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PREFACE

This report was prepared by Dr. Piyush K. Dutta, Materials Research
Engineer, and Dennis Farrell, Mechanical Engineer, of the Applied Research
Branch, Experimental Engineering Division, and John Kalafut, Electronics
Engineer, of the Engineering and Measurement Services Braach, Technical Ser-
vices Division, U.S. Army Cold Regions Research and Engineering Labora-
tory. Funding for this project was provided by DA Project 4A762730AT42,

Design, Construction, and Operations Technology for Cold Regions, Task SS,

Combat Service Support, Work Unit 019, Behavior of Materials at Low Temper-

atures.

The authors express their apprecilation to Dr. Malcolm Mellor for his
ideas and suggestions on developing and installing the test facility and
for reviewing the report. They thank Darryl Calkins, Dr. Ronald Liston, and
Dr. Eugene Marvin for their encouragement. They also thank Dr. Gordon Cox
for reviewing the report and making constructive suggestions. Special
thanks are given to Robert Bigl who helped build the test system.

The contents of this report are not to be used for advertising or pro-

motional purposes. Citation of brand names does not constitute an official

endorsement of the use of such commercial products.
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::: THE CRREL HOPKINSON BAR APPARATUS
L
::; Piyush K. Dutta, Dennis Farrell and John Kalafut
:
. INTRODUCTION
';j The safe design of structures at low temperatures must consider the
:E brittle behavior of material under dynamic loads. In cold regions, numer-
:t ous modes of dynamic loading on structures are encountered: wave action,
:_ wind action, ice movement and impact, drilling and machinery vibrations,
:: vehicular motion, pile driving, blasting, and earthquakes are but a few
_; examples. The hulls of ice-breaking vessels are subjected to repeated
- impact loading by ice. Therefore, sound engineering design for cold
," regions must consider material property data determined at low temperature
{:: and at high strain-rate loading. The CRREL Hopkinson bar apparatus (HBA)
ii has been designed to perform such high strain-rate loading tests. This
! i report describes the design and operational procedures of this apparatus
‘ and the technique used to analyze the data. In this technique, deformation
: : characteristics of materials at high rates (50 to 1000 strains per second)
3 are obtained by analyzing the stress waves through a test specimen sand-
wiched between two elastic bars.
To illustrate the capability of the testing method some experimental
i; results are given.
=
- BACKGROUND
;:: The name of the Hopkinson bar originates from the work of the British
ﬂ physicist B. Hopkinson (1914), who carried out impact tests on various
JE materials. 1In his tests he generated compressive stress pulses in long
A bars by impacting them on end with bullets. The compressive pulse is
:; reflected at the opposite free end of the bar as a tensile stress pulse,
5. and brittle materials such as rock or concrete fracture in tension under
g: the influence of this tension pulse. Kolsky (1949, 1953) first used the
4

idea of stregs wave propagation from one bar to another through a ‘*est

materlal sandwiched between the two bars and thus gave the method wider
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applications. This method, now called the split Hopkinson bar, involves
the determination of dynamic stresses, strains, or displacements occurring
at the end of a bar by various sensors monitored some distance away. The
documentation of the apparatus, instrumentation, and analysis is quoted
frequently in the literature (Lindholm 1964, Zukas et al. 1982).

In the conventional configuration, the apparatus is used mostly for
compression tests. However, various researchers have modified the appara-
tus to conduct tensile tests (Harding et al. 1960, Hauser 1966, Lindholm
and Yeakley 1968, Christman et al. 1971, Nicholas 1981, Harding 1983, Ross
et al. 1984). Duffy et al. (1971) described using the split Hopkinson bar
to achieve high strain rate in torsional loading. The primary advantage of
the torsional mode of wave propagation is its nondispersiveness. 1In
addition, the radial inertia effects are not present. Nicholas (1975)
extended the technique to conduct a dynamic three-point bend test (Charpy
impact test) using a single bar instrumented with a strain gauge.

Klepaczko (1980) has suggested the use of the Hopkinson bar method to study
the dynamic fracture—initiation properties of materials. He used a
wedge-loaded specimen in a conventional split Hopkinson bar arrangement to

obtain dynamic load-displacement data.

