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Abstract

--Software verification is the process of determining

whether a piece of software is reliable--whether it performs

as it is supposed to. As traditionally performed, program

verification can account for 40 percent or more of the de-

velopment time and cost of a software product. In spite of

this fact, released software is notorious for its unrelia-

bility. These two facts, the expense of our attempts at

program verification and our limited success, have sustained

a great deal of research interest directed at finding more

effective methods.

This thesis develops extensions to a promising new ver-

ification technique called Partition Analysis, developed by

Debra J. Richardson (1981). Partition Analysis appears to

be a powerful approach for identifying program faults, but

in its current state can only be applied to single program a,
modules that produce no side effects, including input or

output. This thesis extends the applicability of Partition

Analysis by permitting the use of procedure and function

calls, thereby allowing complete programs to be analyzed.

The result is a set of techniques for handling regular, non-

recursive procedure and function calls, separate methods for

the analysis of recursive procedures and functions, and an

approach to the larger problem of analyzing entire programs.

vI
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SOFTWARE VERIFICATION USING PARTITION ANALYSIS

I. Introduction

Program verification is the process of determining

whether a piece of software is reliable--whether it performs

as it is supposed to. As traditionally performed, program

verification can account for 40 percent or more of the de-

velopment time and cost of a software product (Pressman,

1987: 467). In spite of this fact, released software is no-

torious for its unreliability (Pressman, 1987: 13-14).

These two facts, the expense of our attempts at program ver-

ification and our limited success, have sustained a great

deal of research interest directed at finding more effective

ethods. This thesis is a study of a relatively new tech-

nique for program verification called Partition Analysis

(Richardson, 1981). The Partition Analysis technique shows

great promise, but in its current formn is severely liuiited

in its scope of applicability. The contribution this thesis

.aKOs is to expand that scope.

Background

General Approaches to Proqra:i Verification. In the

nest of all possible worlds, the generation of software

would fe a fully automated procedure. The user or other in-

tereste'i :)arty would pren:are a specification dietailing the

S.0
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desired functional and operational characteristics of the

software and would present it to a system that would auto-

matically generate a program guaranteed to match the speci-

fication. Automatic programming, as this procedure is

called, is one of the long-standing goals of the Artificial

Intelligence (AI) field but, not surprisingly, this ideal is

far from realization: programming is a complex, knowledge-

intensive, incompletely understood and error prone process

even for human experts. Efforts toward automating the pro-

cess have been categorized into three subareas:

1. AI programming environments;

2. studies of the software design process; and

3. knowledge-based software assistants.

(Mostow, 1985: 1253)

Automatic programmning remains a long-range goal, but is not

expected to solve the verification problem in the foresee-

able future.

If automated programming is currently beyond our capa-

bilities, the next best thing would be to write a program %

and then apply sone method (again, preferably an automated

one) to show that it :neets its specification. In other

words, we would like to develop a proof of the correctness %

of our program, with full mathematical rigor and certainty.

An early and still active approach proceeds by defining p

a formal semantics for a programming language in the form of

a set of axioms. Programs in that language can then be

2

%5%

%5



translated into assertions in the predicate calculus, and

the correctness of the program--its correspondence with a

specification likewise expressed in the predicate calculus--

becomes a theorem to be proved (Hoare, 1969). Unfortu-

nately, both the translation and the proof are tedious and

error prone, and not easily automated. It has also been

noted by several researchers that the proper way to apply

formal proof techniques is to develop the program and the

proof concurrently, or even to derive the program from the

proof (Dunn, 1984: 159). This further complicates attempts

at automating the approach, which as a manual technique re-

mains impractical for all but the smallest programs (Dunn,

1984: 159). S.

Given the current impossibility of automatic program- V

ming and the extreme difficulty of applying formal tech-

niques, a third approach toward achieving at least some con-

fidence in the reliability of our software is testing: run- ,,

ning a program with some subset of the data it is supposed

to handle and checking the result. As Dijkstra has pointed

out, "testing can only reveal the presence of errors, never

their absence" (Dijkstra, 1972). It has been shown that -.

anything short of exhaustive testing (running the program '.'

with every possible set of inputs) leaves open the possibil-

ity of an incorrect program escaping detection by working -

correctly on the subset of data tested (Weyuker and Ostrand,

1980). In spite of this rather dismal fact, a carefully

N
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chosen set of test data can reveal many of the errors in a

program, and a test run resulting in no errors detected can

greatly increase confidence in the reliability of software.

Software testing, done informally, was the first tech-

nique applied to verifying software. Over the years a large

number of techniques have been developed trying to make it

more effective and efficient. Many of these have also been

automated, at least in part.

Symbolic execution is a verification technique that

combines formal verification and testing. In symbolic exe-

cution input values are represented by symbols instead of

literal values and statements are executed symbolically to

produce formulas for the values of the program variables.

These formulas can then be analyzed for correctness or to

guide the selection of ordinary test data. Several auto-

mated systems for symbolic execution have been developed.

Partition Analysis

Partition Analysis is a technique developed by Debra

Richardson in her doctoral research that combines both for-

nal verification techniques and testing in order to acqjuire

confidence in a program's reliability (Richardson, 1981).

It is also distinctive in that it makes extensive use of

both the specification and imnplementation of a Iesijn.

As currently developed, Partition Analysis can e ....

plied to single modules that lo not produce side effects

(including I/O). It is also directed jrimarily at nu.orical

4'C
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algorithms and has not been tried on programs that perform

symbolic processing.

The Partition Analysis method consists of three steps.

First, symbolic evaluation and other analysis techniques are

used to produce the procedure partition of the module. Each

element of this partition defines a subdomain of the nod-

ule's input and describes the computation to be performed on

this domain according to the specification and also accord-

ing to the implementation. Second, proof techniques are ap-

plied to the two computation descriptions to demonstrate

their equivalence (or nonequivalence, in which case a fault

has been found). Third, the subdomain and computation de-

scriptions are used to guide the selection of test data to

exercise the functional behavior of the nodule.

Proolo f; an,3 A~proach

Evaluation of Partition Analysis by Richardson and

Clarke (1985) shows it to be very effective at finging pro-

gran faults. The restriction to single nodules with no side

effects, even I/O, hoover, drastically li its its useful-

ness. As currentlv developelI it restrains an acade ic exer-

cise, bhut one witOi great potential. This thesis attortts to

realize soh i of that potential by ennancing Partition Analy-

s is to ra e it a;-,l ical. to t, iarw,;r .las.; f pro Ira rs . In

)articular, tve o;)j,'tiv,-' chosen was to Aevise, :otiiods for

I rocI.ur- ind function calls. i n _ •- - " o- -)ro ra"

p.5
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ming languaqes permit recursive calls, the special case of

recursion was specifically include in the objective.

Procedures and functions are the building blocks of all

practical programs. Expanding Partition Analysis to permit

their use make the technique applicable to entire programs

rather than just isolated modules. It was felt that this

extension would therefore be more useful than, say, the in-

clusion of I/O or the elaboration of any of the methods al-

ready used internally by Partition Analysis.

The approach followed was first of course to understand

as fully as possible the Partition Analysis method itself.

Since Partition Analysis used many other verification tech-

niques, an extensive review of these techniques was neces-

sary. The basic method for handling procedure and function

calls was devised by a close examination of symbolic execu-

tion, the particular needs of Partition Analysis, and some

hints in Richardson's dissertation (1981) itself. Separate

methods for recursive calls were developed by analoqy with

* Richardson's fiethods for analyzing program loops. The new

methods focus on step one of Partition Analysis, forming the

procedure partition when procedure and function calls are

present. The formal verification and testing steps are also

affected, but to a lesser degree.

The result is a set of techniques for handling nonre-

cursive procedure and function calls; the choice of which
'.

technique to use dependinq on the proqram to be analyzed.

'5.
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Recursive calls are handled by their own technique, again

with variations. Several examples of recursive and nonre-

cursive routines were analyzed 
to verify that the proposed 

I

techniques do work.

Overview of the Rest 
of the Thesis

The remainder of the thesis consists of four chapters.

Chapter 2 is a close look at many of the techniques that.

!iave been developed for software testing, ant a look at sy.,-

bolic execution. Chapter 3 explains the Partition Analysis

nethod in detail, with a detailed example. Chapter 4 pre-

sents the extensions that 
were ade to the method. Chapter P

5 offers somne conclusions about the method and points to

several directions for future work. di

7F

:N
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II. Literature Review

Numerous techniques for carrying out software verifica-

tion have been developed. This chapter reviews some of the

work done in program testing and symbolic execution. Since

Partition Analysis uses many of these techniques itself,

this chapter also provides further background on the method.

Software Testinq

The effort to replace ad hoc testing practices with

systematic methods has produced a number of basic techniques

that reflect early attempts to address the testing problem

or that address particular special cases. The basic tech-

niques are typically categorized as being either "black box"

or "glass (sometimes white) box" techniques. Black box

testing relies strictly on the specification to describe the

intended function of the software and to guide the selection

of sample data to test whether the software implements the

function correctly. Glass box testing augments the informa-

tion provided by the specification with structural informa-

tion about how the program works. Both kinds of techniques

are used in practice; the two approaches are complementary

in that they tend to detect different classes of errors

(Pressman, 1987: 484). Glass box techniques are more mathe-

matically tractable and nore generally effective but can get

.J
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unwieldy, while black box techniques are easier to apply but

are more likely to miss certain types of errors.

