel architectures. The
hypothesis of this study is that the performance of the RAV expert system can be im-

proved in a predictable and linear manner.
Scope

There are many types of expert systems (Nilsson, 1980). This investigation
concentrates on an expert system for intelligent real-time control (Albus, 1981). There is
the potential for many types of parallelism within production systems (Douglass, 1985).
The search parallelism within a production system is the focus of this effort.

There are many types of parallel architectures (Appendix B). The two tyvpe of
parallel architectures (MIND and SIMD) were considered for this study. Onlv two particu-

lar architectures are considered in this studyv due to availabilitv. A further discussion of
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:: the reasons for the architectures chosen is contained in Appendix B. The first one is the e
N EAE
. . . -
. host of the RAV system. This architecture is a network of four loosely coupled Texas ;;
Q Instruments’ Explorer Lisp machines with distributed memory. The other is the Intel iPSC -
o hypercube with up to 32 processing elements (PEs). The results could possibly be applied E:
LN 5]
RS ) ) . Pl
to other intelligent control expert systems and other expert systems in general on the A
' same architecture type. Some basic results could possibly be generalized to other exam- %
- .’n_
ples of searching not associated with expert systems and to other expert systems on RS
. Sl
- . s
closely related architectures. e
o This research is intended to be a feasibility study of the issues involved includ- N
W
- . . : . : "
ing implementing an expert system written in Automated Reasoning Tool (ART) on a TI N
¢
., . : : ?,
}. Explorer on the iPSC Hypercube using Concurrent Common LISP (CCLISP). ART is a NA
' . . . . ’
knowledge engineering language used in the development of expert systems. CCLISP is a o
-‘; N ’ . j-'.':
~ dialect of Gold’s Common LISP that has been enhanced to allow for message passing on N
N the iPSC Hypercube. LISP was chosen since it was available on both the Tl Explorer and .
8 | | | >
iPSC Hypercube making the transportation of the code from one machine to the other o
:;:' easier. This study is most interested in examining the execution speed of real~time sys- \"
tems that use production systems. This study focuses on achieving execution “speedup” :f::
»
.' through the use of parallel algorithms. The performance metrics of this study will be "
. defined latter in the report. The results of this study are not intended to specifv final ::::
) e
* real-time execution times, but rather an analysis of speedup possibility due to parallel e
»
N processing of production systems. e
._:;-
A
W Approach NG
' »
- The current knowledge base (Appendix A) for the RAV has been obtained trom ::_
o '."’:
' T1 through the Air Force Avionics Laboratory. This includes a basic demonstration rou- o
- . ‘I-
» tine. Portions of this demonstration will be used to exercise the svstem. The control for ;'
y the expert system is developed using the basic principles of production svstem control for :._‘_:l
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an inference engine (Appendix E). The current RAV software uses the Automated Rea-
soning Tool (ART) as the inference engine (McNlty, 1987). ART can not be used with
the parallel environment since it is not licensed for nor is available for the iPSC hyvper-
cube. The inference engine will be designed on the TI Explorer Lisp machines where it
can be tested against the knowledge base and the rule execution timing results can be
compared to the ART inference engine. The parallel expert system is implemented on the
Intel iPSC hypercube with up to 32 processing elements (PEs) to explore larger degrees of

parallelism.

Overview of the Thesis

The thesis is organized into six chapters with detailed explanations and descrip-
tions in various appendices to improve understandability. The first chapter is an introduc-
tion of the issues involved with the thesis investigation along with a problem statement,
the scope of the study and the approach used in the study. The second chapter examines
the key issue of search. The third chapter is a discussion of parallel decomposition of
search and how it applies to production systems and the RAV system. The fourth chapter
contains a detailed analysis and design of the serial inference engine used, the parallel
inference engine, a parallel production system, and a parallel RAV expert system. The
fifth chapter provides the implementation details for the TI Explorer system and the Intel
iPSC hypercube along with the experimental results. The sixth chapter provides a sum-
mary of the results along with conclusions and recommendations of this study. Detailed
discussions of the RAV, parallel computer architectures, NP-completeness. and inference
engines as well as the serial and parallel production system code are provided as appendi-

ces.
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II. Searching Knowledge Based Systems

Introduction

Search is a basic method for problem solving where other direct methods (algo-
rithms) do not exist. Problem solving using search involves defining a state space and
systematically checking those states to find a solution or solution path. The state space
(problem space) forms a graph with the nodes being states and the edges are the transi-
tions from one state to the next state. A solution to the problem is then determined by
selecting an initial state (node) and methodically traversing the branches (transitions) to

find a goal state (node).

Graphical Representation

The state space graph in its most general form is an AND/OR graph. An exam-
ple of an AND/OR graph can be seen in Figure 2-1. The successors of a state (node) can
be independent of each other (OR connections). The successors of a state (node) can also
be related (AND connections) represented by arcs between the edges in the graph. This
latter type of relationship indicates that any solution path through one of the nodes in an
AND connection must include all the other nodes in the AND connection.

A quick look at some terminology. Once a node has been selecied the process
of producing its successors is known as expanding a node. The successors are sometimes
known as children with the original node being called the parent. In this wav, grandpar-
ents and grandchildren can be defined and can be useful in describing relationships be-

tween nodes on different levels of the graph (Figure 2-2).

Search Types

The two most basic types of search are breadth-first and depth-first. Thev are
both uninformed searches. That is. neither uses anyv heuristic information to guide the

search process. Breadth-first search can be seen in Figure 2-3. The scarch visits all the
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nodes on each level before moving to the next level. This can be viewed as a Last-In
First~Out (LIFO) process. Depth-first search can be seen in Figure 2-4. This search visits
one node on each level along a vertical path. This can be viewed as a First-In First-Out
(FIFO) process. |

Before discussing other types of searches, a discussion of solution quality is
needed. The term optimality can have various meanings depending on the characteristics
of the problem space. If only one goal state exists, then there is no difference in the goal
that 1s found, only the paths to the goal are different. The “best” path to this single goal
can be defined in many ways. The “best” path could be the shortest path in terms of the
number of nodes on the path. The “best” path could be the minimum cost of the sum of
welghts of each node on the path. In general, the “best” or “optimal” path can be defined
in any consistent manner for any specific problem space. If more than one goal exists,
then the “optimal™ solution not only involves finding the “best” path to a goal, but also in
finding the “optimal” goal. This implies that there is some criteria to order the various
goal states, so that one goal can be found to be the “best” or “optimal”.

Searches that discover the “optimal” solution path, that is find the “best” path
to the “best” goal are known as optimizing searches. They find the “best” answer.
Searches that sacrifice the optimality requirement in order to discover a solution are
known as satisficing searches. Here the requirement of finding a solution is satisfied, but
the optimality of the solution is sacrificed.

There are many types of informed searches. An informed search, unlike
breadth-first or depth-first searches, use some knowledge about the problem space to trv
to reduce the number of nodes examined in the search process. These searches are known
as best-first searches. The nodes of the graph are ordered by some criteria. This criteria
is defined by what is meant by “best.” As was seen above, this can take on various
meanings depending on the problem and the situation. The important point is that the

nodes are ordered and the first in the ordering is selected for expansion. A* is an exam-
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ple of this type of search. A* defines the “best"node in terms of a function f" where t" = ¢
+ h'. The value of g is the “cost” of the path from the initial node to the current node in
question. The value of h’ is an estimate of the “cost” of the path from the current node in
question to the goal node. The node with the smallest f* value is selected from all the
nodes in consideration to be expanded on each cycle of the search. Figure 2-5 shows an
example of an A" search. The h’ value is called the heuristic and varies from one prob-

lem to the next. The optimality of the A* search can be analyzed based on the character-

Search Order:
ACHBEDGFKIJI

Figure 2-5. A* Search.

]
192
[*))

istics of the ' function. If f', the estimate of the cost of the path from the initial node to

the goal node through the current node, is less than f. the actual cost, at each node in the

graph. then the A* search will find the “optimal” solution based on the ' function.
The other tvpes of best-first search are variations on this basic theme. One

tvpe of variation is to change the f' function. This function can be changed to decrease the
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number of nodes examined, but at the possible expense of “optimality.” This tvpe of
change usually involves weighting either the g or h’ value or both. Another variation is to
eliminate or limit the nodes that have been expanded from being considered in the future

of the search. This is usually accomplished by creating a bound where all nodes whose f’

value are beyond the bound are eliminated from consideration. This has the effect of
trimming the graph and reducing the nodes to be examined. This method, also. speeds the

search at the expense of “optimality” and in some cases at the expense of arriving at a

the literature (Nilsson, 1980; Pearl, 1984; Rich, 1983).

Breadth-First

Depth-First
Hill Climbing
A*
Beam
AO*
SSS*

Figure 2-6. Search Variations.

exhibit the same flow.

rithm in Figure 2-7 describes the basic procedure.
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solution. Examples of these variations can be found in Figure 2-6 and are discussed in

The various types of searches are slight changes to the same form. Thev all

It is a form of generate-and-test or branch-and-bound. The algo-
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1. Select a node from the list of nodes to be explored.

2

. Test the node to determine if it is the goal.
3. Generate the children (successors) of the node.
4

. Place the children on the list of nodes to be explored.

Figure 2-7. Search Cycle.

The domains of the problem space, therefore, influence the basic operation of
the search. The only impact the problem space has on the operation of the search is in the
heuristics used to select the next node for expansion. For example, with the typically
numerical domains associated with the Traveling Salesman Optimization Problem and the
Set Covering Optimization Problem the heuristic is calculated using f* = ¢ + h’. In the case
of the Traveling Salesman Optimization Problem, the value of h’ can be calculated from
the weight of the minimum spanning tree associated with the remaining unused nodes.
With problems involving a more symbolic logical representation, the heuristics can take a
variety of forms. The selection of nodes to expand can be based on the number of terms
in the symbolic representation. The selection can be based on the depth of the parents of
the node in consideration. In the set-of-support strategy of resolution, the clauses that
result from the goal and their descendants are given preference (Nilsson, 1980).

The basic components of search can be found in logical resolution systems and
production systems as well as in many branch-and-bound search applications. The onlv
variation is in the optimization requirement and in the heuristics used in selecting the next

node to be expanded.

- 18 -

A IO

ot aamata A apn
e L

A

L T PO R SN LI
,'{,’:'.‘n'd’:.
LN ‘.';.s{'u-u

.-..‘.,
AL
2% Yot

> %
A
L)
L A

" @ l-'-
P ,&,

»
v

'I
1,
]

¥
.

L4 G
LAY
RN

'. 'l
e
(('( v

LA

P Y
5,7, '..
'2"-." ,

re’d
.A
Pd

LY e
L T

.l
‘

LX)
-

20 2 B I I N
[ A AN
At S h L N

P A P

Sl e

2
»

2 e’
()
.

P



B T AT T T Y T L T T L T L L R VTS Ak A b1 LT LY Pl b SRt A

L 4

. ’-" 7._1

-

PRI

r o

<o

K
.

(l,l {l
A

Y

N

Production Systems and Search

Production systems are computational models. They consist of three compo-
nents: a global database of facts, a set of productions or rules, and a control strategy. The
global database or working memory (WM) contains the set of initial facts or axioms as
well as facts generated by the productions. The productions or rules, known as the pro-
duction memory (PM) consist of an antecedent or a left-hand side (LHS) and a conse-
quent or right-hand side (RHS). The rule is of the form 'IF condition THEN action’ where
the condition is the LHS and the action is the RHS. The LHS can be anv conjunction of
facts or negated facts. The RHS can be any new fact or the retraction of an existing fact.
The control strategy, also known as an inference engine, matches the LHS of the rules of
the production memory with the facts in the working memory. The inference engine main-
tains a list of bindings of variables with possible matches from the working memory.
After all the rules have been matched, the inference engine selects, from all the rules that
have successfully matched, a rule to apply. The RHS of this rule is then applied regulting
in the addition or subtraction of facts from the working memory. The basic cycle can be
seen in Figure 2-8.

As a computational model, Post proved in 1943 that a formal production sys-
tem 1s computationally equivalent to a Turing machine (Post, 1943; Minsky, 1967). This
means that any Turing computable function can be expressed as a production svstem.
This gives production systems a great deal of computational power. This implies. how-
ever, that production systems do suffer from the halting problem. The halting problem
occurs when a solution fails to exist, then the production svstem is not guaranteed to halt,
but can run forever.

The advantages in using a production svstem lies in its flexibilitv. The knowl-

edge is separated from the logic or control. This allows the rules to be changed without
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Figure 2-8. Production System Cycle.

affecting the control logic of the whole system. This gives the system designer greater
flexibility in system growth (Nilsson, 1980).

The control of a production system is essentially a search process. The current
state of working memory elements or facts can be represented as nodes. The rules are the
transitions to a new state. The number of rules that can be applied in any one situation is
the branching factor of the graph at that node or state. The basic control algorithm is seen
in Figure 2-10. A graphical depiction of a production svstem as a search graph is seen in
Figure 2-9. OR branches of the graph occur when rule changes the working memory is
such a way so that another rule that did apply. no longer applies. AND branches of the

graph occur when the application of one rule does not impact application of another

rule.
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! Procedure PRODUCTION
- 1. DATA <- initial database
’I

2. until DATA satisfies the termination condition. do;
3. begin
- 4. select some rule, R, in the set of rules that
can be applied to DATA
o
Ny 5. DATA <- result or applying R to DATA A
bt N
N
6. end. Py
v ey
N
’ . : . . °
Figure 2-10. Production System Algorithm (Nilsson, 19080: 21). .
' The algorithm in Figure 2-10 is nondeterministic. In step 4. several rules can
. . . . - ANRS
be selected, but on a serial architecture only one rule can be applied in step 3. Due to the NANKS
. . . Sl
S OR branches in the graph and the nature of a production svstem, once certain rules have NN
- - .“.
A SRS,
been applied there is no way to reverse the effect and to backtrack in the graph. This is an R
®
- . . . . . . . [P N
. irrevocable control strategy. This is especially true of a production system operating in a DAY

h':\‘- _':
- real-time environment where performance is critical. However, another characteristic of a ::.::.:
LN \-' w®

producton system that can overcome an irrevocable control strategy is the commutative N
~‘;: property. This means that any action can be gotten from any ordering of rules (Nilsson. N
Ca ’
1980). AND branches offer one example of this tvpe of commutative nature 1o production -
< svstems. R
-\ ONAY
Y . ':~.'.\'
Iy Summary P
o
s ) . . . Y
This chapter reviewed search and production svstems. Production svstems are a °
very expressive computational model in that all other models can be represented by o ]
. - - WIS
-8
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production system. This chapter showed that a production system can be viewed as a
search process. In the next chapter, methods are developed to arrive at parallel algorithms
for production systems. These algorithms are then used to design and implement a con-

current production system.
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% II1. Parallel Search Algorithms s
A
~ ._‘!"?."
. Introduction ®
> \.f,_'-‘
N
~ This chapter looks at parallel processing of search algorithms. First, a look at N0
» "
i . . . . , . NN
parallel decomposition and performance metrics associated with parallel computing. This S
. . . , L @
-_! chapter explores the different manisfestations of parallelism within general search and ;
specifically the concurrency available in production systems. Finally in this chapter, vari- -
- ous algorithms are presented for parallel decomposition of a production system to lay the ;
ot groundwork for the design in chapter four. ¢
X >
Parallel Decomposition -
o
-~ .
The advent of parallel computer architectures have brought about the possibil-
- ity of faster execution of many computer applications. Parallel architectures have brought .
- ] .
about new problems as well as the old in terms of software analysis and design. For an E
«,
ﬁ application to be implemented on parallel architecture, a way must be found to decom- _',',.,
N
pose the problem into component pieces. Several important issues are concerned with this N
N, AS
= .. . o . . A
decomposition. First, the work must be distributed as evenly as possible. This is so that g
N
i each processor is busy. This is load balancing. Second, the communication between the ot
"o \;\:_
pieces needs to be kept to a minimum. This is to reduce the communication overhead NN
- associated with the various processors communicating with each other. However, when o
this communication occurs, the processors need to be synchronized with respect to each _._‘.
"’ other. This is to prevent problems with updating shared variables that can produce errone-
i ous or unpredictable results. Proper synchronization also prevents the occurrence of dead- Ry
lock between processors (Ishida and Stolfo, 1985). \-._\_
. \- a
Performance Measurements o
it =
Speedup is the most common performance measurement (metric) in parallel a
" computing. This is the ratio of the run time of the concurrent software running on n nodes e
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over the the run time of the best serial solution. An application is said to be "pertectly
parallel” if this ratio is n. This is a linear speedup. That is the speedup goes up linearly
with the number of processors. Often the speedup approaches the linear speedup, but
does not reach it due to the communications overhead between the processing elements
(Gupta, 1986). Although rare, speedups have been observed greater than n. This is called
super linear speedup. At first this seems to be absurd, but upon further study it does
seem reasonable. Super linear speedup usually occurs when the application is so large on
a serial system that certain overheads are incurred. but when placed on many processors
none of the pieces is large enough to incur the same overhead. Thus super linear speedup
is observed(Kornfeld, 1981). In addition, there is usually a point at which the addition of
more processors does not improve the speedup (Gupta, 1986).

