
A-t 03 PAMLLEL ARTIFICIA. INTELLIGENCE SERRCH TECHNIQUES FOR 1/2REM TIME WPLICATIONS(U RIR FORCE INST OF TECH

WICISSIFED RIGIT-PTTERSON RFD ON SCHOOL OF ENGI.. D J SHNKLEYUNRSED E9 ISEEEEEEEEEE 125 M=: hhLhh~Emhsmhhhhhhhhhhl
Ehomhmmhhhhhl

'SMM

-..- i

1.0

11111 L O 1112 A

ILI

1.25

111 IAw

FIL E.,.

F -OF

I~ ~ ~ ~ ~ ~~UI rrAALE RIICA MLLGIC

FOR- RELTv APIAIN

THSI

~PARALLEL ARTIFICIAL INTELLIGENCE

SEARCH TECHNIQUES --
I ~~~FOR REAL TIME APPLICATIONS ;..pd.

TI-ESIS,.. .,,

Donald J. Shakley
Captain, USAF

AFIT/GCS/ENG/87D-24

'DTIO_ "

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY " ... "' '"

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

u'.4,'-,m d oh I 24 0
Ei;. n :110- v__ . :::

',~ ~ ~ ~ ~dobb~ ud gb~dd -- : :' ::::' :''°/ °" ;; " .

AFIT/GCS/ENG/87D-24

1VV

THESIS

Donal J. Sak-e
Captai, USA

W..4-

AFIT/GCS/ENG/87D-24

PARALLEL ARTIFICIAL INTELLIGENCE
SEARCH TECHNIQUES

FOR REAL TIME APPLICATIONS

"0

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University T.00,

In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Computer Systems Accession For

NTIS GRA&I ,

DTIC TAB -A.-

Unannouxnced
Justification"

By

Donald J. Shaklev, B.S. I b u
•Availability Codes

Captain, USAF - Avali and/or
-ist Special

December 1987

Approved for public release: distribution unlimited .,.

S... • ,, .%

e4'" '""" """ ' "" ' " "" i'•"'lm "" ' ""
I "" ' " " I

%"
4' " "

4 ' " . " " r " " ... ,r.

-o •

Preface

This study was prompted by the need for expert systems to perform in real-

time for systems like the Robotic Air Vehicle. Speedups are necessary if expert systems in,,r

the form of production systems are to be used. This study looks at simple production

system control rather than at the complex Rete algorithm. It is hoped that through sim-

N plicity, speed can be gained and can be predicted. The predictability is important in real-

g . time were additional processing power could be brought to bear to increase the response

- time.

This work would not have been possible without the assistance, advice and

support of many people. In particular, I would like to thank my thesis advisor, Dr. Gary

Lamont, without whom's help this effort would have been impossible. Also my committee

members, Major Steve Cross and Captain Nate Davis, have provided guidance and influ-

ence at key stages of my effort. None of this would have been possible without the sup-

port and understanding of my family and friends. .-

~ Donald J. Shakley ,,.,

"-V

..5,.,
.5- ' ,a' I

- i -5S .
s-p .

;.. _.9 ..

=€.= -%, . . %. .5o%-% bo -" ' %' % , . .-.- - .. % . ,. ,, * - - ' '-.0 ,
... ii hl l i - Il I I " .. .

Table of Contents

Naee

Preface i

List of Figures... V

Abstract... viii

I. Introduction

Artificial Intelligence... ..
Parallel Processing
Real-Time Processing.. 6
Problem... S
Scope ...
Approach... 10
Overview of Thesis .. 11

11. Searching Knowledge Based Systems.. 12

Introduction .. 12
Graphical Representation .. 12
Search Types... 12
Production Systems and Search.. 190
Summary... 22

11i. Parallel Searching Algorithms .. 24

Introduction .. 24
Parallel Decomposition...I.. 24 %0
Performance Measurements ... 24
Parallel Search... 26
Parallel Production Systems.. .2S
Algorithms ... 29
Algorithm 1 - Full Distribution of Rules................................. 30
Algorithm 2 - Original DADO Algorithm................................ .3 10
Algorithm 3 - Miranker's TREAT Algorithm 31 . -

Algorithm 4 -Fine Grain Rete Algorithm............................... .3 1
Algorithm 5 - Multiple Asynchronous Execution........................ 34 .~

Algorithm 6 -Rule Decomposition....................................
Algorithm 7 - Rule Synchronization...................................... 36
Summary... 3

IV-nlsis and Hieh-Level Design.. .S

Introduction .. '
-9RAV Anak-sis..

Inference Engine Analysis... ,

-~~ %I

0

Pag-e

Inference Engine Design .. 41
Parallel Inference Engine Design .. 4 5Summary... 49 N

V. Low.-Level Design, Implementation, Experimental Results,
and Analysis of Results.. ;0

UIntroduction .. 5;0 0
Inference Engine Low-Level Design 5 0
Parallel Inference Engine Implementation
RAV System Implementation...5
Testing Format... 5-9
Analysis of Results .. 60

0
IMP.I

VI. Conclusions and Recommendations .. 72
Introduction .. 72 4'e
Conclusions .. 72
Applicability to Other Areas... 74 - - '

Recommendations for Further Study 74

Appendix A: Robotic Air Vehicle (RAV) ... 77

Appendix B: Parallel Processing Architectures 81

Appendix C: NP-Completeness .. 84

Appendix D: Code ... 88

Bibliography.. 106

ita ... 110

0 A

0.~d

List of Figures

Pag-e

md 1-1. State Space Representation .. 2I

1-2. Data and Functional Decomposition...

1-3. Lavered Decomposition ... 6

1-4. RAy System Design... 9

. ~ 2-1. AND/OR Tree .. 13

2-2. Node Relationship .. 15

2-3. Breadth-First Search ... 15

_ . -4. Depth-First Search... 15

2-.A* Search.. 16

2-6. Search Variations .. 17

2-7. Search Cycle.. is

2-8. Production System Cycle .. 2

2-9. Production System Graph... 21

*2-10. Production System Algorithm...22

3-1. Production Cycle .. 27

3-2. Production System Components... 29

3-3. Algorithm 1I.................. ... 30

3-4. Algorithm 2..

3-5. Algorithm 3...33

3-6. Algorithm 4...314

3-7. Algorithm 5..3

3-8. Algorithm 6... 36

3-9. Aleorithm 7.. 17

-4-1. RA\" Components ... 40

'.A' op Wr r .V r r <IF45v e k

4-2. Inference Engine Data Flow... 42

4-3. Data Structure 1 for Inference Engine ... 43

4-4. Data Structure 2 for Inference Engine ... 43

4-5. Data Structure 3 for Inference Engine (Rete)................................... 44

4-6. Control Flow of Inference Engine .. 45

4-7. Expanded Control Flow of Inference Engine.................................... 46

4-8. Data Flowv for ART Translation... 46

4-9. Algorithm 8 - Parallel Inference Engine .. 47

4-10. Spanning Tree Connections.. 48

4-11. Rule Distribution... 49

5-1. Orieinal match patterns.. 51

5-2. New match patterns.. 51

5-3. Rule Format ... 5 3

5-4. Spanning Tree Connections .. 57

--. RAV Production System Characteristics.. 61

56. TI Explorer Results ... 62

5-7. Data Set I for Rule Set la .. 63

58. Data Set I for Rule Set lb ... 64r.

5-9. Data Set 1 for Rule Set 1c.. 65

5-10. Data Set 2 for Rule Set la... 66

',-1 . D ta et for R ul Se lb 6

5-12. Data Set 2 for Rule Set lb... 67

5-12. Data Set 2 for Rule Set lac... 68

5-14. Speedup Graphs... 70

A-1. RAV Svstemn Architecture..

A-2. RAV' Intelligent Control Layers ... so

B-1. Interconnection Networks....................................... 2

. . I . -

a- Jt J % .- '. rq
%t

B-.Summary of Architectures .. 83 '1

C-I. Known NP-Complete Problems...................85 " "

... 1" S

*,1.% ,,

_0>,

.1'

a. % . N

..- J

1
% . A"g

* k' .It¢

-- \l- --

, J £,t: ,, . , .:...,,£. 2..5". ;... ;" ;:: "d ".. --- ;"? :--"":: - :" : :- ":- -"- ;- --?-;;--".-:w.!

Abstract

State space search is an important component of many problem solving meth-

odologies. The computational models within Artificial Intelligence depend heavily upon

state space searches. Production systems are one such computational model. Production

systems are being explored for real-time environments where timing is of a critical na-

ture. Parallel processing of these systems and in particular concurrent state space search-

ing seems to provide a promising method to increase the performance (effective and

efficient) of production systems in the real-time environment.

Production systems in the form of expert systems, for example, are being used

to govern the intelligent control of the Robotic Air Vehicle (RAV) which is currently a

research project at the Air Force Wright Aeronautical Laboratories. Due to the nature of

the RAY system, the associated expert system needs to perform in a demanding real-time

environment. The use of a parallel processing capability to support the associated compu-

tational requirement may be critical in this application. Thus, parallel search algorithms

for real-time expert systems are designed, analyzed and synthesized on the Texas Inrtru-

ments (TI) Explorer and Intel Hypercube. Examined is the process involved with trans-

porting the RAV expert systems from the TI Explorer, where they are implemented in the '

Automated Reasoning Tool (ART), to the iPSC Hypercube, where the system is svnthe-

sized using Concurrent Common LISP (CCLISP). The performance characteristics of the

parallel implementation of these expert systems on the iPSC Hypercube are compared to

the TI Explorer implementation. ..,-

The implementation on the iPSC hypercube points out the feasibility of imple-

menting a production system in CCLISP and gaining performance improvements over the

TI Explorer. This study shows poor performance speedups due to poor load balancin-.-

combined with a large communication overhead in contrast to the problem size.

* -
. .'* ,,'

S. . . 4. ,.. . ' N

Parallel Artificial Intelligence -

Search Techniques

For Real-Time Applications

I. Introduction

Real-time applications exist that involve "hard" problems that currently defy

generic algorithmic approaches. Thus, problem solving paradigms from Artificial Intelli-

gence (Al) are being applied to these applications. Due to the computational complexity, *,

however, these approaches have poor computer performance characteristics (Gupta,

1986). Parallel processing seems to offer a possibility to improve computational perform-

ance for hard real-time problems. The purpose of this first chapter is to provide a back-

ground for the major components of this study: Artificial Intelligence, Parallel Process- "'
ing, and Real-Time Processing. This chapter also defines and scopes the problem and

the approach used in this study.

Artificial Intelligence

Artificial Intelligence (Ad) is concerned with the designing of computer systems

that exhibit intelligent characteristics of human behavior. These methods are used when

other direct approaches start to deteriorate due to a lack of generality of solution. Exam-

pies of such behavior include language understanding, reasoning, and problem solving

(Barr and others, 1981). These problems are studied in Al by using a computational

model. Many computational models exist for Al problems. A computational model is a

* 2 formalism used to describe a method of solution. These models present different ways to

represent the problem domain. Examples of these models include production systems.

semantic networks, frames, and logic (Fischler and Firschein, 1987).

- 5 '.

%,

For each of these representations the method of solution can be formulated as

a state space search. A state space should be defined for the problem domain as an

essential paradigm component. State-space definition also requires a set of initial states,

a set of goal states and a set of rules for getting from one state to the next state. The state

space can then be thought of as a graph with nodes (vertices) corresponding to states. An ..-

example of a state space can be seen in Figure 1-1. The explicit graphical representation

~Initial State -".A0

i."' ~State Transition"-.-.-.

*1d".. ,/•;Forward D.-.te
"aS at s.',..",

,B Bakwr Chaining "---",
1' ' (~~haining i""""-•

Goal State Goal State

- .P

Figure 1-1. State Space Representation.

of a state depends upon an individual selection of an associated data (node) structure. " '

The problem solution can then be determined by searching the graph either from an

initial state to a goal state (forward chaining) or from a goal state to an initial state

(backward chaining).

The production system fits the definition of a state space search in the most "-"""

generic terms. A production system consists of an initial set of facts and a set of rules that

_ p
' , /

F S

, J% % :a*. ~ ** ~ " . a' ~ .a'. ;. .

KV ,.

* '%

operate on the facts. Only the goal states are not explicitly defined. The production sys-

tern stops when no rules can be applied. This is the basic formulation of a production

system with its roots dating back to Post in 1943 (Rich, 1983). A production system has

the ability to represent any Turing computable function (Post, 1943). This class of func-

tions include all the primitive recursive functions as well as partial recursive functions

(Manna, 1974). Most, if not all, practical functions are primitive recursive functions.

Since any of the other representations used in AI are primitive recursive functions they

can then be formulated as a production system.

Production systems are most prevalent in Al as expert systems. These systems

can be used in different application areas. Application areas for production systems in-

clude prediction, diagnosis, design, planning, monitoring, debugging, repair, instruction.

and control (Waterman, 1986).

,- ~ Parallel Processing

Parallel processing is the use of more than one processing element to compute

the solution to a problem. By using more processing elements, it is hoped that the time to

solve the problem will be reduced over the time to solve the problem on a single proces-

sor. This is done at the expense of space efficiency. However, sometimes a parallel archi-

tecture could add space that would not normally accessible on a serial architecture.

There are several ways to achieve performance improvements in computer sys-

tems besides parallel architectures: faster hardware technology, improved serial architec-

tures, better algorithms and code optimization. There are several reasons for looking

toward parallel architectures. First, parallel architectures can evolve as fast as hardware

technologies become available. Second, many problems associated with Al are computa-

tionally "hard" (exponential time-order) or NP-complete (see Appendix C). If a problem

is NP-complete, this implies that time-order improvements in solution algorithms are

-- unlikely due to man' years of computational studies (Aho and others, 1974). It should be

-3 -

-a ' ' *. - - * , a

noted that parallelism can not produce polynomial time solutions to exponential timne

problems (Norman, 1985). But, it is possible to improve the constant term of the timne

* complexity. Also, the exponential time bound is often times worst case. In Al problems.

the use of heuristics can reduce the time complexity of state space searches. Third, some

problems seem to lend themselves to parallel solutions because the problems decompose

.. ~ ~- easily into independent, computationally equivalent pieces. Production systems seem to

-~ fall into this category because of the large number of rules that must be matched during

s each production cycle. The state-space graphical formulation of a production system ap-

pears well-suited for parallelism (Gupta, 1986).

A complete examination of parallel architectures is contained in Appendix B.

'~ ~'. Briefly, however, it should be noted how the major categories-of parallel architectures

* map into the major types of parallel decomposition. The two types of practical architec-

tures according, to Flynn's taxonomy is Single Instruction Multiple Data streams (SINID)

%I and Multiple Instruction Multiple Data streams (MIMvD). The two ways to decompose a

I'problem is by function (operations) and by data (objects) (Figure 1-2) (Jamieson and

others, 1987). Another method related to data decomposition is object-oriented design

(Booch, 1987). This is a method where data entities are viewed as objects. Messages are

used to communicate between the various objects. In some cases, a problem can be de-

composed in layers of these two methods. In other words, a problem can first be decom-

posed into partitions by the data, and then these partitions can be decomposed by func-

1 tion (operations) (Figure 1-3). The mapping of decomposition methods to architectures is

obvious. The SLMID architectures are designed for lock-stepped operations on multiple

% data paths that correspond to data decomposition. The MiIMD architectures are designed

for potentially different operations on multiple data paths that correspond to functional

decomposition. The flexibility of the MJIvIID architectures is useful for the layered decomn-

4. d position approaches because it allows any operation to be performed on any processor

4 .4

Problem: Functions: F1, F2, .. Fn
Data Subsets: Dl, D2, ...Dm

SFunctions

- Functions

Figure 1-2a. Data Decomposition.
en.

Problem: Functions: F1, F2, .. Fn
Data Subsets: Dl, D2, ...Dm

F2 ... F

Figure 1-2b. Functional Decomposition.

5.and with the proper synchronization can simulate a SIMD architecture. This allows nodes
within a MIND architecture to switch between the MiUID mode and SMID mode.

Problem: Functions: F1, F2, ... Fn
Data Subsets: D1, D2, ...Dm

%

D. I .. Dr

. 13 _

% Real-Tie Processing.

FThere are several important issues n e - .

puter applications. One of the important charneerist.. the r i :'.re , "e .t.r.

execution speed in reference to external e~ent Ihi, -An he \ie'.ed a ' , the .C

sponse time of the system to a particular input F, r a r : I-tI111C. I Cm. T. I m I.,

to make a calculation has to be less than the time trom ',hen the nccd hr the .it: '

is recognized until the time when the response is needed To Take actia \,man l'5 , 5

_ - I,

• .1" |

W5
-I,- N

If%

w.. .- o'. .- %. *'.

This can vary with the system, but the time is generally relatively small. Relatively small --',.4',..

is definitely less than a second and often in the milliseconds or less (Ward and \Iellor,

Another critical characteristic is limited memory capacity. Real-time software

typically needs to run in an environment where the size of the program can become a

problem. A third consideration is the.correctness, reliability and integrity of real-time

software. The system needs to run correctly and without failure a high percentage of the ---,

time (Ward and Mellor, 1985). These represent the most critical issues dealing with real-

time systems.

The problem with a real-time system on a serial architecture is that the execu-

. tion time and space requirements are relatively fixed for a given operation. A desirable

feature of a real-time system would be a variable time and space performance based on 0

- the need. With parallel architectures this could be possible. If a problem needed a faster

solution based on the time requirement, then more processors could be added to produce

The need for production systems within real-time systems is growing. With

parallel processing of production systems, the execution speed is increasing. For real-

time systems this speedup needs to be predictable, so that at any given moment more

processors can be brought to bear on a problem to decrease the coefficient of the time

complexity of the solution.

An example of a real-time application, which is a current research project at

the Air Force Wright Aeronautical Laboratories, is the Robotic Air Vehicle (RAV). It is

an air vehicle with the capability of autonomous flight operation. This vehicle needs the

capability for the "intelligent" control of an air vehicle, the capability to plan and replan

missions, and the capability to access flight data on various geographical locations (air-

. bases, airports, cities. etc). By "intelligent" it is meant that the system can react to
* S

conditions rather than fly on a rigid preprogrammed flight path. A diagram of the system _

-7-.

(4'S. 4' .~ %°. • ' .- '

can be seen in Figure 1-4. A complete discussion of the system components can be found.

S in Appendix A.

This study focuses on the "intelligent" flight control components of the system.

, This component was selected due to its reliance on production systems and its maturity in

relation to the entire research project (Graham, 1987). The control of the vehicle can be

- thought of as a search through a finite state-space over a time period of the vehicle's

. operation. The problem of intelligent control of a robot is a control-type NP-complete ,

problem (Appendix C) that is best suited to be solved by a production system in real-time

"V" (Appendix A). Therefore, this system makes an excellent tool for the study of parallel A[

search techniques for real-time applications.

Problem

The RAV system is an example of an intelligent real-time robotic control sys-

tem implemented using an expert or production system (McNulty, 1987). The purpose of

this investigation is to try to increase the performance of the expert system by reanalysis,

"% redesign and reimplementation of the system on appropriate parallel architectures. The
% 5%i

" hypothesis of this study is that the performance of the RAV expert system can be im-
d

proved in a predictable and linear manner.

Scope

There are many types of expert systems (Nilsson, 1980). This investigation

% concentrates on an expert system for intelligent real-time control (Albus, 1981). There is

the potential for many types of parallelism within production systems (Douglass, 19S5). p

The search parallelism within a production system is the focus of this effort.

*" There are many types of parallel architectures (Appendix B). The two type of

parallel architectures (NIINID and SIMD) were considered for this study. Only t\%o particu-

lar architectures are considered in this study due to availability. A further discusSion of
"-'

oo • .

A

Natural Airspace
Language VOICE Expert

Menu S vstemr

".Passive -",M i s o P ilo tin gP a s v
;" ~ ~Plan JlExpertXaiain

System vigation

, U

Expert "
;." System 'i

• ". Vehicle
€ "" Control
~System

Figure 1-4. RAV Sstem Diagram (McNulty, 1987: 1327).

Z ",.Z.

