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SACLANTCEN SM-202

Testing finite differencing schemes for
the shallow water equations

G. Peggion

Abstract: The explicit, the semi-implicit, and the fractional step sche-
mes are tested and compared in the solution of the shallow water equations
The explicit finite-difference formulation is the most accurate, but is restric-
ted by a stability condition which is not suitable for long-tetm numerical
simulations. The standard semi-implicit scheme requires the solution of an
elliptic equation which is also time-consuming. The fractional step method
results in the least accurate, but computationally the most efficient solu-
tion.

‘Keywords:  Courant-Friedrichs-Levy stability condition e  explicit
scheme o fractional step method o semi-implicit scheme o shallow
water equation
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1. Introduction

Fhe study of ocean and atmosphere dvpanues classically develops from setting
mathematical frameworks. These may be collections of numbers labelled as obser-
vations or syst=ms of equations, considered as ‘truly representative’ of the dvnamics
Within the tnits of the assmmptions and approximations of the analvtical model
the numerical techuique used for solving the problem may introduce two additio
nal distortions into the representation of the solutions: the error inherent from the
truncated arithmetic and the error created by approximating continucus differential
equations with discrete algebraic expressions (Grotjahn and Q'Brien, 1476) Howe
ver. the accuracy of the solutions 1s not the only requirement to be fulfilled in the
development of ocean and atmosphere models. At the present stage of technology.
computer ethiciency miight he an even maore restrictive candition

I'he shallow water equations are the prototype equations for primitive equation mo
dels of oeean atmosphere dynamics It is well known that nutnencal techuiques ba
sed on explicit-tume differencing schemes are considerably affected by the Courant-
Friedrichs Levy {CFL) stability condition that controls the high-frequeney gravity
wave motion  Although explicit schemes are always more accurate than npliat,
the latter are widely applied becanse they are ahle to use much larger time steps
{O'Brien, 19861 Tn general, fully-unpheit schemes are seldom apphied. and senn
unplicit schemes are often applied m ocean/atmosphere models (Hanulton, 1977}
Such schemnes treat the terms that govern the fast gravity waves impheitly and the
remainder explicitly

The implicit fsenmy implicit schemes nsnally require the solntion of a two dimensional
Poisson or Helmholtz equation A large number of different solver routines exist for
such an elliptic equation However, all these methods are time-consunung and maost
of them are applicable only for particular boundary shapes or boundary condition
specifications. In order to avind this problem, Tanguay and Robert (1986) have
recently proposed an algorithm called the fractional step method, which reduces
the matrix from the Helmholtz equation to a simple toidiagonal system in each
of the two horizontal spatial dimensions Consequently, solutions can be sfhciently
ohtammed by a special form of Gaussian ebmination method (Caraahan et al | 19649)
The practical advantage 1s that no additional computer tume s required in this part
of the calculations (compared to the total computation of large-scale dvnannes
models)  Although the Tanguay-Robert algorithm s based oa a modified version
of the shallow water equations with the inclusion of an extra nonphysical term,
the method looks so promising that the main purpose of this study s to verify the
accuracy of the schemein long: term numerical simulations The scheme 1< therefors
tested and compared with the explicit and the semi-implicit methods
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Section 2 presents the formulation of the different numerical schemes. The schemes
are compared in Sect. 3, and the results discussed in Sect. 4.

————
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2. The scheine formulations

2.1. THE CONTINUOUS AND DISCRETE SHALLOW WATER EQUATIONS

We consider a simplified formulation of the shallow water equations (Pedlosky.
1979). The equations are referred on a f-plane with a cartesian coordinate sy-
stem (z, y) chosen such that in the Northern hemisphere the z-coordinate increases
eastwards and the y-coordinate increases polewards, taking the form

uy  fov = - g, (2.1.1a)
v+ fou = —gny, (2.1.10)
m ot H{ug 4+ vy) = 0. (2.1.1c)

The subscripts {z,y,!) denote partial differentiation; the variables {u,v) are the
components of the eastward and poleward velocities, respectively. The variable
represents the free surface displacement, g is the gravitational acceleration, fy the
Coriolis parameter, and H the total depth of the water column. Without a loss of
generality we assume flat bottom topography. The equations are satisfied in the
domain D : {{r, y)|0 <z < L, 0y L}

The analvtical solution of Eq. (2.1.1) may have the simple form
(w,v,n) — (U1, Nyttt ot ty (2.12)

where N 13 the amplitude of the wave, w the frequency, and x and ¢ the wave-
numbers. It can be easily proved that the coefficients [7 and V' as a function of
amplitude are given by

N N
U ke ity Ve Tt ik (2.1.3a)

w? 2 w? fo’

The wave expressed by (2.1.2) satisfies the dispersion relationship

w = \/féw‘gH(')’, (2.1.3b)
and has a group velocity GV of components

gH & gH ¢t

v - [ — __ . sHl 213
(\/fo’ T 9RO JfT T gnez) (2:1.3¢]

o
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where @ = k% + {2. Only positive frequency values are considered henceforth.

