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stages of this research, has been modified considerably to handle complex mechanisms with sliding

masses and mechanisms operating at relatively high speeds. The analysis takes into account the

effects of geometric and material nonlinearities, vibrational effects and coupling of

deformations. Numerical results have been reported for certain mechanism examples. The effects

of nonlinearities have been found to be significant on the dynamic behavior of mechanisms.

Considerable progress has been made in developing a nonlinear finite element procedure for

, three-dimensional mechanisms. Numerical results obtained for some example problems indicate the

validity of the current three-dimensional formulation. A new optimization algorithm has also

been developed based on the Gauss method to handle various types of nonlinear constraints with

the goal of reducing the number of analyses required to obtain an optimal design. Complete

details of the nonlinear finite element procedures as well as the optimization technique are

available in published papers, copies of which are included here in the Appendix. Because of the

complex nature of the nonlinear analysis, which had to be repeated many times during the

optimization process, considerable amount of computer time was needed for this research. To help

overcome these computational difficulties, DoD and NSF provided funds through two separate grants

to purchase a research computer and other associated equipment as well as access to a
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SUMMARY

A nonlinear finite element analysis procedure which was developed for planar mechanisms

during the first phase of this research has undergone considerable modification to handle complex

S.mechanisms with sliding masses and mechanisms operating at relatively high speeds. A suitable

nonlinear finite element analysis procedure has also been developed for three-dimensional

* mechanisms. In both cases, the analysis takes into account the effects of geometric and material

nonlinearities, vibrational effects, and coupling of deformations. Numerical results have been

reported for certain mechanism examples. These results indicate significant influences of the

geometric as well as the material nonlinearity effects on the dynamic behavior of mechanisms. In the

optimal design area, a new algorithm has been developed for finding the minimum of a sum-of-squares

objective function subject to general nonlinear constraints. The solution of some selected examples

* indicate good results in terms of the total number of objective function evaluations to obtain an

optimal design. Complete details of these investigations as well as those of the nonlinear finite

element analysis are included in the Appendix. To meet the extraordinary computational needs of this

project, a separate VAX 11/785 computer and peripheral equipment were made available through a DoD

research grant. The National Science Foundation also provided funds for some additional equipment as

well as computational time on a supercomputer. The current research will continue with the help of a

recently obtained National Science Foundation grant (Grant No. INT-8616036) which involves the

development of a joint clearance model for mechanical mechanisms and its inclusion in the vibrational

analysis of linkages undergoing large deformations due to high speeds and large loads.

RESEARCH OBJECTIVES

The objective of this research was to develop a nonlinear finite element dynamic analysis

procedure for planar as well as spatial mechanisms that are frequently used in space structures.

Included in the nonlinear analysis are the effects of curvature-displacement nonlinearity,

nonlinearity due to extension or stretching (both caused by large deformations), material

nonlinearity as well as combinations of these. In addition to the nonlinear analysis, an efficient

optimal design method was to be developed to handle objective functions composed of combinations of
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rigid body and deformation displacements involving geometric design variables as well as

cross-sectional sizes of the members of the mechanism subject to limitations on stresses and

deformations. Thus the proposed research involves the following.

a) develop a nonlinear finite element procedure for dynamic planar mechanisms.

b) develop an efficient optimization method involving a small number of analyses for mechanism design

problems.

" c) extend the nonlinear analysis procedure developed for two-dimensional mechanisms to

three-dimensional mechanisms.

d) apply the optimization technique developed to simple mechanism problem.

.) combine the nonlinear analysis procedure with the optimization technique to design complex

"- three-dimensional mechanisms, robots and mechanical manipulators.

SIGNIFICANT ACCOMPLISHMENTS

A nonlinear finite element analysis procedure has been developed for planar mechanisms to

handle geometric and material nonlinearities (see the publications list and Appendix for details).

The results of several example mechanisms clearly indicate the need to include these types of

nonlinearities in the dynamic analysis. The difficulties in extending this approach to complex

-°planar mechanisms with sliding masses and mechanisms operating at relatively high speeds have been

* - overcome by using a modified finite-element formulation to handle such complex cases. Some example

problems using this new formulation have been considered in a paper entitled, "Vibrational Analysis

of Mechanisms with Geometric and Material Nonlinearities" (with E. Kear, M. Sathyamoorthy and K.D.

-. Willmert as authors) presented at the Joint AFOSR-SES Meeting held at the State University of New

York at Buffalo in August 1986. Similar results have also been presented in a very recent paper

entitled, "Effect of Geometric and Material Nonlinearities on Vibration of Planar Mechanisms" by E.B.
A

Kear, M. Sathyamoorthy and K.D. Willmert, presented at the ARO/AFOSR Meeting on Nonlinear Vibrations,

Stability and Dynamics of Structures and Mechanisms held at VPI & SU, Blacksburg, Virginia, March

S 1987. Considerable progress has also been made in developing a nonlinear finite element procedure

for three-dimensional mechanisms. Some example problems have been solved and the results indicate
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the validity of the three-dimensional formulation. The general three-dimensional formulation is

m given in a paper entitled, "Finite-Element Nonlinear Analysis of Three-Dimensional Mechanisms." by

M. EI-Sawy, K.D. Willmert and M. Sathyaxnoorthy included in the Appendix of this report.

In the optimization area, a very efficient optimality criterion technique called the Gauss

Constrained Method has been developed to solve optimal design problems with objective functions which

-. are the sum of squared quantities with general nonlinear constraints. The technique has the

.- . advantage of reducing the number of analyses required to obtain an optimal design, thereby

significantly reducing the computational time. This method is described in a paper entitled, "The

S .Development and Application of Gauss' Nonlinearly Constrained Optimization Method" (with D.R. Boston,

*.-. K.D. Willmert and M. Sathyamoorthy as authors) published in the Journal of Computer Methods in

Applied Mechanics and Engineering. In a paper entitled, "The Gauss Optimization Method for Problems

with General Nonlinear Constraints" by T.E. Potter, K.D. Willmert and M. Sathyamoorthy (presented at

the 22nd Annual Meeting of the Society of Engineering Science held at the Pennsylvania State

University, University Park, Pennsylvania, October 1985), a new algorithm has been developed for

finding the minimum of a sum-of-squares objective function subject to general nonlinear constraints.

The solution of examples indicate good results in terms of the total number of objective function

evaluations required by the algorithm to obtain an optimal design. The optimization techniques

developed in this research as extensions of the Gauss method to handle various types of constraints,

reduce the number of analyses required to obtain an optimal design. The method is now being used to

• , solve additional example problems including various mechanisms.

Because of the very complex nonlinear analysis required, which must be repeated many times

during the optimization process, a considerable amount of computer time was needed for this

research. To meet these needs, a proposal entitled "Laboratory for Graphical Analysis of Nonlinear

Deformations in Dynamic Structural-Mechanical Systems" was submitted to DoD under the DoD -

University Instrumentation Program to purchase a separate research computer for this project. This

- " resulted in a grant (No. AFOSR-85-0103) of $101,567. Although the original proposal called for the4
purchase of a VAX 11/730, a very careful and thorough search for the best computer (with the

"* available funds) resulted in the purchase of a much larger and faster VAX 11/785. Digital Equipment

% P
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Corporation offered a sizable reduction in cost of its VAX 11/785 computer under the DEC Educational

p Discount Program. Because of this reduction and because of additional cost sharing by Clarkson

University's School of Engineering, it was possible to purchase the VAX 11/785 at no additional cost

- to DoD. The computer equipment purchased through DoD-URIP Grant and other sources includes

1. VAX 11/785 COMPU'ER HARDWARE

1. VAX 11/780 Packaged System Including: $102,750

(A) VAX 11/780 CPU

(B) 2-Mbytes ECC MOS (64-K chip) Memory
uq

(C) H9652 UNIBUS Expansion Cabinet with BA 11-K and DDI 1-DK

(D) VAX/VMS License and Warranty

2. TU80 9 Track Streaming Tape Drive with Cabinet $8,800

3. RUA81 456 Mbyte Fixed Disk $19,600

4. 2-Mbytes of Additional Memory $8,100

5. FP780 Floating Point Accelerator $8,960

6. Two DMF32-LP Communication Interfaces $5,250

7. 780 to 785 Upgrade Kit $80,000

8.25 ft. RS 232 Sync Cable $95

9. Two 300/1200/2400 Baud Telephone Modems $1,060

10. Installation N/C

11. Insurance and Transportation $1,817

12. Miscellaneous - Installation of Power, Phone

Lines, Terminal Lines, etc.

Total Computer Hardware Cost $238,188

If. COMPUTER DISPLAY TERMINAL

1. Tektronix M4115B Computer Display Terminal $19,950

2. Option NI: Warranty-Plus $1,025

3. Option 2B: Additional 512 Kbytes RAM $4,600

4. Option 23: Additional Four Planes of Display Memory $6.0(X)

* 7
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5. Option 09: 4695 Color Copier Interface $500

6. Option 42: Single Flexible Disk $1,700

7. Display Stand $750

8. Software Package $1,000

9. 4695 Color Graphic Copier $1,595

10. Option 42: Warranty-Plus $430

11. 4926 10 Mbyte Hard Disk $4,200

12. Option NI: Warranty-Plus $210

13. Shipping $371

Total Display Terminal Cost $42,331

III. SOFTWARE FOR VAX 11/785 COMPUTER

•-" 1. VMS Operating System N/C

2. FORTRAN License $5,170

* 3. DECNET Communication Software $2,950

4. IGL Graphics Software $2,677

5. PSI Access Software $1,850

3 Total Software Cost $12,647

IV. TOTAL HARDWARE & SOFTWARE COSTS $293,166

The total value of the equipment and software is $293,166. Discounts and contributions from

Digital Equipment Corporation, Tektronix, Clarkson University's College of Engineering and the

Department of Mechanical and Industrial Engineering total $191,599. Thus, the total cost of the

hardware and software to DoD remained at $101,567 as originally proposed. It should be noted that

the capabilities of the VAX 11/785 system, including the Tektronix 4115 graphic terminal, are

enormous compared to the originally proposed VAX 11/730. The VAX 11/785 system is five times faster

than the VAX 11/f730, has 4 Mbytes of memory (compared to only I Mbyte of memory for VAX 11/730). 456

Mbytc of disk space (compared to 121 Mbyte of disk space) a total of 16 terminal lines, and a 9 track

streaming tape drive (no tape drive was included in the original VAX 11/730 system).

