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'IVYuille Ullman

RIGIDITY AND SMOOTHNESS OF MOTION

The smoothness assumption in measuring visual motion

The problem of measuring visual motion is, in many situations, undercon-
-.S

strained. That is, the information in the changing image is insufficent to

determine the motion uniquely. This indeterminateness is often referred to as

the "aperture problem" (for example Marr and Ullman, 1982). An additional

constraint is therefore required for resolving the ambiguity and determining

the velocity field uniquely. An important constraint that has been proposed

. -- i for solving the problem is a smoothness constraint. (Fennema and Thomp-

son 1979, Horn and Schunck 1981, Hildreth 1984, Nakayama and Silverman

5,, 1986). When applied to the problem of measuring the velocity of image con-

tours, this smoothness assumption has been formulated by Hildreth in the

following manner. Of all the velocity fields that are consistent with the trans-

forming image, select the velocity field that minimizes the overall variation.

That is, if v denotes the velocity at a point, and s the arc length along the
'~or !

curve, the preferred velocity field is the one that minimizes the integral:

f 1 ,
A&'I

• /II =-11 L 12 ds ' -
.'."J ds

along the curve (the principle of least variation). It has been shown that

this method of determining the velocity field gives good results under a wide

-..
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range of conditions, and it seems to correspond in many cases to the velocity

field perceived by human observers (Hildreth 1986, Nakayama and Silverman

1986).

",,.

Justifying the smoothness assumption.

The main rationale raised in support of the smoothness assumption is that

the velocity field induced by smooth contours in motion is expected to be

smooth. This argument is insufficent, however, for justifying the principle of

least variation. The smoothness assumption implies that if the object is known

to be smooth, the velocity field should not contain discontinuities. It does not
imply, however, that "the smoother the better". Consider, for instance, two

points in the image separated by a small distance, and moving with image

velocities V, and V2 . One may argue that if they lie on the same surface,

extremely high values of II1V - V2 11 are unlikely, because of some physical

limitations on the motion of objects in space. But why should one assume

that a relative velocity of, say, 0.2 deg/sec is less likely than 0.1 deg/sec? Such

a preference is assumed by the least variation principle (that favors velocity

fields in which the difference in velocity between neighboring points is as small

as possible), but cannot be defended only on the basis of a general smoothness

argument. Clearly, a stronger constraint than just the general smoothness of

'%
.- 'U .. ,.a"€ ' C.



Yuille Ullman

surfaces is required.

Another general property that seems to provide a useful constraint in the

analysis of visual motion is rigidity. Computational studies have shown that

the 3D stucture of rigid and quasi-rigid objects can be recovered by looking

for the most rigid interpretation possible of the changing image (Ullman 1979,
X

1984).

In this paper we argue that local rigidity of the object and the principle of

least variation in the velocity field are related. To investigate this we consider

a rod moving in three-dimensional space. The rod is allowed to move in a semi-

rigid manner: it can rotate and translate freely and is also allowed a certain

expansion. We calculate the relative velocity between the two endpoints of I

the rod, as projected on the image plane. The calculations show that under

a wide range of conditions this velocity distribution is peaked at zero velocity

and decreases monotonically at higher velocities. As a result, the projected 1

velocity field of points linked rigidly together is likely to be consistent with

the principle of least variation in the velocity field. There are two factors

contributing to this strong bias towards small differential velocities in the--

projected velocity field: (i) the rigidity of the link between the two points and

(ii) the effect of projection from 3-D to the 2-fl image plane.

If we imagine an object being made up of a collection of semi-rigid rods
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this analysis suggests that the projected velocity field is likely to be smooth.

We conclude that the principle of least variation is a reasonable constraint

that can be justified for the projected velocity field of rigid or locally rigid

objects.

Section 1. The two-dimensional case.

First we consider a rigid rod moving in two dimensions and being pro-

jected onto a line. Because it is rigid the rod's velocity can be split into

rotational and translational components. For our purposes the translational

component can be ignored as it will not contribute to the derivative of the .,

velocity field on the line.

