ENGINEERING R P GRAHAN MAR

FORCE INST OF TE

AO-R190 570 SOFTUARE VERIFIC

- - e - o o - i -~ - - - e e e .
-l 3 . - [e — o g -

A LA

w98y

A A L L

0% 8% 8% 0

§
122

e
%
1.6

—
_—
w

W EMEA N

=

—_—

———
-

WO AN N]
~ e o
H’" l .
——
———
—
——
————]
I . I
em—
P————]
———

|

WSS i
-

oA
-

1NN

N M X

',

O

. ~ 3 PR e S ..- rFEd . Y \3\.4?5“* .un
‘

o Kt e A AL A A 22 TR CNELA PES AP
Dt M v g R St g Lt Sl TSN g B RS .

AP~ PR R

2
v
W
i
Akt
[]

\
X
k]

K

K

LI

o e V- -l

e - o v gt - - ‘a8 A e A . LT
i‘|‘ 2N A gty 1 NN W K [l O PR 0.8 3 h 009 154% « W SB0a gt gttt

]
oL AFIT/GCS/MA/88M=02

N

b 5

'3

AD-A190 570

L
Nt S
.l.‘l.‘.

£
»

.A?t."l. ’ ¥,

SOFTWARE VERIFICATION USING

s

PARTITION ANALYSIS

(XA

THESIS

b . Graham, Jr. o y ‘
Jovert b. Granan, Jr. DTIC

ELECTE
N MAR 2 8 1988

._
'J}}, 7}

£

hj
s

AFIT/GCS/MA/88M~02

. QE

XA v
'J‘J'.;';& J'.{ LX)

Approved for punlic release; distribution unlinited

An.
) 'J‘I"

“ "
otete"s

.‘ ."JSJ\J‘)\..\ ‘

o
‘J AT RS DT R
O, R G ORI G G 0 A0 T O G G O SN]

.
o

» N - - - “ - - ™, = . X
S \-'\{‘\-'.‘J‘ J‘..-\.' n"_.q‘...l".vl‘.'-'\- L LN L -(\cr..f
4 B R AR LR LA B ", Y

BTRPYR I o AN taYa A BT da’ e h i 8% AVe e d%m A 8¢ . PP . .
u J ¥ L) " SRR N KRN P WA T T, W VR RV WL T PRI oY KR

AFIT/GCS/MA/B8M-02 o,

SOFTWARE VERIFICATION USING PARTITION ANALYSIS

THESIS .

Presented to the Faculty of the School of Engineering

-~ > -

of the Air Force Institute of Technology

Air University

Fd
..{.1.'&1.'5.

In Partial Fulfillment of the

-
Y

Requirements for the Degree of

PaLE
MRy

Master of Science in Computer Systems

rFed
Y

'7'
b}

accééslon Por
wTgS GRA&I

DTIC TAB
Unannounced a
Justitioation — 0

¥

XA

Yy

|

Robert P. Graham, Jr., B.S.

)

A

By
‘ pistridution/

. Second Lieutenant, USAF [avatlability Codes
" ipvall and/or
Dist Special

’

A 5
7

e

R

- .
;
[

Cos
RS

AR

March 1988 ol

l)‘} P

n -

S Y

.

o«

Approved for public release; distribution unliaited

5 D by

TR A T N e 7 0T Ol el SR R N R e et T ¢ R B 2 00 e BB Sl 6 A% 6 A"
t . Y i TR ; \ d R Sud & !

Acknowledgements

There are a great many people who contributed in one
way or another toward making this thesis a reality, more
than can be mentioned here. Greatest thanks go to Dr. Panna
Nagarsenker, wmy thesis advisor, and Captain David Uwmphress,
committee member, for their patience, confidence and guid-
ance during difficult times. I also thank Dr. Henry
Potozcny, the third inember of my commnittee.

I am grateful to Will Bralick for long talks and even
longer Ping-Pong matches that helped keep wme motivated, and
to my friends Steve, Kay, and others for many fun times that
helped keep me sane. Finally, I thank my parents for their

support, love, and understanding.

ii

et oy o A A S Ty, P A AT I A R ATAT AT, N M

“n'.'.

Sy e,e w W

TN

-

L Ay

S
> &

AT M)
."l'.l‘.l. v

4§88

”

LAALRS oS

PN
‘

x-.';

"
(‘_ 1:'

‘s

A

L

o« u
% A ‘I:-".-' 'P
" _N_"

PO OR T PO RO R TR) 0%ty U ANy 1,430 009 Sat iy g o . i et TR U T YO Y OUUY

P
o S

Table of Contents .J

Q)
o

Page :_‘.
Wi
ACKnowledgementsS .« « « o o o o o o o o o o o 4 o o ii o
a0
List of Figures . . . ¢« ¢ ¢ ¢« o o o o o o o o o o o = iv :
A
ADSEract . o o ¢ 4 o o o o o o o s s s e s s e s e o v o
I. Introduction . ¢ & o o o o o o s o o o o o o o 1 ?
Background .« « ¢ ¢ o o+ o o o o o o o o o o 1 .'
Partition Analysis . . . « ¢« « ¢« ¢« « &« .+ . 4 55
Problem and Approach . . . « « « « « « « & 5 5?'
Overview of the Rest of the Thesis 7 Kf‘

II. VLiterature REVIEW . ¢ ¢ o « & o o o o s o o o =« 8 ¥~
Software Testing . « « « o« o « o o « o o & 8 fﬂ‘
Symbolic Execution . . ¢ ¢« ¢ ¢ ¢ ¢« o o o o 18 o)

Ln,

III. Partition Analysis & o o ¢ o « o o o = 24 ES
Overview of Partition Analysis 24 gq

Loop Analysis e s e e e e e e e s 26 }3

A Partition Analysis Example e+ e e e s . 29 ‘-
Performance of Partition Analysis 38 ,ﬂ

.:\
IV. Extensions to Partition Analysis 40 ;“
. '

Procedure and Function Calls 40 o

Recursive Procedures and Functions 47 g
Application of Partition Analysis .
to Whole Programs .« « o o o o o o o o o o o 50 &:

Y

V. Conclusions and Recommendations 53 %,
.
o
Conclusions . o ¢ « o &+ o o o ¢« o o« o o o 53 >
Future Directions ¢ ¢ ¢ ¢ + o « o . 56 ff
Ly
Bibliography .« -« & ¢ & ¢ ¢ ¢« o & & = o o o & o o o = 58 ;“
VAR 4 v e 60 N
u.:_;
o

]

-

-

>

-F
.\

i1

. o o .
f." LAY
54

. ¥
LA

'\'- <)

L s Y ata® - _ - - » - . - IS
N N N TN s N N S R B BN NN R B N A N A A DTN I O AT S AT AT TN

TR R U R

Example Control Flow Diagram

An Un-analyzable LoOp . . « ¢ ¢ & ¢ o o « o & &

Specification of PRIME . . . ¢« ¢« ¢ ¢ « ¢ o o &«

Implementation of PRIME ¢« & « o ¢ o+ o

Flow Graphs for PRIME . . . ¢« « ¢ ¢ o o o o o =

Specification Partition of PRIME

Symbolic Execution of Loop in PRIME

Loop Expression in PRIME ¢ & o ¢ o o &

Implementation Partition of PRIME

Procedure Partition of PRIME

Sample Test Data for PRIME « « « .

Implementation of DAYS_IN .

Inmplementation of LEAP_YEAR . . ¢« « ¢« « « ¢ + .

Implementation Partition of LEAP_YEAR 43

Partition of

Inplementation DAYS_IN . « « ¢« . &

Inplementation of DAYS_BETWEEN

Partition of DAYS_BETWEEN

£
|
=]

Iiplementation

Ty

v
N 4-7. Implementation of FACTORIAL . . « « « « « « +« & 49
5
{: 4-8. Recurrence Relations for FACTORIAL .« « « « « . 49

A

“ s

LI,
"

W

f~f

Se - . - o
A, T QRN A A A A W £ R G A S S S A M N L R N

"1 gv o 0at 4a a0g® $g® Ua” gt iat #y aliataa"uta® o

o 2 8a* > amt a1 ke’ e 8a"oBa' ohe “aba® et Aat et
- . R - SN - W W N W W, WU W WU WO A

Abstract

— Software verification is the process of determining
whether a piece of software is reliable--whether it performs
as it is supposed to. As traditionally performed, program
verification can account for 40 percent or more of the de-
velopment time and cost of a software product. In spite of
this fact, released software is notorious for its unrelia-
bility. These two facts, the expense of our attempts at
program verification and our limited success, have sustained
a great deal of research interest directed at finding more
effective methods.

This thesis develops extensions to a promising new ver-
ification technique called Partition Analysis, developed by
Debra J. Richardson (1981). Partition Analysis appears to
be a powerful approach for identifying program faults, but
in its current state can only be applied to single program
modules that produce no side effects, including input or
output. This thesis extends the applicability of Partition
Analysis by permitting the use of procedure and function
calls, thereby allowing complete programs to be analyzed.
The result is a set of techniques for handling reqular, non-
recursive procedure and function calls, separate methods for
the analysis of recursive procedures and functions, and an

approach to the larger problem of analyzing entire programs.

A

G AN, P A O T N A T T A G L G T R Rt tat YL,

\. ..'o n’

2 o 2o

7o

2355

I RN

L et |

-
i

S

oy

\"-',

YR

~ -
P A

.

f{.’f“'sl lﬁl

- -

RSy

'A'ﬁ“"l PR AR IR P A OO N AN AN " Ma N a " n ¥ kWL > VR S LWL | AWAA Balat ‘A dal b Aat. Kol Saf A"t d Y

vh atd- ey
- LKA

SOFTWARE VERIFICATION USING PARTITION ANALYSIS

I. [Introduction

Program verification is the process of determining
whether a piece of software is reliable--whether it performs
as it is supposed to. As traditionally performed, program
verification can account for 40 percent or more of the de-~
velopment time and cost of a software product (Pressman,

1987: 467). 1In spite of this fact, released software is no- :

N torious for its unreliability (Pressman, 1987: 13-14).

-

o+ These two facts, the expense of our attempts at program ver-
-’

ification and our limited success, have sustained a great

deal of research interest Jdirected at finding more effective
X methods. This thesis is a study of a relatively new tech-

nique for program verification called Partition Analysis

(Richardson, 1981). The Partition Analysis technique shows

Em
‘:5 great promise, but in its current form is severely limited

T

oy

LGN) .
1: in 1ts scope of applicability. The contribution this thesis
o nakes is to expand that scope.
e
2

<o Background

-:':

General Approaches to Progran Verification. 1In the

.ﬂ\'.

ﬁi nest of all possible worlds, the generation of software

o,

. wvould he a fully automated procedure. The user or other in-
e

terestod party would prenare a specification detailing the

wa¥ Yal Sox S TERTLRT Y . " - € & - Al Caa. - e . P » a
d 21 iad ¥ N ARV Vv SO AW RN A% 4% Rt A) 'p) » Sab ta da® fe® Ra iy 0a" yie oVl 00 4%y WNLN LN X LV AN KRR

desired functional and operational characteristics of the

T TLEXNG O
-
L

software and would present it to a system that would auto-

i . matically generate a program guaranteed to imatch the speci- &
y fication. Automatic programming, as this procedure is $
¢ called, is one of the long-standing goals of the Artificial &
fE Intelligence (AI) field but, not surprisingly, this ideal is Ef
; far from realization: programming is a complex, knowledge-~ %;
: 5

intensive, incompletely understood and error prone process

-

§ even for human experts. Efforts toward automating the pro- ;Q
. cess have been categorized into three subareas: ‘§
. 1. AI programming environments; W
; 2. studies of the software design process; and §
; 3. knowledge-based software assistants. l?
o (Mostow, 1985: 1253) :
‘E Automnatic programning remains a long-range goal, but is not :;
E expected to solve the verification problem in the foresee- o
! able future. :
3 If automated programaing is currently beyond our capa- 53
o
. bilities, the next best thing would be to write a program :x
- and then apply sone method (again, preferably an automated :.
. one) to show that it meets its specification. 1In other N
; words, we would like to develop a proof of the correctness E
~
: of our program, with full mathematical rigor and certainty. *
b | An early and still active approach proceeds by defining E
N a formal semantics for a programning language in the form of 3
a set of axioms. Programs in that language can then be \
: &

N

-
-

[, %)
I

N
“
~
- - - N - Y \
'ﬂ."o'. f\d‘ w~r he v o, - \ f‘.- ..-\- WY \ " \-‘- -\- AT AT A R G S SR \.-....\.0\ i

»

-

translated into assertions in the predicate calculus, and

the correctness of the program--its correspondence with a

specification likewise expressed in the predicate calculus--

becomes a theorem to be proved (Hoare, 1969). Unfortu-

nately, both the translation and the proof are tedious and

error prone, and not easily automated. It has also been

noted by several researchers that the proper way to apply

formal proof techniques is to develop the program and the

proof concurrently, or even to derive the program from the

proof (Dunn, 1984: 159). This further complicates attempts "

at automating the approach, which as a manual technique re-

mains impractical for all but the smallest programs (Dunn,

1984: 159).

Given the current impossibility of automatic program-

ming and the extreme difficulty of applying formal tech-

8

A LA

niques, a third approach toward achieving at least some con-

L 3 Ty e 0 U g | Bt
oA ,

fidence in the reliability of our software is testing: run-

)

-

ning a program with some subset of the data it is supposed

L

)

to handle and checking the result. As Dijkstra has pointed

."
RS

7

out, "testing can only reveal the presence of errors, never

>

¥

1972). It has been shown that

A

their absence" (Dijkstra,

v ':'l o

-

anything short of exhaustive testing (running the program

.

SRS

with every possible set of inputs) leaves open the possibil-

- ey
[N
Lo

ity of an incorrect program escaping detection by working RS
-\‘

correctly on the subset of data tested (Weyuker and Ostrand, g
N

1980). In spite of this rather dismal fact, a carefully ﬁh
“~

w
N e
WX

.

RN

PN

T A S A, T U T sy Gy, L L T B T B T N R I A T

-

" ;
N .
. :
i chosen set of test data can reveal many of the errors in a -
iy y
" program, and a test run resulting in no errors detected can 4
E . greatly increase confidence in the reliability of software. i
i‘ {
:' Software testing, done informally, was the first tech- o
1) \
v nigue applied to verifying software. Over the years a large A

number of techniques have been developed trying to make it Q

more effective and efficient. Many of these have also been

ol

automated, at least in part.

% Symbolic execution is a verification technique that é

v

§ combines formal verification and testing. 1In symbolic exe- :
cution input values are represented by symbols instead of ;f

li literal values and statements are executed symbolically to '

‘é produce formulas for the values of the program variables. ;

. .

