
UICFILE CONY

DESIGN OF AN ALGORITHM TO TRANSLATE NESTEI
RELATIONAL ALGEBRA QUERIES TO GENESIS

TRACE MANAGER COMMANDS

Alan Frank Hartman

Captain, USAF

AFIT/GCS/ENG/87D- 13

DTIC
&% LECTE Il'

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

1 D!BT Writ-attersonT Air Force Base, OhioI

AFIT/GCS/ENG/87D-l3

DESIGN OF AN ALGORITHM TO TRANSLATE NESTED
RELATIONAL ALGEBRA QUERIES TO GENESIS

TRACE MANAGER COMMANDS

THESIS

Alan Frank Hartman
Captain, USAF

AFIT/GCS/ENG/87D- 13

DTIC
CELECTE

Approved for public release; distribution unlimited D AR

AFIT/GCS/ENG/87D- 13

DESIGN OF AN ALGORITHM TO TRANSLATE NESTED

RELATIONAL ALGEBRA QUERIES TO GENESIS

TRACE MANAGER COMMANDS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

;Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science (Information Systems)

Alan Frank Hartman, M.S.

Captain, USAF

December, 1987

Approved for public release; distribution unlimited

Preface

The goal of this thesis was to develop an interface between nested relational algebra queries

and the GENESIS Trace Manager, which is part of the GENESIS database management system

being developed at the University of Texas at Austin, Texas.

Although this thesis does not include an implementation of the interface, it does present a

group of algorithms that can be used to implement the interface. The algorithm consists of two

phases, in the first phase the nested relational algebra query is converted into an intermediate data

structure and in the second phase the intermediate data structure is used to generate the GENESIS

Trace Manager commands.

I am deeply indebted to my thesis advisor, Captain Mark Roth, for his invaluable assistance

during the development of this thesis. I also wish to thank the other members of my committee,

Captain Wade Shaw and Dr. Thomas Hartrum, for their assistance. In addition, I wish to thank

Jim Barnett, of the University of Texas at Austin, Texas for his assistance with the GENESIS

Trace Manager.

Alan Frank Hartman

Accession For

NTIS GRA&I
DTIC TAB 0
Unannounced 0
Justif Ication

Distributlon/ __

-- Availability Codes _

Avll and/or
Dtst I Specialii

Table of Contents

Page

Table of Contents

List of Figures. v

1. Introduction

1.1 Current Research in Relational Databases. 1

1.2 Thesis Goal 2

1.3 Thesis Outline 3

11. The Relational Model and Nested Relations 4

2.1 Relational Database Model 4

2.2 Relational Model Design and Normal Forms 6

2.3 Applications of Nested Relations 11

2.3.1 Form Flow Design 12

2.3.2 Statistica Databases 14

2.4 Nested Relational Models. 15

Ill. SQL/NF Translator. 19

3.1 SQL/NF. 19

3.2 Nested Relational Algebra 21

3.3.. ... F..nlto........................2

Page

IV. GENESIS Record Manager 27

4.1 GENESIS DDL 27

4.2 GENESIS Trace Manager 32

4.2.1 Trace Variables 33

4.2.2 Trace Functions 36

V . A lgorithm . 40

5.1 Algorithm Design 40

5.2 Definitions . 42

5.3 Database Description 42

5.4 Structure of a Nested Relational Algebra Query 46

5.5 Intermediate Data Structures 47

5.6 Algorithm .. 55

5.7 Validation .. 62

5.8 Performance Analysis 75

VI. Conclusion 79

6.1 Summary of Results 79

6.2 Further Study 79

A. GENESIS Trace Manger Terminating Conditions S1

Bibliography 85

Vita.. 87

iv

-1nmi np I r*Rw fy

4P List of Figures

Figure Page

1. PERSON Relation.. 5

2. 1NF Relation.. 7

3. Nested Relation.

4. Updated 1NF Relation. 7

5. Incorrect Updated Nested Relation 8

6. Hierarchy of Normal Forms 9

7. STUDENT-COURSE Data Represented with One Relation. 10

8. STUDENT-COURSE Data Represented with Two Relations 10

9. PARENT-CHILD as a Nested Relation 11

10. PARENT-CHILD as a INF Relation 12

11. Institute Form. 13

12. Institute Relation 14

13. Summary Table, Average- House- Prices in Thousands of Dollars 15

14. Nested Course Relation 17

15. Normal Scheme Tree 17

16. Namne-Age-SSN Relation 20

17. Employees Relation in 1NF Form 20

18. Employees Relation in Nested Form 20

19. Course Relation 21

20. Person-Address Relation 22

21. Sample GENESIS Schema 28

22. Field definition table (Fdt) of Sample Schema. 30

23. Trlee Representation of Fdt. 33

24. Representation of a Trace Variable 35

25. Database Schem a 43

V

Usi 11 12 I'l 1 U110 0 0 0

Figure Page

26. Tree Structure Representation of Database. 44

27. Sample Data 45

28. Example of FN Statement 48

29. PJ-SL-CP Structure 49

30. DF Structure. 49

31. EXISTS Structure 50

32. Less Than Structure 50

33. BETWEEN Structure. 51

34. AND Structure 51

35. AVG Structure 52

36. NEST Structure. 52

37. UNNEST Structure. 53

38. FN Structure. 54

39. Query Structure. 54

40. Cross-reference of Operators used in Examples. 64

41. Example 1 Structure 64

42. Example 1 Output. 65

43. Example 2 Structure 65

44. Example 2 Output. 66

45. Example 3 Structure 67

46. Example 3 Output. 67

47. Example 4 Structure 68

48. Example 4 Output. 68

49. Example 5 Structure 69

50. Example 5 Output 70

51. Example 6 Structure 71

52. Exam ple 6 O utput 72

vi

"ILIRILI "

Figure Page

53. Example 7 Structure 73

54. Example 7 Output. 74

55. Example 8 Structure 74

56. Example 8 Output. 74

57. Possible Fatal Error Values of Trace Functions. 81

58. Possible Normal Terminating Values of Trace Functions 82

59. Trace Functions and Possible Normal Terminations. 82

60. Trace Functions and Possible Error Conditions. 83

61. Trace Functions and Possible Error Conditions. 84

vii

AFIT/GCS/ENG/87D- 13

Abstract

This thesis describes an algorithm to convert nested relational algebra queries into GENESIS

Trace Manager commands. Nested relational algebra is an extension to traditional relational algebra

to include multivalued (i.e. nested) attributes. The GENESIS Trace Manager is part of the

GENESIS database management system being developed at the University of Texas at Austin,

Texas. The GENESIS Trace Manager is used to manipulate fields in a record that has been read

into a buffer in memory.

The algorithm consists of two phases. The first phase of the algorithm is the development of

an intermediate data structure to represent the various constructs of the nested relational algebra

query. The second phase of the algorithm is the convetsion of the intermediate data structure into

GENESIS Trace Manager commands. This phase consists of dividing the translation into a number

of sub-tasks and providing an algorithm to perform each of these sub-tasks.
Qa 7

The GENESIS Trace Manager is limited to working with fields in a record located in a buffer

in primary memory. It does not include facilities for reading records from a database into memory,

writing records from memory to a database, or presenting the user with a formated output of the

result of the query. Because the GENESIS Trace Manager does not include these facilities, the

algorithm does not produce GENESIS commands to perform these functions. -"

v.

a1

°vii
vn~o..

*; w'1. a V ~'' ~

DESIGN OF AN ALGORITHM TO TRANSLATE NESTED

RELATIONAL ALGEBRA QUERIES TO GENESIS

TRACE MANAGER COMMANDS

I. Introduction

1.1 Current Research in Relational Databases

Clas, :al relational database models have been very useful for working with inany database

applications. Most current relational database models assume that relations are in first normal form

(INF) where all attributes must be atomic (single-valued). This assumption has made it difficult

to implement databases for applications such as office forms, computer-aided design, and statistical

4 . databases. Current research [17,22] indicates that these databases may be better represented by

relational models that allow an attribute to contain multiple values or another relation. Thpse

models are referred to as nested relational models or non-lNF models.

Developing a database for these types of applications usually involves adding extensions to

an existing database or developing an application specific database. The first approach often leads

to an inefficient implementation and the second approach is often time consuming and expensive. 1

In order to overcome these problems, the GENESIS database management system (DBMS) is 5

currently being developed at the University of Texas at Austin [2].

GENESIS is a reconfigurable DBMS which supports nested relations. The goal of the GENE-

SIS project is to provide an environment which supports the efficient development of databases. A

GENESIS database is built from software modules which are maintained in a software library. The

GENESIS software library facilitates database development by allowing software modules to be

%;

reused to develop new databases and by allowing a database to be easily reconfigured by selecting

different software modules from the library.

1.2 Thesis Goal

One of the key factors in developing a database is designing a user interface to the database.

The user interface includes a query language which allows the user to retrieve information from the

database. For a user to be able to access a GENESIS database containing nested relations, there

must be an interface between GENESIS and a query language which supports nested relations.

One of the most popular query languages is the Structured Query Language (SQL) [4]. Although

the basic SQL language does not support nested relations, the SQL language has been extended to

SQL non-INF (SQL/NF) [25] to include nested relations.

Currently there is no complete interface between SQL/NF and GENESIS. However, parts of

this interface have been developed. Ramakrishnan [24] has developed an SQL/NF translator which

converts SQL/NF expressions into nested relational algebra expressions. Smith [27] has developed

a GENESIS Trace Manager which can be used to access fields within records. Currently there is

no interface between the nested relational algebra which is output by the SQL/NF translator and

the GENESIS Trace Manager.

The original goal of this thesis was to design and implement an algorithm to translate nested

relational algebra queries to GENES S Trace Manager commands. During the development of this

thesis the scope was limited to the design and evaluation of an algorithm, and does not include an

implementation of the algorithm. This change in scope was due in part to time constraints and in

part to the fact that other sections of the GENESIS DBMS were not finished at the time of this

thesis. The sections of the GENSIS DBMS that create, access and maintain the database were not

available for use in this thesis. The implementing and testing of the algorithm would have required

2

the design and implementation of a DBMS and report generator. These tasks were not within the

scope of this thesis.

1.3 Thesis Outlrne

Because the concept of nested relations is central to this thesis, Chapter 2 provides an in-

troduction to nested relations, including descriptions of the classical relational database model,

normal forms of relational models, the advantages of nested relational models, applications of

nested relations, and nested relational models. Chapter 3 describes SQL/NF, nested relational

algebra and the SQL/NF translator which converts SQL/NF queries into nested relational algebra

queries. Chapter 4 describes the GENESIS Trace Manager which includes the GENESIS Data

Definition Language and the GENESIS Trace Manager. Chapter 5 describes the algorithm, design

decisions made during development of the algorithm, validation of the algorithm, and analysis of

the performance of the algorithm. Chapter 6 presents conclusions and recommendations for further

research.

3

'p

II. The Relational Model and Nested Relations

A database model is a way of looking at data at the logical level. A number of database

models have been proposed including the entity-relationship model [5], the network model [28] and

the hierarchical model [29]. The relational model, which was introduced in 1970, is a relatively

new model. Since 1970, the relational model has been widely discussed in the literature and has

developed into the most popular database model. Recently the relational model has been extended

to include nested relations. This chapter provides a description of the relational database model,

relational model design, normal forms, applications of nested relations, and nested relational models.

2.1 Relational Database Model

The relational database model was originally defined in 1970 by Codd [6]. Since 1970, a large

body of work has developed around the relational model. In this section, we will provide informal

definitions of some key terms and describe some of the characteristics of the relational model. The

discussion in this section is based on Codd [9] and Korth and Silberschatz [19]. A more formal

mathematical treatment of the relational model can be found in Maier [20] or Yang [31]. We will

begin our discussion of the relational model by providing the following informal definitions:

" A relation is a set of data represented as a table.

" An attribute corresponds to an object or characteristic in the real world and is represented

by a column in the table.

" A tuple corresponds to a relationship between attributes and is represented by a row in the

table.

In a relational database model, information is represented in the form of one or more tables,

such as the one shown in Figure 1. The name "relation" refers to the fact that each row in the

table represents a relationship between attributes. The table in Figure I is an example of a relation

4

NAME AGE ADDRESS CITY STATE
I John Smith 43 123 Main St. New York New York

Mary Jones 27 456 Oak St. Chicago Illinois
Sam Green 51 789 Elm St. Dallas Texas

Figure 1. PERSON Relation

called PERSON, where each column represents an attribute and each row represents a tuple. In

this relation each person has five attributes: NAME, AGE, ADDRESS, CITY, and STATE. Each

tuple represents the relationship between these five attributes for a given person.

Any data item (such as John Smith's age) in a relation can be referenced by the following set

of data"

1. The relation name (PERSON).

2. One or more key fields that specify the tuple (NAME = "John Smith").

3. Attribute name (AGE).

This type of reference, called associative addressing, gives the relational model the following

desirable features.

" The relational model allows users to deal with the database at the logical level, without being

concerned with the low-level physical implementation of the database.

" The relational model facilitates communication between users and programmers by allowing

them to reference data in the same logical manner.

" The relational model provides a basis for the development of a high level language which is

independent of the underlying database structure.

In addition to the desirable features described above, a good relational model should provide

an efficient representation of data. For example, an efficient model should avoid duplication of

5

data, and should allow data to be easily updated. The efficiency of a relational model depends on

its design. In the next section, we provide an informal description of relational model design.

2.2 Relational Model Design and Normal Forms

One of the goals in designing a relational model is to provide an efficient representation of

data. In this section, we will provide an informal introduction to relational model design theory

based on Maier [20) and Date [11]. Additional sources of information on relational model design

include Date [10] and Ullman (30].