Let the projected length of the rod be R and the real length be r, the

angle to the vertical be 9 and the angular velocity be w. Then the projected

velocity distribution 4(u) is

O(u) = 6(R- rsinO)b(u - rcos O)Or(r)§,(w)drdwdP (1.1)

where 6 denotes the Dirac delta function, 4,(r) and (w) are the distribution

of r andw respectively. rsinO and rwcosO are the projected lengths and

velocity respectively. We assume that rods are equally likely to have any

length between 0 and r,., and set Or(r) = k between 0 and r,., (with

krmoz = 1). "

Sj. p .. ~ u~x:.' . S
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Yuille Ullman

We can integrate with respect to 0 using the first delta function. This

gives (see Appendix 1) S-.

4,(u) 6(ur . ____ - wv\/2 -iR)0(w)drdJ. (1.2)

We integrate with respect to r to obtain

t(u) = (1.3)

. (R 2 W2 + u2)J

where W,,min, = u/R/r T . This lower bound comes from the delta func-

tion integration.

Now we examine the behavior of 4(u). If we differentiate it with respect

to u we get

-u = w,.=. (R 2 W2 + u2) - ( R2)2(R2 .,, + u2) (1.4)

So, for any probability distribution 0,(w) (which by definition must be a

positive function) the two terms on the right hand side of (1.4) must be

negative. 0(u) must decrease strictly monotonically with u and has a unique

maximum at u = 0.

Thus whatever the distribution of the rotation the most likely projected

velocity is zero. This result is similar to that obtained by Ullman (1979)

for the motion of dots. It was shown that if the motion of a random dot is

* .w
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described by an isotropic probability distribution function in three dimensions

then the probability distribution for the projected two-dimensional motion is

peaked at 0.

Note that our result is independent of whether we choose an upper bound

for r. This can easily be seen by setting rox *. oc and w .-4 0 in (1.4). In %.1

fact having an upper bound for r makes 00/0u more negative and makes

f(u) decay faster. Henceforth we assume for simplicity that there is no upper

bound for r. ',.

To see the connection with the smoothness assumption observe that in p

the limit Hildreth's smoothness measure can be expressed as

A,, 's,.

I1 I11 d.a ) (1.)
.ds'.

where the sum can be taken over a set of rigid rotating rods. The results above l

show that for each rod considered independently the probability distribution

of the u is peaked at zero. Thus, with this independence assumption, we

argue that the most likely distribution of the whole contour is the one that

minimizes (1.5). We will relax the independence assumption in section 4.

Section 2. The three-dimensional case.

We now extend the analysis to a rod moving in 3-space. Consider a rod

of length r projected into the image plane, which has unit normal vector k.

- t
a 

..5
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Yuille Ullman

The rod's direction in 3-D spacc is denoted by F which is a unit vector in the

direction F. The rod is projected into a vector Fp where

f:P = '- (F. k)-. (2.1)

The rod's rotation is described by a vector k, where w is the frequency and

W is the axis of rotation. The velocity i is given by

= r F. (2.2)

The projected velocity field 6p is given by

i, = - (6. k)k. (2.3)

We consider rods with projected length R and projected velocity U. We are

interested in the projected velocity distribution *(O7 ). Since the projected S

velocity distribution is rotationally symmetric we can express this as U.(U)

(see Appendix 1). If the rods' length distribution is 4r(f) and their rotation

distribution is A0) then the projected velocity distribution is given by

4(U)- 6(R - IFpI)b(U -IGI)O(D 'i,(Z)d'dD. (2.4) .

Care is needed in specifying the domain of integration of (2.4). From (2.2)

we see that only the component of 0 perpendicular to F contributes to the

4. .4

:-:':-" G"
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velocity. We must require u .- = 0. We impose this by substituting a delta

function into (2.4) and then integrating over all 0.

N%.,-

Thus we have I

U4(U ) = 6(R - If):') -r-6b(U - l~ )t,,(O)dFW - (2.5)

We assume all directions of the rod are equally likely and the rods are

also equally likely to have any length. So we set
h

(2.6)

We also assume that the rotation is equally likely to be in any direction. Then _ A

f,(O) is a function of 11 = w only. ..

