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~ Daniel S. Weld
s
K Abstract
=Y, Comparative analysis is the problem of predicting how a system will react
:\') to perturbations in its parameters, and why. For example, comparative analysis
N could be asked to explain why the period of an oscillating spring/block system
::x would increase if the mass of the block were larger. This paper formalizes the
"r . problem of comparative analysis and presents a technique, differential qualita-
!' 6"’ tive (DQ) analysis, which solves the task, providing explanations suitable for
N 4 use by design systems, automated diagnosis, intelligent tutoring systems. and
N explanation based generalization.
: X DQ analysis uses inference rules to deduce qualitative information about the
relative change of system parameters. Multiple perspectives are used to repre-
.'.: sent relative change values over intervals of time. Differential analysis has been
- implemented, tested on a dozen examples, and proven sound. Unfortunately,
the technique is incomplete; it always terminates, but does not always return
::!. an answer.
wh
o
el
> This paper will appear in Artificial Intelligence in July/August 1988.
.
N (©1987 Daniel S. Weld. This report describes research done at the Artificial
Intelligence Laboratory of the Massachusetts Institute of Technology. Support
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tive (DQ) analysis, which solves the task, providing explanations suitable for
use by design systems, automated diagnosis, intelligent tutoring systems, and
explanation based generalization.

DQ analysis uses inference rules to deduce qualitative information about the
relative change of system parameters. Multiple perspectives are used to repre-
sent relative change values over intervals of time. Differential analysis has been
implemented, tested on a dozen examples, and proven sound. Unfortunately,
the technique is incomplete; it always terminates, but does not always return
an answer.
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1 Introduction

The problem of symbolic analysis of real-world systems is central to many prob-
lems in artificial intelligence. In order to cope with a clianging world one must
be able to understand its behavior. Recently, considerable emphasis has heen
put on a specific kind of analysis: qualitative simulation[2.7.26.15.21]. Qual-
itative simulation seeks to produce a description of the hehavior of a system
over time, often in the form of a tree of lustories of the system's qualitatively
interesting changes over time {23].

This paper discusses the problem of comparative analysis. in many ways
the complement of qualitative simulation, and describes an implemented, sound
solution technique called differential qualitative (DQ) analysis. Whereas qual-
itative simulation takes a structural description of a system and predicts ats
behavior, comparative analysis takes as input this beliavior and a perturbation
and outputs a description of how and why the hehavior would change as a result
of the pertubation.

For example, given the structural description of a horizontal, frictionless
spring/block system (e.g., Hocke's law), a qualitative simulator would say that
the block would first move one direction. then stop, then reverse, ete. A de-
scription of oscillation would result. Comparative analysis, on the other hand.
takes this description of oscillation and evaluates the effects of perturbations.

- For example, it would deduce that the period would lengthen if the mass of
6 () the block were increased, and explain why. Just as qualitative simulation works
<

without explicit equations for the value of each parameter as a function of time,
comparative analysis does not need a formula for the period of oscillation.

The importance of the qualitative approach to comparative analysis is the
resulting explanation of why the behavior changes. If it weren't for the explana-
tion, one might simply solve a differential equation model using using symbolic
or numeric techniques. Many artificial intelligence problemns, for example de-
sign, diagnosis, and intelligent tutoring systems, have comparative analysis as
an important component; the explanation is used in many different ways.

e One way method of automated design is the principled modification of
previous designs [25]. For example, suppose a library design for a VLSI
pullup circuit has too long a rise time. If the problem solver considers
increasing the width of some wire to decrease the rise time, it would like
to know the ramifications of this modification relative fo the imitial be-
havior. Will the delay decrease? What happens to power dissipation”
Comparative analysis answers these questions, in qualitative terms, as is
appropriate for initial design evaluation. By analyzing an explanation
for why the changes happen. the problem solver could focus on further
changes to counteract undesired effects.

e Many of the programs which perform diagnosis from first principles use
similar generate and test paradigms [9]. Comparative analysis can simplify
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diagnosis of continuous systems (such as analog electronics) in twe ways.
Comparative analysis provides a direct test for certain hypothesized faults;
if one suspects a resistor of a low value, comparative analysis can predict
the resulting behavior. If this prediction does not match the observed
behavior, the generator might use the explanation to suggest or rule out
additional candidate faults.

In addition. the specific type of comparative analysis discussed in this
paper, DQ analysis, can be used backwards to generate candidate faults.
If an output voltage measures too low. reversing the inference rules of
section 3 might lead to the hypothiesis that some capacitor has too high a
value.

® A key subproblem of intelligent tutoring systems (ITS) is the automatic
explanation of the bhehavior of complex systems. Most Al work in this di-
rection has focused on the role of qualitative simulation when explaining
the mechanism through whicli devices achieve functionality [19,8]. Qual-
itative simulation is a critical component of explanation generation, but
understanding how systems respond to changes is also umportant. One
doesn't really understand the workings of a refrigerator, if one can’t ex-

plain the effect of a stronger compressor on efficiency and minimum tem-
perature.

The rest of this paper shows how DQ analysis can solve comparative analysis
problems and produce clear explanations as well. The trick to DQ analysis
is the use of multiple ‘perspectives’ to define relative change. Inference rules
manipulate these relative change values to generate causal arguments that solve
comparative analysis questions.

The rest of the introduction explains how differential qualitative analysis
solves comparative analysis problems  Section 1.1 presents more detail about
the spring/block example! to illustrate the important notion of ‘perspective’.
Section 1.2 introduces a heat exchanger example to emphasize the importance
of considering multiple behavioral topologies. Together these two sections show
the range of questions that the differential approach to comparative analysis
can answer. Section 1.3 suggests a different approach to comparative analysis:
a novel technique called exaggeration. Finally, section 1.4 gives an overview of
the temainder of the paper.

1.1 Perspectives

Perspectives are the most unportant concept in DQ analysis: they are best
introduced with an example. Consider an kleal spring attached to a block on a
frictionless table (figure 1)

- - 50 n ey 0 ) " A O, S 0t
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VAll the examples in this paper. and a dozen more, have been implemented and tested.
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Figure 1: Ideal Spring Attached to Block on Frictionless Table

s

The system can be defined in Kuipers’ QSIM [15] notation in terms of six
parameters, each a function of time: spring constant — K. mass M, position
X, velocity V, acceleration A, and force F related by Newton's second law
(F = MA) and Hooke’s law (F = —KX). Mass and spring constant are
independent parameters that remain at constant values over time. The initial
conditions are specified as follows: M(0) > 0, —K(0) < 0, V(0) = 0, and
X(0)=12,<0.

This description may now be simulated, but because of ambiguities inher-
ent in qualitative values [14], QSIM produces several possible behaviors for this
system, including ones corresponding to increasing, decreasing, and stable oscil-
lation. Although comparative analysis could be done on all of these behaviors,
for this example, I assume the interpretation of stable oscillation (figure 2).

Now we are ready to pose a comparative analysis problem.

Example 1 What happens to the period of oscillation if the mass of the block
is increased?

The answer is that the length of the period increases:

Since force is inversely proportional to position, the force on the
block will remain the same when the mass is increased. But if the
block is heavier, then it won't accelerate as fast. And if it doesn't
accelerate as fast, then it will always be going slower and so will
take longer to complete a full period (assuming it travels the same
distance).

What kind of information is needed to produce this explanation? Take the
first step: “The force on the block will remain the same.” Figure 3 shows a real-
valued plot of force versus time. The graph of force in the perturbed system is
drawn with a dotted line; in the text I will distinguish the two parameters by
calling the perturbed force F.

_ Clearly, F # F as a function of time. The corresponding values of F and
F are different for almost every possible time. The real meaning of “The force
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Figure 2: QSIM Behavior for Stable Spring Oscillation

on the block will remain the same” is that F and F are the same for all values
of X. Although this reparametrization was not mentioned explicitly in the
explanation, it is essential to the soundness of the argument.

In order to allow programs to generate and evaluate explanations like the
one for the spring and block, it is necessary to take this implicit concept and
make it explicit. I do this with the use of ‘perspectives’. Thus the first line of
the argument could be rewritten “If the mass is increased, force does not change
from the perspective of position.” Making perspectives explicit is the crucial
step in performing DQ analysis to solve a comparative analysis problem. Once
the notion of perspective is explicit, one can address questions like “Which per-
spective best suits a problem” and “What inferences are sound?” The answers
are not as obvious as they might appear.

For example, consider the ‘obvious’ inference “Since it is going slower it will
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Figure 3: Actual Plot of Force versus Time

take longer to go the same distance.” But what does it mean for the block to be
going slower? From what perspective is velocity lower? If velocity were lower
from the perspective of time, then the conclusion would indeed be obvious. But
Just as with the parameter force (figure 3}, there are times when the perturbed
velocity is not lower than it was in the original system. Once again, position
1s the correct perspective. In fact, as shown in section 3. the explanation is
correct, but it would not necessarily be so if the perspective was some other
parameter.