These formulas can then be analyzed for correctness or to

» guide the selection of ordinary test data. Several auto- ’
2.
I. '
~ mated systems for symbolic execution have been developed. ”
o -
. &
Partition Analysis v
1
v Partition Analysis i1s a technique developed by Debra -
o
" Richardson in her doctoral research that combines both for- :
~ nal verification techniques and testing in order to acguire -
a
™~ confidence in a program's reliability (Richardson, 19381). .
- It is also distinctive in that it makes extensive use of %
. both the specification and implementation of a design. -
N. . . . l.-
o As currently developed, Partition Analysis can pe ap- 3
“ plied to single modules that do not produce silde effects -y
LS "
{(including I/0}. It is also directed primnarily at nuacrical ‘
, ,
g)
L
L4 ‘o
b .
4 4 '
’

AT A ‘."I p e,

W AN A TN NN MR NN NN e Tt e T e T

AR

y .
"3’
‘-“-'u

MACYCSE

T

T

QL0000

.'i‘ 4 l'l‘
AR

.‘.- (] c"'f’l‘

~
.’

o LAY
AR AR

r"..’)‘J

hY
rele

'\,\“\"\'

v

(o

o LW e S e e

o

algorithms and has not been tried on programs that perform
symbolic processing.

The Partition Analysis method consists of three steps.
First, symbolic evaluation and other analysis techniques are
used to produce the procedure partition of the module. Each
element of this partition defines a subdomain of the mod-
ule's input and describes the computation to be performed on
this domain according to the specification and also accord-
ing to the implementation. Second, proof techniques are ap-
plied to the two computation descriptions to demonstrate
their equivalence (or nonequivalence, in which case a fault
has been found). Third, the subdomain and cowmputation de-
scriptions are used to quide the selection of test data to

exercise the functional behavior of the module.

Evaluation of Partition Analysis by Richardson and
Clarke (1985) shows it to be very effective at finding pro-
gram faults, The restriction to single nodules with no side
effects, even 1/0, however, drastically li.its its usefual-
ness. As currently develop>d it reaains an acadenic exer-
cise, but one with great potential. This thesis attempts to
realize sone of that potential by enhancing Partition Analy-
sis tn raxke it apnlicable to a larger class of prograns. In
marticular, the oojoective chosen was to devise nethods {or

Tantling srocedure and function calls. Since most nrogra -

[

. - N s T A At e Th et et e e, S,
ATATN AT P AN A A S R S

ming lanquages permit recursive calls, the special case of

recursion was specifically include in the objective.

Procedures and functions are the building blocks of all

practical programs. Expanding Partition Analysis to permit

their use make the technique applicable to entire programs

rather than just isolated modules. It was felt that this

extension would therefore be more useful than, say, the in-

clusion of I/0 or the elaboration of any of the methods al-

ready used internally by Partition Analysis.

The approach followed was first of course to understand

as fully as possible the Partition Analysis method itself.

Since Partition Analysis used many other verification tech-

niques, an extensive review of these techniques was neces-

W sary. The basic method for handling procedure and function \

calls was devised by a close examination of symbolic execu-

tion, the particular needs of Partition Analysis, and some

in Richardson's dissertation (1981) itself. Separate

nints

methods for recursive calls were developed by analogy with

Richardson's .sethods for analyzing program loops. The new)

methods focus on step one of Partition Analysis, forming the

procedure partition when procedure and function calls are

A
R A

SOV

present. The formal verification and testing steps are also

affected, but to a lesser degree. X

The result is a set of techniques for handling nonre-

e
l. 1.

cursive procedure and function calls; the choice of which

& 74

O R

technirque to use depending on the program to be analyzed.

‘.I\"

o8
SN

N 'r'".'

4

oo

')‘u“")(')'}"" ’J'.-'.-!’-"--'-I‘.J'“\I"vf.--f:l"J"J"J“*.‘-':-"-\"J‘ ‘.},--.(_- AR "n"\'f‘,’.f' -

o,
l‘!‘ Al L&

Recursive calls are handled by their own technique, again
with variations. Several examples of recursive and nonre-
cursive routines were analyzed to verify that the proposed

techniques do work.

Overview of the Rest of the Thesis

The remainder of the thesis consists of four chapters.
Chapter 2 is a close look at many of the techniques that
nave been developed for software testing, and a look at sy.
bolic execution. Chapter 3 explains the Partition Analysis
method in detail, with a detailed example. Chapter 4 pre-
sents the extensions that were made to the method. Chapter
5 offers some conclusions about the method and points to

several directions for future work.

.'. ot .'y OV R ,"n d 0 AT " n At At ... \-.‘-v .'-\'." (ST oS gy \ 4 r,' r".‘ ‘\ W W

nLn

R .‘.*'\

7

A.;'.s.."l.‘ 2, NP

<

- I..' -
e

At L
47

.:"

1. lIl'n
AR AR

.
.

Ve
‘(’r‘- "y

A
'j ., l'

e

'.*-.‘- s "y

VRN,

Y IW .
P L4
‘.l’ 5",{ I.- ;

?
’
e,

DAY
\“'-. \
ad

e

Ta¥oFuTeTe

e m 8 & WA

® 8 e e @ e

L)
» LAY WA F Nt R Y A T R RV ILE T I B IR T SR gy I S LI R I P Y R AT A AT T e A e R s e R o @
M‘:ﬁ& (el AN o P, L T el Ll Xy o, L A -\-r\.-\.-_:\.r, TR s .r_“_f,‘. $.\'.

n s Ave eaoaa-i et uat gav " . . " . .
LAEAS A S AL G GE AIE G £ K40 0 0N aN A N A AR A T A A R AR A A A At G N Wy ¥

Literature Revie

II

Nuimerous techniques for carrying out software verifica-
tion have been developed. This chapter reviews some of the
work done in progran testing and symbolic execution. Since
Partition Analysis uses many of these techniques itself,

this chapter also provides further background on the method.

Software Testing

The effort to replace ad hoc testing practices with
systematic methods has produced a number of basic techniques
that reflect early attempts to address the testing problem
or that address particular special cases. The basic tech-
niques are typically categorized as being either "black box"
or "glass (sometimes white) box" techniques. Black box
testing relies strictly on the specification to describe the
intended function of the software and to guide the selection
of sample data to test whether the software implements the
function correctly. Glass box testing augments the informa-
tion provided by the specification with structural informa-
tion about how the program works. Both kinds of techniques
are used in practice; the two approaches are complementary
in that they tend to detect different classes of errors
(Pressman, 1987: 484). Glass box techniques are more mathe-

matically tractable and nore generally effective but can get

v = e

"l S

i e e S

- o

S

XYM

L T T e Fn 38 2N J
-

b "'-;.‘;- ,v' 3" '...1

'r‘: Y '.' A ‘;'.;1

PRAA

L7

-

A
-

M

“Eaf et > * b 0y g g gt . 9.2 Ry ek am - y "
A P O W W W T ¥y U RN LT R WK & i s B0 00" 02 e 20 Hhaphe- Rt e fueopan g 20 g VNP UY WYY ryreg

Kb
§ '
R unwieldy, while black box techniques are easier to apply but j
} are more likely to miss certain types of errors. E
) Recently these basic ideas have begun to be combined R
:i into comprehensive approaches to disciplined testing in-the- ?
L large. Two such approaches are Howden's Functional Testing %
. approach (Howden, 1986) and Partition Analysis, discussed in 1
'é detail in the following chapter. ;
i Before discussing specific techniques, some terminology ?
2 is needed. A program failure is an discrepancy between the ;
‘E observed pehavior of a program and its intended behavior. A §
; prograin fault is an error in a program that causes it to '5
’Y fail. Failures have pbeen classified as either domain errors "
'
Y or computation errors. Domain errors are concerned with g
Q which execution patn is followed in the processing of data. g
~ If the wrong path is followed, a path selection error has .
é; occurred. If the data falls into a special case that the f;
; program fails to recognize altogether, a missing path error ﬁ
b, has occurred. Computation errors occur when the correct R
v path is followed, but the path processes the data incor- E
;: rectly. In practice, one program fault can cause many fail- F
. ures, and some failures can be of more than one type. ;!
't "
'S Black Box Testing. Black-box methods focus on exercis- I%
ﬁ ing all functional requirements of a programn without consid- '3
oo ering its implemmentation. The basic idea is to break down -
T,
ﬁ the specification and identify all of the individual func- Ef
ﬁ tions performed, and then test each one (Dunn, 1984: 233). i‘
b Y f.
N
X 3
c: 9 &
3
g y
o ~
e 3

N e N .‘.'\. AR

v e maratar .- . .- - - -
o O O T R Ry T ng i T R N A S S S G I T RN NI R S Ny

»

R YA ST SR TR

~
it

DAL A AR A AR b CAL SR SN i il A0) ey Ava g el a)™ Bt ACAL S A gt At Ay ng

Equivalence partitioning (Myers, 1979) is a method for
partitioning the input domain into classes that we can
"reasonably" assume are processed equivalently. Testing any
value in a class then provides confidence that all values in
the class are processed correctly. The technique of break-
ing up the input domain into subdomains is called domain
analysis and is used in other bhlack-box methods as well.
Domain analysis 1s also a glass-box technique when applied
to an implementation. In this case each path through the
program is considered, and the conditions that the input
must meet in order for that path to be followed constitute
the input domain.

Empirical data has shown tnat more errors tend to occur
at the boundaries of an input domain, so these boundaries
should be exercised more fully. Once equivalence partition-
ing is done, test cases are chosen that lie just inside each
class, just outside each class, and somewhere in the "mid-
dle” (Pressman, 1987: 486). Extensive work has been done
showing how close to the boundaries to get and how effective
this technique is, particularly the glass-box version {(White
and Cohen, 1980; Clarke, Hassell, and Richardson, 1982).

Fault seeding is a black-box technique that deliber-
ately nuts errors into a program in order to judge the ef-
fectiveness of the testing being done. In this technique a
nunber of errors are deliberately introduced and then test-

ing by some other tecnnigue is done. If n faults were

10

e YA Y o Y e A MR L A A A B N T ST N N N N S TN N N e e T T N A

e

o

R

R]
NN,

- !:". [4

T

o AR N
<5k~ﬁl‘,1

- -
"

, ,s IA.{A‘fﬁf _‘f .7(." Fi

»
"
>

]

'
%

A Y,

e T N

"v\

Ly

3

- ‘l's' < "l

- l-..;."-w ’1 ',

Yy

P

\d

ol
L)

(O R
AT s
tocats

seeiled, w total faults woar2 axoose=d, anag < of tuae [aults

then an estimnate of the total nun-

found were seedea faults,

ber of faults N in tne program is N = (n * ») / ¢ , and so Ry

the nunber remaining undetected is N - m . In practice,

if the ratio (m - n) / (N - n} 1is less than 0.9, nore test-

ing is callea for; values close to 1 provide high confidence

in the effectiveness of the tests.

Glass Box Testing. Glass-box testing uses the details o

of the iaplementation to guide the selection of test data

{Dunn, 1984 : 199). One important tool used by most glass-

vox techniques is the control flow graph of a progran. 1In

this graph tne nodes renresent statements of the program and

edges represent the flow of control from one statement to

another. Associated with each edge 1s a condition that must

ve true for the transfer to take place. For sequential flow -

or an unconditional branch the condition has the constant

s~quences of state-

value true and is generally not snown;

ments with no branches are somnetimes collapsed into a single <)

naide. The conson if-then-else and loop constructs typically T

use boolean decisions to choose one of two possiovle edges to

*
e
L)

' follow: the condition for one edge is siwmply the negation

e
‘s

c of tne otner. More complex control structures such as the

case statenent or tne select statement 1n Al have .nore ar-

O
et

bitrary sets of coaditions. tijure 2-1 snows a program for .

>]

. deternining whether a positive integer is a prime, and gives :
*

the corresponding control flow grapn. A

LY

SO

eVety e s ® &
v

11

.
s

e N A

AL IRK

'."{'f’.'."f' - }~..-(..,-‘,-‘.-'.-J.- -*!‘.v_.-_,.'.-'.;"‘l‘-s."-".'.‘-‘...'.."‘-'..\..'-

v
.
A

.

v

"u

o
A

.
(O]
.

g0z

K

o, ($'

VA

BV

S

ChNONLN

!]
o Eﬁﬁf

o
-
&
L)

~
-
L}

N =0

U b W

~J

“~

begin
if

(N mod 2
IsPrime :
else

IsPrime :=

Factor := 5;

while Factor ** 2 <= N loop
if (N mod Factor

function Prime (N :
Factor

or

IsPrime

exit,
else

Factor

end if;

end loop;

end if;
return IsPrime;
end Prime;

a.

Ada source code for PRIME
Adapted from Richardson,

POSITIVE) return BOOLEAN 1is
INTEGER;
IsPrime : BOOLEAN;

(N mod 3
(N < 4);

{Factor + 2)

Factor + 6;

b.

Figure 2-1.

2 e S,

L0
0

Control flow graph for PRIME

e, .’:’.' AP .._-. v %

Example Control Flow Graph

A technique callea pasis patn testing is a siuple way

to use the control flow graph to guide test data selection

el R X S

(A A

(Pressman, 1987: 472-482). The graph is used to find a min-

% N

imal set of linearly independent paths through the graph

% T T 2

such that each edge appears in at least one path. The num-

L

per of paths required to do this is E - N+ 2 , where E

2

250
8,

is the nuuber of edges in the graph, and N is the number of

o
y oy
v

LA]

nodes. Test data 1is selected that will cause the program

. execution to follow each of these paths.

*.“-v -

XX

Loop constructs are very common in progra.ans and have

special problems associated with them, so special methods

LA

for testing loops have been devised (Pressman, 1987: 483-4).

Probleins associated with loops are initialization errors,

indexing or incrementing errors, and pounding errors at loop

L3
v

iimits. For a sinple loop, test cases are devised that skip
Y the loop entirely, pass through the loop exactly once, ex-
Y actly twice, some "large" number of times wm, and i{ there is
a maximum nunber of times the loop is allowed to be exe-
cuted, n, then the loop is tested for n - 1, n, and n + 1
. {if possible). Nested loops and concatenated loops lead to
an inordinate amount of testing, so some simplifications are

specified to control this.

Mutation testing {(Dunn, 1984: 218-220) is a glass-nox
technique sonewhat like fault seeding that is intended to
increase confildence in the anility of tihe chosen test cases

) to detect errors. sSnall changes are made one at a tine to

b

-
PO PR PN N R R D e

-

AT OV N A", ‘f""" j-s \ s PTG R N LI U S Nl St N R S

[/

DRI LR

-

»,

QP FO e BT oy 20" BB e 8'a e 8% 0 A ‘. ’ - - - . . hat B’ Bt ot

the program to introduce errors deliberately. Each "mutant”
program is then tested to see if a failure occurs. If so,
then that test case has been shown effective at finding er-
rors and our confidence that the original program is correct
increases. If the inutant passes tne test, however, it is
analyzed to see if it is in ftact equivalent to tne original
nrograrn. If it is not, then the test has failed to detect
an error, and our confidence that the original program does
not contain a similar error decreases (in fact, it could be
that the nutant is correct and the original wrong). Muta-
tion testing works best on prograns that are npelieved to he
basically sound oxcept for relatively simnle errors
(Richar-ison, 1981: 54).