Communications overhead is a large concern is parallel computing. This com-
munication takes several forms. The first is the time to set the job up on the parallel
system or the time to distribute the work. The second involves the time needed to collect
the results of the job. The third is the communication needed between the processors
during the running of the job. An important measurement is the time a processor is
communicating versus processing. This measurement along with the setup time and
cleanup time gives a good indication of the overhead associated with the parallel process.
This is not the only area which produces overhead within the paralle! process.

Load balancing is yet another important criteria for parallel computing. This is
the percentage of the total processor power that is used during the job. A perfect load
balance would be one in which all the processors are busy all the time. This perfec
balance is impossible due to two factors. First, depending on the connection network for
the processors (see Appendix B) the setup and cleanup provide for times when not all the

processors are busy. Second, there is usually some fraction of the job that is inherently

serial. This part of the job has to be performed on one processor while the other proces
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f- sors are idle. These two factors are innate to the problem. Poor load balancing can also be j::':.,
- designed into a problem due to a poor decomposition. .,E_:;

| ! Several other performance measurements are needed to baseline a production ;"
T svstem. These include 1) the number of productions or rules, 2) the number of working ;-’,'

N
memory elements or facts, 3) the composition of the rules which includes the number of '2‘;;
" 2.

clauses in the LHS and RHS of the rule, and 4) the average number of rules eligible to be

s

. . . SN
selected on a given cycle. These are but a few basic components, other characteristics k
Y
o,
N
depend on the system and inference engine being examined. I
e
F‘Z ":;'..'
~ e
Parallel Search N
o , : ':::
The general forms of the search were discussed in chapter two. Now, the issue °
1s how to decompose the problem to perform the search in parallel. Like any decomposi- -'j.::;.
< A
) tion problem, there are two main choices for concurrency. Either decompose the functions -}'r.-..
Ny
« : : . . N
f.- or instructions and perform independent tasks concurrently or divide the data and per- "."

form the same functions on subsets of the domain. In some cases, both can be achieved in _
layers. For search, both methods have been proposed. For example, Mraz studied parallel =
L branch-and-bound search by dividing the operations of a search cycle among different
- processors (Mraz, 1986). Gupta studied the decomposition of the data within production
:j-ﬁ systems. In his study, Gupta looked at generating the next nodes in the search graph :—.-:'

through parallel matching of rules using the Rete algorithm (see Appendix E tor more S
- details on Rete) (Gupta, 1986). o
Both of these methods can be mapped onto the two main categories of parallel

4 architectures. The functional decomposition can be mapped onto the MIMD architecture

o while the data decomposition can be mapped onto the SIMD architecture. However. prob-

h

.
I
3

»

lems that can be mapped to the SIMD machine can also be implemented on the MIND

» '\" P

- machine. This makes the MIMD architecture suitable for either decomposition as well as ."
the lavered decomposition. The lavered decomposition involves decomposing the rules on R
e Oy
(l: ~‘I-
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o

. v vy

o
s:.' ..‘\
o one level and within that level decomposing the facts. Consider a case where the rules are j::.:
N
.ﬂ distributed among several subnetworks of PEs. Then within each subnetwork each the v
’
data is divided into independent groups to match against the set of rules given to that :j~
. . . . .. \...
Y subnetwork. This provides a layering affect of decomposition. :f_
: L] . ..J'-
i The decomposition of the functions is straight forward with a limited possibility i
» L3
S for parallelism. The cycle can be seen to be a four step process (Figure 3-1). If this o
Z o
: e e
'~:' /'_;4‘
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Figure 3-1. Production Cycle. s

decomposition could be implemented in a “perfectly parallel™ fashion, then only a four N

WY W e oY Y.

v, av.v.v.
. - .
e e

times speedup could be achieved. Greater speedups are hoped for. This can only be NS

achieved by analvzing the data.

Y

:f_ The data decomposition offers a much larger opportunity for concurrency. This el
- ..._
is due to large set of data. If the search graph or tree can be decomposed then there is the f:'{

Va” .
‘.'_ \"\.

potential for great speedups. The question is how to decompose an exponentially growing

.>
graph or tree among a constant number of processors. This decomposition has to be o
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constrained in such a way as to insure a “fairly equitable” load balancing and to reduce

the communication due to data dependencies.

Parallel Production System

Production systems, as were seen in chapter two, are a type tyvpe of search.
Therefore, parallel decomposition techniques for search problems can be applied to pro-
duction systems. So, production systems can be decomposed along the control functions
like a branch-and-bound or it can be decomposed by its data. In the case of a production
svstem the data can be thought of as two parts (Figure 3-2). The first part is the facts or
the working memory (W)M). Although the working memory can have several meanings in
this context it refers to the initial facts and axioms as well as the facts added due to the
firing of rules. The second part is the rules or the production memory (PM). These two
parts are not always distinct, but can overlap. For example, the result of a rule could be
the addition of a new rule. The reasons for making the distinction in the types of data is
that in some cases it is much easier to decompose the rules than it is to decompose the
facts. The latter requires data dependencies to be worked out while the former requires
less restrictive decomposition considerations. Both types of decompositions will be looked
at in the algorithms.

As described earlier the concurrency available in decomposing the functions is
limited. This is particular true for production systems where over 90 of the time is spent
in the match function (Gupta, 1986). So the main emphasis is placed on the decomposi-
tion of the data. The methods for implementing a production system tend to center
around ways to decompose the rules (PM) and the facts (WNM). This has lead to several
algorithms to accomplish this decomposition and placement on separate processors.
These algorithms are generally at the level where the underlving inference engine struc-
ture is unimportant. The methods are more concerned with the dependencies of the rules

on each other and the facts (WND).
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' Algorithms

e

Several algorithms have been proposed for the parallel decomposition of pro-
duction systems. These algorithms deal with rule independence and communication
among processors. The first five algorithms (Stolfo, 1984) are for the DADQO parallel
- architecture. Although some aspects of these algorithms are hardware dependent, they
can be generalized to other architectures as well. The DADO architecture consists of a
binary tree of processors which is easily simulated on an n-cube architecture like the
iPSC hypercube. One hardware dependent feature is a process called max-resolving that
is specialized hardware to select the maximal PE for selection of a rule to fire. The

DADO PEs have the capability to alternate between MIMD mode and SIND mode (Stolfo.

1984). The last two algorithms in this chapter provide specific algorithms for ruiec decom-
position and rule synchronization. This is accomplished using data dependency graphs for ®
~

production svstems.
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p
B i
’
N
P Algorithm 1 - Full Distribution of Rules o
N
n_ This algorithm distributes all the rules across all the available PEs. Each PE has .'\'
A
. 1ts own copy of the WM. This algorithm can be seen in Figure 3-3. "\
~ 2
oy
" )
-~ e
e 1. Inmiualize: Distribute a simple rule matcher to each PE. :
F, Distribute a few distinct rules to each PE. Set CHANGES N
- to initial WM elements. \
, 2. Repeat the following: A
N 3. Act: For each WM-change in CHANGES do .
a. Broadcast WM-change (add or delete a specific WM ' .
element) to all PE’s. o
- b. Broadcast a command to localDy match [Each PE Do
b operates independently in MIMD mode and modifies s
S its local WM. If this is a deletion, it checks its local e
‘ 8 conflict set and removes rule instances as appropriate. )
If this is an addition, it matches its set of rules and o
% modifies its local conflict set accordingly].
¢. end do;
' 4. Find local maxima: Broadcast an instruction to each PE
to rate its local matching instances according to some
| predefined criteria. " 1
5. Select: Using the high-speed max--RESOLVE circuit of o
DADO?2, identify a single rule for execution from among all S
PE’s with active results. -
6. Instantiate: Report the instantiated RHS actions. Set RN
, CHANGES to the reported WM ~changes. '
s . end Repeat; =y
~ o
’_‘h ;-'
R “
) Figure 3-3. Algorithm 1 (Stolfo. 1984: 302). ’
2 =]
R ]
. N
SN AN
This algorithm is rather straight forward to implement since all of the working ) -
W memory is located at each PE. This could be a limitation if the WM is to0 large to fit on a §\;j
‘o Kd
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. PE. The speed of this algorithm depends on the speed of the match on each PE. Multiple :::.::-Z:
A
: firing of rules can be accomplished, but is handled in detail in a later algorithm (Stolfo. AN
Y e
- 1984). This algorithm is the basis for the algorithm developed in chapter four. NN
= = Ny
‘f G
:j Algorithm 2 - Original DADO Algorithm :::.::
;-":1’
] This algorithm divides the DADO machine into three sets of levels: a PNl-level. .o
< '_:a_:f
an upper tree, and WM subtrees. The upper tree is the meta control level to supervise ,'_j’,"_-__,
Sy
I'-'..: operation of the system. The PM-level and WM-subtrees form a layered decomposition : '.'_:':
- of the production system. The PM-~level distributes the rules and then each of these sub-
<
- sets of rules are matched in parallel by the WM-subtrees (Stolfo, 1984). This algorithm
- can be seen in Figure 3-4.
This algorithm is very dependent on the DADO architecture. This algorithm
e also forces a limitation on the size of the PM, but the size of the WM can be quite large.
For these reasons this algorithm, does not weigh in very heavily on the design of the
°
parallel inference engine in chapter four. This algorithm starts to approach the idea of a RN
/:‘.":
distributed WM that allows for multiple rule firings. l‘f,::;'.:-
e
Algorithm 3 - Miranker's TREAT Algorithm "."\
I"\

This algorithm was developed by Daniel Miranker to improve on algorithm 2 1
provide some features of the Rete algorithm. This algorithm can be seen in Figure 3-%.
This algorithm is appropriate for production systems that have small PMs and
large WMl and where many rules are affected on each cycle. This algorithm uses a simple
matcher rather than the Rete algorithm (Stolfo, 1984). This fact makes this a rather inter-

esting algorithm for incorporation in chapter four.
Algorithm 4 - Fine Grain RETE Algorithm

This algorithm uses a complete compiled Rete network on each PE. Otherwisc. P

this algorithm is very much like algorithm 1. This algorithm can be seen in Figure -0
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1. Initialize: Distribute a match routine and a partitioned N
N subset of rules to each PM-level PE. Set Changes to the ,\a:
N initial WM elements. RN
2. Repeat the following: e
»n 3. Act: For each WM-change in CHANGES do; -~
o a. Broadcast WM-change to the PM-~level PE’s and an
instruction to match.
b. The match phase is initiated in each PM-level PE:
- 1. Each PM-level PE determines if WM-change is T
relevant to its local set of rules by a partial match °
= routine. If so, its WM-subtree is updated accordingly. Y
o [If this is a deletion, an associative probe is performed -;Q.-:l':_
on the element (relational selection) and any matching e
o instances are deleted. If this is an addition, a free PSR,
v WDM-subtree PE is identified, and the element is "\.'\'
added.] R
RS 1. Each pattern element of the rules stored at a PM- ey
- level PE is broadcast to the WM-subtree below for .':‘::"-f ]
. matching. Any variable bindings that occur are reported A
N sequentially to the PM-level PE for matching of Ty
K subsequent pattern elements (relational equi-join). .
1. A local conflict set of rules is formed and stored
N along with a priority rating in a distributed manner
T within the WM-subtree.
c. end do;
4. Upon termination of the match operation, the PM-level
- PE’s svnchronize with the upper tree. T
5. Select: The max-RESOLVE circuit is used to identify the BASEM
g maximally rated conflict set instance. RS
e 6. Report the instantiated RHS of the winning instance of the Ry
root of DADO. e
7. Set changes to the reported action specifications. AR
8. End repeat; N
R
Figure 3-4. Algorithm 2 (Stolfo, 1984: 303). ;'-
_ KR
: RN
e
" This works best on a production system where the PM is large with relatively ::.-::E:\
)

tew rules affected on each cyvele and the WM is small (Stolfo. 1984). Due to the use of the T
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oy
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= :
P
. o
D 1. Initialize: Distribute to each PM-level PE a simple matcher .
(described below) and a compiled set of rules. Distribute to oy
o the WM-subtree PE’s the appropriate pattern elements ;.'5-:;
T appearing in the LHS of the rules appearing.in the root PM- ~
level PE. Set CHANGES 1o the initial WM elements. “~
| 9 2. Repeat the following: )
. 3. Act: For each WM-change in CHANGES do; o
a. Broadcast WM-change to the WM -subtree PE’s. ~
- b. If this change is a deletion, broadcast an instruction to &
p match and delete WM elements and any affected conflict Y
set instances calculated on previous cycles. N
by c. Broadcast an instruction to PM-level PE to enter the o
. Match Phase. ~
d. At each PM-level PE do; .
¥ i. Broadcast to WM-subtree PE’s an instruction to match o
2 the WM-change against the local pattern element. .
ii. Report the affected rules and store in L. g
-4-: iii. Order the pattern elements of the rules in L
a5 appropriately. )
iv. For each rule in L do; e
- 1. Match remaining patterns of the rules specified in
) L as in Algorithm 2. )
2. For each new instance found, store in WM~
subtree with a priority rating. e
3. end do; '~
v. end do; N
b e. end for each; ’
4. Select: Use max-RESOLVE to find the maximally rated X
instance in the tree. o
5. Report the winning instance. o
B 6. Set Changes to the instantiated RHS of the winning rule N
Instance. TN
‘ 7. end Repeat; ..
:':'-“_:\
Figure 3-3. Algorithm 3 (Stolfo, 1984: 305). A
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‘" 1. Iniualize: Map and load the compiled Rete network on the
DADO twree. Each node is provided with the appropriate match
~ code and network information. Set CHANGES 1o mniual WN>\I
* elements.
2. Repeat the following:
- 3. Act: For each WM-changes in CHANGES do:
" a. Broadcast WM-change (a Rete token) 1o the DADO
leaf PE’s.
o b. Broadcast an instruction to all PE’s to Match. (First, the
' leaf processors execute their one-input test sequences on the
- new token. The interior nodes lay idle waiting for match
= results computed by their descendants. Those tokens passing
) the one-input tests are communicated to the immediate
o ancestors which immediately begin processing their two-input
4 tests. The process in then repeated until the physical root of
: DADO reports changes to the conflict set maintained in the
. DADO control processor).
- ¢c. end do;
n' Select: The root PE is provided with the chosen instance from
the control processor. Set CHANGES to the instantiated RHS.
4. end Repeat;
L Figure 3-6. Algorithm 4 (Stolfo, 1984: 306).