Reasoning about perspectives explicitly, and using sound rules of DQ analy-
sis (section 3), the CA program has correctly generated the correct solution and
an explanation like that shown above. Here is another example which it solves
by using perspectives in a different way.
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: ) Example 2 What happens to the marimum velocity of the initial displacement
'-'0* is tncreased?
R
. '3 CA generates the justification which can be turned into English as follows:
1
‘:;". Since K and M haven’t changed, the force on the block is the
’." same for any position that the block used to pass through. So the
) acceleration is the same for any position. But since the initial dis-
3 Q.' . L .
. ’t‘ placement has been increased, the block will already be moving when
"::l‘ it reaches the old initial position, where previously the block was
. stopped. Since the accelerations are the same from here on, and the
RAY block is already moving faster, it will keep on moving faster and will
,l;sf have a higher maximum velocity.
v
:::‘.: The rules which compose this reasoning are explained in section 3.
o
(] 1.2 Changes in Behavioral Topology
,i'- . . . . . .
’0e The previous section showed how the explicit use of perspectives could determine
‘:. the relative change of parameter values and time durations given an initial
1 perturbation. However, sometimes the perturbation results in change of a more
! ; fundamental nature. Consider the heat exchanger shown in 4. Hot oil flows
Pl through the pipe losing heat to the cold water bath as it goes. Figure 5 shows
&, a possible QSIM behavior that corresponds to the case when the hot oil reaches
s thermal equilibrium just as it exits from the pipe. (Remember that since this
:’. is a qualitative plot, the apparent slope does not imply that these functions are
§ linear.) Let's pose a comparative analysis problem.
‘
‘
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Figure 5: Initial Behavior of Heat Exchanger

Example 3 What happens to the behavior of the heat exchanger 1f the thermal
conductivity 1s increased?

The answer is that the oil will more more quickly than before. And since
the oil is flowing through the exchanger at the same rate, it must reach ther-
mal equilibrium before leaving the pipe (figure 6). Thus, unlike the previous
examples where the perturbation resulted only in continuous changes in various
parameters, the perturbation of example 3 caused a discontinuous change: the
previously cotemporaneous ‘events’ of thermal equilibrium and disgorgement
from the pipe now happen at different times.

I call the switch from figure 5 to 6 a change in behavioral topology. Example
3 is a simple case of topological change: the initial behavior was inconsistent and
a single new behavior was indicated. However, the situation isn't always so easy.
Section 4 describes how perturbations can lead to multiple consistent hehaviors
and presents heurnistics for determining the most likely resulting behavior.

1.3 Exaggeration

While most of this paper deals with the DQ solution technique to comparative
analysis problems, it i8 worth noting that other qualitative techniques can solve
similar problems. One such technique, called exaggeration {20]. produces expla-
nations that are completely different from thoee of the differential technique
Consider the question of example 1: “What happens to the period of oscillation
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Figure 6: Perturbed Behavior of Heat Exchanger

if the mass of the block is increased?” Compare the exaggerated explanatior
with the one generated by DQ analysis.

If the mass were infinite, then the block would hardly move at
all. So the period would be infinite. Thus if the mass was increased
a bit, the period would increase as well.

Exaggeration is a kind of asymptotic analysis—the perturbation is taken to
the limit to make the effect more easily visible. Exaggeration is common in
intuitive descriptions of physical behavior and appears quite powerful. As the
example shows it often results in a concise explanation.

But exaggeration 1s subtle. It works only when the system responds mono-
tonically to perturbations. Furtnermore, it requires non-standard analysis to
reason about infinity. It’s quite easy to concoct a plausible exaggerated argu-
ment which is faulty, and a careful formalization of the technique is beyond the
scope of this paper. See (20,22] for details.

1.4 Overview

The next section 18 foundational—it shows how perspectives are essential to a
meaningful definition of relative change. Section 3 explains how the differential
approach to comparative analysis can be implemented by a number of inference
rules. The rules are proved sound. and their adequacy is discussed. Section
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- P shews Tow to predict the effeet of perturbations that change the hehavioral

topology of a systene T section 5 1 discuss the relationship hetween con-
parative analyvsis and previous work in mathematics, engineering. and artificjal
telligence  The paper coneludes with a discussion of areas for future research
urd s followed by a brief appendix that contains details too technical for the
man body of the text
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2 Preliminaries

As my formalism is based on that used by Kuipers for QSIM [15], I start out
by summarizing his definitions.

Definition 1 4 PARAMETER 1s a reasonable function of time.

See [15] for the actual definition of reasonable function; the intuition is that
of continuity, continuous differentiability. and a finite number of critical points
(places where its derivative is zero). Parameters are denoted by capital letters.
Thus the velocity of a projectile might be described by the parameter, V', which
1s a function that maps time to velocity.

Definition 2 Fach parameter has an associaled set ofLANDMARK VALUES which
1s a subset of the range of the paramecter. The landmark values always include
(but aren’t restricted to) zero. the values of the parameter at the beginning and
ending times, and lhe values of the parameter at each of its critical points. A
time, t, 1s a DISTINGUISHED TIME POINT of a parameter P if il 1s a boundary
element of the set of tunes that P(t) = pi for some landmark value p;.

Landmark values are those values considered to be interesting to the human
observer, and the times when these values are reachied are of interest too. When
a parameter becomes constant for an interval of time, then it will take on a
landmark value for infinite number of time points. This is why the definition
only considers the boundary tiines distinguished.

Definition 3 A SYSTEM s a sel of paramelers that are related with a STRUC-
TURAL DESCRIPTION tha! consists of a finite set of qualitative differential equa-
tions defined using the following: time differentiation, addition, multiplication,
and relation by monotonic functions.

Kuipers’ program. QSIM. takes a systemn and a set of initial values for each
of the parameters and produces a set of possible behaviors for the system; the
definitions below describe this behavioral output:

2.1

Definition 4 Let po < .. < pp be the landmark values of a parameter P. For
any time t define the value of P al t as:

Qualitative Behavior

of P(t) = landmark p;
of P e (py )

15
(P) It

OVAL(P.Y) :{

Define the direction of P at  as:
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inc if g; Pt)y>0
QDIR(P.t) = { std if £ P(t)=0
dec if ;_z P(t) <0

Define, QS(P.t), the state of P al t, as the pair: <QVAL(P t). QDIR(P, t)>

The qualitative state over the interval between two adjacent distinguished
time points i1s defined similarly.

Definition 5 For any parameler P, the BEHAVIOR of P 1s a sequence of stales
of P:

QS(P’ to)vQS(PvtOth)VQS(PvtI)v""QS([)itﬂ—l-tn)VQS(P"n)

alternating between states at distinguished time-points, and states on intervals
between distinguished time-points.

Recall that a system contains a set of parameters each with its own land-
marks and distinguished time points.

Definition 6 The DISTINGUISHED TIME-POINTS of a system are the union of
the distinguished time-points of the parameters. Thus the state of a system
changes whenever the state of any parameter changes. The BEHAVIOR of a sys-
tem is thus a sequence of system-slates alternaling between distinguished time-
points and tntervals.

To perform comparative analysis it is necessary to abstract away from spe-
cific times, since two different systems may have analogous behaviors, but change
states at different times. This is where my formal treatment diverges from that
of Kuipers.

Definition 7 A parameterts said to reach a TRANSITION when ils QVAL changes
to or from a landmark value. A system is said to reach a TRANSITION when any
parameter transitions. Transilions only occur al distinguished time-points, and
every distinguished time poin! marks a transition. It will prove useful to be
able to refer Lo these transitions independent of the time at which they occur.
thus the sequence of transitions for a behavior will be denoted by the sei {,)}
Every behavior also has a TIME FUNCTION, T, which takes transitions to the
distinguished time-points when they occur.

The intuition is that each ¥ marks an event which changes the state of the
systemn. When comparing two behaviors. I match them up event by event and
use the time functions to tell whether one system is changing faster or slower
than the other.
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2.2 Comparing Two Behaviors

To compare two behaviors. they must be distinguishable: [ use the hat accent
to denote the second behavior. Thus 7 denotes the time function of the second
system, and F('T('n ) denotes the second system’s value of F' at the time of the
first transition. To simplify the problem of of comparative analysis, T ~tart by
only comparing systems with identical structural Jescriptions whose behaviors
are topologically equal. as defined helow.

Definition 8 The behaviors of two systems. S and S. are TOPOLOGICALLY
EQUAL if they have the sa:ne sequence of transitions, 3o, ... ~g. and forall i
such that 0 <1 <k,

Qs(S. T(1) = @s(S.T (7))
and forall i such that 0 < i <k,

Qs(S. T3 T (i) = @s(S. T (=) 740

The assumption of topological equality rules out possibilities like the block
failing to make a complete oscillation if its mass was increased too much, but
it does allow a certain phability. If two behaviors are topologically equal. their
respective sets of landmarks share the same ordinal relationships. but the un-
derlying real values for the landmarks can be different. > 4
Section 4 explains how this assumiption can be relaxed, but even with it, the -
problem is nontrivial. Consider two oscillating spring-block systems. Even if the
blocks have different mass and the spring constants differ. the two systems have
topologically equal behavior. Yet the relative values of parameters such as period
of oscillation may be different. These are the first changes that comparative
analysis must determine,
Before I can explain the techniques fur performing comparative analysis, 1
need to present a notation for describing the desired output. It's easy to compare
the values of parameters at transition points:

Definition 9 Given a paramcter. F. and a !ransition ~;. define the RELATIVE
CHANGE (RC) of " at 5 as follows:

Fi, o [E(T() > [FIT(2)]
Elly o IE(T( .))i:m'r )]

FU of IF(T < [F(T (4!

