" DESIGN OF AN ALGORITHEM TO TRANSLATE NESTE
RELATIONAL ALGEBRA QUERIES TO GENESIS
TRACE MANAGER COMMANDS

THESIS

Alan Frank Hartman
Captain, USAF

AFIT/GCS/ENG/87D-13

- DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF VTECHNOLOGY

Wrighi-Patterson Air Force Base, Ohio
DISTRIBUTION STA
Approved for public releasey

¥
!
:
i
l

WA AR A AKX AR AR AN A AN A A NN AN KRN

AFIT/GCS/ENG/87D-13

DESIGN OF AN ALGORITHM TO TRANSLATE NESTED
RELATIONAL ALGEBRA QUERIES TO GENESIS
TRACE MANAGER COMMANDS

-
B OG0

AP g

THESIS

Alan Frank Hartman
Captain, USAF

AFIT/GCS/ENG/87D-13

DTIC

ELECTE

Approved for public release; distribution unlimited

S,

. A] - v " - Cod L) LA
)¢ ‘J:‘J Va A7 ,‘.' .","“.’» ,"Jv LI »."! 5 a'!.l\.g‘to“ Al a‘tg't,ﬁi AR ;'i -'l.‘o’.‘l ¢ .o",u. X .‘o \‘\ AJ ,"b ;'0‘;'! (W 0.|‘i.o‘!,.‘0..‘l.¢' o0 l,g‘c,"i."i.u .|‘l"'4 i\ e‘b..'l [

JCay TN GRS ATy vt A L 3 e e 2V d TR AR bt o e B ATE Vet YAt PV % e BaV i E b s b gk R be8s 87n Bia” VEVELUY UNY UW W LSO R

l.|
"
& AFIT/GCS/ENG/87D-13 e

DESIGN OF AN ALGORITHM TO TRANSLATE NESTED 3
RELATIONAL ALGEBRA QUERIES TO GENESIS o

TRACE MANAGER COMMANDS 0

(]
THESIS !

Presented to the Faculty of the School of Engineering Wy
of the Air Force Institute of Technology i

(e . »
Air University X

In Partial Fulfillment of the X

Requirements for the Degree of sy

Master of Science (Information Systems)

Alan Frank Hartman, M.S.
Captain, USAF N

- December, 1987

Approved for public release; distribution unlimited

R Y Y Oy R O R T R T e O R T T T W N T U vy Vhaw s on 8aB 1a8 al Aak Bal o £P b

v ' (NN
m Preface e

The goal of this thesis was to develop an interface between nested relational algebra queries XN
'R
t‘g
and the GENESIS Trace Manager, which is part of the GENESIS database management system ::c:
‘iil
'K}
being developed at the University of Texas at Austin, Texas.
"
Although this thesis does not include an implementation of the interface, it does present a :l:
()
.‘(
group of algorithms that can be used to implement the interface. The algorithm consists of two .'t:
(3
phases, in the first phase the nested relational algebra query is converted into an intermediate data :
structure and in the second phase the intermediate data structure is used to generate the GENESIS :
.
Trace Manager commands. ,‘:‘.‘.‘
@
I am deeply indebted to my thesis advisor, Captain Mark Roth, for his invaluable assistance %
Y
during the development of this thesis. I also wish to thank the other members of my committee, ‘:::
o,
3 . . an . .
Captain Wade Shaw and Dr. Thomas Hartrum, for their assistance. In addition, I wish to thank .:|;
) Al
‘,.. Jim Barnett, of the University of Texas at Austin, Texas for his assistance with the GENESIS W
“.:
Trace Manager. c::'
I.Q:
‘l
:I'a
. §
Alan Frank Hartman A
o
Y,
U
Or,c i,
w i
2
g i
Accession For Y :',f
R O
NTIS GRA&I "4 U
DTIC TAB (]
Unannounced O ‘n:.
Justification | W
— o
I:‘
By o“
Distribution/ Y
X " Avatlability Codes 8
W‘ I Avall and/or ‘:'1
|ptst | Speclal X
. \ "i -
ii (X
\|
k’ l l‘q‘
S e et g o — ‘.
]
A
L] |':

L] - « 3 [«
EOUOAR M O ONAM L, LTI T ST I T MO 0T, S e L S AL A M e LS SN L T O D DR R b T

Cp i ted .t s ai et Fa® ak al v h Vel Sy vy B Tl el at e fq® T8 B 2 ® VoW 0 e al Tk 2 2 “aB a8 ‘e V2l Saf ! AR NI A RN N TN X

@ Table of Contents

Page

B Preface ot i e e ii '
0 Tableof Comtents e i ;
o

<]
B List Of FIGUTER oottt e et e e v g
1:‘ '

AbStract . .. L e e e e e vili

‘t; 1. Introduction L. e e e 1

: 1.1 Current Research in Relational Databases 1 i
X 1.2 Thesis Goal 2)
A

:: 1.3 ThesisOutline 3

&

':e"’

N EL 11. The Relational Model and Nested Relations 4

z‘" ” 2.1 Relational Database Model 4 '
) {
‘;': 2.2 Relational Model Design and Normal Forms 6)
& 2.3 Applications of Nested Relations. 11 i
iy 231 FormFlowDesign. 12

&

o 2.3.2 Statistical Databases. 14)
4 ¢
:'. 24 Nested RelationalModels 15 ‘
:;': I, SQL/NF Translatoroooouinnnen., 19 ¢
th {
By 3.1 SQL/NF 19

)

. 3.2 Nested Relational Algebra, . 21

o 33 SQL/NF Tranmslator0.uuuuiino... 23 :
“

H

e

§ ¥

I‘. t
t
) i :
AN i

- . " oy rs - Nl
T Tl O O 0 N O R Y R e A D OO O e e S I G G OO L OGN

EREN RSN v a8 TE a ntaVR gth ath ath a¥g o0p bt R get v N ad XN Y PRI R TSI N ITOvyU U T YO O T PO TON TN T

(Page
' @ IV. GENESIS Record Managerc.0uuieienmnneen.. 27
41 GENESISDDL e 27

o
:l 42 GENESIS TraceManager 32
i
A)

,:"o 421 TraceVariables. 33

422 TraceFunctions. 36

o

I

ey V. Algorithm 40
K

“ .

‘:.g', 5.1 AlgorithmDesign. 40
B 52 Definitions 42
s A
',‘: 5.3 Database Description 42
ot

::: 5.4 Structure of a Nested Relational AlgebraQuery 46

Y,

; 5.5 Intermediate Data Structures. 47
Ty

I

o 56 Algorithm 55
A
o 7 VAliBlIOn 62
:5? PSS .

. 5.8 Performance Analysis, 75
o ot

Q‘.

:‘:v VI Conclusion e e 79
Rt
A
o 6.1 SummaryofResults 79
. 6.2 FurtherStudy 79
f‘ﬁg
"E‘.

e

B A. GENESIS Trace Manger Terminating Conditions 81
EX)

,:.

B
' Bibliography e e 85

)

e

o VIta . 87

t’:.

o’

W)

.15

|l'

'y

iy

'1

A

A
® B
o

N OO N O e I e e LT LT 1 ey 0, T gt S SO0 G " B MO

List of Figures

PERSON Relation

INF Relation

Nested Relation

Updated INF Relation

Incorrect Updated Nested Relation

Hierarchy of Normal Forms

STUDENT-COURSE Data Represented with One Relation.
STUDENT-COURSE Data Represented with Two Relations

PARENT-CHILD as a Nested Relation

PARENT-CHILD as a INF Relation.

- -
- -

k)

kD

.
]
¥,
]
Ky
3
&

Institute Form

Summary Table, Average-House-Prices in Thousands of Dollars.
Nested Course Relation

Normal Scheme Tree

Name-Age-SSN Relation

Employees Relation in 1INF Form

Employees Relation in Nested Form

Course Relation

Sample GENESIS Schema

Field definition table (Fdt) of Sample Schema
Tree Representation of Fdt

Representation of a Trace Variable

Database Schema

- I i " A P :
R RR T RT a AOGOAORONAR SO ON A NIRRT M 0 i e Pt W S AT A PNC AR W PO MR RTIN B Y WY
b S T AL N LT N N N T T W R N WEHE (LA N \ B

era L Ea N e e ta is 03’ iR iR ata’ Ea? it ig? $atat v ad het Nyt g et €A ta e 120 810080 hatalatata Fa0 040 Bet 102t 02" 4 Y g8 g2 Gt Sat B0 et Pat " ~.v|'c(

Figure Page X

m 26. Tree Structure Representation of Database 44 0l
27. Sample Data 45

28. Example of FN Statement 48 o,

29. PJ-SL-CP Structure e e 49 [yl

30. DF Structure 49

31. EXISTS Structure e 50

32. Less Than Structure i 50 ¢

33. BETWEEN Structure 51 b

34. AND Structure 51]

35. AVGSHIUCTUrE o ottt et e e e 52 o

36. NEST Structure e 52)

37. UNNEST Structure it e e 53 i
38. FN Structure e e, 54 g4
39. Query Structure L. e e 54 :":
Croes-reference of Operators used in Examples. 64 -

41. Example 1Structure. L 64 X

42. Example 10utput e e 65 '

43. Example 2Structure. 65 Q
44. Example 20utput e 66 "y
45. Example 3Structure. 67
46. Example 3Output e 67
47. Example 4 Structure. 68 !
48. Example 4Output 68 ::
49. Example 5 Structure L L 69
50. Example 50utput 70
51. Example 6 Structure 7 A

T
52. Example 6 Output 72 ;

A]
l._ U) l?‘..’.. .,I'Ll" l'.,\'.‘l.g_“._l‘ ‘l'.‘

N Figure Page

@ 53. Example 7Structure. e e 73
54. Example TOutput e 74

55. Example 8 Structure e e 74

56. Example 8Output e 74

57. Possible Fatal Error Values of Trace Functions 81

58. Possible Normal Terminating Values of Trace Functions 82

59. Trace Functions and Possible Normal Terminations 82

60. Trace Functions and Possible Error Conditions 83

61. Trace Functions and Possible Error Conditions 84

. R
EAANOOASS O OGOA0O 0D OO OO IR TATON ol On A WA U

vii

", l‘n. s

Wy WY,
WO [

(oo T O AT O T T e L

A}
»

o~
i

" -
Faad a0V, 10,0

R N I T s 3 0g 920 g% 0% $a¥ Bat fas Me Mot Bat gt gat da' Ae'a¥p a¥R 200 pth o¥f "

AFIT/GCS/ENG/87D-13

\\ Abstract
\y/

This thesis describes an algorithm to convert nested relational algebra queries into GENESIS
Trace Manager commands. Nested relational algebra is an extension to traditional relational algebra
to include multivalued (i.e. nested) attributes. The GENESIS Trace Manager is part of the
GENESIS database management system being developed at the University of Texas at Austin,
Texas. The GENESIS Trace Manager is used to manipulate fields in a record that has been read

into a buffer in memory.

The algorithm consists of two phases. The first phase of the algorithm is the development of
an intermediate data structure to represent the various constructs of the nested relational algebra
query. The second phase of the algorithm is the convefsion of the intermediate data structure into
GENESIS Trace Manager commands. This phase consists of dividing the translation into a number

of sub-tasks and providing an algorithm to perform each of these sub-tasks.

The GENESIS Trace Manager is limited to working with fields in a record located in a buffer
in primary memory. It does not include facilities for reading records from a database into memory,
writing records from memory to a database, or presenting the user with a formated output of the

result of the query. Because the GENESIS Trace Manager does not include these facilities, the

i e d
algorithm does not produce GENESIS commands to perform these functions. / A: 4ol

r T, -
v

viii

- - - - 3 CER N ' o ; LI
8%, 00 0 U T Tt e 2 1 T L g A T g I e VT A S e e R A T A R R R R T a D S A

o8

&

<, 4.9

o WSl Yal RNl P el bl S0 Sah vad vad Vel ¥) . Vo ¢ Sep 8ad 420 AP U COUTRIUA 1§ B bil dah tad o AN K

DESIGN OF AN ALGORITHM TO TRANSLATE NESTED
RELATIONAL ALGEBRA QUERIES TO GENESIS

TRACE MANAGER COMMANDS

I. Introduction

1.1 Current Research in Relational Databases

Class, :al relational database models have been very useful for working witk inany database
applications. Most current relational database models assume that relations are in first normal form
(INF) where all attributes must be atomic (single-valued). This assumption has made it difficult
to implement databases for applications such as office forms, computer-aided design, and statistical
databases. Current research [17,22] indicates that these databases may be better represented by
relational models that allow an attribute to contain multiple values or another relation. These

models are referred to as nested relational models or non-1NF models.

Developing a database for these types of applications usually involves adding extensions to
an existing database or developing an application specific database. The first approach often leads
to an inefficient implementation and the second approach is often time consuming and expensive.
In order to overcome these problems, the GENESIS database management system (DBMS) is

currently being developed at the University of Texas at Austin [2].

GENESIS is a reconfigurable DBMS which supports nested relations. The goal of the GENE-
SIS project is to provide an environment which supports the efficient development of databases. A
GENESIS database is built from software modules which are maintained in a software library. The

GENESIS software library facilitates database development by allowing software modules to be

. R T R AR P TRV L R SN 2™ r € 7 T Ta" " a "W TN
“~‘l'~'|‘\'-‘l.“l.!.ﬁ. GO X l‘l L) \) 'f\ = l. \' A _— L 0, f v, ("" T \,'- A " ..

.

" AN

Iy L
Y.

>3

C o &
)

-
.

5| ®
- &

"-a LR gR o g Wi J
ok A

=S

R AR N AN RN AN) o B, - S ¥ 4% R N WY SR R TR R UL AU IR XA KA RN % X 4, g™ %) { YR LN VLIRS U WY T

o

e

\‘ »”

W

R

te

L

R
. ™

‘:',D": -‘f& reused to develop new databases and by allowing a database to be easily reconfigured by selecting

lo'e! ‘

- different software modules from the library.

A

158

N

M .

!.: 1.2 Thesis Goal

¥'l.

) One of the key factors in developing a database is designing a user interface to the database.

¥ The user interface includes a query language which allows the user to retrieve information from the
)
W

it database. For a user to be able to access a GENESIS database containing nested relations, there

ey must be an interface between GENESIS and a query language which supports nested relations.

N

i" Ll

::t'. One of the most popular query languages is the Structured Query Language (SQL) [4]. Although

;..

;f'. the basic SQL language does not support nested relations, the SQL language has been extended to

e SQL non-1NF (SQL/NF) [25] to include nested relations.

o)

g
' F! . -
A Currently there is no complete interface between SQL/NF and GENESIS. However, parts of

N

P . this interface have been developed. Ramakrishnan [24] has developed an SQL/NF translator which

*» .

;:;: e converts SQL/NF expressions into nested relational algebra expressions. Smith [27] has developed

)

fz' a GENESIS Trace Manager which can be used to access fields within records. Currently there is

Ny

;:: no interface between the nested relational algebra which is output by the SQL/NF translator and

" the GENESIS Trace Manager.

D

.

’;"t Y The original goal of this thesis was to design and implement an algorithm to translate nested
b

WY relational algebra queries to GENESS Trace Manager commands. During the development of this

o thesis the scope was limited to the design and evaluation of an algorithm, and does not include an

:,. implementation of the algorithm. This change in scope was due in part to time constraints and in

\

o,

J: part to the fact that other sections of the GENESIS DBMS were not finished at the time of this
A thesis. The sections of the GENSIS DBMS that create, access and maintain the database were not
%

)
';: available for use in this thesis. The implementing and testing of the algorithm would have required

B :E:

" e

S

U

v:::l 2

x““

l'.:

4

'. »

I H.. I

\-;\ J.’s..'-'. ',-'.‘- .’ {"f“ -

NP

:t. - M ‘ pugd " ¥ WY _.'J'\v AT Py - i \f-".'f.' ,-"-l:‘d‘

TN

FOER RN)

2
:

,) .
AT U G

the design and implementation of a DBMS and report generator. These tasks were not within the

scope of this thesis.

1.8 Thesis Oxtline

Because the concept of nested relations is central to this thesis, Chapter 2 provides an in-
troduction to nested relations, including descriptions of the classical relational database model,
normal forms of relational models, the advantages of nested relational models, applications of
nested relations, and nested relational models. Chapter 3 describes SQL/NF, nested relational
algebra and the SQL/NF translator which converts SQL/NF queries into nested relational algebra
queries. Chapter 4 describes the GENESIS Trace Manager which includes the GENESIS Data
Definition Language and the GENESIS Trace Manager. Chapter 5 describes the algorithm, design
decisions made during development of the algorithm, validation of the algorithm, and analysis of

the performance of the algorithm. Chapter 6 presents conclusions and recommendations for further

research.

s e e e e e e e i I e AT

AR KRR AN A AR IR AR N U N UYL VY LT UN LT Y U Y " o ot v v N WO YWEXD ‘p g N at'n W abadatplac gl v..-

., '..t.n.zf

“!'
w II. The Relational Model and Nested Relations .

A database model is a way of looking at data at the logical level. A number of database
models have been proposed including the entity-relationship model [5), the network model (28] and

the hierarchical model [29]. The relational model, which was introduced in 1970, is a relatively

new model. Since 1970, the relational model has been widely discussed in the literature and has]
et
O
developed into the most popular database model. Recently the relational model has been extended :«’:‘"
O WY
.‘ “
to include nested relations. This chapter provides a description of the relational database model, ®
relational model design, normal forms, applications of nested relations, and nested relational models. ‘;n{'.:
i
.&i::
o
\
2.1 Relational Database Model P
G
The relational database model was originally defined in 1970 by Codd [6). Since 1970, a large .:::“
I‘j“
body of work has developed around the relational model. In this section, we will provide informal .::;:
o
‘ ® definitions of some key terms and describe some of the characteristics of the relational model. The
W 3
discussion in this section is based on Codd [9] and Korth and Silberschatz [19). A more formal :‘...‘
)
(I
mathematical treatment of the relational model can be found in Maier [20] or Yang [31). We will :'I::
L}
I‘|‘G
begin our discussion of the relational model by providing the following informa! definitions:
i:::
o A relation is a set of data represented as a table. : :1:
o:'
O
e An attribute corresponds to an object or characteristic in the real world and is represented X
by a column in the table. .‘;:
i
()
e A tuple corresponds to a relationship between attributes and is represented by a row in the 4 ::"
b "1‘
table. W
an
'
. . a"k
In & relational database model, information is represented in the form of one or more tables, ‘:?"
e
't
such as the one shown in Figure 1. The name “relation” refers to the fact that each row in the :":::
@ table represents a relationship between attributes. The table in Figure 1 is an example of a relation '..
r '..l
o,
’ .“
4 14
o
W,
¥
l.f

|.‘

, A L " LAY b * r { 4
N R T O T N T P S R R L RS O X R TN o 2 S Y Ot S DAL S A AN A OSSO

2 ate 235 1K 474 a8 0t gt 573 4tk 2t g8 a0

AT LN U RN LN WU N WU LN Wy wy

IV N M UNM N W YUYy 3 292 a3 2%’ 48 2t

i NAME AGE | ADDRESS CITY STATE ||
f Jobn Smith | 43 | 123 Main St. [New York | New York ||
¥ Mary Jones | 27 456 Oak St. | Chicago Ilhnois [i
§ Sam Green | 51] 789 Elm St. Dallas Texas ||

Figure 1. PERSON Relation

called PERSON, where each column represents an attribute and each row represents a tuple. In

this relation each person has five attributes: NAME, AGE, ADDRESS, CITY, and STATE. Each

tuple represents the relationship between these five attributes for a given person.

