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Pre face

The purpose of this research is to investigate two

methods of spectral estimation for typical radar type

signals. The two methods investigated are Blackman-Tukey

and Burg. A comparison of the two methods is made based on

their statistical properties and computational efficiency.
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Abstract

The purpose of this study was to examine the

Blackman-Tukey (BT) and Burg methods of spectral estimation

for typical electronic warfare received signals. Such

signals are generally short in duration, resulting in short

data records. The BT method is a conventional spectral

estimation scheme and is based on computing the discrete

Fourier transform of the autocorrelation sequence (ASC)

derived from the data record. An inherent problem of this

approach is that of data windowing. Data windowing may

result in poor frequency resolution, particularly for short

data records.

The Burg method of spectral estimation, a modern

approach, is capable of providing relatively good frequency

resolution for short data records. However, this method

requires sufficient input signal-to-noise ratio (SNR). The

idea here is to extend the ACS by extrapolation (or

prediction) rather than windowing the data.

* The Burg method was found to yield far superior

performance for data records consisting of 64 data samples.

Note, however, that a minimum SNR of 15 dB was assumed.

*# Using this method a "smart" routine was developed that

automatically determines the actual frequency components of

the data record.
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,N.

SPECTRAL ANALYSIS

OF SHORT DATA RECORDS

I. Overview

Introduction

The motivation for this study is the need for improved

detection of hostile signals (i.e., signals that are
N

radiated by hostile emitters). An emitter is any signal

source (i.e., a radar, a jammer, etc). The signal radiated

by the emitter is made up of many measurable

characteristics. Wiley (33:8-12) provides a summary of the

measurable signal characteristics and the emitter

capabilities inferred from these characteristics. The most

common measurable signal characteristics are:

1. Pulse repetition frequency (PRF)

2. Transmitted signal power

3. Transmitted beamwidth

4. Operating frequency

The carrier (or operating) frequency of the hostile

signal is the signal characteristic of interest in this

study. The intent of this study is to examine two methods

(Blackman-Tukey and Burg) for determining the operating

frequency of one or more emitters, via the power spectral

density (PSD).

. , , "
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Background

The basic scenario is an electronic warfare (EW)

receiver detecting signals from hostile emitters. Figure

1.1 shows a generic block diagram of a receiver. No

distinction is made between the receiver and the digital

processor. However, note that all blocks to the right of

the dashed line represent digital hardware.

rt= FKT__ IF SAMi1 F L7 x(n)

(t)+r(t) MIXER signat MIXER HOLD

ALGORITHM 
t

Sxwor) DI.TA FdPLOTTER J
I CONVERTER COMPUTER

SHORT-TERM
PSD

Figure 1.1. Generic Receiver Block Diagram

The receiver input signal r(t) operates within the

radio frequency (RF) band, 300 MHz to 30 GHz. Hence, the

signal is termed the RF signal. For the purpose of this

study, the RF signal is assumed to operate at the high end

of the RF band (greater than say 1GHz). The RF signal is

down-converted (or translated) to an appropriate baseband

frequency and then sampled, as indicated in Figure 1.1. The

purpose of sampling the baseband representation of r(t) is

to allow for digital processing. Generally, digital

2
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7 .processing is more efficient and less costly than analog

(28:119). However, quantization error (or noise) is an

inherent problem of digital processing. This error results

from the roundoff effect that occurs when converting a

continuous signal into a set of finite discrete levels.

Tong (31:512-521) provides a detailed discussion of

quantization error and methods for reducing this error.

The sampling theorem states that a baseband signal is

completely reconstructed (no information loss) if the

sampling rate is at least twice the highest frequency

* component of the baseband signal (9:230). Ideally, sampling

is desirable at the RF bandpass signal - allowing for an all

digital EW receiver. Unfortunately, digital technology is

n not capable of providing reasonable results when the RF

signal is above 1 GHz. The bandpass sampling theorem

requires that the sampling rate lie between 2 BHz and 4 BHz,

inclusively. The variable B is the bandwidth of the RF

signal which can be on the order of 1000's of MHz. Current

,: digital circuitry is unable to sample at such fast rates

* (27:55). Once the baseband signal is sampled and converted

into a digital word, the digital computer is used to

determine the PSD of the signal.

* OThe above discussion did not consider the statistical

nature of the bandpass signal r(t). The signal r(t)

consists of the transmitted hostile signal s(t) plus noise

n(t). The noise is induced onto the hostile signal by the

3
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channel (medium of propagation). Thus, r(t) is actually a

random signal (or random process).

A random process is completely described statistically

if all its N-th order joint density functions are known

(i.e., N approaches infinity), a practical impossibility

(9:482). For many practical applications, only the first

and second order statistics are used to describe a random

process (24:208). The autocorrelation function, a second

order statistic, for a continuous time random process is

defined as

R x(t,t+T) = E{x(t)x(t+T)} (1.1)

where E{-) denotes the expected value (or statistical

average) of the product x(t)x(t+T). If a random process

x(t) is wide sense stationary (WSS), then

'. R (t,t+T) = R (T) (1.2)x x
This implies that the autocorrelation function is

independent of time shifts. The variable T is called the

lag variable, the amount of time by which t lags behind t+T.

If x(t) is also ergodic, then

* E{x(t)x(t+T)} = <x(t)x(t+T)> (1.3)

where <o> denote the time average (13:250). Thus,

ergodicity requires that the result of the statistical (or

* ensemble) average and the time average be identical. The

receiver input signal r(t) is assumed to be both WSS and

ergodic.

". The above considers the case of a continuous time

4
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random process. However, as eluded to earlier the

continuous process r(t) is down-converted to a baseband

frequency and sampled. Therefore, a discrete implementation

of the autocorrelation function is desired. A sampled

continuous time random process is a discrete time random

process. Papoulis (24:290) shows that if a continuous time

random process x(t) is WSS with autocorrelation R (T), then~x

x(n), a sampled version of x(t), has an autocorrelation

given by

R (k) = E{x(n)x(n+k)} (1.4)

This is called the discrete autocorrelation function (or

autocorrelation sequence) and is a sampled version of

R (T).
x

0The ground work has been developed and it is now time

to define the PSD. According to the Wiener-Khintchine

theorem (14:181), the PSD of an ergodic discrete time random

process is given by

P (f) = DTFT [R (k)] (1.5)X X

This says that the PSD is the discrete-time Fourier

transform (DTFT) of R x(k) and, conversely,

R (k) = DTFT [P (f)] (1.6)

The discrete autocorrelation function is the inverse

discrete-time Fourier transform of the PSD. A more

definitive explanation and expression of R x(k) and P x(f) are

presented in Chapter III. It is important to understand the

motivation for stating the discrete autocorrelation

w. 5



'. function. The random signal processed by the digital

computer for computation of its PSD is not continuous but

discrete. This is the signal x(n) that appears as the

output of the sampler in Figure 1.1. Several methods have

been developed for implementation on digital computers, that

determine the PSD of a discrete random signal based on its

discrete autocorrelation function (18:1382). In order to be

consistent with current literature, the discrete random

signal x(n) is hence forth referred to as a data record (or

discrete time series).

The two methods considered in this study are

Blackman-Tukey (BT) and Burg. The BT method is a fast

Fourier transform (FFT) technique employed to determine the

V j PSD of a data record. This method, commonly referred to as

a conventional approach, is computationally efficient and

generally produces reasonable results. However, degrading

frequency resolution problems arise when the data record

being considered is short.

The Burg method, referred to as a modern approach,

attempts to overcome the frequency resolution problems of

the BT method, particularly for short data records. The

idea here is to construct a parametric linear discrete model

that approximates the data record. The PSD is computed

based on this model. The motivation for using the Burg

method is its promise for better frequency resolution.

6
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The BT and Burg methods are discussed in detail in

Chapter III.

Problem Statement

Several approaches are available to determine the PSD

of a random process. There are pros and cons associated

with the selection of any one of the approaches. Two

candidate approaches are examined in this study. The two

approaches are applied to several known data records. A

comparison of the two approaches is made based on their

statistical properties and computational efficiency.

Scope

This study proposes to examine the merits of the BT and

Burg methods of spectral estimation for typical hostile

emitter signals. The evaluation of the two methods is based

solely on manual calculations and computer simulations. No

hardware prototypes are attempted. Also, a "smart routine"

is introduced that attempts to automatically determine the

spectral peaks corresponding to emitter frequencies.

Assumptions

The emitters are assumed to transmit at a single

operating frequency per pulse. Of course, each emitter

transmits at its own respective frequency. The reason for

the restriction of a single frequency per pulse is because

of software limitations. That is, the software package

used, Interactive Signal Processing Executive (ISPX), to

*1



simulate the emitter signals does not allow the user to vary

the frequency per pulse. Thus, r(t) is assumed to consist

of distinct frequencies corresponding to each emitter.

The random process r(t) is assumed WSS. Practically,

many random processes are not strictly WSS. Hence, the PSD

cannot be defined as given by (1.5). However, if the

duration of the observation interval (the number of data

points) is small, the process may be considered locally WSS

(24:125). A locally WSS process is one for which the

variations of the autocorrelation function is small over the

duration of the observation interval. Most real world

random processes are considered locally WSS.