For example if the two spring-Block systems wore both started with negative
displacement and zere velocity (1o, X < (and V' = 0), their first transition
would occur when X reached zero This notation allows ane to express that the
second hlock is mmoving slower at the peint of transition: V4, T s important
to distinguish the refative change notation from statements about values and




derivatives. Even though V'{},, QVAL(V, T(41)) is positive, and QDIR(V, T(1;))
is std.

The curious reader may wonder at the use of absolute values in this defini-
tion. Relative change could also be defined by comparing signed values. I call
the approach of definitions 9 and 11 MAGNITUDE SEMANTICS and the alternate
approach SIGNED SEMANTICS. The two approaches are theoretically equivalent.
However, since magnitude semantics appears somewhat more natural and sin.-
plifies various proofs, it is the default for the rest of the paper. In the places
where signed semantics proves advantageous, it will be mentioned explicitly.

2.3 Comparing Two Behaviors over Intervals

It turns out to be somewhat more complicated to compare two behaviors over
the intervals between transitions. What does it mean to says that one curve is
lower than another over an interval? To do pointwise comparison, some notion
of corresponding points is necessary.

The intuition for the requisite comparison is displayed in the explanation cf
spring behavior that was presented in section 1.1.

If the mass of the block increases, the force on the block is the
same....

Yet this doesn’t mean force is invariant as a function of time—that isn't
true. Consider the time when the small block is at its rest position; the spring
applies no force. But since the large block is moving more slowly, it won't have
reached the rest position and so there will be a force applied.

What the statement means is that force is invariant as a function of position.
For every position that the block occupies, force is equal in the two systems,
even though the two blocks occupy the positions at different times. Although
parameters are defined as functions of time, they often need to be compared
from the perspective of other parameters. Here it proved advantageous to con-
sider force as a function of position. Although people understand arguments
that leave these changes of variable implicit, the notion must be made precise
and explicit if computers are to perform comparative analysis. The notion of
perspective is foundational.

Definition 10 A parameter, X, 1s called @ COVERING PERSPECTIVE otver a
transtiion nterval (4,,v,41) when the following three conditions hold:

L. QDIR(X.T(%,). T(141)) # std
2 |,

3 X,

When just the first conditron holds, X' 1s called a PARTIAL PERSPECTIVE

13
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When a parameter, .X. is a partial perspecuve, it is strictly monotonic so its
inverse X' ™! exists. This nieans that it is possible to reparameterize any other
parameter, F', by composing it with the inverse:

Fx(r) = F(X™}(2))

When X is a covering perspective, then Fxy and Fx have the same domain.
Covering perspectives will prove especially important in the inference rules of
section 3.

Definition 11 Given a parameter F. 1 partial perspective X. and a transition
interval (v, Yiy1), let Fx denole F as a function of X. LelU be the interseclion
of the domains of Fx and Fx

U= (X(T(%)), X(T(4)) 0 (ST (30), X(T(1i41)))

Define the RELATIVE CHANGE (RC) of F over(v,,7i41) from the PERSPECTIVE
of X as follows:

Pt Y2 €U 1Fx ()] > |Fx(o)]
F”(.',.'q,l) ifVrelU Ui\r(f)l = |Fx(r)]
FUflion) ¥z €U |Fx(2)l < |Fx(2)]

In other words, force is || from the perspective of position, if for all positions
that are assumed in both simulations (Yr € U) the corresponding forces are
equal. The definition of partial perspective says when is it possible to use a

parameter as a perspective; section 3 addresses the question when is it useful
to do so.

2.4 Time as a Perspective

Although comparisons of parameters that have been reparameterized by per-
spectives are more common. sometimes is 1x useful to compare via corresponding
times. To keep notation consistent, I will call this "using time as a perspective.’
The goal is to come up with a meauingful defuution for PR ,,, and the other
RC values.

One problem is that the duration of the twa time intervals might be different
If so time acts as a partial perspective  one quantifi s only over time in the
shortest interval. Another problem is that the two tiansition tervals might
start at ifferent timeso i fact one inteeval nught end before the other starts,
e g, T(7) > T(v41) The solution s to align the tervals hefore quantifyving
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Definition 12 Given a parpameter P and an interval (7;,vi¢1). Let U = (0, d)
where d = MIN(T(vig1) — T(%i) T(vi+1) — T(4))). Define the RELATIVE
CHANGE (RC) of P over (7, vi+1) from the PERSPECTIVE OF TIME as follous:

] Pﬂ;.-',.-m Ve U |P(T(y) + O] > |P(T(7) + 0]
o PIT o1y VL€ U BT (1) + 01 = [P(T(3) + )]
o PYT oy iVt U 1B (2) + 1) < [P(T(3) +0)]
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3 Differential Qualitative Analysis

This section presents a number of riles for computing and manmpulating RC
values. describes how the pules were (o orporated into a computer program,
and evaluates the program’s performance

o The duration rule formahizes “histanee cquals rate tunes timme ™

e The interval derivative rule expresses the relationship between one deriva-
tive and another. e g “miore saeceleratomn feads to higher veloeity ™

o The transttion derivative rule prediois the final value of a denvative hke
velocity.

e The self reference rule says that every parameter appears unchanged from
Its own perspective

e The perspec o flipping rule allows 1 reasoner 1o change perspectives

e ‘The transition and interval constant rules show the relationship between
constants and RO svadues

e The end of time rule says that other thungs bemg equal a parameter
changes more. the fonger it as chancing,

o The one's own derivative rule predicts what happens when a parameter s na
defined in terms of itself

The multiplication rude demionstrates that the fanuliar rules of quahitative
artthinetic apply to RO values as well as denivatives

Each of the ruies are presented as theoreins sinee they are proven sound  For
stmplicity, however, ouly the mteresting awd Qittiealt proofs have been ineluded

in this paper.  The rules have Leon implemented as part of CA a 78 1aLISP
program which solves comparative analysis problems using DQ analy~s €A
uses a constramt propagator to derive nnple ations of these rules FPhe resulting
dependency structure ean be transhiod into an PFoghsh explanation or used
by an explanation based geneeabizer Alhough CA s incomplete (there arpe
some problems it for whach st termnnates wathiout solving), it does answer and
imtuitively explain a large class of problens Because the rules have heen proven
eorrect, CA s guaranteed Yo reach only sonndd conclusions

3.1 Duration Rule

This rule s the basis for the very powertabmntorence distance equals rate tunes
duration. If the rate s slower i the socond siaudation then it will take Jonger
1o go the same distance  Athoach this tiy secm abvions perspectives are
required to make precise the nonn of rate s slower this makes it subitle

“0‘{()[’0‘ i can state the theore e the ot o dlistance minst be made ear
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.,,N. Definition 13 Let N be a parameter which 1s imncreasing and positive {or de-
‘..' creasing and ncgam'c)"’ over the transilion interval {4, v, 41). Define Dis1ance
:::“ BY .\ over (7i.7%i41) as the rclative change of the distance traveled over X over
e the mterval as shown in the following table:
..') Starting RC Value
\.
N
s LA
s
::.C" Ending 1 c ft
* RO 4t
Value | b -
0'.
:"’: Note that the parameter X' has a double purpose 1n thus theorem gt has
'..:t'. as its time derivative, and it is also the perspective from which V' is seen to §
f0:|. In the following, it may be helpful to think of V7 as velocity. and .\ as position
"0
reb
¢ Proposition 1 Duration Rule
o Let V' and N be parameters such that X 1s a partial pevspective over (=, %4 )
*: CGiven ' = f; AW l'U(": w1y @nd SDISTANCE-BY NG, oy, then T(a, o) =T (=) >
ol T(vs1 = T(n). e the duration of (.. v p1) wil inereas
K- _ .
""-: . Proof: Note that the proof is not obvious: Vy # %’f I prove the case m
. ‘: which pistavce-8y.X|| | . This s equivalent to requaring ' to be a coverimg
'y 3 e perspective. Let a = XN(T(7,}) aud b = N{(T(9,41)) Sice N s a conening
. perspective. X has an inverse function taking position to time
»
the . ,
e N7hoab) —~ (T00. Tl
e . . o . .
‘oo T'he function X! also exists. has the same donian, and a possibly Autferent
J range (T(v,). T(v,4)) By defimtion \'U(): e 1y HIAns:
4N AN~ < VIN~Ya))l Yre (ab)
ﬁ'
. Consider the case® where 1> 00 this imphes that all values of V' are greater
. than zero because otherwise the two systems would have different transitions
1V violating the topological cquality assumption This means that
. O VN e < VN Yo e S (ah)
%
'-}l \.()
-,. .
Jed ! I
Ly — b — s ) vr e (ally
B VIN- e VEN i

A wamilar defuntion womade for the Cases of 1ncreasimg negative and becreasing geesitoe

R <} .
Vi This definition would be simipler to expiress i sigied setnatos
'\A "The case where Vo O ga sinular there gs e ase whege O beswtse then A woald o
".. reach a transition
.
"-
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29 ra
X So

b 1 b 1
—e———d ——dr > 0
/a V(X-Y(2)) D[ RERUTIT

But by the chain rule, the time derivative of X7 at r s rrr*r;'n So:
N = XY a) > XY b) = N u) > 0