Rete algorithm and these performance characteristics it is not considered for the parallel

inference engine in chapter four, but is provided for a sense of completeness.
Algorithm 3 - Multiple Asynchronous Execution

This algorithm addresses the issue of multiple ruie firings. This is done by
creating multiple root nodes within the tree where rule selection takes place. This algo-

rithm can be seen in Figure 3-7.
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o 1. Inidalize: Logically divide DADO to incorporate a static e
v | ‘. . NP . ULy
* Production System-Level (PS-level), similiar to the PM-level N3
of Algorithm 2. Distribute the appropriate PS program to each RLLYA
] of the PE’s at thePS-level. . 8
2. Broadcast an instruction to each PS-level PE to begin e
execution in MIMD mode. (Upon completion of their I
3 respective programs, each PS-level PE reconnects to the tree RN,
above in SIMD mode.) )
3. Repeat the following. °
= a. Test if all PS-level PE’s are in SIMD mode. S
= End Repeat; o
4. Execution complete. Halt. N
.7 ':_\f:\
- .‘ -.‘
°
v Figure 3-7. Algorithm § (Stolfo, 1984: 306). .
¢ e
S
- AR
: This algorithm is very flexible, but depends on the rule independence as is Z-'_:f-::'
L discussed in algorithm 7. The principles from this algorithm are used in the design of the .
RN
parallel infererce engine to provide parallel rule firings. RN

Algorithm 6 - Rule Decomposition

This algorithm deals with the decomposition of rules and the allocation of proc-
essors. This process generates a rule tree in such a way that the rules on each processor

are independent of each other. The algorithm can be seen in Figure 3-8.

S This algorithm is an effective way to divide the rules. However, it is very labor )
intensive and should be automated. This algorithm assumes no prior knowledge of the
production system. With the modular design of the RAV svstem, the decomposition of the ’.'

IS
. . 'l\I.\

. rules should be easier. Each module should be independent. Ny
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| 1. Phase 1: Generating a Rule Tree. A token is defined as a o
g triple, (ruleA ruleB P(ruleA, ruleB)), where rule A and rule N
v B are production rules and P(ruleA, ruleB) is the parallel -
' executibility between rule A and rule B. Parallel executibility o
» is defined between each pair of rules as the number of >
production cycles which can be reduced by allocating the two 3
' rules in distinct PEs. Form a rule tree in which each rule is e

associated with a distinct leaf node. The goal is to maximize 0

a sum of P(i, j) at each non-leaf node in all combinations of -t

1 and j, where 1/ indicateds a rule in a right/left subtree of the o
non-leaf node. S
")

2. Phase 2: Create Partitions for Parallel Processor Systemy b

This phase creates partitions of a production system for o

parallel processor systems from the rule tree. Because the rule .""

pairs with a large parallel executibility are decomposed in the i~

early stage, partitions for a parallel processor system can ot
be easily obtained by selecting a suitable layer of the rule tree. g
The tree is binary and thus a single level of the tree is best N
mapped onto processors containing a number of PEs that is a N

binary power. ’.
o

-

Figure 3-8. Algorithm 6 (Ishida and Stolfo, 1985: 570-571). I::l'

o

".."-

-J.

Algorithm 7 - Rule Synchronization o
.- -
This algorithm deals with the synchronization problem of rules. The synchroni- .;:E:

zation of rules can be decided by building a data dependency graph for the production T
svstem. The process for building this graph is seen in Figure 3-9. .'"
LK

This algorithm like algorithm 6 is best automated. Again this would be particu- o

lar useful when the format of the production system is relatively unknown or unorganized. -
S
With the organization of the RAV svstem, a detailed execution is unnecessary. The RAV .h )
A
production system is very independent according by this algorithm’s standards. :~::
v"\\"

I. *

A
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The process for building the graph is as follows:

1. A production node (P-node) represents a production rule.

2. A working memory node (W-node) represents a group of
working memory (WM) elements called a class.

3. A directed edge from a P-node to a W-node represents the

fact that the right-hand side (RHS) of a production rule modifies
adds or deletes) a class of WM elements. When a rule adds
deletes) WM elements of a class, the class is called *+’ changed
‘=" changed), and the corresponding edge is labelled '+ (°-").

4. A directed edge from a W-node to a P-node represents the
fact that the lefi-hand side (LHS) of a production rule refers

1o a class of WM elements. When a class is referenced byv a
positive (negative) condition element of a rule, the class is called

'+’ referenced (’-’ referenced) and the corresponding edge is
labelled '+’ (’-7).

Synchronization is required between rule A and rule B if
there exists a WM class which satisfies any of the following:

1. '+’ changed (-’ changed) by rule A and ’-’ referenced
('+’ referenced) by rule B.
2.+ changed (-’ changed) by rule B and '-" referenced
('+’ referenced) by rule A.

3. '+ changed (-’ changed) by rule A and '-’ changed
(’+ changed) by rule B.

Y

Figure 3-9. Algorithm 7 (Ishida and Stolfo, 1985: 569-570).
- 37 -
e '.'.-:;.-:"_.-:.f'_;.'.'.-._'.:‘f'-.\.'\..-:'.-.':'-'-_'-;'-'t-f..'-"_'-“-""z:'f:-‘:'r‘;;-'.:-'-.:f;:f-.:-" :'-".'_ ‘::-'1-':'_-"‘:_.’-.*"#.r:'.-.f‘.r‘r".r"

A a ' e e

Xy
Al

St A ®
S

5
PEe

.
a

v
«

R

,.

0
\‘\"‘

A

N
PN AR Ry

R
v

55 8% 5N S
57,

L@,

'

b

e e LS NN

W,

s

o

o

o

I



Y

¢

s

l"l

)

S

~5A

TR
7-‘)‘1 !

P S

'y * .
-)'\) |

‘-
1}
:

1 Y

A
RS

YN
hY {s ®

Summary

',

| W ]

S
LR e

e
PN

W
v

f

3
\J

Most of the algorithms to decompose a production system deal with decomposi-
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tion of rules over the decomposition of working memory or functions. The decomposition
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of functions vields little since match is the dominate function that accounts for up to 90

o
vl

of the processing time (Gupta, 1986). Only the data decomposition of the rules within the
match that yield the best hope for concurrency. The decomposition of the working mem-
ory requires that the rules break down into independent sets that only operate on a portion

of working memory. Algorithm 6 and 7 help to accomplish this, but this requires a great

deal of effort. The rules themselves can be decomposed quickly and automatically without
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::-'. IV. Analysis and High-Level Design

ij Introduction

% The purpose of this chapter is to present an analysis of the RAV system.

N along with analysis and design of the serial inference engine, the parallel inference en-
) gine, and the parallel RAV production system. The algorithrﬁic design of the parallel
RAV production system is based upon the the design of algorithms presented in Chap-
ter three.

:?: RAYV Analysis

W

-~ A detailed description of the RAV is contained in Appendix A. The main por-
-~ tion of the piloting control is a lavered series of two expert systems. Each expert syvstem
;j:; has several components organized by functionality (Figure 4-1). These components pro-
vide a source of data independence of rules and working memory. The system contains an
s “average size” production and working memory. The system contains over 330 rules. The
working memory consists of schemas which are a frame-like structure. Each frame con-
2 tains slots that hold the individual facts. There are approximately 160 schemas. The
h average number of slots per frame is approximately ten, therefore the total number of
facts is about five times the number of rules.

N

w Inference Engine Analysis

":._ The requirement for an inference engine is to perform the basic production
. system cycle: match, select, and act. [This cycle is also prevalent in the resolution process
;::: (Nilsson. 1980).] This inference engine software should be able to match the rules of the
RAV expert system with the facts in working memory. [t should select one ot these rules
and add the results of the RHS of the selected rule to the working memaory.

= The current RAV system implemented on the Tl Explorer uses the Automated

Reasoning Tool (ART) for this process. ART is licensed software not available on the
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RAYV Components

PES

Autopilot
Commnav

Departures
Hold-Arc

Intercep:s
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Landir.gs
Mission
Recover
Takeoffs
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Target-All
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Autopilot
Elevation
Heading
S¥eedbrake
hrottle

Figure 4-1. RAV Components.
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IPSC hypercube. The source code for ART is not available. and therefore. can not be
modified for parallel execution. This requires that another control process implementation
be developed. However, the new implementation should be as compatible as possible with
the ART rules and working memory structure as possible.

ART is a very complex and extensive tool. To try to rebuild the generic ART
svstem would require a prohibitive development time. Therefore, simplicity of design is a
critical component. The new control process should only provide the functionality of ART

that the RAV requires.
Inference Engine Design

The design of the control process had several phases. The first phase was a
data flow description of the system as seen in Figure 4-2. This lead to an investigation
into the data representation to be used for the working memory and the rules. Three
choices were considered. The first involved simply a linked list of rules and a linked list of
facts (see Figure 4-3). The second was a linked list of rules and a series of frames for the
facts (see Figure 4-4). This was considered due to the structure of the facts as imple-
mented in ART. The facts were implemented as slots within frames or objects. The rules
then referenced these slots. In this way, the rules are indexed directly into the tfact data-
base by the frame and slot name avoiding a costly serial search of the facts. The third
choice considered was a complete Rete network involving the rules and facts (see Figure
4-3). This third choice, although efficient, was very complex and had considerable over-
head. Therefore, the second option was chosen due to its simplicity and relative effi-
Jlency.

The second phase was a control flow of the inference engine (see Figure 4-61.
This control flow was decomposed into its component parts of match. sclect and act (see
Fizure 4-71. Once the data representation had been decided upon. the control was rela-

mvely straight forward. A skeleton of the design was taken from Winston and Homn
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Figure 4-2. Inference Engine Data Flow.
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Rule Conditions:

1) (C1 "aurl 12 "aurb <= 7)
C2 "aur2 > 3)
C4)
2) (c1 "atrl 12 "aur2 <X>)
C3 "aur3 <X>)
C4)
3) (C2 Taur2 > 5 "atr3 <Y>)
(C4 “aurl <Y> "atrd >= <Y>)

Rete Network:

working memory changes

conflict set changes

Figure 4-35. Data Structure 3 for Inference Engine (Rete).
(Forgy and others. 1984).
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Figure 4-6. Control Flow of Inference Engine.

(Winston and Horn, 198%). This model of a production system had to be modified for the
new data structure and functionality required by the RAV ART system.

The third phase was the design of the interface between ART and the newly
designed inference engine. One design decision was to preserve the “integrity™ of the
design as much as possible. Therefore, a process was needed to translate the ART rules
into a form usable by the new inference engine. The data flow diagram for this translation
module can be seen in Figure 4-8. This interface aliows for expanding this system with
additional ART functionality with “minimal impact” on the inference engine. “Minimal
impact”™ implies that the changes to the inference engine will be small and localized to

several routines.
Parallel Inference Engine Design

The previous designed inference engine was modified slightly for parallel im-
plementation. The algorithm for the parallel design is fashioned after the algorithms in
chapter three and can be seen in Figure 4-9. The actual change in the design to the serial

inference engine is small. The changes occur in the select and act phase. Each PE of the
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Figure 4-7. Expanded Control Flow of Inference Engine.
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Figure 4-8. Data Flow for ART Translation.
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1. Initialize: Place a copy of the simple inference engine
on each PE. Place a copy of WM on each PE. Place a
subset of the PM on each PE.

2. Repeat until done;

3. Match and select on each PE.

4. Report selection up tree.

5. Overall selection made at root node.

6. Broadcast WM change to all PEs.

7. end repeat;

Figure 4-9. Algorithm 8 - Parallel Inference Engine.

parallel design needs to report the rule it has selected for a system wide selection. The PE
then has to wait to receive the system wide selection in order to act to update the working
memory. The choices for the communication network included a star, a binary tree, and a
spanning tree. The communication network for the flow of information is designed as a
spanning tree. This can be seen in Figure 4-10 for a 16 node system. This reason for this
tvpe of tree is because it preserves nearest neighbor connections and the height of the tree
is log p where p is the number of PEs. A node only communicates with other nodes a
distance of one away and the length of a path from the bottom of the tree to the top is the
dimension of the cube.

Basic parallel inference engines were designed in the last section. The only
designing remaining is the methodology of placing rules of the RAV production system

components on the parallel svstem's PEs. The first design to place the rules on the PEs,
p p 3 g &

placed the rules by component on the different PEs. This was unsatisfactory since this

.
rS

A TN
S

[

PR

4
v
T .

Cal o o 4% O% 28 VR ELOL
AL MR A S ALK
‘:’..{‘.I ‘:.\.("‘,"" .‘7, . ;' ,!' .}'.f. ':".).; ®

PN X LA .‘,“.'(‘J.a

- @ X

f

2

P
ShN
oAy
> 4

7
Y " l‘

(LR

" -')
3@\
q. L) l- .

RO ."

t":"‘l.lf~ “ . '.t‘
RN AP -
L Y \

B,
N
."
(=

3
l' I' l. .

LA
‘l 'l 'I r 4

e
e’

3y
1@ s
[

'- -
o,
.l
N

;L

s
5

" ".l .‘l :
cqgﬂii
e,




'j;r‘-
.
h] ..I
[

PEG

~

S S
]
%Y

‘ffl-'n'{

»

@ PE2

A
AR

“

i | ®\® \@®\@

M e
rPLrELES
AL AN

¢?
'

.; " .l

» P A
(0 s

»
‘. )

1]

2 rS
i
AN e
P L)

'{'I,I.I.
.‘I"f P
LY

e
.

Figure 4-10. Spanning Tree Connections.
- (Brandenburg and Scott, 1986).
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V. Low-Level Design, Implementation, Experimental Results, and Analysis of Results
Introduction

This chapter provides the results of the implementations of the designs in chap-
ter four. The basic measurements (performance metrics) of the RAV production svstem
are defined and provided in this chapter. Various performance measurements are also
provided for the RAV production system on both the TI Explorer LISP machine and the
Intel iPSC hypercube. The “unique” code for the serial and parallel inference engine is
provided in Appendix D. Salient features of the code as well as critical implementation

criteric and problems are described in this chapter.
Inference Engine Low-Level Design

There were several choices for the initial inference engine. The first choice was
a very basic system from Winston and Horn’s book on LISP (Winston and Horn, 1984).
The other choices were to implement algorithms from various papers (Miranker, 1987,
Guprta, 1986). These other choices were high level designs of complex algorithms. The
Winston and Horn (W&H) was in working code and was simple. This allowed for an
incremental development of new capabilities. This code, however, was not suitable for the
RAYV rules and facts. This section will describe the original W&H system and then pre<ent
the final expanded form of the inference engine on each of the three major sections of an
inference engine: match. select, and act.

The first major section of an inference engine is the match routine. The svntax
of the match pattern is shown in Figure 3-1. The original inference engine used all of
these forms to match rules. Figure $-1a is a simple match that requires the fact to be in
that exact form. Figure 3-1b is a variable binding match where “plane™ is bound to the
value that corresponds to the first position in the fact. The rest of the fact is the same as

the pattern. The pattern in Figure S~1c¢ uses an already existing variable binding to muatch
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a. (F-16 airspeed 500)
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b. ((> plane) airspeed 500) N
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((< plane) airspeed 500)
d. (? airspeed 500)

-
e. (+ airspeed 500)

- Figure 5-1. Original match patterns. ._,—3_}
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- a fact. It uses the value of the binding to match against the first position of the fact. The .';;A.-:Z
. Ry
°

rest of fact has to match the pattern exactly. Figures 5-1d&e are variable match patterns
without binding. Figure 5-1d will match only those facts that only have one value betore

‘airspeed 300'. Figure 3-1e will match any fact whose last two positions are "airspeed

l 300",

2

The new inference engine's additional pattern match formats are show in Fig-

N
o A

ure 3-2. Figure 5-2a shows the schema format. The word 'schema’ is a key word. The
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a. (schema name (slot value)) . ((:> var) (test var))

((- name))
. ((>+ var))

Q)

4
o
e

. (schema name (slot (> value))

laa!

. (schema (> name) (slot value))

(@]
e}

(e

. (schema (> name) (slot (> value))

Ficure 5-2. New Match Patterns.
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name has to match a defined schema name and the slot a valid slot within the schema
name. The value in the pattern has to match the value of the schema slot. In Figure 3-2b
the "value’ in the pattern is then matched and bound to the value of the schema 'name’
and slot. Figure 5-2c and 5-2d are just variations on the variable binding theme with the
schema and even the slot name being able to take on variable bindings. Figure 3-2e
illustrates a test on a variable. The value of the fact is bound to the variable "var’ only if
the test, which can be a function of 'var’ is true. Figure 5-2f just provides for negation of
a pattern. The Figure 5-2g was an optional part of the W&H implementation and provides
a variable binding for a list of facts instead of an individual fact.