The desire to design efficient relational models has led to the development of normalization

theory. Normalization theory is based on a number of normal forms. A normal form is a set

of criteria designed to prevent a relational model from having certain undesirable properties. A

relation is said to be in a specific normal form if it satisfies the criteria of that normal form. A

number of normal forms have been defined. First normal form (INF), second normal form (2NF),

third normal form (3NF), and Boyce/Codd normal form (BCNF) were defined by Codd [7,81.

Fourth normal form (4NF) and fifth normal form (5NF) were defined by Fagin [12,13].

A relational model is said to be in 1NF if all the attributes in the relation are atomic. By

atomic we mean that an attribute can contain only a single, non-decomposable value. An attribute

that is not atomic is nested. A nested attribute may contain a group of values or another relation.

As an example, consider a relation containing the attributes NAME, and SEX. Figure 2

shows a 1NF relation for this data and Figure 3 shows a nested (or non-1NF) relation for this data.

Figure 3 is not in 1NF because the attribute NAME contains nested values.

One of the reasons that traditional databases have used 1NF relations is that they avoid some

problems that can occur during the update of a database. For example, assume that the data for

Jean's SEX was incorrect and should be changed from male to female. This update can be done

6

Li~

NAME SEX
Sam male
Jean mal
Bob male
Pare female

Jane femalej

Figure 2. 1NF Relation

NAME SEX
Sam male
Jean
Bob
Pa female
Jane

Figure 3. Nested Relation

easily in the 1NF relation in Figure 2 by changing the value for Jean's SEX from male to female,

as shown in Figure 4.

The update to the nested relation in Figure 3 is not as straight forward. If the entry for

Jean's SEX is changed from male to female, as shown in Figure 5 then the SEX data for John and

Bob is incorrect since it indicates that John and Bob are female.

The purpose in presenting the above example was to show an advantage of INF relations with

respect to nested relations. It should not be concluded from this example that 1NF relations are

always easier to update than nested relations. There are other situations in which nested relations

NAME SEX

Sam male
Jean female
Bob male
Pare female

Jane female

Figure 4. Updated 1NF Relation

7

16,1

NAME SEX
Sam female 1
Jean
Bob _
Pam female
Jane ___

Figure 5. Incorrect Updated Nested Relation

are easier to update than INF relations. Examples of these situations will be presented later in

this chapter. S

In normalization theory, each of the normal forms after 1NF adds further requirements.

Figure 6, from Date [11, page 363, shows a graphical representation of this concept. For example,

Figure 6 shows that 5NF requires that a relation also be in INF, 2NF, 3NF, BCNF, and 4NF. All

of the normal forms listed require that relations be in INF. It should be noted that we are referring

here to traditional descriptions of normal forms. We will show later that it is possible to extend

(i normal forms such as 3NF to deal with nested relations.

All the relational models we have shown so far have consisted of a single relation. Dividing

a relational model into more than one relation may produce a more efficient design. A relational

model can be put into 1NF without dividing the model into multiple relations. However, a relational

model may have to be divided into multiple relations to satisfy the criteria of 2NF, 3NF, BCNF,

4NF, or 5NF. Formal definitions for 2NF, 3NF, BCNF, 4NF, and 5NF are provided in Maier [20]

and Yang [31]. An intuitive description of INF, 2NF, 3NF, 4NF, and 5NF can be found in Kent [18].

We will not provide formal definitions here, but will provide an example to show how dividing a

relational model into multiple relations can produce a more efficient design.

As an example, consider a relational model for students attending classes, where the at-

tributes are STUDENT, COURSE, course TEACHER, course LOCATION, and course TIME In

this example, we will assume that each course has only one TEACHER, one LOCATION, and one

8

Universe of relations

1NF relations

2NF relations

3NF relations

BCNF relations

4NF relations

5NF relations

Figure 6. Hierarchy of Normal Forms [11, page 363]

TIME. It is possible to include all of these attributes in a single relation, as shown in Figure 7.

However, this representation of the data is not efficient. One problem with this representation

is that the information on TEACHER, LOCATION, and TIME is duplicated for each student.

Elimination of this duplication would make the model more efficient. Another problem with this

model is that it is difficult to modify. As an example, assume that the LOCATION and TIME for

MATH 100 changed. In order to update the database, LOCATION and TIME must be modified

for each occurrence of MATH 100. If the data on LOCATION and TIME for each COURSE only

occurred once in the database, then updating the database would be more efficient because only

one occurrence of LOCATION and TIME would need to be modified.

The STUDENT-COURSE data can be represented more efficiently by dividing the data into

two relations as shown in Figure 8. The relational model in Figure 8 is more efficient because

it eliminates the redundancy of TEACHER, LOCATION, and TIME that occurs in Figure 7.

9

STUDENT COURSE TEACHER LOCATION TIME
John Smith ' Math 100 Ruuel Room 111 9:00 AM
Mary Green Math 100 RWuel Room ill 9:00 AM
Jim Jones Math 100 Rusel Room II1 9:00 AM

J eon Chem200 Paulin R 22 10:00AM

Bob White Chem 200 Pauling Room 222 10:00 AM
Pam Adams Chem 200 Pauling Room 222 10:00 AM

Figure 7. STUDENT-COURSE Data Represented with One Relation.

STUDENT COURSE
John Smith Math 100
Mary Green Math 100
Jim Jones Math 100

Janice Johnson Chem 200
Bob White Chem 20
Pare Adams Chem 200

COURSE- TEACHER LOCATION TIME
Math 100 J Russel Room 111 9:00 AM
Chem 200 Pauling [Room 222 10:00 AM

Figure 8. STUDENT-COURSE Data Represented with Two Relations.

Also, the relational model in Figure 8 is easier to update because the information on TEACHER,

LOCATION, and TIME only occurs once for each COURSE.

The purpose in presenting the example above was to show the advantage of dividing a relation

into two relations. However, it should be noted that dividing a relation into two relations also has

a disadvantage. The process of retrieving all the information about a student may be less efficient

because this information is divided between two relations.

Normalization theory provides a formal treatment of criteria for subdividing a set of attributes

into multiple relations. The normal forms after 1NF are sets of criteria designed to provide an

efficient mneans of performing this subdivision.

10

PARENT CHILD
John Smith Paul
Mary Smith Elizabeth

Peter
Sam Jones Thomas

Cathy Jones Jane

Figure 9. PARENT-CHILD as a Nested Relation.

In this section we have assumed that all relations were in INF. In the next section we will de-

scribe some advantages of nested relations and give examples of applications where nested relations

can be used.

2.3 Applications of Nested Relations.

Traditional relational models have used 1NF relations because they are conceptually simpler

and because they are adequate for many traditional business applications. Although it may be more

0: difficult to implement nested relations, there are potential advantages to nested relations. Nested

relations can eliminate redundancy and more accurately reflect real world objects and attributes.

Many real world situations deal with nested attributes. For example, a parent may have more

than one child. A nested relational model could represent a PARENT-CHILD relation as shown in

Figure 9. In this representation, PARENT and CHILD are nested attributes. In a 1NF relational

model the information would be represented as shown in Figure 10. The nested relation in Figure 9

is more efficient than the INF relation in Figure 10 because there is no duplicated data. Another

advantage of the nested relation is that it more accurately reflects the relationship between parents

and children.

The current interest in nested relational models is due to the desire to develop an efficient

model which supports nested relations. The current literature includes numerous articles dealing

with application of nested relations to areas such as form flow design [17] and statistical databases

11 .

PARENT CHILD
John Smith Paul
John Smith Elibth
John Smith Peter
Mary Smith Paul
Mary Smith ElizabethMary Smith

Peter

Sam Jones Thomas
Sam Jones Jane

Cathy Jones Thomas
Cathy Jones Jane

Figure 10. PARENT-CHILD as a INF Relation.

[22,23]. The following sections describe some of these applications that can benefit from using

nested relational models.

2.3.1 Form Flow Design. Kappel et al. [17] have shown that a nested relational model is

advantageous in designing form flow systems. Kappel et aI. use the term non-first-normal-form

(NF2) to refer to nested relations. In order to be consistent with our earlier terminology, we will

continue to use the term nested.

A form can be viewed as a relation. If the form contains nested attributes, then it can be

viewed as a nested relation. Figure 11, taken from [17, page 236], shows a sample institute form.

Figure 12, from [17, page 240], shows a nested relation which includes the data from the form in

Figure 11 and additional sample data.

Kappel et a. point out the advantages of nested relations by comparing them to fiat (i.e.

unnested) relations as described by Schmid and Swenson [26]. The nested relation is preferable

to a fiat relation because all the attributes associated with a given object can be represented in a

single relation, and there is less repetition of data.

The nested relational model described above has been used in the development of a prototype

form flow system. The prototype is called Computerunterstutztes Buroinformationsssytem (CBIS)

12

INSTITUTE FORM
INSTITUTENO: 00442

PROFESSORS OF THE INSTITUTE:
PROFESSORNO PROFESSOR-NAME

1111 Tjoa
1112 Wagoner

STUDENTS OF THE INSTITUTE
STUDENTNO STUDENT-NAME COURSENO

7825845 Miller 111000
112345
235645

7935450 Babbage 123123
111000

Figure 11. Institute Form [17, page 236]

13

-i~~~ P

PROFESSOR STUDENT
Institut.No Institute.Name ProteseorNo Prmao.Nmme Student.No Studentame Course

00442 Comp.Science [7I Tjo] 7825845 Miller 111000
1112 Wagner 112345

235645

7935450 Babbage 123123

111000

00443 Mathematics 1122 Gauss 78258 8 Bit JIlI111

144 Cator 111222
111333

7944444 Byte 111333

111555

Figure 12. Institute Relation [17, page 240]

and was implemented at the University of Vienna. CBIS has been shown to be an effective system

for dealing with university administration data.

2.3.2 Statis icul Databa es. Ozsoyoglu and Ozsoyoglu [22 23] have shown that it is beneficial

to apply nested relations to statistical databases (SDBs). SDBs are used to support a variety of

statistical analysis such as sum and average. Sum and average are examples of aggregate functions p

which analyze a group of values to produce a single valued output. One of the essential constructs

of SDBs is the summary table, which is used to maintain and analyze summary data. A sample

summary table from [23] is shown in Figure 13.

Most current SDBs have the ability to generate summary tables, but do not store or ma-

nipulate information s summary tables. Instead, they store information as atomic values and

create summary tables as output to be viewed by the user. It is useful to apply nested relations to

summary tables, because summary tables deal with nested attributes. Ozsoyoglu and Ozsoyoglu

[23] propose applying relations with set-valued attributes (i.e. nested relations) to SDBs to provide

14

V|
Z'

Ashtabula Female 63.2
Male 77.2

Cuyahoga Female 81.5
Male 56.2

Ohio Medina Female 61.8
Male 62.4

Ashtabula 68.9
Cuyahoga 60.4
Medina 62.0
Allegheny Female 79.3 J'

Male 70.2
Pennsylvania Susquehanna Female 66.0

Male 70.0
Allegheny 75.4
Susquehanna 68.1

Figure 13. Summary Table, Average-House-Prices in Thousands of Dollars.

the ability to manipulate information as summary tables. The concepts presented in [23] are being

used to develop a SDB named System for Statistical Databases.

The examples described above for forms flow design and statistical databases have pointed

out some of the advantages of nested relations over INF relations. Because of the advantages of

nested relations, various authors have extended the classical relational model to include nested

relations. Some of these extensions are described in the next section.

2.4 Nested Relationol Models

A number of articles have appeared in the literature which extend the relational model to in-

clude nested relations. Makinouchi [21] showed that traditional normal forms such as 3NF and 4NF 'S

could be extended to include sets of sets. He demonstrated that the mathematical interpretation

of 3NF and 4NF do not necessarily imply 1NF. He introduced extensions to Codd's definition of

functional dependency (FD) and Fagin's definition of multivalued dependency (MVD) so that FD

15

'S_

and MVD can be applied to nested relations. He used these extended definitions of FD and MVD

to define extensions to the traditional definitions of 3NF and 4NF to deal with nested relations.

Jaeschke and Schek [16] provided an extension to the relational model to include power set

type relations. They also extended relational algebra, defined NEST and UNNEST operators, and

described the properties of these operators. The NEST operator is used to convert a 1NF relation

into a nested relation, or to convert a nested relation into a more deeply nested relation. The

UNNEST operator is used to convert a nested relation into a less nested relation. If a nested

relation is nested only one level deep, then the UNNEST operator converts it into a 1NF relation.

Fischer and Thomas [14] extended the concept of NEST and UNNEST as presented by

Jaeschke and Schek [16]. They described the application of the NEST and UNNEST operators,

the interaction of relational operators with NEST and UNNEST, and the relationship of functional

dependencies with NEST and UNNEST.

Roth [25] defined a normal form called partitioned normal form (PNF). For a relation to be in

PNF there must be a series of nest operations than can reverse any series of valid unnest operations.

Since nest and unnest operators are central to nested relations it is desirable for a normal form to

be closed under these operations. Roth provides proofs that PNF relations are closed for all unnest

operations and for a certain class of nest operations. Roth also extends the relational algebra to

include PNF operators for union, intersection, difference, Cartesian product, select, natural join,

and projection.

Ozsoyoglu and Yuan [22] defined a normal form for nested relations called nested normal form

(NNF). For a relation to be in NNF, the relation must be organized as a normal scheme tree. I

a normal scheme tree the vertices are pairwise disjoint sets of attributes and the edges correspond

to MVD9. Ozaoyoglu and Yuan [22, page 113] provide an example of a nested relation (Figure 14)

and its normal scheme tree (Figure 15). A nested field is indicated by the * symbol.

