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Symbol

Rnxm

Z+

nmod p
SISO
MIMO
BIBO

GCD
LCM
LCP

SYMBOL TABLE

Meaning

the natural numbers: {1, 2, 3,... }

the rational numbers

an n X m matrix with real-valued entries
the nonnegative integers: (0, 1, 2,... }

for all

n modulo p: p X (fractional portion of n/p)
Single-Input-Single-Output
Multiple-Input-Multiple-Output
Bounded-Input-Bounded-Output

Greatest Common Divisor

Least Common Multiple

Least Common Period

the LCP of a multirate system

the fundamental period of a multirate system
T

transpose of the matrix A

i,j i element of the matrix A

the n x n identity matrix

an m X m matrix of zeroes

an m X n matrix of zeroes

end of theorem, procedure, example, etc.




ANN

5
=M

XD

o

T

-
®

A
ol

-
-
-
I's

o -
D

[

5Ly

LN - .
LX) { A b
R ok

CHAPTER 1

INTRODUCTION

Multirate discrete-time systems, systems in which sampling and discrete-time calculations
are performed at two or more rates, arise in a variety of applications. The multirate character of the
system may be intrinsic, due to digital subsystems operating at multiple rates. Alternately, the
multirate nature of the system may be induced by the addition of sensors, actuators, and discrete-
time control structures at different rates for the purposes of economy or performance. Two
practical examples of designs resulting in a multirate system are an idle speed control for an internal
combustion engine (Powell et al., 1987) and a quadruplex videotape recorder (Rao, 1979).

Previous studies of multirate systems began with the study of multirate sampled-data
systems by Kranc (1957), which employed transfer function techniques later improved by Coffey
and Williams (1966) and Boykin and Frazier (1975). These works presented complicated methods
which served the purpose of assessing the stability of a system composed of continuous-time
subsystems and samplers at multiple rates. Kalman and Bertram (1959) used state space methods
to study sampling systems of great generality. Although Kalman and Bertram demonstrated that a
state space representation exists for aimost any hybrid system incorporating a variety of sampling
schemes, the generality of the systems involved precluded the presentation of systematic and
efficient methods of obtaining a state space representation for a given, fixed system. Meyer and
Burrus (1975) introduced the concept of block processing to perform time and frequency domain
analysés on individual single-rate, periodic timc-varyin.g and multirate (inputs at one rate, outputs
at another) digital filters. Recently, Araki and Yamamoto (1986) applied a mutation of block
processing to the analysis of a continuous-time system with outputs sampled at muitiple rates and
fed back through a constant gain matrix to the inputs, which were sampled and held at multiple
rates. Currently, efficient techniques of analysis and design algorithms for multirate systems
composed of both continuous-time and discrete-time subsystems are not available.

Inspired by Kalman and Bertram (1959) and beginning with methods akin to the block
processing used by Meyer and Burrus (1975), this work presents a systematic, efficient method of
obtaining a “time-invariant” representation, referred to as the T-expanded representation, of a
class of composite multirate systems containing both continuous-time and discrete-time
subsystems. In recent years, results have appeared in the literature pertaining to periodic discrete-
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time systems, with multirate systems cited as an (unqualified) example of such a system. In
response, this work proposes a procedure for obtaining a periodic discrete-time representation,
termed the M-varying representation, of a multirate system. Analysis of multirate systems via
the T-expanded representation by time-invariant techniques is shown to reveal important
characteristics of a certain M-varving representation of the multirate system. Examples of the
design of controllers for multirate systems by conventional analytical techniques, with minor
modifications, are presented. The variable component method is applied to multirate systems to
provide an iterative means of building composite controllers.

Chapter 2 develops a notation suited to T-expanded representations and details procedures
.seful in obtaining a T-expanded representation. The notation introduced in Chapter 2 is used
throughout the remaining chapters and provides a means of discussing a variety of concepts related
to multirate systems in a concise manner. In addition to describing the behavior of a multirate
system over lengths of time other than its period, the periodic representations developed in
Chapter 3 provide a theoretical tool for deducing the interperiod behavior of a multirate system
from its T-expanded representation. Chapter 4 discusses the stability, controllability,
reconstructibility, stabilizability, and detectability of multirate systems and emphasizes the
properties which a periodic representation of a multirate system inherits from the T-expanded
representation of that system. Chapter 5 applies the developments of Chapters 2, 3, and 4 to the
analytical design of multirate controllers. A time-invariant technique, the variable component
method, is applied to multirate systems in Chapter 6 via the T-expanded representation. The
material in Chapter 5 and Chapter 6 serves as an example of the manner in which results for
standard discrete-time systems can be extended to multirate systems.
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CHAPTER 2

TIME-INVARIANT REPRESENTATION OF MULTIRATE SYSTEMS

This chapter presents a systematic method for obtaining a single time-invariant state space
or transfer function representation, called a T-expanded representation, for members of a class of
composite systems which employ sampling at multiple rates. This method first converts the block
diagram of a multirate system into a structurally similar block diagram of time-invariant discrete-
time subsystems through state space calculations easily performed using any software package
capable of discretization of continuous-time systems at a single rate and matrix multiplication,
addition, and composition. The reduction of this single-rate block diagram to a state variable
description or transfer function matrix is then a standard problem.

2.1 Systems Admissible for Analysis

The methods to be developed will apply to a general class of systems with multiple
sampling rates. To simplify the exposition, the multirate systems considered, unless otherwise
noted, will be as follows:

Assumption 2.1:
a. The ratio of any two sampling periods in the system is a rational number.
b. All samplers are in synchronism at t = 0 and are followed by zero-order
holds of the same period
c. Discrete-time subsystems are envisioned as sampling their inputs and
producing zero-order hold-type outputs (in synchronism with the samplers in part
(b) above att =0.)
d. The outputs of zero-order holds as functions of tme are continuous from

the right at their associated sampling instants.

e. The entire system can be partitioned into subsystems which are either
discrete-time or continuous-time subsystems with only samplers, summers, and
branch points (a point on the block diagram where a line branches into two or more

lines) connecting these subsystems together on the block diagram. In addition. it




there is a path on the block diagram between any output of one of these subsystems
¥ and any input to one of these subsystems, then this path must satisfy one or more

"
::{, of the following: the path originates at a discrete-time subsystem; the path
- terminates at a discrete-time subsystem; the path passes through one or more
S samplers.
N . . .
2\ f. There is no path from (to) any external input (output) of the entire
o multirate system to (from) any of the continuous-time subsystems in part (e) above
'-".. which does not pass through a sampler. In addition, there is no direct path from an
-: external input to an external output of the multirate system which does not pass
i:’ ; through a sampler. These properties will be loosely stated in the following as “the
K30 . . ”»
AN external inputs and outputs of the multirate system are sampled.
o~ g. The subsystems in part (e) above are linear, time invariant, and causal,
X and may be MIMO.
)
o XX
§.|.
" Assumption 2.1(a) is the necessary and sufficient condition for a multirate system
s composed of time-invariant subsystems to have a finite period. Satisfaction of Assumption 2.1(e)
o . . . . . . . :
- 1s possible for essentially any connection of continuous-time and discrete-time elements and may
entail mino: block diagram manipulations, to be detailed later in this section. If a system does not
;"»‘- satisty part (f), the introduction of samplers into the block diagram by modelling judgments may
Y serve to approximate the actual system adequately and satisfy Assumption 2.1(f). Assumption
U
;" 2.1(g) will eventually be relaxed to include time-varying periodic discrete-time subsystems. In
: summary, the essential assumptions to keep in mind are that all external signals (inputs/outputs) ure
. . 3 3 . .
"-3) sampled and held and that the ratio of any two sampling rates in the system is a rational number.
“ Although the term “linear multirate discrete composite system” more aptly describes a
i:' svstem satisfying Assumption 2.1, multirate system will denote such a system hereafter.
wh
A
- Example 2.1:
N The multirate system shown in Figure 2.1 appears to violate Assumption
D)
. 2.1(e) due to the direct link between the two continuous-time subsystems o; and
\:; S
;:: G2; y1(s) passes through a summer and a branch point, but not through a sampler,
" before reaching uj(s). Let 6; and o, be represented by the transfer function
¥ relationships
-
z:."
" yl(s)'] N1(s)/Di(s)] o l—u3(s)']
:: =| . J ui(s) and vy(s) = [Na(s)/Da(s) Na(s)/Dz(s)]1 I
Py vals)i LNa(s)/Dy(s) Lug(s)]
y'!;
|i:\
3
o
o'ﬂ: 4
Y
. 'n’
"\-j

)
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Figure 2.1. A multirate system.

22
AL

cﬁ,o: ITsing u3(s) = y1(s) + u(s) and vi3(s) = us(s), it follows that

R ya(s) N2(s)/Di(s) 0 0 uy(s)
i y3(s) = N1(s)/D1(s) 1 0 ux(s) |.
ya(s) N3(s)N1(s)/D2(s)Di(s) N3(s)/Da(s) Na(s)/Da(s) L[ uals)

s

b
T2

¥ Thus, the multirate system shown in Figure 2.1 may be partitioned by considering
the area inside the dashed line in Figure 2.1 as a single continuous-time subsystem,

W o3, as shown in Figure 2.2. The multirate system in Figure 2.2 satisfies
4
¥ .
"". ﬁ Assumption 2.1(e).
oy XX

Yy / uy(s) > y3(s) o
B g; TV Us(s) 03 v4(s) TV

'4:: & uy(s) T ya(s)
8 5 A
o T3

Figure 2.2. The svstem in Figure 2.1 redrawn.

Example 2.1 provides a clue to a technique for partitioning a multirate system so that

" Assumption 2.1(e) is satisfied. If an initial partitioning of the system into continuous-time and
W "{ \'-(_ . . . '
W RS discrete-time subsystems (connected by only summers, samplers, and branch points) does not
N N satisfy Assumption 2.1(e), then by elimination a path must be connecting a continuous-time
L . . .

i ::; subsystem, O, to a continuous-time subsystem, 62, which may pass through summers and branch
. points, but does not pass through any samplers (G; may be the same subsystem as 6».) Detine a
. . . . . . . - .
@ b new continuous-time subsystem, 03, consisting of the subsystems &) and o> and their individuul
‘\::ﬁ' *
.‘. -
."‘ D

®

-, ~
S
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inputs and outputs (uj,uy,y?2, and y4 in Example 2.1,) except for the offending pair in question (v,
and u3 in Example 2.1.) The subsystem o3 must also be provided with additional inputs (u3 in
Example 2.1) representing other inputs to any summers the path passes through and additional
outputs (y3 in Example 2.1) representing other outputs of any branch points the path passes
through. This process can be repeated until the entire multirate system satisfies Assumption
2.1¢e).

2.2 The Least Common Period of a Multirate System

Given a set of N nonzero sampling periods {Ty,...,Tn}, assume that the ratio of any two
of these sampling periods is a rational number. Consider the ratio of each sampling period to a
particular sampling period, say Ty:
11

11 :
=— i=1,.,N
q1i ’

for some ry;, q1i € N, where the Greatest Common Divisor (see Niven, 1980) of rj; and qy; is 1
for each i. Let Ry be the Least Common Multiple of the set {r};:i=1,...,N}, 11 = T}/Ry, and
- QuiRy
I
Note that p;; € N because R;/rj; € N. Then
Tiqu (T R .
T; =—-ISL= (El;) Q1 (F;ll_) =mit1,1= 1,...,N.

r1i

BE

Pii ,1=1,..N.

The process of obtaining t; and the p;;'s will be referred to as normalization with respect to T;.
Theorem 2.1:
If the sampling periods are normalized with respect to T (giving T; = pkik,
i=1,..,N) and again with respect to T; (giving T; = piti,i=1.,N)theny =14

and p; = pji» i = 1,...,N. (See proof in the Appendix.)

XX
Thus, the sampling periods can be uniquely represented as T; = p;t, i = 1,...,N, regardless of the
particular sampling period used in the normalization process. Each sampling period in the system
is a multiple of t; T will be referred to as the fundamental period of the multirate system.

Since the subsystems in the multirate system are time invariant, the periodicity of the entire
system will be established if it can be shown that the samplers, which are in synchronism att =0,
are again in synchronism at some time t = T. For a system with sampling periods {T),...,Tn}, let
P=LCM {p;:i=1,.,N}. Attimest=mPt, me Z*, all samplers in the system will sample;

mPt _mP ., . .
T——p;—e Z* fori= L----N-

‘-.l..v.'

5 i F4

A A

oy my -

et Ls

d. &k

¢ OO D6 A SO0 EVTUACRTARERY ] o
e s O SRR, 1 L e ¢ Ay |



b Ada Ale Ake 42, 4 At aadh oal ool Aod Lok aad A b 8 L giif aie sl ate add

Thus, the multirate system is periodic with period T = P1; in fact, this is the Least Common Period

'tl._

(LCP) of the multirate system.
Theorem 2.2:
T=1t(LCM {p; :i=1..,N})=Ptis the shortest length of time over

o
E

which a multirate system with sampling periods {T,,....,Tn} is periodic. (See

b proof in the Appendix.)
v se0
In the remainder of this work, the symbols T, P, 1, and p; will be implicitly associated with the
& meanings assigned to them above. A procedure is now given for normalizing a set of sampling
periods (Tjy,...,Tn} as T; = pit and finding their LCP.
ﬁ Procedure 2.1:
a. Arbitranily choose a sampling period Tk from the set and express the
E sampling periods as T; = Txqyi/rxi . 1 = 1,...,N , where qy;,rx; € N and
) GCD {Quutii) = 1 for each i.
ﬁ b. Set Ry =LCM {r:i=1,.,N)
c. Sett=TyR and p; = q(Ry/rii), 1 = 1,...N.
< d. SetP=LCM {pij:i=1,.,N}and T = Pr.
25 se0
- The following result will be the key, in Section 2.8, for establishing a certain modularity
ﬁ property of multirate systems.

. Theorem 2.3:
$ Let the LCP associated with {T)....,Tx) be T(k) and that associated with
{T1,....Tk,Tx+1} be T(k+1). Then T(k+1)/T(k) € N. (Seeproofinthe
E Appendix.)
XX
In words, the effect of adding a new sampling period to a multirate system is to increase the LCP
by an integer multiple.

Example 2.2:
. Suppose N = 4 and the sampling periods are: T; = 3/5 sec, Tz = 1/7 sec,
@ T3 = 1/3 sec, and T4 = 300 msec. If the periods are normalized with respect to T},
Procedure 2.1 yields
Ty =(1/DTy, T2 = (32D)Ty, T3 = (59)T1, T4 = (1/2)T,
Ri=LCM (1,2192} =7 x3x3x2=126

t=T)/R; = 1/210 sec

~1

f S Do)
vttty

ey



p1 = 126(1/1) = 126, pp = 126(5/21) = 30, p3 =126(5/9) =70, pg = 126(1/2) = 63
P=LCM (126,30,70,63} = 126 x S x 7 = 4410

T =4410(1/210) = 21 sec
The reader may wish to verify that py,...,ps,T,P, and T are invariant under

normalization with respect to T2,T3, or T.
XX

2.3 Expansion of Discrete-Time Signals and Systems

The members of the class of multirate systems under consideration are time varying, but
periodic with period T. Knowledge of the state of such a multirate system at time t = 0 and the
inputs to the system over the interval of time [0,T) is sufficient to determine its state at time t="T
and its outputs over the interval [0,T). By the periodicity of such a multirate system, the manner in
which its state at time t = nT and its output over [(n-1)T,nT) are determined from its state at time
t = (n-1)T and input over [(n-1)T,nT) is identical for each n € N. Thus, the behavior of such a
multirate system over all time is time invariant in terms of the description of the system's behavior
over one period. The price paid for this time-invariant description is that all input values to the
system and all output values from the system during one period must be accounted tor. This
entails expanding a single input line into many fictitious inputs which represent its values over the
period.

The result of collecting all values of a discrete-time signal over amounts of time of length L
will be referred to as the L-expanded version of that signal. The signals in question may be
vector signals with individual components at different rates. To prevent the number of components
in the L-expanded version of a signal from changing with time, L must be an integer multiple of the
period of each component of the signal. Discrete-time signals will be denoted by lower-case letters
and the same letter capitalized will represent their expanded versions.

At this point it is convenient to introduce the concept of a signal bundle. A signal bundle
is a vector of discrete-time signals at the same rate which may be a portion of a larger vector of
signals but is distinguished in some manner from the rest of the vector. The block diagram of the
svstem primarily determines the grouping of signals into bundles. Before applving the methods
presented here, certain manipulations will be performed on the block diagram of the system. The
lines drawn as inputs or outputs of subsystems in this modified block diagram will each be
designated as a bundle of signals; each line may actually represent an entire vector of signals. Later
developments will reveal the utlity of using bundles of signals and properly explain which signals

to place in bundles.
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(* i Let L/T; =1; € N. The L-expanded version of a bundle of signals u(nTy), n =0,1.... 15
S the vector of 1; blocks U(kL):

014 u(kl;Ty)

i [ u((kh+1)Ty)

i U(KL) = T k=0

u((kl;+1;-1)Ty)
K )
":f"f U(kL) will be thought of as a bundle of signals with rate 1/L. The set {U(kL) : k = 0,1,...}

=
ol W
n

contains all of the values in {u(nT;) : n = 0,1,...}, so the expanded version retains ali the

by
-.’.‘;
O

5 ’ information in the original signal. Capital letters will denote expanded versions of signals
':;?j: %{ hereafter, and the capitalized portion of an expanded signal's argument (L in this case, but T and M
L\

‘W

later on) will be a real number which is an integer multiple of T and denotes the interval of time

over which expansion has been performed. As a slight abuse of notation, let u(kL) = u(kl; T)).

e
IND &
’E;::‘:: A Then the L-expanded version of u(nT}) can be written more conveniently as
KN
.t:::' ) U(kL)
R u(kL+Ty)
& 3 1
4 UkL) =
ok W -
o & u(kL+L-Ty)
e . . . . .
::Q:E:. ) The expanded version of a signal may be expanded again to yield an expanded signal. The
E procedure for expanding an expanded signal parallels that for expanding a normal signal, with
:Z;;is expanded bundles treated as bundles. As an example, if M/L = m € N, then the M-expanded
E;.:EE: ;: version of U(kL) coincides with the M-expanded version of u(nT)) and is given by
::::o. ‘ U(jmL) u(jml; Ty)
‘o'
) BE , U((jm+1)L) u((jmly+1)Ty) )
v g UGM) = _ - . j=01,. .
o : :
.' ::-, U((Gm+m-DL) | [ u((mly+ml;-1)Ty)
oo

To see the equivalence, note that the first component of U(GmL) is u((m)}; Ty) = u(jml; T1) and the
last component of U((jm+m-1)L) is u(((m+m-1)l;+1;-1)T;) = u((Gml;+ml;-1)Ty). The
equivalence of the M-expanded version of a signal and the M-expanded version of the L-expanded
version of that signal obviates the need for additional notation to distinguish between the two.

