[~ AD-A190 538 PLAYING POKER R FI&L PROGRMHI :xnm.z ™
POKER ENVIRONMENT(U) WASHINGTON UNIY SElTTI.E PT OF
COMPUTER SCIENCE L SNYDER SEP 85 TR-83-09-02

UNCLASSIFIED NOOO14-835-K-0328 F/6 12/3

ey A Bo, et
PCRNS At bttt

ot

N,
-

LN

Watee T et LN U LN

w

LR W

S VSN

SRy

o

»
L

Sl
WAt <

Al TA

NN e
L R A A
@ .h&.f.m..vu-lno&!.ﬂ% ' .T&f\-h.\e .

<%

\.._W.h...— [)

s b b B o X

'

Sl <)
EREEE
- Il
muﬁmm:whl..:tm
u.l_. l._

L — ——
—— ——

55, e ey e 4 P A A AL A
AL OOS TAESENS R A O O A RO
'..f . a2 & - . ;
X TR I I IR YR o LA P9 L M S sl s Al S h'T?.-\.,-

16

I

—
—_—
—_—
_—
—_——

|

.25

P

I

vy

L]
-

v
l-'
"
'

e}
>

a®
Lg
[l
£
*,

o
“
“~
™

o
-
Ca
o

"
>
"%
’

.-
)
\\“
\J‘

R A e e

o, 0 ‘l -l - " - .
T A AL
RORER LS

.
AT

fECu.‘le CLASSIFICATION QF TwiS PAGE rWhen Data Entered)

iEF ’:Lf}

REPORT DOCUMENTATION PAGE

READ INSTRUCTION.
BEFORE COMPLETING FORM

! TREPORT NUMBER
none

1

& GOVT ACCESSION NO.J 3

RECIPIENT'S CATALOG NUMBER

Playing Poker: A Full Programming Example
Using the Poker Environment

4 T'TLE rand Subtitle) S.

TYPE OF REPCRTY & PERIOC CCVERED

Technical Report

6. PERFORMING ORG. REPORT NUMBER

?. ALTHOR’s,

Lawrence Snyder

8. CONTRACT OR GRANT NUMBER(s)

100014-85-K-0328

AD-A190 558

9. PERFCRMING ORGANIZATON NAME AND ADCRESS
University of Washinaton
Department of Computer Science, FR-35
Seattle, Washington 98195

0. PROGRAM
AREA &

ELEMENT. PROJECT, TASK
WORK UNIT NUMBERS

1Y ZONTROLLING QFFICE NAME AND ADDRESS
Office of Naval Research

12. REPORT DATE

September 1985

Information Systems Program '3 NUMBER OF PAGES
Arlington, VA 22217 38
14 MONITSRING AGENCY NAME & ADODRESS/If diiferent from Contro!ling Office, 15. SECURITY CLASS. of thia report)
Unclassified
15e. DECLASSIFICATION DOWNGRADING
SCHEDULE

16, DISTRIBUTION STATEMENT ‘of this Repor:,

Distribution of this report is unlimited.

DTIC

ELECTE

17. CISTR.BUTION STATEMENT ‘of the sbgtract entered in Elozk 20, if different from Report)

“E

18 SUPPL_LEMENTARY NOTES

2 @

19 KEvY wORDS (Continue on reverse aide (! necessary and identily by block number)

parallel programming

Ld'd

L

L ALl g 9 4

<9 .

<
[N

L8 l.)!_.‘ L)l.

L4

10 ABSTRAZT (Continuo on raverse side 1§ necesesary and Identily bv biock numbder)

Poker Parallel Programming Environment.

session serves two audiences:

This paper gives a complete illustration of a programming session with the
The problem soi.ed is to find the
elementwise sum of a set of vectors, that is streams of data.
Those who wish to see an example of Poker
without the specific details of a dry reference manual, and those who have
Poker available online and who wish to gain operational proficiency.

The sample

o
wd

LS B

[RSIV]
voran 13

oD 1473 =0

1N OF VN0V 5% 5 OBSOLETE

t

GC~ B Tv CLASSIFICAT AN ~F Yot

88

3|

12

ARRA L L
B ",\’

A LN
Ay,

TRV IV AT RN Y

I e e

Playing Poker: A Full Programming
Example Using the Poker Environment
Lawrence Snyder
Department of Computer Science, FR-35
University of Washington
Seattle, Washington 98195

TR 85-09-02 Accesston Fop
| NTIS GRAaI
DTIC TAB
Unannounceq 0O

7 Jus'{.ifirm'{.1¢m...._...__.._~q

Dy :
£
IR) Distribution/
- |__Avallebility Godes

Avail and/or]
Dist Special

| | Al
Abstract o

This paper gives a complete illustration of a programming session with the Poker
Parallel Programming Environment. The problem solved is to find the elementwise sum of

T T
v APRCAL)

NN

o4 n"'f [}

»
.
<

a set of vectors, that is streams of data. The sample session serves two audiences: Those /
who wish to see an example of Poker without the specific details of a dry reference manual, '—-\
and those who have Poker available online and who wish to gain operational proficiency. A
.':\
%
AN
This document has been funded in part by the Office of Naval Research Contract No. e
N00014-85-K-0328 and the National Science Foundation Grant No. DCR-8416878. 7
L’
"o
%
e
L
&
............................. NS AT AL A S AR, ¥ ‘.“‘l"n‘_r“ .‘*\'.\:'-

i P R S RV S N I R O A
e ""\'_.“,'.,,';:-3':.-\ S SR P N TS

Ehal IR R)

iy

Playing Poker: A Full Programming Example
Using the Poker Environment:

Lawrence Snyder
University of Washington

4
The Purpose. This document is lntended to serve as a sample program for the Poker
Parallel Programming Environment »{l‘] However, Poker programs do not exist in the
traditional sense: There is no monolithic sequence of symbolic text. Rather, Poker keeps a

“source database” which the programmer can view and change using interactive graphics.
Databases and interactive graphics may be very convenient for the programmer, but they
are not easily conveyed in hardcopy form. So, in an effort to provide some sense of the
flavor of Poker, this document is composed mostly of annotated pictures produced in the
course of a Poker programming session.

This example is intended to be as comprehensible as possible without requiring the
reader to be fully familiar with the massive background material. The presentation is
directed at two audiences: Those who do not have Poker available but would like to see
specific details in a form that is not as dry as a reference manual, and those who do have
Poker available and would like a quick way to gain operational proficiency. Both audiences
can learn how things are done in Poker. For an explanation of why things are done as they
are, two papers, written for general audlences are available, one on Poker {1} and one on
the CHiP architecture.[2]- BN ERRLEE

The text presented here refers to the PoLer Programmer s Reference Guide (3] and it
is convenient to have a copy available while following the example.

The Problem. We select a problem which is easy to understand and still illustrates many
aspects of the system:

Given k vectors of length n, produce the n vector that is their elementwise sum

and append to that resulting vector the grand total, i.e. the sum of all input
values.

We will solve the problem with a binary tree based algorithm. Each vector is treated as
a data stream entering a leaf of the tree. The leaf simply passes the value to its parent.
Each internal node sums the pair of elements received from its children and passes the
result to its parents. Additionally, the root accumulates all the results it sends out and
after the result of the nth pair has been summed in and sent out, it passes the grand total
out. For the first pass, we will use k=8, n=10.