In the scheme tree in Figure 15, the edges represent the following MVDs:

16

'UJWISU nN M KNw IZwPxmx w -wV n 77 K- Fr P7 W .% i.r WVn x",. I . ULI N.Y NY N Y " +

COURSE (TEXT)- (SECTION (DAY)* (GRADER)*)*

c2 Design 81 Mon John
Analysis Wed Mary

Thiur Sue

c2 Data Structr s1 Mon jSally
Database Wedj

Fri

Figure 14. Nested Course Relation [21, page 113]

COURSE

TEXT SECTION

e3 e4

DAY GRADER

Figure 15. Normal Scheme Tree [21, page 113]

17

eel = COURSE -.-. TEXT

* e2 = COURSE - SECTION, DAY, GRADER

* e3 = COURSE, SECTION - DAY

* e4 = COURSE, SECTION --- GRADER

A NNF decomposition of a relation consists of a set of nested relations each of which is a

normal scheme tree. This set of normal scheme trees is referred to as a forest of scheme trees.

This chapter has provided a brief introduction to the relational database model including

relational model design, various normal forms for relations, some of the advantages of nested re-

lations, applications of nested relations, and extensions to the relational model to inchde nested

relations. In the next chapter we will describe an application for translating a nested relational

query from one query language into a different query language.

18

-% rtI.~, % 'V.w.~

III. SQL/NF Translator

The SQL/NF translator is a program which converts SQL/NF queries into nested relational

algebra queries. This chapter describes the SQL/NF translator and is organized as follows. Sec-

tion 3.1 describes the SQL/NF query language, Section 3.2 describes the nested relational algebra

query language and Section 3.3 describes the method by which the SQL/NF translator converts

SQL/NF queries into nested relational algebra queries.

3.1 SQL/NF

The Structured Query Language (SQL) is a relational database language developed for IBM's

System R. SQL is used to obtain (i.e. query) information from a database. SQL was designed for

1NF relations and is inadequate for use with nested relations. The SQL/NF is based on SQL, and

extends SQL to deal with nested relations 125]. An SQL query consists of three basic parts:

1. A SELECT clause which lists attributes to be output.

2. A FROM clause which lists the relations to be searched.

3. A WHERE clause which specifies the selection criteria.

As an example, assume a user wants to find Roy Wilson's age from the relation in Figure 16.

This information could be obtained with the following SQL query:

SELECT Age
FROM Name-Age-SSN
WHERE name = "Wilson, Roy"

The output of this query would be 34.

SQL/NF extends SQL by including nest and unnest operators. The nest operator is used to

convert a 1NF relation into a nested relation or to convert a nested relation into a more deeply

nested relation. The unnest operator is used to convert a nested relation into less nested form. If a

19

Name Age SSN
Douglas Hill 23 123-45-6789
Roy Wilson 34 123-45-6789

Carol Crosby 61 123-45-6789

Figure 16. Name-Age-SSN Relation

emp.name child.name child.dob
Mary Taylor Peter 28/02/79
Bob Harris Jim 11/12/81

Mary Taylor Jerry 21/07/81
Mike Owens Bill 22/09/81
Bob Harris Pam 09/03/83

Mike Owens Mary 19/11/83

Figure 17. Employees Relation in 1NF Form

nested relation is nested only one level deep, then the unnest operator converts it into 1NF form.

As an example, the nest expression:

NEST Employees ON child.name, child.dob as Children

would convert the relation in Figure 17 into the relation in Figure 18, and the unnest expression:

UNNEST Employees on Children

would convert Figure 18 into Figure 17.

emp.name Children
child.name child.birthday

Bob Harris im11/12/81

Pam 09/03/83

Mary Taylor Jerry 21/07/81
Peter 28/02/79

Mike Owens Bill 22/09/81
Mary 19/11/83

Figure 18. Employees Relation in Nested Form

20

v , , - ". • .,, ' . ~ . V" - -" ' ' o "'

Class Title Section
Number Instructor

Chem 200 Organic Chemistry 1 Smith
2 Wilson
3 Peterson

Math 100 Algebra 1 Jones
2 Smith

1 3 Carlson

Figure 19. Course Relation

Another difference between SQL and SQL/NF is that SQL/NF allows SELECT-FROM-

WHERE (SFW) expressions to appear in the SELECT clause and FROM clause. Figure 19 shows

a Course relation in which the Section attribute consists of a nested relation containing Number

and Instructor.

As an example consider the following query which uses an SFW expression in the SELECT
clause.

SELECT Clas, (SELECT Number
FROM Section
WHERE Instructor = "Smith")

FROM Course

This query will output all the classes and section numbers taught by an instructor with the name

Smith.

3.2 Nested Relational Algebra

This section provides a brief discussion of relational algebra and extensions to relational

algebra to include nested relations. For a more detailed description of relational algebra, the reader

may refer to Korth and Silberschats [19], Date [11], or Yang [31].

Relational algebra uses operators to query a database. Relational algebra includes five basic

operators:

1. SL - the select operator.

21

*~~~~- --&-I%~h\ ~

Name Address City State
John Smith 123 Main St. New York New York
Mary Jones 456 Oak St. hc I l
Sam Green Tag Elm St. D52s -Texas-

Cathy Brown 205 Walnut Sr New York
June Wilson 852 State St. Miami Florida
Jim Johnson 301 Cherry St. Chicago Illinois

Figure 20 Person-Address Relation

2. PJ - the project operator.

3 CP - the cartesian-product operator.

4. UN - the union operator.

5. DF - the difference operator

The SL operator is used to select tuples in a relation that meet a specific criteria The PJ operator

is used to select attributes in a relation. The CP operator takes two relations and forms a neA

(relation that includes all combinations of tuples from the two original relations The UN operator

takes two relations and forms a new relation than includes all the tuples that occur in both relations

The DF operator takes two relations and forms a new relation that includes tuples that occur ir

the first relation but not the second relation. These operators can be used to query a relation such

as the Person-Address relation in Figure 20.

As an example of a relational algebra query, assume a user wants to find the names of all

the people who live in Chicago. The user could perform this query by using the select and project

operators. The following relational algebra query will list the names of all the people who live in

Chicago:

P3 Name
SL City = "Chicago"
CP Person-Address

.-%

The output of this query is Mary Jones and Jim Johnson.

22

Early versions of relational algebra were designed for INF relations and were inadequate

for describing nested relations. Jaeschke and Schek [16] extended the relational algebra to include

nested relations. They defined NEST and UNNEST operators and described the properties of these

operators. Fischer and Thomas [14] described the application of NEST and UNNEST operators.

the relationship of NEST and UNNEST with other relational operators, and the relationship of

NEST and UNNEST to functional dependencies.

3.3 SQL/NF Translator

This section provides a description of the SQL/NF translator developed by Ramakrishnan [24].

The SQL/NF translator converts SQL/NF expressions into nested relational algebra expressions.

The nested relational algebra expressions output by the SQL/NF translator are the input to the

algorithm which is developed in Chapter V of this thesis.

The translation of an SQL/NF expression into a nested relational algebra expression occurs

in three steps:

1. Query transformation.

2. Pre-processing.

3. Meaning evaluation.

Since the goal of the this thesis is to develop an algorithm to translate the output of the

SQL/NF translator into GENESIS record manager commands, we are primarily concerned with

the format of the SQL/NF translator output. In this thesis we are not directly concerned with the

details of the early stages of the SQL/NF translator. Therefore, the first two steps of the SQL/NF %

translator will be described only briefly and the third step will be described in more detail.

The query transformation step involves three parts: converting the SQL/NF expression to

an intermediate form, name resolution, and role-join processing. Conversion to an intermediate

-. form involves building intermediate data structures to represent the SQL/NF query. The name

23

resolution step involves finding the location of the intermediate data structure that corresponds to

a given name in the SQL/NF query. The role-join processing step is not relevant to this thesis and

will not be discussed.

The pre-processing step is based on the pre-processing described in Ceri and Gottlob [3]. This

step uses set-theory transformations to convert the output from the query transformation step into

four basic types of queries: simple, complex, exists, or n-ary. In order to describe these four queries

we must introduce the following definitions:

scalar boolean - consists of a boolean expression (AND, OR or NOT) whose operands are scalar

predicates or other scalar booleans.

scalar predicate - consists of two plain expressions connected by a comparison operator (<, <

complex predicate - consists of variable and a query connected by a comparison operator.

exists predicate - consists of the EXISTS operator and a query operand.

In a simple query, the where clause may be a scalar boolean or the where clause may be absent.

In a complex query, the where clause consists of a complex predicate. In an exists query, the where

clause consists of an exists predicate. An n-ary query corresponds to the union, intersection or ,

difference of two or more queries.

The final step in the SQL/NF translator is the meaning evaluation step which is based on the
I

meaning evaluation described by Ceri and Gottlob [3]. The meaning evaluation step converts the

query expressions produced by the pre-processing step into nested relational algebra expressions.

The translation of each type of query is described below. These translations are taken directly from

Ramakrishnan [24].

For a simple query which does not have a where clause the translation is as follows:

Let query Q be the following:

SELECT select

24

FROM from

The translation is:

PJ [Q-select]
FN [Q.select..fns; 0)
CP [Q.frorn]

Where Q.selectins represents the aggregate and nest expressions in Q.select.

For a simple query in which the where clause is a scalar boolean:

Let query Q be the following:

SELECT select
FROM from
WHERE where

The translation is:

PJ [Q.select U other(Q)
FN [Q.selectlfns; other(Q)]
SL [Q.where I
CP [Q.from U extrele(Q.where)]

CIO Where extrels(Q. where) = the external relations in Q.where and other(Q) is the attributes in the

relations in extrels(Q.where). External relations are relations that do Dot occur in Q.fromn but have

attributes in Q.wbere.

For a complex query the translation is as follows:

Let query Q be the following:

SELECT select
FROM from
WHERE left-.term compop sub-.query

The translation is:

PJ (Qeelect U other(Q)]
FN (Qielectlns; other(Q)]%

SL (Q.left.tcrmn Q.compop Q.sub.query.melect]I
CP [(Q.from - connect(Q)) U meaning(Q.sub-query)]

Where meaning(Q.sub..query) is the meaning evaluation of Q.sub..query, connect(Q) is relations in

meaning(Q.sub.query) that are not in Q.sub-.query, and other(Q) is attributes occurring in relations

in connect(Q) but not in Q.from.b

25

For an exists query the translation is as follows:

Let query Q be the following:

SELECT select
FROM from
WHERE EXISTS sub-query

The translation is:

PJ [Q.select U other(Q)]
FN fQ.selectlfns; other(Q) I
CP [(Q.from - connect(Q)) U meaning(Q.sub..query)]

For an n-ary query the translation is as follows:

Let query Q be the following:

Where SETOP is UNION, INTERSECTION, or MINUS and Qj are queries.

The translation is:

where
tr(UNION) =UN

tr(INTERSECTION) =IN
tr(MINUS) = DF

R4=CP (MEANING(Q,) UaIl-extrele-except.of(Qi) 4

Where all..extrels..except..of(Q,) in the external relations of all queries except those in Q,.

This chapter has provided a description of SQL/N F, nested relational algebra, and the

SQL/NF translator. The SQL/NF translator produces the nested relational algebra queries which

are the input to the algorithm described in Chapter V. The purpose of the algorithm is to generate

commands for the GENESIS Record Manager which is described in the next chapter.

26

IV. GENESIS Record Manager

This chapter describes the GENESIS Record Manager. This description is based on Smith

[27] and the GENESIS Record Manger User Manual [1]. The GENESIS Record Manger is composed

of:

1. The GENESIS Data Definition Language (DDL)

2. The GENESIS Trace Manager (TM)

The DDL is used to define the database format, the records in the database, and the fields

within the records. The Trace Manager is used to access and update the fields in the records that

have been read into memory. The record manager does not include facilities to store records in a

database or retrieve records from a database. Section 4.1 of this chapter describes the GENESIS

DDL including the schema and Field definition table (Fdt). Section 4.2 describes the GENESIS

TM including trace variables, trace commands and inverted tree structure.

4.1 GENESIS DDL

The GENESIS DDL is used to describe database formats. These formats are referred to as

schemas and include record and field definitions. The DDL compiler uses the schema to build the

Fdt. The fields in the records are conceptually represented as an inverted tree structure.

A sample schema from Smith [27, page 19] is shown in Figure 21. Comments in the schema

are delineated with /* and */. The DDL includes the following 14 reserved words:

ARRAY DATABASE INT SHORT
A.

BYTE FILES OF TYPES

CHAR FLOAT OPTIONS

DOUBLE INCLUDE RGP

27

/* Sample schema using each syntactic construct */

DATABASE example {

OPTIONS
primary-key: /* designates key field */
security; /* designates protected field */

TYPES
name = ARRAY [20] OF CHAR;
ADDR = {

street name;
city.state ARRAY (30] OF CHAR;
zip INT;

}; security;
addrs = RPG of addr;
btree = I

nodeid INT;
left RPG <1> OF btree;
right RPG <1> OF btree;

unusual = {
threeD.addr ARRAY (2,2,2] OF addrs;
lots.ofints RPG (4) OF RPG OF INT;
binary.tree btree;

};

FILES
employees 4

emp.name name;
emp-num INT primary.key;
emp.adr addr;
prev.addresses addrs;
curr.wage float security;

strange unusual;
1. /* end of database */

Figure 21. Sample GENESIS Schema [28, page 19]

28 '
28

'~ ~ - "-w " " "- t W "W -w -' " "'jE ' i • , b • !mpt " t

A. *d V -- k IJ -_

There are three sections in a GENESIS schema: OPTIONS, TYPES, and FILES. All schemas

are required to have a FILES section, the other two sections are optional.

The OPTIONS section is used to indicate the security of the field or to indicate that a field is

a primary key. The option field can also be used to indicate that a file is to be stored in a specific

structure such as a B+ tree or a heap.

The TYPES section is used to indicate the data types of fields. GENESIS includes six basic

data types, CHAR, BYTE, INT, SHORT, FLOAT, and DOUBLE. In addition to these basic types,

GENESIS also includes ARRAY, RPG (repeating group), and structure types. A repeating group

may be preallocated, bounded, or unbounded. Prealocated and bounded repeating groups have a

maximum number of elements they can contain. The maximum for preallocated repeating groups is

indicated by the structure "< maximum >" and for bounded repeating groups by "(maximum)".

