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Summary

This is the final technical report for Air Force Office of Scientific Re-
search grant number 82-0029, 'Statistical Inference for Stochastic Pro-
cesses,' for the period January 1, 1982 - December 31, 1986. During this
time, a research program of high international visibility and impact was
conducted, which resulted not only in numerous publications - including
the highly regarded book Point Processes and their Statistical Inference -
but also in many scientific visits, conference addresses and seminar presen-
tations.

The principal research accomplishments may be grouped and summa-
va. rized as follows:

*1 * Inference for Point Processes

-. - State estimation for Cox processes with unknown law

* Mixed Poisson processes: publication [3[

* General Cox processes, nonparametric models: publication

151
* General Cox processes, parametric models: publication [12]

- Inference for stationary point processes

* Estimation of Palm distributions: publications [1] and [9]

* Estimation of distributions: publication [9[

* State estimation: publication [9)

- Inference for multiplicative intensity models

* Maximum likelihood estimation using the method of sieves:

publication [10]

- Inference for thinned point processes

-" * Nonparametric estimation: publication 141

* State estimation: publication [1]

* Inference for 0-1 Markov processes

V, - Parameter estimation: publications [1] and [2]
U,

0*
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- State estimation: publication 12]
- Combined inference and state estimation: publication [2]

" Inference for stationary random fields

- Nonparametric estimation of covariances and spectra from Pois-
son samples: publication [6]

* Additional topics

- Poisson approximation: publications [II] and [131

- Properties of randomized stopping times for Markov processes:
publication [8]

- Nonparametric survival analysis: publication [12

a. - Applications of the Cox regression model: publication [7]

2
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Principal Research Accomplishments

State estimation for Cox processes. A simple point process N and
diffuse random measure M (on the same space and defined over the same
probability space) comprise a Cox pair if conditional on M, N is a Poisson
process with mean measure M. We say also that N is a Cox process (or
doubly stochastic Poisson process) with directing measure AI.

In applications ranging from signal detection to image analysis to mod-
eling of precipitation, the directing measure is

9 Of primary physical importance

e Not observable.

Rather, only the Cox process N is observable, and one seeks to reconstruct
- for each realization w and with minimal error - the value M(w) from
N(w).

The optimal state estimators are conditional expectations E[M(.)IN],
which are themselves random measures. More generally, the entire condi-
tional distribution P{M G (.)IN} should be calculated. In (5) a complete
solution to this problem is derived.

Theorem. Let N be a Cox process with directing measure Al. For
each set A, let

FN(A) =(N(B) B C A)

be the a-algebra corresponding to (complete, uncorrupted) observation of
N over A. Then provided that EIM(A)] < oc,

Ele-M.(A)I(MG r =C
P{M E FjYN(A)} = EeM,(A) ]  (1)

for each set F, where the M. are unreduced Palm processes of M (cf. 11,5]),
and NA is the restriction of N to A (i.e., the observations).

It follows, for example, that for each set B,

E[M(B)IjYN (A)I : EemI(A)M, (B)

E.EIe-M,(A) N

3



However, while this is a completely general solution to the state estima-
tion problem, implementation of (1) requires knowledge of the probability
law of M (or of N - the two determine each other uniquely), which is
often unavailable in practice. In [1,3,5,12] we address various facets of the
problem of combined inference and state estimation for Cox processes, for-
mulated in the following manner.

1. Suppose that E is compact and for simplicity that A = E. Let
(N, M,), i = 1, 2,... be i. i. d. (independent, identically distributed)
copies of a Cox pair (N, M), such that the Nj are observable whereas
the M are not. Assume that the law of M is unknown. Suppose that
N1,..., N, have been observed and that we desire an approximation
to the 'true' state estimator E[e-M,+'(f)lNn+I1.

2. The first key observation is that for each function f,

-. 4- E[e-L",+'(f)1N,+1 ) (2)
LM(l., 1) NA

where LM(M,f) = Ee-M(f)J is the Laplace functional of the Palm
process M.

3. Second, a key lemma in [5] establishes that M, ar 'he reduced Palm
process N., which satisfies

P{No E ()I P{N (.)IN - >0}, (3)

form a Cox pair, so that for functions g with 0 < g <1,

Lm: L(A,g) = LN (A,- 109g(1 - g)), (4)

where LN(A, -) is the Laplace functional of NM.

