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Rigidity and smoothness of motion.
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Abstract. Many theories of structure {roin motion divide the process into
two parts which are solved using different assumptions. Smoothness of the
velocity field is often assumed to solve the motion correspondence problem
and then rigidity is typically used to recover the 3D structure. We prove
results showing that, in a statistical sense, smoothness of the velocity field
follows from rigidity of the motion.
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v RIGIDITY AND SMOOTHNESS OF MOTION
‘.
A 4
L "
i The smoothness assumption in measuring visual motion
~ l
N~ .
% The problem of measuring visual motion is, in many situations, undercon- 3
-\ -
x .
| strained. That is, the information in the changing image is insufficent to
IR } -(‘
\ f determine the motion uniquely. This indeterminateness is often referred to as :
)
vi
. the “aperture problem” (for example Marr and Ullman, 1982). An additional
‘_I
. constraint is therefore required for resolving the ambiguity and determining ;
- 3
: the velocity field uniquely. An important constraint that has been proposed 4
A q
-\..
,".‘V‘ for solving the problem is a smoothness constraint. (Fennema and Thomp-
j\'; son 1979, Horn and Schunck 1981, Hildreth 1984, Nakayama and Silverman kK
¥), ’
L .
12 1986). When applied to the problem of measuring the velocity of image con- '
Lo K
tours, this smoothness assumption has been formulated by Hildreth in the
e K
e following manner. Of all the velocity fields that are consistent with the trans- .
." !
ko forming image, select the velocity field that minimizes the overall variation. Y
‘j.-: That is, if v denotes the velocity at a point, and s the arc length along the v
:.: Erw g
- curve, the preferred velocity field is the one that minimizes the integral: '

A&l

-' ﬂ -
S ds oA
). = i L

along the curve (the principle of least variation). It has been shown that

JO&4

~ .

this method of determining the velocity field gives good results under a wide ) a
R -
e C o
' B b
' { A

; /) - /
‘ G

V.;J‘ VA -"\:"’- o "'\"‘\" o g L "\"\ AL "-‘-\.'\.' Ly \"*. \ Y .y x"~.'§- " \"\ s 'i’:\‘--.'\'.--!\"\"\‘\
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'

range of conditions, and it seems to correspond in many cases to the velocity "
l,."
. . \ g
field perceived by human observers (Hildreth 1986, Nakayama and Silverman Nt

~
O
1086). .
o~

-~

-

R
Justifying the smoothness assumption. ._:,-

The main rationale raised in support of the smoothness assumption is that

the velocity field induced by smooth contours in motion is expected to be

R TAALS

smooth. This argument is insufficent, however, for justifying the principle of

F.'
least variation. The smoothness assumption implies that if the object is known ;\:
-
to be smooth, the velocity field should not contain discontinuities. It does not ® '
I hRS
AN
imply, however, that “the smoother the better”. Consider, for instance, two oy
RS,
points in the image separated by a small distance, and moving with image ":_
'
velocities V) and V;. One may argue that if they lie on the same surface, ‘{:'
i)
. . . Pl
extremely high values of ||V} — V;|| are unlikely, because of some physical NG
ﬁ
limitations on the motion of objects in space. But why should one assume ,
that a relative velocity of, say, 0.2 deg/sec is less likely than 0.1 deg/sec? Such ;:::
PR
a preference is assumed by the least variation principle (that favors velocity :".::
)
fields in which the difference in velocity between neighboring points is as small A
nf\
a ™
'-
as possible), but cannot be defended only on the basis of a general smoothness R
’.
N
argument. Clearly, a stronger constraint than just the general smoothness of ;' )
A J
L
:’:\
-

[ . - - - - T oW, " 2 P PR AN L N A
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surfaces is required.

Another general property that seems to provide a useful constraint in the
analysis of visual motion is rigidity. Computational studies have shown that
the 3D stucture of rigid and quasi-rigid objects can be recovered by looking
for the most rigid interpretation possible of the changing image (Ullman 1979,

1984).

