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X -.-‘ Summary
B
This is the final technical report for Air Force Office of Scientific Re-
" search grant number 82-0029, ‘Statistical Inference for Stochastic Pro-

. cesses,’ for the period January 1, 1982 - December 31, 1986. During this
e time, a research program of high international visibility and impact was
A%
s conducted, which resulted not only in numerous publications — including
! the highly regarded book Point Processes and their Statistical Inference —
- but also in many scientific visits, conference addresses and seminar presen-
o tations.

:: The principal research accomplishments may be grouped and summa-
“ rized as follows:

¢ Inference for Point Prccesses
~ — State estimation for Cox processes with unknown law

::f: * Mixed Poisson processes: publication [3]

* General Cox processes, nonparametric models: publication
g

:: * General Cox processes, parametric models: publication [12]
!

:' — Inference for stationary point processes
XS + Estimation of Palm distributions: publications [1] and [9]
] « Estimation of distributions: publication [9]
L2 * State estimation: publication [9)
KN
:: — Inference for multiplicative intensity models

-". * Maximum likelihood estimation using the method of sieves:
. publication [10]

:r:: — Inference for thinned point processes

j:: «+ Nonparametric estimation: publication [4]

vy * State estimation: publication [1]

e
o ¢ Inference for 0-1 Markov processes
.‘: — Parameter estimation: publications [1] and {2]
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~ State estimation: publication [2]

— Combined inference and state estimation: publication [2]

AL B A A 4 N,

¢ Inference for stationary random fields

I~ eaimk

— Nonparametric estimation of covariances and spectra from Pois-

A son samples: publication (6]

|}

K e Additional topics

K — Poisson approximation: publications [11] and [13]

k '; — Properties of randomized stopping times for Markov processes:
; publication [8]

B — Nonparametric survival analysis: publication [12]

o~ — Applications of the Cox regression model: publication (7]
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Principal Research Accomplishments

State estimation for Cox processes. A simple point process N and
diffuse random measure M (on the same space and defined over the same
probability space) comprise a Coz pair if conditional on M, N is a Poisson
process with mean measure M. We say also that N is a Coz process (or
doubly stochastic Poisson process) with directing measure M.

In applications ranging from signal detection to image analysis to mod-
eling of precipitation, the directing measure is

e Of primary physical importance
e Not observable.

Rather, only the Cox process IV is observable, and one seeks to reconstruct
— for each realization w and with minimal error — the value M (w) from
N(w).

The optimal state estimators are conditional expectations E[M(-)|N],
which are themselves random measures. More generally, the entire condi-
tional distribution P{M € (-)|V} should be calculated. In [5] a complete
solution to this problem is derived.

Theorem. Let N be a Cox process with directing measure M. For
each set A, let
FN(A) =o(N(B) : BC A)

be the o-algebra corresponding to (complete, uncorrupted) observation of
N over A. Then provided that E[M(A)] < oo,

P{M e T|FN(4)) = Bl MM, € T))

: (1)

X E[e~Mn(4)] -
for each set ', where the M, are unreduced Palm processes of M (cf. [1,5]),
and N, is the restriction of V to A (i.e., the observations).

# It follows, for example, that for each set B,

E[eM«(A M, (B)]
E[M(B)|7Y(4)] = .

E MBI A = St
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However, while this is a completely general solution to the state estima-
tion problem, implementation of (1) requires knowledge of the probability
law of M (or of N — the two determine each other uniquely), which is
often unavailable in practice. In [1,3,5,12] we address various facets of the
problem of combined inference and state estimation for Cox processes, for-
mulated in the following manner.

1. Suppose that E is compact and for simplicity that A = E. Let
(Ni,M;), 1 =1,2,... be i i d. (independent, identically distributed)
copies of a Cox pair (N, M), such that the N; are observable whereas
the M; are not. Assume that the law of M is unknown. Suppose that
Ny, ..., N, have been observed and that we desire an approximation
to the ‘true’ state estimator E[e'M"“(”!N,,H].

2. The first key observation is that for each function f,

-M, =
Ele U] = = ) |y

(2)
where Lys(u, f) = E[e”™+/)] is the Laplace functional of the Palm
process M,,.

3. Second, a key lemma in [5] establishes that M, ar *he reduced Palm
process N,, which satisfies

P{N,€ ()} = P{N —ne ()IN —p 20}, (3)
form a Cox pair, so that for functions g with 0 < g < 1,
Lm(u,9) = Ln(u, —log(1 - g)), (4)
where Ly(u,-) is the Laplace functional of N,.