4. We now invoke the principle of separation long used in electrical en-
gineering. Since by (1) and (4),

.44

E~eM,,+,(f)IN, , = Lv(N.+,, - log!f)
4-. ej~+ij LN(NVn+I,oo)'

- '.4 -
€  d - # -  
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" if we were able to estimate LN we could use the pseudo-state estima-
tors

k~e l+'~ Nrj+lJ =LN(N,,+1 , - log f)

where LN is an estimator based on N,...,N,+,.

5. On the basis of (3) we construct estimators

e p(g) En_ e -yN,(g) I-1" (Nj(Anj > p(Anj))
LN (it, 9) = .. . 1'= _ e,  -_ - (6)

i=,~ "=l(Ni (a,j > p (A.j) i -

where (An,) is a null array of partitions of E.

These estimators have been shown 151 under appropriate hypotheses to
be

* Strongly uniformly consistent

o Pointwise asymptotically normal;

however, principal result is the following.

Theorem. For f a function satisfying 0 < f < 1 and 6 > 0,

lim n-'2 +6E [(,[eM'+(IWIN,,+] - E[eM"+'(f)I.N ,, =- 0. (7)

While very general, this theorem is disappointing in the sense that the
rate of (L2 -)convergence, n-'/4 , is distinctly less than one would wish (based
on central limit theory, the hoped-for rate of convergence is n-'/2 ). In [31

more precise results we obtained for mixed Poisson processes, which are Cox
processes in which the directing measure has the particular form M = Yvo,
where Y is a positive random variable with unknown distribution F and V0

is a fixed (but unknown) measure on E. In this case,

Ele-M(f)INA] f F(du)e -utv(A)uN(A)e uv"( /)

f F(du)e-u,"(A)uN(A)

and special structure may be used to estimate vn and the integrals

K(k) f / F(du)eue(A)ueuL(f)

N.
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separately.

Similarly, in [51 we stipulate a parametric model {Pp : 0 E 0} and are

able to obtain optimal rates of convergence in (7).

Inference for Stationary Point Processes. Let N be a point pro-

cess on (for simplicity) R', assumed stationary with respect to translation

operators 0'w = wrz 1, where ry = y - x, (cf. i1]) and suppose that the

underlying probability measure P is unknown. The data comprise single
real:zations of N observed over compact, convex sets K; the problems of

interest are

* Estimation of moment measures, cumulant measures and the spectral

measure of N
4%

* Estimation of the Palm measure P', which satisfies

E G(Nr1,z)N(dx1 E' G(N,x)dx

for appropriate functionals G, and has the heuristic interpretation

that

' P'{N e P}/P"(Q)= P(N E FIN({O)= 1}

* Estimation of P

* 'Large sample' behavior of estimators as K T Rd.

4 To estimate the integral
"fo

P'(H) = EIN(H)] HdP (8)

* we use the unbiased estimators

4" f"'(H) ( 1 H(Nr[')N(dx). (9)"" (K) f

These can be written as

,'.~~Y I() " lt,) +1:EX,-X,),

6
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so that P'(H) is simply a sum of evaluations of I1 at translations of N
placing each point in turn at the origin.

Particular choices of H lead, for example, to estimators of reduced
moment measures. Taking H 1 yields the estimators i' = P'(1) =
N(K)iA(K) of the intensity v E[1J. Similarly, taking 11(N) = N(f),
where f is a function with compact support, gives the estimators

-1(f= N(dx)ff(y- f JJ(10)

of the reduced second moment measure it2

Given a convex set K, we define 6(K) to be the supremum of the radii
of Euclidean balls that are subsets of K. Assuming that 6(K) -- oo allows
K to grow in a general yet nevertheless restrained manner; in particular,
K must expand in all directions, although not necessarily at the same rate.

The main result on strong uniform consistency, proved in [9J, improves
previous consistency results by the addition of uniformity.

Theorem. If
a) P is ergodic;
b) 0 < v < oo;
c) 1 is a uniformly bounded set of functions on Ql -t, is compact in

ti-e topology of uniform convergence on compact subset ,t Q;
then almost surely

lim sup IP/(1) - P*(H)I = 0. (11)
6(K)--c HEN(

Consequences include strong uniform consistency of the estimators [t!:
for K a compact, uniformly bounded subset of C+(E), each element of
which has support in the same compact subset of Rd,

lim sup 14(f) - i.(f)I 0 (12)
6(K)- fEK

almost surely, as well as for corresponding estimators of the spectral mea-
sure and spectral density function.