Let y be a vector of signals
Y1

Yq
where each y; is a bundle of signals with period T;. If L is an integer multiole of each T; (for

U RSOGO OBOONOND
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example, L=LCP {Ty,...,Tq},) then the L-expanded version of y is

Y (kL)

va = | k=0t

Yq(kL)
where each Yi(kL) is the L-expanded version of y;. Although Y(kL) consists of many of the
bundles y;, Y(kL) will be thought of as being composed of the q bundles Y;(kL). Note that each
bundle of signals has been expanded in place. Thus, the boundaries between bundles have been
maintained.

Repeated iteration of the equations governing a simple discrete-time syvstem reveals the
behavior of such a system over units of time of length L and forms a basis for determining the
behavior of more complex systems over units of time of length L. Consider the single-rate
subsvstem with realization (A,B,C,D) and period T;, where u(nT;) and y(nT;) are each a single

bundle of signals:
x((n+1)T) = A x(nT;) + B u(nT;)
,n=0,1,... 2.0
y(nT;) = C x(nT;) + D u(nT))

Since iteration of a discrete-time state equation can only be performed an integer number of times,
let L be chosen so that L/T; =1i € N. Note that x(kL+];T;) = x((k+1)L). Expressions for

x((k+1)L) and Y(kL) in terms of x(kL) and U(kL) are desired. By direct computation,
x(kL+T;) = A x(kL) + B u(kL)
y(kL) = C x(kL) + D u(kL)
x(kL+2T)) = A x(kL+T;) + B u(kL+T))
= A2 x(kL) + AB u(kL) + B u(kL+T;)
y(kL+Tl) =C X(kL+Ti) +D u(kL+Ti)
= CA x(kL) + CB u(kL) + D u(kL+T,)

I
x((k+1)L) = x(KL+I;T) = A% x(kL) + 2, [A®™B u(kL+(m-1)Ty)]

m=1

1-1
y(kL+(i-1)Tp) = CA%D x(kL) + D u(kL+(-)Ty) + 2, CAN™ LB y(kL+(m-1)T,) .

m=1

After placing these equations in matrix form and using the L-expanded versions of u and v,



x((k+DL) = A xxL) + [ AGDVB A%PB .. AB B ] UKL)

- C —~ D 0 0 ... 07
CA CB D 0 ... 0

s W 2 IR

Y | cAGD _ cAPB ... ... CB D

>N

These equations have the form of a time-invariant discrete-ime system with period L:
h x((k+1)L) = A x(kL) + B, U(kL) 0

,k=0,1,...
Y(kL) = C. x(kL) + D. U(kL)

The matrices (Ae,Be,Ce,De) will be referred to as the single-bundle L-expanded

A X

N representation of (2.1), where “single-bundle” refers to the single-bundle nature of the inputs
and outputs. Since in this form the system operates on blocks of input values and produces blocks
of output values, the concepts employed above are often called block processing in the literature:
see Meyer and Burrus (1975) and Burrus (1972).

The L-expanded representation of a single-rate discrete-time system with inputs and outputs

- 2 B

o that are vectors of bundles may be derived using manipulations performed in finding single-bundle
" L-expanded representations. Later sections will show that multirate discrete-time systems and
E:E:' multirate sampled continuous-time systems can be expressed as single-rate discrete-time systems,
:E$ ?3 so the qualifier “single-rate” above does not restrict the applicability of the results in this section.
::::: Let u and y be vectors
."')' E uy i
LR a=| "2 | and y<| P2
(% = - . ’
i o ' '
:’f:l & Um Yq
Qo where each uj, j = 1,...,m and each y;, i = 1,...,q are bundles of signals, and all bundles are at the
"‘3::3; j;( same rate, 1/T;. Consider a single-rate discrete-time system at rate 1/T;:
o x((m+1)T)) = A x(mT;) + B u(mT))
M g ,m=0,1,... (2.3)
: . y(mT)) = C x(mT)) + D u(mT))
.';::o &Q Let L/Tje Nand B, C, and D be partitioned to conform with the bundles in u and y:
Z:EE. » o dii ... dim
R 0 B=[b by ... bp], C=| : |, andD =
o Cq dgi ... dgm

- -

Iy e y B S vt
BNOIR I SO N Lt DDA OA TR SN T S BN S

T R T A N T T T N B (AR el
s N .!,s.ﬁﬁx,t'o,: r,t,y,‘:w,:,,.,m,i“l}, A




PIFIIS

Foreachje {l,..m}andie {l,...,q}, let (Ae,bje,Cie,dije) be the single-bundle L-expanded

representation of (A,b;,c;,d;j). By superposition,

x((k+1)L) = A x(kL) + B U(kL)
Y(kL) = C. x(kL) + D, U(KL),

Cle dllc dlme
Bc=[bie b2e ... bme], Cc=| : |, andD.=| : : ,

Cqe dqle X dqme
and Y(kL), U(kL) are the L-expanded versions of y and u. In other words, (A¢,Be,Ce,D.) is the
L-expanded representation of (2.3). B, C., and D, are partitioned conformal with the
expanded bundles composing U(kL) and Y(kL). As in the case of signals, L-expanded
representations may be expanded again by thinking of (A,Be,Ce,De) as a realization for a single-
rate discrete-time svstem with rate 1/L.

For a system where the inputs and outputs have multiple bundles, finding (A¢,B.,C..D.)
bv merely using the same formulas as for the single-bundle expansion would be much easier, but
this results in values over time L of each signal bundle being widely scattered throughout U(kL)
and Y(kL). By performing the expansion as shown, values over time L of each particular signal
bundle are adjacent in U(kL) and Y(kL). This greatly facilitates the connection of expunded
systems. The partition of U(kL) and Y(kL) intc expanded bundles in this form of system
expansion reflects the designation of bundles as input and output lines on a block diagram.

The expanded representation possesses many of the characteristics of the original
realization. It is easily verified that the number of states, stability, reachability, and observability
of the original realization are all preserved by expansion. A feature of expanded representations
that complicates certain control applications is that for a system with no direct feedthrough.
(A.B.C.0), the expanded representation will have D, nonzero in general. Computationally,
expansion involves only multiplication, composition, and storage of matrices. For large 1, storing
the distended matrices of the expanded representation may present difficulties: B, and C, each
erow linearly with |;, and the size of D, increases as the square of 1.

The expanded representation of a subsystem represents a step toward the goal of finding a
time-invariant description of a multirate system. To complete the process of finding a time-
invariant description of a multirate system, the expanded representation of multirate sampled
continuous-time systems will be found, and methods for combining expanded representations will
be developed.




E P -

- - W e

PR E LR

~8

P

z)

s

N e

N

.‘4.

E R
’:‘
[)
[]
[}
4
o

PO IR

r

e, : " .'a‘ 'al, W

" .'\

L LI At

2.4 Expanding Multirate Sampled Continuous-Time Systems

To find the expanded representation of a multirate sampled continuous-time system, it must
be discretized first. To perform discretization, each input or output of the system must be sampled
at only one rate. Inserting additional samplers that do not alter the behavior of the system at
strategic locations in the block diagram of the multirate system facilitates discretization of the
continuous-time subsystems and will also simplify the operations to be performed in Section 2.5.
Before discretizing a continuous-time system, it is assumed that the following procedure is
followed:

Procedure 2.2:

Assume that the multirate system in question satisfies Assumption 2.1 and that Procedure
2.1 has been performed. The subsystems referred to in the following steps are the subsystems
which result from the partitioning required by Assumption 2.1(e).

a. Insert 2 sample and hold on each input and output of every discrete-time
subsystem in the block diagram (points b,d,e,g, and i in Figure 2.3): its rate is that

of the re. pective output or input of that subsystem.

b. Refer to both an output of a continuous-time subsystem and an input to

the entire multirate system as a (system) continuous output point. For each

continuous output point in the multirate system that is not immediately followed by

a sampler (points a and ¢ in Figure 2.3,) let {T),...,T;} be the set of periods of the

first sampler encountered on each path leaving that continuous output point. Insert

into the block diagram a sample and hoid with period

Ty=1GCD (py.....p;}) = pst
immediately after that continuous output point.

c. Refer to both an input to a continuous-time subsystem and an output of
the entire multirate system as a (system) continuous input point. For each
continuous input point in the multirate system that is not immediately preceded by a
sampler (points h and j in Figure 2.3,) let {T,,...,T;} be the set of periods of the
last sampler encountered on each path leading to that continuous input point. Insert
into the block diagram a sampie and hold with period

Ty=tGCD {p1,....p;}) = p1t
immediately before that continuous input point.

d. Refer to an output of a summer not in one of the subsystems composing
the multirate system (points t, g, and j in Figure 2.3) as a (connection)
continuous output point. Repeat the actions performed for system continuous
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output points in step (b) for each connection continuous output point in the multirate
system.

e. Refer to an input of a branch point not in one of the subsystems
composing the multirate system (points a, e, and f in Figure 2.3) as a
(connection) continuous input point. Repeat the actions performed for
system continuous input points in step (c) for each connection continuous input

point in the multirate system.
XX

The satisfaction of parts (e) and (f) of Assumption 2.1 assures the existence of the rates
required in parts (b) and (¢) of Procedure 2.2. All possible sources/destinations of signals in the
multirate system are thus followed/preceded by samplers; consequently, the rates required in parts
(d) and (e) of Procedure 2.2 will exist. The application of Procedure 2.2 does not alter the
behavior of the system; each added sampler updates at least at the times that the samplers feeding
from/to it update. By definition of Tj (see parts (b) and (c) of Procedure 2.2,) if a sampler with
period Tj, i € (1,...,j}, samples, the sampler with period Ty also samples: t =nT;, n € Z* implics
t/Ty = npit/pst = n(py/py) € Z°*.

— / >
TS T7
" / >
T T Dy }—e L po—>p
—3—/—D Cl c f g 2 1 J
T,
L — |
a
L——» d
b Dl > —o—pi C, L/
¢ h - T,

Figure 2.3. C; and C; are continuous-time subsystems, and
D, and D are discrete-time subsystems.

Example 2.3:
Let Dy and Ds in Figure 2.3 be single rate with rates 1/T; and 1/T,,
respectively. The application of Procedure 2.2 to the multirate system in Figure 2.3
proceeds as follows:
a: Insert samplers of period Ty = Ty = Te = T; at poiats b.d. and e and
samplers of period T, = T; = T at points g and i.

14
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L
2.l

;f:: . b: Insert a sampler of period T, = T(GCD (p4,py}) at point a and a sampler
Y s

o of period T. = ©(GCD {ps.p,}) at point c.
" c: Insert a sampler of period T;=t(GCD {pe.pi}) at point j and a sampler

-
N
A

of period Ty, = T, at point h.
d: Insert a sampler of period T; = T(GCD ({ps,pg}) at point f. Points g and

j are also connection continuous output points, but samplers are already present at

ey

these points.

e

ot
B |

e: Points a,e, and f are connection continuous input points, but samplers

it are already present at these points.

¥ : L X X J
W

After applying Procedure 2.2, each input and output line of a continuous-time subsystem

;:',: < on the block diagram should be designated as a signal bundle. The last sampler an input bundle
& passes through or the first sampler an output bundle passes through determines the rate assigned to
R ._: that bundle during the discretization process.

;f' - Discretization of a multirate sampled continuous-time system is also considered in Araki
Py : and Yamamoto (1986), from a perspective quite different from the one taken here; Araki and
R - Yamamoto (1986) employ expanded states, as well as expanded signals.

Let the continuous-time system

~ o
LD

. x=Ax+Bu, y=Cx+Du (2.4)
' A have the input

n ?C‘ uj

) uz

.q_,
ps
=

1

Um

N

M ﬁ where each u; is a signal bundle sampled and held at rate 1/Tj, i = 1,...,m, and B is partitioned to
¢ 4
»f be compatible with u: B = [by b ... by]. Let y be partitioned into q bundles, with each bundle y;
s 5 sampled with period Tj, j = 1,...,q; let C and D be partitioned accordingly:

L "'.

;" i €1 diy ... dim
B % 2 C2
v;: y= y. ,C=| |,and D=
L : :
; “ y c dql “aee dqrn
: \: q q
; ' To discretize this system, let L = LCP (T1 T, T) ,...,'T'q] , X(kL) € R" denote the state of (2.4)
SR at ume kL, and Y(kL) and U(kL) denote the L-expanded versions of v and u. Let

q — w

si=T/T;, §=T/T, ®(w) = e, and ['(w) = J’O eMw-tdy |

o“ }ﬂ
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iy Then a straightforward but tedious calculation gives
¥
A
;5; x((k+1)L) = E x(kL) + F U(kL)

i (2.5
B Y(KL) = G x(kL) + H U(KL), )
';,:. where
Ay 1. E=®().
“
:::. 2. F=[f) f;... f], partitioned compatible with U(kL), where

“1‘ fi = [O(Ti(si-1)T(Tpb; | ... 1 O(THI(THb; | T(Tbi] , i =1,....m.

Y

% 3.

::" = Cj -

:9:. g1

RS —

g2 ¢ ®(Tj) :
G =! " |is partitioned as Y(kL), where g; = ) » ] =1,...,q.

Y, ¢ =
A S ¢ ®(Ti(s D).

e

' 4.

:"; h1 1 ... h1m

:6&:‘. H= N :

o

[}

& L hat .. hgm

" is partitioned according to Y(kL) and U(kL), and each subblock hyj, i = 1,...,q, j = 1,...m, is

* composed of blocks (hijr, r=1,..8;, v= 1,....s;, each having the same dimension as d;; and
\ where
o

D 0, if (r-)Ti < (v-DT;

o‘:"
* = =

:.:;: (hidv =9 djj + T ((r-DT; - (v-DT)b;, if (v-HT; < r-DT; < vTj .
s".l
e G®((r-T; - vTL(Tyb;, if vT; < (r-1)T,

,?.E‘ From (2.5) and points 1 through 4 above, the discretized multirate sampled continuous-time
ff subsystemn is a time-invariant single-rate discrete-time system with inputs and outputs that are
Y vectors of L-expanded bundles. Thus, the methods in Section 2.3 apply to further expansion of

the discretized continuous-time system.

Despite the formidable appearance of the discretized equations, the required calculations can
be performed using any software package capable of discretizing a continuous-time state equation
at a single rate. The quantity I'(w)B is the “B’”" matrix resulting from discretizing (A,B) at rate 1/ w.
The required arguments of ®(.) and ["(.) are all integer multiples of T. For some values of i, j. r.
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and v, the arguments of ®(.) and I'(.) will coincide, so not every occurrence of ®(.) and I'(.) in the

above equations entails an additonal calculation.

A modification to Procedure 2.2, which greatly simplifies the discretization of multirate
sampied continuous-time subsystems, is to place sample/holds of period t on the block diagram at
the inputs and outputs of each continuous-time subsystem, leaving Procedure 2.2 otherwise
unchanged. These added samplers leave the behavior of the system unaltered for the same reason
as that given following Procedure 2.2. This modification has the advantage that discretization can
be cammed out uniformly at rate T, but it may result in inputs and outputs of unacceptably large

dimensions after expansion

Example 2 4:
Let the continuous-time subsystem in Figure 2.4 have the state equation

x(t) = A x(t) + B u(t)

o)L o]
= X(t) + u(t).
y2(t) 2 d2

Additional samplers do not need to be added to discretize this system. Following
the steps above, let
d(w) = eAW’ and r(w) = J'(;” eA(w-t)dt )

Then
{ u(n(61)) }
x((n+1)61) = O(67) x(n(67T)) + [PBT[(31)B I'(31)B]
u(n(6T)+31)
and
i y1(n(67)) 1r cr ] ~ d; 0 7
y1(n(6T)+1) c1P(7) dy+ciI'(t)B 0
y1(n(6T)}+21) c1 P2t di+c;I'(2T)B 0
v1(n(6T)+31) PG ci'(31B d, L6
yi(n(61)+41) | =| ;@@ [ x(n(6T) +| ¢, ®(VI(31)B  dy+¢iT(1)B { *
y1(n(6T)+5T) 1 d(57) G ®QUTGYB dy+e Ty | UM O30
ya(n(61) €2 dz 0
ya(n(6T)+21) cyd(21) da+cal'(2T)B 0
| yatn(6t)41)_ L.Co (41 L - d(DI'3t)B  dy+c:[(1)B

Note that all of the quantities above could be obtained by normal discretization with
periods t, 2%, and 3t. Also, if the modification to Procedure 2.2 noted above were

17




used, the resulting discretized system would have 6 inputs and 12 outputs.
XX

/
’.....
----- — » comt. i ©
u —’..n
3t Y2 2t

Figure 2.4, A multirate sampled continuous-time subsystem.

2.5 Connection Matrices

The concept of a connection matrix facilitates the interconnection of subsystems whose
inputs and outputs are expanded bundles of signals which pass through summers, samplers, and
branch points between the subsystems. An individual connection matrix serves to connect a signal
bundle at one rate to a signal bundle at another rate after expansion. The form of the connection
matrix depends only on the rates of the bundles being connected and the amount of time over
which the signals were expanded.

JRURU % Z /. ‘YI —-/ ‘uz Z
: 1 Tl —r2 2

Figure 2.5. A direct connection between subsystems.