4. We now invoke the principle of separation long used in electrical en-
gineering. Since by (1) and (4),

Ln(Nnsr, — log f)

Bl N, | =

Y
LN(Nn+law)
N R g I T T o B P o T T T LS I SO R
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. if we were able to estimate Ly we could use the pseudo-state esttma-
S
~ tors
- Nugr, — 1
X y EleMitDIN, ] = ( e f)’ (5)
'| LN(}V’HJ’ )
\f where I:N is an estimator based on Ny,..., Nu,y.
"
L, 5. On the basis of (3) we construct estimators
Ko~
‘ b(sg) = e Th et (a) nen 1 H(Ni(Ans > p(Any)) (6)
N T n N o
& . ﬂ,: L(Ni(Anj > 1(Ans))
b
o where (An;) is a null array of partitions of E.
4_ These estimators have been shown [5] under appropriate hypotheses to
® be
N o Strongly uniformly consistent
",
j::' ¢ Pointwise asymptotically normal;
-{ however, principal result is the following.
5‘; ' Theorem. For f a function satisfying 0 < f < 1 and 6 > 0,
-3 . 1/2+6 AM, M 21
i) lim n~/2E [(E[e w1 N, ] — EfeMrai)|A 1‘) . =0. (7
2 n—oo J
‘ . g T
- While very general, this theorem is disappointing in the sense that the
) rate of (L?-)convergence, n~!/4, is distinctly less than one would wish (based
“'\ on central limit theory, the hoped-for rate of convergence is n~'/?). In [3]
:[. more precise results we obtained for mized Poisson processes, which are Cox
thy processes in which the directing measure has the particular form M = Y,
o where Y is a positive random variable with unknown distribution F and vy
o is a fixed (but unknown) measure on E. In this case,
; - Ul —uvn
3 EleMU|N,| < LE(dw)er e Hutthe et
, | F(du)e-w(AyN(a)
o and special structure may be used to estimate v, and the integrals
LS
::: K(k) = /F(du)e‘""”(")uke”"""(”
° 5
ke
T::o
i)
R
®

*1,! >

PN IO .r‘.f"./-" ) ,r"av AT 7«.,.'- T, P o D o Lt 0
. Y LS N .\'
o ) ot e N e S e S s



Y EP R AL ET ENEFET La s .8 8.0 4 4 2 A°s g9 Sia £ ¢

separately.
Similarly, in [5] we stipulate a2 parametric model {P; : 6 € ©} and are
able to obtain optimal rates of convergence in (7).

Inference for Stationary Point Processes. Let N be a point pro-
cess on (for simplicity) R?, assumed stationary with respect to translation
operators §,w = wr, !, where 1,y = y — z, (cf. [1]) and suppose that the
underlying probability measure P is unknown. The data comprise single
realizations of N observed over compact, convex sets K; the problems of
interest are

]
&

e Estimation of moment measures, curmnulant measures and the spectral
measure of N

“
s
"y
“
e

e Estimation of the Palm measure P~, which satisfies

E [/ G(Nr;‘,z)N(dx)] - B [/ G(N,x)dx]

for appropriate functionals G, and has the heuristic interpretation
that

P*{NeT}/P'(Q) = P{N e T|N({0}) =1}
e Estimation of P
e ‘Large sample’ behavior of estimators as K 1 R?.

To estimate the integral

P*(H) = E*[N(H)] :/ HdP* (8)
n
we use the unbiased estimators
P'(H) = —1—/ H(Nt ')N(dxz) (9)
MK) 'k z s

These can be written as

f»(n):;(‘?) S H(sy+ Sex, x,),

X, EK i#;

6

iy
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so that IS(H) is simply a sum of evaluations of H at translations of .V
placing each point in turn at the origin.

Particular choices of H lead, for example, to estimators of reduced
moment measures. Taking H = 1 yields the estimators & = P*(1) =
N(K)/A(K) of the intensity v = E~[1]. Similarly, taking H(N) = N(f),
where f is a function with compact support, gives the estimators

20) = 55 | V) [ 1w - v (10)

of the reduced second moment measure p?.

Given a convex set K, we define §(K') to be the supremum of the radii
of Euclidean balls that are subsets of K. Assuming that 6(f{) — oo allows
K to grow in a general yet nevertheless restrained manner; in particular,
K must expand in all directions, although not necessarily at the same rate.

The main result on strong uniform consistency, proved in [9], improves
previous consistency results by the addition of uniformity.

Theorem. If

a) P is ergodic;

b) 0 < v < oo

c) X is a uniformly bounded set of functions on 1 2t is compact in
thte topology of uniform convergence on compact subset o {1:
then almost surely

lim sup |P*(H) - P*(H)| =o0. (11)
§(K)—o0 HeX

Consequences include strong uniform consistency of the estimators j2:
for K a compact, uniformly bounded subset of C, (FE), each element of
which has support in the same compact subset of R?,

aXf) —ui(f)i =0 (12)

almost surely, as well as for corresponding estimators of the spectral mea-
sure and spectral density function.

lim
6(K ) =00

Available results on asymptotic normality are rather less satisfactory,
inasmuch as they are proved only under very strong and virtually uncheck-
able assumptions, using classical techniques of showing that cumulants of
orders three and greater converge to zero.