THEORY OF OPERATION
A schematic of the CRREL Hopkinson bar used for compressive testing is
shown in Figure 1. The striker, driven by compressed air, approaches from

the left and impacts the incident bar. This sets up a compressive stress

by
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Figure 2. Lagrangian x-t dia-
gram of stress pulse wave pro-
pagation in split Hopkinson
pressure bar.

wave pulse in the incident bar. The amplitude of the stress pulse depends
on the impact velocity, and the duration depends on the length and material
characteristics of the striker and the incident bar. The compressive
stress—wave pulse propagates through the incident bar and arrives at the
incident bar/specimen interface. The details of the wave propagation in
the bars are illustrated with the Lagrangian x-t diagram shown in Figure

2. At the incident bar/specimen interface, part of the incident pulse is
reflected because of the mismatch of the mechanical impedances of bar and
specimen. The rest is transmitted into the specimen, propagates through
it, and reaches the specimen/transmitter bar interface. At this second
interface, part of the stress pulse is also reflected back into the
specimen and the remainder is transmitted to the transmitter bar. If the
specimen is short, the wave-transmitting time will be small compared with
the duration of the loading stress pulse. Thus, many wave reflections take
piLace within the specimen during a single pulse reflection, so stress and
strain along the specimen can be assumed to be uniform.

Consideration of equilibrium at the interface between specimen and
transmitter bar shows that the force in the specimen and in the transmitter
bar is equal. The force is measured by measuring the strain on the elastic
transmitter bar using strain gauges. At the location of the strain gauge
this force will have a time shift represented by the travel times from the
interface.

The average strain eg in the specimen is calculated from the dis-
placements at the end of the specimen. The theory is well documented

(Zukas et al. 1982), and it i{s summarized in Appendix A for both short and
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long specimens. For short specimens the analysis presented in Appendix A

shows:
. . _ =2
specimen strain e (t) = — [ ¢ (t)dt (1)
s L r
s 0
de (t) 9
specimen strain rate S___= ¢ = E8 ¢ (t) and (2)
P dt ’s LS >
i =
specimen stress Us(t) Ebet(t) (3)
where
c = wave propagation velocity in the Hopkinson bars
Lg = length of specimen
er(t) = instantaneous reflected strain
et(t) = instantaneous transmitted strain
Eyp = elastic modulus of the bar material.

Equation 1 shows that the average strain in the specimen can be com-
puted by measuring the reflected strain in the incident bar. This is made
possible by locating the strain gauge a sufficient distance from the inter-
face. This allows the incident stress pulse to pass through this strain
gauge station completely before the arrival of the reflected pulse from the
interface. Thus, a longer pulse requires a correspondingly longer incident
bar. A longer pulse is desirable because, as mertioned earlier, the strain
uniformity within the specimen under repeated reflection can be ensured.
Therefore longer bars, within practical limits, are more convenient and
provide more accurate measurements than shorter bars.

Equation 2 shows that for high strain rate the reflected wave ¢,
should be large or the specimen short. Note also that a larger reflection
happens only when there is a larger mismatch in impedance* between the bar
and the specimen. This occurs only when the specimen is of smaller dia-
meter than the bar or the bar is stiffer and of higher density than the
specimen material.

Areas of cross section (A), modulus of elasticity (E), and density (p)
are the parameters that control the impedance. For example, the impedance

Ip of body A matches the impedance of body B if I, = Ig, i.e.

0.5 _ 0.5
AA (EAoA) = AB (EBOB)

* Mechanical Impedance of an interface between two longitudinal bodies
determines the wave propagation characteristics through that interface.
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If I, > Ig, a8 compressive stress wave reflects back as a tensile wave
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from the interface, whereas if I, < Ip a compressive stress wave

<

reflects back as a compressive wave and vice versa.
Testing of crystalline or gram ‘ar materials usually requires that

specimens be 5 to 10 times (preferably 10 to 20 times) the maximum grain or

crack size. Thus larger-diameter specimens are preferable. Again the dia-

A

L

meter-to-length ratio (2:4) makes the specimens in these categories of
materials longer than the metal specimens tested in the Hopkiason bars.
Another disadvantage of granular material is the comparatively lower wave
velocity within the specimen. Thus, for a relatively short incident wave-
length, the number of internal reflections within the specimen is not large
enough to make it reach a state of uniform stress. Under such conditions
longer incident wavelength, and therefore longer incident bars, are desir-
able.