Any data item (such as John Smith’s age) in a relation can be referenced by the following set

of data:

1. The relation name (PERSON).

2. One or more key fields that specify the tuple (NAME = “John Smith”).

3. Attribute name (AGE).

This type of reference, called associative addressing, gives the relational model the following

desirable features.

o The relational model allows users to deal with the database at the logical level, without being

concerned with the low-level physical implementation of the database.

e The relational model facilitates communication between users and programmers by allowing

them to reference data in the same logical manner.

e The relational model provides a basis for the development of a high level language which is

independent of the underlying database structure.

In addition to the desirable features described above, a good relational model should provide

an efficient representation of data. For example, an efficient model should avoid duplication of

AN AN A YR OO L DO ONIN NSO

S

data, and should allow data to be easily updated. The efficiency of a relational model depends on

its design. In the next section, we provide an informal description of relational mode! design.

2.2 Relational Model Design and Normal Forms

One of the goals in designing a relational model is to provide an efficient representation of
data. In this section, we will provide an informal introduction to relational model design theory

based on Maier [20] and Date [11). Additional sources of information on relational model design

include Date [10] and Ullman [30].

The desire to design efficient relational models has led to the development of normalization
theory. Normalization theory is based on a number of normal forms. A normal form is a set
of criteria designed to prevent a relational model from having certain undesirable properties. A
relation is said to be in a specific normal form if it satisfies the criteria of that normal form. A

number of normal forms have been defined. First normal form (1NF), second normal form (2NF),

third normal form (3NF), and Boyce/Codd normal form (BCNF) were defined by Codd [7,8].

Fourth normal form (4NF) and fifth normal form (5NF) were defined by Fagin [12,13].

A relational model is said to be in INF if all the attributes in the relation are atomic. By
atomic we mean that an attribute can contain only a single, non-decomposable value. An attribute

that is not atomic is nested. A nested attribute may contain a group of values or another relation.

As an example, consider a relation containing the attributes NAME, and SEX. Figure 2
shows a 1NF relation for this data and Figure 3 shows a nested (or non-1NF) relation for this data.

Figure 3 is not in 1INF because the attribute NAME contains nested values.

One of the reasons that traditional databases have used 1NF relations is that they avoid some
problems that can occur during the update of a database. For example, assume that the data for

Jean’s SEX was incorrect and should be changed from male to female. This update can be done

iy - PV W : N ‘93" IO W OT W oY MUY R R T ETAY XY AR
AP ITH VR NI RE RN N PO O R AR WA WA va'ail 8" v [.7 YN SL.B 1,4 ¢

NAME | SEX
Sam male
Jean male
Bob male
Pam | female
Jane | female

Figure 2. INF Relation

NAME | SEX
Sam male
Jean
Bob
Pam | female
Jane

Figure 3. Nested Relation

easily in the 1NF relation in Figure 2 by changing the value for Jean’s SEX from male to female,

as shown in Figure 4.

The update to the nested relation in Figure 3 is not as straight forward. If the entry for
Jean’s SEX is changed from male to female, as shown in Figure 5 then the SEX data for John and

Bob is incorrect since it indicates that John and Bob are female.

The purpose in presenting the above example was to show an advantage of 1NF relations with
respect to nested relations. It should not be concluded from this example that INF relations are

always easier to update than nested relations. There are other situations in which nested relations

NAME | SEX |

Sam male
Jean | female
Bob male

Pam | female
Jane | female

Figure 4. Updated 1NF Relation

LU)

- ML R IR . Sad g8 - ai_ a8 M AR\ RS VAT AL LA AR N LN - - M L] Y L LTS L% o A L] L) 8,

[NAME T SEX

Sam | female
Jean
Bob
Pam | female
Jane

Figure 5. Incorrect Updated Nested Relation

are easier to update than INF relations. Examples of these situations will be presented later in

this chapter.

In normalization theory, each of the normal forms after INF adds further requirements.
Figure 6, from Date [11, page 363), shows a graphical representation of this concept. For example,
Figure 6 shows that SNF requires that a relation also be in INF, 2NF, 3NF, BCNF, and 4NF. All
of the normal forms listed require that relations be in 1NF. It should be noted that we are referring

here to traditional descriptions of normal forms. We will show later that it is possible to extend

normal forms such as 3INF to deal with nested relations.

All the relational models we have shown so far have consisted of a single relation. Dividing
a relational model into more than one relation may produce a more efficient design. A relational
model can be put into INF without dividing the model into muitiple relations. However, a relational
mode! may have to be divided into multiple relations to satisfy the criteria of 2NF, 3NF, BCNF,
4ANF, or 5NF. Formal definitions for 2NF, 3NF, BCNF, 4NF, and 5NF are provided in Maier [20]
and Yang [31]. An intuitive description of INF, 2NF, 3NF, 4NF, and 5NF can be found in Kent [18].
We will not provide formal definitions here, but will provide an example to show how dividing a

relational mode! into multiple relations can produce a more efficient design.

As an example, consider a relational model for students attending classes, where the at-
tributes are STUDENT, COURSE, course TEACHER, course LOCATION, and course TIME. In

this example, we will assume that each course has only one TEACHER, one LOCATION, and one

I, AR A epe T LY LY
R OOMDOLAORACANRMAY WML UL O O OOVDROUON N b O OUNNUBORRUR NCAINUIDRN R\ X O W i OO M RO R D WA AT M

ERANENRNTN R LA N g v R e e 8 Y ot B S (AW NS BRMANRURUNY g g u VU TPJTUBUWUIWR WY S Bat tat Bat §.0 et Qe g0 “pal (W

el

3 Universe of relations

. INF relations

) 2NF relations

3NF relations

oy BCNF relations
¥

P 4NF relations

SNF relations

Figure 6. Hierarchy of Normal Forms [11, page 363]

TIME. It is possible to include all of these attributes in a single relation, as shown in Figure 7.
M However, this representation of the data is not efficient. One problem with this representation
N is that the information on TEACHER, LOCATION, and TIME is duplicated for each student.
;" Elimination of this duplication would make the mode! more efficient. Another problem with this
::‘ model is that it is difficult to modify. As an example, assume that the LOCATION and TIME for
K MATH 100 changed. In order to update the database, LOCATION and TIME must be modified
0 for each occurrence of MATH 100. If the data on LOCATION and TIME for each COURSE only
o occurred once in the database, then updating the database would be more efficient because only

) one occurrence of LOCATION and TIME would need to be modified.

® The STUDENT-COURSE data can be represented more efficiently by dividing the data into

o two relations as shown in Figure 8. The relational model in Figure 8 is more efficient because

Q it eliminates the redundancy of TEACHER, LOCATION, and TIME that occurs in Figure 7.

R{) ‘:‘19

. 4
-p o~ -~ 5 L : N . \ . - - . ", YT ; AL y Rt
! ‘\', .“' “.' !“1‘;.l“..'|‘3 KA 4,.",.‘..‘ 4 .' ‘.l a‘i_u"ln.. ..I ﬂ’ O 0 W X ".* .| .. F {) ...1 4 'h " >, L0, .‘!' .l..‘ “‘-’. l"s‘ l.“l'“""‘ '

AR T T T I R T T T I I W R W WO YVOW I AR ORI N O TorOes N » 0 1 O =Y

STUDENT URSE |{ TEACHER | LOCATION | TIME

o ohn Smith Math 100 Ruseel Room 111 | 9:00 AM
S Mary Green | Math 100 Ruseel Room 111 | 9:00 AM
& Jim Jones Math 100 Ruseel Room 111 | 9:00 AM
.:: Janice Johnson | Chem 200 | Pauling Room 222 | 10:00 AM

ifz‘ Bob White @em 200 Pauling Room 222 | 10:00 AM

I {_Pam Adams | Chem 200 Pauling Room 222 | 10:00 AM
B Figure 7. STUDENT-COURSE Data Represented with One Relation.

’,‘q
&

: &

' STUDENT [COURSE]|

. John Smith Math 100
“.‘. Mary Green Math 100

#y Jim Jones Math 100
ot Janice Johnson | Chem 200
3 Bob White | Chem 200

< Pam Adams [Chem 200 ||
e
V'.:e: [COURSE | TEACHER | LOCATION TIME
R Math 100 | Russel | Room 111 | 9:00 AM
o Chem 200 | Pauling Room 222 | 10:00 AM ||
‘:"!) T

f ,:;: Figure 8. STUDENT-COURSE Data Represented with Two Relations.
.
Y
9:“:3
'c;,:; Also, the relational model in Figure 8 is easier to update because the information on TEACHER,
LN
‘:',l LOCATION, and TIME only occurs once for each COURSE.
-
:::: The purpose in presenting the example above was to show the advantage of dividing a relation
(]
)
:.:3: into two relations. However, it should be noted that dividing a relation into two relations also has
'0

o a disadvantage. The process of retrieving all the information about a student may be less efficient
Y ._» because this information is divided between two relations.

N
"' Normalization theory provides a formal treatment of criteria for subdividing a set of attributes
)

i\
- into multiple relations. The normal forms after INF are sets of criteria designed to provide an
M
.::, efficient means of performing this subdivision.
]
»
ntt':
R
d.'.
X
‘1": 10

O O ST S S s A e S e S S e e N I N N D AN et O O O e U U U Ok

LA YT 4. F by ‘8§

M EANASR XY U RY VU U VU TR IO UM R 1O ~ 'Y “a $%a 8% A% 8% 2o A%, AN " »,

PARENT CHILD
Jobn Smith Paul
Mary Smith | Elizabeth
Peter
[Sam Jones Thomas

Cathy Jones Jane

Figure 9. PARENT-CHILD as a Nested Relation.

In this section we have assumed that all relations were in INF. In the next section we will de-
scribe some advantages of nested relations and give examples of applications where nested relations

can be used.

2.3 Applications of Nested Relations.

Traditional relational models have used INF relations because they are conceptually simpler
and because they are adequate for many traditional business applications. Although it may be more
difficult to implement nested relations, there are potential advantages to nested relations. Nested

relations can eliminate redundancy and more accurately reflect real world objects and attributes.

Many real world situations deal with nested attributes. For example, a parent may have more
than one child. A nested relational model could represent a PARENT-CHILD relation as shown in
Figure 9. In this representation, PARENT and CHILD are nested attributes. In a 1NF relational
model the information would be represented as shown in Figure 10. The nested relation in Figure 9
is more efficient than the 1NF relation in Figure 10 because there is no duplicated data. Another
advantage of the nested relation is that it more accurately reflects the relationship between parents

and children.

The current interest in nested relational models is due to the desire to develop an efficient

model which supports nested relations. The current literature includes numerous articles dealing

with application of nested relations to areas such as form flow design [17] and statistical databases

TR UT I ROY PP YR YOO O O R TR PO TR X R TSR YAV > IR" 00 a0a a%s 00 ati g1 0\p o'h gt Tataia

PARENT CHILD

4 John Smith Paul
7 § John Smith | Elizabeth |
'a‘ John Smith Peter
4 Mary Smith Paul
(:t Mary Smith | Elizabeth

) Mary Smith Peter
» Sam Jones Thomas
i [Sam Jones Jane
;n" Cathy Jones | Thomas
::: Cathy Jones Jane

Figure 10. PARENT-CHILD as a INF Relation.

[22,23]. The following sections describe some of these applications that can benefit from using

N nested relational models.
K\
Yy 2.3.1 Form Flow Design. Kappel et al. [17] have shown that a nested relational model is
l"
ne advantageous in designing form flow systems. Kappel et al. use the term non-first-normal-form
W s]

] (NF2) to refer to nested relations. In order to be consistent with our earlier terminology, we will
" :
,"| continue to use the term nested.
"
Y A form can be viewed as a relation. If the form contains nested attributes, then it can be
KN
; viewed as a nested relation. Figure 11, taken from [17, page 236], shows a sample institute form.
oy
:::: Figure 12, from [17, page 240], shows a nested relation which includes the data from the form in)
; Figure 11 and additional sample data.
»ao Kappel et al. point out the advantages of nested relations by comparing them to flat (i.e.
b
::: unnested) relations as described by Schmid and Swenson [26]. The nested relation is preferable
)
K to a flat relation because all the attributes associated with a given object can be represented in a
K single relation, and there is less repetition of data.
,
o
‘ A
"':\ The nested relational model described above has been used in the development of a prototype
)
LA
! form flow system. The prototype is called Computerunterstutztes Buroinformationsssytem (CBIS)

n .

" &
"
¥ 12
I..
y

oS AN N S A Ve

.

hnd =

INSTITUTE FORM
INSTITUTENO: 00442

PROFESSORS OF THE INSTITUTE:
PROFESSORNO PROFESSOR-NAME
1111 Tjoa
1112 Wagoner

STUDENTS OF THE INSTITUTE

STUDENTNO STUDENT-NAME | COURSENO
7825845 Miller 111000
112345
235645
7935450 Babbage 123123
111000

Figure 11. Institute Form [17, page 236)

13

Aty ryn

Ay
M N D O y ; o " TN TR YN AT KA . S A ACRIN Y
‘5?"‘-.0" ‘.‘,!‘..'\"-.‘.- .'-l"l.‘.n‘ (% X4 ""'.‘d’l) t','- LA X0 A ' ,""J‘. ARG BOA l....'. 0 'J‘.v L B oy \ LAA A IUOSH N AR St R WU N AN "N

S

)
Mt W

v
¢ Q‘
PROFESSOR STUDENT ::o\
3
Institute.No | Institute Name | Profe No Prof Name | StudentNo l Student_Name | Course l:|5
“p)
.“a
00442 Comp.Science 1mi Tioa 7825845 Miller 111000 _:,:
1112 Wagner 112345
235645 y
7835450 Babbage 123123 :: :
111000 b
4
hq.
00443 Mathematics 1122 Guuse 7825888 Bit 111111 ;
1144 Cantor 111222
111333 s
7944444 Byte 111333 . ‘|:
111555 N
\
o
o,
Figure 12. Institute Relation [17, page 240) 2
o
and was implemented at the University of Vienna. CBIS has been shown to be an effective system n

for dealing with university administration data.

o
A
G
-

A
2.3.2 Statistical Databases. Ozsoyoglu and Ozsoyoglu {22 23] have shown that it is beneficial]
0
to apply nested relations to statistical databases (SDBs). SDBs are used to support a variety of
v
statistical analysis such as sum and average. Sum and average are examples of aggregate functions »
[.\
which analyze a group of values to produce a single valued output. One of the essential constructs N
\)
o
of SDBs is the summary table, which is used to maintain and analyze summary data. A sample iy
)
summary table from [23] is shown in Figure 13. .
\ A\l
Most current SDBs have the ability to generate summary tables, but do not store or ma- N \
nipulate information as summary tables. Instead, they store information as atomic values and ?, :
.
create summary tables as output to be viewed by the user. It is useful to apply nested relations to .,
~
summary tables, because summary tables deal with nested attributes. Ozsoyogiu and Ozsoyoglu
N
<
(23] propose applying relations with set-valued attributes (i.e. nested relations) to SDBs to provide ~
. b
W "
-
14 DY,
X
2
>

e 3t

s W GRS RTL T R R A N L U L SN AN
RO OGO RN AN f v ..o ! .o. D o S X pt, Ll S Ol L L A s St X MLy

.,I'l.l W &

PR AT WX

&

1 M 3.5

7

UG NP o 0atha Y’ e 0,0 Vol $a8 Y8 et Vel Yot tal 0g8 Ya¥ B st vaf al cat. CRt 2V, et AV, Bi. aVe 8% B $' 8"

Ashtabula Female 63.2

Male 77.2

Cuyahoga Female 81.5

Male 56.2

Ohio Medina Female 61.8
Male 62.4

Ashtabula 68.9

Cuyahoga 60.4

Medina 62.0

Allegheny Female 79.3

Male 70.2

Pennsylvania | Susquehanna | Female 66.0
Male 70.0

Allegheny 75.4

Susquehanna 68.1

Figure 13. Summary Table, Average-House-Prices in Thousands of Dollars.

the ability to manipulate information as surnmary tables. The concepts presented in [23) are being

used to develop a SDB named System for Statistical Databases.

The examples described above for forms flow design and statistical databases have pointed
out some of the advantages of nested relations over 1NF relations. Because of the advantages of
nested relations, various authors have extended the classical relational model to include nested

relations. Some of these extensions are described in the next section.

2.4 Nested Relational Models

A number of articles have appeared in the literature which extend the relational model to in-
clude nested relations. Makinouchi [21) showed that traditional normal forms such as 3NF and 4NF
could be extended to include sets of sets. He demonstrated that the mathematical interpretation
of 3NF and 4NF do not necessarily imply 1INF. He introduced extensions to Codd’s definition of

functional dependency (FD) and Fagin’s definition of multivalued dependency (MVD) so that FD

15

R O At L R RS AT L R Ry A T L S L SR LR

d P e g
LN] .?-g’ f

2

4 5
i

S ELAS kS
28 X >

A

¢

RO O T T T T R R I T oo

and MVD can be applied to nested relations. He used these extended definitions of FD and MVD

to define extensions to the traditional definitions of 3NF and 4NF to deal with nested relations.

Jaeschke and Schek [16] provided an extension to the relational model to include power set
type relations. They also extended relational algebra, defined NEST and UNNEST operators, and
described the properties of these operators. The NEST operator is used to convert a INF relation
into a nested relation, or to convert a nested relation into a more deeply nested relation. The
UNNEST operator is used to convert a nested relation into a less nested relation. If a nested

relation is nested only one level deep, then the UNNEST operator converts it into a INF relation.

Fischer and Thomas [14] extended the concept of NEST and UNNEST as presented by
Jaeschke and Schek [16]). They described the application of the NEST and UNNEST operators,
the interaction of relational operators with NEST and UNNEST, and the relationship of functional

dependencies with NEST and UNNEST.

Roth [25] defined a normal form called partitioned normal form (PNF). For a relation to be in
PNF there must be a series of nest operations than can reverse any series of valid unnest operations.
Since nest and unnest operators are central to nested relations it is desirable for a normal form to
be closed under these operations. Roth provides proofs that PNF relations are closed for all unnest
operations and for a certain class of nest operations. Roth also extends the relational algebra to

include PNF operators for union, intersection, difference, Cartesian product, select, natural join,

and projection.