Hardware and software were also purchased to tie the VAX 1t/785 into Clarkson's campus-wide

8
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computer network. The physical link is through the University's VAX 11/780, but this is tied to the

other computers on campus, which is linked to other universities though BITNET. This tie in of the

VAX 11/785 allows the users of this research computer access to many of the other facilities of the

university, such as high speed printers, digital plotters, laser printers, etc. It also allows

researchers with terminal connected to the other computers on campus to sign on to the VAX 11/785 as

though they were directly connected.

The Tektronix 4115B computer display terminal, which is connected to the VAX 11/785 computer,

has recently been expanded to improve its capabilities. Both a 3-dimensional wire frame and a shaded

*- surface option have been added. These options allow the terminal to locally manipulate 3-dimensional

objects, such as rotating them in 3-dimensional space, removing hidden lines, drawing shaded

- surfaces, etc. These expansions result in this terminal being equivalent to a Tektronix 4129

terminal, which is the most recent high-end terminal introduced by Tektronix. The total cost of

these options was $16,475, which was made possible through contributions from Gleason Foundation,

Proctor and Gamble, Tektronix, Coming Glass Works as well as the University's School of

Engineering.

A grant from the National Science Foundation (Grant No. DMC-8500627), with M. Sathyamoorthy

and K.D. Willmert as principal investigator, included funds totaling $10,715 for the further

expansion of the graphic facilities. A Tektronix 4692 color graphics copier, a Tektronix 4107 low

resolution graphic terminal and two Z-200 personal computers were purchased through this NSF grant.

These purchases complement the high resolution Tektronfix 4115B terminal obtained through the
t,,,

DoD-University Research Instrumentation Program. In addition to these equipment funds, this NSF

grant provided, as part of its Cooperative Program on the Use of Supercomputers, twenty-five hours of

CPU time on a Cray X-MP supercomputer. The program development and trial runs were done on the DoD

funded in house VAX 11/785 research computer with final runs made at the supercomputer located at the

University of Illinois.

A summary of funding sources including the 1984-85 DoD-URIP Grant to purchase the VAX 11/785

research computer and other associated equipment (including upgrades) is given below:

DoD - University Research Instrumentation Program $101,567

9
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Digital Equipment Corporation Contribution $120,852

Tektronix Discount and Contribution $11,110

National Science Foundation $10,715

Clarkson University's College of Engineering Contribution $56,999

Department of Mechanical & Industrial Engineering $3,176

Clarkson's Educational Resource Center $3,300

Gleason Foundation $7,000

Proctor and Gamble $5,300

Coming Glass Works $337

TOTAL $320,356

As a result of contributions from all of these sources, the total value of the equipment within this

laboratory exceeds $300,000 for an investment of only slightly over $100,000 from DoD.

A recent grant from the National Science Foundation (Grant No. INT-8616036), with K.D.

Willmert and M. Sathyamoorthy as principal investigator, will help accomplish all the remaining goals

of the current AFOSR research. The funded NSF research involves a cooperative effort between the

principal investigators and a collaborator at the Korea Advanced Institute of Science and Technology

in the Republic of Korea. The particular project will require the development of a joint clearance

model for mechanical mechanisms and its inclusion in the vibrational analysis of linkages undergoing

Silarge deformations due to high speeds and large loads. Also included is the study of the optimal

design of counter weights to reduce, as much as possible, the joint forces. The duration of the NSF

research will be until December 1989.

PUBLICATIONS

a) Technical Reports

1. D.R. Boston, K.D. Willmert and M. Sathyarnoorthy, "The Gauss Nonlinearly Constrained Method Applied

f . to Mechanism Design," Department of Mechanical and Industrial Engineering, Clarkson University,

Potsdam. NY, Report No. MIE-104, June 1984.

2. K.D. Willmert and M. Sathyamoorthy, "Research Progress and Forecast Report on Nonlinear Analysis
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and Optimal Design of Dynamic Mechanical Systems for Spacecraft Application," Report to AFOSR in

August 1984.

3. D.W. Tennant, K.D. Willmert and M. Sathyamoorthy, "Vibration of Mechanisms with Material and

Geometric Nonlinearities Using Variable Length Finite Elements," Department of Mechanical and

Industrial Engineering, Clarkson University, Potsdam, NY, Report No. MIE-106, October 1984.

4. K.D. Willmert and M. Sathyamoorthy, "Nonlinear Analysis and Optimal Design of Dynamic Mechanical

Systems for Spacecraft Application," AFOSR Annual Technical Report No. 1, February 1985.

5. K.D. Wilimert and M. Sathyamoorthy, "Research Progress and Forecast Report on Nonlinear Analysis

and Optimal Design of Dynamic Mechanical Systems for Spacecraft Application," Report to AFOSR in
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7. K.D. Willmert and M. Sathyamoorthy, "Nonlinear Analysis and Optimal Design of Dynamic Mechanical

Systems for Spacecraft Application" AFOSR Annual Technical Report No. 2, February 1986.
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Design of Dynamic Mechanical Systems," NSF Final Project Report, March 1987.

b) Technical Journals, Meetings and Conferences:

1. K.D. Willmert and M. Sathyamoorthy, "Optimal Design of Flexible Mechanisms," Presented at the

Second Forum on Space Structures, McLean, Virginia, June 1984.

2. D.R. Boston, K.D. Willmert and M. Sathyamoorthy, "Gauss' Nonlinearly Constrained Optimization

Method," Proceedings of the ASCE Engineering Mechanics Specialty Conference, University of

Wyoming, Laramie, August 1994, pp. 82-85.

3. K.D. Willmert and M. Sathyamoorthy, "Optimal Design of Dynamic Mechanical Systems Undergoing
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Large Deformations," Presented at the Conference on Supercomputers in Mechanical Systems Research,

Lawrence Livermore Laboratory, Livermore, California, September 1984.

4. M. Sathyamoorthy and K.D. Willmert, "Nonlinear Analysis and Design of Flexible Met. .inisms"

Presented at the Third Forum on Large Space Structures, Texas A & M University. College Station,

Texas, July 1985.

. T E. Potter, K.D. Willmert and M. Sathyamoorthy, "The Gauss Optimization Method for Problems with

General Nonlinear Constraints," Proceedings of the Society of Engineering Science Meeting, The

Penns, lvania State University, Univerisity Park, Pennsylvania, October 1985, p. 10.

. D.W. Tennant, K.D. Willmert and M. Sathyamoorthy, "Finite Element Nonlinear Vibrational Analysis

of- Planar Mechanisms," Paper published in the Special Issue of Material Nonlinearity in Vibration

Problems, AMD Vol. 71, ASME, November 1985, pp. 79-89.

" D.R. Boston, K.D. Willmert and M. Sathyamoorthy, "The Development and ,py ication of Gauss'

Nonlinearly Constrained Optimization Method," Computer Methods in Applied Mechanics and

aEngineering, Vol. 57, No. 1, 1986, pp. 17-24.

Edward Kear III, M. Sathyamoorthy and K.D. Willmert, "Vibration Analysis of Mechanisms with

Geometric and Material Nonlinearities," Paper presented at the Joint AFOSR-SES Meeting, State

pUniversity of New York at Buffalo, August 1986.

E.B. Kear III, M. Sathyamoorthy and K.D. Willmert, "Effect of Geometric and Material

Nonlinearities on Vibration of Planar Mechanisms," Paper presented at the ARO/AFOSR Meeting on

Nonlinear Vibrations. Stability and Dynamics of Structures and Mechanisms, VPI & SU, Blacksburg,

Virginia, March 1987.

* M. EI-Sawy, K.D. Willmert and M. Sathyamoorthy, "Finite Element Nonlinear Analysis of
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4. INTEGRATED DESIGN OF STRUCTURE AND CONTROL

by Vipperla B. Venkayya

Introduction

The panel identified several presentations relevant to the subject

of integrated design. They included the following:

1. Ken Willmert of Clarkson University on the optimization of flexible

mechanisms;

2. Mohan Aswani and G. T. Tseng of The Aerospace Corporation on

continuum modeling of the plant as one means of simplifying

structure-control optimization problems;

3. Manohar Kamat of VPI on the issues of plant nonlinearities

" (geometric and material), proposing that they be considered in

* control system design;

4. Moktar Salama of JPL on structure-control optimization with a single

performance index consisting of the structural mass and the total

control input;

5. Dale Berry of Purdue University on continuum modeling as a means

of reducing plant dimensionality;

6. K. C. Park of Lockheed Palo Alto Research Lab on the use of

transient energy density profiles to achieve optimum disturbance

dissipation and control;

7. John Junkins of VPI on some recent results of eigenvalue placement

via structural parameter optimization.

The material of these presentations was, to a certain extent, the basis

for the panel discussions.

The panel proposed the following five topics for discussion:

4' 49
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DYNA.MC MECHANICAL SYSTEMS

"SDERGOINC LARGE DEFORMATIONS

K. D. Willmert

M. Sathyamoorthy

Mechanical and Industrial Engineering Department

Clarkson University

Potsdam, NY 13676

Introduction mechanism in which the deformations of the members
serve to aid the mechanism in producing the desired

T:.eneral purpose ot moat mechanical devices motion. Thus a much wider range of motions is

Ls produce accurate two or three-dimensional possible than could be obtained from a rigid link

-ovement of objects. However, for large external device. The optimal design, however, is likely to

oa0s andior nigh speed operation, sufficient forces, contain several members which are very flexible (any

w,. torn inertial and externally applied, are produced to members that are required to be rigid can be designed

-" cause their members, joints, and support structure to using appropriate constraints). Because of these
Jetcorm. This results in a loss of accuracy of the large deformations, a general nonlinear vibrational

* oevice. To solve this problem, the current design deformation and stress analysis is required. The
prccedure is to increase the stiffness of the members types of nonlinearities include:

bv modifying their cross-sectional sizes (commonly by
, .ncreasing the areas) or changing the material used 1. Nonlinear curvature-displacement relations

:_- reduce tne deformations and stresses. The result
a a more massive device which is difficult to 2. Extension or stretching of the neutral surface
_)ntrl, requiring more power to drive and
i itteract~ng with its structural support to an even 3. Material nonlinearities (nonlinear stress-

greater extent. strain)

Optimization methods have been applied to 4. Effects of transverse shear and rotatory
* determine the member sizes by minimizing the weight inertia due to realistically proportioned members

subect to limitations on deformations and stresses.
T..hs can reduce the overall size of the device, but 5. Joint clearances
-e resut Ls srCll ot the best design. The

- .: ies in oe basic aenaration of variables 6. Variable nature of the cross-section if the

e " .esgn pr cess. Tie device configuration members

t. e no.mber and type of members and joints) and
'e me=Der lengths are designed first to produce the 7. interaction of the mechanical device with the
,esirei motion, assuming the members are rigid, support structure

*7re, ; Aependentjv. the cross-sectional sizes are

- -etermined so that the actual motion deviates a 8. Coupling of the degrees-of-freedom due to large
* . .. J as possible from the rigid body motion. In deformations.