Thus: ?(7-41 ) — ‘f(‘,q) > T(v41) ~ T(7, ) o other words, the daration of the
interval increases. O

It would be nice if one could show that the duration rule was sound if the
premise was weakened to have l'Uﬁ i+ 1, for some arbitrary covering perspective
P. However, the following proposition shows that this is false: just because
Pll(, i+ 1) for a perspective X doesn’t mean that there doesn’t exist some other

perspective Z such that P ﬂ({ el

Proposition 2 Non Uniqueness
Grven a system with parameters PN Y and 7 such that XY and 7 are cov-
ering perspectives over {4, vi4+1). then 1t 1s possible that Pﬂ(‘\l w1y and 1))]1’1.14'1)

z
and PY7 ..\,

The example shown in figure 7 illustrates the proof by construction The thin —
lines indicate the values of the first system winle the dotted lines indicate the m
value of the second system The first row shows that from the time perspective

the behavior of 2 doesn't change The second row shows the relative change of

the perspectives. The thurd row depicts Py Py and Py ‘
Althongh this aspect of RO values may seem strange. 1t s actually inevitable

After all. everything is relative 1o one s perspective linagine a machine which

hourly dogs the finearly mereasing concentration of alcohol in a fermentation

tank It produces the following sequence of measurements 002 0 04, (0 06, 0 08

ete But i theadential tank voearcky the Loving machine has a defective motor

which runs too slowly and debovs the e asucements Althongh the fermentation

is proceeding at the same pace ui baoth tacks the second log will read 003,

HO6.009.012 cte Thos the plant mspestar wha only sees the aleohol-time

sarve from the perspective o the Joggine deviee might think that second tank

was fermenting mors paekly even thongh the onls real change was a slowdown

i the speed of the tinang oy tor

3.2 Derivative Rules

Phese rudes commest paraaneter~ that are e fornvatives  Fhe first works over
intervals and the second predicts RO values ot interval endpoants The intaition

Bedimed the tiest s b povreme o s D ar b start o aomterval, bt its derivat e

s gover the anterval then te paraneeto st b yooner the mterval  As alwave

s e «.’Ju"_\ R \Af.m'; “: ’1.1.)-
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Figure 7: P15y, yetPl|}, |, andPyZ |,
6 ® the ubiquity of perspectives complicates the matter. Note the special role of \
7 both as perspective and second integrand of 4.
Proposition 3 Interval Derivative Rule
Let A. V', and X be parameters such that A = f;\', Vo= j‘;.\'. and X 1s a
covering perspective over (v,.v,41). Furtherm_orr let A and V' be positive over
the ainterval (4, . v41). If -V, Al,. and .4{1,): w1, Then \'U,‘\:,“,
Proof: The chain rule makes this rule considerably harder to prove than the
duration rule. It suffices to show that there exists some position such that
V'] < V" for all positions up to and including this position Once 1t 1s known
that 1" goes down. the same argument can be used to show that 1t continues to
go down Thus it will stay down until 4,4, 15 reached
Let
() dt 1
)= — = ——
dr ViX-Yer))
Let
. d*t
TNr) = —
(r) 122
A can be expressed as a function of X
19
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—r(r)
(r{r))?

AN Yy =

Since Ay, and Ay io 1o s the case that for all r m the Jalf open interval

:‘1 h
;lrl risrd
- — > - - )
(rr)’ (R4 ERN
Because =Vf and sinee Vs positive,
Tl 2 Ted) 2y (2)
Substituting (20 i the denomnator of (1) gives
rea) rlad i)
— > 7 2 T
Pra)yd T oerlaiy Lria))t
So
Thad s Tiad (3)

And by continaity. equation (3) Lolds over i hadf open interval which may be
written as a. o) for some ¢ This unplies that the equation holds over the closed
interval {a d) where f = u + 2. But by the defimtion of 7. for any ry € [a, d]

2

r(r.)=rlai+ / rir)dr
sl
Sofor all r ¢ l(d.(/}
;u') ol

So fnr allr & u '!J

1 ]

— <
-(r) rir

Thus by the defimtion of = for all 2 e 00 )

VAN (e« U0V

So ‘-J}\AI 1+, L

Above I pomted out the speaat role of A both as perspective and second
mtegrand of A4 Ttous natural 1o ask o the interval dervative rule s troe for
arbitrary perspectives Dafortanat- by 0 nor Appendix A provides a counter-
example which makes s poany

The mterval dervative rule fias an noportant corallary which prediets the
value of the anddie depinvarive L At the transition r'nrhng the anterval. Fhe

mtaition s threefold
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e If the object is accelerating slower, then its terminal velocity will he
smaller.

e Ifthe object is accelerating at the same rate but starts with a slower initial
velocity. its terininal velocity will be smaller.

o If the object accelerates for a shorter distance. then 1t will finish going
slower.

Proposition 4 Transition Derivative Rules

Let A, V. and X be parameters such that A = %\'. Vo= dd_:\ X s a partial
perspective over (v,.%,41). and both A and V" are positive over the interval. If
one of the folloung condifrons 1s true,

o V|, and A and DISTANCE-RY .X||

X
(154 1) {1041}

. LiU'A.4U£J*1,)and"U,and[ﬂSTAN(T}B\ZYH“J+”
o DISTANCE-BY XU 4\, and V'Y, and A, |,

then V'Y, ).

The rule is quite a mouthful. but that is simply because it is very general.

3.3 Perspective Rules

These rules deal with establishing RC values for perspectives and switching
between them. The first 1s very simple, but turns out to be quite important.
The intuition is that if the plant manager was foolish enough to try and use the
logging devices to log their own speed, he wouldn’t get a useful result. Both
the normal and slow machines would record that they turned one full revolution
during each revolution of the timing motor.

Proposition 5 Self Reference Rule

>
For any parameter P, 1f P 1s a covering perspective over(4,.9,41) then I’H’

(v 411"

The perspective flipping rules switches between perspectives. The intuition
is that flipping perspectives (i.e., X¥ to PX) flips ff to {4 if both parameters are
positive and increasing over the interval.

Proposition 6 Perspective Flipping Rule
If the parameters X and P are valid perspectives over (5,.%,41). the siyn of X
equals the sign of I’ over the anterval, and ,\'ﬂ(’:‘”l,. then:

”ﬂ(‘\'jwn f QDIRIN. T(). Tt ) #F QDIRCP. T (7). T(5040))
PU(\.,-H» f QDIRIN. T (5,). T(v41)) = QDIR(P. T(+,). Tir 1))

If the sign of X 1s the opposite of the sign of P then the RO valucs are merversed

21
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:‘:: Proof: I will prove the case where both X and P are increasing; the other cases
'_' are almost identical. Let @ = N(7(%;)). and & = N(T(vi4;1)). For an arbitrary |
»;., £ € (a.b) 3p such that X{P~!(p)) = r because P is a covering perspective, and ]
: thus onto. Let ¢ = P~ {(p). and let }
|
’ T=N(t) = X(P () {
Loe . ~ t .
Q: By the definition of .\'ﬂf:_w“ it follows that F > r. Let tg = X7Yr). Since 1
e T . ) . ~
») X s increasing t;, < !, Again because £ 1s onto. 3p such that P7H ) = ¢y so
N(P~YP)) = x. Now. p < p becausc
PTY P =to<ti=P7(p)
and P is increasing. But this means that
P(X7H2)) < P(XTH) |
and since r was arbitrary, it [ollows that PyY 4+ O

Y

3.4 Constants

e

Frequently a system will contain a few constant parameters whose values never
change. The following rules are a simple way to express relationships between

[

s

’ constants in the notation of comparative analysis. The intuition is that since ..
perspectives just scale time, and constants don’t chauge over time. all perspec-
tives agree on the behavior of constants. If there was no fermentation happening h

in either vat (t.e. the alcohol concentration was constant in both vats), and the
concentration of alcohol was higher in var two, then both logging devices would
agree on this even though their timing motors differed.

Proposition 7 Transition Constant Rule
If a parameter K is a constant over (7. vie1). and KN{ti then Ky, .

Proposition 8 Interval Constant Rule
If a parameler K o1s a constant over (v, v 41). and K, then for all parameters
P.1f P 1s a covering perspechive over the anterval (i, 7;41). then Kﬂ{:'iﬂ).

3.5 Rules with Time as a Perspective

It is very common for one paranieter ta be the derivative of another with respect
to time. When it is possible to reason abont these relations from the perspective

Y . . . B . . .
- of time, greater power is achieved because the chain rule doesn’t interfere as it
N does i the derivative rule. The only drawback s the fact that these rules are
. less frequently applicable.
{ The first rule says that if the a parameter ts j{from the perspective of time.
) I | [
and the duration of the interval is increasing. theu the parameter will have
s, chauged more by the end of the mtenal
‘
n
-

1)
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Dot thas oo s trivaal and thius onoteed, bat e shoudd be noted

s st Gooexpress using signed semanties The second rule s used

san g a parateter RO value from the perspective of time Tt applies
wr s the tpe dernative of a parameter s a linear fonetion of the parameter.