UO'U = 6(R - FpI)b(C;* 9-)bU - l1p)f9,(w)dFdO. (2.7)

Choose an orthogonal basis t, J, k. Define angles 0, W, a, 13. These angles

are illustrated in figure 1. 6 is the angle between the unit vector and thek;

axis. W is the angle between the unit vector projected onto the x, y plane and N

the x-axis. Similarly for a and 3. It follows that

.- 1

7 = s i n c o s wo + s i n O s i n w ji + c o A sk ( 2 .8 )(2.8)

w = s in co s + sin a sin #! + cosa if

Q

-V1:.
, ' '" ' .%. ,.' 1-, ,. . .

. . ,, *-./% . % -,, 1,,,'., ' .-- ' - 'a . ,:': , , " 4 €" - - w . w , 
€
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'.-." Then "

d.. = dw sincr dad/I 29

di - dr sinG d~dpo

"-" and

* efn the angle between and f to be T by

'.4.

i

cost w.. (2.11)
4 . ..

--,

.
-
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Then from (2.8) we have .t

.%-r

coar = cos cosa + sinO sina cos(p -/3). (2.12) 1'*

Define the angle p by

cosp = (  ×  . (2.13)

From (2.11) we obtain

I

cospsinr (0 x F' ). (2.14)

From (2.8) we find

cosp sinr = sinO sincr(w - /3) (2.15)

and we calculate

1v6 - wsinr sinp. (2.16)

We use (2.10), (2.11) and (2.16) to write the delta functions as

6(R- pI)6(Z-r)6(U-j1i1) = 6(R-r sinG)6(cosr)6(U-ir sinr sinp). (2.17)

We now need to change the variables of integration. We have

X
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ddF= dwdr sina sinO daod3dad,. (2.18)

The integrand only depends on p and /3 as p - 03. We can set t/ = - 3 and

integrate out /. Then we have

cost = cosO cosa + sinO sinacosw

cospsinr = sinO sina sinO . (2.19)

d~dF = irdwdr sina sinO da dW dO

Now we must change the variables of integration from a, g to r, p:

dodtk = det drdp. (2.20)

From (2.19) we eliminate the terms containing ¢ to obtain

cosa = cost cosO = sina(sin2 - cos2p)4 . (2.21)

Define functions F(T, p, a, V) andG(r,p,a,k) by

F(r, p, a, V) = cost - cosO cosa - sinO s inacos'

(2.22)

G(r, p, a, ) = cosp sinr - sinO sina sin 

It is a standard result of Jacobian transformations (it can be obtained by

using formula (2.20) twice, once changing variables from a, w to FG and

then changing F,G to r,p) that

*5":. * 9 ':: ~~~ 5 . . -
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0 / F OF Idt F OF

dodo= det / Idet j drdp. (2.23)
(77- Tp8G0 /

From (2.22) we obtain

OF OF

det = Sin Tsinp (2.24)
OG OG

and

OF OF 
4

det = sinO sina{sinO cosa - cos€ coaosina}. (2.25)

Thus we calculate

sin 2r sinpdsidtp =.drdp. (2.26)
sinO sina{sinO cosa - cosaOcos s ina"

We substitute for cos€ from (2.19) and obtain .1'

ain 2 r sinp . -,

dodo drdp (2.27)sina{ osa - cosO Coa} ::
'4

then using (2.21) we find -.

sinr sinp '
dordo drdp.(2.28

sina(sin2 O _ c P) 4 drdp. (2.28) -'

Hence

..sinr sinpgin8sina sii'ado--b- C02 p) drdp. (2.29)

(sin2G~os~p)4-

4 -. . ~ ~. . - . . - . . .-. '. - '
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""-""We substitute (2.17), (2.18) and (2.29) into (2.7) %.Jr

Ul-(u) (R - rsinO)b(cosr)b(u -v.rsinr sino)

d (2.30) >
st np sinp sing

d,

Nw w ote integrat io with respect to 7 to obtain "

b(R~~~~~- - -n.bU-wri

U U ()=/(U- Crsin )0()inpsin dpdO dr. (2.31)::
We integrate with respect to and obtain (2.7)

6 - Rsinp)4d,(w)dr dpdwdr

u~~p~~u) ( 2 92i(2 - cos2p) f 2.2

NW w ote integrat io with respect to to obtain

w(U)(.9d d (2.33)
r(r 2 - R2)i(R2L02 + U2 - W2r2)J(W2r2 -U2)j . ..