" '" -''- 'J'-'2 2< '- -""-'" - 2r ' - "
%

t
-'

" "'i
'

"-" "" " " , " """ " " " "" -"

the reasons for the architectures chosen is contained in Appendix B. The first one is the ,

host of the RAV system. This architecture is a network of four loosely coupled Texas

Instruments' Explorer Lisp machines with distributed memory. The other is the Intel iPSC

" hypercube with up to 32 processing elements (PEs). The results could possibly be applied

to other intelligent control expert systems and other expert systems in general on the

same architecture type. Some basic results could possibly be generalized to other exam-

ples of searching not associated with expert systems and to other expert sywtems on

- closely related architectures.

This research is intended to be a feasibility study of the issues involved includ-

ing implementing an expert system written in Automated Reasoning Tool (ART) on a TI

Explorer on the iPSC Hypercube using Concurrent Common LISP (CCLISP). ART is a

knowledge engineering language used in the development of expert systems. CCLISP is a

dialect of Gold's Common LISP that has been enhanced to allow for message passing on

% the iPSC Hypercube. LISP was chosen since it was available on both the TI Explorer and

iPSC Hypercube making the transportation of the code from one machine to the other

easier. This study is most interested in examining the execution speed of real-time svs-

tems that use production systems. This study focuses on achieving execution "speedup"

through the use of parallel algorithms. The performance metrics of this study will be

defined latter in the report. The results of this study are not intended to specify final

real-time execution times, but rather an analysis of speedup possibility due to parallel

processing of production systems.

Approach

The current knowledge base (Appendix A) for the RAV has been obtained from-

TI through the Air Force Avionics Laboratory. This includes a basic demonstration rou-

tine. Portions of this demonstration will be used to exercise the system. The control for p

the expert system is developed using the basic principles of production s\stem control for

-Ic)-

% %

* d_ -. . -,e -It-"- 01

an inference engine (Appendix E). The current RAV software uses the Automated Rea-

soning Tool (ART) as the inference engine (McN'ilty, 1987). ART can not be used with

- the parallel environment since it is not licensed for nor is available for the iPSC hyper-

cube. The inference enine will be designed on the TI Explorer Lisp machines where it

can be tested against the knowledge base and the rule execution timing results can be

' compared to the ART inference engine. The parallel expert system is implemented on the

Intel iPSC hypercube with up to 32 processing elements (PEs) to explore larger degrees of

' parallelism.

Overview of the Thesis

The thesis is organized into six chapters with detailed explanations and descrip-

tions in various appendices to improve understandability. The first chapter is an introduc-

tion of the issues involved with the thesis investigation along with a problem statement,

the scope of the stud% and the approach used in the study. The second chapter examines
the key issue of search. The third chapter is a discussion of parallel decomposition of

search and how it applies to production systems and the RAV system. The fourth chapter

contains a detailed analysis and design of the serial inference engine used, the parallel

inference engine, a parallel production system, and a parallel RAV expert system. The

fifth chapter provides the implementation details for the TI Explorer system and the Intel
. aa

iPSC hvpercube along with the experimental results. The sixth chapter provides a sum-'.

marv of the results along with conclusions and recommendations of this study. Detailed

- discussions of the RAV, parallel computer architectures, NP-completeness, and inference''p

engines as well as the serial and parallel production system code are provided as appendi- "

ces.

a..
-- a1 - -

at,
d "-

\ -

II. Searching Knowledge Based Systems

4 Introduction

4 Search is a basic method for problem solving where other direct methods (algo-

rithms) do not exist. Problem solving using search involves defining a state space and

systematically checking those states to find a solution or solution path. The state space

(problem space) forms a graph with the nodes being states and the edges are the transi-

tions from one state to the next state. A solution to the problem is then determined by

selecting an initial state (node) and methodically traversing the branches (transitions) to

find a goal state (node).

Graphical Representation

The state space graph in its most general form is an AND/OR graph. An exam-

pie of an AIND/OR graph can be seen in Figure 2-1. The successors of a state (node) can

* I be independent of each other (OR connections). The successors of a state (node) can also

be related (AND connections) represented by arcs between the edges in the graph. This

'-, latter type of relationship indicates that any solution path through one of the nodes in an

4 AND connection must include all the other nodes in the AND connection.

A quick look at some terminology. Once a node has been selected the process

of producing its successors is known as expanding a node. The successors are sometimes

known as children with the original node being called the parent. In this way. grandpar-

ents and grandchildren can be defined and can be useful in describing relationships be-

• -" tween nodes on different levels of the graph (Figure 2-2).

Search Types

The two most basic types of search are breadth-first and depth-first. The\ ar-e

both uninformed searches. That is. neither uses any heuristic informnation to ,_'uidC thlc

search process. Breadth-first search can be seen in Figure '-. The search \ iit, all the

..%
- 12 - ,

5,

of -7 -F

.. 1*
.P5

START NO.

II. A

-S ORLINK

D5.
B c5

S ..

Fiur 21 AN-STARTNODE

Z,,

13 -

-!

nodes on each level before moving to the next level. This can be viewed as a Last-In

First-Out LLIFO) process. Depth-first search can be seen in Figure 2-4. This search visits

*" one node on each level along a vertical path. This can be viewed as a First-In First-Out
.. 5

P, (-FIFO) process.

Before discussing other types of searches, a discussion of solution quality is

S- needed. The term optimality can have various meanings depending on the characteristics

of the problem space. If only one goal state exists, then there is no difference in the goal

that is found, only the paths to the goal are different. The "best" path to this single goal

.-" can be defined in many ways. The "best" path could be the shortest path in terms of the

number of nodes on the path. The "best" path could be the minimum cost of the sum of 55b
, eights of each node on the path. In general, the "best" or "optimal" path can be defined

in any consistent manner for any specific problem space. If more than one goal exists,

then the -optimal" solution not only involves finding the "best" path to a goal, but also in

finding the "optimal" goal. This implies that there is some criteria to order the various

goal states, so that one goal can be found to be the "best" or "optimal".
',,

Searches that discover the "optimal" solution path, that is find the "best" path

to the "best" goal are known as optimizing searches. They find the "best" answer.

Searches that sacrifice the optimality requirement in order to discover a solution are

known as satisficing searches. Here the requirement of finding a solution is satisfied, but

the optimality of the solution is sacrificed.

.K i There are man' types of informed searches. An informed search, unlike

breadth-first or depth-first searches, use some knowledge about the problem space to try

to reduce the number of nodes examined in the search process. These searches are known

-: as best-first searches. The nodes of the graph are ordered by some criteria. This criteria

. " is defined by what is meant by "best." As was seen above, this can take on various"

, meanings depending on the problem and the situation. The important point is that the

nodes are ordered and the first in the ordering is selected for expansion. A* is an exam-

-14- "

5.%*,-.*% % % .55 %**%%"~ , 5°-..%-.'.° *5*5°'**%---, ,. . . - •5. ' .. 5. -... --. d . , , .

Paen A~- Grnprn

Il

B C

E JFKGGrandchil

Figure 2-. NoedetRelinserhi.

A Search Order:

ABCEFGHJJK

BC C D

E F HI

Figure 2-. Breadth-First Search.

pie of this type of search. A* defines the "best"node in terms of a function f" where f = g- - -~.. U.'.

+ h'. The value of g is the "cost" of the path from the initial node to the current node in

question. The value of h' is an estimate of the "cost" of the path from the current node in

"* question to the goal node. The node with the smallest f' value is selected from all the

nodes in consideration to be expanded on each cycle of the search. Figure 2-5 shows an

example of an A* search. The h' value is called the heuristic and varies from one prob-

lem to the next. The optimality of the A* search can be analyzed based on the character-

% -. -

S. 26

f' 2 ":"' %*.

Sf'=f22 F f'= oG F25 f' 28 21 V 27 K F-2,

Search Order: '

ACHBEDGFKJI

~"

Figure 2-5. A* Search.

the goal node through the current node, is less than f. the actual cost, at each node in the.

c .%. .-

graph. then the A* search will find the "optimal" solution based on the fC function.
The other types of best-first search are variations on this basic theme. Onc

ty pe of variation is to change the f' function. This function can be changed to decrease the

..L.-'. ,".7,5 '..' ':, N. '. '. •, *, ". ", ',,", ' .' ', "" ,. %"% - -"" , ,, - : " ?" .'""- ". - ," " '.."- , ".",.".",. "':,' '-€ ",

. .. . •" a -16-

P. number of nodes examined, but at the possible expense of "optimality.'" ThiS type of

change usually involves weighting either the g or h' value or both. Another variation is to

eliminate or limit the nodes that have been expanded from being considered in the future

, of the search. This is usually accomplished by creating a bound where all nodes whose f'

value are beyond the bound are eliminated from consideration. This has the effect of

i , trimming the graph and reducing the nodes to be examined. This method, also, speeds the

search at the expense of "optimality" and in some cases at the expense of arriving at a

solution. Examples of these variations can be found in Figure 2-6 and are discussed in

the literature (Nilsson, 1980; Pearl, 1984; Rich, 1983).

~Breadth-First

~Depth-First

Hill ClimbingA*

:"-. SSS*

%.?i Figure 2-6. Search Variations.

PP

. The various types of searches are slight changes to the same f'orm. They Lill

;"'" exhibit the same flow. It Is a form of g-enerate-and-test or branch-and-bound1(. The alLo-

rithm inFigure 2- 7 describes the basic procedure.,.

'" -).7.-

h%

-:p

,-,•-, , , - ,, B readth%_ - First- , ,- ,- , ,," .% . % ,--,%% .% '
* Dept-Firs

%" %,

1. Select a node from the list of nodes to be explored. .&

" "? Test the node to determine if it is the goal.

.!!. 3. Generate the children (successors) of the node. .,;

4. Place the children on the list of nodes to be explored. "':

~~Figure 2-7. Search Cycle.,4

,- ~The domains of the problem space, therefore, influence the basic operation of.,.,

"" the search. The only impact the problem space has on the operation of the search isin the .-

heuristics used to select the next node for expansion. For example, with the typically "

numerical domains associated with the Traveling Salesman Optimization Problem and tile --

,. Set Covering Optimization Problem the heuristic is calculated using F' =Q + h.In the case
S of the Traveling Salesman Optimization Problem, the value of h' can be calculated from '!

• the weight of the minimum spanning tree associated with the remaining unused nodes. ,,,-,

"" With problems involving a more symbolic logical representation, the heuristics can take a,.

Variety of forms. The selection of nodes to expand can be based on the number of terms '''

.. --p-

. in the sy-mbolic representation. The selection can be based on the depth of the parents of ,..,

the node in consideration. In the set-of-support strategy of resolution, the clauses that ;-

2-"6

" result from the goal and their descendants are given preference (Nilsson, 1980).

• .' The basic components of search can be found in logical resolution systems and - "

production systems as well as in many branch-and-bound search applications. The Only --[.

" variation is in the optimization requirement and in the heuristics used in selecting the next

.. ?
1.d Sobe elnedtand.rmtels o oe ob xlrd

2 t o d n t e

F. -', ,' ,..""+ ,.;+"3.." Generate' +2 2 the' ch'_-L"ilde (successors)g g"2J, of" the'.' node . ." ¢ 2+ ,

0

Production Systems and Search

0

Production systems are computational models. They consist of three compo- %

nents: a global database of facts, a set of productions or rules, and a control strategy. The 0?

global database or working memory (WM) contains the set of initial facts or axioms as

well as facts generated by the productions. The productions or rules, known as the pro- -

duction memory (PM) consist of an antecedent or a left-hand side (LHS) and a conse-

quent or right-hand side (RHS). The rule is of the form 'IF condition THEN action' where
0

the condition is the LHS and the action is the RHS. The LHS can be any conjunction of

facts or negated facts. The RHS can be any new fact or the retraction of an existing fact.
,."

The control strategy, also known as an inference engine, matches the LHS of the rules of
0

the production memory with the facts in the working memory. The inference engine main-

tains a list of bindings of variables with possible matches from the working memory.

After all the rules have been matched, the inference engine selects, from all the rules that

have successfully matched, a rule to apply. The RHS of this rule is then applied resulting

in the addition or subtraction of facts from the working memory. The basic cycle can be ,.

seen in Figure 2-8.
0

As a computational model, Post proved in 1943 that a formal production svs-

tem is computationally equivalent to a Turing machine (Post, 1943; Minsky, 1967). This

means that any Turing computable function can be expressed as a production system. •

This gives production systems a great deal of computational power. This implies, how-

ever, that production systems do suffer from the halting problem. The halting problem

occurs when a solution fails to exist, then the production system is not guaranteed to halt,

but can run forever.

The advantages in using a production system lies in its flexibility. The knowl-

edge i- ,cparatcd from the logic or control. This allows the rules to he chanced Wi1hout •

19 0

-*•.

. =.=.- . - - - -:: :

k.

.-% *,-a

Match Select .:.,-.

aq , Rules Rule

N.

S. "

Termination Apply

"" Check Rule S

%'.

Figure 2-8. Production System Cycle.

affecting the control logic of the whole system. This gives the system designer greater

flexibilitv in system growth (Nilsson, 1980).

The control of a production system is essentially a search process. The Current

state of workine memory elements or facts can be represented as nodes. The rules are thle

* transitions to a new state. The number of rules that can be applied in any one situation is - .

* the branching factor of the graph at that node or state. The basic control algorithml is seen

'i" ,.-...
• .- ,~. -. -,

Stin Figure 2-10. A graphical depiction of a production system as a search graph is seen In

Figure 2-9. OR branches of the graph occur when rule changes the working memory is

such a way so that another rule that did apply, no longer applies. AND branches of the

- graph occur when the application of one rule does not impact application of another

rule.

-, .. .'

sucha wy sotha anoherruletha did aplno ne apl. AN race of theI *.P*'V* ,

0

u,, Rule0

Rule 01 Rle0

Rule 03Rule 02

Fi9r -. PrdcinS'senGah

Procedure PRODUCTION -

1. DATA <- initial database

2. until DATA satisfies the termination condition, do;

3. begin

4. select some rule, R, in the set of rules that
can be applied to DATA

> DATA <- result or applying R to DATA

6. end.

Figure 2-10. Production System Algorithm (Nilsson, 19080: 21). .

The algorithm in Figure 2-10 is nondeterministic. In step 4, several rules can

be selected, but on a serial architecture only one rule can be applied in step 5. Due to the

OR branches in the graph and the nature of a production system, once certain rules have

been applied there is no way to reverse the effect and to backtrack in the graph. This is an

% irrevocable control strategy. This is especially true of a production system operating in a

real-time environment where performance is critical. However, another characteristic of a.%

production system that can overcome an irrevocable control strategv is the commnlutati\e

property. This means that any action can be gotten from any orderine of rules tNilsson.

19S0. AND branches offer one example of this type of commutative nature to produiction-
"- systems.2"-

Summary

This chapter reviewed search and production svstems. Production systems are a

very expressive computational model in that all other models can be rhpre\enied by a

°. I '.'."

. i - - -.-..- - |.

-~77 7" 77- 7. --K...

production system. This chapter showed that a production system can be viewed as aN%

* search process. In the next chapter, methods are developed to arrive at parallel algorithmis

for production systems. These algorithms are then used to design and implement a coil- -

current production system.

x 0t

":" ~.'"

.L1. Parallel Search Algorithms

0 Introduction

P%, This chapter looks at parallel processing of search algorithms. First, a look at

parallel decomposition and performance metrics associated with parallel computing. This

chapter explores the different manisfestations of parallelism within general search and

specifically the concurrency available in production systems. Finally in this chapter, vari-

ous algorithms are presented for parallel decomposition of a production system to lay the .-.*..

groundwork for the design in chapter four.
.4

Parallel Decomposition

The advent of parallel computer architectures have brought about the possibil-

itv of faster execution of many computer applications. Parallel architectures have brought A,%

about new problems as well as the old in terms of software analysis and design. For an

application to be implemented on parallel architecture, a way must be found to decom-

pose the problem into component pieces. Several important issues are concerned with this

decomposition. First, the work must be distributed as evenly as possible. This is so thato, . •. % ,

La each processor is busy. This is load balancing. Second, the communication between the •.,. . .,
pieces needs to be kept to a minimum. This is to reduce the communication overhead

associated with the various processors communicating with each other. However, when

this communication occurs, the processors need to be synchronized with respect to each 0

other. This is to prevent problems with updating shared variables that can produce errone-

ous or unpredictable results. Proper synchronization also prevents the occurrence of dead-

lock between processors (Ishida and Stolfo, 1985).

Performance Measurements

Speedup is the most common performance measurement (metric) in j\IralcI

*? Computine. This is the ratio of the run time of the concurrent software runnin, On n nodes

24 A "

Ne-, % 0

- ~ b,. ~ - - - - - - -

over the the run time of the best serial solution. An application is said to be "'perfectly

parallel" if this ratio is n. This is a linear speedup. That is the speedup goes up linearly

with the number of processors. Often the speedup approaches the linear speedup, but ,.

does not reach it due to the communications overhead between the processing elements .'"

(Gupta, 1986). Although rare, speedups have been observed greater than n. This is called

super linear speedup. At first this seems to be absurd, but upon further study it does

seem reasonable. Super linear speedup usually occurs when the application is so laree on

a serial system that certain overheads are incurred, but when placed on many processors

none of the pieces is large enough to incur the same overhead. Thus super linear speedup %"-

is observed(Kornfeld, 1981). In addition, there is usually a point at which the addition of

more processors does not improve the speedup (Gupta, 1986).

Communications overhead is a large concern is parallel computing. This corn-

munication takes several forms. The first is the time to set the job up on the parallel

system or the time to distribute the work. The second involves the time needed to collect

the results of the job. The third is the communication needed between the processors

during the running of the job. An important measurement is the time a processor is

communicating versus processing. This measurement along with the setup time and

cleanup time gives a good indication of the overhead associated with the parallel process.

This is not the only area which produces overhead within the parallel process.

Load balancing is yet another important criteria for parallel computing. This is -

the percentage of the total processor power that is used during the job. A perfect load

balance would be one in which all the processors are busy all the time. This perfect

2 balance is impossible due to two factors. First, depending on the connection network for

the processors (see Appendix B) the setup and cleanup provide for times when not all the

processors are busy'. Second, there is usually some fraction of the job that is inherentl\

serial. This part of the job has to be performed on one processor while the other proces

.. .5*,** . '.. - -- -- -

pr. v:.p. 7J_ J -=-_. -. . pr 2 i J.- .V . . .- .2 -, . " - ' . - ' . -. -.

sors are idle. These two factors are innate to the problem. Poor load balancing can also be

designed into a problem due to a poor decomposition.

Several other performance measurements are needed to baseline a production

. system. These include 1) the number of productions or rules, 2) the number of workin,,

memory elements or facts, 3) the composition of the rules which includes the number of

clauses in the LHS and RHS of the rule, and 4) the average number of rules eligible to be

selected on a given cycle. These are but a few basic components, other characteristics

depend on the system and inference engine being examined.

N- Parallel Search

The general forms of the search were discussed in chapter two. Now, the issue

is how to decompose the problem to perform the search in parallel. Like any decomposi-

tion problem, there are two main choices for concurrency. Either decompose the functions ,

or instructions and perform independent tasks concurrently or divide the data and per-

form the same functions on subsets of the domain. In some cases, both can be achieved in

layers. For search, both methods have been proposed. For example, Mraz studied parallel

branch-and-bound search by dividing the operations of a search cycle among different

processors (Mraz, 1986). Gupta studied the decomposition of the data within production

systems. In his stud,,, Gupta looked at generating the next nodes in the search graph

through parallel matching of rules using the Rete algorithm (see Appendix E for more

.. details on Rete) (Gupta, 1986).

Both of these methods can be mapped onto the two main categories of parallel

architectures. The functional decomposition can be mapped onto the NILiND architecture

while the data decomposition can be mapped onto the SIMD architecture. How\ever. prob-

lems that can be mapped to the SIMD machine can also be implemented on the NIINID

"' machine. This makes the MIIMD architecture suitable for either decomposition as \well as

the layered decomposition. The layered decomposition involves decomposing the rules on

a-i'>
0%

-a '1

- -* .' a

['.-.-.-....'.,.--.' " . '_'.,..'-"_'. '-'.' ._-'-'.'_- ". 'L, ' ",-,-'Z' ¢ .' . " ._. ,'- ,..,, , ,-,.

-; .. .:,-

?

one level and within that level decomposing the facts. Consider a case where the rules are

distributed among several subnetworks of PEs. Then within each subnetwork each the

data is divided into independent groups to match against the set of rules given to that
subnetwork. This provides a layering affect of decomposition.

