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Preface

The purpose of this study was to modify an existing parameter

estimation algorithm to a multiple-inpxt multiple-output difference

equation model. The immediate need for this procedure was for use in

adaptive control of an in-flight aircraft simulator, but the approach

should be valid for other applications.

The algorithm was used in conjunction with an adaptive control law
I

in a computer simulation of an in-flight simulator aircraft.

Both the parameter estimation algorithm and the control law worked

well. When sensor noise was added to the simulation, however, estimator

performance suffered. Future study must modify the estimation algorithm

to decrease noise sensitivity. The work should be continued, as it

provides an alternative approach to fixed gain flight control systems

which require gain scheduling.
This work was a direct extension of an earlier thesis by Capt. Luis

A. Pineiro of the Flight Dynamics Lab who must be credited with the

initial concept of the work. I am deeply indebted to Capt. Pineiro for

many hours he spent explaining various aspects of parameter identifica-

tion and working out software problems. Finally, I would like to thank

my advisor, Col. Daniel Biezad for his efforts and patience during a

time when it appeared this work would never be completed.

Thomas J. Berens
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Adaptive control of aircraft model-folloing systems has shown

prcamising results for in-flight simlation, but the ccrputational

expense and slow convergence of conventional parameter estimation

techniques for higher order models inhibits their direct use for in-

flight simulation. Caoputer simulations of adaptive systems usually

assume some knowledge of model parameters in order to maintain tracking

fidelity at a reasonable ccmputational cost as parameters change. This

thesis incorporates a-priori information into a multiple-model estima- %*N

tion algorithm which assigns a probability weighting of each estimator

within a "bank" of estimators. Final parameter estimates used in

adaptive control are formed as a probabalistic weighted sum of individ-

ual estimates. Simulations of the system show excellent tracking

performance throughout the flight envelope. A moving bank scheme for

use over a wide range of flight conditions is reccutunded as a further

area of study.
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KnfJLIPLElVLE PARAME=E-AAPTIVE CEC1I1L FOR IN-FLIECfr SnIMUIAICK~*

I. Introd~uction i %
An in-flight simulator is an aircraft whose stability, feel, and

flying characteristics can be change to mimic another aircraft from

the pilot's perspective. In-flight simulators are used in new aircraft

system pre-prodluction testing, in research and development, and in

training test pilots [3, 14].

EVALUATION
PILOT COCKPIT MODEL

COMPUTER
MODEL

COMMNDSMODEL FOLLOWING
CONTROL

LAW
COMPUTER

HOS Z_ COMMANDS
AIRPLANE / TO HOST

1 1

HOST



A??

Altitude The Multiple Model
Algorithm limits
Estimates to vectors
calculated at dis-
crete points within
the flight envelope

Velocity

Figure (1-2) Flight Envelope

The U.S. Air Force currently has several types of in-flight simula-

tors in its inventory and will soon replace its current fighter simula-

tor, the NT-33. The NT-33 was developed in the 1950's and can no

longer match the performance of new fighter aircraft. Its replacement,

VISTA (Variable Stability In-flight Simulator Test Aircraft), is a

...modern, high performance fighter aircraft, modified with vari-
able stability controls and a repra le cockpit, offering the
capability to perform large amplitude maneuvers over a wide range
of operating cot-iditions in an expanded flight envelope [4]

VISTA has spurred renewed interest in high performance adaptive

control since it is an ideal testbed for new flight control methods.

Adaptive control is well suited to in-flight simulation due to the

2
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control since it is an ideal testbed for new flight control methods. .\.

Adaptive control is well suited to in-flight simulation due to the

time-varying nature of the host aircraft's stability derivatives as the W

aircraft transitions within its flight envelope (see Figure 1-2). This

type of control implies that estimates of the stability derivatives are I -

used in control law calculations [21-23] to reduce or minimize degraded

tracking performance of the model aircraft by the host.

Recursive estimation techniques which calculate discrete parameter

values from input and output samples are impractical with in-flight

simulation when the model order results in a large number of parameter

estimates [25] or when the input excitation is insufficient [6].

Pineiro [19,20] used an algorithm developed by Hagglund [7] to overcome

the excitation problem, but limited the number of estimated parameters a-

to avoid unacceptable computational expense and convergence times. In -.

this thesis, known information about the parameters is combined via a

multiple model estimation algorithm [1,2,15,26] which may be used in

conjunction with Hagglund's algorithm to overcome these limitations

without reducing the number of estimated parameters. Such a-priori

data is usually available from flight and wind tunnel testing. Use of

this data in a parameter-adaptive model-following system speeds conver-

gence and significantly reduces the computational expense.

Section 2 of this thesis summarizes the model following system .

developed by Pineiro which implements an adaptive fast sampling MIMO

control law for robust tracking and which partially estimates a set of I we%

linear difference equation model parameters. Section 3 shows how to

estimate all parameters at a relatively small computational cost by

3
3..

•" ... ..- - '°...- ... - .°... . . ...•.--.°• ,%-. . . . ."o,, . ° . . . .. . .- %% .• .% ',% -



using a-priori information. The multiple model estimation algorithm is

emphasized and a derivation is included. Section 4 discusses several

modifications to the multiple model algorithm which improve stability,

convergence speed, or computational cost. In Section 5 a simulation

demonstrates the estimation of parameters which are blended via the

* multiple model algorithm, filtered [10], then fed to the control law.

Finally, conclusions and recomenations for further study follow in

Section 6.

OP
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I. Parameter-Adaptive Model-Followin:

Figure (II-l) shows a block diagram of a parameter-adaptive model-

following system [20]. The plant is a MIMJ state equation which simu-

lates the longitudinal dynamics of an aircraft. The plant is control-

lable by a proportional-plus-integral (PI) control law.

This section describes two methods of calculating the gains of the

control law [21-24]. The fixed gain method requires knowledge of plant

parameters by the control law. When these parameters are unavailable,

an adaptive method is used to estimate them from real time input-output

measurements via a recursive parameter estimation algorithm. Several SI
recursive parameter estimation algorithms are presented and design

issues discussed.

Simoothed
Controller Estimates Parameter I/O data

Design Estimation

Control smoothing .Gains ::::1>..,
:: Filter

- "

Control Aircraftr ->U -- > > -- >y ".

+ A Algorithm Dynamics -.

Figure (II-i) Adaptive Model Following Simulation Block Diagram
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II.A. Fixed Gain Control Law

The aircraft plant is represented by a conpletely controllable and

observable MIM state space model 1

x(t) = Ax(t) + Bu(t) (2-1a)

y(t) = Cx(t) (2-1b)

where

x (t) e Rn x l  A e Rn x n  y (t) e Rmx l 1

u(t) e Rmx l  B e Rn x m with rank "Im"

The A, B, and C matrices are partitioned according to the control

input matrix, B, to yield

K (ti K Al A12  hl(tj 0 t= + u (t) (2-2a)

x2(t) A21 A2 2  x2 (t) B2

and
l,(t)

y = 1 C2  [x2(tJ (2-2b) 5"

where.[

xl(t) e p~pxl B2 e R(n-P) xm with rank "m" •
x2 (t) e R(n-p)xl

A regular plant is defined as having a first Markov parameter, CB, of

full rank. Regular plants with stable transmission zeroes will track

input given the discrete output feedback control law (Figure (11-2)).

6
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e(t) e(Z) u (t)
K> >0 - > Z.O.H.

T +

TK2

Figure (11-2) Discrete PI Omxtrl Iaw Block Diagrm

u(k) =(l/T) [Kier(k) + K2 Z(k)] (2-3)

arnd

u (t) u u(k) for t e [kT, (k + l)T] (2-4)

where

*r(k) is the samnpled reference tracking signal

k is an integer

T is the sampling period

K1  is a control gain matrix [K1 e R~tfl]

K2 is a control gain matrix [K2 e RmTxm]

er(k) is the error vector [er(k) =r(k) -y(k)]

Z (k) is the digital integral of the error vector

[Z (k + 1) Z Z(k) + T er(k)] (2-5)

*For notational convenience, let r(k) =r(kT). This notational format is
used for all discrete variables.

