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A bstrac

The process of effectively coordinating and controlling resources during a mil-

itary engagement is known as battle management/command, control, and communi-

cations (BM/C3). One key task of BM/C3 is allocating weapons to destroy targets.

The focus of this research is on developing parallel methods to achieve fast and cost

effective assignment of weapons to targets. Using the sequential Hungarian method

* for solving the assignment problem as a basis, this report presents the development

and relative performance comparison of four parallel assignment algorithms imple-

mented on the Intel iPSC hypercube computer.

The first approach partitions the problem space into smaller, independent sub-

problems and assigns each to a processing node in the hypercube. The second and

third approaches also partition the problem space, but they assign each partition to a

group of processing nodes. Each group is controlled by a separate node which further

subdivides the partition among members of the group. In the second approach, the

control node acts as an arbitrator to eliminate the redundant assignment of weapons

to targets by idling redundantly allocated weapons. The third approach eliminates

* redundant weapon allocations by selecting the least costly redundant allocations and

directing additional processing to reallocate the more costly weapons. The fourth

approach is a parallel implementation of the Hungarian algorithm, where certain

Isubtasks are performed in parallel. This approach produces an optimal assignment

instead of the sub-optimal assignment generally obtained using either of the three

heuristic approaches.

The relative performance of the four approaches is compared by varying the

number of weapons and targets, the number of processors used, and the size of the

problem partitions. The first and second approaches produce assignment solutions

significantly faster than the baseline sequential methods. The third and fourth ap-
I
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proaches yield slower solutions, but are faster than sequential methods of assignment.
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* IMPLEMENTATION AND PERFORMANCE ANALYSIS

OF PARALLEL ASSIGNMENT ALGORITHMS

ON A HYPERCUBE COMPUTER
S

1. Introduction

Parallel processing is a method of computation that exploits the concurrent

events that occur in the solution of many different problems [HwB84]. Parallel com-

puters employing multiple processors exploit these concurrent events by assigning

each event to a different processor for simultaneous processing. The results of these

parallel computations are combined to form a solution to the overall problem [Hil87].

Parallel processing is presently the subject of intense research and development. The

main reason for the increased interest in parallel processing is the wider availability

of parallel multiprocessor computers [Fre86]. Improved technology in the areas of

VLSI (Very Large Scale Integration) circuits, high speed communications, and hard-

1 ware packaging have combined to make these parallel computers more reliable and

much less expensive [Sei85, Den86, Fre86].

Recent software implementations have shown that significant reductions in

processing times are possible using parallel processing [Qui87]. Many of these im-

plementations involve large scale problems in areas such as fluid dynamics [EbB86],

high energy physics [Fox84], partial differential equation solutions [SaN85], statisti-

cal mechanics [FO84], image processing [MuA87I, and several other areas that were

previously not feasible because of the excessive processing times required when using

single-processor computers. Faster solutions to these large scale problems appeal to

many researchers in government and industry because they allow more accurate and

extensive modeling of complex processes during the development and design phases

o1



of new systems. One particular government organization with a keen interest in the

increased processing speeds provided by parallel processing is the Strategic Defense

Initiative Organization (SDIO) [AdW85, Lin85, BoR85].

* 1.1 SDI And Parallel Computing

The Strategic Defense Initiative (SDI) was launched by President Reagan in

a televised speech on March 23, 1983. In this speech, he challenged scientists and

'4' engineers to work to render nuclear weapons "impotent and obsolete." He proposed

a research and development program to determine if a "smart" system of nonnuclear

defense could effectively knock out incoming offensive ballistic missiles before they

detonate over our country [Rea83]. If all dollar amounts are adjusted to today's

*value, the SDI is potentially the most expensive research and development program

ever attempted and far more expensive than the Manhatten Project which produced

the atomic bomb [AdF85].

The overall system architecture of the SDI system is envisioned as one of sev-

eral defensive layers corresponding to the different phases that occur in the trajectory

of a ballistic missile. Those phases are the boost phase, the midcourse phase, and

the reentry or terminal phase [DrF85]. Within each defensive layer, computers will

use information gathered from sensors to detect, classify, and track potential tar-

gets. Using this information and predefined engagement strategies, weapons will be

assigned to destroy certain high-threat targets. After firing on assigned targets. the

O' effectiveness of the weapons would be evaluated and used to make future weapon

engagement decisions. The combination of all of these processes is known as battle

management/command, control and communication or BM/C3 [SeD85, LinS51.

0 Many prominent scientists argue that the realization of a reliable defense sys-

tern of the magnitude that will be required by the SDI is not possible [Lin85, Par85,

Noz86]. Although development in the areas of laser beam, particle beam, and kinetic

-energy weapons is still in the beginning stages, preliminary results are promising.

2
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A major issue with these weapons is providing them sufficient energy for effective

*operation when they axe deployed in space [AdF85]. Development of the BM/C3

system is the area of most concern. During a full-scale missile attack, hundreds of

thousands of interrelated decisions will need to be made about how to most effec-

tively utilize available defensive weapons. These complex decisions must be made

within milliseconds of each other in order to deploy defensive weapons in a timely

manner. Because time and complexity constraints make them humanly impossible,

these decisions must be made with the assistance of fast and reliable computers using

intelligent software. For example, if the enemy launched 1400 missiles in an attack.

then more than 10 enemy missile kills per second would be needed to destroy most of

the missiles shortly after they were launched [AdW85]. Development of the millions

of lines of error-free software code and the computer systems to flawlessly execute

the software to accomplish these BM/C3 tasks is viewed as impossible by Parnas

[Par85]. The magnitude and complexity of BM/C3 software prompted Lieutenant

General James A. Abrahamson, director of the SDIO, to state in an interview that

the "incredible software problem" of the battle management system is "the challenge

of all time" [Chr85]. The SDIC is now actively conducting research in many areas

-. on how to meet the challenge of developing a viable battle management system.

An area of particular interest is the development of fast and reliable BM/C3

computer systems for controlling weapons, sensors, and other equipment that will

comprise the SDI system [AdW85J. One concern is the computation time that a

single-processor computer might require to control and coordinate all of the activ-

ities within a defensive layer. The basic computational speed of a single proces-

sor is limited by internal signal propagation delays and is not expected to exceed

1 GFLOPS (Giga-Floating Point Operations Per Second) with current circuit tech-

nology [Den86]. Estimates of the computational speed required for some 13M/C3

tasks are more than 10 GFLOPS [AdW85]. One way researchers believe faster

computations will be possible is to develop system architectures that utilize parallel-

3
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- processors [SeD85]. The defensive layer could then be divided into relatively inde-

pendent regions. Each region would be assigned to a separate set of processors within

the multiprocessor computer to coordinate and evaluate activities within that region.

When combined with efficient software developed especially for parallel-processors,

* the overall computations could be completed in a time much shorter than that achiev-

able with a single-processor computer [San87]. The ideal speed increase or speedup

of a parallel-processor with n processors over a single-processor computer is n. In

* some cases, greater than n speedup can be achieved by utilizing certain parallel al-

gorithms. The possibility of ideal or better speedups with parallel computers creates

the potential for meeting or exceeding the predicted computational requirements of

the proposed BM/C3 system.

1.2 The Assignment Problem

One of the critical BM/C3 tasks is the assignment of weapons to targets.

V Situations similar to the problem of assigning weapons to targets frequently occur

in other areas such as operations research, logistics management, and even in a

computer's internal management of its resources. Typically, there exists a number

of resources available to be allocated to a number of requesters. In most cases,

there are more requesters than there are resources. In cases such as these, decisions

must be made as to which requesters are allocated resources and which requesters are

denied resources. The problem is generally known in the literature as the assignment

problem and usually involves allocating available resources to competing requesters

in such a way as to maximize some measure of profit or award, or to minimize some

measure of penalty [Kuh55, Chu57, Kur621.

0., The assignment problem can be solved in many different ways. The brute force

method would be to enumerate all the possible ways resources could be allocated to

requesters and then choose the combination that provides the best allocation. This

method might work well for a very small number of resources and requesters, but for

0.4
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any realistically sized system, the time required to enumerate all of the possibilities

would be prohibitive. For example, if there were only 20 resources and 20 requesters,

the number of different resource-to-requester assignments would be 20! or 2.433 x

10'8 [Chu57]. This difficult problem has been recognized by mathematicians and

computer scientists who have developed algorithms that provide more time efficient

methods of arriving at the best, or very close to the best, allocation of resources.

Research on developing algorithms to solve the assignment problem has a long

history. Von Neumann, who is considered the inventor of the conventional single-

processor computers used today, experimented with the computational advantages

of using linear programming techniques to solve the assignment problem [Kuh55].

Several others have also conducted research, developed algorithms, and devised soft-

Wware implementations to achieve faster and more efficient methods of solving the

assignment problem [ Mun57, Kur62, LaM69, SrT72, SrT73, Hat75, Hun83, McG83.

MaN86J. The techniques involved with many of these research efforts are similar and

involve linear programming, graph theory, and set theory.

1.3 Research Objectives

U' Although algorithms have been developed to solve the assignment problem, all

of them have been implemented as sequential processes. Because these algorithms

are sequential in nature, they are easily implemented on sequential, single-processor

computers. Unfortunately, algorithms that solve the assignment problem in a parallh,

processing environment have not yet been developed. Given the potential speedups

possible with parallel computers, it would seem advantageous for the battle manage-

ment portion of the SDI system to use a parallelized version of one of these sequen-

tial algorithms to perform the weapon-target assignment task. This research first

investigates the techniques for mapping algorithms onto parallel-processors. Theli.

sequential assignment algorithms are analyzed to select a candidate for paralllizai

dtion.

...
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The primary objective of this thesis investigation is implementation of assign-

* ment algorithms on a parallel multiprocessor computer. After successful implemen-

tation, the performance of the parallel algorithms is analyzed. In this analysis,

particular attention is focused on the effects of inter-processor communications, load

balancing among processors, execution times, and machine size to problem size re-

lationships. The parallel computer used for the implementations is the Intel iPSC

(Intel Personal Super Computer) multiprocessor system which is described in detail

in Chapter 2.

1.4 Scope

In this study, the problem of assigning weapons to targets in a parallel pro-

cessing environment is the primary focus. For this reason, exact details of the battle

management system such as how the individual targets are detected and tracked:

the specifics of particular weapons; the operation and sensitivity of sensor devices:

* and the three-dimensional and rotational characteristics of weapon-to-target geom-

etry are not addressed. These factors are accounted for to a certain degree by using

techniques described in Section 1.6 (Assumptions). However, the concepts that are

explored in this study should contribute to the research and development of future

battle management systems. The specific steps of this research are as follows:

1. First, techniques for partitioning and mapping sequential algorithms onto

parallel computer architectures are researched. From the candidate techniques, one

is chosen that best matches the loosely coupled architecture of the Intel hypercube.

2. The study continues by locating efficient sequential algorithms that solve

the assignment problem. These algorithms are evaluated to determine which ones,

I'if any, lend themselves to parallel implementation.

3. Using the chosen algorithm and mapping technique, weapon-target assign

ment programs are designed and then implemented using the parallel -('" prograiv

I
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ming language supported by the Intel iPSC. A top-down, structured approach to

software development is used to minimize the time required for implementation.

4. The implementations are tested on the Intel hypercube machine using differ-

ent numbers of processors and varying processor configurations. The performance is

measured with varying numbers of weapons and potential targets to generate ample

data for analysis and comparison of the different implementations.

* 1.5 Assumptions

A number of simplifying assumptions were necessary in order to both limit

the detail of the research to a reasonable level and still allow time for completion.

First, the number and location of potential targets, along with their relative impor-

tance, are assumed to be available on demand. Likewise, the number and status of

available resources or weapons are also assumed to be immediately available when

requested. Problems associated with detecting and classifying potential targets. and

the details of evaluating the effectiveness of weapons already assigned to targets are

not considered, although simulated results of those functions are supplied as input

data to the programs. Weapons are considered to be reuseable with a finite numt er

of "shots," and are assignable to one target at a time for a single "shot." Each

instance of assignment is assumed to be one "snapshot" of the dynamic process of

missiles in some phase of their trajectory.

S7



Because the main focus of this study is on the implementation of a paral-

*lel weapon-target assignment algorithm, an entirely realistic simulation of missile

trajectories and distribution patterns of missiles within the different regions is not

attempted. However, plausible missile attack scenarios are generated by an unclas-

sified ballistic missile defense simulation program. These scenarios are used as a

basis for constructing similar data as input to the implementations developed in this

study. Factors such as space-based weapons platform orbits, rotation of the earth.

and plausible missile trajectories originating from locations in the Soviet Union are

* ac(ounted for in the simulation program [Odo85].

1.6 Overt'ieu, of the Thesis

This chapter completes a brief overview of the SDI, parallel computing. and

general assignment problems. The objectives of this research were presented along

with the scope, assumptions, and the general approach to be taken to reach the

ip stated objectives. The remainder of this thesis develops in detail the steps listed in

Section 1.5. Chapter 2 begins with a brief survey of the different types of parallel

computers and then uses the survey as a basis for describing the Intel iPSC parallel

* computer. It continues with an investigation of the techniques for developing parallel

software implementations for the Intel iPSC and concludes with a summary of the

techniques selected for use. In Chapter 3, a thorough presentation of assignment

algorithms developed in the past three decades is presented. Then, development of

the parallel assignment algorithm begins by using the techniques selected iin Chap-

ter 2 and any useable portion of the assignment algorithms developed by others ill

the past. Chapter 4 begins with a detailed definition of the experimental model.

a presentation of the ballistic missile defense (BMD) simulation program arid a de-

scription of a method for generating target scenario data using the BMI) simulator

as a basis. Chapter 4 continues with a description of the different implementations

of the parallel assignment algorithm. In Chapter 5, the method of testing and data

8



acquisition is explained first, followed by a presentation of the results obtained from

ti performance runs on the Intel iPSC. After presenting the results, detailed analy-

ses of these results are performed. Chapter 6 ends the thesis with conclusions and

recommendations for further study.
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2. Parallel Processing Background

Chapter 1 briefly introduced the subject of parallel processing. This chapter

continues with a more in-depth discussion of parallel processing by first surveying

45 the different types of parallel-processor architectures and then focusing on a particu-

lar class of architecture known as Multiple Instruction-stream, Multiple Data-stream

(MIMD). Then the history of development, the hardware, and some of the important

features of the Intel iPSC hypercube computer are all presented. Techniques for map-

ping problem solutions onto parallel processor architectures are then investigated,

followed by a discussion of the problems associated with parallel algorithm imple-

mentations. This chapter concludes with a presentation of recent implementations

by others on MIMD parallel-processor computers.

J.. 2.1 Parallel Processor Architectures

The Von Neumann machine is a sequential computer consisting of a central

processing unit (CPU), a memory system, and an input/output (I/O) system. In-

structions are accessed from the memory system and executed in the CPU one at a

-. 
• time. This Von Neumann model of a sequential computer is the underlying architec-

ture of a majority of the conventional computers available today [EbB861. Steady

improvements in VLSI technology have allowed this sequential architecture to remain

popular by reducing the signal propagation delays, discussed in Chapter 1, between

the CPU and memory [EbB86]. However, reducing signal propagation delays is be-

coming increasingly more difficult because the physical limits of signal transmission

S.,speed in silicon, the most common fabrication material, is being approached [Dens6l.

This is one motivation behind the development parallel computer architectures to

achieve faster processing times instead of attempting to speed up sequential Von

eJ. Neumann computers.
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A processing element (PE) can be basically defined as a CPU and a local mem-

4ory unit for storing programs and local data. Parallel computer architectures utilize

a number of processing elements, usually in the form of Von Neumann machines.

that are linked together by an interconnection network. This interconnection net-

work provides a means to either transfer information between the different processing

elements or to allow access to a common data storage area. The following sections

discuss the different types of parallel architectures.

2.1.1 Flynn's Classification of Architectures Flynn classified computer ar-

chitectures into four categories according to the number of instruction and data

streams utilized [Fly66]. Those categories, are Single Instruction-stream Single Data-

stream (SISD), Single Instruction-stream Multiple Data-stream (SIMD). Multiple

Instruction-stream Single Data-stream (MISD), and Multiple Instruction-stream Mul-

tiple Data-stream (MIMD). The SISD category describes the sequential Von-Neumann

machines. MISD is generally regarded as an impractical classification of a computer

architecture [HwB84]. The SIMD and MIMD categories describe the architectures of

parallel computers. Representations of these classifications are shown in Figure 2-1.

SIMD machines are generally comprised of a number of simple processing el-

ements statically linked to a central control unit that interprets instructions and

issues commands to the processing elements. Processing in parallel SIMD machines

is usually characterized by identical operations simultaneously performed in lock step

on each element of an array or matrix. The Illiac IV, one of the first SIMD machines

developed in the 1960's, was used to solve problems in areas such as fluid flow, aero-

dynamics, and meteorology [RiS84]. A recently introduced SIMD computer is the

Connection Machine, which employs 65,536 simple processors [Hil87].

In contrast to SIMD machines, the individual processors in MIMD machines do

not necessarily perform the same instructions at the same time. Processing elements

are relatively independent and each one may be executing a completely different

program. Different types of MIMD architectures will be discussed in the next section.

11
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2.1.2 Types of MIMD Architectures The MIMD classification of a computer

0 architecture can be further divided into two sub-classes, based on the memory struc-

ture and the type of interprocessor communications. One sub-class is the shared

memory machine where all individual processing elements have access to a large

global memory which is used to access common data and to pass information be-

tween processors. Shared-memory machines are also known as tightly coupled pro-

cessors because of the degree of interaction between processors imposed by the global

memory [HwB84].

Another sub-class of MIMD computers is the local memory or loosely-coupled

machine. Processors in loosely-coupled machines each possess their own private

memory that is not accessible by the other processors. Information is exchanged

between processors by passing messages through the interconnection network. Pro-

cessors in these machines are generally more independent than those in the shared

memory machines. Loosely-coupled machines derive their name from the reduced

interaction between the individual processors [MuA87]. Many of the commercial

MIMD computers available today are loosely coupled [HwB84].

2.1.3 The Hypercube Interconnection Network Parallel solutions to certain

* problems sometimes require the processors to be configured into a ring, mesh, star.

or tree structure [Fen81]. There are a number of ways to interconnect the processors

in an MIMD multiprocessor computer. One class of interconnection network that

can function as any of the listed configurations is based on the cube interconnection

function [Sei85]. The m cube function can be defined as:

cube,(p. .... IPIPO) --= P,-I ...P,4 IA Pi- .,. P1 PO (2 - )

where 0 < Z < m and 1, denotes the complement of p,.

The cube function is the basis for networks such as the multistage cube network

13
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[McS85], the Boolean n-cube [Pea77], and the hypercube [SaS851. The hypercube

* ginterconnection scheme has the advantage that if the total number of processors is

N, the maximum number of intermediate links that must be traversed by a message

from one processor in order to communicate with any other processor in the network

is log2N.

The processors in a hypercube interconnection network are linked together

based on the binary representation of the processor's address. Processors whose

binary addresses differ by only one bit (i.e., the cube function cube, for bit i) are

connected. For example, in a three-dimensional cube there are 8 = 2' processors.

These binary addresses can be represented as shown in Table 2-1.

Table 2-1. Processor Binary Addresses

Processor Address
0 000
1 001
2 010

2: 3 011
.. 4 100

5 101
6 110
7 111

Each processor is connected to three other processors using this scheme. The

- . resulting structure can be represented by the diagram illustrated in Figure 2-2 where

1: the labeled nodes represent processors and the lines represent the links between the

processors. Different dimension hypercubes can be formed by following the same

addressing scheme.

2.2 The Intel iPSC Hypercube Computer

The Intel iPSC hypercube computer is used for implementing the parallel as-

14
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*Figure 2-2. Three-Dimension Cube Structure

signment algorithms developed in Chapters 3 and 4 of this study. An overview of the

Intel machine and some of its important features is necessary in order to understand

some of the decisions that are made during development of the implementations.

2.2.1 History The origin of the Intel iPSC can be traced back to research

performed at Caltech and the NASA Jet Propulsion Laboratory during 1973-1981
* rSei851. This research formed the basis for an MIMD, local memory, multiproces-

sor machine that was designed and built primarily as a hardware simulation of a

computer researchers expect to be able to implement entirely in VLSI in the future.

However, the excellent performance of the prototype prompted Seitz and his col-

leagues to experiment with solving a variety of computationally-intensive problems.

They nick-named this new machine the Cosmic Cube [Sei85]. The Cosmic Cube was

later developed into a commercial computer system named the iPSC (Intel Personal

Super Computer) by the Intel Corporation. Customer shipments of the iPSC began

in February 1985 [Den86]. The iPSC is now available to researchers at many centers.

including the Air Force Institute of Technology (AFIT).

2.2.2 Hardware Organization The Intel iPSC is available in sev'eral confliu-

urations ranging from a 16-processor, 4-dimension cube up to a 12'-processo:. 7-

15
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dimension cube. In the basic configuration, each processor is built around an Intel

80286 microprocessor, an 80287 numeric coprocessor, and 512K of random access

memory (RAM) [int86]. Options such as additional memory and vector-processing

capabilities can make the iPSC a very powerful machine for a modest cost when

compared to large supercomputers such as the well known and expensive Cray se-

ries.

The individual processing elements or nodes are interconnected in a hypercube

topology, with communications coprocessors handling the processor-to-processor mes-

sage passing duties. The user develops applications for and communicates with pro-

cessors in the cube through an intermediate host known as the cube manager. The

cube manager is also built around the 80286 microprocessor and 80287 coprocessor.

but has additional memory capacity [int86].

2.2.3 Software Development Environment The software development ervi-

ronment of the iPSC is based on a derivative of the UNIX operating system known

as the XENIX environment [Int861 The languages supported are parallel versions

of FORTRAN, C, and Lisp. Applications are developed using the cube manager as

a means to compile, debug, and run programs written in these modified languages.

Predefined library functions are used to perform operations such as opening commu-

nications channels between the cube manager or other processors, sending or receiv-

ing either synchronous or asynchronous messages from other processors, controlling

processes running on processors in the cube, and many other functions unique to the

Intel hypercube. A program to simulate the functions of the iPSC hypercube for use

in initial program development is available for other systems running the BSD 4.2

UNIX operating system. However, accurate performance data for applications must

be obtained using the actual Intel iPSC machine.
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l* f2.3 MIMD Mfapping Techniques

Much has been written about techniques for developing applications software

for parallel MIMD computers. These techniques are sometimes known as mapping

techniques [Sei85. Fox84]. The most important mapping techniques and some areas

to be concerned with while developing implementations are covered in this section.

2.3.1 The Basic Approach Many science and engineering problems are nat-

urally divided into concurrent processes [Sei85]. If they are relatively independent.

* either one or several of these processes can be assigned to separate nodes or pro-

cessors in a parallel computer for concurrent processing. Then the "intriguing and

... amusing" task of coordinating the computing activities in each processor must be

devised [Sei85]. Continuing, Seitz says from experience that application formulation

for the multiprocessor Cosmic Cube "has not proved to be very much more difficult

than it is on sequential [single processor] machines." In many cases, he says parallel

applications are based on adaptations of well known sequential algorithms.

Fox and Otto maintain that "the main stumbling block to the use of concurrent

processors is the difficulty of formulating algorithms and programs for them." They

go on to say -that concurrent processors are quite easy to use and ... address the

vast majority of computationally intensive problems." They agree with Seitz when

they say that most computationally demanding problems are not solved by using

complex algorithms, but "rather there is a relatively simple procedure ... that one

must apply to a basic unit ... in a world that consists of a huge number of such

-* units.

2.3.2 Communications Overhead One of the most common problems asso-

ciated with applications for parallel processing is the minimization of the commu-

nications overhead. The ratio of communications to computations should be ap-

proximately one (unity) [Fox84]. This means that the amount of communications

should not be greater than the computations. An example of communications over-
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head is when information about a problem subdomain contained in one processor

* is needed by another processor working on a different subdomain. Exchange of this

information requires that these processors communicate with each other using the

interconnection network. This type of communication between processors must be

kept as low as possible [Fox84J. "An important measure of an algorithm's efficiency

... [is] ... the time to move the data" [HoZ83]. This -time to move the data" referred

to by Horowitz and Zorat is the communications overhead.

Saltz says there are several techniques that can be used to reduce the comnu-

nications overhead. One technique is to reduce the quantity of information to be

communicated by only sending information that is absolutely necessary. Another

method is to reduce the frequency of communications by sending several bits of in-

formation in each message [SaN85]. Saltz mentions one other method that involves

overlapping communications with processing, which can be accomplished by using

asynchronous message-passing library functions in the Intel iPSC programming en-

vironment. Another technique for reducing communications overhead, related to

problem partitioning, involves increasing the size of the subdomain assigned to each

processor. This absorbs some of the communications that would have been necessary,

but also reduces the level of parallelism [SaN85].