In this paper we argue that local rigidity of the object and the principle of
least variation in the velocity field are related. To investigate this we consider
a rod moving in three-dimensional space. The rod is allowed to move in a semi-
rigid manner: it can rotate and translate freely and is also allowed a certain
expansion. We calculate the relative velocity between the two endpoints of
the rod, as projected on the image plane. The calculations show that under
a wide range of conditions this velocity distribution is peaked at zero velocity
and decreases monotonically at higher velocities. As a result, the projected
velocity field of points linked rigidly together is likely to be consistent with
the principle of least variation in the velocity field. There are two factors
contributing to this strong bias towards small differential velocities in the
projected velocity field: (i) the rigidity of the link between the two points and

(ii) the effect of projection from 3-D to the 2-D image plane.

If we imagine an object being made up of a collection of semi-rigid rods
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i this analysis suggests that the projected velocity field is likely to be smooth.
' We conclude that the principle of least variation is a reasonable constraint
that can be justified for the projected velocity field of rigid or locally rigid
objects. -
2
Section 1. The two-dimensional case. .
First we consider a rigid rod moving in two dimensions and being pro-
S
jected onto a line. Because it is rigid the rod’s velocity can be split into N
1
)
rotational and translational components. For our purposes the translational
-
N
i
component can be ignored as it will not contribute to the derivative of the 3
¥
velocity field on the line. . : )
Let the projected length of the rod be R and the real length be r, the :.-_‘_
angle to the vertical be # and the angular velocity be w. Then the projected ,_-
)
velocity distribution ®(u) is %
®(u) = /6(R — r3inf)6(u — rwcos 0)®.(r)d, (w)drdwdd (1.1)
where § denotes the Dirac delta function, ®.(r) and &, (w) are the distribution 0
s
o
- 1Y
of r and w respectively. rsinf and rwcosé are the projected lengths and ::
ol
velocity respectively. We assume that rods are equally likely to have any l:'
::':
length between 0 and rn,, and set &.(r) = k between 0 and rma (Wwith ._
.-:"~
krmar = 1). :"‘
- :,.\-
'd
-3
R
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N
R I.\.\
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We can integrate with respect to # using the first delta function. This >
vl
St

gives (see Appendix 1) -
5

T=Tmas 1 .':

®(u) = —_—(u —wVr? - R, (w)drdw. 1.2 <.

W= 7 2. (w) (1.2) 2

We integrate with respect to r to obtain _,-

t

]
_Su(w)dw N
&(u / 1.3 )
( ) WEWmain (R2w2 + uz)i' ( ) “‘
where wmin = u//r2,.. — R2. This lower bound comes from the delta func-

E

tion integration. g._

r“-
. Now we examine the behavior of ®(u). If we differentiate it with respect E',:

be ‘
to u we get :'.
A
\.
9
/ “¢u(w) dw — Qu(wmin) (1 4) E

W=Wmin (szz + u2)% (rrznaz - Rz)z(R;)w?nin + u2) . . t_.

o

-
So, for any probability distribution ®,(w) (which by definition must be a “"‘

positive function) the two terms on the right hand side of (1.4) must be N

negative. ®(u) must decrease strictly monotonically with u and has a unique ‘:'_
maximum at u = 0. ::

Thus whatever the distribution of the rotation the most likely projected =
~ ‘]
o

velocity is zero. This result is similar to that obtained by Ullman (1979) -t

™

for the motion of dots. It was shown that if the motion of a random dot is N
2, ,
-::::.\- 1