7
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If the matrices A, B, and C in eq. (2-1) are known, the control

gain matrices K1 and K2 in eq. (2-3) are calculated by discretizing the

plant state and output equations in block diagonal form [20] for the

sampling period T as

lk + 1 ) 0 Xl(k) B
= + r(k) (2-6a)

x2(k + 1 A4  2 (k)

and

y(k) = L _2 (2--6b)2(k)j

where

x l (k) = (2-6c)
x (k)

x2 (k) = x2 (k) (2-6d)

C1 = [ KI-IK2 ,0 ](2--6e)

C2 = C2  (2-6f)

Im- TKI-IK2  0

A, = (2-6g)
TAI2C2-1KI-1K 2  In-m + A11T - TA1 2C2C 1

0
B1 (2-6h)

T12C2
- 1

=4 = Im - B2 K1C2  (26i)

B2 = B2K 1  (2-6j)

8



The input-output relationship can be expressed in terms of the

closed-loop transfer function, G(z), where y(z) = G(z)r(z) and z is the

discrete transform operator. As the sampling frequency is increased

G(Z) assumes the asymptotic form [20]

G(z) = GI(z) + G2 (z) (2-7a)

where z is the discrete transform operator and

Gl(z) = Cl(ZIn - I n - TAo)- 1 TB0  (2-7b)

G2 (Z) = C2(zIm - I s - A4)-IB4  (2-7c)

with

Kj1* 02
LKI- 1 (2-7d)

00

B = (2-7e)A12C2 -I

A4 = -B2K1 C2  (2-7f)

B4 = B2K1  (2-7g)

GI(z) and G2 (z) are the slow and fast mode transfer functions

respectively. The slow modes can be grouped into two sets Z1 and Z2

and are given by

z1 = (z e C: det(zIm - Im + TKl-lK2 ) = 0) (2-8)

Z2 = {z e C: det(zIn-m - In-m - TA1 1 + TA12C2-
1C1  = 0) (2-9)

The fast modes are given by

9



Z3 = {z e C: det(zIm - Im + C2B2KI) = 0) (2-10)

Because of the form of AO, BO, and Cl, the eigenvalues of AO are S

uncontrollable or unobservable. Thus, as the sampling frequency

increases, the slow transfer function asymptotically approaches zero

and the overall system transfer function contains only the fast modes, 0

as given by G2 (z) which can be put in the equivalent form

G(z) = G2 (Z) = (zIm - + C2B2KI)-IC2B2KI (2-11)

The controller matrices Kl and K2 are then given by

K1 = [C2B2 ]-IS (2-12a)

K2 = qK1  (2-12b)

where q is any positive scalar greater than zero, and S is a diagonal

tuning matrix. Both q and S are chosen by the designer to achieve the

desired tracking characteristics.

II.B. Adaptive Control Law

If A, B, and C in eq. (2-1) are unknown, the control law gain

matrices of eqs. (2-3) can be calculated adaptively by expressing eq.

(2-8) as

y(k) = Ad(T)y(k - 1) + H(T)u(k - 1) (2-13)

where Ad(T) = exp{AT) and H(T) is defined as the step response matrix.

H(T) can be calculated in terms of the continuous time state space %*

100

9.
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systemn as: A

H(T) = exp(At) B dt (2-14)

Expanding exp(At) as a Taylor series about t = 0 and dropping the high
S

order terms yields for small sampling periods H(T) = WB, and the

control gains can be expressed as

K1 = H- I (T)S (2-17a)

K2 = qK1 (2-17b)

The step response matrix H(T) can be estimated from real-time input-

output data by expressing eq. (2-13) in terms of an nth order

autoregressive vector difference equation of the form

y(k) =Blu(k -) -Al(k -) +...+Bnu(k -n)

- Any(k - n) + e(k) (2-16)

where the equation error vector e(k) is assumed to be a zero-mean

Gaussian white-noise vector with variance v(k) and the matrices Ai e

R mm (1=1, 2,...,n), Bi e Rmxm (i=l, 2,...,n) are the parameters of

the nth order difference equation.

Eq. (2-16) can be expressed alternatively as

y(k) = OT(k) + e(k) (2-17a)

iie



where, for a S150 system,

oT(k) [-yT(k - l),...,-yT(k -n),uT(k - ),...,uT(k -n)]

andl

The step response Matrix is updated by invoking the certainty

equivalence principle [20]. By definition of the step-response matrix

it can be shownm that [22,23]

H (T) T 'IB =B 1  (2-18)

All the parameters of eq. (2-16) must be estimated to identify B1.

The input-output relationship of eq. (2-6) is transformed into eq. (2-

16) via the following steps:

Step 1: Obtain the Z-transforn of (2-6)

zx(z) =AcJx(z) + Brdu(z) (2-19a)

y (Z) = Cx (Z) (2-19b)

Step 2: obtain an input-output relationship independent of x (z):

(zI -Ad) X(Z) =d BJ(z) (2-20)

x(z) = (zI - AdjV1 Bti(z)u(z) (2-21)

y (z) = G (z) u(z) (2-22)

12
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- where

"(z) - C(zI - Ad)-lBd(z) (2-23)

N

Gz) is a polynomial matrix of the form: ,N "

Gll(z) G12(Z) ... GIM(z) I:

(z) G2 1 (z) G2 2 (z) ..... (z) (2-24)

G (z) Gm2(z) ... G(z)

where Gij (z) is the transfer function relating the output yi(z) to the

control input uj(z) and is of the form

blzw + b2zw - I + ... + bwz + bw+l
Gij (z) - --------------------- -(w < n) (2-25)

Szn+ alzn + ... +anlz + an

by dividinq each numerator and dencminator in G(z) by zn, G(z) is

transformed into a delay operator of the form

b1zw-n + b2zw
- n -1 + ... + bw+iz-n

Gij (z)= --------------------- (w < n) (2-26)
1 + alz-i + ... + anlz-n+l + anz-n

Step 3: Redefine the input-output relationship obtained in step 2,

expressed as eq. (2-22), in terms of polynomial matricies, A(z) and

B(Z), i.e.:
r 

.

A(z) y(z) =B(z)u(z) (2-27a)

where

A(Z)= M + A zI  + + Anz-n (2-27b)

13
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B(Z)= M + B1z
-1 + ... + Bw+iz-n (2-27c)

ii(1l)(z) aii12)(z) ... aiilm)(z)
Aii = aii21)(z) aii(22}(z) ... aii(2mI)(z) (2-27d)

aii~ml)(z) aii{m2) (z) ... aii{,mm (z)

where aii(ij} is the aii coefficient of Gij(z), eq. (2-26) and M is an

m x m matrix of one's. Bii are of the same form as eq. (2-24d).

Step 4: Obtain the inverse Z-transform of eq. (2-27) and rearrange

terms to obtain the linear difference equation model given by eq. (2-

16).

II. C. Recursive Parameter Estimation

The parameter vector, e, of eq. (2-17) can be obtained fron

input-output measurements using a recursive parameter estimation

algorithm. The recursive least squares (RLS) algorithm is a basic,

widely used parameter estimation method [7,13]. The RIS algorithm
assumes e is a random vector with a Gaussian prior distribution of

mean_9(k - 1) and variance P(k - 1). Input-output measurements are

correlated with e, so at time kT the posterior probability density

function, p(elyk, uk), can be formed, where

yk = (y(k), y(k l ,y(1)

uk (u(k), u(k - l),...,u(1)}

8 can be recursively updated for a SISO system as

e(k) = 9(k- 1) + (1/v(k))P(k)o(k)e(k) (2-28)

14
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P (k -1) 0(k) OT (k) P(k -1)

v (k) + OT (k) P(k - 1) 0(k)

where
v(k) = variance of e(k)
P(k) = estimated parameter covariance matrix e Rlxd

The proof [13] is based on Bayes rule in the form '

P(AIB,C) =P(BIA,C)P(AIC)/P(BIC) (2-30)

Where P(AIB,C) is the probability of the event A, conditioned on B and

C. Assuming uk is deterministic and applying this formula to the 7

posterior density gives

p(ElIyk) =p(Ely(k),yk1) 0

=p(y(k) Ie,yk-l)p(e)Iyk-l)/p(y(k)lykl1) (2-31)

The desired result is proved by induction.

Step 1:

p(E~jyO)=(2ffy)1dl EI/ 2 (det p(0))- 1/ 2 exp(-l/2[e

-e(ofl]Tp-l[e -E)(0)l (2-32)

by assumption.