The decomposition of the functions is straight forward with a limited possibility .oI
S-- for parallelism. The cycle can be seen to be a four step process (Figure 3-1). If this

d Match Select

Fxt Quit .4 Act
Test

Figure 3-i. Production Cycle.

decomposition could be implemented in a "perfectly parallel" fashion, then only a four

r times speedup could be achieved. Greater speedups are hoped for. This can only he

achieved by- analkyzing! the data.

The data decomposition offers a much larger opportunity for concurrency. Tis

is due to largze set of data. If the search graph or tree Call be decomposed thenl there is theC

potential for zreat Speedups. The question is how to decomprj-ose anl eXp~nentliak grow\vine
L

Lgraph or tree aiong a constant number of processors;. Tils decor sition Ixi 10 he

-
..

constrained in such a way as to insure a "fairly equitable" load balancing and to reduce

the communication due to data dependencies.

Parallel Production System.

Production systems, as were seen in chapter two, are a type type of search.

Therefore, parallel decomposition techniques for search problems can be applied to pro-

*-. duction systems. So, production systems can be decomposed along the control functions "-5

like a branch-and-bound or it can be decomposed by its data. In the case of a production

s\-stem the data can be thought of as two parts (Figure 3-2). The first part is the facts or 55%

the working memory (\1). Although the working memory can have several meanings in

this context it refers to the initial facts and axioms as well as the facts added due to the

firiniz of rules. The second part is the rules or the production memory (PM). These two

parts are not always distinct, but can overlap. For example, the result of a rule could be

the addition of a new rule. The reasons for making the distinction in the types of data is

that in some cases it is much easier to decompose the rules than it is to decompose the

facts. The latter requires data dependencies to be worked out while the former requires

less restrictive decomposition considerations. Both types of decompositions will be looked

at in the algorithms.

As described earlier the concurrencv available in decomposing the functions is

limited. This is particular true for production systems where over 90% of the time is spent

in the match function (Gupta, 1986). So the main emphasis is placed on the decomposi-

tion of the data. The methods for implementing a production system tend to center

around ways to decompose the rules (PM) and the facts (\VNI). This has lead to several

algorithms to accomplish this decomposition and placement on separate processors.

These algorithms are generally at the level where the underlying inference engine struc-

ture is unimportant. The methods are more concerned with the dependencies of the rules

on each other and the facts (W*M).

:,_w

,_ .. ,.

ILI-

16~

P Production System

Production Memory pMWorking, Memnory v.

1.. 2 ... nF F1 .. F

.,--.%.

. Rules Facts and Axioms .

Figure 3-2. Production System Components.

Algorithms Fd

Several algorithms have been proposed for the parallel decomposition of pro-

duction systems. These algorithms deal with rule independence and communication

among processors. The first five algorithms (Stolfo, 1984) are for the DADO parallel

architecture. Although some aspects of these algorithms are hardware dependent, the%-
.- , ' ..

can be generalized to other architectures as well. The DADO architecture consists of a

binary tree of processors which is easily simulated on an n-cube architecture like the

iPSC hvpercube. One hardware dependent feature is a process called max-resolving that

is specialized hardware to select the maximal PE for selection of a rule to fire. The

DADO PEs have the capability to alternate between MEID mode and SIMD mode (Stolfo.

1984). The last two aleorithms in this chapter provide specific algorithms for rule decom-

position and rule synchronization. This is accomplished using data dependency graphs for

production systems.

- 29 -

_ -"""'""". t .,.:r.a,...-'.-,""''" """ ' " ""'""'", ., ,'x..f,"°' "'', ''" * f-""f"::":"""''" ':":"" "":"% "-,7.'-" l"""0

Algorithm 1 - Full Distribution of Rules a.,.

This algorithm distributes all the rules across all the available PEs. Each PE has

its own copy of the WM. This algorithm can be seen in Figure 3-3.

2.. Reea.teolowng

9..°

a::.

SDistribute a few distinct rules to each PE. Set CHANGES
to initial WM elements. ,eto s
2. Repeat the following: s
3. Act: For each WM-change in CHANGES do

a. Broadcast WM-change (add or delete a specific WMelement) to all PE's. >

b. Broadcast a command to locally match [Each PE
operates independently in MIMD mode and modifies l-l.

its local VM. If this is a deletion, it checks its local
conflict set and removes rule instances s appropriate.
If this is an addition, it matches its set of rules and..., modifies its local conflict set accordingly].

c. end do;
h4. Find local maxima: Broadcast an instruction to each fE

b r to rate its local matching instances according to some.predefined criteria. .

-Za

5. Select: Using the high-speed max--RESOLVE circuit of
DADO2, identify a single rule for execution from among all

?. PE's with active results.
:" 6. Instantiate: Report the instantiated RHS actions. Set

CHANGES to the reported W\XM-changes.
'...7. end Repeat;

Figure 3-3. Algorithm 1 (Stolfo. 1934: 302).

This algorithm is rather straight forward to implement since all of the wiorkine

,', -,%, memory is located at each PE. This could be a limitation if the \\l is too large to fit on a "

-' - -.

PE. The speed of this algorithm depends on the speed of the match on each PE. Nultiple

firing of rules can be accomplished, but is handled in detail in a later algorithm (Stolfo.

- 19S4). This algorithm, is the basis for the algorithm developed in chapter four.

Algorithm 2 Original DADO Algorithm .,

* This algorithm divides the DADO machine into three sets of levels: a PNI-level.
-. °- *,

•

an upper tree, and VM subtrees. The upper tree is the meta control level to supervise

-- operation of the system. The PM-level and WM-subtrees form a layered decomposition

of the production system. The PM-level distributes the rules and then each of these sub-

-" sets of rules are matched in parallel by the WM-subtrees (Stolfo, 1984). This algorithm %

can be seen in Figure 3-4.

This algorithm is very dependent on the DADO architecture. This algorithm..

also forces a limitation on the size of the PM, but the size of the WNI can be quite large.

- For these reasons this algorithm, does not weigh in very heavily on the design of the -

parallel inference engine in chapter four. This algorithm starts to approach the idea of a .--2-

distributed WI that allows for multiple rule firings.

L Algorithm 3 - Miranker's TREAT Algorithm

This algorithm was developed by Daniel Miranker to improve on algorithm : to

provide some features of the Rete algorithm. This algorithm can be seen in Figure 3-.

This algorithm is appropriate for production systems that have small PNIs and ,

larize \WM, and where many rules are affected on each cycle. This algorithm uses a implc-
.'*" matcher rather than the Rete algorithm (Stolfo, 1984). This fact makes this a rather inter-

esting algorithm for incorporation in chapter four. o

Algorithm 4 - Fine Grain RETE Algorithm

This algorithm uses a complete compiled Rete network on each PE. O(ther\1isc.
this aiorithm is very much like algorithm 1. This aleorithm can be seen in Firc _I- ..--

- 31 -

% %°

IJ4 21). -J

1. Initialize: Distribute a match routine and a partitioned-V.-
subset of rules to each PM-level PE. Set Changes to the..,..
initial WM elements. .-%2. Repeat the following:.%
3. Act: For each WM-change in CHANGES do;

a. Broadcast WM-change to the PM-level PE's and an
instruction to match.:-:S:i

.5. ,"."

b. The match phase is initiated in each PM-level PE:_- :ii:
i. Each PM-level PE determines if WM-change is,--.-
relevant to its local set of rules by a partial match
routine. If so, its WM-subtree is updated accordingly.".
[If this is a deletion, an associative probe is performed",.
on the element (relational selection) and any matching,-._ '

instances are deleted. If this is an addition, 'a free ;:.
WM-subtree PE is identified, and the element is 0"
added.]
1ii. Each pattern element of the rules stored at a PM- I-
level PE is broadcast to the WM-subtree below for " -"
matching. Any variable bindings that occur are reported-..
sequentially to the PM-level PE for matching of':.%
subsequent pattern elements (relational equi-join).
illi. A local conflict set of rules is formed and stored i.i
along with a priority rating in a distributed manner'.-
within the WMf-subtree. -"q

...- o

c. end do;.
4. Upon termination of the match operation, the PM-level

PE's synchronize with the upper tree. :.-5. Select: The max-RESOLVE circuit is used to identify the
maximally rated conflict set instance.
6. Report the instantiated RHS of the winning instance of the

root of DADO. 0 -.Set caashange to the reported action specifications.
. End repeatc p i ie e Pl

Fiure 3-4. Algorithm 2 (Stolfo, 1984: 303). atch

Thnis forks best on a production system iherte PM is r with relat elv

tew ruLIW sffebtted on each cycle and the \V l is small (Stolfo, 1984). Due the use Of the

3'..

- 32 -. & "3.

%[- I

vi 1. Initialize: Distribute to each PM-level PE a simple matcher lop
(described below) and a compiled set of rules. Distribute to

the WM-subtree PE's the appropriate pattern elements
appearing in the LHS of the rules appearing.in the root PM-
level PE. Set CHANGES to the initial WM elements..%
2. Repeat the following:
3. Act: For each WM-change in CHANGES do;

a. Broadcast WM-change to the WM-subtree PE's.
b. If this change is a deletion, broadcast an instruction to
match and delete WM elements and any affected conflict
set instances calculated on previous cycles.
c. Broadcast an instruction to PM-level PE to enter the
Match Phase.
d. At each PM-level PE do;

i. Broadcast to WVM-subtree PE's an instruction to match
the WNI-change against the local pattern element.
ii. Report the affected rules and store in L.
iii. Order the pattern elements of the rules in L
appropriately.
iv. For each rule in L do;

1. Match remaining patterns of the rules specified in
L as in Algorithm 2.
2. For each new instance found, store in WI-
subtree with a priority rating.
3. end do;

v. end do;
e. end for each;

4. Select: Use max-RESOLVE to find the maximally rated
instance in the tree.
5. Report the winning instance.
6. Set Changes to the instantiated RHS of the winning rule
instance.
7. end Repeat,:'.I

Figure 3-5. Algorithm 3 (Stolfo, 1984: 305).

I Z '

33-..

I "'

33 - ,' -
], ,

1. Initialize: Map and load the compiled Rete network on the

% -V.'-d

DADO tree. Each node is provided with the appropriate nmatch
code and network information. Set CHANGES to initial \VNI
elements.
2. Repeat the following:
3. Act: For each WM-fchanges in CHANGES do;

a. Broadcast WM-change (a Rete token) to the DADO
leaf PE's.
b. Broadcast an instruction to all PE's to Match. (First. the
leaf processors execute their one-input test sequences on the
new token. The interior nodes lay idle waiting, for match
results computed by their descendants. Those tokens passing
the one-input tests are communicated to the immediate
ancestors which immediately begin processing their twvo-input .

tests. The process in then repeated until the physical root of
DADO reports changes to the conflict set maintained in the 0

DADO control processor).
c. end do;

Select: The root PE is provided with the chosen instance from
the control processor. Set CHANGES to the instantiated RHS.
4. end Repeat;

Figure 3-6. Algorithm 4 (Stolfo, 1984: 306).

Rete alEorithm and these performance characteristics it Is not considered for the -rallel

inference engine in chapter four, but is provided for a sense of completeness.

Algorithm 5 ThMultiple Asynchronous Execution

This algorithm addresses the issue of multiple rule firings. This is done b\.%

S creating multiple root nodes within the tree where rule selection takes place. This algo-

rithm can be seen in FiLure 3-7. t t j
4enRpa.,,Z

. *'.1 ,

, ,..
1...

I. ,.

1. Initialize: Logically divide DADO to incorporate a static
-' Production System-Level (PS-level), similiar to the PM-level

of Algorithm 2. Distribute the appropriate PS program to each
IR of the PE's at thePS-level.
• ".2. Broadcast an instruction to each PS-level PE to begin • .-

execution in MIMD mode. (Upon completion of their
respective programs, each PS-level PE reconnects to the tree
above in SIMD mode.)
3. Repeat the following.

a. Test if all PS-level PE's are in SIMD mode.
End Repeat;

4. Execution complete. Halt.

Figure 3-7. Algorithm 5 (Stolfo, 1984: 306).

This algorithm is very flexible, but depends on the rule independence as is

discussed in algorithm 7. The principles from this algorithm are used in the design of the

* parallel inference engine to provide parallel rule firings.

Algorithm 6 -Rule Decomposition

This alg-orithm deals with the decomposition of rules and the allocation of proc-

essors. This process generates a rule tree in such a way that the rules on each processor

* are independent of each other. The algorithm can be seen in Figure 3-8.

This algorithm is an effective wa to divide the rules. However, it is ver. labor

intensive and should be automated. This aleorithm assumes no prior knowledge of the

production system. irh the modular design of the RAV system, the decompositiion of thc
iii - " -" ,

.. ivide-.the.r.. .s. H o ev r iti v r labor * . '.''-
rules should be easier. Each module should be independent.".¢.'

. "%= %35

7'.,% .

44

1. Phase 1: Generating a Rule Tree. A token is defined as a
triple, (ruleA ruleB P(ruleA, ruleB)), where rule A and rule
B are production rules and P(ruleA, ruleB) is the parallel
executibility between rule A and rule B. Parallel executibilitV
is defined between each pair of rules as the number of
production cycles which can be reduced by allocating the two
rules in distinct PEs. Form a rule tree in which each rule is
associated with a distinct leaf node. The goal is to maximize
a sum of P(.,, j) at each non-leaf node in all combinations of
i and j, where i/j indicateds a rule in a rightlleft subtree of the
non-leaf node.

I.-.

2. Phase 2: Create Partitions for Parallel Processor System.
This phase creates partitions of a production system for
parallel processor systems from the rule tree. ecause the rule
pairs with a large parallel executibility are decomposed in the
early stage, partitions for a parallel processor system can
be easily obtained by selecting a suitable laver of the rule tree.
The tree is binary and thus a single level of the tree is best
mapped onto processors containing a number of P~s that is a

* binary power.

Figure 3-8. Algorithm 6 (Ishida and Stolfo, 1985: 570-571).

Algorithm 7 Rule Synchronization

This algorithm deals with the synchronization problem of rules. The synchroni

zation of rules can be decided by building a data dependency graph for thle productio

system. The process for building this graph is seen in Figure 3-9.

This algorithm like algorithm 6 is best automated. Again this Would be p.ticI.-

lar useful when the format of the production system is relatively unknown or unoreanized.

With the oranization of the RAV system, a detailed eXection is unnces-aru . The i..\\ I

rroluction system is very independent accordinge by tifs alorithts stndrd.

-36- -

%

'V . m

;<V..,_

The process for building the graph is as follows: -

1. A production node (P-node) represents a production rule.

2. A working memory node (W-node) represents a group of
* working memory (WM) elements called a class. 0

3. A directed edge from a P-node to a W-node represents the
fact that the right-hand side (RHS) of a production rule modifies
•adds or deletes) a class of WM elements. When a rule adds
deletes) WM elements of a class, the class is called '+' changed
'- changed), and the corresponding edge is labelled '+' %-.

4. A directed edge from a W-node to a P-node represents the
fact that the left-hand side (LHS) of a production rule refers
to a class of WM elements. When a class is referenced by a '
positive (negative) condition element of a rule, the class is called
'+' referenced ('-' referenced) and the corresponding edge is - -
labelled '+' ('-').

Synchronization is required between rule A and rule B if
there exists a WM class which satisfies any of the following:

1. '+' changed ('-' changed) by rule A and '-' referenced
('+' referenced) by rule B.

2. '+' changed ('-' changed) by rule B and '- referenced
. ('+' referenced) by rule A.

3. '+' changed ' changed) by rule A and changed
('+' changed) by rule B.

- . . - .

Figure 3-9. Algorithm 7 (Ishida and Stolfo, 1985: 569-570).

'3 "a

O",-,

-F --- ; ;F. X

0

I.

of functions yields little since match is the dominate function that accounts for LIP to 90

* of the processing time (Gupta, 1986). Only the data decomposition of the rules within the

* match that yield the best hope for concurrency. The decomposition of the working mem-

* ory requires that the rules break down into independent sets that only operate on a potion1

of working memory. Algorithm 6 and 7 help to accomplish this, but this requires a great

deal of effort. The rules themselv-es can be decomposed quickly and automatically without

regard to what working memory elements they effect.

-~.:..-

,",5-';
2} ?",''S

"- S mmar .'', ,

'. 1. 'll

.-0 ,,i

.S 2.'

Mos ofthealgritms o ecopos a rodctin sstm dal ithdc~ np~i--i

.2:- :-

tion of rule over the deomposition o workin meoyo-ucin.Tedcmoiin'v.

., -.

IV. Analysis and High-Level Design

Introduction

The purpose of this chapter is to present an analysis of the RAV system.

along with analysis and design of the serial inference engine, the parallel inference en-

gine, and the parallel RAV production system. The algorithmic design of the parallel

RAV production system is based upon the the design of algorithms presented in Chap-

ter three.

RAV Analysis

A detailed description of the RAV is contained in Appendix A. The main por-

tion of the piloting control is a layered series of two expert systems. Each expert s\stem

has several components organized by functionality (Figure -1). These components pro-

vide a source of data independence of rules and working memory. The system contains an

"average size" production and working memory. The system contains over 350 rules. The

working memory consists of schemas which are a frame-like structure. Each frame con-

tains slots that hold the individual facts. There are approximately 160 schemas. The

average number of slots per frame is approximately ten, therefore the total number of

facts is about five times the number of rules.

Inference Engine Analysis

The requirement for an inference engine is to perform the basic production

system cycle: match, select, and act. [This cycle is also prevalent in the resolution process

(Nilsson. 1980).] This inference engine software should be able to match the rules of the

R.-V expert system with the facts in working memory. It should select one of these rules"

and add the results of the RHS of the selected rule to the working memor\.

, The current RAV system implemented on the TI Explorer uses the .-\utoniated%

Reasonine Tool (ART) for this process. ART is licen-ccd software not a ailahlc on the

-3

S.' ,'*.8 %.. '. %

RAV Components

PES

Autopilot
Co mmnav

N. De partures
Hold-Arc
Jntercep-s

Intercepts- New
Landin~gs
Mission

Recover
Takeoff s
Targets

Target-All

VCES

Airwork
I. Airwork-New

Autopilot
Elevation
Headingr

S peedbrake
Throttle 0

Figure 4-1. RAy Components.

1' 0

iPSC hvpercube. The source code for ART is not available, and therefore. can not he

modified for parallel execution. This requires that another control process implementation"

be developed. However, the new implementation should be as compatible as po,,ible \ith,.

the ART rules and working memory structure as possible.

ART is a very complex and extensive tool. To try to rebuild the generic ART

7stem would require a prohibitive development time. Therefore, simplicity of desien is a

critical component. The new control process should only provide the functionality of ART

tat the IRAV requires.

Inference Engine Design

The design of the control process had several phases. The first phase was a

. data flow description of the system as seen in Figure 4-2. This lead to an investigation

into the data representation to be used for the working memory and the rules. Three

choices were considered. The first involved simply a linked list of rules and a linked list of

facts (see Figure 4-3). The second was a linked list of rules and a series of frames for the

facts (see Figure 4-4). This was considered due to the structure of the facts as imple-

mented in ART. The facts were implemented as slots within frames or objects. The rules

then referenced these slots. In this way, the rules are indexed directly into the fact data-

- base by the frame and slot name avoiding a costly serial search of the facts. The third

choice considered was a complete Rete network involving the rules and facts (see Figure

. 4-5). This third choice, although efficient, was very complex and had considerable over-

head. Therefore, the second option was chosen due to its simplicity and relative effi-

ciencv.•

The second phase was a control flow of the inference engine (see Ficure 4-.

Thiis control flow was decomposed into its component parts of match. ,elect and act 'c-

FlHiure 4--t. Once the data representation had been decided upon. the .wlt[r "l' d-l-

i.clv traiht forward..\ skeleton of the de \\in w a taken from \\in-ton 1d ioln-""

, -'%," ,,

L.". , .' '.-. d"&' '-'i"4 "4 -,.". -. -.- 3 % -% ,-' -.-,, -S . ". ,.--,-,-"- .--;--.-,, .." -.." . .. , .- --- """i -

0

Rules (P-M)

*Inference Facts (WMI)

Facts (vm) Egn

AlI

0

% %

Selected

Figure 4-2. Inference Engine Data Flow.