2.3.3 Problem Partitioning According to Fox and Otto, the first step in for-

mulating a solution to large problems on a concurrent processor is to partition the

problem into many parts and assign a different part of the problem to each indi-

vidual node or processor. Part of the difficulty with partitioning the large problem

is deciding on the size of the subproblems. If the subproblems are too small, there

is a chance that excessive communications between processors will be necessary to

complete the solution [FoO84]. On the other hand, they say forming larger subprob-

lems tends to reduce the communications overhead and increase the efficiency of the

computations.
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5," Cvetanovic has written a paper discussing the effects of problem partitioning

0 and granularity on multiprocessor performance [Cve87]. She says that as the size of

computations performed on the separate processors decreases, the amount of parallel

computations increases. But because of the increased parallelism, computations are

performed faster and more requests for additional data or communications with other

processors are initiated. As the communications increase, the overall processing slows

down. According to Cvetanovic, the following parameters are likely to have the most

significant effects on multiprocessor performance:

* The amount of parallelism inherent in the application of the problem.

e The method for decomposing a problem into smaller subproblems.

@ The method applied to allocate these subproblems to processors.

* The grain size of a subproblem executed on each processor.

Cvetanovic concludes that problem partitioning has a strong effect on multipro-

cessor performance. If the subproblem size introduces unacceptable communications

overhead, she suggests two methods for reducing this overhead. The first method is

4, to increase the capabilities of the interprocessor communications network. This is

4,. seldom possible, so the second method she suggests is more promising. It involves

O increasing the subproblem size in order to transform some interprocessor communi-

cations into intraprocessor communications. This transformation effectively reduces,

the demands on the communications network and increases overall performance.

2.3.4 Load Balancing Another factor to consider in partitioning a problem

is the "load balancing" [FeK85, F6O84]. Efficiency is increased if all processors are

performing essentially the same computations. The general idea is that the amount

of communications between processors is not as important as the "amount of compu-

tation done per communication" [Fo084]. Fox says that memory requirements per

processor must be equal and fixed in order to ensure the efficiency of the implemen-

tation will not depend on the number of processors in the machine. This restriction
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achieves load balancing of the processors by insuring that no one processor will

" Operform the bulk of the computations [Fox84].

2.9.5 L's( of Sequtnttal .4lgorthms On the use of sequential algorithiis iII

* parallel implementations. Fox says that each processor performs essentially the sam-e

computations a single processor computer would perform. The difference is that the

computations are performed on a subdomain of the overall problem. He says the

development of programs to run on the individual processors of a multiprocessor

* Ocomputer should be very similar to those used in a uniprocessor machine. An excep

tion to this similarity occurs when -boundary conditions" must be considered whiere

the problem domains of programs running in different processors overlap. In cases

such as these, interprocessor communications and some type of synchronization must

occur in order to complete the solution, which in turn reduces the efficiencv of the

processing.

In some cases, the adaptation of a sequential algorithm into a parallel algorithm

introduces other overheads in addition to the communications overhead. These addi-

tional overheads may involve "housekeeping chores" and imply that not all sequential

algorithms are adaptable to parallel implementations [Cve87]. Also, sequential algo-

46 rithrns may not expose all the parallelism present in the problem [HaL82].

2.4 Other Implementations

As noted in the introduction, there have been several software implementa-

tions recently developed for parallel computers. This section briefly describes some

2of these implementations that use loosely-coupled MIMD computers like the Intel

iPSC. Many applications have been developed at Caltech and NASA JPL in a wide

range of problem areas such as high energy physics, fluid flow, astrophysics, image

_ processing, chemistry, structural mechanics, and other areas jFoO84,Sei85, Vox1 I>
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These applications are too numerous to describe here, but a few select applications

axe described, along with applications developed by researchers at other institutions.

2.4.1 Boost-Phase Track Initiation Algorithms One implementation closely

related to the ones that will be developed in this thesis was developed by Gottschalk

at Caltech. His implementation was developed on a version of their Cosmic Cube

which is similar to the Intel iPSC. The problem involved determining the tracking

of ballistic missiles in the boost phase by selecting the likely missile tracks and

eliminating the unlikely or redundant tracks. His solution method used sequential

algorithms in each node of the hypercube with the number of nodes a factor of

4 less than the number of targets per track. Significant speedups over sequential

implementations of the same Kalman filter technique used in the parallel version

were achieved [Got87].

2.4.2 Parallel Branch and Bound Mraz developed two implementations of a

parallel branch-and-bound algorithm for the Intel iPSC. He solved an N-queens prob-

lem and a deadline job scheduling problem using the branch and bound technique.

His method used a tree structure embedded into the hypercube interconnection net-

work that was used to search the problem solution space [Mra86]. He reported

speedups over sequential implementations of similar algorithms, however for small

problem sizes, the sequential implementation performed better. This appeared to be

caused by several factors, one which involved problem partition size. The other fac-

tor was related to synchronization of the tasks within the hypercube. which reduced

the amount of parallelism achievable. As the size of the problems were increased, the

speedup and efficiency of the parallel implementations showed good improvement.

The results of this thesis point out the important effects problem partitioning and

processor communications have on the overall performance.

2.4.3 The Trateling Salesman Problem This implementation was also devel-

oped at Caltech on one of their Cosmic Cube parallel computers. The traveling sales-
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man problem is a classic optimization problem that has applications in areas such

4 as circuit layout, VLSI design, resource allocation, and logistical problems [FeK85].

The basic problem is to find the shortest tour for a traveling salesman who must, for

the least cost, visit a number of cities only once. The solution space of this problem

0grows factorially as the number of cities are increased linearly because of the number

of possible routes the salesman could take. The solution method utilized by Felten

and his associates was a statistical mechanics technique known as simulated anneal-

ing. A mesh structure was embedded into the hypercube network in order to match

0 the structure of the simulated annealing algorithm. This implementation exhibited

speedups over sequential implementations ranging from 1.92 using two processors to

54.92 using sixty-four processors. These speedups are not ideal, but represent signifi-

, I cant reductions in the processing times required to solve this important optimization

problem.

2.4.4 Gaussian Elimination Gaussian elimination is a computationally in-

* tensive method used to solve dense linear systems that requires manipulations of

the rows and columns of large matrices [Saa86]. Saad examined several methods of

mapping solutions to this problem onto the Intel iPSC computer. He found through

4" Ocomputational experiments that this particular problem was best solved using a grid

structure embedded into the hypercube network. The use of a piplining technique

, combined with the grid algorithms produced the lowest amount of communications

between processors, which was pointed out in Section 2.3.2 as the most important

overhead to reduce.

2.4.5 Vision Algorithms A hypercube implementation that applies image

processing techniques to printed circuit inspection was accomplished by Mudge and

Abdel-Rahman. They used a gray-code scheme similar to a IKarnaugh map to par-

tition and assign portions of an image to separate processors in a 128-processor

NCUBE hypercube computer [MuA87]. Their problem was to process the image of
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a printed circuit under inspection in order to extract certain features and compare

them with a template of the correct image. If discrepancies were detected between the

template and the image under inspection, the printed circuit was rejected as faulty.

The solution of this problem required the processing of approximately 10 Mbytes of

data in a few seconds. Although they used a 128-processor machine to obtain their

experimental results, they predicted that 40 frames of 512 x 512 1-byte images could

be completely processed in less than three seconds using a 1024-processor version of

the same NCUBE computer. Two problems they encountered were computational

i overheads in algorithms and in communications, which were cited in Section 2.3 as

potential problems with parallel implementations.

2.5 Summary

This chapter presented a brief discussion of parallel-processor architectures and

an overview of Intel's iPSC MIMD computer. Techniques for developing applications

for machines similar to the Intel iPSC were discussed, with particular emphasis

on problem partitioning and interprocessor communications. A few of the many

recent implementations on parallel MIMD computers were presented and some of

". the problems associated with those implementations were noted. Chapter 3 begins

the process of developing parallel weapon-target assignment algorithms by examining

sequential assignment algorithms. Mapping techniques introduced in this chapter are

expanded for use in developing parallel implementations of assignment algorithms

utilizing as many features as possible from these sequential algorithms.

23t% %
% 4J+ .4 : . . . . . . . . . ... ... . ...4* .. . .+, -* - ,, . - .• , t,-,.• ".*" 't 4 ,i ,



3. Development of the Parallel Assignment Algorithms

In this chapter, a parallel weapon-target assignment algorithm is developed

for implementation on the Intel iPSC computer using the techniques presented in

P Chapter 2. First, a formal mathematical definition of the assignment problem is

given. A background on research conducted during the past three decades on dif-

ferent solutions to the assignment problem is then presented. The general classes

of assignment algorithms that have emerged from this research are described, fol-

lowed by a detailed analysis of several candidate sequential assignment algorithms

with the goal of selecting one of these algorithms for parallelization. Next, different

techniques for performing parallel search of a problem solution space are explored.

In the final section of this chapter, a parallel search technique and one of the se-

" quential algorithms are selected for use in the parallel assignment algorithms. This

chapter concludes with a summary of the parallel algorithms developed and their

6r implications on the remainder of this research.

3.1 The Assignment Problem

*l In Chapter 1, optimum assignment was characterized as a problem whose solu-

tion time-space complexity increases factorially with a linear increase in the number

of resources and requesters [Chu57]. There are several variations in the details of the

how the assignment problem is stated. In some instances, it is considered a special

case of the transportation problem, where there are several resources at each source

of supply and multiple requests for those resources at each sink. The assignment

problem addresses a special case of the transportation problem where there is only

one instance of a resource at each source and only one instance of that resource is

.5 -'-' required by each requester. The transportation problem itself is a special case of a

%I': general, single-objective, linear programming problem [lgn82].

0
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3.1.1 History Research on finding faster and more efficient solutions to the

0assignment problem has a long history, beginning with graph theoretical work pre-

sented by Hungarian mathematicians K5nig and Egerviry in 1931. More recent

developments were accomplished by Dantzig, Flood, Von Neumann, and Kuhn in

the 1950's (Chu57]. The programming methods and algorithms developed in the

1950's form the basis for much of the work that has been done on assignment proh-

lem solutions up to the present [MaN86]. Various modifications to these original

assignment algorithms have been made in an effort to enhance their execution speed

and efficiency on modern digital computers [McG83, CaT8O, BaG77. 1jun83. BerSl.

G1K74, Hat75, SrT73, MaN86].

3.1.2 Statement of the Assignment Problem The assignment problem can bc

stated in words as: Given a number of resources and a number of requesters of thou- e

resources, and given the profit or usefulness of each resource to each requester ii

the form of a rating matrix where element a,, is the profit of assigning resource 1 to

* requester j, the problem is to assign each resource to one and only one requester in

a way that a given measure of effectiveness is optimized [Chu57]. Mathematically.

the assignment problem can be stated as follows:

* Given an n2 rating matrix

A = Jjajlj, a,, 0 for Z,j = 1,2,...,n (n > 3) (3 - 1)

Find an n' assignment matrix X = Ijxj, such that

{." 1 if resource i is assigned to requester j (3-2)

0 otherwise

n n

E" xi= E Xj =(3 -3)
i=l =

T = ailxi = minimuM (3 - 1
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The conditions of Equations 3-2 and 3-3 specify that each row and coluxrni of ma-

* trix X will contain one element with a value of I and all other elements will be zero

[Chu57]. The requirement of square matrices at first appears to limit the problem

to cases where the number of resources equals the number of requesters. But situa-

tions where they are not equal can also be solved by adding "dummy" resources and

requesters to make matrix A square. The associated rating or cost of these added

matrix elements should be set to zero so that they will not be included in the final

assignment solution. Other more efficient methods of handling this unequal situation

have also been devised [BoL71a].

3.2 Sequential Assignment Algorithms

As stated in Section 3.1.1, much of the development of assignment algorithms

over the past three decades has been based on the research accomplished in the

195 0 's by Dantzig, Flood, Von Neumann, and Kuhn. Other methods developed in

* Othe study of network flow have provided additional means of solving the assignment

problem [Smi82]. Two basic approaches, a simplex-based transportation method

and the Hungarian method, have emerged as the most popular means of solving the

assignment problem primarily because of their simplicity and ease of implementation

[Hat75. G1K74, MaN86]. Because of limited time and space, all of the many different

assignment algorithms are not covered in detail. Instead, brief summaries of each

are presented in this section. Then, in the following section, the transportation

* and the Hungarian methods for solving the assignment problem are analyzed. A

detailed presentation and an example problem of both methods are presented in the

Appendices to illustrate how the algorithms operate.

3.2.1 The Simplez Method The simplex method, developed by Dantzig. is a

general approach that can be used to solve most all single-objective, linear program-

uing problems. The basic approach of the simplex method is to start with a fcasible

* solution to a problem and improve upon this solution in a step-by-step fashion un-
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til an optimum solution is reached [Kre68]. A feasibie solution means that all the

constraints placed on the optimization (minimization or maximization) in the origi-

nal problem statement are satisfied. In terms of the assignment problem, a feasible

solution would be one where each resource is assigned to a different requester.

The type of problem most easily solved by the simplex method is one where

there is a single objective function that is to be maximized or minimized, subject to

constraints which are stated in the form of a system of linear equations. Additional

variables, called slack variables, are added to this system of equations to aid in
converging on the optimal solution. During the course of the solution, there are two

sets of variables. One set is called basic and consists of variables that have been

incorporated into the present version of the solution. The other set of variables is

called non-basic and is comprised of variables not incorporated into the solution.

Variables are modified and exchanged between the basic and non-basic sets one at a

time until conditions indicate that an optimal solution has been reached. One of the

primary disadvantages of the general simplex method is that the solution it provides

is not integer-valued. Modified versions of the general simplex method have been

developed to provide integer solutions, but they are somewhat less efficient [Ign82].

Because the simplex method is a general approach, speciahzed versions of it
W

have been developed to solve specific problems. Different rules are adapted for

selecting variables to enter the basic set and vary according to the type problem

being solved. One example of a specialized version is the transportation method

which will be described next.

3.2.2 The Transportation Method The transportation problem originated from

studies made to improve the efficiency of utilizing available transport capacity in the

railway and trucking industries. An example of this type problem is minimization of

the cost of moving empty freight cars from their present locations to other locations

where they can be used to transport goods [Chu57]. The transportation problem
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existed prior to the development of the simplex method. However, efficient solu-

*B tions had not been developed for it until the techniques of the simplex method were

applied [Ign82]. As stated earlier, the assignment problem is a special case of the

transportation problem. The transportation method uses a cost or rating matrix

to represent the problem similar to the one described in the assignment problem

statement. An additional row and column is added to the rating matrix to represent

the number of resources available at each source and the number of requests for

those resources at each sink. In order to use the transportation method to solve the

assignment problem, all values in this additional column and row must be set to one.

, The basic steps of the transportation method are similar to the general simplex.

although they are somewhat obscured by the matrix representation of the problem.

4. eMany of the computations that would be normally be required by the simplex method

are avoided by exploiting this matrix representation and using a somewhat simpler

approach [Kre68, Ign82]. There are two phases to the transportation technique. The

first phase generates a basic feasible solution to satisfy all the problem constraints

(i.e., make initial assignments of all resources to all requesters). The second phase

consists of determining whether or not the initial solution can be improved. If not.

the algorithm terminates. Otherwise, the current assignment is reshuffled to improve

the value of the objective function. This reshuffling is analogous to the exchange of

basic and non-basic variables in the simplex technique [Ign82]. When the solution

obtained in this manner cannot be improved upon, or if it is found to be unbounded,

4" then the algorithm terminates. The exact steps of the transportation algorithm are

presented in Appendix A. The next section describes another modification to the

simplex method.

3.2.3 The Alternating Basis Algorithm The Alternating Basis (AB) algo-

rithm is a modification to the simplex method which avoids the unnecessary inspec-

tion of alternative feasible solutions [BaG77]. It was presented in 1977 by Barr.

Glover, and Klingman in an effort to reduce the storage requirements and compu-
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tational inefficiencies of using the simplex method to solve the assignment problem.

* Their approach uses a rooted tree graphical representation of the problem where each

. node in the tree corresponds to either a source or a destination. The nodes are con-

;% nected by arcs which are assigned a value of 1 if the two nodes are to be "assigned"

to each other and 0 otherwise. The -alternating" part of the algorithm's name stems

from the alternating manner in which the 0-arcs and 1-arcs are distributed in the

tree structure. By restricting the tree structure to the -alternating path" as it is

referred to in their paper, degenerate solutions that would normally be considered

40 by the general simplex method are avoided and the efficiency of the computations

is increased. The feasible solutions or bases that are considered are incrementally

improved in a step-by-step manner exactly as in the general simplex method.

- Some computational comparisons of the AB algorithm against other imple-

mentations of simplex-based algorithms were made by Barr and his colleagues. The

results showed that the AB algorithm was approximately 15'/c faster than the clos-

est competitor [BaG77]. The number of basic and non-basic variable exchanges was

reduced by as much as 25% over the other methods in the comparison. These perfor-

mance figures indicate that improved performance of the simplex method is strongly

,I dependent on the rules for selecting variables to enter the basic solution set.

3.2.4 The Hunganan Method Kuhn presented a paper in 1955 describing it

method for solving the assignment problem which he titled "The Hungarian Method

-
%  for the Assignment Problem" [Kuh55]. The overall scheme of the Hungarian method

0 is based on a theorem proved by the Hungarian mathematicians K6nig and Egervirv

[Chu57]. Their theorem involves covering, or including in sets, the elements of a ma-

trix which belong to one of two distinct classes. In the Hungarian method, these

* two classes are formed by simple subtractions from members of the rating matrix

which yield null elements and non-null elements. The minimum number of cover-

ings, referred to as lines by Kuhn, that include all these null elements is equal to the

-* maximum number of elements in that class. The Hungarian z,,ethod provides nin
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imum or maximum cost assignments if the resulting null elements are independent.

* JIndependent means that no other null elements occur in the same row or column.

This restriction is analogous to permitting the assignment of each resource to only

one requester and vice versa. When the number of covering lines equals the number

of resources to be assigned, then there exists in the set of covered null elements at

least one optimal assignment of all the resources. The method works on the prin-

ciple of selectively reducing all elements in a row or column by the same amount
and locating independent positions in the matrix that first become null. These in-

0 dependent null positions correspond to minimum or maximum cost assignments. A

detailed presentation of the Hungarian method and an illustrative example problem

are included in Appendix B. Several modifications of the Hungarian method have

been made since its introduction. Some of these modifications are presented in the

next section.

3.2.5 Modifications to the Hungarian Method Since the Hungarian is one of

the more popular algorithms for solving the assignment problem, it has received the

most attention by researchers who desired to improve its efficiency. Carpaneto and

Toth published an improved version of the Hungarian method in 1980 which reduces

the amount of time required to locate the zero elements and the unexplored rows of

*..-, the current cost matrix. They used pointers to accomplish this improvement, which

also reduced the storage requirements of the implementation. Another improvement

they made over the original Hungarian method was to modify the choice of the

• initial assignment solution. Computational experiments showed that the modified

algorithm outperformed other implementations of the Hungarian method for densely

populated rating matrices.

0 Bersekas performed a more drastic modification to the Hungarian method. lie

changed the way that the cost of assignments were incremented during the course of

• • the algorithm, which resulted in a faster convergence on the optimal assignment. lie

called his method outpricing, which effectively reduces the row operat ions required on
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the rating matrix and results in solving a problem of a smaller dimension. The basic

0 concept behind his method involves cooperative bidding where requesters attempt

to outbid each other for the resources to be assigned [BerSl.

Bourgeois and Lasalle modified the Munkres version of the Hungarian method

to include more efficient means for solving assignment problems that are not square

(i.e., the resources do not equal the requesters) [BoL71a, BoL71b, Mun57]. They

present a proof that uses two submatrices, one consisting of the real and the other

consisting of the dummy resources or requesters. They argue that if the cost of
49 the assignments in the dummy submatrix are set high enough, then all of the real

resources will be assigned first. They conclude that the addition of the dummy

elements is not necessary. They present an algorithm and computational comparisons

4with the original Hungarian method to show that their method is a performance

improvement, especially when dealing with rectangular cost matrices.

3.2.6 The Branch and Bound Algorithm The Branch and Bound algorithm

l for the assignment problem was presented by Land and Dorg in 1960. It is a technique

where a small portion of the many possible combinations of assignments are selected

and an objective function is evaluated subject to certain bounds or restrictions.

* The basic approach is to obtain an optimal value of the objective function that lies

between upper and lower bounds. The objective function's value cannot be less than

the lower bound. The upper bound is normally the value of the best feasible solution

obtained thus far in the current algorithm iteration. The algorithm terminates when

it can be determined that there is no lower bound less than the current upper bound

[Ign 82]. The branching part of the algorithm partitions the solution space into

smaller, mutually exclusive subsets. The lower bounds associated with each subset

* are calculated and compared with the current value of the upper bound. If the

lower bounds are not less than the current upper bound, then the subsets are not

partitioned any further since no better solution could be obtained by branching.

This branching process is repeated until all possible subsets have been formed or
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until none of the lower bounds are less than the current best feasible solution.

9.2.7 The Out-of-Kilter Algorithm The Out-of-Kilter algorithm resulted from

the study of optimal network flow and was presented by Ford and Fulkerson in 1961

[Da.n63]. Its original application was to find either minimal or maximal flow through

a network. However, applications have been found in other areas, including the solu-

tion of transportation and assignment problems [Smi82]. The network is represented

as a directed graph where the nodes correspond to locations and the arcs represent

links between different locations. Associated with each arc is a cost per unit flow

ciJ through the arc which connects node i and node j. The actual flow through the

arc is xij. The out-of-kilter algorithm is based on the conservation of flow at all

nodes of the network: what flows into a node must flow out. The conservation of

flow at node i is represented by a multiplier 7r,. The 7" multipliers of two nodes are

combined with the c,J of the arc connecting these nodes to produce the flow value

X,,. Upper and lower bounds on the flow x, can also be imposed, but are not needed

when the algorithm is used for solving the assignment problem [Smi821. The points

(Xu, cu + 7r, - irj) are plotted to determine if they fall on a "kilter line" which is

graphically derived from the upper and lower flow bounds, and the conservation of

flow multipliers for each node.

The algorithm first assigns initial flows to each arc and then searches for an arc

that lies off the kilter line, which is termed being "out-of-kilter." An arc is brought

into kilter by adjusting all flows in the network from the source to the destination

linked by this selected arc. This process is repeated until all the arcs are brought into

kilter. The assignment problem can be solved using the out-of-kilter algorithm by

representing the rating matrix as a graph where the nodes correspond to the resources

and requesters, and the value of the arcs correspond to the cost of assigning resource

i to requester j. The upper bound on flow through each arc must be set to infinity

(or a "large" number) and the lower bound to zero. Then an additional node must be

added that is linked to each resource and requester node. The arcs associated with
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this new node are assigned a zero cost, and an upper and lower bound of one. Then

the out-of-kilter algorithm is used to find the minimal-cost feasible flow through this

network. The optimal assignment is reached when the number of resources flowing

through the new node is equal to the number of resources to be assigned [Smi82j.

9.3 Evaluation of Candidate Algorithms

In this section, two sequential algorithms for solving the assignment problem

* are analyzed. First, the simplex-based transportation method is evaluated. The de-

tailed steps of the transportation method and a small example problem are worked

out and included in Appendix A to illustrate the algorithm. The Hungarian method

for the assignment problem is analyzed next. A detailed explanation of the Hun-

garian method and an example problem using the same cost matrix data as the

transportation method example are also included in Appendix B so that some com-

parisons of the two algorithms can be made.

3.3.1 The Transportation Method Many variations of Dantzig's simplex method

have been devised in order to solve specific problems. One modification to the sim-

plex method was made by Dantzig himself and it was done to allow a simpler solution

to the transportation and assignment problems [Chu57, Dan63, Ign82]. The basic

approach of the simplex method was described in Section 3.2.1 and will not be re-

peated here. A brief overview of the transportation method was given in Section

3.2.2 and an expansion of that overview is presented here.

The transportation method utilizes a table representation similar to the cost

matrix described in the assignment problem statement of Section 3.1 where the C,

elements represent the cost of assigning resource i to requester j. Some modifi-

cations are needed which involve adding another row and column, and providing

additional space for maintaining some intermediate calculations. Also, elements x,

of the assignment matrix are incorporated into this tabular representation in or-
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der to facilitate improvement on non-optimal assignments during the course of the

* algorithm. An example of the table representation is shown in Table 3-1.

Table 3-1. Example Transportation Table

requester- 1 2 1 3 4 a7]
resource f

1 x1  12 X 13 X14 1
Cl C12  C13 C14

2 X21 -122 X23 X24 1
C2 1  C22  C23 C24

3 X31 X32 X33 X34 1
C31 C3 2  C33 C3 4

4 X41 X42 X43 X44 1
lie C4 1  C42  C43 C4 4

b - i 1 1 _1 11 4

In cases where the number of resources does not equal the number of requests.

"dummvy resource rows or requester columns with zero cost elements must be added

to the above tabular representation. The a, and b, entries for

these additional rows or columns must be sufficient to balance the number of

resources and requesters [Ign82].

There are two phases to the transportation method. The first phase is to

formulate the initial basic feasible solution. The second phase checks the initial

- solution for optimality and incrementally improves upon it until it is optimal. The

most difficult portion of the transportation algorithm is the search for the 9-paths.

explained in Appendix A, that are required for the assignment of the c allocations

and for the exchange of basic and non-basic variables. For large problem sizes.

these operations would tend to dominate the computation time. Another potential

bottleneck whose details are explained in Appendix A is the satisfaction of the A,

relationship where the R1 and K, values are determined for assigned cells and the
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values of the A,,'s are computed for the unassigned cells. There does not seem to be

any obvious shortcuts to reduce the requirements of these 9-path and A, operations.