The analytical problem (2.1.1) is numerically approximated on a C-grid. We have
chosen this grid because it is the one most often used in large-scale dynamical
models (Grammeltvedt, 1969). All the terms are centred differences in space, with
a grid network such that the functions u, v, and 1 have the numerical correspondent

u” o o=u((2) + 1)Ar, 2mAy, nAt),

Y
v;‘m =v(2jAr,(2m+ 1}Ay, nAt),
N5 m =0(2jAr,2mAy, nAt), (2.1.4)

where j, m and n are the indices relative to the variables r, y and ¢, respectively.
However, we will suppress the indices when not incremented. With the above
assumptions and notations, the solution (2.1.1) is discretized as follows:

u = U.e'w'*"‘“}, v o= V.e""'”“"’, N = New',
¢, = ¢;‘.m = w,nAt + k2jAr + 2mAy, (2.1.5)

where + indicates values to be computed for different schemes. The schemes are
illustrated in the following sections.

2.2. THE EXPLICIT SCHEME

With the explicit scheme, Eqgs. (2.1.1) are written as follows:

At

u™ = T 2f At - L(r;_,“ -n,)", (2.2.1a)
: Ar
. At

et = S 2f At - qﬂ—-(qmﬁ - )", {2.2.1b)
U Ay

n+t n-1 Uy~ Uyt Tm oVt Ny
= - HAt + . 2.21
1 ] S ay ! (2.2.1c)
where [.. | indicates the average over the four closest points.

This scheme is affected by the CFL stability condition, which requires a time step
At such that

1 1
ac(f *QH(A—;Z' + Ayt ) < 1. (2.2.2)
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Relative to the solutions (2.1.5), the scheme gives the following values:

. gN _ sInKAr sinfAy
Up ., ,(:;* - 1A - >
Ze A Ar Ay
" —‘y‘\' i (Ech[Ay i \IHNAVJ‘ ) . (2.9.3n)
= A? Ay Ar
wE ] arcsin (At\ AT l’:) (2.2.3h)
T At

where

A focosnArcosfAy,

r \/’/szluj”?:'";?\f A

Ar? Ay?
— silw g At .
=5 R 2.2.3¢
E At { <)

The components of the vector group velocity are symmetric, so we will consider
only one of them. namely the eastward ccmponent. Unfortunately, the mathema-
tical representation of the computational group velocities imnight he quite complex,
and although intriguing would add no significant information about the associated
nunierical distortions. Thus it is only the gronp velocity values for non-rotational
flows (viz fy, 0 that are presented henceforth:

qH sin 28 Ar

GVg N VT I
I\(I'Af"') 2Ar

{2.2.34d)

We recogmize a formal sumilarity between Eqs. (2.2.3) and (2.1.3) in the sense there
are the ‘computational wavenummbers’ sin kAz/Azr and sin/Ay/ Ay corresponding
to the ‘true wavenumbers’ x and /4, and the ‘computational Corinlis frequency’ A
corresponding to the ‘true Coriolis parameter’, fo. These computational terms
are independent of the explicit treatment of the Eq. (2.1.1). They are a direct
consequence of the centred-in-space finite difference approximation, and the ('-pgrid
{1 e the 4-point average), respectively. Besides these computational variables, there
are the additional computational frequencies, Zg. and wgi. While the frequency =g
15 the result of the centred-in-space finite difference scheme, the frequency wge is in-
trinsie the expliat fortulation. Thus we take wg to be the effective ‘computational
phase frequency' of the explicit scheme

[t 1s easy to verify that all the computational variables converge and will converge to
the correspondiag analytical values as the increments At. Ar. and Ay tend to zero.