%h

* S
•

,Nq Rules: • "•..,,

Facts:

Figure 4-3. Data Structure 1 for Inference Engine. 0

'S,.

R ules: R 1 2JJ3- ...
-- log.

Frames Slots Facts

Facts: - LH S-

Figure 4-4. Data Structure 2 for Inference Engine.

"i..

Rule Conditions:

1) (Cl ^attr1 12 ^attr6 <= 7)
(C2 ^attr2 > 5)

2) (c1attr1 12 -attriC <X>)
(C3atr3<X>)

3) (C2 ^attr2 > 5 ^'attr3 <Y>)

Rete -Network:
working, me orv changaes 0-

4N

c 1 C C3 C

C>5

<=7

conflict set changes

Figure 4-5. Data Structure 3 for Inference Eng-ine (Rete).

* (Forgy and others. 1984).

-4-4 -

0 .~ .. ,0'

WN 1 0

• .i. %. -..

N N

Match -Select Act

Figure 4-6. Control Flow of Inference Engine.",',"

1\Winston and Horn, 1985). This model of a production systemn had to be modified for the °',"

new data structure and functionality required by the RAV ART system. '-,"-"

The third phase was the design of the interface between ART and the newly

designed inference engine. One desien decision was to preserve the "Integrity" of the-i-'--

-'

design as much as possible. Therefore, a process was needed to translate the ART rules .2'-

into a form usable by the new inference engine. The data flow diagram for this translation """ -

module can be seen in Figure 4-8. This interface allows for expanding this system with"-- "

additional ART functionality with "minimal impact" on the inference eng~ine. "'Minim-al .- ,-.'

impact" implies that the changes to the inference engine wvill be small and localized to

, everal routines. -. ,.-',

Parallel Inference Engine Design .'.,-.

The previous designed inference engine was modified slightly for parallel ira1--""•-

plementation. The algorithm for the parallel design is fashioned after tihe algonithnis In ".,.,.

chapter three and can he seen in Figure 4-9. The actul , aneIn the deslic to the erilfl

inferenc2e enLine Is small. The changes Occur In the selct and act phase. Eah PF' of thc -

] •zu. . !

LHS
Rule Parsr MacherMixe R.

A 1-41 .. A l 1-4.l l -

Figue 47. Epaned Cntrl Flw o Infrene Enine

4h -%

on... eac PE Plc oyo V1 nec E lc

%'. 4

3.. Ms n
w'% %...,- ..%

4. Reor seecio uotee

7. end repeat;

'Sl

1. Initialize: Place a copy of the simple inference engine
then hasowon each PE. Place a copy of W n on each PE. Place a working
spannin tsubset of the PM on each PE. fofor.,.s-a

2. Repeat until done; n

is lo hr pi h ume.fPs.And nl o m ncae ihoteoe

• ,%.....

3. Match and select on each PE. b o.-p,
[.- ,.9..-.

S4. Report selection up tree.

5. Overall selection made at root node. i,-t-n-4

components0 0n Pharallel -se ' s.T efrtdsg topae le1 01t P <

thaeda owitt eev the sys b omoen nte wiefelections in orertoact toudate a'the \von': t

.47

spnnn tre.Thrommncastion chne to for thEs fl- f nomainisd da

spanig re. Thsnd bepen inFgr -1 o 6 oessem hsrasnfrti

Bas icur p -. Agih arallel nference ngines eedsee ntels et. The only:.°.

pacale thesirules componet the iffrntPs Tihas ueetenorasstemieselctr ine Th E. ,"",

..

9. spnnn tre Ti nb seen inFigure ' 4-10 , for- aystem. ThsraoIorti -''

5..O

hPEI

0)

1 7 7

. produced an uneven load balance. Therefore, a more appropriate decomposition of the

rules was to equally distribute the rules to the various PEs (Figure 4-11)

Inference Engine,

id "5

I. D ..-

A.7, Facts

Figure 4-11. Rule Distribution.

Summary

This chapter provided the analysis of the RAV system and an inference engine

design. Designs for a serial inference engine, a parallel inference engine, and two parallel

RAV systems. The first design of the parallel RAV system did not take advantage of the

independence of data elements of the components of the RAV system. while a second

design tried to take advantage of this situation. All the designs were implemented and the

results of that implementation are presented in chapter five.
... (. -,

i
% "

-.-

.. . 4, -

- IS

-- "

., 5-.

V. Low-Level Design, Implementation, Experimental Results, and Analysis of Results

P Introduction 0

This chapter provides the results of the implementations of the designs in chap-

ter four. The basic measurements (performance metrics) of the RAV production system.

are defined and provided in this chapter. Various performance measurements are also

provided for the kV production system on both the TI Explorer LISP machine and the .. ,

Intel iPSC hypercube. The "unique" code for the serial and parallel inference engine is

provided in Appendix D. Salient features of the code as well as critical implementation

criteri, and problems are described in this chapter.

Inference Engine Low-Level Design

There were several choices for the initial inference engine. The first choice was

a very basic system from Winston and Horn's book on LISP (Winston and Horn, 1984).

The other choices were to implement algorithms from various papers (Miranker, 1987;

Gupta, 1986). These other choices were high level designs of complex algorithms. The

Winston and Horn (W&H) was in working code and was simple. This allowed for an

incremental development of new capabilities. This code, however, was not suitable for the

RAV rules and facts. This section will describe the original W&H system and then present

the final expanded form of the inference engine on each of the three major sections of an

" inference engine: match, select, and act.

The first major section of an inference engine is the match routine. The s\ntax

" of the match pattern is shown in Figure 5-1. The oricinal inference engone used all of

these forms to match rules. Figure 5-la is a simple match that requires the fact to be in

that exact form. Fizure 5-lb is a variable bindinc match \%here "plane" is bound to the

value that corresponds to the first position in the fact. The rest of the fact is the same is

the pattern. The pattern in Figure 5-1c Uses in already %xi~tinc variable hindine to matLch

",g. -. 0

-. 44 -,4.4* .~ (F~ 4 - 16 aisp e 500)P .- - - - 4

b. (>4lne-irped50

. ((0ln)aised50

a. (F-1 airspeed 500)

b. r 5-1. plae) ispee mac00) tens

a ~ ~ C fact plansth aleofte) ainirsee 500)haans h is psto fth at

pd (2airspeed 500). Fiue5 ilmthan atwoels w pstosaearpe

e.Z+ irped 00

Fhnwiurenc 5-1 Oiinal adtchna patterns.thfrmt r ho nFe

'. a 5fa . iu rte vaueho the binding tomat agans thed fisthma posito of te foct. The

* thutbnd. ch ure namd willotc onl thsvcstatu) nlyhe oevau)bfr

c00' (sh m0>n m)(ltvle)c.(> a)

The m ew ifrne) (slnot addtioalupernmthfrmt)r hovi i

ure ~ ~ iir 5-.FgrN-asost e chMatorm atte r schm'i. e od h

name has to match a defined schema name and the slot a valid slot within the schema

name. The value in the pattern has to match the value of the schema slot. In Ficure 5-2b

the 'value in the pattern is then matched and bound to the value of the schema 'name" %

and slot. Ficure 5-2c and 5-2d are just variations on the variable binding theme with the

schema and even the slot name being able to take on variable bindings. Figure 5-2e

. illustrates a test on a variable. The value of the fact is bound to the variable 'var' only if

the test, which can be a function of 'var' is true. Figure 5-2f just provides for negation of

a pattern. The Figure 5-2 was an optional part of the W&H implementation and provides

a variable binding for a list of facts instead of an individual fact.

Figure 5-3 illustrates a sample rule. Line 1 of Figure 5-3 contains a rule

name, an IF part, and a THEN part. The IF part consists of facts or facts with variables

that could take on bindins. Line 1 of Figure 5-1 illustrates a simple fact that will only

match a similar fact in the fact list. Line 2 of FiQure 5-1 shows a simple variable binding. '

This clause will match any" fact that begin with a single word and end with 'is a dog.' The

variable name will be bound to the corresponding word in the fact. This binding can be

used with the syntax in line 12 to pull the value of the variable to match elsewhere with

the clause or rule. In the case of line 12, the bindine of name is used to retract the fact

(retraction was not an original part of the W&H system). Line 9 illustrate using the '+'

symbol to match a group of symbols in a fact. Line 9 will match 'Joe is a dog.' 'Joe is

dog,' 'Joe dog,' or 'Joe is a good dog.' The example on line 10 will not only match the

same facts but will bind the phrase before 'dog' to the variable 'name-of.'

The changes in the match section can be divided into two types. The first is in

• , more complex matching and binding strategies. The second is in a chanae or enhance-

ment of the data structure of the facts. The match section had the most changes or en-

hancements and was probably the most difficult. The original \V&H system placed all the

facts into a list and matched all the rules against this list. As seen from the design. this

proved too impraciical for a system the size of the RAV system. Therefore, the rules from,-
"_ T " I

- Im _ - % ,.'£ e

0

% %J

(Rule Rule-name (salience (sal-exp))

(IF

1 -(Joe is a dog)

2 -((> name) is a dog,)

.- 3 - (schema airspeed (value 20)) -

4 - (schema airspeed (value (> speed)))

5- (schema (> plan) (value 20))

6 - (schema (> plan) (value (> speed)))

7 - (schema airspeed (value (:> speed (< speed 500))))

8 - (binding speed 50))

9 - (+ dog)

10 - ((+ name-of) dog)

(THEN (
11 - (assert (Joe is a cat))

12- (retract ((< name) is a cat)) .

13 - (modify airspeed (value 30))

14 - (modify airspeed (bindings ((< bind) (hdg 30))))
-:)))

Figure 5-3. Rule Format.

-06 5- .~. % % . ~ ~ S ~ 6 6. 5 * %

010

the RAV system were already conveniently organized into schemas or frame,. so the

match and act function had to be changed to work with facts in the form of framic-

without losing the capability to keep a list of simple facts like the original \V&11 svstem.

For antecedents in the form of line 3 or 4 of Figure 5-1, this was not too difficult. The

routine that passed the clauses to be matched to the matcher was changed to look up the

- value of the slot and send the matcher that value alone with the clause followine the

slot-name. This worked well. However, the system also needed to be able to handle a

clause like line 5 or 6 of Figure 5-1. This was much harder. A list of all active schemas

was introduced. The routine that passes clauses to the matcher has to look up in this list

the name of a schema. With this name it looks up the slot value and passes this value

* along with the rule clause to the matcher. This routine does this for every schema in the

list. This takes a great deal of time and is not practical. However, no better solution has

been implemented. The clause form of line 7 in Figure 5-1 was also implemented. This -%,

allows a test of the value of a slot. Any test can be placed after the match variable.

The select phase of processing was the next section to require enhancements.

"- The control of the selection of a rule to be selected had to be delayed. The W&H code

only matched until a rule was found that completely matched, then it was selected and "

fired. This had to be changed so that all the rules would be looked at for a possible match

- before any rule would be selected. This meant that the eligible rules had to be kept on a

list. Then when all the rules had been matched, this list would contain all the rules could

"fire" or enter the act phase. This list of rules is called an "agenda". Once the agenda has

been created then a selection of a rule is needed based on some criteria. This criteria has
several alternatives. The first rule on the agenda could be selected. A random rule on the

,. aenda could be selected. The rule with the most "specific" antecedent, the one with the

most clauses could be selected. However. ART rules require that a "salience" be used to

S elect the rule. This salience is a number associated with each rule determined t% the

author of the expert system to aid in the selection of rules. The highest salience is C-

. P d '. . '. ,, ., . .,

%

-" lected first. Any ties amonz the salience's are then determined in a random fashion. This -

is a requirement stemmin, from the observation of the ART system. This chane %%a, 4

instrumental to bein,_ able to implement a parallel inference .n. ine which is be discussed %

in more detail later in this chapter.

The last phase that had to be changed was the act phase. This section changed

for two reasons. First, addition functionality had to be incorporated due to the introduc-

tion of the schema system to implement facts. This required the need for the assertion.

• , modification, and retraction of facts within schemas as well as the assertion and retrac-

tion of ordinary facts. The retraction function also required another change in the original

W&H inference engine. This required that the act portion of the system check to see if a N.,

fact was already deleted or asserted so that the system would not go into a loop asserting

or deleting the same fact. The original system did not allow for the modification of a fact.

This is a function for schema facts only (ART 3.0, 1987). This allows the modification of

a schema slot without first matching that slot. The slot can be directly changed. The

second major change occurred due to the changes in the select portion of the system. The

inference engine now had to maintain a list of matched rules. This was done in the act

portion of the original W&H inference engine. Where the original system selected and .

acted upon a rule, this system matched and placed on the agenda a prospective rule. Then

when all the rules had been matched, one rule was selected and fired. -'

The changes to the original W&H inference engine were rather extensive, but

were incorporated without major impact. This provided a level of integrity to the original

system which appeared to be sound. The code of the enhanced inference engine is con-

tained in Appendix D.

Parallel Inference Engine Implementation

The parallel iterence engine was implemented in CCLISP on the iPSC hyper-

cube. Since the erlifl inference enine as imnplemented on the TI Explorer usin Con1-

%0.

mon Lisp the changes needed due to language differences were minimal. CCLISP (13rck-

huysen, 19Sb) was not as extensive as the Common Lisp on the TI Explorer: Explorer.

1V5). For example, CCLISP did not support CADDDR, but this was easily chanced. The

language issues simply did not provide a major obstacle. There was. ho\e\er, major

effort involved in implementing a parallel inference engine. This centered around the
I

communication between nodes. '

The parallel design of the inference engine required that the selected rule from

all the nodes be collected at one node for the final selection, and then that selection needs

to be passed to all the other nodes. This can be done in several ways depending on the

chosen communications pattern. Three alternatives seem appropriate: a star. a binary',

tree, or a spanning tree. With the star, one node acts as the central point with all other .noe comnctn t htnd.Ti
Snodes communicatin with that node. This would require longer than nearest neighbor

* communication or one node hops. The binary tree can be implemented \ith nearest

neighbor communication. but only on higher dimension cubes. The spanning tree offers

the appropriate functionality with nearest neighbor communication. An example of a

"t. spanning tree can be seen in Figure 5-4. A rule selected on node 14 would be sent to

node 6. At node 6, this received rule would be added to the agenda and node 6 would

* • select a rule. This continues up the tree until node 0 receives all the selected rules from its

children. It then selects an overall rule and passes it down the tree to all its children. Each

child then passes the selected rule to its children until all nodes receive the selected rule

for firing. The algorithms for determining the parent and children nodes of the tree de-

c .'o pendencies on a logical "'or" of the binary node numbers. This was very hard to imple-
ment in LISP, so a table look-up was used. This proved to be very simply and efficient.

but somewhat inflexible since only node zero can be used as the root node. The messae

passing \ithin CCLISP presented some problems. There were several w\ays t, pass es-

Taee• lhcv ranged from lo\ level rnessage passing to high level FASL node tre ,m, l-hc

, le\l nre'fae pa ,in.s rqired that the leneth of the me.,sa,_e enh k K ILn 1 hi-

b t t. f. f. - t t tf ~ f. f~ f t f. ff t f, f t . t ~ f ~ f

'V* PElI

PE3 PE2

t ~ PE7 PE5 PE6 PE4

PE 1 PElI PE 1 PE9 PE14 PEIO PEI" PES

Figure 5-4. Spanning Tree Connections.
(Brandenburg and Scott, 1986).

* ;,red to be a major limitation, given that the messages to be passed would be variable , ,

-:-th rules. Therefore. the high level FASL node streams were selected for their abstrac-

• I>e streams did provide a problem. There was no defined way to do a receive-

.~.~1" lI!, allo\\s a process to enter receive mode until a message is received. This pro,.

,onvenient for synchronizing nodes. This function had to be built using a loop

in repeated receives until a message was received from another node. One other note -.

nernir,, this process. The documented function 'listen' did not work (Broekhuysen. . -

!lvS-b,. This would have provided a method to test the message buffer for an incomine"

messace without actually doing a read, but this function was not implemented.

The changes to the actual serial inference engine were small and confined to a

mall number of modules. These modules contained in Appendix D were -forward-

chain" and "selected-rule." The first module had to be changed to provide the proper

termination test. This is important to insure that the individual nodes terminated only

when no overall rule was available, not just when the node found no matches. The other :'..'.

module had to be changed to incorporate the comm unications with the other nodes. Sev-

eral other routines (found in Appendix D under the parallel code) were needed to assist -

this latter module to make the communication.

RAV System Implementation

The R V system consisted of the original components of the RAV expert svs-

tem desikned by TI. In its original form it consisted of a series of plans. needs, and

schemas which was a higher level abstraction than the ART rules (McNultv, 19S7h. The

' plans and needs were then "compiled" down into ART rules for execution using software

developed by TI (Lystad, 1987). The only way to get the schemas and rules from the plans

and needs was to compile the plans and needs into files rather than into the ART sv'tem.

From there the rules and schemas are then transformed into a format that the serial and

e ,entuallv the parallel inference engine could accept. This transformation was partiall.

"* 0.'''',

,-,.

automated with a routine (Appendix D) and further transformed by hand to come up with

the final format compatible with the implemented inference engine. The total translation-
0. - 0

%%as not done programmatically due to the complexity of the software involved to par-e,

and recog:nize the various ART syntax forms. This process could have been an entirclv

separate study.

The only- test suite available was a demonstration developed by TI midvav

through the development of the system. In fact, the expert system used in this study was

not complete and was only a demonstration prototype (Graham, 1987). This demonstra-

tion was considerably len thy and required the perfect execution of all the rules and

implementation of all the functionality of ART that was used with these rules. The alter-

native was to develop small prearranged sets of facts that would trieer a subset of rules. '

This was the preferable choice since the inference engine can not deal with all the ruLle

format either in their entirety or efficiently. The complete demonstration was not used.

0,. The code and expert system for the parallel RAV system was transported to the

iPSC hypercube from the TI Explorer to a microVAX to a VAX across the Defense Data

Network (DDN) to the AFIT VAX and finally to the iPSC hypercube (Fanning. 1987.

This was perhaps the most "trying" of the problems associated with this whole implemen-

tation. This was because of the many machines that had to be traversed to get the code

from the TI Explorer to the iPSC. This was only done after the tape-to-tape transfer

failed due to a mismatch in tape-formats.

Testing Format

The test plan is divided into three components. The first is metrics dealing \withl
the RAV expert system. The second is the metrics concerning the serial inference enine

.n Ic I Explorer and the iPSC Hypercube. And, the third is the patallel in'cri

enine 011 thle iPSC I vpcrube. This section dc.cri hes the testin pr,,do re> and III,

resu ts. •-
L I t S -

n F -- %9 - '

The measurements on the expert system were taken to provide a baseline foun-

dation in order to compare this system with other expert systems. The items quantified :.,,
tor the rules were the number of rules, the number of clauses in the antecedents. and the

, number of clauses in the consequent. This part of the test calculated the number of

schemas and from this calculated the number of facts represented in this manner. The

results from this component of the test is shown in Figure 5-5.

For the last two components, similar tests were used. They consisted of usin''.

two sets of rules and three data sets. The two data sets were chosen due to the large

A run-time of the entire rule set. The most time consuming rules were contained in the

mechanisms component. For this reason, one set of tests were conducted with this cornpo-

nent and most all of the other tests without the mechanisms component. The data sets

were chosen for the number of rules that they would cause to fire. This Lives data over

varving length of time and iterations through the match, select, act cycle. Figure 5-6

summarizes the two sets of rules with the three sets of data on the TI Explorer. The larger

two sets of data were not run with the larger rule set due to the extremely long run times

involved. Figure 5-7 throilgh 5-9 summarize the results from the first data set that pro-

duced no rule firings with the first rule set. Figures 5-10 through 5-14 show the second

•S

data set that produced ten rule firings with the first rule set. And Figure 5-15 throuc2h

5-16 show the third data set that produced 27 rule firings with the first rule set. For the

second and third data set. timings were not available for the 32-node system. This I

explained in the analvsis of results section.
r..... ..'

Analysis of Results

This section analyzes the results of the implementation and the testine. Thi..

section looks at the correctness of the code and the timine of the tests. Thi:. section \-'-

* also tr\ to explain any anomalies and problems with implementation.