With the electronic recording and computational devices available, it
is possible to record digitally all three waves (i.e. incident, reflected,
and transmitted wave), superimpose them one over the other, and analyze the
displacements of the two interfaces of the specimen. The average stress
and strain of the longer samples can be computed as shown below (refer to

Appendix A for derivation of these formulas):

t
. - ! _ _
average specimen strain es(t) = OCLS g [di(t) Or(t) ot(t)]dt 4)
L] _ 1 - _
average specimen s = ool [oi(t) cr(t) Ut(t)] , and (5)
straln rate S
average specimen stress os(t) = % [oi(t) + or(t) + ot(t)] (6)

it is obvious that the above approach, to study the dynamic properties
of materials, is indirect. The strain rates that occur during the test are
primarily a function of the test material's own constitutive behavior. It
{s also important to note that the stress, strain, and strain rate are
average values and are calculated on the basis of the uniaxial stress-state

assumptions.

DESIGN DETAILS
The Hopkinson bar apparatus (Fig. 3) installed at CRREL includes three

s ma jor subsystems: the stress generating system, the specimen cooling
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the bars must be properly aligned. Proper alignment is also important to
ensure that minimum bending waves are generated. Otherwise these waves are
sensed by the strain gauges and distort the true uniaxial compression/
tension signals. Each bar is guided through three support blocks. The
support blocks and the launch cylinder are mounted on a long rigid table.
Locations of the blocks and the impactor are ad justable to ensure adequate
alignment during test. To reduce dispersion of the stress waves through
the support members, the support blocks were specially designed with
low-friction ball bearings (Fig. 4). Adjustments are provided on cach
individual block so that the striker, incident bar, specimen, and trans-
mitter bar are all in alignment.

The striker, the incident bar, and the transmitter bar are nmade of the
same material -- 303 stainless steel. The stainless steel bars were chosen
for their noncorrosive characteristics. On impact the stress developed in
the bar should be held below its yield stress [67,000 1b/in. (462 MPa)].
To limit the stress level to 50% of the yield stress, it was calculated

that the striker velocity should not exceed 38 ft/s (L1.6 m/s). Calculat-

.
3

‘. ' T IEI T

Figure 4. HPB apparatus low-friction support.
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~ Figure 5. HPB apparatus striker.
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o
> ing the kinetics of the striker motion shows that at 100 1b/in. 2 (689 kPa)
®
2 pressure a 2-in. (51-mm) stroke is sufficient to reach this velocity.
_éf The striker is 12 in. (305 mm) long and has the same diameter as the
o incident bar and the transmitter bar [1.5 in. (38 mm)]. Both the incident
[~ -
ifi bar and the transmitter bar are 8 ft (2438 mm) long and have ends machined
I normal to the bar axis. The striker (Fig. 5) end is rounded with a spheri-
:ﬁ: cal radius of 12 in. (305 mm) to minimize any misalignment between the
o striker and the incident bar.
\'.-
P To cause the striker to impact, an 8.5 ft? (0.24 m3) compressed-air
o gas reservolr is first charged to the required pressure. This has been
5
”j{' calibrated to give the desired stress level in the incident bar. Figure 6a
if: shows the air pressure and the corresponding incident stress level data. A
o quick-operating solenoid valve is then activated to allow the compressed
@
N air to drive the striker, which impacts the incideant bar. Figure 6b shows
\~‘
:} the repeatability of the stress wave forms with six separate impacts.
’ :; The striker itself is housed in a launch cylinder. The striker bear-
-;r ing surface and the cylinder inside surface form a close fit, with a 0.003-
;A in.-(0.08-mm-)diameter clearance between the striker and the cylinder.
TR
f{:. This minimizes air leakage and provides guidance for the striker. A 0.25-
AN
3\? in.-(6.4-mm-)diameter rod connected to the rear of the striker bar pro-
| '_.'
‘ trudes from the launch cylinder and provides a convenient means to locate the
-I'-:

.I' a
v
o

r .
..J;.pﬁgﬁ}

N

2z
}.

T AT AT AL
~ A AT I T
¥ A 5 . N

b |
5,

[y
o<



s et e

f; D
oy
I

Al

SLLL5 %Y
[0 R MRV '}

. @

LR ]
‘

v v
PN
R

2

L
g
L]

v

e W We e W o TURY Ru

Badl Sk f Sl ol il S dk So0 Eak 9

L

e,

e

a. At various air-pressure levels used tor
driving the striker.

' / \ :’ . \ ] 5 \
et Tyt ! N ‘\‘ vy ! " \ ‘
2l N P :
- \,___1 . \,_.j - N
: o [ .
T S I N ISP
. v, N “ T ¥y
T T St
N A. 4 y
/-\ N ‘\ ' b ,//'\\
S ; o
! ' ! |
. o | Yy "
— e » et N\t

b. Repeatability of the pulses under six
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separate striker impacts at 20 lb/in.

