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SYMBOL TABLE

Symbol Meaning

N the natural numbers: (1, 2, 3....
Q the rational numbers
Rnxm an n x m matrix with real-valued entries
Z+ the nonnegative integers: (0, 1, 2.... I
V for all

n mod p n modulo p: p x (fractional portion of n/p)

SISO Single-Input-Single- Output

MIMO Multiple-Input-Multiple-Output
BIBO Bounded-Input-Bounded-Output

GCD Greatest Common Divisor

LCM Least Common Multiple

LCP Least Common Period
T the LCP of a multirate system

the fundamental period of a multirate system

P VIC

A' transpose of the matrix A

Aij ij I element of the matrix A
In the n x n identity matrix

Om an m x m matrix of zeroes
0mxn an m x n matrix of zeroes

end of theorem, procedure, example, etc.
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CHAPTER 1

INTRODUCTION

Multirate discrete-time systems, systems in which sampling and discrete-time calculations
are performed at two or more rates, arise in a variety of applications. The multirate character of the

system may be intrinsic, due to digital subsystems operating at multiple rates. Alternately, the
multirate nature of the system may be induced by the addition of sensors, actuators, and discrete-

time control structures at different rates for the purposes of economy or performance. Two
practical examples of designs resulting in a multirate system are an idle speed control for an internal

combustion engine (Powell et al., 1987) and a quadruplex videotape recorder (Rao, 1979).
Previous studies of multirate systems began with the study of multirate sampled-data

systems by Kranc (1957), which employed transfer function techniques later improved by Coffey

and Williams (1966) and Boykin and Frazier (1975). These works presented complicated methods
which served the purpose of assessing the stability of a system composed of continuous-time

subsystems and samplers at multiple rates. Kalman and Bertram (1959) used state space methods

to study sampling systems of great generality. Although Kalman and Bertram demonstrated that a
state space representation exists for almost any hybrid system incorporating a variety of sampling

schemes, the generality of the systems involved precluded the presentation of systematic and
efficient methods of obtaining a state space representation for a given, fixed system. Meyer and

Burrus (1975) introduced the concept of block processing to perform time and frequency domain
analyses on individual single-rate, periodic time-varying and multirate (inputs at one rate, outputs

at another) digital filters. Recently, Araki and Yamamoto (1986) applied a mutation of block
processing to the analysis of a continuous-time system with outputs sampled at multiple rates and

fed back through a constant gain matrix to the inputs, which were sampled and held at multiple
rates. Currently, efficient techniques of analysis and design algorithms for multirate systems

S.composed of both continuous-time and discrete-time subsystems are not available.
V Inspired by Kalman and Bertram (1959) and beginning with methods akin to the block
S,,processing used by Meyer and Burrus (1975), this work presents a systematic, efficient method of

obtaining a "time-invariant" representation, referred to as the T-expanded representation, of a
* class of composite multirate systems containing both continuous-time and discrete-time

subsystems. In recent years, results have appeared in the literature pertaining to periodic discrete-



time systems, with multirate systems cited as an (unqualified) example of such a system. In
response, this work proposes a procedure for obtaining a periodic discrete-time representation,

termed the M-varying representation, of a multirate system. Analysis of multirate systems via

the T-expanded representation by time-invariant techniques is shown to reveal important

characteristics of a certain M-varying representation of the multirate system. Examples of the
design of controllers for multirate systems by conventional analytical techniques, with minor
modifications, are presented. The variable component method is applied to multirate systems to

provide an iterative means of building composite controllers.

Chapter 2 develops a notation suited to T-expanded representations and details procedures

.eful in obtaining a T-expanded representation. The notation introduced in Chapter 2 is used

throughout the remaining chapters and provides a means of discussing a variety of concepts related
to multirate systems in a concise manner. In addition to describing the behavior of a multirate

system over lengths of time other than its period, the periodic representations developed in

Chapter 3 provide a theoretical tool for deducing the interperiod behavior of a multirate system
from its T-expanded representation. Chapter 4 discusses the stability, controllability,

reconstructibility, stabilizability, and detectability of multirate systems and emphasizes the

properties which a periodic representation of a multirate system inherits from the T-expanded
representation of that system. Chapter 5 applies the developments of Chapters 2, 3, and 4 to the

analytical design of multirate controllers. A time-invariant technique, the variable component

method, is applied to multirate systems in Chapter 6 via the T-expanded representation. The
material in Chapter 5 and Chapter 6 serves as an example of the manner in which results for

standard discrete-time systems can be extended to multirate systems.

i
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I CHAPTER 2

TIME-INVARIANT REPRESENTATION OF MULTIRATE SYSTEMS

This chapter presents a systematic method for obtaining a single time-invariant state space

or transfer function representation, called a T-expanded representation, for members of a class of

composite systems which employ sampling at multiple rates. This method first converts the block

diagram of a multirate system into a structurally similar block diagram of time-invariant discrete-
time subsystems through state space calculations easily performed using any software package

capable of discretization of continuous-time systems at a single rate and matrix multiplication,

addition, and composition. The reduction of this single-rate block diagram to a state variable

description or transfer function matrix is then a standard problem.

2.1 Systems Admissible for Analysis

The methods to be developed will apply to a general class of systems with multiple
sampling rates. To simplify the exposition, the multirate systems considered, unless otherwise

noted, will be as follows:

Assumption 2.1:

a. The ratio of any two sampling periods in the system is a rational number.

b. All samplers are in synchronism at t = 0 and are followed by zero-order

holds of the same period

c. Discrete-time subsystems are envisioned as sampling their inputs and
producing zero-order hold-type outputs (in synchronism with the samplers in part

(b) above at t = 0.)

d. The outputs of zero-order holds as functions of time are continuous from

the right at their associated sampling instants.

e. The entire system can be partitioned into subsystems which are either
discrete-time or continuous-time subsystems with only samplers, summers, and
branch points (a point on the block diagram where a line branches into two or more
lines) connecting these subsystems together on the block diagram. In addition. if

3



there is a path on the block diagram between any output of one of these subsystems

and any input to one of these subsystems, then this path must satisfy one or more

of the following: the path originates at a discrete-time subsystem; the path

terminates at a discrete-time subsystem; the path passes through one or more

samplers.

f. There is no path from (to) any external input (output) of the entire

multirate system to (from) any of the continuous-time subsystems in part (e) above

which does not pass through a sampler. In addition, there is no direct path from an

external input to an external output of the multirate system which does not pass

through a sampler. These properties will be loosely stated in the following as "the

external inputs and outputs of the multirate system are sampled."

g. The subsystems in part (e) above are linear, time invariant, and causal,

and may be MIMO.

Assumption 2.1(a) is the necessary and sufficient condition for a multirate system

composed of time-invariant subsystems to have a finite period. Satisfaction of Assumption 2. 1(e)

is possible for essentially any connection of continuous-time and discrete-time elements and may

entail mino: block diagram manipulations, to be detailed later in this section. If a system does not

satisfy part (f), the introduction of samplers into the block diagram by modelling judgments mav

serve to approximate the actual system adequately and satisfy Assumption 2. 1(f). Assumption

11 (g) will eventually be relaxed to include time-varying periodic discrete-time subsystems. In

summary, the essential assumptions to keep in mind are that all external signals (inputs/outputs) are

sampled and held and that the ratio of any two sampling rates in the system is a rational number.

Although the term "linear multirate discrete composite system" more aptly describes a

system satisfying Assumption 2. 1, multirate system will denote such a system hereafter.

Example 2.1:

The multirate system shown in Figure 2.1 appears to violate Assumption

2.1(e) due to the direct link between the two continuous-time subsystems oI and

(5,; yi(s) passes through a summer and a branch point, but not through a sampler,

before reaching u3(s). Let a, and G2 be represented by the transfer function

relationships

y(s) I =[N(s)/DI(s)I ul(s) and ya(s) = [N3(s)/D 2(s) N4(s)/D,(s)] 11(1j

- - -(- )j N2( ...-i-s].



U2(S) NO
T j ." . ..... ...... . .. .' . .... ... . .. T 4

uzi~s) +,, U3- (Ss

T3

Figure 2.1. A multirate system.

_T sing U3(S) = yi(s) + u2(s) and y3(s) = u3(s), it follows that

FY2(S)- N-(s)/D I(s) 0 0 1 ui(s)-

y3(s) = N1(s)/D 1(s) 1 0 u2(s)

Ly4(s) _ N3(s)Nj(s)/D 2(s)Dj(s) N3(s)1D 2(s) -)( u4(s)-

Thus, the multirate system shown in Figure 2.1 may be partitioned by considering

the area inside the dashed line in Figure 2.1 as a single continuous-time subsystem,
C3, as shown in Figure 2.2. The multirate system in Figure 2.2 satisfies

Assumption 2.1 (e).

: ~U u(S) Y3 (S) / .

_ill T/ U2 (S)- G 3  Y(S T4
L- T2 T5

: . ., u (s)  Y (s

* T3

Figure 2.2. The system in Figure 2.1 redrawn.

Example 2.1 provides a clue to a technique for partitioning a multirate system so that
Assumption 2.1(e) is satisfied. If an initial partitioning of the system into continuous-time and

discrete-time subsystems (connected by only summers, samplers, and branch points) does not
satisfy Assumption 2.1(e), then by elimination a path must be connecting a continuous-time

e ,.subsystem, a;, to a continuous-time subsystem, G2, which may pass through summers and branch

points, but does not pass through any samplers (a7 may be the same subsystem as a,.) Define a

new continuous-time subsystem, G3, consisting of the subsystems (51 and T2 and their individual

5
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inputs and outputs (ulu4,y2, and y4 in Example 2.1,) except for the offending pair in question (y,
and U3 in Example 2.1.) The subsystem a3 must also be provided with additional inputs (u2 in

Example 2.1) representing other inputs to any summers the path passes through and additional d
outputs (Y3 in Example 2.1) representing other outputs of any branch points the path passes

through. This process can be repeated until the entire multirate system satisfies Assumption

2.1 (e). ]

2.2 The Least Common Period of a Multirate System

Given a set of N nonzero sampling periods {TI,...,TNj, assume that the ratio of any two

of these sampling periods is a rational number. Consider the ratio of each sampling period to a

particular sampling period, say T1:
T1  r1i
Tj qji

for some r1i, qji e N, where the Greatest Common Divisor (see Niven, 1980) of r1i and qji is I

for each i. Let RI be the Least Common Multiple of the set {rji: i = 1,...,N}, tl = T1/R1 , and

Pli li  , i = 1,...,N.rli

Note that Pli e N because R1/rji E N. Then j
Ti= u= (] qlii( ) = pli1 i = 1...N

The process of obtaining ti and the pli's will be referred to as normalization with respect to T1 .

Theorem 2.1:
If the sampling periods are normalized with respect to Tk (giving T, = Pkitk,

= l,...,N) and again with respect to Tj (giving Ti = Pjitj, i = 1,...,N,) then 'tk = tj

and Pki = Pji, i = 1,...,N. (See proof in the Appendix.) I
Thus, the sampling periods can be uniquely represented as Ti = pit, i = 1,...,N, regardless of the

particular sampling period used in the normalization process. Each sampling period in the syste:m
is a multiple of t; t will be referred to as the fundamental period of the multirate system.

Since the subsystems in the multirate system are time invariant, the periodicity of the entire

system will be established if it can be shown that the samplers, which are in synchronism at t = 0,

are again in synchronism at some time t = T. For a system with sampling periods {Tl,...,TN), let
P = LCM {pi := 1 ....N}. At times t = mPr, m E Z+, all samplers in the system will sample:

mP r Z -for i = 1. -N.
Ti pi

64



Thus, the multirate system is periodic with period T = Pt; in fact, this is the Least Common Period

(LCP) of the multirate system.

Theorem 2.2:UT = 't (LCM (pi : i = 1,...,N}) = Pt is the shortest length of time over
which a multirate system with sampling periods IT ,..., TN) is periodic. (See

proof in the Appendix.)

In the remainder of this work, the symbols T, P, t, and pi will be implicitly associated with the

meanings assigned to them above. A procedure is now given for normalizing a set of sampling
periods (TI,...,TN) as T, = pit and finding their LCP.

Procedure 2.1:

a. Arbitrarily choose a sampling period Tk from the set and express the
sampling periods as Ti = Tkqki/rki = 1,...,N , where qki,rk, E N and

GCD (qki,rki} = I for each i.
b. Set Rk = LCM {rki : i= I.N}

c. Set r = Tk/Rk and pi = qki(Rk/rki), i = 1,....N.

d. Set P =LCM {pi i= 1,...,N} and T = Pt.

The following result will be the key, in Section 2.8, for establishing a certain modularity

property of multirate systems.

Theorem 2.3:
Let the LCP associated with {TI,...,Tk) be T(k) and that associated with

(T1,...,Tk,Tk.1 be T(k+l). Then T(k+l)/T(k)I N. (See proof in the

Appendix.)

In words, the effect of adding a new sampling period to a multirate system is to increase the LCP

by an integer multiple.

Example 2.2:
Suppose N = 4 and the sampling periods are: Tt = 3/5 sec, T2 = 1/7 sec,

T3 = 1/3 sec, and T4 = 300 msec. If the periods are normalized with respect to TI,

Procedure 2.1 yields

T= (1/1)TI, T2 = (5/21)T 1, T3 = (5/9)T1 , T4 = (1/2)TI

R= LCM (1,21,9,2) = 7 x 3 x 3 x 2 = 126

W :=T 1/R = 1/210 sec

O,



Pi = 126(1/1) = 126, P2 = 126(5/21) = 30, P3 = 126(5/9) = 70, P4 = 126(0/2) = 63

P = LCM ( 126,30,70,63) = 126 x 5 x 7 =4410

T = 4410(1/210) = 21 sec

The reader may wish to verify that P1,...,p 4 ,'r,P, and T are invariant under

normalization with respect to T2,T3, or T4.

2.3 Expansion of Discrete-Time Signals and Systems

The members of the class of multirate systems under consideration are time varying, but

periodic with period T. Knowledge of the state of such a multirate system at time t = 0 and the
inputs to the system over the interval of time [0,T) is sufficient to determine its state at time t = T
and its outputs over the interval [0,T). By the periodicity of such a multirate system, the manner in
which its state at time t = nT and its output over [(n-1)T,nT) are determined from its state at time

t = (n-l)T and input over [(n-1)T,nT) is identical for each n e N. Thus, the behavior of such a

multirate system over all time is time invariant in terms of the description of the system's behavior

over one period. The price paid for this time-invariant description is that all input values to the

system and all output values from the system during one period must be accounted for. This

entails expanding a single input line into many fictitious inputs which represent its values over the

period.

The result of collecting all values of a discrete-time signal over amounts of time of length L

will be referred to as the L-expanded version of that signal. The signals in question may be

vector signals with individual components at different rates. To prevent the number of components

in the L-expanded version of a signal from changing with time, L must be an integer multiple of the

period of each component of the signal. Discrete-time signals will be denoted by lower-case letters

0 and the same letter capitalized will represent their expanded versions.

At this point it is convenient to introduce the concept of a signal bundle. A signal bundle
is a vector of discrete-time signals at the same rate which may be a portion of a larger vector of

signals but is distinguished in some manner from the rest of the vector. The block diagram of the
system primarily determines the grouping of signals into bundles. Before applying the methods
presented here, certain manipulations will be performed on the block diagram of the system. The

lines drawn as inputs or outputs of subsystems in this modified block diagram will each be

designated as a bundle of signals; each line may actually represent an entire vector of signals. Later

developments will reveal the utility of using bundles of signals and properly explain which signals

to place in bundles.

8
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4 . Let L/T 1 = 1 e N. The L-expanded version of a bundle of signals u(nTj), n = 0,1... is

the vector of 11 blocks U(kL):

r u(kllT) 1
I [ u((kl+l)T1)U(kL) k 0, , Ol .....

Lu((kll+l-l)T)J

U(kL) will be thought of as a bundle of signals with rate i/L. The set {U(kL) k = 0,1....

contains all of the values in {u(nTj) : n = 0,1... ), so the expanded version retains all the
information in the original signal. Capital letters will denote expanded versions of signals

hereafter, and the capitalized portion of an expanded signal's argument (L in this case, but T and \1
later on) will be a real number which is an integer multiple of t and denotes the interval of time

over which expansion has been performed. As a slight abuse of notation, let u(kL) = u(kl1 T,).
Then the L-expanded version of u(nTj) can be written more conveniently as

u(kL)

U(kL) =[u(kL+T 1 )
Lu(kL+L-T1)J

The expanded version of a signal may be expanded again to yield an expanded signal. The

procedure for expanding an expanded signal parallels that for expanding a normal signal, with
expanded bundles treated as bundles. As an example, if M/L = m e N, then the M-expanded

* - version of U(kL) coincides with the M-expanded version of u(nT1) and is given by

U mL) u(jmllT1 ) 1
rU'((jm+1)L) _ u((jm11+l)Tl)

U(jM)[ j = '1'.