Consider a single-rate subsystem, X, with a bundle of r outputs connected directly to a
single-rate subsystem with a bundle of r inputs, Z;, as shown in Figure 2.5. Let L/T; =1,
L/T:=1;,and 1}, 1 € N. Since l; # 1, in general, the number of outputs of the L-expanded
description of £, will not equal the number of inputs of the L-expanded description ot £;. The
mechanism which serves to connect Y (kL) to Ua(kL) is the sampling > performs on its input:

ua(kL+(i-1)T2) = yy(kL+G-1)T) if (-1)Ty < (i-1)T2 < Ty,
whereie {1,..012} andje {1,..,l1;. This relationship can be expressed concisely by defining
Q(L.r.1:2), the connection matrix for L-expanded bundles of r signals from period T; to period
T>. such that Ua(kL) = Q(L,r,1:2)Y (kL). Q(L,r,1:2) is an rl; x rl; matrix of [ x 1; r x r blocks.
where the i,jB block is given by

¢ I, if (j-)p1 € (i-1)pa < jpy

(L,r.1:2); =i
? Y 0O, ., otherwise

Note that if 1) = 12 = |y, then Q(L.r,1:2) = [,
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YSIRE Example 2.5:
5
» Let T, =31, T3 = 5t,and L = 30t. Then _
.- ‘ 100 000
il 100 000
bl 10000 000007 010 000
el G 01000 00000 010 000
o . _| 00010 00000 A _] 001 000
QL.1.2:3) =1 90000 10000 | 20d QLLID =l 554 100
e g 00000 01000 000 100
::‘: ‘ | 00000 00010_] 000 010
'e'!’ 000 010
o 8’5 | 000 001
X
XX
::'.' ' A fact which is easily proven by induction is that if M/T) € N and M/T; € N, then for
:‘;: b some me€ N, M = mt(LCM {p1,p2}). In words, any M admissible for expanding signals with
1"-
{. periods T, and T, is an integer multiple of the least common period of T, and T>. Let
f_; o T(1,2) =t(LCM {p1,p2}). Since Uz(nT(1,2)) = Q(T(1,2),r,1:2)Y(nT(1,2)), this connection
i:;; = matrix may be thought of as a discrete-time system with rate 1/T(1,2), input Y;(nT(1,2)), output
" U2(nT(1,2)), and representation (0,0,0,Q(T(1,2),r,1:2)). After finding the M-expanded
'u i representation for this system,
i .
1 U2(kM) = diag[Q(T(1,2),r,1:2),Q(T(1,2),r,1:2),...,Q(T(1,2),r,1:2)] Y1(kM):
i T
X N i Q(T(1,2),r,1:2) appears m times along the diagonal. Thus,
] € QM,;r,1:2) = diag[Q(T(1.2),r,1:2),Q(T(1,2),r,1:2),...,Q(T(1,2),r,1:2)].
R
;: . This property greatly reduces the effort required to compute and store connection matrices for large
Ay m. In Example 2.5, m equals 2.
i ™ Connection matrices can be systematically placed so that a collection of L-expanded
Q:;: E_v subsystems is connected according to a given block diagram. Since separate inputs and outputs
::z by drawn on a block diagram were defined as distinct bundles of signals, connection matrices can
3:3, Iy effect direct connections between subsystems. Under the assumption that Procedure 2.2 has been
' ’
o & applied to the block diagram, rules for placing connection matrices when the bundles of signals
: "\ pass through samplers, summers, and branch points between the subsystems are easily stated.
‘ ) L)
‘,s, By Define a link as any path from one sampler to another on the block diagram which may
\ pass through summers and branch points but not through subsystems or other samplers. As a
o 51‘ result of applying Procedure 2.2, in the region between the subsystems a sampler follows each
:.;, summer and precedes each branch point. Thus, a link passes through at most one summer and one
0
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branch point. The steps necessary to connect a collection of L-expanded subsystems together

according to a given block diagram are detailed below. \1
Procedure 2.3:

Assume that all subsystems and signals in the block diagram are in L-expanded form and
that Procedure 2.2 has been applied to the block diagram. For each link in the system to be
connected:

a. Find Q(L,r,f:t), where the r signals on the link flow from a sampler with

period Tt to a sampler with period T,.

b. Insert the connection matrix in the link according to the type of link as
follows:

i. If the link traverses a branch point and a summer, place
the connection matrix after the branch point and before the summer.
ii. If the link crosses only a branch point, place the

e “‘-‘A

connection matrix after the branch point.
ili. If the link traverses only a summer, insert the connection

NSy

matrix before the summer.
iv. If none of the above apply, the link crosses no summers X
or branch points, and the connection matrix can be placed anywhere
on the link. .
(XX i
As an aid to justifying the connection matrix locations specified in Procedure 2.3, note that their
placement ensures that the dimensions of all inputs of each summer and of all outputs of each J
branch point in the block diagram of the expanded system are identical.

> by
{d
o /. >
C, M —>
—x/—h 1 3 .
2
o—/ — 3 A
N
Figure 2.6. Placement of connection matrices.
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Example 2.6:

Figure 2.6 shows the placement of connection matrices in the multirate
system in Figure 2.3 after Procedure 2.2 has been performed. The numbers 1, 2,
3, and 4 in Figure 2.6 denote a link of type i, ii, iii, or iv, respectively, as described

in Procedure 2.3(b).
XX

2.6 The T-expanded Representation of a Multirate System

The preceding sections collectively provide a means of obtaining a time-invariant input-
output or state space description of a multirate system, which will be referred to as the
T-expanded representation. The reader may wish to keep the following general procedure in
mind as a summary of the previous sections.

Procedure 2.4:
a. Starting with a block diagram of the system, verify that Assumption 2.1

is satisfied. The partitioning required in Assumption 2.1(e) may entail a trial and

error approach. For the remaining steps of this procedure, “subsystem” refers

specifically to the subsysterns obtained as a result of this partitioning.

b. Assign labels to all sampling periods in the system, and apply Procedure

2.1tofind T.

c. Find a state space realization for each continuous-time and discrete-time
subsystem.

d. Apply Procedure 2.2 to the block diagram. Procedure 2.2(b) may be
performed in parallel with Procedure 2.2(c), and Procedure 2.2(d) and Procedure

2.2(e) may be performed in parallel. However, do not reverse the order of these

two pairs of steps.

e. Identify the rates at which the inputs and outputs of continuous-time
subsystems are sampled and discretize these subsystems as described in Section

2.4.

f. Designate lines on the block diagram representing inputs and outputs of
subsystems and inputs and outputs of the entire multirate system as bundles of
signals. Partition the state space realization of each subsystem accordingly.

g. Find the T-expanded representation of each subsystem as detailed in
Section 2.3.




h. Apply Procedure 2.3 and then delete all of the samplers from the block

diagram.

i. Note that the block diagram obtained in step (h) is a block diagram of
interconnected time-invariant discrete-time systems with period T. The states at
times kT of the subsystems in this block diagram and the input-output behavior of
the entire block diagram as a system are identical to those of the original multirate
system in step (c) (after decomposing the expanded signals into their components.)
Standard methods may now be applied to reduce this block diagram to a single state

space equation or transfer function matrix.
*e 0

Completion of Procedure 2.4(i) will in general involve a matrix inversion to find the state
space description of a feedback structure. Under certain conditions, this inverse may not exist;
hence, a state space representation for such a feedback structure cannot be found. As an example,
the seemingly innocuous system in Figure 2.7 composed of two samplers and two continuous-time
unity gain blocks has no state space description for any choices of T; and T,. This difficulty is
intimately related to the well-posedness problem encountered in transfer function descriptions of
composite systems. See Chen (1984) for a discussion of this problem. If the multirate system as
modeled by the block diagram in Procedure 2.4(a) has the property that each closed path on the
block diagram passes through at least one subsystem which has no direct feedthrough, then it is
suspected that the difficulties described above will not be encountered.

/e o T
Tl T2

1 <

Figure 2.7. An ill-posed multirate system.

2.7 Inclusion of Periodic Subsystems

A slight extension of Procedure 2.4 permits the inclusion of single-rate periodic discrete-
time subsystems in the multirate system. Consider a single-rate discrete-time subsystem with
single-bundle inputs and outputs and a realization which is time varying, but periodic. For all
ne Z*, let

Z((n+1)Ty) = £(nTy) = (A(nT;),B(nT),C(nT}),D(nT)).

Thus, £(nT)) is periodic with period rT;. As demonstrated in Meyer and Burrus (1975), repeated




';'\;
:g i iteration from an initial time of t = 0 of the state equation governing X(nT),
DN
;::'\E .‘3 x((n+1)Ty) = A(nTy) x(nT;) + B(nT;) u(nTy)
'_".!:' y(nTy) = C(nTy) x(nT)) + D(nT}) u(nT)),
‘::,_;. l yields a time-invariant state equation with rate 1/rT;:
* ¢ x((k+DrTy) = A x(k(rT})) + Be U(k(rTy))
! Y(k(T1) = Ce x(k(T) + De U(K(T1)).
; .;_‘ ° Denoting A(nT}), B(nT)), etc. as A(n), B(n), etc. for brevity,
4 -
o Ae = AG-DA(-2)..A(DA(D),
RN
'E:E;: 1& Be = [A(r-1)...A(1)B(0) L.l A(r-1)A(r-2)B(r-3) | A(r-1)B(r-2) | B(r-1)],
L) <t
A @ B C0) 7
ot
.:::: C(1HA(0)
W
R 2 Ce=| CQAMAO |,
't
v .
‘e,"o .
.:;:i: Qj L C(r-1)A(r-2)...A(0)
MY
;':.. and D, is composed of r x r of the blocks d;;, where
RO ]
8 0, ifi<j
¢ D(i-1), ifi=j
i gy=q LoD AEE=T . (2.6)
*:;ﬁ::; pe CG-1)B(j-1), ifi=j+1
!' \ 3
:E;E:: ¥ C(i-1)AG-2)...A()BG-1) , if i > j+1
Db
) 5 Thus, (Ae,Be,Ce,De) serves as a single-bundle rTi-expanded representation of Z(nT;). This time-
e
..':"‘ invariant representation can be further expanded using the technique in Section 2.3. If Procedure
e d
"e ;: 2.4 were applied to a multirate system containing this periodic subsystem, the only alteration of
::::v = Procedure 2.4 required would be to include both T; and rT; in Procedure 2.4(b) to find T. In
R analogy with Section 2.3, the expanded representation of a periodic discrete-time subsystem
o e 2(nT)) with inputs u(nT;) and outputs y(nT)) that are vectors of bundles can be expressed in
"
! :’.\:5' . terms of single-bundle expanded representations by first partitioning B(nT;), C(nT)). and D(nT,;
; N{f. :j to conform with the bundles composing u(nT;) and y(nT)).
' ] A multirate periodic discrete-time subsystem may be specified in T;-expanded form
;!‘.:;'3 N by both specifying A(kTy), B(kT}), C(kT,), and D(kT}) in its state equation.
Ny
s x((k+1)T1) = A(kT;) x(kTy) + B(kT;) UKT))
oy X (2.7
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where Y(kT;) and U(kT),) are T;-expanded versions of vectors of bundles of signals and A(kT)),
B(kT;), C(kT;), and D(kT,) are rT,-periodic, and by specifying the partition of Y(kT;) and
U(kT,) into expanded bundles and the rates associated with each expanded bundle. Although
discretizatinn of a r'Ty-periodic continuous-time system with inputs and outputs sampled at multiple
rates would yield a state equation such as (2.7), the state equation (2.7) may not be the result of
discretizing or expanding any subsystem. In the case r = 1, (2.7) may represent the behavior of a
computer program performing concurrent tasks at multiple rates. In Chapter 5, the controllers
designed will take the form of (2.7). The subsystem (2.7) may be expanded over its period, rT},
and then further expanded over time T during the execution of Procedure 2.4.

The point of the extensions of Procedure 2.4 given above is not to belabor specific
examples but to indicate a general property of Procedure 2.4. If, by some means, a time-invariant
discrete-time description of a subsystem in terms of expanded inputs and outputs can be obtained,
Procedure 2.4 applies to a multirate system in which this subsystem appears as a component. In
this instance, Procedure 2.4 must only be modified by including the period of the time-invariant
description of this subsystem in the set of sampling periods considered when finding the least
common period of the entire multirate system, T.

Example 2.7:
Suppose that a T-expanded representation is desired for the multirate system
shown in Figure 2.8, where T} = 1 sec, T2 = 0.5 sec, and g(nTy) is a discrete-time
periodic gain with period T3 = 2T;:

g1, if nis even
g(nTy) ={ e
g2, if n is odd
+ 2 /
u (1/s) *y
T, T
+ 2
g@T)) [——
Figure 2.8. A multirate system.
Applving Procedure 2.4:

a: Considering the double integrator and the discrete-time gain as
subsystems, parts (a), (e), and (f) of Assumption 2.1 are satisfied. It will be
assumed that the rest of Assumption 2.1 is satisfied as well (with the exception that
a periodic discrete-time subsystem is present.)

24




4

A b: Application of Procedure 2.1 yields t =0.5sec,py =2,p2=1,p3 =4,

and T = 2 sec.

=P

ot c: A state space realization for the periodic gain is (0,0,0,g(nT})), and a
state space realization for the double integrator is

I
e 00’[1]’[ Lo

e d: If the modified version of Procedure 2.2 (wherein continuous-time
subsystems are sampled with period t (= T3)) is applied to the system, Figure 2.9

=
£

results.

o
& M

(1/s)* H/——

*y
T, \J T,
goT) ([&—

Figure 2.9. The system in Figure 2.8 with inserted samplers.
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:.:: e: Discretizing the double integrator with period T, gives

B ¥ Ad [1 1/2} Bo<| ], C4=[10],and Dg=0

- = s = , = , an =u.
o1 | B ;

G }i\ f: This part is trivial since all inputs and outputs are drawn as single lines.
B 1) “ g: Denote the T-expanded representation of the periodic gain by K. From
"00. o)
) c (2.6),
g K=[ g 07
0 g J
‘-.':' o The T-expanded representation of (Aq4,By4,Cq4,Dq) can be found using (2.2) with
L ] ih=T/T, =4:

.
-
d
-
g
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01 12 172 12 12
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1 112 /8 0 O
,and D, =

1 1 38 1/8 0
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h: Let Q; = Q(T,1,1:2), Q> = Q(T,1.2:1). and Q3 = Q(T.1.2:2). Then
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1000
Ql= .Q2={0010}.andQ3=[4.

1

1
01
01

After inserting connection matrices and removing samplers, the block diagram of
the T-expanded representation of the system appears as in Figure 2.10.

-+
—»1Q +z » (A,B,C.D) +—»Q,

U(mT) Y(mT)

Q1'<—‘K<—'Q2

Figure 2.10. Block diagram of the T-expanded representation.

1: The system in Figure 2.10 can be reduced to a single state space
equation, the T-expanded representation of the system in Figure 2.8:

4+6g1+21g2+2g7 4+go 6+g2 1
3 -3 =3 u(mT)
X(m+D)T) = x(mT) + [ J
182+2g1+232 2+, u(mT+T))
y(mT) 1 0 0 0
y(mT+T2) 112 178 0 u(mT)
= x(mT) + i
y(mT+2Ty) 11 12 0 u(mT+Ty).
y(mT+3T3) 1 32 1 1/8

¢ o0

2.8 Modular Expansion of Multirate Systems

A fundamental difficulty encountered in executing Procedure 2.4 is that the T-expandc:
representation of the subsystems may involve matrices of large dimensions. A simple example
demonstrates this problem and suggests a method of circumventing it, referred to as modular
expansion.

Consider the multirate system with SISO time-invanant subsystems in Figure 2. 11, wherce

Ty =2.Ta=1. Ty = 25, and T = 50. Straightforward application ot Procedure 2.4 vicids o
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T-expanded representation for X; with 25 inputs and outputs and a T-expanded representation for
X, with 50 inputs and outputs. Reduction of the feedback connection of the expanded
representations to a single state equation involves the multiplication and addition ot large matrices
and, more importantly, the inversion of two 235 x 25 matrices.

.................................................

Figure 2.11. A simpie multirate system.

As an alternative method, consider ignoring X3 for the moment and finding an expar.'ed
representation for the feedback connection of X, and Z; over the least common period of T, and
T» using Procedure 2.4. Let Tf =LCP (T,,T;} = 2. Calculation of the Tr-expanded
representation for the feedback connection involves much smaller matrices and, in particular,
requires the inversion of two ] x | matrices. This savings in computation will be worthwhile if the
T-expanded representation of Z¢ exists, enabling the T-expanded representations of £ and X3 to be
combined. A Tgexpanded representation can be T-expanded if T/Tre N. Since Theorem 2
asserts that T/T¢=LCP (T, T2,T3}/LCP {T,,T:} € N, the T-expanded representation of X; can
be computed. This then is the essence of modular expansion.

There is substantial freedom in the steps taken when performing moduiar expansion on a
multirate svstem. The following procedure helps explain the notion ot modular expansion and
should not be interpreted as the only means by which modular expansion can be pertormed.
Procedure 2.5: (a modular expansion scheme)

a. Carry out steps (a) through (f) of Procedure 2.4.
b. Focus attention on a collection ot subsystems by drawing a path on the

block diagram enclosing one or more subsystems which does not separate any

enclosed continuous output/input point from the sampler immediately

following/preceding it (review Procedure 2.2 for the meaning of these terms.) Call

the enclosed portion of the system the “current collection.” Seti=0and Pt0) = 1.

Let {To.1.To.2,---.To.m0)} be the set of m(()) sampling periods and penodic

discrete-time subsystem periods in the current collection.

_mi .1. ;; i‘;i')u:u:’



c. Set P(i+1) = LCM {P(i), pi.1»....Pi.m¢i)} and T+1y.0 = P(i+1)T. Find
the T.1),0-expanded representation of each subsystem in the current collection and

insert connection matrices. By standard techniques, find a single discrete-time state
equation with rate 1/T;.1)0 to describe the current collection. When finding this
state equation, ignore samplers on the block diagram that are between connection
matrices, subsystems, summers, or branch points in the current collection but retain
samplers on the periphery of the current collection.
d. Seti=i+l.
e. If the current collection is the entire multirate system, stop. Otherwise,
draw a path enclosing the current collection and possibly other subsystems,
following the same restrictions as in step (b) above. Let (T;,Tiz2,....Ti.ma)) be
the m(i) additional sampling periods and periodic discrete-time subsystem periods
enclosed by this path. Call the portion of the system enclosed by this path the
current collection and return to step (c).
xR
Procedure 2.5 proceeds by repeatedly adding subsystems to a single collection of
subsvstems. Modular expansion may in general start with several collections scattered throughout
the block diagram and repeatedly add subsystems and collections of subsystems to these
collections. The restrictions in Procedure 2.5(b) on the items included in a collection must be
obeved during the process of enlarging a collection. Each time a new collection is formed, that
collection is expanded and then reduced to a single state equation as in Procedure 2.5(c). The
process terminates when a single collection contains the entire multirate system. The principle that l

allows collections of subsystems to be expanded and combined in such a variety of ways is that, as
1 simple induction argument and Theorem 2.3 show, the least common period of the union of a
collection of sets of sampling periods is an integer multiple of the least common period of each set
in that collection.