!The work described bereia is part of the Blue CHiP Project and has beea supported in part by Office of
Naval Research Contracts N0O0O14-84-K-0143 and N00014-85-K-0328 and NSF Grant DCR 8416878,

Copyn’ght@ 1985 by Lawrence Snyder. All rights reserved.

v AT AT A

\. '.- «
K

.’ N.’Nf

r

i

)

7
o &

LR A
..1?

o

e
o

2o
Lt
RS

r 3 g v
SN XX,

4

\{\ oV

TuA
KL ED

o
al

2

i

1@),
Z

. .
'1 {- (. I- "

[| 4

AL ARy
BESSA @ R

| I
RN A

P

N 'f.’,'. CAAs

b

~

LAy

L/

&

4 3

"
nff.'“f_.,'

R

‘s

N o g e iy g e e A A T L e)

L aeat Y . — r
OO OO U X e TON % 4 ' i e U A AR i 2o N A il A - iy A Wa Ny g a¥n
- A !

&
AR AL
A d

L aling
"

The Display. Figure 1 shows a typical Poker display with the relevant regions indicated.

g Y TR LSST
T LA

Wy

lattice chalkboard

A

Vel Sep I3 04:48 VIEV: Code Names - 1nterconnect
nass: LABY PE: 8 8 SAVED PE: MONE

viEeve GINERAL CMALKDOARS CO0C mAmE VILY

% milp Pabort ~file ~“uffer PL

aitp elram ~“Comter display on ¢
“Oapoe it P :

~

L 7 PeEntt w .

3 m:u “ be : “Remove PE ! L cli p
ot AT ls diep)

A, ~aTeplav fu1} emry board

“eilocnte Xlear all entries ;
 be

2 ~) imte 398 nthing !
>~ diagnostic
command

D

P
{‘-'-'-

4

2

X

wyv o,
J y

) '.).."“v"'{:'l' !

DOO0O000000000000

« n A

}_.
o
}_.
A
{
g
N

|

% T e]

5

. 'y
PLIR LI PLINY

o\

R o

P S

ingre
I |
I!m | pree 'lmw 'lm 'I-:xw lu'.“ } field

" 3t V¥
s

]
)
J
:
—a
]

-
4 Ny

4

o X
o5 Y

7
1,

-
v
hJ

>

p
%

AL 1
1
I
J
J
{
N\

R T T B]
"'
[e

« 7

Figure 1. A Typical Poker Display.

...
A
I."‘
Tyl

~N
DTN R
;.I PRI A0

~ '-"‘v “ -
) . .
) 'l_.!

L T I

PO ISR L PR
ol Lalal w2

~
‘
l’
Sa
_\
<.
.
b}
,l
. 2
.'.'
. .
K
‘l
"
.
ll

P4
g

.o - . - - - - - - f
4 '/‘JN."‘f‘I\f\J\I > o o ",

The purpose of each region of the dispiay is as follows:

field A region showing a schematic picture of the CHiP Computer's lattice;
X this is the region where most programming activity takes place.

lattice A schematic diagram of the processing elements (PEs) with a box en-
closing those PEs currently shown in the field; no direct user activity is
A available in the region.

y chalkboard The upper righthand region of the display giving status information.
command line The area where textual commands are given; last line of the chalkboard.

diagnostic line The area where error indications are given; the next-to-last line of the
' chalkboard.

. clipboard A ten line region of the chalkboard used for the display of transient
. information and available for displaying files.

Notice that the display provides considerable geometric context which many users find
helpful.

The Keyboard and Keys. In order to be completely precise, the example is annotated with
every key struck by the programmer. To assist in making these strings intelligible, the
accompanying legend (Figure 2) will be useful. Note that there is a keypad (Figure 3) for
cursor motions. A keypad key prefixed by an escape (3) is called a “gross cursor motion”
since it moves a larger amount than the “fine cursor motions” which are unprefixed. Users

having a MOUSE should refer to Appendix B of the Reference Guide(3] for alternate
instructions.

$ escape key
3 "<char> denotes striking the <char> key while depressing the
: control key

%<char> the <char> key of the keypad

b blank; all spacing in command strings is for clarity

Figure 2. Legend of Poker Orthography

. S N Ly TR I S O N L R L W S T L L N NSOV
":.-:4-:!:.':«\?:!:-" \.,:'.\,::... '-\"5"') - o N A A A T AT RN RS EACARCIC AN o >

o

%1
"
X \
¥
h
b
~
‘\"' Fine Gross
)
o 4 %4 West $% 4
g \7 8 9/ %7 Northwest $% 7
%8 North $% 8
N < | lHOME| | —= %9 Northeast $% 9
g 4 S 6 %6 East $% 6
; %3 Southeast $% 3
v ¢ |1 %2 South $% 2
. 1 2 3 %1 Southwest $% 1
: Y %5 Home $% 5
o
s
.-: Figure 3. The Keypad of the Bitmapped Display
"E and the Notation for Directional Keys
-
- Acknowledgments
~ Poker is the product of the ideas and efforts of many people. Janice E. Cuny and Dennis
= B. Gannon, in addition to contributing to the definition of the XX programming language.
-;: were a continual source of ideas, judgement and constructive criticism. Version 1.0 of

Poker was written during the summer of 1982 by a delightful and committed group of
gentlemen, the “Poker players”: Steven S. Albert, Carl W. Amport, Brian G. Beuning.
Alan J. Chester, John P. Guaragno, Christopher A. Kent, John Thomas Love, Eugene J.
- Shekita and Carleton A. Smith. Primary contributions to Version 1.1 were made by Steven

A

. J. Holmes and Ko-Yang Wang; their work steadily enhanced the system. The 1984 “Poker
vid players”, another congenial group, completed Versions 2.0 and 3.0: Kathleen E. Crowley.

. S. Morris Rose, James L. Schaad and Akhilesh Tyagi. Philip A. Nelson and David G.
' - Socha assisted Kay Crowley and Jim Schaad during 1985 in producing Version 3.1. This
:: . document owes its existence to the hard work and good nature of Debra Sanderson and
;-' Eriko De La Mare. It is a pleasure to work with such fine people and to acknowledge these
. valuable contributions.

L N N

L%

*:- "- '.‘- "-

e Tw e e

P
..

o

v P g . . . 4 e
L2 M aAR AN ANELAIS ety A St AR it e e A v V¥ Y

TR Sa P e e ANt 3 Ll AW g

References

(1] Lawrence Snyder
The Poker Parallel Programming Environment
Computer, 17(7):27-36, July 1984.

[2] Lawrence Snyder
Introduction to the Configurable Highly Parallel Computer
Computer, 15(1):47-56, January 1982.

(3] Lawrence Snyder
The Poker (3.1) Programmer’s Reference Guide
Technical Report 85-09-03, University of Washington, 1985

o

FRVAT AT
F N, .

R B R R R S SRR SRR TAS
. B - ™) ! A N 3 A A »

PUp—— e
{J 'L-‘-""

.’.-“.'