;.r- edure, the deformations of the members are
t slre t na-.e a detrimental effect on the A typical analysis which takes into account all of

-vpral moticon. The goal, therefore, is to restrict these nonlinearities is iterative in nature requiring
S.r reduce them. owever, these deformations ca several iterations to obtain a solution.

" .all be used ti mprove the motion of the device
tne geometric design variables (member lengths, Because of the complex nonlinear analysis

and ross-sectonal sizes of the members are required, which must be done many times during the
thinei and treated as a single set of design optimization phase, considerable computational time

.r:aues. Thus, the combined design problem is to is needed for this design procedure. Experience has
s,.et all of the design variables so that the actual shown that four to eight hours of computer time is
:,-1, 4f the device, which is a combination of the common to perform just one analysis of a single

-ig- d dy motion plus the deformations, is as close planar four-bar or slider crank mechanism on an IBM

Js 5 ssible to the desired motion. The usual rigid 4341 computer. For more complex planar mechanical

;I constraints exLt on this problem, such as devices consisting of additional links, gears, cams

i itations on the moveability of the device, and other elements, considerably longer times would

ns .f the support points, lengths of the be expected. For three-dimensional mechanisms, as

-s etc But also present are deformation and exist in many applications of mechanical
- stress -onstraints, and natural frequency limitations manipulators, automotive suspension@, etc., enormous

4- .ated with the flexibility of the members, computational times would be involved--again to

perform just one analysis.

o ,er ing :,n ti- rype of motion desired, speed

. :.rati n if tCe device, and restrictions on the The mathematical optimization techniques
,,. te r i f this design problem will be a currently available for solving optimal de ign

%5

.4A



,.°

problems all require several iterations to obtain the variables

tet design. Some methods involve a large number of

iterations, with each iteration requiring numero s Handle g emeri . -eforAa ion. r.- .i

. analyses obtaining numerical values for the frequency :,,nstrants

ective !unction and constraints for part i-ular

.a..1,s ,f the design variables). These methods are Requires a qmal n. m ter )i funct 1, V

aif ,ate if the design problem is amall. since evaIuatioo1 11 :.rati, n s r bta :'. ; a

ompulational t Imes are relat ively insigniricant. design
However fcr large design problems, or ones in which a

complex analysis is required, it is extremely Supercomputer needs:

:mportant that the optimization technique be
efficient. particularly in terms of the number of Combining nonlinear analysis and optimization

analyses required. Even then, the solution of these involves a considerablp amount of computer

problems is impossible on most computers currently a, time for each solution.

u;niversities. The availability of a super computer

t, accomplish the optimal design of large mechanical To handle objective :.nctions which are highly

systems is absolutely necessary. nonlinear functions Df the design variables.

Research Problems Estimated reduction of computer time:

The particular research problems in the area of 100 to I
optimal design of dynamic mechanical systems wh:ch

require the use of super computers are:

".onlinear Analysis of Mechanisms

'blective: Develop a large amplitude nonlinear

teformation, stress and frequency analysis of two and
three-dimensional mechanical systems undergoing high
speed motion subjected to large external loads.

* ln:Iude7

- Geometric and material nonlinearities

* The effects of transverse shear and rotatory

inert is

* joint clearances

* interaction of the mechanical devices with
the support structure

* Coupling of degrees-of-freedom due to large

,o rmat ions

Spercomputer needs:

* Complex nonlinear analysis requiring enormous

amount of computer time due to the iterative

nature of the problem.

* Solutions to very complex mechanical devices

-r. zonsisting of many links, gears, cams and

other mechanical elements.

Estimated reduction of computer time:

lO( to I

Eftic:ent Optimization Kethods for Nonlinear

'echanisms Design

'bJective: Develop efficient optimization methods

with the following characteristics to handle

o'nlinear mechanism design problems:

4 Minimize an objective function composed of a

-ombination of rigid body and deformation
displacements

"s geometric and cross-sectional size design

'4f .5

%
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Nonlinear Analysis andI Design
of Flexible Mechanismis

K. D. WVilirnert, arid
M. Sathvarnoorthy
Clarkson 1Tnivers itv

A finite elenment approach is presented here for the nonlinear vibrational analysis of
planar Mechanisms. The analvsis takes into account the effects of material anid geometric
nonlinearities on the dynamic behavior. The geometric nonlinearities included in this

t Udv art, due to stretching of the neutral axis and the curvatutre-displacemnent nion linearit%.
bot h call e(I h% large deformations. The material nonlinearity is due to a nonilincar sI res, -

- ~-train relationship of hiermite poix nomvials which ensure conipatibulit\ of curxat iVe bet% wren
elteMent,. (-,-Ing a viable correlation table, a global systemn of nonlinear equations js

* (I e~rive#d in termsi of the global unknowns, arid the k ineinat ic s of the mec han isrii A ha rritowi
IrteCh nit]ue is- then used to oblt ain the steady state sol utiois t)o ilils systenii of non ii tar

t~ma or~. V:reriral results, are presented for an example ruec haiin arid the tfwbt , of
t,:t ])oniit,)Fl, t- art,(i(I> eU

AnI (rtirnlia!IIn It,( hniue xx hich 1js applicable to probif inis conlsisting of nonlinear
otjec: e I!mrCt ons- and (o-nt raints. such as the on( pre~erited h*wre. ha also birenr dex eloped

rtpTlw It.( hn t(III"t, cailledi the (;aus' Nonlinearix ( ori-rained '1'(, linique.j'

il~~~~si~~ rNe ~i 'arje
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THE GAUSS OPTIMIZATION METHOD FOR
PROBLEMS WITH GENERAL NONLINEAR CONSTRAINTS

3 T. E. Potter. K. D. Willmert and M. Sathyamoorthy

Mechanical and Industrial Engineering Department

Clarkson University
Potsdam, NY 13676

ABSTRACT

A new algorithm is presented for finding the minimum
0of a nonnegative objective function subject to general

nonlinear constraints. This algorithm, based of Gauss'
method for unconstrained problems, is developed as as
extension to the Gauss constrained technique for linear
constraints. The derivation of the algorithm, using a
Lagrange multiplier approach, is based on the Kuhn-Tucker
conditions so that when the iteration process terminates
these conditions are automatically satisfied. A feasible

design is maintained throughout the iteration process. The
solution of preliminary examples indicate excellent results
in terms of the number of objective function evaluations
required by the algorithm to obtain an optimal design.

INTRODUCTION

The optimal design of many complex structural and mechanical
systems is hindered by the large computational times involved. Most
currently available optimization techniques require a large number of
analyses to obtain the optimal design. For small problems, or ones
in which the analysis is simple, these methods are adequate; however.
for large problems, or where a time consuming analysis is required.
more efficient optimization methods are needed. The goal of this
research was to develop such methods, particularly techniques
applicable to mechanical mechanism design where the members are
deforming because of high speed motion and large external forces.
Computational times to perform a single analysis are enormous for
problems of this type involving large deformations with nonlinear
material characteristics. Thus the goal of the methods developed was
to reduce the number of analyses, even at the expense of increased

.omputational effort in the optimization technique itself, i.e.
-dditiona effort in finding new candidate design points to analyze.

-,I-
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- - -he methods developed take advantage of the special
-naracteristics of the optimization problem, similar to the
Lptimality criterion techniques. This greatly improves their
efficiency. For most mechanism design problems, the objective
•unction can be formulated as a sum of squared quantities such as
the difference between the desired performance and the actual
performance of the mechanism at specified points during its motion.
-hus the techniques were developed specifically to handle problems
of this type, although the methods are applicable to objective
Tunctions which ar general sums of nonnegative quantities, such as
Aeight. Many mechanism problems have constraints which are only
linear functions of the design variables. Thus a special method was
"eveloped for problems of this type. Other problems have
zonstraints which are linear or quadratic, and another method was
ieveloped for this case. Some mechanism design problems have more
general nonlinear constraints. Methods to handle these cases are
:urrently being developed.

All of the techniques developed in this work have been based
on Gauss' method C13 which is applicable to problems without
zonstraints. Wilde [2] has shown this method to be particularly
efficient on simple mechanism design problems. The research
presented in this paper has extended this method to handle various
types of constraints common to more complex mechanism design
problems.

i FORMULATION

For an unconstrained sum-of-squares objective function

3 nere * is a vector of linear or nonlinear functions *, thru * in
, the Gauss method for calculating the next iteration'of the

design variables, X given a current design. xk, is:

k+l 6k k (21

Mhere

J (x) = (x) . . . V.T . ((X
L

:t is observed that only first derivatives of the * functions are
required and that the new design point is calculated directly from
the current design without using a step length determination with
3ssociated one dimensional minimization. Himmelblau C1) has shown

his method to be verv ef icient for unconstrained minimization

.)r tbl ems.



This technique has been e:<tended to handle linear inequality

constraints of the form

g (x) = bx- c , 1 I.....M (4)" 1. 1

as well as equality constraints

" "( x ) = T .h (x) = dx>,- e = O i = I .... ,L. (5)
X e

In the derivation of the optimization method, the *, functions are
- assumed to be linear in x of the form

- T- ,- 
5

S x + u.(6)

where J is a constant matrix. However the resulting technique is

applicable to problems in which the +. s are general nonlinear

functions of x.