Ozsoyoglu and Yuan [22] defined a normal form for nested relations called nested normal form
(NNF). For a relation to be in NNF, the relation must be organized as a normal scheme tree. In
a normal scheme tree the vertices are pairwise disjoint sets of attributes and the edges correspond
to MVDs. Ozsoyoglu and Yuan [22, page 113] provide an example of a nested relation (Figure 14)

and its normal scheme tree (Figure 15). A nested field is indicated by the * symbol.

In the scheme tree in Figure 15, the edges represent the following MVDs:

. .} D LIS - f A PR F LV L N v 5 o -_ " R!l
o Pt N ARSI NNUA RN , v AR AGN . ‘ ‘ '('-_.-. IS, {' f" \¢ O LU ~¢\ A%

(TEXT)* (SECTION (DAY)* (GRADER)*)*

Design sl Mon John
Analysis Wed Mary
82 Tue Joe
Thur Sue
Data Structure sl Mon | Sally |
Database Wed
Fri

Figure 14. Nested Course Relation {21, page 113]

COURSE

TEXT SECTION

DAY GRADER

Figure 15. Normal Scheme Tree [21, page 113]

17

(AXANING NP » - TR AN -y »
R O O OU AN OUOOOOGUTE R I X A LRI IO T M XL A O e D T U WO O M iU L a T 4 o N e

4% 20

g
-

o

oA Y

I-I. l.o.o‘.v‘n ' oG

I % e el = COURSE — TEXT

B e ¢2 = COURSE —— SECTION, DAY, GRADER

S

:Et: o ¢3 = COURSE, SECTION —— DAY

b

E ¢ e4 = COURSE, SECTION —— GRADER

o N . »
E:.. A NNF decomposition of a relation consists of a set of nested relations each of which is a
':E:l normal scheme tree. This set of normal scheme trees is referred to as a forest of scheme trees.

:.': This chapter has provided a brief introduction to the relational database model including
.:.:' relational mode! design, various normal forms for relations, some of the advantages of nested re-
.:‘:.', lations, applications of nested relations, and extensions to the relational model to inclnde nested
- relations. In the next chapter we will describe an application for translating a nested relational
'E:':' query from one query language into a different query language.

o

Ny 18

' ‘1‘- 1 IN‘ '\.1_ ~v\ AN \".’t's \'-

III. SQL/NF Translator

The SQL/NF translator is a program which converts SQL/NF queries into nested relational
algebra queries. This chapter describes the SQL/NF translator and is organized as follows. Sec-
tion 3.1 describes the SQL/NF query language, Section 3.2 describes the nested relational algebra
query language and Section 3.3 describes the method by which the SQL/NF translator converts

SQL/NF queries into nested relational algebra queries.

3.1 SQL/NF

The Structured Query Language (SQL) is a relational database language developed for IBM’s
System R. SQL is used to obtain (i.e. query) information from a database. SQL was designed for
INF relations and is inadequate for use with nested relations. The SQL/NF is based on SQL, and

extends SQL to deal with nested relations [25]. An SQL query consists of three basic parts:
1. A SELECT clause which lists attributes to be output.
2. A FROM clause which lists the relations to be searched.
3. A WHERE clause which specifies the selection criteria.

As an example, assume a user wants to find Roy Wilson’s age from the relation in Figure 16.

This information could be obtained with the following SQL query:
SELECT Age
FROM Name-Age-SSN
WHERE name = “Wilson, Roy”

The output of this query would be 34.

SQL/NF extends SQL by including nest and unnest operators. The nest operator is used to
convert a INF relation into a nested relation or to convert a nested relation into a more deeply

nested relation. The unnest operator is used to convert a nested relation into less nested form. If a

19

Y

\1

. O P A - o o A, ~ - " “pr " . " -y LIS)
Lot e, W Wt A an e .,‘mn '-‘ ,I.\. A A A A A A A L AL AL R S h e ot\-. Dy " LACRE S CR N,

Name Age SSN
Douglas Hill | 23 | 123-45-6789
Roy Wilson 34 | 123-45-6789 ||

f| Carol Crosby | 61 | 123-45-6789 |

Figure 16. Name-Age-SSN Relation

emp.name | child.name | child.dob
Mary Taylor Peter 28/02/79 |
Bob Harris Jim 11/12/81
Mary Taylor Jerry 21/07/81
[[Mike Owens Bill 22/09/81
i Bob Harris Pam 09/03/83
[[Mike Owens Mary 19/11/83

Figure 17. Employees Relation in INF Form

nested relation is nested only one level deep, then the unnest operator converts it into INF form.

As an example, the nest expression:

NEST Employees ON child.name, child.dob as Children

would convert the relation in Figure 17 into the relation in Figure 18, and the unnest expression:

UNNEST Employees on Children

would convert Figure 18 into Figure 17.

emp.pame ~Children
child.name | child.birthday
Bob Harris Jim 11/12/81
Pam 09/03/83
Mary Taylor Jerry 21/07/81
Peter 28/02/79
Mike Owens Bill 22/09/81
Mary 19/11/83

Figure 18. Employees Relation in Nested Form

' P : O W e e e N T N o s YO Y R0 N
) ,o.n .l.o’l.v‘i.0~.t. D0 X 10 o)“' g a (e o L Lo Lo NaZxsa 6. h

[T
—

=

Pt

'G’ o«
'("k:' -

" -

t ’, -
1‘1‘! .Ul..’ A.\

A oS Nt
FY A T

I Class Title Section
Number | Instructor
Chem 200 | Organic Chemistry 1 Smith
2 Wilson
3 Peterson
Math 100 Algebra 1 Jones
2 Smith
3 Carlson

Figure 19. Course Relation

Another difference between SQL and SQL/NF is that SQL/NF allows SELECT-FROM-
WHERE (SFW) expressions to appear in the SELECT clause and FROM clause. Figure 19 shows
a Course relation in which the Section attribute consists of a nested relation containing Number

and Instructor.

As an example consider the following query which uses an SFW expression in the SELECT
clause.

SELECT Class, (SELECT Number

FROM Section

WHERE Instructor = “Smith”)
FROM Course

This query will output all the classes and section numbers taught by an instructor with the name

Smith.

3.2 Nested Relational Algebra

This section provides a brief discussion of relational algebra and extensions to relational
algebra to include nested relations. For a more detailed description of relational algebra, the reader

may refer to Korth and Silberschatz [19), Date [11], or Yang [31].

Relational algebra uses operators to query a database. Relational algebra includes five basic

operators:

1. SL - the select operator.

21

o™,

a " " - - - L] W T W W, A e Wy, o, o e
_6'.‘,. Y, 0e'y Y .. ‘A DA ~ & R " \ " . \MEMML‘:CMA"&.QEJ

Coro s
A

TR I N IO U T YU U ST I IR O R OO OOy Y Y S * YR UWUSIY I VIR W T W AT UV U N VAN PO "N U R I

Sadnd

b5

p Mg g ¢ [PRIPRE LE TR RS YU N YO "N . < e b aat . . N

Name Address City State
John Smith 123 Main St. | New York | New Yor

Mary Jones 456 Oak St. | Chicago Ninois
Sam Green 780 Elm St. ‘Dallas Texas
athy Brown | 205 Walnut 5t. | New York | New Yor
[June Wilson | 852 State St. Miami Florida |
{ Jim Johnson | 301 Cherry St. | Chicago llinois

Figure 20. Person-Address Relation

2. PJ - the project operator.
3. CP - the cartesian-product operator.
4. UN - the union operator.

5. DF - the difference operator

The SL operator is used to select tuples in a relation that meet a specific criteria. The PJ operator
is used to select attributes in a relation. The CP operator takes two relations and forms a new
relation that includes all combinations of tuples from the two original relations. The UN operator
takes two relations and forms a new relation than includes all the tuples that occur in both relations
The DF operator takes two relations and forms a new relation that includes tuples that occur in
the first relation but not the second relation. These operators can be used to query a relation such

as the Person-Address relation in Figure 20.

As an example of a relational algebra query, assume a user wants to find the names of all
the people who live in Chicago. The user could perform this query by using the select and project
operators. The following relational algebra query will list the names of all the people who live in
Chicago:

PJ Name
SL City = “Chicago”
CP Person-Address

The output of this query is Mary Jones and Jim Johnson.

22

. .)
"y - 3 " e | . i) " . Y
RSO O O 0 I RO TN NN A0S TR o 3 LSRR M ™ SRR W AR M M MR RACR KA NI RN

%

Y

)

A

[
:'”

e M 10,

S TWOY L s pt g R g R et Bt G2t Fa? §o¥ €at 8o 2B Bt et tat 6at et det o e Aaals A0 at2 aVh 2%h 2'h &'k

Early versions of relational algebra were designed for INF relations and were inadequate
for describing nested relations. Jaeschke and Schek [16] extended the relational algebra to include
nested relations. They defined NEST and UNNEST operators and described the properties of these
operators. Fischer and Thomas [14) described the application of NEST and UNNEST operators,
the relationship of NEST and UNNEST with other relational operators, and the relationship of

NEST and UNNEST to functional dependencies.

3.3 SQL/NF Translator

This section provides a description of the SQL/NF translator developed by Ramakrishnan [24].
The SQL/NF translator converts SQL/NF expressions into nested relational algebra expressions.
The nested relational algebra expressions output by the SQL/NF translator are the input to the

algorithm which is developed in Chapter V of this thesis.

The translation of an SQL/NF expression into a nested relational algebra expression occurs

in three steps:

1. Query transformation.
2. Pre-processing.

3. Meaning evaluation.

Since the goal of the this thesis is to develop an algorithm to translate the output of the
SQL/NF translator into GENESIS record manager commands, we are primarily concerned with
the format of the SQL/NF translator output. In this thesis we are not directly concerned with the
details of the early stages of the SQL/NF translator. Therefore, the first two steps of the SQL/NF

translator will be described only briefly and the third step will be described in more detail.

The query transformation step involves three parts: converting the SQL/NF expression to
an intermediate form, name resolution, and role-join processing. Conversion to an intermediate

form involves building intermediate data structures to represent the SQL/NF query. The name

23

Y A N G N SN Y L i B S N SN T O o TN S |

AR,

RO

B Y - AR L) 2 ryn . B P W W g T VYT R B g @y r g “-a v YR LYY C.E v
".A'%.u‘!_g’t,. ot O‘.'i!.n LS .’.‘. AN "‘ ...\ oy nu- n.l'-. e 'f'\r oy AV AT .' ~ o .'l EAROA S o'ia"o.\-'l. “

resolution step involves finding the location of the intermediate data structure that corresponds to
a given name in the SQL/NF query. The role-join processing step is not relevant to this thesis and

will not be discussed.

The pre-processing step is based on the pre-processing described in Ceri and Gottlob [3]. This
step uses set-theory transformations to convert the output from the query transformation step into
four basic types of queries: simple, complex, exists, or n-ary. In order to describe these four queries

we must introduce the following definitions:

scalar boolean - consists of a boolean expression (AND, OR or NOT) whose operands are scalar

predicates or other scalar booleans.

scalar predicate - consists of two plain expressions connected by a comparison operator (<, <=

, >, D=, =,<>).
complex predicate - consists of variable and a query connected by a comparison operator.

exists predicate - consists of the EXISTS operator and a query operand.

In a simple query, the where clause may be ascalar boolean or the where clause may be absent.
In a complex query, the where clause consists of a complex predicate. In an exists query, the where
clause consists of an exists predicate. An n-ary query corresponds to the union, intersection or

difference of two or more queries.

The final step in the SQL/NF translator is the meaning evaluation step which is based on the
meaning evaluation described by Ceri and Gottlob (3]. The meaning evaluation step converts the
query expressions produced by the pre-processing step into nested relational algebra expressions.
‘The translation of each type of query is described below. These transiations are taken directly from

Ramakrishnan [24].

For a simple query which does not have a where clause the translation is as follows:
Let query Q be the following;:

SELECT select

24

" aat Mgt b et et £t 2% Sa’ da® 1a? £a® b’ Dl A0 ma€ia 0 BAt s 0°0. 850 8% 102 A% 4% a's k2 BVa '2la"a0a ‘gYa" € a8, cat ia tad taf r ¢ 829 4.0 Nua’

@P . FROM from

The translation is:

P [Q.select]
FN [Q.select fns; ¢)
CP [Q.from)

Where Q.selectfns represents the aggregate and nest expressions in Q.select.

For a simple query in which the where clause is a scalar boolean:

Let query Q be the following:

SELECT select
FROM from
WHERE where

The translation is:

PJ [Q.select U other(Q)]

FN [Q.select fns; other(Q)]

SL [Q.where]

CP [Q.from U extrels(Q.where)]

C.' Where extrels(Q.where) = the external relations in Q.where and other(Q) is the attributes in the

relations in extrels(Q.where). External relations are relations that do not occur in Q.from but have

attributes in Q.where.

For a complex query the translation is as follows:

Let query Q be the following:
SELECT select
FROM from
WHERE left. term comp.op sub_query

The translation is:

PJ [Q.select U other(Q)]

FN [Q.select fns; other(Q)]

SL [Q.left term Q.comp.op Q.sub.query.select]

CP [(Q.from - connect(Q)) U meaning(Q.sub_query)]

Where meaning(Q sub_query) is the meaning evaluation of Q.sub_query, connect(Q) is relations in

meaning(Q .sub_query) that are not in Q.sub.query, and other(Q) is attributes occurring in relations

@ in connect(Q) but not in Q.from.
»

95 2*b 2} 2t

W, P
‘,ll‘.l‘.'f 'y

-

[

AR

4at 0 + e + Voot . - - » TR g " §.9 0 » RTINS U SUY U “#ta g, V . M J o BY > 3 0 e §°

For an exists query the translation is as follows:

Let query Q be the following:
SELECT select
FROM from
WHERE EXISTS sub._query

The translation is:
PJ [Q.select U other(Q)]
FN [Q.select_fns; other(Q)]
CP [(Q.from - connect(Q)) U meaning(Q.sub_query)]

For an n-ary query the translation is as follows:

Let query Q be the following:
SETOP [Q,,Qs,...,Qn]

Where SETOP is UNION, INTERSECTION, or MINUS and Q, are queries.
The translation is:

tr(SETOP) [Ry, Ry, ..., R,)

where

tr(UNION) = UN

tr(INTERSECTION) = IN

tr(MINUS) = DF
R; = CP [MEANING(Q;) U all_extrels_except_of(Q;)]

Where all_extrels.except_of(Q;) is the external relations of all queries except those in Q;.

This chapter has provided a description of SQL/NF, nested relational algebra, and the
SQL/NF transiator. The SQL/NF transiator produces the nested relational algebra queries which
are the input to the algorithm described in Chapter V. The purpose of the algorithm is to generate

commands for the GENESIS Record Manager which is described in the next chapter.

26

-F-"‘J' IJ"-" uf fl J' (-}'QF l‘_-l'fil' .."‘. -" W .‘. ~ ‘ W Q) ;

L
R

Pl o g 0 N

»
L,

=,

s

X 4

G
=

iy

R ! o Y) WP \’-.-\‘i-,\\\-__“«'“- A I N M
t"‘\"?l“’l .D“‘.‘l!l"tt'.,. ol .A"‘,I'..;\.‘ﬂ K PN AN e .0".I’|J. ALY A Lan A J A el ! IV ., '

PRI e TRt LN T T PO T P TR Y L T T P S PO TR TR TSR A e N2 ua” a0 et e ath B ath At oM 288 a9 a0 "

IV. GENESIS Record Manager

This chapter describes the GENESIS Record Manager. This description is based on Smith
[27) and the GENESIS Record Manger User Manual [1]. The GENESIS Record Manger is composed

of:

1. The GENESIS Data Definition Language (DDL)

2. The GENESIS Trace Manager (TM)

The DDL is used to define the database format, the records in the database, and the fields
within the records. The Trace Manager is used to access and update the fields in the records that
have been read into memory. The record manager does not include facilities to store records in a
database or retrieve records from a database. Section 4.1 of this chapter describes the GENESIS
DDL including the schema and Field definition table (Fdt). Section 4.2 describes the GENESIS

TM including trace variables, trace commands and inverted tree structure.

4.1 GENESIS DDL

The GENESIS DDL is used to describe database formats. These formats are referred to as
schemas and include record and field definitions. The DDL compiler uses the schema to build the

Fdt. The fields in the records are conceptually represented as an inverted tree structure.

A sample schema from Smith [27, page 19] is shown in Figure 21. Comments in the schema

are delineated with /* and */. The DDL includes the following 14 reserved words:

ARRAY DATABASE INT SHORT
BYTE FILES OF TYPES
CHAR FLOAT OPTIONS

DOUBLE INCLUDE RGP

27

> aBatabat gl 0p atR® 28h e

" _,.,-\4- TN " o

PR PR AN e AR R AN AN AN AN RN R Ny NRL VUYL K NTUXUN WX U™ R LUW LW LW LW LW LU LR UL Sa8 Al Sl Sal ok

/* Sample schema using each syntactic construct */

DATABASE example {

OPTIONS
primary-key: /* designates key field */
security; /* designates protected field */
TYPES
name = ARRAY {20] OF CHAR,
ADDR = {
street name;
city_state ARRAY [30] OF CHAR,
2ip INT;
}; security;
addrs = RPG of addr;
btree = {
node.id INT;
left RPG <1> OF btree;
C.' right RPG <1> OF btree;
P
unusual = {
threeD_addr ARRAY (2,2,2] OF addrs;
lots_of_ints RPG (4) OF RPG OF INT;
binary.tree btree;
)
FILES
employees {
emp_name name;
emp.num INT primary key;
emp.adr addr;
prev_addresses addrs;
curr.wage float security;
};
strange unusual;
}. /* end of database */

Figure 21. Sample GENESIS Schema {28, page 19)

28

P R DR) AR S IRE s L N

“
Ll

R P TN U VUV T A AT I Y T N TNV YV o S TOVY ARSI A Sal) doh uad VAV e i (WP Wy

] [ha d¥a ¥ B Rad Rat g™ g oita? bl ah g gy - (NN
l‘;
i
]
.
K
-"
.+ .
.)
Y There are three sections in a GENESIS schema: OPTIONS, TYPES, and FILES. All schemas
o are required to have a FILES section, the other two sections are optional.
)
o 1
)
::a The OPTIONS section is used to indicate the security of the field or to indicate that a field is
X
)
':! a primary key. The option field can also be used to indicate that a file is to be stored in a specific
:; structure such as a B+ tree or a heap.
)
1,
::‘ The TYPES section is used to indicate the data types of fields. GENESIS includes six basic
)
)
2 data types, CHAR, BYTE, INT, SHORT, FLOAT, and DOUBLE. In addition to these basic types,
;"': GENESIS also includes ARRAY, RPG (repeating group), and structure types. A repeating group X
:|‘]
"’: may be preallocated, bounded, or unbounded. Preallocated and bounded repeating groups have a '
;
¥
i+ maximum number of elements they can contain. The maximum for preallocated repeating groups is '
-:: indicated by the structure “< maximum >" and for bounded repeating groups by “(maximum)”.
[-
: A bounded repeating group only uses the amount of space required for the current number of {
oS \
LN]
! .. elements. A preallocated repeating group sets aside enough space for the maximum number of
.. Q_,_
. i e elements even if there are currently fewer than the maximum number of elements. If the definition
)
s of a repeating group does not specify a maximum size, then it is considered to be an unbounded
"
;!. repeating group and may contain any number of elements. An example of each type of repeating
2 group is given below:
i
: |
:: RPG<5> of INT is a preallocated RPG with a maximum of 5 elements. g
* RPG(10) of INT is a bounded RPG with a maximum of 10 elements.
X
™
'
:;' RPG of INT is an unbound RPG with an unlimited number of elements.
I
R
“ The GENESIS DDL compiler uses the schema to build the Fdt which is used at run time to
K access fields within the records. Figure 22 from Smith [27, page 26] shows the Fdt for the sample J
n,
;y‘ schema in Figure 21. The following paragraphs describe the structure of the Fdt.
%
" w
)
D)
“ 2
L)
&3 {
e
»

"-‘I‘- !’o % l‘l.- " . o l,l "'f < f‘f~f . ’l. .'