A trade-off between the effort required to combine expanded subsystems and the effort
expended in cxpanding a representaton corresponding to a combination of subsystems complicates
the question of which modular expansion strategy results in the least computational effort for a
given multirate system. Two general heuristics for modular expansion can be offered. To avoid
inverting large matrices, expand subsystems in a feedback connection and obtain a representation
describing this feedback configuration before including it in a larger collection of subsystems. By
choosing collections of subsystems that have fewer input and output lines, the dimensions of the
required “B”, “C”, and D" matrices are reduced.
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CHAPTER 3

PERIODIC REPRESENTATION OF MULTIRATE SYSTEMS

Representing the behavior of a multirate discrete-time system with period T over intervals
of time of length M, where T/M € Q, results in a description which is time varying and periodic.
Such a description will be referred to as the M-varying representation of the system. The
motivation for examining the M-varying representation is twofold. Not only does it provide a
periodic representation of the multirate system, but with M = t, the M-varying representation
finds use theoretically in investigating the interperiod behavior of a multirate system by examining
its T-expanded representation. Three intrinsic difficulties detract from the practical usefulness of
the M-varying representation presented here. In general, the M-varying representation has more
states than the time-invariant description, is difficult to calculate, and involves padding with false
inputs and outputs to prevent the number of inputs and outputs from varying with time.

Many possibilities exist for the periodic representation of a multirate system. In the
M-varying representation, state transitions occur at regular intervals. A representation like the one
presented in Kalman and Bertram (1959) in which state transitions occur only at the times of
certain events, such as a sampling event or a state transition of a discrete-time element, is perhaps
more appealing from a practical point of view due to reduced storage requirements. However, the
M-varying representations presented here are valid periodic representations of the multirate system
and are easily described in detail.

3.1 The t-varying Representation

In Chapter 2, the system was represented over an interval of time which was an integer
multiple of the period of each sampler. Inputs and outputs were implicitly “held” by retaining their
values as components of time expanded signals. The t-varyving representation of a system does not
permit this luxury, and the values stored in most hold circuits must be retained as state variables.

Consider a sample/hold circuit with period T; = p;T, input u, and output y. Let x(nt) be
the value stored in the hold circuit at time t = nt. For times t = ngt at which sampling occurs, the

next state is updated; as a consequence of Assumption 2.1(d), the output is set to the input:




x((no+1)T) = u(net) and y(ngt) = u(net).

At all other times, the state remains unchanged and the output is set to the value of the state:

x((n+1)Tt) = x(nT) and y(nt) = x(n7).
Thus, for a sample/hold with period Tj,

x((n+1)t) = a(nt) x(nt) + b(nT) u(nt)

y(nt) = c(nt) x(nT) + d(nT) u(nt),

where
(0,1,0,1),ifnmod p; =0
(1,0,1,0) ,if nmod p; # O

Note that if pj = 1, the representation becomes time invariant, with corresponding state and output
equations x((n+1)t) = u(nt), y(nt) = u(nt). Clearly, x(nt) is superfluous in this case, and states
need not be assigned to sample/holds of period t.

(a,b,c,d)(nT) = {

The following convention is explicitly stated for clarity.
Convention 3.1: (Intermediate state values of discrete-time systems)
Given a single-rate discrete-time subsystem with state x and state transitions
specified at times kT, or a multirate discrete-time subsystem with state x specified
in Ti-expanded form, define
x(t) = x(kTy), kT; St < ((k+1)Ty).
XX
Due to the multirate nature of the surrounding elements, a Tj-varying discrete-time
subsystem must sample its inputs at times t = kT; and maintain its output at y(t) = y(kT)) for
kT; <t < (k+1)T,. Since u(kT,) is required at time t = kT;+(p1-1)t to determine the state
transition, a state variable must be defined to retain u(kT,;). Let a periodic T;-varying single-rate
discrete-time subsystem with realization (A(kT;),B(kT;),C(kT;),D(kT;)) have state x € R, input
u € XM and output y(kT;). Define the augmented state

x((kp1+i)1)
u(kTy)
A T-varying representation of this system which satisfies the state and output equations
z(t+1) = a(t) (1) + b(t) u(t)
y(©) = c(t) z(t) + d(t) u(®)
for times t = (kpy+i)t,0<i<pjand k =0,1,..., is

z((kp1+i)r)=[ J,0< i<p,k=01,..
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:ﬁ: 3 (([™ 0], [ 21 (caty O],D(le)), ifi=0
E:::: N L 0 0 I .
2 L, 0707
o “ (a,b,c,d)((kpi+i)t) =< ] [ , [C(kTy) D(kTy)l, 0), if0<i<p;-1
z L0 In [ Lo,
50
*33 3 ([ AKT) BKT) ] [0] ] o
O , , [C(kT;) D(kTy)], 0], ifi =p;-1
&) .\ 0 Im 0
o 53 3.1
.:;" > The reader may wish to trace through the above representation and note the following facts.
«2:} o u(kT;) is updated at the time it is available, i = 0, and the following output values and state
:::ﬁ ﬁ transition are determined from this stored value. The output is held at y((kp;+i)t) = y(kT;) for
. o 0 <1i<p;. This t-varying representation is equivalent to the T)-varying representation in the
SN sense that for any z(0) € R™*™ and input sequence {u(jt): j = 0,1,...}, the resulting output
X ": . sequence {y(jT)} and the x portion of the state trajectory {z(jt)} of the T-varying representation are
foA &\, identical to samples at times t = jT of the output sequence {y(kT;)} and the state trajectory
i {x(kT;)}, where x(jt) is obtained from x(kT;) via Convention 3.1, of the T;-varying
‘ 2:; ;'.j: representation with initial state x(0) and input u = {u(j1)}.
S’ -' A periodic multirate discrete-time system specified in T;-expanded form,
Al & x(kTy) = A(kT}) x(kT}) + B(kT;) U(KT)
é‘ii ) Y(kTy) = C(kTy) x(kT,) + D(kT;) U(KTy),
SR may also be expressed as a T-varying system. It is necessary that D(kT;) be structured so that this
E:::: ‘ system is causal. The state of the system must be augmented by U(kT;). Although the specific
) E details of a t-varying representation for a general multirate discrete-time system specified in time
i 3 ' expanded form are too involved to present here, the basic philosophy is the same as that for a
:-ﬁ 3 single-rate system. The values comprising U(kT}) are loaded into the augmented state as thev
-\-é < become available, and the state transition occurs during the last T interval of each T interval, as
'_ - specified in Convention 3.1. Strictly as a matter of convenience for developments in Section 3.3,
_:'f- '}.I the following convention should be satisfied by a t-varying representation of a multirate discrete-
.‘5 L time system specified in time expanded form.
" z Convention 3.2:
' Portions of the augmented state corresponding to input values that are not
;::'c" ::g vet available are assigned the value zero.
;:::‘. - X
T;:';: bt
L X | Example 3.1:
;‘::: A SISO multirate system with a single state is specified in 6t-expanded
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M form:

x((k+1)67) = a x(k61) + [b; bz] U(k671)

RN 1 d 0

i Y(k6t) =| c2 |x(k6T)+| d2 O [U(k6T).

W 3 dy dy

o The input u is sampled with period 3t and the output y has period 21:
y(k67)

» Y(k61) = y(k6T+21)

[ u(k67) }
Uk61) =

u(k61+31)

y(k61t+41)
Note the two O's in the D matrix required for causality. Define the 3 x 1 augmented
state z:

x((k6+i)1)

" " Z((k6+i)1) =
Uk671)

:|, 0<i<6,k=0,1,..

{ As this system has period 67, six sets of matrices are required for the t-varying

o representation. These matrices are given as a(t), b(t), c(t), and d(t) for each t

I o

do below.

o 100
t=k6t: | 000

by 000

0

11, [c;00] 4

0
L 100 [:0

14

- t=két+t: [ 010 |, |0/, [c;d0]0
2 000

:‘:"g, FI 007 r
Y t=k6t+2t: | 010 |,
~ L 000 |
1007
e t=k6t+3t: [ 010 |,
I [ 000 _
Q. 100 0

o t=k6t+4t: | 0 10 [ | 0|, [c3d3d4],0
o 001 0

, [€2d20],0

, [c2d20],0
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ol
[ 99
- a by b 0
< t=k6t+5t: | O I o“, 0 |, fc3dsds], 0.
0 0 1 _l 0
g XX
EZ: A continuous-time subsystem whose inputs and outputs are sampled and held at multiple
rates is readily converted to t-varying form. The continuous-time subsystem is merely discretized
| 8 with period T and the surrounding sample/hold devices govern the flow of input and output values
& to and from the multirate sampled subsystem. The following procedure details the calculation of
.:_: the t-varying representation of a multirate discrete-time system.
b Procedure 3.1:
< a. Verify that Assumption 2.1 is met, with the exception that periodic
T:L.‘ single-rate and multirate discrete-time subsystems may be present. Partition the
i entire system into subsystems which satisfy Assumption 2.1(e).
o b. Use Procedure 2.1 to normalize all sampling periods and periods of
periodic subsystems and find T = Pr.
&; c. Find a state space realization for each continuous-time subsystem and

single-rate discrete-time subsystem.
B d. Discretize with period t each continuous-time subsystem and find a
T-varying representation for each sample/hold device and discrete-time subsvstem in

o accordance with Convention 3.1 and Convention 3.2 as described in this section.

b e. Foreachje {0,1,..,P-1}, associate the t = jt value of the T-varying
. representation of each subsystem and sample/hold device with the corresponding

L subsystems and sample/hold devices in the block diagram of the system. Reduce

this block diagram to a single state space equation as if it were the block diagram of
a single-rate system. This gives a T-periodic, T-varying representation for the entire
multirate system: (A(nt),B(n1),C(nt),D(n7)).

]

5 XX
As with Procedure 2.4, difficulties may arise when performing Procedure 3.1(e).

J In certain instances, Procedure 3.1(d) can be modified in order to reduce the number of
‘® states of the T-varying representation. For example, if a signal is connected to a sample/hold with
TS, period T; or to a single-rate discrete-time subsystem which is T;-sampling the signal and this
e . ) . . . .
SO signal is the output of a sample/hold with period T, a T;-held output of a discrete-time system. or
J'l . . .
::. . the sum of such signals and T./T; € N, then a state variable need not be assigned to the
" -
e sample/hold with period T, or to retain the T;-sampled input value of the discrete-time subsvstem.
o In this case, a t-varying representation for a T-varving single-rate discrete-time subsystem is, in
3:: “r
3
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N the notation of equation (3.1),

(In, 0, C(kTy), D(kTy)) ,if 0 <i < py-1
By (a.b,c,d)((kp1+i)T) ={ " ‘ : o . G2
\ (A(kTy), B(kT)), C(kTy), D(kTy)), if i = p;-1

If some of the inputs to the discrete-time subsystem have this property and others do not, the

:: proper T-varying representation is a hybrid of (3.1) and (3.2). The justification for this
“.:: modification is that when T/T; € N, the inputs to the sample/hold of period T; or the T;-sampled
i" inputs of a discrete-time subsystem are held constant over the times
ﬁ: t = kT, kT; +1,..., kT; + (p1-1)1;
K,
c;.,: u(kTy) is available, if necessary, at times after t = kT; for determining outputs and state transitions.
f,ﬁ._: A slight modification of Procedure 3.1 produces a 1/g-varying representation, Q € N. By
.f introducing a fictitious sampling period Ty = t/q into the normalization process in Procedure
’} ‘ 3.1(b), a different set of parameters results: t' = t/q, P' = qP, and p;' = gp;. Utilizing these
:ﬁ parameters in place of 1, P, and p; in steps (c), (d), and (e) of Procedure 3.1 then gives a
f T-varving representation.
o
i’
KX
WY 3.2 The mt-varying Representation
R
L)
: ) Obtaining an mT-varying representation, m € N, for a multirate system by direct means can
€
,i':; be somewhat tedious. However, a method will be outlined whereby an mt-varying representation
f. \ can be obtained via the t-varying representation in a straightforward manner. In the following
‘Y
jﬂ? procedure, assume that the system is single-bundle input, single-bundle output.
'2 Procedure 3.2:
;‘ a. Apply Procedure 3.1 to obtain (A(nt),B(nt),C(nt),D(n7)).
0 b. Letr=LCM (m,P}/m. Fork=0,1,.., calculate
t
i/
B% a(kmt) = A((km+m-1)1).. A((km+1)D)Akm?),
]
Rl B(kmt) = [A((km+m-1)t)...A((km+1)t)B(kmT) | ...
:: . FA((km+m-1)t)B((km+m-2)1) | B((km+m-1)1)],
g
K} ,'.-;
y C(kmr)
\(l y(kmt) = C((km+1)t)A(kmt) ’
{ :
74) C((km+m-D)T)A((km+m-2)7)...A(kmT)

and the block m x m matrix 8(kmt), where

3 Rt AT AT AT A e e
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b 3
1
:;" o 0,ifi<j
LY,
y N -~ D((km+i-1)1) ,if i =
] dj(kmt) = . . e
", n C((km+i-1)T)B((km+j-1)t) , ifi=j + 1
::;;’.i C((km+i-1)T)A((km+i-2)1T)...A((km+))T)B((km+j-1)t) ,if i > j + 1
2 ~ Since a(.), B(.), ¥(.), and 8(.) are periodic with period rmt, only values for
K ” k=0,..., r - 1 are required. With z(nt), u(nt), and y(nt) as the state, input, and
;";' ﬁ output of the t-varying representation, the mt-varying representation satisfies the
:::§ - following state and output equation for k =0,1,... :
ol z((k+1)mt) = a(kmr) z(km) + B(kmt) U(km1)
WIS Y (kmr) = y(kmt) z(kmt) + &kmt) U(kmt).
A Q Y(kmt) and U(kmt) are the mt-expanded versions of u(nt) and y(nt).
E‘:"' o XX
:{;:% » Iteration of the equations governing the t-varying representation confirms the validity of
s ﬁ Procedure 3.2. Note the similarity between these formulas and those for the time expansion of a
«,. periodic discrete-time system in Section 2.7. Y(kmt) and U(kmt) in Procedure 3.2 should not be
:‘ : confused with the mt-expanded versions of the output and input of the original system. Y(kmrt)
: :n ' and U(kmt) are mt-expanded versions of t-sampled versions of the original system's input and
;' ) B output. In fact, the representation produced by Procedure 3.2 is the mt-varying representation of
v" the multirate system with samplers of period t inserted at each input and output of the original
: v F system. These added samplers do not alter the behavior of the system. Since the inputs and
1'5 outputs of a multirate system are generally sampled with periods greater than t, many of the
g ‘ E components of U(kmt) are not accessed by the mt-varying representation and many of the
\}":‘ components of Y(kmt) are duplicates. This redundancy serves to pad the inputs and outputs of the
% x mrt-varying representation to a size which is uniform in time.
(e
o Example 3.2:
5;" :53 Consider finding the 3t-varying representation of the multirate system in
N § v Example 3.1. Since r = 6/3 = 2. only two values for each of a, B, v, and d are
::% 5‘; needed. The t-varying representation of this system was determined in Example
@. 3.1; Procedure 3.2(a) is finished. By straightforward calculations,
,:' :'.? k=0:
100 000 ¢ 00 d; 00
e % a0)=| 000 |, BOy=| 100 ¢ 00 d 00
o 000 000 c00 d; 00
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y(0) u(0)
Y(kmt) =| ¥Y(0) |, and Ukmt) =| w(®)

y(21) Lu(21)
k=1
ab 0 b 00 c2d; 0 000
aB3t)={ 010 |,BBt)=| 000 [,y31)=| c3d30 |,83t)=[da00 |,
000 100 c3d; 0 d4 00
y(31) u(3t)
Y(kmt) =| y(4t) |, and U(kmt) =| u(41)
y(51) u(5t)
Thus,

(a,B,v,8) (0), if k = 0,2,4,...

(o,B,7,9) (k(37)) = { )
(«,B,7,8) (3t) ,if k = 1,3,5,...

Since y has period 21, it should be the case that y(0) = y(t), y(21) = y(31),
and y(4t) = y(5t), which can be verified. Note that only u(0) and u(3t) are
utilized, which is consistent with the fact that u is updated with period 3t by the
original multirate system.
XX

Procedure 3.2 determines the mt-varying representation of a single-bundle input, single-
bundle output, multirate system. The mt-varying representation of a multirate system with inputs
and outputs which are vectors of bundles results from partitioning B(nt), C(nt), and D(nt) and
repeated application of Procedure 3.2(b) in a manner analogous to the time expansion of such
multirate systems. As noted earlier, T/q-varying representations, q € N, may be obtained using
Procedure 3.1. It follows from the developments in this section that if r € Q and r > 0, Procedure
3.2 may be used to calculate the rt-varying representation of a multirate system, since r = m/q for

some integers m and g.

3.3 Corresponding Representations

A trait common to all periodic representations of multirate systems, but not the T-expanded
representation, is that states corresponding to the contents of some of the hold circuits in the
system must be included in the composite state vector of the system. These added states are of a
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nondynamic nature, and the reader may correctly predict that the lower-dimensional T-expanded
representation of a given multirate system shares many of the qualitative properties of a periodic
representation of that system. The representations described in this section serve as a crucial step
in the investigation in Chapter 4 of the manner in which the T-expanded representation relates to
periodic representations. The properties and results discussed in this section and Chapter 4
regarding T-expanded and t-varying representations could be adapted to almost any periodic
representation of the types of multirate systems under consideration.

For a given multirate system, a relationship exists between the matrices A(nt) of the
T-varying representation obtained from Procedure 3.1 and the matrix A, of the T-expanded
representation obtained from Procedure 2.4, provided that two particular steps of these procedures
are performed similarly. To ensure that such representations exist, let the following assumption be
satisfied.

Assumption 3.1: (well-posedness)
The calculations necessary to complete Procedure 2.4(i) and Procedure

3.1(e) can be performed for the multirate systems under consideration and involve

matrices with bounded elements.