A bounded repeating group only uses the amount of space required for the current number of

o .elements. A preallocated repeating group sets aside enough space for the maximum number of
elements even if there are currently fewer than the maximum number of elements. If the definition

of a repeating group does not specify a maximum size, then it is considered to be an unbounded

repeating group and may contain any number of elements. An example of each type of repeating

group is given below:

RPG<5> of INT is a preallocated RPG with a maximum of 5 elements.

RPG(10) of INT is a bounded RPG with a maximum of 10 elements.

RPG of INT is an unbound RPG with an unlimited number of elements.

The GENESIS DDL compiler uses the schema to build the Fdt which is used at run time to

access fields within the records. Figure 22 from Smith [27, page 26] shows the Fdt for the sample

schema in Figure 21. The following paragraphs describe the structure of the Fdt.

29

*** field definition table **

ind flags type bdl bd2 bd3 off len fstcld numch name

0 0 DB 0 0 0 0 0 1 2 example
1 0 FILE 0 0 0 0 0 14 5 employees
2 0 FILE 0 0 0 0 0 11 3 strange
3 0 CHAR 0 0 0 0 1 0 0 sys()
4 0 ARRI 20 0 0 0 20 3 1 street
5 0 ARRI 30 0 0 20 30 3 1 city.state
6 0 INT 0 0 0 50 4 0 0 zip
7 2 ATRC 0 0 0 2 52 4 3 sys2
8 0 INT 0 0 0 2 4 0 0 nodeid
9 0 RPG 1 1 0 8 0 19 1 left

10 0 RPG 1 1 0 8 0 20 1 right
S1I 0 ARR3 2 2 2 6 0 21 1 threeD.addr
12 0 RPG 0 4 0 -2 0 22 1 lots-of-ints
13 0 STRC 0 0 0 -4 0 8 3 binary.tree
14 0 ARRI 20 0 0 2 20 3 1 emp.name
15 1 INT 0 0 0 22 4 0 0 emp-num
16 2 STRC 0 0 0 26 54 4 3 emp-addr
17 0 RPG 0 -1 0 82 0 7 1 prev.addresses
18 2 FLT 0 0 0 -80 4 0 0 currwage
19 0 STRC 0 0 0 -4 0 8 3 sys3
20 0 STRC 0 0 0 -4 0 8 3 sys4
21 0 RPG 0 -1 0 -2 0 7 1 sys 5

22 0 RPG 0 -1 0 -4 0 23 1 sys6
23 0 INT 0 0 0 -2 4 0 0 sys7

Figure 22. Field definition table (Fdt) of Sample Schema [28, page 26]

.30

30

Index Column. The index column in the Fdt is an index to the row number of the table. The

name of the database always occurs in row 0. The name of the first file always occurs in row 1.

All the children of a field will be grouped together in consecutive rows in the table. However,

the children of a field do not have to occur directly after the parent row in the table. The

children of repeating groups and arrays are listed in the table as a single row which defines

the type.

Flags Column. The flags column indicates which options have been set for the element in a row.

An option is represented as a binary bit in the flags entry.

Type Column. The type column defines the element type. An entry in this column may be one

of the following 13 types:

ARR1 - one dimensional array DBLE - double precession float

ARR2 - two dimensional array FILE - file

ARR3 - three dimensional array FLOAT - floating point

BYTE - byte INT - integer

CHAR - character RPG repeating group

FILE - file STRC - structure

DB - database

Bounds Columns. The bdl, bd2, and bd3 columns specify the bounds of repeating groups and

arrays. For repeating groups, the value in bdl is the lower bound and the value in bd2 is

the upper bound. An unbounded repeating group is indicated by the value -1. For arrays,

bdl specifies the size of the first array dimension, bd2 specifies the size of the second array

dimension, and bd3 specifies the size of the third array dimension. A one dimensional array

will have a zero in bd2 and bd3.

Offset Column. The offset column specifies the offset of the current field from its parent field.

The offset to a specific field in the record is determined at run time by starting at the first field

in the record and calculating offsets to successive children until the specified field is found.

31

... .~~~~~ ~~~ -. , ,

Since the offset to a given field may vary from record to record, the Fdt must contain the

offset from the parent field and not the offset from the beginning of the record. The offsets

in the Fdt are given in terms of byte@. If the offset to the field is not fixed, then the offset

column contains a pointer to the offset, which is indicated by a negative number in the offset

column.

Length Column. The length column specifies the length in bytes of the current field. If a field

is composed of subfields, then the length is the total length of all subfields. If there is meta-

data associated with the field, then the length includes the length of the meta-data. The Fdt

contains a zero in the length column for variable length fields because the length of a variable

length field cannot be determined until run time.

First Child Column. If an element in the Fdt has children, then the entry in the first child

column specifies the location of the first child within the Fdt.

Number of Children Column. If an element in the Fdt has children, then the number of chil-

dren column specifies how many children the element has.

Name Column. The name column gives the name of the element. If an element was not assigned

a name in the schema, then the DDL compiler generates a name for the element.

4.2 GENESIS Trace Manager

The GENESIS Trace Manager provides the ability to access and update fields in GENESIS

records. The Trace Manager includes traces and trace functions. A trace of a given field within

a record represents the path of nodes within the tree that must be traversed to arrive at the

given field. A trace function is a GENESIS program that is used to manipulate a GENESIS trace

structure or a GENESIS record.

The Trace Manager looks at records as inverted tree structures with the individual fields of

the record as the leaves of the tree. This tree structure may be constructed from the Fdt by using

32

%q
4q

- ~.*fl* p~S d *~ '~% ~ % ~ % %~ : * '~ %'% ~ %

example

employees strange

emp.name emp.num emp.addr prev.addresses curr.wage threeD.addr lots-of-ints binary-tree
I I

street city-state zip addru sys6
I I

street city-state zip sys7

0 Figure 23. Tree Representation of Fdt

the data in the first child column and the number of children column. Figure 23 gives the tree

structure representation of the data in Figure 22. The dashed lines in the tree indicate additional

instances of a repeating group. The children of a node are numbered with integers starting at zero.

For example, emp.name is child(O) of employees, and emp..num is child(1) of employees.

4.R.1 Truce Variables. A trace variable is a temporary data structure created by the GEN-

ESIS Trace Manager to reference fields within a record. Figure 24, taken from Smith [27, page 40],

shows an example of a trace variable. The trace contains the path that must be navigated to arrive

at the active field. Each node in the path to the active field is represented by an entry in the trace

stack. The active field is pointed to by the bottom entry in the stack. A stack entry within the

trace consists of three parts:

"I

33

1. The number representing the child in the current path.

2. The index of the field in the Fdt.

3. The offset of the field from the start of the record.

The GENESIS Record Manager accesses or updates a record via a buffer, which is a temporary

storage location in primary memory. A buffer is used to hold a record, or part of a record, that

has been read from secondary storage into primary memory. A trace variable must be associated

with a buffer in order to access the data in the buffer. When a trace is associated with a buffer,

the trace is said to be attached to the buffer. A trace is unattached if it is not associated with a

buffer. When a trace is attached to a buffer containing a record, then the trace can be used to read

or update a field in the record.

A trace which does not point to an existing field is referred to as a virtually positioned trace.

There are two situations that can result in a virtually positioned trace:

- 1. An unattached trace is virtually positioned because it is not associated with a buffer.

2. If an attached trace points to a valid but nonexistent instance of a repeating group, then it

is virtually positioned. As an example, a trace would be virtually positioned if it pointed to

the fourth element of an unbounded repeating group which currently contained less than four

elements.

In addition to the individual stack entries, a trace variable also contains the following infor-

mation:

Start. If the trace is not attached to a buffer, then this field contains a zero. If the trace is attached

to a buffer, then this field contains the address of the start of the buffer.

Startilevel. The start-level field contains the level of the stack that corresponds to the first field I O

in the buffer. For example, if only the third field of a record is read into the buffer, then the

-start-level will point to the stack entry corresponding to the third field of the record. The

34 %

variable not

start length present
start level level level status

stack
0 fdt pointer

num index offset (n)

n-i

n

(stack, growing downward)

Figure 24. Representation of a Trace Variable [28, page 40]

35

,d,~ w- ~- '-------..- *\V-' '

trace variable will always contain the entire path to the field, even if only part of the record

is read into the buffer.

Variableiengthlevel. This field contains the stack level that corresponds to the field in the

trace after the first variable length field. This field will contain zero if there are no variable

length fields in the stack or if the only variable length field is the last entry in the stack. The

offset of all fields prior to the variable-length-level are fixed. The offset to fields after the

variableiength-level will vary from record to record.

Not-presentilevel. This field contains the stack level of the first virtually positioned field in the

trace. The not-present-level will be set to zero if the trace is not virtually positioned.

Status. This field contains the status of the trace. The normal value of this field is OKAY. If

an error condition has occurred, then this field contains the appropriate error status. The

various error values are listed in the figures in Appendix A.

Stack-pointer. This field points to the bottom entry in the stack.

4.2.2 Trace Functions. Trace functions are GENESIS programs used to manipulate GEN-

ESIS traces. There are four types of trace functions: utility functions, navigational functions.

information functions, and input/output (I/O) functions. Utility functions are used to create and

maintain trace variable structures. Navigational functions are used to position a trace to a parent,

child or sibling node within the tree. Information fu.Nctions are used to obtain data about a field,

such as the field length or number of children. I/O functions are used to manipulate fields in a

record.

A trace function may return a normal termination condition or an error termination condition

in the status field of the trace. A list of trace functions, along with there termination conditions is

provided in the figures in Appendix A.

The following paragraphs provide a description of the GENESIS trace functions. In the

following descriptions, "t" represents a trace and "bur represents a buffer.

36

: ip,
-% -S. . - - ' -.- ,,..' , ,' . ?;,'. :.:.:A ,; ..- :.:,,.?????,.

UTILITY FUNCTIONS

Attach.trace (t, buf, level). This function attaches a trace to a buffer. The level value indicates

the level of the trace stack at which the trace is attached to the buffer. The level field may

contain the value ROOT if the entire record is attached, or may contain the value LEAF if

only the active field is attached.

t = copy-trace (t1). This function obtains a new trace (by calling the get-trace function) and

makes the new trace a copy of ti. If the original trace was attached to a buffer, then the new

trace will also be attached to the buffer.

encode.str (str, buf). This function converts a C string into a GENESIS string. The value "str"

is a pointer to the C string. The function places the GENESIS string into the buffer "but".

free.trace(t). This function places a trace in the set of available traces.

gettrace. If there are available traces, this function will return one of the available traces. If '

there are no available traces, this function creates a new trace.

t = init.trace (Fdt.row). This function provides a new trace which is rooted at the element

which is in the row "Fdt.row" of the Fdt.

print-trace (t, howJ:hiuch). This function prints a copy of a trace onto the standard output.

The value of "how.much" determines how much information is printed. If "how-much" is

set to VERBOSE, then the entire trace is printed. If "howrmuch" is set to TERSE, then an

abbreviated output is printed.

refresh.trace (t). This function aligns a trace by calculating the offsets to each field of the current

record in the buffer that the trace is attached to. This function is used in the following

situations:

1. After a trace has been attached to a buffer.

2. When a new record is read into the buffer that the trace is attached to. 0

37

V * ~ ~~ ~%~ S'S~~*~ %~ ~7 \VW ~ ~f% % %* *%t*% J%%~f%%(% 4.V Id

ILA., 3. When a record in a buffer is updated using a trace and there are other traces attached

to the same buffer, then the other traces should be refreshed.

reset-status. This function resets the value in the status field of a trace to OKAY. This function

is used after an error condition has been detected and appropriate action has been taken.

set-tr. This function returns a trace to a field corresponding to a complete field name such as

file.field .subfield .etc.

NAVIGATIONAL FUNCTIONS

down (t, n). This function repositions a trace to the nth child of the active field of the trace.

down2 (t, n). This function is similar to down except that it is used for repeating groups.

fieldieft (t). This function repositions a trace to its left sibling.

left (t). This function is similar to fieldileft except that it is used for repeating groups.

field-right. This function repositions a trace to its right sibling.

right. This function is similar to field-right except that it is used for repeating groups.

restore. This function repositions a trace to the level stored in the "start level" of the trace. This

level represents the level of the trace that is attached to the buffer.

skip(t). This function repositions a trace to its nth sibling.

up (t). This function repositions a trace to its parent field.

up2 (t). This function respositions a trace to its grandparent field.

INFORMATION FUNCTIONS

nu- = count (t). This function returns a count of the number of children of the active field of

a trace.

index = ft (t). This function returns the index into the Fdt of the active field of a trace.

In = len (t). This function returns a count of the number of bytes in the active field of a trace.

38

R %* 'r~*
***' *~*

addr = loc (t). This functions returns the location in main memory of the active field of a trace.

boolean = rwok (t). This function returns the value TRUE if a trace is virtually positioned.

Otherwise, this function returns FALSE. If a trace is virtually positioned, then it cannot read

from or write to a field.

stat = status (t). This function returns the current value of the "status" field of the trace.

I/O FUNCTIONS

ad (t, buf). This function is used to add a new element to a repeating group. The trace points

to the repeating group, and the buffer contains the new element to be added.

dl (t, n). This function is used to delete an element of a repeating group. The nth element of the

repeating group pointed to by the trace is deleted.

filed-copy (t1, t2). This function copies the value of the active field of tl, into the active field of

U t2.

mk (t, buf). This function is used to set up a buffer to create a new record to be added to the

database. The function attaches the trace to the buffer and puts an image of the trace into

the buffer.

rd (t, buf). This function copies the active field of the trace into the buffer. "

rep (t, buf). This function copies the value in the buffer to the active field of the trace.