W W W W o v A &l - LA - - - - L] - - - --‘-." -"-\' ., ® q
A P AN ..'u'..‘ .-I -‘-.- \ ‘ *\ ~\ v '\ S

a0 fat g0 ot eV g2t gt a¥ ta® da< e SV e PYEp—y) 3¢ 8- aih ot

N Wn Wy W Ay - " " W 'Y, - Aall by C
-.

\

1:"

¢

o)

,‘(‘ ‘.}

[

SR

2

£

4

M}

5

::' ‘l *** field definition table ***

iy ind flags type bdl bd2 bd3 off len fstcld numch name
) o 0 DB o o o0 0o 0 1 2 example
l:‘: 1 0 FILE 0 0 0 0 O 14 5 employees
:c: 2 0 FILE 0 0] 0O o 11 3 strange
oy 3 0 CHAR 0 0 0 0 1 0 0 sys()

- 4 0 ARR1 20 0 0 o0 20 3 1 street
i 5 0 ARRI 30 0 0 20 30 3 1 citystate
- 6 0 INT 0 0 0 5 4 0 0 zip

(N 7 2 ATRC 0 0 0 2 52 4 3 sys2

$\ 8 0 INT 0 0 0 2 4 0 0 node.d
- 9 0 RPG 1 1 0 8 0 19 1 left

) . 10 0 RPG 1 1 0 8 o0 2 1 right

- oy 11 0 ARR3Z 2 2 2 6 0 21 1 threeD.addr
e 12 0 RPG 0 4 0o -2 o0 22 1 lots.of.ints
o 13 0 STRC 0 0 0 4 0 8 3 binary.tree
x> 14 0 ARRl 20 0 0 2 20 3 1 empname
o 15 1 INT 0 0 0 22 4 0 0 emp_num
Wy 16 2 STRC 0 0 0 26 54 4 3 emp.addr
- 17 0 RPG 0 -1 0 82 0 7 1 prev.addresses
. 18 2 FLT 0 0 0 -80 4 0 0 curr_wage
b 19 0 STRC 0 0 0 -4 0 8 3 sys3
5: 20 0 STRC 0 0 0 -4 0 8 3 sysd

21 0 RPG 0 -1 0 -2 0 7 1 sys5
e 22 0 RPG 0 -1 0 -4 0 23 1 sys6

: 23 0 INT o o0 o0 -2 4 0 0 sys?
.3:::

.:: Figure 22. Field definition table (Fdt) of Sample Schema [28, page 26)
:

L.

) »

5

’%

t £2%5

f:‘. N

wy

2 30

A

I‘.

)

'-F‘l

\

o T e N N T N N Ay S S NN TR

P07 NaR $a8 Bog AR EAE NS 4at VAR Uap b B A et R R 00" 0 0 a0 e 800 28 4" A "8 4.2 804 218 ats 0t a'h ath g% ats ¥R gie gy} oNe" LA LALLL AL S S0 W,
e,
.A
. £
.
l‘:
'l
. 4
!fel{:p Index Column. The index column in the Fdt is an index to the row number of the table. The ;
h .
name of the database always occurs in row 0. The name of the first file always occurs in row 1. T
(\
St
All the children of a field will be grouped together in consecutive rows in the table. However, ':f
"
o
the children of a field do not have to occur directly after the parent row in the table. The ':0.
)
children of repeating groups and arrays are listed in the table as a single row which defines o
the type.)f "
o
Flags Column. The flags column indicates which options have been set for the element in a row. 2]
]
An option is represented as a binary bit in the flags entry.]
o]
s
Type Column. The type column defines the element type. An entry in this column may be one ':':
L
of the following 13 types: ::?
]
ARRI1 - one dimensional array DBLE - double precession float .
s
ARR?2 - two dimensional array FILE - file ~
ARRS3 - three dimensional array FLOAT - floating point ';
"'.
k i BYTE - byte INT - integer g
o
CHAR - character RPG repeating group "f
FILE - file STRC - structure N
DB - database .i
'
Bounds Columns. The bdl, bd2, and bd3 columns specify the bounds of repeating groups and "'
~
LSt
arrays. For repeating groups, the value in bdl is the lower bound and the value in bd2 is :
the upper bound. An unbounded repeating group is indicated by the value -1. For arrays,
bd1 specifies the size of the first array dimension, bd2 specifies the size of the second array)
¢
dimension, and bd3 specifies the size of the third array dimension. A one dimensional array }..)
Ph\.
will have a zero in bd2 and bd3.
Yy
)
Offset Column. The offset column specifies the offset of the current field from its parent field. ::
=9
The offset to a specific field in the record is determined at run time by starting at the first field N
s in the record and calculating offsets to successive children until the specified field is found.)
IF‘JT
al e
W
\.i‘
N
~

. A P G % Y . L T T e T T R e e e R L S I N S SR T AT I T BRI T V%
BOAC AL ORGSO (0N Y e AN AL WM I N N PR NI A A AN LN N X

"’ Q“ .k,l.. - ¥ ~. . Ai"ll 8 .'“‘. *l ‘ ‘l‘ q - .~. ~ ." [) y $ i) ﬁ.‘-- \.l\.\.

@ Since the offset to a given field may vary from record to record, the Fdt must contain the
offset from the parent field and not the offset from the beginning of the record. The offsets
in the Fdt are given in terms of bytes. If the offset to the field is not fixed, then the offset
column contains a pointer to the offset, which is indicated by a negative number in the offset

column.

Length Column. The length column specifies the length in bytes of the current field. If a field
is composed of subfields, then the length is the total length of all subfields. If there is meta-
data associated with the field, then the length includes the length of the meta-data. The Fdt
contains a zero in the length column for variable length fields because the length of a variable

length field cannot be determined until run time.

First Child Column. If an element in the Fdt has children, then the entry in the first child

column specifies the location of the first child within the Fdt.

. Number of Children Column. If an element in the Fdt has children, then the number of chil-

dren column specifies how many children the element has.

Name Column. The name column gives the name of the element. If an element was not assigned

a name in the schema, then the DDL compiler generates a name for the element.

4.2 GENESIS Trace Manager

The GENESIS Trace Manager provides the ability to access and update fields in GENESIS
records. The Trace Manager includes traces and trace functions. A trace of a given field within
a record represents the path of nodes within the tree that must be traversed to arrive at the
given field. A trace function is a GENESIS program that is used to manipulate a GENESIS trace

structure or a GENESIS record.

The Trace Manager looks at records as inverted tree structures with the individual fields of

the record as the leaves of the tree. This tree structure may be constructed from the Fdt by using

32

- - - LAY o - .’ '-I.' LIS
IO S T Sy R R PR T gty Vg

Can et a%, %y V. BV 87 B%a $'¢ B'% $0p Mg f'g 8% Ve 300 8V B'p B'p 870 0700 0 8 B AR G Rt Bu0 8.5 LoV 0 ¢ #'9. S §.7 §at ¥ xrd S 0" "

example

\

employees strange

X /

emp.name emp.num emp.addr prev.addresses curr.wage threeD_addr lots_of.ints binary_tree
[A

! \
/ \ 1 \
’ \ ’ \
! \ 1 \
B

street city.state zip addrs sys6

street city.state zip sysT

J
. S Figure 23. Tree Representation of Fdt

the data in the first child column and the number of children column. Figure 23 gives the tree
structure representation of the data in Figure 22. The dashed lines in the tree indicate additional
instances of a repeating group. The children of a node are numbered with integers starting at zero.

For example, emp.name is child(0) of employees, and emp.num is child(1) of employees.

) 4.2.1 Trace Variables. A trace variable is a temporary data structure created by the GEN-
. ESIS Trace Manager to reference fields within a record. Figure 24, taken from Smith [27, page 40],
. shows an example of a trace variable. The trace contains the path that must be navigated to arrive
at the active field. Each node in the path to the active field is represented by an entry in the trace
stack. The active field is pointed to by the bottom entry in the stack. A stack entry within the

trace consists of three parts:

33

\

) , - N
h ? -~ A - - (™ " % LS % B A SV 0% s 5% 5 W ’\ Y e 1%) 3)] M Bl A L
APUAS RO e, LR LN |.. s Y, |.. A OO e WG UMM X5 MO M 8 b .o Pl X W o e o W WO 9 S M M X M N IO MR e i

w 1. The number representing the child in the current path.

2. The index of the field in the Fdt.

3. The offset of the field from the start of the record.

The GENESIS Record Manager accesses or updates a record via a buffer, which is a temporary
storage location in primary memory. A buffer is used to hold a record, or part of a record, that
has been read from secondary storage into primary memory. A trace variable must be associated
with a buffer in order to access the data in the buffer. When a trace is associated with a buffer,
the trace is said to be attached to the buffer. A trace is unattached if it is not associated with a
buffer. When a trace is attached to a buffer containing a record, then the trace can be used to read

or update a field in the record.

A trace which does not point to an existing field is referred to as a virtually positioned trace.

There are two situations that can result in a virtually positioned trace:

>

(o.

1. An unattached trace is virtually positioned because it is not associated with a buffer.

2. If an attached trace points to a valid but nonexistent instance of a repeating group, then it
is virtually positioned. As an example, a trace would be virtually positioned if it pointed to
the fourth element of an unbounded repeating group which currently contained less than four

elements.

In addition to the individual stack entries, a trace variable also contains the following infor-

mation:

Start. If the trace is not attached to a buffer, then this field contains a zero. If the trace is attached

to a bufler, then this field contains the address of the start of the buffer.

Start_level. The start_level field contains the level of the stack that corresponds to the first field
in the buffer. For example, if only the third field of a record is read into the buffer, then the

start_level will point to the stack entry corresponding to the third field of the record. The

ol

34

et A Y
-’S’.",',, [

A%]

o,
-
-

.:\‘:
&

. .) , , R U AR LR . - Pt
LT 0, o e a0 L e, 8, S R T Y T e S A S A e St I G L B A AW \.l'o.l'o.l'!'

S start

start
level

variable
length
level

not

present

level

status

num

fdt
index

offset

stack
pointer

(=n)

,}j

-

R IR SRR R Y

(stack, growing downward)

ARG OGO AN LN R O

35

-

(RS GRRERLY

Figure 24. Representation of a Trace Variable [28, page 40)

b WY,

!-*r -¢ -.l! alP \., o -' VS

v VIR NN N T

IR A

v tyy Vad Vel Y 8,0 08 ¢ag o €a0" 8.0 0.0 0. 2 4t Pat ‘02") g 2% o, 1 Coea ad By - g09 gt - n g RS S 02t 288 ata el ata® s’ 2a® Bt Ba® et gat

s Y
A y
+
$ ‘
) \
¥ s
;
) .
5 iw: trace variable will always contain the entire path to the field, even if only part of the record f
. !
i8 read into the buffer. N
.)
. ‘l
: Variable_length_level. This field contains the stack level that corresponds to the field in the ;
s
[)
. trace after the first variable length field. This field will contain zero if there are no variable :;
. length fields in the stack or if the only variable length field is the last entry in the stack. The ,
) %,
¢
t offset of all fields prior to the variablelength level are fixed. The offset to fields after the ,
{ .
[. . !
¢ variable length level will vary from record to record. ‘:
4
. Not_present_level. This field contains the stack level of the first virtually positioned field in the]
Y :
:: trace. The not_present_level will be set to zero if the trace is not virtually positioned. ::
4 {
')
3 Status. This field contains the status of the trace. The normal value of this field is OKAY. If "
' an error condition has occurred, then this field contains the appropriate error status. The ;
] Jas
: various error values are listed in the figures in Appendix A. N
W
; N
b . Stack_pointer. This field points to the bottom entry in the stack.]
[y 9—‘[‘ "
. 4.-2.2 Trace Functions. Trace functions are GENESIS programs used to manipulate GEN- ::
!
:‘ ESIS traces. There are four types of trace functions: utility functions, navigational functions, A
o
I '
: information functions, and input/output (I/O) functions. Utility functions are used to create and
J
maintain trace variable structures. Navigational functions are used to position a trace to a parent, !
y child or sibling node within the tree. Information fu.\ctions are used to obtain data about a field,
]
such as the field length or number of children. 1/O functions are used to manipulate fields in a ’
> o
o record. !
l' (
4 :
: A trace function may return a normal termination condition or an error termination condition N
P
V .
in the status field of the trace. A list of trace functions, along with there termination conditions is
;‘ provided in the figures in Appendix A. A,
(r
g :
: The following paragraphs provide a description of the GENESIS trace functions. In the A
_ - following descriptions, “t” represents a trace and “buf” represents a buffer. ,
S .
™ \
!
N 36 N
) ~
] ~
) o
N

T AN P N W ¥ v S S SR e P
» 0’0 O ‘A\.}“l...ﬂ.“. XAl "f . ,"’ N

e L e e e e e e

A ST AN N * P UN U . S Yy, v B e ale 4 4% 2 8.0 Lt £, 820 82 0e" bRl B0 oAl Aty g’
i
I
[J
Uy
I'::
";
n".‘
f X
qﬁ' UTILITY FUNCTIONS %
Attach_trace (t, buf, level). This function attaches a trace to a buffer. The level value indicates ::
¢
the leve] of the trace stack at which the trace is attached to the buffer. The level field may ::.:
L '
(]
contain the value ROOT if the entire record is attached, or may contain the value LEAF if Oh
¢
only the active field is attached. W
t = copy-trace (t1). This function obtains a new trace (by calling the get_trace function) and "
N
¥
makes the new trace a copy of t1. If the original trace was attached to a buffer, then the new ®
o
trace will also be attached to the buffer. l:::
0 g‘t
X
Lyt
encode_str (str, buf). This function converts a C string into a GENESIS string. The value “str” ::::'
".‘

is a pointer to the C string. The function places the GENESIS string into the buffer “buf”.
free_trace(t). This function places a trace in the set of available traces.

get_trace. If there are available traces, this function will return one of the available traces. If

(3_ there are no available traces, this function creates a new trace. —~
v
t = init_trace (Fdt_row). This function provides a new trace which is rooted at the element & t
LYy
which is in the row “Fdt_row” of the Fdt. o
[d
print_trace (t, how_.auch). This function prints a copy of a trace onto the standard output. '::i
."
0
The value of “how._much” determines how much information is printed. If “how.much” is .::
»,'
4
set to VERBOSE, then the entire trace is printed. If “how_much” is set to TERSE, then an s W
[
abbreviated output is printed. 9
0
refresh_trace (t). This function aligns a trace by calculating the offsets to each field of the current *
o)
record in the buffer that the trace is attached to. This function is used in the following e
situations: "
7
v,
WY
1. After a trace has been attached to a buffer. ::u
S,
- 2. When a new record is read into the buffer that the trace is attached to. ®
v Y
- J~ ~
37 u.:‘.
s

. - - - - - - - - - - - ."'.
A e N N e S T N A N e

frosttes .k taw e . e 8 g gt A N SR TRt gd §ut B X v g * gat pat v goe aot gt gan ' a%0 ath ata AR "2%e oM Oy . . Ty B

......

o

Sl

0"‘

R

&

.:‘ ot
::: W 3. When a record in a buffer is updated using a trace and there are other traces attached
v to the same buffer, then the other traces should be refreshed.

Hy

Wy

y
:‘ reset_status. This function resets the value in the status field of a trace to OKAY. This function
)
4
‘:'. is used after an error condition has been detected and appropriate action has been taken.
:E'.: set_tr. This function returns a trace to a field corresponding to a complete field name such as
w
:o: file.field subfield.etc.
M
;;::

NAVIGATIONAL FUNCTIONS

0

U
‘::. down (t, n). This function repositions a trace to the nth child of the active field of the trace.
()
2
'}:’a down2 (t, n). This function is similar to down except that it is used for repeating groups.
i field deft (t). This function repositions a trace to its left sibling.
s
b

'_; left (t). This function is similar to field_left except that it is used for repeating groups.
h

B " - field_right. This function repositions a trace to its right sibling.
» 3| right. This function is similar to field_right except that it is used for repeating groups.

N‘
:"’: restore. This function repositions a trace to the level stored in the “start level” of the trace. This
1
’ level represents the level of the trace that is attached to the buffer.

'
."0 N
::. skip(t). This function repositions a trace to its nth sibling.
4
3
e up (t). This function repositions a trace to its parent field.

¥, up2 (t). This function respositions a trace to its grandparent field.

v,
) *: INFORMATION FUNCTIONS

2

‘s

num = count (t). This function returns a count of the number of children of the active field of

[} .p.

'-E- a trace.