A
-
é

R .
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[}
described by an isotropic probability distribution function in three dimensions :‘\.
&
then the probability distribution for the projected two-dimensional motion is !
Y
"y
peaked at 0. .
o
Note that our result is independent of whether we choose an upper bound .
~
o
~ i
o+
for r. This can easily be seen by setting rmaz — 00 and w +» 0 in (1.4). In ::
.
. }
fact having an upper bound for r makes 8%/0u more negative and makes it
F\f
S
"
®(u) decay faster. Henceforth we assume for simplicity that there is no upper ;,'t
o
bound for r. "\
'
<
To see the connection with the smoothness assumption observe that in A
“~
P'“
the limit Hildreth’s smoothness measure can be expressed as E:~
SR
L v
.y Ny
e
2 S
J150 ds = T () (19) X
*
- . ~
where the sum can be taken over a set of rigid rotating rods. The results above -
o
show that for each rod considered independently the probability distribution oy
N
2N
(
of the u is peaked at zero. Thus, with this independence assumption, we o
o
argue that the most likely distribution of the whole contour is the one that '___
minimizes (1.5). We will relax the independence assumption in section 4. -
, _ )
Section 2. The three-dimensional case. N
We now extend the analysis to a rod moving in 3-space. Consider a rod :
of length r projected into the image plane, which has unit normal vector . ..
. ~:,,\‘ .
N
.:.-.
t..'\
N
)
N N R AN T :..-..'.Ast;;::;‘:i,}_ :
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The rod’s direction in 3-D spacc is denoted by 7 which is a unit vector in the

direction 7. The rod is projected into a vector 7, where

Fp = F— (7 E). (2.1)
The rod’s rotation is described by a vector &, where w is the frequency and

& is the axis of rotation. The velocity 7 is given by

F=oxr (2.2)

The projected velocity field ¥, is given by

B, = 7 (5. b)k. (2.3)
We consider rods with projected length R and projected velocity U. We are
interested in the projected velocity distribution ®(U). Since the projected
velocity distribution is rotationally symmetric we can express this as U®(U’)
(see Appendix 1). If the rods’ length distribution is &.(7) and their rotation

distribution is ¢,,(&) then the projected velocity distribution is given by

a(u) = [ B(R~ DU ~ 15,1)8.(7)8.(3)drdo (2.9)
Care is needed in specifying the domain of integration of (2.4). From (2.2)

we see that only the component of & perpendicular to 7 contributes to the
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i":":‘
velocity. We must require &-F=0. We impose this by substituting a delta
function into (2.4) and then integrating over all &.
Thus we have
NG
UveU) = /6(R = |7p)6(&G - FV6(U = |Tp| )P, (D)dFdSD. (2.5) .
;7
We assume all directions of the rod are equally likely and the rods are :
also equally likely to have any length. So we set ”,
[ ]
')
’
o~
&M =1 (2.6) .-::
-
'J':
We also assume that the rotation is equally likely to be in any direction. Then LSS by
[ ] ’
¢, (&) is a function of |&| = w only. -\‘:'-
b N
p RS
‘N
l.~§
- - - - § =p .
Ue(W) = [6(R 76 PRU - 58NS (21)
N
- - - el
Choose an orthogonal basis i, j, k. Define angles 6, ¢, a, 3. These angles N
.'.‘. >
are illustrated in figure 1. 8 is the angle between the unit vector and the k »
T
NS
axis. ¢ is the angle between the unit vector projected onto the z,y plane and A
N
- ~
the x-axis. Similarly for a and 3. It follows that ::
’
:5.%
7 = sinf cosypi + sind sing] + cosbk :_.:,
(2.8) N
- . - . . - ~ fad
& = sinacosPi + sina sinf3) + cosak »
Py g8 W
2
R
N
. .
‘::::-
}-i_x'
B I R e v
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Define the angle between & and 7 to be r by

(2.11)

'3

COST =

Py Y T 8 Yy
PO

X
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5
\)H'

Then from (2.8) we have

Sl T

R
b a T ]

.

costT = cosl cosa + sinf sina cos(p — ). (2.12)

s o

S S XA

Define the angle p by

-':'\‘:.-';\ !

CELW

cosp = G % 7

(2.13)

From (2.11) we obtain

R A ARAA M

cosp sint = (& x 7- k). (2.14)

Eat
= A

1]
Ry

ottty

From (2.8) we find T

”
-

X
AR ‘\ ]

s
IATNENEN
AR

cosp sint = sin@ sina(y — ) (2.15)

and we calculate -

|5} = wsinT sin p. (2.16) )

We use (2.10), (2.11) and (2.16) to write the delta functions as

S§(R—[7p])8(&-F)6(U —|Bp|) = 6(R—r sind)b(cosT)é(U — &r sinT sinp). (2.17)