The domain of integration is restricted to the region of the - r plane where

the integrand is real (for simplicity we have omitted the bounds of integration

:-..

in the previous equations). It is specified by :''.

r> R '....

R2w2 + u2 > L2ra (2.34) "('2-

ar> u. 

-
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Change the variable of integration from r to X where

r2 = u2 + X (2.35)

then

p

9(u) = / RwIAw)dwdX (.6O(u) J 2Xi(RW2 - X)4(u2 + X - W2R2)4(u2 + X) (2.36)

with domain of integration

X < Rw 2

p

X 0 (2.37) -

u2 + X > u2 R 2

Define a new variable Y by

y 2

-= 2R' - X (2.38)
p

then

~~RwoOt,(.,;)dwdY ""

O(u) =/R ,()LY(2.39)
= (W2 R2  Y2)4(u2 - Y2)4(u2 +W2 R2 - -2)

with
p

* '. a . ::

- 91
p

~*%**~w**~* ,% %a *%~ . .%%_- •.,a



Y'.42<U

,It .,u i s claUrmti xrsinta ()wl eraewt fadolya

if

We ncnsrter tesi tation in twopres esion s he the susittod s al=lsiowed:g

and exan an contract ah s iel s roae eDa rt

@(u)F = - O dr (3.1) i..

whret: is ter unit vts epedicularato r. we definae th exp fanon y oef-

%%'

Yu le ontnildmeainnuntinofu
I

5-.

We cn further tesifvthaisn expresson byesie the susittosYd isnoe

ando exan (and2 cothits el s rtt.W a rt

.a

~(u)- d dfl(2.1) - .jr.~ =2 r- rinO 11 (3.2)cs 2 ) 5,

whet is cerfo th is exrpreindithato r. W dereae th ex ifanonl oe- "'

bce anoton c derain uciofu

Secton 3 Exansin an Cotracion

We nw cnsier he ituaionin wo imesios whn te rd i alowe
*5,



Yuille Ullman

=rs (3.3) [

and write (3.2) as. %eI
r rs + Jn.(34

The projected velocity is then given by.<c

where 0 is the angle that r makes with the normal to the image plane and .

w}=o. The projected velocity distribution is given by" "

@ (U) =/6(R - r.9inO)b(U - (r.9 sinO + rwcosO))t.(9)f,(w) dr &w da dO ;

?--

(3.6)

a..'°t

whra nScin1 ehv ssmdta 0r oterd a, no.

-t(U) = (r2- R2)-1/2b(U- R - (r2-R' )112) () (odr &ads. (3.7) ""

-,

he projeegrted vihescit is then gindb

"f"i'" P U Rs (.

" " • " . . . . . .-' . . . 'e'€ " * -, .." "./ ;. #,' , ' "€ '.= . . " ', '.-'r'..' ', d', ',P",P',p'r .' -.' -' -a :
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Care must be taken to ensure that this integral is evaluated over the correct

limits, those for which the integrand is well defined. For w > 0 we need s <

and for w < 0 we have s > U. This domain of integration is shown in figure

(2). We can split the integral up into two parts

,D(u) = , (u) + 4 1(u) (39)
$

U/R

Figure 2 The domain of integration, see text.B

where -- '"

41(U) = ki ((U qR)3 + R22-/O().()s(3.10).-,.

-,.

=.p *.

andl lia

.%,

* V.j,4..2 Z'#.Z' .. ',' Z- -- #. 4 ;£ ¢; # . ;.mz # £Z ¢g ¢ .(...
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L ' ° /.Z '.