-1
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Theorem. If

a) P is ergodic;

b) Under P, moments of N of all orders exist;

c) All reduced cumulant measures of N have finite total variation;

+ -

-

,%.

]
. then for each H,
-'.'.-
ko £ . d
o dim_VAK) [P (H) - P (H)] 2 N(0,0°(H)), (13)
e
! where the variance 0?(H) depends on P.
iy The full force of the strong uniform consistency established in (11) is
_,,::C: used in [9] to prove pointwise consistency for estimators of the probability
::::'_ P itself. Assumimg that the intensity v is known we use as estimators of
3 P(H) = E[H(N)),
b= - 1
S PHz—/Nd/HN“d 14
- (H) VA(K)? 'k (dz) K (V7. )dy (14)
j Theorem. Assume that P is ergodic, that 0 < v < oo and that H is
S bounded and continuous. Then almost surely
{ .
= Jim1P(H) - PH)| =0, (15)
:'~. Additional issues addressed in [9] include

¢ Poisson approximations complementing the central limit theorem

X9
TRt

",
\ . . . ‘e .
N e Linear state estimation when the probability P is unknown.
e
Rt
:j‘; Inference for multiplicative intensity models. Let N(1) N}
® ...be independent copies of a point process N on [0, 1] whose stochastic
o intensity, under the probability measure P,, is A(a); = owA¢, where A is
40 . . .
s an predictable process and « is an unknown element of L]0, 1]. Both the
M, P _ +
;': NU) and the baseline stochastic intensities A(") are observable, and goal is
Ay to estimate the deterministic factor a.
o.- Given the data (N, A(M) . (N M) the log-likelihood function
D) v 5
:\'i 1 1
_::'; Ln(a) :/ AY(1 — a)ds +/ (log o )dNT, (16)
,.: - 0 0
e
., 8
‘0..:!
c: '
) : i
B \
Mo |
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&
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\:; where N® = ¥,_, N®) and A" = Sy A is unbounded above, rendering
o direct estimation of @ by maximum likelihood techniques impossible.
::. Martingale estimators, one attractive alternative, estimate processes
.' :
b Bi(«a) :/; a,1{A, > 0)ds, (17)
b e
Ko
:::: which are surrogates for indefinite integrals f(f a,.ds, via
e ¢
' B =f 1(A, > 0)A;'dN,.
0 0
'.-: Martingale estimators are easy to calculate, as are their variances, which
NN can likewise be estimated. Moreover, potent martingale central theorems
*' may be applied to establish asymptotic normality of the estimators. Despite
all this, martingale estimators admit shortcomings nevertheless, arguably
':: the most severe of which is that they do not estimate « itself but rather
o~ the indefinite integrals in (17).
::-J We employ the method of steves, developed by Grenander and others.
ho In our setting, it operates in the following manner: let 7 = L]0, 1] be the
{ n index set of the statistical model, and let the log-likelihood functions L, be
’ given by (16). For sample size n, we
::: o Replace I by a compact subset I,, over which .iere does exist a
“ maximizer & = &, of L,;
' e Let the restrictions become successively weaker as more data is ob-
I tained.
28
L2 Given proper balancing of the rate at which the I, increase with n, these
.“ estimators & are consistent.
':-: More precisely, for each a > 0, let 1(a) be the family of absolutely con-
~ tinuous a € I such that a < o < a™! and |o'|/a < a_,. These are suitable
j: restrictions of I; the sieve mesh a measures the roughness of elements of
js I(a). Then the following theoremn [10] indicates how a should depend on n.
o. Theorem. Assume that
a) The function m,(a) = E,[),] is bounded and bounded away from
zero on [0, 1};
9
")
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j‘ :‘j b) The ‘entropy’
) \: )
.i: H(a) = —/0 (1 - a, + a,log(a,)|m,(a)ds
* is finite;
. c) Jo Vary(A,)ds < oo;
ol d) E4[N?] < oo.
,a: Then for each n and a there exists a maximizer &(n,a) of L, within I(a),
i and for a, = n~!/4*" with 0 < n < 1/4, the estimators & = &(n, a,) satisfy
KN
A lim &6 —-al=0 (18)
D ‘\-( n—+0o
:;.j almost surely with respect to P,.
® Local asymptotic normality of log-likelihood processes
o ¢ ‘
o L.(a,t) =/0 A1 — a,)ds +/; (log a,)dN
- can be established as well; it is of interest in its own right and also leads to
{ a central limit theorem for the integrated estimation error.
L™
”f: Theorem. Let o and a* be elements of I such that
o
158 1 * 2
o / [M] m,(a)ds < oo
? > 0 ag
)
N and
A 1 (0*3)3
ol ; m,(a)ds < oo.
o o | ala,

: Then under P, the processes

Qa,

A converge in distribution to a Gaussian martingale with (independent incre-
ments and) variance function
2
Q*
[( ’)] m,(a)ds.

a,

Vieas) = [

0
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N
K, One can deduce from this theorem that the integrated sieve estimators
g — interestingly — satisfy the same central limit theorem as do martingale
L

N estimators.