Available results on asymptotic normality are rather less satisfactory,
inasmuch as they are proved only under very strong and virtually uncheck-
able assumptions, using classical techniques of showing that cuinulants of
orders three and greater converge to zero.

%%%%



Theorem. If
a) P is ergodic;
b) Under P, moments of N of all orders exist;
c) All reduced cumulant measures of N have finite total variation;

then for each H,

(K)-

where the variance u2(H) depends on P.

The full force of the strong uniform consistency established in (11) is
used in [9] to prove pointwise consistency for estimators of the probability
P itself. Assumimg that the intensity v is known we use as estimators of'. 'IP(H) =E[H(N)],P(H) - iP(H)f-

P (H) N(dx) J H(Nr l1 )dy (14)
vA(K)l K K

Theorem. Assume that P is ergodic, that 0 < v < cc and that H is
, ". bounded and continuous. Then almost surely

lim JP(H) - P(!t)= 0. (15)".': "" (K)-co

Additional issues addressed in [9] include

. Poisson approximations complementing the central limit theorem

* Linear state estimation when the probability P is unknown.

%OZ Inference for multiplicative intensity models. Let NO) , N (2) ,
* ... be independent copies of a point process N on [0, 11 whose stochastic

intensity, under the probability measure P,, is A(a)j = atAe, where A is
an predictable process and a is an unknown element of L1+10, i]. Both the

V ~N ( ) and the baseline stochastic intensities A(W are observable, and goal is
to estimate the deterministic factor a.

0. Given the data (N(O), A(),..., (N(n), A(n)), the log-likelihood function

L,(a) An(, - a,)ds + f(log a,)dN', (16)

V0

8
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where N" = NO) and A' -j"=j A('), is unbounded above, rendering
direct estimation of a by maximum likelihood techniques impossible.

Martingale estimators, one attractive alternative, estimate processes

B,(a) = 1( > O)ds, (17)

which are surrogates for indefinite integrals ft ads, via

'. :r/t (, , > O).X-,YNo.

0

Martingale estimators are easy to calculate, as are their variances, which
can likewise be estimated. Moreover, potent martingale central theorems
may be applied to establish asymptotic normality of the estimators. Despite

* all this, martingale estimators admit shortcomings nevertheless, arguably
the most severe of which is that they do not estimate a itself but rather
the indefinite integrals in (17).

We employ the method of sieves, developed by Grenander and others.
In our setting, it operates in the following manner: let I = L+10, 1] be the
index set of the statistical model, and let the log-likelihood functions L, be
given by (16). For sample size n, we

. Replace I by a compact subset I,, over which *iere does exist a
maximizer a = &, of L,;

* Let the restrictions become successively weaker as more data is ob-
tained.

Given proper balancing of the rate at which the I, increase with n, these
estimators & are consistent.

More precisely, for each a > 0, let I(a) be the family of absolutely con-
tinuous a E I such that a < a < a-1 and la'l/a < a-,. These are suitable
restrictions of I; the sieve mesh a measures the roughness of elements of
I(a). Then the following theorem [10 indicates how a should depend on n.

Theorem. Assume that
a) The function m,(a) E, ,,,[ is bounded and bounded away from

zero on ro, 11;

9
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b) The 'entropy'

H(a) - - [1 - a, + a, log(a,)Jm,(a)ds
0

is finite;
c) fo Var(A,)ds < co;
d) E,[Nf] < co.

Then for each n and a there exists a maximizer &(n,a) of L, within 1(a),
and for an = n-/4+,7 with 0 < r < 1/4, the estimators & &(n, an) satisfy

rnlim II-a II= 0 (18)

almost surely with respect to P,.

S-Local asymptotic normality of log-likelihood processes

. L.(a, t) = A(1 - a,)ds + f(log a,)dN7
00

can be established as well; it is of interest in its own right and also leads to
a central limit theorem for the integrated estimation error.

Theorem. Let a and a* be elements of I such that

,I .Io m,(a)ds < 0o
,4, 0 1

and

]-i, I m,(a)d s < o0.
0 [a

Then under P. the processes

[ (a *'21
,Ln(a + n-112a*,t) - Ln(a,t) + - [ , j (a)ds)

converge in distribution to a Gaussian martingale with (independent incre-
ments and) variance function

V (aa) m, (c,)ds.jL (a* )2]
d'.L ,

., 10
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One can deduce from this theorem that the integrated sieve estimators
- interestingly - satisfy the same central limit theorem as do martingale
estimators.