Recently these basic ideas have begun to be combined

into comprehensive approaches to disciplined testing in-the-

large. Two such approaches are Howden's Functional Testing

approach (Howden, 1986) and Partition Analysis, discussed in

- detail in the following chapter.

Before discussing specific techniques, some terminology

is needed. A program failure is an discrepancy between the

observed behavior of a program and its intended behavior. A

program fault is an error in a program that causes it to

fail. Failures have been classified as either domain errors

or computation errors. Domain errors are concerned with

which execution path is followed in the processing of data.

If the wrong path is followed, a path selection error has

occurred. If the data falls into a special case that the

proqram fails to recognize altogether, a missing path error

has occurred. Computation errors occur when the correct

path is followed, but the path processes the data incor-

* rectly. In practice, one program fault can cause many fail-

ures, and some failures can be of more than one type.

Black Box Testing. Black-box methods focus on exercis-

ing all functional requirements of a program without consid-

ering its impleinentation. The uasic idea is to break down

the specification and identify all of the individual func-

tions perfor-ned, and then test each one (Dunn, 1984: 233).

%' A.



Equivalence partitioning (Myers, 1979) is a method for

partitioning the input domain into classes that we can

"reasonably" assume are processed equivalently. Testing any

value in a class then provides confidence that all values in

the class are processed correctly. The technique of break-

ing up the input domain into subdomains is called domain

analysis and is used in other black-box methods as well.

Domain analysis is also a qlass-box technique when applied

to an implementation. In this c se each path through the

program is considered, and the conditions that the input

must meet in order for that path to be followed constitute

the input domain.

Egmpirical data has shown that more errors tend to occur

,Ilat the boundaries of an input domain, so these boundaries

should be exercised more fully. Once equivalence partition-

inq is done, test cases are chosen that lie just inside each

class, just outside each class, and somewhere in the "mid-

dle" (Pressman, 1987: 486). Extensive work has been done

showinq how close to the boundaries to get and how effective

this technique is, particularly the qlass-box version (White

and Cohen, 1980; Clarke, Hassell, and Richardson, 1982).

Fault seeding is a black-box technique that deliber-

ately ,ruts errors into a program in order to judge the ef-

fectiveness of the testing beinq done. In this technique a

number of errors are deliberately introduced and then test-

ing by some other tecnniiue is done. If n faults were

IFI

'5%
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see, edi , i tot aI fauls I~~ r xo;i rn~ Of r-, Ie EcnUIt 1

found were seedea faults, tnen an esti ate of the total nuln-

ber of faults N in the prograi is N (n * *") / c , and so

the nuinber remaining undetected is N - in . In practice,

if the ratio (m - n) / (N - n) is less than 0.9, more test-

ing is calleci for; values close to 1 provide high confidence

in the effectiveness of the tests.

GlassBox Testing. Glass-box testing uses tlie dletails

of the i.nplementation to guile the selection of test data

(Dunn, 1984 : 199). One important tool used 1y most glass-

oox techniques is the control flow graph of a proqra:n. In

this graph tne nodes reoresent statements of the program and

edges represent tne flow of control from one statement to

another. Associatedi with each edge is a condiition that must

ue true for the transfer to take place. For sequential flow

or an unconditional branch the condition has the constant

value true and is generally not siown; s-quences of state-

ments with no branches are sometines collapsed into a single

node. The con.ion if-then-else and loop constructs typically

use i)oolean decisions to choose one of two possiole edges to

follow: the condition for one edge is si',mly the negation

of tile other. '-ore complex control structures such as thee

cas-e state;ient or tne select stiteinent in Aii nave nore ar-

bitrary sets of coniitions. FLur, 2-1 s iows a proqram for

deternining whether a positive inteqer is a prine, and gives

the corres)on~iinq control flow gr1.rapn.

A
-- - - - - - - - - -
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function Prime (N : POSITIVE) return BOOLEAN is
Factor INTEGER;
IsPrime : BOOLEAN;

s begin
1 if (N mod 2 = 0) or (N mod 3 = 0) then
2 IsPrime := (N < 4);

else
3 IsPrime := TRUE;
4 Factor := 5;
5 while Factor ** 2 <= N loop

6 if (N mod Factor = 0)
or (N mod (Factor + 2) = 0) then

N 7 IsPrime := False;
exit;

else

8 Factor := Factor + 6;
end if;

9 end loop;
end if;

10 return IsPrime;
f end Prime;

a. Ada source code for PRIME
-. Adapted from Richardson, 1981: 24.

is-- .3

4I

7.

b. Control flow graph for PRIME

~Figure 2-1. Example Control Flow Graph

'512



A technique callea oasis path testing is a sim[ple way

to use the control flow graph to guide test data selection

(Pressman, 1987: 472-482). The graph is used to find a min-

imal set of linearly independent paths through the graph

such that each edge appears in at least one path. The nurm-

oer of paths required to do this is E - N + 2 , where E

is the nuiber of edges in the graph, and N is the number of

nodes. Test data is selected that will cause the program

execution to follow each of these paths.

Loop constructs are very common in prograns and have

special problems associated with them, so special methods

for testing loops have been devised (Pressman, 1987: 483-4).

Pronlems associated with loops are initialization errors,

indexing or incre.nenting errors, and nounding errors at loop

iimits. For a sinple loop, test cases are devised that skip

the loop entirely, pass through the loop exactly once, ex-

actly twice, soi.eo "large" number of times :i, and if there is

a maximuin numiiber of times the loop is allowed to be exe-

cuted, n, then the loop is tested for n - 1, n, and n + I

(if possiole). Nested loops and concatenated loops lead to

an inordinate amount of testing, so some simplifications are

specified to control tnis.

Mutation testing (Dunn, 1984: 218-220) is a glass-rox

technique sonewhat like fault seeding that is intended to

increase confiilencp in th aility of tie chosen test ("as.O'

to b}te.t errors. S;nal I changes are made one at a t ine to

.0
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the program to introduce errors deliberately. Each "mutant".

program is then tested to see if a failure occurs. if so,

then that test case has been shown effective at findinq er-

rors and our confidence that the original program is correct

increases. If the nutant passes tne test, however, it is

analyzed to see if it is in fact equivalent to tne original

nroqra.. If it is not, then the test has failed to detect

an error, and our confidence that the original program does

not contain a similar error decreases (in fact, it could be

that the mitant is correct and the original wrong). Muta-

tion testing works best on proqraiis that are r)olieved to be

!basically sound1 txcept for relatiVly stm;plo errors

(Richar-lson, 1981: 54).

The glass-box technique s discussod -o far address both

donain an] co ptation errors, but computation errors in il
particular are prornl to -- incirental correctness whn only a

few te:st cases arfe ase.I, and so sp.ecial tochni ues for test

inj for cortain Kin-is of co,.,dtation ,rrors nive il-ofn ievw'- .

oned (Howden, 1980). For instant-, oxpr,-ss ions that ar,-

:)olynoiials can r)- shown correct oy testinq t ,ith a nui-

.) r of test ss on,_ jreit,.r t iin t ," i,4r,- (t tof l,( o- nO.

'T. ij I ")tli.,r typos of (.x:orf-ssionflM i t fK9i :) -i s -, -'il vi u %

(oxtr, r , 'iis-ont 1 Ui t i-s, !t,) t ,t no,;,, to ; o .

Ttne- vlluo z,'r,) in :),lrti i l ir i'; i v.r' i, o, , jr,- (,I ,r-

ror 1n.1, so s; ioul~i il.- .,ys :- , I
-!

14
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ComQparison of black- and glass-box techniques. black-
% .4.

box techniques are best at finding certain types of errors:

incorrect or missing functions; interface errors; errors in

data structures; performance errors; and initialization and

termination errors (Pressmaan, 1987: 485). Black box tech-

niqu#- s ten(! to niss ,iany other errors because the implemen-

tation is rarely exercised fully: a single function in the

specification may be implemiented as several special cases,

and a black box approach has no way of knowing this; we are

forced in effect to guess at what values will be processed

the same way by the program, without looking at it. "The

lisadvantaqe of the blacK oox testing approach is that it 54'..

ignores i.nportant functional properties of programs which

are part of its design and implementation and which are not

des,:ribed in the requiremnents" (Howden, 1980: 162). Trius ,

t") ,-ic< inA glass box approaches must be used together for

Tihxi nuin ef fectiveness.

FunLtional Testinj (iow.Jen, 1980; Howden, 1986). How- .

den's ftijnctional testing ani analysis is an attempt to rein- ,.

ti;rate tn,, ,riiiiry alternativ, ap[roachps to software test- .p.

.iI rl : sta iL,: v, -rs u:i 1,iJn I C t,*s t :1,, aC K v e rs / ti; I is s box J

testIn(, and practical versus theoretical consiierations. 4*)

It is in outr!rowth of .-irl ir e:nrpirical studios of software

t.st ing , and! is intenlt'j to ";rov t-e a franeworK for the d

%.

