OTIC tiLE COEX
Naval Research Laboratory
Washington, DC 20375-5000

», \
NRL Memorandum Report 6123 o

Revised Impact Dynamic Design-Analysis Method f*‘
(RIDDAM) :E;E';':

R.L. BORT Y

Structural Integrity Branch
Matzerial Science and Technology Division

R

(P A s
n‘l"r'l‘:‘n .1
PR AR A

Pl

N

RIRg
'
»

February 10, 1988

“r
A

S
L

AD-A190 479

CARXTL AR N
EEL LA
ol U

* o 5{(‘,.

»
« -
Pale '~\.

b

....,.,.
.-.“.'\'\fs'.\

!

Rd's
P

A
".‘v"'! 'r‘,\'b
Ty

&

1 4

i -
1@

. -
x_r
L
b

w
tj, L)}

Pt
%—

-
-

Approved for public release; distribution unfimited o - .—._r
; € d3 VO A
38 ~ ¢
om
LA
N R R I I S I A ST S SV A AT A8 Sy T S b AT R S0




‘B ® 0¥ 120 000 0,0 a0 Rt Ba¥ 0t a7 0" 100 Bt Sa® Ut fa¥ Gat 06 8.0 fa® Ga? B Ba® V. Vp? (a® tal Byt ) ' gat oy . ST

)
,.*-
n
I
KL
2’
SECURITY CLASSIFICATION OF THIS PAGE s
Form Approved .
REPORT DOCUMENTATION PAGE OMB No 0704-0188 R
1a REPORT SECURITY CLASSIFICATION b RESTRICTIVE MARKINGS ﬂ 9 E /
. UNCLASSIFIED a ; 5
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT v .
. L g . . ]
35 DECLASSIFICATION/ DOWNGRADING SCHEDULE Approved for public release; distribution s
| unlimited. .
()
) 4. PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S) :"
l."
NRL Memorandum Report 6123
-t
6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL | 7a NAME OF MONITORING ORGANIZATION o
(If applicable) -~
N
Naval Research Laboratory Code 6337 ol
6c. ADDRESS (City, State, and Z2IP Code) 7b ADDRESS (City, State, and ZIP Code} ::
K3 :E>
Washington, DC 20375-5000 )
X)
8a. NAME OF FUNDING / SPONSORING 8b OFFICE SYMBOL | 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER *.~
ORGANIZATION (If applicable) z_ 3
Naval Sea Systems Command Code 55X11 Noy!
W
8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS .
PROGRAM PROJECT TaSK WORK UNIT L§
Washington, DC 20362-5101 ELEMENT NO NO NO ACCESSION NO
$
63561N 50971 DN980-160 $‘
11 TITLE (Include Secunty Classification) Ss
-

Revised Impact Dynamic Design-Analysis Method (RIDDAM)

W W e

12. PERSONAL AUTHOR(S)

16 SUPPLEMENTARY NOTATION

Bort, R.L. L

» 13a. TYPE OF REPORT 13b TIME COVERED 18 DATE OF REPORT (Year, Month, Day) |15 PAGE COULNT -
! aterim FROM _10/86 T0__g/g7 1988 February 10 87 ::
o

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and :dentify by block number}
FIELD GROUP SUB-GROUP

Torpedo impact. -
Impact dynamic design-analysis method (IDDAM)

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

XL T

p .
p N . - . . . I‘
-~ Theory and examples are shown for a feasible method of estimating responses of equipment to an N
impact of an exercise torpedo against the hull of a submarine. The equipment is modeled as a linear and 3
elastic system whose normal modes of vibration respond in accordance with their weight and frequency. A o
simple method is used for determining the effective weight of a normal mode. The method is applicable to ]

' multiple modes and independent motions of multiple supports. A . "

‘ - o
s
] Y
t"'

‘. ~

] .._: \

' N

r vl

20 OISTRIBUTION AVAILABILITY OF ABSTRACT 2 CABSTRACT STC LHT 2 0 AN (AT, o
b uncLassiBEDnuMITED [ same as wer O e iseRs UNCLASSIFIED )
228 NAME OF RESPOMNSIBLE NOIVIDUAL SO TELEPSONE (Include dre g Lodge) (0 s s e 7
Robert L. Bort (202) 7h7-2776 I Code h337 ﬁ
DD Form 1473, JUN 86 Previous editions are ohsolete R T I TP L o W

i SO 02 =LE =00 v=nea

| ' h
)

] N
RS
~

P e P o o T T A Pl o ol e o L TV R
> AT P G S R G Pt s S S A A S




O S I TR Y O R I R W R WU W X 8ol S0 Sal b Gp L B0 S| U - i Ay ate ptal v (W

''''' 2
R,
A
\ {
EXAMPLES .o 32 !
\ A Textbook EXample ..o - 32 L
| An Example with Cross-Axis Response ... 39 3
| An Example with Rotational Inertia ..o, 43 b
A REAI EXAMPIE ......oooovooeeecoerrervcesveveveeerscsnsssssssseenenmssseesssssresseon 48 ' $
h
APPENDIX A - A Short Introduction to Matrix Algebra ........... 59 3T
A:‘r
APPENDIX B - A Computer Program for RIDDAM ... 65 ? ~
- (]
Acce,.,ton For : y
NTLS  CRA&I X
DTIC T4B g ,
Unannzunced O
Justification — o 2
',
By. .'_::
_Distri ihut ion/ ] f-:;'
Availability r‘cdes___ a0
sv..ll anz/or
Dist -+ Sooelaas !:,
:f'_':-
’
Y
2]
=

LR

N N e Y e e N &5}’:’3



P B e M W A W e T O O T R N O R Y Y Y N Y Y W NV LV AN UV DOV TV OO O DO
CONTENTS
INTRODUCTION ..o sseies s sssssass s sss s st sssssesssssesanesse s 1
BACKBIOUN ...t teeserastssessssnsssases s sas s sanes 1
Revision Of the IDDAM ... sestenenssstenaesesasaseoes 2
PLOCEAULE ..ot ertrea sttt st s 4
OULLINIE ettt et st st saen S
- 10:1:0):3 G 6
Mathematical MOdel ........cocoovmeeeeeeeeeeeeeeeeeeeeee e 6
Normal Modes of VIDration .........ovioeeeceeeueceeeeesreeeeeseenne 7
MOQAL MESS ..ottt ssssbssss s s s s 9
JOAPULS ottt tcss st tse st ser e seene 13
Accelerations, Forces, Stresses, and Deformations ............. 14
WALDABE ..ottt sss s s bssasssms s nassasssseaes 15
SUBMATY oot essssasssss s s ensssassaesese s e esnns 16
APPLICATION .ot sseeesesses s essenssassasesasssseasenenen 17
UBULS oot sa st sssssstsssseessessenssssosasssssassnsens 17
Scaling of Modeshapes ...t 18
Suppression of Time HiStories ..., 20
Time Histories and Combination Rules ... 21
Combining Peak Responses from Different Supports ..... 22
Combining Peak Responses for Modes of Different
FreqQuUENCIEs ...ttt sesssns o 22
Selection Ruies for the NRL Sum ..o, 24
SUMMALY ... snsessssssssssssssssssssesssessssssssssesesssasens 25
: SPECIAL PROBLEMS . 27
DeSIBN SPECILA ... . 27
Repeated Frequencies ............ccooereverrccsecoeneese e 27
Closely-Spaced MOdes .......cocoeeeevvcerieeeseesceniscserennne. 28

RUIES Of TRUMD ..o 31




0 Rt g B i ¥ gt g8 )0 0 G0 eV af L0 G0 (et lal Be® by Bt dnToletipt et B’ Snt e et Ba® Sat At et Sa% Suf Aav Sat iy® Sok 040 Ruf e i’ " S0t 000 AT 0 " et e s e et o

AL,

o e Sl

XX
“"

REVISED IMPACT DYNAMIC DESIGN-ANALYSIS METHOD (RIDDAM)
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DDAM

-

A particular dynamic design-analvsis method. DDAM, has been
applied to selected equipment on Navv ships since 1960. The DDAM is

s

e based on measurements of the responses of shipboard equipment to
:: controlled tests against ships with underwater explosions.
Measurements from a variety of ships showed that the responses of
e equipment to the shock tfrom an underwater-explosion attack could
,';: be approximated fairly well bv considering onlv the locauon of the
i: equipment on the ship. the weight of the equipment, and 1ts natural
o frequency of vibration. Collected measurements were fitted to simple
& formulas depending on location, weight, and frequency that could be
‘~ used to check the abilitv of equipment 1o resist shocks from
- underwater explosions

-{".j The DDAM can be looked at 1n modern terms as an approximate
.o method of conducting a substructure analvsis of a complex dvnamic
a system. In the DDAM all of the effort in the analvsis i1s directed
- .oward one paruicular substructure. representing the equipment of
oy interest. The main structure, consisuing ol all the rest of the ship. is
- taken as a standard structure whaose properties do not need to be
'_ speciallv determined The experimental measurements of the shock
. that the ship can transmit to equipment of Jdifferent weights and {
:2 frequencies during an underw ater-explosion attack take the place of
- an analysis of the ship s structure

o The effort of the analvst in appiving the DDAM is Limited to
> determining the frequencies and weights associated with one
- particular 1item of equipment. The formulas [rom the DDAM then
;Z:I provide the analyst immediatelv with the responses that would be
2. expected at each weight and {requency if the equipment were
'_::-' mounted at a particular location on a standard ship during an attack
against the ship with an underwater explosion The analvst performs.
::- mNovembﬂ 13, 1987,
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in effect, a substructure analysis without having to analyze the main
structure or consider location of the equipment bevond the broad
categories given in the formulas.