-

o

— e e
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It generally follows that the representation js fairly good for long waves (i.e. those
resolved by several grid points), but poor for shorter waves, particularly those with
wavelengths less than 4Ar, 48y a wavelength 4Ar corresponds to xAr = 72
{Grotjahn and O Brien, 1976).

2.3, THE SEMI-IMPLICIT SCHEME

The semi-implicit treatment of the shallow water equations is written as follows:

dpu” Lagléay™™ aan™y + fole!",
Aot ‘,:yfhyr)”"‘ Aty folul
o Lo H (b v bou” « 6070w a ey, (2.3.1)

where &, and ¢,. &, are the centered finite difference operators in time and space
respectivelv. With the use of incremented index variables, Eq. (2.3.1) are written

as
Wl g%(,h” St = QL (2.3.2a)
e a2 Q2 (23.2h)
2Ar
gl g’ﬁ?‘,,w w, g{:‘;(p," a2 Q3, (2.3.2¢)

where Q1, Q2, and Q3 contain the remaining terms evaluated at time stepnorn-1.
Substitution of {2.3.2a)-(2.3.2b) into {2.3.2¢) leads to the numerical Helmholtz
equation for n"*', when all the variables at time step n are known:

an, g - @y - g b 4 (L - 2a 8 200 - Q, (2.3.2d)
where HAr A
g t: g t-
o b T 2.3
a AL 1Ay (2.3.2¢)

Once the surface elevations are deternmned, the velocity field can be updated from
Eqs. (2.3.2a)-(2.3.2b). The scheme is still affected by the ('FL stability condition

YR

With respect to the analytical solution of (2.1.1), the scheme gives the following
computational values:

" !/"Yf‘:ilf.s(éﬁ( BLLL iAs_i!‘{Av)
si =1 A? s! Ar A!/ .

—=sI

(i
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G N eosie Ay 0 s Ay s kAr
[N L, I‘. (:\r AN A\). (20 3a)
=3, v Ay Ar ’
: t (_3/ AT ) (2% 3h)
-5 arctat . I I 20 30
Y Vorooasye
. u H win e Ar )
GV g _ 2330

Uil - A7)y 2Ar

where Zo; e formallvadentioal 10 2,

A formal romparnison between FEgso 2.3 3% and (2.1 3) indicates that the <emn
implicit scheme atfects the amphtude of the wave antrodneing alse a “computa-
tional amplitnde” Vo, Vovsiwsy Aty Thus, the semi-nnplicit scheme tends 1o
minderestanate both fregquency aad amphoade of the waves

S THE PR TN AL ST S THe D

[nccrder o tetopze the Hobiheltz o2 2 2000 the fractional step imethod suhsty
| 1

trtes the contimnty By o0 Tobwath

[ BT /A N S A X (2.4 1a)

whoere
1y

Artioy?

Mgl AR (2.4 1h)
Treatmg the Foas 02 0 ladeo and 028 Ty comisimplicitly, the p-equation (2.3 2a)

takes the form
Copy L0y (L gHAPFeI 00 gHARyy Q + "t (2.42)

where O, apd £, are the cecond arder centered difference operators on o and y.
respestivelv and g (g HA) DnooSinee the termy gois of fourth order in At
the sehome sheald ot antrebuee any sgnificant crror in the solntion { Tangnay
and Reherto PUsng

The computational values associated to the seheme are

" N oeosfwp A

sk Ar sinfAy
i ] —» y (.:;.' 1A ) .
=\ Ar Ay
v .'L\:::W’u."r}l) ( =, sinfdy A sin NAJ') ‘ '3 4 3a)
=y Af Ay Ar
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! AL ANy 0t
o'y arcta At (2.4 31
FooacM ‘“( Ve arahio Am?;) '
C AN ‘ n2sAr e sin
GV v : A: Y i (./1‘{ sin 2w N2 l »“ i sin AyL\(ﬂyH (‘«mx.lr) ‘
1+ A2  1'7) I 2Ar 1+ AtPa? Ay
(2 1 3c)
where kA ‘A
{Ar siné
o gHA M EET A 2.4 3d)

Ar Ay

It is easy to verifv that the fractional step computational variables converge to
the semi-implicit computational variables as O(At*). Therefore for small At incre-
ments the two schemmes should end up virtually identical, confirming the Tangnayv
and Robert {1986) hypothesis.