At iteration k, the L equality constraints and any of the
inequality constraints that are active can be combined and written
in the form

B - = 0. (7)

If at the next iteration, k+l, the variables x . are at the optimumk+1
design, then the Kuhn-Tucker conditions will be satisfied

Vf(x k+1) + X= 0 (6)

8xk+lC 0Bx - C =0(9

." k+l

and

0 (10)

where X is the vector of Lagrange multipliers. The gradient of f is
given by

Vf(x) = 2J+(x). (11)

Expanding *(x) in a Taylor series results in

+(x ) (x ) + - + (higher order terms) (12)
k+1 k XkP

It is noted Ihat the higher order- terms are equal to zero if 4 is
linear. If + is not linear then these terms will be neglected and
the expansion is only approximate If equation (12) is substituted
into equation (11), evaluated at x k+1' the result is

+f(x 2 ()

This may be substituted into the first fuhn-Tuc.er condition.

,p



equation (8), and then solved for

= X - 2J(x k + BXJ. (14)

Plugging this equation 4or x. +1 into the second Kuhn-Tucer

condition, equation (9), yle ds

BT k - C - BT[2 JT] -[2J;(k + = . (5)

If the samT set of c nstraints that are active at x were also

active at Xk, then B x - C = 0. Using this result, equation (15)
can be solved for X as

S- [B [2JJT]-Bj BT[2JT]2J (k). (16)

Substituting this back into equation (14) and simplifying yields an
iterative expression for X ki which will give the optimum solution

the constraints that are active at the optimum point (iteration
k+l) are active at iteration k:

* r [[] - I [ ]

xk+1 = x k I - k (17)-~ - [JTB[TjjT]BJ BT] [jjT] -J*(xk) " 17

This expression is equivalent to that derived by Paradis and
.. Willmert [33 using a Gradient Projection method as the foundation.

The technique converges to the optimal design in one iteration if
the objective function, f, is quadratic and the starting point is on
the constraints which are active at the optimal design. If f is not
quadratic, the technique can still be applied, but it will
generally require several iterations to reach the optimal design.
When the technique terminates, the Kuhn-Tucker conditions will be
satisfied independent of the form of the objective function.

Paradis and Willmert demonstrated the efficiency of this method
by solving several examples. One example presented was the optimal
design of a four-bar mechanism to generate a desired coupler point
path. The Gauss constrained technique was compared with the
Davidon-Fletcher-Powell method using an interior penalty function
approach to handle constraints. Using four different starting

1  points, the Gauss constrained method required from 23 to 33
objective function evaluations whereas the Davidon-Fletcher-Powell
method required from 209 to 622. While not all starting points

*. yielded the same optimal design, both methods reached the same local
minimum from each starting point. Other examples also showed
considerable improvement over existing methods.

The Gauss method has also been extended to include quadratic
inequality constraints or quadratic approximations to higher order
nonlinear constraints. In this wor: the constraints are assumed to

[I
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'lave the form

If at iteration -+1 there are r active constraints (r M). the
* ".uhn-Tucker conditions will be

"" r

f> + ) +A + , (19)
I k~ l J=1 J J

1- k1, - .... r (20)
.. , A  x + -C C). = I r 23

:!k_ ' k+1 ~

and

:' 0 (21)

where the summation in equation (19) and the j subscript in equation

(20) refer to the set of active constraints only.

Using a derivation similar to that for linear constraints,
* substituting the expression for the gradient of f. equation (13),

into the first Kuhn-Tucker condition. equation (19), and solving for
produces

1k+1-r r
k+1 VJJT + A X] 2Jj3x - Vf(xk) - NBXJ. (22)

This expression for X k+1 in terms of x is now substituted into the
second Kuhn-Tucker condition. equation (20). to obtain:

T

T_ r

[2JJ + A X 2x [ 2 J - B.
"J - -- k V+, kJ a

A 2 JJT + .A X 2JJTx - Vf(X k - >1

r r

4 + B 2 J + A A. 21J- f (x ) B >1
J k k i

C =o i = ,....r. (23)i

These r nonlinear equations interms of the new unknowns, >1 thru X,
and the old design variables. x' , are solved by an iterative process
for the values of A thru A . he lambda values are then substituted
into equation (22 which wiTl yield new values for the design

It

.,. q * .>V
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arIabIes. It is observed that the matri;. 2JJ is the matrix of
second partial derivatives, G, of, he objective function if it is
quadratic. Thus, by replacing 23J in equation (22) and (23). this
technique becomes a modification of the second order method rather
than the Gauss method.

At the optimum design all constraints will either be satisfied
(less than zero) or active (equal to zero) and each active constraint
will have a corresponding lambda whose value is greater than or equal
to zero. If. at some iteration the set of design variables yields a
violated constraint, then obviously the optimum point has not been
reached. In this case, the newly violated constraint will be added
to the set of active constraints and the procedure allowed to
continue. If at some iteration the set of design variables yields
all active or satisfied constraints but one or more of the active
constraints has a corresponding negative lambda. then the optimum
design has also not been reached. The negative lambda implies that
the iteration process would like to move away from the corresponding
constraint boundary toward the feasible -egion where the constraint
is satisfied. Thus, the constraint is dropped from the set of active
constraints and the process allowed to continue. If more than one

* negative lambda existed, then constraints are dropped one at a time
* - starting with the constraint with the most negative lambda.

A constraint is added to the set of active constraints if it
should become either active (equal to zero) or violated (greater than
zero) when the step is taken from xk to x .. In the case where ak , .k+l *
constraint becomes violated, a line is "drawn" between xk and xk+1
and the actual step is taken to the farthest point along the line so
that no constraints are violated. In effect, this procedure is the
same as stepping back from X k+ toward x until the newly violated
constraint is just active (equal to zeroS. The constraint is then
added to the set of active constraints for the next iteration.

P An example problem with quadratic constraints given by Boston.
Willmert and Sathyamoorthy [4] shows this method to be very efficient
when compared to the generalized reduced gradient method (GRG). The
problem consisted of finding the optimal design of a four-bar
mechanism (minimizing the coupler point path error with respect to a
given path) subject to several linear constraints on link length and
movability. Additionally, constraints were placed on the crank pin
to limit its location to the intersection of two circular (quadratic)
regions. The program was run for a four by four matrix of problems
which included four different starting points and four different
conditions of the quadratic constraints. For all sixteen runs, the
number of objective function evaluations for this new method ranged

S.from 8 to 32 (average was 15). while the GRG method required from :03
* to 699 (average was 502) evaluations.

The interesting information here is that the solution to this
quadratically constrained four-bar mechanism used no more objective

* function evaluations than the linearly constrained four-bar mechanism
-'ample by Paradis and Willmert. While these two examples are
necessarily different, this tendenc', toward requiring similar numbers

• .-



ot function evaluations for di{ferent classes of problems is very
jesirable. The net result is that we now have an optimization
procedure for sum of squared quantities objective functions subject
to linear and quadratic constraints that not only requires relatively
few function evaluations, but seems to be constraint order

*independent. Now the need is to determine a method which will also
S-. wor- for higher order constraints.

Boston, et al. [4] attempted to apply this method to higher
* order problems, but met with mixed results. The problems encountered

seemed to tie in with the higher order constraints rather than with
the higher order objective functions. There are several limitations
implicit in the algorithm which appear to be the source of the
problems encountered. The first limitation has to do with the

* application of the constraints. equation (18), to the first
Kuhn-Tucker condition, equation (19). When approximating a higher
order function by a quadratic Taylor series expansion about some
point x_, not only is the A matrix a function of x but so is the
B vector and the C. scalar Thus the constraint approximation,
equation (18), shoutd be written as

0g (  I -1T A( + ( ) o] - C Cx ) 0, i = I ,M (24)
.x I i 0 i 0' '

where

= X + Ax. (25)
0

As x approaches x 0 (or Ax approaches 0) then this approximation

approaches the exact value of the constraint. Thus as the algorithm
* progresses along and constraints are added and dropped, the

constraints must be reapproximated at the latest design to keep the_
step size small. This can be achieved by taking the new values of x
as generated by equation (22) and substituting them intq the actual

constraint equations to get improved values for the A (X0 ), Bi (X0 ),
and C (x ) terms in equation (24) with respect to the current design

point.

The second limitation involves the second Kuhn-Tucker condition,
equation (20), which is used to obtain the equation for the new
Values of X, equation (23). This is simply the equation for the
active constraints. In the original formulation, an attempt was made
at obtaining a linear approximation in X for this constraint
.quation. This would allow equation (23) to be solved explicitly for
X. However, falling this an iterative procedure was employed to find
the values for X. Now that an iterative process is required there is
no advantage in keeping a quadratic approximation when the actual
constraint will work just as well. Replacing equation (20) with the
active nonlinear constraint equations will remove any errors due to
the approximation process.

The stepping back procedure for violated constraints, described
above. can also be a source of problems. With non-convex programming
problems this procedure may lead to a situation where the algorithm
cannot move away from a non-optimum design. Because the stepping

........................................ ,............................
"I,. . -. .x ... i .................................................................................................... ..... , , , ,., - ,,



* bacL procedure assumed a straight line path between the two design
*" points, it is possible. when backing out ot a newly ,iolated

constraint. to move into the violated region of the constraint that

was active at the beginning of the step. The procedure would then

step back still further until all constraints are satisfied. It is
possible to end up with the same set of active constraints as at the
start of the iteration. In this case the next iteration will produce

the same design, which may be non-optimal.

Two alternatives are readily apparent which may solve this
problem. The first one is that when a constraint becomes violated.

repeat the step but include the newly violated constraint in the set
of active constraints. The second alternative is to move to the
point where the constraint is violated, and then iterate from there
without stepping back. Of course, the violated constraint is
added to the set of active constraints. Boston. et.al. [4) looked
into this second alternative to some extent. They reported that it
did not always work. However, it is not clear if it was the "no
stepping back" that was the cause of the problems or if the second
order approximations to the constraints contributed to the problems.

In summary, the Gauss nonlinearly constrained technique is very
effective at solving quadratically constrained problems. No major
difficulties appear to exist which would preclude it from solving
problems with higher order constraints once the modifications
discussed above are implemented. This method with the proposed
modifications is currently the leading candidate as the best method

for solving highly nonlinear mechanism design problems.