LU((jm+m-1)L)J Lu((jml1 +m-1)Tj)J

To see the equivalence, note that the first component of U(jmL) is u((jm)lIT 1 ) = u(jmljTj) and the

last component of U((m+m-l)L) is u(((jm+m-l)lj+l-l)T) = u((jml+ml-1)Tj). The

equivalence of the M-expanded version of a signal and the M-expanded version of the L-expanded
version of that signal obviates the need for additional notation to distinguish between the two.

Let y be a vector of signals Li'.',L Y2

where each Yi is a bundle of signals with period Ti. If L is an integer multiole of each Ti (for

9
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example, L = LCP (Ti,...,Tq)b) then the L-expanded version of y is

r YI(kL)-
IY2(kL)

Y~ L) Yq(kL)]J

where each Yi(kL) is the L-expanded version of yi. Although Y(kL) consists of many of the

bundles yi, Y(kL) will be thought of as being composed of the q bundles Yi(kL). Note that each

bundle of signals has been expanded in place. Thus, the boundaries between bundles have been

maintained.

Repeated iteration of the equations governing a simple discrete-time system reveals the

behavior of such a system over units of time of length L and forms a basis for determining the

behavior of more complex systems over units of time of length L. Consider the single-rate

subsystem with realization (A,B,C,D) and period Ti, where u(nTj) and y(nTj) are each a single

bundle of signals:
x((n+1)Ti) = A x(nTj) + B u(nTi)

, nOl (2.1)
y(nTi) = C x(nTi) + D u(nT1)

Since iteration of a discrete-time state equation can only be performed an integer number of times,
let L be chosen so that L/Ti = lir N. Note that x(kL+ 1 Ti) = x((k+l)L). Expressions for

x((k+l)L) and Y(kL) in terms of x(kL) and U(kL) are desired. By direct computation,

x(kLi) = A x(kL) + B u(kL)

y(kL) = C x(kL) + D u(kL)

x(kL+2Ti) = A x(kL±Ti) + B u(kL+Ti)

= A2 x(kL) + AB u(kL) + B u(kL+Ti)

y(kL+Ti) = C x(kL+Ti) + D u(kLi)

= CA x(kL) + CB u(kL) + D u(kL+Ti)

x((k+l)L) =x(kL+ 1 Ti) = A' x(kL) + [A(llm)B u(kL+(m-1)Ti)]
m= I

y(kL+(i- l)Ti) = CA~i-1 x(kL) + D u(kL+(l1-lI)Ti) + CA(1Cm-1B u(kL+(m-lI)T,).
m= I

After placing these equations in matrix form and using the L-expanded versions of u and v,

10



x((k+l)L) = Akx(kL) + [ A0 "i)B Aki)B .,. AB B ] U(kL)
~(2.2)

C D 0 0 ... 0

CA CB D 0 ... 0

Y(kL)= CA 2  x(kL) + CAB CB D ... 0 U(kL).

_CAoi t )_  L CA" 2)B ...... CB D_

These equations have the form of a time-invariant discrete-time system with period L:

x((k+1)L) = A, x(kL) + Be U(kL)

Y(kL) = C, x(kL) + D, U(kL)

The matrices (Ae,Be,Ce,De) will be referred to as the single-bundle L-expanded

representation of (2.1), where "single-bundle" refers to the single-bundle nature of the inputs

and outputs. Since in this form the system operates on blocks of input values and produces blocks

of output values, the concepts employed above are often called block processing in the literature:

see Meyer and Burrus (1975) and Burrus (1972).

The L-expanded representation of a single-rate discrete-time system with inputs and outputs

that are vectors of bundles may be derived using manipulations performed in finding single-bundle

L-expanded representations. Later sections will show that multirate discrete-time systems and

multirate sampled continuous-time systems can be expressed as single-rate discrete-time systems,

so the qualifier "single-rate" above does not restrict the applicability of the results in this section.

Let u and y be vectors

U = U2 and y= ,LUM L qL
where each uj, j = 1,...,m and each yi, i = 1,...,q are bundles of signals, and all bundles are at the

J6 ;same rate, I/Tj. Consider a single-rate discrete-time system at rate I/Tj:

x((m+l)Tj) = A x(mTj) + B u(mT,)

y(mTj) = C x(mT,) + D u(mT,)

Let LI e N and B, C, and D be partitioned to conform with the bundles in u and y:
.1 ' ) 

. . di

B=[ b b2 ... bm1, C=[ , andD= " d m

- dq ..

I I 1" Q 11



For each j E {1...,m) and i e { 1,...,q), let (Ae,bje,cie,dije) be the single-bundle L-expanded

representation of (A,bj,ci,dij). By superposition,

x((k+1)L) = Ae x(kL) + Be U(kL)

Y(kL) = C, x(kL) + D, U(kL),

"-here
-FCle1 diie.. dime 1

Be=[ be b2..., b ], Ce ] and De= : •e

LC -dq1e ... dqme

and Y(kL), U(kL) are the L-expanded versions of y and u. In other words, (Ae,Be,Ce,D,) is the

L-expanded representation of (2.3). Be, Ce, and De are partitioned conformal with the

expanded bundles composing U(kL) and Y(kL). As in the case of signals, L-expanded
representations may be expanded again by thinking of (Ae,Be,Ce,De) as a realization for a single-

rate discrete-time system with rate lL.
For a system where the inputs and outputs have multiple bundles, finding (AC,B,,C,,D,)

by merely using the same formulas as for the single-bundle expansion would be much easier, but
this results in values over time L of each signal bundle being widely scattered throughout L!kL)
and Y(kL). By performing the expansion as shown, values over time L of each particular signal

bundle are adjacent in U(kL) and Y(kL). This greatly facilitates the connection of expanded
systems. The partition of U(kL) and Y(kL) into expanded bundles in this form of system

expansion reflects the designation of bundles as input and output lines on a block diagram.
The expanded representation possesses many of the characteristics of the original

realization. It is easily verified that the number of states, stability, reachability, and observabilitv

of the original realization are all preserved by expansion. A feature of expanded representations

that complicates certain control applications is that for a system with no direct feedthrou .h.
(A.B.CO), the expanded representation will have De nonzero in general. Computationallv.

expansion involves only multiplication, composition, and storage of matrices. For large lI, storing
the distended matrices of the expanded representation may present difficulties: B, and C, each

grow linearly with li, and the size of De increases as the square of Ii.

The expanded representation of a subsystem represents a step toward the goal of finding a

time-invariant description of a multirate system. To complete the process of finding a une-
, invariant description of a multirate system, the expanded representation of multirate sampledLMcontinuous-time systems will be found, and methods for combining expanded representations x,,III

be developed.

12
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2.4 Expanding Multirate Sampled Continuous-Time Systems

To find the expanded representation of a multirate sampled continuous-time system, it must

be discretized first. To perform discretization, each input or output of the system must be sampled

at only one rate. Inserting additional samplers that do not alter the behavior of the system at
strategic locations in the block diagram of the multirate system facilitates discretization of the
continuous-time subsystems and will also simplify the operations to be performed in Section 2.5.
Before discretizing a continuous-time system, it is assumed that the following procedure is

followed:

Procedure 2.2:
Assume that the multirate system in question satisfies Assumption 2.1 and that Procedure

2.1 has been performed The subsystems referred to in the following steps are the subsystems

which result from the partitioning required by Assumption 2. l(e).
a. Insert a sample and hold on each input and output of every discrete-time

subsystem in the block diagram (points b,d,e,g, and i in Figure 2.3): its rate is that

of the reopective output or input of that subsystem.
b. Refer to both an output of a continuous-time subsystem and an input to

the entire multirate system as a (system) continuous output point. For each

continuous output point in the multirate system that is not immediately followed by

a sampler (points a and c in Figure 2.3,) let {Tt ....Tj} be the set of periods of the
first sampler encountered on each path leaving that continuous output point. Insert
into the block diagram a sample and hold with period

Tj= t(GCD {Pj,...Pj)) = pjtr

immediately after that continuous output point.

c. Refer to both an input to a continuous-time subsystem and an output of
the entire multirate system as a (system) continuous input point. For each

continuous input point in the multirate system that is not immediately preceded by a
sampler (points h andj in Figure 2.3,) let {Ti,...,Tj} be the set of periods of the
last sampler encountered on each path leading to that continuous input point. Insert

into the block diagram a sample and hold with period

Tj = t(GCD ( pi....pj}) = pjt

immediately before that continuous input point.

d. Refer to an output of a summer not in one of the subsystems composing
the multirate system (points f, g, and j in Figure 2.3) as a (connection)

%M continuous output point. Repeat the actions performed for system continuous

13
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output points in step (b) for each connection continuous output point in the multirate

system.

e. Refer to an input of a branch point not in one of the subsystems
composing the multirate system (points a, e, and f in Figure 2.3) as a
(connection) continuous input point. Repeat the actions performed for
system continuous input points in step (c) for each connection continuous input

point in the multirate system.

The satisfaction of parts (e) and (f) of Assumption 2.1 assures the existence of the rates
required in parts (b) and (c) of Procedure 2.2. All possible sources/destinations of signals in the

multirate system are thus followed/preceded by samplers; consequently, the rates required in parts
(d) and (e) of Procedure 2.2 will exist. The application of Procedure 2.2 does not alter the
behavior of the system; each added sampler updates at least at the times that the samplers feeding
from/to it update. By definition of Tj (see parts (b) and (c) of Procedure 2.2,) if a sampler with
period Ti, i r ( 1,...,j ), samples, the sampler with period Tj also samples: t = nT,, n E Z+ implies

t/Tj npir/prr = n(pj/pj) e Z-.

- I
T3 CD

aa e T 6

*I Figure 2.3. C1 and C 2 are continuous-time subsystems, and
D1 and D2 are discrete-time subsystems.

Example 2.3:

Let Dt and D2 in Figure 2.3 be single rate with rates l/Tl and l/T 2,
respectively. The application of Procedure 2.2 to the multirate system in Figure 2.3

proceeds as follows:

a: Insert samplers of period Tb = Td = T, = T, at points b,d, and e and

samplers of period T. = Ti = T2 at points g and i.

14
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b: Insert a sampler of period Ta = (GCD J P4,Pb}) at point a and a sampler
of period T, = 't(GCD t P5,Pg )) at point c.

c: Insert a sampler of period Tj = t(GCD { P6,PJ) at point j and a sampler

of period Th = Te at point h.
d: Insert a sampler of period Tf = t(GCD {P5,Pg}) at point f. Points g and

j are also connection continuous output points, but samplers are already present at

these points.
e: Points a,e, and f are connection continuous input points, but samplers

are already present at these points.

After applying Procedure 2.2, each input and output line of a continuous-time subsystem
on the block diagram should be designated as a signal bundle. The last sampler an input bundle

passes through or the first sampler an output bundle passes through determines the rate assigned to
that bundle during the discretization process.

Discretization of a multirate sampled continuous-time system is also considered in Araki
and Yamamoto (1986), from a perspective quite different from the one taken here; Araki and

'% -Yamamoto (1986) employ expanded states, as well as expanded signals.

Let the continuous-time system
U i=Ax+Bu, y=Cx+Du (2.4)

have the input

U2

where each uj is a signal bundle sampled and held at rate IT i, i and B is partitioned to

be compatible with u: B = [b, b2 ... bin]. Let y be partitioned into q bundles, with each bundle yj

sampled with period Tj, j = 1,...,q; let C and D be partitioned accordingly:

Y2C2 [
y;{] C- {] and D-L

L-Yq- L-C-j -dqi ... m-

To discretize this system, let L = LCP {T.....Tm,T ,... ,Tq), x(kL) E 3,n denote the state of (2.4)

at time kL, and Y(kL) and U(kL) denote the L-expanded versions of y and u. Let

si= T/Ti, 9j -T/j, (D(w) = eAw, and F(w) = ef eAMwdt•

15



Then a straightforward but tedious calculation gives

x((k+l)L) = E x(kL) + F U(kL)

Y(kL) = G x(kL) + H U(kL), (2.5)

v, here

1. E -D(L).

2. F = [f, f 2 ... f], partitioned compatible with U(kL), where

fi = [o(Ti(si-1))r(Ti)bi I ... I ZD(Ti)l-(Ti)bi I "(Ti)bi , i =

3.

G = 2 is partitioned as Y(kL), where gj = c,((T) 1,...,q.

4.

L hql .. hqmj

is partitioned according to Y(kL) and U(kL), and each subblock hij, i - 1,...,q, j = . m, is

composed of blocks (hij), r = 1,...,9j, v = 1,...,sj, each having the same dimension as dij and

where

0 , if (r-)Ti < (v-1)Tj

(hij) dij + ci-((r-l Ti - (v-1)Tj)bj , if (v-1)Tj S (r-1)Ti < vTj.

cih((r-1)Ti - vTj)(Tj)bj , if vTj < (r-1)Ti

From (2.5) and points 1 through 4 above, the discretized multirate sampled continuous-time

subsystem is a time-invariant single-rate discrete-time system with inputs and outputs that are

vectors of L-expanded bundles. Thus, the methods in Section 2.3 apply to further expansion of

the discretized continuous-time system.

Despite the formidable appearance of the discretized equations, the required calculations can

be performed using any software package capable of discretizing a continuous-time state equation
at a single rate. The quantity F(w)B is the "B" matrix resulting from discretizing (A,B) at rate 1iw.

The required arguments of (D(.) and r(.) are all integer multiples of T. For some values of i, j, r.

16
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and v, the arguments of (D.) and F(. will coincide, so not every occurrence of (D(.) and IL In the

above equations entails an additional calculation.

A modification to Procedure 2.2, which greatly simplifies the discretization of multirate

3 sampled continuous-time subsystems, is to place sample/holds of period 'C on the block diagram at

the inputs and outputs of each continuous-time subsystem, leaving Procedure 2.2 otherwise

unchanged. These added samplers leave the behavior of the system unaltered for the same reason
as that given following Procedure 2.2. This modification has the advantage that discretization can

be carred out uniformly at rate 'r, but it may result in inputs and outputs of unacceptably large

dimensions after expansion

Example 2,4:
Let the corinuous-ime subsystem in Figure 2.4 have the state equation

INI x(t) =A x(t) +B u(t)

1 Flt) c x(t) + [d]u(t).

y2.(t)] I2 dc2
Additional samplers do not need to be added to discretize this system. Following

the steps above, let

(D)(w) = eAw, and F(w) = fC A(w-t)dt.

j Then

x((n+1)6t) = cD(6t) x(n(6t)) + [(D(3T)r(3t)B F-(3T)BI un6)

and

y I(n (6t)) c1  d 0

yi(n(6-t)+'t) c1j(t() dl+cF(rc)B 0

yj(n(6tr)-i2t) c I 4(2tr) di+ciF(2t)B 0

y1(n(6T)+4T) =cl 1 D(4T) x(n(6t)) + cfl'D(t)r(3T)B dl+cllf(t)B

yl(n(6T)±5T) cffD(5T) cl4(2)F(3t)B dl+c1 F(2Tr)B 1u(n(6r)+3tL_'

y:(n(6tc)) C2 d2  0

y2,(n(6T)42tc )D2) d2,+C~r(2t)B 0
y2nL)4) C2AD(4-c) c-A(t)r(3T)B d2,+c2F-(r)B J

Note that all of the quantities above could be obtained by normal discretization with

~1 periods x, 2T, and 3t. Also, if the modification to Procedure 2.2 noted above were
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used, the resulting discretized system would have 6 inputs and 12 outputs.

.... cont. Yi
, 3"t u vY2 2-c

Figure 2.4. A multirate sampled continuous-time subsystem.

2.5 Connection Matrices

The concept of a connection matrix facilitates the interconnection of subsystems whose

inputs and outputs are expanded bundles of signals which pass through summers, samplers, and

branch points between the subsystems. An individual connection matrix serves to connect a signal

bundle at one rate to a signal bundle at another rate after expansion. The form of the connection

matrix depends only on the rates of the bundles being connected and the amount of time over

which the signals were expanded.

T T,

Figure 2.5. A direct connection between subsystems.