.11 q'-e on of tet r, to ,roy ic |,ra:t i cai ttIe:or~at tal re-

-.i'

I "
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stilts, to derive new results, and to indicate directions for

future research" (Howden, 1986: 997).

The theoretical basis is provided oy a conbined view of

the behavioral and structural properties of programs. At

the behavior level a prograin defines a napping from its in-

nut domain to its output domain; the specification of a pro-

gran is intended to provide a comniplete and accurate descrip-

tion of this napping, and is needed during testing as an

"oracle" for determining if a program is producing the cor-

rect results. Structurally, a proqram is seen as a collec-

tlion of flnctions and data types. Functions act to convert

one ty:,e of cl: ta into anotner typ)to, and toe overall trans-

for.iation of the input types to the output types defines the

* ,,i'ior of th- progra-i. Thus thero is a Iuality o)etween

t /m n tions. Program desiqn rethodologics (e..,

frn:t ion-i I (,Vco :)os it ion, data f]<r.' ,inilysis, Structured De-

L rn, () r ~tj ect -ori ento i d s iqn ) t v i call y choose to en; ha-

Iz on . ; ct ovor t io oti ir; IHow,len s approac n to tosting

Ii< '.,i .... )lr i z, t i, idlntifi, ation and analysis of tn,-

mn~~or 11-onrit oFi rO,;ri', is thlif nai 'o 91ugq;sts.

:,rv.'i :-s t;I atalysi no ..; tn' ti't.ions of ,a tr, ra...-

ir . r'i r , i t.r . f . ;v-t i: , lls for n ] : ".

1 r, t ' s _i : n 1 ; Iis *ins i o tlri. r, i ,s : ';

I 1
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of each, and then test data selection and the dynamic analy-

sis of the results of executing the program on that data. %

The static analysis step _)roceeds by identifying three types

of units: functionally iuportant classes of input and out-

put data, much as is done in the black nox techniques; data

design structures witnin the progra-n, which are subsets of

declared (data structures that are functionally related; and

prograi design structures, which are identifiable functions

used to design and imple;ient the program. Program design

structures niy or iiay not correspond to contiguous pieces of

,oie, and Hfoden suggests that any available ,esign docunen-

tation (e.q., Aata flow dIiagrans, SADT charts) can help in

th, i lentification of those functions whose i 1pleentation 0

orr,.sonis to cllef'tions of patiis in the )rograi, or to

s :ittr, I [pieces of Ije 4.

In tie? ttst iAtit sel<ectioi 711'i exc.u, tion step,, .2 unc-

tion)l 1sting Torsi ,inns rlack ani lass :)ox techn iues Dv

o.trt ttlO2 i ti, intn t ,to ,a ns not only of thef proqr.in .s I

.;h 1ol ut also of ;t,- iniiv tiou i ,c)p n'ni ri ] f In tion, i~i,,nti -,
:%

fie i in tin oro ra I- Lr': ,r Io..n 1f i ns I no 'her of

r ', s far 1,i iti n,,ns t.)s, ,rt L- Ti.o - an %r V Iis I I

fa utc-r irq :-,j t , :a ,,)us fo r ti... i x-1 ,, t ,i ,i r 1 .

t* t c i s es e .'-'r'cl ' s un , : .,un :.or i, n I : n t r ii 1 ,.:;1 ' n:"; , . ',

t".j ,r ).ri :, ts .. '1: l is' t', Ir;s,'r /- :,' .," , '' d':1 J i ., , ;

U. 4* ',, i t ' t l ; . i t ~
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the program. Howden compares the coverage achieved by his

iiethod and that of other glass box techniques, and finds his

is more demanding, and hence liore effective at finding

faults. He reports empirical studies to support this con- "

clusion. /

In effect, Howden claims that techniques like branch

analysis and basis path testing function as approximations

to Functional resting: the validating assumption needed to

make such techniques work is that paths in programs corre-

spond to functions. These teciniques are weak oecause this

assu:nr)tion is not true in general. The true structure of a

progran is the functions that comprise it, regardless of its

textuial structure, and this is what Functional Testing fo-

cuses on. Conversely, it is precisely the loose corre-

s:,onience oetween functional structure and textual structure

t!it ma<ts +owJ-n's netbo, i mucti ;iore difficult to automate

than the other glass box techniqies; this is tne xajor dis-

advantage of th, Functional Testing approach. Without auto-

nation, applying tne technique to any sizable program re- %

iains inpractical. Howlon liscusses some possible ap-

proa-iis to .iutoiati:q parts (,f nis sche;ne, but the area re-

;,.ain.i oimen to future research.

S~n ,Itr X*92it iofl

Sonewhere between for.tal verification and ordinary

tpsting lies symnbolic exocution (;)unn, 1984: 136-137; Dar-

ringer an.| Kinq, 1978; dowden, 1977; King], 1i176). Syibolic

1.
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-xcution i~s a goneralization of the usual execution noriel

.or -o7'-)uter proqrams in tnat flro(Jrai variables -iay be given

s rholic reirosentat ions of their values instead of tne

va la- h rcvs Trio convent ion used, in this thesis is to

,:ital ize tv wfirst letter of prograxn variaolo namies and to

Is l lower case for syrieolic values. For (examlole, one

;ht o: esetnte valet: of varianle A ny a anci the va lue

'fB uy .. hna tor execution of thet statemnts

*A;

A + 1i;

*t v i u"; c)f tli- van juiles voule] BOe

.,)r 11 _-x-cuticon is teesn ci as hr A and T3 have rio-

* T cival'r' ,s rInd SO) ttee T:I:utatiorls (-an -) carriedi

-,I.(,.1 r-lat-iornshii :),et4,:en sy-ino1 ic oxecution and relic-

4'. 1 lr -x.x,_:atien isien1i kone-i to that )(etween a lgehra andi

if -i :rojin contajins B-ranche s or loops, th-n :1erely

r-!resentinmo the. vailues of Ill rejr vairieli)es is net

tenoujne, since tee -So valueos ~i', ion whii ,reqrna i pate vaF,

[4 ol Iow-:1 D)uring sv ibol ic :ex-_cut: ion a s~:ir 1 ir imoleo

;lldPC (path condition) is naintainoriit n~ct l

te co ndiin tht to noc trio in orre,,r f: or t. xeiu'

i% .4
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AND-eJ jith the condition corresponding to the branch taken.

For example, let the value of PC be "true," the value of N

be n, and consider executing the following statement:

if N =1 then
X : 5;

else
X 10;

end if;

There are two possible paths here. If the first is chosen,

then the result is

PC = true and (n = 1)
= (n =1)x = 5 5-

X 5-

If the alternative is chosen, the values would be

PC= true and (n /= 1)
= (n / 1)

x = 10 .5

Someti,nes the current value of PC is enough to deter-

nine which way a branch should go. For instance, if in the
.',

above exainple some previous branch had set PC to include the

condition (n < 0), then the second path is the only possible

one ant PC could be left unchanged: the information that

(n /= 1) is redundant. Thus only "unresolved" branches are

recorded in PC.

Nuiierous automated systems have been developed to do

symbolic execution. One of the first is EFFIGY (King, %

1976). It supports a si-nple (Out nontrivial) language with

a PL/l-style syntax. It functions tuch like an interactive

io)ugger, provingj trace dnu oreakpoint facilities. It also

llws , the user to specify variable values, either as liter-

A'.
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als or symbolically, allowing ordinary execution, [,ur. 4y.-n-

bolic execution, or any combination. When an unresolved

conditional is encountered during execution, the user can

specify "go true" or "go false" to choose which path to fol-

low, or can specify "assume (P)" to add the predicate P to

PC, which may (or inay not) resolve the condition. Finally,

one can request that an "execution tree" be generated of all

possible paths through a program. Since any program with

loops potentially has arbitrarily long paths, this tree may

in fact be infinite. EFFIGY allows the user to specify a

bound on the height of the tree generated. Other syste,ns,

DISSECT (Nlowden, 1977), ATTEST (Clarke, 1976), and others

typically provide comparable facilities.

The application of symbolic execution to program veri-

fication is as follows. First, one can look at the formulas

aissociated with program variables and check that they are

correct. One can also detect cases where a variable is used /-

before it is assiqned a value, and other such computation

errors (Howden, 1977: 267).

Second, symbolic execution can sometimes reveal that a

particular path is not executable oecause the PC for that

path evaluates to false (i.e., is a contradiction), or it

may reveal that some condition tested on a path is in fact
I

redundant. The general problem of proving that an arbitrary

predicate is a contradiction, or that one predicate i uplies .
.*4

another, is unsolvable; in practice, however, it is fre-

2.21
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quently possible to do this, ideally using an automated the-

orem prover.

A third use of symbolic execution is as an aid to do-

main analysis and test data selection (Clarke, 1976). Each

path through a program defines an input subdomain, and sym-

bolic execution of that path will generate the predicate PC

defining that domain. Finally, symbolic execution can aid

in the development of a formal proof of correctness (King,

1976: 391).