We now need to change the variables of integration. We have

. . - - - . . - . - . e ™o Y e " . . ~y - R L L S \ ~' ‘ \ \ -N
N T T e e N e e e e S L e N T e e e N e e e L e e e e e N R A e e T e e
B N T R S R AN R N & ST R R LI Sy O G L LCE S L e
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dodF = dwdr sina sind dadfdfdy. (2.18)

The integrand only depends on ¢ and 3 as ¢ — 3. We can set ¢ = ¢ — 3 and

integrate out 3. Then we have

cosT = cosf cosa + sinf sinacosy
cosp sint = sinf sina siny - (2.19)

dadr = rdwdr sina sinf da dy dd

Now we must change the variables of integration from a, ¥ to r, p:

<

v

9a  Ba ”

e 3r Bp ‘P
i, dady = det drdp. (2.20) X
'0 %y_ 8y :

7] -

From (2.19) we eliminate the terms containing % to obtain

cosa = cost cosf + sina(sin®6 — cos?p)}. (2.21) -

Define functions F(r,p,a,y) andG(r, p,a, ) by s

F(r,p,a,v¥) = cost — cosl cosa — sinf sinacosy .
(2.22) o

G(7,p,a,y) = cosp sint — sinf sina siny :\"-

It is a standard result of Jacobian transformations (it can be obtained by '
using formula (2.20) twice, once changing variables from a,¥ to F.G and

then changing F,G to 7, p) that

\‘a..f-.’\'.\ "v{‘-(. ‘n"‘fﬁa"ﬁf‘f—‘ Al I“\l” ‘-’.‘f AT -‘_.\'_.--_ L .“,‘.‘. ettt . Ly .{‘;f‘; ‘ :
e = - O ) ; DAY VY™
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dady = det

From (2.22) we obtain

= sin’r sinp

8F
Ba
det = sind sina{sinf cosa — cosy cosl sina}.
8G
Ja

Thus we calculate

sin’r sinp

sinf sina{sind cosa — cosy cosh sina}

dady = drdp.

We substitute for cosy from (2.19) and obtain

sin’r sinp

dady = sina{cosa - cosé cost}

rdp

then using (2.21) we find

SinT sinp

dady =

drdp.
sina(sin?@ — cos?p)t ?

sinr sinp sinh

sina sinfdady = drdp.

(3in20 — cos?p)t

.. St Mt e et et
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b We substitute (2.17), (2.18) and (2.29) into (2.7)

Ud(u) = /6(R — rsin®)é(cost)é(u — wrsinr sinp)
(2.30)
sint sinp sinfd

w drdpdf dwdr
“ (sin?8 — cos?p)t ’

Now we do the integration with respect to 7 to obtain

US(U) = / 8(R — rsin8)8(U — wrsinp) g () sinpsinfdpddwdr. (2.31)
' (sin20 — cos?p)?

We integrate with respect to 6 to obtain

U — wrsinp)®,(w)sinp(R/r)dpdw dr

Ue = 2.32
@ W (2 = RE(R? /1 — cosip)} (2:32)
’
We integrate with respect to p and obtain
&(U) = / , R®, (w)dwdr . (2.33)
r(r2 — RO)Y(R2W? + u? - w2ri)h(wirz — y2)t

The domain of integration is restricted to the region of the w — r plane where
the integrand is real (for simplicity we have omitted the bounds of integration

in the previous equations). It is specified by

R 4+ u® > wir? (2.34)

R
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Change the variable of integration from r to X where

Wwirt=ul 4+ X (2.35)
then
Rwd  (w)dwdX
®(u) = / 2.36
(x) 2X3(R2%w? - X)4(u? + X — w?R?)}(u? + X) (2.36)
with domain of integration
X < R*?
e,
°
X220 (2.37) -
uw + X > wR?
Define a new variable Y by
Y?=uW'R* - X (2.38)
then
Rwd (v)dwdY
#) = | o2.) : (2:39)
(WR? - Y2)3(u? — Y2)h(u? + W2 R? - Y?)
with
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Y < wR (2.40)
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Y < u.
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We can further simplify this expression by the substitutions Y = ustné

TCECETTY V TEEY W VWYY

2

oot
L R R T TS

- s

and w = (u/R)Q. This vields

E IRy
ERh

" & Y

1 2 20 o (ut/R)
®(u) = u_z-/o a8 siné dQ(92 - 8in?6)1/2(Q? + cos?8)’

(2.41)

O Pl

It is clear from this expression that ¢(u) will decrease with u if and only

W gt
.

if ®_(w) does not grow faster than w?. Thus for all realistic cases ®(u) will "':t

‘ p be a monotonic decreasing function of u.