The characteristics described in this chapter make the GENESIS Record Manager a powerful

tool for manipulating the fields within a record. The key characteristic of the GENESIS Record

Manager that makes it useful for this thesis is that it supports group attributes which are required

for nested relations. The next chapter describes an algorithm for converting a nested relational

algebra query to GENESIS Trace Manager commands.

39

6

V. Algorithm

This chapter describes the design of the algorithm which translates the nested relational alge-

bra expressions produced by the SQL/NF translator into the GENESIS Trace Manager commands

for executing the query. This chapter is divided into eight sections. Section 5.1 describes design

decisions that were made during the development of the algorithm. Section 5.2 defines terms that

will be used in this chapter. Section 5.3 defines a database that will be used in describing the

algorithm. Section 5.4 describes the structure of nested relational algebra queries. Section 5.5 de-

scribes intermediate data structures that are used in processing the query. Section 5.6 presents the

algorithm. Section 5.7 validates that the algorithm correctly translates nested relational algebra

queries and provides examples of nested relational algebra queries, intermediate data structures,

and outputs. Section 5.8 analyzes the performance of the algorithm in terms of the order, or Big 0,

of the parts of the algorithm.

5.1 Algorithm Design

This section describes some of the design decisions made during the development of the

algorithm. One of the design decision was to divide the algorithm into two steps. The first step

consists of building an intermediate data structure to represent the query as a parse tree, and the

second step consists of processing the intermediate data structure to produce the output of the

query. The reason for using two steps was to divide the complex process of translation into two I

simpler processes. A parse tree was used as an intermediate data structure because it provides a

concise graphical representation of the query. The parse tree was designed as an n-awy tree because

the nested relational algebra uses n-ary operators.

One of the problems faced in this thesis was how to evaluate the algorithm in terms of

correctness and performance. Because it is not possible to test all possible nested relational algebra

queries a method had to be devised to test a representative sample of queries. The validation

40 ,

approach used in this thesis consisted of two steps. The first step was analysis of nested relational

algebra queries to determine the types of expressions that can occur within a query The second

step was to show that the algorithm correctly translates sample nested relational algebra queries

containing each of the types of expressions.

The performance of the algorithm was evaluated by analysing the order, also referred to as

Big 0 [15], of the algorithm. The approach used in the performance analysis was to determine the

order for each of the parts of the algorithm. This approach has the advantage that is simplifies the

performance analysis and it points out the parts of the algorithm that will limit performance for

queries in general. In addition, this approach simplifies the analysis of a specific query because it

allows each part of the query to be examined to determine its effect on the overall performance of

the query.

The GENESIS Trace Manager has the limitation that it does not include all of the functions

necessary to process a nested relational algebra query. The GENESIS Trace Manager is limited to

manipulating fields within a record located in a buffer in primary memory. The GENESIS Trace

Manager does not itself contain any facilities for the following:

1. Reading a record from a database and putting it into a buffer.

2. Performing boolean (AND, OR, NOT), predicate(<, >, =, <=, >-, <>), or aggregate (SUM,

AVG, MIN, MAX, COUNT) functions.

3. Formatting the printed output of a query.

Because the GENESIS Trace Manager does not include these facilities, the algorithm does not
generate GENESIS commands to perform these functions. The algorithm uses the phrase "read

a record" to indicate that a record should be read from the database into a buffer in memory.

When the GENSIS DBMS is completed, this part of the algorithm needs to be modified to include

the commands for reading a record. The algorithm uses the GENESIS command "print-trace" to

41

3"-

~ 'N ~F 5)J J M~ (~ C ~ ~ .. ' J . . . ,2.J 'V. J .- A,,F . , ' , w ',ai .l l..k l'h
"

. C.g2h V

output data. This command enables the algorithm to output all the data for a query, but does not

format the data into a report.

5.2 Definitions

The description of the algorithm in this chapter will include references to operations involving

traces, buffers and records. In order to clarify these concepts, the following definitions are provided.

A trace is a data structure used to store the path from the root field in the record to the active

field. A buffer is an area in memory used to store a record that has been read in from secondary

storage. In the following discussion, 't' represents a trace, and 'b' represents a buffer.

When the phrase "define a trace" is used in the algorithm, it indicates the following GENESIS

commands should be performed:

1. t = init-trace 0

2. set-tr(fileid, field.name, t)

3. attach.trace(t, b, level)

The first step gets a new trace, the second step sets the trace to the specified field, and the third

step attaches the trace to a buffer.

When the phrase "read a record" is used in the algorithm, it indicates that a record should be

read into the buffer associated with a specified trace and the GENESIS command "refresh-trace"

should be performed. The refresh.trace command realigns the trace with respect to the new record

that was read into the buffer.

5.3 Database Description

In the description of the algorithm, numerous examples will be used. These examples will

use the database schema shown in Figure 25. GENESIS represents this database schema as an

42

-- P _-L A. -- d- P'S A P L 4-- r' *~ ' p '

DATABASE dept-db {
TYPES

PARTSET = {
part ARRAY [2] OF CHAR;

PERSON = {
name ARRAY [10] OF CHAR;
dob ARRAY [8] OF CHAR;

EMPLOYEE = {
empno ARRAY [2] OF CHAR;
name ARRAY [10] OF CHAR;
sal ARRAY [7] OF CHAR;
mgr ARRAY [2] OF CHAR;
children RPG OF PERSON;
;

FILES
/* department file */
dept {

dno ARRAY [2] OF CHAR;
dname ARRAY [10] OF CHAR;
loc ARRAY [10] OF CHAR;
emp RPG OF EMPLOYEE;
usage RPG OF PARTSET;

_ , / supply file */
supply f

supplier ARRAY [2] OF CHAR;
" supplies RPG OF PARTSET;

} /* end of schema */

Figure 25. Database Schema

inverted tree structure as shown in Figure 26. The sample data that will be used in the examples is

shown in Figure 27. In order to save space in the Supply relation in Figure 27, the parts are listed

separated by commas instead of in the vertical format used in the Department relation.

43

I

dept-db

.

dept supply

A

dno dname loc emp usage supplier suppliesI I"

EMPLOYEE PARTSET PARTSET

C. (nested) (nested) (nested)

empno name sal mgr children part part

PERSON
(nested) 3

,.".V

name dob

Figure 26. Tree Structure Representation of Database N-
.%'

44 '

A.%

Department
DNO DNAME LOC EMP USAGE

;MINU NAMZ 5$AL Mun. LHJLVHtEN PA.I
1NAME DOB

15 Accountzing New York 11 John Smith *15U -T J m Smith 11/12/81 11
M Si 09/03/83 1212 at ~ee 13,00 19 Mry Gre n 28/02/7 13

Pete Green 21/07/81 14
1 JiimJnes $00 1 John Jones 02073T84 15

Pat Jones 04/05/85
20 Finance New York 21 Bob Harris $43,000 29 Jim Hams 06/07/71 21

Pam Harris 08/09/72 22
22m MmWy Wrl $47,=0 29 Pat lill 131T077" 23

Jerry Hill 23/11/75 24
2 im Tylor .W,00 29 Torn Taylor T97777r 25

Eve Taylor 18/06/78
0 Shipping Dallas T3 JoeSw&rtz $2970 39 Jim Swartz 02/01/85 3

_ Pam Swartz 04/03/86 32
32 Patty Swan 526,000 39 Frank Swan 31/01/84 33

Sally Swan 28/02/86 34
33 Te-rry Bell- 12,000- 39 Qindy 9-=I 74705781 35

Sam Bell 22/06/82

40 Reserch Dall a Dave HaaRl 9 49 o 117I07§7 41
Pat Hamil 18/12/68 4242 . ~ *1,0 4 Joe Lawson 24/'02/68 43

Jan Lawson 12/07/70 44
Tim Miller 536,000 49 Bob Miller 27/01/72 45

Pat Miller 14/07/73
50 Personnel- NWew York 51 MikeTFwens 644,000 5W ill Owens 221 9/81 1

Mary Owens 19/11/83 52
- - Bob Jones -13F,00 - - Tim Jones 14/01/76 53

Pam Jones 1707477 54
1 r t , 9 hn T2Fe 05/04/78 55

Molly Tute 09/08/79

SUPPLIER Supp 6L IE
PANT

on 1 ,4, 5, 41,4, 43,44,45

Figure 27. Sample Data

45

".wk "" " %" ." , %" " % %" %" " " %-.,=- "-.'-%" -%"k %, "%...,-b %"

5.4 Structure of a Nested Relational Algebra Query

A nested relational algebra query produced by the SQL/NF translator may consist of the

following basic operators: projection (P3), selection (SL), Cartesian product (CP), union (UN),

intersection (IN), difference (DF) and functional evaluation (FN).

The PJ statement may contain the following structures:

1. A field name, i.e., a dot expression describing the full path name of a field. For example.

"dept.emp.name" would refer to the "employee's name" attribute in the "dept" file.

2. A new user supplied name appearing in the query. This can be recognized by the fact that it

ends with a colon. For example, in the statement:

P3 [department: dept.dname]

the word "department" is a new user supplied name for "dept.dname".

3. A PJ-SL-CP block. For example, the following query contains an inner PJ-SL-CP block:

PJ[dept.name, children: (PJ[dept.emp.children.name]
SL[dept.name ="Accounting"]
CP[dept.emp.children])]

4. One of the following functions, UNION, INTERSECTION, MINUS, AVG, MIN, MAX, SUM,

COUNT, NEST, UNNEST.

The SL statement may contain the following structures:

1. A predicate which may contain the following operators: ANY, ALL, [IS] IN, NOT IN, EX-

ISTS, NOT-EXISTS, CONTAINS, DOES NOT CONTAIN, =, <>, <, >, <=, or >=.

2. A boolean expression consisting of two or more predicates connected with AND, OR, or NOT

3. A PJ-SL-CP block.

The CP statement may contain:

I. File names.

46

%.-r.

2. A query expression.

The UN function, IN function, and DF function operate on two PJ-SL-CP blocks. UN

produces a relation which contains tuples in either of PJ-SL-CP blocks. IN produces a relation

which contains only tuples that occur in both PJ-SL-CP blocks. DF produces a relation which

contains tuples in the first PJ-SL-CP block that are not in the second PJ-SL-CP block.

The FN statement is used in representing nest expressions and aggregate functions which

occur in the PJ statement. There are three forms of FN statements which are defined as follows

[24, pages 90-91]:

FN[F(B); 4]R = CP[R, R r (
B)]

with F(B) being a single attribute and RF(B) being a relation with only one tuple, specified by

applying F(B) to R.

FN[F(B); A]R = UtIR FN[F(B); 0] (SL[A = T.A]R)

where A is a set of attributes, t is a tuple of R, and t.A gives the values taken by A in R.

FN(FI(BI), F2(B2),..., Fn(Bn); AIR = FN(FI(BI); AJ(FN[FI(BI); A](...Fn(B); A]R...))).

The FN operation extends the relation R to include new attributes that correspond to F(B).

An example of an FN statement from [3, page 328] is shown in Figure 28.

5.5 Intermediate Data Structures.

The conversion of a nested relational algebra query into GENESIS commands occurs in two

phase@. The first phase consists of representing the query as an inverted tree structure and the

second phase consists of processing the tree structure to produce the query result. This section

describes the tree structure used to represent the query.

*There are seven basic types of expressions in nested relational algebra that need to be repre-

sented in the tree structure. These seven expressions are:

47

ENO SAL DNO
1 100 1
2 150 2
3 130 1
4 170 2
5 120 2
6 160 1
7 170 3

Relation EMP (ENO, SAL, DNO)

ENO SAL DNO AVG(SAL)
1 100 1 130
2 150 2 135
3 130 1 130
4 170 2 170
5 120 2 135
6 160 1 130
7 170 3 170

Relation Produced as result of FN[AVG(SAL), DNO] EMP

Figure 28. Example of FN Statement

1. PJ-SL-CP block

2. Set operator expressions involving (UN, IN, DF)

3. Predicate expressions involving (=, <,>,<=,>=,<>, CONTAINS, BETWEEN AND, IN,

EXISTS)

4. Boolean expressions involving (AND, OR, NOT)

5. Aggregate expressions involving (MAX, MIN, AVG, SUM, COUNT)

6. NEST and UNNEST expressions

7. FN expressions

The basic tree structure for a PJ-SL-CP block consists of one branch for each of the PJ, SL,

and CP structures. For example, the query

PJ [expression A]
SL[expression B]
CP[expression C]

48

PJ-SL-CP Block

PJ SL CP

expression A expression B expression C

Figure 29. PJ-SL-CP Structure

DF

expression A expression B

Figure 30. DF Structure

would have the structure shown in Figure 29.

If the query contains a set operator (UN, IN, or DF), then the tree contains a node for the

set operator and a branch for each expression. For example, the expression

DF[(expression A), (expression B)]

would have the 6tructure shown in Figure 30.

A predicate expression is represented by a node for the predicate (< < >, <-, >, <>, CON- *.

TAINS, BETWEEN AND, IN, EXISTS) and a branch for each operand. The EXISTS predicate

has only one operand, the BETWEEN AND predicate has three operands, and the other predicates

49

, ': ? Ze ' Z,. .?%' : Y A% ;> A . '. t- , - '.: :) , ' ' ', - .' ,":- "; ' -a,.

.N

EXISTS

expression A

Figure 31. EXISTS Structure

expression A expression B

Figure 32. Less Than Structure

each have two operands. The following examples show the tree structure for predicates with one,

two, and three operands. The predicate

EXISTS(expression A)

would have the structure shown in Figure 31.

The predicate .,,

(expression A) < (expression B)

would have the structure shown in Figure 32.