In order to allow a comparison with the Hungarian method, the computational

time complexity of the transportation method needs to be estimated. There are many

assumptions which can be made that will affect the complexity estimate. In order to

simplify the estimate made here, the operations that will be considered are scanning

a row or column, adding or subtracting from a row or column, covering or marking

a line, and searching for and modifying an element of the matrix. The operations

carried out on the entire matrix will be the most costly, while simple operations on

single variables are the least costly. The worst case scenario is assumed to be the

situation where each iteration of the algorithm adds one additional member to the

final solution. The following discussion is based on the solution of an n x n matrix.

Referring to Appendix A, Step 1-1 will be considered the overhead step re-

-, quired for both algorithms and not considered here. Steps 1-2 and 1-3 will require ii

operations to locate and modify the appropriate elements. In Steps 1-4 and 1-5. all

initial unassigned cells are independent, so the object is to choose the n - I least cost

cells. This will require scanning the n rows n - 1 times and making n modificatiols

to the appropriate variables to mark the positions. The total number of operations

for these steps are n + n(n - 1) or 2n + n 2 .

The next significant operations occur in Step 2-3 where the A, equation must

be solved for the n + n - 1 members of the solution set. Step 2-4 requires tle

calculation and assignment of values to all elements of the matrix that are not part

of the solution set or 2(n 2 - (2n - 1)) operations. The entire matrix must be scanned

in Step 2-5, requiring n row scans. Step 2-6 in practice could be combined with

O, Step 2-5, so another matrix scan will not be included. The operations required to

construct the 9-path are more difficult to estimate. In the worst case, all the nienibers

of the current solution set would be included in the 9-path. The scans of rows and

columns to determine the path direction and the determination of the 0 assignment.,
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changes will require 2(2n - 1) + (2n - 1) operations. For Step 2-9, the worst case

*would be to need n - 1 f assignments. These f assignments would each require at

most n row scans to find the minimum element, and three row scans, three column

scans, and one assignment for each of the n - 1 cells found. Steps 2-2 through 2-9

would need to be repeated n - 1 times for the worst case scenario assumed. The

total estimated operations required are:

operations = n + (2n + n2 ) + (n - 1)(3n 2 + 12n - 12) (3 -5)

Equation 3-5 simplifies to the following expression:

C operations = 3n 3 + 10n' - 21n + 12 (3 -6)

As a result, the transportation algorithm is O(3n 3 ).

3.3.2 The Hungarian Method Kuhn presents a rigorous mathematical proof

of the theory behind his Hungarian method, which is primarily based on one main

theorem and an important property of matrices related to set theory. This theorem.

proved by K5nig and generalized by Egerviry is:

If the elements of a matrix are divided into two classes by a property
R, then the minimum number of lines that contain all the elements with
property R is equal to the maximum number of elements with the prop-
ertv R, with no two on the same line [Chu57].

The reference to a line means a row or column of a matrix. The restriction of

no two elements on the same line will be used in the Hungarian method as a means

to make the optimal assignment.

The important property of matrices presented by Von Neumann is:

Given a cost matrix A = 1a,,11. if another matrix B = IIb,11 is formed
where b,, = a - u, - t' and where u, and v, are arbitrary constants, the
solution of A is identical to that of B [Chu57].
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This property says that if all elements in a row or column are increased or decreased

*i by the same amount, then an equivalent assignment can still be made using the

modified elements. The important roles of the theorem and property are made

clearer in the presentation of the algorithm in Appendix B.

The general approach of the Hungarian method involves searching the rating

matrix for the minimum values in each row or column. These minimum row or

column values are subtracted from each element of the rating matrix to form a new

matrix that will contain a certain number of zero elements. These zero elements

form one class and the non-zero elements form the other of the two classes required

by K6nig in his theorem. If the minimum number of lines that cover all the null (i.e..

zero) elements is equal to the number of resources to be assigned, then the optimal

assignment is contained in this set of null elements. The method of obtaining an

optimal assignment from these null elements is illustrated by an example problem in

Appendix B.

4 Now, a few comments on the computational aspects of this algorithm. Re-

ferring to Appendix B, the Hungarian method requires extensive scanning of the

rows and columns of the rating matrix, which can be time consuming for large prob-

lems. Some researchers have developed methods to reduce the amount of scanning inS
their implementations of the Hungarian method [CaT80, McG83]. This scanning is

the major drawback to the Hungarian method. Otherwise, the operations required

to implement the algorithm are straightforward. Typical operations are additions.

subtractions, and comparisons.

As in the transportation algorithm presentation, the computational complexitv

of the Hungarian method also needs to be estimated so that the more efficient algo-
M rithm can be chosen for the parallel implementations. The same operations will be

considered in this case as in the previous analysis for an n x n cost matrix. Beginning

with Step 1 of the Hungarian method, the location of the minimum clement in each

row requires n row scans and the subtraction of the minimum element from each row
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element will require an additional n2 operations. These operations are repeated with

the columns, so the worst case number of operations for this step is 2(n + n'). For

Step 2, locating the row with one null element may require n row scans arid ni - 1

operations to cross out other possible column null elements. In the worst case, only

OP one such element would be found per iteration of the algorithm. Step 3 requires the

same number of operations as Step 2. However either Step 2 or Step 3 would be

performed, but not both. Steps 4.1 through 4.3 depend on the number of rows and
-columns already -marked" which corresponds to the number of assignments ad(

W in the current state of the solution. The operations required would be n row scani,

and n - rn row markings where rn is the number of assignments yet to be Iinde

Step 4.2 will require scanning n columns and marking at most in columns. Step 4.3

requires another n row scans and possibly marking rn rows. The total operations for

Steps 4.1 through 4.3 aren + (n-m) + n + m + n + m = 4n + m.

The next significant operations occur in Step 4.5 where at most n rows or

columns will need to be marked. Step 5 will vary in the number of operations in

each iteration, but the entire matrix will need to be scanned and each element will

be either subtracted from, added to, or left the same depending on the location of

the marked rows and columns. The matrix scan will require n row searches and the

operations on each element will need at most n2 steps. Step 5 operations total n +n 2 .

With the exception of Step 1, the Hungarian method will require n - 1 iterations

to solve an n x n assignment problem if only one assignment is made during each

iteration. There are other situations that may require more steps, but they are notS
easily estimated. The estimated total number of steps for the Hungarian method is

as follows:

-J-S.

operations= 2n + + n 2 -(n(n - 1) + 4n + m + n + n 2 ) (3 -

4.
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Simplifyiing the expression yields the following estimate for the number of

ti operations required for the Hungarian method.

operations = 2n 3 + 3.5n 2 + 2.5n (3 -

The Hungarian method is also an 0(n') algorithm, but the coefficients of

the expression are less than the transportation method. The implications of these

analyses will be discussed in Section 3.5.

3.4 Parallel Combination Stratcglfs

There are many ways to combine the solutions to several subprublerns into a'l

* overall problem solution [Qui87]. This section examines three techniques that hav.

been developed to perform this important task. The names of the-_ techniques are

more commonly recognized as those of sequential algorithms. but they have been

ip recently developed into high-level, parallel strategies for solving problems involving

combinatorial search [HoZ83, WaL85. Qui87]. The assignment problem belongs to

this class of combinatorial search problems, defined by Wah as the process of fiuidino

"one or more optimal or suboptimal solutions in a defined problem space" [Val.5'.

The objective of this section is to describe and evaluate these parallel combinat iol

techniques. Selection of the high-level, parallel combination strategy to be used in

combination with the selected node process algorithm is made in Section 3..5.

3 3.4.1 Branch and Bound The basic approach of the branch-and-bound tech-

nique is the systematic search of an OR-tree representation of the problem solution

space. The branch-and-bound technique begins with an initial problem and some

* objective function which must be either minimized or maximized. It first attempts

to solve the problem directly. If this is not possible because the problem is too large

to be solved in a reasonably short time, then the problem is divided into smaller

subproblems. With each subproblem, constraints in the form of upper and lower
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bounds are included. This process continues until all the subproblems have been

4 w either completely decomposed and solved or the problem is shown to be unbounded

Qui87]. In a parallel branch-and-bound technique, many of the functions involving

decomposing, solving subproblems, and evaluating constraints can be done in paral-

lel rWaL85]. In a multiprocessor, the decomposed subproblems are each assigned to

individual processors for parallel solution. A majority of the individual processors

run identical node process programs. In most cases, a centralized controller, hosted

on one or more processors, is used to expand the problem nodes to be examined and

40 determine the conditions for terminating the overall process.

Lai and Sahni examined some anomalies in parallel branch-and-bound algo-

rithins. They observed that theoretically', faster speedup is possible with a smaller

number of processors. Experimental results with a parallel implementation to solve

t he 0-1 knapsack problem confirmed the theories they' presented, although they com-

mented that in practice the anomalies would rarely show up, except for small problem

"izes. Mra7 also encountered the same type anomaly in his parallel branch-and-bound

* implementation of the N-queens problem solution on the Intel hypercube. In his re-

s,!Its for the 8-queens problem, 16 processors solved the problem in 1.1 seconds while

32 processors required 2.2 seconds [Mra86]. This indicates that there are significant

* overheads involved with implementing branch-and-bound techniques in a parallel

erl virtort rnent.

3.4.2 Alpha-Beta Search The alpha-beta method involves the search of an

ANDi'OR trev representation of the problem solution space. Search of an AN D/OR

tree is more complicated because it combines the techniques of branch-and-bound

just described and divide-and-conquer which will be presented in the next section.

Alpha-beta is a method usually employed in the solution of two-person zero-sum

games like chess and checkers [Qui87].

The ha sic approach of the alpha-beta search is to consider the present state
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of the problem solution, evaluate a number of possible alternative decisions, and

* then incorporate those alternative decisions that result in the most advantageous

solution to the present problem. Two parameters, a and 3, define a search "window"

which is used to prune subtrees from the solution tree that do not contribute to

optimal solutions. Parallel alpha-beta algorithms typically assign different windows

to each processor so that faster and deeper searches of the AND/OR tree can be

accomplished [SeB82]. One problem with parallelization of the alpha-beta search is

that extensive communications must be used between processors to update the search

* window. If communications are reduced or eliminated, the result is other overheads

related to processors needlessly searching through nodes of the tree determined not

optimal by another node. There is a tradeoff between reducing communications and

processing efficiency in the parallel implementation of the alpha-beta search method.

3.4.3 Divide-and-Conquer Unlike branch-and-bound or alpha-beta strate-

gies, the divide-and-conquer strategy searches an AND tree representation of the

problem solution space [Qui87]. Every subproblem solution is actually a part of the

overall solution, which differs from the other search techniques where many sub-

problem solutions are discarded. Divide-and-conquer, as its name implies, divides

%lP a problem into smaller subproblems that can be solved faster and easier than the

larger, overall problem. Once all of these subproblems are solved, the results are

- combined to form the solution to the original problem (HoZ83]. Parallel divide-and-

-., conquer depends on the node processes to determine the feasibility or optimality of

* the subproblem solution.

An important factor in the performance of the divide-and-conquer search is the

"granularity of parallelism" which is simply the minimum overall problem partition

* size [Wal85]. Problem partitioning was emphasized in Chapter 2 as an important

consideration in mapping problem solutions onto parallel computers. Another con-

sideration in the parallel implementation of divide-and-conquer is the processor uti-
k%d

lization. The three phases of parallel divide-and-conquer are start-up, computation.
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and wind-down [WaL85]. In the start-up phase, the initial problem is partitioned

and the resulting subproblems are sent to the individual piocessors. During the

computation phase, the processor utilization is typically -very good. However, dur-

ing the wind-down phase, many processors remain idle while the transferring and the

combining of subproblem results occur. This results in tradeoffs between problem

partition size and processor utilization. Larger partitions mean longer time spent in

the computation and better processor utilization. But larger partitions also reduce

the amount of parallelism and limit the speedup possible over sequential algorithms.

An advantage of the divide- and- conquer over the other techniques is that in1-

terprocessor communications can be very mini mal during the computational phase

without any performance degradation. This is, of course, dependent on the type of

problem being solved. In the wind-down phase. transferring of subproblem results to

be combined into the overall solution can be viewed as communications. However.

these communications do not interfere with the process running in the individual

processors because at this time, they have already terminated.

3.5 Results of the Analyses

In this section. the results of the preceeding analyses are summarized. The

algorithm to be used as a node process and the parallel combination technique to be

used will be selected. The tentative form of interprocessor communications is thezi

be devised. A more definitive communications protocol is established in the following

chapter where the actual implementation process is described. The algorithm, the

search technique, and the interproceSssor communications are used as a basis for

completing the implementation of the parallel assignment algorithms.

3.5.1 Selecton of Search Technique All three search techniques presented

have advantages and disadvantages. The branch and bound method employed b~y

Lai, Sahni, and Mlraz exhibits some anomalous behavior related to problem size and

algorithmic overheads. The cure for this behavior was larger problem part it ion ie
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which resulted in reduced parallelism. The alpha-beta search technique suffers from

sensitivity to the amount of interprocessor communications. The efficiency of the
solution space search is inversely proportional to the amount of communications.

Divide-and-conquer performance is also affected by the problem partition size, but

the effect is reduced processor efficiency and not additional algorithmic overheads as

in the branch-and-bound method. The amount of required interprocessor commu-

nications in the divide-and-conquer method is potentially the smallest of the three

search techniques because the individual node processes are relatively independent.

except for the combining of subproblem results. Because the divide-and-conquer

method is less sensitive to problem partition size and interprocessor communications

than the other search techniques, it will be the parallel search technique employed

in the implementations developed in Chapter 4.

3.5.2 Selection of Candidate Algorithm In Appendices A and B, the sequen-

tial transportation and Hungarian methods for solving the assignment problem were

16 presented in detail. In this section, one of them is selected as a basis for the node

process program. The problem areas that are considered in the selection are the

algorithm's complexity, part itionability, and expected level of interprocess cornmu-

i, -nications.

In an analysis and comparison of the computational complexity of simplex-

based algorithms and the Hungarian method, Bertsekas says a fully dense, all integer.

A' x ' assignment problem solution using the Hungarian method is 0(N 3 ). lHe

further states that there is "no simplex type method with complexity as good as

O(N 3 )" [Ber81]. Some rules used for selecting entering variables in the simplex

method have been shown to lead to exponentially long sequences of computations

[Hun83]. These statements would tend to lead one to chose the Hungarian method

over the simplex method. There are other factors, however, that must be considered

before deciding on the "best" method.

I
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Several comparisons of simplex-based and primal-dual based (i.e., Hungarian)

'ho methods of solving the assignment problem have been made [Hat75, GIK74, McG83].

There is general agreement that an efficient implementation of the Hungarian method
,4

is better overall than using the simplex method. One reason for this is that the Hun-

garian method is an algorithm developed and optimized especially for solving the

assignment problem, while the simplex method is a more general method that can be

used to solve a variety of linear programming problems which cannot be solved by the

Hungarian method. Although variants of the simplex method have been developed

for the assignment problem, they still encounter difficulties with examining nodes

that do not lead to the optimum solution tHat75, BaG77, HunS3]. Simplex methods

are generally more suitable for the transportation problems discussed in section 3.1

where the number of non-degenerate arcs between nodes is less because of multiple

resources and multiple requests by each requester. In a comparison of minimum-cost

network flow problem solutions, a specialized simplex-based code was shown to out-

perform other codes which included a primal-dual code, of which the Hungarian is

special case [G1K74]. But there, the main emphasis was on transportation-type prob-

lems rather than assignment problems where the simplex method seems to perform

* worse.

Both methods use similar matrix representations of the initial problem. the

intermediate results, and the final solution. The partitioning of the problem rep-

resentations of both methods is essentially the same because of the similar matrix

• "representation. If the partitions of the square cost matrix are in the form of squareI
sub-matrices, then information on both the costs of assigning to each requester a

particular resource and the cost of assigning each resource to a certain requester

will be incomplete. However, if the cost matrix is partitioned into "strips," each

II processor will either have complete cost information on the assignment of a group of

resources to all requesters or a group of requesters to all resources. The availalili0v

of complete cost inforration will have an effect on the optimality of the assig m-nl
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V, made and the amount of assignment coordination required by the individual node

* processes. If the problem is partitioned into -strips," both methods use exactly the

same technique of -dummy" variables to form the required matrix format where the

number of resources must equal the number of requesters. The performance of the

(Pi two algorithms will be affected in much the same manner by the partition type. The

square partition appears to potentially require more interprocess communications

than the rectangular strip partition.

The format and type of communications that will be used between processors

are discussed in Section 3.5.3 and developed in Chapter 4. However, some assessment

needs to be made of the level of communications that might be required by the

transportation and Hungarian methods in order to develop a node p-ocess with

minimal communications. The volume of communications will depend strongly on

the partition size and type in both methods. As mentioned in the previous paragraph,

the strip size will affect the amount of communications required to either obtain cost

"- information or coordinate the assignments. Because the problem representations and

solution results are similar, the level of communications is expected to differ very

little between the two methods.

- Because the partitionability and the communications requirements are very

similar for both algorithms, the selection for use in the parallel algorithm must be

based on some other criteria. Fox feels that the processes running on the individual

nodes of a multiprocessor should essentially perform the same operations as the

*sequential version of the algorithm [Fox84, FoO84]. For this reason, it is reasonable
"4.

to select the most efficient sequential algorithm for parallelization, provided that all
'J other factors are nearly the same. The performance comparison by Bersekas of the

Hungarian and simplex-based methods indicates that the Hungarian method is more

efficient. In Section 3.3, the complexity analysis showed that the Hungarian method

Swould require only 2/3 as many steps as the transportation method to solve the

same size problem (i.e. the Hungarian method is potentially 33 X7 faster). Based on
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the previous discussion in this section and the complexity advantage, the Hungarian

0 method is selected as the basis for the node process progra: i.

3.5.3 Interprocess Communications Protocol Based on the discussion in Chap-

ter 2, the development of a communications protocol that both minimizes the amount

of communications and permits the efficient transfer of required information between

processors is the most crucial aspect of developing a parallel software implementa-

tion. The analysis of the divide-and-conquer technique pointed out that the inter-

* processor communications were minimal in the computation phase. depending on

the type problem being solved. One type of communication envisioned is that the

cost of assigning a particular resource to a requester will require knowledge of the

assignment cost for all the requesters. The communication of cost information could

be eliminated by storing the needed information in all processors. This concept is

explored further in Chapter 4. At this point in the development, it is not clear

whether this method is feasible.

* qThe assignment problem will also require some degree of communications be-

tween processors so that the assignments made by other processes can be checked to

see if the same requester was assigned more than one resource. However, this com-

* munication would occur after an iteration of the assignment algorithm was complete.

If conflicts are present, then a form of bidding would need to take place where the

lowest cost assignment to a requester would stand and all processors that assigned

other resources to the same requester would need to recompute another assignment

1i without considering the conflicting requester. This will obviously require that after

each assignment by a node processor, the individual assignments would need to be

%broadcast to other processors to determine if any conflicts exist. If none exist, the

l assignment stands. Otherwise, the bidding process would occur to resolve the con-

flicting assignments. There are several unanswered questions about the exact form

of the interprocessor communications. But the concepts just presented should form

a basis that can be further refined in the implementation process that follows.I
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3.5.4 The Parallel Assignment Algorithms The general scheme of the par-

allel assignment algorithms are based on the divide-and-conquer as the high-level

parallel search strategy and the sequential Hungarian method as the node process

program. Each processor in the Intel hypercube runs a version of the sequential

Hungarian algorithm that has been modified to include a means of communicating

with other processors and the cube manager. The exact form of the interprocessor

communications is not fully defined at this point, but the majority of the communi-

cations involve the exchange of information to resolve conflicts in assignments after

0 each complete iteration of the Hungarian algorithm in the node processors. The

implementations in Chapter 4 use the general scheme described here and refine it as

necessary.

3.6 Summary

This chapter has covered the development of the parallel assignment algorithm,

O beginning with a formal definition of the assignment problem. The major sequen-

tial algorithms developed for solving the assignment problem were briefly described.

followed by a detailed presentation of the transportation and Hungarian algorithms.

The Hungarian and transportation methods were compared in terms of computa-

tional complexity and suitability for parallelization. Then three methods of parallel

search of a problem solution space were explored. In the concluding section, the

Hungarian method was chosen as the basis for the node program to be developed in

Chapter 4. The divide-and-conquer technique was chosen as the high-level parallel

search method to be incorporated into the parallel assignment algorithm. And fi-

nally, the groundwork for the communications protocol was established. Chapter -1

continues the process of developing the implementation of a parallel weapon-target

assignment algorithm on the Intel hyperctibe computer by utilizing the results of

this chapter in the design and coding of the software.
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4. Implementation of the Assignment Algorithms

This chapter utilizes the background work done in the preceeding chapters

to develop implementations of parallel assignment algorithms for the Intel iPSC

parallel computer. First, detailed assumptions are presented to more closely define

the problem space being considered, followed by a definition of the experimental

model. A brief description of a Ballistic Missile Defense (BMD) simulation program

[Odo85] developed for the U.S. Army and other government agencies is then given,

followed by an explanation of the method employed to generate input data for the

programs developed in this research.

After fully developing the experimental model and the means to generate plau-

sible input data, the development of two sequential assignment implementations is

described. The purpose of the first sequential program, named the "sorting method."

is to establish a baseline for comparison with all of the other sequential and parallel

* assignment algorithms. The second sequential implementation, which is based on a

version of the Hungarian method developed by Bourgeois and Lassalle [BoL7la], is

known as the "sequential B&L algorithm." The sequential B&L algorithm is also

used for comparison with the parallel implementations. Portions of it later become

an integral part of the parallel algorithms.

The development of four different parallel implementations of an assignment

algorithm is presented next. Each parallel implementation uses a different level of

interprocessor communications in order to allow a study of its effect on performance

measures such as computation times, speedup, load balancing, and assignment costs.

The description of each implementation states the objectives, outlines the develop-

( ment approach, defines the software modules and interfaces, describes the organiza-

tion and major sections of the program, and estimates the computational complexity.

This chapter concludes with a summary of the implementations developed.
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4.1 The Experimental Model

In Chapter 1. a number of assumptions were stated concerning the deployment

and operation of the BM/C3 battle management system. This section expands on

those assumptions and states them in more detail. Then the battle management

qr i'portion of the BM/C3 system being modeled is precisely defined. A background

and brief description of the BMD simulation program is given in order to further

define the scope and limitations of the experimental model. This section concludes

* with the development of a simpler program to generate data similar to the attack

scenarios generated by the BMD simulation program.

4.1.1 Assumptions The main point of the assumptions stated in Section 1.6

was that this study focuses on one specific task of the battle management function.

That function is the weapon-to-target assignment. All other functions related to the

management of the weapons and other resources are assumed to be handled by other

"modules" or components of the system. The optimal assignment of weapons cannot

be accomplished unless certain information from these o~her modules is available.

Information such as the range to the target, the type of target, the weapon-to-target

impact angle. the expected impact area of the target, the status and position of all

weapons, and several other factors are all needed to derive the "cost" of assigning

each weapon to each potential target. The data collection and evaluation activities

required to derive these individual assignment costs are assumed to be performed by

the other modules and made available to the assignment module of the battle man-

agement system. The assignment module is further assumed to be memoryless. This

means that each assignment iteration is based only on the current cost information

provided to it and is unaffected by previous assignments. However, the assignment

process may choose to allow certain weapons to remain idle for future use if the

present cost of utilization is considered too high.
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4.1.2 Model Definition The system model used in this research is not geared

* towards any specific type of weapon. -Generic" weapons are assumed to be deployed

on space-based platforms orbiting the earth. These weapons are also assumed to he

.single shot" in the sense that during each assignment, each weapon can be assigned

to only one target. For weapons with multiple targeting capability, multiple assign-

ments would occur over several iterations of the assignment task with other modules

accounting for factors such as slew rates and retargeting capabilities. Each itera-

tion of the assignment task is a single "snapshot" in the overall battle management

process that would occur in the interception of ballistic missiles. This model is not

intended to account for all factors involved with the BM/C3 task. but rather to

address the major issues that affect the critical assignment task.

4.1.3 The Ballzstic Missile Defense Simulation Program Several simulation

programs have been developed in the past to model the development and deployment

of ballistic missile defense systems [Odo85, Cur87!. One recent simulation program

* gis the result of work performed under contract to the Defense Advanced Research

Projects Agency (DARPA) and the U.S. Army. DESE Research and Engineering

was tasked to develop a software and graphics package to aid in the research and

* development of BMD and Anti-SATellite (ASAT) programs [Odo85]. The main

objective of this project was to utilize interactive graphics to aid in assessing the

performance of proposed scenarios and weapon deployments. A FORTRAN-based

testbed program was written to model the significant physical parameters of the
% problem and generate data to be used in developing the graphics driver program

written in a version of the FORTH language. The testbed program combined the

results of earlier research and provided a first order simulation of the events expected

to occur in a full-scale global engagement. The primary weapon system modeled in

this simulation program was a combined ground-based laser and space-based relay

mirror arrangement. The engagement scenarios generated were plau-ible because

the enemy missile trajectories were calculated as originating from known missil,
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sites in the Soviet Union and terminating in major cities and military complexes in

" the United States. The altitudes and orbits of the relay mirrors were also simulated

and the visibility of each mirror to the ground-based lasers were determined using

three-dimensional coordinates, the rotation of the earth, orbital mechanics, weather

conditions, and several other factors.