* 2 (U) = dw ((U - sR)2 + R2 w2)1 2*,(a)$ ()ds. (3.11)

We impose the conditions L

. = 3 (-s) (3.12)

and

t",(w) = ,( .(3.13)

These ensure that contraction is as likely as expansion and that rotation is ,

equally likely to be any direction. . .e

We use (3.12) and (3.13) to rewrite (3.9) as"-

O(U) = =odw.=_ ((U - qR)2 + R2)2-1 /2to l( ''

8. ---/
+w((11 + sR)2 + R' 2)-1 /1.@,(3)#,(W)ds. (3.14a)""'

We now substitute t =R/u and w - uQ/R and obtain

-. ,

f(U) = UJ~ dQl t( )2 + o2)-1/2 *(ut/R)4,(ufl/R)dt

+- =0 d -I ) ,utR)(u/R)dt. (3.146)

Note 2 set ,(ut/R) (ut/R) we recover (1.3).

I

V I-

4(U)= ] w] -(( - R)2  R~ 2 )1 2 4.()4~w~d

+ j:~ dw (( + s) 2

We nw sbsttut t =Rs/ an w uflR ad otai

V' f L " r, ,r w ''- -c - .,.r . -' ' , O = OOe, " s I,- - ' ,
•

'
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We differentiate (3.14a) to obtalan

~~a= U/((U + sR)2  2 2 3 2 U+sR$().'wd

W = 0 a - U / R 2 I - 1 (
- dw] ((U -sR) 2 + R2 2 Y 1 ( s) 8 s&i4s (3.15)

We can simplify this expression by setting s to s - 2U/R in the second term

on the right hand side. This yields

- w_ ((U +sR) 2 +

(3.16)

In the range of integration (u + sR) is always negative. So the integral willn

be always negative provided 0,(s) - 0,(.9 + 2u/R) is negative for s < S R

If we make s positive, using (3.12), this becomes

4s-2(71R) - 0,(s) > 0. (:3.17)

which is true for alJ monotonically decreasing functions. Then we have . 0

everywhere for any function $~~.Hence the projected velocity distribut ion?

will once more be peaked about U =0.

If we relax the conditions (3.17) we are no longer assured of having a

monotonically decreasing projected velocity distribution for all $~~.If
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4,(9) is linear in s we obtain a flat distribution

(U) = conast. (3.18)

If 0,(s) is quadratic in s we find

80 2fdwO (w) U2 s2 +W1r 3 1 2 4O(w) (3.19)7 JT4.s 4U

which will only be negative for some distributions 0,(w).

Thus allowing the rod to expand and contract reduces the strength of the

result of Section 1. But if we make the reasonable assumption that 0,(s) is

at most linear in a the result will still hold.

Section 4. Curves from rods.

The situation becomes more complex when we consider several rods

joined together to form a curve. The results above show that for each rod

individually the projected velocity distribution is peaked at zero. If the rods

are joined, however, these probability distributions are no longer independent.

We now sketch an argument suggesting that this loss of independence does

not affect the result.

Suppose we have a set of probability distributions P(xi), i =,..N

which are all peaked at zero. We now define the joint probability distribution

P(Y) where Y= (Z,,z 2..., ZN). If we impose no constraints this distribution

is given by

,N]
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P(Y)di = HiP,(xi)Iidx,. .1) .,

Now impose a consistency constraint ", xi = 0. We now have

P(Y)d: = IliPi(Xi)W( i)rHjdx. (4t.2) :

iS

The z,'s can no longer vary independently and the delta function imposes the

consistency constraint. We can get integrate out the delta function thereby

reducing the number of independent variable to N - 1. It is convenient to

choose these to be xi - xi+,, for i = 1. N - 1. We can now write (4.2) as

J P(i)di H1 P,(z, - ,+ )H,d(z, - x,+1 ). (4.3)

We can set Y, =xi - xi+,, i= N - 1 and rewrite

P(y= P(y 1 )P2(Y2 F)...P.V-(YN-)P.V(-yt - Y2 - ... - yV-1). (4.4)

It is straightforward to see that the maximum value of P(y-) occurs when the

y, are all zero. Thus P is still peaked at zero even with the constraints.

Section 5. An alternative approach.