Figure 6. Stress wave pulse forms.

striker inside the launch cylinder and ad just the stroke length.

The air

in front of the striker is vented to atmosphere through two 0.75-in.-(19-

am-)diameter holes in the front part of the launch cylinder.

In its

current configuration no attempt has been made to measure the velocity of

the striker at ijmpact. This is considered a redundant measurement because

the electric strain gauging is available to measure accurately the stress

level in the incident bar directly. The inside surface of the launch
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cvlinder ts honed to recuce friction and wear. To reduce friction further,
the striker bearings are made of Teflon.

The specimen is located between the incident bar and the traasmitter
bair. A small amount of preloading is necessary to hold the cylindrical
specimen in position between the two bars. This is achieved with two
rubber bands tensioning the two bars to close on the specimen. In addi-
tion, two Teflon collars mate the ends of the specimen to both bars. Each
collar is slit lengthwise to allow a modest flexibility in diametrical
expansion when required for mounting the specimen.

The striker together with the incident bar, transmitter bar, and the
shock absorbing device constitute a set to test material at stresses less
than 33,500 1b/in. (231 MPa).

The specimen materials tested to date are brass, Teflon, and poly-
crystalline ice. The next section describes the results of testing an ice
sample.

The ice specimens were prepared in molds by using snow particles of
sizes 0.07 to 0.03 in. (1.78 to 0.833 mm). The mold used to prepare the

samples is shown in Figure 7. It was first lubricated and tempered at 10°F

Figur. 7. Polycrystalline ice sample mounted on the HPB apparatus for
tests.
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(-12°C). Then, before adding and tamping the prepared snow in the three
chambers, the system was tewmpered again at O0°F (-18°C). A distilled, de-
aired water supply was gravity-fed through the bottom end caps, and the
slight overflow was drained through holes in the top end caps to remove any
trapped air. With the water still slowly circulating, the mold was
returned to 10°F (-12°C) fer freezing. A Styrofoam insulation cap was
applied to the top of the mold to promote initial ice growth from the
bottom of the mold and additional air escape at the top.

After the specimens we:e frozen, they were tempered several minutes at
40°F (4.4°C) to free the ice from the mold. After they were ejected, each
specimen was wrapped in cellophane and stored at LO0°F (-12°C).

Specimen Cooling System

To keep the test specimens cold during the impact test, the specimen

and the mating ends of both bars are enclosed in two copper-coiled enclo-

Pd
a’s
.‘l.'"

*
.

sures through which cooled nitrogen gas is circulated. The nitrogen gas is

]“

cooled by circulating it through a liquid nitrogen bath. The details of

o

the cooling system are shown in Figure 8. The coils themselves are

»

enclosed in a Styrofoam container. The specimen temperature is monitored

P
St

N IS

with a thermocouple.

]

Temperature is controlled by the level of immersion of the cooling
coil in the liquid nitrogen and the flow rate of the nitrogen gas through
the coils. With this arrangement a stable temperature as low as -90°F
(-68°C) can be achieved. In the current design configuration the N, gas
flow is branched to two specimen—-cooling coils. Continuous operation of
the coils also chills the ends of the Hopkinson bars, peruwitting rapid
restalilization of specimen temperatures.

Stress Measurement System

In performing the experiments it is necessary to record the complete

_:f profiles of the incident stress wave pulse and reflected stress wave pulse
i;ﬁ in the incident bar and the transmitted wave pulse in the transmitter bar.
iij For this purpose foil strain gauges were bonded on both the incident and
;?; transmitter bars at the midpoint of each length. The positions of the
ﬁ,; gauges and the lengths of the bars were so selected that the stress wave
:;E; signals could be recorded for their entire duration without interruptions
:fif caused by wave reflections from the ends. Two active strain gauges were
:“i“ mounted on each bar, one diametrically opposite the other to cancel bend-
Qfﬁ ing wave strain, if any is produced because of misalignment.
o)
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Figure 3. Cooling system: specimen-cooling coil circulating cooled N, gas.