: Inference for thinned point processes. Given a point process N =

N 2. €x, and a function p with 0 < p < 1, let U; be random variables such
! that
) | e the U; are conditionally independent given N

e for each 7, P{U; = 1{N} =1 - P{U; = 0|N} = p(X;);

R then the point process
3 N' = Z U,‘Ex'.
:: is called a p-thinning of N. Heuristically, points of N are, randomly and
{ independentiy, either retained in their original location in N' or else deleted
‘ entirely; a point of N at z is retained with probability p(z).
w Among the computational relationships between N and N' are comple-
» mentary expressions for the Laplace functionals:
/ Ly(f) = Ln(~log[l —p+ pe’])
o —1+e?
- Ln(g) = Ln (— log p_—)
- P
; If p is known, then the laws of N and N' determine eac.. other uniquely.
% When the underlying process N cannot be observed, but only the p-
. thinning N' is observable, the state estimation problem for N is to recon-
"- struct, for each realization w, the unobserved value N(w) from the obser-
) vations N'(w). The probability law of N and the function p (and hence the
law of N') are stipulated to be known.
" Of course, since N' is observed, we need actually only reconstruct the
P point process N — N' of deleted points. In the following result, the entire
,:: conditional distribution of N' given N — N' is expressed in terms of the
::'. reduced Palm distributions of N.
K
M Theorem. Let N' be the p-thinning of N, and let Q(u, dv) denote the
4 reduced Palm distributions of N. Then
exp|—v(~ log(1 — p))|Q(N',dv)
(. P{N - N'€dv|N'} = ;= 19
'y { N} [ exp[—n(-log(1 - p))|Q(N',dn)’ (19)
. 11
v'
)
q
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_:~ In other settings, estimation of p and the law of N from observation
1::: of i. i. d. copies N/ of the p-thinning N' may be the principal objective.
N We have done this in a completely nonparametric manner as follows. Let
Lk {Anj : n > 1,1 < j < €,} be a null array of partitions of E; then under
_'- the assumption that the mean measure u of N is known and given the
f: observations N{,..., N} we use the estimators
=
Pz N 20)
P ( nu(Anj) Z:l (
V. N for p and
" - 1 + € -9
” Lg)=1 (log ) , (21)
p

g
e

for the Laplace functional L of N, where

'-. 1 n
o = exp[-N/(f
; - n i=1
=
N is the sequence of empirical Laplace functionals associated with (N/).
{ In [4], the following properties of these estimators are established.
v
S ! Theorem. Assume that
-‘ a) u{z : p(z) =0} =0;
; b) u is diffuse;
o ¢) p is continuous and p(z) > 0 for all z;
Xy d) max; diam An; — 0;
~ e) E[N(E)*] < oo;
..: f) There is § < 1 such that as n — oo,
N
At E(N(An)? l} 5
® £,, max O(r°).
5 J { #(An;) )
“:;: Then almost surely
e aim, sup |p(z) = p(z)] = 0; (22)
¢
° and for each compact set K of functions
k7
o7 lim sup|L(g) -~ L(g)] = 0. (23)
- nT gek
1S
s
P 12
-
)
o
v
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%
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)
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A variety of other results appears in [4] as well, including central limit
theorems for these estimators.

Inference for binary Markov processes. Let X = (X,) be a Markov
process with state space S = {0, 1} and infinitesimal generator

-a a

=l i)
where a and b are positive numbers, possibly unknown. In [2] we addressed
issues of

e Statistical inference, i.e., estimation of a and b

e State estimation

o Combined statistical inference and state estimation.
for X under a wide variety of forms of partial observation. These include

e Regularly spaced discrete observations X, 5, where A is the sampling
interval

e ‘Jittered’ regular samples X,a4.,, where the €, .c i. i. d. random
variables, independent of X, satisfying |e,] < A, .

e Poisson samples X1, , where the T, are the arrival times in a Poisson
process N independent of X, whose rate may be unknown

e Poisson samples observable only when X, = 1

e Observability determined by an alternating renewal process indepen-

dent of X

e Observation of only the ‘level crossing’ times U,,l/;,. . at which X
enters state 1
Observation of the time-averaged data Y, = "2 _ X\ ,dt

nA-v

Observation of a random time change 7, = X,,.
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In each case, ad hoc estimators a and b, which exploit the special struc-
ture of the problem, are devised, and shown to be strongly consistent and
asymptotically normal, and optimal state estimators N for unobserved
values of X are calculated, either explicitly or as solutions of stochastic
differential equations. Rather than present an exhaustive list of results, we
illustrate with the case of Poisson samples and state O unobservable.