-) - %>

0
S.-7' -

0

Subsystemn # Rules # IF Clauses # THEN clauses
PES

Autopilot 2 3 4
Commnav 5 11 10
Departures 19 47 38
Hold-Arc 38 1211 76
Intercepts 39 113 78
Intercepts-New 13 43 26
Landings 11 2122
Mission 9 11 18
Recover 18 29q 364
Takeoffs 18 46 36 j
Targets 3 12 6
Targets-All 2 8

Subtotal 177 465 354

WCES
Airwork 21 39 42
Airwork-New 51 102 102
Autopilot 23 4
Elevation 3 7 6
Heading 21 67 42
Speedbrake 12 2 7 24
Targets 6 4
Throttle 19 48 38S

Subtotal 131 299 262

Misc
M\,echanisms 73 237 148

Totals 381 1001 764

Figure 5-.RAV Production1 System Characteristics.

* 01

''S.

"a'. v'

* -,Data Set 17 7 Produces 0 Firing Rul,.

Data Set 1 -> Produces 0 Firings Rule Set 1 -> 304 rules
,'-'.. Data Set 2 " -> Produces 9 Firings Rule Set 2 " -> 367 rules.-"..

Data Set 3 -> Produces 47 Firings

Rule Set 1 Rule Set 2

Data Set 1 31.7771 sec 113.7404 sec

Data Set 2 325.1647 sec

Data Set 3 1788.4382 sec

Figure 5-6. TI Explorer Results. S

-. 5-.

The code is analyzed for its effectiveness and correctness. The code perform, -;

slo\vly compared to systems like ART which runs at between 2-30 rules per second .

(Gupta, 1986). On the Explorer, the inference engine plods along at about one cycle exer.
S0 seconds or 2 rules per minute. This is with the smaller rule base. \With the larger rule

- base, the system runs one cycle every 113 seconds. On the iPSC Hypercube, the serial

.stem runs at one cycle in about 11 seconds with the smaller database and in about 71)

. sconds with the larger database. This brings about two concerns that need explanation.
.First. \hv does 60 extra rules slow the process down so much? The reason for th is in

the tormat of these rules. They are rules that have a variable bindine on the schema

name. This means they must go through the list of schema names lookine for a maI~h.

These rules can not take advantage of the indexing created by the framc: [hi- i> aI

process not handled well hy the inference engine. Second. why does the TI Lxplorer

.slower than the iPSC Hypercube? The surface appearance is that the Common Li-p ...

62 -.-

.5-

. "4.5.*, . .. , .,- , -,. ,.., . . - .. :.,, 4.' S ** .- 4 -. -. - - . .< - .-< ..-.. .,-i,..,,,-..-.... ..

Numbe of Ndes:

Numbr o Ruls: 04 RlesNode 30

Nube ofRlsFrd

Execution~' Time 1155e

Number~~ ofNds

Numbe of ules 304 Rule/Nod: 15

Numbe of Rles Fred:

NmofNodes : 1

Numer ofRuesFied 0.8
a Exctio Time: 11.55 0se

Number of Nodes: 2
Number of Rules: 304 Rules/Node: 152
Number of Rules Fired: 0
Execution Time: (seconds): Speedup: .8

Nodes 0 123

KTotal 6.450 6.475.85 3.
Match 6.550 6.0850 .8.3
Select 0.100 0.385.95 0.4
Act 0.000 0.0005.0 0

V.-e57 at e o R l e a

?p..

Number of Nodes: 8 % %4
" ,: Number of Rules: 304 Rules/Node: 38"
'" Number of Rules Fired: 0 --
~Execution Times (seconds): Speedup: 4.5 .,:

Nodes 0 1 2 3 4 5 6-:

"

-.': Total 2.430 2.570 ..520 "2.570 -2.5"25 2.575 2.475 _ "7, -"'
Match 1.655 1.425 1.460 1.575 1.700 1.630 1.465 1. 50_ 5

%rSelect 0.765 1.135 1.050 0.990 0.8'20 r).940 1.000 1. 06 5
Act 0.000 0.000 0.000 0.000 0.000 0.005 0.000 0.000 "

Number of Nodes: 16 %

,.,?

Number of Rules: 304 Rules/Node: 19
Number of Rules Fired: 0
Execution Times (seconds): Speedup: 5.1
Nodes 0 1 2 3 4 5 6 7

Total 1.995 2.265 2.270 2.320 2.170 2.220 2.470 2.320
Match 1.305 0.655 0.665 0.765 0.870 0.875 0.800 0.0
Select 0.680 1.610 1.600 1.550 1.295 1.335 1.470 1.600
Act 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

Nodes 8 9 10 11 12 13 14

Total 2.12"5 "2.125 2.175 "2.17_ "2.125' 2.175 2. 17 0 2. 2- 2".
5: .X~atch 0.630 0.780 0.800 0.815 0.880 0.755 0.87S.3) -/:Select 1.490 1 340 1.370 1.355 1240 1 295 1.390-

FNoure 5-8. Data Set for Rule Set 1b.

Execuion Tmes secons): peedu: 5.
IVa I4. :.:

U Nods 0 1 2 3 4 5 6

Total 1.99 2.25 2.20 2.20 2170 2220..2702.32

Matc 1.35 0.55 0665 .76 0.80 0.75 0800 .72

Selet 0.80 1610 .6001.55 1.25 1.35 1470 .60
,. ,, ,, Act. 0 ..-...00 .0 0.0- . 000-:: . 000-'0-. 000.... 0,.000,:. 0' .000 -, .-.., ,.,- ,,

..::?;..

Number of Nodes: 32
Number of Rules: 304 Rules/Node: 9.5
Number of Rules Fired: 0
Execution Times (seconds): Speedup: 4.8

Node 0 1 2 3 4 5 6 7

Total 1.865 2.365 2.415 2.415 2.315 2.365 2.420 2.415
Match 0.755 0.355 0.360 0.480 0.385 0.510 0.415 0.370
Select 1.100 2.000 2.050 1.925 1.930 1.855 1.995 2.045

. Act 0.005 0.005 0.000 0.005 0.000 0.000 0.000 0.000

Node 8 9 10 11 12 13 14 15
u0

Total 2.270 2.320 2.320 2.320 2.270 2.320 2.370 2.320
,latch 0.335 0.450 0.480 0.495 0.510 0.495 0.400 0.515 -Select 1.930 1.865 1.835 1.820 1.755 1.820 1.965 1.800Act 0.000 0.000 0.000 0.000 0.005 0.005 0.005 0.005

Ei 0

Node 16 17 18 19 20 21 22 23 -"

Total 2.175 2.175 2.175 2.175 2.125 2.175 2.175 2.175
Match 0.500 0.305 0.315 0.290 0.485 0.370 0.385 0.3-5 5
Select 1.670 1.865 1.855 1.880 1.630 1.800 1.785 1.815
Act 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Node 24 25 26 27 28 29 30 31

Total 2.075 2.075 2.080 2.130 2.300 2.075 2.125 2.125
M atch 0.340 0.375 0.365 0.320 0.415 0.350 0.355 0.315
Select 1.730 1.690 1.710 1.805 1.610 1.720 1.760 1.805
Act 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000.

Figure 5-9. Data Set 1 for Rule Set ic.

I N

hi a .-- -

Number of Nodes: 1
Number of Rules: 304 Rules/Node: 304
Number of Rules Fired: 10

* Execution Time: 189.800 sec.

Number of Nodes: 2
Number of Rules: 304 Rules/Node: 12
Number of Rules Fired: 10 Se.p".
Execution Time (seconds):

Nodes 0 1
-" Total 121.860 121.870

Match 118.375 72.190 .
Select 2.825 49.045
Act .610 .590

,°4

= Number of Nodes: 4
Number of Rules: 304 Rules/Node:: 76
Number of Rules Fired: 10
Execution Time (seconds): Speedup: 2.0

Nodes 0 1 2 3 0

Total 93.420 93.500 93.490 93.5 15

Match 88.110 37.865 31.665 36.380 ',?
Select 4.690 55.025 61.210 56.525
Act .570 D .565 75

Figure 5-10. Data Set 2 for Rule Set la.

ih -

• ". .-r.';-

0

%. I %

0-

UNumber ofNde:
Number of Rules: 304 Rules/Node: 38
Number of Rules Fired:10
Execution Times (seconds): Speedupl-: 17

0

Nodes 0 123

Total 70.160 70.3 15 70.265 0150
Match 19.760 19.820 16. 19 5 19. 3 50
Select 49.750 49.S65 53.425 50.340
Act 00.615 00.605 00.605 0 0. 60 5

0

Nodes 4 5 67

Total 70.225 70.325 70.275 70.320
Match 61.285 18.700 16.1 17.415
Select 08.305 50.980 53.425 52.255
Act 00.595 00.595 00.590 00.590

Fioure~~~~~ ~ ~ -*;II Dt et2fr ueSe.b

0'

V.%

Nodes: 16
Number of Rules: 30- Rules/Node: 19
Number of Rules Fired: 10
Execution Times (seconds): Speedup: 2.8

Nodes 0 1 2

Total (5.960 66.265 66.215 66.25-
Match 12.065 07.200 07.780 09."5

. Select -3.)65 58.420 o" .-2
Act 00.605 00.595 00.605 00.595

Nodes

Total 66.170 66.220 66.215 66,270
%latch 12.285 11.110 08.925 13.60 _5
Select 53.240 54.455 56.660 5 2.030
Act 00.590 00.610 00.595 00.600

Nodes S

Total 06.705 66.175 66. 125 06.225Match 0.7430 11.5 55 08.685 10.300

Select 5S.005 53.975 6. 5 .2
Act 00.595 00.595 00.595 00.600

Nodes

Total 66.120 66.175 66.175 6 6. 2""5
Match 48.380 08.510 07.580 08.845
Select 17.100 57.020 57.945 5(.725
Act 00.595 00.595 00.600 00.595

Fi_r 5-12. Data Set 2 for Ruilc Set i.

i:.

-S

• .°%.*

W. - - ,

Number of odes:
Number of Rules: 304 Rules/Node: 304
Number of Rules Fired: 27

* Execution Times: 571.385 seconds

Number of Nodes: 2
Number of Rules: 304 Rules/Node: 152
Number of Rules Fired: 27
Execution Times (seconds): Speedup: 1.3

Nodes 0 1

Total 364.445 364.525
Match 354.670 206.840
Select 008.015 155.935
Act 001.655 001.665

Number of Nodes: 4
Number of Rules: 304 Rules/Node: 76

I Number of Rules Fired: 27
Execution Times (seconds): SpeedLIp: 2.1

Nodes 0 1 2 3

Total 278.430 278.470 278.475 278.475
Match 260.410 113.455 098.740 094.26 5
Select 016.2-50 163.305 178.015 182.465
Act 001.660 001.625 001.665 001. 660

Ficure 5-13. Data Set 3 for Test Set Ia.

S" .-

"N .

,.- .

IN

pp

E Data Set 1
E
D

P 0.

a. 010 15 20 25 0 4o

Number of Nodes

14

I p
E S

E 6 Data Set 1

p 4

0 1 4 4

Dimenasi on

Fi-tire 5-14. Speedup Graphs.

" " the Explorer is much more extensive than that oil the IPSC HypercUbC. ThIC e \\01.1d " -

, ct:more o~erhead onl the Explorer and allo%\ f t lh re to roc t&a> cr. .,

T his next _- ci nlooks at tihe parallel perfornian,:e of the inferen ce Tn _hnc - c . ," '

-°*., *-

", ~ J L e p z are far less than linear. The speedups taper off \ Idi- the dfmecn,Ion of the :ubte. ..

Th~e ansNer to this probler-n can be seen in Figures 5-9 through 5-14. The select time Oil',-

l.

some of the nodes exceeds the match time on the node. In some instances. the select time

pfar exceeds the match tine. There are two explanations for this phenomena. Tthe first Is

that the problem size is too small for the higher dmenso cube. This can be en from

,. soe ft the sher dimension cube, the matc time isless th e select -t

time for one series of comunication. The result is a much longer cycle than Mat otis is.-

*¢" be expected from a linear speedup. The seco d Cause for this sldeoc . i n is peor fom -""'"

balancingL. Each node has an equal number of rules Lind each rule Let,, checke d for a -.-

mth il daa se. OnThe hehedsoncue the match taac sofie is lhesmstn the lc

individual rules. The rule mniaion Thers is auc that causes each rule to ha

a ariable lenth match time Also, the order of the clauses creates different matche time

- Even though a rule may have a lone list of clauses to match, if the first one fails, then the

rule matches quickly. Finally, the different types of matches take varying lencths of time

..'- depending on the format of the clause. A match involvine a schema variable match %\il.

take much longer than a simple slot match.

° -

-S "

- -- - - ~ -...-.- - .~. .-.- - - - -.

7% N'I. Conclusions and Recommendations

Introduction -

This final chapter presents an analysis of results along with conclusions of the

study. Application to other areas as well as recommendations for further study are also

provided in this chapter.

* Conclusions

This research study investizated the feasibility of parallel architectures to im-

prove the performance of potential real-time software. In particular. the feasibility of

" parallel architectures to improve the NP-complete problem of state space search particu-

- larlv in the form of a production system. The RAV expert s\Stem Was used as an example"

of such a system for this study.

This study showed that poor speedups were obtained from the parallel imple-

mentation of a parallel inference engine using a relatively simple match routine. The

spedups suffered from a combination of two factors. The first was a relatively small

problem compared to the communications overhead. Frorn chapter 5, it can be observed ""

that for a system with ereater than eight nodes, the time to perform the match c\cle on a

node was less than the time to communicate the selection. Also, the speedup s uffCred dCue
to a poor load balance. Although the method for decomposing the rles seemed reason-

d able it proved to be totally unsatisfactory. The method did not take into account the

\ariability among rules in the match process.

The performance of the iPSC hypercube to the TI Explorer came out fairly•-

- positively for the iPSC Hypercube. The iPSC Hpercube performed about t\vice as fat as

the TI Explorer on the inference engine-. Hoever, this seems to bc duc to the -i mplity-.

If I e 1 .1 ,P on tle ifPS(tlt pcrc lbhe.

::0Z

.%

The inference enine developed in this study performed adCequately. The infer-.

ence engine fired a rule about once every 30 seconds or at a rate of just Lnder 2 a minute

on the TI Explorer. The engine fired a rule one every 1S seconds on a single node of the

iPSC Hypercube or just over 3 rules a minute. This does not compare with ART system:

that guage their systems in the rules per second, however, this was not a tremendous goal

of the inference engine. The correctness of the inference engine was hard to analytically

determine without further testing, but it appears that most of the ART functions uSed in

the RAV expert systems were duplicated. The worst feature was matching a bindine vari-

able to the schema. This just would not work for a clause with a binding variable in the,

value for the slot. This part of the system would have to be redone to make a viable

s VStr2 nl. ,, ,-,,,

The CCLISP on the iPSC hy percube is a mixture of good and bad. The good is

that mo.t of the TI Explorer code worked well. There were only a few minor litches that

only serve to emphasize the power of the TI Explorer L'SP over CCLISP. The communi-,.

cation portion of CCLISP is still in its infant stage. The actual functionality was lackineL

and did not match the documentation (see Chapter 5).

The feasibility of transporting software from the TI Explorer to the iPSC 1hyper-

cube, although troublesome on this attempt (see Chapter 5), seems to be a reasonable

endeavor and with the aid of improved tools and techniques could become a routine

process.

The speedup results from the inference engine were disappointing, however, it

did show that speedups were possible. This study show the importance of load-balancin, -

and placing a "large etiough" problem on the iPSC hypercube. The tinming is no \,he re

rear real-time performance as was anticipated, however, with improvements in t'e inter-

-:--ine and the load balancing sicnificant improvements could be possible. .. .

* . .d". o.'"* *".
- - * ~ * * - - ' a -. %

p w

Applicability to Other Areas .u j.sn n o y .
i, . ' .- ...-

This section looks at how this study oiht be scaled or applied to other 50 rea.-

First a look at scaling the problem. From the results in chapter 5, it is apparent that the

problem was not lare enough to ain sirnificant improvements. The oV system con-

tained over 300 rules which came out to just 10 rules per node on a 32 node system. Even ,,,,

with this crude inference enine, those rules could be processed in under 500 millisec- ..

onds. The communication on the tree took upwards of 1 to 2 seconds. Therefore a scaled

up problem is not only possible, but desirable. From the results in chapter , a system a

factor of ten iar ger would not be a problem with the 32 node system. The production
system could not afford to go much lower in size. There w\ere performance drops as it,.,,,'""%

were with the 32 node system in one of the cases of chapter 5. "-

*This study shows the feasibility of concurrency with any state space search that"'".-

follows the same type of match, select, act phase of a production system where the match- .- :,

ing_ takes a hig~h percentage of the processing time. The areas of resolution and branch- '" "

and-bound search techniques might benefit from this parallelization techniques. The

problem needs to be decomposable in order to produce an equitable load balance. The

problem also needs to be lare enouzh so that the pieces process longer than the commu-

nication between nodes.

Recommendations for Further Study-

This study probably raises more questions than it answers. Beeinnine with the

serial inference engine. An area of study would be the performance of inference engines.

-*{ The characteristics of inference enginc, and their performance would have been invalu-

able to this research. More work could be done to improve the inference engine in this

study. The inference eneine in this study could be redone usine the Rete alcorithm. The

. benchmarkin of inference enLeines and inference engine techniques \\ould be valuable.

Also. \~ th regard to inference enLines. this study started to automate and simulate th

-4 *

-. -- -. ,.

|S

functionality of ART on the iPSC hvpercube. The further development of the proces .

could provide a valuable tool for expert system development. The expert system could be

developed on the TI Explorer using ART and transferred to the iPSC hypercube to per-

formance studies if a translation process were automatic.

The time complexity of the matching of various types of clauses within a rule , S

varied. The inference engine was very slow matching some types of rules. These types of -

rules could benefit from a Rete-tvpe match while the more simple rules could use a

simple match. One area of possible future research would be to Investigate the use of

different types of inference engine on the different nodes of a parallel architecture to

handle varying types of rules.
Only one parallel architecture was used in this study. How do other architec-

0tures compare with the architecture used in this study? The communication network in

this study was a spanning tree. Is this the best choice? Would a binary tree, a star or some
other pattern be better'? The RAV software showed promise for further levels of concur-

pe

rencv. The current study used a complete set of facts on each node and only one rule was

fired at a time across the entire network.

There needs to be better ways to characterize the work needed to match a rule °0
so that more effective load balancing can be performed. This study ran out of time before

effective ways to distribute the load could be worked out. This would depend on the

structure of the inference engine, the structure of the rules and the structure of the facts.

The load balancing can easily be "tweeked" b\ hand, but this should occur automatically.

The structure of the RAV expert system shows great promise in firinc several

. rules in one cycle of the inference engine. This could provide a tremendous time and

space savings. The R-\' expert system ;s to operate in a real-time environment. This

means a varying time requirement for operations. A parallel machine provides a predict-

able increase in processing power. The implementation of an automatic way to dvnami-

- - p .5
4't

'4- -" 4.

callv increase the speed of a computation through a meta-level of kno%%ledee and control

S would be very valuable to the design of real-time softwvare to meet chaninc_ needs .

V

INN

®R

% Ir

Appendix A: Robotic Air Vehicle

The Robotic Air Vehicle (RAV) is a concept under exploration by the Defcne,

Advanced Research Projects Agencv (DARPA) and the Air Force \Vright Aeronautical

Laboratories (AFVAL). The concept is to create an unmanned air vehicle capable of

autonomous operation. The R-V needs to be able to perform basic piloting skills as \cll

as passive terrain following, terrain avoidance, obstacle avoidance, and aultonomous na\i-
gation. The mission of such a vehicle would consist of intellient reconnai,ance or attack

of high risk, heavily defended targets. A contract was awarded to Texas 1ntruments

Incorporated (TI) in September 1985 to develop a system architecture as well as to dem- .-,.-.\-

Si onstrate the feasibility of some of the key components of such a system (McNulty. 1987).

TI developed a system architecture (Figure A-I). The system centers around a

piloting expert system. This module is responsible for the overall control of the RAV.