Symbolic evaluation has its advantages and disadvan- S.

tages. It appears to be superior to ordinary testing over-

all and in particular is good at detecting computation and 0

domain errors, although it still fails to detect most miss- .-
-p

ing path errors (Howden, 1977: 277). The use of formulas -

instead of input/output pairs for some verification helps to

guard against coincidental correctness. As an automated aid

to other kinds of analysis (domain analysis and formal

proofs), it has proved valuable.

On the negative side, symbolic execution involves sub-

stantial overhead to maintain and manipulate large and un-

wieldy symbolic formulae. The value of any automated system

in particular will depend heavily on the sophistication of '

its formula manipulation and theorem-proving capabilities.

Symbolic execution also has the disadvantages inherent to

any abstract model of execution: execution of programs on

real nachines rarely conforms perfectly to the model (e.g.,

22
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finite precision of machine computation). For this reason,

the execution of programs with actual data remains a neces-

sity. The ability of symbolic execution to aid in the se-

lection of test data considerably mitigates this disadvan-

tage. Finally, even executed symbolically a program can

have an infinite number of paths and path domains, making
ft.l

any attempt at an exhaustive dtemonstration of correctness as

futile as in the the usual testing paradigm.

23,
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I II. Partition Aflysi. j

Partition analysis is a tec'anique that collbines both

formal verification techniques andI cesting in order to ac-

quire confidence in a progra:Vs reliability. it is also

distinctive in that it mak es extensive use of both the spec- a

ification and the implem--entat ion of a design, combining

5lacK and glass box techniques to a greater degree even thanr

Howden's Functional Testing. Partition analysis can also be

applied to two specifications at different levels of ab-

straction (e.g., a high-level Jesign and a detailed design),

naking the technique applicable in earlier phases of soft-

djare development.

Overview of Partition Analys is (Richardson, 1981: 25-50;
Richardson and Clarke,19)a

Partition Analysis consists of three steo-.s: for-ning

the procedlure partition, partition analysis (fortial) verifi-

cation, and partition analysis testinq. Forming the proce-

(lure partition is likewise a thiree step process.

First, symbolic execution is appliedl to the i-,-pleim'mnta-

tion to get a static rei-r(sentation of it. 'Phis differs

fro:--i the more usual use of symbolic execution as an inter-

,3retive'. technique. Tie result is a set of input iin

D[P and corre-spondinig coinputat ions C[r' , one suchi pair

for each path P j, J = 1, 2, ... p N . This is called tie iue

ple:neontation partition.

24
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Next the specification is siiilarly analyzed to produce

the specification partition, a set of input domains DIS I

and corresponding computations C[.S I, one for each

"subspecification" S1, I = 1, 2, ... , M. It is assumed

that a formal specification is available for this step, in

some high-level notation. Richardson uses a specification

language/PDL of her own design called SPA and extended tne

sy'rbolic evaluation techniques to handle this language.

Thus a subspecification is simply a path through the "code"

of tne specification.

Once tne implementation and specification partitions

nave been derived, the procediure partition is formed by in-

tersecting all implementation domains D[P] and specifica-

tion domains D[SII to find all nonempty (overlapping) pairs,

D J. Corresponding to each pair is a "computation differ-

ence" C that represents the disparity (hopefully null) be-

t4een the computations specified by C[S 11 and C[Pj]. Do-

Uanins in one partition that do not overlap any domain in the

other partition indicate discrepancies -etween the i;nplemen-

tation and the spe,-ifi7ation, and hence probable errors

(possibly :nissinq path). Analysis can continue by including

these domains in the procedure partition as elements D1 0

(for unpaired specification domains) and 1)01 (for unpaired

inplementation domains).

Partition analysis verification ta<es the procedure

partition and tries to prove for each do,'tain DM using stan-

25
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dard Proof techniques that C is null, that is, that C[S ]
Ig

and C[Pj] have the same effects on all elenents of D The

equivalence problen is undecidable in general, so this step

,ay or miy not succoed fully. A proof of equivalence, hov-

ever, is a very strong argunent for the correctness of the

i ipe, nentation. A proof of nonequivalence identifies a

fault in the proqrai, and any counterexanples found provide

fault-revealing test data.

The last step is partition analysis testing.

The partition analysis method comp)lements verification
with testing. When the verification process Is unsuc-
cessful, testing nay uncover errors or may increase
confidence in the unproven eiualitv relationships.
SWhen the verification process is successful, testing
T:hallenges or supports the conclusions drawn in the
-ostulatel environ.,ent of partition analysis verifica-
tion (Ricnardson and Clarke, 1985: 1483).

In this step, the proceure partition suucio:nain; and co'c,u-

tations are used to generate test data. Glass oox tech-

niques for testing arithmetic nianipulations, special, ex-

tre:al and nonext reia[ i, " r to tne computa-

tions, while black hox techniques such as domain testing are

aBplied to the domains. Because both i'(plem:entation an,!

speciticatio , o,iains are ob-ing :onsi ]er, , do niin tst ing

will not only pick up path selection errors hut also some

',issing path errors Is woll.

*Loon, Anay;is

In order to ierive st-itic ,xpressions for :)ro4r

paths, Richardson hal' to evclo: t-chniiues for ana lyzin

4 ~2C



mdnc ropresentinq loops. The diescription that Followa in

*taken fro-.! Ricnardson's dissertation ( ?ichardson, 1941), but

iias 1-eon liolIif jed to iaie cortain aspocts clearer.

TUie 7aost geonora 1 loop structure has toie for~l

loop
loop-hnody

on(' looP;

4here loop-bodiy is a set of paths, sonie of which exit ancl

soeof wh ich !o not. Those that dlo all branch to just past

t~end of the loop; those that do not all branch back to

the- tr'!. Thus thie loop is a sinqle--entry, sinjie-exit con-

struct (whether this general for:ri is a structuredl construct

can ne arCIuePd either 4ciy) . The standard while-loop can Yho(

,.;ritten-r in this for-ti as

lolo

if not .,hi le-condit ion then exit;
lou n-body

* end lop;

*Richiardson's loop technique depends upon knowinq a p)ri-%

orit. ni co ~'nle to! so ;uencr- of paths fol lo. ed throughth

*loo-). Ttis:- is a very strong condition that is freqjuently

no-t r-jet; thius the technique is not at (all general. In ;iany 5

cssthis con lition is iot, however, such as; vhen a loop

* has only one path through it thlat stays in thte loop) and all

thi-- othier oan xit it. Anothcer workable case is when,

sa-y, t-i e f irst iteraition thiroughl th;e lonfo I 1oos one -,ath

in,] all subse quent iterations fol low another.

* Figjure 3-1 sno%,sF m ox ~iplo of a loop that cannot U

em Iv,' th s ay PaccireSPA;V-11 por foris a rdinary'

27



SwIcrcli for oe-eient x in a sorte] -irr~v; i n Ir turis, it;'; Lil-

Jlox if foundi. On *oach itorat ion of the loop, x iay, j(2 four

o-r it :nay 00eee 'o not to M-1 prost .; in eithor '

bl' loo) is T40 nt-.' alths stay in tho op .or qini

.qto X he inq less tin~r or jr it-r tnin tieo curront lmn

o.ing exaimino". One cinaiot deteroine t> so;unc of thes-

vc'o oatlis tm-it '%411 !-), foll- 04C i thout .KnO.Ving at boa-st

5010l Of the data valu.c.s; he-nce, tnis loop cannot oe analyz'e.i

5y !Uo,_narison 's techniw ue.

or)C ' uroS''arc (A :in ARRAY __TYPE

X :in ELEMff.T TYPH;
oun I :out ROC)LLANI;

t~hcrc :out INDEX TYPI.) is
%LB :INDEXTYPE %'Pirst;

rIBI INDEXTYPE A' Last;
%Indiex INDEX TYPE;

4FoundI FALSE;
whiile LR UBJ1 loop

Index (LB + U13) / 2;
if X < A( I ndex) then

UB 13e -1

elsif X >A(Index) then
LB1 : Index + 1;

e1se
Foundt TRUE;
4 ere. Indlex;

end if;
en'i loop;

endi Soarchi;

Fiq;ure 3-1. An un-,-nalyzahie loop
Ad-apted fro,;i Darrinqor and King, i978: 51

AS 5u;:imil thait a iorop 1c; alalyzaler, ti~' First Fft. : is

to aisociate witn it an iterration COUnter :, to cou) nt to

nu,1',;'?r of looi. ttorations . pac ot.o of ti. )w v of o

i2



1()n:, is tvitn ,xocj7to.!n' o, to ;ot it rejprosentat ion for

-12 )~ f ono it-riti(on :)f tii. 1:-)-) inl tiv2 for. of 4

~r~ i~ Vir o - xirr-n I n T11 io' fo)r -,atn. E.:

* .it i ; it:i- r ri. o r -iQ

If t r- i r r .2,~ rvl- I.-A' in :~sol. tin :

i f5 1 in o -f r r' r. :'i 11 r rl ) .n* t. - '