RESULTS

A verification of the effectiveness of the Gauss constrained
method applied to problems with quadratic constraints is obtained by
solving the Rosen-Suzuki test problem [5):

minimize F(x) = 2 2 + 2x' + x 4 5x - 5x 21x + 7x
1 2 *3 4  1 '2 3 4

subject to:

9 (x) X + X + X + x + X - x + X - x - :50
S3 4 1 4

Sx+ 2x + x 3 + 2x - x - x 4 - 10 0

g(x) =2x + x + x- + 2x - X X -

The optimum design for this problem is at x = [0, 1.2-1

Two versions of the Gauss nonlinearlv constrained technique and
the generalized reduced gradient method, identified as GRG, were used

L--
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from four different starting points. One version of the Gauss
nonlinearly constrained technique, identified as GNLC, uses the
stepping back procedure and requires a feasible starting design and
will always maintain a feasible design. The other version.

identified an GNLC.NS. does not use the stepping bac procedure and
has no requirement on the feasibility of the design at any stage of
the optimization. The results are summarized in Table I. It can
easily be seen that the Gauss nonlinearly constrained technique is
much more efficient with respect to number of function evaluations
than the generalized reduced gradient method.

STARTING NUMBER OF FUNCTION
ALGORITHM DESIGN. x ITERATIONS EVALUATIONS

GNLC.NS [o,0o.0.O] 2 3

GC.NS [2.I,1, I] 3

GC.NS (2,2,2,2] 2 3

GNLC.NS [0, O"/5, O] 3 4

GNLC [0, O"5, O] 3 4

GNLC [0,0O0,O] 5 6

GNLC [I,,I,1] 5 6

GRG [o, o,5.o] 9 83

GRG [0,.O,O] 11 106

GRG [I, 1,1,1] I 1--

GRG [22, 2,2] 11 144

Table I: Comparison of Algorithms

CONCLUSIONS

The optimization techniques developed in this research as
extensions of the Gauss method to handle various types of
constraints are effective approache to'reducing the number of
analyses required to obtain an optimal design. As a result, the

-computational time for large problems should be reduced
si gni f icant l y.

m0
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FINITE ELEMENT NONLINEAR VIBRATIONAL ANALYSIS OF PLANAR MECHANISMS

0. W. Temmet K. D. WHImen. vd M. hJyimnoowwhy
Dperoment of Mech nic and Industrial Engineering
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ABS'RACT

A finite element approach is presented in this paper for the nonlinear vi-
brational analysis of planar mechanisms. The analysis takes into account the

effects of material and geometric nonlinearities on the dynamic behavior. The
geometric nonlinearities included in this study are due to stretching of the
neutral axis and the curvature-displacement nonlinearity, both caused by large

deformations. The material nonlinearity is due to a nonlinear streas-strain re-

lationship of the Rmberg-Oagood type. The analysis presented here makes use of

hermit* polynomials which ensure compatibility of curvature between elements.
Using a variable correlation table, a global system of nonlinear equations are

derived in terms of the global unknowns and the kinematics of the mechanism. A

harmonic series technique is then used to obtain the steady state solutions to

this system of nonlinear equations. Numerical results are presented for an ex-

ample mechanism and the effects of the nonlinearities are discussed.

INTRODUCTION

The importance of flexibility of linkages on the performance of high speed
minimta-mass mechanisms is well recognized. A considerable amount of research

has been done in this area in the last two decades. While it is desirable to
develop analytical and numerical procedures that enable the design of rigid link

mechanisms and robots to perform a given function with specified reliability, it
is also important to evaluate the effects of flexibility of elastic members on
on their performance. It is known that a mechanism designed for operation at
low speeds may not perform satisfactorily at high speeds due to the effects of

*large inertia forces and resulting elastic deformations. Thus it becomes

necessary to include in the dynamic analysis of mechanisms, not only the effect
of the rigid body motion, but also the flexibility of the linkages.

Most of the previous investigations in the area of elastic analysis of
mechanisms have been carried out within the framework of the linear theory [1-
171. Rowever, Viscomi and Ayre [181 used a Galerkin-type nonlinear analysis

procedure to study the vibrations of a slider-crank mechanism. A later work by
P Sadler and Sandor (191 used the lu,-ped parameter approach to a nonlinear dynamic

model of an elastic linkage. The mechanism analyzed in this paper was a general
four-bar linkage, and the analytical model included the response coupling associ-

ated with both the transmission of forces at the pin joints and the dependence

of the undeformed motion of a link on the elastic motion of other links. A
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finite element analysis, with the aid of the piecewise linear method of Martin,
was used by Sevak and McLarnan [201 to carry out the nonlinear analvsis of a

% mechanism. Further nonlinear work dealing with the vibrations of elastic mecha-
.% nisms are reported in References [21-23]. In a recent investigation, Thompson

and Sung [24] used a variational formulation for the nonlinear finite element
analysis of planar mechanisms considering geometric nonlinearities. Some experi-
mental results were also presented.

This paper is concerned with the nonlinear vibrational analysis of general
planar mechanisms. A finite element method is used which includes the effects of
both geometric and material nonlinearities. The geometric nonlinearities in-
cluded in this study are due to stretching of the neutral axis with partially
constrained ends and a general curvature-displacement relationship, both caused
by large deformations. The material nonlinearity is of the Ramberg-Osgood type
with three parameters to represent the nonlinear stress-strain relationship [25-
271. Additional effects considered are transverse shear and rotatory inertia
and changes in cross-section due to realistically proportioned members. The
governing nonlinear differential equations are derived for each element in terms

S." of the axial and transverse deformations, rotations, curvatures, and shear defor-
.- mation angles. These equations are then assembled with the aid of a variable

correlation table and the resulting global system of equations is solved using an
iterative technique based on a harmonic series solution procedure.

FINITE ELEMENT FORMULATION

A finite element method is presented below for the nonlinear analysis of a
general closed looped mechanism. The mechanism can be composed of various com-
binations of simple four bar chains, frame elements, sliders moving on fixed ref-
erences, or sliders moving on rotating links. Each link is divided into one or

more elements with each element having the local coordinate system as shown in
Figure 1. If a slider is present, the masses M and N2 are located at ends I and
2, as shown. The length of the element 6 is constant except for links with
sliders moving along them.

The displacement vector of any point (a) on the element's neutral axis is
given by:

S - (XI cosy + YI siny + x + u)i + (Yl cosy - X1 siny + w)j (I)

where XI and Y1 are the coordinates of end I of the element given by the rigid
body motion. The coordinate x is measured along the element's neutral axis from
I to 2 and y is the angle between the rigid body position and the X-axis. The
axial and transverse displacements of point (a) from the rigid body position are
given by u and w, respectively. This equation takes into account both the rigid
body motion and the elastic displacements and defines the position of any point
along the neutral axis.

Differentiating Equation I with respect to time yields the velocity of anyqpoint (a). The unit vectors i and j move with coordinate system and vary with
time. The angular velocity of any differential line segment on the neutral axis

of the element is given by:

,t 4 W,xC (2)

where yt is the derivative of y with respect to time and W,xt is the derivative
of the transverse displacement with respect to the local coordinate x and time t.

* The kinetic energy due to rotation of the element is given by:

h

K.ER . _ I A xlSt
12  

+ Olz(y, t  + w,xt)
2
:dx dy?'.2 _h

2

2 ''1 151
2 . + 1 (3),,

* -[ M x 2 N2IS,+

where o is the mass density and Ax and 
1
z are the cross sectional area and moment

of inertia of the element respectively. The term [ . w,xt)/
2

2 represents
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.e ettect ot rjtatorv inertiz. The kinetic energy due to beam bending associ-

ated with transverse shear [281 is:

-~ h
,'s ---.-

-I K'E. 3 " _ o'z dx dY (4)

_h 
0

where 't is a measure of the transverse shear angle.

Thie strain energy for the element is given by:

U vol de dvol I .vol - %xv Yxv dvol (5)p2
. where ,. -xv. and Yxv are the normal stress, normal s :ain, shear stress and

shear strain, respectively. For a nonlinear material of the Ramberg-Osgood type
-_ 2o.A, the relationship between stress and strain is:

A " -m (6)

where A corresponds to Young's modulus E, and Bcm represents the nonlinear term.

A, B and m are constants for the particular material being considered. The above

-. relationship, Equation 6, is valid only for positive strains. If the strain is

negative, the following expression is used:

A B (-.m if 0 (7)

The change in sign of the nonlinear term results in the same overall effect on

the stress-strain relationship as for positive strain, i.e. either hardening or
0 softening depending on the values of B and m.

Using the Ramberg-Osgood relationship, the following expression for the

strain energy is obtained for positive strain 0:

h h

h " .2 A c
2  .. M+lidx dv + ' Gxy yy dx dy (8)

h 2 m+l h 2 yX

2 02

where x is the axial coordinate, V is the transverse coordinate, and Gxy is the

shear modulus. When F 0 the equation is:

h h
-U .1ho A 2 B 4ldx dv + '2 , x 2U - - -TB-_)lxd+"ho2 

y  
2y dx dy (9)

h 2 - r I h ' 2 x ydd

I The nonlinear expression for the curvature R of a planar static beam under-

going large deformations is:

I -'xx (10)
' + w )

3 1 2

x

* Thus the strain is

• -" " V w,
:.." ~ .- =xx (11)

v W,

R I 2 )3,

Combining the geometric nonlinearities due to stretching of the neutral axis and
I the curvature-displacement nonlinearitv, results in the expressions for normal

Sand shear strain:

-.

°'..

,p -

'

5-

I. _- .'"-"-"aw 
•
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" u. x  + y w (12)

(1 + Db w,2)3/2

Yxy - W'x + 0 (13)

Substituting these expressions for strain into the strain energy Equations
(8) and (9) produces, for E > 0 or c < 0:

h
S. r2 E.bI A D 

2  
Y a,x )2

SE. oh 22 * (i + Db w ,2)3/2
2 x

S1 D. uy +,'x )m+1
m+1 - -X

2  
S~ (I + Db w,X)3/2

+ IGx (w,, + 3)
2
}dx dy (14,15)

For equation (15) negative sign is applicable in all the terms containing + signs
and is valid for c 0. In Equations (12), (14) and (15), Dka, D, and D. are
tracing constants representing the effects of material nonlinearity, geometric
nonlinearity due to curvature, and geomietric nonlinearity due to stretching of
neutral axis, respectively. Each tracing constant is equated to unity when that
particular nonlinearity is being considered and is equated to zero when it is
not.