,;' index = ft (t). This function returns the index into the Fdt of the active field of a trace.
i o~ In = len (t). This function returns a count of the number of bytes in the active field of a trace.
g &
o
:‘:‘ 38
B

c) .-"~ ‘. r v '

v, o
NNy

A R S A R A A Y MDA A A

Bt

ST AU OO ATV IO AU R e, LSab Sal Vel Vot S of . VAN WU TR N Oy tal 9uh Sab 3o (O R Al 0,0 et 4 0" RN O|'.

x,

! ’
'u
\)
oo
0)
M‘ addr = loc (t). This functions returns the location in main memory of the active field of a trace. ::.
boolean = rwok (t). This function returns the value TRUE if a trace is virtually positioned. y
"
Y
Otherwise, this function returns FALSE. If a trace is virtually positioned, then it cannot read 4':;
3
\
from or write to a field. . 2:
stat = status (t). This function returns the current value of the “status” field of the trace. ‘
it
2
I/0 FUNCTIONS Yy’
)
ad (t, buf). This function is used to add a new element to a repeating group. The trace points .'
.|
to the repeating group, and the buffer contains the new element to be added. ::f
v
dl (t, n). This function is used to delete an element of a repeating group. The nth element of the “A
repeating group pointed to by the trace is deleted. '
,
filed.copy (t1, t2). This function copies the value of the active field of t1, into the active field of .\
i~
o t2. (’l}
e
mk (t, buf). This function is used to set up a buffer to create a new record to be added to the 0,
I
database. The function attaches the trace to the buffer and puts an image of the trace into ‘?
the buffer. ity
a0
rd (t, buf). This function copies the active field of the trace into the buffer. :
v}
rep (t, buf). This function copies the value in the buffer to the active field of the trace. ,:,
»
The characteristics described in this chapter make the GENESIS Record Manager a powerful ~ 5
N
tool for manipulating the fields within a record. The key characteristic of the GENESIS Record N
-
Manager that makes it usefu} for this thesis is that it supports group attributes which are required -~
.-
for nested relations. The next chapter describes an algorithm for converting a nested relational NG
o
algebra query to GENESIS Trace Manager commands. ‘:-
KN
K
-]
& 3
x]
39 O
(4
X

UL TUR AN TUT RN

Aod - ‘ - -~
by -‘l'.]“..'l.t.t\' .ALQ. :

WA AR AR A

V. Algorithm

This chapter describes the design of the algorithm which translates the nested relational alge- i\
e
bra expressions produced by the SQL/NF translator into the GENESIS Trace Manager commands :E:
K]
for executing the query. This chapter is divided into eight sections. Section 5.1 describes design B
L%t
decisions that were made during the development of the algorithm. Section 5.2 defines terms that X
i
will be used in this chapter. Section 5.3 defines a database that will be used in describing the)
algorithm. Section 5.4 describes the structure of nested relational algebra queries. Section 5.5 de- ’
o
scribes intermediate data structures that are used in processing the query. Section 5.6 presents the ':":
ol
i
algorithm. Section 5.7 validates that the algorithm correctly translates nested relational algebra ‘
queries and provides examples of nested relational algebra queries, intermediate data structures, -
w3
and outputs. Section 5.8 analyzes the performance of the algorithm in terms of the order, or Big O, :
i
of the parts of the algorithm. W
'.
L
5.1 Algorithm Design ',
Y
This section describes some of the design decisions made during the development of the t‘;
k%t
algorithm. One of the design decision was to divide the algorithm into two steps. The first step)
".
consists of building an intermediate data structure to represent the query as a parse tree, and the "]
AN}
0
second step consists of processing the intermediate data structure to produce the output of the t :
v
query. The reason for using two steps was to divide the complex process of translation into two)
(‘"
simpler processes. A parse tree was used as an intermediate data structure because it provides a .’,
LS.
concise graphical representation of the query. The parse tree was designed as an n-ary tree because :: ‘
-
the nested relational algebra uses n-ary operators.
9
~
One of the problems faced in this thesis was how to evaluate the algorithm in terms of Y
»
correctness and performance. Because it is not possible to test all possible nested relational algebra .:4
queries a method had to be devised to test a representative sample of queries. The validation .,
,
40 ‘.
)
b
.\ '
Ky
h\
Mt Mt AT AT AT AT ataT o~ mt Rf ™ AN - I oy - - W - v\
o e e Lot YA 5 A ..c 1 . o, ,c.n Ao N O o PR e \. '\ N

&

e e e e A e e D L

g At 5. R e 0.8 So8 Bl 9.8 el Yal tal ‘gl a8 s 2B tat]

approach used in this thesis consisted of two steps. The first step was analysis of nested relational
algebra queries to determine the types of expressions that can occur within a query. The second
step was to show that the algorithm correctly transiates sample nested relational algebra queries

containing each of the types of expressions.

The performance of the algorithm was evaluated by analysing the order, also referred to as
Big O [15], of the algorithm. The approach used in the performance analysis was to determine the
order for each of the parts of the algorithm. This approach has the advantage that is simplifies the
performance analysis and it points out the parts of the algorithm that will limit performance for
queries in general. In addition, this approach simplifies the analysis of a specific query because it
allows each part of the query to be examined to determine its effect on the overall performance of

the query.

The GENESIS Trace Manager has the limitation that it does not include all of the functions
necessary to process a nested relational algebra query. The GENESIS Trace Manager is limited to
manipulating fields within a record located in a buffer in primary memory. The GENESIS Trace

Manager does not itself contain any facilities for the following:

1. Reading a record from a database and putting it into a buffer.

2. Performing boolean (AND, OR, NOT), predicate(<,>,=,<=,>=, <>), or aggregate (SUM,

AVG, MIN, MAX, COUNT) functions.

3. Formatting the printed output of a query.
Because the GENESIS Trace Manager does not include these facilities, the algorithm does not
generate GENESIS commands to perform these functions. The algorithm uses the phrase “read
a record” to indicate that a record should be read from the database into a buffer in memory.

When the GENSIS DBMS is completed, this part of the algorithm needs to be modified to include

the commands for reading a record. The algorithm uses the GENESIS command “print_trace” to

41

S PRI NN N)

i

?.D‘s,l ‘_l‘l‘.l s WA

};%;

L7

b d‘.‘ o~ ‘.. -f»f.' i vl‘ l',\"'.‘!' o, \\-'\f.'d“_.._.r\;“.\._-. ___\r‘__‘\\‘.u\.v e

output data. This command enables the algorithm to output all the data for a query, but does not

format the data into a report.

5.2 Definitions

The description of the algorithm in this chapter will include references to operations involving

traces, buffers and records. In order to clarify these concepts, the following definitions are provided.

A trace is a data structure used to store the path from the root field in the record to the active
field. A buffer is an area in memory used to store a record that has been read in from secondary

storage. In the following discussion, ‘t’ represents a trace, and ‘b’ represents a buffer.
When the phrase “define a trace” is used in the algorithm, it indicates the following GENESIS

commands should be performed:

1. t = init_trace()

2. set_tr(fileid, field_name, t)

3. attach_trace(t, b, level)
The first step gets a new trace, the second step sets the trace to the specified field, and the third
step attaches the trace to a buffer.

When the phrase “read a record” is used in the algorithm, it indicates that a record should be
read into the buflfer associated with a specified trace and the GENESIS command “refresh_trace”
should be performed. The refresh.trace command realigns the trace with respect to the new record

that was read into the buffer.

5.8 Database Description

In the description of the algorithm, numerous examples will be used. These examples will

use the database schema shown in Figure 25. GENESIS represents this database schema as an

42

IO TR, T PG ¢
\ .‘l‘

DATABASE dept._db {
TYPES
PARTSET = {
part ARRAY [2] OF CHAR;

};

PERSON = {
name ARRAY [10] OF CHAR;
do ARRAY [8] OF CHAR;
L

EMPLOYEE = {
empno ARRAY [2] OF CHAR;
name ARRAY [10] OF CHAR;
sal ARRAY [7] OF CHAR;
mgr ARRAY [2] OF CHAR;
children RPG OF PERSON;
k;

FILES

/* department file */

dept {
dno ARRAY (2] OF CHAR,;
dname ARRAY [10] OF CHAR,;
loc ARRAY [10] OF CHAR,;
emp RPG OF EMPLOYEE;
usage RPG OF PARTSET;

|8

/* supply file */

supply {
supplier ARRAY [2] OF CHAR;
supplies RPG OF PARTSET;

}. /* end ,of schema */

Figure 25. Database Schema

inverted tree structure as shown in Figure 26. The sample data that will be used in the examples is
shown in Figure 27. In order to save space in the Supply relation in Figure 27, the parts are listed

separated by commas instead of in the vertical format used in the Department relation.

£
¢
]

%

I LI PR I)
”Ah‘.’&)‘ e ;ﬁaﬁ‘fh‘.

o I N 4.!.(”.J‘.‘I . N LU AR R

(AR (" L 3, el R A i A M
dept._db
dept supply

dno dname loc emp usage supplier supplies
1 L\ [\) \
1 A [\ 1 \

L A} [} \ [\

! \ L \ \

EMPLOYEE PARTSET PARTSET

(nested) (nested) (nested)
empno name sal mgr children Part part

PERSON
(nested)

name dob

Figure 26. Tree Structure Representation of Database

44

-.' '.I

\'\"'N.\.\‘ \.\\ oy "
.78 9. 9, 99,4

!

A g At .,OI._;‘\}-_} '-}\;‘} -

x l'l"‘.
e

« 2

v
-

LOr

>

LA

Ef‘ ;%i-"

¥ x

)

5 @y

£ e

-

L E A S OCEET

u‘l. (]{4’{'{1’{’0.7

4 Y

(XX EE RS

L

'y PERAANL
-.‘-"-‘.,'v"‘-'}'"‘!

4

< .fﬁf‘.f s

K
4

e

R T T TR O O R T T T L S T oy oS Y e L T TR X Ow KR

]
-
-
-
X

-
"

)
i
¢
s
i

S -
—
ot

3
1 (]
&
3
' 1,
t
Department
i "DNO | DNAME ToT EMP USAGE .
B EMPNO NAME SAL MGR CTHILDREN PART)
h [—NXME | DOB |
s 10 Accounting ew York 11 John Smith ,000 15 ~ Jim S5mith 11712781 11
K Mary Smith | 09/03/83 12
N 12 Pat Green $33,000 19 Mary Green 13 LY
Pete Green 21/07/81 14 i
13 Jim Jones ¥35,000 TS Johnt Jones | U2/03/8 15
N Pat Jones 04/05/85 v,
() 20 Finance ew York 21 ~ Bob Harris 843,000 35 Jim Harnis 06/07]71 21 \
} Pam Harris | 08/09/72 22 .
'.c 22 Mary Hill ¥47,000 i Pat Hill T3/12]73 23 ’

' Jerry Hill | 23/11/75 24 W
K 73 Tim Taylor | ¥53,000 75 "Tom Taylor | 19/07]7% 25 ¢
i Eve Taylor 18/06/78 »

o 30 “Shipping Dallas 31 Joe Swartz $25,000 33 Jim Swartz 02/01/85 31

Pam Swartz | 04/03/86 32
- 37 Patty Swan | 326,000 | 39 Frank Swan | 31/01/3 33 5
. Sally Swan | 28/02/86 34)
K. 33 “Terry Bell | ¥52,000 | 39 Clnsy B~ 21555551 35 \
K Sam Bell 22/06/82 Y,
» 40 “Fesearch Dallas 41 Dave Hamil | $39,000 13 Bob Hamil 13710787 41 Y,
¢ Pat Hamil | 18/12/68 42 3
' r ¥) “Ed Lawscn | ¥41,000 13 Jo¢ Cawson | 2470278 43 Ol
/ L Jan Lawson | 12/07/70 44 N

® 43 Tim Miller | 838,000 [} “Bob Miller 2¢]01]7% 45

bt Pat Miller | 14/07/73

; 50 “Personnel | New York 31 Mike Owens | $44,000 14 Bill Owens (3 31

Mary Owens | 19/11/83 52
LY ob Jones | 38,000 113 “Tim Jones qJ0I778 53 (]
: Pam Jones 17/07/77 64 4
: R Fred Tute | $44,000 11 JoRn Tate | 55 i
4 Molly Tute | 09/08/79 !
¢ ¢

‘ -

0 4
\ Supply ;

) S LIES \.

', PART iy
I Titan 31, 32, 33, 34, 35,471,742, 45, 44, 45, 81, 53, , -

1lson 21, 22,23, 24, 25, 41, 42, 43, 44, 45
o R

) N\
3 i
i it

. o4
. Figure 27. Sample Data g
L)
» ,
L "
- ,.
i’ P -1
s
-
e ;
K 'O\f" ‘?
‘ L]
1)
45 \
)
‘s
L)
by
s
A
b

2 L P T T T R T (o L S L L S L S . T O G O AT LY T iy T P
E O e A Ry A e o e et e e e C o e e e P e e e e s

CX ML WU NN Y INPUWPUWL WUWCRICOAUCAR PO O N R K TRVNURIS ROV, Ly’ S0 A% 4" 0 4780 b Bat B9 §ab Bat dat Us' 08 02 ot ' a's a'® 2" N 8.0 4ah 0a8

X

W

‘:'

Al

::: "% 5.4 Structure of a Nested Relational Algebra Query

i: A nested relational algebra query produced by the SQL/NF translator may consist of the
)

t
‘5: following basic operators: projection (PJ), selection (SL), Cartesian product (CP), union (UN),

1
l“
g intersection (IN), difference (DF) and functional evaluation (FN).
:; The PJ statement may contain the following structures:
e
‘ 1. A field name, i.e., a dot expression describing the full path name of a field. For example.
5
W

“dept.emp.name” would refer to the “employee’s name” attribute in the “dept” file.

g

::: 2. A new user supplied name appearing in the query. This can be recognized by the fact that it
:,‘a'
"':'. ends with a colon. For example, in the statement:
1)
Al
5 PJ[department: dept.dname]
)
P the word “department” is a new user supplied name for “dept.dname”.
)
:' 3. A PJ-SL-CP block. For example, the following query contains an inner PJ-SL-CP block:
A% -
Q?r: Pl{dept.name, children: (PJ{dept.emp.children.name]

N SL[dept.name =“Accounting”]
. 3 CP|[dept.emp.children))]

L]

<
“ 4. One of the following functions, UNION, INTERSECTION, MINUS, AVG, MIN, MAX, SUM.
oy COUNT, NEST, UNNEST.
;
M The SL statement may contain the following structures:
)
'
- 1. A predicate which may contain the following operators: ANY, ALL, [IS] IN, NOT IN, EX-
iop®
) ISTS, NOT_EXISTS, CONTAINS, DOES NOT CONTAIN, =, <>,<,>,<=, or >=.
78

o 2. A boolean expression consisting of two or more predicates connected with AND, OR, or NOT.
;i 3. A PJ-SL-CPF block.
.
',:. The CP statement may contain:
\ -

1. File names.

) e
‘i.) "' "C: X
:,0.
) 46
4
Ay

..‘ RN ‘ .-\.-\’ v, _.*-\-n N Y0 .‘,JI'.‘I._J' ‘.r_\-\ PG

9 ‘.-*" .
[} L]
vt

B
. ' ol
't‘."ﬂ,“‘.'l.; SO TR M RO AL .\".I’.‘.\".l.. ALY, '-'!‘-'!‘ulg‘t'- A,

2. A query expression.

The UN function, IN function, and DF function operate on two PJ-SL-CP blocks. UN
produces a relation which contains tuples in either of PJ-SL-CP blocks. IN produces a relation
which contains only tuples that occur in both PJ-SL-CP blocks. DF produces a relation which

contains tuples in the first PJ-SL-CP block that are not in the second PJ-SL-CP block.

The FN statement is used in representing nest expressions and aggregate functions which
occur in the PJ statement. There are three forms of FN statements which are defined as follows
[24, pages 90-91):

FN[F(B);4]R = CP[R, RF(B)]
with F(B) being a single attribute and RF(E) being a relation with only one tuple, specified by
applying F(B) to R.
FN[F(B); A]R = Uscr FN[F(B); ¢] (SL[A = T.A)R)
where A is a set of attributes, t is a tuple of R, and t.A gives the values taken by A in R.
FN[F1(B1), F2(B2), ..., Fn(Bn); A]R = FN[F\(B,); A(FN[F(B1); A)(...Fa(Ba); A]R...))).

The FN operation extends the relation R to include new attributes that correspond to F(B).

An example of an FN statement from [3, page 328) is shown in Figure 28.

5.5 Intermediate Data Structures.

The conversion of a nested relational algebra query into GENESIS commands occurs in two
phases. The first phase consists of representing the query as an inverted tree structure and the
second phase consists of processing the tree structure to produce the query result. This section

describes the tree structure used to represent the query.

There are seven basic types of expressions in nested relational algebra that need to be repre-

sented in the tree structure. These seven expressions are:

47

ENO | SAL [DNO
;l;:; 1 100 1
tfag 2 150 2
:;‘ 3 |13 | 1
o 4 [170 | 2
B 5 [120] 2
6 |160 | 1
;‘w: 7 170 3
B Relation EMP (ENO, SAL, DNO)
bt
9% ENO | SAL | DNO | AVG(SAL)
1 [100 | 1 130
o 2 [150} 2 135
;.:'. 3 130 1 130
‘;": 4 170 2 170
,n:: 5 120 2 135
N 6 | 160 | 1 130
' 7 10| 3 170
"_: Relation Produced as result of FN[AVG(SAL), DNO] EMP
-

- - 1. PJ-SL-CP block
P
Lt 2. Set operator expressions involving (UN, IN, DF)
N L]
[
el 3. Predicate expressions involving (=, <,>,<=,>=,<>, CONTAINS, BETWEEN AND, IN,
e EXISTS)
‘W
‘::: N 4. Boolean expressions involving (AND, OR, NOT)
i
& 5. Aggregate expressions involving (MAX, MIN, AVG, SUM, COUNT)
,,ﬁ\' 6. NEST and UNNEST expressions
\f
o 7. FN expressions
A
The basic tree structure for a PJ-SL-CP block consists of one branch for each of the PJ, SL,
)
3, and CP structures. For example, the query
: 2 PJ[expression A]

SL[expression B]
CP[expression C]

)

1 48

LAY S At

H [) ~ N
L} ’ [] (] () el - r ..l h j g »
OO oy O A X T X X O e oo D Lt D o R D O M i i o

Figure 28. Example of FN Statement

W AW ~ T
AL A A A AIAIA

LY S N RV RS

OGN

MR T R N WU WUV MU LWL AT O YY Uy . 00 a0 gt ean tah ot Nay al bed 58 0.0 405 3% 0 4 L IR

L)
PJ-SL-CP Block ',

PJ SL CcP

expression A expression B expression C

Figure 29. PJ-SL-CP Structure Wy

DF

expression A expression B

Figure 30. DF Structure

would have the structure shown in Figure 29. .

¥
v
If the query contains a set operator (UN, IN, or DF), then the tree contains a node for the A

set operator and a branch for each expression. For example, the expression ;

DF|[(expression A), (expression B))

would have the structure shown in Figure 30. .

A predicate expression is represented by a node for the predicate (=, <, >, <=, >=, <>, CON- e

TAINS, BETWEEN AND, IN, EXISTS) and a branch for each operand. The EXISTS predicate),

- has only one operand, the BETWEEN AND predicate has three operands, and the other predicates 1
v‘q;- B .‘|

49
n
P

W WP PR - - AW ol W WA W f < A'V-..
PN S A l..l. !lg'1 _. . ..t..‘.q. ‘ .'l'..\ . .u.o -0.-..‘-'!. A -.

NN I TININTIN S (e

U IR TN R R T TR W O OO P RSP X P X RN A 18" 200" 2% be* et a92 ata’ 42 aln’

S L L LN

L) %

EXISTS

% e e d

-
-
Ve
~

>
A

expression A Y,

Figure 31. EXISTS Structure ﬁ

expression A expression B
- Figure 32. Less Than Structure "

each have two operands. The following examples show the tree structure for predicates with one,

two, and three operands. The predicate
EXISTS(expression A) :
e

")

M)

would have the structure shown in Figure 31.