* .

* ~~~il-, Jn t~r- !,o,,tv t in n ioutl K ti r-f lil ri

p ~I1.2's ro t:) ivriil v:r o I ~ rij '1 r;, I -i :lo X

T'i e~ I~ o;~ r o i. In :3 -1v 1f x's. I0 -, ini

s iou 1i cit a h rni' _L y ma (- .i oi f~ t7 : r

fh r ilSO .*o r th c)O <la r, iso -, 19 8 11 0r
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tin i o s :tI t ii ve:' n0 It oV nt r a n: r t ur n 1:T If i t is

t !r t..~in~ i~LSEtnterwist- . F-iiuro 3-2 is a q:oci fi,-at icm

r j P.~r itton in SPA. It is >aeion tfi standlard icf-

~ ir o r . ~.~s ,that a nu- .oor .1 is pri -,o if tind only

*it 1-; iiviqi-l ' nly .,-v I arvi \ (ai' h.-nco not .),' any

K rin tvio rinv:, 2 tnrojqn N - 1). Fiqure 3-3 is An A ia

I.~~ 1n fn t for I" -Ti~ t~ i -s ai'Jantavw of so'veral1

inV1ro:rt IKin :lu )inq t-io fact tn at if tifore isa

1I, tir ist .- ono i''ss thian tie s. IuAre root

r t T u nt I r .1I

rtt-r lirn-

r i,
tr.,vi- ->

ortn;.r ine 2. .

-2 1 ml 1 7 '

v i ~ 1it 14i 7f ~ I

i'.i'.i:r. irti t-ion for i>{'1i

;if -i~iti l t i' tor

* f~~in or I,r ttry i 't 'n;o



~an r~t on Ir r if N I NTLUG E r~ inqe 2 . .r~ 2 1A
rceturn ~C(L'

1 i(N Uo 2 ) or( w 3 U)0 tnri
2 ilri ( N < 4)

3 V 1;ri E
4 FAtor : - a;

. nile ?'~a ~ 2 <= N low,

or ( N -ol ( F.':tur + 2) 0) th-r
7 IF~~Prili'e FA~E

v "V2 If;

reotu rn IF;P r i,
1r i

Fi "ure 3-3. [ 'ple_ ienrtat ion o f Pi I'l
A.anelfr:~~9'na r ison, 19 81 : 2 4

i att iilaci, i t~it thr-enti ref l'ect this it12.

ryfl )i jt viriAr)Ie is th value of the fun-ction,

"I,;: .r Ir t'ite first tlA~o caseos t~ij s value is gAiven expl ic-

1;.1 nl_ 1i it CISe_ , i t LS r iarosontod 5y ai for.u a

-Tei 'ile wertaition' of PR I 'I conti in.s a loopi, and Pii-

-ar r 3-6 cin i 3-7 'iiv. inrter :(.I ia 'r-.StuS of tflI,,oo ana ly-

s Srela ire? to .1et an f~Ir5Intor i t-. hr are t-iree

~t~ trouTht~i1- lC, orr-slpon l i to the. hil coni it ion

.11.j1.ivinq~ to Fale tlie if :ni tin en truo, an,,t'

*lsr'~~~ r~1LI.'. ' rue Tne f ir:st t%,,) cond itions, result

ite : in] ~x it' n, Wi Ile tie las.'t o -e ty S in t 1e

iq :. i1 ;j r- 3-6 ii '105q Iyw i ro' r ,;--i na t ionis fort 7C

_- 4 '!
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a. Specification Flow Graph
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b. Implementation Flow Graph

Figure 3-4. Flow Graphs for PRIME
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D[Sl]: (n = 1) .C[ SI] Primne = false

S2 (s, 1, 3, 4, f)
D[S2]: (n 2)
C[S2]: Prime = true

S3 (s, 1, 3, 5, 6, f)

D[S3]: (n >= 3)
C[S31: Prime = forall {i := 2..n-I 1 n ;nod i /0 }

.1'

-- t r, u

K

7- (5, 0, 7, 9

PC C, and (Factor k-iN)a~i(

Fa t or 0)or (N modl (Factor + 2) 0))K-i K-i 1

Factor = Factor

K K-i ..

-ka

iec = true {i

-- :,atn (5, 6, H)

PC k = PC. and (Factor_ 1 ** 2 <= N) anid ((N io S

F a;tor = 0) oinr (N i,o, (Factor + 2) / 0)

isPriu i SPiT

[ i~,K = -is<

'N

Fatr = Factor, +",

1

lee -= fas -.

Fiqure 3-6. ;,ibulic ]  cetion of Ioop in PRIW M
33A
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* npatai condition and variable values after so-,e iteration k,

in torms of the values from the previous iteration. Figure

3-7 then solves tnese recurrence relations in closed for.n

for the special case where k ; 1 and tne general case where

k >= I. Once the loop analysis is co:aplete, the full i:2iple-

iientation partition can be constructeJ. This is given in

Figure 3-8.

The last part of the first step of Partition Analysis

is to for R the procedure partition. The donain of each suo-

specification is compared with the do nain of each implenen-

tation path, and any region of overlap defines a subcloiiain

of the procedure partition. For each subdomain, a comrputa-

tion difference is co;np)uted by co:uiparing the co:iutations

secified by the specification and the i;nplelnentation for

ele~nents in that subdomain. Figure 3-9 gives the procedure

partition for PRIME. Note that subspecificat,,ri does not

datcn any patri no:nain (elemient D10 in Figure 3-9). ''i

i i::ediately reveals that the imnplementation fails to con-

sicer tne case wliere N = 1. Note also that subspecification

3 overlaps no less than five different path domains (ele-
3

ents D31 , D)32 ' D33, )34' and )35

Step, two of Partition Analysis is for;nal verification

tmiht all coiputation differences in the procedure partition

A ro nl I.I Otn-2r tiian D this can 0e ione for PRI"IE. For

S21, ~ for T.x , pl, , the ,io.liain is ,i in (n 2) and th ,

34 V..-
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5. 4.

-- path (5,9)

PC = PC and Factor 0 ** 2 > N a
Factor F Factor 0

IsPrine = IsPrinie0
0p

-- path (5, 6, 7, 9)

PC = PC and (Factor0  2 < N) and (N mod
0

Factor0 = 0) or (N inod (Factor0 + 2) 0))

Factor = Factor 0

IsPrimae = false

-- path ((5, 6, 8)+, 5, 9)

PC = PC and exists {k := 2 ... I ((Factor + 6*k
0

- 6) ** 2 > N) and forall {i := 0 .. k-2 I

((Factor + 6*i) 2 <= N) and (N mod
0

(Factor + 6*i) /= 0) and (N mod (Factor +
0 0

6*i + 2) /= 0)}}

Factor = Factor + 6*k - 6

IsPrime = IsPrime 0

-- r)ath ((5, 6, 8)+, 5, 6, 7, 9) N.'

S. .-

PC PC and exists {k := 2 ... I ((Factor0 + 6*k

6) ** 2 <= N) and ((N mod (Factor0 + 6*k - 6)

00= 0 ) or ( N iod ( Factor 0  + 6*k - 4 ) = 0 )) and .;

forall {i := 0 .. k-2 I (N ;',od (Factor0 + 6*i)

1= 0) and (N nod (Factor0 + 6*i + 2) /= 0)}}

Factor = Factor 0 + 6*k - 6

IsPrime = false

Figure 3-7. Loop Expression in PREl .i.:

35
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P1 (s, 1, 2, 10, f)
D[PI]: (n >= 2) and (n mod 2 = 0 or n mod 3 = 0)
C[PlI]: Prime = (n 4)

P2 : (s, 1, 3, 4, 5, 9, 10, f)

D[P2]: (n >= 2) and (n < 25) and (n mod 2 / 0)
and (n mod 3 /= 0)

C[P2]: Prime = true

P3 : (s, 1, 3, 4, 5, 6, 7, 9, 10, f)
D[P3]: (n >= 25) and (n mod 2 /= 0)

and (n inod 3 /= 0) and ((n nod 5 =0)
or (n mod 7 = 0))

C[P3]: Prime = false

P4 : (s, 1, 3, 4, (5, 6, 8)-, 5, 9, 10, f)
D[P41: (n >= 25) and (n mod 2 /= 0)

and (n mod 3 /= 0) and exists {k :=2 ... I
(6*k - 1) ** 2 > n and forall{i :1..k-1
(6*i - 1) ** 2 <= n)
and (n niod (6*i - 1) /= 0)
and (n mnod (6*i + 1) 1= 0)

C[P41: Prime = true

P5 (s, 1, 3, 4, (5, 6, 8)+, 5, 6, 7, 9, 10, f)
D[P5]: (n >= 121) and (n mod 2 /= 0)

and (n mod 3 /= 0) and exists {k := 2 ...
(6*k - 1) ** 2 <= n)
and ((n mod (6*k - 1) = 0)

or (n mod (6*k + 1) = 0))
and forall {i := 1 .. K-1 I
(n mod (6*i - 1) /= 0)
and (n rood (6*i + 1) /= 0)

C[P5]: Prime = false

Figure 3-8. inplementation Partition of PRIME

two computations are the constant value (true) and the pred-

icate (n < 4), which evaluates to true within the domain.

Proofs Lot Lm oLher domains are more complicated, and are

not presented here.

Step 3 of Partition Analysis is test data selection, to

further reinforce confidence in the corrosp)ondence bete,

36

• I i l - i .. . . i-- _ .9..... a , f -



-~~~~~- -Ir -. VV . ~ S.

D10: (n 1)
C10: (false) vs. nothing

D21: (n = 2)
4 C21: (true) vs. (n 4)

D31: (n >= 3) and ((n rood 2 = 0) or (n ,nod 3 = 0))
C31: (forall {i := 2..n-1 I n mod i /= 0}

vs. (n < 4)

D32: (n >= 3) and (n < 25) and (n nod 2 /= 0)
and (n mod 3 /= 0)

C32: (forall {i := 2..n-1 I n nod i /= 0}
vs. (true)

D33: (n >= 25) and (n inod 2 /= 0)
and (n mod 3 /= 0) and ((n rood 5 0)
or (n mod 7 = 0))

C33: (forall {i := 2. .n-i I n mod i /= 0)
vs. (false)

D34: (n >= 25) and (n rood 2 /= 0)
and (n rnod 3 /= 0) anfd exists {k := 2 ... I
(6*k - 1) ** 2 > n and forall{i l..k-1
(6*i - 1) ** 2 <= n)
and (n mod (6*i - 1) = 0)
and (n mod (6*i + 1) /= 0)

C34: (forall {i := 2..n-1 I n ;:od i / 0)
vs. (true)

D35: (n >= 121) and (n mod 2 /= 0)
and (n mod 3 /= 0) and exists {k 2 ... I
(6* - 1) ** 2 <= n)
and ((n nod (6*k - 1) = 0)

or (n mod (6*k + 1) = 0))
and forall {i := I .. K-I I
(n mod (6*i - 1) /= 0)
and (n no:1 (6*i + 1) /= 0)

C35: (forall {i := 2..n-1 I n rood i /= 0)
vs. (false)

Figure 3-9. Procedure Partition of PIME

the specification and implementation (especially in the case

of a failure in the formal verification step), and also to

demonstrate the run-time behavior of the progran. Two cri-
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teria for selection are used, one for domain testing and one

for computation testing. Domain testing focuses on the

boundaries between subdomains defined in the procedure par-

tition and chooses test data for camil domain that is both ON

a boundary (and hence in the lonain) and also data that is

OFF the boundary and not in the domain. OFF points are cho-

sen to be as close to the boundary as possible, to minimize

the maximun boundary displacement that would go undetected.

Since PRIME deals with integer values only, OFF points can

be selected that are immediately adjacent to each boundary.

Co qputation testing criteria focus on the couputations

performed within each domain and help to verify that the

computation difference for each domain is null, even if the

formal verification step failed. Details of the proof (or

