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ABSTRACT .
No

Recent developments and applications of an interactive boundary-layer procedure

for unsteady flows are reviewed. The emphasis is on a model problem corres-

ponding to an oscillating thin airfoil in laminar flows and results are
reported for differett amplitudes and frequencies of oscillation. The use of

the characteristic box scheme, with its stability criterion, are shown to
allow the accurate calculation of reverse flows and the interaction procedure

removes the singularity to allow calculation through r egions of separated flow.

Although the current focus of the interactive boundary-layer procedure has been

on the leading-edge region, it has general applicability and, together with

models for transition and turbulent flows, it can provide the basis for a

method to deal with oscillating airfoils and wings and the rapid movement of

fixed-wing arrangements at angles of attack up to and beyond those of dynamic

stall.

Calculations at high angles of attack indicate that the oehavior of the

unsteady separated leading-edge flow has similarities to steady flows down-

stream of surface corrugations. The use of linear stability theory in the
latter case shows that the location of the onset of transition moves upstream

with severity of corrugation and can move inside the separation bubble. In
practice this means that the bubbles will be shortened and analogy with 2.4

unsteady flows suggests that transition may play an important role and pre-

dlude the existence of the long separation bubbles determined by the laminar-

flow calculations.
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1.0 INTRODUCTION ,.

The experimental investigations of McCroskey, McAlister and Carr [1], Carr,
McAlister and McCroskey [2], Dadone [3], Francis, Keese and Retille [4], Daley

and Jumper [5], Francis and Keese [6], Lorber and Covert [7] and Lorber and

Carta [8] were prompted by the need to provide better understanding of the

flow characteristics of oscillating airfoils. It is important, for example,

that the rotor blades of helicopters do not experience dynamic stall and the

experiments have demonstrated that stall is preceded by a near-surface vortex

associated with separation of the unsteady boundary layer. It is likely that .y

the vortex stems from a laminar separation bubble which, with increasing angle

of attack, grows until it becomes unstable and bursts to form a vortex which

rolls and grows. These experiments have been complemented by a number of

computational investigations which involve the solution of the Navier-Stokes

equations [9], and of the boundary-layer equations sometimes coupled to invis- ."b

cid flow equations as, for example, by Cebeci and Carr [10-12]. As yet, the

calculation methods have not been successful in representing the measurements

and a procedure to provide accurate representation of oscillating airfoil

flows for a wide range of flow conditions including dynamic stall remains to

be developed. A useful review covering all aspects of the subject has been t

provided by Lang [13] and important applications considered by Herbst [14].

The calculation of flow over an oscillating airfoil by an interactive I

boundary-layer scheme makes use of inviscid and viscous flow methods and

couples them by a special procedure. The success and accuracy of this method

depends on the accuracy of each component including the procedure used to link

the inviscid and viscous flow methods. In general the inviscid flow methods

are based on panel methods, such as those of Geissler [15], Maskew and Dvorak

[16] and Teng [17], and their arcuracy and ability to solve flow problems of

great complexity are well known. The viscous-flow methods, on the other hand,

are not so well developed and their application to time-dependent flows has not

received the same interest as to steady flows. The calculation of unsteady

flows with large regions of flow reversal has bten confined mostly to model

prnblems involving flows such as the laminar flow over a circular cylinder

impulsively started from rest. The emphasis has been on the solution of the
boundary-layer equations for a prescribed pressure distribution and explora-

tion of the relationship between flow singularity and separation. In spite of 1
l ¢'3



the apparent simplicity of this model problem, many difficulties were encount-

ered and some remain to be solved.

The calculation of boundary layers on an oscillating airfoil poses some prob-

lems that are different than those considered in other unsteady boundary-layer

flows. Perhaps the most important of these is the calculation of the upstream

boundary conditions in the (t,y) plane at some x = x which are needed in0

the solution procedure. Contrary to steady flows where the streamwise veloc-

ity u is identically zero across the shear layer at the stagnation point, this

is not the case in time-dependent flows; flow reversals occur due to the move-

ment of the stagnation point and cause the locus of zero u-velocity to vary

with space requiring the use of a special numerical method. It should be

emphasized that the problem of the upstream boundary conditions has a physical

counterpart and is not solely numerical. The evolution of an unsteady flow at

high angles of attack can involve the formation of a vortex in the region

close to the leading edge and is associated with the onset of dynamic stall.

Thus it is imperative that calculations of the flow in the upstream region be

accurate.

The difficulties in the solution of the time-dependent boundary-layer equa-

tions depend on whether or not there is flow reversal across the boundary

layer. In its absence, there are several numerical methods that can be used

to solve the equations including those of Crank-Nicholson [18] and Keller [19].

In the presence of flow reversal, however, it is necessary to use a scheme

like the characteristic box method which is based on the solution of time-

dependent boundary-layer equations along the local streamlines as described by

Keller [20] and Cebeci [21].

This scheme allows the step sizes in the time and streamwise directions to be

automatically adjusted to ensure that the region of backflow, as determined by

the local streamlines, does not violate a stability condition like that of

Courant, Friedrichs and Lewy (C'L). Although the zig-zag scheme of Krause et

al. [22] can also be used for this purpose, it can be inaccurate in regions of

large flow reversal since the orientation of numerical mesh is chosen a priori,

as discussed by Cebeci [21] and Cebeci, Khattab and Schimke [23].