XX |
The state of the T-expanded representation, x(kT), is a composite of the states of all the dynamic
subsystems in the multirate system. The state of the t-varying representation, z(nt), is a composite
of the states of all the dynamic subsystems in the system and hold states (states assigned to
sample/hold circuits and states introduced to retain input values of discrete-time subsystems.) A
T-expanded and a t-varying representation of a multirate system will be called corresponding
representations if these representations are obtained from Procedure 2.4 and Procedure 3.1,
respectively, and the following convention is satisfied.
Convention 3.3:

a. The same system partition and the same state space realization for each

subsystem is used in step (c) of Procedures 2.4 and 3.1.

b. When reducing the composite system to a single state space equation in

Procedure 3.1(e), z(n7) is partitioned into dynamic states, w(nt), and hold states,

h(nt):

w(nT)
z(nT) =
h(nt)

In addition, Procedure 3.1(e) and Procedure 2.4(i) are performed so that the state of

any given subsystem occupies the same components of x and w.
*o0
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If corresponding representations have initial conditions z(0) and x(0), where x(0) = w(0),
and are subjected to the same input, then x(kT) = w(kP1), k = 0,1,..., because x and w each

represent the dynamic states of the system and are structured identically. Hereafter, this fact is

|:x(m:)j|
z(nT) = ,
h(nt)

where x(nt) is interpreted through Convention 3.1 as representing the dynamic states of the

emphasized by writing

subsystems in the multirate system at time t =nt.

Letxbe d x 1 and h be § x 1. As a consequence of the manner in which t-varying
representations were defined in Section 3.1, at time t = O each subsystem and sample/hold
determines its next state and current output solely from the current value of its dynamic states (if
any) and inputs. Thus, at t = 0 the next state z(t) is independent of every component of h(0). If
the inputs to the system are zero, from z(t) = A(0)z(0), it follows that for some E; € R and
E, e RS,

A(O)—[El 0
- E; 0].

Expressing z(Pt) = z(T) for arbitrary z(0) as

GO
z(pt) = A((P-1)1)...A(0)A0)z(0) = |: H 0 ] z(0)

for some G € R and H € R, it follows that x(Pt) = Gx(0) for arbitrary x(0). For the
corresponding T-expanded representation, x(T) = Ax(0) and x(kT) = x(kPt). Thus,

Aex(0) = x(T) = x(Pt) = Gx(0)

for arbitrary x(0), which implies that G = A.. The following theorem results from the discussion
above.
Theorem 3.1:
For corresponding T-expanded and 1-varying representations of a multirate
svstemn and some E; € R%® and E;, H € R1x§,

A =| B!
()—I:E

0 d A((P-1 A AO—ACO
2O]an (P-1)7)..A) ()-[H 0]

L X X J

A T-expanded and a t-varying representation of a multirate system will be called
completely corresponding representations if these representations are corresponding
representations and the following convention is satisfied.

38
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Convention 3.4:

>
A

2Y A

5 B

-~ T
L4

-

a. Samplers of period t are placed on each input and output of the block
diagram of the system before finding the T-expanded representation.

b. Once the T-expanded representation has been obtained, its input and
output, U(kT) and Y(kT), are restructured to form a new input and output, U(kPr)
and Y(kP<), given by

u(kPt) y(kP1)
UkPy =| YOPTD 1 ang ykpy 2| YRPTHO
u((k+1)Pt-1) y((k+1)Pt-1)

In essence, the input and output of the system are each treated as a single bundle of
signals. During this operation, the rows, columns, and elements of the matrices of
the representation must be permuted according to the reordering of the inputs and
outputs.

Let the completely corresponding T-expanded representation be denoted by

Xx((k+1)T) = Ae x(kT) + B, U(kP1)
Y (kPt) = Ccc x(kT) + D¢ U(kP1).

The primary difference between a corresponding and a completely corresponding T-expanded
representation is Convention 3.4(a); however, the added samplers do not alter the behavior of the
system. In fact, the columns of B, are permutations of the columns of B, interspersed with
columns of zeroes, and the rows of C.. contain duplicates and are drawn from the rows of C.. For
a given multirate system, a t-varying representation which is a corresponding representation and

one which is a completely corresponding representation are identical.

The manner in which completely corresponding representations are related is revealed by

defining the following quantities from the matrices (A(nt),B(nt),C(nt),D(n7)) of the t-varying

representation:

LEF S ']

e e

. :‘)

hy

>

o = A((P-D1)...A(T)A(0),
B = [A((P-1)1)...A(T)B(0) | ...  A((P-1)T)B((P-2)T) | B((P-1)1)],

C(0)
C(DA(0)

A

‘Y =
C(P-DTDA(P-2)1)...A(0)

and the block P x P matrix §, where
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.:." 0,ifi<j

”‘ D((i-1)t) ,ifi =

W' - ’ =]

) 8 = . : U

K C(G-HTB((g-Ho) ,ifi=j+ 1

o C((-DDAW(-2)T)... AJDBG-DD) L ifi>j+ ]

)

! ,': Note the similarity of these quantities to the formulas in Procedure 3.2 for a Pt-varying

V representation of a multirate system whose inputs and outputs are treated as a single bundle. It

R follows that

Pl 2((k+1)P1) = a z(kPt) + B U(kP1)

s Y(kPt) =y z(kPt) + & U(kP1).

AN !
::?g: For completely corresponding representations with dynamic states which are identical at t = 0 and {
‘ input U(kPt), not only will x(kT) = x(kPt), as with corresponding representations, but in addition |
‘:::; their outputs Y(kPt) will be identical. In particular, with z(0) = 0, x(0) = 0, and U(0) arbitrary,

40

,“ ! x(T) = B U(0), Y(0) =D U0)

:!o"t and

¢

. x(P1)

i 2(P1) = =B U(0), Y(0) =38 L(0).

'..v h(Pt)

-!‘::a. Since U(0) is arbitrary and x(T) = x(Pt), B must be of the form

_ BCC
P '{ ] ]
for some matrix J and 8 = D... By the manner in which t-varving representations were defined in
Section 3.1, at time t = 0 each subsystem and sample/hold determines its next state and current

output solely from the current value of its dynamic states (if any) and inputs. Thus, for some
matrices E;, E;, and E3,

a0 = 2% ad co E; 0]
0) = E; 0 and C(0) = [E3 O].

Bv definition of v, it follows that for some matrix E4, ¥ = [E4 0]. Consider setting U(0) = 0 and

letting Z(O) and X(O) be arbi[r«“ (V. Thcn
Y Z(O = E4 O ( )

theretore, ¥ = [Cec 0]. The following theorem summarizes the @ ve discussion.

] = Y(0) = C¢e x (O

Theorem 3.2:
For completely comresponding T-expanded and 7+ :rving representations of

a multirate system and some matrices H and J,

40
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where o, B, and y are partitioned conformal with the partition of z into dynamic and

0 Bec
a=[A€ }‘B=[ ]'Y'_'[Cccolv and & = D,

2,

hold states.
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- CHAPTER 4 )

.‘

)

) ANALYSIS OF MULTIRATE SYSTEMS j
‘

. The representations developed in the previous two chapters provide a convenient means of !

'j assessing important qualitative characteristics of multirate systems. Of particular value is the fact

3 that the stability, controllability, reconstructibility, stabilizability, and detectability of the T-varying

N representation may be determined by examining the corresponding T-expanded representation of

. the svstem.

L)

“ In this chapter, only systems that satisfy Assumption 3.1 (well-posedness) are considered.

: Y Throughout, denote the t-varying representation of the multirate system by

?"a 2((n+1)1) = A(nT) z(nt) + B(nT) u(nt)

:;: y(nt) = C(nt) z(nT) + D(nT) u(nt),

)

X where (A,B,C.D) (nt) is T-periodic, and

K x(nT)

a z(nt) ={ J e X5-n,

;: h(nT)

b Denote the corresponding T-expanded representation of this system (see Section 3.3 for details) by

x((k+1)T) = Ae x(kT) + B, U(kT)
Y(kT) = Ce x(kT) + D, U(kT)
o
3 and the completely corresponding T-expanded representation of this svstem by

x((k+DT) = Ae x(kT) + B U(kP1)
Y(kPt) = C x(kT) + D U(kP1),

where x € R8and T = Pt. By Assumption 3.1, the elements of (A.B.C.D) (n7), (A..B..C.De).
and (A¢,Bee,Cec,Dee) are bounded and well-defined.

a e B

55N

4.1 Stability

Clearly, a necessary condition for uniform asvmptotic stability of a multirate system is that
its T-expanded representation be asyvmptotically stable. i.e., all the eigenvalues of A, have
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magnitudes strictly less than one. It turns out that this is also a sufficient condition for uniform

asymptotic stability of the corresponding t-varying representation.

Theorem 4.1:

Proof:

a e o

If the eigenvalues of A, have magnitudes less than 1, then the T-varying
representation is uniformly asymptotically stable.

Let Z(n,ng,zg) be the zero input state trajectory at time t = nt of the
T-varying representation resulting from the initial state zp at time t = ngt. It suffices
to show that V ng € N and zg € R3*, lim Z(n,ng,z0) = 0, as this result and the

periodicity of the t-varying representation establish uniformity.
Assume the eigenvalues of A, have magnitudes less than 1. Define the
monodromy matrix at time nt for the T-varying representation as

®(n) = A((n+P-1)1)...A((n+DT)A(nT).
Note that @(n+kP) = ®(n) for k = 0,1,... and that under zero input
2{((n+P)t) = ®(n)z(nt) forn = 0,1,... .

By Theorem 3.1, for some H € R,

A, O
o0-[ 0]

Thus, each eigenvalue of ®(0) has magnitude less than one. Recall that for square
matrices V and W, VW and WYV have the same eigenvalues. Repeated application
of this fact leads to the conclusion that ®(0), ®(1),..., and ®(P-1) all have identical
eigenvalues. Letie {1,..,P}and k =0,1,... and note that

Z(kP+i+ng,ng,2g) = [P (ng+i)]K A((Ng+;-1)T)...A(ngT)Zp.

For any zgp e X% and any ng € N, A((ng4i.1)T)...A(ngT)zq is bounded for each
1e {1....,P}. Since the eigenvalues of each ®(n) have magnitudes less than 1. for
each i e (1,....,P} Z(kP+i+ng,ng,zg) is bounded and éi_r’an(kP+i+n0,n0,zo) =0

Z(n.ngp,zg) is partitioned into P bounded convergent subsequences. Thus,
Z(n,np,zp) is bounded and for any i € {1,....P} and € > 0, there is K(i.e) € M
such that || Z(kP+i+ng,ng.z0) Il <€ V k 2 K(i,€). It follows that for any € > 0 there
is K(e) = 1 + max{K(i.e):ie€ {1,....P}} such that Il Z(n.ng,zp) Il < € tor all
n 2 K(g)P + ng, which implies that r}ilan(n.no,zo) =0.
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The utility of Theorem 4.1 stems from the fact that T-expanded representations are
generally easier to calculate and are of lower order than t-varying representations. Theorem 4.1
also insures that x(nt), rather than merely x(kT), decays asymptotically to zero for any initial
condition if the T-expanded representation is asymptotically stable. In fact, consider collecting the
states of all continuous-time subsystems in the multirate system into the composite state x.(t). For
k=0,1,.. and 0 £ty < P1, write

xc (kPt+t9) = W (to) z(kPr), 4.1)

where W(1p) is a dim(xc) x (8+1) matrix. Under the assumption that '¥'(to)ll is bounded for each
to € [0,P1), if the eigenvalues of A, have magnitude less than 1, it follows from (4.1) and
Theorem 4.1 that ast — o, xc(t) — 0. As a consequence of Theorem 4.1 and the satisfaction of
Assumption 3.1 by the systems under consideration, if the eigenvalues of A. have magnitudes less
than 1, the t-varying and T-expanded representations are BIBO stable (Chen, 1987).

4.2 Controllability and Reconstructibility

The controllability, reachability, reconstructibility, and observability of linear periodic
discrete-time systems have been investigated in several recent works; see Grasselli (1984), Bittani
and Bolzern (1985), Bittani and Colaneri (1986), Bittani and Guardabassi (1986) and the
reterences cited therein. The t-varying representation provides a T-periodic description of a
multirate system amenable to analysis by the methods developed in these references. Such an
analysis may be quite involved because the properties of controllability, reachability, etc. of a linear
periodic system are in general enjoyed by only a time-varying subspace of the entire state space.
The analysis here presents two instances in which the t-varying representation inherits a property
of 1its corresponding T-expanded represeritation.

The informal definitions which follow are consistent with those of Grasselli (1984). A
linear, discrete-time system is said to be controllable if there exist inputs which drive the system
from any given initial state at any given time to the zero state in a finite amount of time. A linear.
discrete-time system is said to be reachable if there exist inputs which drive the system to any
given terminal state at any given point in time from the zero state in a finite amount of time. A
linear, Ty-varying discrete-time system is said to be reconstructible if the state of the system at
any time t = mTg can be determined from knowledge of the inputs and outputs of the system over
some finite interval of time prior to t = mTy. A linear, T)-varying discrete-time system is said to be
observable if the state of the system at any time t = mT, can be determined from knowledge of
the inputs and outputs of the system over some finite interval of time beginning at t = mT.
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SR
_‘ *:3 Determination of the controllability, reachability, reconstructibility, or observability of the
5' N T-expanded representation can be accomplished by considering (A.,B.,C.) as a time-invariant
::‘,'é triple. A consequence of the Cayley-Hamilton theorem is that at most § T-expanded inputs are
ﬁ required to drive the state x(kT) to zero if the T-expanded representation is controllable or to the
: desired terminal state if the T-expanded representation is reachable. In addition, at most &
; i T-expanded outputs are required to determine a present state x(kT) of the T-expanded
‘ “ representation if it is reconstructible or to determine an initial state x(kT) of the T-expanded
_" B h representation if it is observable.

ﬁ - Theorem 4.2:

; d W The t-varying representation is controllable if the corresponding T-expanded

e 3 representation is controllable, and any initial condition z(ngt) = zg € R1*3 can be
sod driven to the zero state by time t = ngt + (§+1)T.

% ¥ b Proof:

’ N Let no =koP-i,ie {0,1,..,P-1}. If i > O and the inputs at times
'-'.".:! ﬁ not,..., (ng+i-1)T are zero, the system progresses from z; to some state

L [x(koPt)J

\ ;1 b z(koP1) = )
:: A a h(koPT)

;:‘,' e where x(koPt) = x(koT) € R3 Since the T-expanded representation is con-
d ﬁ trollable, there is an input sequence which drives x(koT) to the origin by time
":':5 ) t = koT + 8T at the latest. If x(kT) reaches the origin before t = koT + 8T, zero
j;‘;EE: ﬁ inputs can be applied to ensure that x(kT) remains at the origin until this time.
I .;: Applying this input sequence to the t-varying representation,

= L 559, e

B ko O)PD) ’[h((ko«»&r’r) '

éﬁg.: E; From Theorem 3.1, with u((kg+8)Pt) = 0,

' . z((kg+0)P1+1) ={ E1 0 } z((ko+0)P1) = 0.
S E2 0
{ ‘2 Thus, an arbitrary state zy has been driven to 0 by time

% ‘f” t = (ng+i+1+6P)T < ngtT + (3+1)T.

- XX

:\ \ Theorem 4.3:

::: The t-varying representation is reconstructible if the corresponding
‘ _';\ T-expanded representation is reconstructible, and the state of the corresponding
,. representation at any time not, z(ngt), may be determined by examining the inputs
Ko
;5: R
oy 45

.

2

ML) "c"‘ ¢',-_.~’ n.‘-n" AR L T . . - - . - -_'.\'a;‘!!"\:

3 .
IR . . e S A N LA
' '\l'.’l’ .I’-.l". ‘l, (X L) v 4% 4% AN ) y y .f y i;'i hi‘h(ﬁ*‘.l- r: fi hﬂh‘ ﬁﬁﬁ&:ﬁ.

TR W 34 B UL W B RN B N A" 0 L L P I A A N L




W NN
O ST

) OLOJEEE
RO AN
1"‘,‘.;'.‘4'!‘;. R

and outputs of the system over a period of time no greater than (§+1)T prior to
t=npT.

Proof:

Let ngp =koP +j,j€ (1,..,P}. Since the T-expanded representation is
reconstructible, the state x(koT) = x(koPt) may be determined by examining the

input U(kT) and output Y(kT) of the T-expanded representation at the times
(ko-0)T,...,(ko-1)T. From Theorem 3.1,

_[ E1 0 [ x(koP7) _[Ea
z((koP+1)T) -[ E, 0 ][h(koPt) + B(0) u(kgP1) = |:E2 x(koT) + B(0) u(koPr).

Thus, z((kgP+1)T) may be determined from knowledge of x(koT). It follows that

z((koP+j)T) = z(ngT) may be determined for any j € {1,..P} by examining the

inputs and outputs of the system at times (kg-0)P<,...,(kgP+i-1)t (recall that Y(kT)

involves values of y at and after time kPt.) Therefore, the t-varying representation

1s reconstructible and its present state can be determined by examining inputs and

outputs of the system over a period of time (ngt - (kg-8)Pt) < (8+1)T prior to

t = notT.

00

Besides the application to determining the controllability or reconstructibility of the
T-varying representation of a multirate system, Theorems 4.2 and 4.3 contain a subtler result.
Results in Grasselli (1984) show that a t-varying, T-periodic, discrete-time linear system of order
0 + 1, such as the T-varying representation under consideration, can be driven from z(ngt) to the
zero state by at most time t = ngt + (8 + )T if it is controllable and that the state of the system at
time t = ngT can be determined from knowledge of its inputs and outputs over a period of time no
greater than (6 + N)T prior to t = ngt if it is reconstructible. From the special properties of
T-varying representations and their corresponding T-expanded representations, Theorems 4.2 and
4.3 shorten these time bounds by (n-1)T.