The predicate
(expression A) < (expression B) r

would have the structure shown in Figure 32. o™

The predicate :

m (expression A) BETWEEN (expression B} AND (expression C) 4

¢

\

50 ..‘::

\‘\

N

. oA - . . . - R - A AAAAVE~A RN - - AATAPAT S T B NN

i h) 3 A A D T e I i T v .ol\.'-.‘ao. A ALON O A UM N SO O o Oalien O, 9, B,

LA AR RS TR VA, i, Vol g AR U LTA TR RN B B Y U)

BETWEEN

» expression A AND

expression B expression C

i Figure 33. BETWEEN Structure

AND

— -

Q-.-r expression A expression B

':: Figure 34. AND Structure

@ would have the structure shown in Figure 33.

K

) A boolean expression is represented by a node for the boolean operator (AND, OR, NOT)
:l‘ and a branch for each operand. For example, the expression

(expression A) AND (expression B)

would be represented by the structure shown in Figure 34.
An aggregate expression is represented by a node for the aggregate operator (MAX, MIN,
e AVG, SUM, COUNT) and a branch for the operator. For example, the expression ;

e AVG(expression A)

N 51

e "y T
LY. .4

'..‘_' 'y -- - '\ ,\._v'- NP e T L T g T e A e N A

)
) R " .
"'u..'« ..'l..l M MK AU -’ \

%
:":.::
Wy
.
O
&3 n
)
AVG 3
I‘.
o
B
3
expression A W
d
. <
Figure 35. AVG Structure et
%
]
"(
X
(
0
P
new-name '
¢
1!
4,8
»
't
NEST %)
1‘. \
t
‘..:
?r attribute 1 attribute 2 gy
P
h
Figure 36. NEST Structure o
e
)
is represented by the structure shown in Figure 35. 't‘
.
i
A NEST expression is represented by a node for the NEST operator, a node for the name of ':}
)
the new nested structure, and a branch for each attribute. For example the expression o
]
new-name: NEST(attribute 1, attribute 2) by
would be represented by the structure shown in Figure 36. A
-~
An UNNEST expression is represented by a node for the UNNEST operator, a node for the ey
-:_\
name of the UNNEST structure, and a branch for each attribute. For example, the expression]
w
o
,‘_:.1.; new-name: UNNEST (attribute 1, attribute 2, attribute 3) :
l~ T
9 L
™]
52 4
W,
NG
~ w
l\:.
-
‘-"z' .q.l. -) .)\..‘C‘l '.c“.t"‘. I.A“c L) ,l". --N.. n‘l'l ‘ o.l .-.-\.\.\- \' "y \."'\' ".N' "!.-' '.‘!“."'\‘ \(\-\' A '\ .\‘-"".

;
‘
:
4

R

> o)

: CxNR

2

new-name !

UNNEST

attribute 1 attribute 2 attribute 3 »

Figure 37. UNNEST Structure Y

would be represented by the structure shown in Figure 37. 5 .
4

An FN expression is represented by a node for the FN operator, a node for the new name ,

associated with the FN expression and a node for each operator in the expression. For example,

C:!, the expression

FN[new name: expression A; expression B]

would be represented by the structure shown in Figure 38.

An actual query would involve a combination of the structures described above. For example oy

the query

PJ[dept.name, dept.loc) A
SL [(dept.loc = “Chicago”) AND (dept.usage CONTAINS X

dept.usage part = 12)] X
CP|dept] e

would be represented by the structure shown in Figure 39.

B2 T)
I.‘v’.“{'

v

%D

53

LT

[y
A

* ' ("3 ¥, T PN G TR PR (MM (M) 7 '\ ' P
SR S L T T T 0 T TN NI R L RN N 1,000 N M L T N R 0 G Nk

new-name

N\

expressoin A expression B

Figure 38. FN Structure

PJ-SL-CP Block

Pl S

dept

dept.name y\

CONTAINS

/\

deptloc Chicago dept.usage =

a

dept.usage.part

Figure 39. Query Structure

1 Wy I [d 3 - . .
G 2 e e Gt s L o 1 A o A L a0 S e, T e R A A i i L W SRt

L0

n
i:' &\‘ 5.6 Algorithm

a":; This section describes the algoritkix for converting nested relacional algebra queries to GENE-

R

::: SIS Trace Manager commands. The algorithm to convert the nested relational algebra to GENESIS

!' a
) g
|:' commands consists of two phases. The first phase is building an intermediate data structure to)
:i‘ represent the query and the second phase processes the data structure to produce the output of
W

i the query. The first phase consists of the following steps:

K 1. For the main PJ-SL-CP block in the query, define a tree structure containing a branch for i
:;'.' each of the PJ, SL, and CP clauses.
R) !
! ;
X 2. For each structure in the project statement ;
\ U
- 2a. If the structure is a simple field name, then add a branch to the PJ node and define a
'. 2

")
i trace PJ_ti where ‘i’ is an index starting at one. For example, if the project statement '
A .

:-" is: :

’ i

; L.
u PJ dept.name dept.loc
i 3 .
"{‘; then the following traces would be defined: :
Ve
. PJ_t1 = a trace pointing to [dept.name]
hs)
R PJ_t2 = a trace pointing to [dept.loc]
b
'h 2b. If the structure is a new user supplied name for a relation, then add a branch to the PJ
i
4 node for the new name and add a branch to the new name node for each field in the

- i
::- new name. Also, define a trace PJ_ti for each field in the relation as in 2a above. \
:'_: 2¢. If the structure is a NEST expression, then it will be preceded by a new user name. To

process the NEST expression, add a node for the new name, add a node to the new name

.l. f
\:'. node for the NEST expression, and add a branch to the NEST node for each field in the \
\. L) 3
)

! NEST expression. Also, define a trace PJ_ti for each field in the NEST expression. If
l' Y

the structure is an UNNEST expression, then add a node for the UNNEST expression

. Py
: g
o
s 5
o
(‘ i L
e |
\". » r

e 0 AT Y N 197 e Y 0" " IN" ¥ LWL LW A P P W W W P W W Y W e AT W Pl
AL .‘l‘-‘t'- AL ANATN !!l.n Wy o8y vl oyl v."\‘. s, .OA N '\ﬂJ‘ (N * 0 *" "y, * - A G SN SN ‘;-‘ > " e, " AN '\ ol

" O S \ ".‘ R YEOCRER O (R “r_ -r_‘.;“-r.‘r_.(%u-_‘ A T ;“f\-". < .«_’r\v..j\q'\ f.\-'._vr_:‘\-b_‘.-\.j TN
& Bt Al ul\ : - 4 A e, Al Bad Dalt AN A A A A T

2d.

2e.

2f.

and add a branch to the UNNEST node for each field in the UNNEST expression. Also,

define a trace PJ_ti for each field in the UNNEST expression.

If the structure is a set operator expression(UN, IN, DF), then add a node for the set
operator and add a branch to the node for each operand of the set cperator. Then

process each operand as in step 1 above.

If the structure is an aggregate expression(AVG, MIN, MAX, SUM, or COUNT), then
define a node for the operator and add a branch to the node for the operand. Then

process each operand as in step 1 above.

If the structure is a PJ-SL-CP block then process it starting in step 1 above.

3. For each structure in the Cartesian product statement:

3a.

3b.

If the structure is a file name, then add a branch to the CP node and define a trace CP_ti,
where ‘1’ is an index starting at one. For example, if the Cartesian product statement

is:
CP dept supply

then the following traces would be defined:

CP_t1 = a trace pointing to [dept]

CP.t2 = » trace pointing to [supply]
If the structure is a PJ-SL-CP block, then it is preceded by a user defined name. Add
a branch to the CP node for the new name, add a node to the new name node for the
PJ-SL-CP block; add PJ, SL, and CP branches to the PJ-SL-CP block node; and process

the PJ-SL-CP block as in step 1 above.

4. For each structure in the select clause:

56

-

.
. v
S e,

e e

ey, 8

VEEILS S

-

%5

iy

i
A

e -

AN

L A
‘o

LA "l." ‘s ' %t

'S 8

S Dl I XA

o e T .

4a. If the structure is a predicate expression then add a node for the predicate, add a branch

to the predicate node for each predicate operand, and process each operand as in step 1

above.

. If the structure is a boolean expression then add a node for the boolean operator, add
a branch to the boolean node for each boolean operand, and process each operand as in

step 1 above.

. If the structure is a PJ-SL-CP block then add a node for the block and process the block

as in step 1 above.

5. If the structure is a set operator expression, then add a node for the set operator, add a

branch to the operator node for each operand, and process each operand as in step 1 above.

6. If the structure is an FN expression, then add a node for the FN operator, add a branch to
the FN node for the new name, add a branch to the new name node for each operand, and

process each operand as in step 1 above.

This completes the first phase of the algorithm. At this stage in the algorithm a tree structure
has been defined to represent the query and a trace has been assigned to each leaf in the tree that
represents a field name. Each leaf of the PJ branch of the tree is a field name (i.e. dept.dname).

Each leaf of the SL branch is either a field name or a constant (i.e. 12, “Chicago™). Each leaf of

the CP branch is a relation name.

The second phase of the algorithm is processing the tree structure to produce the query result.

This consists of the following steps:

The root node of the tree will be either a set operator or a PJ-SL-CP block. If the root node
of the tree is set operator, then perform algorithm Set_op_process. If the root node is a PJ-SL-CP

block, then perform algorithm PJ-SL-CP_process.

The Set_op_process consists of the following steps:

Aty

0
oy

[4

=
LW
%
Y,
o® | -
‘ ?{Q{) 1. Process each branch of the set operator node using PJ-SL-CP _process. 2
2. If the set operator is UN, then print tuples that are in the results of either of the PJ-SL-CP .:"

Y

blocks. If the set operator is DF, then print tuples that are in the first PJ-SL-CP block but)
:u..
not in the second PJ-SL-CP block. If the set operator is IN, then print tuples that are in the -~
results of both of the PJ-SL-CP blocks. S,
g
The PJ-SL-CP_process consists of the following steps: G

1. For each branch of the CP node, create a buffer CP_bi, where ‘i’ is an index starting at one.
2. Read the first record of each CP branch into the corresponding buffer. ‘,‘*

J

3. Process the SL branch by performing SL_process.

’l. %‘h

4. If the SL node has been assigned a value of false by SL_process, then the records currently

5
£

in the CP buffers do not meet the criteria in the SL branch and none of the traces in the PJ

=
‘2 J
branch are printed. If the SL node has been assigned a value of true, then perform PJ _process. Wy
‘s S
Lo : .)
- 5. If there are more records in the database, then read the next record into the CP buffer and e
b
N
)
return to step 3. :g. y
e
The goal of the SL_process is to determine if the records currently in the CP buffers meet -.
the criteria in the SL branch of the query. The SL_process will result in a value of true if all the '.'_:_
Ny
IS
criteria in the SL_branch are met, and will result in a value of false if any of the criteria are not S

-
r)

-7

met. This process starts at the lower levels of the SL branch and works up to the top of the SL

[
¥\
branch because the truth value of the lower nodes must be determined before the truth value of oA
N
L)
A
the upper nodes can be determined. The SL._process consists of the following steps: r':.
3
e
1. Each leaf node of the SL branch is either a field name or a constant. For each leaf node that
\]
e
is a field name: 0
'l
o
'.\ X
1a. Attach the node’s trace to the CP buffer corresponding to the first part of the field name. N

~x 1b. Refresh the trace.

58

.y » . e At At A e e e . -
Wﬂﬁ}“s N O A A A TN S A AT\ N y 7 ’oe

P R) e e

PR

"o

poA

e N g ; ata’ . R T YOy
pe e g G a0 Y ok a0 Latadt UL VA U 3741 0an 4B g0a", 19 4% 0% 0'p, ¢ W INF AN o g ?

@ 2. Starting at the lowest level of the SL branch, process each predicate and boolean expression
by comparing the operands in the expression using the operator in the predicate or boolean
node. If the expression evaluates to true, then assign a value of true to the predicate or
boolean node. If the expression evaluates to false, then assign a value of false to the node.

3. Repeat the process in step 2 for each successive level of the SL branch until the SL node has

been assigned a value of true or false.

The goal of the PJ_process is to produce as output a relation containing all the fields in the PJ
branches. The PJ branches may consist of field names or new user supplied names. The PJ_process

consists of performing the following steps for each branch of the PJ node:
1. If the branch consists of a field name, then perform the following steps:

la. Attach the field’s trace to the corresponding CP buffer

1b. Refresh the trace

~

.

lc. Perform Print_trace
2. If the branch consists of a new name, then perform New_name_process.
The New_name_process consists of the following steps:
1. If the new name consists of a field name:

la. Attach the field’s trace to the corresponding CP buffer
1b. Refresh the trace

lc. Perform Print.trace

2. If the new name consists of an aggregate function, then perform Aggregate_process.
3. If the new name consists of a PJ-SL-CP block then perform PJ-SL-CP_process.

4. If the new name consists of a set operator, then perform Set_op_process.

59

o A A e R 3 A A A R RN D S AR N

w 5. If the new name consists of a NEST operator, then perform NEST.process.

6. If the new name consists of an UNNEST operator, then perform UNNEST _process.

The goal of the Aggregate_process is to evaluate and output the result of an aggregate expres-
sion. An aggregate expression consists of an aggregate function (AVE, MIN, MAX, SUM, COUNT)
and an operand. The operand may be a field name, or a user supplied name. The Aggregate_process

consists of the following steps:

1. If the operand is a field name, then perform the following steps:

1a. Attach the trace to the corresponding CP buffer

1b. Read the first record into the CP buffer
lc. Refresh the trace

1d. Perform the aggregate function on the field pointed to by the trace.

; le. If there are more records, then read the next record into the CP buffer and return to
g
step lc.

2. If the operand is a user supplied name, then perform New_name_process and go back to step 1.

The goal of NEST _process is to create a new relation corresponding to the NEST expression.

The NEST _process consists of the following steps:

1. Create a list to keep track of which records have been processed.
2. Read the first record into the CP buffers .

3. Save a pointer to the current record and add this record number to the list of records that

have been processed.
4. Attach the traces to the CP buffers.
5. Refresh the traces.

"E? 6. Save the values of the fields pointed to by each trace in the expression.

60

WP RNR N AR ARG RGNt o sl r

\)
% 7. If the values that are currently pointed to by all non-NEST traces match the values saved in . a:

step 6, then for each trace in the NEST expression perform Print_trace and add this record

number to the list of records that have been processed. :‘.:
(W
Ly
8. If there are more records, then read the next record into the CP buffers, refresh the traces :::‘

and return to step 7. N
i
o
9. Restore the pointers saved in step 3. ~J
M
10. If there are more records, then find the next record that is not in the list of processed records, :
read the record into the CP buffers and return to step 3. :::(
o
. (N
The goal of UNNEST process is to create a new relation corresponding to the UNNEST N
3

expression. The UNNEST _process consists of the following steps:

4
o
1. Read the first record into the CP buffers. ::.‘
Y
i‘.
-~ 2. Attach the traces to the CP buffers. 'f:
Q. »
’ 3. Refresh the traces. ::0
l..:

)
4. For each trace in the expression perform Print_trace. ‘,:i
W,
LY)

5. If there are more nested values in the NEST expression, then update the traces in the NEST

attributes and for each trace in the expression, perform Print.trace. :’ Y
|
A
6. If there are more records, then read the next record into the CP buffers and return to step 2. ' \

y

The Print.trace_process uses the count(t) function which returns the number of children of v

4

b i
the field pointed to by trace t. If the count is equal to zero, then there are no children and only the o
P

b

“

field itself is printed. If the count is greater than zero, then the field has children (i.e., it is a nested

structure), and each child needs to be printed. In this case, a trace is established for each child N

ey
g

field. If there is more than one level of nesting, then the above procedure is applied recursively

N
1 until all children have been printed. The Print_trace_process consists of the following steps: : ’
% 3
; h
¢
61 W
o
']
)
o,

' o (PO (W™ AT RV W W S I LYY LT LTS RS s LR, LR
‘n'.‘\‘?‘l'. c‘,‘l'.'l'!.l'!‘l. e .s'?'n“'n."l". W8, O'!'l.-» « I'.-'l‘. W, l.'....a l'?'l'. LR /O U U S g™) 0'.‘.’- UG TR CA R AU A A RS n‘l‘o IR AN AN !.‘p W ol '?

PR T T VN U ML RV LUNL U VU S UWU STV RN AR AX N W XN Ky e Rlathen g0 gt Aty gl s Ral Tl el AR 000 8.0 dad 4 0V 0% a1 ate"giaan

. N
»‘.,0 w 1. Determine if the trace is an atomic attribute or a nested attribute by using the GENESIS

statement.
children = count(t)
.t 2. If the trace bas no children, then it is an atomic attribute and is printed.
o 3. If the trace has children it is a nested attribute, and a trace needs to be defined for each child.
i) To define new traces for the nested attribute, perform the following steps for each child:
3a. t_new = copy-trace(t)
3b. down (t_new, n)
A Statement 3a returns a new trace variable “t_new” which is attached to the same buffer as t

;l\‘.:; and points to the same field. In statement 3b, n is the child number, with n=0 for the first

i child. Statement 3b repositions “t_new” to point to its nth child.

PLN 4. Because it is possible for there to be multiple levels of nesting, each of the new traces created

. wov . . .
» in step 3 must be processed starting in step 1 above.

W 5.7 Validation

This section validates that the algorithm correctly evaluates nested relational algebra queries.
K ".': The approach used for validation is to divide query expressions into groups, and show that the
algorithm works correctly for a sample case from each group. This validation procedure uses the

we database schema described in Section 5.3 and the examples provided at the end of this section.

" There are seven basic operators that may occur within a nested relational algebra query.