Step 2: Assume that

p(elyk-1) =( 2 7r)-dim E)/2 (det P(k -1))-'/
2exp{-l/2[e

- e(k - l)]Tp-l(k - 1)[8 - G(k - 1)]) (2-33)

Now calculate p(elJyt) using eq. (2-31). From eq. (2-17)

e (k) y y(k) -eTo (k) (2-34)

15



Under the assumption that ek is a sequence of independent random

variables with zero means and variances v(k),

p (y(k) e), yk-l) =(2rv (k)) -I/2exp- [ i/2v (k) ][y (k)

_eTo(k) ]2) (2-35)

Hence, from eq. (2-31),

p(elyk) = Norm exp{-[1/2v(k) ][y(k) - ET0 (k) ] 2

-1/2[e - e(k - 1)]Tp-l(k - 1)[e - e(k - 1)]) (2-36)

where the e independent normalization factor is not explicitly

written out

The exponent is now written as a quadratic form:

-2 log p(eiyk) = const + [1/v(k)]y 2 (k)

- [1/v(k)]y(k) T(k)e - [1/v(k)]eT0(k)y(k)

+ [1/v(k)]eTo(k)oT(k)e + eTp-l(k - 1)e

-eTpl(k - 1)(k - 1) - 8T(k - 1)P-l(k

- 1)e + eT(k - 1)P-(k - l)e(k - 1) (2-37)

Define

-1= P-1 (k 1 1) + [i/v(k)]o(k)oT(k); (2-38)

thus the preceding expression is written as

const + [i/v(k)]y 2 (k) + e(k - 1)Tp-l(k - 1)e(k - 1)

+ eTp-le - eT[[1/v(k) ]o(k)y(k) + P-l(k - ) (k - 1)]

16



- [[I/v(k)]O(k)y(k)+P-l(k - l)9(k- 1)]T8-

= const' + [e - p[/v(k)]o(k)y(k) - (k 1)e(k - 1)]T
0

P-1[8 - P[/v(k)]o(k)y(k) - p-(k - 1)e(k - 1)] (2-39)

where const' is a new, e independent normalization constant. Since -A

PP-l(k- 1) = I - [l/v(k)]EP(k)oT(k), (2-40)

The expression within the parentheses may be written as e -,

where

E) E (k - 1) '1/v(k)i pT(k) y(k) - eT(k - 1)o(k)]. (2-41)

This means that the posterior density at time kT, p(elyt), is

Gaussian with mean e, given by eq. (2-41), and covariance matrix P,

given by eq. (2-42). Applyir the matrix inversion lemna* to

eq. (2-35) yields

P= P(k - 1) - P(k - 1)o(k)oT(k)P(k - 1)/[v(k)

+ oT(k)P(k - 1)o(k)] (2-42)

Eq. (2-28) and eq. (2-29) can also be derived by minimization of the

*The Matrix Inversion lemma states that

[A + BCD]-l A -1 - A-IB[DA-IB + C-I]-I[A - I

where A, B, C, and D are matrices of compatible dimensions, so that the product
BCD and the sum A + BCD exists. S

17
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cost function [13,20].
VN.:

k
J{e(k)} = SUMlv-2 (j)[y(j) - e(j)0(j)]2) (2-43)

j =1

II.D. Estimatinq v(k)

The variance of the prediction error is not explicitly updated by

eq. (2-28) or eq. (2-29). Given the probability distribution of the

prediction error is white, then an estimate of the variance can be made

from the sequence ek-I based on the central limit theorem:

k
v(k) = [I/k]SUM{e(j) 2 ) (2-44)

j =1

,-...

If v(k) is slowly time varying, then v(k) can be tracked with a fading

memory filter of the form

v(k) = mu(v(k - 1)) + (1 - mu)e 2 (k) (2-45) •

where 0 < mu < 1

The smaller the value of mu, the more information is forgotten during

each update.

II.E. Modifications to RES for In-flight Simulation

The RLS algorithm given by eq. (2-28) and (2-29) assumes constant

parameters which are actually a function of an aircraft's flight

18
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condition. A simple method for tracking time-varying parameters is to

exponentially discard old information by incorporating a constant
I

forgetting factor into eq. (2-29) [7,13], i.e.

P(k - l)o(k)oT(k)P(k - 1)

P(k) = (1/g) P(k - )- --------------------------------- (2-46)
(l/g)v(k) + oT(k)P(k - 1)o(k)

where 0 < g < 1. Choosing a value of g is a trade-off between tracking

time varying parameters and discarding good information. A small value

of g allows the RLS algorithm to quickly track changing parameters.

Accurate parameter estimation, however, requires sufficient input

excitation 16]. If current measurements contain no new useful

information and old information is being discarded, parameter estimates

may "burst" from the best fitting parameter values. This phenomena is

referred to in the literature as estimator wind-up [27].

Haqglund's algorithm [7] attei'pts to solve the wind-up problem by

. .- xuxntinc past information in -uch a way that if the parameters were

nistint, a constant amount of information is retained [7].

;Fecitically, Hagglund's algorithm modifies the P(k) update equation

as

P(k- l)o(k)oT(k)P(k- 1)
- - - -- (2-47)

[v-l(k) - a(k)]- I + oT(k)P(k - l)o(k)

where a(k) is a discounting factor dependent upon the amount of

excitation present in the input and output signal. The entire

algorithm is listed in Appendix C.

19 4
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The RIS algorithm with Hagglund's modifications to eq. (2-28)

converges slowly for high order models requiring a large number of

parameter estimates. Fault detection is a method which may decrease

convergence time. A fault is defined as a rapid change in system

dynamics. After a fault the current parameter estimates no longer

accurately describe aircraft dynamics. The estimation algorithm

converges but only after an undesirable time delay which degrades

control performance.

Hagglund's algorithm accounts for the loss of parameter knowledge

by increasing the value of the estimated parameter error covariance

when a fault is detected. The increased weight placed on new

measurements allows the estimation algorithm to converge faster. A

fault is expressed by modifying eq. (2-46) as

P(k) =P(k -)

P(k- l)o(k)0T(k)P(k - 1)
- -------- + B(k) (2-48)

[v-l(k)_a(k)]-i + oT(k)P(k - 1)o(k)

where B(k) is a matrix which depends upon the size of the fault which

increases P(k) after a large parameter change occurs. Criterion for

determining when a fault has occurred and how to choose B(k) is

discussed by Hagglund [7].

Hagglund's algorithm alone is still inadequate for many higher

order systems. Therefore, Pineiro assumed elements of the parameter

vector e (k) not used in the control law remain constant about a

nominal flight condition. In such case these elements are not

20
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estimated and eq. (2-17) must be partitioned as

y(k) = eTv(k)ov(k) + eTcoc(k) + e(k) (2-50a)

OT (k) = [ ovT(k) ; ocT (k)] (2-50b)

9T(k) = [GvT(k) ; 8cT(kl] (2-50c) ¢%

where the subscript v denotes the identified parameters and c denotes

the constant parameters. Note 0c(k) corresponds to ec but is not

constant. The relationship between ev(k) and B1 is illustrated in

the following example.

Example 2-1

Assume a linear difference equation of the form

y(k)= -Aly(k - 1) - A2Y(k-2) + BIu(k - 1) + B2u(k-2) + e(k) (2-51) . .

where y(k) e R2xl, A1 e R
2x 2 , A2 e R

2x 2

u(k) e R2xl, B1  R2x2  B2 e R
2x2

This equation can be partitioned in the form of eq. (2-51) to isolate

B1 for identification, i.e.

ocT(k) = [-yT(k - 1), -yT(k-2), uT(k-2)] e Rlx 6  (2-52a)

0cT(k) = uT(k - 1) e R~x2  (2-52b)

EcT(k) = [A1 , A2 , B2] e RIx 2  (2-52c)

EvT(k) B 1, (2-52d)
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This section discussed several basic and important design issues in

simulated adaptive control of an in-flight simulator. The section

began by describing the plant and its control by a fixed gain PI con- ".,

trol law. This simulation was then modified by replacing the fixed ,,

gain controller with an adaptive system. An adaptive system bases

control gain calculations on input-output measurements rather than

explicit knowledge of system parameters. Adaptive systems are more

complex since they require a parameter estimation algorithm. A well

known and widely used recursive parameter estimation algorithm, RLS,
* 5,.%

was derived. Modifications to the RLS algorithm, however, are required

for use in in-flight simulation. Section 3 extends recursive parameter

estimation to make better use of available a-priori information.

Il.
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III. Parameter Estimation Using A-Priori Information

Standard recursive parameter estimation algorithms are not well

suited to adaptive flight control. The computational expense and slow

convergence of the RIS algorithm makes estimating all the parameters of

higher-order linear difference equation aircraft dynamics models which

require a large number of parameter estimates impractical for on-line

use. Even modifying standard recursive parameter estimation techniques

by adding a fault detection algorithm are found to be inadequate with-

out assuming partial knowledge of model parameters [20].

This section develops the multiple model algorithm (MMA) which is V

well suited to adaptive flight control. It estimates parameters from a
finite amount of a-priori information which speeds parameter estimator

convergence and reduces ccmaputational expense. A-priori information ..

available fron wind tunnel and flight testing is in the form of models

of aircraft at various flight conditions. The parameter vectors of eq.