The glass-hox techniaues discussed so far address both
donain and coapatation errors, bhut “omputation errors in
particular are »nrone to -nincidental correctness when only a
few 25t cases are used, and so special technijues for test
ingy for cortain <inds of cosputation errors nave neen devel-
nned (Howden, 1980). For instance, expressions that are
nolynnomnials can ne shown correct by testing tnes with a nua-
oer of test casces one cjroater toan the ddegree of tae polyno-
Tial. Other tyones of exoressions have <nown svestal vala s
(extrony, -tiscontinuitinos, <t} tnat nesd to ne nessod for.
Tne value zero in particular 15 13 very conon soaroe ol or-

ror and so should always o test i,

SR L

TP

-
-

LS

g ¢ Foll e sl 8
» 4??3{\]

P
oL

Iv)t(-._-'; -a

- -
\~§’V F

nw a_n s 0 &
: .\\"\’\

I.n‘

A AR

fl.'l:&' ..n -

-
V.,' ,'.,‘v

4

N>
LY

r e

""‘

Comparison of black- and glass-box techniques. black-

. &

.l
LA IS

box techniques are best at finding certain types of errors:

incorrect or missing functions; interface errors; errors in

PR 4 \
h Y g

LA

data structures; performance errors; and initia'ization and

T

termination errors (Pressman, 1987: 485). Blacx box tech-
niques tend to niss many other errors because the implemen-

tation is rarely exercised fully: A single function in the

s, c.' -_' [N (.

specification may be implemented as several special cases,

L A e P T
.’.‘ &

and a black box approach has no way of knowing this; we are

L3

I,

forced in effect to guess at what values will be processed

the same way by the program, without looking at it. "The L
iisadvantage of the black nox testing approach is that it :F
g,
ignores iaportant functional proparties of programs which §E¢
are part of its design and implementation and which are not fsl

oy

gescribed in the requirements" (Howden, 1980: 162). Thus KN
(NN

A

the olack and glass box approaches must be used together for A
‘e,

‘ . qb

naxinumn effectiveness. T

-l .‘

Func-tional Testing (Howlden, 1980; Howden, 1986). How- %,

f:'.r

- o

den's functional testing and analysis 1s an attempt to rein- 2
08

. . A4

tegrate the primary alternative approaches to software test- a:a
v , .]

1M33 starti:: versas ddynanic testing, black versus glass box =
. N

testing, and practical versus theoretical considerations. h;
{?

It is an outqgrowth of »arlier enpirical studies of software ~y
resting, and 1s i1ntended to "provide a framework for the T
.

A o
d1sussi1on of testing, to nroviie practical theoretical re- >
s

o

/

v
AL

> vy
[XX/
)

15

" ’

PN, 4
Wy
LA

P

AR T I A P NI e Ao LTy, A A AR AT S A A AN (N R TR T, (O R 0 O

h

sults, to derive new results, and to indicate directions for

7'I’ll’l'-f?? - i,'-.'l: nt

. future research" (Howden, 1986: 997).

The theoretical basis is provided by a conbined view of

LA

the behavioral and structural properties of programs. At

the behavior level a program defines a mapping from its in- 1)

L]

put domain to its output domain; the specification of a pro-

AR {'.

N

granm is intended to provide a complete and accurate descrip-

Y

Yy

tion of this mapping, and is needed during testing as an

y "oracle"” for .determining if a program is producing the cor- o

rect results. Structurally, a program is seen as a collec-

tion of fanctions and da=a types. Functions act to convert

‘ one ty;= of data into anotner type, and the overall trans- S
), fornation of the input types to th: output types defines the o
X oehavior of the program. Thus there is a :uality oetween o

+
L

tvoes andd functions. Program design methodologies (e.g.,

fun:tional Jdecosnposition, data flow analysis, Structured De- jp
~
. si1qn or onject-oriented design) tyoically choose to eanpha- N

51ze one aspect over the other; Howlden's approacn to testing N

Lix wise —rohasizeos tae ddentification and analysis of the 2

<

* -,
; fanctional omsonents of 4 program, 1s the nane suggests. =

Lol s dn analysis of now the functions of a orogran -

ire srrgctare-edl, o1n ter s of o want o ae ctalls forns and o struc- -

Iro ract e, Fantuioni!l Tosting "onsists of two stens: LA,

: : _:._

- . . I..

E T TS U “m')l'_,'tsl% D L o nroaras o aart 1hs o shee ity oat ey to .-_\
o~

1ient1 9y 1ts fanctional susini s v 7o o 1ins et ran s ::
-

}

L]

ey

AR

o f 7

A

>

.r v -’\I\f\f__-\ LT

IO PR NN RN O AN,
'\ TN

LT W X AN \ AN Wl S A NSNS N TN Al Sy sy Aan 6y p iy phe oty -4te gl ” Y NEXPHNYR T ol
» -
J o
; R
; A
: N
L)
k of each, and then test data selection and the dynamic analy- 2
\ ¥
sis of the results of executing the program on that data, :f
The static analysis step »roceeds by identifying three types W
" of units: functionally important classes of input and out-
put data, much as is done in the black nox techniques; data ‘o
design structures within the program, which are suosets of by
-
declar=d data structures that are functionally related; and -
progra.n design structures, which are identifiable functions -
)
uased to design and inplement the program. Prograin design '
&
v
structures .nay or .aay not correspond to contiguous pieces of i
4
—ode, and Howden suggests that any available .lesign documen- :
tation {(e.g., data flow diagrams, SADT charts) can help in L
L
the identification of those functions whose i1aplementation :
".-
corcesponds tn collections of patns in the progran, or to ;
sTatteret pieces of code, ~
e
. . : . ,
[n the cest data selection and execution step, Func- &
)
. . . N . . '
tional Testing coapines nlack and glass nox technigques oy
L
DATL1ILt1IonINg tne 1nput Jdoaains not only of the proaran as a \
N
~hol2 put also ouf “ne 1ndiviiuial cowponent functions Ldenti- >,
>
ficl 1n %ne orojran's structare, Howlon lefines a nusber of ﬁ
»
rales for pilentitying Saese partitions and for devisin .
hY
, N
fasls-reseling tost cases {for then, Fxocution of theso i
-
test TaAnsas everolses the nountaries andl o antoraal oregirons of }
e 1 At oana nJtiat dinaains of o oall otae tuncstaronal o anats o an o
r‘h
s eIrAa s, 1 401l o as wan anter{aTos otaecn o antta, &
-
yon e s el o ed gy e weer o SEfean Ly b ete st Panlts an ;
e
~
»
n
17 '
-
-
-:‘

T A A AT AT A T A T GO LR R A 2 N A A X A A A N N A A A AN ‘-I‘

Y

Petat NS

. SIS ﬁ-.“.f.;’;-"'-:'.‘-'.;..A'.'.:‘-:! i . - TN - ."' ".f ""‘-"" LV SUR Vg Pl B 'n'.\. AT AT AT R % % e % e N e '\"-'\'

.

-
.

R RS L L Rl Sl N NN S 8 RGO LOR W Lo St g b bt Ay 420 LA QS et A Sl AChg At g Aok L\

the program. Howden compares the coverage achieved by his
nethod and that of other glass bhox techniques, and finds his
is more demanding, and hence unore effective at finding
faults. He reports empirical studies to support this con-
clusion.

In effect, Howden claims that techniques like branch
analysis and basis path testing function as approximations
to Functional Testing: the validating assumption needed to
maxe such techniques work 1is that paths in programs corre-
spond to functions. These techniques are weak because this
assumnption is not true in general. The true structure of a
progran is the functions that comprise it, regardless of its
textual structure, and this is what Functional Testing fo-
cus2s on. Conversely, 1t 1s precisely the loose corre-
sponience petwe2en functional structure and textual structure
that ma<es Howlen's pethod much awore Jifficult to automate
than the other 3jlass box tecnniqgues; this 1is tne najor dis-
advantage of the Functional Testing approach. Without auto-
nation, applying tine technigue to any sizable program re-
nains lmpractical. Howiden discusses some possible ap-
proacnes to autonating parts of nis scheme, but the area re-

mailns open to future researci.

Sytoolic txecation
Sonewhere between formal verification and ordinary
testing lies symbolic exoecution (Dunn, 1934: 136~137; Dar-

ringer anJd Kinyg, 1974; iowden, 1977; King, 1976). Syabolic

13

'(.:

L g

r
% %

%

TN YN

L AR

B AR AN

PR A4
5 8- % Yy

TN

Veeee'e

h Tl

vy

ATy

s
s

Wl

y e

I Pt

.
L2]
.

A

uﬁ'-iu:
- d

-

« f ¢
%

eV

" "
P

" 4" -.

i

P I WAL A

h S

»
w®e’e
s f 1

‘N
R

“

LN QL AN

003

i

oo

Diadi)

ENENMONON
P

l‘.l .,

R

g
»
X
~
>,
~.
.

~x2cution is a generalization of the usual execution .nofdel
for conputer prograns in that progra.a variables nay be given
svnbholic representations of their values instead of tne
valun thenselves, Tne convention used in this thesis is to
capitalize tae first letter of progran variable nanes and to
as3e all lower case for symnolic values. For example, one

s1sht rovresent tne value of varianle A ny a and the value

of B by . Then after execution of the statemnents
A= ALK As
Bog= B % 1,
Cor=E A+ s

rhe vilues of thae varianles woulid be

A= a

3= v %
wor 1l exe~zution is tne soecial case where A and B have ac-
“ual nurerrcal valnaes and so the cosmputations can ne carried
Hut, The relationshin botween syrnpolic oxecution and regu-
lir ox2cution nas ope2n likened to that between algebra and
arittiaietiao,

[f 1 nrograw contains hranchas or loons, then nerely
resresenting “he values of all program varianles 1s not
£nouyn, since these values denaad on Wwhich nrogra s path vas
followsdd, During sy holic oxocutionn a spoecial wvariable
zalled PC (path condition) is naintainod to intdicate all of
~ha conditions that had to bHo true 1n order for the sxesutoedd
path to have heen followed., PC is inttially set to "ecra-n, "

anl then each tine a conditional nranch 1s oxoture s PC i1s

R _R_N_o _A

K

M P e TS

T F a2 2”0]

AN LRT N R M AL A AR R AR N AR Sl 8 - B P R A inh A® Syt Sat e Sarain’ Pa oot att Sngtn e ate gt o7 ' 0’ g d

e

AND-ed with the condition corresponding to the branch taken.

_-
5t A

For example, let the value of PC be "true," the value of N

be n, and consider executing the following statement:

if N = 1 then e
n
X := 5;

else
_ X := 10;
y end if; by
. N
48 Iy
y There are two possible paths here. If the first is chosen, /
- »

then the result is o

true and (n = 1)
{n = 1) A
5 o5

pPC

X

If the alternative is chosen, the values would be

X PC = true and (n /= 1) "
: = (n /= 1) 3
- X =10 ‘ g
: 2

sometimes the current value of PC is enough to deter-

a branch should go. For instance, if in the

nine which way

above exanple some previous branch had set I'"C to include the

3 condition (n < 0), then the second path is the only possible N

one and PC could be left unchanged: the information that

(n /= 1) is redundant. Thus only "unresolved" branches are Ty

in PC.

recorded

Nunerous automated systems have been developed to do

oy,

e

Ll
Yy

' sympolic execution. One of the first is EFFIGY (King,

- 1976). It supports a siaple (but nontrivial) language with

. a PL/I-style syntax. It functions auch like an interactive $
..‘ \n'
Jdebugger, proving trace and oreakpoint facilities. It also .b

.

-
.
)

allows the user to specify variable values, either as liter-

" -‘

L T o

A Y

O

IS e S [

R TN SN N SR AL M S S R R I S e S Y o Y PCa N
T e T o A O M N S S A I S A S SRR AN,

N I
LI

Y

1R

DR R Rt PO A Y T v K TR T R N Y e R T, N R ey ot

als or symbolically, allowing ordinary execution, pure syn=-
bolic execution, or any combination, When an unresolved
conditional is encountered during execution, the user can
specify "go true" or "go false" to choose which path to fol-
low, or can specify "assume (P)" to add the predicate P to
PC, which may (or may not) resolve the condition. Finally,
one can request that an "execution tree" be generated of all
possible paths through a program. Since any program with
loops potentially has arbitrarily long paths, this tree may
in fact be infinite. EFFIGY allows the user to specify a
bound on the height of the tree generated. Other systeas,
DISSECT (llowden, 1977), ATIEST (Clarke, 1976), and others
typically provide comparable facilities.

The application of symbolic execution to program veri-
fication is as follows. First, one can look at the formulas
associated with program variables and check that they are
, correct. One can also detect cases where a variable is used
before it is assigned a value, and other such computation
errors (Howden, 1977: 267).

Second, symbolic execution can sometimes reveal that a
particular path is not executable necause the PC for that
; path evaluates to false (i.e., 1s a contradiction), or it

may reveal that some condition tested on a path is in fact
g redundant. The general nroblem of proving that an arbitrary
predicate is a contradiction, or that one predicate inplies

another, 1is unsolvable; in practice, however, it is fre-

21

W, @ “.-'- ; --'F‘, ‘.‘.",{1'*',{'"?‘&' 'f,(- -*-. -"" ‘N" -’.'f.'h"' -.'»_;-‘.., J“"‘I;'."; . ' ,"‘-'h"- ,\.'\‘

AN

A A
L RS

b

X

) ’ﬁlﬁ

LPLLT WP
LY

~ el
4 —re

-l .l", '{ -‘I "l ‘I

N

»

A

T_W st
7 NN
. L A

AT N
SRR fb{rf)f

T Ol
N .\.'\._(

"

-

2
;4?&&

P R
'l .l 'I 'l o Pl
PR A A
ARSI T T

PR 4
h Tk
2Ll

CRR RS

“

»

L L Y

-

EAL AL

e

[N N AR AR N

DR e el < Wil e

YT a Na WV g W R NN Y L W ST R R

quently possible to do this, ideally using an automated the-
orem prover.

A third use of symbolic execution is as an aid to do-
main analysis and test data selection (Clarke, 1976). Each
path through a program defines an input subdomain, and sym-
bolic execution of that path will generate the predicate PC
defining that domain. Finally, symbolic execution can aid
in the development of a formal proof of correctness (King,
1976: 391).

Symbolic evaluation has its advantages and disadvan-
tages. It appears to be superior to ordinary testing over-
all and in particular is good at detecting computation and
domain errors, although it still fails to detect most miss-
ing path errors (Howden, 1977: 277). The use of formulas
instead of input/output pairs for some verification helps to
guard against coincidental correctness. As an automated aid
to other kinds of analysis (domain analysis and formal
proofs), it has proved valuable.