Figure 5-3 illustrates a sample rule. Line 1 of Figure 5-3 contains a rule
name, an [F part, and a THEN part. The IF part consists of facts or facts with variables
that could take on bindings. Line 1 of Figure 5-1 illustrates a simple fact that will only

match a similar fact in the fact list. Line 2 of Figure 5-1 shows a simple variable binding.

This clause will match any fact that begin with a single word and end with 'is a dog.” The

variable name will be bound to the corresponding word in the fact. This binding can be

used with the syntax in line 12 to pull the value of the variable to match elsewhere with
the clause or rule. In the case of line 12, the binding of name is used to retract the fact
(retraction was not an original part of the W&H system). Line 9 illustrate using the "+
symbol to match a group of symbols in a fact. Line 9 will match 'Joe is a dog.” ’Joe is
dog,” 'Joe dog,” or 'Joe is a good dog.’ The example on line 10 will not onlv match the
same facts but will bind the phrase before ’dog’ to the variable 'name-of.’

The changes in the match section can be divided into two tvpes. The first is in
more complex matching and binding strategies. The second is in a change or enhance-
ment of the data structure of the facts. The match section had the most changes or en-
hancements and was probably the most difficult. The original W&H svstem placed all the
facts into a list and matched all the rules against this list. As seen from the design. this

proved too impractical for a system the size of the RAV svstem. Therefore. the rules from
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‘;;: (Rule Rule-name (salience (sal-exp)) ::IE:Z
PN
n (IF o
1 - (Joe is a dog) ‘;
: 2 - ((> name) is a dog) \
- 3 - (schema airspeed (value 20)) ;é_.;f_\
- 4 — (schema airspeed (value (> speed))) \
, S - (schema (> plan) (value 20)) :’-.::':
6 — (schema (> plan) (value (> speed)))
7 - (schema airspeed (value (:> speed (< speed 500)))) }_“f-
L 8 - (binding speed 50) ) o
. 9 - (+ dog) S
’ RH AN
= 10 -  ((+ name-of) dog) :i:§:-,-
L ..

(THEN ( i

'~" 11 - (assert (Joe is a cat)) X
12 - (retract ((< name) is a cat)) o

13 - (modify airspeed (value 30))

14 - (modify airspeed (bindings ((< bind) (hdg 30))))
) )

.
‘i-
Figure 5-3. Rule Format. NS
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o the RAV system were already conveniently organized into schemas or frames. so the :"::
~

—‘ match and act function had to be changed to work with facts in the form of frames %'.:J

? without losing the capability to keep a list of simple facts like the original W&H system. ";

'_ZI For antecedents in the form of line 3 or 4 of Figure 5-1, this was not too difficult. The ’,-.;

. T
routine that passed the clauses to be matched to the matcher was changed to [ook up the ’—;-':'

" value of the slot and send the matcher that value along with the clause following the h

. slot-name. This worked well. However, the system also needed to be able to handle a

- clause like line 5 or 6 of Figure 5-1. This was much harder. A list of all active schemas :f-‘

"" was introduced. The routine that passes clauses to the matcher has to look up in this list 'jvlij:i

‘ the name of a schema. With this name it looks up the slot value and passes this value 2

.ﬁ": along with the rule clause to the matcher. This routine does this for every schema in the 2

list. This takes a great deal of time and is not practical. However, no better solution has \

"'t-' been implemented. The clause form of line 7 in Figure 5-1 was also implemented. This S:

E allows a test of the value of a slot. Any test can be placed after the match variable. :-:3-':

The select phase of processing was the next section to require enhancements. \":

- The control of the selection of a rule to be selected had to be delayed. The W&H code E

k only matched until a rule was found that completely matched, then it was selected and .'-

- fired. This had to be changed so that all the rules would be looked at for a possible match '_

‘_Z:‘ before any rule would be selected. This meant that the eligible rules had to be kept on a ‘.

o list. Then when all the rules had been matched, this list would contain all the rules could ::::.'

“fire™ or enter the act phase. This list of rules is called an “agenda”. Once the agenda has }E_

- been created then a selection of a rule is needed based on some criteria. This criteria has E'r

. several alternatives. The first rule on the agenda could be selected. A random rule on the .:

agenda could be selected. The rule with the most “specific” antecedent. the one with the ’

. o

most clauses could be selected. However. ART rules require that a “salience™ be used to .:‘1-";'.:

- select the rule. This salience is a number associated with each rule determined by the .\

.- author of the expert svstem to aid in the selection of rules. The highest salicnee is sc- "’\'_,.
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-\ lected first. Any ties among the salience’s are then determined in a random fushion. This EE\
1s a requirement stemming from the observation of the ART system. This change was _\;:.::
B .
) instrumental to being able to implement a parallel inference engine which is be discussed l:ij,‘
N
‘r:_'.'. in more detail later in this chapter. :::E'j
"
B The last phase that had to be changed was the act phase. This section changed ::.:_"'
g for two reasons. First, addition functionality had to be incorporated due to the introduc- ;’
7
tion of the schema system to implement facts. This required the need for the assertion, ;'-_’."“_
ol s
i modification, and retraction of facts within schemas as well as the assertion and retrac- .
\1;'.: ton of ordinary facts. The retraction function also required another change in the original :'::
- W&H inference engine. This required that the act portion of the svstem check to see if a “::-
, A
,; fact was already deleted or asserted so that the system would not go into a loop asserting ;’
.- or deleting the same fact. The original system did not allow for the modification of a fact. ;':
- This is a function for schema facts only (ART 3.0, 1987). This allows the modification of J:
r a schema slot without first matching that slot. The slot can be directly changed. The '2'::
¢ second major change occurred due to the changes in the select portion of the system. The ::{
(SAY
\ inference engine now had to maintain a list of matched rules. This was done in the act ::':_':Z'
. e ™
L portion of the original W&H inference engine. Where the original system selected and ".f" \
R acted upon a rule, this system matched and placed on the agenda a prospective rule. Then ‘~
when all the rules had been matched, one rule was selected and fired. ‘
The changes to the original W&H inference engine were rather extensive, but .
N were incorporated without major impact. This provided a level of integrity to the original :{:
oA
system which appeared to be sound. The code of the enhanced inference engine is con- E;‘.
e tained in Appendix D. f:::
J Parallel Inference Engine Implementation ::

The parallel inference engine was implemented in CCLISP on the iPSC hyper-

cube. Since the serial inference engine was implemented on the TI Explorer using Com-
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mon Lisp the changes needed due to language differences were minimal. CCLISP (Brock-
huvsen, 1987b) was not as extensive as the Common Lisp on the TI Explorers (Explorer.

1983). For example, CCLISP did not support CADDDR, but this was easily changed. The
language issues simply did not provide a major obstacle. There was. however, major
effort involved in implementing a parallel inference engine. This centered around the
communication between nodes.

The parallel design of the inference engine required that the selected rule from
all the nodes be collected at one node for the final selection, and then that selection needs
to be passed to all the other nodes. This can be done in several wavs depending on the
chosen communications pattern. Three alternatives seem appropriate: a star. a binary
tree, or a spanning tree. With the star, one node acts as the central point with all other
nodes communicating with that node. This would require longer than nearest neighbor
communication or one node hops. The binary tree can be implemented with nearest
neighbor communication. but only on higher dimension cubes. The spanning tree offers
the appropriate functionality with nearest neighbor communication. An example of a
spanning tree can be seen in Figure 5--4. A rule selected on node 14 would be sent w0
node 6. At node 6, this received rule would be added to the agenda and node 6 would
select a rule. This continues up the tree until node 0 receives all the selected rules from its
children. It then selects an overall rule and passes it down the tree to all its children. Each
child then passes the selected rule to its children until all nodes receive the selected rule
for firing. The algorithms for determining the parent and children nodes of the tree de-
pendencies on a logical “or” of the binary node numbers. This was very hard to imple-
ment in LISP. so a table look-up was used. This proved to be very simply and efficient.
but somewhat intlexible since only node zero can be used as the root node. The message
passing within CCLISP presented some problems. There were several wavs to pass mes-
sages, Theyv ranced from low level message passing to high fevel FASL node streams. The

fow lesel message passing required that the fength of the message fength be known This
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Figure 5-4. Spanning Tree Connections.
(Brandenburg and Scott, 1986).




~roved to be a major limitation, given that the messages to be passed would be variable

enzth rules. Therefore, the high level FASL node streams were selected for their abstrac-

n These streams did provide a problem. There was no defined way to do a receive-
~a.0 Tius allows a process to enter receive mode until a message is received. This proc-
o~~~ very convenient for synchronizing nodes. This function had to be built using a loop
J4ong repeated receives until a message was received from another node. One other note
concerning this process. The documented function ‘listen’ did not work (Broekhuysen.
1¥37b). This would have provided a method to test the message buffer for an incoming
message without actually doing a read, but this function was not implemented.

The changes to the acrual serial inference engine were small and confined to a
small number of modules. These modules contained in Appendix D were “forward-
chain™ and “selected-rule.” The first module had to be changed to provide the proper
termination test. This is important to insure that the individual nodes terminated only
when no overall rule was available, not just when the node found no matches. The other
module had to be changed to incorporate the communications with the other nodes. Sev-
eral other routines (found in Appendix D under the parallel code) were needed to assist

this latter module to make the communication.
RAY System Implementation

The RAV svstem consisted of the original components of the RAV expert svs-
tem designed by TI. In its original form it consisted of a series of plans. needs. and
schemas which was a higher level abstraction than the ART rules (McNulty. 1937). The
plans and needs were then “compiled” down into ART rules for execution using software
developed by TI (Lystad, 1987). The only way to get the schemas and rules from the plans
and needs was to compile the plans and needs into files rather than into the ART svstem.
From there the rules and schemas are then transformed into a format that the serial and

eventually the parallel interence engine could accept. This transformation was partially
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2
-y
= automated with a routine (Appendix D) and further transformed by hand to come up with
i the final format compatible with the implemented inference engine. The total wanslation 2
°
- was not done programmatically due to the complexity of the software involved to parse \.-;
o
::: and recognize the various ART syntax forms. This process could have been an emircl,\'v '-'.'5.',
- separate study.
|
. The only- test suite available was a demonstration developed by Tl midway
through the development of the system. In fact, the expert system used in this studyv was
not complete and was only a demonstration prototype (Graham, 1987). This demonstra-
ff tion was considerably lengthy and required the perfect execution of all the rules and
-~
| implementation of all the functionality of ART that was used with these rules. The alter-
~
BN native was to develop small prearranged sets of facts that would trigger a subset of rules.
. This was the preferable choice since the inference engine can not deal with all the rule
::' format either in their entirety or efficiently. The complete demonstration was not used.
o The code and expert system for the parallel RAV system was transported to the

iPSC hypercube from the TI Explorer to a microVAX to a VAX across the Defense Data
Network (DDN) to the AFIT VAX and finally to the iPSC hypercube (Fanning. 1987).
This was perhaps the most “trying” of the problems associated with this whole implemen-
- tation. This was because of the many machines that had to be traversed to get the code
from the TI Explorer to the iPSC. This was only done after the tape-to-tape transter

failed due to a mismatch in tape-formats.

Testing Format

The test plan is divided into three components. The first is metrics dealing with

the RAV expert system. The second is the metrics concerning the serial inference engine
cn otne TI Explorer and the iPSC Hypercube. And, the third is the parallel inference
o
“ . L . . . .
engine on the 1PSC Hypercube.  This section describes the testing procedures and the
' results.
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The measurements on the expert system were taken to provide a baseline foun- L
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[N

dation in order to compare this system with other expert systems. The items quantified

|
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ror the rules were the number of rules, the number of clauses in the antecedents. and the
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O

’{s
A

1 ™ Y v Yy

5
h

'l
54

schemas and from this calculated the number of facts represented in this manner. The

L
Cl .‘_ -

results from this component of the test is shown in Figure 5-5.
For the last two components, similar tests were used. They consisted of using

two sets of rules and three data sets. The two data sets were chosen due to the large

run-time of the entire rule set. The most time consuming rules were contained in the

mechanisms component. For this reason, one set of tests were conducted with this compo- ::'..:;
Lo

nent and most all of the other tests without the mechanisms component. The data sets ':':'.?3..

were chosen for the number of rules that they would cause to fire. This gives data over jfij.':'-'l‘_

varving length of time and iterations through the match, select, act cycle. Figure 3-6 \_,:
AN

summarizes the two sets of rules with the three sets of data on the TI Explorer. The larger S

two sets of data were not run with the larger rule set due to the extremely long run times o

involved. Figure 5-7 throligh 5-9 summarize the results from the first data set that pro-

duced no rule firings with the first rule set. Figures S-10 through 5-14 show the second

data set that produced ten rule firings with the first rule set.  And Figure 3-135 through Z:;};"
RO
$-16 show the third data set that produced 27 rule firings with the first rule set. For the G
[NSAEEA
second and third data set. timings were not available for the 32-node svstem. This is RS
°
LA N
explained in the analyvsis of results section. f:':?.;
--\.4\-‘
NN
e el
Analysis of Results AN
o .‘.}J 7
°
This section analyzes the results of the implementation and the testing. This -;'l:-ji::j:
'-‘_n_ ~h
section looks at the correctness of the code and the timing of the tests. This section will -j:'{f.":_.
h':‘.:.'\. A
also try to explain any anomalies and problems with imiplementation. °
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Subsystem # Rules

PES
Autopilot
Commnav
Departures
Hold-Arc
Intercepts
Intercepts—New
Landings
Mission
Recover
Takeoffs
Targets
Targes~All

Subtotal

VCES
Ailrwork
Ailrwork-New
Autopilot
Elevation
Heading
Speedbrake
Targets
Throttle

Subtotal

Misc
Mechanisms

Totals

w
WS we AR

—
\O

# IF Clauses

3
11
47
121
113
43
21
11
29
46
12

8
465

39
102
3
7
67
27
6
48

299

237

1001

# THEN clauses

4
10
38
76
78
26
22
18
36
36

6

4

354

148

764

Figure 3-3. RAV Production System Characteristics.
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’ Figure 5-6. TI Explorer Results. o
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The code is analyzed for its effectiveness and correctness. The code performs _:;,\:’:
< Y
e . AN
e slowly compared to systems like ART which runs at between 2-30 rules per second .'_v‘,”.::.
T
R . . - -A
!' tGupta, 1986). On the Explorer, the inference engine plods along at about one cycle every ® -
. 30 seconds or 2 rules per minute. This is with the smaller rule base. With the larger rule j::lj';_:'
’ oy
o base, the system runs one cycle every 113 seconds. On the iPSC Hypercube, the serial ::-::
L J'_--f.
’ . . . - »rost
svstem runs at one cycle in about 11 seconds with the smaller database and in about 79 .’
- . . . . \ .:-
sceonds with the [arger database. This brings about two concerns that need explanation.
First. why does 60 extra rules slow the process down so much? The reason tor this is in "
" the tormat of these rules. They are rules that have a variable binding on the schema
o name. This means they must go through the list of schema names looking for a match. f."-j.
These rules can not take advantage of the indexing created by the trames. This 1~ a T
~ process not handled well by the inference engine. Second. why does the Tl Explorer co ®
e
. . . SASAS
slower than the iPSC Hypercube? The surface appearance is that the Common Lisp vn W)
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Number of Nodes: 1

Number of Rules: 304 Rules/Node: 304
Number of Rules Fired: O

Execution Time: 11.585 sec

Number of Nodes: 2
Number of Rules: 304 Rules/Node: 152
Number of Rules Fired: 0

Execution Time: (seconds): Speedup: 1.8

Nodes 0 1

Tortal 6.475
Match 6.085
Select 0.385

4
3
1
Act .0 0.005

coao
OO Wwnn
OO WK in

Number of Nodes: 4

Number of Rules: 304 Rules/Node: 76
Number of Rules Fired: 0

Execution Time (seconds): Speedup: 3.0

Nodes 0

Total 3.780
Match 3.590
Select 0.175
Act 0.000
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Figure 5-7. Data Set 1 for Rule Set la.
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. Number of Nodes: 8

2 Number of Rules: 304 Rules/Node: 38

Number of Rules Fired: 0

o Execution Times (seconds): Speedup: 4.3

¥ Nodes 0 1 2 3 4 s 6 7

\ Total 2.430 2.570 2.520 2.570 2.525 2.575 2.473 2.373
Match 1.655 1.425 1.460 1.575 1.700 1.630 1.463 1.303