This module directs the vehicle control expert system to perform basic maneuvers in

which the vehicle control system could use to control the main interface to the RIkV ,

through the throttle, stick, and several switch controls. The piloting expert system also

receives directions from a menu subsystem, a voice recognition subsystem, and a pre-

pared mission plan. The piloting expert system could also receive information from an

airspace expert system to provide a sense of situational awareness. Part of this situational

awareness would come from a passive navigation subsystem that would provide the cur-

S ent vehicle location through passive sensors and a digital map. Projected future subsvs-

tems include a mission replanner and a threat assessor. but these are not currently bein,_'-

worked on by TI (Blair, 1986; Graham, 1987: McNulty, 1987).

As indicated by some of the names of the subsystems, the method of inple-

mentation was chosen to be artificial intelligence expert systems using production s,\- -,

tems. This method was chosen by AFWAL since other methods to control a vehicle failed

(Blair. 1987). The code for such systems become large and unmanageable Wii1. ut provid-

.- 7

N.

Natural- Airpac

Lanauze VICE xper
Menu~ S\ te

Lancuace OICerEter
Menu S\ stem

axiaatio
.% 4te.I

Figue A1. AV yste Arhitcur (M~i~itN,19S: 127)

- - - - - - - - - - - - - -- - - - - - -, %o"

:-.~

inc a solution. With the exception of the voice control and passive navigation sub_,.tem.

all the other subsystems were implemented as some type of expert system (nlcNultv.

19S').

The design of the expert systems was very simplistic in nature. The pilotin

skills were designed and developed using the pilot training paradigm. The expert system,

was built up and tested using the same basic skills and in the same order as a human pilQt -.-

learns them in pilot training. The system was designed using the Automated Reasonin-'-.

Tool (ART). ART allows the specification of rule. and facts that can take the form of

schemas or relationships. This level of abstraction was a bit too low for easy design. TI.

therefore, abstracted the design one level higher to plans and needs. This made thinking ,L.

.N. about the pilot skills easier without getting to the rule level. If a high level action \as

needed a need was built. The need would then get accomplished by a plan. The needed

4{. rules and data structures would then be built to track the need and plan. Meta-level rules

were developed to handle the activation and deactivation of plans and needs. Most of the

facts in working memory were designed as frames within ART known as schemas. This

allows for fast access of the facts and also provide an effect way to organize the facts. "-'

This was particularly useful in the parallel design.

U The system used for this studv was demonstrated in Mav 19S7 %vith the follow-

in_ status of the subsystems. The piloting expert system (PES), the vehicle control expert

system OVCES), the vehicle control system (VCS) and the airspace expert system (AES)

all have operative basic functions for a limited scope. The passive naviation has basic -

theoretical problems. The voice recognition is somewhat limited in its capability Clue to

the state-of-the-art in this area. The menu svsten-i and mission planner are at a ver\

basic and simplistic state (Graham, 1987). It is due to this status that the scope of the "

thesis is limited to the four major components mentioned above: PES. \CES. \CS. and ..-

. the AES. The AES has been studied in less detail since its major component is a rela- --. ,

tional database. It does contain an expert system and could benefit from this stud\. .\

,.-.,-*-

-79 - - "

% "

It should be noted that thle three modules that are used to countrol thc cbsl

'AES VCS CS) conform to a theory by Saridis on intlicn robti cotrl t

hiearcicalyintelligent control approach proposed to unify cognitiv-e and control ~~m
theory. It uses the principle of decreasing precision with icesn nelcne a~i

proposes a three layer approach. The top layer is the orcganization layer wichcnrl
I ~~ ~ ~ J I-'a- ofl-(

and supervises the overall activity. The middle layer is the coordination lay-er. TIlslce

controls the subtasks to be performed as ordered by the organization laver. The bottom

S a\-er is the hardware control level. This level controls the basic functions Lind movement

usinL, mathematical models of motion (Saridis, 1983)). Ficure A-2 showvs the eorr.por

dence with this layered approach and the RAV control.

(VCES)

2CoriinLevel - Vehicle Control Er System S

Figuire A-2. RAM Intelligent Control Lavers
(Mc~ilty, 1987; Saridis, 1983).

APPENDIX B: Parallel Processing Architectures

Computer architectures can be divided into four categories. These catecories,

are Sin.le Instruction Single Data (SISD), Single Instruction Multiple Data SIID). ,IuL--

tiple Instruction Single Data (NISD), and Multiple Instruction Multiple Data ill ID). The

SISD represents all the single processor systems. The SLID, MISD, and .iINID represent

the parallel processor systems. The MISD architecture has been shown to be infeasible for W,

pratical applications since there is little use for concurrent multiple operations on a sincle

data stream. This leaves the SINID and the 3NIiD as the two main catecories of parallel

computer architectures. The SPMD is a system with multiple processors operating the

same instruction synchronously on separate data streams. Examples of this type of archi-

... tecture is the Cray and Connection machines. The NIINID architectures have rnuitiple -

processors capable of operating on multiple data streams with different operations .-

asynchronously. Examples of this type of architecture are the Butterfly and iPSC h\per-

cube (Hwane and Briggs, 1984).

The SIMD and NIINID categories are further broken dowvn into subclasses.

These classes are based on the connection network that allows the separate processors to

communicate with each other. This is important since it is often impractical for all the

processors to be connected to each other. Several types of networks are a line, a rinL. a

star. and an n-cube (Hwang and Brims. 19S4). These can be seen in Ficure B-1.

There are several other characteristics of parallel architectures. The first is the

type of memory organization. Some systems have onlv a common main memor\, or only-

memory local to each processor. or a combination of both. The nlUmber and po\\er of

each processor is also an important characteristic of the system.

Several architectures were considered for this study Clue to a\ailabilit\ and ap-

pliabilit% to the problem. The three architectLires considered were a netvmork of TIl E.\-

plorcr Lisp machines. an Intel iPSC hypercube. and a Connection machine. Eaclh of the e

e e!er.

cp. Sta d.ncue-

a.hie w llbdincer b. Ringail.

-,..'

0! 0

c. iear d. Rnb e-"h

Inec0S . Sdta of.a n-cube inecneto ewr•sISalMi) IIL11

-vFigure B-i. Interconnection Networks. .'"-i"-'":

machines will be discussed in detail.,.--,

".- ~The first architecture is the host architecture for the RA\ system. It is a net-"-'5-

o work of four TI Explorer Lisp machines. They form a loosely connected ,,\stem with each ""

"" system having its own local memory with a common bus structure betwveen the systems. ' ''"

S They all share a central file server. Each of the four sstems are very powerful Lip i'

processors. This architecture was chosen for this study.

%0

'-']~he second architecture is the lIntel iPSC hypercube. This system consists of up °,!

- to ,. processing elements (PE) with memory expansion. This cives each PE four mec.a- "--

"' bytes of memory. The connection network for the system is an n-cube. This means that ".

:. the worst case communication length is log n processors. Each processor consist of an

lntel 80286. The advantage of an n-cube interconnection network is its ability to >imularc".,-',..

many' other connection networks including a tree. This flexibilty along with ready accc,,,i--,.- '

4, bility macie th~is architecture a very natural choice for thnis study. L.'

* 0

The third architecture considered was the Connection Machine. Thisacht-

ture is of the SLMD flavor. It consists of up to 64 K one, bit processors with 1 K of local

mem-o ry (Hillis. I9S7'. .Although this architecture proved interesting it \\a, niot chosen t'r

this -Study for several reasons not specifically related to its architecture. Thie ofl~ ~-

straints %\ere time, easy access. and inexperience w\ith the architecture anld IIIethodolocies.L
The prev\ul discussed architctr arummarized in Ficure B-". Although

other architectures and ma"chines exist no other systems were evaluated dueI, to avaIlabil-

tv.

SINI prcessr aray: Coie tlonMaci.l

IBNIa GF1

SNID phroesslorry: Conecio X Machine

Lray 2[P

Alliant FX.'8
Encore /M.vulti max
Elxsi 6400
Sequent 8000
Cray 3
IBM 3090,400 V,,F
Univax 1194/'ISP

*NIINMD Distributed Mlemory: iPSC
Amnetek 14
NCLBE
BBN Butterfly
CDC Cyberplus
Culler PSC
FPS T-Series

War p

Figuire B-2. Summary of Architectures.
(Hwang, 1987: 1350).

a. NN " .. .: _ .4 _. s

- -- 5--...

Appendix C: NP-Completeness.

NP-Complete problems are a class of computationally hard pIobicm-. 'hcI'

problems can be solved in polynomial time on a non-deterministic Turing machine Ther.

is no known solution to these problems on a deterministic automata in less than exponen-

tial time. Exponential time means that in the worst case the time complexity of the prob-

lem has a lower bound that is an exponential function of the size of the problem. To sho\v

that a problem is an NT-complete, two properties have to be shown. First. the problem
3

has to be shown to be combinatoric or have an exponential time complexity. Second. a

kno-\n NP-complete problem has to be able to be transformed into the problem to be..

- proved in polynomial time. A list of known NP-Complete problems can be seen in Fi,_re

C- . The second condition of NT-Completeness insures one of the important character'i-

, tics of this class of problems. If any of the problems could be shown to exhibit less than.

an exponential time complexity, then all the problems could be transformed and solved in

the same manner (Aho and others, 1974).

In this appendix, several problems are shown to be NP-complete. The RA\'

consists of one primar% problem. This is the intelligent control of a robot. Also showvn to

" be NP-complete is the generic solution method used for the RAV, namely production"

systems. This is added since this is a general methodology that occurs frequently in AI

and perhaps the results can be more generally applied.
3

The intellicent control of a robot is sho\vn to be NP-complete in a rather

straight forward way. First. a precise definition of the problem is necessary. This problem

" can be described as a function H that take the input vectors C and F and produces an-

output P. In this case. C , a command vector and F is a feedback vector. P is the output "" "

commands or adjustments (Albus, 1981). There are (CF)' combinatins ,Of po>sible

- situations that could occur. Clearly in the \vor.t case ill thcs combination \WLould nced to
h

be considered to actuate the proper control. This functio}n obviously has a 1W,\ er time'.,'
.5;,'"

'-p .

,p.

1. Satisfiabilitv - Is a Boolean expression satisfiable'?

2. Clique - Does an undirected graph have a clique of
size k?

3. Vertex cover - Does an undirected graph have a
vertex cover of size k?

4. Hamilton circuit - Does an undirected graph have a
Hamilton circuit?

5. Colorability - Is an undirected graph k colorable?

6. Feedback vertex set - Does a directed graph have a
feedback vertex set with
k members?

7. Feedback edge set - Does a directed graph have a
feedback edge set with k members?

8. Directed Hamiltion circuit - Does a directed graph have
a directed Hamilton circuit?t0

9. Set Cover - Given a family of sets S1, S2, .. Sn does
there exist a subfamilv of k sets such thatfli-
the union of the subfamily equals the un0ion.
of the entire family?

10. Exact Cover - Given a family of sets SL. S .S... Sn
does there exist a set cover consistinL of a-
subfamily of pairwise disjoint sets?

Figure C-1. Known NP-Complete Problems.
(Aho and others, 1974: 378).

I%

:5
- >5 - ..

"1
°

, .--. - p *

0

complexity bound that is exponential. Next a known NP-complete problem has to be

transformed into the intellieent control problem in polynomial time. The kno\\n problem *, -"

selected is the Set Covering Problem. A definition of the Set Covering Problem is needed

for this transformation. The Set Coverin2 Problem is defined as: Given a family of sCIS

S. S2, ... Sn does there exist a subfamily of k sets such that the union of the subfamily

equals the union of the entire family (Aho and others. 1974). The transformation would

be as follows:

1. The sets to be included would be the C vector. If the set
were included, then the component of the C vector \vOuld be
1, otherwise it would be 0.
2. The F vector would be the union of all the sets with a in
the C ve.ctor. 0

The transformation can obviously be accomplished in polynomial time. Therefore. the

intellicent control problem is an NP-complete problem.

Before the "ntelligent control problem was properly defined, efforts to prove the

" problems associated with the RAV lead to the same effort of showing that an expert

system or production system is NP-complete. Although a production system is not itself a

- problem, it is the solution method to many problems. Also due to its widespread use inI

,l. a proof of its NP-completeness is appropriate.

A production system is composed of productions or rules of the If-Then or

antecedent-consequent form and a set of initial facts or axioms. The system can then

produce new facts by appiying the rules to the initial facts or any new facts previouslyv

• cenerated. This type of a system was proven by Post to be able to compute any Turin

computable function. Therefore any NT-complete problem can be transformed 1!V

production system. The production system has a flaw that NP-complete pi n -

that is it is susceptible to the Halting problem. A produLIion system I ,

halt. Due to its computational characteristics. productinn >\,tem> --
.

.. . , *(--".*. .- "= .,--. -. . .* .. ". -. . "- ,.. • .
"l"' '*t " ? V-. ..". . ..".4 -- ii~li"iliiitl

i
ili il' ' ". "

AD-A1U 03 PARALLEL ARTIFICIAL ISTELLIOENCE SEARCH TECHEIOUES FOR 2/22
REAL TIME RPLICRTIOUS(U) AIR FORCE INST OF TECH
IHT-A6TTU*SON AF§ ON SCHOOL OF EUG 1.. D J1 SHAKLEY

I3ICLASSJFIED DEC 9? AFI T/OCS/'EWG/8-24 F/0 L2/5 NL

. 8 . 5- ~ ~~ ' . .

h.

ft.,

1.0 IS 18

11 1 .41-2 -

awa

.-- .. ;... ,-7. .'. .-
6- 64 V

kip. er predicate logic. This is not surprising since predicate logic has a production syste m,

form. Predicate logic has an initial set of axioms and a set of rules to produce new ,.

theorems. This is the formula for a production system.

p8 0

'%, .".

-S',"

0,',,,

i l
a- I

I.

a-,'
"a::., ; a'S.

S

" o -..'* . o, °, ,- -. % " .* .- o- .- - .- ,".. ° , ., , ., . ,• - . .-"4, " -,,2 .-.2',2'-' ,' ., .-- '..,--'" ,.,-." ',-' ' ,-,W, '-,'
*...

.. '.,-,.. .-.- ,'..' -

.S.:-, ,
n kl oalllld l gff lmll lllilllll~l

ll~il, dda]
d I

.I. .%
. ...

..

- . -b.w w,, *

Appendix D: Code

General Match Code

, *** *6* *I .4*.4* .4* .4.4* *6.4.4.4.4.4** .4.4*6.4* *** .4*6.46.4* *6.4* ****** * .4* .4* * * .4** ** * * * * * * * ** *** ****.4 * * .4*6.4*'%v

.- TITLE: Inference Engine.

. * DATE: 7 Dec 1987.
•.4* VERSION: 1.0.

FUNCTION: To perform the match, select, act cycle of a forward
chaining inference engine.

"" " * LANGUAGE: Common LISP.
* INPUTS: None.

;** OUTPUTS: None.
FILES READ: None.

; FILES WRITTEN: None. A.
, AUTHOR: Donald J. Shakley.
i" * HISTORY: Written for Master's Thesis. Portions taken from Winston &

Horn's book on LISP.
, INSTALLATION: TI Explorer.

iPSC Hypercube.

Iii-

(defvar assertions) • variable for list of assertions or plain facts
(defvar rules) ; variable for list rules
(defvar agenda) ; variable for rules on the agenda
(defvar schemas) ; variable for list of schema names

(Defun match (p d assignments) 44.
(cond ((equal assignments t) (setq assignments nil)))
(cond ((and (null p) (null d))

(cond ((null assignments) t) ; return true if no bindings
(T assignments))) • return bindings

((and (atom p) (atom d)) ; test for atom equality
(cond ((equal p d) (match nil nil assignments))

(t nil)))
((or (null p) (null d)) nil)

((or (equal (car p) '?); test for generic general item matcher
(equal (car p) (car d)))

(match (cdr p) (cdr d) assignments))

((equal (car p) '+) ; test for generic general list matclher
(or (match (cdr p) (cdr d) assignments)

(match p (cdr d) assignments)))

- Is -
%0 Al

,-io~

p *~%
6

'6b~
4

'%~. *%
4

%~ .. ,.~:d.. o . -
-

:.0

((equal (car p) 'S+) • test for general binding list match
(cond ((equal d '(empty)) nil) V.

(t
(let ((find (assoc (caadr p) d)))

(match (cadr p) find assignments)))))

((atom (car p)) nil) ; check for ill-formed pattern

* ((equal (pattern-indicator (car p)) '-) ; match negated item
(cond

((not (equal (pattern-variable (car p)) (car d)))
(match (cdr p) (cdr d) assignments))))

((equal (pattern-indicator (car p)) ':>) ; binding conditional match
(cond ((test-condition (car p) (car d) assignments)

(match (cdr p) (cdr d)
(shove-gr (pattern-variable (car p))

(car d)
(t nil))) assignments)))

((equal (pattern-indicator (car p)) '>) • binding variable match
(match (cdr p) (cdr d)

(shove-gr (pattern-variable (car p))
(car d)
assignments))) °0

((equal (pattern-indicator (car p)) '<) ; use binding variable match
(match (cons (pull-value (pattern-variable (car p)) assignments)

(cdr p))
d
assignments))

((equal (pattern-indicator (car p)) '+) ; binding list match
(let ((new-assignments (shove-pl (pattern-variable (car p))

- (car d)
assignments)))

(or (match (cdr p) (cdr d) new-assignments)
(match p (cdr d) new-assignments))))

rW;&

((equal (pattern-indicator (car p)) '<+) ; use binding list match
(match (append (pull-value (pattern-variable (car p))

assignments):::...(cdr p))
d S
assignments))

((and (equal (pattern-indicator (car p)) ; restriction match"restrict) W. %
(equal (restriction-indicator (car p)) '?)
(test (restriction-predicates (car p)) (car d))) 0

(match (cdr p) (cdr d) assignments))

-89 -
..- .'%tS

• 1

l-.,-'.IX

%." ." .

(t ; none of above condition hold - dig deeper into structure
(append (match (car p) (car d) assignments)

(match (cdr p) (car d) assignments)))
~-,

;;; Function to return the first item of a pattern

(defun restriction-indicator (pattern-item) (cadr pattern-item))

..* " F u n c tio n to r e tu r n s e c o n d ite m o f a p a tt e r n

(defun restriction-predicates (pattern-item) (cddr pattern-item))

- " Function to place a variable/ binding on an association list

(defun shove-pl (variable item a-list)
(cond ((null a-list) (list (list variable (list item))))

((equal variable (caar a-list))
(cons (list variable (append (cadar a-list) (list item)))

(cdr a-list)))
(t (cons (car a-list)

(shove-pl variable item (cdr a-list))))))

function to pull a value of a variable off the association list

(defun pull-value (variable a-list)
(cadr (assoc variable a-list)))

function to place a variable/binding on an association list

(defun shove-gr (variable item a-list)
(append a-list (list (list variable item))))

-f u n c t i o n t o r e t u r n t h e f i r s t v a l u e o n a l i s t , -J

(defun pattern-indicator (I)
(car 1)) %

;;; function to return second value from a list

(defun pattern-variable (1)
(cadr 1))

" function used to evaluate condition of a m atch

(defun test-condition (condition value bindings)
(let ((clause (third condition))

(obj (second condition)))
(cond ((null value) (setq value 0)))
(setq clause (subst value obj clause))
(do ((bind bindings (cdr bind)))

((n u l l b i n d) t) .

7. qJ

-, if A

(setq clause (subst (second (car bind)) (first (car bind)) clause))) N,

(eval clause)))

function to calculate a value of a binding

(defun calculate (clause bindings)
(do ((bind bindings (cdr bind))) 1

((null bind) t)
(setq clause (subst (second (car bind)) (first (car bind)) clause)))

(eval clause))

function used with the restrict pattern match

~ (defun test (predicates argument)
(cond ((null predicates) t)

((funcall (car predicates) argument)
(test (cdr predicates) argument))N(t nil)))

;;; function to retract a fact from the list of assertions

(defun retract (fact) •

(cond ((already-fact fact) '-k i
(setq assertions (remove fact assertions :test 'equal)))))

function to add a single fact to the list of assertions -- , -"

(defun add-fact (fact)
(cond ((not (already-fact fact))

(setq assertions (cons fact assertions)))))

;;; function to add a list of facts to the list of assertions -.M

(defun add-facts (facts) •
(setq assertions (append facts assertions))) _-..