4.3 Duality, Stabilizability, and Detectability

In analogy with time-invariant discrete-time state space representations, the reader may
anticipate the existence of stabilizability and detectability properties and dual relationships between
stabilizability and detectability for periodic discrete-time representations. By combining results
from Grasselli (1984), Grasselli and Lampariello (1981), and Weiss (1972), this is seen to be the
case. In the remainder of this section, the argument t will be suppressed.
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The approach taken in defining stabilizability and detectability will be through a

W,
.:: decompo-ition based on controllability and reconstructibility. The following lemma is a partial
restatement of results in Grasselli (1984).
ﬁ Lemma 4.1:
A T-periodic coordinate transformation Z(n) = A(n)z(n), A(n) nonsingular
- for each n, exists such that if £&(n) = (A(n), B(n), C(n), D(n)) is the representation
: ’ of Z(n) in the new coordinates,
E $(n) = (A(n+DA(n)A-1(n), A(n+1)B(n), C(n)A-1(n), D(n)),
- then
% [ An(n) Apn) Fam) Tem) | Bu(n)
o ) = 0 dxp(n) ) 0 iz4(n) B =| B
- 0 0  F33(n) F34(n) 0
. 0 0 0 Aas(n) 0
g (4.1)
Cn) =[0 Tx(n) 0 Ty(n) ], and D(n) = D(n).
All of the submatrices appearing in (4.1) are T-periodic and have dimensions which
are constant with n. In addition, @;;(n), @33(n), and q44(n) are square and
ﬂ nonsingular for all n,
[ [ 311(n) ilz(n) } | [El(n)} L0 Exm . B
by 0 a(n) ba(n)
- is controllable, and
E [ { d(n) A(n) } , [bz(n)] [ Ea(n) Taln) ], D(n)\[
. 0 Faln) 0 J
:E is reconstructible.
‘o0
'- As a consequence of the results stated in Lemma 4.1, the subsystems (d1(n), Biy(n), 0, D(n).
i ( T2a(n). by(n), Ta(n), D (n)), (T33(n), 0, 0. D(n)), and (Tys(n), 0, Ty(n), D(n)) are, respective-
- ly. controllable and unreconstructible, controllable and reconstructible, uncontrollable and
- unreconstructible, and uncontrollable and reconstructible. By the nonsingularity of T;;(n), Tzatn),
and J44(n), any zero eigenvalues of [A(P-1)...A(1)A(0)] must appear in the controllable and
reconstructible subsystem. In light of Theorem 3.1, the controllable and reconstructible portion of
\4 the t-varying representation has dimension of at least . This property may serve to thwart
. attempts to lower the dimension of the representation by discarding 'l subsystems except the
"‘? A controllable and reconstructible subsystem; the remaining system will have dimension of at least n.
%o
W
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It is suspected that a decomposition based on reachability and observability would avoid this
problem; however, the dimensions of subsystems in such a decomposition in general vary with
time.

Based on the decomposition in Lemma 4.1, stabilizability and detectability can be defined.
Definition 4.1:

Z(n) will be said to be stabilizable if its uncontrollable portion is
asymptotically stable; with reference to the decomposition in Lemma 4.1, the
eigenvalues of [ @33(P-1)...333(1) 233(0)] and of [ &44(P-1)...344(1) T44(0)] all
have magnitudes less than 1.

XX
Definition 4.2:

Z(n) wil’ he said to be detectable if its unreconstructible portion is
asymptotica.:v s:uble; with reference to the decomposition in Lemma 4.1, the
eigenvalues of [ 333(P-1)...333(1) 233(0)] and of [&,(P-1)...31;(1) T1(0)] all
have magnitudes less than 1.

‘o0
The following lemma, which arises from results in Weiss (1972) and the periodicity of Z(n), was
noted in Grasselli and Lampariello (1981).
Lemma 4.2:

Z(n) = (A(n),B(n),C(n),D(n)) is controllable (reconstructible) if and only if
the dual of X(n), £4(n) = (A'(-n),B'(~n),C'(-n),D'(-n)), is reconstructible
(controllable).

XX
By making use of the decomposition in Lemma 4.1 and the duality properties in Lemma 4.2,
stabilizability and detectability can be shown to be dual properties.
Theorem 4.4:
Z(n) is stabilizable (detectable) if and only if Z4(n) is detectable (stabilizable.)
Proof:
Let the dual representation have state {(n) and let

Z4(n) = (A'(-n), B'(-n), C'(-n), D'(-n)) = (a(n), B(n), Y(n), 8(n)).

Consider the coordinate transformation ¢ (n) = ©(n){(n), where O(n) = [A-1(1-n)]".
The representation of Z4(n) in these coordinates, T 4(n), is given by

@(n) = @(n+1) a(n) ©'(n) = [A1(-n)]' A'(-n) [A(1-n)]' = [A(-m)],

B(n) = ©(n+1) B(n) = [A-1¢-n)]' C'(-n) = (C(-n)]',
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4 o and similarly, 7(n) = [B(-n)]' and §(n) = [ (-n)]". Thus,

i “

; L

e  An(-n) 0 0 0 ] 0
V.

. n - Aj(-n) TpA(-n) 0 0 - S2(-n)
L an) =} y By =] 7,
by ajs(-n) 0 azy(-n) 0

i L Ta(-n) Tpa(-n) TEa(-n) Fgul-n) - Cal-n)
s (4.2)

¥() =[B1(-n) B(-n) 0 0], and §(n)=D'(-n).

From the properties of the submatrices in (4.2) given in Lemma 4.1 and from
Lemma 4.2, it can be seen that '5"33(~n) and Ed-n) determine the dynamics of the
unreconstructible portion of £ 4(n) and Fjy(-n) and F33(-n) determine the

Syl B =

_ dynamics of the uncontrollable portion of £4(n). Note that

,‘; ~ ! ~t! ~' ~' ~'

be (- (P-1))... 2111 T(0) = Tya(1).. F(P-1) Ty(0)

o Y 1 T 3 '

il N =[311(0) @y (P-1) @y (D]

b Since @1;(.) is square, the eigenvalues of ;(-(P-1))...3},(-1)3;0) are equal
ﬁ e to the eigenvalues of 311(P-1)...31;(1) 31;(0). A similar relation holds for 333(-n)
f"‘ - and ?1';4(-n). Thus, the uncontrollable (unreconstructible) portion of (n) is
» asymptotically stable if and only if the unreconstructible (uncontrollable) portion of
E‘ e . £ 4(n) is asymptotically stable. The statement of the theorem then follows from
1 ~

ol Definitions 4.1 and 4.2.

:E:: XX3
) g The examination of the relationship between corresponding T-expanded and t-varying
i"g8 )

B ‘ representations can now be completed.

o Lemma 4.3:

Ky o (A(n), B(n), C(n), D(n)) is stabilizable if there exist T-periodic matrices
S x F(n) such that on applying the state feedback

L )

e u(kP+i) = -F(kP+i) z(kP), 0<i <P, k=0,1,....

“sbe A

s’ " & the resulting representation is asymptotically stable; that is, the closed-loop
L)

. C monodromy matrix at time t = 0,
:‘ ' @:(0) = A(P-1) [...[A(1) [A(O) - B(0) F(®)] - B(1) F(1)]...] - B(P-1) F(P-1),
N f-', ‘ has eigenvalues of magnitude less than 1.

L, ..

o Proof:

' Without loss of generality, it can be assumed that (A(n), B(n), C(n), D(n))
“'E ': por has been transformed into the canonical form in Lemma 4.1; it can be verified that if
\:::l o
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e state feedback F(n) = F(n) A(0) is used in the 7 coordinates, then
13
‘ ‘2 ®c(0) = A1 (P) D(0) AD) = A1(0) Dc(0) A(D).
. Thus, ®.(0) and D(0) have the same eigenvalues. Partition (A(n), B(n)) into its
-;:': controllable and uncontrollable parts:
o ~ -
o - Aj(n) Epp(n
-E |. An) =[ 11( ~12 ) ] , E(n) =|:§1(n)] .
« 0 Ag(n) 0

- -

Note that if there is F(n) such that each eigenvalue of

e I
2

;q ~ ~ o~

o &.(0) = A(P-1) [...[A(1) [A0) - BO) F(0)] - B(1) F(1)]...] - B(P-1) Fp-1)

N ". - - -

o has magnitude less than 1, then each eigenvalue of [A22(P-1)...A22(1) A32(0)] has
ey magnitude less than 1. This is easily seen by expanding ®:(0) as

kv P-2

b9 _' ~ ~ o~ ~ ~ ~ . . o

e ®.(0) = A(P-1)...A(1) A(0) - 26 [A(P-1)...AG+DBG)FG)] - BP-1) F(P-1)

SN =

%, and observing that A(P-1)...A(j+1) is upper triangular fcir -1<j¢< 1:-2. Frgm the
;..', special form of B(n), ®.(0) is upper triangular with [Ay2(P-1)...A322(1) A32(0)]
OO,

::15' appearing on the diagonal. Thus, if the eigenvalues of ®.(0) have magnitudes less
Ny, - - -
":':5 than 1, so do the eigenvalues of [A22(P-1)...A22(1) A22(0)], and (A(n), B(n)) is
hy stabilizable.

e XX
e B

,.:' Theorem 4.5:

LA

ol The t-varying representation of a multirate system is stabilizable if its
. corresponding T-expanded representation is stabilizable.

‘“’ Proof:

'% The theorem can be restated equivalently as “the T-varying representation of
i . . . o .
el a multirate system is stabilizable if its completely corresponding T-expanded
Wl representation is stabilizable,” since the input matrix of the completely correspond-
; 3“:’ ing representation, B, is merely a rearrangement of the columns of the input
i *'5 matrix of the corresponding representation, B, padded with columns of zeroes.
:ﬂ" If the completely corresponding T-expanded representation is stabilizable, it
,, . is a standard time-invariant result that there is F. such that the eigenvalues of
,p-: (A¢ - BcFee) have magnitudes less than 1. Consider applying state feedback to
' : the t-varying representation as in Lemma 4.3:
l....

u(kP+i) = -F(kP+i) 2(kP), 0<i<P, k=0,1.....
4
Suppose u € RP*1. Partition F¢ into P groups of rows,
o

.o:l

‘:o. ' 50

@4

-

i | A A e

R B R N O N O O TR R A N YR O0g




. fp.1

where f; € RPX0. Set F(n) = [ fn Opxn] and write ®(0) as

N P-2
;'t: d.(0) = AP-1)...A(1) A©Q) - Z [A(P-1)...AG+DB()FG)] - B(P-1) F(P-1).
j=0
g In the notation of Theorem 3.2,
' F(0)
E O.0) =0 -B F(,l)
F(P-1)

s |

From the values of F(n) and Theorem 3.2,

Ae 0] [Bec
d)c(o)—[H O]'[ ] :][Fcc Opr‘n]-

Thus, the eigenvalues of ®.(0) have magnitudes less than 1, and by Lemma 4.3,
the T-varying representation is stabilizable.

fese

R

X
By using Theorem 3.2, Theorem 4.4, and Lemma 4.3 and proceeding in a manner parallel to

A
h]

Theorem 4.5, the following theorem can also be established.
Theorem 4.6:
The t-varying representation of a multirate system is detectable if its

e

corresponding T-expanded representation is detectable.
XX
The statements of Theorems 4.2, 4.3, 4.5, and 4.6 all hold with “if” replaced by “only if,”
but the new assertion is rather unimportant and in general trivial to prove. By arguments parallel to
those presented in this chapter, it can be shown that M-varying representations which correspond
to T-expanded representations (in a manner analogous to corresponding t-varying and T-expanded

¢ v
“f

A KK I

representations) inherit the stability, controllability, reconstructibility, stabilizability, and detect-

-
)

e

ability properties of the T-expanded representation.

O~

Ly
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o DESIGN OF MULTIRATE CONTROLLERS

;fi“‘

D

O."

:. The representations and methods of analysis developed for multirate systems thus far bear
[

_::3:‘ fruit in the form of multirate controllers. The term “multirate controller” need not imply that only
1] ' - . . . . .
N the controller is multirate; candidates for control include all systems to which Procedure 2.4 and its
-t extensions apply. Although the T-expanded or M-varying representations are not truly time
N .
‘.g‘.: invariant or periodic due to the time expanded form of their inputs and outputs, this characteristic
‘o . . . . . .

',::0' offers little or no obstruction to the design and implementation of multirate controllers by
Q2 . . . . .

o conventional means. The controller designs presented here are intended as illustrations of the
i general properties of controller design and implementation using T-expanded and M-varying
-:C representations of multirate systems. The usefulness of these representations is by no means
o } limited to the controllers examined here.

5.1 T-expanded State Feedback and Observers

Consider a multirate system with the T-expanded representation
x((k+1)T) = A¢ x(kT) + By, V(KT) + Be R(kT)

Y(kT) = Ce x(kT) + Dy V(KT) + D, R(kT), G-D

where V(KT) is an input intended for control purposes and R(kT) is a reference or load input. On
applying feedback of the form V(kT) = -F x(kT), the state equation becomes

X((k+1)T) = [A¢ - BveF] x(kT) + BreR(kT).

If a matrix F can be found such that the eigenvalues of [A. - ByeF] are all less than 1 in magnitude,
then Theorem 4.1 asserts that this representation, as well as the corresponding t-varying
representation, is asymptotically stable. Conditions for the existence of such a matrix F given
(Ae, Bye) are well known, and methods of calculating F abound.

Although calculation of F by treating (A, Bye) as a time-invariant pair using pole
placement or linear quadratic methods serves the purpose of stabilizing the system, two comments
are in order regarding the choice of design parameters for these methods. When choosing pole

52

o T N e T T e o R e T T T T A
O N A N R T AN Doy




b el At o Aaka bR Aaiud e inP e R et e e Sle Aln hie A sudte Ata b e d-al o . |

locations for pole placement, bear in mind that these pole locations are in a time scale of T seconds
per transition. An LQ design with even weighting on each member of an expanded bundle of
inputs with period Ty, say V(kT), may result in a control law which consistently produces inputs
v1(kT) of magnitude quite different from v{(k+1)T-T,). The cause of this behavior is that if the
subsystems affected by v; have poles far from the origin (close to the ongin,) then an input v{(kT)
will have a greater (lesser) effect on x((k+1)T) than an input v,((k+1)T-T;). If such behavior is
deemed undesirable, it can be predicted by examining the columns of B,. corresponding to V;(kT)
and corrected by appropriate changes in the input weighting matrix.

The design of observers which produce an estimate X(kT) of x(kT) parallels the design of
such observers in the standard tme-invariant case, with two minor exceptions. The observer must
produce a predictive estimate, usually denoted by (kT | (k-1)T), since current estimates,
commonly denoted by (kT | kT), result in a noncausal observer. The observer must also account
for the Dy, and D, terms frequently present in the T-expanded representation.

The state equation for an observer for system (5.1) in predictive form is

X((k+1)T) = AeX(KT) + Bye V(KT) + BeR(kT) + K[Y(KT) - CeX(kT) - Dye V(kT) - DeR(kT)].

The estimation error satisfies x((k+1)T) - X((k+1)T) = [A. - KC](x(kT) - %(kT)). If K is chosen to
stabilize [A. - KC,] by methods dual to those employed to find F, this error will asymptotically
approach zero as k—oo. The state and output equations for the combined state feedback and

observer pair are
X((k+DT) = [Ae - KCe - [Bve - KDve]F] X(kT) + KY(KT) + [Bre - KD ]R(kT)

, |
V(KT) = -F %kT). (5-2) |

It is easily verified that the principle of separation holds for the state feedback and observer
designs. Equation (5.2) is a multirate discrete-time system specified in T-expanded form with
input [Y(kT)' R(kT)']' and output V(kT). As x((k+1)T) is needed at time t = (k+1)T to compute
V((k+1)T) and each component of Y(kT) and R(kT) is available at time t = ((k+1)T - 1) at the
latest, it follows that the controller given above is causal. Although all of the information
necessary to calculate X((k+1)T) may not be present until time t = ((k+1)T - 1), the calculation of
[Ac - KC, - [Bye - KDy ]F] %(kT)
is possible immediately after t =kT. From

KY(kT) = K1,1y1(KT) + K1 2y1(kT+Ty) +...+ Ka2,1y2(kT) + K22v2(kT+T) +..,,

g e g

where the K;; are groups of columns of K chosen to be compatible with the individual values of
the ith bundle of signals (with period T;) comprising Y(kT) at time t = kT + jT;, the calculation of
KY(kT) and [By. - KDre]R(kT) can occur progressively as the values of Y(kT) and R(kT) become
available. The implementation of (5.2) involves sampling each component of v(t) and r(t) at the
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4
E appropriate rate and transferring values of -F X(kT) to each component of v(t; at the appropriate
, rate and holding each of these values until the next arrives. This behavior is conceptualized as
- sample/hold devices at appropriate rates at the inputs and outputs of the controller. The following
4
i procedure summarizes the steps necessary to find a T-expanded multirate state feedback-
i observer controller.
?r: Procedure 5.1:
" . a. Decide upon the rate desired for each of the controller outputs and the
.‘. desired rate at which each plant output and reference input is to be observed by the
\j controller. Place samplers of corresponding periods on the block diagram of the
:4 system after the controller output v and the reference input r and before the
R controller input y, as shown in Figure 5.1. Assume that only the components of r
- observed by the controller are fed to the summer, as in Figure 5.1. Relaxation of
' - .
o this assumption is considered after this procedure.
Ko
1S
&
N - +
r —»1 S/H's |—e z Plant
st P+
& ! e VT 1, Y ,
5 S/H's [¢—— Controller :4—— S/H’s
- P e N
p P S :
" Figure 5.1. Placement of samplers.
b
: 5 b. Apply Procedure 2.4 and any modifications which apply to find a
N T-expanded representation such as (5.1), treating r and v as inputs and y as the
L3 ?| OU(DUI.
) !
P c. Using any method desired, find matrices F and K from the pairs
o
:: (Ac, Bye) and (A, Ce) such that each eigenvalue of [A, - By.F] and [A. - KC,]
[} . . .
! has magnitude less than 1. The controller state and output equations are given by
s (5.2).
N
- se0
- The assumption in Procedure 5.1(a) that only the components of the reference input
-' : observed by the controller are fed to the summer is necessary for the design procedure but need not
" be satisfied in the implementation of the controller. Let r; be the actual sampled and held version of
o, r applied to the plant, where each component of r has a period which is an integer multiple of t.
X _:2: the fundamental period used in the execution of Procedure 5.1. Let r, be the sampled version of r
. . . . .
A observed by the controller. Since the components of ry and r, vary at times which are integer
';6.. multiples of T, ry can be written r = r, + ry, where the components of ry each vary with period 1.
4
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The signal r, is the portion of r; unobserved by the controller. Let the plant and controller system
with r, and r, as inputs have composite state

x(kT)
s(kT) = [ }
X(kT)
and state equation
s((k+1)T) = A s(KT) + B, Ro(kT) + By Ry(kT). (5.3)

A is stable by design; therefore, under the quite reasonable assumption that B, and B, are
bounded, (5.3) is bounded-input bounded-state stable. If it is desired that the controller sample r at
a slow rate, then either r must be fed to the plant at this slow rate, slowing the system's response
time, or r can be fed to the plant at a fast rate, in which case the unobserved portion r, acts as a
disturbance.