Inference for thinned point processes. Given a point process N
E ex, and a function p with 0 < p < 1, let Uj be random variables such
that

o the U, are conditionally independent given N

o for each i, P{Ui = ltN} = 1 - P{U = 0IN} = p(X,);

then the point process
N' = Uiex,

is called a p-thinning of N. Heuristically, points of N are, randomly and
independently, either retained in their original location in N' or else deleted
entirely; a point of N at x is retained with probability p(x).

Among the computational relationships between N and N' are comple-
mentary expressions for the Laplace functionals:

~~Ln,(f) = LN(- log[1 - p+ p-])

LN(g) = LN, (iog p - +e)

If p is known, then the laws of N and N' determine eac., other uniquely.
When the underlying process N cannot be observed, but only the p-

thinning N' is observable, the state estimation problem for N is to recon-
struct, for each realization w, the unobserved value N(w) from the obser-
vations N'(w). The probability law of N and the function p (and hence the
law of N') are stipulated to be known.

Of course, since N' is observed, we need actually only reconstruct the
point process N - N' of deleted points. In the following result, the entire
conditional distribution of N' given N - N' is expressed in terms of the
reduced Palm distributions of N.

Theorem. Let N' be the p-thinning of N, and let Q(ji,dv) denote the
4reduced Palm distributions of N. Then

exp[-v(- log(1 -p))JQ(N',dv)

P{-'c"N z f exp[-r(- log(1 ' p))]Q(N',d 1) (19)

" 11
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In other settings, estimation of p and the law of N from observation
of i. i. d. copies N1' of the p-thinning N' may be the principal objective.
We have done this in a completely nonparametric manner as follows. Let
{A,,j : n > 1,1 < J < ,} be a null array of partitions of E; then under
the assumption that the mean measure ji of N is known and given the
observations N,..., N, we use the estimators

1 N!(Ani) (20)
-4 >ZA( Nj(),

for p and
oLg = Lo , (21)

for the Laplace functional L of N, where

:" 1 n

L'() = - Yexp[-N:(f)]
n i=1

is the sequence of empirical Laplace functionals associated with (N:).
In [41, the following properties of these estimators are established.

Theorem. Assume that
. a) t{x: p(x) = O} = 0;

b) tz is diffuse;
c) p is continuous and p(x) > 0 for all x;
d) maxj diam A, -- 0;
e) EIN(E)41 < 00;
f) There is 6 < 1 such that as n -* o0,

'.4 f E[N(Anj) 3
1L• /t, ma x  =O(n6).

en ~. p(A.J)3 J 5)

Then almost surely
lir sup A(x) - p(') 1 0; (22)
n-zoo EE

• and for each compact set K of functions

lim sup L(g) - L(g)I 0. (23)
-n-oo

'i" 12
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A variety of other results appears in [4] as well, including central limit
theorems for these estimators.

Inference for binary Markov processes. Let X = (Xt) be a Markov
process with state space S = {o, 1} and infinitesimal generator'.

A-a a]

where a and b are positive numbers, possibly unknown. In [21 we addressed
issues of

* Statistical inference, i.e., estimation of a and b

* State estimation

9 Combined statistical inference and state estimation.

for X under a wide variety of forms of partial observation. These include

* Regularly spaced discrete observations XA, where A is the sampling
interval

* 'Jittered' regular samples XA+,. where the e ,. i. i. d. random
variables, independent of X, satisfying je1 < A/

* Poisson samples XT., where the T, are the arrival times in a Poisson
process N independent of X, whose rate may be unknown

* Poisson samples observable only when X, =

e Observability determined by an alternating renewal process indepen-
0dent of X

* Observation of only the 'level crossing' times U,U,. . at which X
enters state 1

9,,.* Observation of the time-averaged data ',, , dt

* Observation of a random time change Zt X,,.

13
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In each case, ad hoc estimators h and b, which exploit the special struc-
ture of the problem, are devised, and shown to be strongly consistent and
asymptotically normal, and optimal state estimators Xt for unobserved
values of X are calculated, either explicitly or as solutions of stochastic
differential equations. Rather than present an exhaustive list of results, we
illustrate with the case of Poisson samples and state 0 unobservable.

Let N be a Poisson process with arrival times T, such that X and N are
. independent, and suppose that a, b and the rate A of N are all unknown.