(2-16) are calculated for each model using the procedure described in

Section 2 and are incorporated into the MMA as reans of Gaussian

distributions. The final model parameter vector used by the control

law is a random variable whose conditional distribution function

(conditioned on output prediction errors) is a weighed sum of these

Gaussian distributions. Using Bayes rule, the weighting coefficients

are updated recursively as functions of output prediction errors and

estimates of the output prediction error variance.

23 j
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III.A. Finite Set Parameter Estimation

Before discussing the MMA, consider the more general case of

parameter estimation from a finite set of models. Assume 9(k) is

limited to nm "candidate" model parameter vectors, ei(k), such that

n

9(k) = SUMai(k)9i(k)) (3-1)
i=l

where e8i(k) represents the parameter vectors of linearized input-

output models of a non-linear systems at nominal operating points.

Gain scheduling, a method often used to choose a dynamics model for

flight control, is an example of parameter estimation from a set of

candidate models. Gain scheduling chooses aircraft dynamics models

based on dynamic pressure which is a function of an aircraft's airspeed

and altitude. A disadvantage of gain scheduleing is dynamic pressure
is measured with external sensors.

Many quantities are available which require no external sensors

such as:

1) The parameter covariance matrix (3-2)
A A

Pi(k) = E((E(k) - E(k))(8(k) - e(k))T)

2) The variance of the prediction error (3-3)

vi(k) = E(ei(k)eiT(k))

3) The Autocorrelation Function (3-4)

Aee(k,j) = E(ei(k)eiT(k - j))

4) The Crosscorrelation Function (3-5)

Aue(k,j) = E(u(k)eiT(k - j))

24



III.B. Comparison of Parameter Fit Quantities

If each parameter vector of eq. (3-1) is estimated with a recursive

parameter estimation routine such as RIS, the parameter variance can be

used as a model fit indicator. Unfortunately, basing a model selec-
I

tion test on the parameter variance limits the designer. For example,

when model parameters vary slowly with time, Pi(k) may be modified non-

linearly, as discussed in Chapter 2, to prevent estimator wind-up and
I

optimize parameter tracking performance. Another example occurs in

fault detection schemes. Parameter estimates converge faster after a

large parameter change when Pi (k) is enlarged. Both these schemes -
DI

destroy goodness of fit information contained within Pi(k), since eq. -

(3-2) no longer holds true.

Prediction errors, ei(k), are not effected seriously by ad-hoc
I

parameter tracking schemes. Also, a parameter estimation algorithm

need not be used to calculate 9(k). This greatly reduces the compu-

tational cost involved in calculating 9(k). Estimates of the predic-

tion error variance, however, may be masked by noise.

A. The Multiple Model Algorithm (MMA) - Derivation

The multiple model algorithm (MMA) provides a method of blending a-

priori data with parameter estimation. Although similar to the RLS

algorithm, this approach views 9(k) as a random variable whose

probability density function (pdf) is approximated as a weighted sum of

rm Gaussian pdf's rather than a single Gaussian pdf.
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p(e) = (2T)-d im e/2-/2 SUM(ai(0) [det(Pi(0) )-I/
2

i=l .

exp(-1/2[9 - ei(o) JTPi-l(0) [9 - 8i(0)]) (3-6)

where ei(o) are parameter vectors such as those in eq. (3-1), which

represent the means of each Gaussian pdf, and Pi(k) represents the

variance. The ai(O) are weighting coefficients where 0 < ai(O) < 1

and

m

SUM(ai(0)) = 1 (3-7)
i=l

Eq. (3-6) can be recursively updated from input-output data via the

multiple model algorithm where:

m
p(eyk-l) = (2m)-dim e/2-1/2 SUM(ai(k_ 1)[det(Pi(k 1))3-1/2

i=l

exp{-i/2[e - ei(k - i)]TPi-l(k - I)[e

- ei (k - 1)]) (3-8)

as
m

p(elyk) = (27)-dim e/2-1/2 SUM(ai(k)/det(Pi(k))]-l/ 2

i=l

exp(-1/2[E - Ei(k)]TPi-l(k) [e - 8(k)]} (3-9)

where

Pi(k) = Pi(k - 1) - Pi(k - l)o(k)[v(k)

+ o(k)TPi(k)o(k)]-lo(k)Tp i (k - 1) (3-10)

Ei(k) = Ei(k - 1) + I1 '(k)][Pi(k)o(k)ei(k)] (3-11)

ai(k ) =Csai(k - )[v(k) + o(k)Tpi(k)o(k)]-l/2

exp-I/2eiT(k) v(k) + o(k)Tp i (k) )o -(k) e (k) (3-12)
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where Cs is a normalization factor, such that

rn
SUM(ai(k)) = 1 (3-13) 0
i=l

r-un
E (k) = SUM(ai(k)Ei(k) (3-14)

i=1

ei(k) y(k) -eiT(k)o(k) (3-15)

The proof (Andersson) which is similar to the RLS proof in Section 2 is

based on Bayes rule. Applying this formula to the posterior density

givesV

p(eiyk) = p(ely(k),yk-l)

p(y(k) je,ykl)p(E)yk-l)/p(y(k) yk-l) (3-16)

Now calculate p(ejyk) using eq. (3-16). From eq. (2-19) obtain

5%.

e(k) = y(k) - eTo(k) (3-17)

Under the assumption that {e(k)) is a sequence of independent random

variables with zero means and variances v(k), obtain

p(y(k) Ie,yk-l) = (27v(k))-i/2exp(-[I/2v(k)][y(k)

eJ(k)]2  (3-18)

Combining eq. (3-8) and eq. (3-18) via Bayes rule yields:
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i=1

exp{-1/2[e - ei(k - 1),Tpifl(k)[O - ei(k - 1)]

exp(-[.1/2v(k)][y(k) -ETo(k)]
2  (3-19) _0

Equation (3-9) is now equated with eq. (3-19) to find matrices,

e =(k) and Pi(k), and weighting factors, ai(k), of eq. (3-9). For

notational convienience, the following substitutions are made: Pi

Pi(k - 1); PI = Pi(k) G l E]i(k) ei - e (k - ); a.. =

ai~k); ai ai(k -1).

0

The exponent terms ) of eq. (3-9) is:39

[e eli]Tp~i-l[e 8 i] =E)TP'i-e -

2Eqi Tp 3-9le + oTpIithe (3-20)

0
and the exponent terms of eq. (3-19) is:

[1/v][y cveTe 2 + [Ew - Esi]TPtlne - Emi]

2k - 2i) T' + (eT) 2) /v] + eTPik e - 2eiTp-I a.

+ eTp i.e (3-21)

0
inspection of eq. (3-20) and eq. (3-21) nw gives:

[-2y/v 2EPiF 1 ]E ' i- lE (3-22) .1
28]
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eT[00T/v + Pi-l = eTPi-le (3-23)

eq. (3-22) and eq. (3-23) must be satisfied for all 8, hence:

E)'i = Pli[Pi-lei i- (1/v)oy] (3-24)-.

Pi '- 1 = Pi - 1 + (1/v)OOT  
(3-25) .2.

Replacing Pi - I in eq. (3-24) by eq. (3-25) gives: 1'

, -.%

Wi = Pi + (1/v)P(i-lvy (3-26)

X%"
where, e y - o¢..,

Applying the matrix inversion lenua to eq. (3-25) gives: 'r

P'i i = P + iTPi/[ v + TPi] (3-27)

Inserting eq. (3-23) and eq. (3-24) into eq. (3-20) and also using eq.

(3-27) gives %.

.'.-=...

[Eh e i]TP'i-[q - i] =TPi-l - 2EiTPi-l +.