.42
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The coupling between inviscid and viscous flow methods has attracted even less

attention than the above and most work has again been directed to the develop-

ment of methods for steady flows. Two coupling procedures have been proposed

and that suggested by Veldman [24] offers greater flexibility than that of

LeBalleur [25] and Carter [26] and has been developed for two-dimensional air-

foils by Cebeci and his associates [27]. It has also been extended to three-

dimensional flows, albeit with strip theory and quasi-three-dimensional

approximations, including flow over swept wings [28], and leading-edge separa-

tion bubbles on thin wings [29].

The flow singularity in steady flows corresponds to the vanishing of the wall

shear and the boundary-layer equations can be solved routinely with a pre-

scribed pressure distribution up to this point; there are no questions regard-

ing the accuracy of the solutions. The u-velocity does not exhibit flow

reversals across the layer and the inaccuracies resulting from the rapid varn-

ation of flow conditions near the separation location can be accounted for by

taking small steps in the streamwise direction. It is also known that with

interaction, that is computing the external velocity as part of the solution,

this singularity can be removed and separated flows can be calculated for both

laminar and turbulent flows. Time-dependent flows follow a similar pattern

and concentration on the "proper" definition of flow singularity or separa-

tion, ensures that any singularity can be removed by interaction. This

requires that the singularity is identified and that the region of reverse "aw

flow, which usually precedes the singularity at separation of an unsteady .

flow, be calculated accurately. Inaccuracy in the calculation of the reverse

flows can lead to breakdown of the solution procedure and the erroneous

assumption that it is caused by a singularity. An interactive boundary-layer

method may not remedy this situation since its success depends on the accuracy

of the solutions of the boundary-layer equations. We shall discuss this point

further in this report.

'
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2.0 MODEL PROBLEM

ical procedure designed to overcome the problems outlined above. Thus, with

support from the Air Force Office of Scientific Research, AFOSR, we have

addressed fundamental aspects of the problem including the determination of

upstream boundary conditions, the relationship between singularity and sepa-

* ration, and the development of an interactive procedure. To overcome the

*corresponding difficulties, we have developed a novel method to deal with the

leading-edge region (Section 3.1), an accurate numerical method for the region

of reverse flow (Section 3.2) and an interactive procedure which, together

with a numerical stability requirement, have allowed us to study the nature of

the singularity and to provide fundamental understanding of the mechanisms of

the region of recirculating flow near to the leading edge of an oscillating

airfoil (Section 3.3)~. We have also made. use of the linear stability theory

and analogy between unsteady flow at high angle of attack and steady flow over

a surface with corrugation to conjecture that long separation bubbles obtained

* for laminar flows may not exist in practice. It appears likely that transi-
tion will occur within these bubbles with consequent reduction in their length.

This is discussed in Section 4.

To accomplish these objectives, we have considered the model problem of lami-

nar flow over a thin airfoil with a thickness ratio of y (E1b/a) at a reduced
angle of attack .The external velocity for a steady flow in this case can

0
be c':-duced from inviscid flcw to be

ee u0l

where the parameter is related to the surface distance s by

s =ay
2  (1 + d. /2  (2)

*Equation (2) is extended to unsteady flows by introducing time dependence in
* the form

4a



Ue(k"t) (3)

where S

keff t ( A sIlnwt)

The resulting flow contains the essential ingredients of the leading edge-I

region of an oscillating airfoil including the moving stagnation point with

consequent reverse flows, the possibility of boundary-layer separation and

reattachment dnd their dependence upon the amplitude of oscillation, A, the

frequency w and distance from the leading edge, s. It also permits compari

son with the equivalent steady flows for which calculations have been reported

by, for example. Cebeci, Stewartson and Williams [30].

The coupling between the inviscid and viscous flows is accomplished by writing

the edge boundary condition in the boundary-layer equations as the sum of the
0

inviscid velocity u ( ,t) and a perturbation velocity 6u (k,t),
e e

that Is,

at y = 6 u (k,t) = u( ,t) + 6u ( ,t) (4)
e e ep

and 6u ( ,t) is obtained from the Hilbert integral given by
e

61 t)bd 6)doUe(k ,t) = d s (ued*) - (5)
sa

with the interaction region confined between sa and sb and with u° (,t) givene venby Eq. (3). Further details can be found in Ref. 30.

The emphasis of the present work has been on the leading-edge region and makes

use of an expression for the freestream boundary condition which has been

obtained by solution of the inviscid-flow equations. The interactive

boundary-layer method is, however, general so that it can involve any solu p
tions to inviscid-flow equations and an entire airfoil with laminar, transi

tional and turbulent flow.

5i ji
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3.0 ACHIEVEMENTS

The following three subsections highlight results obtained, respectively, with

the special procedure to deal with the stagnation point, to show the import-

ance of numerical accuracy in regions of reverse flow and to report and dis-

cuss the effects of unsteadiness on recirculation bubbles.