1IDDAM

Calculations for the DDAM are based on the assumption that the
shock from an underwater explosion produces a translation of the ship
in a single direction, with all of the supports for the equipment
moving identically. This is generally a good approximation for
compact equipment or for explosions that take place in the water
some distance from the ship.

An extension of the DDAM, referred to as [IDDAM (Impact
DDAM) was developed in 1977 in response to a request for a dynamic
design-analysis method that could be applied to the case of the impact
of exercise {nonexploding) torpedoes against the hull of a submarine.
Here thé shock applied to the several supports for a particular item of
equipment attached to the hull could vary greatly, from a severe
shock to a support directly in way of the impact to shocks of smaller
and smaller severity with increase in distance from the point of
impact.

Determining the response of a structure to independent motions
of multiple supports involved only a minor elaboration of DDAM.
However, the weight of the structure had to be distributed among the
separate supports in a self-consistent fashion in order to allow the
simple formulas involving weight and {requency to be applied. When
all of the supports move identically, as in DDAM. the full weight reacts
against the common motion, but when the motions are diuferent the
weight appears as a combination of direct and cross terms among the
supports, adding appreciably to the complexitv of the method.

s A4 _"UEEEENTY € ¥ 8 Ve v WESETW W W W W N S w 8w w
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REVISION OF THE IDDAM

RIDDAM

The present report describes a new version of the IDDAM g
referred to here as RIDDAM (Revised [DDAM). The RIDDAM simplifies e
the method of calculauing the effective weight of a structure with
multiple supports.
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PROCEDURE

Mathematical model

The equipment (substructure) is modeled as a linear, elastic,
and undamped structure. Details of the model depend on
requirements of the computer program that is used.

Frequencies

Frequencies are found by doing a standard normal-mcde
analysis of the model with fixed interfaces at the points of attachment
to the ship.

Participation factors

The normal-mode analysis provides a set of factors showing
how the motion of each support participates in producing a response
of each of the normal modes.

Modal weights

The critical feature of both the DDAM and the [DDAM is the
assignment of an effective mass to each normal mode of vibration.
The effective mass is used as a measure of the reactive force that the
mode applies to the supports for the equipment when the equipment
1s accelerating in response to a shock. In the RIDDAM this effective
mass 1s obtained simplvy by adding mass-normalized participation
factors by absolute value and squaring the sum.

loputs

As for the DDAM., the inputs’ for the IDDAM are formulas
showing the response of a normal mode of vibration as a function of
1ts weight, frequency, and location on board ship. In the DDAM. all of
the supports are assumed to move together in one particular direction.
The IDDAM relaxes this assumption by providing different inputs for
different supports The RIDDAM uses the same mnputs as the [DDAM.




Computer-aided anajvsis

The original DDAM was developed at a time when structural-
analysis computations were regularly done using pencil, paper, and a
desk calculator. Its procedures have been carried over to the present
[DDAM.

Ffirst, turn on vour computer. [n the following, the equations for
the IDDAM have been written using the matrix notation that is
common for computer-aided analysis, on the assumption that a
computer rather than a desk calculator will be used to analyze the
structure. Appendix A gives some of the elements of matrix algebra
for readers who are not enurelv familiar with matrix notation.
Appendix B lists a computer program that can be used 10 analvze
simple structures on any computer that has a compiler or interpreter
for the BASIC computer language.

The rewritten equations for the IDDAM produce a more compact
notation and simpler calculations but make no change 1n 1ts
procedures.

Effective weight

The RIDDAM does make a substantial change in procedures bv
the method it uses to determine effective weight, however.

In both the DDAM and the [DDAM the weight of a normal maode
of vibration s considered as reacting against supports onlv to the
extent that the supports are driven by a shock input. The weight of a
mode thus varies with direction of the mput in the DDAM and varies
with the distribution of shock severities among the supports (n the
IDDAM.

The method of determining the weight of a mode in the
RIDDAM presumes that the mode reacts against all of the supports
whenever 1t responds to a shock detivered through anv of them The
effective modal weight 1n the RIDDAM s thus independent of the
particular shock that i1s apphed. Calculations are not onlv simplified.
but reduced to the more-rational basis of assuming that the structure
reacts against all of its supports whenever it is forced to undergo
accelerations from anv cause
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Stresses and deformations

Responses of the modes are combined to estimate forces,
stresses, strains. and deformations throughout the model of the
equipment. The stresses and delormations at critical locations are
compared with allowable values to assess the ability of the equipment
to withstand a particular shock. Deformations produced by
differences in the motions of redundant supports are included in both
the IDDAM and the RIDDAM.

OUTLINE

The report begins with a brief overview of the theoretical basis
for the normal-mode method used in the RIDDAM. It continues with a
discussion of some of the practical compromises that are necessary to
keep its implementation simple, and a description of some of the
problems that the compromises generate. There are some worked-out
exampiles of analyses of simple structures by the RIDDAM. The object
is to supply enough information so that an analyst can apply the
RIDDAM to his own jtem of equipment by following the discussions
and examples given here.
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THEORY

MATHEMATICAL MODEL
Balance of forces

Most computer programs for dvnamic analvsis represent the
structure by a matrix equation of the form

Ma + Kx - Fu, (1)

where aft) is a time-varving column vector of accelerations at selected
points {nodes) on the structure and x{t) is a column vector of
displacements. The symmetric matrices M and K represent the mass
and stiffness of the structure. The column vector uft) consists of
displacements of the supports for the structure; the rectangular matrix
of support stiffnesses F converts displacements of the supports into
forces applied to the coordinates of the structure. The equation
balances these forces against the forces Ma and Kx from the mass and
stiffness of the structure.

The motions represented bv Equation | can be transiations in
any direction or rotations about any axis. with elements of M, K. and F
being mass, mass moment of inertia, force per deflection, or moment
per angle. It is assumed that all the translations and rotations are
small, the stiffnesses are constant. and there 1s no damping in the
structure.

Discussions here are f{ramed in terms of translauons
(displacements and forces) with the understanding that rotational
motions (angles and moments) are also included.

Some methods of structural analvsis are based on other than

the force-balance equation. For example. the displacement-balance
equation

K-'Ma + x = K!Fu (21
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N be a diagonal matrix. There are manv different numerical methods
' . . . . "
'EN for generating a Q that will satisfv Equations 3 and 4 simultaneously.
i . . . . .
' Which is best depends on the size of the problem, the distribution of
the nonzero elements in M and K, and how many elements of Q are to
. be calculated. Many programs offer a choice of methods and mav also
1"-22 have ways of decreasing the sizes of the structural matrices to speed
;5‘5 up the calculation.
W
- Normal-mode equations
N :
r If the matrix Q 1s used to transform the accelerations and
N displacements bv
o
a-Qb. t-0vy. (S}
o
l~ . .
N and if Equation | 1s premufuplied by QT there results
t:\.
N b-Ply - QTFu (6]
f.;l ) i . N
o Because P2 is diagonal. each element of the acceieration b(t! and
A displacement y(t) on the left side represents an independent oscillator
,' with a [ixed-base angular frequencv given bv the square root of its
1 element of P2 The responses of the oscillators can be converted back
oy to motions of the structure bv Equation S.
A Standard form
it Equation 6 can be reduced to standard form for each oscillator
L. by wrilng it as
~
< 2 2RT 7)
.-.:‘ b+Pcy = P<RI g, e
-~
) where
-
_, RT - P2QTF (81
:; 1s a rectangular matrix called the parucpation factor The matrix RT
- converts the displacements utt) of the supports to a generalized
7
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AN

has been popular for use with a desk calculator. Here K-! (the 1nverse
of the stiffness matrix) is a matrix of influence coefficients that shows
the displacements of all the points on the structure when unit force is
applied 0 one of the points. The support influence matrix K-IF
represents the position of the structure produced by the motion of its
supports. The equation balances these equilibrium displacements
against the dvnamic displacements that include forces from the
accelerations of the masses.