Proposition 10 Oune’s Own Derivative Rule

S g d Rk pararieters such that Vo= LNV =ML T( XN R). and N

o griee onstant [fVCTis 2 0and | and /\’ﬁ{wl then .\'U,{,*“.

3.6 Rules from Qualitative Arithmetic

Foose et s patative sl a2 7 2005 has developed constraints on deriva-
t . .
vales 1r paratieters i ADD MULT. and minotonic function constraints.
Forevargae o8 VoY = il the denvatives of X and Yoare positive. then 7
I3
~ e ot dernvatine as well These rules can be generalized to include

e transite o peints ateb over ntervals Horeo T opresent just the rule

(IS ! sttt At e transition poinit

Proposition 11 Mualtiphication Rule
Sy are g tovs who h oare related by the constramm!, 2 = MULT(N. Y
oo ey bl e loys the pessikle RO values for Zoal g fransition

' , R I o s s Bt comiplex oo write using mng-
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3.7 Implementation

To test the theory of DQ analysis. a program called CA has been written on a
Symbolics lisp machine. When a uscr selects an example, CA runs QSIM [15]
on the example to produce a set of qualitative behaviors for the example. The
user selects a behavior and alse a set of initial RC perturbations. ('A translates
the QSIM behavior and perturbations into ARK? assertions. At this point ARK
forward chains using the propositions described earlier in this section.

Each of these propositions is hmplemented as an ARK rule or more than
one if the proposition used disjunction or negation. For example, the duration
rule (propositicn 1) is encoded as the three ARK rules of figure R, The various
definitions and propositions require about sixty ARK rules.

(= (AND (D/DT ?x 7v) : 7v 1s the derivative of ?x
(DISTANCE-BY 7x (7start ?end) deq) ; 7x travels the same distance
{(RC 7v (7start Zend) Te (P- 7x)) : the RC of 7v is ?¢ from

(OPPOSITE-RC 7¢ 70c))
(pUrATION (7start 7end) Toc)
duration-rulel)

the partial persp. of 7x
if 7c is f}, Yoc is |

(= (AND (D/DT 7x 7v)

(PISTANCE-BY 7x (7start 7end) Zoc) ; if 7x travels 7oc distance
(RC 7v (7start ?end) 7c¢ (P- 7x)) ;and V's RC agrees
{(oPPOSITE-RC 7c 7oc))

(DURATION (?start Yend) 7oc) ; then the duration is 7oc

duration-rule?)

(= (ANXD (D/DT 7x V)
(DISTANCE-BY 7x (7start 7end) Zoc) ; if ?x travels ‘less’ distance
(RC ?v (?start “end) deq (P- 7x))) and V doesn’t change
q g
(DURATION (7start ?end) “oc) then the duration is ‘less’
duration-rule3)

Figure & Propositions Are Fucoded Directly Into ARK Rules

The simplicity of the transtormation from proposition to ARK code provides
confidence in the somndness of the implementation. And the fact that most rules
get used in each explanation, establishes their utility.

Since it 1s an initial prototype, CA makes ne use of control rules. All possible
forward chaiuing inferences are made using every possible perspective. Despite
this. computation rarely exceeds a nmunute an any of the problems tested. if

TARK is a descendant of AMORD [ inplemented Ly Howie Shrobe and others
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larger problems were to be attempted, some form of control would be desirable
Backward chaining from a goal pattern might increase efliciency. There appears
to be no reason why the schemes of [4,24] could not be applied. Possible heuris-
tics include preferential investigation of certain perspectives and avoidauce of
certain computationally explosive rules like the perspective-flip rule.

Another technique to speed up reasoning is explanation based generalization
(16.5]. Following the approach of [13]. I implemented a postprocessing learning
routine that takes CA explanrations and produces new ARK rules which may be
added to the ones presented above. While these new rules are independent of
any particular domain (i.e., springs), they are optimized to solve a specific rlaxs
of comparative analysis problems. Less general than the rules presented above,
the new rules are considerably more general than the specific explanation from
which they are derived. Although I have completed the EBG implementation,
the empirical evaluation of EBG's ability to increase DQ processing efficiency
remains as an area for future research,

3.8 Differential Analysis Suffices for Most Examples

Since ARK maintains justifications for all its assertions, it is possible to generate
explanations for CA’s conclusions. Consider the spring/block example. The
question here is: “What happens to the period of spring oscillation if the mass
of the block is increased?” The system is defined in terins of six parameters:
spring constant — K, mass M, position X, velocity V, acceleration A, and force
F obeying the following equations:

A:ad;"
r _ d v
V=4X

F = MULT(M, A)
F =MuLT(-K, X)
£M=std

4 K =sud

The initial conditions are specified as follows: M (0) > 0. =K' (0) < 0, V'(0) =
0. and X(0) = ro < 0. Since energy conservation is not made explicit in the
equations, QSIM produces several possible behaviors for this system. Although
comparative analysis could be done on any of the behaviors. I assume in this
example that the user selects the interpretation corresponding to stable oscilla-
tion.

Now the user selects the perturbation. Because some parameters depend on
one another, not all parameters may he perturbed. The situation is analogous
to the problem of specifying a unique solution to a differential equation where
values must be given for the independent parameters and a set of boundary
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conditions provided. In tlus example. M and — A are independent, while values
for X and V" are needed as boundary conditions. Thus to specify a commparartive
analysis problem. these four parameters nocd to be given mitial RC values ”
For this example, the perturbation consists of the following initial RC values:
Mg =Kllg. Vly. and X|f,.

Given this input, CA correctly deduces that the block will take longer to
reach the rest position (X' = 0) from its original negative stretched position.
Figure 9 shows the explanation that C'\ generates: this is created by throwing
away all perspective information otce computation s finished. [ have annotated
the explanation with the names of rules nsed i cach step
Assuming M is increased:

X doesn’t change and {self-reference rule)

K doesn’t change and (interval constant rule)

F equals -K times X

So F doesn’t change {multiplication rule)
and

M increases and {mterval constant rule)

F equals M times A

So A decreases. {multiplication rule)

So V decreases. (derivative rulc) o
So the time duration increases. (duration rule) w
Lt

Figure 9: CA Generated Explanation for Spring with Heavier Block

At present CA has been tested for multiple perturbations on over a dozen
examples including the RC circuit shown in figure 10 While it always teriminates
and never produces an incorrect answer, CA doesn't necessarily deduce RC
values for every parameter.

3.9 Differential Analysis is Incomplete

As is explained in the sections below, different types of ambiguity are the cause
for the incompleteness of DQ analysis. Yet DQ analysis handles ambiguity dif-
ferently from other forms of qualitative reasoning. For example, when QSIM is
faced with ambiguity about a parameter’s value, it branches, spawning perhaps
three new behaviors: one with the parameter equal to a landmark value. one

*The choice of these finr parameters is somewhat arbitrary. Mathematically. it would be
equally reasonable to choose -1 instead of X, but this does not make physical sense: it seems
intuitively impossible to directly affect acceleration. Sinee there is no way to deduce this
from the differential equation model. it is esential for thie person who constructs the model to
annotate the structural deseription with the list of ‘cansally primitive’ parameters in this
case, the four listed above,
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5 greater and one less. QSIM can do this because the nature of inequality guar-
S ARd antees that either A < B, 4 = B, or A > B. While this is true for RC values
{ ® at transition points, it 18 not true for RC values over intervals.

g

’5‘-',. Proposition 12 Non-Exhaustivity

o (Given two parameters, V' and P, such that P 1s a covering perspective over an

'_r._ interval (v, Yi41), 1t 18 not necessarily the case that one ofk'ﬂ,’: i1 l'llf: i
'd

or VyF v+ 1) holds.

e

Proof: Appendix A provides an example which proves this statement O

)
s Thus unlike qualitative simulators, DQ analysis can not branch when faced
K } with uncertainty, 1t simply acts mute. The following sections explamn the three
factors that can cause DQ analysis to fail to predict all of the relative changes in
o a perturbed system: ambiguous questions, ambiguity resulting from the qual:-
® tative arithmetic. and the lack of a useful perspective.
P . .
T~ 3.9.1 Ambiguous Questions
s
e . ‘ . , : : . -
‘ Some questions simply don't contain enough information. For example: “What
: would happen to the period of oscillation, if the mass of the block was heavier

and the spring was more stiff?” There 18 no answer to this question because
it 18 inherently ambiguous. The increased mass tends to increase the period,
but the increased spring constant tends to decrease it. Thus the duration might
increase, decrease or remain unchanged.
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3.9.2  Ambiguity Introduced by Qualitative Avithmetic

Sinee DQ analysis uses the sane quaatative anthine tic athzed by other forms
of qualitative reascnng, it should nat beosarprising that ambigaty causes a
problem here as well Phe problem s eocted i the faet that qualitative values
tof which RC values are an imstance) doouot form a group over addition [1x]
As a result, unique iverses do not always exasts amd v is frequently impossible
to determine the qualitative value of a paruneter

Forexample consider the sprimg Block svstenn of tae last section DQ analy-
sis correctly prediets that the block will take Langer 1o reach the tiest transition,
the bloek’™s rest pesition But the period of aacdlarion requires four transitions
starting {rom a negative intial position. ¥V omoves to zero, then ta a positive
maximum. then to zero, and finally to s orgimal position Because of ambigu-
ity in the extreme positions of X', DQ analysis can miake no prediction about
duration of these last three transition intervals Why s tlis? Because of the
qualitative arithmetic, it is impossible 1o show that Xijb Ui that X sweeps out
the same distance when the mass is increased  Because of this. .\ is not known
to be a covering perspective so the derivative and duration theorenis can not be
used. Thus there is no way o deterinine the RC value for the whole period.