Consider a single-rate subsystem, Z-, with a bundle of r outputs connected directly to a

single-rate subsystem with a bundle of r inputs, Z2, as shown in Figure 2.5. Let L/T 1 = 11,

LiT- = I, and I, 12 6 N. Since li * 12 in general, the number of outputs of the L-expanded

description of Z" will not equal the number of inputs of the L-expanded description of 12. The

mechanism which serves to connect YI(kL) to U2(kL) is the sampling I2 performs on its input:

u2(kL+(i-1)T 2 ) = yI(kL+(j-1)TI) if (j-l)TL 5 (i-l)T 2 <jT,

where i f ( 1,-..,121 and j e t I..... i. This relationship can be expressed concisely by defining

Q(L.r.1:2), the connection matrix for L-expanded bundles of r signals from period T, to period

T,. such that U2(kL) = Q(L,r,l:2)YI(kL). Q(L,r,I:2) is an r12 x rl matrix of 12 x 11 r x r blocks.

where the i,jlh block is given by

,I , if (j-1)p < (i-l)p 2 < jPl

l0, , otherwise

* Note zhat if 1i = 12 = 1o, then Q(L,r,1:2) = 1rio .
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. Example 2.5:
Let T2 = 3t, T 3 = 5"t, and L = 30,c. Then

100 000
100 000

10000 00000- 010 000
01000 00000 010 000-"00010 00000 001 000

Q(L,1,2:3) 00000 10000 and Q(L,1,3:2)= 000 100
00000 01000 000 100
_00000 00010- 000 010

000 010
000 001 _

A fact which is easily proven by induction is that if M/Tj E N and M/T2 C N, then for

some m - N, M = mt(LCM {Pl,P2}). In words, any M admissible for expanding signals with

periods T1 and T2 is an integer multiple of the least common period of T1 and T.. Let
T(1,2) = t(LCM (Pl,P21). Since U2(nT(1,2)) = Q(T(1,2),r,I:2)Yj(nT(l,2)), this connection

matrix may be thought of as a discrete-time system with rate I/T(1,2), input YI(nT(1,2)), output
U2(nT(1,2)), and representation (0,0,0,Q(T(1,2),r,1:2)). After finding the NI-expanded

representation for this system,

U2(kM) = diag[Q(T(1,2),r,1:2),Q(T(1,2),r,1:2),...,Q(T(1,2),r,1:2)1 YI(kM):

Q(T(1,2),r, 1:2) appears m times along the diagonal. Thus,

Q(M,r, 1:2) = diag[Q(T( 1,2),r, 1:2),Q(T(1 ,2),r, 1:2),...,Q(T( 1,2),r, 1:2)].

This property greatly reduces the effort required to compute and store connection matrices for large

m. In Example 2.5, m equals 2.

Connection matrices can be systematically placed so that a collection of L-expanded
subsystems is connected according to a given block diagram. Since separate inputs and outputs

- drawn on a block diagram were defined as distinct bundles of signals, connection matrices can

effect direct connections between subsystems. Under the assumption that Procedure 2.2 has been

applied to the block diagram, rules for placing connection matrices when the bundles of signals

, .~ pass through samplers, summers, and branch points between the subsystems are easily stated.
Define a link as any path from one sampler to another on the block diagram which may

pass through summers and branch points but not through subsystems or other samplers. As a
NN, result of applying Procedure 2.2, in the region between the subsystems a sampler follows each

summer and precedes each branch point. Thus, a link passes through at most one summer and one

19
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4

branch point. The steps necessary to connect a collection of L-expanded subsystems together

according to a given block diagram are detailed below.

Procedure 2.3:
Assume that all subsystems and signals in the block diagram are in L-expanded form and

that Procedure 2.2 has been applied to the block diagram. For each link in the system to be
connected:

a. Find Q(L,r,f:t), where the r signals on the link flow from a sampler with

period Tf to a sampler with period Tt.

b. Insert the connection matrix in the link according to the type of link as

follows: i. If the link traverses a branch point and a summer, place

the connection matrix after the branch point and before the summer.

ii. If the link crosses only a branch point, place the

connection matrix after the branch point.

ii. If the link traverses only a summer, insert the connection -
matrix before the summer.

iv. If none of the above apply, the link crosses no summers

or branch points, and the connection matrix can be placed anywhere

on the link.

As an aid to justifying the connection matrix locations specified in Procedure 2.3, note that their
placement ensures that the dimensions of all inputs of each summer and of all outputs of each

branch point in the block diagram of the expanded system are identical.

24
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Figure 2.6. Placement of connection matrices.
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• 4 Example 2.6:

Figure 2.6 shows the placement of connection matrices in the multirate

system in Figure 2.3 after Procedure 2.2 has been performed. The numbers 1, 2,
3, and 4 in Figure 2.6 denote a link of type i, ii, iii, or iv, respectively, as described

in Procedure 2.3(b).

2.6 The T-expanded Representation of a Multirate System

The preceding sections collectively provide a means of obtaining a time-invariant input-

output or state space description of a multirate system, which will be referred to as the
T-expanded representation. The reader may wish to keep the following general procedure in

mind as a summary of the previous sections.

Procedure 2.4:

a. Starting with a block diagram of the system, verify that Assumption 2.1
is satisfied. The partitioning required in Assumption 2.1 (e) may entail a trial and

error approach. For the remaining steps of this procedure, "subsystem" refers

specifically to the subsystems obtained as a result of this partitioning.

b. Assign labels to all sampling periods in the system, and apply Procedure

2.1 to find T.

c. Find a state space realization for each continuous-time and discrete-time

subsystem.

d. Apply Procedure 2.2 to the block diagram. Procedure 2.2(b) may be
performed in parallel with Procedure 2.2(c), and Procedure 2.2(d) and Procedure

2.2(e) may be performed in parallel. However, do not reverse the order of these
Itwo pairs of steps.

e. Identify the rates at which the inputs and outputs of continuous-time

subsystems are sampled and discretize these subsystems as described in Section

2.4.

f. Designate lines on the block diagram representing inputs and outputs of

subsystems and inputs and outputs of the entire multirate system as bundles of

signals. Partition the state space realization of each subsystem accordingly.

g. Find the T-expanded representation of each subsystem as detailed in

Section 2.3.

21

........................................... ,,, ?



h. Apply Procedure 2.3 and then delete all of the samplers from the block

diagram.

i. Note that the block diagram obtained in step (h) is a block diagram of

interconnected time-invariant discrete-time systems with period T. The states at

times kT of the subsystems in this block diagram and the input-output behavior of

the entire block diagram as a system are identical to those of the original multirate

system in step (c) (after decomposing the expanded signals into their components.)

Standard methods may now be applied to reduce this block diagram to a single state

space equation or transfer function matrix.

Completion of Procedure 2.4(i) will in general involve a matrix inversion to find the state

space description of a feedback structure. Under certain conditions, this inverse may not exist;
hence, a state space representation for such a feedback structure cannot be found. As an example,

the seemingly innocuous system in Figure 2.7 composed of two samplers and two continuous-time

unity gain blocks has no state space description for any choices of T, and T2. This difficulty is
intimately related to the well-posedness problem encountered in transfer function descriptions of

composite systems. See Chen (1984) for a discussion of this problem. If the multirate system as

modeled by the block diagram in Procedure 2.4(a) has the property that each closed path on the

block diagram passes through at least one subsystem which has no direct feedthrough, then it is

suspected that the difficulties described above will not be encountered.

Figure 2.7. An ill-posed multirate system.

2.7 Inclusion of Periodic Subsystems

A slight extension of Procedure 2.4 permits the inclusion of single-rate periodic discrete-
time subsystems in the multirate system. Consider a single-rate discrete-time subsystem with
single-bundle inputs and outputs and a realization which is time varying, but periodic. For all

n e Z , let
7((n+r)TI) = Z(nT1 ) = (A(nTi),B(nTi),C(nTi),D(nTi)).

Thus, Z(nT1 ) is periodic with period rTj. As demonstrated in Meyer and Burrus (1975), repeated
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iteration from an initial time of t = 0 of the state equation governing Z(nTj),

N x((n+1)T1 ) = A(nT,) x(nTj) + B(nTj) u(nTj)

y(nTj) = C(nT1 ) x(nTj) + D(nTj) u(nTj),

U yields a time-invariant state equation with rate 1/rTj:

x((k+1)rTl) = A, x(k(rT1 )) + Be U(k(rT1 ))
~ Y(k(rT1 )) = Ce x(k(rTl)) + De U(k(rT1 )).

Denoting A(nT,), B(nTj), etc. as A(n), B(n), etc. for brevity,

A,= A(r- 1)A(r-2) ... A(1)A(0),

Be = [A(r-l)...A(1)B(O) I ... I A(r-1I)A(r-2)B(r-3) I A(r-1I)B(r-2) I r-1]

C(0)

C(I)A(0)

Ce= C(2)A(1)A(0)

LC(r-1I)A(r-2) ... A(O)-

and De is composed of r x r of the blocks dij, where

0 , if i< j

dJ D(i- 1) , if i j (2.6)

S C(i-1)B(j-1) , if i = j+1
C(i-1l)A(i-2)...AO)Bj- 1) , if i > j+1I

Thus, (A,,Be,Ce,De) serves as a single-bundle rT1 -expanded representation of 7-(nT,). This time-

invariant representation can be further expanded using the technique in Section 2.3. If Procedure

2.4 were applied to a multirate system containing this periodic subsystem, the only alteration of
-~ Procedure 2.4 required would be to include both T, and rTj in Procedure 2.4(b) to find T. In

analogy with Section 2.3, the expanded representation of a periodic discrete-time subsystemn
'r(nT,) with inputs ul nTi) and outputs v(nTj) that are vectors of bundles can be expressed in

terms of single-bundle expanded representations by first partitioning fl~nTj), _C(nTj), and 2QnT,;
to conform with the bundles composing la(nT1 ) and y(nTI).

A multirate periodic discrete-time subsystem may be specified in TI-expanded form

by both specifying A(kT,), B(kTl), C(kT,), and D(kTj) in its state equation,

x((k+l)TI) = A(kT1 ) x(kTj) + B(kTj) U(kT1 )

Y(kT1 ) =C(kTj) x(kT1 ) + D(kTj) Ij(kTI),(27
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where Y(kT,) and U(kT,) are TI-expanded versions of vectors of bundles of signals and A(kT,),

B(kT1 ), C(kT1 ), and D(kT1 ) are rT,-periodic, and by specifying the partition of Y(kT,) and

U(kT,) into expanded bundles and the rates associated with each expanded bundle. Although

discretization of a rTl-periodic continuous-time system with inputs and outputs sampled at multiple

rates would yield a state equation such as (2.7), the state equation (2.7) may not be the result of

discretizing or expanding any subsystem. In the case r = 1, (2.7) may represent the behavior of a

computer program performing concurrent tasks at multiple rates. In Chapter 5, the controllers

designed will take the form of (2.7). The subsystem (2.7) may be expanded over its period, rTj,
and then further expanded over time T during the execution of Procedure 2.4.

The point of the extensions of Procedure 2.4 given above is not to belabor specific

examples but to indicate a general property of Procedure 2.4. If, by some means, a time-invariant

discrete-time description of a subsystem in terms of expanded inputs and outputs can be obtained,

Procedure 2.4 applies to a multirate system in which this subsystem appears as a component. In

this instance, Procedure 2.4 must only be modified by including the period of the time-invariant

description of this subsystem in the set of sampling periods considered when finding the least

common period of the entire multirate system, T.

Example 2.7:

Suppose that a T-expanded representation is desired for the multirate system

shown in Figure 2.8, where T, = 1 sec, T"2 = 0.5 sec, and g(nTi) is a discrete-time

periodic gain with period T3 = 2T,:

gj ,if n is even
g2 , if n is odd

Figure 2.8. A multirate system.

Applying Procedure 2.4:

a: Considering the double integrator and the discrete-time gain as

subsystems, parts (a), (e), and (f) of Assumption 2.1 are satisfied. It will be

assumed that the rest of Assumption 2.1 is satisfied as well (with the exception that
a periodic discrete-time subsystem is present.)
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b: Application of Procedure 2.1 yields't = 0.5 sec, p, = 2, P2 = 1, P3 = 4,

andT = 2sec.

c: A state space realization for the periodic gain is (,0,0,g,(nTj)), and a

state space realization for the double integrator is

d: If the modified version of Procedure 2.2 (wherein continuous-time

subsystems are sampled with period -t (= T2)) is applied to the system, Figure 2.9

results.

u.- -. y

T T,

Figure 2.9. The system in Figure 2.8 with inserted samplers.

e: Discretizing the double integrator with period T2 gives

Ad=[ 1d 1/2 =[18, Cd=[10I,and Dd=O.

f: This part is trivial since all inputs and outputs are drawn as single lines.

g: Denote the T-expanded representation of the periodic gain by K. From

0 g
The T-expanded representation of (Ad,Bd,Cd,Dd) can be found using (2.2) with

i, T/T2 =4:
1 21 785838 1/81
0~ 1 Be[ 1/2 1/2 1 /2j

S. 1 1/ n , /
I 13/8 1/8 0 0

L 1 32 j L5/8 3/8 1/80

h: et , =Q(T,1,1:2), Q2 =Q(T,l1,2:l1). and Q3 Q(TA,2: 2) Then
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10 1000

After inserting connection matrices and removing samplers, the block diagram of

the T-expanded representation of the system appears as in Figure 2.10.

--. U(mT) Q, +CBe'eDeQ Y(mT)

Figure 2.10. Block diagram of the T-expanded representation.

i: The system in Figure 2.10 can be reduced to a single state space

equation, the T-expanded representation of the system in Figure 2.8:

4. *4+6g
l +g l g2+2g 2 4+, 6+g2 11

x(m+1)T)[4 ] 4 2 [ u(mT) ]

[ 92+2g,+292 1+g 2  2+2 I u(mT+T1 )i

Sy(mT)q - 1 0 I  0 0 !

y(mT+T2) 1 1/21 1/8 0 U(MT)

y(mT+2T2)L 1 1 1/2 0 ufrT+T

Ly(mT+3T 2) L 1 3/2 x T) 1 1/8 j

2.8 Modular Expansion of Multirate Systems

0., A fundamental difficulty encountered in executing Procedure 2.4 is that the T-expan,!ei

reprcsentation of the subsystems may involve matrices of large dimensions. A simple exaimp1C
dcnonsfrates this problem and suggests a method of circumventing it, referred to as modular

expansion.

Consider the multirate system with SISO time-invariant subsystems in Figzure 2.11. v. hcr,.
T 1 = 2. T2 = 1, T 3 = 25, and T = 50. Straightforward application of Procedure 2.4 yici" i
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T-expanded representation for l with 25 inputs and outputs and a T-expanded representation for

12 with 50 inputs and outputs. Reduction of the feedback connection of the expanded

representations to a single state equation involves the multiplication and addition of large matrices

and, more importantly, the inversion of two 25 x 25 matrices.

T2 2

Figure 2.11. A simple multirate system.

As an alternative method, consider ignoring T3 for the moment and finding an expar..'ed

representation for the feedback connection of L and E2 over the least common period of T, and

T2 using Procedure 2.4. Let Tf =LCP (T1 ,T 2) = 2. Calculation of the Tf-expanded

representation for the feedback connection involves much smaller matrices and, in particular,

requires the inversion of two lx l matrices. This savings in computation will be worthwhile if the

T-expanded representation of Ef exists, enabling the T-expanded representations of Zf and Z3 to be

combined. A Tf-expanded representation can be T-expanded if T/Tf E H. Since Theorem 2.3

asserts that T/Tf= LCP (T1,T2,T3 )/LCP {Tt,T 2) E N, the T-expanded representation of f can

be computed. This then is the essence of modular expansion.

There is substantial freedom in the steps taken when performing moduiar expansion on a

multirate system. The following procedure helps explain the notion of modular expansion and

should not be interpreted as the only means by which modular expansion can be pertomed.

Procedure 2.5: (a modular expansion scheme)

1a. Carry out steps (a) through (f) of Procedure 2.4.

b. Focus attention on a collection of subsystems by drawing a path on the

block diagram enclosing one or more subsystems which does not separate any

enclosed continuous output/input point from the sampler immediately

following/preceding it (review Procedure 2.2 for the meaning of these terms.) Call

the enclosed portion of the system the "current collection." Set i = 0 and P(O) = 1

Let (To.,T 0,2 . . ..T0.rn(o)) be the set of m(O) sampling periods and periodic

discrete-time subsystem periods in the current collection.
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c. Set P(i+l) = LCM (P(i), Pi,1...Pi,m(i)} and T(1+1),o = P(i+l),r. Find

the T(i+l),-expanded representation of each subsystem in the current collection and
insert connection matrices. By standard techniques, find a single discrete-time state

equation with rate 1I/T(i+l).o to describe the current collection. When finding this

state equation, ignore samplers on the block diagram that are between connection

matrices, subsystems, summers, or branch points in the current collection but retain

samplers on the periphery of the current collection.

d. Set i = i+1.

e. If the current collection is the entire multirate system, stop. Otherwise,

draw a path enclosing the current collection and possibly other subsystems,

following the same restrictions as in step (b) above. Let {Ti, ,Ti.2,...,Tim(i)) be

the m(i) additional sampling periods and periodic discrete-time subsystem periods

enclosed by this path. Call the portion of the system enclosed by this path the

current collection and return to step (c).

Procedure 2.5 proceeds by repeatedly adding subsystems to a single collection of

subsystems. Modular expansion may in general start with several collections scattered throughout

the block diagram and repeatedly add subsystems and collections of subsystems to these

collections. The restrictions in Procedure 2.5(b) on the items included in a collection must be

obeyed during the process of enlarging a collection. Each time a new collection is formed, that

collection is expanded and then reduced to a single state equation as in Procedure 2.5(c). The

process terminates when a single collection contains the entire multirate system. The principle that

llom.s collections of subsystems to be expanded and combined in such a variety of ways is that, as

:s simple induction argument and Theorem 2.3 show, the least common period of the union of a

c, ollection of sets of sampling periods is an integer multiple of the least common period of each set

in that collection.