The T-expanded multirate controller design has the advantages of ease of calculation by
=stablished methods and being readily implemented. To its disadvantage, this controller exhibits a
rather sluggish response to rapid changes in r if T is large. The state feedback V(kT) = -F &(KkT) 1s
e:scntially applied open loop over times of length T, leaving the system vulnerable to disturbances
and inputs r, unobserved by the controller. Indeed, if the observer portion is initialized to %(0) = 0,
no control will be applied until ime t = T. The design of a T-expanded multirate Kalman filter for
a system with noise at the input which is uncorrelated with the noise at the output is complicated by
the fact that the D, term in the T-expanded representation introduces noise at the output which is
highly correlated with the noise at the input.

5.2 M-varying State Feedback and Observers

With the intent of achieving a faster response to inputs and disturbances, the value of the
state may be estimated and fed back at times t = nt. Consider the t-varying representation of the
multirate system in Figure 5.1 (in the following, the parameter t is suppressed):

z(n+1) = A(n) z(n) + By(n) v(n) + B(n) r(n)
y(n) = C(n) z(n) + Dy(n) v(n) + Dyn) r(n).
After applying state feedback v(n) = -F(n) z(n),
z(n+1) = [A(n) - B,(mF(n)] z(n) + B,(n) r(n).
If F(0),..., F(P-1) can be found such that each eigenvalue of the closed-loop monodromy matrix at

t =10,
®(0) = [A(P-1) - B{(P-1H)F(P-1)]...[A(1) - BJDE(H]{A) - By (MWF(O)].
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has magnitude less than 1, then the system emploving F(n) = F(n mod P) as T-penodic feedback
matrices will be asymptotically stable. Such a periodic feedback arises naturally as the solution to
the LQ problem with the cost function

'Jl
th

T=172 ) [Z(mW,/ (MW, (n)z(n) + v ()W, (MW, (nivin], (5.
n=0

where W,(n+P) = W,(n) and W,(n+P) = W,(n) for each n € Z*. The discrete-time Riccati
equation associated with this problem admits a T-periodic solution which determines the feedback
matrices F(n). Discrete-time periodic Riccati equations have just recently been investigated:
conditions for the existence and uniqueness of their solutions, methods of calculating these
solutions, and conditions under which the resulting feedback is stabilizing are still developing. See
Bittani et al. (1986) and the references cited therein.

In order to make use of the results in Bittani et al. (1986), assume that W,(n) is square and

nonsingular for each n € Z*. The Riccati equation associated with (5.4) and (5.5) can then be
written
S(n) = A'(n)S(n+1)A(n) + W;'(n)W,(n)
- A'(n)S(n+1)Bw(n) [I + By (n)S(n+1)Bw(n)]! By, (mS(n+1)A(n), (3.6)

where Bw(n) = B,(n)(W,(n))-!. For state feedback v(n) = -F(n) z(n),
F(n) = (W, (n))'! [T + By/'(n)S(n+1)By(n)]-! By,/'(n)S(n+1)A(n)
= [W,' (n)W,(n) + B,'(n)S(n+1)B,(n)]-! B,'(n)S(n+DA(n). (5.7)

The following theorem is stated without proof: its proof relies on the application of results in
Bittani et al. (1986), the duality properties of discrete-time periodic systems (see Theorem 4.4) and
the assumed nonsingularity of W, (n).
Theorem 5.1:

Consider the dynamical system represented by

z(n+1) = A(n) z(n) + Bu(n) v(n)

R (5.8)
¥(n) = Wy(n) z(n),

where A(n) and B,(n) are as in (5.4) and W,(n) is as in (5.5). Then a unique
T-periodic symmetric positive semidefinite solution to (5.6) exists and (5.4) is
asymptotically stable after applying feedback v(n) = -F(n) z(n), where F(n) is given
by (5.7), if and only if (5.8) is stabilizable and detectable; i.e., the uncontrollable
part of (5.8) is asymptotically stable and the unreconstructible part of (5.8) is
asymptotically stable.
XX
By Theorem 4.5, the stabilizability of (5.8) can be evaluated by examining the stabilizability of the
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:\::.: 5 T-expanded representation (with r(n) = 0) corresponding to (5.4). This device cannot be emploved
){_{- pe to determine whether (5.8) is detectable; however, if W,(n) is square and nonsingular for each n,
o (5.8) is detectable.
’_' l A t-varying observer to form an estimate Z(n) of z(n) takes a form identical to the
' "*} T-expanded observer:
,j ~ z(n+1) = A(n)Z(n) + By(n)v(n) +B(n)r(n) + K(n)[y(n) - C(n)(n) - Dy(n)v(n) - Dy(n)r(n)].
.7 (, Since z(n+1) - Z(n+1) = [A(n) - K(n)C(n)] (z(n) - Z(n)), the error z(n) - Z(n) will asymptotically
:'-_:. o approach zero if K(n) is chosen in a manner dual to the choice of F(n) for stabilization (see
- .' = Theorem 4.4 for the required duality details.) By writing the equations of the combined controller
:E ' :‘: and plant in terms of z(n) and (z(n) - Z(n)) and finding the T-expanded representation of this
: T-varying representation, it can be verified that the principle of separation holds for the state
u: = feedback and observer designs.
::;: The procedure for finding a T-varying, T-periodic state feedback-observer controller via the
‘:!“ E‘ discrete-time periodic Riccati equation parallels Procedure 5.1. Comments similar to those
[} following Procedure 5.1 with regard to reference inputs unobserved by the controller also apply.
A Using the periodic description (5.4) for the multirate system, other types of tT-varying
'jzl:j ~ controllers can be designed. Let z(n) € R8N, as in Chapter 4. Results in Grasselli and
";'. y Lampariello (1981) show that the reconstructibility and controllability of (5.4) (with r(n) = 0) are
o E necessary and sufficient for the existence of a tT-varying, T-periodic state feedback-observer dead-
,'h;?‘ . beat controller for (5.4) which is capable of driving any initial condition to the origin within an
W ;' interval of time no greater than 2(3+n)T. In light of Theorems 4.2 and 4.3, it is suspected that a
"E:s_: ) closer examination of the dead-beat controller problem could reduce this interval to 2(8+1)T for the
")v ::_ representation (5.4). M-varying controllers can be found by utilizing the M-varying representation
'.:E'::: " of the multirate system in Figure 5.1. As M-varying representations involve M-expanded inputs
EE';::" 3 and outputs, care must be taken to insure that the controller designed is causal. If the M-varying
‘:::5! ot controller is of the state feedback-observer type, the controller will be causal if the observer
. - produces predictive estimates.
:‘;‘; o Implementation of a T-varying controller requires an interpretation of v(n), r(n), and y(n).
;.. ;S In Procedure 5.1(a), sample/hold devices are placed on the block diagram to represent the effects
3. i of the sampling and “output and hold” operations performed by the discrete controller. The fact
Q; that values of v, r, and y are specified for the controller at times t = nt might suggest that the
o ’:; , T-varying controller be implemented by loading values of r, y, and v into and out of the controller
. ".'-': a at times t = nt and physically passing these values through the sample/hold devices following v
R 6 ;:'J and r and preceding y on the block diagram of Procedure 5.1(a). The implementation can be made
‘ much more efficient by bringing the sample/hold devices inside the controller in the following
g:, 5 manner. For each component vi(n) of v(n), if n corresponds to a time at which the sample/hold
i
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associated with v; samples, then vj(n) should be output by the controller at time t = nt and held for
the duration of the sampling period associated with v;. For each component y;(n) of y(n), if n
corresponds to a time at which the sample/hold associated with y; samples, then y;(n) should be
acquired by the controller at time t = nt and stored for the duration of the sampling period
associated with y; to provide the values yj(n), yj(n+1),... . The signals r(n) are treated similar to
v(n). Analogous comments hold for M-varying controllers.

A t-varying controller can potentially respond quickly to changes in the input r and, since
the state estimate is updated frequently, reduce the effects of unmeasured disturbances on the
output. The price paid for these attributes takes the form oif complexity of design and
implementation; the t-varying representation employed by the controller has more states than the
T-expanded representation, resulting in greater computation and storage requirements. An
M-varying controller, where M is chosen such that T/M e N, may serve as an adequate
compromise between t-varying and T-expanded controllers; by choosing different values of M,
complexity can be traded for response time. The practicality of solving the discrete-time periodic
Riccati equation or finding the feedback matrices required in Grasselli and Lampariello (1981) is
unknown as of the present.

5.3 Transfer Function Controller Designs

By thinking of (5.1) as a ime-invariant state and output equation, a transfer function matrix
may be obtained for this system:

Y(2) = ( Co(@l - A} [Bue Brel + Do D) - 2 | =G @]
= e e ve Dre ve Ure R(z) =0z R(2) .

Using MIMO transfer function design techniques, controllers of a variety of structures may be
designed (Kailath, 1980). One such structure is

V(z) = Vy(2) + V(z) = Hy(z) Y(z) + Hi(z) R(2).
Although details of such a design will not be elaborated upon here, the restrictions imposed on
H(z) and H/(z) by the T-expanded nature of V(kT), Y(kT), and R(kT) warrant discussion. A
state space realization of Hy(z), if it exists, takes the form of a multirate discrete-time system
specified in T-expanded form,
w((k+1)T) = Ay w(kT) + By Y(kT)

(5.9)
V,(kT) = Cy w(kT) + Dy Y(KT),

where Dy = Hy(ee). For this system to be physically realizeable, the elements of Hy(e) must be
finite; Hy(z) must be proper. For (5.9) to be causal, selected entries in Dy must be zero, and the

58

Q L ALACALAT AT NS PV AT R ER LD -.;'\_'J,\:,, AL AT RERLNLY ""{.

L h - - !x‘\ '-“.'1"-.
wARARIARAER LRGN, \'ql RS NHIRHRA I '.. AR

——

N AR A Y™ !



..
Fope
%

ot

\ A

[N . . . . e . . .

Sy corresponding entries in Hy(z) must be strictly proper. Let Hy(z) be partitioned into i x j blocks
OIAEEGN -

EEN h;;(2) to conform with the signal bundle values v(kT+t;) comprising V(kT) and y(kT+t))

. . . o . . .

' compnsing Y (kT) (this notation is expedient and unrelated to previous notations.) For Hy(z) 1o be
) ‘ realizable as a causal multirate system, it must satisfy
X ) _\ .

o 0,ift; < :
S hjj(e0) = . . . . (5.10)
o a matrix of finite numbers , if t; < ¢
JOYSE

L)

N Multirate controllers designed by transfer function techniques possess some of the
:;' SS advantages of both the T-varying and t-varying state space controllers. The T-expanded nature of
»:' such a controller simplifies its implementation, and the possibility of incorporating “D” terms into
! Loy
jo:q,.' »,3 the state space realization of the controller may allow the controller output during (kT, (k+1)T) to
»'-‘l. N N . . g 3
depend on its inputs during [kT, (k+1)T), avoiding the open loop type behavior of the T-expanded

5,; r state space controller with respect to measured disturbances. However, the state of a multirate
oy . . . . . .
f- controller designed by transfer function techniques is updated only at times t = kT, which may
S impair its ability to reduce the effects of unmeasured disturbances on the output. The practical
A p y p p

- implications of incorporating the causality constraints (5.10) into MIMO transfer function desien
@ p rp g y g
SO techniques are unknown at the present.
SOCIEN
SR

i
:-_’..:

5.4 Comments

-('l‘ N

W .

TN The advantages of using a multirate controller as opposed to a single-rate controller depend

4§ -'3 . . . . . .

. eatly on the specific system to be controlled and on an intelligent choice of sampling periods for

:::." greatly p y g pling p

LA . « . . . .

D) : the controller. Clearly, if the plant is inherently multirate, conventional methods of analysis and
3:0." - design are not applicable to controller design. However, multirate systems frequently arise from

vy ¥ . « . . e s .

.:;:::’, o~ attempts to circumvent the “a controller is only as fast as its slowest actuator or sensor” principle of

) . . . . . .

oy 1"',1 single-rate sampled-data designs. In such a situation, the simplicity of a single-rate controller must
Pt g p phicity g
U . 3 3 .

e be weighed against the prospects of making full use of the bandwidth of the actuators and sensors

%% I . . . . . . . ~

wae :E by multirate control. Results in Barnes and Shinnaka (1980) indicate that implementations of

o multirate systems specified in T-expanded form exhibit desirable numerical characteristics, such as

AR . . . . . .

N ﬁ low roundoff noise. A basic property of multirate systems is that as the numbers p; obtained from
o.- the normalization process increase, representation and analysis of the system become more
hl difficult. Exploiting any freedom in the choice of actuator and sensor rates to reduce the numbers

P -
| T . . . .

oot p; will result in a much simpler multirate controller.
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CHAPTER 6
THE VARIABLE COMPONENT METHOD

APPLIED TO MULTIRATE DISCRETE-TIME SYSTEMS

The variable component method and the method of sensitivity points have been applied to
synthesize and tune linear, time-invariant controllers for linear, time-invariant plants; see Frank
(1978), Kokotovic (1964), Kokotovic (1965), Hung (1985), and the references cited therein. In
this chapter, the variable component method will be extended to the class of multirate discrete-time
systems to which Procedure 2.4 and its extensions apply. A general time-invariant variable
component result will be derived and then related to the T-expanded representation of these
multirate systems.

Consider a time-invariant discrete-time single-rate system with an embedded scalar
parameter k and scalar output y(u(n),k,n) at time n for a given scalar input u(n). The variable
component method and the method of sensitivity points are each based on a block diagram
representation of the system and provide a means of determining the output sensitivity
function, d[y(u(n),k,n)}/ok, by simulation or implementation. These two methods basically
proceed by injecting the input u(n) into the system or a suitable model of the system and extracting
selected signals, as determined by the block diagram, from the system or model and injecting these
signals (or possibly filtered versions of these signals) at selected points of another model of the
system. Alternately, the extracted signals may be stored and injected into the actual system at a
later time. In either case, the response at a selected point of the two connected systems is the
output sensitivity function. In addition to the actual system, the variable component method
requires as many models of the system as there are parameters to be independently varied if the
output sensitivity function for each parameter is to be obtained simultaneously. The method of
sensitivity points allows the output sensitivity functions for any number of parameters to be
obtained simultaneously with only one system—model pair. However, the method of sensitivity
points cannot be applied to MIMO systems (Hung, 1985).

Once the output sensitivity function has been obtained, the response of the system with
parameter value k + Ak, IAkl « [k, and input u(n) can be approximated by

y(u(n).k+Ak,n) = y(u(n),k,n) + Ak(d[y(u(n),k,n)}/3k).
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The output sensitivity function thus provides information useful for iteratively adjusting the
parameter k so that the output of the system meets or approaches certain time-domain criteria for a
given input u(n). Such adjustments are frequently determined through the solution of an
optimization problem by minimizing a measure of the error between the actual output of the system
and the desired output of the system (see Kokotovic (1965) and Hung (1985).) An example of the
use of the variable component method with a multirate system would be the tuning of parameters in
a single-rate sampled-data controller based on intersample values of the output of the controlled
system.

6.1 A Time-invariant Result

In the following, a general variable component method result for time-invariant discrete-
time MIMO systems will be derived. This time-invariant result can then be applied to the
T-expanded representation of a multirate discrete-time system.

Consider a MIMO time-invariant single-rate discrete-time linear system with rate 1/T and a
parameter K = diag[ky,ka,....k;] which can be isolated as shown in Figure 6.1. Let U(z), E(2),
and Y(z) be the vector Z-transforms of U(mT), E(mT), and Y(mT), respectively, and let U(z) be
Jx 1, E(z) be rx 1, and Y(z) be q x 1. The dependence of E(z) and Y(z) on K and U(z) will
not be made explicit at this point.

U(z) R Y(z)
—> R(z) E(z) ———o

Figure 6.1. A MIMO time-invariant system.

Assuming that the system in Figure 6.1 is well-posed (see Chen (1984),) there exist transfer
function matrices F(z), G(z), H(z), and J(z) which do not depend on the parameters k;, ka,.... Kr
such that, suppressing the argument z,

R = GU + HKE = GU + HKR.

Thus,
R = (I, - HK)'1 GU. (6.1H
Also,
Y =FU + JKR = FU + JK (I, - HK)'! GU. (6.2)
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For the set S < {1,2,...,r}, define the r x r matrix A(r,S) by
1,ifi=je S
Ay(r,S) = { ! .

0, otherwise
Note that 0K/dk; = A(r,{i}). From (6.2), we can compute

9Y/dk; = J A(r,{i}) (I; - HK)! GU + JK (I, - HK)'! H A(r,{i}) (I, - HK)'! GU
=J {I; + (It - KH)-! KH] A(r,{i}) (I, - HK)-! GU
=J (I, - KH)! (I - KH + KH] A(r,{i}) (I - HK)"! GU

=J (I, - KH)! A(r,{i}) (I, - HK)! GU. (6.3)
Since (0Y/dkyk; = aY/dlnlk;l and K A(r,{i}) = k; A(r,{i}), it follows from (6.3) that
aY/dlnlkil = J (I, - KH)! K A(r,{i}) (I, - HK)! GU. (6.4)

Consider taking a copy of the system in Figure 6.1 with zero inputs, inserting a summer into it,
and connecting it to the system in Figure 6.1 as shown in Figure 6.2.

v@ 4 RGz) E() Y@
- T o K|—»— |
A(r,{i})
V@) _
0 1 @)K || Y@
— R(2) E2) —

Figure 6.2. The system in Figure 6.1 connected to a duplicate of itself.

Then Ry = HKEq4 + V = HKRy + V; hence, Ry = (I, - HK)! V and
Y4 =JKRg =JK (I; - HK)1 V =J (I, - KH)-! KV.
From V(z) = A(r,{i}) R(z) and (6.1),
Yaq=J (I, - KH)'1 K A(r,{i})) R =T (I, - KH)'! K A(r.{i}) (I; - HK)'! GU. (6.5
Comparing (6.5) with (6.4),
Y4(z) = 0Y(2)/dlnikl. (6.6)

Since the operations of Z-transforming and differentiation with respect to a parameter can be
interchanged, Yq4(mT) = dY(mT)/dlnlk;l. As additional notation, let Y4(z.S) be the output of the
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duplicate system in Figure 6.2 when V(z) = A(r,S) R(z). In this notation, Y4(z) in Figure 6.2 is
Y4(z,{i}). By linearity,
Y4mT,S) = 2, 3Y(mT)/dlnlkj. 6.7)
€S

It may be desired to set k; =k forie S € {1,2,...,r} and determine oY (mT)/dlnlk! to
examine the effect of changing the parameters k;, k € S, in unison. Treating each k; as a function

of k,
ki<k)={ Kote S

c;,ie §

where c; are constants independent of k, and using the chain rule for differentiation,

oY (mT)/dlnlkl = z [(@Y(mT)/dlnlk;l) (Alnlk;//lnlkl)]
i=1

= 2 3Y(mT)/dlnlk{.
i€S
From (6.7),
dY(mT)/lnlkl = Yo(mT.S). (6.8)

In particular, if K = diag[k,k,....k] then S = {1,2,....,r}) and JY(mT)/dlnlk! is found by setting
V(mT) = R(mT). By a similar argument, it follows that if the parameter k appears at several
locations in the original system, 8Y(mT)/dinlk! will be the output of the duplicate system if the
signal entering the gain block k is extracted from the original system at each occurrence of k and
summed with the signal entering the gain block k at each corresponding occurrence of k in the
duplicate system. Note that if k; and k; are two parameters which are to be varied independently,
the original system and two copies of it are required to determine dY(mT)/dlnlk;| and
dY(mT)/dlnik,! simultaneously.