This problem s directly analogous to QSIM's prediction of spurious behav-
iors [13]. Given a Hooke's law description of the spring/block. QSIM produces
many possible behaviors 1in addition to the correct description of stable oscil-
lation. Furthermore, the DQ probleni can be alleviated in the same way that
Kuipers caused QSIM to disregard bLehaviors other than stable oscillation -- by
augmenting the structural deseription with equations describing conservation
of energy. Now ("A can deduce that since potential energy is equal to force
tunes distance, increasing the block’s mass leaves total energy unchanged. This
allows 1t to recognize X as a covering perspective and deduce that the duration
increases for each of the perind’s fonr transition intervals

3.9.3 No Useful Perspective

Other qu :stions are even more diflicult to answer: “What would happen to the
period of oscillation if the mitial displacement is increased”? Since people have
trouble with this question. it should not be surprising that DQ analysis cannot
answer the question either. In fact. the answer is “pertod does not change™ . but
the only way to show this is to solve the differential equation for an equation for
period and notice that it ix independent of amplitude. The difficulty s rooted
in the fact that no useful perspecivee erists to provide a handle on the prohlem
There 18 no system parameter I* surh that \'1|(’; 1y Clearly Xowon't work as a
perspective. since it doesn’t sweep out the same range in the two cases. In fact,
it 1s easy to prove that no artificial perspective could satisfy the equation
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Proposition 13 Given the definttron of V7 as specified aborve for the spring/block

> example with X1, let ty = T(7) and [1 = T(v1). There are no conlinuous,
real valued, functions P, F such that

’ P(0) = P(0) = py A

’ P(t) = P(0) = p1 A

7 PP (0) = V(P-1(p) VP € (po.p1)

L5

Proof: Since Xf,. initial potential energy is higher in the perturbed system,
so kinetic energy is greater at 7;. This means that Vft,. 1e.,

AN ~ - - .
's: ‘(t):l‘1>L'1:‘(f1)

:': Because ¥ and V' are continuous

\’ lim f"(t) =1

[

& and

S

> im V(t) = vy

'\' t—t;

SN Similarly,
( . o lim P-1(p) =

-:- pP—pr

_(: and

: p“_}’}}lp-l(P):Pl

Thus
r ———
5 lim (V(P=1(p)) = V(P! (p))) = 1 —v1 # 0

P=—nm

So there exists some ¢ € (pg, p1) such that

V(P1(q)) = V(P-1(q))

LTS

e
,'
. s
% Thus there is no function, P, that can act as a perspective such that V”(};J)'
. This really shouldn’t be very surprising. After all, the block really does move
:, faster. The only reason that the period is unchanged is that the increased
T velocity is exactly counterbalanced by the increased distance the block must
e travel. It would be foolish to try and claim the velocity doesn’t increase when
P, it does. Instead, an intuitive explanation should account for the balance of the
': change in velocity and distance. This type of explanation is outside the realm

3

of DQ analysis, and probably beyond the abilities of qualitative physics as well.
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3.10 Extensions for Diagnosis

A natural appheation for comparative analvsis s the automated diagnosis of
continuons devices such s analog electroane circmts  Generate and test s a
standard paradigin for hardware dugnosas 97 candidate faults arc proposed
then evaluated to seeaf they count for the faulrys measuremients  Like all
forms of comparative analysis, DQ analyvsis can be used 1o test any candidate
faults that can be deseribed as pertarbations of continuous parameters an the
device. In addition. however, DQ analyeis has the potential to generate classes
of randidate faults. The key s to run the DQ anference rules in reverse. For
example, the duration rule says
Proposition 1 Duration Rule ‘
Let Voand X be parameters such that X v purtiad perspective over (7,.5,,1)
Guen Vo = {7\ \'1}‘)‘,“,.,. and —ps1aNct BY N, 4y, then the duratron of
(% Yie1) wdl increase.

A natural question 1s “Can the Juration rule be reversed? Is the converse
sound?”

Conjecture 14 Converse Duration Rule
Let Voand X be parameters. Guen V' = 717 N and ~pisvaNcE BY XY, 4, I

the duration of (4, 3,21} 1. then VU,/\.. el

Unfortunately, the converse is false. as are the converses for other iniportant ﬁ
rules such as the various derivative rules. The problem results from an umplicit
closed world assuinption used in reversing the rule - that one of the three RC
values, f, §. or ||. always applies. Proposition 12 showed that this was false.

Of course every transition interval could be broken into picces such that a
single RC value applies over each picce. but this misses the fundamental issue.
The decomposition of tie tnto transition intervals is forced by behavior of the
system. Thus transition intervals have genuine gqualitative imiportance. While
sometimes useful, decomposing transition intervals into smaller pieces runs the
risk of introducing irrelevant distinetions.

Although the converse of the duration rule is not sound, its converse might
still be profitahly used as a heuristic candidate generator. By reversing the DQ
inference rules, it may be possible to provide focus to the search for probably
faults in misbehaving analog circuitry,
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' 4 Changes in Behavioral Topology
‘\l
o Recall that the mference rales of section 3 relied on the assugtean thar s
J perturbed bebavior was topodogieally equal pdefinmion st the potal bebooor
| ) li ather words. 1t was assuned that while the perturbation maght change the
'.' relative values of parameters and streteh or shnink the length of tme wterval:
the underlying sequence of transitions would not change Yot perturbatioas
o often will change the order or nature of transittions This section explams how
:. 1o recognize the changes and predict the resulting behavior
?n!: To illustrate these computations. 1 use the simple example of the heat oy
changer (figure 1) from section 1.2 This system s descnibed noterms of tive
p parameters. each a function of time: heat Q. heat flow F . thermal conductivin
._:.' — K. velocity of the liquid through the pipe V.and position of a wint volune «f
\j oll® X. The following equations are oheyed ¥
- .
"
¥ V=4
Y a'
_d
() F=3%
oy F=MmuLT(Q. - ) tH
.‘I‘.
.\_j In addition V' and — A" are considered independent and assumed constant
gt over time. The initial conditions specify the value for the independent parame-
N ters: 1(0) > 0 and ~ KA (0) < 0. and also the boundary conditions: X(0) = r, <
( r o 0 and Q(0) = g9 > 0. From this information the initial value of the dependent
L : , . . s
. parameter. F, can be deternuned; denote F'(0) = fo. An invariant specifving
. that X" must always be less than or equal to zero ends the simulation when the
) liquid individual leaves the pipe.
-fc (iven this description, QSIM (and other qualitative simulators [6]) produces
:::’. the tree of qualitative states (STATE TREE) shown in figure 11. Since each path
:—) through the tree is a topologically distinct behavior, this tree represents three
haregtl possible behaviors for the heat exchanger. The topmost path (QS1. QS2. QS3)
. g:- corresponds to the behavior of figure 12 in which the system reaches thermal
' \ﬁ equilibrium just as the oil leaves the exchanger.
il . N .
oy Because of its qualitative representations, QSIM cannot choose between the
',‘n different behaviors for the heat exchanger; as far as QSIM is concerned. they are
°® all plausible. Since DQ analysis works relative to a single behavior. one path
‘e through the tree must be chosen before running the rules of section 3. This
i selection of a behavior is a modeling decision; I assume that it is done by a
T human. The selection consists of a series of choices at each branch in the tree.
" . . . . . . .
e By ruling out possible behaviors, each choice implicitly constrains the model of
. the system, restricting the possible real values associated with the qualitative
at values of each parameter. Thus the selection of behavior (QS1. QS2. QS
o. p
N " 8 For simplicity, the simplistic ‘liquid-individual’ model of fluids is used here; see [10] for a
v;.\ discussion of the problems with this model.
NN "For simplicity, this model does not distinguish between temperature and heat.
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Figure 11- QSIM State Tree Generates Possible Behaviors

makes 1mplicit assumptions about the relative values of fluid velocity, V', and va
thermal conductivity, — K.

These implicit constraints are equivalent to the unambiguous selection of the
initial behavior. However. the comparative analysis perturbation can weaken
the balance of constraint in two ways-

e The mnitial behavior can he rendered inconsistent  Section 4.1 explains
how the conflict 18 recognized and a new. cansistent path is found.

e Alternate behaviors may become ~ nsistent Saction 42 explains how to
locate other consistent paths through the state tree

a
Ca
-
s

L,

oS

4.1 Initial Behavior Inconsistent

Suppose someone selected the path (QS1. QS2 QS3) as the heat exchanger's
mitial behavior (figure 12) and chose the perturbation — At The state QS3
dictates the two transitions. Q reachiig zero and X reaching zero, in the same
time instant Since the perturbation -auses heat to be lost more rapidly, QS3
can't be part of the final behavior [If one assumes that 1t 1s. the duration rule
(section 3.1) deduces a contradiction. as {,illows.