Let N be a Poisson process with arrival times T, such that X and N are
independent, and suppose that a, b and the rate A of N are all unknown.
Neither X nor N is completely observable; instead the observations are the
point process

t
N :/ X.dN,,
0

whose arrival times are those T, for which X7, = 1. It is known that this
process is a Cox process, and also a renewal process, whose interarrival
distribution F satisfies

b a+b+ «a
T - F(u)]du = : S
/o et ()] du a*+afla+b+A)+ Aa

In particular, (a,b, A) is uniquely determined by the three values

f0°°[1 _ F(u)|du
B = /oooe“‘[l—F(u)]du
¢ = [T Fu)du

0

A

KRSk

With W, denoting the interarrival times of the observed renewal process

oy N*, appropriate estimators for A, B and C, given observation of N* over
' ‘ [0,t], are corresponding functionals of the empirical distribution function
o F given by

. . 1 N*(t)

" F(u) = — 1V < u). (24)
::' N‘(t) k=1

g

o That is,

s

r:' . 00 . No(t)

:': A = / {1 —F(u)]uu~ L ”k
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X,

No(¢)

= /:o e (1 - F(u))du = N—l(t—) kZ: (1 — e Wx)

=1

h .
o

R, o
;x’n:,q. — { W]

¢ = /0°°e-2uu — F(u)]du = -

Then, since there is a function H (computed in [2]) such that

sa

.. »

gt (a,b,A) = H(A, B,C),

.';r‘. we arrive at estimators

O .« A A A

; \R (a,b,A) = H(A, B,C). (25)
;~ Although the situation is rendered more complicated by the presence
K of the ‘random sample size’ N*(t) in (24), limit theory for empirical dis-
iy tribution functions can nevertheless be applied to yield the following large
ﬁ: sample properties for the estimators of (25).

-

)f' Theorem. As n — oo,

4

e (,6,) = (a,6,) (26)
.':,o ;

.":r. almost surely.

W

i“) Theorem. As n — oo,

! A oA A d

o vn[(4,B,C) - (4,B,C)] 4 N(0,3),

s

"l

o~ where the covariance matrix T is computed in [2], and hence

vl

A 34 d

o v [(8,6,8) - (a,6,0)] 5 N(JyEJY), (27)
ed

0. where Jy is the Jacobian of the transformation H.

::'.., State estimation for X given observations G = (N, : u < t) of N*
°. entails principally solving the filtering problem of calculating the optimal
‘.33' state estimators

$v X! = E[‘Yll\g!]' (28)
Yool
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No closed form solution is known; however, we have shown that the process
X; can be calculated recursively, as the solution of a stochastic differential
equation.

Theorem. The state estimators X of (28) are the unique solution of
the stochastic differential equation

dX, = [-bX, +a(1 - X)] dt + (1 - X) [dN; - A% dt]. (29)

For extension to general Markov processes with finite state space, see
[1, Chapter 10].

Inference for random fields. Let Y = {Y (z); z € R*} be a stationary
random field on R* with unknown mean

m = E[Y ()
and unknown covariance function
R(y) = Cov(¥(z), Y (z +y)).

Let N = T,ex, be a stationary Poisson process on R* with (possibly
unknown) intensity v, and assume that ¥ and N are independent. We
stipulate that

e N is observable
e Y is observable only at the points of V.

Thus the observations are the marked point process
V=3 ex.rix) (30)
$

over sets of the form K x R, where K is compact and convex, and the
principal statistical issues are

e Estimation of m and R
e Large sample properties of estimators as 6(K) — oo

e State estirnation for unobserved values of Y.

16
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This model is applicable in a wide variety of situations; its principal prop-
erties are established in [6].

A fundamental question is whether inference is even possible at all; that
is, does the law of N determine that of Y?

Theorem. If Y is continuous in probability, then the probability law
of N determines uniquely that of Y.

Estimation of the mean value m is straightforward, even if v is unknown:
the appropriate estimator given observation of N over K x R is

. JxYdN Ty Y(X)
™= 11{\7(1'()”“ XN}EK) o (31)

Provided that the covariance function R is integrable, i.e.,

[ 1R idy < oo (52)

these estimators have the following properties. (Here and below, Lebesgue
measure is denoted by A or simply by dy.)

Theorem. If (32) holds, then the estimators 7 of (31) are consistent
in quadratic mean: as 6(K) — oo,

E[(f — m)?] — 0

and asymptotically normal:

VAK) (- m) 5 N(0,0 9,

o = [ R(y)ay + FOLM

In order to simplify the discussion of estimation for R we assume that
v is known; however, it can be replaced throughout by the estimator & =
N(K)/MK).

As estimator of R we employ

where

A

R(z) = 1/2)\ / / wg(z -z + 1)V (2,)Y (r2) N (dzy,dx,),  (33)

17
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where N®(dz,,dz,) = N(dz,)(N - €;,)(dz2) and wk(z) = afw(z/ak),
with w a positive, bounded, isotropic density function on R? and the ag
i positive numbers satisfying ax — 0 and ayA(K) — oo as §()) — oo.