These operators are projection (PJ), selection (SL), Cartesian product (CP), union (UN), in-
g tersection (IN), diflerence (DF), and functional evaluation (FN). In addition to these basic op-
erators, nested relational algebra queries may include expressions involving predicate operators

(=,<,>,<=,>=,<>, CONTAINS, BETWEEN AND, IN, EXISTS), boolean operators (AND,

! 62

LT R 14 WAL B 1 W W o W Wy W, ‘Y P Lt U S N TS TG IR »
Qt‘t‘lul'ol.vl‘.l‘l.u."l. l. *I(N ilq '»‘!', a (Y .'l'..'-. B -'l‘!‘ . "y ‘ !'!'c. "‘d \ A' \ -~ \\ BN ‘N

[Nl AL B e

) (NG N

PN LW US MUY PR DN UR TRV AT N3 o U W PR I TN T ORI AR R A} B2 ba' 00 gt cég gyt Qa1 gt e J : X
sy
e
B
)
.:,:
e
;t: @ OR, NOT), aggregate operators (MIN, MAX, AVG, SUM, COUNT), the NEST operator, and the
]
W UNNEST operator. These operators can be used in a nested relational algebra query to form seven
.I
::': types of expressions:
"' *
!
“l
AN 1. PJ-SL-CP block
N,
::": 2. Set operator expressions involving (UN, IN, DF)
&
" 3. Predicate expressions involving (=, <,>,<=,>=,<>, CONTAINS, BETWEEN AND, IN,
A
X
EXISTS)
Se
..:: 4. Boolean expressions involving (AND, OR, NOT)
W
st
:,:‘ 5. Aggregate expressions involving (MAX, MIN, AVG, SUM, COUNT)
'.'l
N 6. NEST and UNNEST expressions
W
4ty .
:.:' 7. FN expressions
he
A
0
) (“- In order to validate the algorithm, example nested relational algebra queries will be described
y g -
: n that include samples of each type of expression, and it will be shown that the algorithm produces
~
: A the correct intermediate data structure and query result for each example. Table 40 provides a
‘3‘ cross-reference for each example and the types of expressions involved in the example. The table
é shows that each of the types of expressions is represented in at least one of the examples. Each
1
::‘l example nested relational algebra query shows the intermediate data structure and query result
N .
B\
1y produced by the algorithm for the sample database schema in Section 5.3. Examination of the
',i examples shows that the algorithm generates the correct intermediate data structure and query
)
:l 3 result for each example. The examples validate that the algorithm works correctly for queries that
Y, include each of the types of expressions.
Wy
& Example 1:
P
o
" PJ [dept.dno, dept.dname, dept.loc]
CP [dept]
E &R
.:.:.
W 63
' [
\:"
My
WYy
b

L .0‘ “ .l . X ."‘ " ‘i () "t » "l'.‘-. 0"" 0‘. AAIAA ’O . ‘ '. 'o 9, !..f' W '- \ .- , N ' ‘ ™ , &

.3

WA
Mg

DA LA
0'31 ». 'u..l'!.!n OSSO

LA AMAATIA LRI R 9 Yol

e

3
¥

dept.dno

a Vel Vud 9ad V2@ ad Hep NS

EXAMPLE 112314 |5]6]7]8
PISLCP bk [X X XXX [X[X]X
Set operator

Predicate operator X X X
Boolean operator X

Aggregate operator X XX
| NEST operator X

UNNEST operator [| X]
FN operator XXX XX

Figure 40. Cross-reference of Operators used in Examples.

Pl

dept.dname

PJ-SL-CP Block

dept.loc

Figure 41. Example 1 Structure

cp

dept

The intermediate data structure for this query is shown in Figure 41. The output of the query

is shown in Figure 42.

Example 2:

PJ [dept.dname, dept.emp.name, dept.emp.sal]

SL [dept.emp.sal > $40,000 AND dept.dname = “Finance”]

CP [dept]

The intermediate data structure for this query is shown in Figure 43. The output of the query

is shown in Figure 44.

(]

e,

S “".‘,% Ny - "p W)

“r».l» oo & Ts 9% 1 Vo Bta RO eV RO a0 el tal el vaf Sa¥ " VIR OOV U L tal et 0 d0't 0’ U VR YUV LWL WY WU U WIWUWR IR TR WY
?

e DNO | DNAME LOC
.'\:' 10 | Accounting | New York
N 20 Finance | New York
n 30 | Shipping | Dallas
h 40 Research Dallas
" 50 Personnel | New York

Figure 42. Example 1 Output

: PJ-SL-CP Block

Pl S
¥
0
R
R

dept.dname dept.emp.name dept.emp.sal AND dept

- dept.emp.sal $40,000 dept.name Finance

Figure 43. Example 2 Structure

;] AN *
NN AL SIS SO E ST TN D DA 0 T SN W T T S,

R

T ATl (a SR AN

v .) e i~
I T a0 B M T I g 00 T o 12 0 oM 0 0 T g T 0 gt T b B, 0 P N M T o Y i Y

DNAME NAME SAL

Finance | Bob Harris | $43,000
Mary Hill | $47,000
Tim Taylor | $53,000

Figure 44. Example 2 Output

Example 3:

PJ [dept.dname, AVERAGE-SAL: AVG(dept.emp.sal)]
FN [AVERAGE-SAL:AVG(dept.emp sal; ¢)]
CP [dept]

The intermediate data structure for this query is shown in Figure 45. The output of the query

is shown in Figure 46.

Example 4:

PJ [dept.loc, LOC-INFO: NEST(dept.dno, dept.dname)]
FN [LOC-INFO: NEST(dept.dno, dept.dname)]
CP [dept]

The intermediate data structure for this query is shown in Figure 47. The output of the query

is shown in Figure 48.

Example 5:

PJ [dept.emp.name, CHILD: UNNEST(dept.emp.children.name
dept.emp.children.dob)]
FN [CHILD: UNNEST(dept.emp.children.name
dept.emp.children.dob)]
SL [dept.loc = “Dallas”]
CP [dept]

The intermediate data structure for this query is shown in Figure 49. The output of the query

is shown in Figure 50.

Example 6:
PJ [dept.dname, PERSONNEL: (PJ [dept.emp.empno, dept.emp.name]

CP [dept.emp]
CP [dept)

66

o o . a
S K]

e

Sy

-
-

FW W LT,

a3
..
-

-
-‘-

Pl

N\

dept.dname FN

dept.emp.sal

PJ-SL-CP Block

Figure 45. Example 3 Structure

DNAME

AVERAGE-SAL

Accounting

$32,667

Finance

$47,667

Shipping

$35,333

Research

$38,667

Personnel

$42,000

Figure 46. Example 3 Output

i\ l.'.l.‘fl»‘,l..'l..’l.“l.‘.l“‘l‘.'l“’ IO .'.t.'.l.l'.l,f'i."_l.‘. ."."'!0-‘.0."0. .0.‘..0."!-"h"h"b."o.0!|, |?"o.0'-."3.."-3!%!0'0,"!J'v- Yoady, ?"M'

" e
DR OO e e Ty oo

Ty 870 872 062 8% $%2 4% V2 00a 840 aVa ata Blaate a¥a",
L () h ‘

PRy
IS

¥

)

ol
EEES

bt
]

i
U
s

N

’.;!l
N
t 4"

9,008,100 00 e L 1 T L S A Y,

POV A TR OV AN VTR SO mTY, '\'«me'vﬂmwrnwmwntmmuuﬁ

PJ-SL-CP Block

PJ CP
dept.loc FN
dept
LOC-INFO
NEST

A\

dept.dno dept.dname

Figure 47. Example 4 Structure

LOC LOC-INFO
DNO { DNAME
New York | 10 | Accounting

20 Finance

50 Personnel
Dallas 30 Shipping

40 Research

Figure 48. Example 4 Output

68

Tl i A T S U R R A GLURG U GG A i b AV AN A A PG

PJ-SL-CP Block

dept.emp.name

dept.loc Dallas

UNNEST

s .{.

Ly

dept.emp.children.name dept.emp.children.dob

Figure 49. Example 5 Structure

i A Akt te

'-‘...¢.u,.'.'o'v'n‘.‘ " aVevuly’ P ali a0y’ W WL W U W M W M P ot R W Wy Antalat V' g’ Ua® Uat 4ot ¥ Ba° Se® 0 Sa® & s g8 §o® - 820 440 0
b
4
e
s
GO
R
¢
= EMP-NAME | CHILD-NAME | _DOB
"W Joe Swartz Jim Swartz 02/01/85
W Joe Swartz Pam Swartz | 04/03/86
fn::: Patty Swan Frank Swan [31/01/84
::I:. Patty Swan Sally Swan 28/02/86
:u:.' Terry Bell Cindy Bell 24/05/81
e Terry Bell Sam Bell 22/06/82
e Dave Hamil Bob Hamil 13/10/67
4 A Dave Hamil Pat Hamil 18/12/68
. Ed Lawson Joe Lawson | 24/02/68
' Ed Lawson Jan Lawson | 12/07/70
! Tim Miller | Bob Miller | 27/01/72

) Tim Miller Pat Miller 14/07/73
;:;'; Figure 50. Example 5 Output
W
e
‘;:::‘ The intermediate data structure for this query is shown in Figure 51. The output of the query
;.. : is shown in Figure 52.
b ::-
Qs Example T:
AN
f‘.‘Q ,ve UN [(PJ [dept.dno, dept.dname, dept.loc]
- - SL [MIN-SAL: MIN(dept.emp.sal) < $30,000]
N FN [MIN-SAL: MIN(dept.emp.sal) < $30,000]

ey CP [dept])
Wy (PJ [dept.dno, dept.dname, dept.loc]
e SL [MAX-SAL: MAX(dept.emp.sal) > $50,000]
Ly FN [MAX-SAL: MAX(dept.emp.sal) > $50,000]

CP [dept])]

.
'.l.. » The intermediate data structure for this query is shown in Figure 53. The output of the query

‘-

N is shown in Figure 54.
o
R Example 8:

e

-

t: PJ [supply.supplier, SUPPLY-COUNT: COUNT(supply.supplies.part)]

] FN [SUPPLY-COUNT: COUNT(supply.supplies.part)]

CP [supply]

) Ll
Ke The intermediate data structure for this query is shown in Figure 55. The output of the query
!

9 is shown in Figure 56.

L 70

“'I‘A"ngn,"t.l'l.’ 0y, 8 I)'l.f‘o.". 0.'"."&‘ ..'. ‘l .0* v l‘l.‘._l."ﬁ"l, 090 5. iy .l“ "l‘t,,"-."l .v by, \.li o) , 4N, 0':'!' W, l‘ .i » - s % * .c .V Y,

0,020,920 "2t Vot bah da g

- . TN Y
W r Y P B TY

b T T 0e e A0S

PJ-SL-CP Block

dept.dname PERSONNEL

PJ-SL-CP Block

dept.emp.empno dept.emp.name
dept.emp

Figure 51. Example 6 Structure

-

AN S s as e R A S RO

'l'!‘l'- ; J a I‘ !..‘ Wy, ‘o!.':l’l, O.l

s e e e S e i

Sa® 3, W P W Ning W T 00200 V.0 S Vol Pak Vel f Al VAl » ™ T UM o d'a Pe A R
DNAME EMPNO NAME
Accounting 11 John Smith
12 Pat Green
13 Jim Jones
Finance 21 Bob Harris
22 Mary Hill
23 Tim Taylor
Shipping 31 Joe Swartz
32 Patty Swan
33 Terry Bell
Research 41 Dave Hammul
42 Ed Lawson
43 Tim Miller
Personnel 51 Mike Owens
52 Bob Jones
53 Fred Tate

Figure 52. Example 6 Output

72

s
LS

T A A T A S A s

PR T’ M Y

YO ey

UN
PJ-SL-CP Block
Pl SL CP
dept.dno dept.dname deptloc < dept dept.dno dept.dname dept.loc
FN £30,000
MIN-SAL
MIN

dept.emp.sal

Figure 53. Example 7 Structure

73

PJ-SL-CP Block

dept.emp sal

e T R N A A

b2

7

bR N R

T

AL
TR, P Vi)

"‘ ERCPEN PRI PR POSCPUSU IO PO PR " At 80 et Bt B2t Bat £t 0l Ba8" hol ‘Rl ‘R B’ 3 s 8% 8% 6% 3¢ “ale'alia Al gl el _vad o %

DNO | DNAME LOC

¥ 20 Finance | New York

e 30 | Shipping | Dallas

Pl
N

[
.,

" supply.supplier FN

COUNT

W Figure 54. Example 7 Qutput

PJ-SL-CP Block

. - SUPPLY-COUNT

A% supply.supplies.part

5‘0 Figure 55. Example 8 Structure

(SUPPLIER

SUPPLY-COUNT

National

15

» Titan

15

o Wilson

10

Figure 56. Example 8 Output

-
.-
-\

2.4

".:'v-'l..‘l.-'l -’Iu'l‘-.' o .’-.‘ ll..l..~‘ ~ N , 4".,. 1 ,s“.u‘l‘.‘l’xh.h'-) ? -.~. 3 W ™ ‘ PN ."'\. o

74

VU UV U IO

CP

supply

B B N oy tat,ate bia B 892 ava @'a A0a 0'ackie (et a 0'a 8'2,0°0.8 0 e
AR AR A YL NL TN > - “ RN 4,98, Q0 Wl $a8 .0 7at Vel et gl gl vat vad catyt U o 1 g% 4% '4%s 8% 2% 4" YR\ 4 Ul 0'g 8'a 8 a? ¢,

|
;
i
@ 5.8 Performance Analysis ':::
This section analyzes the performance of the algorithm in terms of order of the algorithm, .‘:?
also referred to as Big O [15]. The order of the algorithm is a measure of the time required for the ':':::‘
algorithm to perform a query. The order of the algorithm is determined by analyzing each step of ‘!::(’
the algorithm to find how many times the step must be performed. The time required to perform ::‘::
a query will depend on the specific query and the size of the database. This section will analyze ::
al
the algorithm by determining the order of each of the parts of the algorithm. The time required to ‘:':
perform a query will depend on the number of operators, operands, attributes and tuples involved ":‘(‘
in the query. In general, the number of tuples will be the major factor in determining performance :‘;{:
because there are usually more tuples than operators, operands, and attributes. Another reason :::;:
t at tuples have a larger eflect on performance is that the number of operators, operands, and ::
attributes are constant for a given query and therefore occur as first order terms, whereas the '::?::
number of tuples can occur as higher order terms. Thus, the primary factor in the analysis will be 1':;
Cg_ the number of tuples being processed. q:
The first step in the algorithm is construction of an intermediate data structure. The time :;:
required to construct the intermediate data structure for a query will depend on the number of -:t‘*
nodes in the intermediate data structure. Because there is a node for each operator, each operand, "i:
and each descedant of an operand, the time required to build the intermediate data structure will .
depend on the total number of; operators, operands and operand descendants in the query. Because -
the number of operators, operands and operand descendants is fixed for a given query, building the .::
intermediate data structure has time O(1). “';
S
The time required to perform the Set_op_process is determined as follows. The time to perform
step 1 of the Set_op.process will depend on the number of PJ-SL-CP blocks in the set operator - .l‘
expression. Because this number is a constant for a given query, step 1 will have time O(1). In :.‘
order to perform step 2, each of the tuples in each PJ-SL-CP block must be compared to each of the N :
g %
75 '.«
)

'.‘

. 2 T BN, , o
S O e O TR L T R R D o X St O AR S X A D OO D LOVRRCHR I UMM R W e Y

tuples in the other PJ-SL-CP blocks. This tuple comparison consists of comparing each attribute
in one tuple to each attribute in the other tuple. Therefore, the time required to perform step 2
will depend on the product of the number of tuples in each PJ-SL-CP block and the number of
attributes in a tuple. Because step 1 is of constant order, the order of the Set_op_process is equal
to the order for step 2 which is the product of the number of tuples in each PJ.SL-CP block and

the number of attributes in a tuple.

The time required to perform the PJ-SL-CP_process is determined as follows. Steps 1 and
2 will occur once for each query and therefore have time O(1). The time required to perform
step 2 is determined by using the SL_process order of analysis. The time required to perform
step 3 is determined by using the PJ_process order of analysis. Steps 3 thru 5 will occur once for
each combination of tuples in the Cartesian product. Therefore, steps 3 thru 5 will have an order
equal to the product of the number of tuples in each relation times the sum of the SL_process and
PJ_process. Because steps 3 thru 5 determine the performance of the PJ-SL-CP_process, the order
of the PJ-SL-CP _process will be equal to the product of the number of tuples in each relation times

the sum of the SL_process and PJ_process.

The time required to perform the SL_process is determined as follows. The time to perform
step 1 depends on the number of leaf nodes in the SL branch of the intermediate data structure
that represent field names. Because this number is a constant for a given query, step 1 has time
O(1). The time to perform step 2 depends on the number of boolean and predicate operators in
the SL branch of the intermediate data structure. Because this number is a constant for a given

query step 2 has time O(1). The SL_process has time O(1), since each of the steps of the process

has time O(1).

In the PJ_process, the time required to perform step 1 will depend on the number of field
names in the PJ statement. Because the number of field names is a constant, step 1 has time

O(1). The time required to perform step 2 is determined by using the order of analysis for the

LX) . . . - A
N i IR . . 3
8 '.‘ ‘}l.».l’..l‘v .‘t“..«‘,l 4 '-“'-‘ '.l_ A, l..,h "n‘!‘-‘!'t“.." N .'o‘,' Ll) ...“.'g"h . n'!‘»'! K v.‘. Y ‘v'l“‘l’.l“i"'q“.t..‘-‘ ‘?‘ |""-'.l.,. I“‘!“'l (LN “v ..l...o ..v"'

XIS

- B e o~

Tewlam wh Wp W e S

{*k

- e -,

"J'.‘.!,'-‘f" .‘!'4‘!‘1\".‘-‘?'1".'t't‘o‘! o'!'td‘o‘:'l"‘ l.!‘l.{.'él.n o, I‘!‘.l‘ - l A ‘ .. ': ‘o AR ' 'A"V " ;.r.‘-a X ‘. - o '- ..’

New_name_process. The overall order of the PJ_process will be equal to the sum of the orders for

step 1 and step 2.

The time to perform the New_name_process will depend on type of structure being given a
name. Step 1 will always be performed and then one of steps 2 thru 7 will be performed depending on
the new name structure. Step 1 will be performed only once and has time O(1). The performance
for each of steps 2 thru 7 will depend on the order of the process performed in that step. For
example, the order of step 2 will be equal to the order of the Print_trace process and the order of
step 3 will be equal to the order of the Aggregate.process. Because step 1 has time O(1), the order

of the New_name_process will be equal to the order of the step from 2 thru 7 that is performed.

The time required to perform the Aggregate_process is determined as follows. Step 1 will be
performed once for each tuple in the aggregate relation. Therefore, the order of step 1 is equal to
the number of tuples in the aggregate relation. Step 2 will be performed a maximum of one time
and has a time O(1). The order of the Aggregate_process will be equal to the order of step 1, which

is the number of tuples in the aggregate relation.

The time required to perform the NEST_process will depend on the number of tuples in the
relation to be nested and the number of non-NEST attributes in a tuple. Step 1 and step 2 are
performed only once and have a time O(1). Steps 3 thru 9 will be performed once for each possible
pairing of two tuples in the relation. Step 7 requires that each non-NEST attribute be compared
and has an order equal to the number of non-NEST attributes. Therefore, the order of steps 3 thru
9 will be the number of the non-NEST attributes times the square of the number of tuples in the
relation to be nested. The order of the NEST_process will be equal to the order of steps 3 thru 9,
which is the number of the non-NEST attributes times the square of the number of tuples in the

relation to be nested.

The time required to perform the UNNEST process will depend on the number of tuples

in the relation and the number of nested entries in each nested tuple. Step 1 will be performed

77

. it

)

P

AN

only once and has a time O(1). Steps 2, 3 and 5 will be performed once for each tuple in the

relation. Step 4 will be performed once for each nested entry in the tuple. Therefore, the order of
the UNNEST _process will be equal to the sum of the number of nested entries in all the tuples in

the relation.

The time required to perform the Print._trace_process will depend on the number of fields that
are printed. Steps 1 thru 4 of the Print_trace_process will print an attribute and all its descendents.
Therefore, the order of the Print.trace_process will be equal to the sum of the attribute and all its

descendents.