The displacement-balance equation is not well suited to
computer-aided analyses because the matrix K-IM is full of nonzero
elements and is not svmmetric. A computer needs less memorv and
can run faster using the matrices M and K. both of which are sparse
and symmetric.

Discussions here are in terms of the force-balance equation as
the equation most common in computer programs for dvnamic
structural analysis.

NORMAL MODES OF VIBRATION
a Qrmaljzati

Manv computer programs begin a normal-mode analysis bv
generating 4 square or rectanguiar matrix Q that makes

QTMQ -1 Ly

be a unit matrix. Normalizing on the mass matrix In thus way
produces a simple and efficient analvsis, and has been assumed in the
following discussion. A later paragraph will consider the alterations
that are necessary when other methods of normalization are used

Diagonalizing the stiffness matrix

The matrix Q can also be chosen to make

QTKQ - P2 14
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N displacement representing the motion of the base of each one of the
' normal-mode oscillators. The participation-factor matrix has as manyv
g columns as there are separate supports tor the structure, and as many
: rows as there are normal modes.
§ Each of the normal modes in Equation 7 responds as if it were a
) single oscillator supported from a base whose displacement is given 4
o by one of the elements of RTu(t). That is, if y(t) is the displacement
- and b(t) is the acceleration of one of the normal modes, the equation
Y for its response is
R b+ P2y = P2¢Tu, 91
B ’
™
' where r7 is the row from RT that corresponds to the elements y!t) and
W b(1), and P2 is the square of the angular frequency of the mode. A
o
R MODAL MASS "
w
What the modal mass does .
K~ :
f N A force is required to produce an acceleration of a real structure
3 : that has mass. This force reacts against the supports for the structure
o and, in all practical cases where the supports are attached to some !
other structure, produces motions of the supporting structure.
o The displacements uil) of the supports need to be considered as
3 consisting of two components One component is the motion tor lack of 3
- motion) that would be expected if the structure were not in place The :
other component is the motion produced bv the reaction force as the :
| structure accelerates.
& If the structure 1s analyzed into ils normal modes. each normal
¥ mode needs to be assigned a mass so its reaction force can be )
::: determined. :
ol
v A simple example of modal mass
'E: Suppose a single mass M 1s supported bv a set of parallel
. springs having a total suffness K. The equation of motion can be
"~ written
2 .
'

-
-
N
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Ma -+ Kkx = fTu, 110)

where T is a row vector whose elements are the stiffnesses of the
individual springs and u(t) is a column vector of the displacements at
the points where each spring is attached (o some other structure.

Follow the method of analysis given in the preceding sections as
if the mass M and the stiffness K were matrices with just one row and
one column. First define a modeshape Q that makes

Y, R Ty s s"r " T A N VNV T 4 P S

OMQ - 1. HH

r Notice that Q is the inverse square root of M, and that

! QKQ = K/M = P2 2
F is the square of the natural frequencyv of the mass as supporied by all
> the springs.

Continue to find the participation lactor

T - p20fT 13
and reduce it 10

el < (K/M)FEM 12 (T - M (T/K 14

Summing the 2lements of the participation-factor vector gives the
square root of M, and squaring the sum recovers M as the mass of the
single mode of the structure.

The same procedure can be applied to Equation 9 to determine
an effective mass for the mode whose acceleration 1s bft) That 1s add
the elements of the row f{rom the participauon-factor matrix and
square the sum to find the mass that must be accelerated when the
structure responds with motions in one particular normal mode of
vibration.

10
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that with independent motions of multiple supports, the reactions
occur and the supports are moved whenever a mode is accelerated,
whether the acceleration was initiated by a shock delivered through a

particular support or not. ;:
Using the square of the sum of the absolute values of the mass- v

normalized participation factors as a measure of the mass of a normal
mode of vibration is the only substantial change that the RIDDAM
makes in the IDDAM. The IDDAM distributed the mass of each mode
among the supports in accordance with the shock severity at each
support. [n the RIDDAM each mode has a mass that is independent of
the shocks that are applied.

"‘ f‘;’&f. -
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In the original DDAM. the shock motion of a ship was considered N

to be a rigid-body translation in a single direction. -All the supports
for an 1item of equipment underwent the same motion and the masses
of the modes were the effective masses reacting against that common
motion. [n the RIDDAM each support is taken as attached to a
structure that can move independently of the other supports and the
effective mass of each mode reacts against all of the supports in
whatever direction applies at each support.

It is recognized, of course, that points located near one another
on the structure of a ship are neither tied rigidly together (DDAM) nor
completely independent (RIDDAM). The object of the procedures
adopted in each case is to provide a reasonable and simple method of
estimating the effects of the reaction forces without having to extend
the analysis into the details of the supporting structure.

7y

Limitations

oL LM oL PN ARPRUACACY

The example shown in Equations 10 to 14 was for a single mass
moving 1n a single direction. Later examples will show that the
procedure of adding influence coefficients bv absolute value and
squaring the sum gives an effective mass for a mode even when a
structural model includes translations 1n different directions or
rotations about different axes.
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Avoiding an analysis of the supporuing structure

The advance of the DDAM was in pointing out that the effect of
reaction forces on a particular structure can be found experimentally
by mounting substructures to it and measuring the responses of
substructures having different masses and frequencies. The results
from the tests can then be applied to predict the responses of modes
of other items mounted to the structure provided their masses and
frequencies are known. The supperting structure thus does not need
to be analyzed in order to estymate the shock response of items
attached to it.

Some approximation is inherent in this assumption, especiallv if
responses measured for one particular structure are applied to
different but similar structures. Supporting structures can differ
because of other substructures mounted near the substructure of
interest, or even as a result of other modes of the substructure being
analyzed. However, the advantage of being able 10 estimate the
response of a particular item of equipment without having 1o make a
detailed analysis of the supporting ship’'s structure makes the method
attractive despite the potential errors.

Independent motj of multiple supports

Squaring the sum of the elements in a row of the influence-
coefficient matrix, as shown in the simple example above will give an
effective mass for the mode if all the reactions are in the same
direction. as thev were for the parallel springs in the example. If
some of the reactions are positive and some are negat;ve the squared
sum will give an effective mass producing a net force on all of the
supports taken together. This is the effective mass used 1n the DDAM.
where differences in the motions of different supports are not
considered.

If each point of support is taken as attached to a separate
structure, the reactions will produce independent mouons of each

support in accordance with the direction and magnitude of each force e
In this case the effective mass acting against all the supports should j
be determined by adding the participation factors bv absolute value .
(that is, ignoring their directions) and then squaring the sum. Notice ra
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The IDDAM inputs represent linear accelerations as a function
of effective mass and frequencv. Applied through different supports.
these accelerations can induce rotational and cross-axis responses of a
structure. However, no inputs are supplied to show how the response
of a structure to a rotation of one of its supports might depend on the
mass moment of inertia about that support.

The RIDDAM uses the inputs developed for the IDDAM. As a
result of the lack of rotational inputs, it is necessary that the structure
be modeled so that its response depends on transiational inputs onlv.
This can be done in either of two ways: A support can be taken as
rrotational, so that moments applied to it do not cause any rotation.
Alternately, the joint at the support can be taken as pinned. so that
the structure can rotate freely about that point without producing any
rotation of the supporting structure.

INPUTS

Differential equations

The inputs to the analysis consist of predetermined solutions to
the equations

Mc+« MP2z = MP2y, t1S?

where c{t) is the acceleration and z(t) is the displacement of an
oscillator having mass M and frequencv P. Here wuiti s the
displacement of the support for the oscilator. including both the
motion induced by an external force and the mouion resulting from the
reaction of the mass of the oscillator against its support.

Because of the reaction, the acceleration of the oscillator varies
with its mass as well as with its frequencv. In the DDAM. all the
support motions are taken as identical, so only one function 1s needed
for the base motion uft), but in the IDDAM the supports can move
independently and there is a separate Equation |5 for the effect of
each support on each mode.
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Applying the inputs to the normal modes

The equation for the response of one of the normal modes,
b+ P2y = P2l y, (16)

uses a row from the influence-coefficient matrix to take a linear
combination over the motions of all of the supports and uses that
combination to find the response of the mode. The process can be
reversed by calculating responses first and then taking the linear
combination to obtain

b = rlc (17)

where blt) is the acceleration of the mode and ¢{M, P, t) is a column
vector of the solutions to Equation 19 for the mass and frequencv of
the mode and for the shock applied to each of the supports.

If the response accelerations ¢(M, P, t) for each support are
already provided, Equation 17 will give the responses for the modes of
the substructure without the necessity of solving any duferenual
equations.