£

[T
DANSD KA A

SRS

8y

T Y
¢@wazd :

A

oA
e

Pt o LA .'.",-' AT L i A S R S ‘-"- -
N e S

b 2t

LR5%%%

13

A LAY SR OF SR

O S SR
el J.."l’ll'

-
'

S

LA

L]

.'- I-."

o

.
»
.
.
"y
~

rFl X U X *
ORI A S,

L)

[AL ‘I_“I.&

f\-"

bluechipX akdir sample
bluechipX cd sample
bluechipx 1s
bluechipX poker

OOOOO00D

1. Once you are logged into
UNIX from a bitmapped display
and referencing a clean directory,
type ‘poker’ to start the system.
If this does not work, either Poker
is not available on your machine
or your PATH line in the .profile
or .login file does not refer to the
directory containing Poker, ¢.g.
/ust/poker/bin.

In subsequent figures, arrows il-
lustrate the cursor position.

S _‘." . - '-:

2. Poker begins in CHiP Param-
eter view which is used to declare
the characteristics of the CHiP
computer being programmed. The
default architecture’s parameters
define a 64 processor machine
since n, the number of processors
on the side of the nxn lattice, is
given as n=08. We need only a 16
processor machine for our exam-
ple 50 we must change the entry
for n to be 4 by moving the cursor

east one character and striking 4.
(%6 4¢). *

!Recall that %(chars) refers to the
(char) on the key pad as righs, § is e
cape, “is control, and b is & required
blank.

.

3. Changes to the CHiP pa-
rameters do not take effect until
we move to some other view, so
we move to Switch Settings{$s|.
(Discussion of the meaning of the
other CHiP parameters is given
in Section 7 of the Reference
Guide.)

v o Ty yrwvws

RN AN AL

......

TU0R00000
ogomomo .
0000000 !

Dollc@o@o

000000000
o@o@o@o@e !

000000000

, oQo@o@od@oe

‘ 000000000

I

4. To specify the communica-
tion graph connecting the proces-
sor elements (PEs) for our prob-
lem, we draw a picture of a bi
nary tree . The 16 PEs are shown
as boxes with indices; the cir-
cles are switches through which
all communication paths (lines of
the picture) pass. The root of our
binary tree should be at PE 1 2
50 we move the cursor east. This
can be done either with two fine
cursor motions:(%8 %6| or one
gross cursor motion [$%6] which
is given by prefixing the keypad
key with an escape. (A discus-
sion of other cursor maaipulatioa
activities is given in Section 3 of
the Reference Guide.)

FAS NN

10101
100]

00

000000000
omgmomomo
: 00dQgacooo
o@o@o@o@o
000000000
o@o@o@o@e
000000000
oQo@oDoQo
‘ 000000000
[}
VIEW: Switch Se

LAST PE: 1 2

5. An indication is given in the
chalkboard of the index of the
last PE referenced. To draw the
communication paths in the lat-
tice, we set the cursor mode to
*draw” [“d] and thea move the
cursor around the lattice.

-~ LN

NS

ot i

d
d

00
00

[1010)
Q0

I 000000000
| omamomomo
| codooo0000Q
oPo@oPoPo
C00000Q00
oc@o@oToPo
000000000
ocZoQodo@o
000000000

Setting - draw
SAVED PE: NONE

6. The “draw® indication re-
places the “null® (no mode set)
indicator in the chalkboard. We
next move the cursor south [$%2]
to the child of the root, i.e. PE 2
2.

O

OO0OO0O

O0O0O0

1
3
O
2
3

7. The communication path be-
tween the root and its left child -
its right will be PE 2 3 - is shown
as a line. The processors will be
able to communicate values over
this link. Since “*drawing” is still
in effect, we can move west to the

(root’s) grandchild [$%4].

SRS eI
agag
gag
mim| x
! o888 o000 00000 i ; 00000
! om-?cnomo oedo : i Qoodo@Po
| copdogooo Qo000 i OPo QOO0
: odkflgdodMo o@odo : od@oJo
| 00C00000CO 00000 ’ [R -N-N-E-N-N-N]
oc@o@o@od@o oodo ; c@o@od@o@o
| 000000000 c000Oo : 000000000
j ocQo@o@elo o@odo ; oc@oPo@od@o
000000000 00000 ! 000000000
i
‘ | -

O O 0O

O
O

o

8. The communication path be-
tween child and grandchild is
shown as before. Gross cursor
motions move to the next PE in
the indicated direction; on our
way to the great-grandchild, we
can illustrate fine cursor motions,
which move to the next element,
be it a switch or PE [%8].

®OO0O0

O
0

O

®
o
®

O OO0O

O
O

Ll]

9. Notice that the line stops at
the edge of the switch. (Com-
munication paths can enter and
leave a switch from the eight com-
pass points, and they can cross
over one another. See Section 8 of
the Reference Guide.) We move
to PE 11, a leaf [%8].

Sl it O8 Gt Bg Gog Mg g Sl Gh Wy g g Bl

aanlan o o

000000000
ofjokiodoB0
000000000
ofBoiio3olo
000000000

O00O0
v HEJH
C QO
oAIHa=SH

10. Having reached a leaf, we
want to connect to a stream of

Such streams “enter” the lattice
through “pads”; pads are indi-
cated by tiny squares “outside”
the lasttice and they are created
by moving the cursor “off® the
edge of the lattice [$%4].

ac

ag

24
iBBNOOéoéo
ojfo@odo
‘?o&ooooo
o@od@o
‘ 000000000
' oflo@o@oPo
! 000Qg0000C
; cQlo@o@od@o
000000000

O
-1 0
® 00O

%

o O
oL

11. We can draw the edges to the
sibling leaf, Le. PE 3 1, by retrac-

1[$%6 $%2 $%2 $%4).

(R, ol ..-..‘---¢--.A---:.
N,
2
»
(=
o
D[: R T P '\
DCCd ‘.\
D000 B
mim| v
}
]
u\‘-
000000000 -
oJoJo@oTo o~
j9o0o0c00 S
o@oJo -
000000 KA
- P oDodo S
000000000 L.¢
ocdoPoPeMmo
Q00000000 -
I-
»
i ,.°
. PR,
»
il
o
)
O

O
OO0 0O

12. To continue the construction
of the tree we must return to PE

data values stored on the disk. ing our path back through PE 2 2 2, the child, and this could be

done by retracing the path back
to PE 2 2, or by turning off the
“draw” indicator (e.g. with “n)
and moving the cursor to PE 2
2. A third possibility is to use
the Center command. We begin
by typing the index of the PE,
[282]; the characters will be dis-
played on the command line even
though the cursor remains in its
present position.

.. R, - ., . e .
T e R L e T L e T T L e]
N A e e A s PO "

R A A

P S
DRRRS

BV N -.‘-.:,.‘ .’ L
335::::-

4

A
L

' : I: ":'.:"!"- .‘-

-

ot e v

Lo
D

P
.-.. IJ.-.-J »”’

0

et e

LA T e T |
Cla %A e

10300
[1000

B8

aa

kel ol T Pl ™

oog

0

NP N

opeqmoooo
ofjetiadriofio
owoedoooo

ocHoRoRBoHBo
0OO0OP000000
oHeRBeReHo
[N NN NoloR YoXol
otjoflefloRe
opoooPoooO

000000000
oBBoBoRBoR0
000000000
ol3oBoHO0AO
000000000

o oo
oo ooo0
efjo3o

Q 22
odloodooo

000000000
oB3oBoRHoAo
000000000
oBoBoRoAo
000000000

oBefoBoRBo
000900000
[+] efjoHo
o¢9oo0o0 oo

im.nﬂ.nw.ﬂj

14. We continue in an analogous 15. At this point we have made

With the PE index given
on the command line, Center [“¢|
will move the cursor to the PE

13.

move® [r}.