On the negative side, symbolic execution involves sub-
stantial overhead to maintain and manipulate large and un-
wieldy symbolic formulae. The value of any automated system
in particular will depend heavily on the sophistication of
its formula manipulation and theorem-proving capabilities.
Symbolic execution also has the disadvantages inherent to
any abstract model of execution: execution of programs on

real nachines rarely conforms perfectly to the model (e.g.,

22

ayy V'“'w’II*. v .-*a TR .f--r"f‘._.')v‘ﬁh‘f. ..f-‘,'.hJ.-*- S SRV AT AT S
h . i B X A 3 LA R N R .. ! ! R Rt R Py] (X X o N N A N A Mg % o)

Wt

ey

e " 5 R W MW

Nl e ;

R T

in T)

R e T

YNLL5%Y

o

LI PRI
e Al 00 0 N

v, e .
-"'l " 'l 'l".’

Py

T e 20]
P

S

. I 's Y
2 - 4 4

-

L LY

¢

4

R A . Sl ad
AU AA A A SR AR A LA el Sl plh " g an- jou pie SAe jng ip g Ta

»
I
»
‘|
X finite precision of machine computation). For this reason,
the execution of programs with actual data remains a neces-
Y sity. The ability of symbolic execution to aid in the se-
n lection of test data considerably mitigates this disadvan-
R tage. Finally, even executed symbolically a program can
. have an infinite number of paths and path domains, making
N
s
~ any attempt at an exhaustive demonstration of correctness as
futile as in the the usual testing paradigm.
*i
4
o
'
inl]
-
,
\
~
J
>,
\-
\I
]
b~
y
o
4
(4
ot 23

ARR
s

-

LN

~p A e - - . - . --

I " \\c \I\J'_-"‘.’\.'_.f\r‘_f~- -“\-f\-l'.'f_ \. ..-.."\v ﬁ' NS ._- A ", S a1 e \-.‘- 3 S SO IR RN AN N NN NS 2
A e "o AR WY » % 20 " 8% o MO W a2 s m " .

hY

2% Y a VR VA et i e Bl A AN AR S A i e AR AR R e 1 - Al a A | Gt Ol g A Al Al At

A o
» R
» S
» .'-F
o "

.
"
L] ;'.

A -
1 :
9 [II. Partition Analysis o
LJ
1
\ Partition analysis is a technique that combines both !
i formal verification techniques and cesting in order to ac-

L)

’ quire confidence in a prograa's reliabiiity. It is also -

2
=~ [
. distinctive in that 1t makes extensive use of both the spec- >

. .

- e . . . s -

N ification and the implementation of a design, combining ‘v
4 o

hlack and glass pox techniques to a greater degree even than
: : o , . K
: Howden's Functional Testing. Partition analysis can also be
LY

! . - . .

iy applied to two specifications at different levels of ab- y
»

1S
}
. s
straction (e.g., a high-level design and a detaile:!l desiqgn),
naking the technique applicable in earlier phases of soft- o
y N
ware development. <-4
w
‘'
Overview of Part1t1gg~éggl191s (Richardson, 1981: 25-50; E
B Richardson and Clarke, 1985) “a
Partition Analysis consists of three stewns: forming o~
K >

S the procedure partition, partition analysis (formal) verifi-)

¢ N
, cation, and partition analysis testing. Forming the proce- e

dure partition is likewise a three step process. "
>
-
. . . . 13 h"
First, symbolic execution is applied to the 1mplementa-
: : . . . ~
tion to get a static representation of it. This differ N
oy
from the more usual use of sympolic execution as an inter- -
‘~ -.-
pretive technigque. The result is a set of input doaains)
D[PJ] and corresponding computations C[PJ], one sach pair k.

he . . v

| for cach path P], J=1, 2, ... 4, N. This is called the i.- -

plementation partition.
] B,
"

) ‘:n

i \..-

! 2 4 :-ﬁ

N
. :,-‘

R R

8. R

. .-...:\x.-\. e \ T - NGy .-\.-.;.r «- KT RCa N AN A B Ry

N T CAICAL G SO RN g g i G A R A R SR SR SN AL AR LA S AR AR A SRR e s gAn’) N gBn- gty An gAg iy Lo 0n - p0e s iy phe® i pbe i i
‘I
\'u’
. -
k)
N . . . I3 .
N Next the specification is similarly analyzed to produce
S
l. ¢ : .
the specification partition, a set of input domains D[sI]
. »
M and corresponding computations C[SI]' one for eacn
A
tg “subspecification" SI’ I =1, 2, ... , M. It is assumed
™
that a formal specification is available for this step, in
43 some high-level notation. Richardson uses a specification
:5 language/PDL of her own design called SPA and extended the
o
-
symhbolic evaluation techniques to handle this language.
W
Ny Thus a subspecification is siaply a path through the “code"
Sl
5 of tne specification.
R+
Once tne implementation and specification partitions
- nave been derived, the proce:dure partition is formed by in-
:i tersecting all implementation domains D[PJ] and specifica-
o
tion domains D[SI] to find all nonempty (overlapping) pairs,
b
k DIT' Corresponding to each pair is a "co.aputation differ-
k - b
N ence" Cry that represents the disparity (hopefully null) be-
L,
> ‘
‘ tween the computations specified oy C[SI] and C[PJ]. Do-
o 2
2. nains in one partition that do not overlap any domain in the
-~
;: other partition indicate discrepancies btetween the implemen-
s C e . ‘
tation and the specifization, and hence probable errors
?ﬁ (possibly wmissing path). Analysis can continue by including
-\.",
» these domains in the procedure partition as elements DIO
i {for unpaired specification domains) and DOJ (for unpaired
AN
o implementation domains).
(7
‘;j Partition analysis verification taxes the procedure
.
4
y partition and tries to prove for each donain D[] using stan-
.
A
~
~I
b,
2 25
At q
g :
~7 .
W S NN P N A I A A A P I NN P A B P O S A A AN AL AN

N

dard proof technigques that C is null, that is, that C[S_]

IJ I

and C[PJ] nave the same effects on all elements of DIJ’ The
eqquivalence problem 1s undecidavle in general, so this step
hay or may not succeed fully. A proof of eyuivalence, how-
2ver, 1s a very strong arguanent for the correctness of the
1t alenentation. A proof of noneguivalence identifies a
fault in the programn, and any counterexamples found provide
fault-revealing test datn.

The last step i1s partition analysis testing.

Tne partition analysis method complements verification
with testing. When the verification process 1s unsuc-
cessful, testing may uncover errors or may increasc
confidence in the unproven ejuality relationships.
wWhen the verification process is successful, testing
challenges or supports the conclusions drawn in the
nostulate:l environuent of partition analysis verifica-
tion (Richardson and Clarke, 1985: 1483).
In this step, the procaodure partition subdomains and comnpua-
tations are used to generate test :data. Glass pox tecn-
nijgues for testing arithmetic asanipulations, special, ex-
trenal and nonextrenal cases are applied to the cowputa-
tions, while black bhox techniques such as Jomnain testing are
applied to the domains. Because both iuplementation and
specification lomains are heoing censi lered, doaain tosting

will not only pick up path selection errors but also soan

nissing path errors is well.,

Loop Analysis
In order to derive static oxpressions for orogra

naths, Richardson hard to dovelon techniaues for analyzin:

TS

.t ao

;v s 0. »

Ly

’a

The descrintion that follows is

and representing loops.

PN

> taken froa Richardson's dissertation (Richardson, 1981), but

nas heen moldified to nake certain aspects clearer, o
- q
F, »
Vo
: The most general loop structure has the forn 29
N,
LY
! loop .
loon-hody; N,
¢ end loon; ¥
" -
N
~here loop-boiy is a set of paths, sone of which exit and -~
o

LA

v

sone of wnich do not. Those that do all branch to just past

tne end of the loop; those that Jdo aot all branch back to

tha top, Thus the loop is a single-entry, sinjlc-exit con-

5655

struct (whether this general forn is a structured construct

[

: Zan e arqued either way). The standard while-loop can he >
, N
d . . . u“
. written in this foru as o~
-~
oy
loop (.:
if not while-condition then oxit; -
2 loop~-pbody; -
o
. end loop; o
: e . \ . . AC.
' Richardson's loop technigue depends upon Xnowing a pri- o
. '-
L . ’
: ori tne conwnlete somence of paths followed through the
- ’.-
v loon. This is a very strong condition that is frequently ot
v ',;'
; not rnet; thus the technique is not at all general. In many ™
' ’.

cas2s this —onidition is aet, however, such as whnrn a loop

. 1as only one path through it that stays in the loop and all o)
" L Y

- . . . :) . \
¥ th= other paths exit it. Another workable case is when, N
d ~
ot . . . : : ~

s1y, tie first iteration through tae loop follows one path

. | . , o
X ind all subsequent iterations follow another. ;,
o

X Figure 3-1 snows an exanple of a loop that cannot oo E:
- Pl ¥

analyzed this way,., Pro2esiare SEARCH perforas a hinary

NP A T TR -"-".-'.--".".‘-'.-""-.".',.-" IR AIAP S A R R I Y S M A, N Y

Y%

L
I,

’d

s

£

5

<

n v
e

R AN
NSNS
ot

e
Aﬁ%ﬂ

»

»

»
"O

%%.
PR

NN
et
APRE SN

P

eQ,
A

\?\"'. hY

3
)
e
&
. e

I .'t: ‘..u;.x'.”

L X A I i
‘.“:‘:';"J‘."J a

L4

-

N

)

search for elenent X in a sorted array A and returns 1ts (n-
Joex 1f found. On each iteration of the loopn, X ray oe foun!

Or 1t may He geternined not to oe present; o in either caso

-t

a0 loop is exited. Two paths stay in the loo:n, correshon.i-
1ng to X helng less than or groater than the current elenent
pelng examined. One cannot deternmiine thi? Sojuence of thesa
cvo naths that will be followzdl without knowing at least
somne of the data valu2s; hence, this loop cannot oe analyze.l
by Richardson's technique,
vrocedure Scarch (A @ in ARRAY_TYPE;

A : in FLEMENT 'TYPFE;

Foun'd : out BOOLEAN;
whore @ out INDEX _TYPL) 1s

LB : INDEX_TYPE := A'First;
B ¢ INDEX_TYPE := A'lLast;
Index : INDEX_TYPL;

neqgin

Found 1= FALSE;
while LB = UB loop
Index := (LB + UB) / 2;
if X € A(Index) then
UB := Index - 1;
elsif X > A(Index) then
LB Index + 1;

olse
Found := TRUE;
where = Index;
exXit;

end 1f;

end loon;
end Search;

Figure 3-1. An un-analyzable loop
Adapted froa Darringer and King, 1978: 53

Assuming that a loop is analyzable, the [irst stop 1s

to assosiate witn 1t an iteration counter X to couant the

nanber of loop iterations. Pach patn of tae nody of tac

»
{‘t“.."v ~-. ALY PR W BT T b At T .'11 n? \-.’ .'-~v AT O Eo L ! ‘.w..f~f

loon 15 then eoxecute]! one £ w0 to get a representation for

e o offotes

Af one

Lot At recdarrence rolat rorn

varl =
<

oz Varl octturring in

At Aalho e o asan Aty W

THat 1y e rtaer e

If £ recirrence

sult 15 a2 ~losei-far:

loo;, 1n tores af tn::
t

viluns of tne varianles, Jarl

W e

createdd o as o os1onle

Lot LT o annears on. o

Ttarts 1t the inner ost

1nle of tnae loon analysis

gilrically it

“ho g0 yitere the

190 - x

ot thaat 1f 1 path o oexlts

rore

Fo(varl

'
N

1toratsion

Lhie

1

Has e

t

|
e 1

o1t

or falso.

rcelacsions

ot

o T I

g

06 -1

B SR

A oo

varitinles (as in tae modifer Wi
< = 1 ¢ase also oenconoass.s o
e where tno ooy of tae oo,
A bartition Analysis =xa pl

Tne following 13 an x40

should clarify nuch of tae

fron Richaridson, 19181:

1aps), Tha tn b

aofiule

172 SRR ORI
27“—3\)_));

inalyzed

29

gy - e
it L S

-
OG,

a ol

2an

Lian

In t

itrration of tae 1no00,

art

for

a0

Tounter K

in the

&-1);
2100

X1t

“Jz‘:"\-'

for.

patn,

Facn

Tondilttion

af A

(1)

Deosolved, Teen e re-
of ot e rerg OF e
id e 1artial
throagh Yar ?;,). T Ioon coan
He rrogras for oot SRA

Malyses

HfF negsted 1ooos,
ST EY SUTRIS IR E R IPLAPYE S
are s o rovi bbb e
nt ot gt N
ta o« =1 as o1 5 !
NF1Tur g,
iln‘ l\)'ﬁ:r .].H;\’~‘), M i
tradrrronal "ralo oo
15 not ' e
DY Farc oot R
trr g s a0
NLotaar ison o an. Lo ,
io1s Por, v -

e T

-

XA

U B

AP AR

o .
o

e v e
D

D

D R N A I I

PERSRAIA.

Yt ete e
TN A

A e R

7 e P AN O ARt ") 'Y

tion 11t taxkes a positive integer and returns TRUE 1f 1t is X,
v orioe and FALSE otnerwise, Figure 3-2 is a specification
Tor pifME, NJritten in SPA, It is based on tne standard .ief-
111t 1on oY nrisennss, that a nuawer 3 1s prise if o and only
11t 1S hivisiole anly Ly 1 oand N (ant hence not oy o any
SitierroIn te range 2 snhroagn N - 1), Figure 3-3 is an AldA 7
oo lentatian for PRIVE whicn ta<e»s advantage of several
voirttoarl rroneree=s, incluling tae fact tnat 1f tnere is oa
vcrouroan o all, taere nast o2 one less than the s juare root)
L]
.) '
. yrare 3-4 q1ves control flos gravas for bhotn,
L)
r Lr PRI (N s i it pr oanset Yl sLat)
retarn oalean = :
N HETILE I U)
reetarn cs
1 =l =
< Falsg
! N
o) (S0 SR TR ;
} PAAL ERD RUR SRR ¢
; forall «i: tntegor inset {2.0.0-111 .
(v wot v /= 0O) i
RS TR T
. R R
Poare 3=20 S cation of PRI .
Coar casrnoAan gy sslar< s, 1945 147+ :
! - i ;o1 frcation o vartition for PRIMBL
A G iyt un o throaagn tae- o sieerpflocation, corresnond-
. o sicitioms ol Lo ase stataaent. Note
' A ar 1s o evaliagtoor 3w 18 1t vere 1 series
- ~--tsf clauses, so taat a1l the preceoding condl -
3¢ o0 false 1n arter So o try the acxt. The conii- .

‘:P
[}

‘A -w
L4544 % ?'?‘J'\I

PrOLPPSL?

bbb

9

SOG¥

o

S0

5

A

AR

’
ﬁ(?l [

d

RN A
AN A

LY

» ".-:'.-'.' :'.