Presentation

Chapter II provides a brief discussion of the ISPX

software package used and a discussion of previous research.

Chapter III provides the development of the theory for both

the BT and the Burg methods of spectral estimation. Chapter

IV discusses findings as they relate to several known input

data records for both methods. Chapter V provides

conclusions and recommendations for further study.

8
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trodII. ISPX Software Package and Previous Research

, , Introduction

The purpose of this chapter is twofold - to briefly

discuss the ISPX software package and to present previous

research on the BT and Burg methods of spectral estimation.

The ISPX software package currently resides on the Air Force

Wright Aeronautical Laboratories (AFWAL) VAX computer in the

directory of Dr. James Tsui. The package allows the user to

generate a variety of "real world" data records. A number

of different spectral estimation methods can be applied to

each data record, and the results viewed graphically.

However, as mentioned in the previous chapter only the BT

and Burg methods are considered in this study. The ISPX

package is a tool which very nicely allows for studying the

characteristics of the BT and Burg methods. The findings

presented in Chapter IV are a result of applying the

appropriate routines of ISPX to several known data records.

The appropriate routines are provided in Appendix A.

Reference to each routine is made in the next chapter.
I

The data record is traditionally processed by using FFT

based (or conventional) methods of spectral estimation.

There are inherent limitations associated with conventional
I

methods. The most prominent limitations are poor frequency

resolution and leakage. As will be discussed in the

following two chapters, these limitations become more

pronounced for short data records. Short data records are a

I9Ih
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------ ----------

common occurrence for receiver systems like that outlined in

Chapter I. In an attempt to alleviate the inherent

limitations of conventional methods, researchers have

devised other methods of spectral estimation. The other

methods are referred to in the literature as modern spectral

estimation methods. The modern methods, however, are not a

"fix-all" solution to spectral estimation for all data

records. They also have their limitations. The BT and Burg

methods are respectively considered conventional and modern

spectral estimation methods. Both methods are discussed in

detailed in the next chapter.

ISPX Software Package

This section is intended to provide a brief overview of

the ISPX software package. The interested reader is

referred to reference (2:1-20) for a more complete

discussion of ISPX. The ISPX package provides a number of

signal processing operations. However, only the operations

required to analyze the previous two mentioned spectral

estimation methods are discussed. The operations are:

1. Generate data arrays

2. Choose PSD method and execute

3. Plot an array

The generate data operation allows the user to generate

a wide variety of "real world" data records. Each data

record generated can consists of up to five independent

* . sinusoids. The variable parameters of each sinusoid are

10



frequency, amplitude, delay, and duration. The values of

these parameters are specified by the user; however, default

values are provided. This multiple sinusoid feature allows

the user to simulate a data record corresponding to a

received signal consisting of sinusoids from different

*, emitters. A pseudo random WGN process can be embedded on

the data record to emulate the effects of the noisy

channel. The noise amplitude is the parameter the user

changes to vary the input signal-to-noise ratio (SNR) of the

data record. That is, for a desired input SNR, the noise

amplitude required may be calculated by the following

'? A - 1 SA
NA = I (2.1)v- - 1 0 SNR/20

Oi where NA and SA represent noise and signal amplitudes,

respectively.

Once the data record is established, the PSD operation

is performed. The newly generated data record is sampled,

and the appropriate PSD choice is made. The user specifies

the sampling frequency, such that the Nyquist baseband
I

sampling theorem is obeyed. A unity sampling frequency

allows the user to deal in normalized (or fractional)

frequency. Of course, the frequencies contained in the data
I

record must be chosen accordingly. For simplicity, the

examples presented in Chapter IV are all based on a unity

sampling frequency. ISPX allows the user to select one of
I .2 .'.several spectral estimation schemes, both conventional and

q1
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modern. However, as eluded to earlier only the conventional

BT and the modern Burg methods are considered in this study.

In selecting the BT method, the user must specify the

number of frequency samples, the largest lag, and the lag

window. Each of these parameters are discussed fully in the

next chapter. However, it is worth noting the different lag

windows provided by ISPX. They are:

1. Cosine

2. Hamming

3. Kaiser-Bessel

As will be discussed in the following chapters, the hamming

lag window provides the overall best performance for the

examples considered in this study. In selecting the Burg

method, the user must specify the number of frequency

samples, and the model order number. Again, these

parameters are discussed in the next chapter.

The plotting operation is invoked after the user

specifies the appropriate PSD method. The plotting

operation allows the user to graphically illustrate the

spectral estimation schemes. The user is provided the

option of plotting the results of up to four spectral

estimation schemes on a single graph. This feature is

particularly useful for making visual comparisons between

different spectral estimation methods, or comparisons of the

same method with differing parameters.

'. 12
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Previous Research

This section provides a brief summary of current

-research in the area of spectral estimation. Sp-cifically,

-. research done over the past decade pertaining tu the BT and

Burg methods of spectral estimation is presented.

Cooper and Kaveh (7:313-323) considers the effects of

noise on the spectral estimate provided by the Burg method.

They note that as the noise increases the resolution of the

spectral estimation becomes progressively worse. In an

attempt to mitigate the effects of the noise, they increased

the model order number of the estimate. Noting that the

resolution improved; however, spurious (or unwanted) peaks

began to appear. They also compared the spectral estimates

produced by both the BT and Burg methods for a given data

record. The data record consisted of two sinusoids

corresponding to doppler shifts from two radar targets.

They note that the number of lags required by the BT method

p are generally greater than the model order number required

r.1 by the Burg method to achieve a given frequency resolution.

-6 Haykin (12:258-262) applies the Burg method to solve

the problem of estimating the angle(s) of arrival of plane

wave(s) impinging on a linear array antenna from unknown

direction(s). The location of the spectral peaks indicates

the directions of the incident plane waves. For an input

SNR of 18dB, he notes that for a single source (one target)

illuminating a linear vertical array composed of eight

13
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equally spaced horn antennas: (1) the location of the

spectral peak coincides very closely with the actual

direction of the source; (2) the resolution increases with

.5.. increasing model order number; and (3) spurious spectral

peaks appear as the model order number is increased. In

Z. fact, there may be as many as P peaks in the spectrum. The

variable P is called the model order number and will be

discussed in the next chapter.

Kunt (19:326-339) provides several examples

illustrating the performance of the BT spectral estimator.

He notes that as the data samples of a given data record are'0

decreased, the frequency resolution of the estimator also
4j,

decreases. He investigates the resolution-leakage

phenomenon of several lag windows. Substantiating the

well-known fact, that for a sinusoidal process the frequency

4.%" resolution of the estimator is largely determined by the

main lobe and sidelobe characteristics of the lag window

chosen. These characteristics tend to become less favorable

as the number of data samples decreases. For this reason,

the BT spectral estimator typically provides poor results

for short data records. Particularly, when the data record

consists of two or more closely spaced sinusoids.

Bishop and Ulrych (4:189-192) investigate the Akaike

criterion (briefly discussed in the next chapter) for

determining the model order number of the Burg spectral

estimator. Ideally, the correct model number is that number0

14
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which results in a minimum value of the Akaike criterion.

They note that the Akaike criterion typically results in

model order numbers that are too low. They emphasize that

model order number selection is in general a difficult

problem, and that the Akaike criterion and other proposed

criteria serve only as guidelines. However, they state that

for sinusoidal processes the Akaike criterion yields the

"best" results.

15
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III. Detailed Theory

Introduction

"-' The power spectral density (PSD) and its estimation are

-* receiving much attention by researchers in many disciplines.

The PSD is considered an effective medium that allows for

*. characterizing a stationary random process (6:27). Two

common but distinctly different schemes are usually

considered when attempting to estimate the true PSD. They

are:

1. The conventional method of PSD estimation

2. The modern method of PSD estimation

The most notable conventional method is the method proposed

by Blackman and Tukey (BT) - the BT method (5:187-282).

.- This method is based on computing the DFT of a finite

windowed (or tapered) autocorrelation sequence (ACS). Thus,

the BT method produces a PSD estimate which is the transform

of the window function convolved with the simple PSD

estimator. The window function plays a very important role

in determining the resolution and the sidelobe phenomena

\ associated with the estimate of the BT method, particularly

for sinusoidal processes embedded in additive WGN. Often,

the selection of the window function that provides the

So- "optimal" compromise between high resolution and low

sidelobes is determined empirically (23:84--86). The BT

method generally provides unacceptable results for short

data records - a smeared spectral estimate with very poor

16
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. .resolution (1:450). Short data records occur frequently in

practice, particularly for radar systems in which only a few

data samples are available for each received pulse

(18:1381). A common error is that of appending a sequence

of zeroes to the data record in hope for improved

resolution. This technique, commonly referred to as zero

padding, merely reduces the spacing between adjacent

spectral lines by interpolation (21:43).

The motivation for modern methods is their promise for

better frequency resolution, particularly for short data

records. The most notable modern method is the

autoregressive (AR) method (11:56). The idea here is to

model the data record by an all-pole rational transfer

function. This allows for extrapolation of data samples

beyond the observation interval, not implicitly assuming the

samples are zero as with conventional methods (7:321).