S -.‘_- .
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Section 3. Expansion and Contraction.

o \"-'

We now consider the situation in two dimensions when the rod is allowed

:' -
NN

o
LA T Y

s 2

' e

to expand and contract as well as rotate. We can write

« s

F=r

Ny

—

«

—
WY

A Y

and differentiating gives

LS

® e,

F=rr+ron (3.2)
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where 7 is the unit vector perpendicular to 7. We define the expansion coef-

ficient s by
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F=rs (3.3)

W § B T B v - v ¥V ¥V §F FERVYYE¥
-y

PP Ry

YaNS
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and write (3.2) as

it

R

F = rst + réh. (3.4)

XAy

2

Sf'l 5 &

The projected velocity is then given by

xl

-,','5-':':

U =rssin + rwcosd (3.5)

BN A O Tl Y
»,

where 8 is the angle that 7 makes with the normal to the image plane and

6 = w. The projected velocity distribution is given by

®(U) = /6(R — r8in@)6(U — (r s sind + rwcosd))®d,(s)®, (w)dr dw ds df N
b
(3.6) N
]
where, as in Section 1, we have assumed that &(r) = 1 so the rods have no A

preferred lengths. We do the integral of &(U) with respect to @ to obtain

() =j(r2 —RY)TVA(U - sR-w(r® -~ R*)V?)®,(s)®,,(w) dr dwds. (3.7)

We now integrate with respect to r to find 3y

®U) = /((U - 3R + W R*)71/2®,(3)®,,(w)dwds. (3.8)
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Care must be taken to ensure that this integral is evaluated over the correct

LT R
L)

P ,&)S"S‘,

limits, those for which the integrand is well defined. For w > 0 we need s < %

LY

%

and for w < 0 we have s > ,U[ This domain of integration is shown in figure

(2). We can split the integral up into two parts

(U) = &,(U) + &(V) (3.9)

, S
| Ry g

Figure 2 The domain of integration, see fext. o
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where _ . i
s

wmoo =U/R SR
&, (U) = / du/ (U ~ sR)® + R*w?)"/2@, ()8, (w)ds (3.10) oS
w=0 »

=-o00 Ny
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w=0 =00

®,(V) = dw ((U = sR)* + R%W?)™12@,(s)®,(w)ds. (3.11)

w=~—00 s=U/R

LA

We impose the conditions

'v.'. L:’I.’

S

®,(s) = ,(-3) (3.12)

and

5%

BRI PA X W :".. .

&

'
-

¢ (w) = O (-w). (3.13)

Lan we
P X

These ensure that contraction is as likely as expansion and that rotation is

AR Ay
J'\-')

equally likely to be any direction. A

We use (3.12) and (3.13) to rewrite (3.9) as

l‘ ‘
.
o “x

N s

w=00 s=U/R
o(U) = / dw/ ((U - SR)z + Rz(-i-t'z)‘1/”0(")°w(“")da

w=0 =-00

. e e B ,
R A -:‘.

100G 5,

w=oo  re=-U/R :
+/ “w/ (U + sR)* + R%W?)™'20,(s)®.(w)ds.  (3.14a)

=0 =—-00

We now substitute t = Rs/u and w = uf2/R and obtain '-

Q=0 t=—-00

Q=00 t=1 _‘_\
»(U) = %/ d [ ((1- 07 + 017128, (ut/R)&,(uQ/R)dt

Q=00 t=-1
+-,:—2/ df (141 +03)7128,(ut/R)®,(uQ/R)dt. (3.148)
Q=0 t

=-00

Note that if we set ®,(ut/R) = §(ut/R) we recover (1.3).
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\We differentiate (3.14a) to obtain