attempted proof) often provide guidance for finding good
-P

t-eS-t :2oint , )roperties of til,' :o

.utatio .;.ill also ciictate .'hicn test ,data will o so-

lectoi. Figure 3-10 gives somie exanTples of the test data
5--

that would be selectern for tho sulhuo-iains of PRIME.
.5"*-

Perfor-nance of Partition Analysis

To get so-he idea for the effectiveness of Partition

Analysis, Richardson used the technilue on a set of 34 ,ood-

ules fron the proyra.,ininq literature and texti)ooks, provid-

in 3 specifications ror thie i as ne_2]eoi (Richardson and

Clar<ec, 19-5: 1486-1488). 'ost of tie nodules were correct

or haA only a few errors, so iutation analysis as used to

3 :-
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D10: Domain Testing Criterion:
N = 1 (on), N = 0, N = 2 (off)

Conputation Testing Criterion:
N = 1

D21: Domain Testing Criterion:

N = 2 (on), N = 1, N = 3 (off)
Coviputation Testing Criterion:
N = 2

D31: Do nain Testing Criterion:
N = 2 (off), N = 3, N = 4 (on)
N = 5, N = 7 (off), N = 6, N = 9 (on)

Co-ip)utation Testing Criterion:
N = 3, N = 4, N = 1000

Figure 3-10. Sample Test Data for PRIME i.
generate large nuibers of ".;utant" variations of each ii,)d-

ule, each with one seeed error. Partition analysis suc-

cessfully detected all of the errors that led to incorrect

progrvis. There 4ere a few nutants that correctly executei

all the test data generated by the Partition Analysis proce-

iure, and in each case it was snown that the iiutant progral

, 'is in fI;ct exuivalent to the correct one. Richardson ad-

iits that this evaluation is neitner as rigorous nor as co t-

plete as it could ne, but her results argue favorably for

the effectiveness of the tecllniqie.

The next chapter explores extensions to Partition Anal-

ysis tiiat expandl its applicability by allowiing its use on

programs containing proceture and function calls. The case

of recursive urocejures ant functions is also considered.
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IV. Extensions to Partition Analysis

This chapter describes how Partition Analysis can be

extended to apply to programs that use procedure and func-

tion calls. The first section presents several approaches

to the general problem, while the second section addresses

the special case of recursive procedures and functions. It

is assumed that all procedures ani functions have a single

entry point and a single exit. Returns are treated as

branches to a du.mny node at the end of the routine to en-

force this convention.

Procedure and Function Calls

During ordinary symbolic execution as described in

Chapter 2, procedure and function calls do not present any V-

special problems. When a call is encountered, arguments are

bound to parameters, space for local variables allocated,

and control transferred to the start of the called routine,

just as in normal execution. At the end, output values are

passed back to the calling routine and execution continues.

The fact that some or all of the values being passed around

are represented by symbolic expressions does not interfere

with this process.

In Partition Analysis, however, the need to derive a

stati ex!)ression for a programi causes some problems, and

also n)resents some opportunities, in the handling of proce-
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dure and function calls. The most direct approach is to

start with the bottomi-level routines and derive expressions

for them using the methods described in Chapter 3. Then in

places where the bottom-level routines are called one can

substitute these expressions, naking parameter substitutions

and any simplifications possible. This process can be re-

peated until the entire program has been analyzed.

Figures 4-1 through 4-4 illustrate this approach. Fig-

ure 4-1 is a function that returns the number of days in a

calendar month. This and later examples make use of the

predefined Ada package CALENDAR and the type declaration

type DATE_TYPE is record
Day : DAYNUMBER;
Month : MONTHNUMBER;

end record;

Function DAYSIN calls a boolean function LEAPYEAR

when it is determining the number of days in February. Fig-

ure 4-2 gives an implementation for this function. Analysis

of LEAP_YEAR results in the expression of Figure 4-3. This

expression is then used during the analysis of DAYSIN to

get the expression of Figure 4-4.

This approach is not without its disadvantages. First

of all, during top-down development one might want to begin

analysis and testing of routines before all of the lower

ones are co:nplete. Second, the implementation of a low-

level routine may include details that are not relevant to

the routine oeing tested. For exainple, numerical routines

like SIN or SQi'rA are frequently implemented at iterations

* 41
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function Daysin (Month : MONTH NUMBER;
Year YEAR NUMBER)
return INTEGER is

s begin
case Month is

1 when 4 I 6 1 9 I 11 =>
2 return 30;
3 when 2 =>
4 if Leap_Year (Year) then
5 return 29;

else
6 return 28;

when others =>
7 return 31;

end case;
f end Daysin;

Figure 4-1. Implementation of Days in

until some error bound is met. These routines certainly

need to be tested, but in many cases an abstract view of

these functions is sufficient and desirable. Finally, in

the case of a routine that is called from many places, or

for example a routine that is part of the definition of an

abstract data type, it may be desirable to demonstrate the

correctness of the routine separately one time (using Parti-

tion Analysis if it has a formal specification, or some

other :ethod), and then use some other way of referring to

its function when it is called.

There are at least two ways to represent a procedure or

function without presenting all the details of its i'ple iien-

tation. First, one can use a formal specification that has

been analyzed using Partition Analysis. Specifications are

written at a higher level of aostraction and are usually

42
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function LeapYear (Yr : YEAR NUJ>H.I-h)

return BOOLEAN is

s begin
1 if Yr mod 400 = 0 or (Yr ,,wJ .1

and Yr itod 100 /= U) t.:,

2 return TRUE;
else

3 return FALSE;
end if;

f end LeapYear;

Figure 4-2. I)le-nentation of Leai,_Yo r

P1 : (s, 1, 2, f)
DIPI : (yr nod 400 = 0) or ((yr mod 4 = Q)

and (yr niod 100 /= 0))
C[Pi] : LeapYear - true

P2 : (1, 2, 3, f)
D[P21: (yr nood 400 /= 0) and ((yr :nod 4 1= o)

or (yr nod 100 0))
C[ P2] : LeapYear = false

Figure 4-3. Irmpleientation Partition of Leap Year

much simpler than the corresponding implementation. A spec-

ification is ideally also available before a nodule is writ-

ten, permitting the analysis of incomnplete programs. In

practice the use of a specification expression is no differ-

ent than using the impleentation itself.

An alternative approach is even itiore abstract. If a

routine is not yet written or even formally specified, or if

it defines a well-;nown function (such as SIN or SQRT), it

-pnay be sufficient to represent it sy~nbolically and iive no

indication at all during analysis of how it works. This ap-

proach is also appropriate for example in the C(lse of an
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A) PI1 Vionth in 14, 6, 9,1 11))
IP1 I: Dai!s in =3 0

31 '(, 3, 4, 5, f)
-9nh 2 ) a rid ((year iio(, 400 0) or

(Yea r -loti 4 0) and (yeair inod 100 /= 0)))
I:Daiys in 294

:j (s, 3, 4, 6), f)
3:(ion th - 2) an; (year inoJ 400 /= 0) and

y ( y~r ,)o~l 4 / 0 ) or (year nod 100 =0))
v31 -i.3 i n -21

t'4 (s, 7, f)
P4: ( onttD in (1I, i, '1, 7, 8, 10, 12))

* 'L'41 Days _ in - 31

tir- 4-4. L:1l''entation Partition of Dciys in

ia i. r i~ ja ti tyv o ()r 4 ien t tit- correctness of a routine has

~ auoac~is easily inpile'ented for function calls.

,v,~ ii~wionF is cilleA, its 1 aramieters are replaced rvy

_ri*n,., ' fiv-in oit t.le val1u, returned by F is repre-

'>r~~' 5 o1i all.For ea.d ,if var iaole X nas trie

.1a + :),tnen after ttle statem:ient

%W

Y'r~ 'i Y' Fq) l!rIt j' F+

f I is .i,'nroacn i s alIso i I Iust rait-d in F'iqures 4-5 and

4- .F ijure 4-5 is tne iiploQiion-ittit i on o f nitetr func-

i')n DAYA; BE"I'vi'l-EN that cc ni)utes Tilif numbeer of 'days oetween

'at 4,4. i t's of t -;,- tit, ytar . , t w f' fun- tion DAYS IN

tr K irt- ft tni cor)Iito. Fi Ii r 4-6 snows, the 1.npdenen-

t ~ iritun'~.X~1 :~N .~ )Y.-INtr~r'44~



function Days Between (Datel, Date2 : DATE TYPE;
Year : YEAR NUMBER)

return INTEGER is 15
Difference : INTEGER;
From, To : DATETYPE;

s begin
1 if Datel.Month Date2.Month then
2 Difference abs (Datel.Day

- Date2.Day);

else
3 if Datel.Month < Date2.Nlonth then

4 From := Datel; 'C

5 To := Date2; C

else
6 From := Date2;
7 To := Datel;

end if;
8 Difference := 0;
9 for Mon in From.Month .. To.Month - 1

loop
10 Difference := Difference

+ Days_in (Mon, Year);
end loop;