The schematic for the electronic circuitry is shown in Figure 9. The
strain gauge outputs after preamplification are fed to a Model 4562 plug-in
unit ot a Nicolet 4094A Digital Oscilloscope. Channel A is used for
recording the incident and reflected waveform and channel B for the trans-
nitted wave. The waveforms are sampled at 0.5-us intervals and digitized
with 12-bit resolution. The scope has the capability to expand the wave
forms after recording. It can store and recall data from a floppy disk.
The scope is compatible with the Hewlett Packard Model 7470A X-Y plotter
for plotting the displayed waveforms on paper.

An on-line data acquisition and analysis system has been assembled
using a4 PCOr4¥Y interface board (manufactured by Capital Equipment Corp.)
in an [BM PC/AT computer. Suitable software has been developed to trans-

it the stored or recorded data from the scope to the computer for
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Figure 9. Stress pulse waveforms recording electronic

- circuit schematic.
b
!_ In initiating the test the sweeps were triggered by electrical contact
=~
- between the striker and the incident bar. Figure 9 includes the schematic

of the triggering circuit.

The system was calibrated dynamically by stress wave recording induced

in both bars butted together without a specimen. Figure 10 shows these two

.n-.. -

T

Y
" waveforms. Note that on the first trace the reflected wave from the butted
[
s, surface is only 4% of the total energy transmitted to the second bar. In
i
s,
9
¢ . " o - M
v
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\f::_'
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r 1
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v, transmitted stress pulse wave from a
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addition, valibration resistors across one arm of the strain gauge bridge
were used te produce simulated strain. The details of the instrumentation

are given in appendix B.

WAVEFORM ANALYS IS

Betore performing the analysis, the three waveforms stored in the two
sweeps are first transferred to the IBM PC/AT using the computer program
HOPP specitically written for the data transfer trom the Nicolet oscillo-
scope.

When the digitized data transfer is complete, the program will recon-
stitute the waveforms (incident, reflected, and transmitted) and super-
tmpose them on a commen time base for viewing on the CRT display and ensur-
ing there is no flaw in the data transfer. The details of the computer
program and data transfer technique have been documented separately (Dutta

198b) . Figure 11 shows the data before transmission as photographed from

ks A i g 1

[JReflected

. .

Transmitted

99.15u8 1B 12.3500000aYV

Figure 11. Stress pulse waveform data on oscilloscope.
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Figure 12. 1Incident, reflected,
and transmitted stress pulse waves
reconstituted on the computer screen.

the oscilloscope screen. Figure 12 shows the hardcopy printout after the
data are recoanstructed by the computer program. The HOPP program then
continues to analyze these waveforws using eq 4, 5, and 6 to produce the
time-variant data on specimen average strain, specimen stress, and strain
rate. The stress—strain data is displayed on the CRT screen and can also
be printed out on a printer. The plot of the strain rate vs strain is also
displayed on the CRT screen and again can be printed out. Figure 13 shows
the plot of the stress-strain curve of the specimen during passage of the
stress wave and Figure 14 shows strain rate vs strain. If desired, a
point-by-point data analysis report at specified time intervals in tabulat-

ed format can also be printed out.
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Ejf GENERAL COMMENTS

:: The Hopkinson bar apparatus with its associated data recording and

,: analysis equipment is a convenient means to perform a quick evaluation of
! materials under high strain rate loading. However, it must be recognized
'i that the approach is an indirect one, and the strain rates that occur dur-
E ing the test are primarily a function of the material's own constitutive

y property. Moreover, two ilmportant assumptions are made in the analysis

f{ that influence the results: 1) nondispersivity of the elastic waves in the
‘é: bar and 2) the absence of radial inertia.

{: For these reasons the split Hopkinson bar has been the subject of an
gi extensive analytical study to evaluate the validity of the results obtained
‘- from its tests. Davies (1948) was the first to examine critically the

%: effects of wave dispersion in the Hopkinson bar; he concluded that the

i; dispersion effects can disguise the stress change that happens within any
i l-us interval. 1Inertial ef :cts were studied by Davies and Hunter (1963),
! who recommended that to minimize error due to inertial effects and inter-
E‘ facial friction the optimum geometry for the specimens should be a/h = 1.15
.j where a is the radius and h is the thickness of the specimen. Interfacial
b friction problems were studied in great depth by Bertholf and Karnes

! (1975), whose results show that lubricated interfaces have the minimum

?: _Iror.