3.1 Moving Stagnation-Point Problem

The numerical difficulties associated with the moving stagnation point exist

in a number of flows including those associated with turbomachinery, as dis-

cussed by Cebecl, Simoneau and Platzer [31]. Thus the wakes generated Dy mov-

Ing rotor blades lead to movement of the stagnation points on the downstream

of stator blades. An accurate numerical scheme has been developed to solve

this problem and, as described by Cebeci et al. [31], makes use of the charac-

teristic box scheme in an Iterative manner to deal with the flow reversals.

figures 1 and 2 show calculated results for the model problem with two circu-

lar frequencies, w = w/30, */3, and o = 1, A = -0.5. They allow examination

of the effect of frequency on the calculated velocity profiles in the vicinity

ot the stagnation point. Figure I shows that the locus of the u-velocity on

time lines t v/2 and v is essentially the same as in the steady case and
as a result there are no flow reversals in the velocity profiles. However, as

cdn be seen from Fiqure 2, flow reversals begin to occur around the stagnation
Doirnt with Incre-ase )n the frequency to w/3 and become more prolonged as time

i - 0 55 -0 50-0 45 u o  z--1 10 -1.05-1.0 -0.95 u/uo
(a) (b)

- -1 55-1 50-145 z--105 -10 -01S -0.90
10 (d)

Flq Varatyfon 0 the velocity protiles for w z %/30 near the stagna-
t on egion for dO fferent values of ,_t, (a) 90, (b) 180, (c) 270,

*%'-.' . -. ... o~ -3 ". . . ' . .. * . ". 6J. . . - - - * - - € #F: •6' ' -...o'.' ." " .% " ." ',. ." % ' .'/*, , "r % %- ' --% -



2 z-0.50u -0.40

2--1
4
0 -1.30 -1.20 UA% -1.10 -1.0

A D~

Z -1 80 -1.70 -1.60 -1.50(c) U/U

2-1.0 -0.90 -0.80
(d) 1

Fig. 2. Variation of the velocity profiles for w = w/3 near the stagna-tion region for different values of wt, (a) 90, (b) 180, (c) 270,

(d) 360. The dashed line indicates the locus of zero u-velocity.

increases to wt = 3w/2. At wt = 2w, the region of flow reversal is reduced

* but is not zero as it was at wt 0.

A 3.2 Large Flow Reversals and the Need for Numerical Accuracy

Our calculations for the model problem were arranged to parallel those reported

by Cebeci [21] for the flow over a circular cylinder. Thus the zig-zag and

the characteristic box schemes were used with time and distance steps chosen

arbitrarily and the calculations repeated with values in agreement with a sta-

bility criterion. The results of Fig. 3 for w = 0.10 were obtained with the

zig-zag box scheme by Cebeci, Khattab and Schimke [32] for a At-spacing
specified such that A = 0.01 up to I = 1.7, At= 0.005 for 1.7 < t < 4 and

A 1 =0.01 for 4 < t < 8; the time steps At were 10 degrees for 0 < wt < 2600,n

5 degrees for 2600 < wt < 2950, and 1.25 degrees for 2950 < wt < 3600. The

calculations broke down at wt = 3100, suggesting flow separation at this

location.

7
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Fig. 3 shows that the variation of the dimensionless displacement thickness

P' is generally smooth except in the neighborhood of = 2.12 and for wt

= 308.75 ° . Here R Is Reynolds number based on nose radius and is defined by

(2au./v). The first sign of irregularity Is the steepening of the slope of

of 6' when wt = 3000 and a local maximum of 6' occurs at =2.12 when wt

308.750. When the same results were plotted for a displacement velocity, (d/dE)

(u 6'), we observed steepening of the displacement velocity as the peak
e

move from E = 2.125 to 2.08 with wt changing from 300 to 308.75 degrees.

The calculations which led to Fig. 3 were repeated with the characteristic box

scheme using the same coarse variations of At and AE and the results
n i a

were identical to those obtained with the zig-zag scheme up to wt = 2800. At

wt = 282.50, the solutions of the zig-zag scheme were smooth and free of

wiggles but those of the characteristic box scheme exhibited oscillations in
I

f which led to their breakdown. The solutions with the zig-zag scheme,w
however, continued without numerical difficulties until wt = 3100, where

oscillations appeared and led to the breakdown of the solutions at the next
atime step.

The characteristic box was used subsequently with values of AE fixed as

before and with values of At determined in accord with the stability
n

requirement as discussed by Cebeci et al. [23]. This procedure avoided the

6

4 -- 308.75
3075

\'305

2 ' 270

2 I

00 1 2 3

Fig. 3. Variation of: displacement thickness, 6' with for the oscillat-

ing airfoil, A = 1, w = 0.1, obtained with the zig-zag scheme.
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breakdown of the solutions and, as can be seen from Fig. 4, the maximum value Ar

of the stability parameter 0 increases considerably with wt so that the

solutions required correspondingly smaller values of the time step. It is

interesting to note that the wall-shear distributions of Fig. 5 are uninflu-

enced by the mesh at wt = 280* and 310 * but, for wt > 310 *, the coarse

mesh leads to large values of 0 and breakdown of the solutions.

Figure 6a shows the distributions of displacement thickness for values of wt

from 2600 up to 3600 and completes the cycle. The results up to 3000 were

identical with those of Fig. 3 with rapid increase of the displacement thick-

ness corresponding to the increasing extent of flow reversal, as shown by the

wall-shear distributions of Fig. 6b.

It can also be seen from this figure that the maximum displacement thickness

and minimum wall shear move upstream with increasing wt for values of wt

up to 324.50; this feature was also observed in the calculations performed for

the circular cylinder (21]. The results obtained with the zig-zag scheme and

values of At determined by the characteristic scheme for the oscillatingn

airfoil were identical to those discussed above, and similar correspondence

was obtained with the calculations performed for the circular cylinder.