(p/v) (T) 2 t(2/v)T y + iTPi-le i + (/v)(2)i T +s

(1/v) TPiy)oy [/(v + oTPio ) ] [ (eTO) 2
+ 2(i/v)eiTOOTpijy + (l/V)o(Tpiiy)2] (3-28)

The first five terms of the right hand side of eq. (3-28) are identical J["
to eq. (3-21), except for the term y2(/v) in eq. 3-21). Subtracting p..
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the right handi side of eq. (3-28) for the right handi side of eq. (3-21)

now gives the reirnaining part:

(/y2 -(1/v) (2eiT + (l/v)oTpiyjoy + [v + OTpiyOylj (eTO)2 +

2 (1/v) e~T~OTpi~y + (1/v)2 (OTpiOy)2)

(y - eiT0)2/v + OTpic] ei2/I[v + OTpi 03  J-*S

Eq. (3-19) can now be written: ,

m
CV.-1/2(2 )-d1Th(e)/2-1/2 SUM(aiexp(-(1/2)ei2[v + OTp.0o

det(Pi-1 / 2 )exp{-1/2[e eli]Tpt-l[E) - E~i)(3-29)

Comparing with eq. (3-9) gives:

a' Caildet(P'jj/det{pi)]1/2exp(-1/2ei2[v + OTpi0], (3-30)

Using

det{P'i) det(Pi -PiooTPi/[v + 0TPio])

=detjPi)[1 -OTPio/[v + oTPio]] (3-31)

gives

a' Cai[v,/[v + &'pioj1/2exp(-~(1/2)ei 2/[v + OTpiol) (3-32)

Hence, a'i can be obtained by first corrputig

300



i = ai[v + 0TPi0]-i/2exp{-i/2ei2/[v + OTpi0]) (3-33) --

for i = 1,... ,m and then setting I'-.

a = [SUM aj]-i/2ai (3-34) 0
j =1

This section developed the MMA as a method of incorporating avail-

able a-priori information into an adaptive control process. The MMA

was shown to be similar to a multiple number of RIS estimators running

in parallel. This observation is used in the following section to

develop several mechanizations of the MMA used for simulated on-line -

adaptive flight control. ..
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IV. Parameter Estimator Design - ImplementinM the MMA

Figure (IV-i) [15] shows a two-level mechanization of a MMA

parameter estimator which incorporates a-priori information for use in

in-flight simulation. A-priori information is stored within a parallel

bank of secondary estimators. Each estimator initially contains a

unique set of parameters modeling the aircraft operation at a nominal

flight condition. Secondary estimates and modeling errors from each

estimator are used to form a primary estimate of the best fitting model

parameters. The primary estimates are then filtered and used to

calculate the control law gains.

Utl

y~k) econdry xControl -Kl
Est 1Gain

-U g. -K2

SSecondary m

1~1

Es ..Figure Est-. nTn ~t a i a lo
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IV.A. Secondary Estimator Structure

Comparison of eq. (2-28) and eq. (2-29) with eq. (3-10) and eq. (3-

11) shows the structure of the secondary parameter estimate (ei(k))

update is that of the RLS algorithm. Therefore, eqs. (3-10) and (3-11)

can also be substituted with Hagglund's Algorithm. The number of

parameters which need be updated via a recursive parameter estimation

routine is another design option. A comparison of estimating all, some

(as in Pineiro's simulation), or none of the secondary parameters will

be made.

IV.A.1. Full-Scale Secondary Parameter Estimation

A number of problems are associated with recursively updating all

secondary parameters according to eq. (3-11) at every sampling period.

As the number of inputs, outputs, and the order of the linear

difference equation model increased, the computational effort

increases. Any more than two inputs and two outputs is impractical due

to long convergence time and computation time. Also, the more

parameters which must be updated, the more excitation the system

requires for parameter convergence. Another problem concerns

convergence to the save operating point. Even though each estimator

may begin at a different operating point set from a-priori information,

the estimators will eventually converge to the same model [13] which

makes the MMA redundant.

IV.A.2. Partial Secondary Parameter Estimation

The secondary estimators may be partially estimatod as explained in
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Section 2. This method requires much less computational effort than -

full-scale parameter estimation. Also, since fewer parameters must be

estimated, they should converge faster. The common convergence problem :

of each estimator mentioned with full-scale estimation is also avoided -

since some parameters remained fixed. ,

.-.

IV.A.3. Fixed Secondary Parameter Estimation ua n.-

The designer also has the option of leaving all parameters fixed atp.'

a nominal flight condition, skipping secondary parameter estimation

altogether. This method is very simple, requiring relatively littlem

computational effort. Its only major drawback is that it is only able

to estimate parameters at discrete flight conditions. This is

acceptable, however, given a robust control law.

IV.B. MMA Implementation Pr ersmi

output coupling effects upon parameter estimation were neglected in

all simulations. Therefore the MMA weighting coefficient update--[
teq. (3-12) is modified as a scalar update equation: rli y it

ai(k) =Csai(k - ) [diagvi (k)  d-a/2exp-i/2SUM[e2 j (k)

v v(k) oT T(k) Pi (k) o(k ) =vi (k)  (v i ' ' l 2k

toetmt=aaetr tdsrt flgh codtos This)is

v n, k) . .vi, n, n(k )  -
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ei' 1 (k)
ei(k) Keiln(k) (4-3)

IV.C. Weighting Coefficient and Prediction Error Variance Estimation

Inspection of eq. (3-12) shows that the weighting coefficient

update is a Gaussian distribution where:

ai(k)/Csai(k - 1) = p(ei) = *N(0,vi(k)) (4-4)

in where

vi(k) = v(k) + oT(k)Pi(k)o(k) (4-5)

Estimates of vi(k) for use in eq. (3-10) through eq. (3-12) can be

based on either ei(k) or Pi(k), for example

k
viest(k) = (1/k)SUM(ei(ii)eiT(ii)) (4-6)

ii=1

viest(k) = v(k) + oT(k)Pi(k)o(k) (4-7)

where

k
v(k) = (i/k)SUM{ej(ii)ej T (ii)) -T(k)Pj(k)o(k) (4-8)

and j is the argument of the largest ai(k) and viest(k) is an estimate

of vi(k). Eq. (4-6) is based on ei(k) and is similar to the estimate

of v(k) in Section 2. Eq. (4-7) requires a noise variance term, v(k),

which is calculated in eq. (4-8) and is the same for each weighting

* N(m,Var) : Normal (Gaussian) distribution with mean in and variance, Var.
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coefficient. Differences in vi(k) are based on differences in Pi(k). V

A physical interpretation of the two terms in eq. (4-7) is that of
I

a separation of modeling and noise errors. Define the parameter error

as

I

wi(k) = Ei(k) - 8(k) (4-9)

then

ei(k) = y(k) - OT(k)E(k) - 0T(k)wi(k) (4-10)

The first two terms represent noise due to actuators, sensors and

linear approximation errors. The third term is an additional model
I

error term induced by the model not being the best fitting model.

Therefore when neglecting cross-correlation terms and dropping the time

index, k A
I

E{eieiT} : E([y - OT9] [y _ 0Te]T ) + E([0Twi][0 Twi]T} (4-11) "

= E([y - 0Te][y - 0Te]T) + E({TwiwiT} (4-12)

= E{ [y - eTe] [y _ T]T ) + 0TE{wiwiT)} (4-13)

= v(k) + oTPio (4-14)

An alternative to eqs. (4-6) and (4-7) is to implement a constant

vi(k) in eqs. (3-10) - (3-12). Andersson [2] claims the MMA is

relatively insensitive to viest(k) and a close guess may be good enough '1

* when v (k) is constant. Andersson' s simulations show acceptable results

for an assumed value of v(k)

Though commonly used in literature, "noise variance" is a
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misleading name for v(k) since v(k) is conposed not only of sensor

noise variance but also of linear approximation errors. In practical

situations, sensor noise will be much larger than linear approximation

errors and the linear approximation errors are neglected. In computer

simulations which assume no sensor noise, however, linear

approximations errors can not be neglected.

IV. D. Improvinq viest (k) Via Input/Output Filterin"

Input-output filtering is necessary in adaptive control

applications in order to estimate and track vi(k). Filters which ,

estimate vi(k) may be limited by the assumption that vi(k) is

relatively slowly time varying. Low-pass filtering has the effect of

reducing the variation in time of v(k). Since vi(k) is a function of

0(k), reducing the high frequency variation in u(k) and y(k) will -

reduce the variation of vi(k). A high-pass filter may be required to

remove parameter estimate bias when u(k) is non-zero mean [10,20].

Although high-pass filtering may not be useful in conditioning vi(k),

its possible bias on vi(k) should be considered upon its

implementation.

IV.E. Convercience Analysis

Although it is difficult to make any general conclusions about

parameter estimate convergence time given certain assumptions a

convergence analysis may be possible and useful when analysing

simulation data. For example, a convergence analysis of the MMA tor

the assumption that the prediction error var ince estimates are to
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large and time invariant may provide information relating to the

sensitivity of the algorithm to the value of the estimated prediction

error variance.