A trade-off between the effort required to combine expanded subsystems and the effort

expended in ;xpanding a representation corresponding to a combination of subsystems complicates

the question of which modular expansion strategy results in the least computational effort for a

given multirate system. Two general heuristics for modular expansion can be offered. To avoid

inverting large matrices, expand subsystems in a feedback connection and obtain a representation

describing this feedback configuration before including it in a larger collection of subsystems. By

choosing collections of subsystems that have fewer input and output lines, the dimensions of the

required "B", "C", and "'D" matrices are reduced.
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CHAPTER 3

PERIODIC REPRESENTATION OF MULTIRATE SYSTEMS

Representing the behavior of a multirate discrete-time system with period T over intervals
of time of length M, where T/M r Q, results in a description which is time varying and periodic.

V' Such a description will be referred to as the M-varying representation of the system. The

motivation for examining the M-varying representation is twofold. Not only does it provide a
periodic representation of the multirate system, but with M = t, the M-varying representation

finds use theoretically in investigating the interperiod behavior of a multirate system by examining
its T-expanded representation. Three intrinsic difficulties detract from the practical usefulness of

the M-varying representation presented here. In general, the M-varying representation has more
vstates than the time-invariant description, is difficult to calculate, and involves padding with false

-, inputs and outputs to prevent the number of inputs and outputs from varying with time.
Many possibilities exist for the periodic representation of a multirate system. In the

M-varying representation, state transitions occur at regular intervals. A representation like the one
. ..~presented in Kalman and Bertram (1959) in which state transitions occur only at the times of

certain events, such as a sampling event or a state transition of a discrete-time element, is perhaps
more appealing from a practical point of view due to reduced storage requirements. However, the
%I-varying representations presented here are valid periodic representations of the multirate system

aind are easily described in detail.

. 3.1 The T-varying Representation

In Chapter 2, the system was represented over an interval of time which was an integer
multiple of the period of each sampler. Inputs and outputs were implicitly "held" by retaining their

values as components of time expanded signals. The t-varying representation of a system does not

,'..- permit this luxury, and the values stored in most hold circuits must be retained as state variables.

S Consider a sample/hold circuit with period T, = pit, input u, and output y. Let x(nT) be
the value stored in the hold circuit at time t = nt. For times t = not at which sampling occurs, the

next state is updated; as a consequence of Assumption 2.1 (d), the output is set to the input:
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x((no+l)t) = u(not) and y(not) = u(not).

At al other times, the state remains unchanged and the output is set to the value of the state:

x((n+ 1)T) = x(nt) and y(nT) = x(nT).

Thus, for a sample/hold with period T1,

x((n+l)t) = a(nt) x(nz) + b(nt) u(nt)

y(nt) = c(nt) x(nt) + d(nt) u(nT),
where I0

S,,,) , if n mood P1 = 0|w ee(a,b,c,d)(n) =i (0,1,0,1) ,if n rood p, 0

(1,0,1,0) ,if n mod p, 0

Note that if P, = 1, the representation becomes time invariant, with corresponding state and output
equations x((n+l)z) = u(nt), y(nz) = u(nt). Clearly, x(nT) is superfluous in this case, and states

need not be assigned to sample/holds of period t.

The following convention is explicitly stated for clarity.

Convention 3.1: (Intermediate state values of discrete-time systems)

Given a single-rate discrete-time subsystem with state x and state transitions

specified at times kTj or a multirate discrete-time subsystem with state x specified
in Tl-expanded form, define

x(t) = x(kT,), kT1 < t < ((k+l)T1 ).

Due to the multirate nature of the surrounding elements, a TI-varying discrete-time

subsystem must sample its inputs at times t = kTt and maintain its output at y(t) = y(kT1) for
kT 1 < t < (k+l)TI. Since u(kT,) is required at time t = kT,+(p1-l)t to determine the state

transition, a state variable must be defined to retain u(kT,). Let a periodic TI-varying single-rate
discrete-time subsystem with realization (A(kTj),B(kT1),C(kT 1),D(kT1)) have state x r =n, input

u r m and output y(kT1). Define the augmented state
Fx((kpi +i)'t)1

z((kpt+i)t) " (kl) ,0 < i < pl, k = 0,1,....
Lu(kT,) I

A z-varying representation of this system which satisfies the state and output equations

z(t+,t) = a(t) z(t) + b(t) u(t)

y(t) = c(t) z(t) + d(t) u(t)

for times t =(kp +i), 0 < i < p and k =0, .... s
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In 0 ] [C(kTI) 0], D(kTI)1, if i =

0. 0 Im

(a ~ = ( [ (kp i) 1)0 [M l [C(kT1 ) D(kT1 )], 01 if 0 < i < P - 1

(r A(kT1) B(kTI)
,0 ' [0], [C(kT1 ) D(kT 1 )], 0) if i =pI-1

(3.1)

The reader may wish to trace through the above representation and note the following facts.
u(kT 1 ) is updated at the time it is available, i = 0, and the following output values and state
transition are determined from this stored value. The output is held at y((kpl+i),t) = y(kTi) for
0 < i < pl. This t-varying representation is equivalent to the Ti-varying representation in the
sense that for any z(0) c Rn+m and input sequence {ujt): j = 0,1,...), the resulting output
sequence {y(jt)) and the x portion of the state trajectory I z(jt)) of the 't-varying representation are
identical to samples at times t = jt of the output sequence {y(kT 1)) and the state trajectory
{x(kT 1 )), where x(jt) is obtained from x(kT1 ) via Convention 3.1, of the TI-varying
representation with initial state x(0) and input u = u(jt)).

A periodic multirate discrete-time system specified in TI-expanded form,

x(kTt) = A(kT1 ) x(kT1) + B(kT,) U(kT,)

Y(kT 1) = C(kT1) x(kT 1) + D(kT 1) U(kT1),

may also be expressed as a t-varying system. It is necessary that D(kT 1) be structured so that this

system is causal. The state of the system must be augmented by U(kT1 ). Although the specific
details of a t-varying representation for a general multirate discrete-time system specified in time

expanded form are too involved to present here, the basic philosophy is the same as that for a
V .single-rate system. The values comprising U(kT1) are loaded into the augmented state as they

*become available, and the state transition occurs during the lastr interval of each T, interval, as

specified in Convention 3.1. Strictly as a matter of convenience for developments in Section 3.3,
the following convention should be satisfied by a t-varying representation of a multirate discrete-
time system specified in time expanded form.
Convention 3.2:

Portions of the augmented state corresponding to input values that are not
vet available are assigned the value zero.

SD., Example 3.1:

A SISO multirate system with a single state is specified in 6t-expanded
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form:
x((k+1)6tc) =a x(k6T) + [b, b2z] U(k6tr)

Y(k6r) = C2xk d)+ 12  0 ] U(k6t).

The input u is sampled with period 3r and the output y has period 2T:

Fu(k6tc) 1 y(k6r)1
U(k6T) = jUk,+,~ I Y(k6T) = y(k6r+2tr)

p L uk~t+t)J y~6T-+4T)j
Note the two 0's in the D matrix required for causality. Define the 3 x 1 augmented

state z:

[x((k6+i)t)1
z((k6-ii)tc) 0 < 0 i !6,k =0,1,..

[U(k6tr) I
As this system has period 6T, six sets of matrices are required for the c-varying

representation. These matrices are given as a(t), b(t), c(t), and d(t) for each t

below.

t =k6r: 0 00 , 1 , c0 0],d1

t=k6c+x 0 1 0] [0] [c, d, 01, 0

t =k6cr+ 2r: 0 0] 0] [c2 d2 01, 0

t =k6t+4R: 0 1 0 0 [0] [cd201, 0
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A continuous-time subsystem whose inputs and outputs are sampled and held at multiple
rates is readily converted to t-varying form. The continuous-time subsystem is merely discretized

with period t and the surrounding sample/hold devices govern the flow of input and output values

to and from the multirate sampled subsystem. The following procedure details the calculation of
the t-varying representation of a multirate discrete-time system.

Procedure 3.1:

. a. Verify that Assumption 2.1 is met, with the exception that periodic
single-rate and multirate discrete-time subsystems may be present. Partition the

- entire system into subsystems which satisfy Assumption 2.1 (e).
b. Use Procedure 2.1 to normalize all sampling periods and periods of

periodic subsystems and find T = Pt.

% c. Find a state space realization for each continuous-time subsystem and

single-rate discrete-time subsystem.
d. Discretize with period t each continuous-time subsystem and find a

T-varying representation for each sample/hold device and discrete-time subsystem in
accordance with Convention 3.1 and Convention 3.2 as described in this section.

e. For each j c {0, 1,...,P- ), associate the t = jT value of the t-varying

representation of each subsystem and sample/hold device with the corresponding

subsystems and sample/hold devices in the block diagram of the system. Reduce
,, this block diagram to a single state space equation as if it were the block diagram of

%' a single-rate system. This gives a T-periodic, t-varying representation for the entire
'_, multirate system: (A(nt),B(nt),C(nt),D(nt)).

As with Procedure 2.4, difficulties may arise when performing Procedure 3.1 (e).

In certain instances, Procedure 3.1(d) can be modified in order to reduce the number of
states of the r-varying representation. For example, if a signal is connected to a sample/hold with

period T1 or to a single-rate discrete-time subsystem which is TI-sampling the signal and this
signal is the output of a sample/hold with period T2 , a T2-held output of a discrete-time system. or7, the sum of such signals and T2Fl'I E I, then a state variable need not be assigned to the
sample/hold with period T, or to retain the TI-sampled input value of the discrete-time subsystem.
In this case, a 't-varying representation for a T1-varying single-rate discrete-time subsystem i,. in
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the notation of equation (3.1),

(a,b,c,d)((kpl+i)t) = (i, B(kTI), C(kTt), D(kT1 )) , if i = pl- 1 (3.2)

If some of the inputs to the discrete-time subsystem have this property and others do not, the
proper T-varying representation is a hybrid of (3.1) and (3.2). The justification for this
modification is that when T,)/T 1 E N, the inputs to the sample/hold of period T, or the Ti-sampled

inputs of a discrete-time subsystem are held constant over the times

t = kT 1, kT1 + t,.... kT 1 + (pl-1)t;

u(kT,) is available, if necessary, at times after t = kT1 for determining outputs and state transitions.
A slight modification of Procedure 3.1 produces a t/q-varying representation, q r N. By

introducing a fictitious sampling period To = t/q into the normalization process in Procedure
3.1 (b), a different set of parameters results: t' = t/q, P' = qP, and pi' = qpi. Utilizing these
parameters in place of T, P, and pi in steps (c), (d), and (e) of Procedure 3.1 then gives a
t'-varying representation.

3.2 The mt-varying Representation

Obtaining an mt-varying representation, m e N, for a multirate system by direct means can
be somewhat tedious. However, a method will be outlined whereby an mt-varying representation
can be obtained via the t-varying representation in a straightforward manner. In the following

procedure, assume that the system is single-bundle input, single-bundle output.

Procedure 3.2:
a. Apply Procedure 3.1 to obtain (A(nt),B(nt),C(nt),D(nt)).

b. Let r = LCM {m,P}/m. For k = 0,1,..., calculate

c(kmt) = A((km+m- 1)t) ...A((km+1)t)A(kmt),

P(km't) = [A((km+m-1)'t)...A((km+l)t)B(kmt) I ...
I A((km+m-1)t)B((km+m-2)t) I B((km+m-1)t)],

C(km-t)

V. y~mt) =C((km+1)T)A(kmr)]

C((km+m- 1),t)A((km+m-2),t)...A(kmr)l

and the block m x m matrix 8(kmt), where
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0 , if i <j
J.D((km+i- 1)t), if i = j

8ij(kmt)=8ij~kmr) C((km+i-1)t)B((km+j-1)r) , if i = j + 1

C((km+i-)t)A((km+i-2)t)...A((km+j)T)B((km+j- l)), if i > j + 1

Since a(.), 3(.), y(.), and 8(.) are periodic with period rmt, only values for

k = 0,..., r - 1 are required. With z(nt), u(nt), and y(nt) as the state, input, and

output of the t-varying representation, the mt-varying representation satisfies the

following state and output equation for k = 0, 1.... :

z((k+l)mc) = c(kmt) z(kmT) + 0(kmt) U(km)

Y(kmr) = 7(kmt) z(kmr) + 6(kmt) U(kmr).

Y(kmt) and U(kmt) are the mr-expanded versions of u(nt) and y(nt).

Iteration of the equations governing the t-varying representation confirms the validity of

Procedure 3.2. Note the similarity between these formulas and those for the time expansion of a
periodic discrete-time system in Section 2.7. Y(kmt) and U(kmt) in Procedure 3.2 should not be

confused with the rt-expanded versions of the output and input of the original system. Y(kmT)

and U(kmn) are mt-expanded versions of r-sampled versions of the original system's input and
output. In fact, the representation produced by Procedure 3.2 is the mt-varying representation of

the multirate system with samplers of period t inserted at each input and output of the original
system. These added samplers do not alter the behavior of the system. Since the inputs and
outputs of a multirate system are generally sampled with periods greater than t, many of the

components of U(kmt) are not accessed by the mx-varying representation and many of the

components of Y(krrt) are duplicates. This redundancy serves to pad the inputs and outputs of the

mt-varying representation to a size which is uniform in time.
.'

* Example 3.2:

Consider finding the 3r-varying representation of the multirate system in
Example 3.1. Since r = 6/3 = 2. only two values for each of o, , y, and 8 are

needed. The T-varying representation of this system was determined in Example

0 3.1; Procedure 3.2(a) is finished. By straightforward calculations,

k = 0:
F 001 F0001 [i c 0 0 1 F dj0 1

( o)= o j o 3(o)= I 100 o ,Y(O)= c 0 0I (0) d, 0 .
.0 0 0 0 0 0 c2 0 0 d, 0 0
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[y(O) 1u(0)
Y(kmT) =Y(T) ,and U(kmt) =u(t)

Ly(2r)J LU(2t)i

k= 1: [ a b o [0ob2 00] C2d21 0 0 001
a(3,c)- 0 1 0 ,(3T) ,3T)= C3 d3 0 d40 ,

0 0 0 1 00 [C3 d3 0 dL 4 00

[y(3tr)] [u(3 t)1
Y(k |) y(4,) , and U(kmt) = u(4T).

Ly(5t)J Lu(5-)J
Thus,

(c,,y,8) (k(3t)) = { (a,,y,8) (0) , if k = 0,2,4 ....

(a, o ,y, ) (3t) , if k - 1,3,5 ....

* Since y has period 2t, it should be the case that y(O) = y(t), y(2t) = y(3t),

and y(4.t) = y(5t), which can be verified. Note that only u(0) and u(3t) are
utilized, which is consistent with the fact that u is updated with period 3't by the

original multirate system.

Procedure 3.2 determines the m't-varying representation of a single-bundle input, single-

bundle output, multirate system. The m-t-varying representation of a multirate system with inputs
and outputs which are vectors of bundles results from partitioning B(nt), C(nt), and D(nt) and

repeated application of Procedure 3.2(b) in a manner analogous to the time expansion of such
multirate systems. As noted earlier, "t/q-varying representations, q e N, may be obtained using
Procedure 3.1. It follows from the developments in this section that if r e Q and r > 0, Procedure
3.2 may be used to calculate the r-t-varying representation of a multirate system, since r = m/q for

some integers m and q.

3.3 Corresponding Representations

trait common to all periodic representations of multirate systems, but not the T-expanded

representation, is that states corresponding to the contents of some of the hold circuits in the

system must be included in the composite state vector of the system. These added states are of a
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nondynamic nature, and the reader may correctly predict that the lower-dimensional T-expanded
representation of a given multirate system shares many of the qualitative properties of a periodic

representation of that system. The representations described in this section serve as a crucial step
in the investigation in Chapter 4 of the manner in which the T-expanded representation relates to

periodic representations. The properties and results discussed in this section and Chapter 4
regarding T-expanded and t-varying representations could be adapted to almost any periodic

representation of the types of multirate systems under consideration.
For a given multirate system, a relationship exists between the matrices A(nt) of the

't-varying representation obtained from Procedure 3.1 and the matrix A, of the T-expanded

representation obtained from Procedure 2.4, provided that two particular steps of these procedures
are performed similarly. To ensure that such representations exist, let the following assumption be

N satisfied.

Assumption 3.1: (well-posedness)
The calculations necessary to complete Procedure 2.4(i) and Procedure

3.1 (e) can be performed for the multirate systems under consideration and involve

matrices with bounded elements.

The state of the T-expanded representation, x(kT), is a composite of the states of all the dynamic
subsystems in the multirate system. The state of the t-varying representation, z(nr), is a composite

of the states of all the dynamic subsystems in the system and hold states (states assigned to
sample/hold circuits and states introduced to retain input values of discrete-time subsystems.) A
T-expanded and a sr-varying representation of a multirate system will be called corresponding

representations if these representations are obtained from Procedure 2.4 and Procedure 3.1,

respectively, and the following convention is satisfied.