0.6

0,5
SI

'-COARSE MESH

0.4 J
PMAX

II0.3 /

II0.! '-FINE MESH

60~iO 28O 300 320 340 360

A(deg)

Fig. 4. Effect of the coarse and fine meshes on the variation of the '

stability parameter with wt.
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-!8
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-0.20 

-
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Fig. 5. Effect of the coarse and fine meshes on the variation of the (a)

stability parameter 1, and (b) wall shear fw with I.
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Fig. 6. Results obtained with the characteristic box scheme for w = 0.1.

V jha ion of (a) displacement thickness * and (b) wall shear f"

10 
:%

%' 

,



3.3 Effects of Unsteadiness and Interaction on Separated Flows

Figure 7 shows distributions of wall shear for frequencies w = 0.01 and

0.001. As expected, the critical value of the reduced angle which corresponds

to separation, is smaller than that for the higher frequency of Section 3.2

and closer to that of the steady state, 1.16. For w = 0.01, the

breakdown of the solutions occurs at wt = 2260, which corresponds to an

effective reduced angle of k -- 1.360; for w = 0.001, the correspond-

ing values are wt = 204 ° and 1.203. We also note from Figs. la and 7b that

the flow is a little unsteady even at these frequencies, and the solutions do

not break down with the appearance of flow reversal, which increases in extent

as w changes from 0.001 and 0.01.

J
The above results, and those of the previous subsection, were obtained without

interaction between the solutions of inviscid-flow and boundary-layer equa-

tions. In contrast, the results of Fig. 8 were obtained with interaction and

were performed in the following way. For all values of time with wt ranging

from 0° to 3600, the standard method and the leading-edge region procedure

discussed in Section 3.1 were used to generate upstream boundary conditions at

a short distance from the leading edge, -0.5. With these conditions and

for each value of wt, the inverse method was used to calculate the unsteady

flow from = 0.5 to 10, for the specified value of Reynolds number and

thickness ratio of y -0.1. Since the system of equations is now elliptic,

0.15 - 0.15

0.10 -0.10-

0.05 0.05 2 5 Ad203
203.S -

1 4 O

(4a (b)o

211
-.05 219-

222
22"4
225

-0.10 -

-0.15L

(a) (b)

Fig. 7. Variation of wall shear fw" with for (a) w =0.01, (b) w =0.001.
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0.05- 0.05

0 40

219 
26

23221.-5236 214.25238 2 14.8 .7

-0.10 
-0.10 

%

-0.15 -0.15L

-0.20

(a) (b)

Fig. 8. Effect of interaction on the variation of wall shear fw with
for (a) w x 0.01, (b) w = 0.001. R = 104.

sweeps in the t-direction were necessary to achieve a converged solution;

around three sweeps were required where flow reversal was encountered and a

single sweep sufficed where it did not. It is to be exptcted that the value

of R will influence the number of sweeps and, since it is linked to physical

parameters, will affect the singularity and the size of the bubble.

4Figure 8 shows the results for w = 0.01 and 0.001 with R 10 . They are

nearly the same as those obtained by the standard method as shown in Fig. 7

prior to flow reversal where the influence of the Reynolds number is small and

increase after flow reversal. In the case of w = 0.001, for example, the

standard method predicts flow reversal around keff = 1.19 (see Fig. 7) and

with interaction (Fig. 8) this effective angle is between 1.219 and l.2?4.

The maximum negative value of the wall shear parameter f obtained with the
w

standard method is around -0.03 at eff 1199 and may be compared with the

maximum value of f of -0.14 at keff 2 1.286 obtained with interaction. As

expected, the interaction allows the calculations to be performed at higher

angles of attack than those achieved with the standard method. For w - 0.001,

12



the maximum aeff for which calculations can be performed with the standard

method is 1.199 with breakdown occurring at e = 1.209; the corresponding
ef f

values with interaction are 1.286 and 1.287. Comparison of wall-shear results

with both procedures and w = 0.001 indicates that the extent of the recircu-

lation region A is around 0.5 for the standard case, and around 2.5 for the

interactive case. The solutions do not have a singularity in the former case

but do contain flow reversals and this suggests that time-dependent flows can

be calculated without using an inverse procedure. As the angle of attack

exceeds e - 1.199 for w = 0.001, a singularity develops and requires an
eff-

inverse procedue as in two-dimensional steady flows. This procedure allows

the calculation of larger regions of reverse flow where the flow is now

separated.

We see a similar picture with the greater unsteadiness corresponding to w =

0.01, for which the standard method allows calculations up to an effective

angle of attack of 1.354 (Fig. 7a), a value considerably higher than 1.199

obtained at w = 0.001. The first flow reversal occurs shortly after

eff = 1.294 and breakdown occurs at 1.360 with maximum negative wall
ef f ~ef f%

shear values of -0.14 at Eeff - 1.354 and -0.035 at eff = 1.315. The extent

of the maximum reverse-flow region is now 1.5, considerably larger than for

w = 0.001, and indicatel that the more unsteady nature of the flow produces

a bigger region of reverse flow free from singularities. For this value of
"N

w, the interactive scheme increases the value of for which solu-

tions can be obtained to 1.424 with breakdown occurring shortly after this

value at 1.428 (see Fig. 8b). The first flow reversal occurs after e =
ef f

1.315 with maximum negative wall shear equal to -0.19 at = 1.424,
eff

and the extent of the recirculation region has now increased by about 30%.
I,

Comparison of maximum wall shear values, f , at a similar value of Eeff indi-
cates that those computed with the interactive scheme are lower than those

with the standard scheme so that, for example, the interactive scheme gives

(f Wmax - 0.04 at keff = 1.36 compared to -0.14 at eff = 1.354 with the

standard method (Fig. 7a).