Theoretically, the data samples can be extended

indefinitely. More data samples allow for computation of

more autocorrelation lags, and therefore in general an

improvement in resolution. Also, for all practical

purposes, the window function is removed; therefore, the

degrading effects of sidelobes are alleviated. Of course,

the accuracy of the PSD estimate prcvided by the AR method

depends directly on the accuracy of the rational transfer

function used to model the data record. The approach for

estimating the PSD, using the AR method, is drastically

as 17
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different from that of the BT method. The parameters of the

assumed model are estimated from the available

autocorrelation lags, and then the theoretical PSD implied

by the model is calculated using the estimated parameters.

There are several known techniques for estimating the

parameters of the assumed model (20:562). In this chapter,

only the Burg approach is considered.

The following sections provide a detailed discussion of

the BT and Burg methods.

4 Conventional Spectral Estimation - Via the BT Method
I

The PSD simply represents the power distribution of the

random process along the frequency axis (26:137). For a WSS

continuous random process x(t), the true PSD is given by the

Fourier transform

"0

( J Rx('T)exp(-j2nf-T)dT (3.1)

of the autocorrelation function R (T). Therefore, the PSD
x

of the WSS discrete random process x(n) is given by the

discrete-time Fourier transform (DTFT)

= (f) Z R(kT)exp(-j2nfkT) (3.2)
< k = -cc

of the ACS R x(kT), which corresponds to equal distant

shifted versions of P (f) (see Figure 3.1) (6:291). The
x

I
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" B 0J B 0) B 2 B

Figure 3.1. Continuous and Discrete Random Processes

and their Respective PSD's (6:291)

ACS (10:54), assuming a real and ergodic x(n), as defined

by Eq (1.4) is given as

M

xR M x(n)x(n+k) (3.3)
x 2M1ZM -* n =- M

For simplicity in notation, the sampling interval T is

implied (i.e., k = kT and n = nT). Properties of the ACS

are

R (k) = F l-k)
x x (3.4)

Rx(0) -> R(k) I

These properties indicate_ that the ACS is a real even

i
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sequence (for real x(n)) with a maximum at the zero lag.

The computation of the ACS is practically impossible,

requiring an infinite number of data samples. An estimate

of the ACS is the only alternative. Hence, the PSD as given

by Eq (3.2) can at best be approximated. Two commonly used

autocorrelation estimates (17:73-74) are

N-k I-I

R x(k) N N x(n)x(n+k) (3.5a)
n=0

and

N-1k -1
1

R x(k) - x(n)x(n+k) (3.5b)-n=0

pwhere N is the total number of data samples (i.e., x(n) for

n = 0 to n = N-i). Thus, a total of 2N-1 lags of the

autocorrelation estimates are possible. The symbol

denotes the biased estimator and symbol the unbiased

estimator. A biased estimator is one in which .ts expected

N value (or mean) deviates from the actual value being

A estimated. The expected value of an unbiased estimator is

the actual value (30:9). The expected values of the biased

and unbiased autocorrelation estimators are, respectively,

>k

E{R(k)) (1 Rk) (3.6a)
0N

and

E (k) = Rx(k) (3.6b)

20
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--- Observe that the expected value of the biased

autocorrelation estimator is equal to the actual value R x(k)

weighted by the Bartlett (or triangular) window. The

expected value of the unbiased autocorrelation estimator is

the actual value. Intuitively, it might be thought that the

unbiased autocorrelation estimator is the best choice for

use in Eq (3.2). However, Chen (6:27-28), Kunt

(19:293-295), and Marple (21:146-149) show that as the lag

value k approaches its limit (i.e., k approaches N-i), the

variance (or fluctuation) of the unbiased autocorrelation

estimator increases dramatically as compared with that of

the biased autocorrelation estimator. This increased

variance causes the unbiased autocorrelation estimator to

yield results not always satisfying the properties of Eq.

(3.4). Figure 3.2 presents plots of both estimators for a

data record generated by a first-order digital filter, with

a psuedo WGN input process (19: 296-297). The plots are for

different values of k and N. A comparison of the plots

indicates the variance of the unbiased estimator is greater

for k : N. However, the variance of both estimators appears

identical for k << N. The latter occurs most often in

typical radar type problems. Therefore, some researchers

argue that the unbiased autocorrelation estimator is in fact

the best choice based solely on Eq (3.6).

A more valid comparison, suggested by Jenkins and Watt

(15:179-181), is to consider the mean square error (mse) of

21
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Figure 3.2. Plots for both Autocorrelation Estimators
'I (19:296-297)
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the two autocorrelation estimators. Jenkins and Watt

concluded that the mse of the biased autocorrelation

estimator R (k) is typically smaller for all values of k.

Therefore, in this study the PSD is estimated using the

biased autocorrelation estimator, namely

N-1

Sx(f) = Rx(k)exp(-j2nfk) (3.7)

k=-(N-l)

defined for -1/2T : f : 1/2T. This equation represents a

low-pass filtered approximation of P x(f) and hence an

approximation of J (f) (see Figure 3.1). The use of R (k)x x

in Eq (3.7) is not to suggest that the biased

autocorrelation estimator always yields a superior estimate

of the PSD. Jenkins and Watt only suggested that the PSD

determined from the biased autocorrelation estimator is

better on average, particularly for large k.

The PSD estimator given in Eq (3.7) is called the

simple (or periodogram) PSD estimator (29:238). This

estimator, at first glance, might appear to approach that of

Eq (3.2) for large N. If this happened, then the simple PSD

estimator is said to be consistent. A consistent estimator

is one in which its bias and variance both tend to zero as

the number of data samples increases (32:71). Kay

(17:80-82) and Kunt (19:302-304) show that the simple PSD

estimator is not consistent, as a consequence of the

autocorrelation estimator. Although the bias of the simple

PSD estimator asymptotically approaches zero as the data

23
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samples increases, the variance

Var { (f) n P
2 (f) (3.8)

remains essentially constant - the square of the desired

PSD. Figure 3.3 shows the true PSD of a random signal

consisting of a weak and strong sinusoid embedded in WGN.

L ",x (f) strong signal

I0'

,,,° 0--,

"4 10" weak signal
10- noise

I0"

0 "'. I I I f
0 0.! 0.2 0.3 0.4 0

Figure 3.3. The Ideal PSD of a Strong and a Weak Signal
Embedded in WGN (19:328)

Note that the frequency axis represents a fractional (or

normalized) frequency - the actual frequency divided by the

sampling frequency f = l/T. Figure 3.4 depicts the results

*' of the simple PSD estimator for several data record lengths.

As expected, the variance appears to remain essentially

constant for different values of N. Many researchers agree

that the simple PSD estimator generally provides unreliable

results, particularly if there is no a priori knowledge of

the true PSD (1:448).
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Figure 3.4. The Simple PSD of Weak and Strong Signal
Example for Various Values of N (19:328)
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A method to reduce the variance of the simple PSD

estimator is functionally described in Figure 3.5. The

biased autocorrelation estimator is computed from a given

data record, windowed, and then transformed.

ACST R (k) n)P

COMPUTATION O[W--INDOW---- - TRASFORMERJT

Figure 3.5. A Functional Description of the BT Method

This method is mathematically expressed as

nM

O BT(f)= z w(k)R (k)exp(-j2fk) (3.9)

k=-M
.1

where M <- N-I and w(k) is called the lag window with the

following properties

0 <  w(k) < w(0) = 1
w(k) = w(-k) (3.10)

S w(k) = 0 for Ikj > M

* The subscript BT is used to designate this as the Blackman

and Tukey PSD estimator - Blackman and Tukey pioneered the

development of this estimator. The BT PSD estimator can

4 also be represented as

.6
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P BT) DTFT lk)R (k

I/ 2T

I J W(f-Z)Px(Z)dZ (3.11)

-1/2T

where W(f), the spectral window, is the discrete-time

Fourier transform of the lag window. Thus, the BT PSD

estimator is commonly considered a smoothed (or filtered)

version of the simple PSD estimator. All is not gain,

however, when using the BT PSD estimator. The BT PSD

estimator allows for a reduction of variance at the expense

of increasing the bias, or equivalently a reduction of

sidelobes at the expense of deteriorating the frequency

resolution. Kay (82-84) shows that the mean and variance of

the BT PSD estimator are, respectively,

1/2T

EBT(f) J W(f- )P(;)d (3.12)

B-1/2T

and

Var [p ( ~ n! 1 P2 (f) w2(k (3.)
BT f ) N x "

k=-M

If a small bias is desired, then M is chosen large such that

the spectral window acts as a dirac delta function. On the

other hand, for small variance M is chosen small as

indicated by Eq (3.13). Clearly, a compromise of acceptable

bias and variance has to be determined. In most cases, this
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compromise depends on the particular application of the

estimator. Figure 3.6 shows the BT PSD estimator of the

spectrum given in Figure 3.4, assuming a Blackman lag

window. A comparison of Figures 3.5 and 3.6 indicates that

although the weak sinusoid is not detected, the BT PSID

estimator is much smoother (less variance). Therefore, the

BT PSD estimator is considered more reliable (19:334).