Convention 3.3:

a. The same system partition and the same state space realization for each
subsystem is used in step (c) of Procedures 2.4 and 3. 1.

b. When reducing the composite system to a single state space equation in
Procedure 3. 1(e), z(nt) is partitioned into dynamic states, w(nt), and hold states,

-~. h(nt):

z(nt) = t)
zini L h(nt)

In addition, Procedure 3. l(e) and Procedure 2.4(i) are performed so that the state of

any given subsystem occupies the same components of x and w.
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If corresponding representations have initial conditions z(0) and x(O), where x(0) = w(0),
and are subjected to the same input, then x(kT) = w(kPr), k = 0,1,..., because x and w each
represent the dynamic states of the system and are structured identically. Hereafter, this fact is

emphasized by writing

Fx(n~r)1
z(nt) = (nt) _L Lh(nt)J'

where x(n'T) is interpreted through Convention 3.1 as representing the dynamic states of the

subsystems in the multirate system at time t = nt.

Let x be 8 x 1 and h be il x 1. As a consequence of the manner in which t-varying
representations were defined in Section 3.1, at time t = 0 each subsystem and sample/hold
determines its next state and current output solely from the current value of its dynamic states (if
any) and inputs. Thus, at t = 0 the next state z(t) is independent of every component of h(0). If
the inputs to the system are zero, from z(,t) = A(0)z(0), it follows that for some E1 E R 8s and

E2  E 0
"-- A(0)=[ EiE 0]

Expressing z(Pt) = z(T) for arbitrary z(O) as

z(pt) = A((P-1)'T)...A(,t)A(O)z(0) = 0 z()

for some G E RWx8 and H E R1"X, it follows that x(Pt) = Gx(0) for arbitrary x(0). For the
corresponding T-expanded representation, x(T) = Aex(O) and x(kT) = x(kP't). Thus,

Aex(0) = x(T) = x(Pt) = Gx(0)

for arbitrary x(0), which implies that G - Ae. The following theorem results from the discussion

above.

Theorem 3.1:
For corresponding T-expanded and t-varying representations of a multirate

0 system and some E, c RWXS and E2, H c 11x,,

A(O) = E, and A((P-1)T)...A(T)A(0) = A, 01

IE2 0 1 L HO0

A T-expanded and a r-varying representation of a multirate system will be called

completely corresponding representations if these representations are corresponding
representations and the following convention is satisfied.
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Convention 3.4:
a. Samplers of period t are placed on each input and output of the block

diagram of the system before finding the T-expanded representation.

I b. Once the T-expanded representation has been obtained, its input and
output, U(kT) and Y(kT), are restructured to form a new input and output, U(kPT)

and Y(kP-), given by

[ u(kPt)1 [" y(kPt) 1
U(kPt)= kt') and Y(kPt) = yktt

Lu((k+1)Pt-T).. y((k+ 1 )Pt-rt)j

In essence, the input and output of the system are each treated as a single bundle of
signals. During this operation, the rows, columns, and elements of the matrices of

the representation must be permuted according to the reordering of the inputs and

outputs.

Let the completely corresponding T-expanded representation be denoted by
x((k+1)T) = Ae x(kT) + B,, U(kPt)

Y(kPT) = C,, x(kT) + Dcc U(kPt)

The primary difference between a corresponding and a completely corresponding T-expanded

r, representation is Convention 3.4(a); however, the added samplers do not alter the behavior of the

system. In fact, the columns of Bee are permutations of the columns of Be interspersed with

columns of zeroes, and the rows of C contain duplicates and are drawn from the rows of Ce. For
a given multirate system, a t-varying representation which is a corresponding representation and

one which is a completely corresponding representation are identical.

The manner in which completely corresponding representations are related is revealed by
defining the following quantities from the matrices (A(nt),B(nt),C(n-t),D(n't)) of the t-varying

representation:

a = A((P-1)r)...A(t)A(0),

3 = [A((P-1)t)....A(r)B(0) I ... I A((P-1)t)B((P-2)t) I B((P-1)t)],

<-'? C()AO)

LC((P- l)t)A((P-2)t)...A(O)]

and the block P x P matrix & where
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{ 0, if i <j
D((i- I )t) ,if i =j

8 = C((i- 1)r)B(O-lI)T) , if i =j + I

C((i-l)T)A((i-2)T) ... AOT)B((j- )T) ,if i > j + I

Note the similarity of these quantities to the formulas in Procedure 3.2 for a Pt-varv 11in

representation of a multirate system whose inputs and outputs are treated as a single bundle. It

follows that
z((k-Il)PT) =a z(k~r) + 03 U(kcPx)

Y(kPtr) =yz(kPt) + 5 U(kPT).

For completely corresponding representations with dynamic states which are identical at t = 0 and

input U(kP-t), not only will x(kT) = x(kPT), as with corresponding representations, but in addition

their outputs Y(kPt) will be identical. In particular, with z(O) = 0, x(O) = 0, and U(O) arbitrary,

x(T) = Bcc U(O), Y(O) = Dc U(0)

and

Z(PT) = J U(0), Y (0) = U(0).
[h(PT)l =

Since U(O) is arbitrary and x(T) = x(Pt), P must be of the form

~[BCC]

for some matrix J and 5 = D, By the manner in which r-varying representations were defined ill

Section 3.1, at time t = 0 each subsystem and sample/hold determines its next state and current

output solely from the current value of its dynamic states (if any) and inputs. Thus. for somne

matrices El, E,,, and E3,

A() ElI and C(O) [E3 01.
LE2O0J

By' definition of y, it follows that for some matrix E4, y = E4 0J. Consider setting U(0) 0 Oand

ltigz(0) and x(O) be arbitr,-rv. Then

letting Fx(0)1
y z(O) = [E4O01I1h(O)j = Y(0) = CC,(O

therefore, [C, 0c1O. The following theorem summarizes the i e di' ussion.

Theorem 3.2:
For completely corresponding T-expanded ant! i .rx*inl w: resentations of

a multirate system and some matrices H and J,
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where a, P3, and y are partitioned conformal with the partition of z into dynamic and

* hold states.
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4

CHAPTER 4 1

ANALYSIS OF MULTIRATE SYSTEMS

The representations developed in the previous two chapters provide a convenient means of

assessing important qualitative characteristics of multirate systems. Of particular value is the fact

that the stability, controllability, reconstructibility, stabilizability, and detectability of the T-varying

representation may be determined by examining the corresponding T-expanded representation of

the system.
In this chapter, only systems that satisfy Assumption 3.1 (well-posedness) are considered.

Throughout, denote the t-varying representation of the multirate system by

z((n+l)-t) = A(nt) z(nt) + B(nT) u(nT)
y(n't) = C(nt) z(nt) + D(nt) u(nt),

where (A,B,C,D) (nz) is T-periodic, and

z(nzr) = x r r= R .
kh(nt)_

Denote the corresponding T-expanded representation of this system (see Section 3.3 for details) by

x((k+1)T) = Ae x(kT) + B, U(kT)

Y(kT) = Ce x(kT) + D, U(kT)

and the completely corresponding T-expanded representation of this system by

x((k+1)T) = Ae x(kT) + B U(kPT)

Y(kPT) = Co x(kT) + D,, U(kPr),

,vhere x e 7a and T = Pt. By Assumption 3.1, the elements of (AB,C.D) (nt), (A,B,,,C,,D,),

and (AeBcc,C,,,Dcc) are bounded and well-defined.

4.1 Stabilitv

Clearly, a necessary condition for uniform asymptotic stability of a multirate system is that

its T-expanded representation be asymptotically stable. i.e., all the eipcnvalues of A, have
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magnitudes strictly less than one. It turns out that this is also a sufficient condition for uniform
asymptotic stability of the corresponding t-varying representation.

Theorem 4.1:
If the eigenvalues of A, have magnitudes less than 1, then the "t-varying

representation is uniformly asymptotically stable.

Proof:

Let Z(n,no,zo) be the zero input state trajectory at time t = n't of the

P T-varying representation resulting from the initial state zo at time t = no't. It suffices

to show that V no e N and zo e R8+1, lim Z(n,no,zo) = 0, as this result and the

periodicity of the t-varying representation establish uniformity.

Assume the eigenvalues of A, have magnitudes less than 1. Define the

monodromy matrix at time nt for the t-varying representation as

ID(n) = A((n+P-1)T)...A((n+1)t)A(nT).

Note that (n+kP) = (n) for k = 0,1,... and that under zero input

z((n+P)-t) = 4D(n)z(nt) for n = 0,1....

By Theorem 3.1, for some H E -1xV,

- H 0

Thus, each eigenvalue of O(0) has magnitude less than one. Recall that for square

, :'matrices V and W, VW and WV have the same eigenvalues. Repeated application

of this fact leads to the conclusion that (D(O), 4(1)..., and (D(P-1) all have identical

eigenvalues. Let i E { 1,...,P) and k = 0,1.... and note that

Z(kP+i+no,no,zo) = [(no+i)]k A((no+i.1 )T)...A(not)zo.

For any zo e Rw+9 and any no e N, A((no+i-.)'t)...A(nor)zo is bounded for each

i { 1,...,P). Since the eigenvalues of each D(n) have magnitudes less than 1, for

each i E (1...,P) Z(kP+i+no,no,zo) is bounded and lim Z(kP+i+no,no,zo) = 0;

Z(n,no,z 0 ) is partitioned into P bounded convergent subsequences. Thus,

Z(n,no,zo) is bounded and for any i E (1,.-P) and E > 0, there is K(i.E) r IT

such that II Z(kPi+no,no,zo) II <e V k _ K(i,E). It follows that for any E > 0 there

is K(E) = I + max(K(i,E): i e (1 ...,P}} such that II Z(n.no,zo) 11 < E for all
- n _ K(e)P + no, which implies that lim Z(n,no,zo) = 0.

Li
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The utility of Theorem 4.1 stems from the fact that T-expanded representations are
generally easier to calculate and are of lower order than t-varying representations. Theorem 4.1
also insures that x(nt), rather than merely x(kT), decays asymptotically to zero for any initial

condition if the T-expanded representation is asymptotically stable. In fact, consider collecting the

states of all continuous-time subsystems in the multirate system into the composite state x,(t). For
k = 0,1.... and 0 < to < Pt, write

x (kPt+to) = 'P(to) z(kPt), (4.1)

) where YF(to) is a dim(x) x (8+i) matrix. Under the assumption that IIP(to)Ii is bounded for each

to r [0,Pt), if the eigenvalues of A, have magnitude less than 1, it follows from (4.1) and
Theorem 4.1 that as t -- oc, x,(t) -- 0. As a consequence of Theorem 4.1 and the satisfaction of

Assumption 3.1 by the systems under consideration, if the eigenvalues of A. have magnitudes less
than 1, the t-varying and T-expanded representations are BIBO stable (Chen, 1987).

4.2 Controllability and Reconstructibility

The controllability, reachability, reconstructibility, and observability of linear periodic

Pdiscrete-time systems have been investigated in several recent works; see Grasselli (1984), Bittani
and Bolzern (1985), Bittani and Colaneri (1986), Bittani and Guardabassi (1986) and the
references cited therein. The "t-varying representation provides a T-periodic description of a

multirate system amenable to analysis by the methods developed in these references. Such an
analysis may be quite involved because the properties of controllability, reachability, etc. of a linear
periodic system are in general enjoyed by only a time-varying subspace of the entire state space.
The analysis here presents two instances in which the t-varying representation inherits a property

of its corresponding T-expanded representation.

The informal definitions which follow are consistent with those of Grasselli (1984). A
linear, discrete-time system is said to be controllable if there exist inputs which drive the system
from any given initial state at any given time to the zero state in a finite amount of time. A linear.

discrete-time system is said to be reachable if there exist inputs which drive the system to any

.iven terminal state at any given point in time from the zero state in a finite amount of time. A
linear, To-varying discrete-time system is said to be reconstructible if the state of the system at

0.2- any time t = mT0 can be determined from knowledge of the inputs and outputs of the system over

some finite interval of time prior to t = mT0 . A linear, To-varying discrete-time system is said to be
observable if the state of the system at any time t = mT0 can be determined from knowledge of
the inputs and outputs of the system over some finite interval of time beginning at t = mT0 .
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Determination of the controllability, reachability, reconstructibility, or observability of the
T-expanded representation can be accomplished by considering (Ae,Be,Ce) as a time-invariant
triple. A consequence of the Cayley-Hamilton theorem is that at most 8 T-expanded inputs are

required to drive the state x(kT) to zero if the T-expanded representation is controllable or to the
desired terminal state if the T-expanded representation is reachable. In addition, at most 6

I > T-expanded outputs are required to determine a present state x(kT) of the T-expanded
representation if it is reconstructible or to determine an initial state x(kT) of the T-expanded

representation if it is observable.

Theorem 4.2:

The t-varying representation is controllable if the corresponding T-expanded
representation is controllable, and any initial condition z(not) = zo E -+8 can be

driven to the zero state by time t = not + (8+1)T,

Proof:
Let no = ko P - i, i e {0,1,...,P-1}. If i > 0 and the inputs at times

not,..., (no+i-1)t are zero, the system progresses from zo to some state

z x(koP 't)z(k40PC) ~ 1
Lh(koP't)

where x(koPt) = x(koT) e R . Since the T-expanded representation is con-

trollable, there is an input sequence which drives x(koT) to the origin by time
t = koT + 8T at the latest. If x(kT) reaches the origin before t = koT + ST, zero

inputs can be applied to ensure that x(kT) remains at the origin until this time.
Applying this input sequence to the t-varying representation,

~0 1- ~~~z((ko+8)P't) = h(o Pt

From Theorem 3.1, with u((ko+8)Pt) = 0,

0 z((ko+8)Pt+T) = [ z((ko+5)Pt) = 0." E2 01

Thus, an arbitrary state zo has been driven to 0 by time

t = (no+i+l+6P)t < not + (5+l)T.

Theorem 4.3:
The "t-varying representation is reconstructible if the corresponding

T-expanded representation is reconstructible, and the state of the corresponding

representation at any time not, z(n0 t), may be determined by examining the inputs
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and outputs of the system over a period of time no greater than (5+1)T prior to

t = not.

Proof:
Let no = koP + j, j E ( 1,...,P}. Since the T-expanded representation is

4 reconstructible, the state x(koT) = x(koPt) may be determined by examining the

input U(kT) and output Y(kT) of the T-expanded representation at the times

(k0-8)T,...,(ko-1)T. From Theorem 3.1,

=z((koP+l).C E2 0 x(koPt)1 + B(0) u(koPt) E x(koT) + B() u(koPt).[E2 0 Jh(koPt)J E2J

Thus, z((koP+1)t) may be determined from knowledge of x(koT). It follows that

z((koP+j)T) = z(not) may be determined for any j E { 1,...P) by examining the
inputs and outputs of the system at times (ko-8)Pt,....,(koP+i- 1)t (recall that Y(kT)
involves values of y at and after time kPt.) Therefore, the t-varying representation

is reconstructible and its present state can be determined by examining inputs and
outputs of the system over a period of time (not - (ko-5)Pt) 5 (8+1)T prior to

t = not.

Besides the application to determining the controllability or reconstructibility of the
:-varying representation of a multirate system, Theorems 4.2 and 4.3 contain a subtler result.

Results in Grasselli (1984) show that a t-varying, T-periodic, discrete-time linear system of order
3 + 11, such as the t-varying representation under consideration, can be driven from z(nor) to the
zero state by at most time t = not + (8 + 71)T if it is controllable and that the state of the system at
time t = not can be deter-nined from knowledge of its inputs and outputs over a period of time no
greater than (8 + r)T prior to t = not if it is reconstructible. From the special properties of
t-varying representations and their corresponding T-expanded representations, Theorems 4.2 and

4.3 shorten these time bounds by (71- 1)T.

4.3 Duality, Stabilizability, and Detectability

In analogy with time-invariant discrete-time state space representations, the reader may

anticipate the existence of stabilizability and detectability properties and dual relationships between
stabilizability and detectability for periodic discrete-time representations. By combining results
from Grasselli (1984), Grasselli and Lampariello (1981), and Weiss (1972), this is seen to be the
case. In the remainder of this section, the argument t will be suppressed.

'.4'
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The approach taken in defining stabilizability and detectability will be through a

decompo'ition based on controllability and reconstructibility. The following lemma is a partial

restatement of results in Grasselli (1984).

Lemma 4.1:

A T-periodic coordinate transformation 2(n) = A(n)z(n), A(n) nonsingular

for each n, exists such that if F(n) = (A(n), 1(n), C(n), D(n)) is the representation

of 1(n) in the new coordinates,

1(n) = (A(n+l)A(n)A-1 (n), A(n+l)B(n), C(n)A-1(n), D(n)),

then

F ji(n) 1112(n) U13(n) 1114(n) bi (n)

(n) =22(n) 0 24 (n) ,2)- )L~n = (n) -~n

! 7,. 0 0 1a33(n) a634(n) 0

o 0 0 "4,(n)
~(4.1)

C(n) =[0 '2(n) 0 i 4(n)], and b(n) = D(n).