L]

L3 3
ot
St
PRI

O
RN

!. I'.
v

& O
Y .
»2 .:'.-".' e ". LY \‘.‘n

hY

-
O NChC N
fﬁ;a

il

IR N 7]

NV b W

K

1

anction Priqae (N ¢ INTEGE
roturn SBOOLEAN 15
Fasrtor ¢ IMNTHESHZ

Isvri ¢ BOOLELG

.
’
N

IR BN
1 (N v 2 = 0) or
Is’ri1 e 1= (N < 4
cls
[sPri1-e = TR,

Fastor 1+
wnile Facttor *+ 2
if (% ot Fac:t
or (N "o
[sPrine =
oX1T;

e lse

R range 2..INTEGER'LAST)

(»~ rot 3 = 0) tnen
)

<= N loon

Ny = "\)
A (Factor + 2) = () then

VALSE;

Pactor = Fattor + 63

—na 1f;
end looyp;
ont 1Yy
| return IsPrineg

e Proee;

Fiture 3-3. ["plenentat
Adapter froa Richaridson,

~151s attach2t o the three paths ro

"aeoonly outosut variaole

S S EP &
1" 1. In t
gres 3-6 an

S1s redgulre

i1ths tarough the loow,

the first two cases tnls

ion of PRIVME
1981: 24

flect this semantics,
is th~ value of the function,
value 1s given 2xblic-
ar last case, 1t s represented by a for.oala.

e itaplenentation of PRIME contains a loop, and Fig-

i 3=7 give intercsediate stens of the loon analy-

i o g2t an expression for it. Pherae are taree

Jorrasponiing to thoe while contdlition

2v7aliuiting to fals»>, tiae {f sondition being true, and tne

-~
IS

o 2he loon

loon, Yigure

neint ~xited, wnile tae

31

- .,..f’..' -."'\’\"V'.' "v_

50 —onditing weinag true. Thne first two conditions rosult
last one stays 1n the

3-6 qilves synhnlis renrssoncations for £he

Bl

ey o

. y . . / 5% Bt e i Y Dy . s A Yl N
LA \l\.\-\a&i-\, e Al 2,000 ¢t et PALS L NP A A VO PL P L A [AR AP AL A St

.-
f\f\l\f\f"f\'

h)

o

-

NN LY

rd -
IRRCHAY,

fe Gt L
» .
» 0y
a

G .
Py W, Y

-
e,

©
(&)

A

-,..l.‘.. "

"2

-
.
~

o’

32

Flow Graphs for PRIME

Popalion ¢
Specification Flow Graph

()

€
Implementation Flow Graph

a.
b’

Figure 3-4.

a”a

sy LS

P e Ty T Y

2
- \I \r\.. .

R

S3

Cl(s3]

racttor
<

lec
N

(5,

At

°rC, =

IsPsine

ractor
K

1oz

k

patn (5,

PC =
K

Factor,,
Pr]. it
K

Yactor,
<

lec
<

Flqure 3-6.

RSN -7

PC,
K

PC.
<

(s, 1, 2, f)
(n =

’
1)
Prime =

false
(s, 1

{n =
Prime

’ 3' 4, f)
2)
= true

(s, 1, 3, 5, 6, f)
{n >= 3)

Prime = forall {1i

>ritflcAation

. .)
= P An

<-1

IsPria2

1

< ’ <=1

Factor
<=1

true

6, 7, 9)

and (Factor

(-1 &) or (N

talse

i

K

Fa-tor
,(_.

true

(), H)

and {(Factor.
-1 <

/= 0) and (N

-1

= IsPrime.

-1

[}

tFactor + 6

X=-1

false

symbolic

33

-’." -
e "‘-\‘

-1 k=1

Fa~tor = nod

~1

el

LXecution

L Rl B Sl W W '(_

t= 2..n=1 | n mod 1

Fartition of eI

** 2 <= N) and

(Factor + 2)
k-1

*x 2 L= N) and (N

(Factor + 2)
k=1

of Loop in PRIV

{((N

/=

0}

Mo

= 0))

o

/=

-.."x"x's\.'\\w.x\'\\ ATy,

0)

- ‘\,n\

“afe

RN

X

"y

f'??????ﬁ

'hlx

-y

'3 "'.';ﬂ."-

bl s o S]
(LN

)

N Nty NNy

CURAV SN

. \.ﬁ‘.\ "I’T"

54

i
2,

oYy

LR

Py

T ® e

VAN S

£ s e L U

e -:'-'f

RV

P R A s

PR A"l 2}

- o

matih condition and varianle values after sonme iteration X,
in terms of the values from the previous iteration. Figure
3-7 then solves tnese recurrence relations in closed fora
for the special case where k¥ = 1 and the general case where
x >= 1, Once the loop aralysis is complete, the full imple-
mentation partition can be constructed., This 1s given in
Figure 3-8.

The last part of the first step of Partition Analysis
is to forn the procedure partition. The donain of each suo-
specification is compared with the donain of each iumplemen-
tation path, and any region of overlap defines a subdomain
of the procedure partition. For each subdomain, a computa-
tion difference is computed by comparing the conputations
snecified by the specification and the implewentation for
2lenents in that subdomain. Figure 3-9 gives the procedure
partition for PRIME, Note that subspecificatinn 5, does not

1

fatn Aany patn domnain {(element D in Figure 3-9). Tnis

10

inmediately reveals that the inmplementation fails to con-
sider tne case where N = 1. Note also tnat subspecification

q3 overlaps no less than five different path domains (ele-

onts).

Dyyr Dyyr Pyge Dy,e and g

Stepn two of Partition Analysis 1s formal verification
that all computation differences in the procedure partition

are null., Jdtner tiaan this can be Jdone for PRIMNDG. For

Dl\)'

j)l' for exaaple, the domain is Jd=fin2ag ny (n = 2) and the

34

1

“

”
L%

”
-
»
-
-
.

LR

-

X 3 .'v ... NP

r
a

» 5'.-: n.' 1: u: [N

AT

LA

[R N

P e

' '.'b'l.n.l‘lll '-.

v
f‘ffr

&

Ay
by
A
’l
,

’
AN O S S T S8 R SR S W TR TR ST S P e T T A T G NN T G A Ay

&

-

-- path (5,9)

PC = PC and E‘actor0 ** 2 >N
Factor = Factor0

IsPrime = IsPrime0

- path (5, 6' 7' 9)

PC = PC and (Factor0 ** 2 <= N) and ((N mod

E‘actorO = 0) or (N inod (Factor0 + 2) = 0))
Factor = Factor0
IsPrime = false

-- path ((5, 6, 8)+, 5, 9)
PC = PC and exists {k := 2 ... | ((FactorO + 6*k
- 6) ** 2 >N) and forall {i := 0 .. k=2 |

((FactorO + 6*i) ** 2 <= N) and (N mod

+ 6*1i) /= 0) and (N mod (Factor,h +

(Factor 0

0
6*i + 2) /= 0)}}

Factor Factor0 + 6*k - 6

i

IsPrime IsPrimeO

-- path ((5, 6, 8)+, 5, 6, 7, 9)
PC = PC and exists {k := 2 ... | ((Factory + 6*k
- 6} ** 2 <= N) and ((N mod (Factoro + 6*k -~ 6)
0) or (N mod (Factor, + 6*k - 4) = 0)) and

forall {i = 0 .. k-2 | (N r.od (FactorO + 6%i)

/= 0) and (N mod (Factor, + 6*i + 2) /= 0)}}

0

Factor = FactorO + 6*k - 6

IsPrime = false

Figure 3-7. Loop expression in PRIMK
35

[J —n LI} LS LN - RS A ST TP I T R e O I T U U R I O S PRI .
s ... W _.“ . o «.‘ Y 4. ,f,'J-,-'..z' ..r tal 4- -f o, .",.r " “.{ .-\ v z'.«-./-

AN AR R N S el ot A A A A A Sl SR A Gl A AP S

O N AR AN NN

-t

-c‘-l‘

Vo

n LS
DAY
R e _§ % _ 8

h
I‘.I.

Sy &
) "1 ;i "i ‘.'t‘,

> W
",'l'""". rd

'5"

b

“ ot gru
‘p‘,ﬁ}‘&"{

[4

. él’

'."'-"'n

7

I,‘{.

L4
]

[%

.'I ".{. 'l : *

.

e ra
S
'

g

AL
Yy

.'?mﬁ#:
;‘V.’i K)

N
XA

{..fll" y

Py
)

P

£ L9

s

'-.-‘l' ;';
[/

4220,

,...
PRI A

),

t
el

Al
L}
3

RN
TS
. 'l N .

I'.

A.'-';'w. “arel
v .
55"

o)

f:l

1-"."‘

= : (s, 1, 2, 10, f)]
! D[P1l]: (n >= 2) and (n mod 2 = 0 or n mod 3 = 0)
)

N

\

B

\W

oo

C[Pl): Prime = (n 4)

: (s, 1, 3, 4, 5, 9, 10, f) ‘
D{P2]: (n >= 2) and (n < 25) and (n mod 2 /= 0) X

and (n mod 3 /= 0) ‘
Prime = true

- : (s, 3, 4, 5, 6, 7, 9, 10, £)
- D[P31: (n >= 25) and (n mod 2 /= 0)

. and (n mod 3 /= 0) and ({(n mod 5 = 0)
’ or (n mod 7 = 0))
C[P3]: Prime = false

1,

: {s, 1, 3, 4, (5, 6, 8)+, 5, 9, 10, f)

D[P4]: (n >= 25) and (n mod 2 /= 0)

and (n mod 3 /= 0) and exists {k := 2 ... |

(6*k - 1) ** 2 >n and forall{i := 1l..k-1 | 1
(6%i - 1) ** 2 <= n) _
and (n mod (6*i - 1) /= 0) {
and (n mod (6*i + 1) /= 0)

Prime = true

SR >

-

‘?‘

::.: H (S,]., 3, 4, (5, 6, 8)‘*' 51 6! 7! 9! 10' f)
o D[P5}: (n >= 121) and (n mod 2 /= 0)
3 and {n mod 3 /= 0) and exists {k = 2 ... |

_ {6*k - 1) ** 2 <= n)
- and ((n mod (6*k - 1) = 0)
or (n mod (6*k + 1) = 0))
k-1 |

& and forall {i := 1 ..
" (n mod (6*i - 1) /= 0)
Do and (n mod (6*i + 1) /= 0)

C[{P5]: Prime = false

Figure 3-8. Iaplementation Partition of PRIME

two computations are the constant value (true) and the pred-

*.

“~

L] J
A,

0 1cate (n < 4), which evaluates to true within the domain.

."{

h) ~ \ . .

i Proofs for the other domains are more complicated, and are

W,

o

¥ not presented here,

e

ﬂ\ Step 3 of Partition Analysis is test data selection, to \
\

”
‘

- further reinforce confidence in the correspondence botweo:

» l. > » -
Q"g".‘x.l-‘t. \l

[

P4

2

........
.............

\ '(\W._f‘ rvr~-\" WNEG LY, TN \v.\' W

b

o, ‘q'ﬁ,_q..%-‘.."\r_ N'- _..:..~r e

M J
o '
S)
S
:r‘ D10: (n = 1) s
AT Clo: (false) vs. nothing ‘
By D21: (n = 2)
o C21: (true) vs. (n 4)
'E D3l: (n >= 3) and ((n mod 2 = 0) or (n .nod 3 = 0))
\Q C3l: (forall {i := 2..n-1 | n mod i /= 0}
. vs. (n < 4)
N D32: (n >= 3) and (n < 25) and (n mod 2 /= 0)
N and (n mod 3 /= 0)
a C32: (forall {i := 2..n-1 } n mod i /= 0}
- vs. (true) ;
\ D33: (n >= 25) and (n mod 2 /= 0) 4
3 and (n mod 3 /= 0) and {(n mod 5 = 0) \
o or (n mod 7 = 0)))
L C33: (forall {i := 2..n-1 | n mod i /= 0} ‘
. vs. (false)
N
~ D34: (n >= 25) and (n mod 2 /= Q)
i and (n mod 3 /= 0) and exists {k := 2 ... |
) (6*k - 1) ** 2 >n and forall{i := 1..k-1 |
v (6%i - 1) ** 2 <= n)
;ﬁs and (n mod (6*i - 1) /= 0) :
; and (n mod (6*i + 1) /= 0) :
"7 C34: (forall {i := 2..n-1 | n mod i /= 0}
"y vs. (true)
w
7. D35: (n >= 121) and (n wmod 2 /= 0)
b and (n mod 3 /= 0) and exists {k := 2 ... | |
N (6%k - 1) ** 2 <= n)
- and ((n mod (6*k - 1) = 0) .
e or (n wmod (6*k + 1) = 0)))
3: and forall {i := 1 .. k-1 | ?
s, {n nod (6*i - 1) /= 0))
. and {n wmod (6*i + 1) /= 0)
C35: (forall {i := 2..n-1 | n mod 1 /= 0}

vs., (false) '

Figure 3-9., Procedure Partition of PRIME

. N .
SRR

N

LY I' I3 13

A tne specification and implementation (especially in the case
v, . . C s .

‘o of a failure in the formal verification step), and also to
s, demonstrate the run-time behavior of the program. Two cri-
l‘

§ \:

N,

5)

' 37

T

" n“\.'_ o w P S U AT N AL A R S R S e

el TP PP N e T e P N e T S

teria for selection are used, one for domain testing and one
for computation testing. Domain testing focuses on the
boundaries between subdomains defined in the procedure par-
tition and chooses test data for ecach domain that is both ON
a boundary (and hence in the domain) and also data that is
OFF the boundary and not in the domain. OFF points are cho-
sen to be as close to the boundary as possible, to minimize
the maximmum boundary displacement that would go undetected.
Since PRIME deals with integer values only, OFF points can
be selected that are immediately adjacent to each boundary.
Coaputation testing criteria focus on the coumputations
performed within each domain and help to verify that the
computation difference for each domain is null, even if the
formal verification step failed. Details of the proof (or
attempted proof) often provide guidance for finding good
test soints. Too spocific algebraic nroperties of tihe co.-
outations 511l also ddictate whicn test data will oe se-
lected. Figure 3-10 gives some exanples of the test data

that would be selected for tne subdonains of PRIME.