11 Differenc := Difference + To.Day
- From.Day;

end if;
12 return Difference;
f end DaysBetween;

Figure 4-5. Implementation of DaysBetween

C'."

P 1l ;3[ lv. N (t, tnat if t:e' i 'l, 1enIta1r,n- oi W',Yj_[N.,%,
%,

..... I",  j in St, i n , I 100' In ')AY ,K 'lJV , .011 ' C:"

.1 !ti, ;atis tat re~na Lmd in t'ie 1noi, wita no ,,v of

i,, n, L~ti ; ;)ath woul i be [olloWe'i during each itier -1 ion

'I t 1.' 1oop oul(l not a nivf been analyza,)Ie uv Part ition

n t i;is. '['nus ti* use of this aostraction tec i j , i-

I e,-" a :)ro,;ra. to t nalyzed that other [ , woul i tiave

. too) 2 1 i:ite, assuminq tnit th, correctness uL
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1, : (5, 1, 2, 12, f)
.' D PII:(,Iatel. nonth = Aate2.montn)

C[ III: 9)iys_ Between abs (J1atel.d.-iy - date2.d-y)

P2 (s, 1, 3, 4, 5, 8, 9, (10, 9)*, 11, 12, f)
D[P2]: (Iatel. nont < date2.nont h)
C[P21: Days Between = sum (i := datel.ionth

date2.month - I I
daysin (i, year))
+ date2.day - aatel.day

P3 (s, 1, 3, 6, 7, 8, 9, (10, 9)*, 11, 12, f)
DIP31: (datel.month > date2.mnonth)
C[P31: Days-Between = sum (i := date2.month

uatel.month - 1 I
(iays_in (i, year))
+ datel.day - date2.day

Figure 4-6. Implementation Partition of DaysBetween

"ro~eciure calls can also be treated symbolically, but

tiet notation is necessarily different. The proposed nota-

Stio ,:il allow -i procedure to be represented functionally

so that analysis can proceed.

5-. A )rocediure can be viewed as a function that has an in-

put vector (X, , x) and produces an output vector (Y1 ,

Y,) Paraoeters of mode "in" are part of the input

vector, and rpar-i eters of mode "out" are part of the output

vector. i<araieter m;iode "in out" is in effect shorthand for

an element that holds an input value and will also receive

an outout value . Such paraineters are "split" and listed in

noth vectors. The output vector can be viewed as an un-

naned record type that the proc-dure "returns".

To represent a procedure call symbolically, the input

arguments are bound to the procedure's input para:neters, and
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the values of tn(e out,)ut paraneters are re:preSe nt(u ,.y t;1e

.roce ,jro nane' ani an output parav!ieter nane, using tne uisual

.yntaix for represen ting coc:ponents of a record. For exanz-

!)le, the preaiefiaeci Aaa jpacKage- CALENDAR include a --ro-e(Jure

"tn tie .specificitionl

proce c-ure SPLIT (Date :in T'IE;
Year :out YEARNUMB3ER;

'p. Month :out MOUNTH[ NUMBELR;
Day :out DAY -N UMB,5E R;
Secondl out DAYL)URAPIUN);

\call to thiis proceuiure might look like

Solit (Todays ')ate, CurrentYear, Current_.Aontn,
A.Current_Day , CurrentTi;iie);

-ie effect of this call in the proposed notation would n~e

%dCurrentYear Split.Year (v (Todays D~ate))
Current Month =Split.1-Ionth (v (Todays_Date))

*CurrentDay =Split.Day (v (Todays -Date))
Curre-ntTrine Siol)it.Second (v (Todiays_Date))

4here v (TodaysDate) stands for the sy:nbolic value of To-

J, ays ;Date at thie ti-ne of the call. Analysis can now proceedl

Recursive Procedlures and1 Functions

If a proc-edure or function is recursive, it cannot oe

ai ie ire ,ttly .)y or-uinary Partit ion Analysis. A s i plo

__miuehow-ver, per:itt analysis in nany cases.

Phe cnroacq-r -,n ~z. is naocu to the 100p) analysis

t->nn ~e pesmedin Chapter 3. All patnis through tiie

roitine are ioientifiei -ml s'ibolically executed. Recursive

-al tt re? rc;;resentedr sym-,bolically as descrioecl above. Tle

r- ;ult i,; a set of rec-urrenc-e relations cois istin :v f -I nu'i-
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her of base cases (paths without recursive calls) and a num-

ber of recursive cases (paths with such calls). As in the

case of loop analysis, these relations are then converted to

a closed-form expression to be used if desired wherever the

routine is called, or in the further application of Parti-

tion Analysis (i.e., the formal verification and testing

orocedure) to the routine itself.

A short example of this kind of analysis follows. Fir-; I
ure 4-7 is a recursive function for computing factorials.

Figure 4-8 gives the recurrence relations derived from the

symoolic execution of this routine, including the notation
I

for representing recursive calls. For this example, it is

then trivial to show that these relations correspond to the

standard definition of factorial:

Factorial (N) product (i 1 .. N I i)

Restrictions analogous to those on loops apply to the r

analysis of recursive procedures and functions. If a recur-

sive routine has several paths that contain recursive calls

such that the sequence of paths followed is data dependent,

then the recurrence relations derived for the routine will

not be solvable (they -nay not be anyway). For example, a

routine that searches a ninary search tree by calling itself

recursively on either the left or right subtree until either

the value t)eing sougnt or a leaf node is found cannot be

P.
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function Factorial (N INTEGER) return INTEGER is
s begin
1 if (N = 0) or (N = 1) then
2 return 1;

else
3 return N * Factorial (N - 1);

end if;
f end Factorial

Figure 4-7. Implementation of Factorial

L".

Pl: (s, 1, 2, f)
PC = PC and ((n = 0) or (n = ))
Factorial = 1

P2: (s, 1, 3, f)
PC = PC and (n /= 0) and (n /=1)
Factorial = n * Factorial (n - 1) .

.-

Figure 4-8. Recurrence Relations for Factorial

fully analyzed because the sequence of "left" and "right"

noves cannot be determined at analysis time.

Of course, this only applies if a closed-form solution

is truly necessary: the need for such a solution is not al-

ways present. Frequently a routine implemented recursively

..1as a specification that is also recursive. Thus the recur-

rence relations alone nay be sufficient to prove compliance

with the specification during the formal verification phase.

In tne exanple aoove, the recurrence relations derived from

the i:illeEientation clearly correspond to the usual recursive

definition of toe factorial function.

.0heter a closed-fori expression is usemi or not, the

3-1ection of diata during the testing phase to test each sub-
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domain, that is, each path through the routine, guarantees

that all base cases and all recursive cases will be exer-

cised. Hence the traditional guidelines for testing recur-

sive routines are subsumed by the Partition Analysis method.

Application of Partition Analysis to Whole Programs

The purpose of extending Partition Analysis to include

procedure and function calls was to be able to analyze en-

tire programs. While the unavailability of I/O, limitations

on loops, and complexity of the method when carried out man-

ually preclude any meaningful example froin being given, this

section outlines one procedure that could be applied once

these other problems are solved.

Partition Analysis seems to lend itself best to a bot-

tom-up testing approach. During unit testing individual

n;odules can be analyzed and compared with their specifica-

tions, and also tested using suitable driver routines. This

is not very different than current practice; the point is

that the application of Partition Analysis will inake it more

systematic and thorough. If a "unit" in fact contains pro-

celures and functions of its own, then they will need to be

analyzed first. Further, routines that are called by many
units can ne symoolically executed once and the resulting

xxpressions placed in a library for use in later analyses.

As units are conbined1 into larger entities, it will oe-

come desirable, perhaps crucial, to switch to one of the

;tuorc abstract (and co:,pact) representations for the various

50
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lo,-level routines, either tnrough tne use of specifications

or of synbolic representations. The choice of representa-

tion is not arvitrary, however. During the for-ial verifica-

tion phase in particular, if a syinbolic representation is

used, there irust be enough semantic information available to

• nanipulate fornulas containing that representation. For ex-

an p1, during synbolic execution in general it is always as-

sumed that enough is known about operators like "+" and

"od" to be able to sisplify and conpare forimulas containing

these syl,,!bols; the same liust be true for user-defined func-

tions and proce:lures.
Noi nuch infornation is enough will de.cndc on tie ap-

plication. For exaxtple, a function INIf.,RATE that co:iputes

jdefinite integrals given an arbitrary real-valued function

and an arbitrary real interval does not need to know any-

thirnic about the function beyond the basics that it is co;r,-

putau)le, defined on the interval, and returns a real value ..

[n such a case, use of a sy,,bolic representation such as

I :3N( X) is a)propriate. In other contexts it tay be