Example 4-1

This example calculates an approximate convergence time for a SISO

adaptive simulation which uses a 2-model MMA estimator. Assume the MMA

weighting coefficients have reached steady state values a1 (k-n) = 0.01

and a2 (k-n) = 0.99. A maneuver is then simulated by changing the plant

dynamics such that at time kT the weighting coefficients have changed

to al(k) = 0.99 and a2 (k) = 0.01. In such case, the MMA weighting

coefficient update equations are

al(k)=[al(k - l)/[al(k) + a2 (k)]] vfl/
2exp(el2 (k)/vl(k)) (4-15a)

a2(k)=[a2(k- l)/,'al(k) + a2 (k)]] v2 -1 / 2 exp~el 2 (k)/v 2 (k) (4-15b)

If E(el2 (k)) >> vl(k) and E(e2
2 (k)) >> v2 (k) then eq. (4-15) simplies

such that

al(k)=[al(k - l)/[al(k) + a2 (k)]] vl-1/2  (4-16a)

2(k)=[a2(k - l)/[al(k) + a2 (k)]] v2-1/2  (4-16b)

and

a(k) a 1 (k - v/(k -n) v2n/

a2 (k) a2 (k- 1)v1
1/2  a 2 (k n) 4 )
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log[al(k)a 2 (k - n)/a 2 (k)al(k - n)]
n/2 ---------------------------- (4-18)

log [v2 (k)/v I (k)

IV.F. System Filters

Three filters are incorporated into the system shown in Figure (IV-

1.) to smooth variations in the parameter estimates. The first is a

digital band-pass filter which filters y(k) and u(k). The non-linear

second filter is added to the weighting coefficients within the MMA.

It smooths sudden changes in the model probabilities which cause _

destablizing rapid changes in the final parameter estimates. The third

filter smooths estimates before entering the control law algorithm.

IV.F.l. Inpu.t-Oitput Filter

The input-output signals are filtered by a band-pass filter. The

low frequency components of these signals must be removed to reduce

parameter estimate bias, while high frequency signal components are

removed to smooth input excitation [6,10,11,20]. The filter is

mechanized as a sixth-order butterworth digital band-pass filter.

IV.F.2. Weightinq Coefficient Filter

The weighting coefficients, ai(k), are filtered to limit the rate

at which they can change in a given sampling period. This corresponds

to a limit of the amount of old information which is thrn away from "1

a i (k) during an update. Large variations in a i (k) in turn cause large

variations in the parameter estimates which is destabilizing. ]
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IV.F.3. Rate Limitin Filter Design

A rate limiting filter, which satisfies the listed de;ijn "r.''

and requires no renormalization, limits the change from ai k - T

ai(k) such that:

ai,fil(k) ai(k 1) + c[dai(k)] (4-19)

where
S

da ai (k) - ai (k - 1) and

if max <5 aj

c4axiaj if amax  aj

and

j = arguement of the maximum dai

ama x = a constant representing the largest value of dai(k) permitted.

.° I

SummaryD

Implementing the MMA requires developing a specific mechanization

and choosing appropriate filters. The MMA is very flexible in that it

contains many application dependent methods of calculating key vari-

ables such as secondary parameter estimates and prediction error vari-

ances. The following section will experimentally examine many of these

issues.
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V. Experimental Desin

V.A. Objectives

The objective of this section is to experimentally determine which

of the mechanizations developed in Section 4 works best for in-flight

simulation by judging them on their effect on three main design crite-

ria for the MMA. Convergence to the best fitting model is the first

objective. Even though the control law is robust, the controller's

tracking ability will degrade given biased estimates. Fast parameter

tracking is the second objective. Slow parameter changes which occur

when the aircraft's flight condition changes must be followed by the

estimator. The third and final objective is for the parameter

estimates to be insensitive to sensor noise. In other words, the first

two objectives hold when a realistic amount of sensor noise is added.

V.B. Computer Implementation

Simulations are run on a VAX 11/780 digital computer using Fortran

subroutines interfaced with the Matrixx computer-aided control design

software package [9].

V.C. Set-Up

The simulations approximate the motion of an *AFTI F-16 aircraft

by linearized longitudinal equations of motion given in state space

* The VISTA, currently under development, will b- represented by the AFTI F-

16 which has many of the control performance features of the VISTA. The AFTI
F-16 is discussed in appendix.
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form in appendix B. Assume at time t=0 the host is tracking *itself

at 0.60 Mach, 10,000 ft. MSL. The reference tracking signals are from .1
a real-time, non-linear simulation [19,20] with elevators and flaperons

as control surfaces with flight path angle and pitch rate as outputs.

At time t = 6 seconds the l inearized equations are changed to -1

approximate 0.31 Mach, 10,000 ft. MSL to represent a worst case

parameter change. The MMA uses 2 estimators. The linear difference

equation parameters of estimator 1 are initialized at 0.60 Mach, 10,000 .1
ft. MSL (appendix B). The parameters of estimator 2 are initialized at

0.31 Mach, 10,000 ft. MSL. The weighting coefficients, ai(k),

initially are each 0.5. These quantities are fixed until the algorithm .;

is turned on at t = 2 seconds.

V.D. Sensor Noise

Sensor noise is considered in some simulations. The form and

magnitude of the noise is discussed in appendix B.

V.E. Tuning Haqglund's Algorit

Since fault detection is not being used the asymptotic covariance

variable, a, is the only important tuning parameter which needs

discussion. Hagglund's algorithm (appendix C) seeks to torce the

parameter covariance matrix, Pi(k), to converge to "aI", where "I" is

the identity matrix, when parameters remain time invariant. Therefore

since an initial estimate of the parameter vector is available a-

* The model aircraft in each simulation was the same as the host aircraft to

avoid implementing model-following equations. Model-following theory for in-
flight simulation is well established in the literature [20].
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priori, a value of "a" should be based upon it. Note also since "a"

directly effects the asymptotic parameter covariance it can be used to

adjust the sensitivity of the estimator. Reducing the value of "a"

reduces the parameter estimate noise while increasing "a" allows the

estimator to respond more quickly to changes in aircraft dynamics.

V.F. Parameter Estimator Variations

Table (V-1) lists ten possible variations of the estimator shown in

Figure (TV-i). For the advantages shown, this experiment is limited to

method 1 of estimating the prediction error variance in conjunction

with partial secoundary estimation with Hagglun's algorithm and no

secondary pkrameter estimation.

Table (V-1) Oomparison of Secondary Parameter Estimation Methods

Seoundary Meto 1 for Method 2 for
Estimation Estimatin yjl Estimatin yi
Full Scale -High Ciputation Cost -High Computation Cost
RIS -Parallel Estimators Converge -Parallel Estimators Converge

to Same Operating Point to Same Operating Point

Full Scale -High Computation Cost -High Computation Cost
Hagglund -Impractical for High Order -Same as Method 1 and

-Parallel Estimators Converge -Modifications to P destroy
to Same Operating Point goodness of fit information

Partial -Acceptable Computation Cost -P only Partially Estimated
RIS Continuous Envelope Coverage

Partial -Same as Partial RLS but -Same as Partial RLS but
Hagglund better Wind-up Resistance better Wind-up Resistance

No Update -Small Computation Costs -Not Possible,
-Discrete Operating points P not estimated
only.
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V.G. Estimator Set-up

The experiment consists of four simulations of the system, each

with a different method of parameter estimation:

Simulation 1 - Partial secondary parameter estimation via Hagglund's -.
algorithm, error variance estimation via method 1, no noise. -'.
Simulation 2 - Partial secondary parameter estimation via Hagglund's

algorithm, error variance estimation via method 1, with noise. -'

Simulation 3 - No secondary parameter estimation, error variance esti-
mation via method 1, no noise

Simulation 4 - No secondary parameter estimation, error variance esti-
mation via method 1, with noise.

V.H. Multiple Model Estimator Performance -

Simulation data shows the MMA is useful for adaptive control for

in-flight simulation by meeting the stated objectives. Plots of param-

eter estimates show parameter convergence and tracking after a jump
V0

change in host aircraft dynamics. Output data plots show almost per-

fect tracking of the model aircraft output by the host aircraft.

V.I. Comparative Estimator Variation Performance

Examination of experimental data provides several important guide-

lines for using MA variations shown in Table (V-l).

1) Prediction error variance estimation method 1 (section 3) is
preferable to method 2 in most instances. This is especially true
if Hagglund's algorithm is used for secondary parameter estimation.

2) Secondary parameter estimates don't converge in general to the
best fitting model when partial parameter estimation is used.

3) The key to MMA performance is the prediction error variance
estimates, vi(k). If prediction error distributions of each model
have similar variances, the weighting coefficients, ai(k), may
(,onverrje to the wrong model.

i I
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4) The ?IMA's tolerance to sensor noise is dependent on input excita-
tion. Sensor noise variance must remain smaller than model error
variance to ensure probability convergence.

5) Proper input/output filtering is essential.

6) Weighting coefficients, ai(k), tend to converge to unity for
which ever model has the smallest prediction error variance esti-
mates.

7) Input excitation has a direct effect on the prediction error
variance due to model error.