In order to represent realistically proportioned members, changes in cross
section are included. Each element is divided into sections of varying lengths
with constant area. The integrations involved in the element equations are

0 carried out in a piecewise fashion with the area in each section taken as a con-
stant. This procedure provides a reasonable approximation of variable cross
sectional members without having to resort to large nunbers of elements.

The Lagrangian function L is defined as
S Nk

L Y (K.E.R + K.E. B - S.E.)ik (16)
k-I i-I

where Nk is the total number of elements in the kth link and S is the number of

links in the mechanism. Substituting Equations (3), (4) and (14) into Equation
(16), the Lagrangian , can be expressed in terms of the displacements u and w,
the shear angle a, and the rigid body motion.

Hermite polynomials are used to approximate u, w, and a in order to satisfy
the boundary conditions of various types of mechanisms easily and to ensure in-
terelement compatibility. The axial deformation u is approximated by a linear
shape function given by

u(x,t) - Ul(t) Nl(x) + U2(t) N2 (x) (17)

Similarly, fifth degree polynomial shape functions are used to approximate the
transverse deformation w:

w(x,t) - WI(t) Hll(x) + 9 1 (t) H2 1 (x) + al(t) H 3 1 (x)

+ + W 2(t) H12 (x) + 62 (t) H22 (x) + M2 (t) H32(x) (18)

- " The shear angle a is also approximated by a fifth degree polynomial in order to
make it compatible with the transverse displacement w. Therefore a is assumed

. . .. to be:

.(xt) - al(t) Hll(x) + 4t(t) H2 1 (x) + X1(t) H31 (x)

* + '2(t) H12 (x) + 2 (t) H2 2(x) + 2 (t) H32 (x) (19)
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where - and k are the first and second derivatives of a, respectively.

The Hermite polynomials are given by:

Nl(x) 1 I - e N2(x) - e (20)

HII(x) 1 - IOe
3 

+ 15e
4 

- 6e
5  

; H12(x) - 10e
3 

- 15e
4 

+ 6e
5

H2 1 (x) - P(e - be
3 

+ 8e
4 

- 3e
5
) H 2 2 (x) - A(-4e

3 
+ 7e

4 
- 3e

5 )

H31(x) 2/(e
2 

- 3e
3 

+ 3e
4 

- e
5
)/2 H3 2 (x) - A2(e

3 
- 2e

4 
+ e5)/2 (21)

where, e " x/t.

A transformation of coordinates is now introduced to change from the moving

Pcoordinate system associated with the elements to global coordinates. Only Ui,
Wl, U2 and W 2 need to be transformed. The other coordinates are angles or de-

rivatives of angles which are not directional in the X, Y coordinate system used.

The transformations are:

U1 - U1 cosol - WI sinl U 2 - U 2 cos 2 - W2 sint2

WI - U1 sinol W1 cs01  W2 - U 2 sin4 2 + W 2 cos$ 2  (22)

For pin connections the transformation angles $1 and 02 are set equal to -f (the

rigid body angle) which transforms the coordinates back to the global coordi-
nates. For sliders moving on rotating links the transformation becomes more in-

volved. In this case, the deformation of the driver link must be transformed to
correspond to the axial and transverse deformation of the output link [14).

Substituting the expressions from Equation (22) into Equations (17) and

18), the global coordinates for the system are then:

q - fUl W 'I m1 01 YI l U2 W2 2 m2  2 42 2 (23)

The Lagrangian function is then written in terms of the transformed element co-
ordinates. Differentiating the Lagrangian with respect to the element coordi-

nates, the following element equations are obtained:

U d (3L. )
d- (--) - --- 0 

(24)
dt q't 3q

in differentiating the expressions for the kinetic and strain energies in Equa-

t:ons (3), (4) and (14), it must be remembered that t, which is the upper limit

of integration, is a function of time. The operations carried out in Equation

k24) results in a system of nonlinear element differential equations. Assem-

bling the element matrices for the particular mechanism being solved results in

the global system of equations:

M 'tt + C Q,t + (Ke + Kn) Q = F~t) (25)

The M, C, Ke and K, matrices are all functions of time. The C matrix results

from the kinetic energy of the system. No damping was included in the formula-

tion of the problem. The C Q,t term was found to be small and thus was ignored

in the analysis. The matrix K. is the linear portion of the total stiffness
matrix. It is a function of rigid body motion, but is not a function of the

deformations Q. The matrix Kn, however, is the nonlinear portion of the stiff-

ness matrix. It is a function of the deformations Q. Equation (25) is thus a
nonlinear system of differential equations.

The derivation of the finite element Equation (25) is based on the assump-

tion of positive strains c. If the strain is negative a similar derivation is

possible, based on Equation (15) for the strain energy rather than Equation
114). The only difference in the resulting Equation (25) is in the stiffness
matrix. Wherever an m-I occurs in the original formulation, it becomes (-)m-1

for negative strains. All other negative signs resulting from the introduction

,)f -, cancels out in the differentiations required. Thus in order to handle both
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positive and negative strains the terms involving .:- in the stiffness matrix
were replaced by "M-1,

In order to solve the nonlinear system of Equation (25), an iterative ap-

proach was used. First the equations were solved using the linear terms onlv,

i.e. the Kn matrix was ignored. This was accomplished by setting all of the

tracing constants Db , Ds and Dk equal to zero. The solution Q for the linear
equations was then used to determine values for the nonlinear stiffness matrix

Kn. Equation (25) was then solved again for new values of Q, and the process re-

peated. Experience showed that this procedure converged in from 3 to 5 itera-

tions. To solve Equation (25) for Q(t), for particular Kn, a harmonic series

solution method was used similar to that of Bahgat and Willmert 114). This ap-
proach overcomes problems with stability, due to the time varying nature of the

matrices, that sometimes result from an eigenvalue technique. The steady state

solution is obtained without adding artificial damping. The solution, without

the C Q.t term, is given by:

N

.(t) - o (K - nZ -24)
-
l (in cos n-t + B. sin nt) (2b)

where is the input crank speed, and An and Bn are solutions to the linear equa-

tions:

N N-I

Ntk) nj An cos n.tk +nlo Bn sin nwtk ; k - 0,1 ,...,. N-I (27)

where Bo is set equal to zero. The values of tk are the times at 2N equal time

increments per revolution of the input crank given by:

tk , 'k for k - 0,1,. 2N-1 (28)

Computational experience indicates that a fairly accurate solution is obtained

using only a few terms in Equation (26). As the number of terms increases the

components of the matrix (K - n
2  2

M) grow and thus the inverse (K - n
2 

.
2
M)-l

becomes small. The summation can therefore be truncated to reduce computational

time.

The stress in the links is calculated by evaluating the strains from Equa-

tion (12). The stress can then be determined at any point in an element using
Equations (6) and (7). To find the maximum stress in an element the maximum

strain must be found. Setting the first derivative of Equation (12) to zero and

solving the resulting expression, the position of the maximum strain is deter-

mined. Once the location is known, the maximum strain and stress can be evalu-

ated.

The above formulation is based on the use of the shear angle ct, which is ap-

propriate particularly for short members. For long slender links this quantity

is not required. The elimination of a reduces the size of the problem consider-
ably sInce the nodal deformations oil, -I, kl, -2, 2 and 2 would no longer be

present. For long slender members:

a - Wx (29)

Using this expression, the equation for strain energy (14) for positive shear E

reduces to:

h

2 A (u,x + w, Y 2

2 (1 + Db w,2)
3
/2

D y W,

Dk . B (u D 2 , -m+l Idx dy (30)
m-+ Bw ( + 2b w,2)3/2

A similar expression exists for negative strain. The kinetic energy also changes

if _ is not present. The energy associated with transverse shear, Eouation (4),

is eliminated and thus Equation (3) represents the total kinetic energy of the
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element. Using a procedure similar to the method outlined above, vibrational

equations of the same form as Equation (25) can be obtained, but they will be

smaller in size. However, nonlinear terms still exist in the stiffness matrix

due to the material and geometric nonlinearities. The method of solution is thusP identical to that outlined earlier.

EXAMPLE PROBLEMS

The following example is presented to illustrate the method of solution.
The nonlinearities due to neutral axis stretching, and complex curvature-dis-

placement and stress-strain relationships are all considered. A four-bar link-

age, as shown in Figure 2, is used as the example with all of the members flexi-

ble and made of the same material. The data for the mechanism is: Length of

input crank (AS) - 5.0 in, Length of coupler (BC) - 11.0 in, Length of rocker
(CD) - 10.5 in, Fixed distance (AD) - 10.0 in, Cross section of links a rec-

tangular, Height of rectangle - 1.0 in, and Width of rectangle - 0.25 in. The

position of the input crank is zero degrees at t - 0 and the direction of rota-
tion is counterclockwise. The mechanism is divided into three elements with each
link in the mechanism taken as an element. The boundary conditions are that only

moment and shear terms exist for the input crank's driven end (A). For the pin

connections between links, there are deformations, rotations and shear terms, and

for the rocker's fixed point there are only rotation and shear terms.
First, the deformations in the mechanism were determined with the shear

angle a present. In this case the crank link was rotated at 100 rad/sec. The

material properties, approximating aluminum, were as follows: A - l0.87x106

lb/in
2
, B - 0.8387x10

1 I 
lb/in

2
, m - 3.0, and Mass density - 0.0002536

lb-sec
2
/in

4
. Three separate procedures were used to obtain numerical results.

First the problem was solved using the linear analysis method of Bahgat and

Willmert [141, with E - A. Next the method of this paper was used with the trac-

ing constants equal to zero. Thus a linear analysis was obtained. Finally the
method was applied with all tracing constants equal to one, i.e. a full nonlinear

analysis. A representative deformation Dl as a function of crank position is

shown in Figure 3. This is the horizontal deformation of the free end of the
crank link. As can be seen, the three curves are very similar. The effect of
the shear angle a is to increase the deformation slightly. For this slow speed

the linear and nonlinear analyses were almost identical.