Neither X nor N is completely observable; instead the observations are the
point process

.. N ,' X dN ,,

0

whose arrival times are those T, for which XT, 1. It is known that this

process is a Cox process, and also a renewal process, whose interarrival
distribution F satisfies

- F(u)du a + b + a
"0 a (a + b + A) + Aa

In particular, (a, b, A) is uniquely determined by the three values

A =711 - F(u)]du

B J e-"[1- F(u)ldu
0

With Wk denoting the interarrival times of the observed renewal process
N, appropriate estimators for A, B and C, given observation of N* over

" [O,t], are corresponding functionals of the empirical distribution function
F given by

1N~t
F(u) N'(t) >11(1/k < u). (24)

k=1

That is,

A - F(U)]du - Vz k
k I

14
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j'. rw= °e'- u dU N t  --- e
- W

N(t)i e- ' 1 - 1 (1 - e -:  )

2N -(t) =

Then, since there is a function II (computed in [2]) such that
(a,b,A) - II(A, B, C),

we arrive at estimators'.(a, H (A,BC (25)

Although the situation is rendered more complicated by the presence
of the 'random sample size' N*(t) in (24), limit theory for empirical dis-
tribution functions can nevertheless be applied to yield the following large
sample properties for the estimators of (25).

Theorem. As n -- o,

(a, &,5) - (a, b, A) (26)

almost surely.

Theorem. As n -* 0o,

v'-[(A, B, ) -(A, B, C)] N(O, E),

where the covariance matrix E is computed in [2], and hence

,,f- [(a,b~ - (a,b,A)] d+ N(JHEJJ1), (27)

where JH is the Jacobian of the transformation H.

State estimation for X given observations o=(N* : u < t) of N*
0 entails principally solving the filtering problem of calculating the optimal

state estimators
E[Xjjgt1. (28)

15
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No closed form solution is known; however, we have shown that the process

Xt can be calculated recursively, as the solution of a stochastic differential
equation.

Theorem. The state estimators X of (28) are the unique solution of
the stochastic differential equation

d~Xt = [b + .(1 - fkt)] dt + (1 - k,-) [dN; - Akt..dt] . (29)

For extension to general Markov processes with finite state space, see
[1, Chapter 10iJ.

Inference for random fields. Let Y {Y(x); x E Rd} be a stationary
random field on R' with unknown mean

m = EY(x)j

and unknown covariance function

R(y) = Cov(Y(x), Y(x + y)).

Let N = Ex, be a stationary Poisson process on Rd with (possibly
unknown) intensity v, and assume that Y and N are independent. We
stipulate that

* N is observable

" Y is observable only at the points of N.

Thus the observations are the marked point process

N = E Z(x,,Y(x,) (30)

over sets of the form K x R, where K is compact and convex, and the
principal statistical issues are

* Estimation of m and R
0,

* Large sample properties of estimators as 6(K) -+ co

* State estimation for unobserved values of Y.

16
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This model is applicable in a wide variety of situations; its principal prop-
erties are established in [6].

A fundamental question is whether inference is even possible at all; that
is, does the law of S determine that of Y?

Theorem. If Y is continuous in probability, then the probability law
of IN determines uniquely that of Y.

Estimation of the mean value m is straightforward, even if v is unknown:
the appropriate estimator given observation of N over K x R is

fK YdN FK Y(X) (31)

Provided that the covariance function R is integrable, i.e.,

Rd [R(y)[dy < oo (32)

these estimators have the following properties. (Here and below, Lebesgue
measure is denoted by A or simply by dy.)

Theorem. If (32) holds, then the estimators rh of (31) are consistent
in quadratic mean: as 6(K) -- co,

E[(- )2 1 0

and asymptotically normal:

,A (K)(rh - rn) -d N(O, 2),

where
o J f R(y)dy + [R(0) + m2]

In order to simplify the discussion of estimation for R we assume that
i, is known; however, it can be replaced throughout by the estimator i'

N (K) / A(K).
As estimator of R we employ

f? 2 A(K) (x 4 ,- T2 )Y(xg)Y'(x 2 )N( 2)(dxl,dx2 ), (33)

[~ K"
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where N(2)(dxl,dx 2) = N(dxl)(N - ,,)(dx2 ) and WK(x) R '
K

with w a positive, bounded, isotropic density function on R- and the aK

positive numbers satisfying aK - 0 and a'A(K) --, co as 6(K) -+ c.

Weak consistency of the estimators R is implied by the following result.