The selection of the lag window is considered an "art"

in conventional PSD estimation. The lag window is not to be

4..

P" BT (f) P BT M )

2BT N 2048 1 0 N = d048, ,4 - 513 M = 1025

10 q Blackman window I0-' Blackman wdow

1:1 10-2

-' i00-j.

io-* - 10'-4

10"1 -I

10
-1

10-. 10- "
a 0.1 0 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5eI
Figure 3.6. The BT PSD of the Weak and Strong Signal
Example (19:334).

confused with the data window. The data window is

unavoidable as implied by Eq (3.5). That is, the

autocorrelation estimator is computed based on a finite

28
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,. .2.'. number of data samples (the data record). The

Blackman-Tukey approach as defined by Eq (3.9) assumes that

the data window is rectangular. The lag window, however, is

optional and is used primarily to reduce the variance

(11:63). Unfortunately, there is no algorithm that

precisely defines the approach for selecting the most

*appropriate lag window. For this reason, many discrete-time

lag windows have been proposed for use in PSD estimation.

An empirical approach of window selection is usually done,

especially if there is no a priori knowledge of the random

process. It is beyond the scope of this study to consider

the detailed characteristics of the many proposed lag

windows (see any of the above mentioned references).

However, it suffices to say that the spectral resolution of

the BT PSD estimator depends largely on the main lobe of the

Nspectral window. Also, the sidelobes of the spectral window

greatly influences the variance of the BT PSD estimator.

The implementation of the BT PSD estimator on digital

computers requires

M

P BT(f i)= w(k)R x(k)exp(-j2rzfik)

k=-M

= DFT (k)Rx(k) (3.14)

where f.= i/KT for 0 ! i : K-1. The discrete Fourier
I

transform (DFT) differs from the DTFT in that both the time

and frequency representation of the process are discrete.
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Generally, a fast Fourier transform (FFT) algorithm is used

to compute Eq (3.14) (see Appendix A). The value of K is

arbitrary, but usually K >> M, so that sharp details in the

PSD estimate will not be missed (21:152). If K >> M, then

the argument of Eq (3.14) is zero padded from M+l to K.

Zero padding decreases the spacing between spectral line

components in the DFT and does not really improve the

resolution between two closely spaced spectral components of

the signal (see Figure 3.7). The spectral resolution is

improved, particularly for short data records, by

considering modern techniques of spectral estimation. These

techniques extend the ACS by extrapolation (or prediction)

rather than appending zeroes. The following section

considers the modern technique of autoregressive (AR)

spectral estimation.

Modern Spectral Estimation - Via the AR/Burg Method

The autoregressive (AR) spectral estimation technique

is a parametric method which attempts to model the data

record with an all-pole rational transfer function. Ulrych

and Bishop (4:185) argue that many discrete-time random

processes encountered in practice may be described by

30
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x(n) = - a(k)x(n-k) + Y(n) (3.15)

k=1

where a (1),a p(2),...,a p(P) are the P-th AR coefficients,

and rO(n) is the sample of a zero-mean WGN random process
2

with variance a . The above difference equation is referred
p

to as an AR-process because x(n) is a linear regression on

itself with Y?(n) representing the error. The variable P

represents the order of the AR-process and plays a very

significant role in determining the spectral density. More

is said about the significance of P shortly. Taking the

z-transform on both sides of Eq (3.15) and combining terms

yields the system function

1
H(z) = 1 (3.16)

1 + a ap kz k

k=l

Thus, the AR-process is viewed as being generated by

applying a zero-mean WGN process to an all-pole digital

filter (see Figure 3.8). The system function is assumed to

be both stable and causal (i.e., all poles lie inside the

unit circle). This condition is necessary to insure that

x(n) is WSS (17:179), an assumption made throughout this

study. The evaluation of H(z) along the unit circle, z =

exp(j2nf), yields the all-pole transfer function

~1
H(f) - p (3.17)

1 + Yap(k)exp(-j2nfk)
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Ti(n) x(n)

a P(P) a p(1)

Figure 3.8. An All-Pole Filter for Generating and AR
Processs (12:250)

Therefore, the PSD of the random process, that implied by

the linear discrete model, is

2

• AR ( f )  = P 2 (3.18)

1 + Za (k)exp(-j2nfk)'.' pik=1

for -1/2T -S f -5 1/2T. This indicates that the problem of

PSD estimation, via the AR method, is actually a problem of

parameter estimation. The AR PSD is defined once the

parameters {ap(1), a (2),..., a (P), o 2 and P are

determined. A myriad of methods are available for

estimating these parameters. The interested reader is

referred to Kay (17:243-261), Marple (21:206-230), Akaike

(3:716-723), and Parzen (25:723-730). This study only

examines the Burg method of estimating the parameters

{a (1), a(2),..., a (P), a2}. Also, the procedure proposed

by Akaike for estimating the model order P is briefly

-a 33
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i '-'. discussed. However, before proceeding to discuss these two

methods, the basis for the high frequency resolution

attributed to the AR PSD method needs to be made clear.

DuBroff (31:1622-1623) shows that an equivalent

representation of the AR PSD is given by

P AR(f) X A x (k)exp(-j2nfk) (3.19)

where

4

4 R (k) for 0 : 5 k S P
n, p

SE(k) a(t)R (k-t) for k > P (3.20)
-.4

Thus, assuming that the first P+1 true autocorrelation lags

are known, via Eq (3.3). Eq (3.20) implies that

autocorrelation lags may be recursively extended

indefinitely. Although, computing the AR PSD with Eq (3.19)

is not very practical. The usefulness of this equivalent

form is to readily illustrate the basis for the high

frequency resolution. That is, in contrast to the BT PSD

*estimator no windowing and no zero padding occurs. Hence,
4%

the AR PSD does not possess the sidelobe phenomena of the BT

PSD estimator and generally has much better frequency

4 resolution.

The problem of estimating the parameters {a p (1),

a p(2),..., a (P), a2) is now considered. Burg is credited
ap 2 ,. . a (.,

d ...
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for developing the maximum entropy spectral density.

Considering how best to estimate the extended

autocorrelation lags, Burg argued that the time series (or

data record) characterized by the known and extrapolatated

ACS should have maximum entropy. This implies that the time

series is the most random. The rationale for this choice is

that it provides for the flattest and the most minimum bias

spectral estimate (17:199). Ulrych and Bishop (4:183-200)

and a host of other researchers show that the maximum

entropy spectral density is identical to the AR PSD for

4linear Gaussian random processes. Hence, the terms AR PSD

and Burg PSD are used synonymously in this study.

. Burg also suggested that in estimating the parameters

f{a (1) a (2),..., a (P), o2}, the Levinson-Durbin recursive

algorithm be used. A detailed discussion of this algorithm

is found in Kay (17:181-191). In summary, the

Levinson-Durbin recursive algorithm provides estimates of

the AR parameters by the following procedure

N-1". ~ 2 -1 2-
x N (3.21)

N=0

For K = 1,2,...,P

a k 1 l(i) + Fkak-l (k-i), i=l,...,k-i

ak~i) (3.22)
k 

,k i=k

and

* k2 2 2
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The mathematical form of Eq (3.23) is analogous to the

transmission of power through a terminated two-port device.

Hence, Fk is known in the literature as the reflection

coefficient (12:254). The estimate AR parameters {ap(1),

a (2),...,ap(p), ap2} are known once the reflection

coefficient is determined. Burg proposed to estimate the

reflection coefficient by minimizing the sum of the forward

and backward prediction error powers. The forward and

backward prediction errors are defined, respectively, as

p

Fk (n) = x(n) + Z ap(k)x(n-k) (3.24a)

k=l

and

P

Bk (n) = x(n-P) + I ap(k)x(n-P+k) (3.24b)

k=1

These two equations represent prediction-error filters

operating in the forward and backward direction,

respectively. The Burg method of determining Fk insures

that if operating in the forward direction, then the

prediction of x(n) given {x(n-1), x(n-2),...,x(n-P)} is the

"best" possible prediction (i.e.,the mean square error or

forward prediction error power is minimized). Similarly, if

operating in the backward direction, then the prediction of

x(n-P) given {x(n-P+l), x(n-P+2),...,x(n-l), x(n)} is the

"best" possible prediction (i.e., the backward prediction

error power is minimized). Haykin (12:243-251) shows that
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when the forward and backward prediction error powers are

minimized, the resultant errors, Eq (3.24), take on the form

of WGN processes. If this happens, then Eq (3.24) is

equivalent to the AR process described by Eq (3.15). The

sum of the forward and backward prediction error powers is

given by

Pk = E{ IFk(n) 2 + IBk(n) 12 } (3.25)

The reflection coefficient F k is obtained by minimizing the

above expression. Before doing so, it is convenient to make

the following substitution for the forward and backward

error

F k(n) = Fk-l(n) + rFkBk-l(n-1) (3.26a)

to and

Bk(n) = Bk-l(n-1) + FkFk-l(n) (3.26b)

These two relations provide a recursive method for

determining the errors and are obtained by simply

3ubstituting Eq (3.22) into Eq (3.24). After the

substitution of Eq (3.26) into (3.25), pk is differentiated

with respect to -k and set equal to zero. Applying some

simple algebraic manipulations, it is easy to show that F
k

is given by

N-1
__ _ Fk-l(n)Bk-l(n- 1 )

F =-2 N-1 (3.27)
k _ (JFk-(n) )2 + Bk (n-l) 2)
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where the expectations are approximated by spatial averages.