Performance of Partition Analysis

To get sone idea for the effectiveness of Partition
Analysis, Richardson used tne tecnniue on a set of 34 nod-
ules frouw the prograsining literature and textpooks, provid-
ing specifications for then as needed {(Richardson and
Clar<a, 1945: 1486-1488). ost »f the nodules were correct

or hal only a fow errors, so autation analysis wvas used to

e ata ota S ta e N A

(s CY :"l'"-"'-'?'\
-~

"X

L
P

£

N T Yo
s

14
’

)

n
n fagh 't
d "
-)
»
» ¥
5 .
it)
¥ Y
\ \
N D10: Domain Testing Criterion: :
" : N =1 (on), N=0, N =2 (off) ~
Conputation Testing Criterion: N
N =1
L™ D21: Domain Testing Criterion: o
™ N =2 (on), N=1, N =3 (off) R,
! Coaputation Testing Criterion: "
My N = 2 P
. P3l: Domain Testing Criterion: -
& N =2 (off), N =3, N=4 (on) -
.~ N=5, N=7 (off), N=6, 8 =9 (on) :
- Comnputation Testing Criterion: N
i N =3, N=4, N= 1000 N
% ' N
: Figure 3-10. Sample Test Data for PRIME ~)
-
4)
o
[3
- Jenerate large nuaners of ".autant® variations of eacn uod- .
- ule, each with one seed2d error. Partition analysis suc- 4
.‘ 1'
,. cessfully detected all of the errors that led to incorrect)
vrogranis. There were a few .nutants that correctly executeu -
» e
o all the test Jdata generated by the Partition Analysis proce- :f
-
N "
~ Jdure, and in eacihh case 1t was shown that the autant progran :
~as in fact ~gquivalent to the correct one. Richardson aa- -
* 4
~ aits that tnis evaluation is neither as rigorous nor as coil- :
. :
r. <
N olete as it could ne, but her results argue favorably for bt
) - tne cffectiveness of the technimque. .
.: :‘.
. .
- The next chapter explores extensions to Partition Anal- o]
- ysis tnat 2xpand its applicability by allowing its use on ’
- . . - . -
- programns containing proce.dure and function calls. The case -
v of recursive procedures and functions is also considered. Ky
:: S
' :
*, b
; * 1
A A
‘< 39
"
: -5
-.' "‘
T P I o R T I AT L T T A T L R LR LR O, G A B AR R SR R AR

' O
Y
o
23
1
[
..' 4
&%)
l\ 1
7
IV. Extensions to Partition Analysis ar.
t
2
(This chapter describes how Partition Analysis can be >
\ "
‘ extended to apply to programs that use procedure and func- ::
- !-'
p tion calls. The first section presents several approaches :
n..'ﬂ
to the general problem, while the second section addresses -
Kch
the special case of recursive procedures and functions. It -5
X
_ is assumed that all procedures and functions have a single '
t ’, (]
K entry point and a single exit. Returns are treated as jg
i
s,
\ branches to a duany node at thz end of the routine to en- $~
~ 8
force this convention. '
! L4
4
. oy
i Procedure and Function Calls ;\
g 2
: During ordinary symbolic execution as described in o
Chapter 2, procedure and function calls Jdo not present any v
»
o
~
special problems. When a call is encountered, arguments are)ﬁv
O
Y
. o,
bound to parameters, space for local variables allocated, S
. and control transferred to the start of the called routine, ;:
. ':-\
: just as in norinal execution. At the end, output values are }:f
) PR
passed bhack to the calling routine and execution continues. -
. The fact that some or all of the values being passed around X~
[y
. .
are represented by sywmbolic expressions does not interfere -
,‘-
with this process. Y,
y In Partition Analysis, however, the need to derive a e
!
static expression for a program causes some problewms, and Cj
also presents some opportunities, in the handling of proce- K
1 -
! .
! :‘.
i :.r‘!
) 40 Byt
.f\
o
: '
\ Yy

L w MWy ¥ P ®) g, v, LAY L2 S TN et p Tt At . LI I A R cn”
AN AT A A AN A SN PG T R N A T gl N N Vg
. R '» - » . ! . . . L}

rd) ofetn

e« & &

7

2P

A),

‘o

s 4 4 8 &

“ e B0V,

Y e N TR T AT AT " T m AT N T A T A e " N a ket m Tt P AR e T A pe -
J-.,‘ R (,\J'.JIJ‘-F{{J' ,.rr.r.r J'.F_ e wi.r.- L 4 LN AN PR ALY ‘./"."-ﬂ,;-r".r'u',;.-‘.r‘.f'

ap s « N . . §
DL e e R a2 R Rl R N N RN Ll e e D S A S Sl S A A Sl A . R A S A S AR SAMSA ST S A "

dure and function calls. The most direct approach is to
start with the bottom-level routines and derive expressions
for them using the methods described in Chapter 3., Then in
places where the bottom-level routines are called one can
substitute these expressions, naking parameter substitutions
and any simplifications possible. This process can be re-
peated until the entire program has been analyzed.

Figqures 4-1 through 4-4 illustrate this approach. Fig-
ure 4-1 is a function that returns the number of days in a
calendar month. This and later examples make use of the
predefined Ada package CALENDAR and the type declaration

type DATE_TYPE is record
Day : DAY_NUMBER;
Month : MONTH_NUMBER;
end record;

Function DAYS_IN calls a boolean function LEAP_YEAR
when it is determining the number of days in February. Fig-
ure 4-2 gives an implementation for this function. Analysis
of LEAP_YFAR results in the expression of Figure 4-3. This
expression is then used during the analysis of DAYS_IN to
get the expression of Figure 4-4.

This approach is not without its disadvantages. First
of all, during top-down development one might want to begin
analysis and testing of routines before all of the lower
ones are complete. Second, the implementation of a low-
level routine may include details that are not relevant to
the routine opeing tested. For exaaple, numnerical routines

like SIN or SQRT are frequently implemented at iterations

41

RNl) N 2 Ral\

L

LR
. .

i

R T X A

YR ELGR S

AR

-

»_ 8

A NN
L ALl

OB ".(I"—l‘:l.‘ u“‘ -’. ..’

Y

LS

R}

-
’
»

AL T

T

2’

R

,_. g
» .
PR N

.-
e
.

'l' "' -/ *

l'., l",

'I
3
o
-

AN oA e e 7L Y

NE function Days_in (Month : MONTH_NUMBER;
S Year : YEAR_NUMBER)
return INTEGER is
s pegin
> case Month is
o 1 when 4 | 6 | 9 | 11 =>
2 2 return 30;
~ 3 when 2 =2
4 if Leap_Year (Year) then
5 return 29;
N else
(A
N 6 return 28;
o when others =>
, 7 return 31;
' end case;
f end Days_in;
N
. . . .
n Figure 4-1. Implementation of Days_in
<5
)
N
> until some error bound is met. These routines certainly
e
S ; . ;
o need to be tested, but in many cases an abstract view of
N b4
& / these functions is sufficient and desirable. Finally, in
;?. the case of a routine that is called from many places, or
LS
o
e for example a routine that is part of the definition of an
.‘ -
En="s
: abstract data type, it may be desirable to demonstrate the
‘.} correctness of the routine separately one time (using Parti-
}ﬁ tion Analysis if it has a formal specification, or some
-7 other method), and then use some other way of referring to
-
3: its function when it is called.
'-':.
:ﬂ There are at least two ways to represent a procedure or
. Y P
.-
’ function without presenting all the details of its implemen-
o~ . . o .
il tation. First, one can use a formal specification that has
i
i{ pbeen analyzed using Partition Analysis. Specifications are
J'. L.
h
’_' L

written at a nigher level of avstraction and are usually 1

o ey Yy . - .

- W' - - - - - - -" . - L - - W Va L] v LS v - Sy \ \ - ‘. \ [Sl .-r'- e \'-'- _-V '-'v'-r--'-'.r‘_ ._".' '- .."-f.‘ LU, ‘*"""“

%
(l
Y
V)
Rt
¥, .
;ﬂl function Leap_Yedr (Yr : YEAR_NUMBER)
N) return BOOLEAN 1s
) s begin
9 1 if Yr mod 400 = 0 or (Yr o4 4 -
PO and Yr nod 10U /= 0) tien
s 2 return TRUE;
Y else
() 3 return FALSE;
o end if;
o f end Leap Year;
..-:
T
- Figure 4-2. Inplenentation of Leap Year
[V Pl : (s, 1, 2, f)
- D{P1l}: (yr nod 400 = 0) or ((yr acd 4 = 0)
3 and (yr wmod 100 /= 0)
o?* ClPl): Leap_ Year = true
b o p2 : (1, 2, 3,)
} D[P2]: (yr nod 4006 /= 0) and ({(yr mod 4 /= V)
e or {(yr wod 100 = 0))
. 4 C[P2]: Leap_Year = false
%
" Figure 4-3. Implementation Partition of Leap Year
2
i g
ib. much simpler than the corresponding implementation. A spec-
Ty ification is ideally also available before a module is writ-
T
’ .
e ten, permitting the analysis of incomplete programs. In
NG y I P
o,
A
3 practice the use of a specification expression is no differ-)
e ent than using the implesentation itself.
':\
- An alternative approach is even ore abstract. If a [
;Q routine is not yet written or even formally specified, or if
0, ‘ it defines a well-known function (such as SIN or SQRT), 1t
I"
N
:{5 nay be sufficient to represent it synbolically and give no
s,
" indication at all during analysis of how it works. This ap-
[R
. proach is also appropriate for example in the case of an

N N T S R G L G G T L A A A TR R AR AN

’,
e’
» ‘
.I ‘
- Y
’ . -
” 1 : (s, 1, 2, f A
: Jl¢l}: (month in {4, 6, 9, 11}) v
fel): dDays 1n o= 3 :
(4 - -
:) : (s, 3, 4, 5,) Ky
v el {uonth = 2) and ((year woa 400 = 0) or '
’ ((year woua 4 = 0) and (year wmod 100 /= 0))) X
. SiP2) Days_in = 29 N
~ P 3 : (s, 3, 4, 6, ()
3 w3l (aonth - 2) and (year wnod 400 /= 0) and ~
o ({y2ar nod4 4 /= 0) or (year nod 100 = 0)) .
\. .
> P33 Days_in = 24 J
“w d
3 : (s, 7,) d
N dPaY: (nontnoin {1, 3, 5, 7, 8, 10, 12})
o [74): Days_in = 31 !
1)
»
N v . L . v
bijare 4-4. Implementation Partition of Days_in y
K
.\.
~ thstract Jata type or when the correctness of a routine has :
-~ -
o 5
~, oeenose;arately estanlisnea. v
L}
- This aporoacn 1s easily inpledented for function calls. i
- wieenoa tanostion Fois called, 1ts parameters are replaced oy ;
- 4
. ‘ ‘ K
s U arguents glven odt o tae value returned by Fo1s repre- .
” sented syawolically. PFor exaanle, 1f variapble X has tne
> <
‘o vala s A + » , tnen after the statement t
-.: S
\ . . sy .)
N Y := F (X);)
Y
=y tase o variaole ¥ anuld have the valiae F (a3 +«) .
\' -
~))) . -
- 'iis approacn 1s also 1llustrated in Figures 4-5 and -
LN -
~ . N . . <
K i-b. Firjure 4-5 1s tnhe Luplewmentation of an integer func- “
A “ion DAYS BETWEEN that coaputes the nunber of days cetween .
A ;
’ two lates of tne sane year, Tt asos tae function DAYS IN .
’. B -
o, R s . -
- for part of the cosputation, Fijare 4-6 snows the paplenen- -
. AT lon parttiion ol aYs bolwohN w1t DAYS N treatod syon-
. .
o
~
" :
v “u
» 34 .
~'-
o
S

XA

L LI .- .
LRGACACACAY ;";-':-" .

function Days_Between (Datel, Date2 : DATE_TYPE;
Year : YEAR_NUMBER)
return INTEGER 1is
Difference : INTEGER;
From, To : DATE_TYPE;

s begin
1 if Datel.Month = Date2.Month then
2 Difference := abs (Datel.Day
- Date2.Day);
else
3 if Datel.Month < Date2.Month then
4 From := Datel;
5 To := Datel;
else
6 From := Date2;
7 To := Datel;
end if;
3 Difference := 0;
9 for Mon in Frowm.Month .. To.Month - 1
loop
10 Difference := Difference

+ Days_in (Mon, Year);
end loop;
11 Differenc= := Difference + To.Day
- From.Day;
end if;
12 return Difference;
f end Days_Between;

Figure 4-5. Implementation of Days_Between

Lsolisally. wote tnat if thas Lanlesoentation of DAYs TN naa
weertoaso o instend, £aon fne loon 1n DAYS BRTWERN woul vy
91 F £hreo patns 2nat ro2aain2d in che loon, witn no way of
telling wnica path would e follow2i during each iteration,
50 1At kae 1oon would not nave bheen analyzanle by Partition
analysis. Thus tae use of this aostraction technigque has
Wllowe a prograas to oo analyzed that otherwise woul-i nhave
con too coaplicated, assuning tnit the correctness ot

TAYS I tan o also be estanlisped separately.

R R Y v . ..

- e N . T - - . . - - - - - - - - -
P A T A N A N A AL AT A AT AT R R ey A A R R R AT AR AT A AT A Ay

AR NN

y/

LA S

7,

SR DALY

LY

¥ s _a_=

L4
.

- £
PN .

N

2

s a_v -'.-‘.-‘-‘ n

EERE 8L

Lottt

¢
[

SrSAS

s

Py e e e e,y
. eTetv e
RPN Y P LR

v

Ly

hY .
XA Yy

! AV Py &y

L
Ak Y

R

e 'I:.I 2

94
_‘<-

'

" '.
¢

f .
DAAS v

V¥ "":"‘-

sz{{

."-”'.

s

A

Xy
3

[/

bW

- .l .5 ls

(3
v

..'-..‘:.‘ ". n" l.’.l'. ,
R R A

R

%
4

aVa®a

. e .l . s . ey o o g
~ L) w¥atgRNaV - AP A S Nl " P A0 A e e A g A gty W

Pl : (s, Y}, 2, 12,)
D[Pl]: (aatel.month = date2.wontn)
C[P1]: Lays_Between = abs (Jdatel.day - date2.day)

+ 8, 9, (10, 9)*, 11, 12, f)
date2.mnonth)
sum (i := datel.month ..
date2.month - 1 |
days_in (i, year))
+ date2.day - datel.day

P2 H (S, 11 3: 4,
D[P2]): (datel. nonth
c{pP2]: Days_Between

nAw;

P3 : (s, 1, 3, 6, 7, 8, 9, (10, 9)*, 11, 12, f)
D[P3]: (datel.month > date2.month)
C{P3]: Days_Between = sum (i := date2.month ..

dqatel.month - 1 |
days_in (i, year))
+ datel.day - .atel.day

Figure 4-6. Implementation Partition of Days_Between

Procedure calls can also be treated symbolically, but
tne npotation is necessarily different. The proposed nota-
“1oi «111 allow a procedure to he represented functionally
s0 that analysis can proceed.

A procedure can be viewed as a function that has an in-
put vector (Xl’ e XN) and produces an output vector (Yl,
e s Yﬂ). Parameters of mode "in" are part of the input
vector, and paranaters of mode "out" are part of the output
vecstor. Paraneter wode "in out" 1s in effect shorthand for
an element that holds an input value and will also receive
an output value., Such paramneters are "split" and listed in
noth vectors. The output vector can be viewed as an un-
na.ned record type that the proc.lure "returns".