Guideline 1

Plots of elements of Pi(k) illustrate the problem associated with

simultaneously using method 2 to estimate vi(k) when using Hagglund's

algorithm for secondary parameter estimation. Notice the plots of

0
element (1,1) of various Pi(k) matrices, which illustrate that in .% ..

general, the Pi(k) matrix whose arguement corresponds to the best

fitting imdel has the smallest elements. Hagglund's algorithm, hcwev-

er, forces the diagonal elements of Pi(k) to converge to a predeter-

mined constant (see discussion of Hagglund's Algorithm parameter "a" in

Appendix C). If the diagonal elements of the estimated Pi (k) matrix

converge to this constant in both models, the portion of the prediction

error variance due to modeling errors will be biased, degrading the -""

performance of the MMA.

Guideline 2

When using partial parameter estimation, secondary estimates of B1

do not converge to the B1 associated with the best fitting moxel.

Instead, they tend to vary around the B1 associated with same model as

the fixed parameters. This behavior is illustrated in plots of
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secondary B1 estimates from Simulations 1 and 2.

The bias in B1 means parameter estimates will be limited to points

on the flight envelope for which the secondary models are calculated.

A robust control law, however, should still perform adequately provided

the models are not spread too far apart within the flight envelope.

Model placement is an important issue and is recommended as an area of

continued research.

Guideline 3

The weighting coefficients of the MMA converge to the model with

the smallest prediction error variance estimate. Convergence behavior

is difficult to determine when prediction variance estimates are of

similar magnitude. Notice the plots of the prediction error variance

in Simulation 2 and 4. Around 7 seconds, when little input excitation

occurs and the variance of each model is similar, the probability

calculation does not converge.

Guideline 4

The prediction error variance due to modelling error must be larger

than that due to sensor noise in order for the weighting coefficients

calculations to converge to the best fitting model. If the prediction

errors are due more to sensor noise than modeling error, then the

estimated prediction error variance will be almost the same for each

model 'Then, from guideline 3, probability calculations are suspect.

This behavior is illustrated in prediction error variance estimates in

Simulation 2 and 4.
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Guideline5

Proper input/output filtering is essential to proper MM operation.

Prediction error noise spikes may cause spikes in prediction error

variance estimates which my cause weighting coefficients to diverge..

This behavior is observed in simulations (not shown) where input and

output measurements are not filtered. Heavy filterinrg, however, dis-

cards good information by reducing the difference between filtered

prediction error variances. Filtering also causes a "coloring" of -he

prediction errors [15]. No quantitative method for choosing an i-nput-

output filter has been developed so trial and error is used to choose 1
0

the band width of the band-pass filter used in these simulations.

Guideline 6

Weighting coefficients tend to converge very quickly, with the

weighting coefficient of the best fitting model converging to unity.

This behavior is demonstrated in simulations (not shown) where the

actual operating point is between the two points used to calculate

initial secondary parameter estiaites.

Guideline 7

The theoretical dependence of the input on the prediction error

variance due to modeling error is discussed in section 4. Comparison

of the input signal and the prediction error variance plots verifies

this relationship.
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Table (V-2) List of Plots - Experimental Results

PACE UPPER IfqER
P-I Secondary estimated Secondary estimated

BI, element 1,1 - Sim. 1 B1 , element 1,1 - Sim. 2

P-2 Primary estimated Primary estimated 4..
B1 , element 1,1 - Sim. 1 B1 , element 1,1 - Sim. 2

P-3 Primary estimated Primary estimated S
B I , element 1,1 - Sim. 3 B1 , element 1,1 - Sim. 4

F Primary estimated Primary estimated
B1 , element 2,2 - Sim. 1 BI, element 2,2 - Sim. 2

P-5 Primary estimated Primary estimated 0
BI, element 2,2 - Sim. 3 B, element 2,2 - Sim. 4

P-6 Pi, element 1,1 - Sim. 1 Pi, element 1,1 - Sim. 2

P-7 Pi, element 2,2 -Sim. 1 Pi, element 2,2 S Sin. 2

P-8 v i, element 1,1 - Sim. 1 vi, element 1,1 - Sim. 2

P-9 vi, element 1,1 S sign. 3 vi, elemient 1,I1 - Sire. 4". '") i

P-10 vi, element 2,2 - Sim. 1 vi, element 2,2 - SLm.. 2

P-lI vi, element 2,2 - Sim. 3 vi, element 2,2 - q-._ _

P-12 al, Sim. 1 al, Sim. 2

P-13 a,, Sin. 3 a,, Sim. 4

P-14 Flight path angle Flight path angle
Commanded and actual Commanded and actual
Sim. 1 Sim. 2

P-15 Flight path angle Flight path angle
Commanded and actual Commanded and actual
Sim. 3 Sim. 4

P-16 Pitch rate Pitch rate
Commanded and actual Commanded and actual

S im. 1 Sim.2
P-17 Pitch Rate Pitch Rate

Commanded and actual Commanded and actual
Sim. 3 Sim. 4

8.

48 "'-"I

" 0 ,



----- * •-. -.. - -

VI. Conclusion

The purpose of this thesis is to use the MMA for parameter identi-

fication used in adaptive control of an in-flight simulator. The
thesis is an extension of Pineiro's thesis [20].

IS.

Pineiro sought to control an in-flight simulator via an adaptive

model-following PI control law [20-24]. The control law bases its

control gains upon the parameters of a linear difference equation model

which describes the input/output relationship of the host aircraft's

dynamics. The parameters of this model are estimated from input and

output measurements via a recursive parameter estimation algorithm.

This thesis differed from Pineiro's in that the recursive parameter
estimation algorithm is replaced by the MMA to increase c ]nvergence

speed to the best fitting model parameters. Slow convergence is a

critical problem for recursive parameter estimation algorithms when

used with higher order systems such as those typically required to

describe aircraft dynamics.

A computer simulation is performed which shows excellent results.

The MMA converge quickly to the best fitting model. The host aircraft

tracks the model aircraft accurately. Degraded but acceptable perform-

ance results when sensor noise was added.

Experimental data also reveals useful information on tuning the MMA

for actual use. The MMA is flexible and can be implemented in several

ways. Implementation options are discussed and perfornance compared.
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Reconpendations for Further Study

Optimal placement within the flight envelope is one example re-
S

search area which needs to be investigated. The computational cost of

adding more a-priori models to the simulation is a trade-off of more .*. -

accurate parameter estimation. A moving bank scheme [16] which varies '

the models used in the MMA may be used to reduce the number of models

needed to cover the entire envelope.

More research also is required to decrease the MMA's sensitivity to

sensor noise. One possibility is to turn the MMA off during noisy

periods and when the system is receiving little input excitation.
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Appendix A -The AFT/F-16

Figur (A-) AFT F-1
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The unaugmented AFrI/F-16 is statically unstable in the longitudi- 11
nal axis for subsonic flight since the center of gravity is located

I
behind the aircraft's center of gravity. The instability, manifested

by an unstable short period root, allows the aircraft to withstand i-
higher load factors and reduces drag. Additionally, the aircraft has a

I

lightly damped dutch roll mode. Therefore the flight control system

has a twofold purpose: to stabilize the aircraft longitudinally and to

improve the dutch roll damping.

The AFTI/F-16 can perform conventional maneuvers, unconventional

maneuvers, or both simultaneously. Conventional maneuvers include

pitching longitudinally, rolling laterally, and turning with zero
*|

sideslip. Unconventional maneuvers require decoupling of the

aircraft's forces and moments and include pitch-pointing, yaw pointing,

and lateral and longitudinal translation.

Control surfaces which maneuver the AFTI/F-16 are shown in Figure

(A-l). The horizontal tail halves perform a dual function in that they

can be deflected symmetrically as elevators to pitch the aircraft, or

they can be deflected asymmetrically to augment rolling. Likewise, the

flaperons can be deflected synetrically to function as conventional

flaps or asymmetrically to function as ailerons to control roll. The

canards act either as a speed brake or to provide side forces, while

the rudder is used for yawing.

JII
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Primary mission tasks involve flight maneuvers which are divided

into four flight control configuration modes. The first is referred to

as the normal mode and is used for takeoff, cruise, landing, and air

refeuling tasks. The second is the air-to-air gunnery mode, used for

precise target pointing and evasive maneuvering. The third is the air-

to-surface gunnery mode, used for precise pointing needed for strafing -

ground targets. The final configuration is the air-to-surface bombing

mode used for precise velocity control required for accurate bombing.