Kay (17:255-256) shows Eq (3.27) guaranties that Fk :5 1.

Hence, the Burg method for determining the reflection

coefficient provides poles which are on or inside the unit

circle, resulting in a stable or marginally stable filter.

In an attempt to try and put the above method into some

perspective, the computations are to proceed as follows:

1. The initial conditions are:

~2 - 1 N - 1  2
0 Rx N 1 2 (3.28a)

and

F0 (n) = B0 (n) = x(n), n = 0,1,2,...,N-1 (3.28b)

2. Compute the reflection coefficient, Eq (3.27), for

k =1

3. Compute the variance, Eq (3.23), for K = 1

4. Compute the AR coefficients, Eq (3.22), for k = 1

5. Compute the prediction error updates, Eq (3.26),
for K = 1

6. Increment K by one, go back to step 2, and repeat.

7. Stop computation after the desired order P is
reached.

To illustrate these steps consider the simple first-order AR

process given by

x(n) = -a (1)x(n-l) + )?(n) (3.29)

Multiplying both sides of this equation by x(n-k) and taking

the expected values for k=0 to k=l yields
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12•~ """R(0) R (1) 1
""," x (330

Rx(1) Rx(0) al(1) 0

This matrix notation is commonly referred to as the set of

first-order Yule-Walker equations (4:190). The unknown

2
parameters are obviously {a1(1), F 1 }. The procedure

outlined in the above seven steps yields the following

relations

N-I

F = -2 -_- n x(n)x(n-l) (3.31)
n-i (Ix(n) 2 + Ix(n1) 12]

2= (l-F l2); O  (3.32)

Na () = F (3.33)

F (n) = x(n) + F, x(n-1) (3.34)

and

B (n) = x(n-1) + F1  x(n) (3.35)

Thus, given x(n) for n = 0 to n = N-i, the estimate

parameters i(1), I 2 are easily obtainable. Note that

for higher orders of P, steps two through six are repeated

until the desired AR parameter estimates a(1), ap ,

a (P), F are obtained. These estimates are substituted

into Eq (3.18) in order to obtain the AR (or Burg) PSD

estimator, namely
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P ""PAR (f )  P 2 (3.36)

1 + z a p (k)exp(-j2nzfk)

k=1

Unfortunately, the recursive algorithm outlined above does

• -not provide any constraint on the order P. That is, the AR

'. parameter estimates may be recursively determined for any

order P. However, if the value of P is too low, then the AR

PSD estimator results in a smooth spectral estimate with

poor frequency resolution. On the other hand, if the value

of P is too high, then the estimator results in a spectral

estimate with spurious peaks. This phenomenon is

illustrated in the next chapter.

A number of researchers, such as Akaike (3:716-723),

Parzen (25:723-730), and Kashyap (32:996-998), have proposed

different schemes to determine the "correct" model order P.

The word correct is in quotes, because model order

.* determination is generally a non-trivial problem and in most

- cases the schemes suggested serve only as guidelines (22:

*" 2-11). Ulrych and Bishop (4:189-192) empirically found

that the procedure suggested by Akaike provides the best

estimate of P for AR linear Gaussian random processes. This

procedure simply requires that P be selected such that the

- final prediction error (FPE) given by
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FPE N+ P N 2 37

I -P )11.5- PJO'

is minimized. The idea here is to select some maximum model

order L S N - 1. Then successively compute the FPE for

integer values of P = 1 to P = L. The value of P resulting

in the minimum FPE is the "correct" model order. This

approach is desirable if there is no a priori knowledge of

the random processes. For this study, however, model orders

are determined empirically since there is such a "wealth" of

knowledge about the simulated random processes (see Chapter

IV).

Observe that the denominator of Eq (3.36) is simply the

squared magnitude of the DFT of the sequence

(1),...,a (P) ,where a p (0) = 1. Thus, once the AR

parameter estimates {ai(1), ap(2),..., ap(P), Cp are

recursively determined as discussed above, the AR PSD

estimator, Eq (3.36), is determined by using a FFT algorithm

(see Appendix A).

The statistics of the AR PSD estimator are generally

impossible to obtain (17:211). However, Makhoul

(20:568-569) shows that for large data records (i.e. N

approaches infinity) the mean and variance of the AR PSD

estimator are, respectively

SPAR } PAR(f) (3.38a)
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* -and

Var PAR(f)} P(f) (3.38b)

Although these results may be of very little practical

importance. That is, they may not provide good

approximations for practical problems. Nonetheless, it is

instructive to note the variance dependence on the model

order P. Observe that the model order selection represents

for AR spectral estimation the classical trade-off between

resolution and variance.

Comparison of the BT and Burg Methods

A comparison of the BT and Burg methods seems the logical

progression for the final development of this chapter. Also,

the discussion in this section leads rather nicely to the

analysis presented in the next chapter.

Several areas are worth considering when comparing the

BT and Burg methods. The most prominent are: computational

complexity, resolution, and variance. The Burg method is

generally more computationally burdensome. This is evident

by considering Eq (3.36). As eluded to earlier the

denominator in Eq (3.36) can be efficiently evaluated by an

FFT routine. The additional computation results from having

to recursively determine the appropriate AR parameter

estimates before invoking the FFT routine; however, if

resolution is the only concern. Cooper and Kaveh (7:320)

show that the model order required by the Burg method is
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-- generally much less than the number of lags required by the

BT method. Under this condition, the computation time of

the Burg method is comparable to that of the BT method.

As discussed previously, the frequency resolution of

the BT method is determined largely by the lag window (or

spectral window). A simple exercise in Fourier transforming

readily shows that the frequency resolution in inversely

proportional to M, where M 5 N - 1 (see Eq (3.9)). Marple

(21:664) shows that the frequency resolution of the Burg

A method for sinusoidal processes is approximately given by

Af AR 1.03 (3.39)
* P[SNR(P+I)] 0.31

Thus, the frequency resolution, via the Burg method,

f) * decreases with decreasing SNR but also increases with

increasing model order number P. The frequency resolution

of the BT method is totally independent of input SNR. More

is said about frequency resolution for both methods

in the next chapter.

A comparison of Eqs (3.13) and (3.38b) shows that for a

* given data record length N the model order number P is

analogous to the lag window length M. That is, the variance

of both methods tends to increase as their respective

* parameter increases.

The following chapter provides a qualitative comparison

of the two methods for several data records.

V
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IV. Analysis

Introduction

The purpose of this chapter is to graphically examine

the two spectral analysis techniques presented in the

previous chapter. The two techniques are applied to several

known data records and comparisons made. Also, a "smart

routine" is introduced that attempts to automatically

d.termine peaks corresponding to actual frequenrcies of

given PSD plots.

A major "limitation" of the receiver system described

in Chapter I is that of pulse duration. That is, the pulse

received by the receiver is relatively short in duration,

resulting in only a few data samples available for

processing. The data record resulting from the received

pulse is, therefore, considered a short data record. As

mentioned in Chapter III, computing the PSD of short data

records may provide less than desirable results.

The Avionics Lab suggested that the number 64 is a good

average representative number of data samples available for

each received pulse. Hence, each data record considered in

this chapter consists of only 64 data samples. Recall, that

the received pulse may be composed of a number of sinusoids.

That is, two or more hostile emitters may be operating

simultaneously. As stated in Chapter I, each emitter is

assumed to transmit at a single operating frequency. The
O,

received pulse, and therefore the data record are composed
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of sinusoids corresponding to the operating frequency of each

emitter. For example, if two emitters are operating

simultaneously at different frequencies, then the data

record consists of two equivalent baseband sinusoids

corresponding to the two emitter frequencies.

The data records evaluated are intended to represent

"real world" type hostile emitter signals. A psuedo random

WGN process is added to each data record and represents the

noise corruption caused by the medium of propagation.

Again, the BT and Burg methods of spectral estimation are

applied to each data record and comparisons made. Of the

available lag windows provided by the ISPX software package,

the hamming window yields the best compromise between

ol frequency resolution and leakage. This window is used in

determining the BT PSD estimator for all cases considered

with M = N/2 (or M = 32), see Eq (3.9). As mentioned

earlier, determining the model order number P of an AR

process is a non-trivial task, and therefore will be

determined empirically. However, data records that are

exclusively sinusoidal (i.e., no embedded noise) require a

model order number P = 2m for m number of sinusoids

(17:213). This criterion will serve as a basis for

empirically determining the correct model order P.
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*Problem One

The first problem considered is a data record

consisting of a single sinusoid embedded in WGN. This input

data record is given by

x(n) = sin[2n(0.2)n] + g(n) (4.1)

where g(n) is a psuedo random WGN process. Figures 4.1

through 4.3 show this input process for signal-to-noise

ratios (SNR's) of 10, 15, and 20 dB, respectively. Figure

4.4 shows the BT PSD estimator of Eq (4.1) for each

specified SNR. Observe that the frequency resolution

defined by the main lobe centered about the fractional

frequency 0.2 is independent of SNR. This point is further

illustrated by superimposing these three results as

indicated in Figure 4.5. Figure 4.6 depicts the result of

overlapping the Burg PSD estimator for each specified SNR.