• function to modify a schema's slot value

(defun change (schema)
,"

(setf (get (second schema) (first (third schema)))
(second (third schema))))

;;; function to determine if a fact is already in a schema

(defun already-schema-fact (schema)
(cond ((equal (second (third schema))

(get (second schema) (first (third schema)))))))

;; function to place a selected rule actions into the database ..

(defun remember (new)
(print (****** rule .(caar new) fired **********))
(setq new (cdr new))

-A
-91-

(do ((clauses new (cdr clauses)))
((null clauses) new) .,-o

(cond
((equal caar clauses) 'assert) (add-fact (cadar clauses))) -6
((equal caar clauses) 'retract) (retract (cadar clauses))) -

((equal (caar clauses) 'modify) (change (cadar clauses))))))

• function to determine if a fact is already in the list of assertions

(defun already-fact (new)
(cond ((member new assertions :test 'equal) t)

(t nil)))

;;; function t, place a rule onto the list of assertions,%['p.', 'p.

°%,S. "-'2-

(defun remember-agenda (new ruleused)
(setq already-there t)
(do ((clauses new (cdr clauses)))

((null clauses) (not already-there))
(cond

((member (cons ruleused new) agenda :test 'equal)
(setq already-there t))

((equal (caar clauses) 'assert) Iwo
(setq already-there

(and already-there (already-fact (cadar clauses)))))
((equal (caar clauses) 'retract)
(setq already-there

'i" (and already-there (not (already-fact (cadar clauses))))))
5 ((equal (caar clauses) 'modify)

(setq already-there
(and already-there (already-schema-fact (cadar clauses)))))))

(cond
(already-there nil)
((not already-there) (setq agenda (cons (cons ruleused new) agenda)))))

;;; function to combine two lists

(defun combine-streams (sl s2) (append sl s2)) ".,

;; function to place an item on a list 0

(defun add-to-stream (e s) (cons e s))

;;; function that returns the first of a list

(defun first-of-stream (s) (car s))

;;;function that returns the rest of a list

(defun rest-of-stream (s) (cdr s))

function to determine if a list is empty

91'

- 92 - -,

-- ' a-

'.d _
O ,
.

(defun empty-stream-p (s) (null s))

;;; function to make an empty list

P. (defun make-empty-stream 0 nil)

•o" feeds clauses of a rule to the match function for matching

(defun filter-assertions (pattern initial-a-list)
(cond

((and (equal (car pattern) 'schema)
listp (second pattern))) .?

(do ((schemas schemas (cdr schemas))
(a-list-stream (make-empty-stream)))

((null schemas) a-list-stream)
(let ((new-a-list (match (list (second (third pattern)))

(list (get (car schemas) (first (third pattern))))
(list (list (second (second pattern)) (car schemas))))))

(cond (new-a-list (setq a-list-stream
;;spycea ac (add-to-stream new-a-list a-list-stream)))))))

,simpl schema match

((equal (car pattern) 'schema)
(let ((new-a-list (match (list (second (third pattern)))

(list (get (second pattern) (first (third pattern))))-
initial-a-list))

(a-list-stream (make-empty-stream)))
(cond (new-a-list (setq a-list-stream

(add-to-stream new-a-list (make-empty-stream)))))))

;;; set up bindings
(equal (car pattern) 'bind)
(list (shove-gr (second pattern)

(calculate (third pattern) initial-a-list)
initial-a-list)))

;;; regular fact match
(t
do ((assertions assertions (cdr assertions))

(a-list-stream (make-empty-stream)))
((null assertions) a-list-stream)

(let ((new-a-list (match pattern (car assertions) initial-a-list)))
(cond (new-a-list (setq a-list-stream

(add-to-stream new-a-list a-list-stream)))))))))

::; sends filter-assertions different variable bindings of variables

(defun filter-a-list-stream (pattern a-list-stream)
(cond ((empty-stream-p a-list-stream) (make-empty-stream))

(T (combine-streams
(filter-assertions pattern (first-of-stream a-list-stream))
(filter-a-list-stream pattern (rest-of-stream a-list-stream))))))

-93 -..9N",~

• , "0

99-.. ':: .. % .. . 1 v "'' .Yr ''* ,

- ~ ~ ~ ~ 7P - -

;;; function to pass filter-a-list-stream the clauses of a rule one at a time

(defun cascade-through-patterns (patterns a-list-stream)
(cond ((null patterns) a-list-stream)

(T (filter-a-list-stream (car patterns)
(cascade-through-patterns (cdr patterns)

a-list-stream)))))

(defun cadddr (x) (cadr (cddr x)))

,,, function to determine if a rule matches and apply the rule

(defun use-rule (rule)
(let* ((rule-name (cadr rule))

(ifs (reverse (cdr (caddr rule))))
(thens (cdr (cadddr rule)))
(a-list-stream (cascade-through-patterns

ifs
(add-to-stream nil (make-empty-stream))))

(action-stream (feed-to-actions rule-name thens a-list-stream)))
jA (not (empty-stream-p action-stream))))

•- , function to replace all the variables in the consequent and adds the rule to the
;;; aenda %

(defun spread-through-actions (rule-name actions a-list)
(do ((actions actions (cdr actions))

(action-stream (make-empty-stream)))
((null actions) action-stream)

(let ((action (replace-variables (car actions) a-list)))
(cond ((remember-agenda action rule-name)

(setq action-stream (add-to-stream action action-stream)))))))

;;function to replace the variables with the value of their bindings

(defun replace-variables (s a-list)
"." (cond ((atom s) s)

((equal (car s) '<)
(cadr (assoc (pattern-variable s) a-list))) 0

((equal (car s) <+)
(cadr (assoc (pattern-variable s) a-list)))

(t (cons (replace-variables (car s) a-list)
(replace-variables (cdr s) a-list)))))

;;; function to feed spread through actions all the various bindings of a rule

(defun feed-to-actions (rule-name actions a-list-stream)
(cond ((empty-stream-p a-list-stream) (make-empty-stream)) "

(t (combine-streams
(spread-through-actions rule-name

actions
(first-of-,treani a-list-s<trellin)l .,

-94-

N- 2,

6

(feed-to-actions rule-name
actions 46 %

(rest-of-stream a-list-stream))))))

;;; variables to keep track of time and number of rules

(setq begin-time 0)
(setq end-time 0)
(setq total-time 0)
(setq number-of-rules 0)

function to initialize the above variable every time inference engine is started

(defun initialize-main 0
(setq begin-time 0)
(setq end-time 0)
(setq total-time 0)
(setq number-of-rules 0))

;,'", main body of inference engine

(defun forward-chain 0
(initialize-main)
(setq begin-time (sys:clock))

(do ((done T))
((null done) (not done))

(setq agenda nil)
(do ((rules-to-try rules (cdr rules-to-try))

(rules-tried 0)) .4
((null rules-to-try) t)

(cond ((use-rule (car rules-to-try))
(setq rules-tried (+ rules-tried 1)))
((> rules-tried 25) (setq rules-tried 0)

(print '(ten more rules tried ,(length rules-to-try) left)))
.- (t (setq rules-tried (+ rules-tried 1)))))

(cond ((null agenda) (setq done nil))
(t remember (select-a-rule agenda))

(setq number-of-rules (+ number-of-rules 1)))))
(setq end-time (sys:clock))
(setq total-time (- end-time begin-time))

. (print '(total rules fired ,number-of-rules))
(print '(total time ,total-time)))

;; function to select a rule from the agenda

(defun select-a-rule (agenda-list)
(do ((rules-to-select agenda-list (cdr rules-to-select))

(selected-rule (car agenda-list)))
((null rules-to-select) selected-rule)
(print '(rule ,(caar (car rules-to-select)) has salience

,(salience (car rules-to-select))))
(cond ((< (salience selected-rule) (salience (car rules-to-select))) S

(setq selected-rule (car rules-to-select)))))

- 95 - -,'

:-S

YS

;calculates the salience of a rule

j (defun salience (rule)
(let ((sal (cadr (cadar rule)))) -

(cond ((numberp sal) sal)
(tmsal) (eval sal))

'.t &(funcall (first sal)
(eval (eval (second sal)))
(eval (eval (third sal))))))))L

;sets initial values of some important variables

(setq *maximum-salience* 1000000)

(setq * minimum-salience* -1000000)

.1, (setq *default..salience* 0)

.~~-..

(setq agenda nil)

,~TITLE: Inference Engine Utilities.
,~DATE: 7 Dec 1987.
,* VERSION 1.0.

; FUNCTION: To provide utility routines for the Inference engine.
LANGUAGE: Common LISP.

;** INPUTS: None.
:~OUTPUTS: None.
;~FILES READ: None.
** FILES WRITTEN: None.

(e (AUTHOR: Donald J. Shakley.
o HISTORY: Certain function in the ART translation needed to be

automated. This is an attempt at that automation.
* INSTALLATION: TI Explorer.

iPSC Hypercube.

(ea((vl(scndsl))d"

*.=

((null plist)
(setq l Is t (list field)))

(t (setq plist (append plist (list field))))))

96-

,%. .0

(st *iimmsaine*-0000)•" .

" ', (sen*defalt-saience 0) . ,.*.

0.

;;; function that only works on TI Explorer to find variables that begin with "'"'"

(defun replaceq (field objlist)
(cond ((numberp field) field)

((atom field) . "
(cond

K-: ((string-equal field '? :startl 0 :start2 0 :endl 1 :end2 1)
(cond ((equal field (member field objlist)) '(< ,field))

(t (cons field objlist) '(> ,field))))
((or (string-equal field '$?) (string-equal field 'S) '+)

not (null field)) field)))
((null (cdr field)) (list (replaceq (car field) objlist)))
(t (cons (replaceq (car field) objlist)

(replaceq (cdr field) objlist)))))

;;; function that works with replaceq to find variables with "T". 0

(defun parse (field objlist)
(setq field (replaceq field objlist))
(cond ((equal (car field) 'not)

(setq field (list (first (cadr field))
(second (cadr field))
(list (first (third (cadr field)))

V (list '- (second (third (cadr field))))))))
(t field)))

;;; function to change an expression from in-fix to pre-fix notation

(defun inf-to-pre (e)
(let (a-list)

(cond ((atom e) e)
((setq a-list (match '((> v)) e nil))
(inf-to-pre (match-value 'v a-list)))

((setq a-list (match '((+ 1) (restrict ? oneplus) (+ r)) e nil))
(+ ,(inf-to-pre (match-value 'I a-list))

,(inf-to- pre (match-value 'r a-list))))
((setq a-list (match '((+ 1) - (+ r)) e nil))

(- ,(inf-to-pre (match-value 'I a-list))
,(inf-to-pre (match-value 'r a-list))))

((setq a-list (match '((+ 1) * (+ r)) e nil))
- ,(inf-to-pre (match-value 'I a-list))

,(inf-to- pre (match-value 'r a-list))))
((set a-list (match'((+ I) / (+ r)) e nil))

S(inf-to-pre (match-value '1 a-list))
,inf-to-pre (match-value 'r a-list))))

((setq a-list (match '((. 1) ^ (+ r)) e nil))
'(expt ,(inf-to-pre (match-value 'I a-list))

,(inf-to-pre (match-value 'r a-list))))
((setq a-list (match '(- (+ r)) e nil))
"(- ,(inf-to-pre (match-value 'r a-list))))
(t e)))) •

% %

-97-

0

" .':,- ~~.'N ,%*t)."")), 3_ ' " ' °) , " -y"* 2,, ".. "Ix : _ ',,_""_

TV- I I- w-- - - -- I - . -

N% ; function needed for previous routine to identify addition .

d (defun oneplus (x) 2
(equal x ')

:,- ""find the value of a key into an association list. 7,.

:" (defun match-value (key a-list) : :
(cadr (assoc key a-list))) :r

"" ;;;function to transform an ART rule into a rule usable by the inference engine .-'

• (defun change-rule (rule)..-
"--: (cond ((not (equal (car rule) 'defrule)) (print "not a rule"))"-"

(t (setq rule-name (cadr rule)):"'
72(setq new-rule nil)•

(let ((new-rule nil)#P%
(if-part nil) ,:
(then-part nil)),".

, . ~(do ((fieldsn(Cdldr rule) (car fields)) ..''

% -,

(o b jlist n il) .-.
;2 ~(declare nil)) ,"
.'- ~((null fields) new-rule) . -

(cond"-"
,, ((equal (car fields) '=>) (setq then t)) ;;sense andecedant "':'

;((atom (car fields)) nil) ;;gets rid of comments
((atom (car fields)) ;;keeps comments ,..,
(c o n d '. " -

.:. (then (setq then-part,.,.
• -" (append (list (car fields)) then--part))) ""(t (setq if-part.'.

(append (list (car fields)) if-part))))) .l ,

". ((equal (caar fields) 'declare) ",get salience ..,
"" ~(setq declare t) -v.

(setcl new%-rule (list 'rule (list rule-name .z.
:" i~list (first (cadar fieldsl)) -'.inf-to-pre-

,;f cond (cadar fields))))))))
-. ~((and (not (eq ual 1r 'ieids) "dle care)),,- ,

', -a',%

,.- " add salience if not there ,: .(equal dec(are nie)
(de.funmatch-v (selu declare t)

r-rule (list 'rule (list rUle-name '(salience 0)))))(cond"((not(q ((equal (caar fields) "schema) a
(setq If-part (attach if-part (parse (car fields) objlist)))

": ~((equal (caar fields) 'modify,) ."(seq (se then-part

(attach then-part (parse (car fields) oblistl)))
((ecual (caar fields))not)
Is(t Ie -part attach if-part iparle))ar fields) olit

((eu l (caar fieldsl assert)

Y.,: 7(cond
((qul(crfils)'=)(st te t) ;eneaneedn

-(aom(a feds)nl); et ido omet
(ao cr'ils) ,,kees coment

(then setq ten-par(apped (lst (ar felds) thn--prt))

(setq then-part
(attach then-part (parse (car fields) objlist))))

(t (cond (then (setq then-part
(append (list (car fields)) then-part))) -_

(t (setq if-part
(append (list (car fields)) if-part))))

(print (car fields)))

(setq new-rule (append new-rule
(list (append '(if) if-part))

. (list (list 'then then-part))))
(add-rule new-rule)

;;; function to find the slot name

(defun slot (field)
(car (caddar field)))

• function to find the schema name

(defun schema (field)
(cadar field))

function to find the value of a slot of a schema

(defun value (field)
(cadr (caddar field)))

;;; function to add a rule to the list of rules .,

(defun add-rule (newrule)
(cond ((null rules)

(setq rules (list newrule))
Inewrule)

(t (setq rules (cons newrule rules))
newrule)))

• 1; function to change ART facts to a form compatible with the inference engine

(defun change-facts (fact)
(cond ((not (equal (car fact) 'deffacts)) (print "not a fact"))

t (do ((facts (cddr fact) (cdr facts))
((null facts) t)

(add-fact (car facts))))))

function to change ART globals to a form compatible with the inference engine .

(defun change-global (global)
(cond ((not (equal (car global) 'defglobal)) (print "not a global"))

(t (eval '(setq ,(cadr global) ,(cadddr alobal)))))

• function to write the transformed rules out to a file for a file transfer between -

-99-

% "

O'o .•°%• 0

- 9 9 "° "

*.-- - ".--7- - 7-

. systems

(defun write-rules (filename) .
(setf out-stream (open filename :direction :output)) 0
(do ((rule rules (cdr rule)))

((null rule) t)
(pprint (car rule) out-stream))

(close out-stream))

initializes a list of schema names -

(setq schemas nil)

:;; function to transform ART schemas into a form compatible with the inference
;; engine.

(defun change-schema (schema)
(cond ((not (equal (car schema) 'defschema))

(print '(name ,(cadr schema) is not a schema)))
(t
(setq schemas (cons (cadr schema) schemas)) ""8
(add-defaults-schema schema) 0
(let ((schemaname (cadr schema))

(schemabodv (cddr schema))
(clauses nil))

(do ((body schemabody (cdr body)))
((null body) clauses)

(cond
((listp (car body)) (setf (get schemaname (first (car body)))

(second (car body))))))))))

" ;;; function to add default slots to the schemas for the RAV

(defun add-defaults-schema (schema) *

(let ((instance-of (cadr (assoc 'instance-of (cdddr schema))))
(schemaname (cadr schema)))

(cond ((equal instance-of 'plan),'-'--
E setf (get schemaname 'bindings) '(empty))
(setf (get schemaname 'globals) 'error-in-initializing-this-plan V.-.
(setf (get schemaname 'step) 0) 0
(setf (get schemaname 'time) 0)
setf (get schemaname 'abort-plan) nil)
setf (get schemaname 'abort-plan-stack) '(empty))

(setf (get schemaname 'number-of-steps) 1000)
(setf (get schemaname 'timer) nil))

((equal instance-of 'need)
(setf (get schemaname 'importance) default-salience)
(setf (get schemaname 'bindings) '(empty))
(setf (get schemaname 'bindings-updated) nil)
(setf (get schemaname 'status) 'inactive)
(setf (get schemaname 'preselected-plan) tili)
(setf (get schemaname 'timer) nil)

p.,.

:. ..-.1 J,,-

-., .,,,.,,, .,, -.,..¢ ;,-... ...%,,,, , -.,.-..,. , ,.,. .,, ;....,,.q. ::.:¢ , .,.

(setf (get schemaname 'failed-plan) 4

>slot-how-many multi ple-va lue s))
(setf (get schemaname 'succeeded-plan)

'(slot-how-many multi ple-val ue s))
(setf (eet schemana.'-.. 'parameters) nil)) ,R

(kequal instance-of 'numeric:-valued-object)
(setf t(get schemaname 'possible-value) 'numeric).. %

(setf (get schemanamne 'time-of-last-update) 0)
(setf (get schemaname 'exact-value) 0)
(setf (get schemaname 'quantization) 1)
(setf (get schemaname 'tolerance) 0)
(setf (get schemnanarne 'value) 0)
(setf (get schemanamne 'old-value) 0)
(setf (get schemaname 'v'cs-target-value) -1000059)
(setf (get schemaname 'target-value) nil)
(setf (get schemaname 'type) 'unset)
(setf (get schemaname 'broken) 'no))

(t (print (instance-of ,instance-of))))))

Hypercube Specific Code

** TITLE: Hvpercube Unique Inference Engine.
;~DATE: 7 December 1987.
** VERSION: 1.0.
:* FUNCTION: To provide the concurrent match for the parallel inference

engine.
:~LANGUAGE: Concurrent Common LISP. ..-

INPUTS: None.
** OUTPUTS: None.
*~FILES READ: None. -.

* FILES WRITTEN: None.
* : AU THOR: Donald J. Shakley.

]HISTORY Uniquely developed for this thesis.
INSTALLATION: ARIT iPSC Hypercube.

variables used for timing and counting the rules fired

isetcl match-time 0)
(Setq select-time 0)
tsetq act-time 0)
Isetq match-start-timne 0)

-101-

(setq match-stop-time 0)-' (setq select-start-tim e 0) " -
(setq select-stop-time 0)
(setq act-start-time 0)
(setq act-stop-time 0)
(setq rule-count 0)

;;; function to initialize the previous variables upon each execution of the inference
eneine.

°0
(defun initial-setting ()

(setq match-time 0)
(setq select-time 0)
(setq act-time 0).(setq match-start-time 0)
(setq match-stop-time 0)

(setq select-start-time 0)
(setq select-stop-time 0)
(setq act-start-time 0)
(setq act-stop-time 0)
(setq rule-count 0)) %

function that is the main body of the parallel inference engine

(defun forward-chain ()
(initial-setting)
(do ((done T)) .J?

((null done) (not done))
(setq agenda nil)
(setq match-start-time (sys:clock))
(do ((rules-to-try rules (cdr rules-to-try))

(rules-tried 0))
((null rules-to-try) t)
(cond ((use-rule (car rules-to-try)) 0

;;(print '(rule ,(car rules-to-try) * ** USED ** **

(setq rules-tried (+ rules-tried 1)))
;((> rules-tried 25) (setq rules-tried 0)

(print '(more rules tried ,(length rules-to-try) left)))
(t (setq rules-tried (+ rules-tried 1)))))

(setq match-stop-time (sys:clock))
. (setq match-time

(+ match-time (- match-stop-time match-start-time)))
(setq select-start-time (sys:clock))
(select-a-rule agenda)
(setq select-stop-time (sys:clock))

" (setq select-time (+ select-time (- select-stop-time select-start-time))) -,-

(setq act-start-time (sys:clock)) -
(cond ((null selected-rule) (setq done nil)) .%,-."'-'d ((null (car selected-rule)) (setq done nil))

. %- I(t (setq rule-count (+ rule-count 1))
(remember selected-rule)))

(setq act-stop-time (sys:clock)) •
(setq act-time (+ act-time (- act-stop-time act-start-time))))

%,

• /",, ,/' .