> Select 0.765 1.135 1.050 0.990 0.820 M.940 1.000 1.063

o Act 0.000 0.000 0.000 0.000 0.000 0.005 0.000 0.000
Number of Nodes: 16

o Number of Rules: 304 Rules/Node: 19

Number of Rules Fired: O
Execution Times (seconds): Speedup: 5.1

ks B}

4 Nodes 0 1 2 3 4 5 6 7
Towal 1.995 2.265 2.270 2.320 2.170 2.220 2.270 2.320
Match 1.305 0.655 0.665 0.765 0.870 0.875 0.800 0.720
Select 0.680 1.610 1.600 1.550 1.295 1.335 1.470 1.600

[\ Act 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000

. Nodes 8 9 10 11 12 13 14 13

) Towal  2.125 2.125 2.175 2.175 2.123 2,175 2.170 2.22%
Match 0.630 0.780 0.800 0.815 0.880 0.7335 0.870 0.8230
Select  1.490 1.330 1.370 1.3535 1.240 1.4135 1.2935 1.390
Act 0.000 0.000 0.005 0.000 0.000 0.005 0.000 0.000

Figure 5-8. Data Set 1 for Rule Set 1b.
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o Number of Nodes: 32 Roes
PN Number of Rules: 304 Rules/Node: 9.5 R
~ Number of Rules Fired: 0 N
- Execution Times (seconds): Speedup: 4.8 e
Node 0 1 2 3 4 5 6 7 f:';i_'::';i'i
- Toal 1.865 2.365 2.415 2.415 2.315 2.365 2.420 2.415 o
Match 0,755 0.355 0.360 0.480 0.3835 0.310 0.415 0.370 o
- Select 1,100 2.000 2.050 1.925 1.930 1.855 1.995 2.043 R
% Act  0.005 0.005 0.000 0.005 0.000 0.000 0.000 0.000 VI
N
2 Node 8 9 10 11 12 13 14 L3 NN
Towal 2270 2.320 2.320 2.320 2.270 2.320 2.370 2.320 o
Match 0.335 0.450 0.480 0.495 0.510 0.495 0.400 0.515 o
Select 1,930 1.865 1.835 1.820 1.755 1.820 1.965 1.800 AN
Act  0.000 0.000 0.000 0.000 0.005 0.005 0.005 0.003 %;3;:
~ S
{ .
Node 16 17 18 19 20 21 22 23 L
b Towl 2175 2,175 2175 2.175 2.125 2,175 2.175 2.175 R
- Match 0.500 0.305 0.315 0.290 0.485 0.370 0.385 0.355 “iNgs
Select 1.670 1.865 1.855 1.880 1.630 1.800 1.785 1.8153 o
K Act  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 e
Node 24 25 26 27 28 29 30 31 7S
) Towal 2,075 2.075 2.080 2.130 2.300 2.075 2.125 2,123 .
¥ Match 0.340 0.375 0.365 0.320 0.415 0.350 0.355 0.315 N
' Select 1,730 1.690 1.710 1.805 1.610 1.720 1.760 1.803 R,
) Act  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 o
: .
Figure 5-9. Data Set 1 for Rule Set lc. S
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o Number of Nodes: 1 e

N Number of Rules: 304 Rules/Node: 304
Number of Rules Fired: 10 L
a Execution Time: 189.800 sec.

L
. v O
. et
@ .0
y '
,

Number of Nodes: 2

Number of Rules: 304 Rules/Node: 152
- Number of Rules Fired: 10 Spe L N
- Execution Time (seconds): peedup: 1.6 wZ
. Nodes 0 1 et
3 Total 121.860 121.870 :
’ Match 118.375 72.190

Select 2.825 49.045 >

Act 610 .590 =

r Number of Nodes: 4

Number of Rules: 304 Rules/Node:: 76
Number of Rules Fired: 10

g Execution Time (seconds): Speedup: 2.0

’ "n "r _'- . ‘:'.":“ «
AR

o ‘..“

e PR B I |
" l.ll‘l 1]
: .

e

ﬁ Nodes 0 1 2 3

h Total 93.420 93.500 93.490 93,515 -
Match 88.110 37.865 31.663 36.380 -
Select 4.690 55.025 61.210 36,523
Act 570 335 563 575

Figure 5-10. Data Set 2 for Rule Set la.
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Number of Nodes:8

Number of Rules: 304 Rules/Node: 38
Number of Rules Fired:10

Execution Times (seconds): Speedup: 2.7

PR DR AL
5 &
AADRALY ,:-].
DA A L I A )

NS .
~ A
Nodes 0 1 2 3 v
Towml 70160 70315  70.265  70.31% o
Mawch 19760 19.820  16.195  19.350 .
; Select 19750 49.865 53425  50.340 s
-;-t Act 00.615  00.605  00.605  00.605 o

G .

Nodes 4 5 6 7

| Tol 70225  70.325  70.275  70.320 o
L Match 61285  18.700  16.215  17.415
' Select 08.305 50.980  53.425  52.235 o3
Act 00.595  00.595  00.590  00.590
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e
y

7P

na

Figure 3-11. Data Set 2 for Rule Set 1b.
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) Nodes: 16 ;::E.
Number of Rules: 304 Rules/Node: 19 s
Number of Rules Fired: 10 N
] Execution Times (seconds): Speedup: 2.8 L
' Nodes 0 1 > 3 5
Total 65,960  66.265 66.215  66.20% 5

Martch 12.063 07.200 07.780 09.373 ®
= Select 33.263 38.420 37.803 $6.263 L
2 Act 00.605 00.593 00.603 00.393 e
o~ Nodes \:
" Total 66.170  66.220 66.215  66.270 o
Martch 12.285 11.110 08.925 13.603 '_
- Select 33.240 34,4355 36.660 52.030 N
’ Act 00.390 00.610 00.393 00.600 %
ol Sl
] Nodes ..
" Total 66.705  66.17% 66.125 66,225 =
o Match 0.7430 11.333 03.633 10.300 o
Select $8.005  33.973 $6.785  33.28% o
!: Act 00.593 00.593 00.393 00.600 e
o Nodes ’
' Total 66.120  66.173 66.175  66.223 o
Match 48.380 08.510 07.380 08.843 ° .
Select 17.100 57.020 37.945 36.728 T
Act 00.393 00.393 00.600 00.393 !
...

Figure 3-12. Datw Sct 2 for Rule Set 1. -
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Number of Nodes: 1

Number of Rules: 304
Number of Rules Fired: 27

Rules/Node: 304

Execution Times: 571.385 seconds

Number of Nodes: 2

Number ot Rules: 304

Rules/Node: 132

Number of Rules Fired: 27
Execution Times (seconds): Speedup: 1.3

Nodes

Torual
NMawch
Select
Act

0 1

364.525
206.840
155.935
001.665

O C Ly
[ XXV NoxN
— 0 4=
OO 4+
N = ~] =
(VN V N RV

Number of Nodes: 4

Number of Rules: 304 Rules/Node: 76
Number of Rules Fired: 27

Execution Times (seconds): Speedup: 2.1

Nodes

Totwal
Match
Select
Act

0 1

to

3

278.430 278 3 278.473
260.410 113. 0 094.2635
016.230 163 3
001.660 001 3

182,463
001.660

1o O )

th i no
O
O ~-
[00]
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Figure 3-13. Data Set 3 for Test Set la.
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the Explorer is much more extensive than that on the 1PSC Hypercube. These would

create more wverhead on the Explorer and allow the Hypercube to process fuster,

This next section looks at the parallel performance of the inference engine. The
speedups are far less than linear. The speedups taper off with the dimension of the cube.
The answer to this problem can be seen in Figures 3-9 through 3-14. The select time on
some of the nodes exceeds the match time on the node. In some instances. the select time
far exceeds the match time. There are two explanations for this phenomena. The firstis
that the problem size 15 too small for the higher dimension cube. This can be seen from
the first data set. On the higher dimension cube, the match time is less than the seledt
tume for one series of communication. The result is a much longer cyele than what would
be expected from a hnear speedup. The second cause tfor this slowdown 1s poor load
balancing. Each node has an equal number of rules and each rule gets checked for a
match on each cyele. The reason the load balance is off is due to the composition of the
individual rules. The rules have different numbers of clauses that causes each rule 1o have
a variable length match time. Also, the order of the clauses creates different match times.
Even though a rule may have a long list of clauses to match. if the first one fails. then the
rule matches quickly. Finally, the different types of matches take varving lengths of tme
depending on the format of the clause. A match involving a schema variable match will

take much longer than a simple slot match.
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VI. Conclusions and Recommendations
Introduction

This final chapter presents an analysis of results along with conclusions of the
study.  Application to other areas as well as recommendations for further study are also

provided in this chapter.

Conclusions

This research study investigated the feasibility of parallel architectures o im-
prove the performance of potential real-time software. In particular, the feasibility of
parallel architectures to improve the NP-complete problem of state space search parucu-
larly in the form of a production system. The RAV expert system was used as an example
of such a svstem for this study.

This study showed that poor speedups were obtained from the parallel imple-
mentation of a parallel inference engine using a relatively simple match routine. The
speedups suffered from a combination of two factors. The first was a relatively small
problem compared to the communications overhead. From chapter 3, it can be obscrved
that for a system with greater than eight nodes, the time to perform the match cycle on a
node was less than the time to communicate the selection. Also. the speedup suffered due
to a poor load balance. Although the method for decomposing the rules seemed reason-
able 1t proved to be totally unsatistactory. The method did not take into account the
variability among rules in the match process.

The performance of the iPSC hvpercube to the TI Explorer came out fairly
positively for the iPSC Hypercube. The iPSC Hypercube performed about twice as fast as
the TI Explorer on the inference engine. However. this seems to be due to the simphicity

of the LISP on the 1PSC Hypercube.
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The inference engine developed in this study performed adequately. The infer-
ence engine fired a rule about once every 30 seconds or at a rate of just under 2 a4 minute
on the TI Explorer. The engine fired a rule one every 18 seconds on a single node of the
iPSC Hypercube or just over 3 rules a minute. This does not compare with ART system
that guage their systems in the rules per second, however, this was not a tremendous goal
of the inference engine. The correctness of the inference engine was hard to analytically
determine without further testing, but it appears that most of the ART functions used in
the RAV expert systems were duplicated. The worst feature was matching a binding vari-
able to the schema. This just would not work for a clause with a binding variable in the
value for the slot. This part of the system would have to be redone to make a viable
svstem.

The CCLISP on the iPSC hypercube is a mixture of good and bad. The good is
that most of the TI Explorer code worked well. There were only a few minor glitches that
only serve to emphasize the power of the Tl Explorer L'SP over CCLISP. The communi-
cation portion of CCLISP is sull in its infant stage. The actual functionality was facKing
and did not match the documentation (see Chapter 3).

The feasibility of transporting software from the Tl Explorer to the iPSC hyper-
cube, although troublesome on this attempt (see Chapter 3), seems to be a reasonable
endeavor and with the aid of improved tools and techniques could become a routine
process.

The speedup results from the inference engine were disappointing, however, it
did show that speedups were possible. This study show the importance of load-balancing
and placing a “large enough” problem on the iPSC hypercube. The timing is no vhere
near real-time performance as was anticipated, however, with improvements in the infer-

~_¢ 2nzine and the load balancing significant improvements could be possibie.
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E. Applicability to Other Areas
|
. This section looks at how this study might be scaled or applied to other areas. X
) First a look at scaling the problem. From the results in chapter 3, it is apparent that the :-;_::;’.:E
;: problem was not large enough to gain significant improvements. The RAV system con- &25:;
-
tained over 300 rules which came out to just 10 rules per node on a 32 node system. Even '7:’.'\-" |
e g
- with this crude inference engine, those rules could be processed in under 300 millisec- :::::::E
S
onds. The communication on the tree took upwards of 1 to 2 seconds. Theretore. a scaled '.'.;:"::’:_.:,'.
- AP
. up problem is not only possible, but desirable. From the results in chapter 3. a svstem a "";"
“ factor of ten larger would not be a problem with the 32 node system. The production f—'_z‘
" S
X system could not afford to go much lower in size. There were performance drops as it :"';E
;:: were with the 32 node system in one of the cases of chapter 5. O
. This study shows the feasibility of concurrency with any state space search that
7 follows the same type of match, select, act phase of a production system where the match-
r ing takes a high percentage of the processing time. The areas of resolution and branch- °
. and-bound search techniques might benefit from this parallelization techniques. The ,,-.\
:ZEZ problem needs to be decomposable in order to produce an equitable load balance. The f:‘{f
. problem also needs to be large enough so that the pieces process longer than the commu- ’. y
. nication between nodes. A

py Recommendations for Further Study

This study probably raises more questions than it answers. Beginning with the
serial inference engine. An area of study would be the performance of inference engines.
The characteristics of inference engine, and their performance would have been invalu-
able to this research. More work could be done to improve the inference engine in this
studyv. The inference engine in this study could be redone using the Rete algorithm. The

benchmarking of inference engines and inference engine techniques would be valuable.

Also. with regard to inference engines. this study started to automate and simulate the
-
\
ARN
S
Y
[
s
R R e P P e N N S e e e e N e TN N
ol . - . . £ ) . - e - - - . 2 A A B ) & 3 B



‘\-:.. '..4

¥ g
:‘&‘.

I's

Ll

AW |

functionality of ART on the iPSC hyvpercube. The further development of the process
could provide a valuable tool for expert system development. The expert svstem could be
developed on the TI Explorer using ART and transferred to the iPSC hypercube to per-
formance studies if a translation process were automatic.

The time complexity of the matching of various types of clauses within a rule
varied. The inference engine was very slow matching some types of rules. These twpes of
rules could benefit from a Rete-type match while the more simple rules could use a
simple match. One area of possible future research would be to investigate the use of
different types of inference engine on the different nodes of a parallel architecture to
handle varyving types of rules.

Only one parallel architecture was used in this study. How do other architec-
tures compare with the architecture used in this study? The communication network in
this study was a spanning tree. Is this the best choice? Would a binary tree, a star or some
other pattern be better? The RAV software showed promise for further levels of concur-
rency. The current study used a complete set of facts on each node and onlv one rule was
fired at a time across the entire network.

There needs to be better ways to characterize the work needed to match a rule
so that more effective load balancing can be performed. This study ran out of time before

effective ways to distribute the load could be worked out. This would depend on the

S

S~

* structure of the inference engine, the structure of the rules and the structure of the facts.
S8 The load balancing can easily be “tweeked” by hand, but this should occur automatically,
‘ The structure of the RAV expert system shows great promise in firing several
i rules in one cycle of the inference engine. This could provide a tremendous time and

space savings. The RAV expert system is to operate in a real-time environment. This

means a varving time requirement for operations. A parallel machine provides a predict-

A able increase in processing power. The implementation of an automatic wayv to dynami-
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N Appendix A: Robotic Air Vehicle
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’ The Robotic Air Vehicle (RAV) is a concept under exploration by the Detense :::}:.

oy o
':": Advanced Research Projects Agency (DARPA) and the Air Force Wright Aeronautical _.:E
- Laboratories (AFWAL). The concept is to create an unmanned air vehicle capable of :"-'2'-:
,’: autonomous operation. The RAV needs to be able to perform basic piloting skills ax well EZ‘E;
- i3
5 as passive terrain following, terrain avoidance, obstacle avoidance, and autonomous navi- :: !
‘o, ‘..P_:f,;

. gation. The mission of such a vehicle would consist of intelligent reconnaissance or attack ’.’
'3 of high risk, heavily defended targets. A contract was awarded to Texas Instruments :V-E
) Incorporated (TI) in September 1985 to develop a system architecture as well as to dem- f'{
MY MASAS!
N onstrate the feasibility of some of the key components of such a system (McNulty, 1987). e
TI developed a system architecture (Figure A-1). The system centers around a _’,\ '
- piloting expert system. This module is responsible for the overall control of the RAV. ._;.5-_
i This module directs the vehicle control expert system to perform basic maneuvers in “.;‘\"-
which the vehicle control system could use to control the main interface to the RAV E-"rff_:

-, ”

';Z through the throttle, stick, and several switch controls. The piloting expert system also :ji;"
R
L receives directions from a menu subsystem, a voice recognition subsystem. and a pre- "’:"“
pared mission plan. The piloting expert system could also receive information from an '::
:f" airspace expert system to provide a sense of situational awareness. Part of this situational H-\
A PAP AR
PR

awareness would come from a passive navigation subsystem that would provide the cur-

rent vehicle location through passive sensors and a digital map. Projected future subsvs-
tems include a mission replanner and a threat assessor. but these are not currently being

B worked on by TI (Blair, 1986; Graham, 1987: McNulty, 1987).