All of the submatrices appearing in (4.1) are T-periodic and have dimensions which

are constant with n. In addition, 11 1(n), a 33 (n), and a 4 4 (n) are square and

, - nonsingular for all n,

L, ) 0 a22(n) i [)(n)l [0 Z2(n) ] b(n)
;~~.~~ ~.~F~un 12(n) 1 b2(n)1

is controllable, and

1F 22(n) '124(n) 1 (~n)1,~ n)~n
L0 Z4(n) 0 LO(n i4n I (n)

is reconstructible.

As a consequence of the results stated in Lemma 4.1, the subsystems ( 1 1 (n), b1 (n), 0, D(n)),

-22(n), b2(n), U2(n), ) (n)), (a133(n), 0, 0, FD(n)), and ( 44(n), 0, Z.4(n), )(n)) are, respective-

ly. controllable and unreconstructible, controllable and reconstructible, uncontrollable and

[ unreconstructible, and uncontrollable and reconstructible. By the nonsingularity of "dII(n), f33t n),

and "i44 (n), any zero eigenvalues of [(P-1)...A(1)(0)] must appear in the controllable and

reconstructible subsystem. In light of Theorem 3.1, the controllable and reconstructible portion of

the z-varying representation has dimension of at least Ti. This property may serve to thwart

attempts to lower the dimension of the representation by discarding :,l subsystems except the

controllable and reconstructible subsystem; the remaining system will have dimension of at least r.
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It is suspected that a decomposition based on reachability and observability would avoid this

problem; however, the dimensions of subsystems in such a decomposition in general vary with

time.

Based on the decomposition in Lemma 4.1, stabilizability and detectability can be defined.

Definition 4.1:
1(n) will be said to be stabilizable if its uncontrollable portion is

asymptotically stable; with reference to the decomposition in Lemma 4.1, the

eigenvalues of [ 33(P-1)...' 33(1) '33(0)] and of [a44(P-1)... N4 () 4(0)] all

have magnitudes less than 1.

Definition 4.2:
Z(n) wil' be said to be detectable if its unreconstructible portion is

asymptoticaty s,ble; with reference to the decomposition in Lemma 4.1, the

eigenvalues of [Z 33(P-1)...1 33(1)1 33 (0)] and of [Xjl(P-l)...'1 1 (1)!' 1t(0)] all

have magnitudes less than 1.

The following lemma, which arises from results in Weiss (1972) and the periodicity of X(n), was

noted in Grasselli and Lampariello (1981).

Lemma 4.2:
Y(n) = (A(n),B(n),C(n),D(n)) is controllable (reconstructible) if and only if

the dual of Z(n), Xd(n) = (A'(-n),B'(-n),C'(-n),D'(-n)), is reconstructible

(controllable).

By making use of the decomposition in Lemma 4.1 and the duality properties in Lemma 4.2,

stabilizability and detectability can be shown to be dual properties.

Theorem 4.4:
Z(n) is stabilizable (detectable) if and only if Zd(n) is detectable (stabilizable.)

Proof:
Let the dual representation have state (n) and let

Id(n) = (A'(-n), B'(-n), C'(-n), D'(-n)) = (a(n), 13(n), y(n), 5(n)).

Consider the coordinate transformation (n) = 8(n) (n), where ((n) = [A-1(1-n)]'.

The representation of Zd(n) in these coordinates, Zd(n), is given byI (n) = E(n+l) a(n) 8' 1 (n) = [A-4 (-n)]' A'(-n) [A(l-n)]' = [,(-n)]',

5(n) = E9(n+l) P3(n) = [A-'(-n)]' C'(-n) = [C(-n)]',
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and similarly, Y(n) = [N(-n)]' and 9(n) = J5 (-n)]'. Thus,

['All(- n) 0 0 00

a(n) = 1 ) 322(-n) 0 0 = 2(n
11 n 0(n)fl 003(n

(4.2)

Y(n) 51' (-n) 62(-n) 0 0] and 9(n) f5'(- n).

From the properties of the submatrices in (4.2) given in Lemma 4.1 and from

Lemma 4.2, it can be seen that 9;3Pn) and 1;4-n) determine the dynamics of the

unreconstructible portion Of IEd(n) and lij,(-n) and 163(-n) determine the

dynamics of the uncontrollable portion Of Ed(n). Note that

Since!,,(.) is square, the eigenvalues of '11(-(P- )... a11 (-l) 11l(O) are equal

to the cigenvalues of 1 (-). 1 i() i0) A similar relation holds for 3 33( - n)

and 1 4(-n). Thus, the uncontrollable (unreconstructible) portion of T.(n) is

asymnptotically stable if and only if the unreconstructible (uncontrollable) portion of

Ed(n) is asymptotically stable. The statement of the theorem then follows from

Definitions 4.1 and 4.2.

The examination of the relationship between corresponding T-expanded and tr-varying

representations can now be completed.

.. ~ ;...Lemma 4.3:

(An), B(n), C(n), D(n)) is stabilizable if there exist T-periodic matrices

F(n) such that on applying the state feedback

u(kP+i) = -F(kP+i) z(kP), 0 :5 i < P, k = 0,1._

the resulting representation is asymptotically stable; that is, the closed-loop
monodromy matrix at time t = 0,

V DJ() = A(P-l1) [.[A(l) [A(0) - B(O) F(0)] - B(l) F(Il)... I - B(P- 1) F(P-l1),

* Proof:has eigenvalues of magnitude less than 1.

S. Without loss of generality, it can be assumed that (A(n), B(n), C(n), D(n))

has been transformed into the canonical form in Lemma 4. 1; it can be verified that if
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state feedback P(n) = F(n) A(O) is used in the 2 coordinates, then

(5,(0) = A-'(P) c,(0) A(O) = A-1(0) Dc,(0) A(0).
Thus, 4c(0) and c(0) have the same eigenvalues. Partition (A(n), Nn)) into its

controllable and uncontrollable parts:

Noethtifter sA(n)[ A1n) A12 (n) j;n [sin]0 AX22(n)10

Note that if there is l(n) such that each eigenvalue of

(B'(0) = X(P- 1) 1 .. [A0) 1(0 -Doro]-N)Ii..1- 1) ( 1

has magnitude less than 1, then each eigenvalue of [A22(P- 1)... 22(1) A22(0)I has

magnitude less than 1. This is easily seen by expanding ((0) as

P-2
till• 65(o) = A(P-1) ...AX(,() - 2: [ A(P-1) ... , ,(+l)Wj)N-()] - B(P-l) j(P-I)

j=O

and observing that ,(P-1)...A(j+1) is upper triangular for -1 < j < P-2. From the
special form of S(n), cVr,(O) is upper triangular with [X22(P-1)...A 22 () , 22(0)]

appearing on the diagonal. Thus, if the eigenvalues of c(0) have magnitudes less

than 1, so do the eigenvalues of [X22(P-1)...A 22() A22(0)], and (A(n), B(n)) is

stabilizable.

Theorem 4.5:
The t-varying representation of a multirate system is stabilizable if its

corresponding T-expanded representation is stabilizable.

Proof:
The theorem can be restated equivalently as "the t-varying representation of

a multirate system is stabilizable if its completely corresponding T-expanded

representation is stabilizable," since the input matrix of the completely correspond-

ing representation, , is merely a rearrangement of the columns of the input

matrix of the corresponding representation, Be, padded with columns of zeroes.

If the completely corresponding T-expanded representation is stabilizable, it0.9

is a standard time-invariant result that there is Fc, such that the eigenvalues of
(Ae - BccFcC) have magnitudes less than I. Consider applying state feedback to
the t-varring representation as in Lemma 4.3:

u(kP+i) = -F(kP+i) z(kP), 0 < i < P, k = 0,1,....

Suppose u E RPxl. Partition Fcc into P groups of rows,
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f1
Fce= E

where fi e RPx8. Set F(n) = [ f p] and write (D.,(0) as

P-2

.(0) = A(P-1)...A(l) A(O) - 1: [A(P-l)...AO+I)Bj)F(j)] - B(P-1) F(P-1).
j=0

In the notation of Theorem 3.2,

F(O)1

.F(P-1)J

From the values of F(n) and Theorem 3.2,

Thus, the eigenvalues of (O) have magnitudes less than 1, and by Lemma 4.3,

the t-varying representation is stabilizable.

By using Theorem 3.2, Theorem 4.4, and Lemma 4.3 and proceeding in a manner parallel to

Theorem 4.5, the following theorem can also be established.

Theorem 4.6:
The r-varying representation of a multirate system is detectable if its

corresponding T-expanded representation is detectable.

The statements of Theorems 4.2, 4.3, 4.5, and 4.6 all hold with "if' replaced by "only if,"

but the new assertion is rather unimportant and in general trivial to prove. By arguments parallel to
those presented in this chapter, it can be shown that M-varying representations which correspond
to T-expanded representations (in a manner analogous to corresponding '-varying and T-expanded

representations) inherit the stability, controllability, reconstructibility, stabilizability, and detect-

ability properties of the T-expanded representation.

:4.
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CHAPTER 5

DESIGN OF MULTIRATE CONTROLLERS

The representations and methods of analysis developed for multirate systems thus far bear
fruit in the form of multirate controllers. The term "multirate controller" need not imply that only
the controller is multirate; candidates for control include all systems to which Procedure 2.4 and its

extensions apply. Although the T-expanded or M-varying representations are not truly time
'invariant or periodic due to the time expanded form of their inputs and outputs, this characteristic

offers little or no obstruction to the design and implementation of multirate controllers by
conventional means. The controller designs presented here are intended as illustrations of the
general properties of controller design and implementation using T-expanded and M-varying
representations of multirate systems. The usefulness of these representations is by no means

limited to the controllers examined here.

5.1 T-expanded State Feedback and Observers

Consider a multirate system with the T-expanded representation

x((k+1)T) = A, x(kT) + Bye V(kT) + Bre R(kT)

Y(kT) = Ce x(kT) + D, V(kT) + Dre R(kT), (5.1)

where V(kT) is an input intended for control purposes and R(kT) is a reference or load input. On
applying feedback of the form V(kT) = -F x(kT), the state equation becomes

x((k+l)T) = [Ae - BveF] x(kT) + BreR(kT).

If a matrix F can be found such that the eigenvalues of [Ae - BeF] are all less than 1 in magnitude,
then Theorem 4.1 asserts that this representation, as well as the corresponding t-varying
representation, is asymptotically stable. Conditions for the existence of such a matrix F given

(Ae, B,,) are well known, and methods of calculating F abound.
Although calculation of F by treating (Ae, Bye) as a time-invariant pair using pole

placement or linear quadratic methods serves the purpose of stabilizing the system, two comments

are in order regarding the choice of design parameters for these methods. When choosing pole
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locations for pole placement, bear in mind that these pole locations are in a time scale of T seconds

per transition. An LQ design with even weighting on each member of an expanded bundle of
inputs with period TI, say VI(kT), may result in a control law which consistently produces inputs

vl(kT) of magnitude quite different from vj((k+l)T-Tl). The cause of this behavior is that if the

subsystems affected by v, have poles far from the origin (close to the ongin,) then an input vl(kT)
will have a greater (lesser) effect on x((k+l)T) than an input vi((k+l)T-T). If such behavior is

deemed undesirable, it can be predicted by examining the columns of Bye corresponding to VI (kT)

and corrected by appropriate changes in the input weighting matrix.

The design of observers which produce an estimate k(kT) of x(kT) parallels the design of

such observers in the standard time-invariant case, with two minor exceptions. The observer must
produce a predictive estimate, usually denoted by k(kT I (k-1)T), since current estimates,

commonly denoted by t(kT I kT), result in a noncausal observer. The observer must also account

for the D, and D,, terms frequently present in the T-expanded representation.

The state equation for an observer for system (5.1) in predictive form is
f.((k+l)T) = AeJ(kT) + BveV(kT) + BreR(kT) + K[Y(kT) - Cej(kT) - DveV(kT) - DreR(kT)].

The estimation error satisfies x((k+l)T) -k((k+l)T) = [Ae - KCe](x(kT) - k(kT)). If K is chosen to
stabilize [A, - KCej by methods dual to those employed to find F, this error will asymptotically

approach zero as k--+-. The state and output equations for the combined state feedback and

dobserver pair are

.((k+l)T) = [Ae - KC - [B,, - KDe]F] i(kT) + KY(kT) + [Bre - KDre]R(kT)
V(kT) = -F k(kT).

It is easily verified that the principle of separation holds for the state feedback and observerpdesigns. Equation (5.2) is a multirate discrete-time system specified in T-expanded form with

input [Y(kT)' R(kT)']' and output V(kT). As k((k+l)T) is needed at time t = (k+l)T to compute
V((k+I)T) and each component of Y(kT) and R(kT) is available at time t = ((k+l)T - Tr) at the

latest, it follows that the controller given above is causal. Although all of the information
necessary to calculate R((k+1)T) mav not be present until time t = ((k+l)T - t), the calculation of

[A, - KCe- [B,¢ - KD,,e]F] .-(kT)

is possible immediately after t = kT. From

KY(kT) = K1 ,jyj(kT) + K1,2y,(kT+T1) +...+ K2,1y2(kT) + K2,2Y2(kTi-T 2 ) +....

where the Kij are groups of columns of K chosen to be compatible with the individual values of

the ikh bundle of signals (with period Ti) comprising Y(kT) at time t = kT + jTj, the calculation of

KY(kT) and [Bre - KDreIR(kT) can occur progressively as the values of Y(kT) and R(kT) become

available. The implementation of (5.2) involves sampling each component of y(t) and r(t) at the
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appropriate rate and transferring values of -F (kT) to each component of v(t.; at the appropriate

rate and holding each of these values until the next arrives. This behavior is conceptualized as

sample/hold devices at appropriate rates at the inputs and outputs of the controller. The following
procedure summarizes the steps necessary to find a T-expanded multirate state feedback-

observer controller.

Procedure 5.1:
a. Decide upon the rate desired for each of the controller outputs and the

desired rate at which each plant output and reference input is to be observed by the

controller. Place samplers of corresponding periods on the block diagram of the

system after the controller output v and the reference input r and before the

controller input y, as shown in Figure 5.1. Assume that only the components of r

observed by the controller are fed to the summer, as in Figure 5.1. Relaxation of

this assumption is considered after this procedure.
,,

"-" S H' I Plavn..........t

"-' S~~/H's -.-, Cntroller S/H's ---

Figure 5.1. Placement of samplers.

b. Apply Procedure 2.4 and any modifications which apply to find a
T-expanded representation such as (5.1), treating r and v as inputs and y as the

output.

c. Using any method desired, find matrices F and K from the pairs

(At, B,,) and (As, Ce) such that each eigenvalue of [Ae - BveF] and [A, - KC ]

has magnitude less than 1. The controller state and output equations are given by

(5.2).
4..-#

The assumption in Procedure 5.1(a) that only the components of the reference input

observed by the controller are fed to the summer is necessary for the design procedure but need not

be satisfied in the implementation of the controller. Let r, be the actual sampled and held version of

r applied to the plant, where each component of r, has a period which is an integer multiple of t.

the fundamental period used in the execution of Procedure 5.1. Let r0 be the sampled version of r

observed by the controller. Since the components of r, and ro vary at times which are integer
multiples of 'r. r, can be written r, = r. + ru, where the components of ru each vary with period ".
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The signal r, is the portion of r, unobserved by the controller. Let the plant and controller system
with r. and ru as inputs have composite state

sk)[x(kT)]- ~ ~~s(kT)L kl'J

and state equation

s((k+l)T) = A s(kT) + B, R,(kT) + Bu Ru(kT). (5.3)

_ A is stable by design; therefore, under the quite reasonable assumption that Bo and B, are

bounded, (5.3) is bounded-input bounded-state stable. If it is desired that the controller sample r at
a slow rate, then either r must be fed to the plant at this slow rate, slowing the system's response
time, or r can be fed to the plant at a fast rate, in which case the unobserved portion r" acts as a

disturbance,
The T-expanded multirate controller design has the advantages of ease of calculation by

established methods and being readily implemented. To its disadvantage, this controller exhibits a
rather sluggish response to rapid changes in rifT is large. The state feedback V(kT) = -F k(kT) is
e-,scntially applied open loop over times of length T, leaving the system vulnerable to disturbances

.< .'. and inputs ru unobserved by the controller. Indeed, if the observer portion is initialized to x(0) = 0.
- ,no control will be applied until time t = T. The design of a T-expanded multirate Kalman filter for

a system with noise at the input which is uncorrelated with the noise at the output is complicated by
the fact that the De term in the T-expanded representation introduces noise at the output which is
highly correlated with the noise at the input,

5.2 M-varying State Feedback and Observers

With the intent of achieving a faster response to inputs and disturbances, the value of the
state may be estimated and fed back at times t = nt. Consider the t-varying representation of the

* multirate system in Figure 5.1 (in the following, the parameter T is suppressed):

z(n+l) = A(n) z(n) + B,(n) v(n) + Br(n) r(n)
.'. (5.4)

y(n) = C(n) z(n) + D,(n) v(n) + D,(n) r(n).

4After applying state feedback v(n) = -F(n) z(n),

z(n+l) = [A(n) - B,(n)F(n)] z(n) + Br(n) r(n).