The results derived in the last few sections support the assumption (1il-

dreth 1984) that the velocity field along a contour is smooth. This assiimplion

! , L "4 ,
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is used to solve the aperture problem by prescribing the smoothest possible

velocity field consistent with the data.

An alternative approach to the aperture problem was taken by Waxman D

and Wohn (1986). They showed that if the object was locally planar and

.,1.

moving rigidly then, assuming perspective projection, the local velocity field

on the image plane would be locally quadratic in the z, y coordinates. They
-N-.

then defined regions in which these expansions were valid and checked for

consistency between these regions. In these regions they could do a least -""

squares best fit to find the coefficients of these quadratic polonomials, and

hence the velocity field.

* S

This approach, however, can also be used to justify the smoothest velocity

field assumption. The orthographic projection of the motion of a rigid body '-

will obey

v.= A + By + Cz, (5.1) ".
p..'

.J. .'.,

v= D + Ex + Fz, (5.1b)

where A, B, C, D, E. F are constants and z is the (unknown) depth coordinate.

If we also assume the object is planar then z obeys

p. ..... ----...

' .. J ',' . €5 ''. .:-: ;" .'4'. . " .,% , ,' N % 2 % '-"""%" .. ' - ',"" , '.,= '''' .. ,-.- -.-.-. ' ' .
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z =px + qy + s, (5.2)

where p,q,r are constants. Substituting (5.2) into (5.1) gives lnear expres-

sions for v, and vy in terms of x and y. So if we assume local planarity and

local rigidity (in the style of Waxman and Wohn (1986)) the velocity fields

will locally be linear in z and y. The measure of smoothest velocity. I(iq,

used by Hildreth is the integral along the curve of the function

= (6) (5.3)

$ where s is the arc length. The velocity fields will be locally linear if and only

if J(6) is zero. Thus we can think of the smoothest velocity field approach as

a local method of assuming local rigidity and local planarity.

Section 6. Conclusion.

The arguments in the first four sections of this paper suggest that locally

rigid, or semi-rigid objects, will tend to project a smooth velocity field in

the image. Moreover, assuming random motions and limited expansion or

contraction, this field will tend to be as smooth as possible. In the fifth

section we noted that rigidity of an object and local smoothness of its surface

will also lead to a smooth image motion.

V.
F,*

F, .
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These arguments support the view that maximixing smoothness is a good

heuristic to use for motion correspondence and that it is a sensible way to solve

the aperture problem.
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Appendix

We first describe the general method for integrating delta functions.

Suppose we have an integral I(a,b)

I(a,b) = f(x)6(x - xo)dx (A.1)

where b(x) is the Dirac delta function, f(x) is an arbitrary function, xo an

arbitrary point and b > a. The value of the integral is

I(a,b) = f(xo), if xoE[a,b] (.4.2a)

I(a,b) 0 0, otherwise. (A.2b)

This result can be generalized to integrals of form

-- ,
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J(a,b) = f(x)b(g(x) - c)dx (A.3)

where g(x) is an arbitrary function and c an arbitrary number. All points x,

with g(xi) = c will contribute to this interval. Suppose there is only one such

point. If there are several we can divide the integral up into regions with only

one such point. Consider one such point x = 0. The function g(x) can be

, expanded in a Taylor series about this point

g(x) c + g'(0)(z) + O(12). (A.4)

- If we change the coordinate to u where u = g'(0)x we can write the

integral as

''A

2'(o1b du
J(a,b) = f(u/g'(O))b(u + O(u1))1-0). (.4.5)

J'(o)

The value of the integral will depend on the sign of g'(0). If it is negative

the bounds of the integral will be reversed and the integral will change sign.

Therefore

S.4

J(a,b) =f(0) 0[a,b] (A.6a)
-g.(O)-

J(a,b) = 0, otherwise. (A.6b) '

I
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We now consider the form of the probability distribution function for a

rotational symmetric vector in two-dimensional space. Suppose the function

is I If it is rotationally symmetric (and hence depends only on the

modulus w of 0) it can be written

= ,(w)wdwdp, (A.7)

by changing to radial coordinates w, (p in the w space. The p component can

be integrated out to give a distribution wt,(w)dw.
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