The predicate

(expression A) BETWEEN (expression B) AND (expression C)

50

BETWEEN

expression A AND

expression B expression C

Figure 33. BETWEEN Structure

AND

expression A expression B

Figure 34. AND Structure

would have the structure shown in Figure 33.

A boolean expression is represented by a node for the boolean operator (AND, OR, NOT)
.11

and a branch for each operand. For example, the expression

(expression A) AND (expression B)

would be represented by the structure shown in Figure 34.

An aggregate expression is represented by a node for the aggregate operator (MAX, MIN,

AVG, SUM, COUNT) and a branch for the operator. For example, the expression

AVG(expression A)

51

AVG

expression A

Figure 35. AVG Structure

new-nameI
NEST

attribute 1 attribute 2

Figure 36. NEST Structure

is represented by the structure shown in Figure 35.

A NEST expression is represented by a node for the NEST operator, a node for the name of

the new nested structure, and a branch for each attribute. For example the expression
I

new-name: NEST(attribute 1, attribute 2)

would be represented by the structure shown in Figure 36. .,

An UNNEST expression is represented by a node for the UNNEST operator, a node for the

name of the UNNEST structure, and a branch for each attribute. For example, the expression

new-name: UNNEST(attribute 1, attribute 2, attribute 3)

52

%.,

MCI.,. . - ~ ~ ~ ,,PSf ~ ~ ~ .~ 5

new-name

UNNEST

attribute 1 attribute 2 attribute 3

Figure 37. UNNEST Structure

would be represented by the structure shown in Figure 37.

An FN expression is represented by a node for the FN operator, a node for the new name

associated with the FN expression and a node for each operator in the expression. For example,

the expression

FN[new name: expression A; expression B]

would be represented by the structure shown in Figure 38.

An actual query would involve a combination of the structures described above. For example N

the query

PJ [dept.name, dept.loc]
SL [(dept.loc = "Chicago") AND (dept.usage CONTAINS

dept.usage.part = 12)]
CP(dept]

would be represented by the structure shown in Figure 39.

P

53

FN

new-name

expressoin A expression B

Figure 38. FN Structure

P3-S L-CP Block

Pi S L C P

dept.naine deptiloc ADdp

CONTAINS

deptiloc Chicago dept.usage

dept .usage.part 12

Figure 39. Query Structure

54

5.6 Algorithm

This section describes the algoritL-. for converting nested rcl..ional algebra queries to GENE-

SIS Trace Manager commands. The algorithm to convert the nested relational algebra to GENESIS

commands consists of two phases. The first phase is building an intermediate data structure to

represent the query and the second phase processes the data structure to produce the output of

the query. The first phase consists of the following steps:

1. For the main PJ-SL-CP block in the query, define a tree structure containing a branch for

each of the PJ, SL, and CP clauses.

2. For each structure in the project statement

2a. If the structure is a simple field name, then add a branch to the PJ node and define a

trace PJ.ti where ' is an index starting at one. For example, if the project statement

is:

PJ dept.name dept.loc

then the following traces would be defined:

PJ.tl = a trace pointing to [dept.name]

PJ.t2 = a trace pointing to [dept.loc]

2b. If the structure is a new user supplied name for a relation, then add a branch to the PJ

node for the new name and add a branch to the new name node for each field in the

new name. Also, define a trace PJti for each field in the relation as in 2a above.

2c. If the structure is a NEST expression, then it will be preceded by a new user name. To

process the NEST expression, add a node for the new name, add a node to the new name

node for the NEST expression, and add a branch to the NEST node for each field in the

NEST expression. Also, define a trace PJ.ti for each field in the NEST expression If

the structure is an UNNEST expression, then add a node for the UNNEST expression

755

and add a branch to the UNNEST node for each field in the UNNEST expression. Also,

define a trace PJ.ti for each field in the UNNEST expression.

2d. If the structure is a set operator expression(UN, IN, DF), then add a node for the set

operator and add a branch to the node for each operand of the set operator. Then

process each operand as in step 1 above.

2e. If the structure is an aggregate expression(AVG, MIN, MAX, SUM, or COUNT), then

define a node for the operator and add a branch to the node for the operand. Then

process each operand as in step 1 above.

2f. If the structure is a PJ-SL-CP block then process it starting in step 1 above.

3. For each structure in the Cartesian product statement:

3a. If the structure is a file name, then add a branch to the CP node and define a trace CP-ti,

where 'i' is an index starting at one. For example, if the Cartesian product statement

is:

CP dept supply

then the following traces would be defined: t

CP.tl = a trace pointing to [dept]

CP.t2 = a trace pointing to [supply]

3b. If the structure is a PJ-SL-CP block, then it is preceded by a user defined name. Add I

a branch to the CP node for the new name, add a node to the new name node for the

PJ-SL-CP block; add PJ, SL, and CP branches to the PJ-SL-CP block node; arid process

the PJ-SL-CP block as in step 1 above.

4. For each structure in the select clause:

56

V'V W,

~ **.S 5
.* - * . . .

4a. If the structure is a predicate expression then add a node for the predicate, add a branch

to the predicate node for each predicate operand, and process each operand as in step I

above.

4b. If the structure is a boolean expression then add a node for the boolean operator, add

a branch to the boolean node for each boolean operand, and process each operand as in

step 1 above.

4c. If the structure is a PJ-SL-CP block then add a node for the block and process the block

as in step 1 above.

5. If the structure is a set operator expression, then add a node for the set operator, add a

branch to the operator node for each operand, and process each operand as in step 1 above.

6. If the structure is an FN expression, then add a node for the FN operator, add a branch to

the FN node for the new name, add a branch to the new name node for each operand, and

, process each operand as in step I above.

This completes the first phase of the algorithm. At this stage in the algorithm a tree structure

has been defined to represent the query and a trace has been assigned to each leaf in the tree that

represents a field name. Each leaf of the PJ branch of the tree is a field name (i.e. dept.dname).

Each leaf of the SL branch is either a field name or a constant (i.e. 12, "Chicago"). Each leaf of

the CP branch is a relation name.

The second phase of the algorithm is processing the tree structure to produce the query result.

This consists of the following steps:

The root node of the tree will be either a set operator or a PJ-SL-CP block. If the root node

of the tree is set operator, then perform algorithm Set.op.process. If the root node is a PJ-SL-CP

block, then perform algorithm PJ-SL-CPprocess.

The Set.op.process consists of the following steps:

57

% % %

-g- A&r. ie

1. Process each branch of the set operator node using PJ-SL-CP.-process.

2. If the set operator is UN, then print tuples that are in the results of either of the PJ-SL-CP

blocks. If the set operator is DF, then print tuples that are in the first PJ-SL-CP block but

not in the second PJ-SL-CP block. If the set operator is IN, then print tuples that are in the -

results of both of the PJ-SL-CP blocks.

The PJ-SL-CP.process consists of the following steps:

I. For each branch of the CP node, create a buffer CPbi, where 'i' is an index starting at one.

2. Read the first record of each CP branch into the corresponding buffer.

3. Process the SL branch by performing SL-process.

4. If the SL node has been assigned a value of false by SL-process, then the records currently %

in the CP buffers do not meet the criteria in the SL branch and none of the traces in the Pj

branch are printed. If the SL node has been assigned a value of true, then perform PJ-process. •S
5. If there are more records in the database, then read the next record into the CP buffer and

return to step 3.

The goal of the SL.process is to determine if the records currently in the CP buffers meet

the criteria in the SL branch of the query. The SL.process will result in a value of true if all the

criteria in the SL-branch are met, and will result in a value of false if any of the criteria are not

met. This process starts at the lower levels of the SL branch and works up to the top of the SL

branch because the truth value of the lower nodes must be determined before the truth value of

the upper nodes can be determined. The SL-process consists of the following steps:

I. Each leaf node of the SL branch is either a field name or a constant. For each leaf node that

in a field name:

la. Attach the node's trace to the CP buffer corresponding to the first part of the field name.

lb. Refresh the trace.

58

S~ ~~~~ % aV , .~5 ~ *

2. Starting at the lowest level of the SL branch, process each predicate and boolean expression

by comparing the operands in the expression using the operator in the predicate or boolean

node. If the expression evaluates to true, then assign a value of true to the predicate or

boolean node. If the expression evaluates to false, then assign a value of false to the node.

3. Repeat the process in step 2 for each successive level of the SL branch until the SL node has

been assigned a value of true or false.

The goal of the PJ.process is to produce as output a relation containing all the fields in the PJ

branches. The PJ branches may consist of field names or new user supplied names. The PJ.process

consists of performing the following steps for each branch of the PJ node:

1. If the branch consists of a field name, then perform the following steps:

la. Attach the field's trace to the corresponding CP buffer

lb. Refresh the trace

Xw- 1, c. Perform Print-trace

2. If the branch consists of a new name, then perform New.name.process.

The New.name.process consists of the following steps:

1. If the new name consists of a field name:

la. Attach the field's trace to the corresponding CP buffer
p

lb. Refresh the trace

Ic. Perform Print-trace

2. If the new name consists of an aggregate function, then perform Aggregate-process.

3. If the new name consists of a PJ-SL-CP block then perform PJ-SL-CP-process.

4. If the new name consists of a set operator, then perform Set-op.process.

59

"- 59

5.I h nwnmcnit of a NEST*--- o-pe-rator.
,

performNEST-process.'

5. If the new name consists of a NEST operator, then perform NEST.process.

8. If the new name cosists of an UNNEST operator, then perform UNNEST~process.

The goal of the Aggregate.process is to evaluate and output the result of an aggregate expres-

sion. An aggregate expression consists of an aggregate function (AVE, MIN, MAX, SUM, COUNT)

and an operand. The operand may be a field name, or a user supplied name. The Aggregate.process

consists of the following steps:

1. If the operand is a field name, then perform the following steps: 0

la. Attach the trace to the corresponding CP buffer

lb. Read the first record into the CP buffer

1c. Refresh the trace

1d. Perform the aggregate function on the field pointed to by the trace.

(" le. If there are more records, then read the next record into the CP buffer and return to

step 1c.

2. If the operand is a user supplied name, then perform New.name.process and go back to step 1.

The goal of NEST.process is to create a new relation corresponding to the NEST expression.

The NEST-process consists of the following steps:

1. Create a list to keep track of which records have been processed.

2. Read the first record into the CP buffers.

3. Save a pointer to the current record and add this record number to the list of records that
.

have been processed.

4. Attach the traces to the CP buffers.

5. Refresh the traces.

- 6. Save the values of the fields pointed to by each trace in the expression.

60

7. If the values that are currently pointed to by all non-NEST traces match the values saved in

step 6, then for each trace in the NEST expression perform Print.trace and add this record

number to the list of records that have been processed.

8. If there are more records, then read the next record into the CP buffers, refresh the traces

and return to step 7.

9. Restore the pointers saved in step 3.

10. If there are more records, then find the next record that is not in the list of processed records,

read the record into the CP buffers and return to step 3.

The goal of UNNEST.process is to create a new relation corresponding to the UNNEST

expression. The UNNEST.process consists of the following steps:

1. Read the first record into the CP buffers.

2. Attach the traces to the CP buffers.

3. Refresh the traces.

4. For each trace in the expression perform Print-trace.

5. If there are more nested values in the NEST expression, then update the traces in the NEST

attributes and for each trace in the expression, perform Print.trace.

6. If there are more records, then read the next record into the CP buffers and return to step 2.

The Print.trace.process uses the count(t) function which returns the number of children of

the field pointed to by trace t. If the count is equal to zero, then there are no children and only the

field itself is printed. If the count is greater than zero, then the field has children (i.e., it is a nested

structure), and each child needs to be printed. In this case, a trace is established for each child

field. If there is more than one level of nesting, then the above procedure is applied recursively

until all children have been printed. The Print.trace.process consists of the following steps:

61

i"S

1. Determine if the trace is an atomic attribute or a nested attribute by using the GENESIS

statement:

children = count(t)

2. If the trace has no children, then it is an atomic attribute and is printed.

3. If the trace has children it is a nested attribute, and a trace needs to be defined for each child.

To define new traces for the nested attribute, perform the following steps for each child:

3a. tnew = copy-trace(t)

3b. down (t.new, n)

Statement 3a returns a new trace variable "t.new" which is attached to the same buffer as t

and points to the same field. In statement 3b, n is the child number, with n=O for the first

child. Statement 3b repositions "t.new" to point to its nth child.

4. Because it is possible for there to be multiple levels of nesting, each of the new traces created

in step 3 must be processed starting in step 1 above.

5.7 Validation

This section validates that the algorithm correctly evaluates nested relational algebra queries.

The approach used for validation is to divide query expressions into groups, and show that the

algorithm works correctly for a sample case from each group. This validation procedure uses the

database schema described in Section 5.3 and the examples provided at the end of this section.

There are seven basic operators that may occur within a nested relational algebra query.

These operators are projection (PJ), selection (SL), Cartesian product (CP), union (UN), in-

tersection (IN), difference (DF), and functional evaluation (FN). In addition to these basic op-

erators, nested relational algebra queries may include expressions involving predicate operators

(=,<,>,<--,>=,<>, CONTAINS, BETWEEN AND, IN, EXISTS), boolean operators (AND,

62

- - - ~ yJIL -

OR, NOT), aggregate operators (MIN, MAX, AVG, SUM, COUNT), the NEST operator, and the

UNNEST operator. These operators can be used in a nested relational algebra query to form seven

types of expressions:

1. PJ-SL-CP block

2. Set operator expressions involving (UN, IN, DF)

3. Predicate expressions involving (-, <,>,<-, >-, <>, CONTAINS, BETWEEN AND, IN,

EXISTS)

4. Boolean expressions involving (AND, OR, NOT)

5. Aggregate expressions involving (MAX, MIN, AVG, SUM, COUNT)

6. NEST and UNNEST expressions

7. FN expressions

In order to validate the algorithm, example nested relational algebra queries will be described

that include samples of each type of expression, and it will be shown that the algorithm produces

the correct intermediate data structure and query result for each example. Table 40 provides a

cross-reference for each example and the types of expressions involved in the example. The table

shows that each of the types of expressions is represented in at least one of the examples. Each

example nested relational algebra query shows the intermediate data structure and query result

produced by the algorithm for the sample database schema in Section 5.3. Examination of the

examples shows that the algorithm generates the correct intermediate data structure and query

result for each example. The examples validate that the algorithm works correctly for queries that

include each of the types of expressions.