$%2 $%2 $%8 $%8 $%8 $%8 $%3 ing the mode from “draw® to “re-

way to define the binary tree and a mistake which must be cor-
its pads [$%2 $%1 $%2 $%8 $%9 rected. This is done by chang-

$%6 $%8 $%6 $%2).

NN\\\... MBI

L -1
bl n—-.-'~f. !fl -. -A- .\ ﬁ

et

10

AN

»

PN

NN,

- wr
o

R

LT I VN L VL

e

TNy

H AN

PRI
PR

PR S e

PN

mim| hd "ol e I TR SN 3. ;
DCC0 cCog :
nin[nle ulmine
o o
0000Q0000QC 00000 OlTT oo%o 000
+JoQlo@o e eJo ° <« oCloJe
000080000 1 cQgoowo 00 000
o[}}oﬁ]om-o{né o (o<1 o DigM o cJedloTeTo
00000000 090000000 C9000%0d0
eJo@oPodo oJoPoPoPe oo ¢ e
‘ 00FPO00000 c0gd00000 co0gP00RO0O h
* oodoQodo oodoMad@o ! ooPoTome)
‘[090900000 090900000 : 09090¢coo0o ¥
\ : l :
L) e . .
Setting - remove
SAVED PE: MOMNE O O O
1 ~
O 4 O D
\
ol0 1
3
‘D
i O
b
16. The change, reflected in the 17. With the arrow corrected, we 18. The layout of the binary ‘

chalkboard, allows us to “backup” can reset the indicator to *draw” tree into the lattice is completed:
over the line, removing the set- [“d] and continue with the graph Eight data streams enter at the
ting [$%8]. layout [$%4 $%2 $%2 $%6 $%4 leaves of the tree and a result <]
$78 $%4 $%2 $%K3 $%2 $%8 $%7 stream exits at the root. The '
$%2 $%2 152 “c $%8). completed switch definition is given
in Figure 4. To assign processes
to each of the processors, we
change to the Code Name View

)

[}

-

.

11 '
. - T .-y

---------- AT P L R O Ui N B e e TP e JPICI S) ‘-'_“-__"- AU DR PO IR AR AT Y

e A A G T A R R I S A SR R e -y NV Sy

.

Pl A

r

T2
1‘ 'I' [

o ','.11'1‘_!

SAVED PE: NONE

1

Switch Setting - null

VIEW:
LAST PE: 1}

ONONONGO

O

Wed Sep 18 10:20
PHASE: 1

ooocpooooo
OQOQPOPOQO

oNoNeNo

4
- X ErX
TATI, ol

. Tl Bubaior s o

10

=
i

19. Notice that the switches have
been removed and the PE boxes
enlarged to hold more informa-
tion. In Code Names View we
assign processes to processors by
entering into the PE boxes the
names of the (yet to be written)
routines. The window for the

code name is centered one line
down from the top of the box, so
we move down to it (%2 and en-
ter the text [root|.

2
b s

20. The name (of up to 16 char-
acters) is clipped to the first five
characters. The four remaining
lines of the PE bax are also vis-
ited by fine north/south cursor
motions and are used for speci-
fying (actual) parameters to the
process. Since we intend for the
stream length to be a parameter,
we enter its actual value now (%2
10].

100D
Q0

]
]

L

CHOA
rnﬂﬁ

-
et

-

21. As before gross cursor mo-
tions move from PE to PE, so
we move to the child PE[$%2];
the carsor will appear at the top
of the box in what is called the
“home” position.

R S

o A

7.,

’,

~

v

‘,'

L

* .“'}‘-'.'-
-

.............. " < An® p®
...... FuwaWa ¥ W Wy, sl el

' B e _,
: 0o0 “
Y, 0aQg
Y @i -
N :
o)
4 - - [
R 0 PO JRCE :
-
o e . DQE — :
[T | i OO0
o AT ;
, ‘ 4
- ' —_ !
L
:-
w [A:x:u: Code Nase :
[T PE: 2 2 .
! inode
- 1 ;
o) *
-
3 ‘.- </
N N
o -
'\-: r‘———-q rﬂ]
~v t
&
J 22. To enter its process code 23. Since there are several PEs 24. To deposit the buffered val- J_
< name in the appropriate window, thas will receive this same text, it ues in another PE, say the sib- v
= we move down to the first line is convenient to buffer the entries ling PE 2 3, we can type the in- 4
- [%2]. The interior nodes will be [“b]. The buffered cell is shown in dex of the recipient PE; but to 2
- given the “inode” process name the clipboard region of the chalk- avoid the possibility of the in- .
N and the stream length actual pa- board. dex specification being treated as
rameter [inode %2 10]. text, we must move out of the
N window and to the ‘home’ posi-
o tion of the PE [%5]. Then we
: enter the indices (243] which are .
oy shown on the command line. ~
K
N
¥
'V.,
S
N
' 14
2

L P PRI . - L e T "'y WA’ " A" et T AT AT e et T Tt T N T ST N A T
S N I RPN (RSN RS RSN R RS AN Pyt S - - SO RN N A A A R A
») _n.,'.n"}:'.-_'l_'-':' I_'I}i.'l v o' v

28. With the recipient indices
specified, a deposit command [“d]
copies the buffered values into the
cell. (The cursor does not move
as a result of the deposit. For
a full discussion of the buffer
deposit mechanism, see Section 9
of the Reference Guide.)

26. Another way to use the de-
posit feature is to move the cur-
sor to the recipient PE and invoks
the depoeit, because whea no PE
indices are specified on the com-
mand line, the deposit is to the
PE containing the cursor. To il-
lustrate this case, we move to PE
2 1, the grandchild [$%4), and ox-
ecute a deposit [“d|.

15

27. Similar motions can easily
specify all of the internal node
processes ($%3 “d $%6 “d $%9
“d|.

“
[20

WA A A RN
LS 4
ST AR

-’.;
[4

DAY,
,‘

’

‘o ‘l\l~‘

» .'."‘-' 'f 'f 'l' .l. -‘P

Y VXA A AR A 5

v

‘»55'»'!'-‘.

- . e
LR LN

S
..' -'..n' -’ ‘." / /4 °

.'..,....

W
o

'..\'S'\‘ K
P o) L)

L s

LR RSP R
Sv)y LA
.. .

B . R

.

o

Y
P ARG

‘I- LA)

L R
>

o " %
S

----------- LRSI AP TR ST TR OISt DU S DU ML N AL U S
""" S el D e N T AT T S A,

e o AT AT AT AT AT A et A AT AT e T AT et e
TSI IR -r‘.r-‘ N AN N AN NN

SN
o

Tl & L AN

. s %

Taa LG

B . P
.......