4.1.4 Method of Input Data Generation The BMD simulation program briefly

described above focused on one particular type of weapon system. One component

i wof that weapon system was a constellation of space-based relay mirrors. Certain sub-

routines of the program calculate the distance between a relay mirror and a target.

and the incident angle of a laser directed at a particular target. These two pieces of

information can also be used as basic parameters for an entirely space-based weapon

system. However, the BMD program is not capable of producing more than 20 feasi-

ble weapon-to-target "links" per snapshot. This is much too low to be useful because

the assignment algorithms studied in Chapter 3 would treat this small number of

weapons as a trivial case.

"- The distance and angle data are still very useful, even though the quantity

of data is insufficient. The testbed program was modified to store this information

* during the execution of a typical full-scale attack simulation. Representative values

of the distances and angles were used as a guide to develop similar and more extensive

data by means of a much simpler program. One heuristic used in the BMD simulation

program to indicate a potentially good assignment was the weapon-to-target distance

multiplied by the cosine of the impact angle. This produces low values for impact

angles close to 90 degrees and high values for angles near zero. For minimum cost

assignments, this heuristic is expected to work reasonably well for other types of

I directed energy weapons that are likely to be deployed.

The data generation program developed in this research uses a random number

generator to produce values in the range of I to 2500, which correspond to the range

I
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of values for the heuristic just described. Although the data is somewhat random.

provisions were made to produce lower values in some sections of the cost matrix

and higher values in others. The lower values correspond to a high probability of kill

and low cost assignments. The higher values indicate low probability of kill and high

cost assignments (i e., long distances, small angles of impact). The groupings of low

and high values are intended to represent groups of weapons that have similar oppor-

tunities for engaging the same targets. One additional factor that can be accounted

for is the number of reentry vehicles (RV) contained in a particular booster-phase

target. An individual cost value can be lowered further by a factor of the number of

RVs, which make that particular target more likely to be engaged by the assignment
algorithm.

4.2 Sequential Assignment Algorithm Implementations

Two sequential assignment implementations are described in this section. The

first one, called the sorting method, is typical of the methods used in battle man-

agement simulation programs to assign weapons to targets and does not provide

the optimal assignment [Odo85, Cur87]. The second one, called the sequential B&L

algorithm, is based on a version of the Hungarian method developed by Bourgeois

and Lassalle which does provide the minimum cost optimal assignment of available

weapons.

C 4.2.1 The Sorting Method The purpose of this assignment implementation

is to provide a baseline that is relatively easy to implement and can be used for

comparison with more efficient assignment problem solutions. It illustrates how a

commonly used, simple approach to the assignment problem solution can be very

time consuming. The basic approach to this program, as the name implies, is sorting.

The input data generated by the program described in Section 4.1.4 is normally

stored as a rating matrix. For this application, the data is reordered into a list or

one-dimensional array format to allow the cost values to be sorted in ascending order.
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N4 The row and column values associated with each cost entry are accessible through

, corresponding arrays. Once the list is sorted, the lowest value is selected and the

associated weapon and target (row and column) are marked as "assigned." Then

the next lowest cost in the list is selected and if both the weapon and the target

associated with this value are also unassigned, the assignment is made. However, if

either the weapon or the target is already assigned, the next lowest value in the list

is examined for possible assignment and so on. This process continues until all the

weapons are assigned.

At first, this method appears to offer the lowest possible overall assignment

cost. However, this is not the case. In many cases, a lower cost assignment is se-

lected for a particular weapon-target pair. This eliminates the p(,ssibility of using

the same weapon or target in a later assignment which, although some of the indi-

vidual assignment costs may be higher, the effect would be a lower overall cost. The

results of the example problems in Appendices A and B illustrate this point. If an

assignment was made using the same cost data given in the example with the sorting

method, the overall cost could have ranged from the optimum on up to a value of

15, depending on how the list was sorted.

The program implementing this algorithm is actually split into two portions.
0The first portion is hosted on the cube manager of the Intel iPSC. Its function is

to prompt the user for problem size information, access the file containing the input

data, and compile post-run statistics. The other portion of the program is hosted on

one of the node processors of the iPSC. The cube manager or host program sends

the problem size parameters and the cost data to the node program. The node

program sorts the cost data using a relatively quick Shell sort [KeR78] and performs

the process previously described to make the assignments. Once the assignments
I

are complete, the node program sends the assignments list and timing information

to the host program for further processing and display. The performance results of

this implementation are presented and analyzed in Chapter 5.
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The basic limiting factor of this method is the sorting of the cost list. Some

.- simulation programs use heuristic methods to reduce the size of this list in order to

shorten the time required to sort the list. The Shell sort is an O(N x VW.N) procedure

'FelS5*. When the assignment process is performed on the sorted list, it will be at

least O(N) because N weapons need to be assigned. In the worst-case, A" operations

will be required to make the assignments using the sorted list. Overall, this sorting

method of solving the assignment problem appears to be 0(N 3
.
5 ).

"* 4.2.2 The Bourgeois and Lassalle Algorithm The Hungarian method, se-

lected in Chapter 3 as the basis for the node process of the parallel assignment

algorithm. can be found in many forms in the literature. The Bourgeois and Lassalle

B&L i algorithm is one variation of the Hungarian method [BoL7lb]. It is chosen

for implementation because it handles the case of non-square cost matrices without

the addition of dummy variables mentioned in the presentation of the Hungarian

method. In a realistic scenario, there will be many more targets than there are

* weapons. The basic operations of the B&L algorithm are the same as those illus-

-raied in the example problem in Appendix B with the addition of some pointer

arravs to keep track of certain assigned weapons and targets.

* ~The basic approach to solving the assignment problem in this implementation
is to use the B&L algorithm as a function call within the same basic framework

a- the sorting method program. The problem size parameters and input cost data

S.. are handled by' a cube manager host program. The actual assignment is performed
I

by a node program and the results are sent back to the host program for post-

run processing. The operations required to formulate the optimal assignment are

contained within the B&L algorithm and are illustrated in the example problem of

Appendix B. The cost matrix, the number of weapons, and the number of targets

are all supplied as parameters to the assignment function call. The function returns

an array indexed from one to the number of available weapons and the total cost of

o " the assignment. Each entrv in the array is the target number to which the weapon

54

. . . . %. . . ... - . ..--



(the array index number) is assigned.

'This program will provide a minimum-cost, optimal assignment. The overall

cost of the assignment is considered when each individual assignment is made, unlike

the sorting method where only the individual costs are considered. The use of

the matrix representation and several arrays to keep track of potential and actual

assignments of weapons and targets allow the optimal assignment to be derived. The

performance improvement of this program over the sorting method is presented in

Chapter 5.

The complexity of the Hungarian method was analyzed in Section 3.3.2. The

complexity of the B&L algorithm is somewhat worse for square matrices because of

the leading n3 term's coefficient. For nonsquare matrices, the complexity is slightly

improved. Fewer operations are required because, instead of searching and subtract-

ing both column and row minimums, either row or column minimums are searched

for and subtracted. In the nonsquare case with m rows and n columns where rn < n.

m + mn operations are required to locate and subtract minimum values compared

to the 2(n + n2 ) operations in the pure Hungarian method where the matrix must be

squared with dummy elements. Other operations in the B&L algorithm are reduced

by similar factors because the extra dummy rows or colunms are not needed Over-

all. the total number of operations are significantly less in the worst-case where each

iteration adds only one additional assignment. Instead of n - 1 complete iterations.

only m - 1 iterations are required. Performing a complexity analysis similar to the

one in section 3.3.2. the complexity estimate for the version of the B&L algorithm

developed here is:

operations 3n i 2 + 4m 2 - 2nrn - rn - I (I - I)

This complexity estimate will be later used in assessing the complexiiy of the

parallel versions of the assignment algorithm.
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4.8 Parallel Assignment Algorithm Implementations

In this section, four different parallel implementations of the assignment algo-

rithm are presented. The first three programs are closely related and vary mainly in

the amount of interprocessor coordination. Although all of the first three prograin,

use the B&L algorithm function developed in Section 4.2 to perform the assignment

task in parallel, the final assignments produced are not optimal Heuristics are used

to reduce the number of redundant assignments and will be fully discussed in the

following sections. The fourth program is an effort to implement a parallel version

of the B&L algorithm whose final solution is optimal.

As studied in Chapter 2, the two major areas to be concerned with when

developing parallel programs are the interprocessor communications and the problem

partition size. The effects of different levels of interprocessor communications can

be studied by comparing the performance of these first three programs. The type

of matrix partitioning discussed in Section 3.5.2 was the strip method where entire

roAs of the matrix are transferred to the different processors. By partitioning in

this method, each processor is responsible for a unique group of weapons. Complete

cost information for assigning any of its weapons is available without initiating any

0 communications with neighboring processors. Other forms of communications that

are necessary will be discussed in the description of each program.

4.8.1 The First Level: No Communications The "first level" or level 1 paral-

.' lel program is the case where there is no coordination between any of the processors

in the iPSC. Each node processor works entirely independent of the other processors.

-, Figure 4-1 illustrates the relationship between the individual processors in the cube

and the cube manager. With a 5-dimension hypercube, up to 32 processors can

operate in parallel on different portions of the cost matrix. The execution time is

expected to be much shorter than either of the sequential implementations, however

the resulting assignment will not be optimal.
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Figure 4-1. Processor Communication Paths for the First Level

The non-optimal assignment solution of this implementation results from the

individual processors not communicating with each other about which targets have

been assigned. As a consequence, one processor may assign a weapon to a certain

target while another processor may assign a different weapon to the same target.

This wastes one weapon that could have been assigned to another target. A larger

number of processors will most likely result in more redundant assignments and

more wasted weapons, but will yield these results much faster than could a single

processor implementation. The performance evaluations in Chapter 5 address both

the problem of redundancies and the tradeoffs between the speed of execution and

the optimality of assignment.

This parallel implementation is simply an extension of the sequential version

developed in Section 4.2.2. An identical node process is loaded into all of the pro-

g cessors to be utilized. The host program prompts for problem size input and reads

', the input cost data from an external file. But in this case. the cost matrix must be

partitioned among the multiple processors. There are two situations that must be

handled. One is where the rows of the cost matrix are divided evenly among the node

I'
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processors and the other is where they do not. In the uneven case, one processor

" =will receive an odd number of rows. This will slightly affect the load balancing of

the processors, but is not expected to be a significant problem. Once each processor

completes its independent assignment, it waits until prompted by the host to return

the assignment results and timing information.

In this implementation, the B&L algorithm is essentially running in each of

the cube processors. The complexity of this B&L algorithm has already been esti-

. mated in Section 4,2.2. If the operations required to transfer the cost matrix data to

the individual nodes are ignored, the complexity estimate can be derived by simply
dividing the sequential B&L algorithm complexity estimate by the number of proces-

sors being used. The accuracy of this estimate is tested when the actual performance

* data is analyzed in the following chapter.

4.3.2 The Second Level: Partial Communications, Single Iteration This "sec-

ond level" or level 2 parallel implementation introduces some coordination between

the processors computing assignments for certain partitions of the cost matrix. The

coordination is performed by processors designated as controller processors. The

processors performing the assignments are known as assign processors. A possi-

ble processor arrangement for two partitions is illustrated in Figure 4-2. For this

study, the number of controllers available is 2, 4, or 8. With 2 controllers, up to

15 assign processors may be used per controller. For 4 controllers, up to 7 assign

_ processors and for 8 controllers either 2 or 3 assign processors per controller may be

utilized. The level 2 implementation described in this section and the "third level" or

level 3 program discussed in the following section both use the same basic processor

arrangement.

The host program performs essentially the same function as in the first level

approach. The only difference is that the host communicates with the controller

processors rather than the assign processors. The partitions of the cost matrix sent
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Figure 4-2. Communication Paths for the Second and Third Levels

to the controller processors are further subdivided by the controllers and sent to the

appropriate assign processors. The assign processors have no direct communication

with the host except when a global START command is issued from the host to signal

the completion of all data distribution functions and the beginning of the actual

processing. The assignments or weapon-target pairings from the assign processors

are examined by their associated controllers. The controllers eliminate redundancies

in the weapon-target pairings by comparing the individual costs of those that are
* conflicting. The controllers allow the lowest cost weapon allocations to remain and

sets all the higher cost, redundantly assigned weapons to an idle state. The results

'S.-" and timing information are sent to the host and processed as previously described.

* The results of this implementation should show an improvement over the first

% level approach. Fewer redundancies and lower costs are some of the expected benefits.
.-

The coordination requires extra computations that may degrade performance if a

- ,large number of redundancies occur. The final weapon-target pairings for a two
O..

controller configuration should be similar to the first level implementation usi,' two

processors.

.4
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The controller processors add a significant number of operations. For each

* controller, the individual assignments must be received from the assign processors

and a master assignments list compiled. Then the list must be searched to identify

anv redundancies. A table lookup must be accomplished for each individual assign-

ment to determine the lowest cost in the case of conflicts and to derive the overall

assignment cost. The operations required for the assignment list compilation depend

on the partition size. A large number of controllers allow more of the operations to

be done in parallel. The worst-case for conflicts would be where every assignment

4P from one assign processor conflicts with an assignment from another processor. The

additional load from the controller is estimated to be:

operations = n 2/p + 2(n/p) + n/2p + n/p = (n 2 + 3.5n)/p (4 - 2)

where

n is the total number of weapons

W and p is the number of controllers

This estimate just given is in addition to the complexity estimate for the level 1

implementation. The complete complexity estimate is shown in Equation 4-3.

operations = (3nrm2 + 4rn2 + n2 - 2nm + 3.5n - m - 1)/p (4 - 3)

4.3.3 The Third Level: Partial Communications, Multiple Iterations The

-third level- or level 3 parallel implementation increases the amount of coordina-

tion performed in the controller processors. The controller and assign processors are

utilized in the same configuration as the second level approach, illustrated in Figure

-4-2. Instead of idling the redundantly assigned weapons as in level 2, these weapons

are made available for assignment to other targets not yet assigned.

The cost matrix is partitioned exactly as in the level 2 implementation. Each

-2group of assign processors report to one specific controller processor. The controllers
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receive assignments computed on partitions of the cost matrix from their assign

processors. Each controller compiles a master assignments list. The redundancies

are then determined and the lowest cost individual assignments are allowed to stand.

The weapons involved in higher cost redundant assignments are entered into one list

and all targets that are not assigned are entered into another list. Each controller

then broadcasts its lists to all assign processors under its control. New sets of

assignments are computed and sent back to the controllers which again coordinate

the removal of any" new redundancies. This process continues until all weapons have

* been assigned to a different target and all redundancies within the partitions have

been eliminated. Each controller then sends its final master assignment list back to

the host where it is compiled into a final assignment.

CThe final assignment from this implementation will also not be optimal. There

may be some redundancies resulting from the assignments made in different con-

troller partitions because there is no coordination between the controllers. However.

there will be no idle weapons due to the multiple iterations performed to eliminate

the redundant assignments within each controller's partition. The cost of the final

assignment will tend to be higher than the optimal assignment for several reasons.

When redundancies occur within a controller's partition, at least one of the final

assignments made by the assign processors will not be optimal because alternative

weapon-targets are always an equal or higher cost. Although redundancies are elimn-

inated within each controller's partition, other redundancies can still possibly exist

between different controllers.

The additional operations required by the controller processors are similar to

the second level implementation. However, the multiple iterations required to elim-

inate the redundant assignments within each controller's partition are an additional

source of computational overhead. In the worst-case, each iteration would only as-

sign one of the available weapons for each assign processor. This would require n/pq

iterations where n is the total number of weapons, p is the number of partitions
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or controllers, and q is the number of assign processors per controller. Multiplying

* qEquation 4-2 by the number of iterations and adding the result to Equation 4-3 yields

the following expression for the complexity estimate of this level 3 implementation:

operations = (3nrm2+4m2 +n22nm+3.5n- r1 - 1)/p+(n3 +3.5n 2)/qp2 (4 -4)

The coordination process is very expensive in terms of the number of operations

t required. In the worst-case, it is of the approximately same order as the B&L

algorithm itself. Although each iteration of the controller process requires another

iteration of the B&L algorithm, the B&L algorithm is performed on subproblems

of successively smaller dimensions. The dominant factor is the controller process

because it requires the same number of operations on each iteration.

4.3.4 The Fourth Level: Parallel Matrix Operations The "fourth level" or

,level 4 implementation is a different approach from the first three parallel impie-

mentations. The program development involved studying the different operations

A required by the sequential B&L algorithm and identifying the operations that were

the most time consuming. Then, certain operations were implemented in parallel on

multiple processors.

The most time consuming operations of the algorithm were located using the

timing function of the iPSC on different segments of the sequential B&L algorit hm

* implementation described in Section 4.2.2. Several different cost matrix sizes and

* weapon-to-target ratios were used to determine the algorithm's performance charac-

teristics. Three distinct segments of the sequential B&L algorithm were identified a.,

consuming more than 75% of the processing time. Not unexpectedly, these code seg-

ments involved operations carried out on large portions of the cost matrix. Of these

three code segments, one of them dominated the processing time when the weapon-

to-target ratio was greater than or equal to 1:5. Because the weapon-to-target rat i()
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in a realistic scenario is expected to be at least 1:5 [AdW85], this particular seg-

* ment of the sequential B&L algorithm was chosen for as the prime candidate for

parallelization. The operations performed in this segment search for minimum row

and column values, subtract the minimum values from the entire matrix, and locate

the resulting independent zero elements. These operations are analogous to the first

three steps of the Hungarian method description found in Appendix B. The other

time-consuming code segments were not chosen for parallelization because of the

higher amount of message passing that would be necessary to update various global

arrays used to coordinate the refinement of the initial assignment solution.

The implementation of this program was divided into three portions. The usual

host program performs the functions described in the previous implementations.

There are two different node programs. One is known as the serial process and

it performs the serial tasks of the B&L algorithm. The other node program is

the parallel process. The multiple parallel processes are subordinate to the serial

process and perform the operations identified as time consuming in the preceeding

paragraph. Figure 4-3 illustrates the communication paths between processors in

this implementation.

Each parallel process operates on a particular "strip" of the cost matrix. Ini-

tiallv, the minimum value in each row is determined and then this minimum value iL

subtracted from each element in that row. These row operations can be performed ill

parallel without any interprocessor communications. However, in the case of square

matrices, the minimum elements in each column must also be determined and then

subtracted. Because the row subtractions are performed on horizontal strips, no

processor will contain a completely modified column. This requires that each pro-

cessor search a portion of each column for minimum elements. The overall iniminlm

element of each column is determined from the individual processor contributions by

using a global operation function. The overall column minimum is then broadcast 1,

all processors for subtraction from their segment of the column. After all iinirniiITH

63



I ! ! 
[  

1 .. ... ..-- - -- - - - -...- - - - - - - - - --- , , . . . - : - -- . - - • . .. . .C • . .

SHOST

-"

! SERIAL

P.A'.. PARALLEL PARALLEL PA RALLEL

Figure 4-3. Communication Paths for the Fourth Level

'. elements have been subtracted, then the independent zero elements are determined

J and used to make the initial assignment of weapons to targets.

In the three previous parallel implementations, there is a problem with the

redundant assignment of weapons to the same target. In this implementation. the

problem is eliminated by coordinating the assignment process. Since each processor

contains a strip of the cost matrix, the assignments will be made by using only the

cost information from this strip. Two vectors, one containing the weapon number

assigned to each target and the other containing the target numbers that have been

assigned will be used as the means of coordination. Each strip is further subdivided

into separate "windows The parallel assignment process will require a number of

iterations equal to the number of these -windows." During a parallel assignment

iteration, each processor makes assignments on a different independent window. The

term independent means that the targets being considered for assignment are not

being considered by any other processor during the present iteration. The weapons

are already independent by virtue of the strip method of partitioning. After each

iteration, the individual assignment contributions from each processor are used to
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update the two assignment vectors using a global concatenation function. Then the

vectors are broadcast to each processor and the next set of independent windows are

searched for possible assignments. After the last iteration of the parallel assignment,

the number of weapons that have been assigned is checked. If all weapons have been

assigned, then the algorithm terminates. If not, then the remainder of the progran

operates exactly as the sequential version explained earlier in Section 4.2.2.

The solution produced by this implementation will be the minimum-cost op-

timal assignment. The final results will be the same as those produced by the

sequential version of the B&L algorithm described in Section 4.2.2. However, de-

velopment and initial testing of this implementation indicates that it will possibly

require as much or more time than the purely sequential version. The primary reason

for this is the volume and frequency of interprocessor communications used to coor-

P'. dinate the assignments and eliminate the redundancies. Specific performance data

are presented in the following chapter and comparisons are made with the other

implementat ions.

-,, In the nonsquare matrix case where the number of targets is greater than the'o
". number of weapons, the number of operations required at first appears to be reduced

because of the multiple processors performing the operations in parallel. This holds

onlY when there is little or no coordination required. After the row minimum,

have been subtracted, each of the assignment iterations on the windows described

earlier require the transmission of node contributions to the serial processor. which

• in turn broadcasts the updated vectors back to the parallel processors. Much of the

communications processing involved with the sending of messages between nodes

S. is performed by the operating system and the number of operations involved is
S.

not easily determined. However. the sizes of the the vectors are known, so some

rough estimate of the processing can be made. One vector length is equal to the

number of weapons and the other is equal to the number of targets. The number of

windows will be equal to the number of parallel processors utilized...\t least rn + 11
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operations will be required to combine the node contributions into a single vector

* during each iteration where m is the number of weapons and n is the number of

targets. If p is the number of parallel processors, then at least p(n + m) additional

operations are required in the parallel implementation. The row minimum search

and subtraction will also require some additional operations to transmit the cost

information to the serial processor, but the actual number of operations is difficult

to determine because of the message passing. After considering these additional

factors, the complexity estimate of the fourth level implementation for the worst-

case where only one assignment is found in the parallel segment is estimated to be

as follows:
',p

operations = 2nrn 2 +4rn2 +rnn(2/p+4/p 2-1)+m/p+p(m+n+l)-n-m (4 -5)

It is obvious from the complexity estimate that the parallel version of the B&L

algorithm will require more operations than the level 1 implementation in the worst-

case. The actual performance, using data that is not worst-case, will be examined

in Chapter 5.

S4.4 Summary

This chapter restated the assumptions given in Chapter 1 and provided mure

background on the ballistic missile simulation program used as an aid in geTleratint-

input data for the programs developed. Two sequential programs were presented.

one which utilized a sorting method to order the assignment costs and the other

which used a modified version of the Hungarian method presented in Chapter 3

*J and Appendix B. Four parallel p-ograms were described which involved different

levels of interprocessor communications. The first three used the B1&]. alvoritini

code replicated in certain node, and partitioned the cost matrix among lie di Ierer,

processors. The fourth parallel program atternpted to perform certain ipe thl ,
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the B&L algorithm in parallel. The computational complexity of each implemen-

tation was estimated. In Chapter 5, regression analyses is used to determine how

wel the plots of predicted and actual processing times match. The relative perfor-

mance of each implementation is compared in terms of speedup over single processor

implementations and the optimality of the assignments.
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5. Ezperimental Results and Performance Analysis

The details of implementing the sequential and parallel assignment algorithms

were presented in the previous chapter. Test cases were devised that were small

enough to permit hand calculation of the assignment results. After these imple-

mentations were tested with this test data to insure the assignment results were

correct. a series of performance runs was made with larger cost matrices and data

was collected. This chapter presents these experimental results and analyzes them

according to the criteria stated in Chapter 1. The specific performance criteria are

computation times, speedups, interprocessor communications, load balancing, and

machine-size to problem-size relationships. This chapter is organized into three ma-

jor sections. The first section defines the performance criteria and the method of

data collection. The second section presents the performance results of all the im-

plementations and evaluates the predicted complexity estimates made in Chapter 4.

The last major section analyzes and compares these results according to the criteria

defined in the first section. This chapter ends with a summary of the experimental

results and analyses.

, 5.1 Testing Approach

In the engagement of defenive weapons against a full-scale, global missile

attack, the defensive weapons will most likely be outnumbered by the incoming

missiles. Several estimates of the ratio between defensive weapons and incoming

targets (referred tc as the ratio of weapons-to-targets from here on) have been made

in the open literature [AdF85, AdW85, BoW85, DrF85]. Although predicted ratios

of weapons-to-targets vary, depending on the assumptions mpde and the method

of analysis, most estimates range from 1:1 to 1:10. Based cm these estimates, cost

matrix sizes corresponding to weapon-to-target ratios ci 1:1, 1:5, and 1:10 were

chosen for this study. The number of weapons was chosen to range from 32 to 128.
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This rangc of weapons was selected in order to study the assignment problem on a

* •small scale and does not represent any estimate of the number of defensive weapons

that may be actually deployed.