When - K. it follows that Fﬂm . % Thus the duration until the first tran-
sition is . However. being a constant V is unchanged by the perturbation, so

LYY

ok

REF

®By the interval constant rule, the self reference rule an4 the multiplication rule.
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L,
i - VIl y,: the duration rule uses this fact to conclude that the duration ||. Hence
{_ o the conflict. The perturbation causes heat to reach its transition quicker. but
e position is unaffected and will transition at the same time.
Y Behavioral inconsistencies are located by stepping through the transition in-
n o tervals from earliest on. and checking the RC values for the interval's duration.
[) L]

Section 4.1.1 explains how to find all behaviors that avoid this single contradic-
tion while obeying the initial constraints. Section 4.1 2 provides heuristics for
eliminating inferior paths. Finally. section 4.1.3 shows how to check if the new

"

g behavior is globally counsistent, not just a fix to the first contradiction. Note that
X _-': all of these techniques depend on the DQ inference rules which are incomplete.
':: As a result. while most inconsistencies are detected. it is not guaranteed that
,_:. all inconsistencies can be found.
sl
e 4.1.1 Finding Consistent Alternatives
A simple observation about the inference rules of section 3 forms the foundation
for the contradiction resolution method. only the duration rule can generate an
RC value for a time duration. Therefore. the contradiction must be caused
by two (or more) firings of the duration rule for the same interval. What dis-
" tinguishes these firings are the different perspective parameters used in each
v, application of the rule.
\::j In the heat exchanger example. the two perspective parametets are Q and
B
N
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X Inthe miual behavior. they reachied transitions in the same state. QS3. But
to achieve consistency with the perturbati i, we must find a behavior where
they reach transitions independentiyv - This means finding a path which starts
with QS1 and QS2, and passes through a sibling of Q83 The answer, of course.
s the path (QS1. QS2. QS5 QS6, QST ax shown in figure 13. This path
illustrates the general case. A node representing the qualitative state at a time
point (QS3) 18 replaced by three states: two at time points (QS5. QS7) and one
for the interval connecting them (QS61 For the purpose of discussion. [ shall
~all QS3 the FRAGMENTING POINT and the two time-point states which define
our objective. the PREPOINT and POSTPOINT respectively.?

0 ‘ ,JT
— —
-
—
—
PO
Minf L. X
Inf Q
qO —4\
~N
™~
0 N AﬁﬁT
0 ‘ (T
7 o
e
Ve
fo 4
Minf _§ F

Figure 13: The Behavior Correspending to Path (QS1, QS2. QS5, QS6, QST)

The problem, then. 1s to search the state tree among the siblings of the
fragmenting point to find the pre- and postpoint states. We know that Q and
X must reach transitions in different states. but which should reach its transition
first? Consider the two duration RC values which cause the contradiction. Since
§ specifies earlier termination than j|. (), the perspective parameter for the firing
which produced the § value. will reach 1ts transition first. This means that the

? Actually, this discussion assumes a simplifird version of the general problem. I assume
that the contradiction is caused by only two firings of the duration rule, and [ assume that at
the contradiction can be resolved by the addition of a single new transition. The general case
is a straightforward extension. If the QS2 interval had three conflicting duration RC values,
. ||, and Y, then QS3 could split into five states- three fur time points and two connecting
intervals. If multiple rule finngs are allowed for rach RC value, then correspondingly more
paths are possible.
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prepoint will have Q= v and ot N = 80 Siee Q85 s the only state to meet
this requirement. so QS5 s the prepoant For the Lieat exchanger example. this
state umquely detines the new behavior, because vy one path includes QS5
hence QST must be the postpomnt fna more complex example, however, ther
could be severa candidates for prepoint and multiple beliaviors passing through
each one. The following conditions further restrict the possibilities

e All parameters that reach transitions in the prepoint. must have ceached
transitions in the fragmenting point

o All parameters that reach transitions in the postpoint. nm=t have reaciied
transitions in the fragmenting point

o All parameters that reached transitions in the fragmenting point nst
reach transitions in either the prepoint or the postpoint. but ot both

While these conditions are loyal to the implicit constraints resulting from the
initial selection of behavior, they are unfortunately not sufficient to guarantee
a unique alternate behavior. The next section explains a heuristic that will
guarantee a unique behavior but not necessarily one that obeys all truplicn
constraints.

- 4.1.2 A Heuristic For Eliminating Behaviors

b The conditions listed above produce a unique behiavior except in cases where
additional parameters besides @ and .\' reach transitions in the fragmenting
point. When extra parameters reach transitions in the fragmenting point. one
must choose where they should transition—in the prepoint or the postpoint.

The following cases result: ‘

o The parameter could be causally connected to either Q or X. In fact, 1
this is the case with the heat exchanger: F transitions to zero in QS3. (
How did we know that F should reach its transition in the prepoint rather ’
than the postpoint? We didn’t even need to consider the question. By
constructing the state tree, QSIM already handled the problem for use. 1‘J
It recognized that F' must transition whenever Q transitioned: thus the
state tree contains only this possibility. Since the topological consistency
code searches the state tree, it automatically benefits from QSIM’s work.

o There could he additional RC information about the parameter. For sim- i
plicity. this case was not discussed above, but suppose that the duration
rule had fired three times with @, X. and S as perspectives. If S and .\
both caused the duration rule to deduce an RC value of ||. then both X
and S should reach transitions in the postpoint. Unfortunately. other RC'
values complicate the analysis. If three different RC values result from
the three firings. then the fragmenting point will split into five states,
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The details are messy, but the coneepts for resolution are similar to those

described above.

e The parameter could be independent of the perturbation without the in-
ference rules deducing this. As with tlie previous case (where the inde-
pendence. duration ||, was deduced) the parameter should transition in
whichever state has duration ||.

e The perturbation could change the parameter’s transition time without
the inference rules deducing this. The correct behavior is not predictahle
since the change in duration i1s not known.

Since there 15 no way to correctly han:dle the last case. a reasonable heuristic
is to assume that it never happens. This corresponds to Occam’s Razor. Assime
that unless the duration rule says othierwise, the perturbation does not change
the transition time of any parameters. Thus if the heat exchanger example
had an extra parameter, S, which reached a transition in QS3. then we should
assume that S transitions with X" in QS7.

4.1.3 Ensuring Global Consistency

Using the heuristics, the algorithm described above is guaranteed to find a
unique postpoint. But there may be several state tree paths that pass through
this post point. To locate a single new behavior, the program niust step through
the original behavior from the fragmenting point onwards. Every time a branch
in the tree is taken, the corresponding descendant of the postpoint should be
selected as well. When the original behavior reaches a leaf, a unique new be-
havior will result. Unfortunately, there are two reasons why processing must
continue.

e Many RC values must be recomputed. Because the RC values refer to
transition points and intervals, all values from the fragmenting interval
onward will be incorrect. This isu't very surprising; after all, we started
with conflicting duration RC values in the first place. Given the new
behavior, the inference rules of section 3 must be rerun to generate a
consistent set of RO values,

e What if these rules generate a new contradiction? There is no guarantee
that the new behavior is topologically sound. However, if conflicting dura-
tion RC values are generated for an interval. that interval must occur after
any interval whicl caused a previous conflict. Thus each cyele of inference
rules and topology resolution puarantecs that the time of first inconsis-
tency increases, Sinee all behaviors are finite. the cyele must eventually
terminate,
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Finding Other Consistent Behaviors

s e rtarbaten will be consistent with the initial behavior, e nat
g Lot constrants, bt will weaken them instead . In other words,

tv e ~over s bebavgors whieh are consiatent with the perturbed initizl
toSince the QSIM state tree records the results of past transition anal-
v s b techingque suthices to find the behaviors that are consistent
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Ween the duraten of anointerval is decreasing. perhaps the states on
ittt sele will merge into a single transition. Suppose the initial behavior
S e parh QST Q82 Q85 Q86 QST) as shown i 13, and suppose the
porterbatiaas = Ny Although the initial behavior is consistent with this
- rtarbatien o atas possible that thermal equilibrium will be delayed until

poreoase tornent that the oill leaves the pipe. This would correspond
Torhe Beleor 1QST Q820 QS3) as shown in figure 120 Whenever the
iration b ananterval (e g QS6) is getting shorter, CA looks for an uncle

< whal bs the same transitions (e, the same parameters reaching
*tosare bancdmarks) as the union of the parent and child of the interval
<t oand Foreach transitions in QS5. the parent of QS6. and X
transtsns s the child of QS6. So the search produces the uncle, QS3.

- rstri s the corresponding path through it

"ot farsten of anoanterval is . then maybe the parameters will not

et hate time O A suggests a behavior consisting of the path
whe oo b, ot the anterval state
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® SPLITTING

Splitting happens when the duration rule!” deduces a single RC value
of ft or {§ from two different perspectives For example, consider the heat
exchange with an initial behavior of (QS1, Q82. QS3) and the perturbation
of —Kft and V'ft. Since thermal conductivity is higher, equilibrium will
occur sooner. but smee the vl is moving faster. it will get out quicker. Both
parameters lead the duration rule to conclude QS3 will occur quicker; thus
the initial behavior is consistent. But so is every behavior. If the therrnal
conductivity is much higher and velocity is ouly a little higher. then the
behavior (QS1. QS2. QS85. QS6. QS7) will result. If V7 was increased
more than — A then the path (GS1. QS2. QS1) would result. Because
the perturbation was specified in qualitative terms, there isn’t enough
information to resolve the ambiguity and CA must return all possible
splits of the two parameters @ and X.