To represent a procedure call symbolically, the input

argurnents are bound to the procedure's input paraneters, and

T A A A

»
-

o
a4

Ls

:' :'J‘J‘J".

the values of the outnut parameters are represented oy the

AS

procaeddre nane and an output paranmeter namne, uslng the usual

syntax for representing coaponents of a record. For exaan- \

nle, the preaefined Aaa package CALENDAR include a orocedure 2

with tn2 specification

- procedure 3PLIT (Date : in TIME;

-, Year : out YEAR_NUMBER; 5

o Month : out MONTH_NUMBER;

- Day : out DAY _NUMBER; :
Second : out DAY_DURATION]);

$ A call to this pnroceuure might loox like ;

~

2 Split (Todays_nate, Current_Year, Current_sdontn, 3

e Current_Day, Current_Tiue); g

The effect of this call in the proposed notation would ne

aa
. v & 9

Current_Year = Split.Year (v (Todays_Date))

Current_Month = Split.Month (v (Todays_Date))
Current_Day = Snlit.Day (v (Todays_Date)) A
Current_Time = Split.Second (v (Todays_Date)) :

LA AR

~here v (Todays_Date) stands for the symbolic value of To- .
days _Date at the timne of the call. Analysis can now proceed ;

l'.n.'\"l".)l‘, ‘ a®e

using these values,

.

g '
S . .

N Recursive Procedures and Functions y
&f K
o, If a procedure or function is recursive, it cannot e

A sinple

analyzed airectly oy oruilnary Partition Analysis.

e
a
L

o tecanidgue, however, permits analysis 1n .aany cases.
-‘: ‘
N Phe anoroacn to taxe 15 analuogous to the loop analysis

cenntoque presented in Chapter 3, All patns through the

!" -
-". ’
ok rodtine are ldentified and syubolically executed. Recursive ’
. &
I-\ I3 L) Y, v
< ralls are rejresented symbolically as described above. The R
LA L

result 15 a set of recurrence relations consisting 20 a nun-~

'?P??

3
‘:.Jo’lc

v
»
)

' 0 ! cat . w, e . .. Cp e -
O RN AN AN NN IR ffﬂr:::a‘:':‘a'c::_:fe_¢;al AR T s X Ly A Sy

ber of base cases (paths without recursive calls) and a num-
ber of recursive cases (patins with such calls). As in the
case of loop analysis, these relations are then converted to
a closed-forin expression to be used if desired wherever the
routine is called, or in the further application of Parti-
tion Analysis (i.e., the formal verification and testing
vrocedure) to the routine itself.

A short example of this xind of analysis follows. Fig-
ure 4-7 is a recursive function for computing factorials.
Figure 4-8 gives the recurrence relations derived from the
sy:nbolic execution of this routine, including the notation
for representing recursive calls. For this example, it is
then trivial to show that these relations correspond to the

standard definition of factorial:

Factorial (N) = product (i :=1 .. N | 1)

Restrictions analogous to those on loops apply to the
analysis of recursive procedures and functions. If a recur-
sive routine has several paths that contain recursive calls
such that the sequence of paths followed is data dependent,
then the recurrence relations derived for the routine will
not be solvable {they nay not be anyway). For example, a
routine that searches a ninary search tree by calling itself
recursively on ecither the left or right subtree until either

the value neing souqnt or a leaf node i1s found cannot be

48

o L o e e g s " 2 B TR e T R O O P PN,

8979, 7.

Nohe X ! R Sl

CL AN
»

£, ”

-;qﬁ

& .. l"
A

e

.

n

f

LN Y-

P AN S
R

s

-"; f

'I"I'
y & %

AN

AT T Fula i I |

4 4

59

n"f’f(-l'-

X, & A %

"4'

b *l,){I .
.

.,l‘,
P

4

e e
s’s{ . '.’s'w."’ XA

oy

.

A s’ . - , . e v A -
‘.‘l‘-~-.~..b..|-.. Jt e’ LA ' - LR 1 . -, - e BN .v‘.,!_ \0 "; f‘.'-.-""i._vvvy AAhaAdudnd r'v'-r‘—r‘. ."n','-'.'- -". -' lv‘P

function Factorial (N : INTEGER) return INTEGER is

AR s begin
' 1 if (N =0) or (N = 1) then
2 return 1; .
: else N
o 3 return N * Factorial (N - 1);
. end if; .
y f end Factorial o,
N Figure 4-7. Implementation of Factorial]
- { .
. '\.
Pl: (s, 1, 2, f) &1
, pC = PC and ((n = 0) or (n = 1)) _
2 Factorial =1 o
] o .
‘- P2: (s, 1, 3, £) w
» PC = PC and (n /= 0) and (n /= 1) b
Y Factorial = n * Factorial (n - 1) .
-. L
. KRS
- . . . Y
A Figure 4-8. Recurrence Relations for Factorial >~
e
A ._
5 :\
fully analyzed because the sequence of "left” and "right" e
- .
- noves cannot be determined at analysis time. ?
- Of course, this only applies if a closed-form solution éf
is truly necessary: the need for such a solution is not al- .
. Y
- ways present. Frequently a routine implemented recursively N,
.: '\
X has a specification that is also recursive. Thus the recur- N
X ‘\
. rence relations alone may be sufficient to prove compliance -
- with the specification during tine formal verification phase. E
o "
3 In the examnple apove, the recurrence relations derived from -
e, the Liplementation clearly correspond to the usual recursive .y
- definition of tne factorial function. ~
N
- whetner a closed-fora expression is used or not, the E.
= “
- sexlection of data during the testing phase to test each sub- =
-. l‘ i
. .
o, "
W
A
49 X
* g
<
o,

S G T

fxv‘_’l_.f.-d'.’.' r_.f__r_-(~.-\.<\.-\-: A e A T AT R A A" __- Yo \.\.. AL AT
.) - M N v N &

‘o "N

. . N 3 .)
jnl\n-n).’-’.ﬁ)-‘.}l A T T A R W I S T R NS T R P R v v erL o roen Vo LA A

A e o

L]
N
1
-

.51'

domain, that is, each path through the routine, guarantees

B e

2A3S,

that all base cases and all recursive cases will be exer-

cised. Hence the traditional guidelines for testing recur- ;

ALLrer

sive routines are subsumed by the Partition Analysis method.

&

Lo
r

Application of Partition Analysis to Whole Programs

”; The purpose of extending Partition Analysis to include :
o ’
ﬁ: procedure and function calls was to be able to analyze en- 7
. tire programs. While the unavailability of I/0, limitations .
3 on loops, and complexity of the method when carried out man- :
i; ually preclude any meaningful example from being given, this :
-, section outlines one procedure that could be applied once X
-,

P these other problems are solved. E
r, ¥
;4 Partition Analysis seems to lend itself best to a bot- :
!! toin-up testing approach. During unit testing individual

.; modules can be analyzed and compared with their specifica- i
) tions, and also tested using suitable driver routines. This 4
\' 1s not very aifferent than current practice; the point is

t; that the application of Partition Analysis will wmake it wmore ;
l; systematic and thorough. If a "unit" in fact contains pro- ’
o cedures and functions of its own, then they will need to be <
_ﬁi analyzed first. Further, routines that are called by many ;
:f units can pbe symnpolically =xecuted once and the resulting 3
N axpressions placed in a library for use in later analyses. e
N :
‘t As units are combined into larger entities, it will be- :
AN .
3; comne desirable, perhaps crucial, to switch to one of the :
. wore abstract (and compact) representations for the various

) .
N :
& N
o 50 ~
< ;
% :

B T a a e i T A A

OGN FURGIC RN AT I R T A R S N LI RS LA OON

-‘- " .‘ ..‘ nooa ‘-\'.\-\\‘-\‘-‘.\'. ‘l.l.--'h-\A\~ --n-. -;- l'n-h --...vy- h
L]
» .
3 e
b 3
N ’
P low-level routines, either tnrouqgn tne use of specifications ;
-
! or of symbolic representations. The choice of representa- {
! . tion is not arritrary, however. During the formal verifica- N
p tion phase in particular, if a symbolic representation 13 o
[Pt
) »
b usad, there imust be enough semantic information available to 4
< nanipulate for.ulas containing that representation. For ex- =
. ample, during symholic execution in general it is always as- "
% I'.
X sumed that cnough is known about operators like "+" and o
; "a0d" to be able to simplify and compare forrwulas containing ;
o) , ; ’
these synhols; the samne wmust be true for user-defined func- :
n ‘}
: tions and vroce:lures, ;
.. How nuch information is enough will depend on the ap- -
- plication., For exawmple, a function INTEGRATE that coaputas e
. sjefinite integrals given an arbitrary real-valued function 0
a and an arbitrary real interval <does not nred to know any- 2
- ~A
o Ve
) thing about the function bheyond the basics that it is com-]
e o 2
iputapnle, defined on the interval, and returns a real value. *
N [n such a case, use of a syubolic representation such as N
Al -
. 3IN(X) is aopropriate. In other contexts it nay be ﬁ
L] -
A necessary to <now more about the function, such as that f
. SIN(=X) = = SIN(X), or that SIN(2*X) = 2 * SILI(X) * COS(X). >
- ‘&
. . .) -
~ e source of information about a routine at a reason- WA
.- -
.. ahly abstract level is the specification partition, as long é
. As the iavlementation is at some time shown consistent with =
L .
-, it., If even more information is needed, the full ovrocedure N
. RS
N nartitinon itself can bhe used. Senantic information can be N
])
Be ! \
» .\‘
N
N 51
!
A p
-

P I -

.

N e g g e e g g

1Y 3 A Sph S R A AL S L G SR EA L 4 & a ; A R A W W W W W RS oW VOV AR NI N TN A n ¥ ¥ VO U

'?}‘Il

-'n
1 3
A

N

“held in reserve" until neecderd, by using a sysnbolic repre-

sentation and introducing semantic information only where

RN

neaded in a proof, or it can be included directly by substi-

-

SO,

tuting the appropriate expressions into the foruulas of the

high-level routine bheing analyzed.

During the test data selection step it is also advised

‘i
s to use some of the information gathered during the analvsis
N ;
o of the low-level routines. Specifically, in order to test
o fully all interfaces and all paths through the program (up .
P
~; to loop iterations and recursive calls), domain information
o
A o . . .
by from the procedure partitions of the low-level routines
- should bhe used. An example is the best way to illustrate]
N
C
;s this. A program that wade use of factorials aight have sev-
1, :\:
o eral domains whose conputation includes a call to the FACTO-
) RIAL function above. If these calls are represented syaool- ‘
.r:'- (0
- irally, then during test data selection cach of tnese do- :
- aains should be further subdivided into one where the argu-
ﬁ; ent to PFACTORIAL is one and another where it is two or
-]
e nmore. This inclusion of low-level domain information at 4
- [
AN !
i Aigner levels of the program helns to wnaintain confidence }
" that the sun of the parts is correct, and not just the parts]
S
o 1
2 thenselves. It also results in a test suite that oxercises
v:'. L
‘- the entire progran, yet was developed in the process of
o !)
ﬁ: tosting the orogras increwentally.
~
s
N)
A :\ X
>
%)
-
'
g
<+,
\
v, .
! 52
5 ‘
-, :
A '.,:]
= :
\." T IR PR

-1.,’_.1‘_’\ ny s \.‘.\'\,\' \-}ﬁ ~ '\- ’ 2T P VAU Ay \ AR A A S LR A SRR G G N \".' [N

Ladhl it

455

*alted ':'. b

[l O Nl G W NS W

a Fete¥ e Ta a0

LA)

SN

. - . . . TR TN
! NIC AN A P A I e B A e L - “-W e Ve P A I) P Ra® At

V. Conclusions and Recounendations

This chapter offers conclusions concerning Partition
Analysis in terms of its effectiveness and scope of applica-

pility. It also presents recommendations for future work.

Conclusions

The basic problew of handling procedure and function
calls was solved. A problewm many verification procedures
have, that of getting extremely unwieldy even for programs
of modest size, was also addressed. This problem was not
solved -- it seems highly unlikely that any 2ffective wmethod
of verification will be guick and easy to apply ~- but tech-
niques were suggested for controlling some of this explosive
increase in complexity. The straightforward approach of 4di-
rect inclusion of subroutines (in effect, in-line expansion)
quickly gets very large, as expected, but abstract represen-
tations can greatly simplify in particular deriving the pro-
cedure partition. To the extent that informmation from the
specification and/or implementation is reintroduced, the
formal verification step will approach the complexity of
having used the direct representation in the first place,
but it will never be worse than that, and it may rewmain con-
siderably simpler. In the testing phase only domain infor-
nation is reintroducerd, so a simplification has occurred

nere as w~ell.

53

“ ..,,-’-.q.)- o N ""-".-’.-f--"f')“*.~'.-"-"'*'J'."')‘f-"'-r'l‘. R SAAA

2 AR

AR RR

AT

AW

c Lol s

’ "l....'l.f.‘l- -'{7'-"-'{":'{ P

X

A AT

L

. e
X 4
¢
) Looking at the method as a whole, Partition Analysis 1is -
) .
largely language-independent. Although all of the examples <
; ' presented here were in Ada, in the original work Richardson o
: -
» R ;L
; presented examples worxked out in Ada, Pascal, and FORTRAN. ¢
In the course of tne work presented here on analyzing recur- a
a
) sive routines, examples written in Pascal and Ada were suc- .
B, L%
a . . B ‘.‘.
- cessfully analyzed. Some examples in LISP were also tried, 9
with mixed success. The main difficulty with LISP is the el
; application of semantic information regarding built-in oper- _:
A ators such as CAR, CDR, CONS, and so forth, in order to ma- :f
U4 ‘
nipulate formulas containing them, and also the recursive LY
o nature of S-expressions, which seems to demand an induction 3
o,
§ proof in most cases. Such difficulties make analysis harder 3‘
‘e
! N
p hut not impossible. The above languages and similar ones by *a
4 . - g
" far represent the bulk of the software being written today. "
P N
- ¢
' Partition Analysis seems best suited for general scien- ~
-' '
> tific, engineering, and mathematical applications. Some "
N specialized applications such as compilers, operating sys- 3
N 8
N tens, database and graphics have special techniques of their i
- et
o .) _ 2
own tnat are used for software development., Partition Anal- ">
e ysis as a ygeneral tool is not well suited to such areas. -
b~ :.
s Partition Analysis also scems to be inappropriate to verify- 2.
2 ing complex human-computer interfaces, this being a poorly- <
l. (I
- understood process that is still very much an art. For em- -
- bedded conputer systems, Partition Analysis can usefully an- o
» s
-
* alyze nany of the algorithms used, and the testing phase N
. .\
- '\
» Ry
» \
! 54 B
y L5
1 L)
» :
M
S
v

P,
UG LT A A 5 s 100 3 a0 VP A N A e 0 b T A s A s g L WAL

Ll T l - - . s - _l A DR SE S ~ . e NN N '. ‘- . '. . '_ L \ . \v"\ - -".-“'- -. "q v ". .'- "- "'. "~ ". it ."‘-V".". - -i"-‘—'. J‘)“
v ASAASA AR e h v A
b

R LA I

will demonstrate the full range of runtime behavior. How-
ever, much embedded software uses control structures such as
e interrupts, coroutines or parallel execution that are beyond
N the scope of the method.