If F(0),.... F(P- I) can be found such that each eigenvalue of the closed-loop monodromv matrix at
.. = 0,

Od) = [A(P-l) - B,(P.-I )F(P-l)I...[A(I) - B,(I)F(1)I[A(0) - B(0F().
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has magnitude less than 1, then the system employing F(n) = F(n mod P) as T-penodic feedback

matrices will be asymptotically stable. Such a periodic feedback aniseS natlrally' as the solution to

the LQ problem with the cost function

J = 1/2 [z'(n)Wz'(n)Wz(n)zkn) + v'(n)W,'(n)W,.(n vcn i. (5.5
n=O

where Wz(n+P) = Wz(n) and W,(n+P) = W,(n) for each n E Z+. The discrete-time Riccati

equation associated with this problem admits a T-periodic solution which determines the feedback

matrices F(n). Discrete-time periodic Riccati equations have just recently been investigated;

conditions for the existence and uniqueness of their solutions, methods of calculating these

solutions, and conditions under which the resulting feedback i, stabilizing are still developing. See

Bittani et al. (1986) and the references cited therein.

In order to make use of the results in Bittani et al. (1986), assume that W,(n) is square and
nonsingular for each n E Z". The Riccati equation associated with (5.4) and (5.5) can then be

- written

* ,S(n) = A'(n)S(n+l)A(n) + Wz'(n)Wz(n)

- A'(n)S(n+l)B,(n) [I + B,'(n)S(n+l)B,,,(n)] 1 B, ,'(n)S(n+ l )A(n), (5.6)

,- where B,(n) = Bv(n)(W,(n))-1 . For state feedback v(n) = -F(n) z(n),

F(n) = (W,,(n))-1 [I + B,'(n)S(n+l)B,(n)] - t B,'(n)S(n+l)A(n)

= [W,'(n)W,,(n) + Bv'(n)S(n+l)B,(n)]- 1 B,,'(n)S(n+l)A(n). (5.7)

The following theorem is stated without proof: its proof relies on the application of results in

Bittani et al. (1986), the duality properties of discrete-time periodic systems (see Theorem 4.4) and

the assumed nonsingularity of W,(n).

Theorem 5.1:

Consider the dynamical system represented by

* z(n+l) = A(n) z(n) + B,(n) v(n)

An) = W,(n) z(n), (5.8)

where A(n) and B,(n) are as in (5.4) and Wz(n) is as in (5.5). Then a unique

T-periodic symmetric positive semidefinite solution to (5.6) exists and (5.4) is

asymptotically stable after applying feedback v(n) = -F(n) z(n), where F(n) is given

by (5.7), if and only if (5.8) is stabilizable and detectable; i.e., the uncontrollable

part of (5.8) is asymptotically stable and the unreconstructible part of (5.8) is

asymptotically stable.

B%' Theorem 4.5, the stabilizability of (5.8) can be evaluated by examining the stabilizabilitv of the
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T-expanded representation (with r(n) -0) corresponding to (5.4). This device cannot be employed

.- to determine whether (5.8) is detectable: however, if W,(n) is square and nonsingular for each n,

(5.8) is detectable.
A t-varying observer to form an estimate 2(n) of z(n) takes a form identical to the

T-expanded observer:

2(n+l) = A(n)2(n) + B,(n)v(n) +Br(n)r(n) + K(n)[y(n) - C(n)2(n) - D,(n)v(n) - Dr(n)r(n)].

Since z(n+1) - 2(n+l) = [A(n) - K(n)C(n)] (z(n) - 2(n)), the error z(n) - 2(n) will asymptotically

approach zero if K(n) is chosen in a manner dual to the choice of F(n) for stabilization (see
Theorem 4.4 for the required duality details.) By writing the equations of the combined controller

and plant in terms of z(n) and (z(n) - E(n)) and finding the T-expanded representation of this
"t-varying representation, it can be verified that the principle of separation holds for the state

feedback and observer designs.
The procedure for finding a r-varying, T-periodic state feedback-observer controller via the

e ,discrete-time periodic Riccati equation parallels Procedure 5.1. Comments similar to those

0 following Procedure 5.1 with regard to reference inputs unobserved by the controller also apply.
Using the periodic description (5.4) for the multirate system, other types of t-varying

.. - controllers can be designed. Let z(n) E R6 r1, as in Chapter 4. Results in Grasselli and

- Lampariello (1981) show that the reconstructibility and controllability of (5.4) (with r(n) = 0) are
necessary and sufficient for the existence of a -varying, T-periodic state feedback-observer dead-

beat controller for (5.4) which is capable of driving any initial condition to the origin within an
interval of time no greater than 2(8+1)T. In light of Theorems 4.2 and 4.3, it is suspected that a
closer examination of the dead-beat controller problem could reduce this interval to 2(8+1)T for the

-.r- representation (5.4). M-varying controllers can be found by utilizing the M-varving representation
of the multirate system in Figure 5.1. As M-varying representations involve M-expanded inputs
and outputs, care must be taken to insure that the controller designed is causal. If the M-varying
controller is of the state feedback-observer type, the controller will be causal if the observer

" •produces predictive estimates.
.;, .., Implementation of a t-varying controller requires an interpretation of v(n), r(n), and y(n).

In Procedure 5. 1(a), sample/hold devices are placed on the block diagram to represent the effects

of the sampling and "output and hold" operations performed by the discrete controller. The fact
' that values of v, r, and y are specified for the controller at times t = n't might suggest that the

. ":. 't-varying controller be implemented by loading values of r, y, and v into and out of the controller

at times t = nt and physically passing these values through the sample/hold devices following v

and r and preceding y on the block diagram of Procedure 5.1 (a). The implementation can be made
much more efficient by bringing the sample/hold devices inside the controller in the following

, , ,manner. For each component vi(n) of v(n), if n corresponds to a time at which the sample/hold
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associated with vi samples, then vi(n) should be output by the controller at time t = nt and held for

the duration of the sampling period associated with vi. For each component yj(n) of y(n), if n

corresponds to a time at which the sample/hold associated with yj samples, then yj(n) should be
acquired by the controller at time t = nt and stored for the duration of the sampling period

associated with yj to provide the values yj(n), yj(n+l)..... The signals r(n) are treated similar to

y(n). Analogous comments hold for M-varying controllers.
A t-varying controller can potentially respond quickly to changes in the input r and, since

the state estimate is updated frequently, reduce the effects of unmeasured disturbances on the

output. The price paid for these attril:ites takes the form of complexity of design and

implementation; the -t-varying representation employed by the controller has more states than the

T-expanded representation, resulting in greater computation and storage requirements. An

M-varying controller, where M is chosen such that T/M r N, may serve as an adequate

compromise between t-varying and T-expanded controllers; by choosing different values of M,

complexity can be traded for response time. The practicality of solving the discrete-time periodic

Riccati equation or finding the feedback matrices required in Grasselli and Lampariello (1981) is

unknown as of the present.

5.3 Transfer Function Controller Designs

By thinking of (5.1) as a time-invariant state and output equation, a transfer function matrix

may be obtained for this system: L Vz) G (z) 1
Y(z) = ( Ce(zI - Ae)-1 [Be Brde + [De Drel ) R(z) L R(z) I

Using MIMO transfer function design techniques, controllers of a variety of structures may be

designed (Kailath, 1980). One such structure is

V(z) = Vy(z) + Vr(z) = Hy(z) Y(z) + H,(z) R(z).

Although details of such a design will not be elaborated upon here, the restrictions imposed on

H,(z) and Hr(z) by the T-expanded nature of V(kT), Y(kT), and R(kT) warrant discussion. A

state space realization of Hy(z), if it exists, takes the form of a multirate discrete-time system

specified in T-expanded form,

w((k+l)T) = AY w(kT) + By Y(kT)
Vy(kT) = Cy w(kT) + Dy Y(kT),

where D, = Hy(c-). For this system to be physically realizeable, the elements of Hy(oo) must be

finite; Hy(z) must be proper. For (5.9) to be causal, selected entries in Dy must be zero, and the
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corresponding entries in Hy(z) must be strictly proper. Let Hy(z) be partitioned into i x j blocks
hij(z) to conform with the signal bundle values v(kT+ti) comprising V(kT) and y(kT+tj)

comprising Y(kT) (this notation is expedient and unrelated to previous notations.) For Hv(z) to be
realizable as a causal multirate system, it must satisfy

h 0 , if ti < tj. ''hi j(o) =(5 10)
,.: .. :<Ia matrix of finite numbers ,if t, < ti

Multirate controllers designed by transfer function tecnniques possess some of the
advantages of both the T-varying and t-varying state space controllers. The T-expanded nature of
such a controller simplifies its implementation, and the possibility of incorporating "D" terms into
the state space realization of the controller may allow the controller output during [kT, (k+ I)T) to
depend on its inputs during [kT, (k+ 1)T), avoiding the open loop type behavior of the T-expanded
state space controller with respect to measured disturbances. However, the state of a multirate

'p controller designed by transfer function techniques is updated only at times t = kT, which may
impair its ability to reduce the effects of unmeasured disturbances on the output. The practical
implications of incorporating the causality constraints (5.10) into MIMO transfer function design

S.: .. techniques are unknown at the present.

5.4 Comments

,'-\ C~ The advantages of using a multirate controller as opposed to a single-rate controller depend
greatly on the specific system to be controlled and on an intelligent choice of sampling periods for
the controller. Clearly, if the plant is inherently multirate, conventional methods of analysis and
design are not applicable to controller design. However, multirate systems frequently arise from
attempts to circumvent the "a controller is only as fast as its slowest actuator or sensor" principle of
single-rate sampled-data designs. In such a situation, the simplicity of a single-rate controller must
be weighed against the prospects of making full use of the bandwidth of the actuators and sensors

, by multirate control. Results in Barnes and Shinnaka (1980) indicate that implementations of
multirate systems specified in T-expanded form exhibit desirable numerical characteristics, such as
low roundoff noise. A basic property of multirate systems is that as the numbers pi obtained from
the normalization process increase, representation and analysis of the system become more
difficult. Exploiting any freedom in the choice of actuator and sensor rates to reduce the numbers
pi will result in a much simpler multirate controller.
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CHAPTER 6

THE VARIABLE COMPONENT METHOD

APPLIED TO MULTIRATE DISCRETE-TIME SYSTEMS

The variable component method and the method of sensitivity points have been applied to

synthesize and tune linear, time-invariant controllers for linear, time-invariant plants; see Frank

(1978), Kokotovic (1964), Kokotovic (1965), Hung (1985), and the references cited therein. In

this chapter, the variable component method will be extended to the class of multirate discrete-time

systems to which Procedure 2.4 and its extensions apply. A general time-invariant variable

component result will be derived and then related to the T-expanded representation of these

multirate systems.

Consider a time-invariant discrete-time single-rate system with an embedded scalar
parameter k and scalar output y(u(n),k,n) at time n for a given scalar input u(n). The variable

component method and the method of sensitivity points are each based on a block diagram
representation of the system and provide a means of determining the output sensitivity

function, a[y(u(n),k,n)]/k, by simulation or implementation. These two methods basically

proceed by injecting the input u(n) into the system or a suitable model of the system and extracting

selected signals, as determined by the block diagram, from the system or model and injecting these
signals (or possibly filtered versions of these signals) at selected points of another model of the

system. Alternately, the extracted signals may be stored and injected into the actual system at a

0later time. In either case, the response at a selected point of the two connected systems is the

output sensitivity function. In addition to the actual system, the variable component method

requires as many models of the system as there are parameters to be independently varied if the
output sensitivity function for each parameter is to be obtained simultaneously. The method of

sensitivity points allows the output sensitivity functions for any number of parameters to be
obtained simultaneously with only one system-model pair. However, the method of sensitivity

points cannot be applied to MIMO systems (Hung, 1985).

Once the output sensitivity function has been obtained, the response of the system with
parameter value k + Ak, IAki 1 Iko , and input u(n) can be approximated by

y(u(n),k+Ak,n) y(u(n),k,n) + Ak(a[y(u(n),k,n)I/ak).
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The output sensitivity function thus provides information useful for iteratively adjusting the
parameter k so that the output of the system meets or approaches certain time-domain criteria for a
given input u(n). Such adjustments are frequently determined through the solution of an
optimization problem by minimizing a measure of the error between the actual output of the system

-.. and the desired output of the system (see Kokotovic (1965) and Hung (1985).) An example of the
7' :use of the variable component method with a multirate system would be the tuning of parameters in

a single-rate sampled-data controller based on intersample values of the output of the controlled

system.

6.1 A Time-invariant Result

In the following, a general variable component method result for time-invariant discrete-
time MIMO systems will be derived. This time-invariant result can then be applied to the

- T-expanded representation of a multirate discrete-time system.
• .Consider a MIMO time-invariant single-rate discrete-time linear system with rate 1/T and a

parameter K = diag[kl,k 2,...,kr] which can be isolated as shown in Figure 6.1. Let U(z), E(z),
and Y(z) be the vector Z-transforms of U(mT), E(mT), and Y(mT), respectively, and let U(z) be
j x 1, E(z) be r x 1, and Y(z) be q x 1. The dependence of E(z) and Y(z) on K and U(z) will

not be made explicit at this point.

U(z) Y(z)

Figure 6.1. A MIMO time-invariant system.

Assuming that the system in Figure 6.1 is well-posed (see Chen (1984),) there exist transfer

-, function matrices F(z), G(z), H(z), and J(z) which do not depend on the parameters ki, k ..... kr
such that, suppressing the argument z,

ThuR = GU + HKE = GU + HKR.
" ? 'Thus,

R = (I - HK)-1 GU. 6.1)
Also,

Y FU + JKR = FU + JK (I, - HK) l GU. (6.2)
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For the set S Q { 1,2,...,r), define the r x r matrix A(r,S) by

Aij~,S) 0 ,otherwise

Note that aK/&ki = A(r, (i)). From (6.2), we can compute

DYDi= J A(r,{i)) (Jr - H4K)-' GU + JK (Jr -HK)-I H A(r,[i)) (1r - HK) 1 GU

= J [Jr + (Jr - KH-)-1 KI{] A(r, (i)) (Jr -HK)-I GU

= J (Jr - KH)I [Ur - KH + KH] A(r,[i}) (1r - HK) GU

= J (Ir - KR)-1 A(r, (i}) (1,r HK)-I GU. (6.3)

Since (DY/aki)ki = DY/Dlnlki and K A(r,(i)) = ki A(r,(i}), it follows from (6.3) that

DY/Dln Ik~i = J (Jr - KH) K A(r, (i)) (1r - HK)-I GU. (6.4)

Consider taking a copy of the system in Figure 6.1 with zero inputs, inserting a summer into it,

and connecting it to the system in Figure 6.1 as shown in Figure 6.2.

I U(z) R) Ez)Y(z)

Alr,{i))

V(z)

Rd(Z) Ed(Z)

Figure 6.2. The system in Figure 6.1 connected to a duplicate of itself.

Then Rd = RIEd + V = HKRd~ + V; hence, Rd = (1, - HK)-I V and

Yd =JKRci = JIC (1r - HK)-' V = J (1,. - KH)-I Ky.

From V(z) = A(r, i)) R(z) and (6. 1),

Yd = J (1, - KR) K A(r, (i)) R.= J (1r - KH) K A(r, (i)) (1r - HK) GU. (6.5)

C om paring (6.5) w ith (6.4), Y ( ) D ~ ) @ n kl 6 6

Since the operations of Z-transforming and differentiation with respect to a parameter can be
interchanged, Yd(mT) = aY(mT)/@lki. As additional notation, let Yd(z,S) be the output of the
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duplicate system in Figure 6.2 when V(z) = A(r,S) R(z). In this notation, Yd(Z) in Figure 6.2 is
S. Yd(z,{i}). By linearity,

Yd(mT,S) = Y, bY(mT)/Dlnlkil. 
(6.7)

ieS

It may be desired to set ki = k for i e S Q { 1,2,...,r} and determine bY(mT)/alnlk1 to

examine the effect of changing the parameters ki, k e S, in unison. Treating each ki as a function

of k,

ki (k)= ,
ici~- k , i e Scii S

where ci are constants independent of k, and using the chain rule for differentiation,
r

aY(mT)/Dlnlkl = I [(aY(mT)/1nlkil) (alnlkjl/alnlkI)]
j=1

= aY(mT)/alnlkjl.~iC S

From (6.7),

-Y(mT)/alnlkl = Yd(mT,S). (6.8)

-' In particular, if K = diag[k,k,...,k] then S = (1,2,...,r) and aY(mT)/alnlkl is found by setting
V(mT) = R(mT). By a similar argument, it follows that if the parameter k appears at several

locations in the original system, IY(mT)/alnlkl will be the output of the duplicate system if the

signal entering the gain block k is extracted from the original system at each occurrence of k and
summed with the signal entering the gain block k at each corresponding occurrence of k in the

duplicate system. Note that if k, and k2 are two parameters which are to be varied independently,

the original system and two copies of it are required to determine aY(mT)/alnlkl I and

aY(mT)/alnlk 2l simultaneously.