Like the techniques of section -1.1. my methods for finding other consistent
behaviors are dependent on the DQ inference rules. As a result they are neither
complete nor sound. For example, suppose the duration of an interval was L.
but the duration rule had not deduced this fact. Then compaction would not
be considered and a pussibly consistent behavior would not be considered Sim-
ilarly, one of the techniques could suggest a behavior which appears consistent
only because the DQ rules were inadequate to expose a contradiction.

10Gplitting is the ouly case that analyvzes justifications and depends on the fact that the
duration rule is the ouly way to generate a duration RC value. Compacting, stalling, and
kick-starting only require the RC value and access to the state tree.
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5 Related Work

Although comparative analysis questions have long been important topics in the
ticlds of engineering and mathematics. little work hax been done on comparative
analysis i the artificial intelhgence community.

5.1 Sensitivity Analysis

Seusitivity analysis is a common engineering technique for calculating the effect
on system performance due to variations in system paranmeters. In other words,
comparative analysis is a qualitative version of sensitivity analysis. The sensi-
tivity of a quantity T, to perturbations in a parameter X' is defined (1] as the
product:

Because of its important application to design, considerable work has been done
on efficient methods for calculating sensitivities. Approaches include numeri-
cal and symbolic differentiation. construction of an incremental network. and
analysis of an adjoint network [1].

Compared to DQ analysis, these methods have a major advantage—-they
generate a quantitative value for sensitivity. But sensitivity analysis has two
linitations: it does not generate explanations, and it requires an explicit equa-
tion for the desired yuantity T. Thus sensitivity analysis could not solve the
spring/block problem until the human modeler provided a formula for period.

The technique of comparative statics [17,12], long used in economics to com-
pare two different equilibrium behaviors, suffers from the same limitation. It
requires explicit formulas for the partial derivatives in question.

5.2 Partial Derivatives

Since the RC notation expresses how a parameter changes given an initial per-
turbation, it is natural to ask about its relationship to the standard mathemat-
ical tools for expressing relative change: partial derivatives. In the following
proposition it is handy to think of parameter C as the cause, and £ as an effect.

Proposition 15 If Cft, and all other independent and boundary condition pa-
rameters have an RC value of ||; and El, then
oF <
aC
al lime zero.

0

This statement can be extended to any transition, ¥;, by normalizing with
respect to time. While the relationship between RC values and partial derivative
1s straightforward for values at transition points, the connection is more subtle
for interval RC values because of the presence of perspectives.
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5.3 QP Theory

In his treatise on Qualitative Process theory. Forbus discussed differential quali-
tative analysis [7, pages 159-161]. but attempted no unplementation. He defined
quantities q; greater than ¢, over an interval. i, if for all instants in the interval,
g1 > g measured at that instant. Unfortunately. this definition has several
problems. Since the quantification is over a single interval of time. 1t 1s impos-
sible to make comparisons of systems whose tune behavior changes as a result
of a perturbation. Thus his attempt to formalize “distance equals rate times
duration™ in predicate calculus is severely limited. Rates can only be compared
if the duration of an interval is unchanged'

But even if the quantification was correct. time-wise comparison 1s almost
never a useful one to make. Iu the spring/block case. for example, it simply 1sn't
the case that the heavy-block i1s always moving slower than the small-block: the
periods get out of phase. The key to solving these problems is in the use of
perspectives, discussed in this paper. The comparison on velocity {necessary to
predict that the period lengthens) is valid only from the perspective of position.

5.4 Temporal Representation

QSIM [15] is an efficient. easy to use simulator that has significantly sped the
development of both my comparative analysis theory and the CA implementa-
tion. However, QSIM has defects; its weak temporal representation is a major
problem.

As explained by Hayes in [11], systems which represent behaviors as a se-
quence of states force a total ordering on events. Because qualitative reasoning
is often unable to unambiguously determine an order, the behavior must branch
to consider multiple possibilities. If events interact, then the various branches
often have interesting qualitative differences. But frequently, the alternate he-
haviors are equivalent and just complicate reasoning and consume processing
resources.

To combat this problem. Williams wtroduced the notion of concise episodes
[23], and has devised an efficient simulator (called a Temporal Constraint Prop-
agator) to manipulate them. Just as qualitative simnlators using Williams' tem-
poral representation would improve on QSIM. comparative analysis programs
would have several advantages over C'A. Williams is buiding such a system for
use in automated design [23].

e The propositions of section 3 would still be true, and could be encoded
more easily. CA requires explicit rules for composing durations over inter-
vals (e.g., Iif DURATIONf o, and DURATION? | 5, then DURATIONT 2, ).
These computationally expensive rules would he suhsumed by the tenipo-
ral constraint propagator.
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'{‘.‘ o The search for topologically distinct behaviors (section 4) would be simpli-
- fied because the space would be smaller. By eliminating irrelevant order
B distinctions, the number of different behaviors would be smaller. Only
\ \ if 1t was qualitatively interesting would there be any need to consider i
e behavior in which two parameters reach transitions sinwltaneously.
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6 Future Directions

This paper discussed the problem of comparative analysis. the task of explaning
how a system will react to perturbations. and why. Multiple perspectives. wluch
can be used to reparameterize system parameters, fead to a powerful definition of
relative change. DQ analysis solves comparative analysis problems by applying
inference rules to the initial perturbation of a system. A trace of the rules used
in solving a problem can be easily translated into an intuitive explanation of
the answer. Since the rules have been proven sound. DQ analysis is guaranteed
to produce only correct explanations. A computer programs, CA. umplements
the theory of DQ analysis and correctly solves over twenty comparative analysis
problems including those that change the order of transitions in the behavior.
Despite the success of DQ analysis, several areas for future research beckon.

o DQ analysis is incomplete. Although CA is guaranteed to terminate, it
doesn’'t always deduce an R(C value. Fortunately, there are other tech-
niques for solving comparative analysis problems. Exaggeration. for ex-
ample, saves many problems with a completely different style of reasoning
[20). Although it 1s believed that exaggeration is also mcomplete. initial
results suggest that exaggeration can solve several problems which DQ
analysis cannot [22].

e Certain comparative analysis questions have no answer. For example,
“What happens to the period of oscillation of a spring/block if both the
mass and spring constant are increased”” It would be nice if CA could
recognize that there was no answer to this question instead of simply
saying that it can't find an answer.

3

e Any analytic technique is only as good as the model on which it works.
Currently, humans construct models and computers are only used in ana-
lyzing them. This imparts fragility to the process. For example, consider
the structural description of the oscillating spring/block example (section
3.8). Suppose that the initial situation had \" = 0, V set to some max-
imum value and the perturbation was V{t. Although the DQ inference
rules can deduce facts like “the maximum displacement will increase,” the
topological analyzer is unable to recognize the possibility that the spring

will break.

The cause 1s a simplistic model. Hooke's law precludes the possibility of
a broken spring. To achieve greater robustness in qualitative analysis in
general and comparative analysis in specific, modeling must be treated ex-
plicitly. By incorporating ontological assumptions into process definitions,
QP theory [7] has made progress here. but further research is necessary to
address the questions of reasoniug with multiple models, dynamic model
creation. and the evaluation of a model in the context of a specific problem.
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A A Useful Example

This section constructs an example which serves both as a counter-example for a
generalized version of the derivative rule and as the proof of the non-exhaustive
proposition. Suppose that -1, V. and X are parameters such that 1 = di( v
V= :?7 X, and .\ is a covering perspective over {7;.39;41). The dertvative mle
(proposition 3) showed that if A and V7 are positive over the interval (5, 3,477
and if =V, and Ay, then VA )

Unfortunately, the derivative rule is not true for arbitrary perspectives. 'l'hv
following abberation chould convince you of this. I show three parammon 1
and P such that 4 = d' V and P is a covering perspective over (%,. 7). Yet 1l—
though AH{;_” the parameter V" has no consistent behavior from the perspective

of P. During part of the interval V1Y and during part vyf
Here are the details. Over the absolute time interval (0.1) define:

V(t) = 52
A(z):d-d-u y=t A Ya)=a
P(t)= A(t) =t Pl p)=1p
\A(t) = 1313
Aty= 4V = A Ya)=a¥
Py=Awty=1 P Y(p)=p}

Note that P(0) = 13(()) =0 and (1) = [A’(l) = | and P is strictly monotonic,
so P is a valid perspective over thls interval. Since P = A and P = A the self
reference theorem shows that 4|| So what does V7 do from the perspective

0.1y
of P? Consider p = 5:
1 1 . a 1 . 1
-1 _ Lt 0 -t — T =
VP ) = V= 0 and V(P7(p)) 3! 1
Now let p = &
1 3 - - 1 16V2 32
vep! = —p?= = and V(P Yp == —
( (r 5P = R ( (p)) 3P T SR

So for a small value of p the corresponding ¢ is larger than + but for largor »
the situation is reversed. Thus it 1s neither the case that V ﬂ(o 1) nor V H(,, 1y hor

V{}f’;.” even though ‘4”r0,11'
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