P w=00 s=U/R
g—; = —/ dw/ (U + sR)? + R*%H) U + sR)®,(3)d(w)ds
w=0 3= —n0

w=00 s=-U/R
-/ dw f ((U—=3sR? + R*WH)™3(U - sR)®,(s)®.(w)ds. (3.15)
w=0

= =00
We can simplify this expression by setting s to s — 2U/R in the second term

on the right hand side. This yields

o o = ! R+U ¢ o
au "~ / s — s ; ‘ AW )as.,
U /u=0 d""/ﬂ_oo (U + sR)? + szg);;/g(s +U)(®,(9) (s+2U/R))®_(w)ds

(3.16)

In the range of integration (u + sR) is always negative. So the integral will
be always negative provided ®,(s) — ®,(s + 2u/R) is negative for s < —u/R.

If we make s positive, using (3.12), this becomes

&,(s—2U/R) - &,(s) > 0. (3.17)
which is true for all monotonically decreasing functions. Then we have ;?; <0
everywhere for any function ®_(w). Hence the projected velocity distribution

will once more be peaked about [/ = 0.

If we relax the conditions (3.17) we are no longer assured of having a

monotonically decreasing projected velocity distribution for all ®_(w). If
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®,(s) is linear in s we obtain a flat distribution ;-;,-f'
his
&(U) = const. (3.18) {4
)
>
9 If ¢,(s) is quadratic in s we find "-‘
N
3
]
N
~
0% ®.(w)U? // 4U o
—=-2{d — dwdss?(s? + w?) ™32 & (w 3.19
oy =2 [ate (£ 4020 w)  (3.19) %
which will only be negative for some distributions &, (w). Yt
)
A} .N
y Thus allowing the rod to expand and contract reduces the strength of the 2
S
[
result of Section 1. But if we make the reasonable assumption that ®,(s) is ”
J
at most linear in s the result will still hold. :.:'_-
RS
o
. LY !
Section 4. Curves from rods. . \
The situation becomes more complex when we consider several rods :‘:
R
; joined together to form a curve. The results above show that for each rod ,::
. IN -
)
individually the projected velocity distribution is peaked at zero. If the rods
are joined, however, these probability distributions are no longer independent.
We now sketch an argument suggesting that this loss of independence does
)
not affect the result. ::'_:'
Suppose we have a set of probability distributions Pi(z;), ¢ = 1,.N j:t‘
which are all peaked at zero. We now define the joint probability distribution '.
o
.
P(f) where £ = (z,,2;,...,zn). If we impose no constraints this distribution ::
N
is given by N
)
X ~
.:_‘:‘.
~
>
)
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N

P(£)d7 = 1, Pi(z;)1L;dz,. (4.1)

Now impose a consistency constraint Z‘ z; = 0. We now have

/P(i‘)da':‘: /II,-P.-(::.-)&(ZJ:.-)ILdJ:.r. (4.2)
The z;’s can no longer vary independently and the delta function imposes the
consistency constraint. We can get integrate out the delta function thereby
reducing the number of independent variable to N — 1. It is convenient to

choose these to be z; — z;4y, for : = 1,..., N — 1. We can now write (4.2) as

/ P(£)d% = / M P(z: = 2op1)Led(zs — 7i01). (4.3)

Wecanset y, =z, — 2,43, i=1,...N -1 and rewrite

P(§) = Py )Pa(y2)... Pna(yN=1) PN (=y1 — y2 — ... — yn-1 ). (1.4)

It is straightforward to see that the maximum value of P(¥) occurs when the

y, are all zero. Thus P is still peaked at zero even with the constraints.

Section 5. An alternative approach.