- -,, W b ; :'-. ,. -. . - . ,,7 r ,- -. . ,2 . a, ,

,-;.-..

(print '(Number of rules fired ,rule-count))
(print '(match time ,match-time milliseconds))
(print '(select time ,select-time milliseconds))
(print '(act time ,act-time milliseconds)))

;;; function that selects the overall rule to fire by receiving the rules from its children
;;; (if it has any), using these rules along with the rules on its own agenda to select
;;' a rule to pass to its parent. The node then waits to receive the overall rule selected .,

from its parent

* (defun select-a-rule (agenda-list) 0
(append (get-children) agenda-list)
(setq selected-rule (car agenda-list))
(print '(agenda length ,(length agenda-list)))
(do ((rules-to-select agenda-list (cdr rules-to-select)))

((null rules-to-select) selected-rule)
;(print '(rule (caar (car rules-to-select)) has salience

;,(salience (car rules-to-select))))
(cond ((< (salience selected-rule) (salience (car rules-to-select)))

(setq selected-rule (car rules-to-select)))))
:(print '(before sending to parent selected rule is ,selected-rule))
(send-to-parent selected-rule)
(cond ((= (sys:mynode) 0) selected-rule) 0

(t (setq selected-rule (recv-overall-rule)))))
.- .~~ .. '- '

function to receive the selected rule from each of its children

(defun get-children 0-
(do ((children (find-children) (cdr children))

(rule-list nil))
((null children) rule-list)

- (cond ((< (car children) (expt 2 (svs:cubedim)))
;(print '(waiting to receive child ,(car children)))
(setq rule-list (cons (wait-recv (car children))It rule-list)))
-(print '(received child: ,rule-list)))

(t (setq children nil)))))

, function to send selected overall rule to a node's children

(defun send-to-children (rule)
(do ((children (find-children) (cdr children)))

((null children) rule)
(cond ((< (car children) (expt 2 (sys:cubedim)))

(let ((out-strm
(make-fasl-node-stream (car children)

:tree :direction :output :element-type 'string-char)))
(unwind-protect
(progn

(cond
((null rule) (send out-strm :dump-object '(nil)))
(t (send out-strm :dump-object ruleM)

(funcall out-strm finish-output))

- 1n3-
C -,

" % %

, .-. -,. .-.- -- ... - - . -. -.- -. ,, - .-.- -. 4-. ,- , ,. .'. , -.- ' < -,"4.p.-"

(t,(send out-strm :close))))
(t (setq children nil)))))

function to send a node's parent its selected rule* 0

(defun send-to-parent (rule) %
(cond ((= (sys:mvnode) 0) (send-to-children rule)) per

(let ((out-strrn
(make-fasl-node-stream (find-parent)

:tree
:direction :output
:element-type 'string-char))) -" ",

(unwind-protect
(progn

;(print '(sending to parent: ,(find-parent)))
;(print '(sending rule: ,rule)) 0
(cond .

((null rule) (send out-strm :dump-object '(nil)))
(t (send out-strm :dump-object rule)))

(funcall out-strm :finish-output))
(send out-strm :close))))))

• function to receive and pass on the overall rule
(defun recv-overall-rule 0

(send-to-children (wait-recv (find-parent))))

"" function to find a node's children

(defun find-children 0
(cadr (assoc 'children (cadr (assoc (sys:mynode) spanning-tree)))))

.;. function to find a node's parent

(defun find-parent 0
(cadr (assoc 'parent (cadr (assoc (sys:mynode) spanning-tree)))))

.," svnch,'c.nous message receive

(defun vait-recv (node)
(let ((in-strm

(make-fasl-node-stream node
:tree

• .:direction :input
:element-type 'string-char)))

(unwind-protect
" (progn

(do ((to-exit nil)
(ret-strm nil))

(to-exit ret-strm)
(cond

((null (setq ret-strm (send in-strm :read-object)))

.. ~

%
""04

''%' 1(%

".','0' ,.,0 ," % " , ,. ,.%- -%r,. .. o..- -o-,. % .. . -. % %' ""% %- % " i'"'"'
%

" "% " '"'%'Z%

(setq to-exit nil)).

(t (setq to-exit t)
;(print '(wait-recv ,ret-strm)).
(send in-strm :close))))))))

-0

variable to define the spanning tree

(defvar spanning-tree)

;;; table used to define the spanning tree's connections

(setq spanning-tree

(0 ((children (1 2 4 8 16)) (parent nil)))
(1 ((children (3 5 9 17)) (parent 0)))
(2 ((children (6 10 18)) (parent 0)))

3 ((children (7 11 19)) (parent 1))) 0
4 ((children (12 20)) (parent 0)))
5 ((children (13 21)) (parent 1)))
6 ((children (14 22)) (parent 2)))
7 ((children (15 23)) (parent 3)))
8 ((children (24)) (parent 0)))
9 ((children (25)) (parent 1)))10 ((children (26)) (parent 2))) --

(11 ((children (27)) (parent 3)))
(12 ((children (28)) (parent 4))) "

13 ((children (29)) (parent 5)))14 ((children (30)) (parent 6)))
15 ((children (31)) (parent 7)))

(16 children nil) (parent 0)))
17 (children nil) (parent 1)))
18 ((children nil) (parent 2)))

(19 ((children nil) (parent 3)))
(20 ((children nil) (parent 4)))
(21 ((children nil) (parent 5)))
(22 ((children nil) (parent 6)))(23 ((children nil) (parent 7)))

-..(24 ((children nil) (parent 8)))
(2 ((children nil) (parent 9)))

S_26 ((children nil) (parent 10)))
(27 ((children nil) (parent 11)))
(28 ((children nil) (parent 12)))

(29 ((children nil) (parent 13)))
(30 ((children nil) (parent 14)))

31 ((children nil) (parent 15)))

.1.0 ..

5*-.-.:.,..

.... :,,

15 -

..*

. -.- ;',

- " -2' .

0

Bibliography

Aho, Alfred V., John E Hpcroft, and Jeffrey D. Ullman. The Design and Analvsis of Con
pu:r Algorithms. Reading, MA: Addison-Wesley Publishing Company. 1974. -

Albus, James Sacra. Brains, Behavior, and Robotics. Peterborough, INH: BYTE Publications
Inc, 1981.

ART 3.0. Reference Manual. Inference Corporation, Los Angeles, CA, January 1987.

Baer, Jean-Loup. Computer Systems Architecture. Rockville, MD: Computer Science Press.
Inc., 1980.

Barr, Avron and Edward A. Feigenbaum. The Handbook of Artificial Intelligence, IfoL' I.+.om 1.
Standford, CA: HeurisTech Press, 1981.

Billstrom. David, Joseph Brandenburg, and John Teeter. "CCLISP on the iPSC Concur
rent Computer," Proceedings of the National Conference on Artificial hntc/li10ce
7-12 (1987). N

Blair, Jesse and Karl E. Schricker. "Robotic Air Vehicle: A Pilot's Perspective." Unpub
lished report. Air Force Wright Aeronautical Laboratories, \Vright-Patternson
AFB, OH, 1986.

Blair, Jesse. Project Manager, Robotic Air Vehicle. Personal Interview. Air Force Wright ".. .-
Aeronautical Laboratories, Wright-Patterson, OH, May 1987.

Booch, Grady. Software Components with Ada. Menlo Park, CA: Benjamin/Cummings Pub 0
lishing Company, Inc, 1987.

Brandenburg, Joseph E. and David S. Scott. Embeddings of Communication Trees and Grids
into Hkypercubes. iPSC Technical Report No 1. Intel Scientific Computers.
Beaverton, OR. 1986.

Broekhmusen, Martin. editor. Concurrent Common Lisp User's Guide Version 1. 1. Cambridge.
MA: Gold Hill Computers, 1987a.

------ Concurrent Common Lisp Reference Manual Version 1.]. Cambridge, %MA: Gold Hill
Computers, 1987b.

Cheng, P. Daniel and J. Y. Juang. "A Parallel Resolution Procedure Based on Connection
Graph," Proceedings of the National Conference on Artificial Intelligence 1 -17 ""
(1987).

Douglass, Robert J. "A Qualitative Assessment of Parallelism in Expert Systems." IEEE
Software, 2: 70-81 (May 1985).

Evans, David J. editor. Parallel Processing Systems. Cambridge, Great Britain: Cambridce
University Press. 1982.

Explorer. Lisp Reference (2243201-0001). Texas lnstrument Incorporatcd, A.-\u-11. TX.
June 1985. : L

- 1() - o

% %m-, l

0

Fanning, Jesse. System Software Technician. Personal Interview. Air Force Wrieht Aero
nautical LAboratories, Wright-Patterson AFB, OH. November. 1987. J..

'5,%

Fischler, Martin A. and Oscar Firschein. Intelligence: The Eye, the Brain, and the Computer. -
Reading, AL: Addison-Wesley Publishing Company, 1987.

Forgv, Charles and others. "Initial Assessment of Architecures for Productior Systems,"
Proceedings of the National Conference on Artificial Intelligence 116-120 (1984). "

- "Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Prob
lem," Aritficial Intelligence 19: 17-37 (1982).

-'5%

Gevarter, William B. Artificial Intelligence, Expert Systems, Computer Vision, and Natural
Language Processing. Park Ridge, NJ: Noves Publications, 1984.

Graham, Joyce M., Engineer, Artificial Intelligence Laboratory. Personal interview. Texas 0
Instruments Defense and Electronics Group, Dallas, TX, May 1987.

Gupta, Anoop. Parallelism in Production Systems. PhD dissertation. Carnegie-Mellon Uni ,
versitv, Pittsburgh, PA, March 1986.

Hillis, Daniel W. "The Connection Machine." Scientific American 256: 108-115 (June 0
1987).

Hwang, Kai. "Advanced Parallel Processing with Supercomputer Architectures." Proceed %
ings of the IEEE 75: No 10 1348-1379 (October 1987).

Hwang,, Kai and Faye A. Briggs. Computer Architecture and Parallel Processing. New York: 0
McGraw-Hill Book Company, 1984.

Ishida, Toru and Salvatore J. Stolfo. "Towards the Parallel Execution of Rules in Produc
tion System Programs," Proceedings of the International Conference on Paralle!
Processing 568-575 (1985).

Jamieson, Leah H., Dennis B. Gannon, and Robert J. Douglass editors. The Characteristics -".

of Parallel Algorithms. Cambridge, MA: MIT Press, 1987.

Kelly, Michael A. and Rudolph E. Seviora. "A Multiprocessor Architecture for Production
Systems," Proceedings of the National Conference on Artificial Intelligence 36-41
(1987). 0

Kornfeld, William A. "The Use of Parallelism to Implement a Heuristic Search." Proceed .
ings of the 7th International Joint Conference on Artificial Intelligence %7-580
(1981).

Li, Guo-jie and Benjamin W. Wah. "CompLItational Efficiency of Parallel Approximate •
Branch-and-Bound Algorithms." Proceedings of International Con tc'rc)7c (n PLr r'

. allel Processing 473-480 (1984).

"How Good Are Parallel and Ordered Depth-First Searches:" Pro, ccdiu, ,"
International Con/icrence on Parallel ProcLsslng,' 992-999 (9S()). ".l

0
Lvstad. Garr S. "The TI Dallas Inference Enoine (TIDIE) Knowledge Representation Ss "--

0

.- 5

• • a'S

"•'',*.~S*J ~ * ' * .. ,.~ ~J ? I 5 % .~', ~.s.' -

..% le '

tern," Proceeding of the IEEE National Aerospace and Electronics Conference
•z- 1348-1351 (May 1987).

Manna, Zohar. Mathematical Theory of Computation. New York, NY: McGraw-Hill Book
Company, 1974. -

McNultv, Christa. "Knowledge Engineering for Piloting Expert System," Proceedings of the
IEEE National Aerospace and Electronics Conference 1326-1330 (May 1987).

Minsky, Marvin L. Computation: Finite and Infinite Machines. Englewood Cliffs, NJ: Pren
IP tice-Hall Inc, 1967. 0

Miranker, Daniel P. "TREAT: A Better Match Algorithm for Al Production Systems,"
Proceedings of the National Conference on Artificial Intelligence 42-47 (1987).

Moler, Cleve and David S. Scott. Communication Utilities for the iPSC. iPSC Technical
Report No 2. Intel Scientific Computers, Beaverton, OR, 1986.

Mraz, Capt Richard T. Performance Evaluation of Parallel Branch and Bound Search with the
Intel iPSC Hvpercube Computer, MS Thesis AFIT/GCE/ENG/86D-2. School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB.014, December 1986. &-"

Nilsson, N. J. Principles of Artificial Intelligence. Palo Alto, CA: Tioga Publishing Company,
1980.

Norman, Capt Douglas 0. Reasoning in Real-Time for the Pilot Associate: An Examination of
Model Based Approach to Reasoning in Real-Time for Artificial Intelligence Systems
using a Distributed Architecture, MS Thesis AFIT/GCS/ENG/85D-12. School of
Eneineering, Air Force Institute of Technology (AU), Wright-Patterson AFB,.. . OH01, December 1985.,--"",--

Otlazer, Kemal. "Partitioning in Parallel Processing of Production Systems." Proceedings "
of the International Conference on Parallel Processing 92-100 (1984). 0

Pearl, Judea. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Reading,
MA: Addison-Wesley Publishing Company, 1984.

"Heuristic Search Theory: Survey of Recent Results," Proceedings of the 7th Inter
national Conference on Artificial Intelligence 554-562 (1981). '

Post. Emil L. "Formal Reductions of the General Combinatorial Decision Problem,"
American Journal of Mathematics, 65 197-268 (1943). . ".

Rich. Elaine, Artificial Intelligence. New York, NY: .McGraw-Hill Book Company. 19S3.

Saridis. George N. "Intelligent Robotic Control." IEEE Transactions on Automatic Control.
,4C-28 547-557 (MNlay 1983).

Stolfo. Salvatore J. "Five Parallel Alvorithms for Production System Execution on the
DADO ,lachine." Proceedi ngs of the National Conference on Artitfciul lbclliccc'"
300-307 (1984). 0

Ile

'.

I '- _'!'., -"-" '

Wah, Benjamin W., Guo-jie Li and Chee Fen Yu. "Multiprocessing of Combinatorial
Search Problems," Computer 93-108 (June 1985).

Ward, Paul T. and Stephen J. Mellor. Structured Development for Real-Time Systems Volume
1: Introduction and Tools. New York, NY: Yourdon Press, 1985.

Waterman, Donald A. A Guide to Expert Systems. Reading, MA: Addison-Wesley Publish
ing Company, 1986.

Winston, Patrick Henry. Artificial Intelligence. Reading, MA: Addison-Wesley Publishing '.
Company, 1984.

Winston, Patrick Henry and Berthold Klaus Paul Horn. LISP. Reading, MA: Addison-
Wesley Publishing Company, 1984. .. ,.

4..

for

k-p

z

P "-",

i - fl /%

-.;.-...

•-N...

N".-,"-'

N.....

.* .0:.

0

VITA

* -Captain Donald J. Shakley was born 24 September 1960 in Petrolia, Pennsylva-

nia. He graduated from high school in Karns City, Pennsylvania, in 1978 and attended

Purdue University, from which he received the degree of Bachelor of Science in Computer

Science and Mathematics in August 1982. Upon graduation, he received a commission in

the USAF through the ROTC program. He was employed as a computer consultant for

Witco Chemical Corporation, Petrolia, Pennsylvania, until called to active duty in October

1982. He served as a computer software programmer/analyst with the 2045th Communi-

cations Group, Andrews AFB, MD, until entering the School of Engineering, Air Force

Institute of Technology, in May 1986.

Petrolia,, PA165

e'. ..

. .

0

Petroia,,P.1605

-~~~0 oil- -,

%

lop,

UNCLASSIFIED
;ECURITY CLASSIFICATION OF THIS PAGE

Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-0188

0la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED .'-_._-"
a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release; S
-2b DECLASSIFICATION /DOWNGRADING SCHEDULE distribution unlimited.,'* '

'.,'4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

" AFIT/GCS/ENG/87D-24

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATIONI (If aplicable)
School of Engineering AFIT/ENG".

'6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of TechnologyI Wright-Patterson AFB OH 45433-6583

&-8a. NAME OF FUNDING/SPONSORING i8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If appicable)

AFWAL AFWAL/AAI

.8c- ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
% PROGRAM PROJECT TASK WORK UNIT

Air Force Wright Aeronautical Laboratories ELEMENT NO NO NO ACCESSION NO

Wright-Patterson AFB OH 45433 •

11. TITLE (Include Security Classification) 4 '

% See Box 19

12. PERSONAL AUTHOR(S)

Donald J. Shakley, B.S., Capt, USAF
13a T Y PE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

MThssFROM __ __TO _ __ 1987 December 110
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

. FIELD GROUP SUB-GROUP Artificial Intelligence, Parallel Processing,
09 Real-Time

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

Title: Parallel Artificial Intelligence Search Techniques
for Real-Time Applications

Thesis Chairman: Gary B. Lamont, PhD . ,, . ,.

20 DISTRIBU'TION, AVAILABILITY OF ABSTRACT 121 ABSTRACT SECURITY CLASSIFICATION-:.2-

QUNCLASSIFIEDIUNLIMITED 0-- SAME AS RPT []DTIC USERS IUNCLASSIFIED
"22a NAME OF RESPONSIBILE INDIVIDUAL 122b TELEPHONE (include Area Code) 122c OFFICE SYMBOL' "%,:.

", Gary B. Lamont, PhD. (513) 255-3576 AFIT/ENG ,- ''

DD Form 1473, JUN 85 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE ,'
I UNCLASSIFIED

%w VN ,%

' i.
20.DISTRIBUTIO .- 'ILBIIT O.F.. ABSTRACT .,'.1,2.1.,, ABSTRACT... SECURITY_ CLASSIFICATION-.. "-.'.

Abstract I

State space search is an important component of many problem solving meth-
odologies. The computational models within Artificial Intelligence depend heavily upon - -
state space searches. Production systems are one such computational model. Production
systems are being explored for real-time environments where timing is of a critical na- p
ture. Parallel processing of these systems and in particular concurrent state space search-
ing seems to provide a promising method to increase the performance of production sys- "
tems in the real-time environment.

Production systems in the form of expert systems, for example, are being used .
to govern the intelligent control of the Robotic Air Vehicle (RAV) which is currently a
research project at the Air Force Wright Aeronautical Laboratories. Due to the nature of
the RAV system, the associated expert system needs to perform in a demanding real-time : " -
environment. The use of a parallel processing capability to support the associated compu-
tational requirement may be critical in this application. Thus, parallel search algorithms
for real-time expert systems are designed, analyzed and synthesized on the Texas Instru-
ments (TI) Explorer and Intel Hypercube. Examined is the process involved with trans-
porting the RAV expert systems from the TI Explorer, where they are implemented in the "
Automated Reasoning Tool, to the iPSC Hypercube, where the system is synthesized using
Concurrent Common LISP (CCLJSP). The performance characteristics of the parallel im- -
plementation of these expert systems on the iPSC Hypercube are compared to the TI
Explorer implementation.

The implementation on the iPSC hypercube points out the feasibility of imple- -
menting a production system in CCLISP and gaining performance improvements over the p
TI Explorer. This study shows poor performance speedups due to poor load balancing -
combined with a large communication overhead in contrast to the problem size.

. -°

- V"i -

D

p-b

' --_ _ " ' " , " ' , " # " " = - " " -" " ." " . " " " . " " ., " ," " . ." ", " , - ", " ' = " " .- ." ." " . " " ,' "J " - ." " . " " ." -. -, " - " . * - - ., " . -, " " ' ." " " .% , .

-.

-~ .p *.~j

6

*%..I '~'

6

1'
6

~*%. %~*
,~-- .~.

.1'

,% '~

.P .d~

'~

-~

I.

--

S