Theorem. Assume that R is continuous and fulfills (32), and that the

fourth-order cumulant Q of Y exists and satisfies

supf Q(x + x1,x, x 2 )Idx < c.
XI,X2

Then as 6(K) -+ co,
- E[R(x)1 -* R(x) (34)

for each x and

A(K)aCov(R?(x,),/R(x 2 )) - 1(xI ±x 2 )S(XI), (35)

where
S(x) = 2 [Q(, x,x) + 2R(x) + (36)

f w(y)2dy

Asymptotic normality is more intricate.

Theorem. If Y has finite moments of all orders, if for each k the kth

order cumulant function Q(k) satisfies

f Q(k)(z 1 ,...,zk-I) dz1 .. .dzk_, < c,

'"

' if R is twice continuously differentiable and if f lyl 2w(y)dy < co, then as

'K 6(K) -* o,

*A _(K)ad[R(x) - R(x)j N(0,S(x)), (37)

for each x, where S is given by (36).

Additional aspects treated in [6] include

9 Construction of strongly consistent estimators for the set-indexed pro-

* cess Q(A) fA R(x)dx

18

B%



Optimal state estimation for unobserved values of Y, using linear

state estimators

Y(x) = K h(x,z)Y(z)N(dz).

The optimal function h is characterized as the solution to a particular

9 integral equation.

19

ps

..

,I

a19



'%Vork in Progess as of Deceniber 31, 1986

For positron emission tomography - an increasingly important form

of medical imaging - the basic mode', is that observed data constitute a

Poisson process N with intensity function

'(UM f p(ujx)A(x)dx, (38)

where

* p is a known point-spread function

* A is the unknown intensity function of the Poisson process of positron-

electron annihilations.

• The goal is to estimate A, the key quantity of physical interest.

To date we have addressed several crucial mathematical issues, albeit

mainly for the simplified problem of estimating the unknown intensity func-
h,:" tion A of a Poisson process N (i.e., it is not assumed that (38) holds) on

d-dimensional Euclidean space R' . These include the following.

1. Given as data i. i. d. copies Nl,... ,N, of N, define the superposition

N" -- F,= N,; N", a Poisson process with intensity function hA, and

also a sufficient statistic for A. The log-likelihood function (omitting

a term not dependent on A)

L,()= -nf A x)d f Ilog A x -(x,(39)

is, however, not bounded above, and therefore does not admit a max-

imizer.

2. The method of sieves provides an effective means of approaching the
problem: the parameter space of possible intensity functions is re-

stricted in a manner that becomes successively weaker as more data
is obtained. We have shown that maximizers of (39) within the
restricted sets do exist, and satisfy desirable statistical properties.

• Specifically, for each h > 0 we introduce the sieve Sh of functions A
15 of the form A( ) f k X ) F( y ,( 0

'.2
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where h is a smoothing parameter, kh is a kernel and F is a probability

measure on Rd, but is otherwise unrestricted. (Note the resemblance

between (40) and (38)!) We have taken kh to be a circularly symmetric

Gaussian kernel with variance h:

kh(X,y) = (27rh)d/2 exp[-Ix - yl12/2h]. (41)

The smaller h, the rougher A can be. We have established that under

minor restrictions on the kernels, for each n and h there exists a

maximizing element F F(n, h) of L,, which under (40) becomes a

function of F.

3. Computation of the restricted maximum likelihood estimators is far

from straightforward. Based on the similarity between (38) and (40)

and on the 'incomplete data' aspect of the model, we have investigated
use of the EM algorithm of Dempster, Laird and Rubin. The basic

iteration for the algorithm is

f kh(x,Y) N"(dx)
F1(dy) = F°(dy) f f kh(Xz) FO(dz) Nn(Rd) ,  (42)

where F ° is an initial estimate and F1 the new estimate. Although we

have made progress regarding convergence of this infinite-dimensional
iterative algorithm, our results remain incomplete.

4. In order to obtain the statistically desirable property of consistency

for estimators
f(x) f kh(x,y)Fn(dy)

the sieve mesh h must be allowed to depend on the sample size n and

in particular to converge to zero as n converges to infinity. We have

proved the following theorem.

Theorem. If
a) A is continuous and has compact support;

b) fA (x) log(A(x))dxI < co;
then provided that h, n - t s ' for some e > 0,

(nh) - A -, 0 (43)
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as n o, in the sense of almost sure convelgence.

Under weaker conditions and with the sieve mesh permitted to decrease

more rapidly, (43) holds in the sense of convergence in probability.
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