For the experimental tests, five different cost matrices for each matrix size were

generated using the program that was described in Chapter 4. Several trial runs

were made with each implementation to test the variability of the processing times

obtained and to establish the number of test runs needed. An analysis of the means

and the variances of the processing times was performed using a statistical data

analysis package known as SAS (a registered trademark of the SAS Institute. Cary.

N.C.) [CoS87]. Five sets of matrices for each size were chosen as the standard number

of runs because the mean processing times for the same number of processors were not

lift found to be significantly different from each other within a 95% confidence level. The

same test performed on the mean processing times obtained using different numbers

*: of processors with the same suite of input data did show significant differences, as

6 expected. The ANOVA (ANalysis Of the VAriance) procedure of SAS showed that

modeling the processing times as a function of the input data (the different cost

matrices) with the number of processors held constant was a very poor model. It

had a probability of rejection of 0.9942. This indicates that the different input data

sets do not have a significant effect on the processing times. On the other hand, if

the same input data was used for different numbers of processors and the processing

times were modeled as a function of the number of processors, the probability of

rejecting this model was less than 0.0001. This means there is a better than 99.99%.

chance that the number of processors used has an effect on the processing times.

5.1.1 Performance Criteria As stated in Chapter 1 and repeated in the in-

troduction to this chapter, there are a number of performance measures that need

to be analyzed and compared for each implementation. In this section, each of these

measures are briefly defined and any special considerations are explained.

The first performance measure is the computation or processing time. In se-
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quential processors, this performance index is relatively simple to neasure. However,

[im' in an MIMD multiplr-processor machine such as the iPSC, there are many factors

that affect the ease with which actual processing times can be measured. The parallel

solutions to many problems involve three principle phases: start-up, computation,

and wind-down [WaL851. In this research, the start-up and wind-down phases are

especially time consuming because of hardware censtraints imposed by the Intel

iPSC. One major constraint is that there is only cae serial data channel from the

cube manager to the node processors. This limits the speed of transferring initial

cost data to the node processors and receiving the results from the node proces-

sors. Improved parallel I/O techniques have been implemented in, for example. the

NCUBE hypercube [HaM86] and the PASM prototype [SiS84]. The start-up and

". wind-down times in the iPSC implementation unnecessarily bias the runtimes. As a

result, they will not be included in the total processing times reported. The timing

will commence when all processors have received the initial cost data and terminate

when the last processor finishes its computations and is ready to return results.

One common performance measure in parallel processing is speedup (S). This

index relates the time to compute a solution with one processor with the time to

compute a similar solution with N processors. It is defined as follows:

S = Ti/TN (5- 1)

where

4T 1 is the computation time for one processor and

TN is the computation time for N processors

If a problem can be broken down into N independent pieces, then N processors can

solve these N pieces in 1 /Nth of the time required by a single processor. The T times

reported in this research are those obtained from using one node processor of the

iPSC. Perfect speedup is N, but this is not normally achieved in practice. In some

instances, certain implementations achieve superlinear or greater than A' speedup.
7
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There are several factors that can account for this surprising result. In this research,

* •some of the speedups reported are superlinear. One reason for this is that the start-up

and the wind-down times are not included for the reasons discussed earlier. Another

reason is that although the processing times and assignment costs of sequential

B&L algorithm are compared with those of the parallel versions, the algorithms

being compared are very different. The sequential B&L algorithm yields the optimal

overall assignment, where the parallel versions are heuristic methods designed to

produce acceptable results that are near optimal, but not exactly optimal.

In a strict interpretation of speedup, the results of two different configurations

should be the same. However, in this thesis, the term speedup will be used as one

measure of performance between implementations yielding very different results. For

4. this reason, speedup alone is not sufficient and must be taken in conjunction with

other measures such as the optimality of the results or the percent effective.

Interprocessor communications were discussed in Chapter 3 as one of the more

important overheads to minimize in parallel implementations. In the results that will

be presented shortly, the actual time spent communicating between processors will

not be explicitly shown. The method that will be used to assess the communications

effect will be to compare the other performance measures of the different implemen-

tations. The increasing levels (level 1 to level 4) of implementation correspond to

increasing levels of interprocessor communications. The criteria is straightforward:

if higher levels of implementations perform better, then higher levels of communi-

cations are better. On the other hand, if lower levels of implementations perform

better, then lower levels of communications are better. Of course there are tradeoffs

between different performance characteristics. Different applications may require

higher performance in one area and accept poorer performance in another area.

Issues of this type are discussed further in the concluding sections of this chapter.

Load balancing is a performance measure that compares the processing times

of the individual processors in a parallel system. The purpose is to determine if
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all processors are performing approximately the same amount of work or if several

6 processors remain idle while a few processors are performing a majority of the total

processing. Perfect load balance at first appears to be the ultimate objective, but if

the load balance is achieved solely by excessive communications between nodes, then

very few useful computations are likely being performed. In later sections, specific

times are not presented, but representative times are discussed and the issue of load

balancing is evaluated for each parallel implementation.

The machine-size to problem-size relationship or scalability is an important

measure that shows how the small-scale experimental results can be applied to larger

"real world" applications. The primary means of evaluating this relationship is to

first use regression analyses to determine the models that best fit the data that has

been collected. Then reasonable estimates, based on these models and plots of the

collected data, are made for larger problem and machine sizes. Because of the nature

of some problem solution times, these estimates are subject to some error and should

i, not be taken as absolute.

5.1.2 Method of Data Collection As explained in the introduction to this

section, five sets of matrices were generated for each different matrix size. Two

* Osequential implementations and four parallel implementations were tested. The data

for the single-processor B&L algorithm is included in the level 1 data presentation.

From this point on, the different parallel implementations are referred to as level 1,

- level 2, level 3, or level 4 corresponding to the first level, second level, and so on

implementations described in Chapter 4. The sorting method implementation is

referenced as the level 0 implementation.

Because five runs per matrix size were earlier shown to be statistically ade-

quate, each implementation was tested with the same set of five matrices so that

direct comparisons of computation times, speedups, and communications overhead

can be made. However, some of the performance runs for the level 4 implementation
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were not possible because of limitations in system buffers used to handle the intern-

ode message traffic. This occurred when the cost matrix was large and greater than

16 processors were being used. Complete data for the level 0 (sorting method) imple-

mentation is also not presented because as the matrix sizes increased, the processing

times increased very rapidly.

In some instances, the 0.005 second resolution of the timing function of the

iPSC affected the accuracy of the timing results. Cases where the error exceeds 107

of the reported mean of the processing times are marked with an asterisk (*) and

are mainly confined to the 32-weapon cases where utilizing more than 16 processors

resulted in processing times approaching the 0.005 second resolution. All derived

- speedups associated with these suspect processing times are also marked with an

-€asterisk and are not considered to be accurate.

5.2 Presentation of Results

The results of all the implementations are presented in this section. It is

organized into subsections that correspond to the name given to the implementation.

All of the 96-weapon data for the three ratios discussed earlier are given in tabular

form. The data for 32, 64, and 128 weapon evaluations are included in Appendix C.

5,..l Level 0 The level 0 or sorting method program was developed to pro-

V# vide a baseline for comparison with the other implementations. However, because

of system load, complete data for all the matrix sizes was not obtained. For the
d J

largest matrix size (128 x 1280), the processing time was estimated to be in excess of

three hours per run. The average processing times and assignment costs that were

obtained are shown in Table 5-1. The Size column represents the product of the

O. Weapons and Targets columns and shows the number of elements in the cost list

that must be sorted. The entries in Table 5-1 are sorted according to the number of

elements in the cost list. The Cost column shown in Table 5-1 represents the sums of

the corresponding values from the cost matrix for the weapon-to-target assignments
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made using the sorting method. The % Effective column represents the percentage

* of the weapons that actually killed a target. For example, in Table 5-1, the 1007

effective values mean that each of the 32 weapons killed a unique target. Less than

1007 effective means some of the weapons were redundantly assigned to the same

target and were thus not fully utilized.

Table 5-1. Timing and Costs of the Level 0 Implementation

Weapons ITargets I Size [ Time (sec) Cost % Effective
32 32 1024 2.352 6513.6 100.0

* 64 64 4096 16.581 6787.6 100.0
32 160 5120 21.693 392.0 100.0
96 96 9216 35.988 8646.4 I00.0
32 320 10240 51.057 281.6 100.0

128 128 16384 101.011 9107.2 100.0
64 320 20480 132.016 560.0 100.0

There are three different weapon-to-target ratios represented in Table 5-1. As

the ratio of weapons-to-targets increases from 1:1 to 1:10, the assignment costs drop

by a factor of 10. This is caused by there being a larger number of lower cost

individual assignments to choose from in the 1:10 case. When there are ten targets

for every weapon, then there is a better chance of selecting lower cost weapon-to-

target pairings than there is when the number of weapons and targets are equal.

o When there is an equal number of weapons and targets, certain weapon-to-target

pairings are forced to be higher cost because the weapon that would have yielded

a lower cost may have been. previously assigned to another target. In the sorting

method, no provision is made to reshuffle previously assigned weapons. In later

implementations using the B&L algorithm, reshuffling of assignments is done to

obtain a lower cost overall assignment.

The processing times shown in Table 5-1 reflect an increase as the size of the

cost list increases. This is an understandable result. The elements of the normally

used cost matrix are rearranged into a linear list so that they can be sorted into

ascending order for the assignment process. As the number of elements in this
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list grows, the sorting time grows accordingly. As pointed out in Chapter 4, the

* time required to sort this list is the dominating factor of this implementation. This

explains why the processing time (Time) is more closely related to the size of the

cost list than to the weapon-to-target ratio.

The complexity of this implementation was estimated in Chapter 4 to be

O(N 3 "5 ). Performing a regression analysis on these processing times resulted in

the model shown in Equation 5-2.

processing time = 3.54 x 10-7 WT 2 + 6.103 (5 - 2)

where

14" is the number of weapons and

T is the number of targets

The adjusted R 2 coefficient produced by SAS in a regression analysis is a measure of

how well the predicted and actual times match, with 1.0 being a perfect match. The
4ip

adjusted R2 coefficient between the predicted and actual processing times for this

model was 0.9725. For an equal number of targets and weapons, this corresponds

to O(N 3 ), so the estimate made in Chapter 4 was somewhat pessimistic. However,

I the estimate was based on the number of operations expected. In Equation 5-2, the

actual processing time is being modeled. There are many operating system functions

and other lower level instructions being executed for each operation estimated. The

relationship between high-level operations and these lower-level operations is difficult

to determine. However, a relationship does appear to exist. The processing times

and the estimated number of operations were tested for correlation and the Pearson

correlation coefficient was found to be significant to better than a 95% confidence

level.

5.2.2 Level I The level I implementation is the first parallel implementation

where there are no communications between any of the processors in the hypercube.
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The mean processing times and related speedups over both the single-processor B&I,

algorithm (SB&L) and the level 0 implementation (Ssot) for the 96-weapon cases are

shown in Table 5-2. Similar results were obtained for other numbers of weapons

and are included in Appendix C. In Table 5-2, the Processors column contains the

number of processors utilized to obtain the corresponding mean processing times

(Time) reported. The number of processors used is also the number of partitions

made on the input cost matrix.

Table 5-2. Timing and Speedups of the Level 1 Implementation

Weapons Targets IProcessors Time (sec) [ SB&L & Ss
96 96 1 8.9020 1.00 4.67
96 96 2 1.4335 6.21 25.10
96 96 4 0.5180 17.19 69.47
96 96 8 0.2206 40.35 163.14
96 96 16 0.1028 86.60 350.08
96 96 32 *0.0494 *180.20 *728.50
96 480 1 7.7080 1.00 -
96 480 2 3.7935 2.03 -

96 480 4 1.8853 4.09 -
96 480 8 0.9464 8.14 -
96 480 16 0.4772 16.15 -
96 480 32 0.2422 31.82 -
96 960 1 15.0570 1.00 -
96 960 2 7.5195 2.00 -
96 960 4 3.7635 4.00 -
96 960 8 1.8891 7.97 -
96 960 16 0.9518 15.82 -
96 960 32 0.4836 31.13 -

The SB&L speedups shown in Table 5-2 are all superlinear for the 96-weapon.

96-target cases. Some of the SB&I, speedups for the 1:5 ratio cases were slightly

better than perfect (perfect speedup = number of processors utilized), while the

1:10 ratio cases (96 x 960) were slightly less than perfect as more processors were

utilized. One reason why the speedups became less than perfect as the ratio of

weapons-to-targets increased is directly related to how the processing times behave.

In the B&L algorithm, when the cost matrix is square (i.e., the number of weapons

equals the number of targets), the initial solution calculated is nearly always not

optima! and must be reshuffled to obtain the optimal solution. However, as the
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input cost matrix becomes more and more rectangular, the initial solution more

often than not is optimal and the reshuffling portion of the B&L algorithm ii ot

performed. This results in a time savings and the less than linear increase in the

B&L algorithm processing times as the number of weapons is held constant and the

number of targets is increased.

When the original cost matrix is divided into more and more partitions, the

resulting partitions are increasingly more rectangular. This results in faster compu-

tations of the partition assignments because the reshuffling portion of the algorithm

is bypassed and results in superlinear speedups over the single-node processing time.

This is mainly true for the case when the original cost matrix is square. When the

original cost matrix is rectangular, then the previously described behavior is already

in effect in the single-node processing times. The partitioning still produces more

rectangular submatrices, but the relative reduction in processing times is not as great

and results in the more expected near-linear speedups shown in Table 5-2.

The speedups over the sorting method Sso, are only shown for the 1:1 ratio

, case because the level 0 1:5 and 1:10 cases for 96 weapons were not run as previously

explained. For the single-processor case, which is equivalent to a sequential B&L

algorithm, the level 1 processing times are more than four times faster than the

level 0 times. When multiple processors are utilized, the speedup SSot becomes very

large and illustrates the speed advantage of the parallel level 1 implementation.

A regression analysis similar to the one explained in the level 0 presentation

was performed using the processing times shown in Table 5-2 and Appendix C. ' he

resulting models of the processing times were of the same order as the complexity

estimate made for the B&L algorithm in Chapter 4. The models differed from the

estimate in the coefficients of the terms and some of the lower order terms were not

significant. The coefficients are different because of the previously mentioned rela-

tionship between high-level operations and lower-level machine instructions. Also.

the estimate was based on an assumed worst-case scenario, while the data used in
I
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these performance runs was not worst-case. As an example, the model obtained for

40 the eight-processor, 1:1 weapon-to-target ratio is given in the following equation:

processing time = -5.6283 x 10-s(i'T 2 ) + 0.00002964(T 2 ) (5 - 3)

The adjusted R2 coefficient for this model was 0.9924 and the probability of
rejection was less than 0.0001. Similar models were obtained for other numbers

"-. of processors and weapon-to-target ratios. One concern is the negative sign of the

leading term. This indicates that the T2 and WT 2 terms are interactive and to

some extent cancel each other out. Each term was modeled individually and yielded

acceptable models. The best fit was obtained, however, when both terms were com-

* bined into a single model. The Pearson correlation coefficient between the predicted

number of operations and the actual processing times was very significant, which

indicates that there is some relationship between the two. For example, the Pearson

coefficient between the estimated number of operations and the 1:1 weapon-to-target

ratio processing times was 0.98397 and the probability of rejection was 0.0160.

The assignment costs and other information for the 96-weapon case are shown

in Table 5-3. The column labeled % Effective is defined the same as in level 0. An

additional column named % Wasted contains the percentage of weapons that were

redundantly paired with a previously assigned target. These weapons were therefore

"wasted" on a target that was already "killed" by another weapon.

0 One trend that should be noted in Table 5-3 is that as the ratio of weapons-to-

targets increases, the % Effective also increases for the same number of processors.

This is a result of fewer redundant weapon allocations, which are in turn a result

• of the larger number of possible targets. The assignment costs are also lower for
'.%

the i igher ratios of weapons-to-targets due to the wider choice of possible targets

which may be engaged by each weapon. In all cases, the % Effective drops as more

processors are used because none of the processors coordinate the assignments made
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Table 5-3. Assignment Results of the Level 1 Implementation

Weapons Targets Processors I Cost % Effective V Wasted
96 96 1 1779.2 100.0 0.0
96 96 2 1648.0 72.3 27.7
96 96 4 1576.0 65.8 34.2
96 96 8 1544.0 62.7 37.3
96 96 16 1510.4 61.0 39.0
96 96 32 1491.2 60.6 39.4
96 480 1 756.8 100.0 0.0
96 480 2 756.8 89.6 10.4
96 480 4 755.2 84.8 15.2
96 480 8 755.2 83.1 16.9
96 480 16 752.0 83.6 16.4

* 96 480 32 755.2 82.1 17.9
96 960 1 723.2 100.0 0.0
96 960 2 723.2 92.1 7.9
96 960 4 723.2 87.7 12.3
96 960 8 723.2 84.6 15.4
96 960 16 723.2 83.3 16.7
96 960 32 723.2 82.5 17.5

within each partition. In later implementations, different levels of coordination are

introduced in an attempt to reduce the redundant weapon allocations and increase

* the c7c effective utilization.

5.2.3 Level 2 The level 2 implementation introduces a small amount of co-

ordination between groups of processors in order to reduce the number of redundant

assignments. The 96-weapon timing and speedup results are shown in Table 5-4.

The SB&,L and Sso, speedups shown in Table 5-4 were calculated in the same man-

ner described in the level 1 presentation. The Cntrl column refers to the number

of partitions or controller groups used in the configuration. The Proc/Cntrl column

refers to the number of processors per controller. The Tot Proc column contains

the total number of processors utilized in a particular configuration and is derived

by multiplying the number of controllers by the number of processors per controller

and then adding the number of controllers to the product. For example, a two con-

troller configuration with four processors per controller will utilize (2 x 4) + 2 = 10

processors.
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Table 5-4. Timing and Speedups of the Level 2 Implementation

Weapons Targets Cntrl Proc/Cntrl Tot Proc Time (se c) SB&L S ______

96 96 2 2 6 0.659 1351 54.61
96 96 2 4 10 0.375 23.74 95.97
96 96 2 8 18 0.239 37.25 150.58
96 96 4 2 12 0.189 47.10 190.41
96 96 4 4 20 0.149 59.74 241.53
96 96 8 2 24 *0.046 "193.52 *782.35
96 480 2 2 6 1.983 3.89 -

96 480 2 4 10 1.044 7.38 -
96 480 2 8 18 0.606 12.72 -
96 480 4 2 12 0.951 8.11 -
96 480 4 4 20 0.523 14.74 -

* 96 480 8 2 24 0.468 16.47 -
96 960 2 2 6 4.615 3.26 -
96 960 2 4 10 2.359 6.38 -
96 960 2 8 18 1.228 12.26 -
96 960 4 2 12 2.305 6.53 -
96 960 4 4 20 1.176 12.80 -
96 960 8 2 24 1.163 12.95 1 -

The processing times and speedups shown in Table 5-4 are divided into sec-

tions corresponding to the 1:1, 1:5, and 1:10 weapon-to-target ratios. Each of these

o sections can be further subdivided into three sub-sections by the number of con-

troller groups (Cntrl). By grouping in this manner, the effects of adding additional

processors per controller can be seen. The processing times for the 1:10 and 1:5

* weapon-to-target ratios decreased in proportion to the number of additional proces-

sors per controller group: doubling the processors per controller reduced the process-

ing times by approximately half. In the 1:1 ratio case, the reduction in processing

.times was not as evident. This is related to the processing time behavior discussed

in the level 1 presentation. The 1:5 and 1:10 ratio cases provide more choices for

allocating weapons and the solution is obtained quicker due to the highly rectangular

partitions. Although the partitions in the 1:1 case are also rectangular, there are

fewer targets to choose from and computing the partition solutions is more likely to

require iterations of the reshuffling portion of the B&L algorithm.

As in the level 1 implementation results, the 1:1 ratio cases produced superlin-

so
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ear speedups. However, the SB&L values were not as large as those of level 1. This

is due to the increased processing times which are a result of the additional over-

head involved with the coordination within controller groups. The nodes running

the controller processes and the assign processes are basically synchronous. When

the controller process is active, then the assign processes are idle and vice versa.

This creates a situation where there are always idle node processors and reduces the

speedups obtainable. The situation for the 1:5 and 1:10 ratios is similar. but the

time required by the controller process is longer because of the factor of 5 or 10

increase in the number of targets that must be coordinated. This causes the assign

processes to remain idle longer and results in speedups being less than those of the

1:1 cases.

Although the coordination of redundant pairings does comprise a portion of the

processing time, the regression models obtained for the level 2 times were very similar

to the level 1 models. This indicates that the coordination does not completely

dominate the processing time. An example of the type model obtained is shown in

Equation 5-4 for the 18-processor, 1:10 weapon-to-target ratio case.

4processing time = -1.95412 x 10-9 (WT 2 ) +2.9718 x 10- 6 (T 2) - 0.263511 (5-4)

The terms W and T refer to the number of weapons and targets, respectively. The

Y-intercept terms were found to be significant in models for this implementation.
which is where some of the added computations estimated for the level 2 model arc

accounted for. The R2 coefficient was at least 0.95 for all models, which indicat,., ,

very good fit between the actual and predicted processing times.

4; The mean assignment costs, percent weapons effective, percent wea ,-

and an additional measure labeled 9 Idle are shown in Table 5-!',. J},

sure is unique to this implementation. It is a result of the coordiIr;.

instead of different processes possibly assigning multiple w,,;.
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get, the weapons associated with higher cost redundant assignments are placed in an

*idle state for future use rather than being "wasted" on an already-assigned target.

In general, this implementation idled a higher percentage of the weapons when the

weapon-to-target ratio was 1:1. This results from the coordination action where,

instead of wasting redundantly allocated weapons, they are idled for future use.

More redundancies occur in the 1:1 case, which in turn yields a higher percentage

of the weapons in an idle state. Some weapons are still wasted because there is no

coordination of assignments between controller groups. For the 1:10 ratio, very few

weapons were wasted and less than 20% were idled. This stems from fewer redun-

dancies both within and among the controller groups. The greatest advantage of

this implementation is that the idled weapons are available for future assignments

where they can possibly be used in a more cost effective manner.

Table 5-5. Assignment Results of the Level 2 Implementation

Wpns ITgtsI Cntrl J Proc/Cntrl Tot Proc [ Cost jEffective [% Idle % Wasted
96 96 2 2 6 1328.0 65.8 11.9 22.3
96 96 2 4 10 1180.8 62.7 17.7 19.6
96 96 2 8 18 1115.2 61.0 20.4 18.5
96 96 4 2 12 1372.8 62.7 8.1 29.0
96 96 4 4 20 1281.6 11.0 11.5 27.5
96 96 8 2 24 1436.8 61.0 4.0 35.0
96 480 2 2 6 712.0 84.8 5.4 9.8
96 480 2 4 10 696.0 83.1 7.5 9.4
96 480 2 8 18 689.6 82.7 8.3 9.0
96 480 4 2 12 736.0 83.1 2.5 14.4
96 480 4 4 20 729.6 82.7 1.3 16.0
96 480 8 2 24 748.8 82.7 0.8 16.5
96 960 2 2 6 686.4 87.7 4.8 7.5
96 960 2 4 10 662.4 84.6 7.9 7.5
96 960 2 8 18 651.2 83.3 9.4 7.3
96 960 4 2 12 699.2 84.6 3.1 12.3
96 960 4 4 20 688.0 83.3 4.6 12.1
96 960 8 2 24 712.0 83.3 1.5 15.2

5.2.4 Level 3 The level 3 implementation introduces more coordination be-

tween the same configuration of processors found in the level 2 program. After each

iteration of the B&L algorithm in the "assign" processors, the controller eliminates
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the redundant assignments and sends out vectors containing information to be used

* in the computation of new assignments.

Table 5-6. Timing and Speedups of the Level 3 Implementation

I.Wpns ITgts I Cntrl Proc/Cntrl I Tot Proc I Time (eec) [SIBL I Ssr,
96 96 2 2 6 0.9730 9.15 36.99
96 96 2 4 10 1.8905 4.71 19.04
96 96 2 8 18 3.5370 2.52 10.17
96 96 4 2 12 2.1135 4.21 17.03
96 96 4 4 20 2.5548 3.48 14.09
96 96 8 2 24 1.4069 5.48 25.58
96 480 2 2 6 2.4975 3.09 -
96 480 2 4 10 4.3405 1.78 -
96 480 2 8 18 6.0985 1.26 -
96 480 4 2 12 4.0150 1.92 -
96 480 4 4 20 4.6833 1.65 -
96 480 8 2 24 2.6573 2.90 -
96 960 2 2 6 4.8910 3.08 -
96 960 2 4 10 8.4135 1.79 -
96 960 2 8 18 11.6000 1.30 -
b 960 4 2 12 7.6133 1.98 -
96 960 4 4 20 9.0953 1.66 -
96 960 8 2 24 5.2775 2.85 --

This implementation was very expensive in terms of processing times as illus-

trated by the times and speedups in Table 5-6. Except for the first entry in Table 5-6,

none of the SB&L speedups were better than perfect. The extra iterations of the B&L

algorithm, combined with the coordination process, substantially increased the pro-

cessing times and thereby reduced the speedups. As more processors were added to a

controller partition, the processing time increased rather than decreased. The reason

the processing times increased so dramatically is that if redundancies remain after

an iteration, then new information vectors must be assembled and all processors

must recompute another assignment on their given partition based on the updated

information. This procedure continues until all redundancies are elimirated. The

increase in processing times is an especially undesirable effect since the objective is

to decrease rather than increase the time as more processors are utilized.