Weak consistency of the estimators R is implied by the following result.

-

-

‘ Theorem. Assume that R is continuous and fulfills (32), and that the
fourth-order cumulant Q of Y exists and satisfies

- B e L
&

2

sup / IQ(z + z1,z,7;)|dr < 0.

z,,z2

P

Then as 6(K) — oo,
E|R(z)| — R(z) (34)

for each = and
A(K) o Cov(R(z,), R(z2)) — 1(zy = £2,)S(zy), (35)

where

“ - v Tl ..l Y ;l K ‘
ARAAIIUY T Y PP RPN YY)

_ 1%Q(0,z.7) + 2R(2)* + R(0)?
S(z) = Fwlody

Asymptotic normality is more intricate.

-

>

K » . .

::. Theorem. If Y has finite moments of all orders, if for each k the kth
3::: order cumulant function Q(¥) satisfies
Py
.‘) /'Q(")(zl,...,zk_l)idzl...dzk_l < 00,

-

o

o if R is twice continuously differentiable and if [ |y|*w(y)dy < oo, then as
L 6(K) — oo,
- 7 d

° VA(K)ak|R(z) - B(z)] = N(0,5(z)), (37)
o for each z, where S is given by (36).
- Additional aspects treated in [6] include
K ¢ Construction of strongly consistent estimators for the set-indexed pro-
g cess Q(A) = [, R(z)dz
\-:
"
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e Optimal state estimation for unobserved values of Y, using linear
state estimators

Pl
» por N

Y(z) = /K h(z,2)Y (z)N(dz).

The optimal function h is characterized as the solution to a particular
integral equation.
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Work in Progess as of December 31, 1986

For positron emission tomography — an increasingly important form
of medical imaging — the basic mode! is that observed data constitute a
Poisson process N with intensity function

u(w) = [ p(ule)A(2)dz, (38)
where

e pis a known point-spread function

e ) is the unknown intensity function of the Poisson process of positron-
electron annihilations.

The goal is to estimate A, the key quantity of physical interest.

To date we have addressed several crucial mathematical issues, albeit
mainly for the simplified problem of estimating the unknown intensity func-
tion A of a Poisson process N (i.e., it is not assumed that (38) holds) on
d-dimensional Euclidean space R%. These include the following.

1. Given as data i. i. d. copies Ni,...,N, of N, define the superposition
N™ =3, N;; N, a Poisson process with intensity function nA, and
also a sufficient statistic for A. The log-likelihood function (omitting
a term not dependent on A)

La()) = —n/ A(z)dz + /{log A(z)|N™(dz), (39)

is, however, not bounded above, and therefore does not admit a max-
imizer.

2. The method of sieves provides an effective means of approaching the
problem: the parameter space of possible intensity functions is re-
stricted in a manner that becomes successively weaker as more data
is obtained. We have shown that maximizers of (39) within the
restricted sets do exist, and satisfy desirable statistical properties.
Specifically, for each h > 0 we introduce the sieve Sy of functions A
of the form

Nz = [ ol E(dy), (40)

20




where h is a smoothing parameter, &, is a kernel and F is a probability
measure on R?, but is otherwise unrestricted. {Note the resemblance
between (40) and (38)!) We have taken k, to be a circularly symmetric
Gaussian kernel with variance h:

kn(z,y) = (2mh) ¥ exp|~ ||z — y|*/2h]. (41)

The smaller h, the rougher A can be. We have established that under
minor restrictions on the kernels, for each n and h there exists a
maximizing element ' = F(n,h) of L,, which under (40) becomes a
function of F.

3. Computation of the restricted maximum likelihood estimators is far
from straightforward. Based on the similarity between (38) and (40)
and on the ‘incomplete data’ aspect of the model, we have investigated
use of the EM algorithm of Dempster, Laird and Rubin. The basic
iteration for the algorithm is

kn(z,y)  N"(dz)

F'(d :Fod[-'- D2 A 42

(dv) (dy) [ ky(z,2)FO(dz) N (R?) (42)
where F? is an initial estimate and F! the new estimate. Although we
have made progress regarding convergence of this infinite-dimensional
iterative algorithm, our results remain incomplete.

4. In order to obtain the statistically desirable property of consistency
for estimators
.’L') = /\ /kh 22 y

dy)

the sieve mesh h must be allowed to depend on the sample size n and
in particular to converge to zero as n converges to infinity. We have
proved the following theorem.

Theorem. If
a) A is continuous and has compact support;
b) |/ A(z) log(A(z))dz| < oo

then provided that h, = n=Y/®*¢ for some ¢ > 0,

[AM(n.ha) = Ally 0 (43)

21
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as n — oo, in the sense of almost sure convergence.