ACCELERATIONS, FORCES, STRESSES, AND DEFORMATIONS

Accelerations

Scale the matrix of modeshapes to
A - QB (IR

where B(t) is a diagonal matrix of the accelerations bit) of the
individual modes and A!t) is now, by Equation 5. a matrix whose
columns represent the accelerations of the coordinates of the structure
in each mode. [t i1s convenient at this point to keep the responses in
the different modes separate because ol approximations that will be
made later in combining responses 1n duferent modes.
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Forces

Multiply the matrix of accelerations by the mass matrix M to
obtain

G-MA (19)

as a matrix whose columns represent the forces applied to the
structural nodes by the accelerations of each mode.

Stresse d deformations

The forces will produce time-varying stresses and deformations
in the structure that are proportional to the combination of forces in
each mode. The stresses and deformations at critical points on the
structure can be used, to estimate the ability of the structure to
survive the accelerations given by the inputs.

WARPAGE
Additional deformations
The displacement-balance equation (Equation 21,
r ~K!Fu -KIMa (20)

shows that the response x(t} of the structure depends on the motions
of its supports u(t) as well as on its acceleration att) The preceding
modal analysis accounts for the forces. stresses. and deformations
produced by acceleration only. [t is necessary to supplement the
acceleration-generated responses with a check of any additional
deformations fand resulting stresses) that mav be produced bv
differences in motions of individual supports.

Note that if the motions of the supports are all identical 'as
assumed in the DDAM) there will a displacement response but no
additional deformation of the structure. There also 1S no warping
deformation i the supports are not redundant or if the motions of the
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supports can be described bv a combmmauon of rigid-dbody
displacements and rotations.

fect of reaction [orces

The structure will resist warping deformation by generating
static forces that tend to decrease the differences between the motions
of its supports. Again, as in the case of the effect of modal mass on
acceleration responses, an estimate of the effect of the reaction forces
can be made in terms of an experimental or analytical decrease in
warping with increasing static reactions of a structure against relative
motions of a standard or typical supporting structure.

SUMMARY

The preceding theory shows how the responses of substructures
can be estimated under standard conditions while mounted to a
particular supporting structure. The characteristics of the supporting
structure are evaluated by determining the responses it can produce
in oscillators having different masses and [requencies and the static
warpage it can produce in redundant supporis with  different
reactions.

The structure of interest is then analvzed 1nto osciliators having
different masses and frequencies and into reactions against relative
motions of 1ts supports. Direct comparison with the responses
determined for the supporting structure then ailows responses of the
structure 10 be estimated

The theory has the potential for being exact i the supporting
structure were identical from one substructure to the next. In
application, however. supporting structures tend to be similar but not
identical. Then the accuracy of the method depends on how much
variety is allowed 1n supporting structures before a new set of
characteristics must be applied
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APPLICATION '
: A
\ UNITS )
: N

| Convenience

) -
. The IDDAM is based on user-friendly engineering units in which ;Z:
4 Newton's law is satisfied for forces in pounds, masses in pounds, and N
F accelerations 1n multiples of the acceleration of gravity. The NS
acceleration of gravity 1s defined as 386 inches per second per second )

Y (G 8044 meters per second per secund with one inch equal to 0.0254 K
s meters). A pound of force 1s then 4.447 Newtons., while a pound of ~
mass 1s 0.4536 kilograms. E ,
]
Inputs Ly

The 1abulated inputs for the IDDAM give accelerations 1n :}'

multiples of the acceleration of gravitv (gt as a funcuon of weights in <

pounds and Irequencies in Heriz icvcies per second). Ng

b
Computer 3

:.F

Most computer programs will not allow forces and masses both IS
o be entered in pounds A common convention for using such .

programs in the inch-pound-second system 1s Lo enter masses 1n units o,

of 386 pounds. That 1s. weights in pounds are divided bv 386G 1o

obtain masses for entrv into the computer program. Forces can then N

be entered in pounds. with stiffnesses in pounds per inch and elasic -

moduls 1n pounds per square nch. There 1s no accepied name for the A
unit of mass that weighs 386 pounds. although the term ‘shinchl has !ﬂ
been suggested as a paralie! to the lerm 'slug’ that 1s used for the if-j
simtlar unit 1n the foot-pound-second svstem ;;:}
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SCALING OF MODESHAPES
Arbjtrarv scaling

Some computer programs apply scale factors to the modeshapes
to produce a modal matrix QS, where S is a diagonal matrix of scale
factors. One popular method of scaling makes the largest element in
each column of QS have the value unity, for example. The theory
shown here was based on mass-normalized modeshapes in which
QTMQ - I was a unit matrix. Modifications are needed if modeshapes
have been scaled otherwise.

Effect of the scaling
With scaled modeshapes,
(QS)TM QS - S2 (21}

is diagonal but not a unit matrix. Also,

LI TR R BRI
P AR A
L A .

(QSITK QS = S2Pp¢ 122)

is diagonal but its elements are no jonger the squares of the natural
frequencies. Using the scaled modeshapes in the transformations

R ‘)' ladn ]

24

a - QSb. 1 -QSy (231 s

converts the force-balance equation {

~

Ma -Kx - Fu (24) '_E

to '.
S2b - S2P2y - QS TFu t29)

as the analog of the normal-mode equations.

"~ ‘\-..\ Y ‘.I'-"- e
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A_misinterpretation

The elements of S in Equation 25 have been referred to as
masses of the normal modes and even used as if they were masses in
some calculations. One popular computer program refers to them as
“generalized masses” in its printed output. The elements of S2 have
completely arbitrary positive values that depend only on what
criterion was used to scale the modeshapes and have no phyvsical
significance.

Removing the scale factors

The scale factors contained in S must simply be removed step-
by-step as the analysis proceeds. First. divide by the elements of S2
to obtain the squares of the natural frequencies as

P2 - $-2(S2P2), (26]

Next, recognize two kinds of participation factors. The mass-
normalized participation factor must be recovered from

RT - S-1(P2(QS)TF| (27!

The responses of the scaled modes. however. must be found from the
equation

b - P2y = P2[P-25-2(QS)TF|u, (28)

so that the participation factor for this operation must be cbtained
from

RiT - P-2S-2(QS)TF. t29)
Notice that any computer program that displavs natural
frequencies must have cajculated a value of S2 in order to evaluate

Equation 26, so it should not be necessaryv to recalculate the scale
factors (Equation 21) in order to find what factors to remove.

19
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Avoiding the scaling o
Many computer programs begin a normal-mode analysis bv ;
choosing 2 modeshape matrix that reduces QTMQ to a unit matrix. ey
With such programs the mass-normalized modeshapes are ;
fundamental and subsequent scaling may be an option that need not o)
be selected. g j
If only scaled modeshapes are available from a particular
program, it may be more efficient to remove the scale factors directly 2
from the modeshapes by dividing each column of QS by its element of N
S and then proceeding in a mass-normalized fashion, rather than 5
e "
dividing repeatedliv by the scale factors as results are heing calculated N
»
SUPPRESSION OF TIME HISTORIES 'j~
Complication o,
e ]
The theory indicates that a supporting structure must be !
characterized by a set of time-history accelerations ciM, P. t) that N
differ for each mass M and frequency P of oscillator that mayv te 3
supported from it. Moreover, the time histories cannot be oscillations o
. .. . -
at the frequency P, because P is a /fired-base frequency, and the ™
essential feature of the supporting structure is that it cannot be !
considered to be a fixed base. N
In addition, the response of a multimode structure with b
mujtiple independent supports must be determined bv superposing iy
separate ume-historv responses for each mode and each support. i
Such combinations were impractical for routine analvses when DDAM '\
A
was under development about 1960. e
Simplification Y
The IDDAM follows the lead established bv the DDAM in !
suppressing the tme variation of the response acceleration It s
characterizes supporting structures in terms of the peak tlargest e
absolute valuej of acceleration that they can produce for an oscillator -
of mass M and fixed-base frequency P. !
o
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Suppressing the time histories allows supporting structures o i
be described by double-entry tables showing peak acceleration as a o)
function of mass and {requency. and eliminates the superposition of =
time histories for multiple modes and multiple supports in .‘.,
determining responses. [t leads to problems, however, in estimating o~
the combined effects of several modes whose individual responses are Dy
given only in terms of their peak values. ;E
. N
TIME HISTORIES AND COMBINATION RULES -7
Y
'pper_and lower bounds N
0
. _ =
[t is clear that if the peak responses of several modes were all ;
to occur in the same direction at the same instant of time, the b
combined response would be the sum of the individual peaks and that .
this sum would be an upper bound for a time-historv combination of E';
responses. A lower bound mayv also exist if one of the peak values is ;'."-
large enough to dominate the combination even i all the other peaks »
happened to occur simultaneouslv in the opposite direction. Either ;-:f;
occurrence is possible but unlikelv 1n a sum of time histories. ;1-_:
n
Combination rujes o
’,
Simple and arbitrary ruies can be defined to estimate a peak o
from a combination ol responses that are described only by their R
individual peak values. Anv rule adopted ought to define a combined ‘_'_:Z-
peak falling in the range from the lower (o the upper bound. The rule IR
should select a likelv value in that range and should be adjusted to !{
avoid t00 much overconservatism or underconservatism. iy
The exact form of a combination rule is not important in areas "-
of a structure where one mode predominates, so that the upper and :1:.
lower bounds do not differ greatlvy A combination of engineering .
judgment, common sense and experimental data are needed 10 :';.
determine combination rules when several modes have comparable .
peak values so that there is a large spread between upper and lower -
bounds. Under this condition the best rule would be one that avoids .
obvious conditions of great overestimates or underestimates, rather
5:
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than a rule that attempts to recreate an actual combination of time-
history responses.