The r- and y-svmmetry of the operator £ of (2.4.2) suggests the solution of the
n-equation using an alternating direction iterative algorithm in which the - and
y-operators are inverted at each time step. At earch iteration only the boundary
conditions at two opposite sides are necessary. Let us solve the operator (2.4.2)
with the following algorithim

First, we compnte v, from
Loy (1 5)HAf:r‘§.)L' Q. (2.4.4a)

at the inner 7 mesh points: no boundary conditions are required at this stage except
for the terms that appear in the righhand side of {2.4.2). Now we compute 1];‘:"‘
from

Lyn = (1 - gHA ) v (2.4.4b)

using only the boundary conditions at the northern and southern boundaries. At
the following time step the operator £,, and £, are inverted. Subsequently, the
use of an alternating direction algorithm allows a more accurate application of all
the boundary conditions.
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3. Applications

To verify the accuracy of the schemes fully we now compare numerical results with
exact analytical solutions of problem (2.1.1). Numerical experiments are performed
with the following common features: total depth H = 2000 m, total extensions
L, = 1000 km, and L, = 1000 km, and grid spacing Ar — 174 km, Ay -
17.4 k. Although the formulas presented in the previous sections are formally
symmetric with respect to the wavenutubers & and £, there is a different structure
to the errors because they contain quadratic terins. Nevertheless, the computational
frequencies and group velocities of the schemes are depicted in a one-dimensional
form in Figs. 1 -3. For simplicity we consider irrotational flows (ie. fo - 0} and
choose the wavenumbers such that xAz - (Ay. The schemes are tested for various
values of the non-dimensionalized ratio

-, At
Tyl -
V2Ar

Grotjahn and O'Brien (1976) gave an accurate and complete analysis of the di-
stortions introduced by the explicit and semi-implicit time differencing schemes.
In general, explicit formulations have the tendency to overestimate the oscilla-
tions, whereas the implicit have the tendency to underestimate. Although explicit
schemes are found to be more accurate than the implicit, the accuracy is usually
incommensurate with the higher computational cost. The same findings apply to
the fractional step method. As Fig. 3 confirms, the {ractional step method intro-
duces the same distortions of the semi-ituplicit approximation, but it is slightly
less accurate. However the errors might well he compensated for the increased
computational efficiency.

Finally we compare the solutions obtained by solving pumerically the problem
(2.1.1) with the exact solution

(u.v,m) (VN ) sin(wol + mple + y)),

where the wavenumber is kg - 7.88 x 10 ® cm !, and the frequency is wy -
1.44 x 1073 s '. The amplitude is N ~ 20 cm, the velocities I7 and V" are defined as
in (2.1.3a}. The wavenumber xg corresponds to a wavelength A = 50 in ters of the
grid intervals. To obtain a good resolution of the wave period, the implicit schemes
used a time step At = 217 s, which implies 20 time-iterations.per period, and a
value 7 ~1.25 The explicit scheme employ a time step &t - 50 s, corresponding to
a value 7 ~0.3.
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Because of the stigggered O prrd the nomoyeal wleerthinnes e knew bedpge ot the
surface elevation at all the latorad boong Lo s gk o the ©orpis tomms fon and fur
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dhstortion due to the treatment of the bonndary comditions we toree the sohernes Iy
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leapfrog seheme 1o tine requares knowledee of W the varablbes o twe ireal one
steps Tests have heen made to ensare that the ceven mrtal conditions oot affeer
the evolittion of the solution No substanrial Differencss have been fonnd after the
mitial adjustment, which s of the vrder o [ peood Tnoche follawane cxperiments,
the algorithmes are mstialized withoxact vidies at tweo s onserntnee e steps
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the scompymphot seheme that s the st cecnrate But the differences are mirmimal
with respect 1o the total distortion
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Figure 5 qllustrates the sartace clevation cistribmoon over the whole hagan atter
S owave portods Tt s evident that specification of the bonndary condimons together
with the distortion betwesn computational frequency 1oe the trequencs of theante

rior) and exaet fregueney (e the frequency at the honndanesy afleors the gqualiny
of the solution In general all the numerseal sehenues are sensihle v thas problem
High frequency waves that are present at the bonndanes, mght hee removed by
transfornung the boundary conditions mto a forcingg term for the gy equation This
could he achiteved hy introducing a new function ' qir.y.f). wheee g as an
arbitranly chosen high-frequency function such that o' 0 on 400 and solving the
ifferentsal problem for 4" In this a way the solntion s locally adynsted o the
short waves, and the distortions between Cnm[vmatmn;tl and exact frequencies are

notably rednced
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