E Another iwportant consideration in performing the Hopkinson bar test
v on specimens at other than ambient temperature is the influence of the

temperature gradient along the bar. Malvern (1984), as reported by Zukas

: et al. (1982), has considered this problem. His analysis is based on the
: assumption that the modulus E is linearly dependent on temperature.
-: Assuming that the temperature gradient is linear, a more

} straightforward derivation of the correction factor is possible. The
‘? relation between the stress near the sample (ng) and the stress measured

} at the gauge station (ag) can be obtained by considering the general

> relationship (refer to Zukas 1982)

! Wg Eg 0.5

: ”
v

y where Eg is the modulus of elasticity of the bar material at the gauge

; station at ambient temperature T,, and Eg is the modulus of elasticity

16
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of the bar material near the specimen at test temperature Tg. For the

CRREL Hopkinson bar made of AISI 303 stainless steel, E

A
n
)
>
'

.-
-
-

g at 0°F (-18°C) =
29.4x10% 1b/in.? (202.6 GPa) and Eg = 28.3x10° (195.0 GPa) at -300°F
(-184°C). Using these values, the error due to a 0 to -300°F (-18 to
-184°C) temperature differential will be approximately 2%.

In interpreting the Hopkinson test bar data it is also important to
take into consideration the stress wave reflections, stress nonuniformity,
and large variation of strain, especially during the initial and final por-
tions of the test. The stress-strain data are thus valid only after some
iegree of uniformity in stress and strain is achieved. Figure 14 shows
that the strain rate changed rapidly till the strain was established at
about 36 strains/s. Once strain rate uniformity is established, the
dynamic stress—strain characteristic data are more valid.

A series of tests has been conducted using ice samples and a few other
engineering materials. These data are the subject of another report now in
preparation. However, it has been generally observed that at the low
stress level in a semibrittle material such as ice, the stress—strain
curve is smoother than that obtained with higher stress level loading
(Fig. 13). At the low stress level only a few cracks were induced in the
sample, whereas at a high stress level impact the specimen shattered (Fig.
16). Multiple reflections of the stress waves within the sample during the
fracturing may have contributed to the sawtooth characteristic of the
stress—strain curve for high-level stress loading.

The heart of the system, which gives an indirect measurement of the

dynamic constitutive relationship, is the correct recording of the waves in

S the pressure bars. The three stress waveforms -- ~;(t), op(t), and

; ~¢(t) —- form the very basis of this analysis. Since 7;(t) is recorded
'1 carlier and both ~,.(t) and ﬂt(t) are rucorded later than they occur at

? the interface, the recorded stress waveforms must be appropriately shifted
: in time before they are combined as in eq 4, 5, and . The use of a digi-
: tal oscilloscope and the data transfer and analysis techniques now
" developed allow the incident bar/specimen interface and transmitter bar/

specimen {atertace displacement to be determined accurately -- thus the

Wwerage strain in the specimen can be computed by taking the arithmetic

" mean of the®two interface displacements. The deviation from the average
= displacement is estimated as half the difterence between the two.
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This procedure has not been used much in the past. Most of the data
in the literature were obtained before automated data recording and analy-
sis. The usual procedure has been to assume that the two interface
displacements are equal, neglecting strain variation along the length of
the specimen. For short specimens, where strain uniformity could be
achieved rapidly and the stress pulse is of long duration, this assumption
may not lead to any great error, but the current design allows a better

averaging technique for comparatively longer specimens.
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Figure 15 Typical dynamic stress-strain data from tests of polycrystal-
line ice samples.
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b. High stress level (1000 1b/in.?) sample.

Figure lh. Ice samples after test. ;
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APPENDIX A. THEORY OF THE APPARATUS

Elementary plane wave propagation theory (Zukas et al. 1982, Malvern

1984).

In the one-dimensional propagation of a stress wave through a solid
bar the following assumptions are made:
1) A plane cross section remains plane as the wave propagates along
the longitudinal axis.
2) Stress distribution is uniform across the section of the bar.

3) Radial inertia can be neglected.

CAR Bt
‘ Particle Velocity,V = AT

‘m

Olre
™
O

b Figure Al. Elementary uniaxial
plane wave propagation.