Regression analyses yielded very similar models for this implementation when
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compared to the level 1 and level 2 models. One difference in the models obtained

* for this implementation is that the Y-intercept term became more significant and

positive. This is an indication that there are increasing overheads involved with

the coordination process. The estimation of the extra computation involved with

the "controller" process made in Chapter 4 could not be confirmed because the

regression models were computed with the number of processors held constant. The

SAS software regarded the models with processors as a variable as "not of full rark."

This means the results obtained would be misleading and biased because of certain
binter-relationships between the different terms in the model. The model shown in

Equation 5-5 is for the 1:1 ratio, 32-weapon, 20-processor case.

processing time = -5.924 x 10- 7 (WT) + 0.0000487T 2 + 0.267500 (5 - 5)

Assignment results for the level 3 program are shown in Table 5-7. The per-

cent weapons wasted decreased as the ratio of weapons-to-targets was increased.

This trend was also noted on the results for other numbers of weapons. The assign-

ment costs for level 3 were higher than any of the other implementations. This can

be at least partially explained by the method used to reassign weapons that were

S redundantly allocated. In cases when another target must be selected because of a

redundancy, it will be at least equal to and probably a higher cost than the originally

selected target. The combination of several substantially higher cost reassignments

drives up the average cost dramatically as shown by the cost data in Table 5-7.

5.2.5 Level 4 The level 4 implementation is an attempt to perform several

of the tasks of the sequential B&L algorithm in parallel. As the timing and speedup

results in Table 5-8 illustrate, the effort did not perform as well as one would hope.

The major bottleneck was the amount of interprocessor communications required

to update global information used in the selection of potential weapon-to-target

pairings.
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Table 5-7. Assignment Results of the Level 3 Implementation
* Weapons Targets I Cntrl I Proc/Cntrl [ Tot Proc I Cost % Effective I9% Wasted

96 96 2 2 6 15696.0 71.3 28.7
96 96 2 4 10 18886.0 68.5 31.5
96 96 2 8 18 17457.6 68.5 31.5
96 96 4 2 12 13412.0 64.9 35.1
96 96 4 4 20 16022.4 62.9 37.1
96 96 8 2 24 7556.8 61.3 38.7
96 480 2 2 6 9344.0 87.3 12.7
96 480 2 4 10 8501.2 86.7 13.3
96 480 2 8 18 10070.4 86.3 13.7
96 480 4 2 12 4572.8 83.5 16.5
96 480 4 4 20 6408.0 83.5 16.5

* 96 480 8 2 24 2606.6 82.7 17.3
96 960 2 2 6 6779.2 89.8 10.2
96 960 2 4 10 11288.0 88.1 11.9
96 960 2 8 18 11124.8 87.3 12.7
96 960 4 2 12 4798.4 86.3 13.7
96 960 4 4 20 7107.2 85.2 14.8
96 960 8 2 24 2947.2 84.0 16.0

The processing times for this implementation were only marginally better than

the results obtained for the sequential B&L algorithm (i.e., level 1, one processor). In

some cases, the sequential B&L implementation was actually faster than the level 4

implementation. It is difficult to discern the exact reason for the poor performance.

One problem noted during the gathering of the results was that the default number

1of buffers in the iPSC used to handle internode message traffic was too small. When

additional buffers were made available, then the amount of memory remaining was

inadequate for processing larger cost matrices. This definitely had an effect on the

speed of the level 4 implementation.

Another possible reason for the poor performance is that the parallel algorithm

used was too inefficient. One especially time consuming task was the search for inde-

pendent zero elements. Recall that the cost matrix was partitioned into "windows"

that were searched independently and in a certain order by the "parallel" processors.

After each parallel processor searched one of its windows, then all of the partial re-

sults were transmitted to the serial processor for combination and transmittal to all
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Table 5-8. Timing and Speedups of the Level 4 Implementation

* _ Weapons Target Processors I Ti e (sec) I SB&L ISo.
96 96 2 4.969 1.79 7.24
96 96 4 4.563 1.95 7.89
96 96 8 5.075 1.75 7.09
96 96 16 6.616 1.35 5.44
96 96 32 15.711 0.57 2.29

* 96 480 2 12.373 0.61 -
96 480 4 6.924 1.11 -
96 480 8 6.851 1.13 -

96 480 16 11.802 0.65 -
96 480 32 32.695 0.24 -

96 960 2 17.522 0.86 -
* 96 960 4 12.876 1.17 -

96 960 8 11.898 1.27 -
96 960 16 18.001 0.84 -

parallel processors for the next set of window searches. The coordination between

processors was necessary in order to insure no redundancies occurred. There may be

more efficient methods for performing this and other tasks, but the basic Hungarian

method, and the B&L algorithm in particular, may be intrinsically serial and not

parallelizable.

The regression model obtained for this implementation was somewhat different

from the other models. This was expected because this program was so much differ-

ent from the other programs. The processing times were affected by the hardware

limitations to the extent that multiple runs had to be made with different numbers of

system buffers and system memory allocations before the processes would complete

normally. The most reliable data obtained was for the cases where four and eight

processors were used, so these data were used as the basis for the regression analysis.

The model for the 8-processor, 32-weapon, 1:1 ratio case is given in Equation 5-6.

processing time = 0.0000475(WT 2) - 0.00893(T 2) + 0.55860(W) - 8.359 (5 - 6)

A term that was not significant in any of the other models is W. The reason for

this is that the vectors transmitted and the combination procedure performed by
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the serial processor were all strongly related to the number of weapons.

* A feature of the level 4 program is that the weapons are always 100% effective.

However, this is not an advantage since the time required to achieve these results

is longer than the single-processor level 1 program. The assignment results of the

level 4 implementation are shown in Table 5-9. Essentially, the assignment results

are identical to those of the level 1 implementation utilizing a single processor.

Table 5-9. Assignment Results of the Level 4 Implementation
Weapons (Targets I Processors I Cost I % Killed

96 96 2 1779.2 100.0
96 96 4 1779.2 100.0
96 96 8 1779.2 100.0
96 96 16 1779.2 100.0
96 480 2 756.8 100.0
96 480 4 756.8 100.0
96 480 8 756.8 100.0
96 480 16 756.8 100.0

96 960 2 723.2 100.0
96 960 4 723.2 100.0
96 960 8 723.2 100.0

O 96 960 16 723.2 100.0

5.3 Analysis of Results

In this section, the performance results of the different implementations are

compared and evaluated. The relative advantages and disadvantages of each im-

plementation are also discussed. Graphs are used to illustrate trends and make

additional comparisons between the different implementations.

5.3.1 Computation Times and Speedup The computation times varied widely

between the different programs. The fastest times were those of the level 1 and level 2

programs, while the slower times were where those of the level 3 and level 4 programs.

This can be mainly attributed to the volume and frequency of communications be-

tween processors in the different implementations. As the level of coordination and

communications increased, the computation times also increased. The correspond-

87

-1 I*

..,.~ ~ ~~~V A,,*,..- ._.-.,,_-,-._- - , - -: ..--.-.. .- -.-.- . ..- - -, . .



ing speedups over the level 0 program and the single-processor level 1 program show

the reverse trend since TN is a divisor in the calculation of speedup. The speedups
4obtained by the four levels of implementation over the level 0 program for 96 x 96

cost matrices are illustrated in Figure 5-1.

Y
96x96 level I

0 96x96 level 2

990- 0 96x961eve13
4 96x96 level 4

X Number of processors
Y Speedup over Level 0

770

660-.

550•

440--

330.

220

1 10 ."

4 4 1 12 16 20 24 28 32 36

Figure 5-1. Speedups over the Level 0 Implementation (1:1 Weapon-Target Ratio)

The speedups over the single-processor level 1 implementation are shown in

Figures 5-2 and 5-3. The single-node level 1 results are equivalent to a sequential

version of the B&L algorithm. In all cases, the level 1 and level 2 implementations

exhibited substantial speedups over the single-processor programs. The superlinear

* speedups in the 1:1 ratio cases at first do not seem possible. The explanation for why

the B&L algorithm works faster for rectangular matrices than for square matrices

was given in the presentation of the level 1 results. Recall from that discussion
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that when an initially square cost matrix is partitioned, each processor receives a

rectangular submatrix. For rectangular matrices, it is more likely that the final

assignment solution will be reached in the formation of the initial solution because

of the increased number of targets from which assignments can be made. This results

in bypassing of some of the reshuffling portions of the B&L algorithm and yields a

faster solution to each partition.

In the 1:5 and 1:10 weapon-to-target ratios, the speedups were not as great

because the previously discussed performance for rectangular matrices was already

in effect for the single-processor times. However, significant speedups were still ob-

tained. One drawback to all of these faster partition solutions is that when they are

combined into a final solution, they are no longer optimal because of redundancies,

V weapons idled, and reassignments to other targets performed by the different imple-

mentations. However in most cases, the advantage in processing time allows many

sub-optimal assignments to be computed in the time required to compute only one

optimal solution.S

The speedups obtained by the level 3 and level 4 programs were disappoint-

ing. They point out how extensive communications between processors and multiple

iterations of the B&L algorithm severely affected the processing times. However,

even with the poorer performance when compared with the other parallel imple-

mentations, the level 3 and level 4 programs did produce speedups over the sorting

method used as the baseline for comparison.
'S

5.3.2 Interprocessor Communications The effects of increased interprocessor

communications are illustrated by the longer processing times of the level 3 and

level 4 implementations. The ratio of computations-to-communications becomes

very small as the level of communications is increased because much more time is

spent communicating than computing. The difference in processing times between

the level 1 and level 2 programs is not excessive because the coordination process
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Figure 5-2. Speedups over the Single-Node Level 1 Implementation (1:1 Ratio)

requires a relatively small amount of time. All other operations in the level 1 and

level 2 programs are essentially the same. In the level 3 program, the coordination

process involves higher interprocessor message traffic to control the extra iterations

required to eliminate the redundancies. The transmission of vectors designating

the new assignment instructions in level 3 is similar to the vectors transmitted in

level 4 for coordinating the search of the matrix partitions for assignments. The

processing times of the level 3 and level 4 implementations reflect the extra time

spent communicating instead of computing.

The desirability of complete independence between processors can been seen

- upon comparing the processing times of the level 1 and level 4 implementations.

The level 4 implementation is generally less than twice as fast the single-processor
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* Figure 5-3. Speedups over the Single-Node Level 1 Implementation (1:10 Ratio)

level 1 program. For a 96 weapon, 960 target problem. the level 4 implementation

using 8 processors solved the problem only slightly faster than the single-processor

*level 1 implementation. However, the level 1, 8-processor configuration solved the

same problem 6 times faster than level 4 using 8 processors. However, the resulting

assignments and costs were somewhat different: 84.6% of the weapons were effective

for level 1 vs. 100% effective for level 4. Except for the 100% effectiveness of the

allocated weapons for level 4, the added communications and iterations of the level 3

and level 4 implementations do not appear to provide any particular advantages.

5.3.3 Problem Scalability The relationship between the size of the problem

and the size of the machine (number of processors used) is difficult to assess. Ill the

cases studied in this research, the optimum number of processors varied from one
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implementation to another. For the level 1 implementation, the 1:1 ratio speedups

4P obtained tended to decrease as the number of weapons and targets increased. For

example, the speedup SB&L for the 32-weapon, 32-target problem using 4 processors

was 24.38 while the 128-weapon, 128-target problem speedup using 4 processors was

only 18.07. The situation for the 1:5 and 1:10 ratios was completely different. In-
creasing the number of weapons and targets while holding the weapon-to-target ratio

constant provided some interesting results: as the weapons and targets increased, the

speedups remained nearly constant. For example, the speedup SB&L for the 32 x 320

* cost matrix using 16 processors was 15.62. But the speedup for the 128 x 1280 cost

matrix for 16 processors was 15.92. These trends indicate that for weapon-to-target

ratios greater than or equal to 1:5, close to perfect speedups are possible even as

the problem is greatly enlarged. Some limit to the problem size probably exists, but

increasing the problem size by a factor of 16 and still obtaining roughly the same

speedup is a good indicator that much larger problems can be solved with reasonably

good speedups over the sequential processing times.

Although the SB&L speedups for the level 2 implementation were not as close

to linear as the level 1 results, there were similar trends in scalability. For the 1:5

and 1:10 ratios, the speedups remained fairly constant with a few showing some
- mslight increase as the problem size increased from 32 to 128 weapons. One difference

was in the 1:1 ratio cases where, instead of the speedups decreasing as they did in

the level 1 implementation, the speedups SB&L and Sso,t also increased slightly as

the problem size increased. Based on these results, the level 2 implementation also

appears to be a good candidate for solving larger problem sizes.

For both level 1 and level 2 weapon-to-target ratios greater than 1:1, an in-

crease in the weapon-to-target ratio appears to decrease the speedups obtained. By
0"

observing the plots in Figure 5-4, these speedups appear to be close to linear. But

there is a slight difference between the 1:5 and 1:10 plots. For the level 1 implementa-

tion, if there were a 128 processor machine available, the speedups would approach
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128 and so on for larger machines. For the level 2 implementation, the speedups

would not be as great as the level 1 speedups, but as the size of the machine in-

creased, there would be a corresponding improvement in the processing times and

speedups obtained. These are conjectures, but they are based on observations and

trends of the data collected. There is no way to predict precisely what the behavior

of the processing times would be for larger machines. However, for the range of

problem and machine sizes tested, it is reasonable to expect similar results for larger

machines and problems.

* 96x96 matrix
o 96x480 matrix

270 0 96x960 matrix

X Number of processors

240- Y: Level I Speedup

210

- 150 '

~120"

~90 •'

60,"

30 ...........
..................................................

...................................... .....

4 4 8 12 16 20 24 28 32 36

Figure 5-4. Level 1 Speedups over the Sequential B&L Algorithm (96 Wpns)

* Up to this point, the discussion has focused on the level 1 and level 2 imple-

mentations because the programs are very similar and the speedups obtained were

the largest. For the other implementations. the speedups rapidly fell victim to the
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communications overhead as the number of processors were increased. Except for the

level 1 and level 2 implementations, the processing times generally increased rather

than decreased as more processors were used. Because of the trends in processing

times observed in the level 3 and level 4 implementations, the extension to larger

problem sizes and correspondingly larger numbers of processors does not seem to be

feasible.

5.3.4 Cost and Effectiveness of Assignments The processing times and speedups

* have been the main measures of performance emphasized until now. The manner in

which the available weapons are utilized is also very important. If an algorithm is

extremely fast but yields poor weapons utilization, it will not be very useful. The

assignment results of all the implementations were presented in the previous section.

For comparison, plots of weapon effectiveness for 1:1 and 1:10 weapon-to-target ra-

tios are shown in Figures 5-5 and 5-6.

One important trend to note between Figures 5-5 and 5-6 is that the percentage

of targets killed increases as the ratio goes from the less likely 1:1 (96 x 96) ratio

case to the more likely 1:10 (96 x 960) ratio. All of the implementations produced

kill percentages above 80% for the 1:10 and 1:5 weapon-to-target ratios. Except for

* the 100% kill percentages for the relatively slow level 0 and level 4 implementations.

the best overall assignment performance was obtained with the level 2 program.

In most all 1:5 and 1:10 ratio cases, it wasted less than 10% of the weapons. In

general, the level 2 program idled more weapons than it wasted while yielding kill

percentages comparable to the other implementations. The idling of weapons rather

than wasting them is important, especially when weapons are scarce. Idled weapons

can be withheld until a later assignment iteration when they may be utilized in a

more cost effective manner.

The associated assignment costs are shown in Figures 5-7 and 5-8. The assign-

ment cost is a measure of how expensive the overall assignment will be in terms of
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Figure 5-5. Weapon Effectiveness vs. Number of Processors (1:1 Ratio)

resources utilized. The highest costs were produced by the level 3 program. This

was explained earlier as a result of the assignment of certain weapons to higher cost

* targets when redundancies occur. The purpose of the level 3 program was to utilize

p as many of the weapons as possible to kill all possible targets. Situations may occur

when this strategy may be useful. However, upon comparing the results of other

programs, level 2 killed approximately the same percentage of targets at a generally
- lower cost and wasted fewer weapons. In addition, the level 2 processing times were

much faster than the level 3 program.
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Figure 5-6. Weapon Effectiveness vs. Number of Processors (1:10 Ratio)
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Figure 5-7. Assignment Cost vs. Number of Processors (1:1 Ratio)
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Figure 5-8. Assignment Cost vs. Number of Processors (1:10 Ratio)
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5.4 Summary

This chapter has presented and analyzed the performance results of all the

programs developed in this research. It first explained the testing approach and

then defined the criteria used to measure the performance of the implementations.

The results for each program were presented and followed by an assessment of the

performance characteristics. Regression analyses provided some insight into how the

processing times behaved with the addition of coordination and communications.

* The speedups and processing times of all implementations were compared and an-

alyzed. Also, the communications overhead, scalability, and effectiveness of the

assignments were evaluated. The level 2 program, which involved a modest amount

46 of coordination and communications, produced the best overall performance.

.
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6. Conclusions and Recommendations

Before the conclusions and recommendations of this research are presented, a

review of the research is in order. Beginning in Chapter 1, an overview of parallel

* processing as it relates to SDI was presented. The general problem of assignment was

introduced and its importance to the BM/C3 system emphasized. The objectives

and assumptions were stated in order to define a reasonable scope to the research.

Chapter 2 presented a detailed background on parallel processing encompassing the

architectures of parallel processors, the hardware organization of the Intel hypercube

computer, the techniques for developing parallel software implementations, and a

survey of recent parallel implementations developed in the field.

Chapter 3 defined the assignment problem and reviewed some of the important

sequential algorithms developed to solve the assignment problem. The transporta-

tion and the Hungarian algorithms were chosen for comparison and evaluation. The

• Hungarian method was chosen as the basis for the parallel implementations. The

divide and conquer strategy was chosen as the high-level parallel strategy for com-

bining the partial problem solutions into an overall solution. In Chapter 4, the

implementations of two sequential and four parallel assignment programs were ex-

plained. The complexity of each implementation was estimated based on high-level

operations. Three of the parallel programs utilized the sequential B&A algorithm

and involved different types of partitioning and interprocessor communications. The

"" fourth parallel implementation was a parallelized version of the B&A algorithm.

Chapter 5 presented the experimental results and a performance analysis of each

of the implementations. The performance measures of computation time, speedup,

load-balancing, and problem scalability were evaluated.

The remainder of this chapter will focus on the implications of this research

and form some conclusions. It will end with recommendations for applications of

100

10 IV Ir

0k:eg



this research and topics for further research in the area of parallel processing and

*BM/C3.

6.1 Parallel Processing: Lessons Learned

The four parallel implementations completed in this research all served to il-

lustrate certain advantages and disadvantages of parallel processing. The first and

foremost disadvantage is that all problems cannot be solved in parallel. In some cases.

* the computational overheads and interprocessor communications overpower any ad-

vantage gained by performing certain operations in parallel. This was illustrated by

the poor performance of the level 4 implementation where several operations were

attempted in parallel. The main problem with the level 4 implementation was the

method used to decompose the problem. The "windows" were used to allow multiple

processors to search for possible assignments and insure that none of those assign-

ments were redundant. There are other methods for storing portions of matrices

* in different processors where the data is more easily accessible. But an underlying

problem with the B&A algorithm in particular and the Hungarian method in general

is that a large number of its operations appear to be intrinsically serial in nature.

In the final analysis, the time penalty for parallelizing the operations of the B&A

algorithm was just too great. Much better performance was achieved with the level 2

implementation where minimal amounts of communications were used. In the level 2

implementation, a sequential algorithm was used to solve partitions of the overall

problem in parallel. A small amount of communications also proved to be better

than no communications at all. This was illustrated by the improved assignment re-

sults and minimal time penalty of the level 2 program over the non-communicating

level 1 program.

The size of the problem partitions also play an important role in how well

a parallel implementation performs. In this research. problem solutions utilizing

a larger number of small partitions produced noticeably better results than did a
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small number of larger partitions. One reason for this appears to be a function of

Fthe sequential algorithm used in the node processors. Other algorithms may or may

not yield the same results.

Another problem observed is tbat the balancing of the computational load

between the processors has an important effect on the performance. The load balance

of the level 1 and level 2 programs appeared to be relatively even. The problem arose

"p in the level 3 and level 4 programs. The controller processor in level 3 became the
'pt

bottleneck to completing the problem solution. After the assign processors completed

one iteration of the assignment algorithm, they remained idle until the controller

processor completed a serial process to determine if further processing was needed.

While the assign processors computed another iteration, the controller processors

remained idle.

In summary, achieving fast and efficient parallel processing appears to rely on

three fundamental rules: (1) The problem must be partitionable into a number of

independent subproblems. (2) The communications between the processing elements

must be kept to a minimum. (3) The computations performed by each processor must

be approximately equal and simultaneous.

6.2 Areas of Application

The assignment problem solved in this research was very general. In Chapter 3.

the background information on assignment algorithms revealed that many types of
problems can be solved using the same basic techniques. Areas such as circuit board

routing, network flow analysis, and allocation of resources were cited. The applica-

tion of weapon-target assignment algorithms is certainly not limited to the missile

defense system proposed by the SDIO. Smaller-scale battle management systems

4could also benefit from the application of parallel assignment algorithms to aid in

speeding up the decision processes. In addition, other functions of battle manage-

ment where fast processing of large amounts of data is necessary could certainly he
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performed in parallel. The implementations could be realized using the development

* techniques and guidelines presented in this research.

6.3 Recommendations for Further Research

The results of this research show that significant decreases in processing times

are possible by using multiple processors. The performance of the level 2 imple-

mentation illustrated that there needs to be a balance between communications

* and computations. The Intel iPSC used in this research is a loosely-coupled paral-

lel processor machine. A shared-memory machine described in Chapter 2 was not

available for use when this research began, but one has recently been obtained by

the department. A natural extension would be to compare the results obtained in

this research with the results of assignment algorithms implemented on the shared-

memory machine. The reduction in interprocessor message-passing and the sharing

of assignment information between processors through the common memory could

* prove interesting.

Different types of heuristics for reducing the redundant assignments could also

be a topic for further research. The elements of the cost matrix were random val-

ues in a specified range. Time did not permit experimentation with the effects of

different groups of weapons that have similar opportunities for engaging the same

targets. The method of deriving the cost information could also be expanded and

improved. Instead of random numbers for cost values, further work with simulation

programs could be done tD derive more representative values. The inclusion of sta-

tistical probabilities of target kills based on specific weapons and targets is another

possibility.

In Chapter 4, the assignment process was assumed to be memoryless. The

assignment depended only on the present state of the system and the present in-

put. Expansion of the implementations to include consideration of past assignments

could yield improved results. In addition, methods tc. predict possible trends in fii-
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ture assignments could also be beneficial, especially in situations where the weapon

, resources are expected to be limited or very expensive.

In closing, this research has demonstrated that parallel processing provides

benefits and creates liabilities. Some of the benefits were demonstrated in the com-

_, putation times and speedups obtained with the implementations. But the results

were not completely optimal. This is, of course, just one of the liabilities. Each

application will possibly involve tradeoffs of one type or another. Further research

in the area of parallel algorithms and parallel software implementations can build

on the results presented in this thesis and yield further performance improvements.
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Appendix A. The Transportation Method

In Chapter 3, the transportation method of solving the assignment problem

was briefly described. This appendix presents the steps of the algorithm in detail

0 and points out the similarities between the transportation method and the simplex

method from which it was derived. Following the algorithm presentation, an example

problem is given that illustrates how the algorithm operates

* There are two phases to the transportation method. The first phase is to

formulate the initial basic feasible solution. The second phase checks the initial

solution for optimality and incrementally improves upon it until it is optimal. There

have been several methods devised to provide the initial solution, but one simple

approach known as the "northwest corner rule" will be given here [Chu 571.

., 1-1 Initialize the table by setting all xi, entries to null (no entry) and all c, entries

to the corresponding cost matrix values.

1-2 Beginning with the cell in the northwest corner of the table, assign the ruin-

. imum of a, or b,I which correspond to the row availability (resources) and column

requirements (requesters) respectively, to the xij variable. For the assignment prob-

lem, these elements will always be one, so no decision needs to be made. Both a,

and b. are reduced to zero and the xi, element is set to one.

1-3 Eliminate from further consideration the i th row and J th column containing
the x,, element just modified. This effectively reduces the dimension of the table. If

no rows and columns remain after this elimination, the initial solution is complete.

Otherwise, repeat Steps 1-2 and 1-3.