Under weaker conditions and with the sieve mesh permitted to decrease
more rapidly, (43) holds in the sense of convergence in probability.
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-~ Mathematical Sciences, Ithaca, NY, August, 1987

: E'_ Invited address, ‘Maximum likelihood estimation in the multiplicative inten-
_‘:: sity model, via sieves,” Satellite Meeting on Mathematical Statistics and
v: Probability to the 46th Session of the ISI, Kyoto, Japan, September, 1987
~

:* Doctoral Students

f. James A. Smith, ‘Point Process Models of Rainfall,” 1980 (with J. L. Co-

hon) (currently at Interstate Commission for the Potomac River Basin,
Rockville, MD)

David M. Zucker, ‘Survival Data Regression Analysis with Time-Dependent
Covariate Effects,” 1986 (currently at National Heart, Lung and Blood In-
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:,' stitute, Bethesda, MD)
'_’, Edward L. Chornoboy, ‘Maximum Likelihood Techniques for the ldentifica-
o tion of Neural Point Processes,” 1986 (with L. P. Schramm) (currently at
\ Washington University, St. Louis)
o~
2 Selected Teaching
- Introduction to Engineering (2 times)
e Introduction to Probability
. Introduction to Statistics (2 times)
~ Elementary Stochastic Processes (2 times)
. N Modern Algebra for Applications
! E Probability Theory (7 times)
s Stochastic Processes I (6 times)
b Statistical Theory
'-:: Topics in Probability: Image Analysis
::'. Analysis and Probability (6 times)
- Topics in Applied Mathematics: Approximation Theory
- Applied Probability Models
(- Stochastic Processes I (2 times)
- Diffusion Processes (2 times)
- Brownian Motion and Potential Theory
’ Random Measures and Point Processes (2 times)

Inference for Point Processes (2 times)
: Stochastic Processes for Inference

o Inference for Stochastic Processes (2 times)

vy Inference for Diffusion Processes

‘ Book

- 1. Point Processes and their Statistical Inference (Marcel Dekker, New

-

S York, 1986).
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o
N 1. Weak convergence of a sequence of Markov chains. 7. Wahrschemn-
lichkeststheorie und verw. Geb. 33 (1975) 4118,
' " 2. Two models for optimal allocation of aircraft sorties (with J. Bracken,
s J. E. Falk). Opns. Res. 23 (1975) 979-995.

"::: 3. Stability of one-dimensional systems of colliding particles. J. Appl.
- Prob. 13 (1976) 155-158.
i 4. Two extremne value processes arising in hydrology. J. Appl. Proo. 13
™ (1976) 190-194.

AY

::_‘E 5. The role of Maxwell-Boltzmann and Bose-Einstein statistics in point
it pattern analysis (with A. M. Liebetrau). Geographical Anal. 9 (1977)
® 418-422.
. ..

oy 6. Lévy random measures. Ann. Probability 6 (197R) 57-71.

'_',-.:: 7. The inverse balayage problem for Markov chains (with A. O. Pit-
-, tenger). Stochastic Process. Appl. 7 (1978) 165-178.

-

8. Markov chains and processes with a prescribed invariant measure.

{.:’f Stochastic Process. Appl. 7 (1978) 277-290.
~::: 9. Derived random measures. Stochastic Process. .. pl. 8 (1978) 159-
169.

‘A9l

2 10. An inverse balayage problem for Brownian motion {with A. O. Pit-
S tenger). Ann. Probability 7 (1979) 186-191.

r.

\J‘

:"_' 11. Classical limit theorems for measure-valued Markov processes. J.
2 Multivariate Anal. 9 (1979) 234-247.

. -'r{ 12. The inverse balayage problem for Markov chains, Il (with A. O. Pit-
.'l’:: tenger). Stochastic Process. Appl. 9 (1979) 35-53.

' »