N As indicated by some of the names of the subsystems, the method of imple-
i mentation was chosen to be artificial intelligence expert systems using production sys-
- tems. This method was chosen by AFWAL since other methods to control a vehicle tailed °
T
- (Blair. 1987). The code for such systems become large and unmanageable widl. ut provid- E-_f“ ;
w oy
- 77 - N
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ing a solution. With the exception of the voice control and passive navigation subsystems,

all the other subsystems were implemented as some type of expert svstem (McNulty,

The design of the expert systems was very simplistic in nature. The piloting
skills were designed and developed using the pilot training paradigm. The expert system
was built up and tested using the same basic skills and in the same order as a human pilot
learns them in piiot training. The system was designed using the Automated Reasoning
Tool (ART). ART allows the specification of rules and facts that can take the form of
schemas or relationships. This level of abstraction was a bit too low for easy design. Tl.
therefore, abstracted the design one level higher to plans and needs. This made thinking
about the pilot skills easier without getting to the rule level. If a high level action was
needed a need was built. The need would then get accomplished by a plan. The needed
rules and data structures would then be built to track the need and plan. Meta-level rules
were developed to handle the activation and deactivation of plans and needs. Most of the
facts in working memory were designed as frames within ART known as schemas. This
allows for fast access of the facts and also provide an effect way to organize the facts.
This was particularly useful in the parallel design.

The system used for this study was demonstrated in May 1987 with the follow-
ing status of the subsystems. The piloting expert system (PES), the vehicle control expert
system (VCES), the vehicle control system (VCS) and the airspace expert svstem (AES)
all have operative basic functions for a limited scope. The passive navigation has basic
theoretical problems. The voice recognition is somewhat limited in its capability due 1o
the state-of-the-art in this area. The menu system and mission planner are at a very
basic and simplistic state (Graham, 1987). It is due to this status that the scope of the
thesis is limited to the four major components mentioned above: PES. VCES. \V'CS. and
the AES. The AES has been studied in less detail since its major component is a rela-

tional database. It does contain an expert svstem and could benefit from this studv,
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[t should be noted that the three modules that are used to control the vehicle
(PES, VCES, VCS) conform to a theory by Saridis on intelligent robotic control. It is
hierarchically intelligent control approach proposed to unify cognitive and control svstems
theory. It uses the principle of decreasing precision with increasing intelligence. Saridis
proposes a three laver approach. The top laver is the organization laver which controls
and supervises the overall activity. The middle layer is the coordination laver. This level
controls the subtasks to be performed as ordered by the organization laver. The bottom
laver is the hardware control level. This level controls the basic functions and movement
using mathematical models of motion (Saridis, 1983). Figure A-2 shows the correspon-

dence with this layvered approach and the RAV control.

1. Organization Level -  Piloting Expert System (PES)
2. Coordination Level - Vehicle Control Expert System
(VCES)
3. Hardware Control
Level - Vehicle Control System (VCS)

Figure A-2. RAV Intelligent Control Layers
(McNulty, 1987; Saridis, 1983).
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APPENDIX B: Parallel Processing Architectures

Computer architectures can be divided into four categories. These categories
are Single Instruction Single Data (SISD), Single Instruction Multiple Data (SIMD). Mul-
tiple Instruction Single Data (MISD), and Multiple Instruction Multiple Data (MIND). The
SISD represents all the single processor systems. The SIMD, MISD, and MIMD represent
the parallel processor systems. The MISD architecture has been shown to be inteaxible for
pratical applications since there is little use for concurrent multiple operations on a single
data stream. This leaves the SIMD and the MIMD as the two main categories ot parallel
computer architectures. The SIMD is a system with multiple processors operating the
same instruction svnchronously on separate data streams. Examples of this tpe of archi-
tecture is the Cray and Connection machines. The MIMD architectures have muitiple
processors capable of operating on multiple data streams with different operations
asvnchronously. Examples of this type of architecture are the Butterfly and iPSC hyper-
cube (Hwang and Briggs, 1984).

The SIMD and MIMD categories are turther broken down into subclasses.
These classes are based on the connection network that allows the separate processors to
communicate with each other. This is important since it is often impractical for all the
processors to be connected to each other. Several types of networks are a line, a ring. a
star. and an n-cube (Hwang and Briggs, 1984). These can be seen in Figure B-1.

There are several other characteristics of parallel architectures. The first is the
tvpe of memory organizatior:. Some svstems have cnly a common main memory. or only
memory local to each processor. or a combination of both. The number and power of
each processor 1s also an important characteristic of the system.

Several architectures were considered for this study due to availability and ap-

plicability to the problem. The three architectures considered were a network of Tl Ex-

plorer Lisp machines, an Intel iPSC hypercube. and a Connection machine. Each ot these
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Figure B-1. Interconnection Networks.

machines will be discussed in detail.

The first architecture is the host architecture for the RAV svstem. It is a net-
work of four TI Explorer Lisp machines. They form a loosely connected svstem with each
system having its own local memory with 2 common bus structure between the systems.
They all share a central file server. Each of the four systems are verv powerful Lisp
processors. This architecture was chosen for this study.

The second architecture is the Intel 1PSC hypercube. This svstem consists of up
to 32 processing elements (PE) with memory expansion. This gives each PE tour mega-
bytes of memory. The connection network for the svstem is an n-cube. This means that
the worst case communication length is log n processors. Each processor consist of an
Intel 80286. The advantage of an n-cube interconnection network is its abilitv to simulate
many other connection networks including a tree. This flexibilty along with ready accessi-

bility made this architecture a very natural choice for this study.
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The third architecture considered was the Connection Machine. This architec-

ture is of the SIMD flavor. It consists of up to 64 K one bit processors with T K ot local

memory (Hillis, 1987). Although this architecture proved interesting it was not chosen tor

this study for several reasons not specifically related to its architecture. The major con-

straints were time. easy access, and inexperience with the architecture and methodologies.

The previously discussed architecture are summarized in Figure B-2. Although

other architectures and machines exist no other svstems were evaluated due w0 availabil-

ity

SINID processor arrays: Cnnlnection Machine

MIMD Shared Memory: Cray X-MP/2,4

Cray 2
Alliant FX/8
Encore/Multimax
Elxsi 6400
Sequent 8000
Crav 3
IBN 3090,400 VF
Univax 1194/ISP

MIMD Distributed Memory:  iPSC
Ametek 14
NCUBE
BBN Butterfly
CDC Cvberplus
Culler PSC
FPS T-Series
Warp

Figure B-2. Summary of Architectures.
(Hwang, 1987: 1350).
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Appendix C: NP-Completeness

NP-Complete problems are a class of compurtationally hard problems. These
problems can be solved in polynomial time on a non-deterministic Turing machine. There
is no known solution to these problems on a deterministic automata in less than exponzn-
tial time. Exponential time means that in the worst case the time compiexity of the prob-
lem has a lower bound that is an exponential function of the size of the problem. To show
that a problem is an NP-complete, two properties have to be shown. First, the problem
has to be shown to be combinatoric or have an exponential time complexity. Second. a
known NP-complete problem has to be able to be transformed into the problem w be
proved in polvnomial time. A list of known NP-Complete problems can be seen in Figuwre
C-1. The second condition of NP-Completeness insures one of the important characteris-
tics of this class of problems. If any of the problems could be shown to exhibit less than
an exponential time complexity, then all the problems cculd be transformed and solved in
the same manner (Aho and others, 1974).

In this appendix, several problems are shown to be NP-complete. The RAV
consists of one primary problem. This is the intelligent control of a robot. Also shown to
be NP-complete is the generic solution method used for the RAV, namely production
svstems. This is added since this is a general methodology that occurs frequently in Al
and perhaps the results can be more generally applied.

The intelligent control of a robot is shown to be NP-complete in a rather
straight forward wav. First, a precise definition of the problem is necessary. This problem
can be described as a function H that take the input vectors C and F and produces an
output P. In this case, C i a command vector and F is a feedback vector. P is the output
commands or adjustments (Albus, 1981). There are (C+F)! combinations ol possible

situations that could occur. Cleariy in the worst case all these combinations would need o

be considered to actuate the proper control. This function obviously has a lower tme
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1. Sausfiability - Is a Boolean expression satisfiable?

R
1

1o

. Clique - Does an undirected graph have a clique of
size k?
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3. Vertex cover - Does an undirected graph have a
vertex cover of size k?

= O

~° . . . . R

4. Hamilton circuit - Does an undirected graph have a
Hamilton circuit?

- 3. Colorability - Is an undirected graph k colorable? °

::'j 6. Feedback vertex set - Does a directed graph have a

feedback vertex sct with

k members?

~:

{ 7. Feedback edge set - Does a directed graph have a
feedback edge set with k members? ;
r_\ .‘_. -
S . T . . . T
a 8. Directed Hamiltion circuit - Does a directed graph have NS
a directed Hamilton circuit?

9. Set Cover ~ Given a family of sets S1. S2, . . .. Sn does
there exist a subfamily of k sews such that

the union of the subtamily equals the union
of the entire family? .

o
15
"\

vt e
et

o
PR

10. Exact Cover - Given a tamily of sets S1. S2, ... Sn
does there exist a set cover consisting ot a
subfamily of pairwise disjoint sets”?

Figure C-1. Known NP-Complete Problems.
(Aho and others, 1974: 378).
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complexity bound that is exponential. Next a known NP-complete problem has to be
wansformed into the intelligent control problem in polvnomial time. The known problem
selected 1s the Set Covering Protlem. A definition of the Set Covering Problem is needed
for this transformation. The Set Covering Problem is defined as: Given a family of sets
S1. SZ, ... Sn does there exist a subfamily of k sets such that the union of the subfamily
equals the union of the entire family (Aho and others, 1974). The transformation would

be as follows:

1. The sets to be included would be the C vector. If the set
were included, then the component of the C vector would be
1. otherwise it would be 0.

2. The F vector would be the union of all the sets with a 1 in
the C vector.

The transformation can obviously be accomplished in polynomial time. Therefore. the
intelligent control problem is an NP-complete problem.

Before the 'ntelligent control problem was properly defined. etforts to prove the
problems associated with the RAV lead to the same effort of showing that an expert
system or production sysiem 1S NP~complete. Although a production system is not itself a
problem, it is the solution method to many problems. Also due to its widespread use in
Al a proof of its NP-completeness is appropriate.

A production system is composed of productions or rules of the If-Then or
antecedent-consequent form and a set of initial facts or axioms. The svstem can then
produce new facts by apriving the rules to the initial facts or any new facts previously
generated. This type of a system was proven by Post to be able to compute any Turing
computable function. Therefore any NP-complete problem can be transtormed int -
production system. The production svstem has a flaw that NP-complete probicms =
that is it is susceptible to the Halting problem. A production system is 0o |

halt. Due to 1ts computational characteristics, production systems are ~
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K2 Appendix D: Code E,:n‘-
&
‘ General Match Code
= 3
EEIEZEIEEFENRESFRNEERERREEENREEEREEE RN REERE SRR EEREREREERERERE R REE REREREJII IR 5'#
;’l t“.‘t‘“-.“.‘t“““‘#‘““*“*#*“**#“‘##*#******#****#*#‘*****V“t***v "
he e
a :**  TITLE: Inference Engine.
:**  DATE: 7 Dec 1987.
;**  VERSION: 1.0.
B ;**  FUNCTION: To perform the match, select, act cycle of a forward
< r chaining inference engine. NN
- ;**  LANGUAGE: Common LISP. e
- ;**  INPUTS: None. i
N ;**  OUTPUTS: None. N
™~ ;**  FILES READ: None. RS
;**  FILES WRITTEN: None. AN
< :**  AUTHOR: Donald J. Shakley. N
. g HISTORY: Written for Master’s Thesis. Portions taken from Winston & S
S Horn’s book on LISP. L.
-~ e INSTALLATION: TI Explorer. Se
‘ S iPSC Hypercube. N
Ta ;-o :'.:.
'7'\ f"‘!t‘#i“““‘##t‘lﬁ“t-‘..‘t‘*‘t‘*‘*ﬁ“*###“*‘*i*#**###***#*#********#* ::T;\.
‘ ;"..‘."‘.--..‘tI‘""“i“.*‘.“"-’i.‘&‘tt*##t#t‘##“iﬁ#ttl*t#***#tm#!# o,
» o . . . R
7 (defvar assertions) ; variable for list of assertions or plain facts NN
(defvar rules) . variable for list rules ':: .
(defvar agenda) ; variable for rules on the agenda "
& (defvar schemas) ; variable for list of schema names ;.9.;.
- "').
(Defun match (p d assignments) ;-.;-\.
e (cond ((equal assignments t) (setq assignments nil))) BN
- (cond ((and (null p) (null d)) s
(cond ((null assignments) t) ; return true if no bindings e
. (T assignments))) ; return bindings . -
iy e
- ((and (atom p) (atom d)) ; test for atom equality R
. (cond ((equal p d) (match nil nil assignments)) RN
= (¢ nil))) 4
((or (null p) (null d)) nil) -t
N -
- ((or (equal (car p) ’?) ; test for generic general item matcher :ﬁ-\-‘;
‘. (equal (car p) (car d))) BN
(match (cdr p) (cdr d) assignments)) A
.'-' "’
2 . . L
- ((equal (car p) '+) ; test for generic general list matcher Y
(or (match (cdr p) (cdr d) assignments) ~ow
e (match p (cdr d) assignments))) R
NG s
7 pory
. - 88 - X
A
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3 o
& e S
- ((equal (car p) 'S+) ; test for general binding list match <o
. (cond(((equal d ’(empty)) nil) PR
t ®
ﬁ. (let ((find (assoc (caadr p) d))) Nl
(match (cadr p) find assignments))))) PR
s _:_:_-_
'C;’, ((atom (car p)) nil) ; check for ill-formed pattern ;-::'_"‘
-_} '
a ((equal (pattern-indicator (car p)) '-) ; match negated item ®
(cond
» (Enot (equal (pattern-variable (car p)) (car d))) O
> match (cdr p) (cdr d) assignments)))) e
J ((equal (pattern-indicator (car p)) ':>) ; binding conditional match ; " i
(cond ((test-condition (car p) (car d) assignments) ‘®
= (match (cdr p) (cdr d) Y
N (shove-gr (pattern-variable (car p)) M
(car d) b
- _ assignments))) o
A (t niD)) Wy
°
((equal (pattern-indicator (car p)) ’>) ; binding variable match e
(match (cdr p) (cdr d) R
shove-gr (pattern-variable (car p)) DA
(car d) o
r assignments))) AN
°
{ ((equal (pattern-indicator (car p)) '<) ; use binding variable match ey
(match (cons (pull-value (pattern-variable (car p)) assignments) N
,::: d (cdr p)) ;::'_:-
‘ assignments)) f_-.__x
®
!‘, ((equal (pattern-indicator (car p)) '+) ; binding list match Ko
(let ((new-assignments (shove-pl (pattern-variable (car p)) -:1'-
- (car d) QY
- M ~
- assignments))) R
* (or (match (cdr p) (cdr d) new-assignments) KA,
(match p (cdr d) new-assignments)))) °
: 73
((equal (pattern-indicator (car p)) '<+) ; use binding list match :"-Z-'Q
(match (append (pull-value (pattern-variable (car p)) f-}_.';f:
- assignments) Vedn
- (cdr p)) Py
d
assignments)) o~
- AN
- NS
’ ((and (squal (pattern-indicator (car p)) ; restriction match oA
‘restrict) }‘:;-:
by (equal (restriction-indicator (car p)) '?) a3
(test (restriction~predicates (car p)) (car d))) )
(match (cdr p) (cdr d) assignments)) .-'_::_',.
:_: ‘.:\-:.
n,‘ .-.‘-‘ )
- 'i \.
-89 - WA
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Ny (t ; none of above condition hold - dig deeper into structure '.:,".:,
(append (match (car p) (car d) assignments) P
(match (cdr p) (car d) assignments))) LY
i ) 2
-s
< ;;; Function to return the first item of a pattern "\-:"«.'
v ) e
AL (defun restriction-indicator (pattern~item) (cadr pattern-item)) E‘_:,,'- :
xZarl
] ;;» Function to return second item of a pattern . : -
.- N
) (defun restriction-predicates (pattern—item) (cddr pattern-item)) e
AN
'; ;;; Function to place a variable/ binding on an association list NENEN
(defun shove-pl (variable item a-list) .
@ (cond ((null a-list) (list (list variable (list item)))) A ‘.c"‘
((equal variable (caar a-list)) _ Ry
cons (list variable (append (cadar a-list) (list item))) " -f'
N (cdr a-list))) o~
;'! (t (cons (car a-list) ‘ tﬁ::"
(shove-pl variable item (cdr a-list)))))) P
X ENEAY
E{ ;;»» function to pull a value of a variable off the association list ‘_;3.;’.5';
. Pae :
‘ (defun pull-value (variable a-list) jEfE )
'." (cadr (assoc variable a-list))) o
;;; function to place a variable/binding on an association list ;‘_:IE::.'::
- _\‘_:._,
X (defun shove-gr (variable item a-list) S
(append a-list (list (list variable item)))) '::.\_::.'4
ﬁ ;;; function to return the first value on a list w:% -~
i \:‘\;N
) (defun pattern-indicator (1) :j:zj;
: (car 1)) :\\:~.~
) ;»» function to return second value from a list ‘
" (defun pattern-variable (1)
- (cadr 1))
N .»» function used to evaluate condition of a match
' (defun test-condition (condition value bindings)
5 (let ((clause (third condition))
. (obj (second condition)))
(cond ((null value) (setq value 0)))
" (setq clause (subst value obj clause))
’. (do ((bind bindings (cdr bind)))