The model order selected is two. Observe that as the SNR

decreases the respective spectral peaks are broadened and

displaced from the true position (indicated by the vertical

dashed line). This illustration clearly shows that the

frequency resolution of the Burg PSD estimator is directly

proportional to the input SNR. Furthermore, it is noted

that only the spectral peak corresponding to the 20 dB SNR

correctly resolves the true fractional frequency of 0.2.

The broadening and displacement of the other two spectral

"*-* peaks are due to the increased noise (or lower SNR). A

quantitative relationship that explains this phenomenon is a
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formidable task. In fact, very little is known

quantitatively about noisy AR-processes (4:184-187).

*- " However, it is qualitatively instructive to consider

. specific cases. As will be shown in the following examples,

the model order number P can sometimes be increased to

mitigate the effects of noise for a given SNR. A word of

caution, however, is in order here. As discussed in the

previous chapter if the model order number P is too large,

spurious peaks in the spectral estimate will appear. This

is simply explained by considering Eq (3.36), repeated here

-for convenience

PA (f) = p (4.2)

PAR ( )p 2

1 a p (k)exp(-j2nfk)

k=1

Note that if P is too large, then extra poles are produced.

These extra poles, commonly referred to as noise poles, have

a tendency to situate themselves too close to the unit

circle in the z-plane, resulting in unwanted (or spurious)

peaks.

Problem Two

This problem and the remaining two problems consider

Sdata records with a minimum SNR of 15 dB. The Avionics Lab

indicated that 15 dB is typically the lowest SNR of interest

.. for their applications.

The problem addressed here is a data record consisting
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of two unequal amplitude sinusoids embedded in WGN. This

data record is given by

x(n, = 0.2sin[2n(0.2)n] + sin[2n(0.25)n1

+ q(n) (4.3)

Figure 4.7 shows this input process for a SNR of 15 dB

relative to the weaker sinusoid. The BT PSD estimator is

presented in Figure 4.8. Notice that the main lobe of the

weaker signal is not present. Obviously, the BT PSD

estimator is not capable of distinguishing both sinusoids.

This is a common dilemma for all conventional schemes of

spectral estimation, particularly for data records

consisting of weak and strong sinusoids. This is explained

by considering Eq (3.9), repeated here for convenience

* ~ M
P BT (f)= z w(k)Rx(k)exp(-j2rfk) (4.4)

k=-M

The BT PSD estimator involves a linear operation on a

weighted ACS derived from a given data record. Thus, the

spectrum of the sum of two sinusoids (uncorrelated) is

simply the sum of their respective spectra. The amplitude

of the spectra is directly proportional to the power in the

sinusoids. Therefore, the amplitude of the spectra

corresponding to the strong sinusoid is greater than that

corresponding to the weaker sinusoid. In fact, so much so

that the main lobe amplitude of the weaker sinusoid is

buried (or masked) by the sidelobe amplitudes of the strong

sinusoid. It is important, however, to point out that the
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inability of the estimator to detect both sinusoids is not

due to poor frequency resolution. That is, the two

sinusoids are spaced sufficiently in frequency to be

resolved by this estimator. Again, to reiterate the problem

is that the main lobe of the weaker signal is canceled by

the sidelobes of the strong signal. If the problem

considered two equal amplitude sinusoids, then both

sinusoids would have been resolved. Recall, that the

resolution of the BT PSD estimator is govern largely by the

lag window chosen. Of course, a lag window with a faster

roll-off rate could have been chosen possibly to retrieve

the weaker sinusoid. But as stated earlier, of the

available lag windows provided by ISPX, the hamming window

*u). provides the best compromised between frequency resolution

and leakage. Problem four considers an example in which

sinusoids are so closely spaced in frequency, that it is

impossible to resolve them using the BT method regardless

of power.

The Burg PSD estimator is shown in Figure 4.9. As stated

earlier, the model order P can be increased in order to

mitigate the effects of noise for a given SNR. Observe that

for a model order number of four, the appropriate order for

no noise, the results of the Burg PSD estimator are no better

than the results of the BT PSD estimator. Only the strong

signal is detected. For model order numbers of six and ten,
S"

* the Burg PSD estimator is capable of detecting both the strong

.. "... 59
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and weaker sinusoids. Note the resolution of the

estimator is slightly improved for the model order number

* -ten. However, a spurious peak is just starting to

appear. As explained in the previous section, spurious

peaks are the result of noise poles. This phenomenon can

also be explained from a statistical point of view by

considering Eq (3.38b), repeated here for convenience,

Var pAR(f)) =-- N PAR If) (4.5)

It is observed that as model order P increases for a given

data record length N, the variance increases. Thus, P can

* be considered analogous to the length of the lag window M

for the BT PSD estimator, see Eqs (3.12) and (3.13).

Problem Three

A data record consisting of one or more delayed

sinusoids is another interesting and often common

occurrence. For simplicity, a modified version of the

previous example is considered. That is, the strong signal

is delayed by sixteen time units. Thus, the data record is

given byO

" x(n) = 0.2sin(2n(0.2)n] + sin[2n(0.25)(n-16)]

+ g(n) (4.6)

This process is shown in Figure 4.10. Again, the BT PSD

estimator is unable to distinguish both sinusoids as

illustrated in Figure 4.11. A comparison of Figures 4.8 and

-. 4.11 indicates that the shift appears to have no apparent

effect on the frequency resolution. This should not be too

A, .6 3
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surprising considering that the BT PSD estimator is a FFT

based operator.

The results of the Burg PSD estimator are shown in

Figure 4.12. Comparing these results with those of Figure

4.9 indicate that the time shift causes the required model

order number to increase. A model order number P = 20 is

required to resolve both sinusoids. In the previous

example, the two sinusoidal peaks first appeared at P = 6.

The reason for this increased model order number is due the

overall lower SNR.

Problem Four

The final problem considers a data record consisting

of four closely spaced sinusoids. This data record is given

°by

x(n) = 0.2sin[2n(0.2)nJ + 0.7sin[2n(0.22)n]

+ sin(2n(0.24)] + 0.5sin(2n(0.26)] + g(n) (4.7)

Figure 4.13 illustrates this process. The BT PSD is given

in Figure 4.14. Observe that the sinusoids are too closely

spaced to be resolved by this estimator. The main lobe

shown is a result of the destructive and constructive

interference of the four sinusoids and in itself does not

represent any one of the sinusoids. Figure 4.15 presents

the Burg PSD estimator for P = 24. Note that all four

sinusoids are resolved with no inaccuracies cause by the

spurious peaks. That is, the highest spurious peak is about

24dB below the lowest desirable peak. This gives rise to
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developing a threshold detecting scheme for determining

peaks corresponding to actual frequencies - the focus of the

next section.

Threshold Detection Routine

The above four problems are by no means an exhaustive

list of all possible signal types. However, the data

collected certainly suggest that the Burg method of spectral

estimation is far superior to the BT method for short data

records. This, of course, assumes that the input SNR is

much greater than unity. Under the assumption that a

sufficient input SNR (typically 2 15 dB) is available, the

method of choice is obviously the Burg method. Thus, the

threshold detection routine developed is based on applying

the Burg method to short data records.

The foregoing analysis assumes a priori knowledge of

the input data records. This assumption is necessary in

order to investigate the merits of both spectral estimators.

In practice, however, a priori knowledge is generally not

known about the input data records. In this case, it is

often very difficult to determine precisely the peaks

corresponding to actual frequencies and the peaks resulting

from inaccuracies of the spectral estimator. For example,

given the PSD plot of Figure 4.12c without having any

knowledge of the input data record, it might easily be

interpreted as resulting from a data record consisting of

- six sinusoids. Recall, Figure 4.12c is actually Lie result
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.1

of a data record consisting of two sinusoids at fractional

frequencies of 0.2 and 0.25. The other peaks are spurious

peaks resulting from the inaccuracies or statistics of the

Burg estimator. The obvious dilemma is that of

differentiating between actual peaks and spurious peaks.

-One possible approach might be that of threshold detection.

The problem proposed by the Avionics Lab is to devise a

routine that is capable of automatically detecting a maximum

of five actual peaks and their corresponding frequencies.

-. That is, if a data record consists of m sinusoids (unknown

to the observer), then is it possible to detect up to five

actual peaks and their frequencies.