. 13. Some inverse problems involving conditional expectations. J. Multi-
’ vartate Anal. 11 (1981) 17-39.
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L, _-
- 14. Natural clades differ from ‘random’ clades: simnulations and analysis
o (with S. M. Stanley, P. W, Signor, I, and S. Lidgard). Paleobiology
- 7 (1981) 115-127.
M'
') 15. A partially observed Poisson process. Stochastic Process. Appl. 12
j::;: (1982) 249-269.
. ¥
"‘:: 16. State estimation for Cox processes on general spaces. Stochastie Pro-
o cess. Appl. 14 (1983) 209-232.
\ - 17. Extreme points of certain sets of probability measures, with applica-
',\ tions. Math. Opns. Res. 8 (1983) 74-85.
s-.‘-
; 18. Error bounds for reconstruction of a function f from a finite sequence
. (sgn(f(t;) + zi))) (with R. J. Serfling). SIAM J. Appl. Math. 43
(1983) 476-490.
<ol
:-_';: 19. A point process model of summer season rainfall occurrences (with J.
- A. Smith). Water Resources Res. 19 (1983) 95-103.
{ 20. Estimation and reconstruction for zero-one Markov processes. Sto-
KO chastic Process. Appl. 16 (1984) 219-255.
-
P
e 21. Combined nonparametric inference and state es  ation f{or mixed
A Poisson processes. Z. Wahrscheinlichkeitstheorie und verw. Geb. 66
' (1984) 81-96.
:::‘:- 22. The martingale method: introductory sketch and access to the liter-
- ature. Opns. Res. Lett. 3 (1984) 59-63.
f.‘
o 23. Statistical inference for point process models of rainfall (with J. A.
.', Smith). Water Resources Res. 21 (1985) 73-79. !
|
‘:-j: 24. Inference for thinned point processes, with application to Cox pro- |
o cesses. J. Multivariate Anal. 16 (1985) 368-392. |
e . . |
°. 25. Integer Prim-Read solutions to a class of target defense problems
o (with S. A. Burr, J. E. Falk). Opns. Res. 33 (1985) 726 745. ‘
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e 26. Nonlinear response to sustained load processes {with K. €. Chou, R.
:: B. Corotis). J. Structural Engy., ASCE 111 (1985) 12 157,
o
W 27. State estimation for Cox proceszes with unknown probability law,
J__’ Stochastic Process. Appl. 20 (1085) 115-131.
-::j: 28. Parameter estimation for a model of space-time rainfall {with J. A.
- Smith). Water Resources Res. 21 (1985) 1251-1257.
b,
r 29. Inference for stationary random fields given Poisson samples. Adr.
o~ Appl. Prob. 18 (1986} 406-422.
RS
s:‘_:: 30. Flood frequency analysis using the Cox regression model (with J. AL
ALY . B
" Smith). Water Resources Res. 22 (1986) K90 RY0.
\.I
,,.r 31. Structural propert »s of random times (with A. O. Pittenger). Probab.
o~ Th. Rel. Fields T2 (1986) 395-{16.
N
. - . . . .
. 32. Estimation of Palin measures of stationary point processes. [Probab.
Vol . . —_) -
v Th. Rel. Fields T4 (1987) 55 69.
L~ 33. Maximum likelihood estimation in the multiplicative intensity model,
v via sieves. .Ann. Statist. 15 (1987) 473-490.
N.-‘ - B .
j-:-j 34. Poisson approximation of Bernouili point processcs and their super-
' positions, via coupling (with R. J. Serfling). Stochastic Process. Appl.
> (to appear).
o~ . . . . : .
35. State estimation for Cox processes with unknown law: parametric
. models. Stochastic Process. Appl. (to appear).
o
® 36. Poisson approximation in selected metrics by coupling and semigroup
A methods with applications (with P. Deheuvels, D. Pleifer and R.J.
‘v Serfling). J. Statist. Planning Inf. (to appear).
[/
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3 Review and Survey Articles
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1. Lanchester attrition processes and theater-level combat models. In
Mathematics of Conflict. M. Shubik, ed.. 89--126 (North-Holland, Am-
sterdam, 1983).

2. Point process, stationary. In Encyclopedia of Statistical Sciences,

VII. N. L. Johnson and 5. Kotz, eds., 15-19 (Wiley. New York, 1986).

3. Poisson processes. In Encyclopedia of Statistical Sciences, VII, N. L.
Johnson and S. Kotz, eds., 29-32 (Wiley. New York, 1986).

4. Stochastic point process. In FEncyclopedia of Statistical Sciences,
VIII. N. L. Johnson and 8. Kotz, eds. (Wiley, New York)(to ap-
pear).

5. Markov processes. In Handbook of Operations Research and Manage-
ment Science, D. P. Hevman and M. J. Sobel, eds. (North-Holland,
Amsterdam) (to appear).

6. Martingales. In The New Palgrave: A Dictionary of Feonomics, J.
Eatwell, M. Milgate and P. Newman. eds. (London. Macmillan) (to
appear).

Book Reviews

1. Review of Markov Chains: Theory and Applications by D. Isaacson
and R. Madsen. SIAM Rev. 20 (1978) 606-607.

2. Review of Infinitely Divisible Point Processes by K. Matthes, J. Ker-
stan and J. Mecke. J. Amer. Statist. Assoc. 75 (1980) 750-751.

3. Review of Stochastic Processes and Integration by M. N Rao. SIAM
Rev. 24 (1982) 238-239.

4. Review of A Second Course in Stochastie Processes by S, ivarlin and
H. M. Taylor. SIAM Rev. 25 (1U=3) 250 o<1,

5. T nview of Stochastic Proccsses by S N Ros<s STANM [ter. 26 (198%4)

4. 5-449.
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6. Review of Stochastic Models in Operalions Research, I’éJ{d II. by D.
P. Heyman and M. J. Sobel. American Scientist 72 (1984) 106--107.

7. Review of Random Measures, 3rd ed., by O. Kallenberg. J. Amer.
Statist. Assoc. 82 (1987) 346-347.

Manuscripts Submitted

1. Nonparametric survival analysis with time-dependent covariate ef-

fects: a penalized partial likelihood approach (with D. M. Zucker).
(To Ann. Statist., 10-86).
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