COMBINING PEAK RESPONSES FROM DIFFERENT SUPPORTS
Rule

A suitable rule for estimating the peak acceleration b of one
mode from a collection of peak response accelerations ¢ at different
supports is

b = rle, (30)

where rT is the row for the mode from the participation-factor matrix.
Discussion

Equation 30 1s identical to Equation 17 that was used for
combining time histories. [t presumes that the peak responses of the
mode produced by the motions of each support alf occur at the same
instant of time and in directions given by the signs of the elements of
the participation factor. Such a combination could actuallv occur
under torpedo impact 4 the torpedo were to strike at the center of 2
svmmetric array of supports, producing large responses 1o svmmetric
modes of the structure and no response for antisvmmetric modes

Equation 30 aiso reconciles the RIDDAM with the DDAM bv
matching 1ts results with those of the DDAM for conditions in which ail
of the supports would have identical motions in a single direction.

in other cases the rule provides an estimated peak that falls
between the upper and lower bounds for the combination.

COMBINING PEAK RESPONSES FOR MODES OF DIFFERENT
FREQUENCIES

The NRL Sum

An estimate of the peak stress or deformation from a
combination of peak stresses or deformations from modes of different
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frequencies is obtained by selecting the response having the largest
peak in absolute value and adding to it the square root of the sum of
the squares of the peak values of the other responses. This method of
combination is usually called the MR Suw.

Estimated peaks obtained from the NRL Sum are always
positive numbers, but are 10 be interpreted as representing peaks that
may occur (n either direction.

LA O

" A e

Warning

y The NRL Sum is a nonlinear combination and must always be
the last step in any calculation. In particular. if the NRL Sum is used
to estimate a peak acceleration or a peak force from a combination of
modal peaks, that estimated peak acceleration or force cannot be used

;; subsequently to find stresses or deiormations.

2EIIAAS

Estimating peak stresses and deformations

Equations 18 and 19 were especiallv written in a form to keep
. the responses of the structure in each of its modes separate down to
the point of calculating stresses and deformations. If B is a diagonal
matrix of the peak accelerations b in each mode, the peak el
accelerations of the structure in each mode are obtained by scaling the :
’ modeshape matrix according to e

ANBUAI VO T

A - QB. (311 o,

The peak forces on the structure in each mode are given by the
columns of

- v T
vouS

G-MA (52}

e a3 v p ¥l

e 4

3 The stresses and deformations for each mode are obtained by solving
a separate static problem for the peak loads g that appear in each
, column of the matrix of forces. The loads mav be positive or negative,

depending on the signs of the parucipation factors and the

modeshapes; these signs must be preserved through Equations 51 and
32.
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2lrain energy

The strain energy associated with a peak response is
proportional to the square of the strain multiplied by the elastc
modulus of the material, or proportional to the square of the stress
divided by the elastic modulus. Summing the squares of the peax
responses thus gives a number proportional to the total energy a
particular part of the structure must accept. The square root of that
sum represents the single deformation or stress that wouid account
for the same energy.

The NRL Sum provides an estimated peak response that 1s
larger than the energy-equivalent peak, but not larger than the upper
bound.

SELECTION RULES FOR THE NRL SUM
Peaks to be iacluded

Peaks from the following sources are combined nto a single
NRL Sum:

I. Stresses and deformations from normal operation of
equipment.

2 The warping deformations and stresses {rom differences In
motions of multiple supports.

5 Stresses and deformations from some but not usually all of
the normal modes. The NRL sum overestimates the energies for the
modes that are included; this overestimate can be considered as an
allowance for additional modes of the structure that were not included
1n the sum.

Modes to be selected

1. For simple structures that can be modeied with si1x or fewer
degrees of freedom. the three modes of lowest frequency are usuallv
sufficient for determining an NRL Sum.

2. Structures of moderate complexity (up to 60 degrees of
freedom) need only the lower-frequencv modes to be included in the
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NRL Sum. About half as many modes as degrees of freedom is an
appropriate combination in most cases.

3. Complicated models with very many degrees of {reedom (as
may be obtained from a finite-element model) may generate a "modal
thicket” in which many of the low-frequency modes represent
vibrations of lightweight parts of the structure. Here it may be better
to select modes in accordance with modal weight rather than
frequency. Modes having weights at least 2 percent of the weight of
the complete model are most likely to be significant.

" RS = B f'f'f (‘f‘:
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Prestresses and bolted joints

'] he r.\- A S

Built-in stresses. including prestresses in bolts, are not included
in the NRL Sum of stresses. Bolted joints are expected to respond Lo
tensile 'loads by decreasing the clamping force rather than bv
stretching the bolts. Special checks need to be made, however. 10 be
sure than the clamping force is not exceeded by a peak load or that

, shear stress {rom a transverse load does not combine with the tensile

stress in a bolt to produce an excessive value of maximum normal
; stress.
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SUMMARY

‘ The procedures for applying the theory to practical calculations
with the RIDDAM can be summarized in eleven steps:
I. Make a mathematical model of the structure.
2. Find the fixed-base normal modes and the mass-normalized
participation factors for the supports of the model.
5. Add the participation factors for each mode by absolute
value and square the sum to find the effective mass of each mode

4. Refer to tables and formulas showing peak accelerations as a
function of the weight, frequency. and the location of an oscillator
relative to the point of impact of a torpedo.

5. Combine the product of the participation factors and the
tabulated accelerations for each support to find the peak acceleration
of each mode.

6. Scale the modeshapes by the peak accelerations to find the
peak acceleration of each point on the structure in each mode.

A AT A T

T
o Ve %t My e 0t

P Y

r el
” N

afete’ e’
» »

D - - - - ~
A A A A A S AT Wit



1,00 N R A g Gy ) e Y RV AT WU LWL IV VR WO WU PRI X TR Y O S B M 8 RS AR AR AL AN AR A

7. Multiply the peak accelerations of the structure by the mass
matrix to find peak forces in each mode.
& Solve the static problem for each mode to find peak stresses
~ and deformations at critical parts of the structure.
: 9. Calculate stresses and deformations from warping of the
structure caused by different motions of redundant supports..
10. Use the NRL Sum to combine stresses and deformations
from operation, warping, and selected modes at critical points 1n the
structure.
11. Compare the estimated peak stresses and deformations
with allowable values.
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SPECIAL PROBLEMS

DESIGN SPECTRA

The accelerations c¢(M. P) representing the peak accelerations
for oscillators having masses M and fixed-base frequencies P can be
called a design specirum  Each point in a design spectrum is taken
from a particular time-history response of a massive oscillator. That
time history has been suppressed for simplicity.

The special problems described here arise from the suppression
of the time histories associated with the design spectra.

REPEATED FREQUENCIES
Time-hustory combinations
Suppose

c; - P12z =Pl2u 1

‘o
(¥

and
¢z « Pp2zp =Py 134)

are the responses of two oscitlators to a support motion utt' [f the
two frequencies are the same, Py = P2 = P the time histories will be
identical and the peak accelerations wiil occur simultaneousiv

As the accelerations are scaled bv participation factor and by
modeshape. and then used to «calculate forces. siresses. and
deformations. the peaks will remain coincident n ume bul mav
represent responses of different magnitude occurring in either the
same or opposite directions. The combined peak 1s given byv the
algebraic sum of the individual peak values

P W Wy
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NRL Sum

if Modes | and 2 are the only two modes of the structure, the
NRL Sum will add their peak stresses and deformations by absolute
value (absolute value of the larger plus square root of the square of
the smaller). This is an appropriate combination if both responses are
in the same direction, but it may be a very large overestimate if the
modes actually produce responses in the opposite directions.

If the structure has more than two modes, either or both of
Modes | and 2 mav be part of the square root of the sum of the
squares in the NRL Sum. Here their combined response will be
underestimated if thev respond in the same direction, and will be
overestimated if they respond in opposite directions.

Special rule

Modes with identical frequencies should have their peak
responses added algebraically rather than by NRL Sum.

CLOSELY-SPACED MODES

Duhamel's integral L.
e

=

Formal solutions for Equations 33 and 34 can be written l-_:;’.