In Figure Al consider an element AB having a length 1 on this bar. A
stress pulse of amplitude o (and strain e = o/E) traveling with a wave
velocity ¢ arrives at plane A at the instant t = 0. It arrives at plane B
after a time 1/c. During this time the element AB is under compression o,
therefore plane A moves to A' such that

AA' = deformation = ¢ 1

The velocity of A (called the particle velocity V) is then given by:
AA'

V: = 7—1—

I
L e = Al
I/c  1/c ¢ (AL)

However, it {s well known that in an elastic medium of density, pn, the

propagation of a longitudinal wave, is given by

¢ = (8/0)°? (A2)
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Since ~ = E ¢ from eq Al and A2

5 v
v o= c“n-a = scV (A3)

the displacement U of the particle at any time t is given by

t 1 t
U=" v(t)dt = o f o(t)de (A4)
0 0

split Hopkinson bar wave mechanics

Consider x and y as the ends of two bars of the same diameter and
material. Any wave in which the particle moves to the right is assumed
to move in a positive (+) direction, and one that moves to the left assumes
a negative (-) direction. Thus, a compression wave that propagates to the
right has the particle velocity in the positive direction, and a tensile
wave that moves to the left has a positive particle velocity.

A compressive stress wave pulse arriving at t'ie x-y boundary is
partially transmitted and also partially reflected.

If 7;{t) = stress wave incident to the sample sandwiched between the
two bar edges x and y, then displacement U; of the x face, due to the

incident stress wavse pulse agi(t), is given by

1 t
U, = — [ g (t)dt
i oc 0 i

and displacement Up. of the x face due to the reflected stress wave pulse

re(t) is
Lt
U =-— [ 45 (t)dt
r pc 0 r

As the reflected wave travels in the direction opposite to the incident
wave, the total displacement of the x face is given by

t
U -U == [ [0 (t) - o (t)]dt . (AS5)
pC 0 1 r

Similarly, displacement of the y face due to the transmitted stress wave
pulse ~.(t) Is given by

t

u =-— [ 5 (t)dt (46)
() t
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Therefore, total deformation Up of the sample due to passage of the
Stress wave pulse through it is

U, =U, -U_-U

T i r t
or
\ t
Up = = g [5,(e) = 5 (t) = o (e)]dt . (A7)

Note that to obtain Uy from eq A6, o,(t) should be measured at the same
instant that ~{(t) and o.(t) are measured. If At = time required for
the wave to propagate from face x to y and og,.(t) is measured at time T
after start of the sweep, then o (t) should be measured at time T + At.
If Lg = length of the sample, then the instantaneous sample strain
eg(t) is given by

U

_.r_ 1
€s(t) L
s

cL
P s

—

[ci(t) - cr(t) - Ot(t)}dt (A8)

el

Therefore the sample strain rate (és) can be obtained by differentiating
the above integral expression eg with respect to time, i.e. deg(t)/dt

is given by

e =
S

- [Oi(t) - cr(t) - nt(t)] . (A9)

Sample stress at interface x is given by the aigebraic sum of the incident

stress ~;(t) and the reflected stress o (t); i.e.

ci(c) + or(t) (a9.1)

the stress at interface x, ox(t)

the stress at interface y, oy(t) ot(t) (A9.2)

The average sample stress of gg4(t) is given by the mean of the stress at

the x and y interfaces, i.e.

7,() = = [0,(t) + 0 (t) + 5 (t)] (AL0)

By using eq A8, A9, and AlO the complete stress-strain wave and the strain

rate loading in the HPB set-up can be determined.
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Short specimens

If the length of the sample is short,

can
and A9.2

T () = 5 (e) + o ()
or

—r () = (e) - oo (t)

Substituting the above in eq A8,

t
ES(t) = EC-L— f ZOr(t)dt .
0
: - 2 .2
Again, ar(t) E sr(t) c oer(t)
o2, t
and e (t) = 2¢%p [ e (e)dt ;
S pcL r
s O
_2 t
therefore e (t) = e ¢ (t)dt
S L r
s O
and strain rate
de (t)
A_;s_ = ; = :__ € (t)
dt s LS T

Again substituting eq All in eq AlOQ,

sample is given by

g (t) =5 [20,(8)] = o (t) , (AlS)
S t t
therefore
g (t) =E e (t
J(6) = Epe (©) (AL6)
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be assumed to be same as the stress at interface y,

then the stress at interface Xx

i.e. from eq A9:.1

(All)

(Al2)

(A13)

(Al4)

the sample stress for a short
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APPENDIX B. INSTRUMENTATION OF THE HPB APPARATUS

Strain was measured at the midpoint on each half of the split
Hopkinson bar. Two 0.125-in. (3.18-mm) long, 350-ohm strain gauges, com-
pensated for stainless steel, were attached at each location. One was
aligned diametrically opposite the other for bending moment compensation.
The gauges, Type CEA-09-125 UR-350, were bonded with AE-10 epoxy and cured
at room temperature according to accepted procedures. The gauge dimensions
(0.125 x 0.60 in.) were chosen so strain averaging would occur over only a
small physical area of the bar.