The same problem was solved again at a higher speed of 200 rad/sec. The re-

suiting deformation 01 is shown in Figure 4. As can be seen, high frequency
oscillations started to appear, with greater separation between the three analy-
ses. At even higher speed these oscillations became more predominant to the

point of instabilities in the motion at very high speeds.
The revised form of the analysis equations was considered next, i.e. the

form without the snear angle o. Here a crank speed of 150 rad/sec was used. A

comparison was made of the effects of the various nonlinearities on the deforma-

tions and stresses as compared to the linear analysis. Figures 5 and 6 show a

comparison of the linear and nonlinear deformations U 2 (the horizontal deforma-
tion of the free end of the output link) caused separately by geometric and

material nonlinearities. Figures 7 and 8 show the maximum stresses in the con-

necting link of the mechanism. As expected, the material nonlinearity of the
Ramberg-Osgood type results in deformations which are greater in magnitude than

those obtained using a linear elastic model. The maximum stress decreased due to
the presence of the term BEm substracted from the linear stress expression.

The geometric nonlinearities considered, namely curvature displacement and
stretching of the neutral axis, both due to large deformations produced mixed

results with deformations reduced at some points and increased at other points.
The effect of the geometric nonlinearities would be expected to produce a stiff-
ening of the members [281 of the mechanism and thus produce smaller deformations.

The increased deformations in this case might be due to the fact that the deform-

ations are in relationship to the entire mechanism and not just to an individual

beam element.

CONCLUSIONS

The nonlinear analysis procedure, using a finite element technique, is an
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effective method of calculating the steady state deformations and stresses in a

mechanism. Significant differences can occur between the linear and nonlinear

approaches. This was particularly true for the stresses in the example consid-

ered in this work. Research is still needed on the overall effect of the shear

angle a, and a more complete picture of the nonlinear terms in the analysis would

be of value. Additional nonlinear effect should also be investigated, such as

the effect on the translations of one link due to large deformations 6f the other

links.
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THE DEVELOPMENT AND APPLICATION OF THE GAUSS
NONLINEARLY CONSTRAINED OPTIMIZATION METHOD*

*- D.R. BOSTON. K.D. WrLLMERT and M. SATHYAMOORTHY
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Presented in this paper is a news optimization technique, called the Gauss nonlinearlv constrained
technique, which is applicable to design problems with nonlinear objective functions and constraints. The
technique is an extension of a pre%iously deseloped method for linear constraints, referred to as the
Gauss constrained technique Both of these techniques. based on the Gauss unconstrained method, have
been dexeloped so that the Kuhn-Tucker conditions are automatically satistied when the procedure

• terminates.

1. Introduction

The optimal design of many structures and mechanical mechanisms involves one or more
. complex and time-consuming analyses at each iteration of the optimization. This is particularly

critical if a large-deformation nonlinear analysis is required. In these cases especially, it is
- important that the optimization method requires very few analyses, even at the expense of

significantly increasing the amount of calculations by the optimization technique itself. For
example, in a recent work. DeRubes and Willmert [1] applied the relatively efficient generalized

3reduced gradient (GRG) technique of Lasdon et al. [2] to mechanism design for path
- "veneration and rigid-body guidance. The mechanism links were considered flexible, and thus a

S-.quasi-static (linear) finite element analysis was used to obtain deformations and stresses. The
GRG required as many as 14.000 mechanism analyses to obtain the optimal design. Comput-
ation time approached twenty hours on an IBM 4341 mainframe computer. If a nonlinear
analysis had been used, the corresponding times would have been considerably higher.

To reduce the number of analyses, Paradis and Willmert [31 developed a new direct method
* for efficient design of mechanisms. Gauss' method, which Wilde (41 concluded to be very

efficient for unconstrained mechanism design. was modified to handle linear constraints. The
'- resulting technique, referred to as the Gauss constrained technique, was highly efficient and

required very few objective function evaluations to obtain an optimal design. Their method has
* been extended. in this paper, to handle nonlinear constraints.

-Fhis reearch is sponsored h% the Air Force ()ffice of Scientific Research. Air Force Systems Command. USAF,
under (irant Number AFOSR 4.N70 Fhe tU S. Government is authonzed to reproduce and distnbute reprints for
"osernment purp-ses not%%ithtandinv ans copyright notation thereon.

0 i -4,-'s :,  t $2. "i) l'-i,'!.i. icr 'sicnce Publishers BV. (North- Holland)
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2. Development of the method

The optimization problem consists ot minimizing:

FWx = I)'4

where 4p is a vector of general functions of the variables x. Many optimai uiesign problem,, hate
P, objective functions of this form. For the derivation of the optimization technique. the r are

approximated by linear functions of x (\which makes F quadratic) of thie form:

_O == c' (2C

where J and c are a constant matrix and vector. respectively. However, the technique. once
deri, ed. will be aplied to more general cases. wvhere the c are highly nonlinear functions of x.
The constraints are approximated by a g-eneral quadratic of the form:

i,' (x) x'.-4 x -bx -x 1 ( 1. k 3)

The gradient of the objecti,,e function (I) is given by

Vx = 2'J~ (41

\,khich is exact, Awhether 4 is linear or not, as long as]J is the matrix of first partial derivatives of
ip. T-he matrix of second partial derivatives of the objective function is

6 = 11f .()

w-hich is exact only when t, is, linear. At anm gien iteration w&e assume there are I active
constraint,, (ordered such that ,' I . 2. 1). wkhere I -F k. Thus, the Kuhn-Tucker conditions
are

x) x.4Ax - b x -d =l...(7)

Similar to the development of Pajradis and Willmert 131, the new% method is izencrated such
that a singl iteration yields the optimal desien (or a quadratic o)bjccti'e function. assumniney that
the constraints active at the optimial design are also active at the starting point. If hjx) is

,±uidr.itic. then the following CqU~ition is, o.alid for an , two\( points, x. a nd x

Vrix VF(X (x XQ

Sod i~z 6)for V[(x, . isUMrie .r ih the: optimal desien. and ,uh,,titutinc into (Q) result, in

&-
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the iteratle expression (after soing for x,

X .={G > " ., Gx - bA -VF(x,) lii)

If the objective function has the special form of ( 1). then the matrix G in the iterati e equation
'would be replaced b% 15). i.e. G = 2JJ'. Otherwise, the method could still he applied as long as
the matrix of second partial derivatives G. or an approximation to it, were known.

In order to use the iterative equation (10), the unknown vector of Lagrange multipliers A
must be determined. This is accomplished by substituting the expression for x,. , 10), into
each of the active constraints of(7) resulting in a system of I nonlinear equations in I unknowns
A of the form:

r y,(g A) Gc - .4 A [x, bp bA,-V )

xA Ab) [Cx - A , -VF(x.)j}

A, A Gx,-Z b, A, - F(x,)d, 0 1. 1
-t ,=t (11)

This system of equations in A could be solved using several different methods. The approach
used in this research was as follows. At each iteration, initially the Newton-Raphson technique
was applied. If the method did not converge, which may be caused by the fact that the equations
had no solution or that the method simply was not able to locate one, then another approach
%was used. In this case, an objective function H was formed which was the sum of the squares of
the active constraints g,. This unconstrained function was minimized with respect to A. In this
work Powell's method was used, but any available technique could be applied. The optimal
values of A (whether H is zero or not for these values of A) were then used in the iterative
equation ( 10).

As in the original Gauss constrained technique (as well as the gradient projection method),
the criterion for dropping a constraint from the set of active constraints is the sign of A,. At any
iteration the constraint corresponding to the most negative A is dropped from the set of active
constraints and a new vector of Langrange multipliers is determined. This procedure is repeated
until all A, -_ 0. If this results in no active constraints, then the optimization technique continues
by setting all A, = 0 in (10). In this case, the iterative expression can be shown to reduce to
Gauss' method for unconstrained optimization:

X . X W ( J ) 1J , 12

.- t each iteration a decision must he made as to whether or not a new constraint should be added
t() the set of active constraints If the direction of minimization s, . is detined as the direction
trorn x to x . then a constraint is added only if a step in the s, . direction will not satisfy the

constraint

4

i~~~~~ ~ ~ ~ ~~ ~ ~ ~ ~~..:... ... .... .. ......- .,.-.......-....-..---.--.-.-...-....--...
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1ok diffierent met hods A erc used to handl Ie \Iola Ied :on,,traints Fhe first approach "as to do
nothinga speciat if a constraint becamc iouted I,, a rcLilt tit an iteration based on (t II [1h us.

Ahether a constraint i,, onl\ actie. ice. L: I). oir '. ioited. i.c i. - () it is treated the same in the
optimization technique [he hasi,, behind this approach '.as the assumption that eventuall% the
miethod A ill ati,,t\ ill Cntints ince these are equations ( I I )which the method attempts to

stt\at eaich Iteration. Yhis approach allo" s the optimization to start at anv desivgn A hether it
*atisfies the constraints or not.

p he oither method ot handlin2 x olated constraints A a, to start at a point w hich satisfied all
costant -hen. If a step IS taken using 10II) such that ,,(x.~ U a new design x' 'Aas

tound alono the line connecting x. and x. such that x, F his \,kas accomplished b\
stepping back from a '. olted constraint usin the approximate e:quation

Ix - 1 (X'( I
.r -X (13

Q'AX.. :,(X

I he design w as then used in the next iteration.
Although t he technique Aas deieloped assuming, lineair tunctions Sc(x). i.e. F(x) quadratic.

the method is applicable to problems where the o are general functions of x. An especiall%
Important characteristic for mechanism desig-n is that the technique requires a total of onlN one
more objective function e~aluation than iterations to obtain in optimal design. unlike the GRG
technique of Lasdon et al. [2J. \khere a step-length determination is required -At each iteration.

S 3. Example problems

Several examples were considered in this work, two of .%hich are presented here.
The first problem. which is a modified Rosen-Suzuki test problem. consists of a quadratic

objective function in eig-ht v-ariables with seven quadratic inequality constraints as follo\&s:

Min F(x) x- r-. w-A .

st.~~ A..X 1CT t-~ x x . - I t v-l)-

VA
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[able< I ind -hoA the results of the optimization from two different starting points Three
diftcrent technqucs ,Aere applied. The first two wvere variations of the Gauss nonlinearl%
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&o(n,,tr.1ined method The hirq, one. labeled GNLC.NS in the tables. ikgnored \iolatedl con-
~traint,, Ahite the second. Libeled GNLC. treated violatedl constraints usingz 13). Both of the,e
methods wAere compared with the generalized reduced gradient technique. labeled GRG.