In order to come up with an "adaptive" threshold value,

several test cases are investigated (see Appendix B). The

test cases presented in Appendix B represent only a few of

the cases actually considered. However, they serve to

summarize the implied results of the many cases

investigated. The test cases include data records, with 64

data samples, consisting of one to five independent

sinusoids. The upper limit five is a software constraint

(see Chapter II). The amplitude (or power) of each sinusoid

is varied. It is observed, that if the amplitudes of the

sinusoids vary by two orders of magnitude or more (e.g. a

data record consisting of three sinusoids with respective

amplitudes of 0.1, 2.0 and 30), then retrieving the lower

amplitude sinusoid is virtually impossible (see Figure B.7).
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However, if the amplitudes of the sinusoids vary by no more

than one order of magnitude, then "all" sinusoids may

possibly be retrieved (see Figures B.l through B.6). The

test cases suggest that a suitable adaptive threshold is 28

dB below the highest peak in the spectrum. The word

adaptive is used rather loosely in that a threshold of 30 dB

below the highest peak does not adapt for all cases. This

method of determining the threshold is purely empirical,

resulting from determining an average value below the

highest peak for all test cases considered.

4The ideal model order number P required to detect five

sinusoids is ten. However, as previously pointed out the

corruption of noise causes this number to increase. The

(000 test cases suggest that a model order number of P = 24,

using the threshold value previously stated, allows the

estimator to correctly resolve actual peaks in most cases

for data records consisting of up to five sinusoids. It is

pointed out, however, that a minimum SNR of 15 dB is used in

each case considered. Varying this parameter will change

4 the required value of P Also the software limitation of a

maximum of five sinusoids in a data record certainly does

not represent all possible data record types. In practice

*it may be necessary to change the value of P if it is

believed that the actual data record consist of many

sinusoids (i.e., m >> 5). Obviously, there are several

* |parameters that effect the value of P; thus, it is not
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possible to come up with a value suitable for all possible

scenarios.

S The "smart" routine that determines the actual peaks

and their corresponding frequencies, incorporating the above

criteria, is also presented in Appendix B. For purposes of

illustration, consider the PSD plot of Figure 4.16. Figure

4.16 is actually the Burg PSD of Problem Three for P = 24

note the many spurious peaks. The results of applying the

"smart" routine are as follows:

f_= 0.1992

* and

f = 0.2460
2

The reason for the discrepancy between the computed

frequencies and the actual frequencies is due to way in

* which the Burg PSD is computed. That is, the Burg PSD is

computed based on 256 discrete data points over the

frequency range 0 to 0.5. Thus, the computed frequencies

are actually multiples of 0.5/256 (or 1/512) and represent

close approximations.

* •The following chapter presents conclusions and

recommendations of the above analysis.

I.
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-V. Conclusions and Recommendations
'- - . V.

Conclusions

This study has investigated the performance of two

popular but distinctly different methods of spectral

estimation from an EW receiver point of view. In an EW

environment the duration of the received pulse is usually

relatively short, resulting in only a few data samples

available for processing. Thus, the method used for
a,...

*.8 spectral estimation has to be capable of providing

reasonable results for short data records. Several "real

world" data records, each consisting of 64 data samples,

were analyzed using both the BT and Burg methods of spectral

estimation. The Burg method was found to yield far superior

results in terms of frequency resolution. However, its

performance was determined to be a function of the input

SNR. It was noted that for low input SNR (i.e., SNR -5 10

dB) the results of the Burg method degraded substantially.

Another parameter affecting the resolution capability was

V.- the model order number P. Increasing the value of P has a

tendency of increasing the frequency resolution, as well as

introducing spurious peaks into the spectrum. Therefore,

the value P has to be selected carefully. The test cases

that were analyzed suggest a P = 24 for detecting actual

peaks of data records consisting of up to five independent

sinusoids. A minimum SNR of 15 dB was used in each test
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. case. Evaluation of the test cases suggested that an

appropriate scheme for differentiating between actual peaks

and spurious peaks was that of threshold detection.

'.4" Recommendations

This study is not intended to present an all

encompassing approach of spectral estimation for short data

records. The two techniques presented in this study

represent only a some fraction of the many methods proposed

and currently being evaluated by several researchers

(9:1383). Several appropriate recommendations are as

Ifollows:

1. Investigate some of the other methods of

spectral estimations. For example, the method proposed by

Pisarenko (42:347-366) which provides a very accurate

discrete spectrum for data records consisting cf

deterministic harmonics in WGN.

2. Increase the maximum allowable sinusoids in a

data record currently provided by ISPX. This will allow for

*developing a more comprehensive data base; thus, allowing

for more conclusive data.

3. Apply the two methods discussed in this study

to other types of data. For example, the Burg might have

great promise if applied to two dimensional imaging data.

4. Investigate and possibly incorporate some of

the schemes that have evoled of the past decade for
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-. determining the correct model order number P into the ISPX
4%

software package.
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Appendix A: Subroutines Used for Spectral Estimation

Several algorithms are used in the analysis sections of

this paper. This appendix provides a brief explanation of

each r,..tine with a FORTRAN listing. All FORTRAN listings

appear exactly as they appear in the ISPX software package.

The listings were not generated by the author. They were

used merely as a "tool" for analyzing several data records.

Subroutine Blackman-Tukey

subroutine blacktukey(x,n,mode,wind,m,nexp,pbt)

c This program computes the Blackman-Tukey spectral
c estimator as given by (3.9). Either the biased or
c unbiased autocorrelation estimator may be used as well
c as a lag window.
c The spectral estimate is evaluated at the frequencies
c F=-I/2+(I-I)/L for I=,2,...,L. The number of
C frequencies is given by L=2**NEXP.
C

c Input Parameters:

C

c x -Complex array of dimension Nxl of data points.
c n -Number of data points.
c mode -Set equal to zero for unbiased autocorrelation
c estimator; otherwise, biased estimator used.
c wind -Real array of dimension 2M+1 of lag window
c weights; wind(l),...,wind(m+l),o..,wind(2M+l)

correspond to w[-M],...,w[0],...,w[M].
c m -Largest lag desired.

* c nexp -Power of two which determines number of
c frequency samples desired, L=2**NEXP; must be
c chosen so that L is >= 2*M+2.
c

Output Parameters:

* c pbt -Real array of dimension L=2**NEXPxl of samples
c of the Blackman-Tukey spectral estimate, where
c pbt(i) corresponds to the spectral estimate at
c frequency F=-l/2+(I-l)/L.
c

c External Subroutines:
* c PREFFT,FFT
*c
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c Notes:
c
c The calling program must dimension the arrary
c x,wind,pbt.
c The array w,r,rcorr,p must be dimensioned >= the
c variable dimension shown, or equal to 2**NEXP. Also,
c the array RCORR should be dimensioned >= 2M+l.
C

complex x(l), w(512), r(512), recorr(129)
dimension window(1), p(512), pbt(l)
pi=4.*atanC 1.)

c compute the autocorrelation estimates from the date.
ml=m+l
call correlation(n,ml,mode,x,x,rcorr)

c Window the M+1 autocorrelation estimates and insert
c them into the last M+1 locations of rcorr. Then, fill
c first m points of rcorr array with the complex
c conjugates of the last m points (shift the
c autocorrelation
c sequence to the right by m samples so that FFT may be
c used).

* r (ml) =wind (ml) *rcorr (1)
do 10 i=1,m
r(ml+i )=wind(ml+i)*rcorr( i+l)

10 r(ml-i)=wind(ml-i)*conjg(rcorr(i+1))
c Zero pad the array of windowed autocorrelation samples
c to obtain an array of dimension equal to L.N~~Y* 1 = 2* *nexp

do 2ij i=2*m+2,l=256
20 r(i)=IO.,0.)
c Compute FFT of the autocorrelation sequence.

i nvr s =-1
npad= 1
call prefft(1,npad, invrs,nexp,w)
norm= 0
call fft( l,npad,nexp,norm,w,r)

c Compensate for shifting the autocorrelation sequence to
c the right by m samples.

do 30 i=1,1
* f=(i-1.)/1

arg=2 .*pi*f*m
30 p(i)=real(r(i)*cexp~cmplx(O.,arg))
c Transpose halves of FFT output so that first PSD sample
c is at a frequency of -1/2.

do 40 I=1,1/2
* pbt(i+1/2)=p(i)

40 pbt(i)=p(i+l/2)
return
end
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Subroutine Burg

subroutine brug(x,n,ip,a,sig2)

c This program implements the Bu~g method for estimation
c of the AR parameters (3.21)-(3.27).
c

c Input Parameters:

c
c x -Complex array of dimension Nxl of data points.
c n -Number of data points.

c ip -AR model order desired.
C

c Output Parameters:
C

c a -Complex array of dimension IPxl of AR filter
c parameter estimates arranged as A(1) to A(IP).
c sig2 -White noise variance estimate.
C

c Notes:

c
c The calling program must dimension the X,A arrays.

c The arrays EFK,EFK1,EBK,EBK1,AA,RHO must be dimensioned
c >= (n,n,n,n,ipxip,ip respectively).
C

complex x(1),a(1),efk(512),ebk(512),efkl(512),
c ebkl(512),aa(128,128),: sumn,sumd

dimension rho(128)
c Compute the estimate of the autocorrelation at lag zero

c (3.21).

rho0=0
do 10 i=l,n

10 rhoO=rho0+cabs(x(i))**2/n
c Initialize the forward and backward prediction
c errors(7.39).

do 20 i=2,n
efkl(i)=x(i)

20 ebkl(i-l)=x(i-l)
c Begin recursion.