! ((null bind) 1)
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;‘? (setq clause (subst (second (car bind)) (first (car bind)) clause))) '-?
- (eval clause))) e

: ! ., function to calculate a value of a binding =

®
!\' |
(defun calculate (clause bindings) .b”".a
N (do ((bind bindings (cdr bind))) N
S ((nuil bind) t -l
(setq clause (subst (second (car bind)) (first (car bind)) clause))) -"',
(eval clause)) ““.
. . . ' \ .-
g ;»; function used with the restrict pattern match 5:,\.
AT
BieeYy
(defun test (predicates argument) :3.,'?':
icond ((null predicates) t) Ry
((funcall (car predicates) argument) P
ot test (cdr predicates) argument)) T
) (¢ nil))) 2
- F‘H‘
: : . ~
- ;»» function to retract a fact from the list of assertions ":#,
. "~‘
» (defun retract (fact) -
(cond ((already-fact fact) R
E-: (setq assertions (remove fact assertions :test 'equal))))) :;?__-;: '
. ol
;»; function to add a single fact to the list of assertions . j-‘.:;
"y I"-'.'!
i (defun add-fact (fact) "."
(cond ((not (already-fact fact)) AN
. (setq assertions (cons fact assertions))))) ::'.: ‘
A . . . . R
N ;;; function to add a list of facts to the list of assertions :’*&
‘-':&‘("u
I (defun add-facts (facts) '.'
” (setq assertions (append facts assertions))) NGRS
;;» function to modify a schema’s slot value E.:-:_.Z;
S o
- (defun change (schema) ;:j{ -
(setf (get (second schema) (first (third schema))) °
: (second (third schema)))) Pl
- N
.+» function to determine if a fact is already in a schema 3:?_-’:?;-:_
. e
- (defun already-schema-fact (schema) RO
. (cond ({equal (second (third schema)) !
. (get (second schema) (first (third schema))))))) R
}:' t‘\.‘i-:'f
.»; function to place a selected rule actions into the database '_l-;:'-‘;.':
“ (defun remember (new) ;'.;';Z::'_f
(print *(******** rule .(caar new) fired ™***********)) ®
(setq new (cdr new)) ENTATY
o N
' )
- 91 - \,‘;S’,.
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o (do ((clauses new (cdr clauses))) }\5
-~ ((null clauses) new) \\.}"2 )
(cond '
d ((equal (caar clauses) 'assert) (add-fact (cadar clauses))) o
((equal (caar clauses) 'retract) (retract (cadar clauses))) o
((equal (caar clauses) 'modify) (change (cadar clauses)))))) :-;"-i;
- . , 0
. ;;; function to determine if a fact is already in the list of assertions e
! \'f"n'
"o N
(defun already-fact (new) ~'.'-"‘
8 (cond ((member new assertions :test 'equal) t) T~
Pd . N Ay
. (t nil))) LA
DY
- ;»» function t. place a rule onto the list of assertions '.-j_:t_-;-
. NG
(defun remember-agenda (new ruleused) .
A (setq already-there t) Y
¥ (do ((clauses new (cdr clauses))) e
((null clauses) (not already-there)) o
. (cond Wi
o ((member (cons ruleused new) agenda :test 'equal) '1"‘«
» (setq already-there t)) o
((equal (caar clauses) 'assert) P
s (setq already-there Aty
w (and already-there (already-fact (cadar clauses))))) a
((equal (caar clauses) 'retract) -
. (setq already-there 2a)
t‘ (and already-there (not (already-fact (cadar clauses)))))) Py
((equal (caar clauses) *modify) : s
(setq already-there A
o (and already-there (already-schema-fact (cadar clauses))))))) o
e (cond .:::
(already~-there nil) I i
((not already-there) (setq agenda (cons (cons ruleused new) agenda))))) ®
e N
* ;;; function to combine two lists KA,
"-"\*
. -."-\
:E (defun combine--streams (s1 s2) (append s1 s2)) -:;.r:-.z
v :\,': (
;; function to place an item on a list :
™ Ty
- (defun add-to-stream (e s) (cons e s)) s
- .;; function that returns the first of a list N
o RICN
e (defun first-of-stream (s) (car s)) P
ety
- . . . RSN
- ;»;function that returns the rest of a list K50
- Al
(defun rest-of-stream (s) (cdr s)) :b}- ',
: 2R
v function to determine if a list is empty °
AN
A s.:_: "o
¥ T
- -9 NN
N ]
N
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(defun empty-stream-p (s) (null s))

;3 function to make an empty list

(defun make-empty-stream () nil)

;;; feeds clauses of a rule to the match function for matching

(defun filter-assertions (pattern initial-a-list)
(cond
((and (equal (car pattern) 'schema)
(zlistp (second pattern)))
(do ((schemas schemas (cdr schemas))
(a-list-stream (make-empty-stream)))
((null schemas) a-list-stream)
(let ((new-a-list (match (list (second (third pattern)))
(list (get (car schemas) (first (third pattern))))
(list (list (second (second pattern)) (car schemas))))))
(cond (new-a-list (setq a-list-stream
(add-to-stream new-a-list a-list-stream)))))))

;»; simply schema match
((equal (car pattern) 'schema)
(let ((new-a-list (match (list (second (third pattern)))
(list (get (second pattern) (first (third pattern))))
initial-a-list))
(a-list-stream (make-empty-stream)))
(cond (new-a-list (setq a-list-stream
(add-to-stream new-a-list (make-empty-stream)))))))

53, set up bindings
(§equal (car pattern) ’bind)
list (shove-gr (second pattern)
(calculate (third pattern) initial-a-list)
initial-a-list)))

;;; regular fact match
t
do ((assertions assertions (cdr assertions))
(a-list-stream (make-empty-stream)))
((null assertions) a-list-stream)
(let ((new-a-list (match pattern (car assertions) initial-a-list)))
(cond (new-a-list (setq a-list-stream
(add-to-stream new-a-list a-list-stream)))))))))

:i» sends filter-assertions different variable bindings of variables

(defun filter-a-list-stream (pattern a-list-stream)
(cond ((empty-stream-p a-list-stream) (make-empty-stream))
(T (combine-streams
(filter-assertions pattern (first-of-stream a-list-stream))
(filter-a-list-stream pattern (rest-of-stream a-list-stream))))))
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N (cond ((atom s) s)
’ ((equal (car s) '<) .
. cadr (assoc (pattern-variable s) a-list)))
o ((equal (car s) '<+)
', cadr (assoc (pattern-variable s) a-list)))

(t (cons (reéalace-variables (car s) a-list)
;:'_ replace-variables (cdr s) a-list)))))

;»» function to feed spread through actions all the various bindings of a rule
o (defun feed-to-actions (rule-name actions a-list-stream)
s (cond ((empty-stream-p a~list-stream) (make-empty-stream))
. (t (combine-streams
o (spread-through-actions rule-name
actions
(first-of-stream a-list=stream))
..
5
2
- 94 -
“p
b
R I R

;3 function to pass filter-a-list-stream the clauses of a rule one at a time

(defun cascade-through-patterns (patterns a-list-stream)
(cond ((null patterns) a-list-stream)
(T (filter-a-list-stream (car patterns)
(cascade-through~patterns (cdr patterns)
a-list-stream)))))

(defun cadddr (x) (cadr (cddr x)))
;»; function to determine if a rule matches and apply the rule

(defun use-rule (rule)
(let* ((rule-name (cadr rule))
(ifs (reverse (cdr (caddr rule))))
(thens (cdr (cadddr rule)))
(a-list-stream (cascade-through-patterns
ifs
(add-to-stream nil (make-empty-stream))}))
(action-stream (feed-to-actions rule-name thens a-list-stream)))
(not (empty-stream-p action-stream))))

;3; function to replace all the variables in the consequent and adds the rule to the
;;» agenda

(defun spread-through-actions (rule-name actions a-list)
(do ((actions actions (cdr actions))
Eaction—stream (make-empty-stream)))
((null actions) action-stream
(let ((action (replace-variables (car actions) a-list)))
(cond ((remember-agenda action rule-name)
(setq action-stream (add-to-stream action action-stream)))))))

;;» function to replace the variables with the value of their bindings

(defun replace-variables (s a-list)
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Y
tﬁ (feed-to-actions rule-name
- actions
. (rest—of-stream a-list-stream))))))
! ;;; variables to keep track of time and number of rules
e (setq begin-time 0)
s (setq end-time 0)
(setq total-time 0)
» (setq number-of-rules 0)
’ ;;; function to initialize the above variable every time inference engine is started
e (defun initialize-main ()
N (setq begin-time 0)
(setq end-time 0)
Esetq total-time 0)
:._f setq number-of-rules 0))
- ;;; main body of inference engine
>
~ (defun forward-chain ()
(initialize-main)
- (setq begin-time (sys:clock))
- (do ((done T))
: ((null done) (not done))
- - (setq agenda nil)
ﬁ (do ((rules-to-try rules (cdr rules-to-try))

(rules-tried 0))

((null rules-to-try) t)

A (cond ((use-rule (car rules-to-try))

(setq rules-tried (+ rules~tried 1)))
((> rules-tried 25) (setq rules-tried 0)

E (print ‘(ten more rules tried ,(length rules-to-try) left)))
(t (setq rules-tried (+ rules-tried 1))) ))
(cond ((null agenda) (setq done nil))
(t Eremember (select-a-rule agenda))
o setq number-of-rules (+ number-of-rules 1)))) )

(setq end-time (sys:clock))
(setq total-time (- end-time begin-time))

(print *(total rules fired ,number-of-rules))
(print ‘(total time ,total-time)) )
.+» function to select a rule from the agenda

(defun select-a-rule (agenda-list)

(do ((rules-to-select agenda-list (cdr rules-to-select))
ot (selected-rule (car agenda-list)))

((null rules-to-select) selected-rule)
5 (print *(rule ,(caar (car rules-to-select)) has salience
e ,(salience (car rules-to-select))))
(cond ((< (salience selected-rule) (salience (car rules-to-select)))
(setq selected-rule (car rules-to-select))))))
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::; calculates the salience of a rule

(defun salience (rule)
(let ((sal (cadr (cadar rule))))
(cond ((numberp sal) sal)

E(atom sal) (eval sal))
t (funcall (first sal)
(eval (eval (second sal)))
(eval (eval (third sal))))))))

;3. sets initial values of some important variables

(setq *maximum-salience* 1000000)

(setq *minimum-salience® -1000000)

(setq *default-salience™ 0)

(setq agenda nil)
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TITLE: Inference Engine Ultilities. -
DATE: 7 Dec 1987.
VERSION 1.0.
FUNCTION: To provide utility routines for the Inference engine.
LANGUAGE: Common LISP.
INPUTS: None.
OUTPUTS: None.
FILES READ: None.
FILES WRITTEN: None.
AUTHOR: Donald J. Shakley.
HISTORY: Certain function in the ART translation needed to be
automated. This is an attempt at that automation.
INSTALLATION: TI Explorer.
iPSC Hypercube.
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;»» function to add a clause to a list (rule)

(defun attach (plist field)
(cond

((null plist)
(setq plist (list field)))
(t (setq plist (append plist (list field))))))
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" ;;; function that only works on TI Explorer to find variables that begin with =" :2 N
, o
ih (defun replaceq (field objlist)
(] (cond ((numberp field) field) e
((atom field) Y
e (cond _ e
- ((string-equal field '? :startl 0 :start2 0 :endl 1 :end2 1) SO
’ (cond ((equal field (member field objlist)) ‘(< ,field)) oy
(t (cons field objlist) ‘(> ,field)))) °
! (%or (string-equal field ’S?) (string-equal field 'S) ’+) Y
-7 ((not (null field)) field))) -]
((null (cdr field)) (list (replaceq (car field) objlist))) N
N (t (cons (replaceq (car field) objlist) N
. (replaceq (cdr field) obijlist))))) =3
- ;;; function that works with replaceq to find variables with “?”. ;;.:}
) ~
o (defun parse (field objlist) 0y
. (setq field (replaceq field objlist)) o
;: (cond ((equal (car field) 'not) g
, (setq field (list (first (cadr field)) ®
(second (cadr field)) N
& (list (first (third (cadr field))) !
N (list ’- (second (third (cadr field)))))))) ,‘_:,':
(t field))) P !
- el
; ;;: function to change an expression from in-fix to pre-fix notation °
- (defun inf-to-pre (e) I
‘e (let (a-list) N
- (cond ((atom e) e) s
((setq a-list (match *((> v)) e nil)) NN
l: (inf-to-pre (match-value 'v a-list))) ®
((setq a-list (match '((+ 1) (restrict 7 oneplus) (+ r)) e nil)) i
‘(+ ,Einf—to-pre gmatch-value 'l a-list)) RO
-~ ,(inf-to-pre (match-value 'r a-list)))) e
"~ ((setq a-list (match '((+ 1) = (+ r)) e nil)) i
" ‘(- ,(inf-to-pre Ematch-value 'l a-list)) el
,(inf-to-pre (match-value 'r a-list)))) °
((setq a-list (match "((+ 1) * (+ r)) e nil)) o
‘(* ,(inf-to-pre (match-value ’l a-list)) L
,(inf-to-pre (match-value 'r a-list))))
((setq a-list (match *((+ 1) / (+ r)) e nil))
‘(/ ,%inf—to—pre (match-value 'l a-list)) A
,(inf-to-pre (match-value 'r a-list)))) [
((setq a-list (match "((+ 1) * (+ r)) e nil)) KSAN
‘(expt ,(inf-to-pre (match-value 'l a-list)) N
,(inf-to-pre (match-value 'r a-list)))) Ea
((setq a-list (match (- (+ r)) e nil)) N
- (- ,(inf-to-pre (match-value 'r a-list)))) S
(te)))) ®
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. ;;; find the value of a key into an association list.
‘-1’
) (defun match-value (key a-list)
n (cadr (assoc key a-list)))
.
- ;5 function to transform an ART rule into a rule usable by the inference engine
< (defun change-rule (rule)
- (cond ((not (equal (car rule) 'defrule)) (print "not a rule”))
(t (setq rule-name (cadr rule))
T (setq new-rule nil)
A (let ((new-rule nil)
‘ (if-part nil)
” (then-part nil))
N (do ((fields (cddr rule) (cdr fields))
o (then nil)
(objlist nil)
N (declare nil))
R ((null fields) new-rule)
(cond
. ((equal (car fields) '=>) (setq then t)) ;;sense andecedant
A ;((atom (car fields)) nil) ;; gets rid of comments
(Eatom (car fields)) ;; keeps comments
. cond
b4 (then (setq then-part
e (append (list (car fields)) then-part)))
(t  (setq if-part
l , (append (list (car fields)) if-part)))))
((equal (caar fields) 'declare) ., get salience
(serq declare 1)
(setq new-rule (list 'rule (list rule-name
2 (list (first (cadar fields))
: (int-to-pre
, (second (cadar fields»Hnnn
((and (not (equal (caar {ieids) “declare))
-~ .. add salience if not there
(equal deciare nil))
Ny (setq declare t)
S (setq new-rule (list ‘rule (list rule-name '(salience 0)))))
' ((equal (caar fields) 'schema)
. (setq if-part (attach if-part (parse (car fields) objlist))))
.:E ((equal (caar fields) 'modifv)
& (setq then-part
(attach then-part (parse (car fields) objlist)))
o~ (tequal (caar fields) "'not)
fsetq if-part (attach if-part (parse r(car fields) objlisuin
(tequal (caar tields) "assert
i
- UNn -
1]
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......