[ >

>

c; = P2 J vit') cos{Pjtt - )] dt (391 N

0 N

:t';"

and x
LN
. _\"‘
cz = P2 J vit b cos(Patt - 1] du . 1361 "
Q S
where e
.
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du
= |
VTt

‘vl

is the velocity of the support.
[ime-historv combinations

When the two accelerations are scaled by participation tactor
modeshape, mass. and stress factor thev will produce a coniribution

t
stt) = Dy Jvfti cos{Pift - tt dt
0
l
D2 I vit) cosPat - 1] dt ¥
0

to a particular stress. where D; and D7 are combinauons of al the
relevant factors for the two modes

If the frequencies are Py = P - Eand P2 - P - E. with an average
frequency P and a dudference of 2E the siress can be written

t
stt) = (Dy - D2 J’ vit cos{Ert-t 1] cos[Pri-t ] gt
0

t
- Dy - Dy j vit 1 sinfErt-tr sinfPre-t gt 1391
0

Approximauion for closely-spaced [reguencies

[f Et1s less than 1/2. the factors cos{Ert t] and sinfft © 1 can
be treated as positive-valued windows applied o the velogiiv vit
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sin(Et) 1 - cos(Et)
with average values TR and TR over the range of

integration from 0 to t. The averages can be considered as weighting
factors applied to the velocitv of the support. The first average begins
with a value of unity at the beginning of the response and decreases
with increasing time. while the second begins at zero and increases.

o

An Et of 7/4 produces an average of 0.900 for the first window
and an average of 0 373 for the second. For frequency differences and
umes up to this limit the stress mav be approximated byv

l

sit) = Dy - D21 I vit t cos[Prt-11] dt. 140
0

1o reasonable accuracy That is. both time histories approiimate the
response of an oscillator at the average frequency P and therr
combined stress 1s oblained {rom an algebraic sum of the factors Dy
and D7 as was the case for 1dentical frequencies.

[f the trequencv diference 2E 1s S Hertz. for example. Equation
40 can be used to estimate comt ined peak stresses for umes up to S0
milliseconds alter a transient motion of the support begins.

Further approzimations

Convenience 1s served U the responses of modes having
identical or closelv-spaced irequencies are calculated independentiv in
terms of their weights and frequencies Then when peak responses
are Lo be combined for stresses or deformations. peaks tor pairs or
clusters of modes having nearlv the same f{requency should be
combined by algebraic sum to produce a single response. That
response should be treated as the response of a single mode and
combined with other responses by the NRL Sum

Measurements and analvses of the responses of oscillators to
torpedo 1mpact against a submarine regularly show that peak
responses occur less than SO mithseconds after the mmual impact  The
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peak stresses and deformations from pairs or clusters of modes that
fall within a S-Hertz range can then be combined algebraically rather
than by NRL Sum.

RULES OF THUMB

Suppression of the time histories is seen Lo require a number of
fairly-arbitrary rules concerning selection of modes and methods of
estimating peak values from combinations of responses.

The combination rules suggested here appear to be based on
rational criteria. The rules were chosen mainly to avoid obvious}v-
inappropriate resuits and are subject to revision and reinterpretation
in light of statistical results from experimental data.




EXAMPLES

A TEXTBOOK EXAMPLE

Structure

Rigid masses weighing 325 pounds and 200 pounds are
supported by springs having stiffnesses of 10,000 and 30,000 pounds
per inch, as shown in Figure I. Each mass is prevented from rotating
by a set of roller guides that are not considered part of the supporting
structure. The masses are connected bv a thin and massless beam 30
inches long. The cross-section of the beam has an area moment of
inertia of 1.25 in4 and the beam 1s made of a material with elastic
modulus 30 million pounds per square inch.

The structure is devised to illustrate the calculations; it is not
intended to represent anything realistic.

Mass matrix

For coordinates xjit) and xztti representing displacements of
the masses, the mass matrix 1s

7325 0"
M-

200: pounds. (411

St €ss matrix

Moving x; bv one inch and holding all the other coordinates
fixed requires a force of 10.000 pounds to stretch the spring and an
additional force of

12 (30E6) 125
(30)3

= 16.666 67 pounds (421

to bend the beam as a double cantiiever An equal and opposite force
must be applied to x2 to keep the other end of the beam from moving
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Figure 1. Textbook structure. Ri1gid masses are iabeies e
in pounds. Massless springs are 1abeled 1n pounis ger ;;-‘,'
inch. The masses are connected by &8 massless thin beam o

20 tnches long with area moment 1 2S inches o 'ne '!
fourth power and elastic modulus 30 million counds ger g
square inch. The masses are on frictionless gquices thet e
prevent them from rotating o
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Here and in the following the usual computer notation of E6 js used,
for example, to indicate muitiplication bv 10 to the 6th power.

Moving x2 while the other coordinates are held fixed stretches
its spring and also bends the heam. The forces from unit displacement
of one coordinate at a time can be assembled into the stiffness matrix

K [ 2666667 -16666.67]

-16666 67 46666.67J pounds per inch. (43

Support stiffness

A one-inch displacement of uj (with evervthing else held fixed
will put a force of 10,000 pounds onto X;. A similar displacement of

uz will put a force of 30,000 pounds onto x2. The support-stiffness
matrix becomes

710000 07 ,
= 0 30000 pounds per inch. (44

L

Equatijon of motion

The three matrices M, K, and F allow the siructure to be
described by the force-balance equation Ma - Kx = Fu. shown earlier
as Equation | in the section on Theory.”

Diagonalizing the matrices

The next step in the analysis is to find a matrix Q that will make
QTMQ be a unit matrix and also make QTKQ be a diagonal matrix. as
shown in Equations 5 and 4. This can be done most easily by using an
available computer program, such as in the example shown as Case |
in Appendx B. For the simple structure here. the modeshape matrix Q
can be caiculated bv hand. using the formula listed 1n Line 4120 of the
computer program to normalize on the masses and the formulas

beginning on Line 5610 to diagonalize the stiffnesses. The modeshape
matrix

34
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T0.05198516  -0.01935114" -
T 10.02466795  0.06626833. (45

1s from a 10-digit pocket calculator. A direct check shows that 1t
reduces

1.000  0.0007 |
OTMQ - [o.ooo 1.000; = I 146)

to the unit matrig and

S7T717 0.000° ‘
QTKQ - ["5000 257668. = P* L7
to a diagonal matrix.
The matrix Q can be used to represent the accelerations and
displacements of the structure in terms of normal-mode coordinates
by a = Qb and x - Qy. as shown in Equation §.

Participation factor

The participation-factor matrix is

" 9007 12821

_RT "
L0751 7716, - R {48)

The participation factor lets the equation for the normal-mode
coordinates be writlen in the standard form b - P2y - P2RTu
(Equation 7). Each element of RTu is the effective displacement of the
base of one of the normal-mode oscillators

Modal weights

Add along the rows of the parucipauon-factor matrix bv
absolute value and square the result to obtain

(9.007 - 1282112 - 476 pounds 149
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for Mode 1 and
(0751 +7.716)12 = 72 pounds (S0

for Mode 2. This is the new procedure of the RIDDAM, as shown bv
example in Equation 14.

Mode frequencies

When masses are in pounds and stiffnesses in pounds per inch,
frequencies are given by the formulas

317—,\/372,6 (57717} = 238 Hertz (S
and

1

g 1386 1257.668) = 502 Hertz 1521

for Modes | and 2. The normal-mode equations for motioniess
supports. b - P2y = 0. identdv the diagonal elements of P2 as squares
of the fixed-base natural frequencies of the modes. The factor of 386
1s the acceleration of gravity in inches per second per second. as
needed in the inch-pound-second system when pounds are used for
both masses and forces.

uts

The weights and frequencies of the modes serve as entries Lo
tables showing the peak accelerations of the modes. As an example.
suppose that the tables specy a peak acceleration of 26 times the
acceleration of gravity (g! for a weight of 476 pounds and a frequencv
of 23.8 Hertz. and an acceleration of 119 g for 72 pounds at 50 2 Hertz.
These are vajues at the point of ympact for a torpedo. At a point on
the hufl 30 inches awav from the point of impact the response
accelerations would be 1170 g and 5355 g These values represent
peak accelerations of oscillators of mass M and fixed-base frequency F

4 S

s "y % ¥ %2

L LA

R

ARSI



f measured during tests with torpedo impacts or calculated from
Equation 15 during a computer simulation of an impact. "

[ 4

Peak accelerations of the modes

If the torpedo impacts in way of uy, with u2 located 30 inches 4
away from the impact, the peak accelerations of the modes are '
obtained by multiplying the tabulated responses bv the participation
factors, or

Patiel g =2 %

-

9.007 (26} + 12.821(11.70) = 384.19¢ 1531

L P il ']
R S
3 s

for Mode | and

-0.751 (119) « 7716 (53.55) = 32382¢ (541 4
for Mode 2. 0
Equations 53 and 5S4 correspond to applving the participation c
factors to the predetermined responses, rather than applving the -
participation factors to the support motions and then calculating the N
responses. The two procedures give equivaient results for time- 3

history calculations. as explained in Equations 16 and 17. The same
combination method is recommended for peak values in Equation 30 if
the time histories have been suppressed.