The results derived in the last few sections support the assumption (Hil-

dreth 1984) that the velocity field along a contour is smooth. This assump*ion
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is used to solve the aperture problem by prescribing the smoothest possible
velocity field consistent with the data.
An alternative approach to the aperture problem was taken by Waxman
and Wohn (1986). They showed that if the object was locally planar and
moving rigidly then, assuming perspective projection, the local velocity field
on the image plane would be locally quadratic in the z,y coordinates. They
then defined regions in which these expansions were valid and checked for
consistency between these regions. In these regions they could do a least
squares best fit to find the coefficients of these quadratic polonomials, and :'_._:
o
hence the velocity field. .
> v
This approach, however, can also be used to justify the smoothest velocity ’ o
’l
4, X -
field assumption. The orthographic projection of the motion of a rigid body $\ .
”
will obey [
~\_
o
v: = A+ By +Cz, (5.1a) ;‘
i
.“.‘
N
P
N
- j{'
s
vy =D+ Ez + Fz, (5.1b) °
.._;\,::
where A, B,C, D, E. F are constants and z is the (unknown) depth coordinate. .
If we also assume the object is planar then 2 obeys e
e
¢

S
o
A

-

_.
s ,_',
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z=pT+qy+s, (5.2)
where p, ¢, are constants. Substituting (5.2) into (5.1) gives linear expres-
sions for v, and vy in terms of z and y. So if we assume local planarity and
local rigidity (in the style of Waxman and Wohn (1986)) the velocity fields
will locally be linear in z and y. The measure of smoothest velocity, I( ),
used by Hildreth is the integral along the curve of the function

v

" ot 0v
N J(F) = — - —, 5.
t}. (%) Js 09s (5.3)
Ny, A . . . . .

J PY where s is the arc length. The velocity fields will be locally linear if and only
= d

>
~
\j if J(¥) is zero. Thus we can think of the smoothest velocity field approach as
N

o
“~

<
:: a local method of assuming local rigidity and local planarity.

?_:'_; Section 6. Conclusion.
\'..

g The arguments in the first four sections of this paper suggest that locally
:;:_ rigid, or semi-rigid objects, will tend to project a smooth velocity field in
the image. Moreover, assuming random motions and limited expansion or
i contraction, this field will tend to be as smooth as possible. In the fifth
~:::' section we noted that rigidity of an object and local smoothness of its surface
will also lead to a smooth image motion.
£
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These arguments support the view that maximixing smoothness is a good

-

: o . R

heuristic to use for motion correspondence and that it is a sensible way to solve -
the aperture problem. i
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Appendix

We first describe the general method for integrating delta functions. ) BN
..
Suppose we have an integral I(a,b) T o~
b {
I(a,b):/ f(z)6(z — z0)dz (A1) ,
} %
where &(z) is the Dirac delta function, f(z) is an arbitrary function, zo an 7
-y
Y
arbitrary point and b > a. The value of the integral is Ej
]
'-.'_:4
7
- I(a,b) = f(zo), if zoe[a,b] (A.2a) o
g
) 3
I(a,b) = 0, otherwise. (A.2b) '_::";j
v
This result can be generalized to integrals of form i
)
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J(a,b) = /ab f(z)b(g(z) — c)dz (A.3)
where g(z) is an arbitrary function and c an arbitrary number. All points z,
with g(z;) = ¢ will contribute to this interval. Suppose there is only one such
point. If there are several we can divide the integral up into regions with only
one such point. Consider one such point £ = 0. The function g(zr) can be

expanded in a Taylor series about this point

g(z) = ¢ + ¢'(0)(z) + O(z?). (4.4)
If we change the coordinate to u where u = ¢'(0)z we can write the

integral as

, g'(0)b 5 o
J(a, )=/,(o,a F(u/g'(0))8(u + O(u?)) -2 ,(0) (4.5)

The value of the integral will depend on the sign of ¢'(0). If it is negative
the bounds of the integral will be reversed and the integral will change sign.

Therefore

1
J(a,b) = f(0)———=, Oc¢fa,b A.6
(a,b) = f( )Ig’(O)I €[a,b] (A.6a)
J(a,b) =0, otherwise. (1.65)
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We now consider the form of the probability distribution function for a
rotational symmetric vector in two-dimensional space. Suppose the function
is ®5(&)dd. If it is rotationally symmetric (and hence depends only on the

modulus w of &) it can be written

$5(D)do = ¢, (w)wdwdy, (A7)

by changing to radial coordinates w, in the w space. The ¢ component can

be integrated out to give a distribution w®, (w)dw.
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