Since the calculations began at wt = 0 with solutions obtained by solving

steady-state equations, it was necessary to coniirm the extent of their influ-

ence. As a consequence, calculations were performed for a second cycle and

13
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gave results at wt 7200 which were identical to those at wt =3600, con-

firming that the flow is cyclic. Examination of the results showed that the

influence of the initial conditions die out rapidly and have no influence on

* the solutions presented here.

The results obtained with w - 0.001 can usefully be compared with the steady-
state results of Cebeci et al. [30] shown in Fig. 9. We might expect that the

small unsteadiness associated with this frequency will lead to results very

* similar to those of steady state. Inspection of Figs. 7b and 9 shows that

although this is correct in general terms, the answers are quantitatively

different. As can be seei . the maximum effective angle at which solutions can

be obtained is greater in the unsteady case by some 7%. There are differences

in the two calculation procedures but it is unlikely that they are responsible

for this difference. On the other hand, it is possible that the difference in

the negative wall shear values may have been influenced by the use of the FLARE

approximation in the steady-state solutions. Nevertheless, the unsteady nature

* of the flow with w =0.001 is clear, in spite of this very low reduced fre-

quency.

0,15-

020 1

0.10-223

0.05-I~

1 2 3 6 7 a .99

-0.05 a

Fig. 9. Effect of interaction on the variation of wall shear parameter
fW for a steady flow at R 1 04.
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4.0 CONJECTURES; SEPARATION BUBBLES AND TRANSITION

An important conclusion from the results of Section 3.3 is that the problem of

the singularity, discussed in several papers including that of Cebeci et al.

[32]. has been overcome by the combined use of an interactive boundary-layer

method and a novel numerical scheme with its stability requirements fulfilled.

This combination had allowed calculations to be performed but there remains a

concern about the physical realism of the long regions of reverse flow pre-

dicted in some circumstances. Experiments suggest that leading-edge regions

of reverse flow tend to be small with transition to turbulent flow making dif-

ficult the existence of long bubbles. This concern is examined by Cebeci [33]

in the context of steady flows. It is briefly described in the following

paragraphs and the implications of the results for unsteady-flow calculations

considered.

As a steady-flow counterpart of the above flows, calculations were performed

for the thin airfoil as a function of angle of attack and for the same thick-
ness ratio y (=-0.) and were reported by Cebeci et al. [30] and Cebeci [33]

6 5
for Reynolds numbers of 10 and 10 , respectively. The corresponding dis-

tributions of f are shown on Fig. 10 and have the same form as those
presented for the oscillating airfoil. At the highest angle, the separation

bubble tends to grow with the number of numerical iterations and suggests that

the bubble is unstable.

The large separation bubbles calculated for steady flow seem unrealistic and,
5

at least for the 10 Reynolds number where transition is certain to occur

downstream of the bubble, there is the possibility that the real flow cannot

remain laminar in the region of interest and that this may affect the bubble

length. There are, however, no experimental data for airfoils with which to

test the possibility and recourse has been made to a different flow for which

information of transition is available and which has close similarities to the

leading-edge flow.

The experiments of Fage [34] were performed with a series of bumps on a plate

and provide information of the location of transition downstream of a region

of separated flow caused by the bump and the consequent adverse pressure

15
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Fig. 10. Separation bubbles and their breakdown - explanation from steady
flow (i.e. w = 0), R = 105.

II

gradient. Figure 11 shows the bump and a series of distributions of f
w

calculated with the interactive procedure: more extensive results have been

reported by Cebeci and Egan [35]. The shapes of the fw distributions are
similar in form to those of Figs. 8 and 9, downstream from the beginning of

the favorable pressure gradient and lend support to the idea that conclusions

based on the bump flows can be extrapolated to those on steady and unsteady

thin airfoils.

The calculations which led to the results of Fig. 17 provided velocity pro-
n

files and those, in turn, were used in the e -method of Smith and Gamberoni

[36] and of Van Ingen [37] to calculate the location of transition shown on

16
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Fig. 11. Accuracy of stability approach to transition. Steady flow over
bumps, data of Fage [34].

the figure. This method solves the Orr-Sommerfeld equation for given velocity

profiles and computes the amplification rates to determine the location of the

onset of transition. As can be seen from Fig. 11, the calculated values of

the location of transition agree well with measured values and indicate a clear

trend for transition to move upstream with increase in the height of the bump

and, therefore, with the strength of the adverse pressure gradient and length

of the region of separation. In the case of the largest bump shown, the tran- Cl
sition location is inside the bubble and, if the interactive boundary-layer

calculations were to be repeated with transition specified at this location, "

the bubble would be correspondingly reduced in length.

17



It can be conjectured that the separation bubble would be further shortened as

the adverse pressure gradient is increased in strength and transition moves

further upstream. This result can be extrapolated to the steady thin-airfoil

flows discussed above and their unsteady counterpart. Thus, it seems likely

that the long separation bubbles calculated above are unrealistic and in

practice would be shortened by transition from laminar to turbulent flow.
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5.0 CONCLUDING REMARKS

A series of contributions have been made to the understanding of the flow

characteristics of the leading-edge region of an oscillating airfoil. They

required the development and use of a calculation method which involves the

accurate solution of time-dependent boundary-layer equations and their inter-

action with solutions to inviscid-flow equations. The need for accurate calc-

ulations of regions of reverse flow, including those associated with the mov-

ing stagnation point, demanded the use of the characteristic box scheme and

the fulfillment of an associated stability requirement. Although those formu-

lated investigations have been made in relation to the model problem of laminar

flow in the leading-edge region of a thin airfoil, the calculation method is

general and can readily be extended to permit the calculation of the flow

around an oscillating airfoil.