Peak accelerations of the masses

Scale the shape for the first mode (the first column of Q! bv
384.19 and the shape for the second mode by 323.82 1o obtain

A L 1997 627 |
T 1948 2145: 8 551

as the peak accelerations of the masses in each mode The first
column of A shows the peak accejerations of Xy and x» 1n Mode | and
the second column shows their peak responses in Mode 2. Peak
accelerations are shown separately for each mode, as recommended in
Equation 31.
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Forces ":
. . .. [
Multiply the masses (pounds) and the accelerations tg) to find )
~
76490 -2038; e
MA -i,39¢ 4290 Pounds (56} E:‘--"
as the peak forces that were applied to each mass 1n each mode. N
Stresses and deformations e
-“’-
.
Each mode is treated as a static problem (0 check for stresses ®
and deformations at critical points on the structure. Suppose that the ;
critical points are the bending moments at each end of the beam and :; )
the tensile loads applied to bolts restraining the springs A :Q
redundant-structure analysis provides deflections _;'.\
»
"0.3460 -0.0243"
= ! - .’ -_.\-
X - '01642 0.0832) ‘nches 571 3
-'...
SN
for each mass in each mode when the forces of Equation 36 are ji?
applied as static forces to the structure. The deflections produce :.-:
forces of 3460 pounds at u; in Mode | and -243 pounds in Mode 2. At Z::t
U2 the forces are 4926 pounds in Mode 1 and 2496 pounds in Mode 2 -:::
0y
Warping !'
.
Relative motions between the supports will distort the structure :::-.
through its redundant supports. Suppose. for example. that the :-_:
warping formulas specify a displacement of 0 200 inch at the impact :Z-_C
point and a displacement of 0 090 inch a distance of 30 inches from ;
the impact point. A redundant-structure analvsis shows that x| will o
have an equilibrium displacement of 01431 inch and x2 a e
displacement of 0 1090 inch under these support displacements The -_'-:Z}'
resulting tensions in the hold-down bolts are -569 pounds at Support -
| and an equal and opposite 569 pounds at Support 2.
s
o
d
¥
3

e . 3

b S LT Tl G IR TR I N T R S I - e te ‘e
“ - v ' PR A ) -
k{m".'a".\'.{ LA O LR IS TN AR, QA RN S T




-~

NRL Sy

Loads on the supports are to be combined bv NRL Sum, subject
to the selection rules described earlier under "Application.” The forces
from warping and two modes (assuming no operating stresses)
combine by the rule of the largest plus square root of the sum of the
squares in the form

3460 + V(-243)2 » (-569)2 - 4079 pounds (58)

as an estimate of the peak force applied to the bolts at uy. and

4926 - \(2496)2 - (56912 - 7486 pounds (59)

for the bolts at up.

Continuing

The peak forces of Equations 58 and 59 are interpreted as
applying in either direction to the hold-down bolts. The bolts need 10
be tight enough so that the peak force, applied in tension. will not
cause the joint to separate. Similar calculations allow peak moments
at the ends of the beam to be estimated for comparison with allowab‘le
moments.

The calculations need to be repeated for a case in which a
torpedo impacts in wav of uz rather than u;  The most severe
conditions can be taken as those in which one of the supports for an
item 1s directly inboard of the point of impact Then a check of
impacts at each support is sufficient to evaluate the ability of the
equipment to withstand an impact at any point near 1t.

AN EXAMPLE WITH CROSS-AXIS RESPONSE
Structure
A point mass is supporied by two equal springs battered at

angles H above and below the horizontal, as shown in Figure 2. The
mass can move both horizontally tx;) and verticallv tx2! 1n response 10
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Figure Z. Structure with cross-axis response. Mass m is
supported by two springs of stiffness k. Each spring
slopes at an angle H from the harizontal The dots
represent pinned joints
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the horizontal motions of its two supports. This is another textbook
example not intended to represent a realistic structure.

In this and in the following two examples the analysis is
presented in a form paralle! to that used for the first example, but
without back-references to the sections of the report on theory or
application. Please refer to corresponding sections of the [irst example
for appropriate references.

Matrices

The mass matrix.

i 0"
#L%J n (60}

M =
represents motion of the mass in either of the two orthogonal
‘ directions. The stiffness matrix

i - . 2 =
| [ 2 k coselH) 0 | .
K-1" 2 k sin2(H). el

includes factors for the components of force and deflection in each
spring produced bv small displacements of the mass in each direction
The support-stiftness matrix

£ Tk cos2iHi k cos2(H) ‘-

. , )
L -k sintH! costH) K sintH) cos(H'. 162!

EN
fovg
r

shows the horizontal and vertical force per displacement on the mass ~'\-21
produced by small horizental displacements of each support. T
o
Normal modes ®
The modeshape matrix '{Z;‘_
%
N1/ 0 o
1/m :
= —_— 63! ®
¢t 0 Vl/me A
N
T
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normalizes the mass matrtx to a umt matrix, gives a lrequencv-
squared matrix

2 (k/m) cos2(H) 0 )
| ‘ ,
QTKQ - ¢ 0 2 ik/m) sin2(H). teq1

and a participation-factor matrix

T Jms2 Jm/2

— . ) o . o 1G9}
¢ -(vm/2) cotiH!} tym/2) cotiHi

Modal weighis

Mode | (horizontal motion) has effective mass m, as obtained
from the squared sum of the first row of the participation-tfactor
matrix. Mode 2 (vertical motion! has effective mass m cot2iH: with
the square of the cotangent represenung the effect of the lever arms
that act to magnify or diminish the effects of a vertical force on the
horizontally-directed supports and also act 1o magnifv or diminish the
motions of the mass.

Warping

58 T
P

Relative horizontal motions between the two supports will N

simply displace the mass in the vertical direction without producing ;f-‘-

any stresses or deformations. (The joints at the supports are pmnned ! f

>

Interpretavion o

e

The simple example here shows that the matrix formalism 1s :(:
not himned to unidirectional responses I cross-axis responses are »

expected from unequal motions of supports. thev should be included e

‘ in the model of the structure. and can be treated on the same basis as ':Z;

on-axis responses.
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AN EXAMPLE WITH ROTATIONAL INERTIA
Structure

A steel plate is bridged between the flanges of two frames to
carry a weight made from a stack of steel plates, as shown in Figure 3.
Four structures like this were built, installed in hulls, and tested with
torpedo impacts. The one analyzed here was tested 1n 19895 on the
SITV (Submarine Impact Test Vehicle) There it served as simulated
equipment for research purposes.

Bouncing

The structure was especially designed to be symmetric and
nonredundant with two simple modes of vibration. In one mode the
weight would transiate as a rigid bodv and bend the plate as a beam
The stiffness of the plate (33 inches iong, 22 inches wide, and | inch
thick. with equal loads 6.5 inches from each end! can be obtained {rom
handbook formulas as

12 (28E6) 22 (1)3/12
- 7 5
(6512 13(33) - 4(65] 199724 paounds per inch (66)

The stack of plates (859 pounds! and the center 20 inches ol the
flexible plate (124 pounds) both participate in the bouncing motion,
while the 6.5 inches at each end of the [lexible plate connect from the
f1xed support to the moving load 'sav one-third of &1 poundst A
rough estimate ¢. the total mass in the bouncing mode 1§ thus (00
pounds. The frequency should be

I . 386 (199724

o 010 = 44 Heruz 167

Analysis of measurements from the SITV test showed that the
bouncing mode had a fixed-base frequency of 44 Hertz
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Figure 3 Structure with rotational tnert:a The weight

stiffeners of a submarine hu!l. Half-round spacers (not.
iNustrated) provided nesrly moment-frae connectiors at

the ends of the flexible plate and at the corrections
between the plete and the weight

44

R A AL 0 g o0 AR ARSI oPRL N SN AL o

-~

P

. ." -.~ /‘-"

.{-

¢

S LR R

&



00l d
e mt At

'''''''

Rocking

If the weight rotates about an axis through the center of the
plate and parallel to its ends, each half of the plate will bend as a
simply-supported beam with a point load. Handbook formulas give
the stiffness of each half as

3 (28E6) [22 (1)3/12]) 165 ,
(6502 (165 - 65)2 = 601,420 pounds per inch. (68}

Two such loads are each 10 inches from the center of the plate. and a
small rotation produces deflections of 10 inches per radian. The
angular stuffness 1s thus 120.284 million pound-inches per radian.