The quantity dY(mT)/dlnlk;l is referred to as a semirelative output sensitivity
function in the literature (Frank, 1978). With reference to Figure 6.2, the output sensitivity
function, dY(mT)/dlk;/, may be obtained by summing V(mT) with the output of the gain block K
in the duplicate system.

6.2 Interpretation of the Time-invariant Result
Consider a multirate discrete-time system with input u and output y which contains a

discrete-time subsystem that is a SISO periodic gain g(nT;) with input ug, output y, and period
T: =qT;. Thus, this gain sweeps cyclically through a set of values (g;.....gq} and the
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' subsystem can be described by
,. ys(nTy) = g(nT1) us(nT1) = g(n mod gy+1) Us(nT1). i
o Let T/T; = sa, where T is the period of the entire system and s; € N. From (2.6), the T-expanded .
'. representation of this subsystem is Y(mT) = K Uy(mT), where with G = diag[g1,g2.....8¢]> i
2, K =diag{G,G....,G]; G appears s; times along the diagonal of K.
; In light of the time-invariant nature of T-expanded representations and the fact that the !
! structure of the block diagram of a T-expanded representation is identical to that of the block
. diagram of the original 1epresentation, it is seen that the T-expanded representation of the system i
E' under consideration here is amenable to the application of the variable component method as
b described in the preceding section. This entails passing the signals entering the gain K in the block
K diagram of the T-expanded representation of the system through a matrix gain and summing the
~ output of this matrix gain with the input of the gain K in a duplicate of the T-expanded
3 representation of the system. To be consistent with the preceding section, let r = gs2. Ther
:: parameters composing K cannot be varied independently since each parameter g; appears at s
) places in K. Let K be represented as K = diag[k; k»,....k;], and foreach i € {1,2,...,q}, let S; be
’:;:- the set of indices of the k;'s which correspond to the positions occupied by g;: ‘
: Si={je (L1} 1 kj=g). *
’ From (6.8), it follows that if the T-expanded representation of the original system (with input
(_r UunT)) is linked by the matrix gain A(r,S;) to a duplicate of itself (with zero input) as described i
o above, then the output of the duplicate system will be 3 Y (mT)/dlnlg;.
e A system in real time whose T-expanded representation is that proposed above to produce
b aY(mT)/dlnlg;l can easily be found. For W < (1,2,...,q}, let 8(nT},q,W) be the T q-periodic
e discrete-time function of n given by
_.;, 5(nT).q.W) ={ l1,if (1 +(nmodq))e W
- 0, otherwise
" Assume T/qT = s3 as above; from (2.6), a SISO discrete-time periodic gain with input ug and
‘.: output v, described by yg(nT;) = d(nTy,q,{i}) ug(nTy) is seen to have the T-expanded
E: representation Yg(mT) = diag[A(q,{i}),...,A(q,{i})] Ug(mT), where A(q,{i}) appears s2 times
e along the diagonal. From K = diag[G....,G], diag[A(q,{i}),...,A(q,{1})] = A(1,S;). Thus, if the
® signal entering the periodic gain g(nT)) in the oniginal multirate discrete-time system is sampled at
;:' rate 1/T,, passed through the periodic gain 8(nT,,q,{i}), and summed with the signal entering the
o gain g(nT)) in a copy of the original system (with zero inputs,) the T-expanded representation of
‘:-: this composite system coincides with that described previously for determining dY(mT)/dlnlg;l.
., Since (9/dlnlg;l) can be distributed across the components of the vector Y(mT), 0Y(mT)/dlnlg;l is
L ) the T-expanded version of dy/dln!g;l. The meaning of dy/dlnlg;l stems from the satisfaction of
o
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i - Assumption 2.1(f); each output line y; of the system is sampled and held at some rate 1/T; and the
' :.' corresponding output in the duplicate system, yq;(nT;), gives dy;(nT;)/dlnlg;l.

:::,': The following procedure summarizes the variable component method for multirate discrete-

'M l time systems. This procedure is more general than the results discussed in this section, but it

;:':} follows from linearity and the chain rule for differentiation.

:E::: 35,{ Procedure 6.1:

,:3;,: “ a. Let the system have a given input ug and resulting output yo. Verify that

“' & Assumption 2.1 is met, with the exception that periodic single-rate and multirate

‘: &E s discrete-time subsystems may be present.

;5 N ;,:; b. Suppose there is a periodic discrete-time gain g(nT;) in the system with

K D period qT; and having values {gi,...,gq}, as described above. g(nT;) may be

either a purely discrete-time gain (such as a parameter in a computer program,) or
the discretized version of a continuous-time gain with sample and hold devices at

o
B

o rate 1/T; on its input and output. Let W < {1,2,...,q}, and for all i € W, let g; be
varied in unison and have value g. The parameters g;,i € W, will be assumed

4
"

e independent of g.

_ c. Sample the signal entering g(nT,) on the block diagram of the system
3‘. N with rate 1/T;. Pass this sampled signal through the periodic gain §(nTy,q,W) and
b

ST
~x

sum the output of this gain with the signal entering g(nT;) in a duplicate of the

-

W original system.
d. Repeat steps (b) and (c), using the sgame duplicate system, at each

T
REL

periodic discrete-time gain in the system that has parameters with value g if these
parameters are to be varied in unison with the parameters in g(nT;). Both the rate
and period of these gains may be different from location to location.

3o
oM

e. Simulate or implement the composite system resulting from the above

-.
==
-".

steps. The input to the duplicate system should be set to zero, and the initial
conditions on both the original and duplicate systems must be zero. The output of
the duplicate system is then dyq/dlnigl.

A
s |

s
A
Pl
'I

f. Add to the composite system an additional duplicate system connected to

‘w ‘}j the original system for each additional parameter that is to be varied independently if

°. < all semirelative output sensitivity functions are to be obtained simultaneously.

3:;:‘,'. :3 ‘o0

3.':5 < The variable component method described in Procedure 6.1 possesses properties which

::::":. o simplify the mechanics of applying Procedure 6.1. With reference to parts (b) and (c) of
' . Procedure 6.1, note that 8(nTj,q,W) = 1 only at the times when g(nT;) = g. This is seen to hold

‘ . in general; at each discrete-time gain in the system, values are passed to the duplicate system only

g
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T
: at times when the parameter in question is “active” at that location. In particular, if g(nT;) is time
'_ invariant, 8(nT,q,W) = 1. Neither the T-expanded representation nor the value of T is needed to
"': apply Procedure 6.1. As long as the resulting system satisfies Assumptioi: 2.1 or its extensions,
’ any number of signals in the system may be considered as outputs, and these outputs may be
,7 sampled at any rate. A change in the choice of outputs or their rates does not induce any change in
the application of Procedure 6.1.
?: As with the variable component method for time-invariant parameters, Procedure 6.1 has ‘
3 the property that an additional duplicate system is required for each independently varied
3 parameter. If each value of a periodic gain is to be varied independently, the number of duplicate :
0 systems and the associated computation may become excessive. Since the resulting systems will
< be periodic, it is in general insufficient to tune the response of the system to a fixed input, such as a
' step at time t = 0. Instead, it may be necessary to tune the response of the system to a given type
: of input, such as a step, applied at many individual times during the period of the system. A
A N system with input u(nT;) exhibits T/T step responses which are in general distinct.
};l
' 6.3 Application of the Variable Component Method
The semirelative output sensitivity function may be used to tune the time-domain
{ performance of a controlled system either intuitively or through the solution of an optimization
; problem. The variable component method described in Procedure 6.1 provides a means of
\ obtaining this sensitivity function and has the advantages of being easy to apply and allowing the
}_I tuning of periodic gains at multiple rates. The computational burden of applying Procedure 6.1
- may be substantial if the number of parameters to be varied independently is large. Conditions
A under which an iterative tuning scheme based on output sensitivity functions involving
-l minimization of a cost function will converge or result in a stable system are in general unknown as
r of the present.
e Controllers designed with the aid of the variable component method offer opportunities for
W taking full advantage of multirate sampling. Since Procedure 6.1 allows outputs to be sampled at
7 any rate, the parameters of a single-rate controller for a continuous-time system can be adjusted
N 4 according to a cost based on samples of the controlled system'’s output at a rate which is faster than ]
the rate of the controller. Any accessible signal in the system can be considered as an output,
'j enabling the parameter changes to reflect control effort. The controllers designed in Chapter 5
o share the property that they are not directly implementable in a parallel form which capitalizes on ‘
B the multirate nature of their inputs and outputs. An application of the variable component method
, might involve tuning multiple feedback loops containing single-rate controllers of a fixed, simple
:
2
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’:':0 o structure (such as PID,) whose rates are commensurate with the time scales present in the system.
o Such controllers are readily implemented in hardware as independent parallel processing units or in
e software as concurrent tasks.

Example 6.1:
'l.:'. ';5. In Example 2.7, assume that it is desired to tune the system by varying g;
93:{ and g; independently. To gain a more accurate picture of the behavior of the double
! ,} L7 integrator, define an additional output of the system as yy, the output of the double
' integrator sampled with period T4 = 0.1 sec. As y is a sampled version of yy, it
" g will henceforth be ignored. Application of Procedure 6.1 yields the composite
system shown in Figure 6.3, where y; = dyo/dlnlg;l = (dyo/dg1)g: and
. y2 = dyo/dlnigsl.
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Denote the value of the output yg at time t = mT4 with parameter values g, and g
by vo(mTy4,81,82). y1(mTy4,81,82) and y2(mT4,g1,82) are defined similarly. At
this point, a number of options are available for tuning the system. With the
intention of achieving reasonable settling time, overshoot, and rise time, consider

choosing g; and g; to minimize the cost
200

T (g1.82) = Y, (mT4 [yo(mTa,g1,82) - uo(mTa4)]) 2.
m=0

vo(mTy4,g1+4Ag1.82+Ag2) can be approximated for small Ag; and Ag; by

yo(mT4,81,82) + [dyo(mTs,g1,82)/081) Ag; + [dyo(mT4,g),82)/082] Aga,

which can be written as

yo(mT4,81.22) + (Agi/g)[y1(mTa,81.82)] + (Ag2/g2)y2(mT4.81,82)].

Substituting (6.10) into (6.9) gives an approximation of J(g;+Ag;,g2+Ag2) which
1s quadratic in Ag; and Ag; and can be minimized analytically in terms of ug(mTy),
vo(mT4,81,82), ¥Y1{mT4,81,82), and y2(mT4,g;,g2) which result from simulation of
the system in Figure 6.3 for fixed uo, g1, and g2.

Suppose the initial parameter values are g1(0) = -1.5 and g2(0) = 1 (these
parameter values stabilize the system) and the input ug is a 3 sec pulse at time t =0
of unit height. The response of the composite system with g;(0) and g2(0) to up is
shown in Figure 6.4. Minimizing J(g:(0)+Ag1(0),g22(0)+Ag2(0)) gives as optimal
values Ag;(0)/g1(0) = 0.2633 and Ag2(0)/g2(0) = 0.4645 and hence

g1(1) = g1(0) + Agi1(0) = -1.895 and ga(1) = g2(0) + Agz(0) = 1.465.

As shown in Figure 6.5, this choice of parameter change produces a weighted
combination of y; and y; quite suited to reducing the magnitude of the oscillation in
yo. Figure 6.6 shows yo(mT4,g1(1),g82(1)), which is seen to have damping much
improved over yo(mT4,g1(0),g2(0)).

After repeating the process of minimizing J(g,+Ag,g2+Ag2) a total of
seven more times, the values of g; and g, for all practical purposes converge to
g1* =-2.714 and go* = 2.008. The response of the system to ug(nT;) with these
parameter values is shown in Figure 6.7. The state transition matrix for this system
is unchanged from that of Example 2.7(i). Substituting g;* and g>* into this state
transition matrix gives a matrix with eigenvalues -0.443 and 0.021. The final tuned
system is thus asymptotically stable. Since T/T) = 2, this system exhibits two step
responses. Figure 6.8 shows the response of the system with parameter values g;*
and ga* to ug(nT)-T). If the response in Figure 6.8 is deemed undesirable, one

R (RO ROO () d () or
AR A AR LA "«."'«."-"'0?"1,‘.&‘,l."l!"’ Fye o ’

(6.9)

(6.10)
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might consider repeating the tuning process by minimizing J(g,+Ag;,g;+Ag>) for

o5
<
L=

':..::: both the input ug(nT;) and the input ug(nT;-T;) at each stage, requiring two
.'::E::: simulation runs for each iteration.
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CHAPTER 7

CONCLUSIONS

The results detailed in this work demonstrate the usefulness of the T-expanded
representation of a multirate system. A detailed, systematic procedure was presented which
enables the T-expanded representation of a multirate system to be calculated using any linear
systems software package capable of matrix operations and single-rate discretization. A certain
amount of information is clearly lost by expressing a multirate system in T-expanded form, most
notably the interperiod state values. However, it was shown that the t-varying representation
inherits the following important qualities from its corresponding T-expanded representation:
stability, controllability, reconstructibility, stabilizability, and detectability. Although this argument
was carried out for the T-varying representation presented here (or more generally, the M-varying
representation,) the process of defining corresponding representations and proving the theorems in
Chapter 3 and Chapter 4 could be carried out for almost any periodic representation of the class of
multirate systems treated here. The multirate controller designs in Chapter 5 and the extension of
the variable component method presented in Chapter 6 demonstrate that the T-expanded
representation and the notation and concepts associated with it find practical and theoretical use in
extending time-invariant results to multirate systems. Many extensions to the class of multirate
systems for which T-expanded representations were defined are possible. For example,
subsystems employing cyclic sampling (irregular sampling patterns which repeat periodically in
time) could be treated by altering certain connection matrices to reflect the flow of information

between the cyclic samplers and the other samplers in the system.
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APPENDIX

SELECTED PROOFS

Proof of Theorem 2.1

Lemma A.l:

If the sampling periods (Tj,...,Tn} are normalized with respect to Ty,
ke {1,...,N}, then GCD {pyj:i=1,.,N} =1

Proof: (by contradiction)

Without loss of generality, suppose that normalization is performed with
respect to T;. Observe that rj) =q;; = 1, since T} = (1)T,. The case N=11s
trivial, so consider only N > 1.

GCD {Ry/r11,...,Ry/riN} = 1 because Ry = LCM {ry; : i = 1,...,N}.
Assume that

GCD {py; :i=1,.,N} =GCD {Ry, Riq12/r12,..., Riqin/riN} =n = 1.

For this to be true, n must divide R;. From GCD {R;/r11,....Ri/riN} = 1, there
must be some je {2,3,...,N} such that n is not a factor of Ry/rj, and (because n
divides Ry) n js a factor of ry. For GCD {Riquy/ry;:i=1,..,N} =nto be true, n
must be a factor of R1qy;/r1;, so n is a factor of qy;. This is a contradiction,
because n # 1 and each ry;/q;; had common factors removed.

XX

Theorem 2.1:
If the sampling periods are normalized with respect to Ty (giving T; = pii Tk,
i = 1,...,N) and again with respect to T; (giving T; = p;tj, i = 1,....N,) then 1 =
and Pxi = Pji» i=1,.,N

Proof:
From pytx = Ti = p;it;, i = 1,...,N, it follows that
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:::E:{ Thus, T/t is a rational number. Let T/Tx = n/m, where nm € N and n and m

W,

g have no common factor other than 1. From

A0
g n= WPkl _ _ MPkN
o T PN’

Oy . )

:,. ' s n is a common divisor of {pxim : i = 1,...,N}. Since n and m have no common

*1\ % factors other than 1, n is a common divisor of {py; :i=1,..,N}. By Lemma A.1,
EANX
:',;:;' £ n< 1. Thus, n = 1. Replacing n with m and k with j in the above argument yields
e
:::!:, . m = 1. The statement of the theorem then follows. |
:?:E:: % XX |
o
e Proof of Theorem 2.2

=
?" 'i. i !

”‘ )'Q Lemma A.2:

5.’,‘ o Given a set of sampling periods {Ti,...,Tn} which are expressed as
; J.m ;'_:'. T;=s;0, where de R, s;je N for each i, and LCM {s; : i = 1,...,.N} = §, the
R least common period of {Ty,...,Tn) is S8.

?’: ) Proof: (by contradiction)

‘, .',;: Assume LCP (T,...,Tn} = To < S8, and write Tg =39, where § € X and

' § < S. Then each sampler will sample an integral number of times during the time
L’_ %9;

" %=§5—=-§—_6Nf0ri=l,...,N.
~ i $;0 i

- This implies that$ 2 LCM {s; : i = 1,...,N} = S, which is a contradiction.

XX

-~

)

-

Theorem 2.2:
& T=t(LCM {p;:i=1,.N})=Ptis the shortest length of time over
which a multirate system with sampling periods {T},...,Tn} is periodic.

5

Proof: A trivial application of Lemma A.2.
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ﬁ;,«I; Proof of Theorem 2.3

e Theorem 2.3:
Let the LCP associated with {Ty,..., Ty} be T(k) and that associated with
{T1,., Tk, Ti+1} be T(k+1). Then T(k+1)/T(k) € N.

ot Proof:

A l. Normalization of {Tjy,...,Tx,Tk+1} yields T; = pit, pie N fori = 1,... .k k+1.
ol By Lemma A.2, T(k) = ©(LCM {p1,....px}) and T(k+1) = T(LCM {p1,....px+1})-
A Since LCM {p1,....px+1} = LCM {LCM (p1,....px}> Px+1)>

il Tk+D) _ T(LCM {p1,....pxs1}) _ LCM (LCM [py,....pxk}, Px+1} c N
. T(k) H(LCM (p1,-ipx}) LCM {p1,....Px} '
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