Among the specific conclusions which can be drawn are the following:

1. The accuracy of the results obtained from the solution of the boundary-

layer equations has been examined with emphasis on regions of flow rever-

sal and separation where the characteristic box scheme is used. Attempts

to improve accuracy by ad hoc changes to the finite-difference mesh failed

and revealed the need for a procedure which would automatically guarantee

accuracy by the selection of an appropriate mesh. This was achieved

through a stability criterion, similar to that of Courant, Friedrichs and

Lewy [38]. The combination of this requirement and the characteristic

box scheme led to accurate solutions and showed that the mesh require-

ments were extremely severe in the region of large flow reversals.

2. Calculations performed for a range of reduced frequencies from 0 to 0.1

show that increased unsteadiness allows results to be obtained at higher

angles of attack before the solutions break down and that, in the case of

the highest frequency, there was no breakdown. The calculations with the -

standard method led to regions of flow reversal whicoi were limited in

their extent by the singularity except at the highest frequency. The

interactive procedure removed this singularity and resulted in larger

regions of flow reversal which involved separation at higher angles of

attack.

19
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3. The unsteady nature of the flow at the highest frequency allowed the

calculation of large regions of flow reversal and it is expected that yet

higher frequencies will lead to even larger regions of flow reversal.

This in turn will permit calculations to be performed at larger angles of

attack where the occurrence of the singularity will require the use of

the interactive procedure. The gains in angles of attack are again likely

to be limited by the ability of the laminar flow to sustain separation

bubbles and results obtained from the application of linear stability

theory suggest that the location of the onset of transition moves upstream

with increasing angle of attack and extent of the separation bubble so

that it can occur within the bubble. In practice, this would lead to the

curtailment of the region of separated flow and the development of a turb-

ulent boundary layer. Support for the accuracy of the calculations of the

onset of transition is afforded by comparison of calculated results with

measurements in the steady flow over bumps which give rise to distribu-

tions of the wall-shear parameter similar to those of airfoil flows.

The research which led to the preceding conclusion is fundamental in nature but

has practical implications which should be emphasized. The calculation method

has been applied to a model problem and shown to be able to represent unsteady

laminar flows with regions of flow reversal and separation. It can equally be

applied to calculate the flow over complete airfoils subjected to cyclic or

other time-dependent boundary conditions. The additional features to allow

these extensions already exist so that, for example, turbulence models have

.. been embodied in a steady-state version of the method and have been shown to

- represent boundary-layer and wake flows with accuracy close to that of the test

measurements; steady-state calculations of transitional flows, including those

with flow separation, have been examined and shown to be calculable; and a

foundation has been laid for the calculation of flows around components of

aircraft. With this catalogue of achievements, it is recommended that work be

carried out to develop the method further and to apply it to problems includ-

ing those associated with helicopter blades and the maneuverability of air-

craft such as the X-31 so that the merits of difierent designs can be assessed.

* .It is particularly appropriate that it be used to study flows associated with

angles of attack close to those of static and dynamic stall.
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* * . . .- . '



6.0 REFERENCES .9

1. McCroskey, W.J., McAlister, K.W., and Carr, L.W., "Dynamic Stall Experi-
ments on Oscillating Airfoils," AIAA Journal, Vol. 14, Jan. 1976, pp.
57-63.

2. Carr, L.W., McAlister, K.W. and McCroskey, W.J., "Analysis of the Devel-
opment of Dynamic Stall Based on Oscillating Airfoil Experiments," NASA
TN 0-8382, 1977.

3. Dadone, L.U., "Two-Dimensional Wind Tunnel Test of an Oscillating Rotor
Airfoil," NASA CR-2914, Dec. 1977.

4. Francis, M.S., Keese, J.E. and Retelle, J.P., Jr., "An Investigation of
Airfoil Dynamic Stall with Large Amplitude Motions," FJSRL-TR-83-0010,
F.J. Seiler Research Labs, Air Force Academy, Colorado Springs, 1983.

5. Daley, D.C. and Jumper, E.J., "Experimental Investigation of Dynamic
Stall for a Pitching Airfoil," Journal of Aircraft, Vol. 21, Oct. 1984,
pp. 831-832.

6. Francis, M.S. and Keese, J.E., "Airfoil Dynamic Stall Performance with
Large Amplitude Motions," AIAA Journal, Vol. 23, Nov. 1985, pp. 1653-1659.

7. Lorber, P.F. and Covert, E.E., "Unsteady Airfoil Boundary Layers - Exper-
iment and Computation," in Numerical and Physical Aspects of Aerodynamic
Flows III (T. Cebeci ed.), Springer-Verlag, N.Y., 1986, pp. 235-251.

8. Lorber, P.F. and Carta, F.O., "Unsteady Stall Penetration Experiments at
High Reynolds Number," United Technologies Research Center ReportR87-956939-3, Apr. 1987 (to be released as a technical report by the U.S.

Air Force Office of Scientific Research).