R

28. Next we visit the leaf at PE
1 4 and assign the leaf code sad
actual parameters ($%8 %2 leaf
%2 10|. In preparatioa for sub-
sequent specifications, we buffer
the text [“b].

29. We move to the sibling leaf
(PE 3 4) [$%2 $%2| and deposit
the text [“d]. Thes we continue
to deposit leaf code assignments
to all leaves above the last row
[$%4 $%4 $%4 “d $%8 $%8 “d|.

16

.....

30. With the whole fourth row re-
quiring the same text, we define
aa iteration [4).] which specifies
a group of PEs: Their first index
is 4 and their second index, spec-
ified as a period, means any le-
gal value, i.e. period abbreviates
1..4 in this case. The iteration is
showa on the command line.

Be e X a¥, -t

.....

31. A deposit ["d| assigns the
buffered text to all of the fourth
row PEs. The binary tree's pro-
cesses are now assigned. (See Fig-
ure 5.)

..........

L Tl i e

32. The next step is to define
the sequential code for each pro-
cess. This uses the XX pro-
gramming language and is usu-
ally done on the companion ter-
minal using a standard editor. (If
so, the terminal should refer to
the sample directory; if a com-
panion terminal is not available,
the user cam exit Poker ($ “¢)
to prepare the processss.) The
process code is givea one pro-
cess per file with the naming coa-
vention <process name>.x. (To
save typing, these files can be
found in /usr/poker/lib/Playing
Poker.) We give the XX codes
for the three tree processes.

17

YRS RYRYRYY

code leaf(n);
trace x;
ports in,parent;
begin
int x,1,n;
for { :« 1 to n do
begin
% <~ in;
parent <- x
end

33. The leaf process, stored in the
file leaf.x, simply reads a value
from its input port, in, and writes
it to its parent. Notice thast data
is transferred one value at a time
using an assignment-like operator
(<=). (More information on the
XX language is given in Section
12 of the Reference Guide.)

R A

.- o4
s r 'xd

s % "

-
a
LY
e

XA

l.“

ORI
L

7

- m
\-'\"'

', \.‘\

Y

Fs'.

'f 1’ -, {-

» P N
0

"'
AL

4

g . . e ;e A
L T LN T T 0 e AT e e A SN I
o . - o M) » 0

" Bl Sl .-.ﬁ\"-" V- \'_'\._A_-'- AT a" eV eNu «a "t Lt PR . . w e - e . "> S A" L] .
i Y SNt e Te e Me BT Tl -

Wed Sep 18 10:21 VIEW: Code Names - interconnect
PHASE: 1 LAST PE: 1 1 SAVED PE: NONE

WYY ErEN

R .
5‘-\‘.\ i(.

Y

leaf root leaf
10 10 10
r— P—
—!Inod. _!ml:cc_;:E zinode # ztnode ﬂ
10 10 10 10
r’i-r] :'llml;_:E A’inodo 3 jlenf |
10 10 10 10

lear Tt 4 [Trear T [Trear

18 1¢ 10 18

‘.'-‘-“-q

PP,

L4

'l .i

Figure 5.
18

N N R T P T S R e ST S ST S U ST I
> R AR AT AR RS R A AN A AR AT R
N SN 'r'._ti':it'xf.‘f’ Wy . Wy N ; ; aa) w0 NG e)

N A S S

3 N, RS

ey " m
PR R PR B i A N P «Fu)

code inode(n);

trace 2;

ports chld rchild,
parent;

begin

int x,y,2,1,n;

for 1 :» 1 to n do
begtn
x <~ lchild;
y €= rchild;
Z % xXoy;
parent <- 2z
end

end.

34. The internal nodes read val- 35. The root acts like any inter
ues from their child processes,
sum the values received, and send ning total (w) which it appends

the result to their parents.

PRI ‘f.r.'.r.r.wf

\'..\\\\\W

code root(n); Coa ===
trace w,2;
ports Ichild,rchild, D%%%
parent; BDEI
begin
int 'ixiy'z"'n; p——
w :o0; —
for { :s 1 to n do ’*‘ ! n
x <- lchild; o 4
y <- rchild; _— = —
Z % xey; l ”_"r——
parent <~ Zz; —_— l"'\‘:,

"w ;s w2 ‘ N
end; ' DCL—'

parent (- w
end.

[[7]

36. The Port Names View is en-
tered [$p] showing a display sim-
ilar to that of Code Names. The
to its outpus stream as the end of chief difference is that the PE
the computation. box is brokea up into eight win-
Having refured to neighboring dows, one for each compass point.
processes by port names, we must The windows coatain names of
now define them. at most 16 characters which are
clipped to the first five. The fine

nal node, but it also retains a run-

AT ')

.

NN

)
~8
Ld

-'“\’s"'.';{

5

O /.:lk.-... . '. - .l.’-, Yy v, ',

<

"". 'I
77

R W L, e
] P .
N

5 S

,I-d. ’

cursof motions move to the win-
dows; gross cursor motions move
betweea PE boxes. e
Y.
P,
SA
! ’
-9
LY
5
)
S
- .ﬂ
T
- ..‘
’_,,1
0\
3
y
1
’ '
» \f\f\-\i\'-\-\"\-\- SN e T B T O RS R .

in

r

37. Using the fine cursor key,
we move to the west port win-
dow [%4] and enter the port name
used in the leaf processes for the
external data stream (in|. Simi-
larly, we can move to the south
window (%2| and enter the other
port name [pareat].

-4/

i

38. The windows are small (5
characters) although the actual
names can be up to 16 characters
in length. To see the unclipped
entries we caa use the display key
[*y]. The result is shown on the

re

39. We can continue making en-
tries by using gross motions to
move to new PEs ($%2| and then
fine motions to movs to the port
windows |%8 Ichild %6 parent %2
rehild]. Continuing in this way
[$%32 %8 pareat %4 in $%X2 %9
parent %32 in $%6 %8 parent %2
in] we complete a cell that can be
buffered [“b| aad reused ($%6 “d|.

{

40. The irregularity of the em-
bedding prevents us from mak-
ing much use of the deposit fea-
ture, but this is to be expected:
It is exactly the port naming fa-
cility thas allows us to remove
the geometric dependences of the
layout and treat # im our pro-
grams as & logical tree. So we
move around the lattice making
the entries ($%7 %8 pareat %1

parent %2 Ichild %6 rchild $%2
%8 parent %32 khild %3 rchild
$%3 X7 parent %2 in $%8 %8
parent %6 in $%8 %4 pareat %2
lchild %8 rchild $%8 %2 pareat
%6 in|. (See Figure 6.)

a

paren

o

41. The ports allow us to name
the processes’ neighbors; now we
must name the streams that flow
through the pads. For this, we
move to the IO Names View [$i].

...............

ca
g0
PAD NANE

42. The [O Names View is used
to assign stream names to the
external /O pads that were de-
fined in Switch Settings View.
The diagram at the bottom of
the field shows a schematic of
the lattice. A table of stream
name definitions is given at the
top of the field; the user fills in
the table entries for the stream;
the remaining information is pro-
vided by Poker. To assign input
streams first, we move the cursor
to a leaf pad; to demonstrate that
the pads are visited cyclically, we
move up (%8| to wrap around to
the last pad, leaf 1.