.;; function needed for previous routine to identify addition

(defun oneplus (x)
(equal x '+))
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(setq then-part
(attach then-part (parse (car ficlds) objlist))))
(t (cond (then (setq then-part
(append (list (car fields)) then-part)))
(t  (setq if-part
(append (list (car fields)) if-part))))
(print (car fields)))

(setq new-rule (append new-rule
(list (append '(if) if-part))
(list (list 'then then-part))))
(add-rule new-rule)

.:; function to find the slot name

(defun slot (field)
(car (caddar field)))

.; function to find the schema name

(defun schema (field)
(cadar field))

;7 function to find the value of a slot of a schema

(defun value (field)
(cadr (caddar field)))

., function to add a rule to the list of rules

(defun add-rule (newrule)
(cond ((null rules)
(setq rules (list newrule))
newrule)
(t (setq rules (cons newrule rules))
newrule)))

.;; function to change ART facts to a form compatible with the inference engine

(defun change-facts (fact)
(cond ((not (equal (car fact) 'deffacts)) (print "not a fact™))
( t (do ((facts (cddr fact) (cdr facts))
((null facts) t)
(add-fact (car facts))))))

.5, function to change ART globals to a form compatible with the inference engine
(defun change-global (global)
(cond ((not (equal (car global) 'defglobal)) (print "not a global™))
(t (eval ‘(setq .(cadr global) ,(cadddr global))))))

., functon to write the transformed rules out to a file for a file transfer between
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(defun write-rules (filename)
(setf out-stream (open filename :direction :output))
(do ((rule rules (cdr rule)))
((null rule) 1)

-\ . .
) (pprint (car rule) out-stream))
> (close out-stream))
.. Initializes a list of schema names
“:-\
(setq schemas nil)
- ;;»; function to transform ART schemas into a form compatible with the inference
- .1, engine.
'E (defun change-schema (schema)

(cond ((not (equal (car schema) 'defschema))
(print ‘(name ,(cadr schema) is not a schema)))

N (t
. (setq schemas (cons (cadr schema) schemas))
(add-defaults-schema schema)
. (let ((schemaname (cadr schema))
o (schemabody (cddr schema))
-~ (clauses  nil))
_ (do ((body schemabody (cdr body)))
o ((null body) clauses)
lo (cond
((listp (car body)) (setf (get schemaname (first (car body)))
= (second (car body)))))N))
T ;;; function to add default slots to the schemas for the RAV
!. (defun add-defaults-schema (schema)
(let ((instance-of (cadr (assoc ’instance-of (cdddr schema))))
(schemaname (cadr schema)))
< (cond ((equal instance-of ’plan)
v ?setf (get schemaname ’bindings) '(empty))
(setf (get schemaname ’globals) 'error-in-initializing-this-plan)
. (setf (get schemaname ’step) 0)
- setf (get schemaname ‘time) 0)
o Esetf (get schemaname 'abort-plan) nil)
) setf (get schemaname 'abort-plan-stack) '(empty))
- (setf (get schemaname 'number-of-steps) 1000)
setf (get schemaname 'timer) nil))
((equal instance-of 'need)
setf (get schemaname 'importance) *default-salience®)
~ (setf (get schemaname ’bindings) '(empty))
(setf (get schemaname 'bindings-updated) nil)
(setf (get schemaname ’status) 'inactive)
E (setf (get schemaname 'preselected-plan) nil)
(setf (get schemaname 'timer) nil)
o
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(setf (get schemaname 'failed-plan)
“(slot-how-many multiple-values))
(setf (get schemaname ’'succeeded-plan)
"(slot-how-many multiple-values))
(setf (get schemana..ic 'parameters) nil))
(tequal instance-of 'numeric-valued-object)

(setf (get
(setf (get
(setf (get
(setf (get
(setf (get
(setf (get
(setf (get
(setf (get
(setf (get
(setf (get
(setf (get

schemaname
schemaname
schemaname
schemaname
schemaname
schemaname
schemaname
schemaname
schemaname
schemaname
schemaname

'possible-value) 'numeric)
"time-of-last-update) 0)
‘exact-value) 0)
'quantization) 1)
"tolerance) 0)

"value) 0)

‘old-value) 0)
'ves—target-value) -1000059)
"target-value) nil)

‘type) 'unset)

"broken) 'no))

(t (print ‘(instance-of ,instance-of))))))

Hypercube Specific Code

R EEEELEEEEERES R RS R R R R R R R E R ERE R R R E R R R R R R R R R R R R R R R R EE R E R R R EEE R R R R EE R
:‘ LA RS R AR ESEREREEEEEEE R RN EE R R R YRR REEREREREREEREREREERERE RN E R EEEEFIEEDEEEEEY
;**  TITLE: Hypercube Unique Inference Engine.

;"% DATE: 7 December 1987.

;**  VERSION: 1.0.

:**  FUNCTION: To provide the concurrent match for the parallel inference

Tt engine.

:**  LANGUAGE: Concurrent Common LISP.

.** INPUTS: None.

.**  OUTPUTS: None.

.**  FILES READ: None.

:**  FILES WRITTEN: None.

:**  AUTHOR: Donald J. Shakley.

:**  HISTORY: Uniquely developed for this thesis.

;**  INSTALLATION: AFIT iPSC Hypercube.
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;;, variables used for timing and counting the rules fired

{setq match-time 0)
(setq select-time 0)

(setq act-time 0)

isetq match-start-time 0)
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S (setq match-stop-time Q)

~ (setq select-start-time 0)
(setq select-stop-time 0)

i (setq act-start-time 0)

~d (setq act-stop-time 0)

(setq rule-count 0)

L

;»» function to initialize the previous variables upon each execution of the inference
;) engine.

P

5 |

(defun initial-setting ()
(setq match-time 0)
(setq select-time 0)

(setq act-time 0)
(setq match-start-time 0)
(setq match-stop-time 0)

-
»

{

o

" (setq select-start-time 0) 7

- (setq select-stop-time 0) N

' (setq act-start-time 0) Sy

. (setq act-stop-time 0) N

~ LA

- (setq rule-count 0)) e
W ERIN
L . . : . g

.., function that is the main body of the parallel inference engine “o

» L

"\- . "\-.\.

A (defun forward-chain () NN

(initial-setting) s

g Q.::

LS

((null done) (not done))

(setq agenda nil)

(setq match-start-time (sys:clock))

(do ((rules-to-try rules (cdr rules-to-try))

? (do ((done T))
{

SSe

re
. (rules-tried 0))
((null rules-to-try) t)
'. (cond ((use~rule (car rules-to-try))
” ;;(print ‘(rule ,(car rules-to-try) **** USED ******))

(setq rules-tried (+ rules-tried 1)))
P ;((> rules-tried 25) (setq rules-tried 0)
. ; (print ‘(more rules tried ,(length rules-to-try) left)))
(t (setq rules~tried (+ rules-tried 1))) ))

(setq match-stop~time (sys:clock))
o (setq match-time
- (+ match-time (- match-stop-time match-start-time)))
(setq select-start~time (sys:clock))
(select-a-rule agenda)
(setq select-stop-time (sys:clock))
(setq select-time (+ select-time (- select-stop-time select-start-time)))
. (setq act-start-time (sys:clock))
(cond ((null selected-rule) (setq done nil))
((null (car selected-rule)) (setq done nil))

(t (setq rule-count (+ rule-count 1))
O (remember selected-rule)))
(setq act-stop-time (sys:clock))
(setq act-time (+ act-time (- act-stop-time act-start-time))))
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(print ‘(Number of rules fired ,rule-count))
(print ‘(match time ,match-time milliseconds))
(print ‘(select time ,select-time milliseconds))
(print ‘(act time ,act-time milliseconds)))

.;; function that selects the overall rule to fire by receiving t.he rules from its children
»»» (if it has any), using these rules along with the rules on its own agenda to select
;;; a rule to pass to its parent. The node then waits to receive the overall rule selected

... from its parent

(defun select-a-rule (agenda-list)
(append (get-children) agenda-list)
(setq selected-rule (car agenda-list))
(print ‘(agenda length ,(length agenda-list)))
(do ((rules-to-select agenda-list (cdr rules-to-select)))
((null rules-to-select) selected-rule)
;(print ‘(rule ,(caar {(car rules-to-select)) has salience
.,(salience (car rules-to-select))))
(cond ((< (salience selected-rule) (salience (car rules-to-select)))
(setq selected-rule (car rules-to-select)))))
:(print ‘(before sending to parent selected rule is ,selected-rule))
(send-to-parent selected-rule)
(cond ((= (sys:mynode) 0) selected-rule)
(t (setq selected-rule (recv-overall-rule)))))

.»; function to receive the selected rule from each of its children

(defun get-children ()
(do ((children (find-children) (cdr children))
(rule-list nil))
((null children) rule-list)
(cond ((< (car children) (expt 2 (sys:cubedim)))
;(print ‘(waiting to receive child ,(car children)))
(setq rule-list (cons (wait-recv (car children))
rule-list)))
.(print *(received child: ,rule-list)))
(t (setq children nil)))))

... function to send selected overall rule to a node’s children

(defun send-to-children (rule)
(do ((children (find-children) (cdr children)))
((null children) rule)
(cond ((< (car children) (expt 2 (sys:cubedim)))
(Iet ((out-strm
(make-fasl-node-stream (car children)
:tree :direction :output :element-type ‘string-char)))
(unwind-protect
(progn
(cond
((null rule) (send out-strm :dump-object "(nil)))
(t (send out-strm :dump-object rule}))
(funcall out-strm :finish-output))
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(send out-strm :close))))
(t (setq children nil)))))

;»» function to send a node’s parent its selected rule

(defun send-to-parent (rule)
(cond ((= (sys:mynode) 0) (send-to-children rule))
(t
(let ((out-strm
(make-fasl-node~stream (find-parent)
:tree
:direction :output
:element-type ’string-char)))
(unwind-protect
(progn
:(print ‘(sending to parent: ,(find-parent)))
;(print ‘(sending rule: ,rule))
(cond
((null rule) (send out-strm :dump-object '(nil)))
(t (send out-strm :dump-object rule)))
(funcall out-strm :finish-output))
(send out-strm :close))))))

... function to receive and pass on the overall rule

(defun recv-overall-rule ()
(send-to-children (wait-recv (find-parent))))

.1, function to find a node’s children

(defun find-children ()

(cadr (assoc ’children (cadr (assoc (sys:mynode) spanning-tree)))))

;;; function to find a node’s parent

(defun find-parent ()

(cadr (assoc 'parent (cadr (assoc (sys:mynode) spanning-tree)))))

;3 synchranous message receive

(defun wait-recv (node)
(let ((in-strm
(make-fasl-node-siream node
‘tree
:direction :input
:element-type ‘string-char)))
(unwind-protect
(progn
(do ({to-exit nil)
(ret-strm nil))
(to-exit ret-strm)
(cond
((null (setq ret-strm (send in-strm :read-object)))
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o
W (setq to-exit nil)) o
> (t (setq to-exit t) o
:(print ‘(wait-recv ,ret-strm)) ~
i (send in-strm :close)))))))) f_',.
i ;;» variable to define the spanning tree E:E:r
. Ao
L (defvar spanning-tree) E_‘_'-:"'
;;; table used to define the spanning tree’s connections ':"'.”
.-' (setq spanning-tree Z-j:'.-‘_-
(0 ((children (1 2 4 8 16)) (parent nil)))
(1 ((children E3 59 17)) (parent 0)))
( 2 ((children (6 10 18)) (parent 0)))
( 3 ((children (7 11 19)) (parent 1)))
= (4 ((children (12 20)) (parent 0))) ~
“ (5 ({children (13 21)) (parent 1))) Y
( 6 ((children (14 22)) (parent 2))) N
r ( 7 ((children (15 23)) (parent 3))) A
- ( 8 ((children (24)) (parent 0))) "
(9 ((children (25)) (parent 1))) .-,
. ( 10 ((children (26)) (parent 2))) NN
o ( 11 ((children (27)) (parent 3))) R
- (12 (Echildren 528)) (parent 4))) *"\'::.'_;'
( 13 ((children (29)) (parent 5))) Sy
( 14 ((children (30)) ~ (parent 6))) ahd
ﬁ E 15 E children (31)) (parent 7))) 9.
16 ((children nil) (parent 0))) A
‘- ( 17 ((children nil) Eparent l))g A
o (18 (Echildren nil) parent 2)) RS
) ( 19 ((children nil) (parent 3))) e
( 20 ((children nil) (parent 4))) el
_‘ ( 21 ((children nil) (parent 3))) "-."'\.
- ( 22 ((children nil) (parent 6))) I
) ( 23 ((children nil) (parent 7))) e
2 ( 24 ((children nil) (parent 8))) e
“5 ( 25 ((children nil) (parent 9))) e
( 26 ((children nil) (parent 10))) e
Py ( 27 ((children nil) (parent 11))) o]
8 ( 28 ((children nil) (parent 12))) B
' (29 ggchildren nil) Eparent 13)); ]
. ( 30 ((children nil) parent 14)) SADANA
:-_: ) ( 31 ((children nil) (parent 15))) ,:;.__‘-;72_43
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Abstract

State space search is an important component of many problem solving meth-
odologies. The computational models within Artificial Intelligence depend heavily upon
state space searches. Production systems are one such computational model. Production
systems are being explored for real-time environments where timing is of a critical na-
ture. Parallel processing of these systems and in particular concurrent state space search-
ing seems to provide a promising method to increase the performance of production sys-
tems in the real-time environment.

Production systems in the form of expert systems, for example, are being used
to govern the intelligent control of the Robotic Air Vehicle (RAV) which is currently a
research project at the Air Force Wright Aeronautical Laboratories. Due to the nature of
the RAV system, the associated expert system needs to perform in a demanding real-time
environment. The use of a parallel processing capability to support the associated compu-
tational requirement may be critical in this application. Thus, parallel search algorithms
for real-time expert systems are designed, analyzed and synthesized on the Texas Instru-
ments (TI) Explorer and Intel Hypercube. Examined is the process involved with trans-
porting the RAV expert systems from the TI Explorer, where they are implemented in the
Automated Reasoning Tool, to the iPSC Hypercube, where the system is synthesized using
Concurrent Common LISP (CCLISP). The performance characteristics of the parallel im-
plementation of these expert systems on the iPSC Hypercube are compared to the TI
Explorer implementation.

The implementation on the iPSC hypercube points out the feasibility of imple-
menting a production system in CCLISP and gaining performance improvements over the
TI Explerer. This study shows poor performance speedups due to poor load balancing
combined with a large communication overhead in contrast to the problem size.
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