The gauges were connected into a bridge configuration with the three-
wire technique. Each gauge cable was individually shielded and the gauge
was wired into opposing sides of a two-active—-arm, four-arm bridge. This
configuration offers twice the voltage output of a two-gauge, one-active-
arm, four—-arm bridge with less nonlinearity and only a minimal loss of
bending compensation. Micro Measurement M Coat D was used over the com-
pleted gauge installation for moisture protection. Each gauge was
connected to the bridge completion and balance circuit by 15 ft (4.6 m)
of Belden 8723 cable where the four-arm bridge was completed with 350-ohm
fixed resistors.

Bridge balance was achieved with the 500-kohm potentiometer, as shown
in Figure 9 of the text. The balance circuit was designed as described by
Stein (1967). Bridge excitation was set at 15V and was provided by the
Hewlett Packard HP 6218B power supply. Each bridge had its own independent
power source.

Both amplifiers were set on a gain of ten, which provided a corre-
sponding bandwidth of 100 kHz with 120 dB of common mode rejection at their
differential inputs. The output of each amplifier was single-ended and
connected into the positive input terminal of each scope channel. Data was
recorded on the *100 mV settings and digitized at the rate of 0.5 us per
point, giving a record length of about 4 ms. Two channels on the scope
were used: channel | recorded incident and reflected strain and channel 2
recorded the transmitted strain. The oscilloscope trace was triggered when
the hammer contacted the first bar of the split Hopkinson bar. This con-
tact applied a 3V battery voltage directly to the external trigger input of

the scope.
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Figure Bl. Bridge con- Figure B2. Bridge
figuration for bending configuration for
wave effort analysis. shunt calibration.

The bridge configuration used for recording the strains in the bars is
shown in Figure Bl. 1In this model the strain generated by bending will
have an insignificant effect on the longitudinal strains computed from
Eout:'

For example, in the bending configuration the change of strain AR will
be positive in one gauge and negative in the opposite gauge, so that

ER E(R+AR)

E = el - o = - A s

out 2 7 2R - AR 2R + AR’

which on simplification gives
2
E =p . R __ (B1)
4R? - AR?
Since AR has a very small value compared to R, Eg,¢ for bending is

negligibly small.

Calibration was performed with the usual gauge shunt technique. When '
shunted with the 349,650-ohm resistor shown in Figure B2, each active gauge
gave the equivalent of 250 microstraln at the oscilloscope input, as shown

below:

- _ S _ (350)(349650) _
Rao ™ R Ry~ 350 + 349650 349,650 ohm

E|R
AD _ 340650 E  _
7R+ Ry 350 + 349650 049975 E
. _E
LI = '2"‘
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Therefore Ej = ¢, - ¢y = 0.00025 E or E4/E = 0.00025. But

£ /E = gauge factor x strain ’
0 2
therefore

0.00025 x 2

strain = - —
gauge factor

Assuming the gauge factor is 2, strain = 0.00025 = 250 microstrain.

External noise pickup was kept to an acceptable level with careful
eanipment layout. The metal table supporting the split Hopkinson bar was
tied to a handy e¢lectrical conduit and this became the electrical common
point. As mentioned earlier, the gauge cables were individually shielded
and tied at the far end to the electrical common as were all enclosures and
shields. Bridge configuration and excitation were chosen to give a high
electrical output, and the dc amplifier provided 120 dB of common mode
rejection from dc to 60 Hz.

The scope was capable of outputting the digitized data directly to a
plotter although most data was stored on floppy disks and later transmitted

to a computer for further analysis.

Carmin T Lo
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Table Bl. 1Instrumentation components.

Qty.  Description =~ Manufacturer =~ Model No.
4 Strain gauge Micro Measurements CEA-09-125 UR-350
4 Calibration resistors Micro Measurements W-349650-02
4 Bridge completing

resistors Micro Measurements $-350-01
1 Bridge completion
and balance unit In-house --
2 Power supply Hewlett Packard HP 6218B
1 Graphics plotter Hewlett Packard HP 7470A
1 Interface board Capital Equip. Co. PC<>488
L Digital oscilloscope Nicolet Instrument Co. 40994
with dual amplifiers 4562
and dual disk drives XF44
External scope trigger Union Carbide Corp. W-356
(3V battery)
Gauge epoxy Micro Measurements AE-10
Gauge cable Belden 8723
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