The aircraft models used in this thesis were obtained when the aircraft

was in the normal mode.
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Appendix B - Model Data

Host Aircraft Model - The AFTI F-16

These are the continuous time state space model approximating the :.

equations of motion used in the simulation: A.

u(t) = [ul(t) u2(t)]T ul(t) = elevator defection (degrees)
u2 (t) = tlaperon deflection (degrees)

y(t) = [Yl(t) Y2 (t)]T yl(t) = flight path angle (degrees)

Y2 (t) = pitch rate (degrees/sec) S

x(t) = Ixl(t) x2 (t) x3 (t) x4 (t)]T xl(t) = pitch angle (degrees)
x2 (t) = perturbation velocity

(ft/sec)
x3 (t) = angle of attack (degrees)
x4 (t) = pitch rate (deqrees/sec)

10 -1 0
C== output matrix

0 0 0 1

Nominal Flight Condition = 10,000 ft., MACH .31

0.0000 0.0000 0.0000 1.0000
-3.1884D+1 -1.2236D-2 1.7789D+1 :-4.5361D+

A -. 2770D-2 -2.9100D-4 -4.8935D-1 0.999914 I75310D-4 6OOD5 1798-3.8710D-!J

0.00000 0.00000 -,
B 1.66435 -4.29844 I

-7.70780D-2 -6.91360D-21
-3.25199 3.25307D-I1

Nominal Flight Condition = 10,000 ft., MACH .60

0.0000 0.0000 0.0000 1.0000
-3.2046D+1 -1. 5269D-2 2. 3608D+1 -3. 6205D+I

A = -7.0900D-3 -2.0800D-4 -6.4800D-I 0.999924
5.8700D-4 1.3220D-4 2.28298 -4.1422D-1
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0.00000 0.00000
B --2.01664 -1.30775

-9.3111oD-2 -1.37395D-1
-4.72071 -2.30380D-1

Model Structure

y(k) = -Aly(k - 1) - A 2y(k-2) - A3Y(k-3) - A 4y(k-4)
+ Blu(k - 1) + B2u(k-2) + B3u(k-3) + B4u(k-4) + e(k)

Parameters at Nominal Flight Condition: .60 MACH; 10,000 ft. MSL

Element Element Element Element
Matrix (l11 (1,2) (2,1) (2,2)

B1 1.411739D-3 2.386221D-3 -1.324101D-1 -i.311730D-2
Al -3.982372 0.0 0.0 -3.982372 .1*

B2 -4.241853D-3 -7.145616D-3 3.956153D-1 3.907266D-2
A2 5.946657 0.0 0.0 5.946657
B3 4.232493D-3 7.129810D-3 -3.940006D-1 -3.879344D-2
A3 -3.946199 0.0 0.0 -3.946199
B4 -i.402381D-3 -2.370406D-3 1.307954D-1 1.283808D-2
A4 9.819136D-1 0.0 0.0 9.819136D-1

Parameters at Nominal Flight Condition: .31 MACH; 10,000 ft. MSL

Element Element Element Element
Matrix (11) (12) (2.1) 2

B1 1.000519D-3 1.504922D-3 -5.588077D-2 -2.567509D-3
Al -3.988486 0.0 0.0 -3.988486
B2 -3.001350D-3 -4.508592D-3 1.67205OD-1 7. 644987D-3
A2 5.965235 0.0 0.0 5.965235
B3 2.996832D-3 4.501846D-3 -1.667678D-1 -7.587455D-3
A3 -3.965013 0.0 0.0 -3.965013
B4 -9.960008D-4 -1.498176D-3 5.544359D-2 2.509977D-3
A4 9.882635D-1 0.0 0.0 9.882635D-1

Noise

Sensor noise was generated by a random number generator, where the

random number, ri, fit the bound 0 < r i < 1. In other words, p(ri)

*U(0,1), where E(ri) = .5, E(ri2) = 1/3, Var(ri} 1/12 [17].
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A pdf with statistics similar to a gaussian distribution can be

generated as

12
W = SUM(rij - 6

j=1

where E{W} = 0, E(W2 ) = Var{W) = 1

The variance of W was calculated from the following theorem [17]:

If (rl, r2 ,... ,ri) is a sequence of independent random variables, then

i i

Var(SUM{rjl) = SUM(Var(rj))
j=1 j=1

Simulated sensor noise is made by scaling W with the desired noise

variance.

Noise Ficures

Zero-mean pseudo gaussian noise of the following strength was added

to the state vector:

Variance State -

7.438x10-1 1  xI

0.000 x2

4.896xl10 10

3.404x10-9  x4

p(x) = U(L,U) is a uniform distribution, where p(x) : 0 for x I., x V
and p(x) [U-L] - 1 for L < x < U.
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Appendix C - Hagglund's Algorithm for Trackinq Slow Parameter

Changes -..

The goal of the estimator developed by Hagglund is to weight the

incoming information so that the covariance matrix becomes proportional
to the identity matrix. The diagonal elements of P(k) my be.

interpreted as approximations of the variances of the corresponding

parameters. Therefore, P-1 (k) is a measure of "goodness of fit"

which should be kept constant. In other words, if no information is

in coming nothing is forgotten but if the information content of the

current measurement is large, old information is discarded quickly for

fast parameter adaptation.

If information is to be discounted according to the new principle

the P(k) update equation must be modified. The RLS P(k) update, eq.

(2-31), can be alternately expressed as a P- 1 (k) update

P-l(k)= P-1 (k - 1) + v-l(k)o(k)oT(k) (C-1)

Eq. (C-i) discounts old information exponentially in all directions.

Hagglund's algorithm modifies eq. (C-i) as

P-l(i)= P-1 (k - 1) + v-l(k)o(k)oT(k) - a(k)o(k)oT(k) (C-2)

= P-1 (k - 1) + [v-l(k) - a(k)]o(k)oT(k) (C-3)

where a(k) is a discounting factor. The new infornation is

proportional to o(k)oT(k) and it may be said that the new infon-ition"
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is coming in the direction of e(k) while old information is discounted

in the same direction. Eq. (C-2) can be transformed via the matrix

inversion lem into a P(k) update equation:

P(k - l)o (k)oT(k)P(k - 1)
P(k) = P(k - 1) - ------------- - --- (C-4)

[v-l(k) - a(k)] - l + oT(k)P(k - 1)0(k)

Since the form of the covariance matrix update has changed, the

equation for updating the parameter estimates will also change. Using

eq. (C-4) along with the basic definition of the parameter update

equation in the least-squares algorithm, Hagglund derives the following

parameter estimate update equation:

9(k) = 8(k- 1) + (1/v(k))P(k)0(k)e(k) (C-5)

It remains to be shown how to select an appropriate discounting

factor a(k). Eq. (C-2) and eq. (C-3) show that a(k) must be positive

or information would be added instead of removed but if a(k) is too

large the covariance matrix could become non-positive definite.

Hagglund performed a stability investigation showing that the

covariance matrix remains positive definite if a(k) is chosen such

that

0 < a(k) < [OT(k)P(k - ) (k) (C-6)

Furthermore, in order to obtain a diagonal P-Mtrix of the form "aI"
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where "a" is the desired variance of the parameter estimates and "I"

is the identity matrix, Hagglund shows that a(k) must be selected so

' I
that

oT(k)P(k - 1)P(k)P(k - 1)0(k)
a (k)--------------- (C-7)

oT(k)P(k - l)P(k - 1)0(k)

substituting eq. (C-4) into eq. (C-7) yields the following desired

value of a(k)

deltad (k) V
ad(k) = v-l(k) +- ---------------------------------- (C-8)

deltad (k)0T(k)P(k - 1)o(k) - 1 0

1 T(k)P3(k - i)O(k) a
deltad  - ---------- ----------- (C-9)

oT(k)p 2 (k - 1)o(k) L0(k)P2 (k 1) 0(k) "

Eq. (C-7) can not always be used, however, due the restrictions

given in eq. (C-6). Hagglund shows that by incorporating the bounds of

a(k) in eq. (C-6) in conjunction with eq. (C-8) the choice of a(k)

becomes,

0 if ad(k) < 0 (C-10)

ad(k) if 0 < ad(k) < 1/n(k)
a(k) = _ _

i/n(k) if i/n(k) < ad(k) < v-l(k) + 1/n(k)

0 if ad(k) > v- 1 (k) + 1/n(k)

where n(k) = OT(k)P(k - l)o(k)
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Abstract

Adaptive control of aircraft model-following systems has shown

promising results for in-flight simulation, but the computational

* -/expense and slow convergence of conventional parameter estimation
techniques for higher order models inhibits their direct use for in-

flight simulation. Computer simulations of adaptive systems usually

assume some knowledge of model parameters in order to maintain tracking 

fidelity at a reasonable computational cost as parameters change. This

thesis incorporates a-priori information into a multiple-model estima-

tion algorithm which assigns a probability weighting of each estimator

within a "bank" of estimators. Final parameter estimates used in [

S...5

adaptive control are formed as a probabalistic weighted sum of individ-

ual estimates. Simulations of the system show excellent tracking

performance throughout the flight envelope. A moving bank scheme for O-

use over a wide range of flight conditions is recommended as a further

- area of study.
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