- necessary to know morn about tho' function, such as tha L

SIN(-X) - - S[I(X), or thlat SIN(2*X) = 2 * SIM(X) * CUS,(X).

% ne source of infornation about a routine at a reason-

ably astract level is the s:)ecification partition, as long

as the i itleentation is at some time sno,;n consistent with

it. If even more information is needed, the full procedure

-jartition itselfC can !be use(.. S. ntic infornation can b:

%
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"held3 in reserve" until needed, by using a synbolic repre-

sentation and introducing seinantic information only where

needed in a proof, or it can be included directly by substi-

tuting the appropriate expressions into the for iulas of thie

high-level routine being analyzed.

During the test data selection step it is also advised

to use some of the information gathered during the analvsis

of the low-level routines. Specifically, in order to test

fully all interfaces and all paths through the program (up

to loop iterations and recursive calls), domain infor:7iation

fro n the procedure partitions of the low-level routines

should1 he used. An example is the best ..ay to illustrate

this. A program that riale use of factorials ight have sev-

oral domains whose co;iputation includos a call to the FACTO-

RIAL function above. If these calls are represented syanol-

ically, then Auring test data selection each of these do-

* ;ins should he further subdivided into one where the,? arqu-

lent to PACTORIAL is one and anotner where it is two or

:!iore. This inclusion of low-level domain infor~nation at

higher levels of the program nelps to fiaintain confidence

that the sum. of the parts is correct, and not just tioe parts

th"e s(!Ives. It also results in a tost suite that exercises

the entire )rogran, yet o'as levclope in the mrocess of

t-sting the ,rojrai, increir,(mntally.

_,% %



V. Conclusions and Recomendations

This chapter offers conclusions concerning Partition

Analysis in terms of its effectiveness and scope of applica-

oility. It also presents recolnvendations for future work.

Conclusions

The basic probleia of handling procedure and function

calls was solved. A problem many verification procedures

have, that of getting extremely unwieldy even for programs

of modest size, was also addressed. This problem was not

solved -- it seems highly unlikely that any effective method

of verification will be quick and easy to apply -- but tech-

niques were suggested for controlling some of this explosive

increase in complexity. The straightforward approach of di-

* rect inclusion of subroutines (in effect, in-line expansion)

quickly gets very large, as expected, but abstract represen-

tations can greatly simplify in particular deriving the pro-

cedure partition. To the extent that information from the

specification and/or implementation is reintroduced, the

formal verification step will approach the complexity of

having used the direct representation in the first place,

!3ut it will never be worse than that, and it may remiain con-

sic]erahly sixpler. In the testing phase only domain infor-

nation is reintrortuce-l, so a 3i*,tplification has occurred

here as ,iell.
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Looking at the method as a whole, Partition Analysis is

largely language-independent. Although all of the examples

presented here were in Ada, in the original work Richardson

presented exa~nples worked out in Ada, Pascal, and FORTRAN.

In the course of the work presented here on analyzing recur-

* sive routines, examnples written in Pascal and Ada were suc-

cessfully analyzed. Some examples in LISP were also tried,

with mixed success. The main difficulty with LISP is the

application of semantic information regarding built-in oper-

ators such as CAR, CDR, CONS, and so forth, in order to ma-

nipulate formulas containing them, and also the recursive

nature of S-expressions, which seems to demand an induction

proof in most cases. Such difficulties make analysis harder

but not impossible. The above languages and similar ones by

far represent the bulk of the software being written today.

Partition Analysis seems best suited for general scien-

tific, engineering, and mathematical applications. Some

specialized applications such as compilers, operating sys-

teoms, database and graphics have special techniques of their

own thiat are used for software development. Partition Anal-

ysis as a general tool is not well suited to such areas.

Partition Analysis also seems to be inappropriate to verify-

ing complex human-coiiputer interfaces, this being a poorly-

understood process that is still very much an art. For em- .

bedded conputer systems, Partition Analysis can usefully an-

Salyze Tiany of the algorith:ms user], and the testing phaso
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will demonstrate the full range of runtime behavior. How-

ever, much embedded software uses control structures such as

interrupts, coroutines or parallel execution that are beyond

the scope of the inethod.

Partition Analysis works best in a traditional software

development life cycle of requirements definition, specifi-

cation and high level design, detailed design and coding,

and unit and integration testing. It is also consistent

with the use of an object-oriented design methodology. Im-

plementations of abstract objects can be proven consistent

with their specifications and then treated as primitive ob-

jects during subsequent analysis as explained in Chapter 4.

Partition Analysis is less well suited to a rapid prototyp-

ing environment where the requirements are ill-defined and

rapidly changing, since formal specifications play such a

central role in the method.

As indicated briefly in Chapter 3, early empirical

studies indicate that Partition Analysis is extremely effec-

tive at detecting program faults. What .nakes Partition

Analysis testing superior to other techniques? Black box

testing looks at the input domain and finds tests that thor-

ougnly exercise a correct program, but possibly not an in-

2orrect one. It also ignores some distinctions within input

subdomains that are unique to the implementation, and thus

may fail to test solme relevant cases. Black box testing can

'o a reasonable job of finding path selection errors, but in
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general cannot find missing path errors or computation er- .

rors effectively.

Glass box testing, on the other hand, looks primarily

at the implementation, devising tests that thoroughly exer-

cise whatever the program does, but not necessarily what it

is supposed to do, using the specification only as an

"oracle" to distinguish right from wrong answers. This

characterization applies to Functional Testing as well. I

Glass box testing is generally good at finding computation

errors and path selection errors, but again cannot detect

missing path errors in general because the specification is D

largely ignored.

Partition analysis is more successful at finding errors

because it gives equal weight and equal effort to the analy-
S

ses of the specification and the implementation. This anal-

ysis is followed by an attempt at a formal proof, where dif-

ficulties or counterexamples will point out faults, and also S

by extensive testing of all relevant domains in the program,.

using both black and glass box techniques.

Future Directions I

The original Partition Analysis method was very re- -,.

stricted in the language constructs it could handle; it

needs to be able to handle the full range of constructs en- I

countered in real programs. The work in Chapter 4 on proce-

Jures and functions is a step in this direction. The method

iesperately needs to be tried on larger examples, to judge I
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better the effectiveness of tne method as a whole and to
P

validate the procedure described in Chapter 4 for analyzing 6

whole programs. If done entirely by hand, however, this is

impractical. Some automated tools exist, for example to do

symbolic execution, automatic theorem proving, and test case

execution and monitoring, but these were not available for .F

this thesis. The unavailability of I/O and especially the

limited power of existing loop analysis techniques further

complicate matters. Any future work directed in any of

these areas (use of existing automated tools, inclusion of

I/O or new loop analysis techniques) would have considerable

value, especially if it included an analysis of larger pro-

graiis than has heretofore been done. Automation of the Par-

tition Analysis procedure itself would be premature, given

the heuristic nature of several parts, in particular the

verification and test data selection steps. A

5'
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