*" When the initial solution is complete, the number of cells assigned will be

n and they will form a northwest to southeast diagonal in the matrix. However.

one restriction of the transportation method is that the number of assigned cells in

an n x m cost matrix must equal n + m - 1. When the number of assigned cells
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is less than n + m - 1, then the solution is called degenerate. In the assignment

problem, the initial solution is always degenerate since only n cells of the required

* + n - 1 are assigned. Additional artificial assignments need to be made to achieve

a nondegenerate solution in order for the second phase of the algorithm to work. A

method of generating these artificial assignments is described following steps:

1-4 Start with an unassigned cell and assign this cell a +0 designation.

1-5 A 0-path is a loop that begins and ends on a particular unassigned cell by

alternately assigning +0 and -0 designations to certain assigned cells in the loop.

This 0-path loop is formed by making one or more horizontal and vertical movements.

Except for the initial and final movements from and to the selected unassigned cell.

each movement must be from one assigned cell to another and form a segment with

assigned cells as endpoints by traversing one or more cells per movement. One

subtlety of forming the 0-path is that all assigned cells do not need to be included in

the path and some cells may be "skipped over" when forming the path. If a closed

* loop can be formed in this fashion, the unassigned cell is termed dependent. The

objective is to identify all independent cells, which are those cells where a closed-loop

0-path cannot be formed. Once all independent unassigned cells are identified, then

a sufficient number of artificial e allocations are made to these cells with the lowest

cost co to form the required n + n - 1 assignments. An c allocation is defined as a

very small positive number which will be set to zero in the final solution to obtain

the actual allocation [Ign82].

Once the required number of f allocations are made, then the steps of phase

II can be performed as follows:

2-1 Add an additional column and row to the table to contain row indicators R,

and column indicators K,.

2-2 Given a non-degenerate initial solution from phase I, assign a zero clement to

any of the R, or K. positions.
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2-3 For each cell that has an actual or artificial value for the x, entry, satisfy the

following expression:

Aj = R,++' = 0 (A- 1)

The initial zero R or K, element can be used to determine the missing R, or K,

element. From this initial determination, all other values of R, and K, can be

determined [Ign 82].

2-4 For the remaining unassigned cells, determine the values of A, using the

corresponding Rj, K,', and c,, values. Enter these values of A3, into the associated

cell in the upper right hand corner.

2-5 If all of the A, values are nonnegative for the unassigned cells, then the

assignment is optimal and the algorithm terminates. If any A,, values are negative.

then the solution can be improved and step 2-6 must be performed.

• 2-6 Select the unassigned cell with the most negative Ai, value. In the case of a

tie in Aj values, choose one of the most negative A,, cells arbitrarily. This step is

analogous to the simplex method of selecting a non-basic variable to enter into thc

basic solution set. The present assignment must be changed in order to include this

new variable, which requires that one of the present assigned cells (basic variables)

be removed. Go to Step 2-7.

2-7 Construct a 0-path as described in step 1-5. beginning with the cell having the

most negative A,, value. However, this time the objective is to form a closfd-loop

0-path.

2-8 The results of step 2-7 will yield some cells with +0 designations and others

with -0 designations. The cells with +9 designations will become assigned cells with

X,, values of one and all -0 cells become unassigned (no entry for x,). This step

is the same as the simplex method of selecting basic variables that are to leave the

basic solution set.
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2-9 If the new assignment obtained in Step 2-8 is degenerate, perform steps 1-4

10 and 1-5 to add the required number of f allocations to form a nondegenerate solution.

Then repeat steps 2-2 to 2-8 until an optimal solution is indicated in step 2-5.

As an example of the transportation algorithm just described, consider the

40 following cost matrix:

'.. 7438
~5549

Ao (A -2)
2792

10 3 1 6
,'

0Using the cij values from this matrix, the initial transportation table can be

formed as shown in Table A-1. The null xi, values are indicated by a

Table A-I. Initial Transportation Table

resource
"-1 .. . .- 1

__ _ _7 4 3 8
2 1

_'_ _5 5 4 9
'."3 .. . .- 1

_.'__ 2 7 9 2

. __ _ __ _ 10 3 1 6

,,-0 The initial basic feasible solution resulting from steps 1-2 and 1-3 of the trans-

portation algorithm is shown in Table A-2. The a, column and the b, row will b~e

omitted in later representations since they will not be modified.
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Table A-2. Initial Basic Feasible Solution

requester -- 1 2 3 4 ai
resource

7 4 3 82 - 1 - - 0

5 5 4 9
3 - - 1 - 0

-_ 2 7 9 2
40 4 - - - 1 0

__ _ 10 3 1 6
nj - 0 I 0 0I o 11 0 I

One possible result of performing steps 1-4 and 1-5 is given in Table A-3. All

unassigned cells in Table A-2 are independent. Three additional assignments are

needed to form the required 4 + 4 - 1 = 7 assignments. The three independent

cells with the lowest cij costs were selected and given the f allocations as shown in
Table A-3. One note of explanation about the choice of c assignments is warranted.

The assignment of an f to cell x42 instead of x34 was necessary because after cell X43

was assigned, the 0-path for cell x34 was no longer independent. This means that

* the lowest cost unassigned cells are not always given the c allocations.

Now that a nondegenerate basic solution has been obtained, phase II of the

transportation method can be entered to determine if this initial solution is optimal.
If the assignment is not optimal, then it will be modified to improve it.

4

As required by Step 2-1, the additional R, column and K, row are added to the

table. An initial zero element is arbitrarily assigned to the R4 position by Step 2-2

and is shown in Table A-4. Any of the other positions could have been chosen for

this initial zero element.

The first iteration of step 2-3 is shown in Table A-5 where the Aq = R,+h+cj

expression is satisfied for the assigned cells in row 4. There are several iterations
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Table A-3. Initial c Assignments

resource j j2

7 4 3 8
2 - 1 - -

5 5 4 9
3 f - 1 -

_ _ _ _ 2 7 9 2
4 -0 f f 1

__ _ __ _ _ 10 3 1 6

Table A-4. Initial Row Indicator R,, Assignment

requester~ 1 2~i I3 ll '_
__ _ _ 7 4 3 8 _ _

2 - 1 - -

__ _ _ 5 5 4 9 _ _

3 f - 1 -

_ _ _ 2 7 9 2 _

4 f

I 3 . 10 3 i 1 6 _ _

__ _ _ _ _ _ _ __ _ __ _ _I__ _ I_ _ _
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required to formulate the remaining R, and Kj elements. One possible sequence is

'shown in Tables A-6 and A-7.

Table A-5. Calculation of Additional R, and K. Values

requester - I I 1 LL 4 iRjB,
W resource

.1 1 - - -

7 4 3 8
2 - 1 - -

_ _ _ 5 5 4 9
3 f - 1 -

2 7 9 2
4 - 1 0

10 3 1 6

07 KI 1-3 - -1 1-6 I j

Table A-6. Additional R, and K. Values

requester ][1 2 3 4  R_
resource

1 1 - - -

7 4 3 8
* 2 - 1 - -

5 5 4 9
3 f - 1 - -8

2 7 9 2
4 - f 1 0

- 10 3 1 6

K- I6_ -3 -1 [-6 I1 I

Once all the R and K, values are determined, the A,, values can be calculated

for the unassigned cells and entered into the associated cells. Using the values of R,

and K. from Table A-7, Step 2-4 yields the results shown in Table A-8.
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Table A-7. Complete R, and K. Values

requester -* 1 2 3 4 R,
.resource I,

1 7 4 3 8 -13

2 - 1 - - -2
___ ___ ___ 5 5 4 9

3 - 1 - -8
2 7 9 2

4 - f 1 0
10 3 1 6

K,- 6 -3 I-._1[-6I

Table A-8. Aj, Values for Unassigned Cells

requester --, 3 R
resource

- -12 - -11 - -11 -13
. _7 4 3 8

2 - +9 1 - +1 - +1 -2
_____ 5 5 4 9

3 -- 4 1 - -12 -8
112 7 9 2

4 - 16 1

• lO 103 1 6

',K, 116 -3 -1 -6 _

S1..
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From Step 2-5, since all of the A,, values are not nonnegative, the assignment

is not optimal and can be improved by performing Step 2-6. The most negative A,

value in Table A-8 is -12, which is associated with the cells X12 and X34. Ties in the

negative values may be broken arbitrarily, so x34 is chosen. Now the 0-path must be

constructed by using Step 2-7 so that the assignments may be shuffled to bring theS

X34 variable into the basic solution. The resulting 0-path is shown in Table A-9.

Table A-9. 9-Path for Exchange of Variables
requester- 2 4

resource
1 1 - -12 - -11 - -11 -13

7 _ 4 3 8

2 - +9 1 - +1 - +1 -2
5 5 4 9

3 - -4 1 - -12 -8
2 7 9 -0 2 +0

4 - +16 C 1 0
_ _ 10 3 1 +0 6 -0

[ A, -. 6 -3 -1 -6 _

Now, the x,, values of the cells in the 0-path must be modified to form the new

* assignment shown in Table A-10.

The new assignment is degenerate since there are only six assignments and

seven are required. Performing Steps 1-4 and 1-5 yields a possible nondegenerate

basic solution shown in Table A-11.

The presentation of next iteration of phase II will slightly abbreviated, but thc

intermediate results of each step will be shown. One possible result of perfrili eL

Steps 2-2 and 2-3 is shown in Table A-12.

Performing Step 2-4 results in following Table A-13. Since all %,, values in

Table A-14 are not nonnegative, the solution can be improved upon further. 'HIc

most negative A,, value in Table A-13 is -2 (A 2 1 ). A 0-path beginning with this cill
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Table A-10. New Assignment from First Iteration

requester- 1 12 3 4 R
-_" resource J

1 1 - - -

7 4 3 8
2 - 1 - -

5 5 4 9
3 - -

2 7 9 2

4 - f 1 -

10 3 1 6

Table A-11. Second Nondegenerate Basic Solution

[requester -- 1 2 1 4 Ri
resource

1 1 - -

7 4 3 8

2 - 1 - -

5 5 4 9
3 f - - 1

2 7 9 2
4 - 1 -
4_ _ 10 3 1 6

'U ~ I- 111 [__ Ii
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Table A-12. Second Set of R, and K, Variables

requester - 1 2 3 4 1R.
resource J

1 1 - - -2

7 4 3 8 _

2 - 1 - - -2
5 5 4 9

3 E - - 1 +3

2 7 9 2

4 - f 1 - 0
_ _ 10 3 1 6

-Kj-- -5 -3 -1 1- I _

is shown in Table A-14 and traverses the sequence of cells A 21 , All, A13. A 4 3 . -\ 4 2 .

-2. and A2 1 to form a closed loop.

Table A-13. Second Set of Ai, Values

requester -- 1 2 34 R
resource j

1 1 - -1f - +1 -2

7 4 3 8
* 2 - -2 1 - +1 - +2 -2

5 5 4 9

3 f - +7 - +11 1 +3
2 7 9 2

4 - +5 f 1 - +1 0
-_ 10 3 1 6

KX; -- [-5 -3 -1 I - 5 1
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Table A-14. Second 9-Path for the Most Negative A,
requeste 2 3

resource I
1 1 - -1 e +1 -2

____" 7 -0 4 - 3 +0 8
2 - -2 1 - +1 - +2 -2

-- 5 +0 5 -0 4 9
3 f - +7 - +11 1 +3

__ __ 2 7 9 2
" 4 - +5 1 - + 1 0

" 10 3 +0 1 -0 6
K,-5 I-3 1 I~ I __

1.

O.
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The assignment resulting from reassigning the resources from the -0 cells to

the +0 cells is shown in Table A-15. Since there are only five assignmenlts ii thhli

new table, two additional f allocations must be made using Steps 1-4 and 1-5. O1

possible set of f allocations is shown in Table A-16.

Table A-15. Second Iteration Assignment

requester -- __ 2J 3  4 R, if
resource J

S 1 - - 1 -

7 4 3 8
2 1 - - -

5 5 4 9
3 - -

W 2 7 9 2
4 - 1 - -

10 3 1 6

Table A-16. Third Nondegenerate Basic Feasible Solution

requester - 1 213 4 R
~resource

1 - - 1 -

7 4 3 8
2 1 - I-

5 5 4 9
3 (- 1

2 7 9 2
4 - 1-

1 10 3 1 6

After completing the ( allocations, the new R, and K, elements can be (t,er

mined. One possible arrangement is shown in Table A-17.
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* Table A-17. Third Set of R, and K, Variables

requester- 1 3 4
resource [

1 - - 1 - -2
.'_ 7 _ 4 3 8

2 1 - - -3

._ _ 5 5 4 9

3.- - 1 0
_ _ _ 2 7 9 2

4- 1 E - 0
10 3 1 6

Kj h' -2 1-3 l-1 -2 1I

4d., After determining all the R1 and K), the A,, values for the unassigned cells can

be calculated. The results in Table A-18 show that A 1 2 and A 2 2 are still negative.

which requires another shuffle of the assignment using the 0-path of Steps 2-6 and
,

2-7. Possible results of performing these steps are given in Table A-19.

Table A-18. Third Set of A,. VariablesIrequester -- 1 2 34 ,

* resource __

1 +3 - -1 1 - +4 -2
_____ 7 4 3 8

2 1 - - +4 -3
,_ 5 5 4 9

" 3 f - +4 - +8 1 0
____ 2 7 9 2

4- +8 1 - +4 0

10 3F
"K -2 -3 -1 -2 1

Reassigning the resources according to the 0-path constructed in Table A-

19 and assigning new allocations results in the assignment shown in Table A-20.

6%
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* Table A-19. Third 9-Path for the Most Negative A,
requester 1 4 R,,

resource [D

1 - +3 - -1 1 - +4 -2
7 4 +0 3 -0 8

2 1 - -1 f - +4 -3
_ 5 5 4 9

3 f - +4 - +8 1 0
2 7 9 2

4 - +8 1 f - +4 0
S10 3 -0 1 +0 6

K, --- 11-2 -3 1--1 -

Possible results of a third iteration of Steps 2-2, 2-3, and 2-4 are represented by

Table A-21.

Table A-20. Third Iteration Assignment

requester - 1 2 3 7r ]
resource

1 - 1
7 4 3 8

1 - f -

5 5 4 9
3 f - - 1

2 7 9 2
4 - - 1 -

___ __ __ __ 10 3 1 6 _ _

] I1 1=1 1

*Upon inspecting the A,. values in Table A-21, all are found to be nonnega-

tive. This means an optimal solution ha2 finally been obtained. After setting the

allocations to zero, Table A-22 summarizes the optimal assignments.
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Table A-21. Third Iteration R&, KA, and Aj, Values

requester. l f2 J1 1R1Lresource .I

1 - +3 1 - +4

7 4 3 8
• 2 1 - 0 C - +4 0

5 5 4 9
3 f - +5 - +8 1 +3

_ _2 7 9 2

4 - +8 - +1 1 - +4 +3
10 3 1 6

Kj --.. -5 1-5 1-4 _ -5 1 _ _

.1

Table A-22. Results of Transportation Method

Resource Requester
1 2
2 1
3 4
4 3

I"

N

'S.

~120



B,.

The total cost of the assignment can be obtained by summing the assciated

c,, values of the assigned cells and yields

5 + 4 + 1 + 2 = 12

This is an improvement over the initial assignment from Table A-2. which h 1,1

a value or cost of

7+5+9+6=27

This completes the example of the transportation method of solving the a-

signment problem.

0
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Appendix B. The Hungarian Method

In Chapter 3, the general approach of Hungarian method for solving the as-

signment problem was described. In this appendix, a detailed explanation of those

steps will be presented. Then an example problem will be used to illustrate how the

algorithm operates.

In the presentation that follows, reference to the rating matrix refers to the

*• matrix described in Section 3.1.2. The specific steps of Hungarian method are given

in the following:

1. Find the minimum element in each row of the rating matrix 40 and subtract

that element from each element of that row. Next, find the smallest element in each

column and subtract that element from each element of that column. The resulting

matrix will now contain at least one null element in each row and column. This new,.

modified matrix will simply be referred to as the matrizx in later references.

2. Locate any row in the matrix that contains only one null element and suitably

mark the null element's position. Cross out all other null elements in the column

that contains this marked position. Repeat this process until no more rows can be

found with only one null element that has not been marked or crossed out. If all rows

contain a marked position, then these positions constitute the optimum assigninent.

The total cost of the assignment can be found by summing the individual costs of

the corresponding positions in the original matrix A0 . Otherwise, if all rows do not

contain a marked position, then go to step 3.

3. Locate a column in the matrix from the previous steps that contains only

one null element. Mark this position and cross out all other null elements in the

row that contains this newly marked position. Repeat this process until no more

such columns can be found. If every column contains a marked element, then these
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marked positions form the optimum assignment and the cost can be calculated as in

* step 2. Otherwise, go to step 4.

4. Since an optimal solution has not yet been reached, more null elements must be

generated. First, the minimum set of lines that contain or cover all of the null ele-

ments in the matrix must be constructed. By disregarding the crossed out elements

and retaining the marked elements from steps 2 and 3, the following procedure can

be used to draw this minimum set of lines:

4.1 Mark the rows that do not contain any marked elements.

4.2 Mark the columns that have an unmarked null element in a marked row.

4.3 Mark the rows that have a marked null element in a marked column.

4.4 Repeat steps 4.2 and 4.3 until no more rows or columns can be marked.

4.5 Draw lines through all unmarked rows and all marked columns.

5. All elements with lines drawn through them are "covered" and those without

lines through them are "uncovered." Find the smallest uncovered element in the

matrix and subtract this element from all uncovered elements in the matrix. Then

- "add this smallest element to all covered elements that are located at the intersections

of the lines drawn in step 4.5 to form a new matrix. If all elements of the matrix are

covered, then this indicates the optimum assignment has been reached and exists in

the set of null elements in the present matrix.

This step is a result of the K~nig-Egervi.ry theorem on the minimum set of

* covering lines [Kre68]. Its objective is to generate additional independent zero el-
" . ements to be covered by lines in later iterations of the algorithm. As defined in

Section 3.2.4, independent means that no other zero elements are present in the

same row and column. With N available resources, at least N independent zero

elements need to be included in the set of zero elements used to make the optimal

assignment. By performing Step 5, the cost of adding these additional zcrk, element,
-, to the solution set is minimized. This step reduces all of the uncor red elements 1,

123
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the same minimum uncovered amount, increases the elements covered twice by the

same amount, and does not change the elements covered only once. This procedure

is very similar to the simplex method's exchange of basic and nonbasic variables

explained in Sections 3.2.1, 3.2.2, and 3.3.1.

6. Repeat steps 2 through 5 until the optimum assignment is found.

As an example of Hungarian method just presented, again consider tile cost

matrix from Appendix A, which is repeated here for convenience:

~7438

~5549
Ao = (B -6)

~2792

"p 10 3 1 6

The matrices referred to in the algorithm will be represented as tables in the

following presentation. Using the steps of the Hungarian algorithm, the following

tables illustrate the procedure. First, the minimum row elements of .40 are identified

and subtracted to yield the following Table B-1. Then the minimum column elements

of Table B-1 are identified and subtracted to form Table B-2.

Table B-1. Results of Subtracting Minimum Row Elements

resource - 1 2
requester

1 4 1 05
2 1 1 0 5
3 0 5 7 0
4 9 2 0 5
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*Table B-2. Results of Subtracting Minimum Column Elements

resource -- l 1 2 134
requesterI

1 4 0 0 5

2 0 05
* 3 0 4 70

4 9 1 0 5

In steps 2 through 5, a box will be used to mark the single null elements in the

rows or columns and an 'x' to cross out nu!l elements. Performing the procedure of

Step 2 yields Table B-3.

Table B-3. Independent Null Row Elements

[resource --+112
requester J,

1 4 i 97 5
2 1 9 2 5
3 0 4 7 0

4 9 1

Rows 2 and 3 do not contain a boxed element, so the optimum assignment ha.

not been reached. Step 3 must now be performed and one possible result is showi,

in Table B-4.

- One note of explanation is needed about Table B-4. The null element boxed in row 3.

column 1 was not the only choice. The null element in row 3, column 4 could have

been boxed and the null element in row 3, column 1 crossed out. Recall that the set

of null elements contains at least one optimal assignment and possibly more than

one.

Checking the columns containing boxed elements in Table B-I shows that col-

unrn 4 does not contain a boxed element, so an optimum assignment has not 1ee,1i
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Table B-4. Independent Null Row and Column Elements

resource --+ W 2V3T4

requester 1 1L 1

2P 1 Qg5-
Si 3 O0 4 7 9l

4 9 1 t 5
"_E_

",p

reached. This requires the generation of more null elements, so Step 4 must be

taken. Only one row does not contain a boxed element, and Step 4.1 yields Table B-

5. Checking for columns with null elements in a marked row as required in Step 4.2

results in Table B-6.

Table B-5. Checked Rows Without Boxed Null Elements

resource 1 1 21 314 Rows
requester IL Checks

1 4 0 5
,2 1 0 0 5
"3 0 4 7 0

""4 9 1] 5

" Column
Checks

Now, using Step 4.3 requires rows 1 and 4 to be marked since they contain

a boxed null element in a marked column. The results are shown in Table B-7.

Rechecking Steps 4.2 and 4.3, as required by Step 4.4, reveals that no other rows or

-" columns can be marked. Now Step 4.5 can be followed, which calls for lines to b.

*I drawn through all unmarked rows and all marked columns to form the set of covering
J-p

lines. The covering lines are illustrated by the asterisks at either end of a row or

column in the following Table B-8.

I
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Table B-6. Checked Columns with Null Elements in Checked RU)ws

Sresource 1 2 13 41 Row
requester . Checks

1 4 1[0_1 0 5

2 1 0 0 5 -
1 3 0 47 _0

4 9 1 [__ 5

Column
Checks 1 /I _ _

Table B-7. Checked Rows with Boxed Null Elements in Checked Columns

resource -- + 1 2 3 4 Row I
requester I Checks

1 4 10[]10 5 v

2 1 o o 5 V
3 101 4 7 0
4 9 1 0 5

ColumnChecks /

Table B-8. A Minimum Set of Covering Lines

resource -* 1 2 3 4
requester

1 4 0 0 5
2 1 0 0 5

* 3 0 47

4 9 1 0 5
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Step 5 requires that the minimum uncovered element be subtracted from each

* uncovered element and added to the elements that lie at the intersections of the

covering lines. From the previous diagram, the minimum uncovered element is 1.

Subtracting this from the proper elements results in Table B-9.

Table B-9. New Table From Step 5

resource -- 1 2 3W
requester I .

1 3 0 0 4
2 0 0 0 4
3 0 5 8 0
4 8 1 0 4

Performing step 2 again yields Table B-10. Now there is a boxed element ini

each row of Table B-10, so the optimum assignment has been reached. In this case.

the resulting assignments are shown in Table B-11. Note that this table is identical

to Table A-23 obtained in the transportation method example in Appendix A.

Table B-10. Independent Null Row and Column Elements[ resource I 1 2 3 4
requester ,

1 3 O 9t 4
2 T0] .9 JR 4

S3 JR 5 8 o1o]

4 8 1 0 5

The cost of this assignment shown in Table B-11 can be obtained by summing

the corresponding costs in the original rating matrix Ao which gives

5 + 4 + 2 + 1 12
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* Table B-11. Results of Hungarian Method

Resource Requester
1 2
2 1
3 4
4 3

The sum of all the minimum elements found in steps 1 and 5 should equal this

* assignment cost since these minimum elements represent the costs associated with

each intermediate assignment. Summing these values yields

3 + 4 + 2 + 1 + 1 + 1 = 12

The cost results of the Hungarian method are also identical to the transporta-

tion example, as expected. The example just presented was a minimization of the

assignment cost. It could have been transformed into a maximization of the assign-

ment cost by modifying the original rating matrix as follows:

0.1 Find the maximum element in the rating matrix. Create a new matrix

Co = 1%11cii by individually subtracting each element in the cost matrix from the
value of the maximum element and store the difference in the corresponding location

in CO:

c., = Ma ,, ) - a,, (B - 7)

One other variation would be the case where the number of requesters and

resources were not equal. In this case, the rating matrix would not be square as it

must be for the original Hungarian algorithm to work. This can be taken care of

by adding "dummy" resources or requesters with rating values of zero [Ign82]. This

completes the example and discussion of the Hungarian method.
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Appendix C. Additional Results

This appendix lists all of the remaining results of the implementat ions de-

scribed in this report. All entries marked with a *are more than 10O7c in error duiQ

to the accuracy of the timing function of the iPSC.

Table C-i. Timing and Speedups of the Level 1 Implementation (32 Wpns)

Weap JTarg I Processors [ Time (sec) I SB&L I SS11

"032 32 1 1.2750 1.00 1.84
32 32 2 0.2210 5.77 10.64

432 32 4 0.0523 24.38 44.97

32 32 8 *0.0245 *52.04 *96.00
32 32 16 *0.0116 *109-91 *202.76
32 132 32 1 *0.0061 1*209.02 *385.57
32 160 1 0.9100 1.00 23.84
32 160 2 0.4320 2.11 50.22
32 160 4 0.2138 4.26 101.46
32 160 8 0.1070 8.50 202-.74
32 160 16 1 0.0551 16.52 393.70

-*32 160 32 *0.0285 *31.93 *761.16
32 320 1 1.7090 1.00 29.88
32 320 2 0.840a 2.03 60.78
32 320 4 0.4215 4.05 121.13
32 320 8 0.2135 8.00 239.14
32 320 16 0.1094 15.62 466.70
32 1320 1 32 1 0,0572 129.88 1892.60

1.3
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Table C-2. Timing and Speedups of the Level 1 Implementation (64 Wpns)
Weap ] Targ I Processors Time (sec) I SB&L I SSo.