.l .l
.
¢ & v

o Ta R I

VXN

L,

-,
Yy ’\-’1{" I‘ \

SN,
'

IR R R L2 UUE DTSR L T i L "SI TR A R
. . e e ettt b e T P P S
. .’.’\‘_\‘:I, -.b, */‘.a\.'.',\ ")_. o ,,-, {l{, f% e

’

v
"

-
RN AR "v”y".“’-"a ;

Y .-. ,-.'z. ./'- ’ ." -, -', .{ ..’ 'f ."
e

VAT R AT,

WO YRR
LA L]
:'"I v .n:. \n’.‘f\t‘

Wed Sep 18 10:23 VIEW: Port Names - interconnect

PHASE: 1

e

o'

LAST PE: 1 1 SAVED PE: NONE

. »
P

id

[N
1' "',

,.
L]
P

210
<

“x T<‘.":

o
vy

SN AR I

—1in

paren

1
paren

rchil
chil

in .

paren

e
" %

1chid

4
paren

pare
rchil

1chtd
rchil

A

AR

PR

rchil
paren
rchllr'Jpnren

Tchil Tchil

el
A

v e

v
!

" %

.l "I'.- .

P
[}

paren

—1in

—,pnre;4?

1chil
rchil

RN
,pnren | Jpnren ;:\
in [— e

rchi -
Tchil ®

paren

in

§
paren

tn

paren N
rpnren s

in in ’\i

LA N R

¢ Y g
P AP N R e A A N

PRGNS
e L

&

Figure 6. o

22

P PIE K

I

et

ST
o e .,

"ad
/ }l'l"l l"\’k‘k o

» .

NN

x [‘]
v "".n..l._ .,

AAA

AP Y A

b

:.J.'{\f.'f:-f\{-'f

TN T wme-

0a
(@]9

0an
0o
aac
00

00
a0

stk

H+

bod
osla

H+

43. Notice that the arrow in
the schematic changed position to
point to the position of the last
pad. Pads are numbered clock-
wise starting from the northwest
corner. To define the stream
name “datain®, we simply type
into the “name® window pane
[datain].

Al

L R S S S A N SRS

atain

44. Streams, sequences of data
values, are either files by them-
selves or they are grouped into
a file by being placed “side-by-
side”. The index describes which
poeition in the file the stream oc-
cupies, i.e. which field it is in each
record. Assuming the leaves are
numbered in the normal “left to
right” order, pad 9 corresponds
to leaf 1 and thus, we assume,
to stream 1. So we move east to
the index pane of the pad window
(%6] and enter the index [1].

23

TN AN N

NN R AN A NN AN

JINOEX OIR.

pare

in
in
in
in
in

)! in

F

45. The direction refers to whether
this stream is an input or output
stream. Streams can only be uni-
directional. We specify input {"i}.

NN LN T N SN S
) FA)

>

~

v

r .

5% %y

P Ll L

<

RN ¥

\‘.\

. 't w - A pe S O IR I B I Lt i P I L) - P P A e i D S B L
L}
J\
A
- ' It Sl e GD D - = v
4 ccag cccg f,:- cogg
2 aaag aaca aag
~f | -
94 = :
e, = 3
~' = = -
o~
o
}‘-: H]
o B "1 ; i
» 800 400 ‘ Q.::
(X 2] oo ~ v
4 l L
o TND :
s T 4 03:13 VIEW: I0 h
" 'l‘:" : 1 LAST PE: 1 J :
[y - I ;
n
3 T NOE PORT
Tn
o ™ [atain aTent .
f
T L :
T
.o Tnput [Tn T :
: v

46. Since all of the leaves will
have essentially the same entries
(except for index), we can buffer
this entry [*b| in anticipation of
depositing it in the other leaf po-
sitions with an iterated deposit.

47. To give the iteration parame-
ters for the iterated deposit com-
mand, we move to the command
line using the *home” key [%5|.
Then we give the first element of
the iterated sequence, the last el-

48. The multiple pad deposit can
now be specified with a single key
[*d]. (A full description of iter-
ated deposit is given in Section
11 of the Reference Guide.)

L]
o ement, and the amount by which K
-; the step s to change, ie. by -1 R
A (8825 -1). N
K
_1
._.
‘d
'-l
N
_l
Y
_4
'.\'
>,
."'
AY
» Nv
24
N
' N
L e e e e e e e e S S L I T Y0 L P A T TS PR S T
. o P A AR . . S P AN T AT A
N R N SN N N SN SN I PN N N T S ST A S N N '~ P J‘\ AT)
e, . A . A o n

-y L "B & 0 aadas 00 mrdieierane®
MRS it At A A

eote S _p

AR BE S P M A L SARA A A SRR A LS

L

g
3

PAD NANE

49. Notice that unlike deposits in
the other views, which copy the
buffered data exactly, deposit in
[O Names updates the index by
1 as it deposits. This increment-
ing property explains why we it-
erated through the leaves in the
order in which their streams ap-
pear in the file. Next we go back
to the output pad [%5 %2| us-
ing wrap around and enter the
stream [dataout %6 1 “o]. This

sigd
*»ls

ew
a8

PAD| NAME
ataout
atain
atailn
atain
atain
atain
atain
atain

50. Having completed the source
specification of our example pro-
gram, we take the precaution of
making a backup copy of our
database. This is done by mov-
ing to the command line |[%5]
and specifiying the "copy” com-
mand [copy b|. (This is & general
file manipulation facility.) The
appropriate transfer for backing-
up is to copy all internal source
database entities [*,] to the cur-

51. All execute commands are
invoked with the execute key
[*x]. (In the case of “copy”, the
completion is reported.] Other
execute commands perform text
substitution (replace), associate
streams with files (bind), and ex-
ecute programs (run). A list of
the available commands is given
when one “executes” a blank
command line. When one exe-
cutes a parameteriess command,

completes the IO Names specifi- rent directory [.|. (File manage- the syntax for that command is :'_:
cation; the final form is shown in ment is discussed in Section 6 of given. Incidently, in a view the T
Figure 7. the Reference Guide.) command for that view gives a -
list of the legal key strokes. .
25
T o e e N N g i

#

A AR Nt b A i SRR R e A S S AR i Ratiett” fafts il St AntoAui bl gty et i A AN AE A AR A AR SO T 10

P 3
~{I oy .

on

Wed Sep 18 10:24 VIEW: IO Names
PHASE: 1 LAST PE: 1 1 SAVED STREAM: NONE

S
*

P A

N "'.‘-'-l

AT RS RSy

‘-. -
‘e 'y e
v

"_- Py

PRI
v

¥
L
>

DESTINATION
INDEM DIR. PORT NAME DIRECTI CODE NAME 1]J
north root L
east Teal
east eal
south |(leal
south Teat
south (leal
south Teal
est Teat
nput 1in west ecatl 1

=4

|

" -
rL S
I .

LAY AS N
P

e’
ol

A -

7.2

W T,

TRy
I"JN‘;,I P

g

1 J

Y

s
AL .

)

£ 5T
1

55

rw
o
.
ot

.’ " "' . M . b
‘. l. l.’ .
.t 'l lI .