Example 1:

PJ [dept.dno, dept.dname, dept.loc
CP [dept]

63

'IN

EXAMPLE 1TT23T 4 5- 67 8
PJ-SL-CP block T X TXI X X X X
Set operator I -r -

Predicate operator __X X -r
Boolean opera-tor - -

Aggregate operator - - Xr*:
NEST operator __ IX
UNNEST operator XI I
FN operator _ T j~ X I

Figure 40. Cross-reference of Operators used in Examples.

PJ-SL-CP Block

Pi CP

dept.dno dept.dnaine deptiloc dept

Figure 41. Example 1 Structure

The intermediate data structure for this query is shown in Figure 41. The output of the query

is shown in Figure 42.

Example 2:

PJ [dept.dnarne, dept.emp.name, dept.emp.sal]
SL [dept.empsal > 840,000 AND dept.dnaine ="Finance"]

CP [dept]I

The intermediate data structure for this query is shown in Figure 43. The output of the query

is shown in Figure 44.

84

16
*0 -

MLKI~ 1111 % I

DNO DNAME LOG
10 Accounting New York
20 Finance New York
30 Shipping Dallas
40 Research Dallas
50 Personnel New York

Figure 42. Example 1 Output

PJ-SL-CP Block

PJ SL CP

dept.dname dept.emp.name dept.emp.sal AND dept

dept.emp.sal $40,000 dept.name Finance

Figure 43. Example 2 Structure

65

DNAME NAME SAL
Finance Bob Harris 843,000

Mary Hill $47,000
Tim Taylor 853,000

Figure 44. Example 2 Output

Example 3:

PJ [dept.dnazne, AVERAGE-SAL: AVG(dept.emp.sal)]
FN [AVERAGE-SAL:AVG(dept.emp.sal;)
CP [dept]

The intermediate data structure for this query is shown in Figure 45. The output of the query

is shown in Figure 46.

Example 4:

PJ [dept.loc, LOC-INFO: NEST(dept.dno, dept.dnarne)]
FN [LOG-INFO: NEST(dept.dno, dept.dnaxne)]
OP [dept]

The intermediate data structure for this query is shown in Figure 47. The output of the query

is shown in Figure 48.

Example 5:

PJ [dept.emp.naxne, CHILD: UNNEST(dept.emp.children.narne
dept.emp.children.dob)]

FN [CHILD: UNNEST(dept .emp.children.name
dept.emp.children.dob)J

SL [dept-loc = "Dallas"]
OP [dept]

The intermediate data structure for this query is shown in Figure 49. The output of the query

is shown in Figure 50.

Example 6:

PJ [dept.dname, PERSONNEL: (PI [dept.emp.empno, dept.emp.nane]
OP [dept.emp]

OP [dept]

6

MW~

- - S - - _-r

PJ-SL-CP Block

dept.dname FN dp

AVERA--,&SAL

AVG

dept.emp.seal

Figure 45. Example 3 Structure

DNAME AVERAGE-SAL
Accounting 32667

Finance 847,667
Shipping 835,333
Research 838,667
Personnel $42,000

Figure 46. Example 3 Output

67

PJ-SL-CP Block

pJ CP

dept.loc FN

dept

LOC-INFO

NEST

dept.dno dept.dnaxne

Figure 47. Example 4 Structure

LOC LOC-INFO
D1NO DNAME

New York 10 Accounting

20 Finance
50 Personnel

Dallas 30 Shipping
1 40 Research

Figure 48. Example 4 Output

68

.~~D - q% ~

PJ-SL-CP Block

P1 SL CP

dept.emp.name FN -dept

dept.loc Dallas

CHILD

UNNEST 1

dept-emp.children .nrne dept.emp. children. dob

Figure 49. Exwnrple 5 Structure

696

*~%fV' ~ ~~ ~ Y~f~\ a~ a . %I5 ~a5 IN

Il a9 a-

EMP-NAME CHILD-NAME DOB
Joe Swartz Jim Swartz 02/01/85
Joe Swartz Pain Swartz 04/03/86
Patty Swan Frank Swan 31/01/84
Patty Swan Sally Swan 28/02/86
Terry Bell Cindy Bell 24/05/81
Terry Bell Sam Bell 22/06/82

Dave Hamnil Bob Hamil 13/10/67
Dave Hamil Pat Hamil 18/12/68
Ed Lawson Joe Lawson 24/02/68
Ed Lawson Jan Lawson 12/07/70
Tim Miller Bob Miller 27/01/72
Tim Miller Pat Miller 14/07/73

Figure 50. Example 5 Output

The intermediate data structure for this query is shown in Figure 51. The output of the query

is shown in Figure 52.

Example 7:

UN [(P [dept.dno, dept.dname, dept.loc]
SL [MIN-SAL: MIN(dept.emp.sal) < $30,000]
FN [MIN-SAL: MIN(dept.emp.sal) < $30,000]
CP [dept])

(P3 [dept.dno, dept.dname, dept.loc]
SL [MAX-SAL: MAX(dept.emp.sal) > $50,000]
FN [MAX-SAL: MAX(dept.emp.sal) > $50,000)
CP [dept])]

The intermediate data structure for this query is shown in Figure 53. The output of the query

is shown in Figure 54.

Example 8:

PJ [supply.supplier, SUPPLY-COUNT: COUNT(supply.supplies.part)]
FN [SUPPLY-COUNT: COUNT(supply.supplies.part)]
CP [supply])

The intermediate data structure for this query is shown in Figure 55. The output of the query

is shown in Figure 56.

70

- - -- - - - -- - ----. ----- --- -- - --- - -- ~at

PJ-SL-CP Block

P3 CP

dept.dname PERSONNEL
dept

PJ-SL-CP Block

Pi CP

dept.emp.empno dept.emp.narne .

dept.emp

Figure 51. Example 6 Structure

71

DNAME EMPNO NAME
Accounting 11 John Smith

12 Pat Green
13 Jim Jones

Finance 21 Bob Harris
22 Mary Hill
23 Tim Taylor

Shipping 31 Joe Swartz
32 Patty Swan
33 Terry Bell

Research 41 Dave Harnil
42 Ed Lawson
43 Tim Miller

Personnel 51 Mike Owens
52 Bob Jones
53 Fred Tate

Figure 52. Example 6 Output

,.N

I

72

I%

'IM

UN

PJ-SL-CP Block PJ-SL-CP Block

P3 SL CP Pi SL CP

0.

dept.dno dept.dname dept.loc < dept dept.dno dept.dname dept.loc > dept

FN 330,000 FN $50,000

MNSAL MA-SAL

MIN MAX

dept emp sal dept.emp.sal

Figure 53. Examrple 7 Structure

73

DNO DNAME LOG_
I20 Finance INew Yor~k

30 1Shipping Dalas

Figure 54. Example 7 Output

PJ-SL-CP Block

P3 CP

supply.supplier FN
supply

SUPPLY-COUNT

CONT

supply ... pplies.part

Figure 55. Example 8 Structure

SUPPLIER ISUPPLY-COUNT
Nationa 15
Titan I 15
Wilson 10

Figure 56. Example 8 Output

74

J % U * %U% .~d'.*~ .W%

5.8 Perfomannce Analysis

This section analyzes the performance of the algorithm in terms of order of the algorithm,

also referred to as Big 0 [15]. The order of the algorithm is a measure of the time required for the

algorithm to perform a query. The order of the algorithm is determined by analyzing each step of

the algorithm to find how many times the step must be performed. The time required to perform

a query will depend on the specific query and the size of the database. This section will analyze

the algorithm by determining the order of each of the parts of the algorithm. The time required to

perform a query will depend on the number of operators, operands, attributes and tuples involved

in the query. In general, the number of tuples will be the major factor in determining performance

because there are usually more tuples than operators, operands, and attributes. Another reason

t it tuples have a larger effect on performance is that the number of operators, operands, and

attributes are constant for a given query and therefore occur as first order terms, whereas the

number of tuples can occur as higher order terms. Thus, the primary factor in the analysis will be

(!. the number of tuples being processed.

The first step in the algorithm is construction of an intermediate data structure. The time

required to construct the intermediate data structure for a query will depend on the number of

nodes in the intermediate data structure. Because there is a node for each operator, each operand,

and each descedant of an operand, the time required to build the intermediate data structure will

depend on the total number of operators, operands and operand descendants in the query. Because

the number of operators, operands and operand descendants is fixed for a given query, building the

intermediate data structure has time 0(1).

The time required to perform the Set-op.process is determined as follows. The time to perform

step 1 of the Set.op.process will depend on the number of PJ-SL-CP blocks in the set operator

expression. Because this number is a constant for a given query, step 1 will have time 0(1). In

order to perform step 2, each of the tuples in each PJ-SL-CP block must be compared to each of the

75

Mn man

tuples in the other PJ-SL-CP blocks. This tuple comparison consists of comparing each attribute

in one tuple to each attribute in the other tuple. Therefore, the time required to perform step 2

will depend on the product of the number of tuples in each PJ-SL-CP block and the number of

attributes in a tuple. Because step 1 is of constant order, the order of the Set.op.process is equal

to the order for step 2 which is the product of the number of tuples in each PJ-SL-CP block and

the number of attributes in a tuple.

The time required to perform the PJ-SL-CP.process is determined as follows. Steps 1 and

2 will occur once for each query and therefore have time 0(1). The time required to perform

step 2 is determined by using the SL-process order of analysis. The time required to perform

step 3 is determined by using the PJ.process order of analysis. Steps 3 thru 5 will occur once for

each combination of tuples in the Cartesian product. Therefore, steps 3 thru 5 will have an order

equal to the product of the number of tuples in each relation times the sum of the SL-process and

PJ.process. Because steps 3 thru 5 determine the performance of the PJ-SL-CP.process, the order

of the PJ-SL-CP.process will be equal to the product of the number of tuples in each relation times

the sum of the SL.process and PJ.process.

The time required to perform the SL.process is determined as follows. The time to perform

step 1 depends on the number of leaf nodes in the SL branch of the intermediate data structure

that represent field names. Because this number is a constant for a given query, step 1 has time

0(1). The time to perform step 2 depends on the number of boolean and predicate operators in

the SL branch of the intermediate data structure. Because this number is a constant for a given

query step 2 has time 0(1). The SL.process has time 0(1), since each of the steps of the process

has time 0(1).

In the PJ.process, the time required to perform step 1 will depend on the number of field

names in the PJ statement. Because the number of field names is a constant, step 1 has time

0(1). The time required to perform step 2 is determined by using the order of analysis for the

76

New-name-process. The overall order of the PJ.procens will be equal to the sum of the orders for

step I ad step 2.

The time to perform the New.name.process will depend on type of structure being given a

name. Step 1 will always be performed and then one of steps 2 thru 7 will be performed depending on

the new name structure. Step 1 will be performed only once and has time 0(1). The performance

for each of steps 2 thru 7 will depend on the order of the process performed in that step. For

example, the order of step 2 will be equal to the order of the Print.trace process and the order of

step 3 will be equal to the order of the Aggregate.process. Because step 1 has time 0(1), the order

of the New.name-process will be equal to the order of the step from 2 thru 7 that is performed.

The time required to perform the Aggregate.process is determined as follows. Step 1 will be

performed once for each tuple in the aggregate relation. Therefore, the order of step 1 is equal to

the number of tuples in the aggregate relation. Step 2 will be performed a maximum of one time

and has a time 0(1). The order of the Aggregate.process will be equal to the order of step 1, which

is the number of tuples in the aggregate relation.

The time required to perform the NEST-process will depend on the number of tuples in the

relation to be nested and the number of non-NEST attributes in a tuple. Step 1 and step 2 are

performed only once and have a time 0(1). Steps 3 thru 9 will be performed once for each possible

pairing of two tuples in the relation. Step 7 requires that each non-NEST attribute be compared

and has an order equal to the number of non-NEST attributes. Therefore, the order of steps 3 thru

9 will be the number of the non-NEST attributes times the square of the number of tuples in the

relation to be nested. The order of the NEST-process will be equal to the order of steps 3 thru 9,

which is the number of the non-NEST attributes times the square of the number of tuples in the

relation to be nested.

The time required to perform the UNNEST-process will depend on the number of tuples

in the relation and the number of nested entries in each nested tuple. Step I will be performed

77

only once and has a time 0(1). Steps 2, 3 and 5 will be performed once for each tuple in the

relation. Step 4 will be performed once for each nested entry in the tuple. Therefore, the order of

the UNNEST.process will be equal to the sum of the number of nested entries in all the tuples in

the relation.

The time required to perform the Print.trace.process will depend on the number of fields that

are printed. Steps 1 thru 4 of the Print-trace.process will print an attribute and all its descendents.

Therefore, the order of the Print.trace.process will be equal to the sum of the attribute and all its

descendents.

The performance analysis in this section has described the order of each part of the algorithm.

This section has not provided an overall order for an entire query because the time required to

perform a given query will depend on the specific query. However, based on the analysis in this

section it is possible to determine which parts of the query will limit performance for queries in

general. The parts of the algorithm that have time 0(1) will have relatively little effect on the overall

performance of the algorithm. The parts of the algorithm that have time 0(1) are the SL-process,

PJprocess and constructing the intermediate data structure. The parts of the algorithm that

will have the largest effect on performance are parts which depend on the product of the number

of tuples in one or more relations. These parts include the Set-op.process, PJ-SL-CP.process,

NEST.process, and in some cases the New.name.process.