Partition Analysis works best in a traditional software
development life cycle of requirements definition, specifi-
cation and high level design, detailed design and coding,
and unit and integration testing. It is also consistent
with the use of an object-oriented design methodology. Im-

plementations of abstract objects can be proven consistent

A
N with their specifications and then treated as primitive ob-

! jects during subsequent analysis as explained in Chapter 4.

B Partition Analysis 1s less well suited to a rapid prototyp-

; ing environment where the requirements are ill-defined and

" rapidly changing, since formal specifications play such a

3 central role in the method.

N As indicated briefly in Chapter 3, early empirical

é studies indicate that Partition Analysis is extremely effec- 2;
: tive at detecting program faults. What mnakes Partition S{

Analysis testing superior to other technigues? Black box

- testing looks at the input domain and finds tests that thor- -
- . “ L
: ougnly exercise a correct programn, but possibly not an in- :f
: N

sorrect one, It also ignores some distinctions within input
supdomnains that are unique to the 1mplementation, and thus

may fail to test some relevant cases. Black box testing can

M e e

do a reasonable job of finding path selection errors, but in

S0

Dy yepum -
J ' J
ALASACALN

C N N ' N X “ .f- l X .- .r -F .r .r g 4‘ J‘.'-f " .(\,;.r\‘.- .Y '.r Tt r_‘.r .r_;a P '-‘_-“\'J'_'.'.:‘ R *.r_.\;.- ’ _.r o

PO CAATCIG A A il S A il Sl) (A ol U i A e A /i 4 L 262a"0.0° 0,00 2 Fg 0 g 00g 2 N AN - - Pas e et phe D i ys

g
i :-"~
Yy
i
%
¥
‘o
general cannot find missing path errors or computation er- ;:é
Y.
») :5! 5
rors effectively. ; ‘
L]
Glass box testing, on the other hand, looks primarily N,
KNG
at the implementation, devising tests that thoroughly exer- ﬁ;
s
™
cise whatever the program does, but not necessarily what it o!
.
is supposed to do, using the specification only as an)
"oracle" to distinguish right from wrong answers. This o
characterization applies to Functional Testing as well. 2t
»
Glass box testing is generally good at finding computation "
»
»
errors and path selection errors, ktut again cannot detect :*
I
missing path errors in general because the specification is 200
»
largely ignored. 3:
Partition analysis is more successful at finding errors ‘“;
o
because it gives equal weight and equal effort to the analy- VR
)
ses of the specification and the implementation. This anal- E?
L
ysis is followed by an attempt at a formal proof, where dif- ﬂ?
v
ficulties or counterexamples will point out faults, and also .
»
by extensive testing of all relevant domains in the program, :5:
e
using both black and glass box techniques. {?‘
S
‘\'_-]
Future Directions b .
The original Partition Analysis method was very re- &}
I":
stricted in the language constructs it could handle; it é;:
needs to be able to handle the full range of constructs en- L
countered in real programs. The work in Chapter 4 on proce- ﬁf
Jures and functions is a step in this direction. The method lﬁ;
' \-:

[

desperately needs to be tried on larger examples, to judge

’
’
’
?
f
-
'y
¥y
‘l
,
'.
Pd
'd
'l
P
K
&
“
R
PXAS lA.

AU i

better the effectiveness of tne method as a whole and to

e 3y
fes S5 5

validate the procedure described in Chapter 4 for analyzing

whole prograiis. If done entirely by hand, however, this is

impractical. Some automated tools exist, for example to do

rXaA S J
LA

7

symbolic execution, automatic theorem proving, and test case

execution and monitoring, but these were not available for

this thesis. The unavailability of I/0 and especially the

, 5~
r ;i’“l":v" %

i

[
.

Yy

linited power of existing loop analysis techniques further

&.
od

complicate wmatters. Any future work directed in any of
these areas (use of existing automated tools, inclusion of

I/0 or new loop analysis techniques)} would have considerable

value, especially if it included an analysis of larger pro-

S REREES

graws than has heretofore been done. Automation of the Par-

ol
S$%% %

tition Analysis procedure itself would be premature, given

o'

the heuristic nature of several parts, in particular the

verification and test data selection steps.

SRR

—
".'-'.\")

NN

» e "' .

"
'\"

ML
St

.l.‘.A
LYY

‘e
o
A

|
.’
ey

AR N
'’

. q.' e

R

57

1‘:"-"1. -
]

o &

t Ao ‘*'\-"." '
-&A-&n-&n&u—’m A

Clarke, L. A., J. Hassell and D.
Look at Domain Testing," IEEE

Al e A R, 6 v vy » A WL VAW V4. Ay
Bibliography
Clarke, L. A. “A System to Generate Test Data and

Symbolically Execute programs," IEEE Transactions on
Software Engineering SE-2 (3):

215-222 (September 1976).

J. Richardson. "A Close
Transactions on Software

. Engineering SE-8 (4): 380-390

Darringer, J. A. and J. C. King.

60 (April 1978).

Structured Programming, O-J.

pp. 1-81.

Dijkstra, E. W. "Notes on structured programming,'’
Dahl, E. W. Dijkstra, and
C. A. R. Hoare, Ed. New York:

(July, 1932).

"Applications of Symbolic

Execution to Program Testing," IEZE Computer 11 (4): 51-

' in

Academic Press, 1972,

. Dunn, R. H. Software Defect Removal. New York: McGraw-

Hill, Inc., 1984.

Hoare, C. A. R. "An Axiomatic Basic for Computer
Progranming, " Comnunications of the ACM 12 (10): 576-

580+ (October 1969).

- Howden, W. "Symbolic Testing and

the DISSECT Symbolic

Evaluation System," IEEE Transactions on Software

Engineering SE-3 (4): 266-278

————— . "A Functional Approach to

(July 1977).

----- . "Functional Program Testing," IEEE Transactions on
Software Engineering SE-6 (2):

162-169 {(March 1980).

Program Testing and
on Software Engineering

~ Analysis," IEEE Transactions
~ SE-12 (10): 997-1005 (October

1986).

- ¥ing, J. C. "Symnbolic Execution and Prograam Testing,"
Comaunications of tne ACM 19 (7): 385-394 (July 1976).

“lostow, J. "What is AI? And What Does It Have to Do with
Software Engineering?" IEEE Transactions on Software

.
~ . Ty - -
Jers, e J. TMe Art of sortware

a37NS, 1979,

LA L

LA SE SANE SV SAY

Engineering SE-11 (11): 1253-1256 (November 1985).

Posting. Joan ~lley &

ot

LR IS # O RN a e o -

(L

X p e e~
k.)

[N T W A

Ty Cwte e St el

«
3

f - - i atelaiy A AL 0 e AP B aciie Al e 8 .l A -_.-..._-.-.--...-u‘-w\
~l

L]

\l

i
15
N
>, srossuan, R. 5. Software Engineering: a Practitioner's
N Apnroacnh (Second Edition). New York: McGraw-iill,

\J - —_——

e Inc,, 1937,

& - - R . . .

o Ricnardson, D. J. "A Partition Analysis Method to f

o Devonstrate Progranm Relianility." PhD. Dissertation,

N University of Massachusetts, Amherst, September 1981, ‘
o ,
1\) N . -) L .

' *iTnaridson, Y. J. and L. A. Clarxe. "Partition Analyvsis: A

“ethod Conbining Testing and Verification," 1EEE

- Transactions on Software Engineering S£-11 (12): 1477- .
- 1490 (December 1985).
- woyuker, E. ana T. Ostrand. "Theories of Program Testing]

i ana th2 Application of Revealing Subdowains," ILEL

‘ransactions on 3Softw~are knginecering SE-6 (3): 236-246

o (rtay 19380).)
:

L waite, L. J. ana E. I. Cohen. "A Dowain Strategy for
o Computer Program Testing," IEEE Transactions_on Software

s Engineering SE-6 (3): 247-257 (May 1930).

. -
e .
Lol

Lo

~

N2

"

:"

A

I"

-‘: 9
N :
'.\

Ty y

“~ ¢
"\

2,
f.'
/)
k.7
. Yy
1'-‘ K
0 .
I. -

v .

v
~a X
I:I

-

N
)

= "
[\ 7Y ‘

ALY

\J‘ N

.'_.-_-'\-_'.'\.‘\."-.‘-.-\.'.- o Wy P’ Py P AP "t".' aty g et WY,

P
ot e
’A'l.l'- LN

J'.Js)*J‘) » ¥

NRER AR A

N ~ s
RPN

PRIl AR ATOE

At J\.xi

. A XA L

2 T T T T N W W W W O N N W e e

VITA

“overt P. Grahan, Jr. was oorn on 5 March 1964 in
Newarx, bDelaware. e graduated from nigh school in North
iast, “aryland, in 1931. e then attended Virginia Poly-
tocnnic Institute and State University under an Air Force
20T d-year scnolarship. tHe graduated Suaua Cun Laude in
1936 and receivi the 3acnelor of Science degree in Computer
sciencz, in Honors. During undergraduate school he also
vork~2d, tnrough a cooperative education progran, for the Air
rorce Data Scervices Center, Pentagon, for a total of 18
nonths. In June, 1986 he received his commnission in the
JSAF and reported to the School of Enginecring, Air Force
Institute of Technoloygy, as his first assignment.

Pernanent Address: R.D. 1, Box 161AA
rReedsville, PA 17084

H1)

- e e " "
RORC AT A

A A A A M A N A N R N D I NI N AR

[N

i s g %

'.'l'l\)"_

L i % B N IR I

. v &

" £ ¢
PRI

‘

P ANV

. IAEACALACASL A A4) ghagia i e onmi a2y g T T AT LW WIS, R R - » Pttty M AL e e -,

,
‘.-’\
--Jv

g;tsgLASSIFIED ' i
URITY CLASSIFICATION OF THIS PAGE A

REPORT DOCUMENTATION PAGE v 0060188 y

1a. REPORT SECURITY CLASSIFICATION
UNMCLASSIFIED

1b. RESTRICTIVE MARKINGS

. SO P
23. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION / AVAILABILITY OF REPORT

fomroved for mublic relesss

.2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

districution unlinites.

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

S. MONITORING ORGANIZATION REPORT NUMBER(S)

AR/ T3/ L/ E8 =32 |¥

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
(If applicable)
schecnl of niineering ATIT/ 200 .
6¢c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) -
Lir Torne Institute o [f=2cnnolou, (AU)
ricnT=latterson A3 UE 45433-.5353
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL [9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
. X
8¢ ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS .
PROGRAM PROJECT TASK WORK UNIT y
ELEMENT NO. | NO. NO. ACCESSION NO.
1. TITLE (Include Security Classification) K

“olTware Verificetion Usinz Partition Analrsis

12. PERSONAL AUTHOR(S)
rrzharm, L.9.,

"otert ~,

Second Lisutenant, USAT

13a. TYPE OF REPORT 13b. TIME COVERED 18. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT
S Tresis FROM TO 1225 “‘arechn i 3
16. SUPPLEMENTARY NOTATION : g

17. COSAT! CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP cortuter .ro. ramn testinl, corvuter roTr-an 3
1= B veritficetion, razrtition ~nal: sis "
19. ABSTRACT (Continue on reverse if necessary and identify by block number) .
“hesiz Cheiraan: S“alna .a ersenver, 2h... '
£330zciate srocessor of atiieratics =nd Joomuter
Scienne
lrsTract: se2 reverse
AB’mnd tor public retense: 1AW AFR 120-4).)
/
r mﬁ‘r“’% M X8
. covionrt Davalopmesnd
[rl . T,]
Wirgil bacn s o #ie Chothies
4

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT
O uncuassirieounumited & SAME AS RPT UIICLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) [22¢. OFFICE SYMBOL

et A sroenlterp 51 i35 CET L.

21. ABSTRACT SECURITY CLASSIFICATION
O oTic usERS

7‘ baod

DD Form 1473, JUN 86

. v v v e v

Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

-

"JIICLASSIFIED

SR SR RSN NN RE S NP P L Sy
5V S NPT RS SO A A R R

:1
v
o)
P @

Trocess or
—-=vnetner it
~erior..e&i, nro./ra.n ve

.iore oI the develoTinen
Ia s+ite cI tThiz fact,
unrelicvilit,. 1Thase

B9
O et B, D
o
GO0 WD o
“t
e u
)
(0]
o]

n
o
)
e b

M

¢
LD b
o}

Py D

0O 0
® iy W
ct ot
\.\; o0
S o
ja -0)]
C

[()]

3

ezl of resesrcn iator

Vit 0

36 o8

ct €
[¢]

b, O

tl.

tnesis « > ~ising nevw verifi-
cation tecnnigue llcc i eV e Dy Zebra J,
Zichardson (1631). : Sol ‘ 2 sovertul
a=.oroach fTor identifying’ Progra.a faults, D in 1ts current stote
cAn onli,y Se zprlied to sinzle zZroZranm odules that Zrolduee no sidle
effects, includin; innut or ocut2ut. This thesis extends the =222li-
czzility of Zartition Anzlrsis by rerrittini tne use of “rocedure
and unc*tion c¢z2lls, thereo; 2llowini complete Zro-rams to he
anzlyzed, The rerult is g set of technijues for hanaling rezulzsr,
non-recursive urocsZure znd function c2lls, sedarate nethods for
i i recursive Crocedures ana unictions, and an znoroach

2ronlem of anclyzinz entire vroIirams.

N e WY s S B R T e T i I T S T I T AT RN I Tt R T TR S at T S)
R 2P A NN A PN IO AT A Ny Y I LR

-
T/

e

oA

2,

[

TRLNL G VR4S

r
,.;{

AR EY
A7 5N .Av.l

-Pf.f.. {*

Fd

a
.

ety
5 A

soar
. 2%y
"‘r"v\
.

e RN T]

n
)
.
N

Tty 3 ¥ 4
AR

e
e

/

L
r~ l'

..
LI
PalaR
.
»

R
‘.". AR
. AR
ML AR

P
Ivl

A

Ay
v

n‘-‘:

'

LA
"y
l'. ¢

.

o'y, g 4 vy e g ey - P P——" e . .
4l N LA A L N A PO A Y LA SN A L A A L R LR AL LN S S Gt AR A AN L A S AL AL AR AT AN A LA

ol
:‘.r'::.-
'.-‘.;.'
AN
» [
- --
(] ',:- (
. Gty
N wed
SR
iy ‘-PN'-"
[LY,
N i
¥ W,

foa
(s X
v

FEL
s

R

| EN D

| Pl S,
‘ J l F At
| o

! ‘-":‘.-:‘
RGN

/ .

-
e-?;i'\.h
v
. N

S
.". 'sl:‘-
hih ! b

&

A
% Ny

!

P A

'I-."‘l
sle N
& AR

o0y -

ThM

LY
a4
iﬂ.

i

5

e
,l‘,:'.’
LA

LOL L N0 A N L

BRI

.l,.‘ ‘..‘ “.,' ' ﬁ

S :,:\f ”
L4 Y

»

3 (L)
ST ST TR T T - -3 -~ A R Rt PR PR R ", PRI AT ARSI N
TNANICM o R L i o R S S N N N e S AR LSRRGV,

h