The performance analysis in this section has described the order of each part of the algorithm.
This section has not provided an overall order for an entire query because the time required to
perform a given query will depend on the specific query. However, based on the analysis in this
section it is possible to determine which parts of the query will limit performance for queries in
general. The parts of the algorithm that have time O(1) will have relatively little effect on the overall
performance of the algorithm. The parts of the algorithm that have time O(1) are the SL_process,
PJ_process and constructing the intermediate data structure. The parts of the algo;ithm that
will have the largest effect on performance are parts which depend on the product of the number
of tuples in one or more relations. These parts include the Set_op_process, PJ-SL-CP process,

NEST_process, and in some cases the New.name_process.

78

i ..c‘ .- Q) l’- W, I" "w .'I‘.'l l."l"-'y \t EAR -.l. l\.k.h » " » » . '-N“ v.'l [} .l*o‘.“‘ n~ -‘l ..I.C.Cu \- -

[PV AW LUl 92 8%0 82 8% 0% $% 5% 3% 3% 8% AVa"s10 40", VUWVIANAOWA TN WA ' 029 S @ G B 0 00 0°¢.0'0. 9" 2°6.9%¢.2'0.2"'8 a¥¢ N YU PLUTLU UL TR

e L V]

m VI. Conclusion

R R R)

6.1 Ssmmary of Results

This thesis has presented an algorithm to convert nested relational algebra queries into GEN-

SIS Trace Manager commands. The design of this algorithm is an important step in the development
of a DBMS that supports nested relations. In many situations nested relations provide a more ac-
curate representation of real world data than do 1NF relations. In addition, nested relations can KX
provide a more efficient representation of data by reducing redundancy of data and simplifying the

update of data.

-
BC N o Pk

The algorithm was validated by demonstrating that it correctly translates nested relational

- -
¥

algebra queries into GENESIS Trace Manager commands. The first step in the validation was to

;i

divide nested relational algebra queries into different types of expressions. The next step was to !:»

y

provide example queries that included each type of expression. The final step in the validation was .:

‘e .‘

’e to show that the algorithm correctly translated each of the example queries into GENESIS Trace
i al

Manager commands. Y,

(

"]

The performance of the algorithm was evaluated by performing an order of analysis. The ~':

performance analysis included an analysis of each of the processes in the algorithm. The results of -

t,‘

the analysis showed that the processes in the algorithm having the largest effect on performance are ':

)

the Set_op_process, PJ-SL-CP_process, NEST_procese, and in some cases the New_name_process. ::

.l

.‘i

6.2 Further Study (%

W)

%

There are two primary areas that require further research. The first is to implement the algo- \

!

rithm and the second is to extend the algorithm. The algorithm needs to be extended because the .

s \l
GENESIS Trace Manager is limited to manipulating fields within records that have been read into “; !

buffers in primary memory. The GENESIS Trace Manager does not include facilities for accessing \

> Z records in a database or producing formated output for queries. Because the GENESIS Trace

g SR N
) ’]
4 3
’ 79 |
! S
s A\
[} A

\]
.

. - . . - o .- P . . N R
1 T R N A T T NN G S s O Ty A A g o o £ T DD

L, %

e gl b b K 4

AT NN BN KN AN A AR AU I AN Y UYL Y O WY U SRt Ve 8% BYs 8% 5% 82 Atz $'a B's 078 02 8% 050, 0'2.0%0.8%2.0" Yy PR TN

% Manager does not include these facilities, the algorithm does not produce GENESIS commands to
perform these functions. The algorithm needs to be extended to include facilities for:
1. Interfacing to lower level database functions so that records in a database can be accessed.

2. Generating formated output so the results of a nested relational algebra query can be pre-

sented to the user.

&

T

80

. : Vg b 5 y % . T] (P om™
AR AN Ja A n'$‘.“,q"\.n‘l_q" LAANN ..4 .'.A.’.\ .’I,g l_"i‘ I.o".‘ ‘.‘l,g't,.'ﬂ."... ,(. WL 0‘|!I.|’t.|_l. AN AN, Y, _I’.!t‘.!lﬂ&,"_ CAVY N

3

o 7 ifd"_'

. AT ‘ vh :‘

User Manual [1, pages 22-24].

% Appendix A. GENESIS Trace Manger Terminating Conditions

This appendix describes the normal termination conditions and error termination conditions

for the GENESIS trace functions. The data in this appendix is from the GENESIS Record Manager

VALUE

BADLEVEL

BOUNDS_VIOLATION

EMPTY_FIELD
LEAF_.NODE

MISMATCH

NON_RPG

ROOT.NODE

RWILLEGAL

UNKNOWN

———

EXPLANATION

attempt to attach trace variable at a level not
higher than the present level of attachment

cannot go to the requested field or repeating group element,
it is outside of the logical bounds

cannot delete an element, repeating field is empty
cannot go down, this is a leaf node

cannot make a replacement, the source and target
fields do not match

cannot add or delete an element, this is not a
repeating group

cannot go up, right, or left, this is the root node

cannot do an I/O operation because the
trace is currently virtually positioned

cannot give requested information because the
trace is currently unattached

Figure 57. Possible Fatal Error Values of Trace Functions [1, page 22]

A OMEIEOANUOOUOR)

81

. N . N .~ .)
RN O A A R A A O O e e T A IO O e e e R X Y i i X O T L O

VALUE EXPLANATION

is not present

OKAY no error

ABSENT_ELEMENT | cannot go to requested repeating group element, it

NO_MORE_ROOM cannot add an element, repeating field is full

Figure 58. Possible Normal Terminating Values of Trace Functions [1, page 22]

NORMAL TERMINATING CONDITION | EXPLANATION
-— @)
N

OKAY All functions
ABSENT_ELEMENT down()
down2()
skip()
left()
right()
NOMORE.ROOM ad()

Figure 59. Trace Functions and Possible Normal Terminations [1, page 24]

82

AT A

. —am " NP »
OO AT |'|‘l‘n. e 10 W W R e TR T O Y,

' W W W Q"-

A ga i L g

e

)
Gl,l'g.l'

iy W

- A S - - . .
AU R AN .u.l'l.‘ SR A Uy

Mav caua A¥e Rve B2 AR 8"

"Bat > Sa® Aav 02" 4 """!‘ y

AN AN N R AL I T

FUNCTION

Utility Functions
attach._trace()
copy-trace()
decode.str()
encode_str()
free_buf()
free_trace()
get_buf()
get_trace()
init_trace()
print._trace()
refresh_trace()
reset_status()
set_tr()

LIST OF FATAL ERROR CONDITIONS
—_—;——_————_—

I ————————

BADLEVEL

Navigation Functions

down()
down2()
field Jeft()
field_right()
left()
restore()
right()
skip()
up()
up2()

LEAF _NODE
LEAF NODE

ROOTNODE
ROOT.NODE
ROOT.NODE

ROOTNODE
ROOT.NODE

BOUNDS_VIOLATION
BOUNDS_VIOLATION
BOUNDS.VIOLATION
BOUNDS_VIOLATION
BOUNDS_VIOLATION

BOUNDS_VIOLATION
BOUNDS_VIOLATION

ROOTNODE
ROOT_NODE

NONRPG

NON_RPG

NON_RPG

Information Functions

count()
ft()
len()
loc()

rwok()

status()

UNKNOWN

UNKNOWN
UNKNOWN

Figure 60. Trace Functions and Possible Error Conditions [1, page 23]

83

PP R -2 L R LT ST RS L Sy SN LY LT R LR
.h-..' LI . L] 'q,-' '! W -' \‘. 0.v~ \‘(‘ -' ‘ "'~

NN

=)’

ey

|
> .--.

"
-
-

¥

Sl AT

222 A™ B

o o m_=
"l ,.l ‘I .
A s

x_x

XA

LIRS o'

. "O |"‘n “o AN l‘n"

5.8

b -w

0

RN AN R RN LY R IR RN R AN

VN A O TN N Ltal Vel Sl gl da Vgt 1) 2ol Sut N8 Sy U S}

FUNCTION

I/O Functions

ad()
di()
field copy()
mk()
rd()
rep()

LIST OF FATAL ERROR CONDITIONS

RWILLEGAL
RWILLEGAL
RW.ILLEGAL

RWILLEGAL

NON_RPG
NON_RPG EMPTY_FIELD
MISMATCH

MISMATCH

Figure 61. Trace Functions and Possible Error Conditions [1, page 24]

84

v

LA g - ”
,] 4
RIS AN A N

< ¢ ’
(LI W YO AR N

% A .'CA A c\.’h NN

‘\-

¢ L O N IR ‘V"-\ \l. TP P 'J'\-“'ff\ . '-"\ S 'v.

o

-

1,

\

'.-
.f?ﬂ

x
LM P

)
SO

‘e g gsy

10.
11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

e L Uaathale et - ga’ 4a° S ath aM att ot et 2t a0 ath® ot et Gt Pt Bt B Ba® " Ba® Bt “pu® '9.8" Al

Bibliography

. GENESIS Record Manager User Manual. Department of Computer Science, University of

Texas at Austin.

D. S. Batory, J. Barnett, J. Garza, K. Smith, K. Tsrkuda, B. Twichell, and T. Wise. GENE-
SIS: A Reconfigurable Database Management System. Technical Report, Department of Com-
puter Science, University of Texas at Austin, March 1986. TR-86-07.

. S. Ceriand G. Gottlob. Translating SQL into Relational Algebra Optimization, Semantics, and

Equivalence of SQL Queries. In /EEE Transactions on Software Engineering, pages 324-345,
April 1985.

. D. D. Chamberlin, A. M. Gilbert, and R. A. Yost.. A History of System R and SQL/Data Sys-

tem. In Proceedings of the 7th International Conference on Very Large Data Bases, pages 560-
575, September 1981.

P. P. Chen. The Entity-Relationship Model-Toward a Unified View of Data. In ACM Trans-
actions on Database Systems, pages 9-36, March 1976.

. E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Communications of

the ACM, 13(6):377-387, June 1970.

. E. F. Codd. Further Normalization of the Data Base Relational Model. In Data Base Sys-

tems:Courant Compuler Science Symposia Series, Vol 6, 1972.

. E. F. Codd. Recent Investigations in Relational Data Base Systems. Proceedings of the IFIP

Congress, 1017-1021, 1974.

. E. F. Codd. Relational Database: A Practical Foundation for Productivity. Communications

of the ACM, 25(2):109-117, February 1982.
C. J. Date. An Introduction to Database Systems. Volume II, Addison-Wesley, 1983.
C. J. Date. An Introduction to Database Systems. Volume I, Addison-Wesley, 1986.

R. Fagin. Multivalued Dependencies and a New Normal Form for Relational Databases. ACM
Transactions on Database Systems, 2(3):262-278, September 1977.

R. Fagin. Normal Forms and Relational Database Operations. ACM SIGMOD International
Conference on Management of Data, 153-160, 1979.

Patrick C. Fisher and Stan J. Thomas. Operators for Non-First-Normal-Form Relations. In
Proceedings of the Computer Software and Applications Conference, pages 464-475, Chicago,
IL, November 1983.

Ellis Horowitz and Sartaj Sahni. Fundamentals of Data Structures in Pascal Computer
Science Press, 1984.

G. Jaeschke and H. Schek. Remarks on the Algebra of Nonfirst Normal Form Relations.
Proceedings of the ACM Symposium on Principles of Data Systems, Los Angeles, 124-138,
1982.

G. Kappel, A. Tjoa, and R. Wagner. Form Flow Systems Based on NF2-Relations.
In Datembank-systems fur Buro, Technik wnd Wissenschaff, pages 234-252, Informatik-
Fachberichte Nr. 94, Springer-Verlag, Berlin, 1985.

W. Kent. A Simple Guide to Five Normal Forms in Relational Database Theory. Communi-
cations of the ACM, 26(2):120-125, February 1983.

Henry F. Korth and Abraham Silberschatz. Database System Concepts. McGraw-Hill New
York, New York, 1986.

David Maier. The Theory of Relational Databases. Computer Science Press, R Lkiille, Mary-
land, 1983.

85

Oty Wyt o Y i SE T 1% By st ¥ -) “'\.' PR TS AL s" N AL LN TN AN T
! S al 3 '« T ! . g K N 2o N e, N M N o Aal NN - w

ot

S 5

PP S g g W 0 U]

-~

o« Y 1::‘.'

hY
&
~
N
Y
h)

OCRARARLCCRESAREY

o*

21

22

23.

24.

25.

26.

27.

28.

29.

30.

31

. A. Makinouchi. A Consideration on Normal Form of Not-necessarily-normalized Relations in

the Relational Data Model. In Proceedings of the Conference on Very Large Database Systems,
pages 447-453, Springer-Verlag, Berlin, 1977.

Z. Ozsoyoglu and Li-Yuan Yuan. A New Normal Form for Nested Relations. ACM Transac-
tions on Database Systems, 12(1):251-260, 1987.

Z. Meral Ozsoyoglu and Gultekin Ozsoyoglu. A Query Language for Statistical Databases. In
W. Kim, D. Reiner, and D. Batory, editors, Query Processing in Database Systems, pages 171-
187, Springer-Verlag, Berlin, 1985.

Srinivasan Ramakrishnan. Design and Implementation of a Translator for SQL/NF with Role
Joins. Master’s thesis, University of Texas at Austin, December 1986.

Mark Roth. Theory of Non-First Normal Form Relational Databases. PhD thesis, The Uni-
versity of Texas at Austin, Austin, TX, 1986.

H. A. Schmid and J. R. Swenson. On the Semantics of the Relational Model. Proceedings of
the ACM SIGMOD, 1975.

Kenneth Paul Smith. Design and Implementation of the GENESIS Record Manager. Master’s
thesis, University of Texas at Austin, May 1985.

R. W. Taylor and R. L. Frank. CODASYL Data-base Management Systems. In ACM Com-
puting Surveys, pages 67-103, March 1976.

D. C. Tsichritzis and F. H. Lochovosky. Hierarchical Data-base Management. In ACM Com-
puting Surveys, pages 105-124, March 1976.

Jeffery D. Ullman. Principles of Database Systems. Computer Science Press, Rockville Mary-
land, 1882.

. C. C. Yang. Relational Databases. Prentice-Hall, Englewood Cliffs, New Jersey, 1982.

E
|
!
{
)
|
:
!

P B S’ W

PPt R LN W RSyt WP P, .

Y I A AEY L% S

Pll Redacted

O vy aba gs g b at RSN T T ORI APCIOR TURTUR TLN S TUR AN PO O LN T AR R R LY R AR A FP NN Y R

Vita

Captain Alan F. Hartman was [E craduated
from Danville High School in Danville, Illinois in 1967 . He graduated from the University of

Illinois at Urbana, Illinois in June, 1971 with a Bachelor of Science degree in Psychology. In 1871, he
enlisted in the U.S. Army and served as a medical laboratory technician until 1974 when he received
an honorable discharge from the Army. He studied undergraduate chemistry at the University of
Illinois at Chicago, lilinois from 1974 to 1976 and graduate chemistry at the University of Illinois
at Urbana, Illinois from 1977 to 1978 where he received a Master of Science degree in Chemistry.
He entered Officer Training School in 1979 and received his commission in the USAF in July, 1979.
After completing the Communication Systems Officer course in 1980, he served on a software design
team at the Communications Computer Programming Center at Tinker AFB, Oklahoma. While
working at Tinker AFB, he attended night school and received a Bachelor of Science degree in
Computer Science in May, 1983. He served as a staff officer at HQ AFCC from August, 1984 thru

May, 1986 at which time he entered the Air Force Institute of Technology.

87

§@. 4 Am by §7s &

‘ , ; " NGO T 0 R
St '-"‘«"'."‘,J%l"‘-‘..‘.1!‘ﬂ"J!'v'f'"f‘u‘!‘c‘?‘n"‘.k‘ﬂ‘.'u‘.‘t't'n‘. WAL N L N e NOHDS OB DA

REPORT DOCUMENTATION PAGE 52'322 0704-0188
[7. REPORT SECURITY CLASSIFICATION

3. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Approved for public release;
distribution unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/ENG/87D~-13

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION

(If applicable)

School of Engineering AFIT/ENG

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Ai; Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

8a. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

[8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. | NO. NO ACCESSION NO.

’

11. TITLE (Include Security Classification)

See Box 19
12. PERSONAL AUTHOR(S)

* Alan F. Hartman, M.S., Capt, USAF

~{3a_ TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) |15. PAGE COUNT
MS Thesis FROM TO 1987 December 38

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by biock number)
FIELD GROUP SUB-GROUP .
12 05 Data Bases, Algorithm
5 02

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Title: DESIGN OF AN ALGORITHM TO TRANSLATE NESTED RELATIONAL
ALGEBRA QUERIES TO GENESIS TRACE MANAGER COMMANDS

Thesis Chairman: Mark A. Roth, Captain, USAF
Assistant Professor of Computer Systems

’ oved for, Ppblic release: IAW AFR l”-ﬁ-
- %‘t’woavsn M Qo 89
Dy tor R ch and Professienal Develepment
Alr Potoe Institute of Technology (ARS)

Wrigh-Pelisrsen AFB ON 4badl

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT _ " 21, ABSTRACT SECURITY CLASSIFICATION
GRuncassirieounumited O SAME AS RPT. [J DTIC USERS INCTASSIEIED
uh NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) | 22c. OFFICE SYMBOL
ar . Roth, Captain, USAF (513) 255-3576 AFIT/ENG
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

: 2y 1 TN
SOADBREOND ! '. ' IWOUOLOUNOIN 3 AN LU OUTRN M RN X N LARKS

®

PR AN AN MTEA RN AT RN LN FUN U NGRS VWA IR NRA RN TR ASKE KN R S o 8. 8%2 4% 4% 1 BY2 BY: "

This thesis describes an algorithm to convert nested relational alge.bm queries into GENESIS
Trace Manager commands. Nested relational algebra is an extension to traditional relational algebra
to include multivalued (i.e. nested) attributes. The GENESIS Trace Manager is part of the

GENESIS database management system being developed at the University of Texas at Austin,

Texas. The GENESIS Trace Manager is used to manipulate fields in a record that has been read

into a buffer in memory.

The algorithm consists of two phases. The first phase of the algorithm is the development of
an intermediate data structure to represent the various constructs of the nested relational algebra
query. The second phase of the algorithm is the conversion of the intermediate data structure into
GENESIS Trace Manager commands. This phase consists of dividing the translation into a number

of sub-tasks and providing an algorithm to perform each of these sub-tasks.

The GENESIS Trace Manager is limited to working with fields in a record located in a buffer
in primary memory. It does not include facilities for reading records from a database into memory,
writing records from xr;emory to a database, or presenting the user with & formated output of the
result of the query. Because the GENESIS Trace Manager does not include these facilities, the

-algorithm does not produce GENESIS commands to perform these functions.

‘.

. 4
Py ; , . — - q TR LX)
MR SR I JOANIODUIOMOICE X MCPOANUMICE LAY LR, “I,"l\"l..'A.'!i."h‘!'."l."h'.I-‘J. UYL YU O MU IO T WY KO XS " (N X Mok o WA -"l‘"l. ‘