Sy
., e '
oop e A

- - P
P R
e e

2

7

Figure 7.
26

o
»
k)

B _a_u_ 2

Pt

’
v

r

I

"
-& %

.,-‘ » e

‘s
“y
":

\ A UM A AL L S e A MU NN R o < ACEAC SN SIC N
i
S
‘.\.: o s ——a
o~ R
o SCogi
o 1NN PR -SH¥
v
A
£y
‘.\
*\-.
S gty
a8

: (A X]]
. I
|
o I S
o Command Regquest g: ;: S: 5:
o Copy _processd 11 NUM TICKS o 71 a
7 1, 3, 4 2
A T -1, -1, -1, -1,
> -1, -6, -7, -7,
_ INDEN DIR. rd L L AR
?\ tpulipareny -6, -7, -1, -8,
v)':- npu n -l’ -3' -‘, -Z’
N mﬂwz :n MRV
< nput [Tn
l,l p—— > o
g

4

a
’

52. Having completed the source

Zaf A AR NGRS a0

NS 53. First we display the fils of 54. To be used by Poker, the
o database specification for our pro- sample data that will be used to file must be copied into the cur-
’ gram, we move to the Command test the program. Files are dis- rent directory. Since this is a file
o Request view where we prepars played by giving the file name on rather than a Poker database en-
to run the program [$r]. the command line followed by “f. tity, we use the UNIX copy com-
° The file is printed in the Clip- mand rather than the Poker copy
L board region of the screen with command. UNIX commands are
~ the lines clipped, if necessary executed from Poker using the
.;: (/usr/poker/lib/Playing Poker/test “shell® execute command with
o *f). the UNIX command as a param-
N eter; thus, we type “shell” fol-
_ lowed by the text UNIX is to ex-

o ecute follwed by “x. [shell b cp
: .‘_-; b/usr/poker/lib/Playing Poker/test
L b."x|
o
e

.-1':

-.\-

o

I

N

5 o

“

~ 27

N . .:
B N R S A I AT N AN I AN NN P ENDEN R NN

oy . e e x n S— . Y R I
e R R R T L T T T o T T T T A T T T T T N S A R N o N R I B R I T e S e

«Va¥ed.

7
Rl el

A

)

»,
L Y)
- e
w o
- v w
NN
. v w
(- WV R
- w w
o e~
- w» w
oan
. e w
O () =
“ - w w
ano
- e =

> 2

sy
>
fod
>
&
>

) "- "A ’L{l:.':‘\,.-

6, -7, -1, -8, -

i —
l?ﬁen packlD test vectorsl -1, -3, -4, -2, -

[1, 1, 1, 1,

Y
l".l\.! P

it

atain vectors]

SO

KR

55. The file, now in the current 56. Poker expects these streams 57. To associate the 8 streams,
directory, is composed of random to be in a special format which vector 1, vector 2, ..., vector 8
values and their negations, so is produced by a utility program, with the 8 streams declared in the
they sum to 0. It has 10 records called packIO, described in Ap- IONames view, datain 1, datain
of 8 fields each, and can therefore pendix B. We use the shell com- 2, ..., datain 8, we bind the names

a

.).II
LR I I

A be interpreted as 8 streams (laid mand again to format the file together using the execute com-

N out side-by-side) each containing [shell b packIOb testd vectors “x] mand for that purpose, |[bind b

~ 10 elements. and name the result vectors. datain b vectors “x|.

=

g
S 4
"J ~.
~ ‘4
%
; %
b -
‘.. o>
. ’
i A
¢ 28 i

»

»
tr
A

CPOPCAAL A Pagtt 't ah

-~
Yal
N

AN

-6, =7, -1, -8,
-1, -3, -4, -2,

1, 1, 1, 1,
processed

58. The datacut stream must

also be given an external name

with the binding command [bind

b datacut b results “x). The de-

fault name for files is the stream
name.

.-_‘..’. .
-

R .,’.

A A

59. The source data base must
be compiled to convert it into as-
sembly code. (The result of com-
piling <pame>.x is <name>.s.)
The assembly code must be con-
verted into object form. (The
result of assembling <name>.s
is <name>.0.) The object code
is them coordinated - an experi-
mental optimisation activity that
is not implemented in the dis-
tributed version. The communi-
cation graph must be compiled,
producing the connections (read-
able) and connections.o files. The
resulting object code s loaded
into the Pringle emulator. All of
these activities are implemented
by one make operation ($m].

29

= et et .t

~ - - A A T S
-.' e T \-.‘- N \-"\f\- N \\- N

Compiling. ..
Compiling inode.x
Compiling leaf.x

Compiling root.x

[TTnking Complete

Loading Pringle emulator. ..

LPringle emulator loaded

60. Having converted the source
database to executable form, hav-
ing loaded the object code into
the emulator and having bound
streams to files, it is time to ex-
ecute the program. It can be
done from the Command Request
View, but to watch the progress
of the exscution, we must go to
the Trace View [$t].

UL P I
L)
"y

70,

PR

2 a v A

. ,; ." (A l'.

" -ﬂ "'

RN NN

e .-
N P L 2o

61. The Trace View shows a dis-
play similar to Code Names View
- indeed, the process name is
given in each PE box. However,
instead of the (actual) parame-
ters being listed after the process
name, the values of the trace vari-
ables (initially 0) are listed. Each
time execution stops, the current
values of the traced variables are
given. To execute the program
until the first event takes place,
we use the eveat command [“e|.

NN AN NGNS

62. The execution is initiated
which can be seen becanse each
PE has an equal sign in the home
position showing that it is run-
ning. We can execute two more
events with [“e “e].

DT NN LR NN

D

63. The values that have changed
are highlighted as the execution
proceeds in order to call our at-
tention to the activity. To con-
tinue the execution until all PEs
are finished and to show a trace
of the progress, we type [continue
*xJ.

. SIS S B sad - aher ol St ad S o aRaca e L e st M it SN S
P A A e e el PN P e -~
PR e I A I R A

.
-
@ - b E - _'.
&% = N
y
‘-._
‘/
‘e
l."
]

f
' - ,.l

' < A
— S
= .JT—‘- ‘.':
—_— ——— o
- - l\
L4 - N

[

Y
VIEW: Code Names -
JAST PE: 1 1 e

Sals

64. Execution continues; whenall 65. Flushed with success at 66. We can make a uniform sub- .":'_'
PEs have halted, we note the cor- having gottea the right answer, stitution of 20 (the new stream ’_
rect result (0) in the traced vari- we try another test to illustrate length) for every occurrence of 10 g

able in the root. how successive programs are exe- [replace b 10 & 20]. '
cuted. We will for simplicity use
a new file, "doublefile®, which is -
just two copies of vectors. [shell .
bcpb/usr/poker /lib/Playing Poker :
/doublefiled. “x|. Since vectors is
already formatted we do not have
to format doublefile. To change
the stream length actual param- : 1
eter, we move to Code Names Y
View [$c]. D

T T T——— B A IAER S Sl Sl S At * S A il St SO0 SRR R ACh UM Suf Safs s Jar JBR i 0N ¢ oin 2°Q o6 0 RARA LA T A NE Sl el
AC A
-
R .
i)