9. Shamroth, S.J., "A Turbulent-Flow Navier-Stokes Analysis for an Airfoil
Oscillating in Pitch," in Unsteady Turbulent Shear Flows (R. Michel, J.
Cousteix and R. Houdeville, eds.), Springer-Verlag, 1981, pp. 185-196.

10. Cebeci, T. and Carr L.W., "Prediction of Boundary-Layer Characteristics
of an Oscillating Airfoil," in Unsteady Turbulent Shear Flows (R. Michel,
J. Cousteix and R. Houdeville, eds.), Springer-Verlag, 1981, pp. 145-158.

11. Cebeci, T. and Carr, L.W., "Calculation of Boundary Layers Near the Stag-
nation Point of an Oscillating Airfoil," NASA TM 84305, 1983.

12. Cebeci, T. and Carr, L.W., "An Interactive Boundary-Layer Method for
Oscillating Airfoils: Status and Prognosis," NASA Report in preparation.

13. Lang, J.D., "Unsteady Aerodynamics and Dynamic Aircraft Maneuverability,"
AGARD CP-386, Unsteady Aercdynamics - Fundamentals and Application to
Aircraft Dynamics, Nov. 1985.

14. Heibst, W.B., "Supermaneuverability," Proceedings of the AFOSR-FJSRL-

University of Colorado Workshop on Unsteady Separated Flows, U.S. Air
Force Academy, Colorado Springs, Aug. 1983.

21

- .. , ....-. ... .. .*-..-.% ... -.- .- . . -- .-..-.-.....-.. ..-. ....... -..... ..



flw Wr WV WWW 'jVVVWL

15. Geissler, W., 'Unsteady Boundary-Layer Separation on Airfoils Performing
Large Amplitude Oscillations - Dynamic Stall,' AGARD Symposium on Unsteady
Aerodynamics, Fundamentals and Applications to Aircraft Dynamics,
Gottingen, Germany, 1985.

16. Maskew, B. and Dvorak, F.A., "Prediction of Dynamic Separation Character-
istics Using a Time-Stepping Viscid/Inviscid Approach," in Numerical and
Physical Aspects of Aerodynamic Flows III (T. Cebeci, ed.) Springer-
Verlag, N.Y., 1986, pp. 380-396.

17. Teng, N.G., "The Development of a Computer Code (U2DIIF) for the Numeri-

cal Solution of Unsteady, Inviscid and Incompressible Flow Over an Air-
foil,' M.S. Thesis, Department of Aeronautics, Naval Postgraduate School,
Monterey, CA, 1987.

18. Crank, J. and Nicolson, P., "A Practical Method of Numerical Evaluation
of Solutions of Partial-Differential Equations of the Heat-Conduction
Type," Proceedings of Cambridge Philosophical Society, Vol. 43, 1947, p.
50.

19. Keller, H.B., *Accurate Difference Methods for Two-Point Boundary-Value
Problems," SIAM Journal of Numerical Analysis, Vol. 11, 1974, pp. 305-320.

20. Keller, H.B., "Numerical Methods in Boundary-Layer Theory," Annual Review
of Fluid Mechanics, Vol. 10, 1978, pp. 417-433.

21. Cebeci, T., "Unsteady Boundary Layers with an Intelligent Numerical

Scheme," Journal of Fluid Mechanics, Vol. 163, 1986, p. 129.

22. Krause, E., Hirschel, E.H. and Bothman, Th., "Die Numerische Integration

der Bewegungsgleichungen Dreidimensionaler Laminarer Kompressibler
Grenzschichten," Bond 3, Fachtagung Aerodynamic, Berlin; D6LR-Fach-
linchreike, 1968.

23. Cebeci, T., Khattab, A.A. and Schimke, S.M., "Separation and Reattachment
Near the Leading Edge of a Thin Oscillating Airfoil," to be published in
Journal of Fluid Mechanics, 1988.

24. Veldman, A.E.P., "New Quasi-Simultaneous Method to Calculate Interacting
Boundary Layers," AIAA Journal, Vol. 19, 1981, p. 769.

25. LeBalleur, J.C., "Couplage visqueux-nonvisquex: Methode Numerique et
Applications Aux Ecoulements Bidimensionnels Transoniques et Super-
soniques," Le Recherche Aerospatiale No. 1978-2, 1978, p. 65.

26. Carter, J.E., "A New Boundary-Layer Inviscid Interaction Technique for
Separated Flow," AIAA Paper 79-1450, 1979.

27. Cebeci, T., Clark, R.W., Chang, K.C., Halsey, N.D. and Lee, K., "Airfoils
with Separation and the Resulting Wakes," Journal of Fluid Mechanics,
Vol. 163, 1986, p. 323.

28. Cebeci, T., Sedlock, D., Chang, K.C. and Clark, R.W., "Applications of
Two- and Three-Dimensional Interactive Boundary-Layer Theory to Finite
Wings with Flow Separation," AIAA Paper No. 87-0590, 1987.

22

I

,

~%



29. Cebeci, T., Kaups, K. and Khattab, A.A., "Separation and Reattachment
Near the Leading Edge of a Thin Wing," IUTAM Proceedings, London, Aug.
1986.

30. Cebeci, T., Stewartson, K. and Williams, P.G., uSeparation and Reattach-
ment Near the Leading Edge of a Thin Airfoil at Incidence," AGARD CP-291,
Paper 20, 1981.

31. Cebeci, T., Simoneau, R.J. and Platzer, M.F., "A General Method for
Unsteady Heat Transfer on Turbine Blades," NASA CR in preparation.