78

VI. Conclusion

6.1 Summary of Results

This thesis has presented an algorithm to convert nested relational algebra queries into GEN-

SIS Trace Manager commands. The design of this algorithm is an important step in the development

of a DBMS that supports nested relations. In many situations nested relations provide a more ac-

curate representation of real world data than do 1NF relations. In addition, nested relations can

provide a more efficient representation of data by reducing redundancy of data and simplifying the

update of data.

The algorithm was validated by demonstrating that it correctly translates nested relational

algebra queries into GENESIS Trace Manager commands. The first step in the validation was to

divide nested relational algebra queries into different types of expressions. The next step was to

provide example queries that included each type of expression. The final step in the validation was

to show that the algorithm correctly translated each of the example queries into GENESIS Trace

Manager commands.

The performance of the algorithm was evaluated by performing an order of analysis. The

performance analysis included an analysis of each of the processes in the algorithm. The results of

the analysis showed that the processes in the algorithm having the largest effect on performance are

the Set.op.process, PJ-SL-CPprocess, NEST-process, and in some cases the New.name.process.

6.2 Further Sldy

There are two primary areas that require further research. The first is to implement the algo-

rithm and the second is to extend the algorithm. The algorithm needs to be extended because the

GENESIS Trace Manager is limited to manipulating fields within records that have been read into

buffers in primary memory. The GENESIS Trace Manager does not include facilities for accessing

- records in a database or producing formated output for queries. Because the GENESIS Trace

Manager does not include these facilities, the algorithm does not produce GENESIS cornds to

perform these functions. The algorithm needs to be extended to include facilities for:

1. Interfacing to lower level database functions so that records in a database can be accessed.

2. Generating formated output so the results of a nested relational algebra query can be pre-

sented to the user.

I

80

CI Ij

Appendix A. GENESIS Trace Manger Terminating Conditions

This appendix describes the normal termination conditions and error termination conditions

for the GENESIS trace functions. The data in this appendix is from the GENESIS Record Manager

User Manual [1, pages 22-24].

VALUE [EXPLANATION]

BADLEVEL attempt to attach trace variable at a level not
higher than the present level of attachment

BOUNDS.VIOLATION cannot go to the requested field or repeating group element,

it is outside of the logical bounds

EMPTY-FIELD cannot delete an element, repeating field is empty

LEAF-NODE cannot go down, this is a leaf node

MISMATCH cannot make a replacement, the source and target
fields do not match

NONRPG cannot add or delete an element, this is not a
repeating group

ROOT.NODE cannot go up, right, or left, this is the root node

RWJLLEGAL cannot do an I/O operation because the
trace is currently virtually positioned

UNKNOWN cannot give requested information because the
trace is currently unattached

Figure 57. Possible Fatal Error Values of Trace Functions [1, page 22]

81

III . - * U

VALUE EXPLANATION

ABSENT-ELEMENT cannot go to requested repeating group element, it
is not present

NO.MORE.ROOM cannot add an element, repeating field is full

OKAY no error

Figure 58. Possible Normal Terminating Values of Trace Functions [1, page 22]

I

NORMAL TERMINATING CONDITION EXPLANATION

I
OKAY All functions

ABSENT-ELEMENT downo
down20
skipo b
lefto
right()

NO.MORE.ROOM ado

Figure 59. Trace Functions and Possible Normal Terminations [1, page 24]

82

FUNCTION LIST OF FATAL ERROR CONDITIONS

Utility Functions
attach.trace0 BADLEVEL
copy.trace 0
decode.str 0
encode.str 0

free.buf()
free-trace()
get-buf0

get-trace()
init.trace0

print.trace0
refresh-trace 0
reset.status()

set.tr()

Navigation Functions

downo LEAF.NODE BOUNDS-VIOLATION
down2() LEAF.NODE BOUNDS-VIOLATION NONRPG

field-left 0 ROOT-NODE BOUNDS.VIOLATION
field.right 0 ROOT-NODE BOUNDS-VIOLATION

left() ROOT-NODE BOUNDS-VIOLATION NONRPG
restore()
righto ROOT-NODE BOUNDS-VIOLATION NON.RPG
skip() ROOT-NODE BOUNDS-VIOLATION
uP() ROOT-NODE

up2() ROOT-NODE

Information Functions

count() UNKNOWN
fto

len 0 UNKNOWN
loc() UNKNOWN

rwok0 .
status()

Figure 60. Trace Functions and Possible Error Conditions [1, page 23]

83

FUNCTION LIST OF FATAL ERROR CONDITIONS

I/O Functions

ado RWJLLEGAL NONRPG
dl() RW.ILLEGAL NONRPG EMPTY-FIELD

fieLd.copy() RWJLLEGAL MISMATCH
mk()
rd0
repo RW.ILLEGAL MISMATCH

Figure 61. Trace Functions and Possible Error Conditions [I, page 24]

84

Bibliography

1. GENESIS Record Manager User Manual. Department of Computer Science, University of
Texas at Austin.

2. D. S. Batory, J. Barnett, J. Garza, K. Smith, K. Tsikuda, B. Twichell, and T. Wise. GENE-
SIS: A Reconfigurable Database Management System. Technical Report, Department of Com-
puter Science, University of Texas at Austin, March 1986. TR-86-07.

3. S. Ceri and G. Gottlob. Translating SQL into Relational Algebra Optimization, Semantics, and
Equivalence of SQL Queries. In IEEE Transactions on Software Engineering, pages 324-345,
April 1985.

4. D. D. Chamberlin, A. M. Gilbert, and R. A. Yost,. A History of System R and SQL/Data Sys-
tem. In Proceedings of the 7th International Conference on Very Large Data Bases, pages 560-
575, September 1981.

5. P. P. Chen. The Entity-Relationship Model-Toward a Unified View of Data. In ACM Trans-
actions on Database Systems, pages 9-36, March 1976.

6. E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Communications of
the ACM, 13(6):377-387, June 1970.

7. E. F. Codd. Further Normalization of the Data Base Relational Model. In Data Base Sys-
tems:Courant Computer Science Symposia Series, Vol 6, 1972.

8. E. F. Codd. Recent Investigations in Relational Data Base Systems. Proceedings of the IFIP
Congress, 1017-1021, 1974.

9. E. F. Codd. Relational Database: A Practical Foundation for Produciivity. Communications
of the ACM, 25(2):109-117, February 1982.

10. C. J. Date. An Introduction to Database Systems. Volume II, Addison-Wesley, 1983.

11. C. J. Date. An Introduction to Database Systems. Volume I, Addison-Wesley, 1986.
12. R. Fagin. Multivalued Dependencies and a New Normal Form for Relational Databases. ACM

Transactions on Database Systems, 2(3):262-278, September 1977.

13. R. Fagin. Normal Forms and Relational Database Operations. ACM SIGMOD International
Conference on Management of Data, 153-160, 1979.

14. Patrick C. Fisher and Stan J. Thomas. Operators for Non-First-Normal-Form Relations. I
Proceedings of the Computer Software and Applications Conference, pages 464-475, Chicago,
IL, November 1983.

15. Ellis Horowitz and Sartaj Sahni. Fundamentals of Data Structures in Pascal. Computer
Science Press, 1984. %

16. G. Jaeschke and H. Schek. Remarks on the Algebra of Nonfirst Normal Form Relations.
Proceedings of the ACM Symposium on Principles of Data Systems, Los Angeles, 124-138,
1982.

17. G. Kappel, A. Tjoa, and R. Wagner. Form Flow Systems Based on NF2-Relations.
In Datembank-systems fur Buro, Technik and Wissenschaff, pages 234-252, Informatik-
Fachberichte Nr. 94, Springer-Verlag, Berlin, 1985.

18. W. Kent. A Simple Guide to Five Normal Forms in Relational Database Theory. Commun.-
cations of the ACM, 26(2):120-125, February 1983.

19. Henry F. Korth and Abraham Silberschatz. Database System Concepts. McGraw-Hill New
York, New York, 1986.

20. David Maier. The Theory of Relational Databases. Computer Science Press, R. tN le, Mary-
land, 1983.

85

IV ~-v Ira'

21. A. Makinouchi. A Consideration on Normal Form of Not-necessarily-normalized Relations in
the Relational Data Model. In Proceedings of the Conference on Very Large Database Systems,
pages 447-453, Springer-Verlag, Berlin, 1977.

22 Z. Ozsoyoglu and Li-Yuan Yuan. A New Normal Form for Nested Relations. ACM Transac-
lions on Database Systems, 12(1):251-260, 1987.

23. Z. Meral Ozsoyoglu and Gultekin Ozsoyoglu. A Query Language for Statistical Databases. In
W. Kim, D. Reiner, and D. Batory, editors, Query Processing in Database Systems, pages 171-
187, Springer-Verlag, Berlin, 1985.

24. Srinivasan Ramakrishnan. Design and Implementation of a Translator for SQL/NF with Rolf
Joins. Master's thesis, University of Texas at Austin, December 1986.

25. Mark Roth. Theory of Non-First Normal Form Relational Databases. PhD thesis, The Uni- ,
versity of Texas at Austin, Austin, TX, 1986.

26. H. A. Schmid and J. R. Swenson. On the Semantics of the Relational Model. Proceedings of
the ACM SIGMOD, 1975.

27. Kenneth Paul Smith. Design and Implementation of the GENESIS Record Manager. Master's
thesis, University of Texas at Austin, May 1985.

28. R. W. Taylor and R. L. Frank. CODASYL Data-base Management Systems. In A CM Corn-
puting Surveys, pages 67-103, March 1976.

29. D. C. Tsichritzis and F. H. Lochovosky. Hierarchical Data-base Management. In ACM Corn-
puting Surveys, pages 105-124, March 1976.

30. Jeffery D. Ullman. Principles of Database Systems. Computer Science Press, Rockville Mary-
land, 1982.

31. C. C. Yang. Relational Databases. Prentice-Hall, Englewood Cliffs, New Jersey, 1982.

I

Vita

Captain Alan F. Hartman was He graduated

from Danville High School in Danville, Illinois in 1967 . He graduated from the University of

Illinois at Urbana, Illinois in June, 1971 with a Bachelor of Science degree in Psychology. In 1971, he

enlisted in the U.S. Army and served as a medical laboratory technician until 1974 when he received

an honorable discharge from the Army. He studied undergraduate chemistry at the University of

Illinois at Chicago, Illinois from 1974 to 1976 and graduate chemistry at the University of Illinois

at Urbana, Illinois from 1977 to 1978 where he received a Master of Science degree in Chemistry.

He entered Officer Training School in 1979 and received his commission in the USAF in July, 1979.

After completing the Communication Systems Officer course in 1980, he served on a software design

team at the Communications Computer Programming Center at Tinker AFB, Oklahoma. While

working at Tinker AFB, he attended night school and received a Bachelor of Science degree in

Computer Science in May, 1983. He served as a staff officer at HQ AFCC from August, 1984 thru

May, 1986 at which time he entered the Air Force Institute of Technology.

87

REPORT DOCUMENTATION PAGE FM o. Approve

I&. REPORT SECURITY CLASSIFICATION Ilb. RESTRICTIVtfdl
UNCLASIFIE

-a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRBTO /AA 1ILITY OF REPORT

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/ENG/87D.13______ ________ __________

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(if applicable)

School Of Engineering AFIT/ENG __________________
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

Si. NAME OF FUNDING/ SPONSORING 8 b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

BSc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM IPROJECT TASK][WORK UNIT
ELEMENT NO. INO. NO IACCESSION NO.

11. TITLE (include Security Classification)

See Box 19
12. PERSONAL AUTHOR(S)

:Alan F. Hartman, M.S., Capt, USAF
w3a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 1S. PAGE COUNT

MS Thesis FROM_____ TO_ _ 1987 Dec-me 9
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 1S. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

12 05 Data Bases, Algcrithn
05 02

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Title: DESIGN OF AN ALGORITHM TO TRANSLATE NESTED RELATIONAL
ALGEBRA QUERIES TO GENESIS TRACE MANAGER COMMANDS

Thesis Chairman: Mark A. Roth, Captain, USAF
Assistant Professor Of Computer Systems

WOlA AVER JI OU-11

D or Ro earch and Pzeleseenl 06vel"N"i

Alf Fsiu. In: ttute ot ?echavlety 4A14

70. DISTRIBUTION / AVAILABILITY OF ABSTRACT 121. ABSTRACT SECURITY CLASSIFICATION
CUNCLASSIFIED/UNLIMITED 0 SAME AS RPT C DTIC USERS I TMT.A ~qT1'T~'r

226 NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Coe 2.OFFICE SYMBOL
Mark A. Roth, Captain, USAF (513) 255-3576 -7 F:

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

This thesis describes an algorithm to convert nested relational algebra queries into GENESIS

Trace Manager commands. Nested relational algebra is an extension to traditional relational algebra

to include multivalued (i.e. nested) attributes. The GENESIS Trace Manager is part of the

GENESIS database management system being developed at the University of Texas at Austin,

Texas. The GENESIS Trace Manager is used to manipulate fields in a record that has been read

into a buffer in memory.

The algorithm consists of two phases. The first phase of the algorithm is the development of

an intermediate data structure to represent the various constructs of the nested relational algebra

query. The second phase of the algorithm is the conversion of the intermediate data structure into

GENESIS Trace Manager commands. This phase consists of dividing the translation into a number

of sub-tasks and providing an algorithm to perform each of these sub-tasks.

The GENESIS Trace Manager is limited to working with fields in a record located in a buffer

in primary memory. It does not include facilities for reading records from a database into memory,

writing records from memory to a database, or presenting the user with 1 formated output of the

result of the query. Because the GENESIS Trace Manager does not include these facilities, the

algorithm does not produce GENESIS commands to perform these functions.

V