The quantity aY(mT)/a1nlkil is referred to as a semirelative output sensitivity

function in the literature (Frank, 1978). With reference to Figure 6.2, the output sensitivity

function, aY(mT)/Dlkil, may be obtained by summing V(mT) with the o of the gain block K

in the duplicate system.

6.2 Interpretation of the Time-invariant Result

Consider a multirate discrete-time system with input u and output y which contains a

1discrete-time subsystem that is a SISO periodic gain g(nTj) with input us, output YV, and period
O. T2 = qTj. Thus, this gain sweeps cyclically through a set of values (g1.....gq} and the
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subsystem can be described by
y,(nT1 ) = g(nT1) us(nT,) = g((n mod q)+I) Us(nT 1).

Let T/T2 = S2, where T is the period of the entire system and S2 E N. From (2.6), the T-expanded

representation of this subsystem is Ys(mT) = K Us(mT), where with G = diag ,g1,g2,...gq],

K = diag[G,G,...,G]; G appears S2 times along the diagonal of K.
In light of the time-invariant nature of T-expanded representations and the fact that the j

structure of the block diagram of a T-expanded representation is identical to that of the block

diagram of the original representation, it is seen that the T-expanded representation of the system

under consideration here is amenable to the application of the variable component method as

described in the preceding section. This entails passing the signals entering the gain K in the block

diagram of the T-expanded representation of the system through a matrix gain and summing the

output of this matrix gain with the input of the gain K in a duplicate of the T-expanded

representation of the system. To be consistent with the preceding section, let r = qs2. The r

parameters composing K cannot be varied independently since each parameter gi appears at S2

places in K. Let K be represented as K = diag[k1 ,k2,...,kr], and for each i c { 1,2,...,q), let Si be

the set of indices of the kj's which correspond to the positions occupied by gi:

Si= {(j { ... r : "kj=gi}.

From (6.8), it follows that if the T-expanded representation of the original system (with input

Ut rT)) is linked by the matrix gain A(rSi) to a duplicate of itself (with zero input) as described

above, then the output of the duplicate system will be DY(mT)/alnlgji.

*0 A system in real time whose T-expanded representation is that proposed above to produce

aY(mT)/DlnlgjI can easily be found. For W 1 { 1,2...,q), let 8(nTj,q,W) be the Tlq-periodic

discrete-time function of n given by

1 , if (1 + (n mod q)) e W
'" 1. 0, otherwise

Assume T/qTj = S2 as above; from (2.6), a SISO discrete-time periodic gain with input Ug and

output yg described by yg(nT,)= 8(nTj,q,{i)) ug(nT,) is seen to have the T-expanded

representation Yg(mT) = diag[A(q,{i)),...,A(q,[i))] Ug(mT), where A(q,fi)) appears S2 times

along the diagonal. From K = diag[G,...,G], diag[A(q,(i}),...,A(q,(i))] = A(r,Si). Thus, if the

signal entering the periodic gain g(nT,) in the original multirate discrete-time system is sampled at
rate I/T1, passed through the periodic gain 8(nT,,q,{i)), and summed with the signal entering the

gain g(nT 1) in a copy of the original system (with zero inputs,) the T-expanded representation of

this composite system coincides with that described previously for determining aY(mT)/lnlgji.

Since (/alnilgil) can be distributed across the components of the vector Y(mT), aY(mT)/alnlgji is
the T-expanded version of Dy/Dln!gj1 . The meaning of ay/alnlgil stems from the satisfaction of

64

0,



.N Assumption 2.1(f); each output line yj of the system is sampled and held at some rate I/Tj and the

corresponding output in the duplicate system, ydj(nTj), gives ayj(nTj)/Dlnlgil.

The following procedure summarizes the variable component method for multirate discrete-

time systems. This procedure is more general than the results discussed in this section, but it

follows from linearity and the chain rule for differentiation.

Procedure 6.1:

a. Let the system have a given input uo and resulting output yo. Verify that
P IAssumption 2.1 is met, with the exception that periodic single-rate and multirate

" . discrete-time subsystems may be present.

b. Suppose there is a periodic discrete-time gain g(nT1 ) in the system with

period qT1 and having values (g,....,gq), as described above. g(nTi) may be

either a purely discrete-time gain (such as a parameter in a computer program,) or

the discretized version of a continuous-time gain with sample and hold devices at

rate l/T on its input and output. Let W C- (1,2,...,q), and for all i e W, let gi be
varied in unison and have value g. The parameters gi, i e W, will be assumed

independent of g.

c. Sample the signal entering g(nT,) on the block diagram of the system
with rate lI/T 1 . Pass this sampled signal through the periodic gain 8(nT1,q,W) and

sum the output of this gain with the signal entering g(nT1) in a duplicate of the

original system.

d. Repeat steps (b) and (c), using the same duplicate system, at each
N periodic discrete-time gain in the system that has parameters with value g if these

parameters are to be varied in unison with the parameters in g(nT,). Both the rate

and period of these gains may be different from location to location.

e. Simulate or implement the composite system resulting from the above
steps. The input to the duplicate system should be set to zero, and the initial

conditions on both the original and duplicate systems must be zero. The output of

the duplicate system is then ayo/alnlgl.
1%

f. Add to the composite system an additional duplicate system connected to

the original system for each additional parameter that is to be varied independently if

all semirelative output sensitivity functions are to be obtained simultaneously.

The variable component method described in Procedure 6.1 possesses properties which

simplify the mechanics of applying Procedure 6.1. With reference to parts (b) and (c) of
Procedure 6.1, note that 8(nT,,q,W) = 1 only at the times when g(nT,) = g. This is seen to hold

in general; at each discrete-time gain in the system, values are passed to the duplicate system only
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at times when the parameter in question is "active" at that location. In particular, if g(nT1 ) is time
invariant, 8(nT,q,V) = 1. Neither the T-expanded representation nor the value of T is needed to

apply Procedure 6.1. As long as the resulting system satisfies Assumptioi. 2.1 or its extensions,

any number of signals in the system may be considered as outputs, and these outputs may be

sampled at any rate. A change in the choice of outputs or their rates does not induce any change in

the application of Procedure 6.1.

As with the variable component method for time-invariant parameters, Procedure 6.1 has
the property that an additional duplicate system is required for each independently varied
parameter. If each value of a periodic gain is to be varied independently, the number of duplicate

systems and the associated computation may become excessive. Since the resulting systems will

be periodic, it is in general insufficient to tune the response of the system to a fixed input, such as a
step at time t = 0. Instead, it may be necessary to tune the response of the system to a given type

of input, such as a step, applied at many individual times during the period of the system. A

system with input u(nT1 ) exhibits T/T 1 step responses which are in general distinct.

6.3 Application of the Variable Component Method
4',

The semirelative output sensitivity function may be used to tune the time-domain

performance of a controlled system either intuitively or through the solution of an optimization
problem. The variable component method described in Procedure 6.1 provides a means of

obtaining this sensitivity function and has the advantages of being easy to apply and allowing the

tuning of periodic gains at multiple rates. The computational burden of applying Procedure 6.1
may be substantial if the number of parameters to be varied independently is large. Conditions

under which an iterative tuning scheme based on output sensitivity functions involving
minimization of a cost function will converge or result in a stable system are in general unknown as

of the present.

* @Controllers designed with the aid of the variable component method offer opportunities for
taking full advantage of multirate sampling. Since Procedure 6.1 allows outputs to be sampled at
any rate, the parameters of a single-rate controller for a continuous-time system can be adjusted

according to a cost based on samples of the controlled system's output at a rate which is faster than

* @the rate of the controller. Any accessible signal in the system can be considered as an output,
enabling the parameter changes to reflect control effort. The controllers designed in Chapter 5
share the property that they are not directly implementable in a parallel form which capitalizes on
the multirate nature of their inputs and outputs. An application of the variable component method

might involve tuning multiple feedback loops containing single-rate controllers of a fixed, simple
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structure (such as PID,) whose rates are commensurate with the time scales present in the system.

Such controllers are readily implemented in hardware as independent parallel processing units or in

software as concurrent tasks.

Example 6.1:

In Example 2.7, assume that it is desired to tune the system by varying gi

and g2 independently. To gain a more accurate picture of the behavior of the double

integrator, define an additional output of the system as yo, the output of the double

integrator sampled with period T4 = 0. 1 sec. As y is a sampled version of yo, it
will henceforth be ignored. Application of Procedure 6.1 yields the composite

system shown in Figure 6.3, where yj = ayO/alngIl = (ayo/agj)gt and

Y2 = Dy0/alnIg 2I.

T4Y

A! T2

TI

S.,

-. T 4  --- Y

;' 0+ -- T27 / ...

5 
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Denote the value of the output Yo at time t = mT4 with parameter values g, and g2

by vo(mT 4 ,g1 ,g2), y(mT4,g1,g2 ) and y2(mT 4,g1 ,g2) are defined similarly. At
this point, a number of options are available for tuning the system. With the
intention of achieving reasonable settling time, overshoot, and rise time, consider
choosing g, and g2 to minimize the cost

200

J (g1,g2) = X (mT 4 [yo(mT 4 ,gl,g2) - uo(mT4)] ) 2. (6.9)

yo(mT4 ,gl+Agg2+Ag2) can be approximated for small Agj and Ag2 by

yo(mT4,g1,g2) + [Dyo(mT 4,g,g2)/g1 Ag1 + [ayo(mT4,g 1 ,g2)/ag2] Ag2,

which can be written as

yo(mT 4,9g1,g2) + (Ag1/gj)[yt(mT 4,g1,g2)] + (Ag2Jg 2)[y2(mT 4,g1 ,g2)I. (6.10)

Substituting (6.10) into (6.9) gives an approximation of J(gi+Agl,g2 +Ag2) which

is quadratic in Agj and Ag 2 and can be minimized analytically in terms of uo(mT4),

yo(mT4 ,gi,g2), yI(mT4 ,gt,g2), and y2(mT4 ,gl,g2) which result from simulation of

the system in Figure 6.3 for fixed uo, gt, and g2.

Suppose the initial parameter values are gj(0) = -1.5 and g2(0) = 1 (these
parameter values stabilize the system) and the input uo is a 3 sec pulse at time t = 0
of unit height. The response of the composite system with g, (0) and g2(0) to uo is

shown in Figure 6.4. Minimizing J(g1(0)+Ag 1 (0),g 2(0)+Ag 2(0)) gives as optimal
values Ag1(0)/gj(0) = 0.2633 and Ag2(0)/g 2(0) = 0.4645 and hence

gi(l) = gj(0) + Ag1(0) = -1.895 and g2() = g2(0) + Ag 2(0) = 1.465.

As shown in Figure 6.5, this choice of parameter change produces a weighted

combination of Yi and Y2 quite suited to reducing the magnitude of the oscillation in

yo. Figure 6.6 shows yo(mT4 ,gj(1),g2(l)), which is seen to have damping much
improved over y0(mT 4,gi(0),g2(0)).

After repeating the process of minimizing J(g 1+Agl,g 2+Ag2) a total of

seven more times, the values of gi and g2 for all practical purposes converge to
gl* = -2.714 and g2* = 2.008. The response of the system to uo(nT 1 ) with these

. parameter values is shown in Figure 6.7. The state transition matrix for this system

is unchanged from that of Example 2.7(i). Substituting gl* and g2* into this state

transition matrix gives a matrix with eigenvalues -0.443 and 0.021. The final tuned

system is thus asymptotically stable. Since T/T 1 = 2, this system exhibits two step
responses. Figure 6.8 shows the response of the system with parameter values g1 *

and g2* to uo(nTj-Tj). If the response in Figure 6.8 is deemed undesirable, one

68



might consider repeating the tuning process by minimizing J(g1 +Ag 1,g2+Ag2) for

both the input uO(nTj) and the input uO(nTj-Tj) at each stage, requiring two

simulation runs for each iteration.

44 -
Y1

YO

0-

-22

-44-

-66-tm sc
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Figure 6.4. Response with gl(0) =-1.5, g2(0) =1.0.
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AYO (Agi(0)/gd(0))YI + (Ag2(0)/g 2(0))Y2 .
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CHAPTER 7

CONCLUSIONS

The results detailed in this work demonstrate the usefulness of the T-expanded
representation of a multirate system. A detailed, systematic procedure was presented which

enables the T-expanded representation of a multirate system to be calculated using any linear
systems software package capable of matrix operations and single-rate discretization. A certain
amount of information is clearly lost by expressing a multirate system in T-expanded form, most
notably the interperiod state values. However, it was shown that the t-varying representation

inherits the following important qualities from its corresponding T-expanded representation:
stability, controllability, reconstructibility, stabilizability, and detectability. Although this argument
was carried out for the t-varying representation presented here (or more generally, the M-varying

representation,) the process of defining corresponding representations and proving the theorems in
Chapter 3 and Chapter 4 could be carried out for almost any periodic representation of the class of
multirate systems treated here. The multirate controller designs in Chapter 5 and the extension of

the variable component method presented in Chapter 6 demonstrate that the T-expanded
representation and the notation and concepts associated with it find practical and theoretical use in
extending time-invariant results to multirate systems. Many extensions to the class of multirate

systems for which T-expanded representations were defined are possible. For example,
subsystems employing cyclic sampling (irregular sampling patterns which repeat periodically in
time) could be treated by altering certain connection matrices to reflect the flow of information
between the cyclic samplers and the other samplers in the system.
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APPENDIX

SELECTED PROOFS

Proof of Theorem 2.1

Lemma A.1:

If the sampling periods {T1,...,TN) are normalized with respect to Tk,

ke ( 1,...,N), then GCD {pki : i = 1,...,N) = 1.

Proof: (by contradiction)

Without loss of generality, suppose that normalization is performed with
respect to T 1. Observe that rlI = qj = 1, since T1 = (1)T1 . The case N = 1 is

trivial, so consider only N > 1.

GCD {Rj/rj1,...,R1/rlN} = 1 because RI = LCM {r1 i : i = 1,...,N).

Assume that

GCD (pli : i = 1,...,N) = GCD {Rt, Rlql2/r l2,..., RlqlN/rIN} = n # 1.

For this to be true, n must divide R1. From GCD {Rj/rll,...,Rj/r1N) = 1, there

must be some j e (2,3,...,N) such that n is n= a factor of Rj/rj, and (because n

divides RI) n is a factor of rij. For GCD {Rjqj'ri : i = 1,...,N) = n to be true, n

must be a factor of Rlqlj/rlj, so n is a factor of qlj. This is a contradiction,

because n # 1 and each rji/qi had common factors removed.

Theorem 2.1:
If the sampling periods are normalized with respect to Tk (giving Ti = pki'k,

,i = ,...,N) and again with respect to Tj (giving Ti = PjiTj, i = 1,...,N,) then 'tk = z

and Pki = Pji, i =1...,N.

: Proof:IPo From Pkik =T= Pjij, i= 1,...,N, it follows that
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-PkI = Pk2 _ _PkN

1;k Pj 1 Pj2 "" PjN

Thus, j/tXk is a rational number. Let T/Tk = n/m, where n,m E N and n and m

have no common factor other than 1. From

n- mpkL_ _ mpkNP !! PjN

n is a common divisor of (pkim : i = 1,...,N}. Since n and m have no common

factors other than 1, n is a common divisor of {pki : i = 1,...,N). By Lemma A.1,
n 1. Thus, n = 1. Replacing n with m and k with j in the above argument yields
m = 1. The statement of the theorem then follows.

Proof of Theorem 2.2

* Lemma A.2:

Given a set of sampling periods {TI,...,TN} which are expressed as
., Ti = si5, where 8 c R, si E N for each i, and LCM {si i = 1,...,N) = S, the

least common period of (T1,...,TN) is S8.

Proof: (by contradiction)

Assume LCP (T,...,TN) = To < 58, and write To = M8, where e R and

< S. Then each sampler will sample an integral number of times during the time

T-- - N for i=

, This implies that _ LCM {si : i 1,...,N) = S, which is a contradiction.

PTheorem 2.2:

T = 'r (LCM {pi : i = 1.N)) = Pt is the shortest length of time over

09 which a multirate system with sampling periods {T1 ....TN) is periodic.

Proof: A trivial application of Lemma A.2.
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Proof of Theorem 2.3

Theorem 2.3:

Let the LCP associated with IT1,...,Tk) be T(k) and that associated with

fT1,...,Tk,Tk+1}I be T(k+ 1). Then T(k+1)/T(k) e N.

Proof:

Normalization of {TI ....,Tk,Tk+l) yields Tj = piT, pi e N for i = 1,...,k,k+1.

By Lemma A.2, T(k) = t(LCM (Pl'....Pk}) and T(k+1) = t(LCM {Pl,....Pk+1).

Since LCM (Pl,....Pk+1) = LCM {LCM IP1,...,Pk). Pk+I1JI

T(k-i-1) _ (LCM (Pl,...,Pk~l)) _LCM {LCM (Pl.....Pk}. Pk+Il N.
T-f W T(LCM (Pl,...,pk)-LMI1.*Pk)
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