32. Cebeci, T., Khattab, A.A. and Schimke, S.M., "Can the Singularity be
Removed in Time-Dependent Flows?," in Workshop on Unsteady Separated Flow
(M.S. Francis and M.W. Luttges, eds.), Colorado Springs, 1984.

33. Cebecl, T., "Instability of Laminar Separation Bubbles: Causes and
Effects," paper In review.

34. Fage, A., "The Smallest Size of Spanwise Surface Corrugation which
Affects Boundary-Layer Transition on an Airfoil," R&M No. 2120, Brit.
A.R.C., 1943.

35. Cebeci, T. and Egan, D., "The Effect of Wave-Like Roughness on Transi-
tion," paper in preparation.

36. Smith, A.M.O. and Gamberoni, N., "Transition, Pressure Gradient and Sta-
bility Theory," Proc. IX Intl. Congress Applied Mechanics, Brussels, 1956.

37. Van Ingen, J.L., "A Suggested Semi-Empirical Method for the Calculation
of the Boundary-Layer Transition Region," Report No. VTH71, VTH74, Delft,
Holland, 195b.

38. Isaacson, E. and Keller, H.B., Analysis of Numerical Methods, John Wiley,
N.Y., 1966.

,

_W

23

-- -r V -



Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1I. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

Unclassified
2& SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
___Approved for public release; distribution

2b. OECLASSIFICATION/DOWNGRADING SCHEDULE unl imi ted

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

MDC K0535 AF0 R1 . ,"X

6& NAME OF PERFORMING ORGANIZATION 5b. OFFICE SYMBOL 7s, NAME OF MONITORING ORCANTZATICf I 9
Douglas Aircraft Company jfappicable) Air Force Office of Scientific Research

6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

3855 Lakewood Blvd. Bolling AFB
Long Beach, CA 90846 Washington, DC 20332

Be. NAME OF FUNDING/S.PQNSPRING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION Al r Force (if applicable)

Office of Scientific Research AFOSR/NA

Sc. ADDRESS ICily. State and ZIP CodeI 10. SOURCE OF FUNDING NOS.

Building 410 PROGRAM PROJECT TASK WORK UNIT

Bolling AFB ELEMENT NO. NO. NO. NO.

Washington, DC 20332 V"
11. TITLE Incude Security Classification) OSCILLATING ( 7 c

AIRFOILS - ACHIEVEMENTS AND CONJECTURES (U)
12. PERSONAL AUTHOR(S)

Tuncer Cebeci
13s. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo.. Day) 15. PAGE COUNT

TAG411,. FROM 10/86 TO 9/87 87 Sept 26
16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reuerse if necessary and identify by block number)

FIELD GROUP SUB. GR nst dy l Separ4tion, Reattichment
FIEL GRO PciSU.G ng' lrfOil Transition, Turbu ence

7l gu ar i y
19 T U Interactive Boundary-Layer Theory

19 ABSTRACT 1ConilnUt on reverse if neceuay and identify by block number)

Recent developments and applications of an interactive boundary-layer procedure for
unsteady flows are reviewed. The emphasis is on a model problem corresponding to an
oscillating thin airfoil in laminar flows and results are reported for different ampli-
tudes and frequencies of oscillation. The use of the characteristic box scheme, with its
stability criterion, are shown to allow the accurate calculation of reverse flows and the
interaction procedure removes the singularity to allow calculation through regions of sep-
arated flow. Although the current focus of the interactive boundary-layer procedure has
been on the leading-edge region, it has general applicability and, together with models
for transition and turbulent flows, it can provide the basis for a method to deal with
oscillating airfoils and wings and the rapid movement of fixed-wing arrangements at angles
of attack up to and beyond those of dynamic stall.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITEO 91 SAME AS RPT. C DTICUSERS Unclassified

22s. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c. OFFICE SYMBOL

Dr. James D. Wilson ,,clde Arcode)(202) 767-4935 AFOSR/NA

D FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE. Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

%" ".. :. ,.% . , ,'' .. ,., ....- : :-.. ...... j



Unclassified
SECURITY CLASSIFICATION OF THIS PAGE 0

Calculations at high angles of attack indicate that the behavior of the unsteady separated
leading-edge flow has similarities to steady flows downstream of surface corrugations. The m

use of linear stability theory in the latter case shows that the location of the onset of
transition moves upstream with severity of corrugation and can move inside the separation
bubble. In practice this means that the bubbles will be shortened and analogy with un-
steady flows suggests that transition may play an important role and preclude the existence -

of the long separation bubbles determined by the laminar-flow calculations.

Unclassified,'."
SECURITY CLASSIFICATION OF TH-IS PA6.E I

%A .'<,
I..,:.. -.. ;.-..- ...-:.: .. .. ... ,..,,-,,-. -,.-.,.... ,...., • .,, .. ,.. ., .,...: -..... ,... ....- , .-. :.--.?., , , ,, ., -,.,. .- _-,-, -..,-,.-,.-- . .,-,.,.,.,,,,
p-- q % % % .• %" " '%, %, r% -N %

i' d''/ L' ' .' ' '% ,. ' , ,P' _ : ''. ',.' . '_,P .' .', : - '. ... : ,. ;?^ .% ."• •" , - " ",• " '- - " " - " " _, - "



Iopp <1

IP

KI

I %

I"il

// "i:1
3 0".

I+.

/ .