Table I shows the results from a starting point, wkhere no constraints wNere actie or violated
All three methods produced the ,ame optimal design. The number of iterations N1Iand number
ot function ecyiluations NF for the ONL-C methods were considerably less than for the GRG.
Fable 2 sho~ks the results from a ,tartinv point in which three constraints were violated. "hile
one ~ ~active. For this starting point only the GNLC.N S technique was applicable. Again. the
number of iterations and function evaluations were less than for the GRG

Ehe second example consist.. of the design of a four-bar mechanism such that the coupler
point iXX. \YY of the mechanism closely generated the cur-ve defined by the eight points as
shown in Fie. 1 . The objective function to be minimized is the sum of the distances (squared)
bet~een the desired curve and the actual curve venerated b\ the mechanism:

fi(x) "' X -Xc YY - YG)

Shere
X X.~ v x-I .1 .os v , YY. -1x sin x, tcosW 6,-.

77 -

X I. X os X

ta X Cos -ycs' v

U~~~V V .I ~. cos( Y, x

IXX.'rl1
5 4 3 I

6 X5

00203

6X

.......................
.....- xi-.-:;.. R
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tnd XG. YG are the coordinates of the desired curve.
Fhe design variables x..... t are link lengths. orientation of some of the links as well as

the iocation of the crank pin. Note. the objective function is a highly nonlinear function of the
design 'ariables. This i!, the same problem that Paradis and Willmert [31 solved, however, two
nnlinear constraints. I, and . ,. hae been introduced here to constrain the location of the
crank pin to two user-defined circular regions. Thus, our design problem contains ten variables.
t x . . and fourteen inequality constraints .,(x) ! . i= 1 . 14. The constraints are:

S(x) = 1 - . < if, g,(x) = x - 0, - (I

(X = - (X) = x x -- 0 -.()

4 Ui )

, X) (.,, - CX, (x., - CY ) g14(x) = (.X, - CX2 ( -

G R - RI u 0

4-

!4 )rtimil rnichaini

S

S \
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Table 3
Results of mechanism design problem

Starting
point GNLC G RG

Status NI I '
feasible NF 11 3 9

S15.) X, 30.0 30 )
5.0 .V. S.345 X 345

15.0 V_ _;~2 2I2
15.0 X 12.01 12Z.8l6

-0.0)7 .X' -1 063 -1.16)3
0,412 " 1 259 1 25.
1.1379 X"' 1.118 I1!

6.0 ., 4,) 4
5i) .. 7.0 11

220.29 F 1 "8349 I.-'R345
- J 9.13.14 1) 13.14

'Angle ,anables (radians)

I
where CX 1 . CY1, R. CX., CY,. and R. were 4, 4. 3. 7. 7. and 3. respectively.

The resulting optimal designs using the GNLC and GRG methods are shown in Table 3. The
optimal mechanism is shown in Fig. 2. Again the Gauss nonlinearly constrained method
required significantly fewer objective function evaluations.

4. Conclusions

The Gauss nonlinearly constrained method is an effective technique of solving nonlinear
design problems. It is particularly efficient for cases in which the evaluation of the objective
function is very time-consuming. Although in some instances considerable calculations must bep done per iteration, the amount required is still insignificant compared to that required to do just
one analysis of a complex mechanical or structural system.

The method has been applied to a variety of problems consisting of objective functions of
-various complexities. In all cases it has worked well. However, it has received only limited
application to problems involving constraints that are more than quadratically nonlinear. It
appears that further research is required for such cases.
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VIBRATION ANALYSIS OF MECHANISMS

WITH GEOMETRIC AND MATERIAL NONLINEARITIES

Edward Kear IfI, M. Sathyamoorthy, and K. D. Willmert

Department of Mechanical and Industrial Engineering

Clarkson University

Potsdam, New York I3 )i

ABSTRACT

A nonlinear vibrational analysis for plenar mechanisms with material and

.,,metr i: non1inearitles is presented. The materIal nonInc1arIty ot the

-Ramberg-Osgood type is employed for the nonlinear stress-strain behavior.

The geometric nonlinearities that are included in this study are due to

coupling of displacements, stretching and curvature-displacement. A finite

element analysis, with high order hemite polynomials which ensure compati-

bility of curvature between elements, is used. The resulting nonlinear dif-

ferential equations are solved by means of a harmonic series technique to

obtain steady state solutions. The effects of the nonlinearities are dis-

cussed by means of an example problem.
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p Effect, of G'coiiietric and( Material

Nonlinea -rit ies on Vibration of Planiar

MIechanisms*
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K. 1). Vvillmeirt,
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Abstract

A nun1 roar vibrational analysis for planar mceiaim~s witil ma-

terial %noli geomnetric nrunhnnjiearitie3, undergoing kii(An rigifd-y [00)-

5ks IS Presen t ed. %1i teri al nionlinearity of thre R rn bvrg- Osgood
ty pe is employed f, 'r the nonlinear stress-strain behavior. The geo-
mectric nonIi nearn tiesi, inclduded in this study,, are II I(e to stretchinrg and
currvatuire. A i ite elemoent analysis, with hiigh order heron te poly no-
no als, w hichI ensurre comopatibil ity of curvature between clemrenits , 1s

I ri (en The resulti'ng nonlinear differential eqluations are siolved using

anl A hanis fourth-order pred ictor-cor rector algorithin (LS() )I from
* ~Of) I 'C'R) to obtain the transient vibrational re-sponse about the

known, time depeniden t, rigid-body position. The elfer ts of the non-
li neari ties are d isriissed liV Means of an example problemn.
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Xi h ordnt fedIofterfrne
*- 1 ,i, the V coordinate of end 1 of the reference.

a iS the angle between the reference and X axis.

-o a Iis the axial displacement of a point from its reference positi&)rl.

* * w~u is the transverse displacement of a point from its reference utl.

* is a unit vector ini x direction.

* j /15 a 1nT t vector ini d~(irection.
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LSODE (Livermrore Solver for Ordinary Differential Equations) can he used
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Consider a straight beam element with its elastic axis parallel to the x-axis of the fixed

global system of coordinate G. Under the action of loads which are distributed along the beam

element, it deforms. This deformation is described by the displacement of each point of the elastic

axis. The components of these displacements u, v and w are in the direction of xG' CyG and ezG, re-

spectively (se Figure 1). In addition, each cross section is also rotated by angle 0 about the

elastic axis.

Due to this deformation, the triad &xH, eyH and ezH at the point B of the undeformed axis is

transformed into a new rotated orthogonal triad of unite vectors 'xD' CyD' ezD and the position

vector of the point B, an elastic axis, after deformation becomes

- RBD = (XG + Q1)6xG + O'G + Q2I)dG + (ZG + Q3)dzG

1 +(Xp +U)xH + v H + w zH

while the position vector RpD of the point P off the elastic axis after deformation reduces to

R = (XG + Q1)(xG + (YG + Q-)2 vG + (ZG + Q3)dzG

+ (xp + U)dxH + v eyH + WezH

-yp eyp -p zD +  xD

where X is the warping displacement of the cross section which is considered an extension of the

g !classical St. Venant torsion to a more general case.

To this point the elastic deformations of the element are defined for the general case where

the deformations are due to the action of forces which are distributed along the beam element. In

the case of mechanisms, the element is imposed to an additional angles of deformation yx' yy and yz,

due to the elastic deformations of the other elements, in the directions xH, YH and zH, respective-
." "

" Finally, the position vector of the point P after deformation with respect to the undeformed

"s'tem of coordinates will reduce to

F' TR -U + Qal) + (xI, U Tr

+ (xp TDrTrtJ. li

A. here

"T LXG YxGcZ,

-J -P



Qa=LQ IQ2 Q3

XH = LXHOOJ
-T
U = LU v W J~X H = LX H y 03

Xp ypLpO

TrH is the elastic transformation matrix and is given by

TrH = TrD TDH wher

TDH is a transformation matrix of the body.

The velocity of the point P after deformation at any instant of time is given by
T + (-T -

RPD L(X + Qal)TGH + (X + Qal)TGH

-T T -T -T A+ x+ U )TrH + U TrH + xp TrHj .eH

* +L(x T + Qa)TGH + (XH + IT)TrH + XpTDrTrHJSH

Using finite element expression to rewrite the previous equation and isolating the velocity terms,

the expression can be written in the following form

Rp Lax apaqe j
-qe

5" I Also, if the axial deformations in the direction exH, eyH and czH are transformed to the global fixed

coordinate, the final expression for the velocity reduces to

R - Lax a P aq J

7- 9e

a) Kinetic Energy

If we consider the previous beam element with an additional two concentrated masses (mconl,

moon2) at nodes I and nod2 respectively, then the kinetic energy of the element becomes:

KE = /-I" Rp dvol + 1/2 m , R- R
Kp con I II

tl+ 1/2 moon2 R1 R1

k hcre p is the mass density of the element, mconl" mcon2l are the concentrated masses of the nodes I

and 2. respectively and RI R- are the velocities of the nodes I and 2.

3I

.....................................................• *
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The kinetic energy of the clement can be rearranged in the following form

b) Strain Energy

The strain energy of the element including material nonlinearity is

SE=j [0/22 Ec-x- - B--Sx

1/2 G 'ex + cxzldv.ol

Lagrangian Expression is given by

L = KE - SE.

c) Examples:

I Rotating cantilever beam (see Figures 2-7)

Length = 20.0 in

* radius = 0.2 in

E =10.87E6 lb/in2

p= 2.536 F-4 lbs/in

N ope rating speeds

w 1 I(X). rad/s, 3(X) rad/s. 5(00 rad/s

Deformation using the formula given by 'Stephen.'

(1) 1(X0 3(X0 500 rad/s

uL6.3799 E-4 5.7419E-3 1.5949E-2

1.3914E-4 1.2523E-3 3.4787E-3

-1. .3(X)5 E-4 -1. 251 3E- 3 -3.47648E-3

2) Four-Bar Linkage (size Figures 8-21)

Height of the beam = 1.0 in

Width of the beam - 0.25 in

E = 10.87 E6 lb/in 2

2B = 8,387 EM) Ib/in~



m 3

r4 p =.2.536E-4 lb sec2/in 4

A~orking speed (o =100 md/s, 150 rad/s.

ro
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