64 64 1 4.1830 1.00 3.96
64 64 2 0.6450 6.49 25.71
64 64 4 0.2143 19.52 77.37
64 64 8 0.0959 43.62 172.90
64 64 16 *0.0447 *93.58 *370.94
64 84 32 *0.0224 *186.74 *740.22
64 320 1 3.5310 1.00 37.88
64 320 2 1.6940 2.08 77.93

* 64 320 4 0.8408 4.20 157.01
64 320 8 0.4225 8.36 312.46
64 320 16 0.2139 16.51 617.19
64 320 32 0.1095 32.25 1205.62
64 640 1 6.7820 1.00 -
64 640 2 3.3800 2.01 -

0 64 640 4 1.6943 4.00 -

64 640 8 0.8515 7.96 -

64 640 16 0.4308 15.74 -

64 640 32 0.2200 30.83

1
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Table C-3. Timing and Speedups of the Level 1 Implementation (128 Wpns,

Weap Targ Processors Time (sec) I SB&L L s
128 128 1 14.5550 1.00 6.94
128 128 2 2.2250 6.54 4540
128 128 4 0.8055 18.07 125.40
128 128 8 0.3605 40.37 280.20
128 128 16 0.1759 82.75 574.25
128 128 32 0.0871 167.11 1159.71

128 640 1 13.5720 1.00 -

128 640 2 6.7240 2.02 -

128 640 4 3.3478 4.05
128 640 8 1.6771 8.09
128 640 16 0.8424 16.11
128 640 32 0.4263 31.83 -

128 1280 1 26.8220 1.00 -

128 1280 2 13.3425 2.01

128 1280 4 6.6820 4.01 -

128 1280 8 3.3503 8.01 -

128 1280 16 1.6848 15.92
128 1280 32 0.8517 3149 -

Table C-4. Timing and Speedups of the Level 2 Implementation (32 Wpii

Weap Targ ] Cntrl Proc/Cntrl Tot Proc I Time (sec) SB&L I ST__,___

32 32 2 2 6 *0.036 *32.42 *65,33
32 32 2 4 10 *0.024 *53.13 *9800
32 32 2 8 18 *0.030 *42.50 *78.40
32 32 2 12 *0,006 *212.50 *392.00
32 32 4 4 20 *0.014 *91.07 *168.00

* 32 32 8 2 24 *0.004 *318.75 *588.00
32 160 2 2 6 0.117 7.78 1S5.41
32 160 2 4 10 0.068 12.38 319.01
32 160 2 8 18 0.069 13.19 314,39
32 160 4 2 12 *0.009 *101.11 *241033

32 160 4 4 20 *0.035 *26.00 *619 80
32 160 8 2 24 *0.005 *182.00 *4338 60
32 320 2 2 6 0.205 8.34 249 06
32 320 2 4 10 0.121 14.12 421.96

32 320 2 8 18 0.093 18.38 549.00

32 320 4 2 12 *0.036 *47.47 *1418.25
32 320 4 4 20 0062 27.56 823 50
32 320 8 2 24 *0016 "106.81 *3191 06
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Table C-5. Timing and Speedups of the Level 2 Implementation (64 Wpris)

Weap Targ Cntrl Proc/Cntrl Tot Proc Time (sec) I SB&,L I SS,
64 64 2 2 6 0.244 17.14 67.95
64 64 2 4 10 0.160 26.14 103.63
64 64 2 8 18 0.129 32.43 128 53
64 64 4 2 12 0.029 144.24 571.76
64 64 4 4 20 0.060 69.72 276.35
64 64 8 2 24 0.010 418.38 1658.10
64 320 2 2 6 0.902 3.91 146.36
64 320 2 4 10 0.487 7.25 271.08
64 320 2 8 18 0.284 12.43 464.85
64 320 4 2 12 0.395 8.94 334.22
64 320 4 4 20 0.256 13.79 515.69
64 320 8 2 24 0.176 20.06 750.09
64 640 2 2 6 1.813 3.74
64 640 2 4 10 0.925 7.33 -

64 640 2 8 18 0.530 12.79 -

64 640 4 2 12 0.899 7.54
64 640 4 4 20 0.476 14.24 -

1 64 640 8 2 24 0.451 15.03 -

Table C-6. Timing and Speedups of the Level 2 Implementation (12S Wpu>,

Weap Targ I Cntrl Proc/Cntrl I Tot Proc I Time (sec) SBj&L J ,,
128 128 2 2 6 1.009 14 43 100.11
128 128 2 4 10 0.527 27.62 191 67
128 128 2 8 18 0.359 40.54 281.37
128 128 4 2 12 0.340 42.81 297.09
128 128 4 4 20 0.244 59.65 413.98
128 128 8 2 24 0.132 110.27 765.2.1
128 640 2 2 6 3.668 3.70 -

128 640 2 4 10 1.903 7.13
128 640 2 8 18 1033 13.14
128 640 4 2 12 1.812 749
128 640 4 4 20 0.932 14.56
128 640 8 2 24 0.902 15.05
128 1280 2 2 6 8.378 3 20
128 1280 2 4 10 4.283 6.26
128 1280 2 8 18 2.237 11.99
128 1280 4 2 12 4 195 6.39
128 1280 4 4 20 2 145 12 50
128 1280 8 2 24 2.122 12.61
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Table C-7. Timing and Speedups of the Level 3 Implementation (32 Wpns)

Weap (Targ j Cntrl [ Proc/Cntrl I Tot Proc ITime (sec) [ SBAL I sort1

32 32 2 2 6 0.1500 8.50 15.68
32 32 2 4 10 0.3360 3.79 7.00
32 32 2 8 18 0.9200 1.39 2.56
32 32 4 2 12 0.5158 2.47 4.56
32 32 4 4 20 0.6073 2.10 1.12
32 32 8 2 2.4 0.3403 3.75 6.91
32 160 2 2 6 0.2955 3.08 73.41
32 160 2 4 10 0.5440 1.67 39.88
32 160 2 8 18 0.8465 1.08 25.63
32 160 4 2 12 0.5275 1.73 41.12
32 160 4 4 20 0.6650 1.37 32.65
32 160 8 2 24 0.3976 2.29 54.56
32 320 2 2 6 0.4940 3.46 103.35
32 320 2 4 10 0.7965 2.15 64 10
32 320 2 8 18 1.0390 1.64 49.14
32 320 4 2 12 0.6968 2.45 73.27
32 320 4 4 20 0.8420 2.03 60.64
32 320 8 2 24 0.5058 3.31 100.94

Table C-8. Timing and Speedups of the Level 3 Implementation (64 WpnO

' PWeap [ Targ Cntrl [ Proc/Cntrl Tot Proc Time (sec) SB&L SSo,
64 64 2 2 6 0.4485 9.33 36.97
64 64 2 4 10 0.9235 4.53 17.95

, 64 64 2 8 18 1.7630 2.37 940
64 64 4 2 12 1.0165 4.12 16.31

N: 64 64 4 4 20 1.1958 3.50 13.87
0 64 64 8 2 24 0.6671 6.27 24.86

64 320 2 2 6 1.1194 3.15 117.93
64 320 2 4 10 1.9175 1.84 68.85
64 320 2 8 18 2,6600 1.33 49.63
64 320 4 2 12 1.7131 2.06 77.06
64 320 4 4 20 2.0381 1.73 64.77
64 320 8 2 24 1.1914 2.96 110,81

* 64 640 2 2 6 2.0045 3.38 -

64 640 2 4 10 3.2400 2.09
* 64 640 2 8 18 4.1520 1.63 -

64 640 4 2 12 2.8298 2.40
4- 64 640 4 4 20 3.4108 1.99 -

64 640 8 2 24 2.0333 3.34
6
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Tabie C-9. Timing and Speedups of the Level 3 Implementation (121' i,.-

Weap [ Targ Cntrl I Proc/Cntrl ] Tot Proc Time (sec) S ..B& .
128 128 2 2 6 1.5355 9.4,k 65
128 128 2 4 10 3.0785 473 32 .1
128 128 2 8 18 5 6275 2 59 17 95
128 128 4 2 12 3.3035 4 41 305,
128 128 4 4 20 3.8353 3,80 26 3-
128 128 8 2 24 2.1064 6.91 47 115
128 640 2 2 6 4.5330 299
128 640 2 4 10 7.8575 1 73
128 640 2 8 18 11 3755 1 19
128 640 4 2 12 7.2560 1 R7
128 640 4 4 20 8.5495 1.59

S 128 640 8 2 24 4.9200 2.76
128 1280 2 2 6 8.7008 3.08
128 1280 2 4 10 14.9796 1 ,j
128 1280 2 8 18 20.3846 1.32
128 1280 4 2 12 13.4023 200
128 1280 4 4 20 15.3583 1 75
128 1280 8 2 24 8.9406 3.00

Table C-10. Timing and Speedups of the Level 4 Implementation (32 W\ l-

[Weap Targ Processors jTime (sec) ]SB&L IISSr!I

32 32 2 1.641 0.78 1 43
32 32 4 1.713 0.74 1 17

32 32 8 1 934 066 1 22
32 32 16 3.918 0 33 060
32 32 32 12.798 0.10 0 18
32 160 2 1.513 0.60 14.3-1
32 160 4 1.285 0.71 168s
32 160 8 2.176 0.42 9.97
32 160 16 7.354 0.12 2.95
32 160 32 21.327 004 1.02
32 320 2 2.340 0.73 21 82
32 320 4 1.461 1.17 34 95
32 320 8 2.091 0 82 24 42
32 320 16 7.654 0.28 667

3
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Table C-11. Timing and Speedups of the Level 4 Implementation (64 Wpns)

0 Weap ] Targ I Processors I Time (sec) SB&,L I Ss,, ]
64 64 2 2.594 1.61 6.39
64 64 4 2.540 1.65 6.53
64 64 8 3.296 1.27 5.03
64 64 16 4.589 0.91 3.61
64 64 32 12.463 0.34 1.33

* 64 320 2 5.884 0.60 22.44
64 320 4 3.427 1.03 38.52
64 320 8 4.022 0.88 32.82
64 320 16 9.100 0.39 14.51
64 320 32 26.155 0.14 5.05
64 640 2 9.585 1.41 -
64 640 4 6.020 1.13 -

64 640 8 6.106 1.11 -

64 640 16 11.203 0.61 -

Table C-12. Timing and Speedups of the Level 4 Implementation (128 Wpns)
Weap I Targ Processors Time (sec) I SB&L I Ss..t

128 128 2 17.808 0.82 5.67
128 128 4 15.433 0.94 6.55
128 128 8 16.619 0.88 6.08
128 128 16 13.246 1.10 7.63
128 128 32 24.843 0.59 4.07
128 640 2 20.321 0.67 -
128 640 4 11.739 1.16 -
128 640 8 11.865 1.14 -
128 640 16 16.579 0.82 -
128 1280 2 33.239 0.81 -
128 1280 4 22.152 1.21 -
128 1280 8 18.657 1.44 -
128 1280 16 26.61 1.01 -
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Table C-13. Assignment Results of the Level 1 Implementation (32 Wpii ' I

Weap [Tag I Processors I Cost % Effective I VcWasted
32 32 1 2660.8 100.0 0.0
32 32 2 1766.4 74.4 26.5
32 32 4 1550.4 67.5 32.5
32 32 8 1528.0 65.6 34.4
32 32 16 1476.8 64.4 35.6
32 32 32 1473.6 63.1 36.9
32 160 1 384.0 100.0 0.0
32 160 2 380.8 93.8 6.2
32 160 4 376.0 92.5 7.5
32 160 8 376.0 91.3 8.7
32 160 16 376.0 90.6 9.4

S 32 160 32 376.0 90.6 9-A

32 220 1 278.4 100.0 0.0

32 320 2 276.8 95.0 5.0
32 320 4 276.8 93.8 6.2
32 320 8 276.8 93.8 6.2
32 320 16 276.8 93.8 6.2
32 320 32 276.8 93.8 6.2

Table C-14. Assignment Results of the Level 1 Implementation (64 Wpns)

Weap Targ Processors Cost I Effective % Wasted
64 64 1 2016.0 100.0 0.0
64 64 2 1214.4 75.6 24.4
64 64 4 1337.6 71.3 28.7
64 64 8 1310.4 69.7 30.3
64 64 16 1296.0 68.1 31.9
64 64 32 1289.6 67.5 32.5

64 320 1 550.4 100.0 0.0
64 320 2 547.2 93.4 6.6
64 320 4 545.6 90.0 10.0
64 320 8 545.6 89.1 10.9

64 320 16 545.6 88.8 11.2
64 320 32 545.6 88.8 11.2
64 640 1 4864 100.0 0.0
64 640 2 486.4 92.8 7.2
64 640 4 486.4 91.3 8.7
64 64 8 486.4 89.7 10.3
64 640 16 486.4 88.4 11.6
64 640 32 486.4 87.8 12.2
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Table C-15. Assignment Results of the Level 1 Implementation (128 Wpns)

" [ Weap Targ Processors I Cost % Effective % Vasted

128 128 1 2158.4 100.0 0.0
128 128 2 1668.8 74.4 25.6
128 128 4 1601.6 68.1 31.9
128 128 8 1566.4 65.2 34.8
128 128 16 1558.4 64.1 35.9
128 128 32 1552.0 63.8 36.2
128 640 1 992.0 100.0 0.0
128 640 2 990.4 90.6 9.4
128 640 4 990.4 85.0 15.0
128 640 8 990.4 82.7 17.3
128 640 16 990.4 81.7 18.3
128 640 32 990.4 81.1 18.9
128 1280 1 937.6 100.0 0.0
128 1280 2 936.0 89.7 10,3

128 1280 4 936.0 85.3 14.7
128 1280 8 936.0 82.2 17.8
128 1280 16 936.0 80.9 19.1
128 1280 32 936.0 80.5 19.4

: Tabl C-16. Assignment Results of the Level 2 Implementation (32 Wpns)

Weap Targ Cntrl [ Proc/Cntrl I Tot Proc I Cost I% Effective % Idle 1 7( Wasted

32 32 2 2 6 1113.6 68.1 16.3 15.6
32 32 2 4 10 1008.0 65.6 20.0 14.4
32 32 2 8 18 915.2 64.4 21.9 13.7
32 32 4 2 12 1406.4 65.6 5.0 29.4
32 32 4 4 20 1296.0 64.4 6.9 28.7
32 32 8 2 24 1412.8 64.4 2.5 33.1
32 160 2 2 6 368.0 92.5 1.9 5.6
32 160 2 4 10 361.6 91.2 3.8 5.0
32 160 2 8 18 355.2 90.6 5.0 4A
32 160 4 2 12 369.6 91.2 1.9 6.9
32 160 4 4 20 363.2 90.6 3.1 63
32 160 8 2 24 369.6 90.6 1.3 8.1
32 320 2 2 6 272.0 93.8 1.9
32 320 2 4 10 272.0 93.8 1.9 4.4
32 320 2 8 18 272.0 93.8 1.9 4.4

32 320 4 2 12 276.8 93.8 0.0 6.3
32 320 4 4 20 276.8 93.8 0.0 6.3

- 32 320 8 2 24 276.8 93.8 0.0 6.3
I
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Table C-17. Assignment Results of the Level 2 Implementation (64 W\pns)

Weap Targ [ Cntrl 1 Proc/Cntrl Tot Proc Cost %0 Effective % Idle 7T Wasted

64 64 2 2 6 1158.4 71.3 10.4 17.9
64 64 2 4 10 1099.2 69.7 12.8 17.5

64 64 2 8 18 1033.6 68.1 15.6 16 3

64 64 4 2 12 1236.8 69.7 3.8 26 t;
64 64 4 4 20 1171.2 68.1 6.6 25 :
64 64 8 2 24 1220.8 68.1 2.8 29.1
64 320 2 6 523.2 90.0 3.8 6.3
64 320 2 4 10 520.0 89.1 4.7 6.3
64 320 2 8 18 518.4 88.8 5.0 6.3
64 320 4 2 12 539.2 89.1 1.3 97

64 320 4 4 20 537.6 88.8 1.6 9.7
64 320 8 2 24 544.0 88.8 0.3 10.9

64 640 2 2 6 476.8 91.3 1.9 6.8
64 640 2 4 10 468.8 89.7 3.4 6.8
64 640 2 8 18 460.8 88.1 5.0 6.8
64 640 4 2 12 478.4 89.7 1.6 8.8
64 640 4 4 20 470.4 88.1 3.1 8.8
64 640 8 2 24 478.4 88.1 1.6 103

Table C-18. Assignment Results of the Level 2 Implementation (128 Wpns)

Weap ] Targ [ Cntrl Proc/Cntrl Tot Proc Cost [% Effective [ c Idle I V(, Wasted

128 128 2 2 6 1361.6 90.8 15.4 27.1
128 128 2 4 10 1259.2 65.2 15.8 19.1

128 128 2 8 18 1203.2 64.1 17.8 1S.1
128 128 4 2 12 1446.4 65.2 6.3 28.6

128 128 4 4 20 1372.8 64.1 8.9 27.0
128 128 8 2 24 1483.2 64.1 3.1 32.8

128 640 2 2 6 928.0 85.0 6.1 8.9

128 640 2 4 10 902.4 82.7 8.6 8.8
128 640 2 8 18 889.6 81.7 9.8 8.4

-. 128 640 4 2 12 963.2 82.7 2.7 14.7

128 640 4 4 20 948.8 81.7 4.1 1.1.2
128 640 8 2 24 976.0 81.7 1.4 16 9
128 1280 2 2 6 881.6 85.3 5.3 9.4

128 1280 2 4 10 846.4 82.2 8.8 9.1

128 1280 2 8 18 833.6 80.9 10.0 9.1

128 1280 4 2 12 900.8 82.2 3.4 14 4
128 1280 4 4 20 884.8 80.9 5.0 14.1
128 1280 8 2 24 920.0 80.9 1.6 17.5
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Table C-19 Assignment Results of the Level 3 Implementation (32 Wpns)

LWeap I Targ I Cntrl Proc/Cntrl Tot Proc ] Cost % Effective % Wasted

32 32 2 2 6 9596.8 76.3 23.7
32 32 2 4 10 9857.6 78.1 21.9
32 32 2 8 18 8180.8 72.5 27.5
32 32 4 2 12 4302.4 66.9 33.1
32 32 4 4 20 4385.6 66.9 33.1

* 32 32 8 2 24 2510.4 63.8 36.2
32 160 2 2 6 672.0 93.8 6.2
32 160 2 4 10 1276.8 93.8 6.2
32 160 2 8 18 1916.8 93.8 6.2
32 160 4 2 12 1104.0 91.9 8.1
32 160 4 4 20 1656.0 92.5 7.5

to 32 160 8 2 24 964.8 91.3 8.7
32 320 2 2 6 1332.8 95.0 5.0
32 320 2 4 10 1332.8 95.0 5.0
32 320 2 8 18 1332.8 95.0 5.0
32 320 4 2 12 276.8 93.8 6.2
32 320 4 4 20 276.8 93.8 6.2

G- 32 320 8 2 24 276.8 93.8 6.2

Table C-20. Assignment Results of the Level 3 Implementation (64 Wpns)

[_Weap I Targ F Cntrl Proc/Cntrl Tot Proc I Cost % Effective - Wasted
64 64 2 2 6 9766.4 76.9 23.1
64 64 2 4 10 10984.0 75.0 25.0
64 64 2 8 18 10337.6 73.8 26.2
64 64 4 2 12 4660.8 70.3 29.7
64 64 4 4 20 7102.4 69.1 30.9
64 64 8 2 24 4192.0 68.4 31.6
64 320 2 2 6 4758.0 93.4 6.6
64 320 2 4 10 5696.0 92.2 7.8
64 320 2 8 18 5928.0 92.2 7.8
64 320 4 2 12 1764.0 89.8 102
64 320 4 4 20 1972.0 89.S 10.2
64 320 8 2 24 1222.0 89.1 109

- 64 640 2 2 6 1780.8 92.5 75
64 640 2 4 10 4190.4 91.9 8.1
64 640 2 8 18 5326.4 90.6 9.4
64 640 4 2 12 2206.4 90.6 9.4
64 640 4 4 20 2881.6 89.7 10.3
64 640 8 2 24 1960.0 89.1 109
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Table C-21. Assignment Results of the Level 3 Implementation (128 Wpns)

Weap I TargJ Cntrl I Proc/Cntrl Tot Proc Cost I % Effective {7X Wasted
128 128 2 2 6 16811.2 72.3 27.7
128 128 2 4 10 20294.0 69.5 30.5
128 128 2 8 18 17078.4 69.4 30.6
128 128 4 2 12 9393.6 66.4 33.6
128 128 4 4 20 13936.0 65.8 34.2
128 128 8 2 24 9993.3 65.9 34.1
128 640 2 2 6 12964.8 87.8 12.2
128 640 2 4 10 13024.0 87.5 12.5
128 640 2 8 18 14980.8 86.4 13.6

e" 128 640 4 2 12 6249.6 83.6 16.4
128 640 4 4 20 8673.6 82.8 17.2
128 640 8 2 24 3081.6 81.9 18.1
128 1280 2 2 6 11006.7 87.0 13.0
128 1280 2 4 10 14636.0 861 13.9
128 1280 2 8 18 12617.3 84.9 15.1
128 1280 4 2 12 7730.7 82.7 17.3

-e 128 1280 4 4 20 8046.7 81.8 18.2
128 1280 8 2 24 2969.3 81.3 18.7

Table C-22. Assignment Results of the Level 4 Implementation (32 Wpns)

Weap Targ Processors ] Cost % % Effective
32 32 2 2660.8 100.0
32 32 4 2660.8 100.0
32 32 8 2660.8 100.0
32 32 16 2660.8 100.0
32 32 32 2660.8 100.0
32 160 2 384.0 100.0
32 160 4 384.0 100.0
32 160 4 384.0 100.0
32 160 8 384.0 100.0
32 160 16 384.0 100.0

,--32 160 32 384.0 100.0

32 320 2 278.4 100.0
32 320 4 278.4 100.09 32 320 8 278.4 100.0
32 320 16 278.4 100.0
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Z Table C-23. Assignment Results of the Level 4 Implementation (64 Wpns)
(Weap I Targ I Processors J Cost % Effective

64 64 2 2016.0 100.0
64 64 4 2016.0 100.0
64 64 8 2016.0 100.0
64 64 16 2016.0 100.0
64 64 32 2016.0 100.0
64 320 2 550.4 100.0
64 320 4 550.4 100.0
64 320 8 550.4 100.0
64 320 16 550.4 100.0
64 320 32 550.4 100.0
64 640 2 486.4 100.0
64 640 4 486.4 100.0
64 640 8 486.4 100.0
64 640 16 486.4 100.0

Table C-24. Assignment Results of the Level 4 Implementation (128 Wpns)

Weap JTarg Processors I Cost % Effective

128 128 2 2158.4 100.0
128 128 4 2158.4 100.0
128 128 8 2158.4 100.0

40 128 128 16 2158.4 100.0
128 128 32 2158.4 100.0
128 640 2 992.0 100.0
128 640 4 992.0 100.0
128 640 8 992.0 100.0
128 640 16 992.0 100.0
128 1280 2 937.6 100.0
128 1280 4 937.6 100.0
128 1280 8 937.6 100.0
128 1280 16 937.6 100.0
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ABSTRACT

The process of effectively coordinating and controlling resources
during a military engagement is known as Battle Management/ Command,

Control, and Communications (BM/C3). One key task of BM/C3 is allocating
weapons to destroy targets. The focus of this research is on developing
parallel methods to achieve fast and cost effective assignment of weapons

to targets. Using the sequential Hungarian method for solving the
assignment problem as a basis, this report presents the development of
four parallel assignment algorithms implemented on the Intel iPSC hypercube
computer.

The first approach partitions the problem space into smaller,
independent sub-problems and assigns each to a processing node the
hypercube. The second and third approaches also partition the )blem

space but they assign each partition to a group of processing des.
Each group is controlled by a separate node which further subdi--ides
the partition among members of the group. In the second approa h, the
control node acts as an arbitrator to eliminate the redundant as;ignment

* of weapons by selecting the least costly weapon allocation and idling
the more costly redundant allocations. The third approach eliminates
redundant weapon allocations by also selecting the least costly weapon
allocations, but directs additional processing to reallocate the more
costly weapons. The fourth approach is a parallel implementation of the
Hungarian method, where certain subtasks of the algorithm are performedqin parallel. This approach produces an optimal assignment instead of the
sub-optimal assignment generally obtained using either of the threeheuristic methods.

The relative performance of the four approaches is compared by
varying the number of weapons and targets, the number of processors,
and the size of the problem partitions. The first and second approaches
produce significantly faster assignment solutions than those possible with
the baseline sequential methods. The third and fourth approaches yield

slower solutions, but are still faster than sequential methods of

assignment.
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