do 80 k=l,ip
c Compute the reflection coefficient estimate (3.27).

sumn=(0.,0.)
sumd=(0 .,0 )
do 30 i=k+l,n
sumn=sumn+efkl(i)*conjg(ebkl(i-1))

30 sumd=sumd+cabs(efkl(i))**2+cabs(ebkl(i-l))**2
aa(k,k)=-2.*sumn/sumd

c Update the prediction error power (7.40).
if(k.eg.l)rho(k)=(l.-cabs(aa(k,k))**2)*rho0
if(k.gt.l)rho(k)=(l.-cabs(aa(k,k))**2*rho(k-1)

if(ip.eq.l) go to 90
if(k.eg.l) go to 50

c Update the prediction error filter coefficients (3.27).
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do 40 j=l,k-1
40 aa(j,k)=aa(j,k-l)+aa(k,k)*conjg(aa(k-j,k-1))
c Update the prediction error filter coefficients (3.24).
50 do 60 i=k+2,n

efk(i)=efkl(i)+aa(k,k)*ebkl(i-l)

60 ebk(i-l)=ebkl(i-2)+conjg(aa(k,k)*efkl(i-1)
do 70 i=k+2,n
efkl(i)=efk(i)

70 ebkl(i-l)=ebk(i-l)
80 continue
c Find final values of the prediction error power, which
c is the white noise variance estimate, and the
c prediction coefficients, which are the AR filter
c parameter estimates.

90 sig2=rho(ip)
do 100 i=l,ip

100 a(i)=aa(i,ip)
return
end

O Subroutine PreFFT

subroutine prefft(n,npad,invrs,nexp,w)

c Th.program sets up the cmex exponential table
c needed to compute the fast Fourier transform of an

c array of complex datasamples using a
c decimation-in-frequency algorithm. Pruning is
c performed if zero padding is requested. The output
c table contained in the array is input to the program
c FFT which computes the fast Fourier transform of the
c data
c
c Input Parameters:
c n -number ofdata samples
c npad -Set to 1 for no zero padding (N-point
c transform), 2 for double padding (2N-point
c transform), 4 for quadruple padding (4N-point
c transform).
c invrs -Set to -1 for forward transform, 1 for inverse
c transform.
c
c Output Parameters:
c nexp -Indicates power of two exponent such that
c n=2**nexp. Set to -1 to indicate error
c condition if n is not a power of two in which
c case program terminates prematurely.
c w -Complex array of dimension n*npadxl containing
c exponential table.
c

--.

84

.
05 S%



c Notes:

c
c The calling program must dimension the complex array w

c greater than or equal to n*npad.

c
complex w(l),u
nexp=1

5 nt=2**nexp

if (nt.ge.n) go to 10
nexp=nexp+l
go to 5

10 if(nt.eg.n) go to 15
nexp=-1

return

15 nt=n*npad
ang=8.*atan(l.)/nt
u=cmplx(cos(ang),invrs*sin(ang))

w( 1)=(1.,0.)
do 20 i=2,nt

20 w(i)=w(i-l)*u
return

end

Subroutine FFT

*[ subroutine f ft (n, npad, nexp, norm, w, X)

c Input parameters:

c n,npad,nexp,w -See parameter list for subroutine
c "PREFFT"
c norm -Set to 0 for forward transform, else the sum is
c divided by n for inverse transform.
c X -Complex array of dimension nxl of data samples.
c
c Output parameters:
c

c x -Complex array of dimension n*npadxl of

c transform values.
c
c Notes:
C

c The calling program must dimension arrays x,w.
c

0' complex x(l),w(l),t,u

if(nexp.eq.-l)return
go to (30,20,10,10)npad

10 n2=n*2

nt=n2*2
x(n2+1)=x(1)
do 12 K=2,n

12 x(n2+k)=x(k)*w(k)
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x(n+1)=x(l)
nx=n2+l

es' x(n+nx)=x(nx)
jj=3
do 14 k=2,n
x(n+k)=x(k)*w(jj)
nx=2n+k
x(n+nx)=x(nx)*w( ii)

14 jj=jj+2
mm =4
go to 35

20 x(n+1)=x(1)
do 22 k=2,n

22 x(n+k)=x~k)*w~k)
mm =2
nt =n *2
go to 35

30 nt=n

35 ll=n
do 70 k=1,nexp

* nn=11/2
jj=min+1
do 40 i1l,nt,11
kk= i+nn
t =x( i )+(kkc)
x(kk)=x(i)-x(kk)

40 x(i)=t
if(nn.eq.1) go to 70
do 60 j=2,nn
u=w( ii)
do 50 i=j,nt,11
kk=i+nn
t=x( i)+x(kk)
x (kk ) = Cxi) -xCkk) ) u

50 x(i)=t
60 jj=jj+mm

l1=nn
* nun=mm*2

*70 continue
nv2=nt/2

nml=nt-1
j=1

-~ do 90 i=1,nml
if~i.ge.i) go to 80
t=x( j
X(j)=X(i)
x(i)=t

80 k=nv2
85 if(k.ge.j) go to 90

J~.. =j -k
~. k=k/2

go to 85
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90 j=jik
~ if(norm.eg.0) return

do 100 i=1,nt
100 x(i)=x(i)/n

return
end
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Appendix B: Theshold Detection Routine

This appendix contains the threshold detection routine

called "Peak Detector". The peaks are computed by

determining negative slope changes in a given PSD plot. In

order to differentiate between actual peaks and spurious

peaks an "adaptive" threshold value was empirically

determined as discussed in Chapter IV. Also several test

cases are presented

Routine Peak Detector

*Integer I,K,count
Character fname*20
Complex z(512)
Real Fn,Magn,FnNxt,MagNxt,Slope,SlopeNxt,LMagNxt,
thold,test,ABSFn,Pt0,Ptl,MaxPt

A c
1 c The user specifies the appropriate filename.

c
Print*,'Enter a filename.'
Read' (a) ',fname

c
c

Open (unit=l,file-fname,status='old')
c
c Initialization
c

count = 0
PtO = 0.0

* Slope = 0.0
*Fn = 0.0

Magn = 0.0
c
c The value of maximum peak is computed.
c

O Do 20 K = 1,257
Read(l,*) z(k)
Ptl = real(z(k))
MaxPt = AMAXl(Ptl,PtO)
PtO = MaxPt
LMaxPt = 10.0*ALOGl0(MaxPt)
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20 continue

c The pointer is re-initialized

C
REWIND (unit=l)

c
c The peaks are determined.

c
Do 10 I = 1,257

FnNxt = Fn
MagNxt = Magn

SlopeNxt = Slope
Read(l,*) Z(I)
Magn = real(z(I))
Fn = -0.5 + (1-1)/512.0
ABSFn = ABS(Fn)

If (I.EQ.1) Go To 10
Slope = (Magn - MagnNxt)/(Fn - FnNxt)

If (SlopeNxt.GT.0.0) then
test = SlopeNxt + Slope

If (test.LE.SlopeNxt) then

LMagNxt = 10.0*ALOG10(MagNxt)

c The adaptive threshold value is set.
thold = LMagPt - 28.0

If (LMagNxt.GE.thold) then

count = count + 1

c The actual peaks and their corresponding

c frequencies are printed
Print* ABSFn, LMagNxt, count

ENDIF
ENDIF

ENDIF
10 continue

c
ClOSE (unit=l)

c
Stop
End
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Figure B.1. Burg Estimator of a Single Sinusoid in WGN,
SNR =15 dB with P = 24
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Figure B.2. Burg Estimator of Two Single Sinusoid in WGN,
SNR = 15 dB with P = 24
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x(n) = O.lsin[2n(Q.1)nl + 0.2sin[2n(O.15)n]

+ 0.3sin(2rr(O.2)n) + 0.4sin[2n(O.25)nl + g(n)
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Figure B.4. Burg Estimator of Four Single Sinusoid in WGN,

SNR = 15 dB with P =24
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x(n) = O.lsin[2nr(O.1)nl + O.2sin[2nr(O.15)n]
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+ O.5sin(2nr(O.3)n] + g(n)

Im 28 dB
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Figure B.5. Burg Estimator of Five Single Sinusoid inl VGN,

SNR =15 dB with P =24
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x(n) = O.lsin[2n(0.1)n] + 2Osin[2n(O.15)nI

3Osint2rn(0.2)n] + g(n)
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i Figure B.7. Burg Estimator of Three Single Sinusoid in WGN,

SNR = 15 dB with P = 24
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The purpose of this study was to examine the Blackman-Tukey (BT) and
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problem of this approach is that of data windowing. Data windowing may

-'.5. result in poor frequency resolution, particularly for short data records.

The Burg method of spectral estimation, a modern approach, is capable
.of providing relatively good frequency resolution for short iata records.

However, this method requires sufficient input signal-to-noise ratio (SNR).
The idea here is to extend the ACS by extrapolatio (or prediction)

krather than windowing the data.

The Burg method was found to yield far superior perfcrmance for data
records consisting of 64 data samples. Note, however, that a Siniur. SN,
of 15 dB w, s assumed. Using this method a "smart" routine was developed
that automatically determines the actual frequency component ef the

- dat i record.
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