1

l‘ . .
. N
. Y
- Tue Oct 8 01:20 VIEW: Trace - interconnect %
PHASE: 1 LAST PE: 1 | NUM TICKS: 30338)

” ;
'~ o
" .l
¥ o
) ;
.y O
A A

Jl
s run processed. (30338 ticks runJ "
o | = ‘s
5 3
: g
_ " leaf ‘1 Y root 1 1 " lear 1 ::
7 — . ' — 4
- -
- ot
’ L)
- —!mm 7 inode T1M01 71m¢. 3 .
g 2 4 4 2 ~
r'd

T lcar Tinode 1 [inode 3 Year -

—‘l 2 2 1 o

:.f

‘J‘

o

“ lear TVieat 1 [Tiear J [Frear :

1 1 1 1

B} »
: | :\
4

: N
- ’\
- f]
- c '
o, \‘
- Figure 8. +)
v,
v, S
3 % ‘

'-r.r.f-.r. 4 T AL AN AT N

) B Tty A & PR
!3-,.\\. ~.-.\\\-.'y\" '\."‘ ‘x\\'\\

RO CA T RCISRTAS ALY

F. .
{-
4 I,
g E—-—-;. Tm = — - D Y —
)X “—',: ::——1
- CoL Lo
CcCZCZd cZC3
. CCr s
. fga—y
’f _“
:ﬁf-“,"‘:-_‘_ F - - +7 =T -
It e e e — — — s
. a2l el = he el e
:{ :-:1*::1_\;—.-__;':‘ .*E :-f'_, Ll i e
hf. —— —— —— —r—— —— —— —— ——
>, _;-_—\:-_ﬁh_ .::—w_ _;;'":‘:'1_- el e p—_— T
» et D st —— e, s
R R S
I ! —— ——— gt g e — s gt
a
.
.,
™
1 1
root
] 20
replace ' ataTn double

I

67. Execution of the command 68. We must also bind the new 69. We move to Command Re-
[*x] implements the substitution. file to the input data streams quest View [$r] where we load |"1|
[bind & datain b doublefile “x|. the current copy of the compiled
Notice that by not changing the code.
file name associated with the out-
put stream, we will simply write
over it.

pringle emulator.
emulator loaded

70. Next we move on to Trace
View [$t] where we specify that
we want to run (this phase 1) un-
til all of the PEs complete execu-
tion [run 51 b all b trace “x].

un 1 all !ﬁiJ

71. The emulator execution pro-
ceeds autonomously until the con-
dition is realised. (Users who do
not wish to run all 52,600 ticks of
the example can interrupt execa-
tion with “\].

inode]

4

72. Again, the sero result is
achieved. To leave Poker and
to save the source state, we exit

($7e].

AT ¥ g o

2

N . . ; st o a8 ad ¢ - 20 g0 . T AR
\‘----..--.u.-.-. A S e LA ST AT at AT AN ot et oYL AR YA R " RO S T R R

Y -
, i
N g

W -
> -
! NS
A :
>~ -
Mon Sep 16 02:18 VIEW: Trace - interconnect *
PHASE: 1 LAST PE: 4 1 NUM TICKS: 52645 .
>
L] N
- RS
N o
~ "
N 3
-. [run processed. [52885 ticks run] -
N 1 -
o .
~ -
(2 LN
N ~
" .
~ -
\ “a
L~ .
- ¥ leat ¥ root ' 1 [T leaf 3
. 1 L 1
» — ['-'-
. .
- - I O U | T =,
- ? inode ¢ inode {node inode 7
. 2 4 . 2 4
: .
. .
T loaf Vinode] [Tinode | [rear T 2
- 1 2 2 1 -
B cm— P f..
>_i :_'-A
b~ .‘-
N -
[) LIS
: leat ‘mrT Tiear leaf T R
. l l 1 1 ‘;'
\ o
A -
3 I I | -
. S
X _
. -3
» o
» .“1
- l‘.J
: Figure 9. o
: 35 S
~
v "
T
’ . o
Y N N S NN N NN NN e N S

Exercise

Although there are many features of Poker that have not been illustrated, enough of
the system has been described to enable the reader to selve the following problem.

Problem Let the three streams listed below be the coefficients of three poly-
nomials given in increasing powers of x. Define a “slave” process that receives
an x value from a “master” process, reads in the coefficents, evaluating the
polynomial as it does, and returns the result to the master. The master pro-
cess, which has the three x values as parameters, sends a value to each slave,
reads the result from each slave. adds together the results and outputs the sum
as a (one element) stream.

It is suggested that the slave processes have the number of terms (degree + 1) of the
polynomial as a parameter.
The three coefficient streams of length 8, 5 and 4, respectively, are assumed in the
following example to be:
1.004 5.078 2.953
49.827 0.553 5.167
3.500 13.422 0.875
0.333 9.244 7.754
6.000 1.144
0.253
0.096
1.000

The points at which the polynomials are to be evaluated are assumed to be, respectively,
1.011, 2.622, 3.14.

As a hint to solving the exercise, we give the Code Names View for a possible solution,
as well as tue final result (highlighted) of the traced computation.

)
S
- -
(%4
", o w
3
| =4
[]
- c
[
. O w
4 - O
LY c
- 4 L
. w
vi . v
. wd
A [
: 3
.
Q e
'y
[y m‘.
N . 1 j
v
* >a [4 [4
4 w > >
N - L [
Vw — -
! - [.
-
* o
\ - " w (=
. o~ °
y ~
1]
3 Ml Pt W o
l. o
- o
. [9 [] .
1 -t 0N
N v [, LX) T
. c -t N O h_4
. £
v~.
1]
H
<,
)
v,
N
o,
<
v,
LS -
[
<
P)
-\ - . e m_- .. - .« 8 o
K -‘.V ~ LIS WA -f. -.I.J-J..-,J.-J-. X \--..\.\--\\\..-..\--..a...\..\.. 4 .--..IJ-,._ P-A-nf..---..-- WL,
ol o Aottt s e R s A g @ T v M @ I

LSRR R A Y

Mon Sep 16 03:45 VIEW: Trace - interconnect
PHASE: 1 LAST PE: 1 1 NUM TICKS:

004, 5.078, 2.953,
.827, 0.553, 5.167,
.590,13.422, 0.875,
.333, 9.244, 7.754,
.000, 1.144,

.253,

.096,

.000,

hluln!or stops T1T508 ticks run]

|

11308

00 0D Wwie -

slave
1.080000
63.110340
1.07%588

[Zatave]

slave

7.754000
264.129517
30.49%9273

1.144000
314.160797
46.147438

Figure 11.

- "'"-r”-r""-r"f" "y -‘(,'-"\’.J_ SapN Ty

-

-1 -

LR -~
o e .

AR

. Y ; . : ;
(U ARV

e ¥
g \".-.‘r

LE SRS

p el

5 h Y

r.....,.x..._..~ ﬁh ¢
PR A ®
ARSI S

\\\.\\.

37

[
’
.

u.-j.

”..-
‘r\-

o AL

"o

o

s

iy "-\"'." T

Lo i}

Al

<~ .-".-\,“’-

.‘{
Ot

‘h’

l“;n' Y
L

S

2A

. J‘\J'

~’\'.f'

.