The mass moment of inertia for rotations about an axis through
the center of the plate can be obtained by starting with the moment
about the center of gravity of the weight {a block 255 by 7 by 17
inches),

125512 « (7)2
859 12 5J12 e 50,055 pound-inZ. 1691

Transfer to a parallel axis through the middle plane of the plate 19
inches from the center of gravity of the weight) by

859 (912 = 21475 pound-in?, 700
and add an esumate for the center part of the pl'atev

(2012 - (12
124 =7 - 4142 pound-inZ, (711

o obtain a total moment of mertia of 75.682 pound-in2. Frequency is
then
] ‘386 1120.284E06)
PR ‘\ " - ) qz
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Data from the test showed a fixed-base frequency of 137 Hertz for the
rocking mode.

Matrices
The mass matrix.

016 0

M- o0 75682,

(73)

contains a mass in pounds and a mass moment of inerta 11 pound-
inches squared. The stiffness matrix,

r199724 0
K= 0 120284E6" 174)

has efements in pounds per inch and in pound-inches per radian. The
support-stiffness matrix

| 99862 99862 7
| F - 3645E6 -3.645E6. 75

l‘c'

J

shows that a one-inch displacement of both supports would apply a ::::
force of 199,724 pounds to the translational coordinate. 9
Displacements of +1 and -1 inch would cause a rotation of /165 .'j.:.

l}-

radians and apply a moment of 120 284E6/16.5 pound-inches to the
rotattonal coordinate.

.

.

P

Normal modes

XA

The modeshape matrix

"31.46584E-3 0o -

Q- 0 3.63499E-3. '76)

4

AL LI
A
1‘.

[

A
77

normalizes the mass matrix to a unit matrix and gives a {requency-
squared matrix

.
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7197746 0.000 1 _
= - = 2 (77)
QTKQ - o000 1589334, - P

that gives the frequencies of 44 and 125 Hertz.
Participation factor
The participation-factor matrix is

-15.8903 15.8903] o
2QTF - . RT =
P2QTF - 53365 -83365. = RV 75

r-

Add along the rows by absolute value and square the sums to find
that Mode | (bouncing) has effective weight 1010 pounds and Maode 2
(rocking) has effective weight 278 pounds.

Responses

From this point onward, the analvsis proceeds in the usual
fashion. The IDDAM inputs at each support for the first mode are
obtained from its weight (1010 pounds). its frequency (44 Hertz). and
the location of each support relative to the point of impact of the
torpedo. Multply each input by its factor from the first row of the
participauon-factor matrix and sum (o find the acceierauon ol the
mode. Scale the first column of the modeshape matrix bv that
accelerauion to obtain the acceleration in the bouncing mode of
response and continue to calculate forces. stresses. and deformations

Calculations for the second mode will be similar except that jts
accelerations will be rotational accelerations in units of 386 radians
per second squared. Multiplv by the mass moment of inertia in
pound-inches squared to obtain moment in pound-inches. and
continue 1o calculate stresses and deformations from the apphed
moment.

Finally. the NRL Sum is used to combine stresses from the 1wo
modes with warping stresses and operating stresses (o estimate peak
stresses at critical points. The particular structure of the example had
neither warping nor operating stresses Checks were made for tensile
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loads in the bolts, stresses 1n the flexible plate, and stresses in the
welded brackets.

[gterpretation

The example here shows that the formalism applies as well (o
rotational responses as it does to translations, with the rotations given
in radians, stiffnesses represented by moments per radian. and
masses represented by mass moments ol inertia.

Alternate models using translations

| Figure 4 shows four wavs in which the two coordinates {one
| translation and one rotation) for the example could be replaced bv a
pair of transiational coordinates. [n each case the total mass of 1010
pounds 1s represented bv point masses located so as to reproduce the
mass moment of inertia about an axis through the center of the plate.
The case marked ta! 1s of special interest. since 1t shows that
placing two weights of 1359 pounds each directly over the support
points not only gives the correct mass moment of inertia but provides
| a total of 278 pounds to match the effective mass of the rocking mode.
{ Each of the configurations in Figure 4 can be analvzed to

R TEROR

| produce resufts identical to the results obtained using a rotational W
coordinate. Vo
R
A REAL EXAMPLE R

»

Source

Figure 5 is adapted from a sketch in Appendix E of a report of
engineering analyses of submarine equipment done bv a Navy
shipvard.!  The figure shows a 4-cubic-foot airflask supported
between two hull stffeners bv four beams built of quarter-inch steel

. [h ," ,.' " s
e s ""f -
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IM A Hattamerand M W Yargus Analvsisof MSW Cooling Pump & Piping and

N
. R
R s .

Miscellaneous Air Flasks using Dynamic Analysis Method for Impact” -
Bremerton. Washington Puget Sound Naval Shipvard Engineering ‘..-7‘1

Document 449 (22 April 1977)
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,':: plate. Calculations from the analvsis are summarized here with some
! changes in notation and revisions 1n procedures.

a:‘.' . i

e Coordinates
R

i The airflask was taken to have three degrees of freedom,
) represented by an athwartship translation of the center of gravity
[2s fx1), rotation about a vertical axis (x2). and rotation about a fore-and-
N aft ax:: (x3).

"

'»2 .

o Mass matrix

». Masses were represented in units of 386 pounds islinches), as
'.:: required by the computer program that was to be used (o {ind normal
po modes. The mass for the transiational motion was 1.17 slinches. The
o mass moment of inertia about the vertical axis (along the axis of the
X flask) was taken as that for a thin circular sheil with radius 9 inches.
e, or

A\-

.\'
b 1.17 (912 = 95 Ib-in-s2. (791
)5

The shell was taken as 42 inches long lor its moment of 1nertia about
- the fore-and-aft axis. or
=z 6(9)2 - 4(42)2

., - | Ll

N 1.17 ¥ - 1171212 = 219 Ib-in-s2 180
(- The mass matrix was tius

:_,

o 1170 07

M-:0 95 0 . 1

N .0 0 219

2

o Beams

The two beams connecting to Frame 90 were angles made of
o quarter-inch plate 4 inches fong, 3 inches wige. and 6 inches deep
:7.; The cross-sectional area was 2.25 square inches and the area moment
by

N
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v

about the neutral axis was 94 in¥ Their bending suffness as
cantilevers fixed to the frame and pinned to the flask would be

v

(]
* .
1}

-
L)

30E6(9.4) . :
3 27;_)";—_ = 13.2 miilion [b/in. 1821

r.'l sl ..l :

[ g
1

Shear stiffness {neglecting any shear factor) would be

g

2.25(11 .
——5—41——56—) = 6.2 million Ib/in, tR31

Cr Y
r 2L

Sy

a

giving a combined stiffness of i!'
15.216.2) 2
. - ey T ] o
32 - 62 4.2 million ib/in 1841 ~
o

h]

for each beam.
The two beams connected t¢ Frame 89 were |2 |nches !ong, J

. .-"

inches wide, and 11 inches deep. with area 35 square inches and an ;:
area moment of 46.4 in* The combined stiffness in bending and shear o
was v
®
2.413.2) - , o -
>4 - 32 32" | 4 mullion Ib/in. 185 :::
Stiffpess mat 4
.
All four beams act against an athwartship displacement of the ;::-j
flask., producing a stffness of 112 million pounds per inch for C*
Coordinate | The beams are attached 7 inches forward and 7 inches ]
aft of the centerline of the flask. so that when the flask 1§ rotated ;
about a vertical axis they applv a moment of 5488 niliion pound- f\::i
inches per radian to Coordinate 2. Moment arms for rotation about a R
fore-and-alt axis are 12 inches above and below the center of the ;?.::'
flask for a stffness of 16128 million pound-inches per radian 1n -;"'::
Coordinate 3. !
7.
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In addition, when the flask is displaced to starboard (out of the

paper in Figure 5J the beams will apply a moment about the vertjcal
axis of

(-4.2-4.2)(7) + (-1.4-1.4)(-7) = -39.2 million Ib-in/in (86)

that must be reacted by an equal and opposite moment to keep the
flask from rotating. Similarly, rotation about the vertical axis will
produce a net force per angle of 39.2 million pounds per radian to port
that must be reacted bv an equal force to starboard to keep the flask
from translating. The stiffness matrix needs to be written as

"11.2E6  39.2E6 0
K - [39.2E6 548.8E6 0o (87
.0 0 16128E6

Support stiffness

A displacement of Frame 90 in the starboard direction at the
upper support (uy) wiil apply 4.2 mullion pounds of force per inch of
displacement to Coordinate |. The force acts through a moment arm
of 7 inches to applv 294 pound-inches of moment per inch of
displacement to Coordinate 2. and acts through a moment arm of 12
inches to apply 50.4 million pound-inches per inch to Coordinate 3.

Similar calculations for the other three supports lead to a
support-stiffness matrix

| 42E6 4.2E6 1 4E6 1.4E6 °

F - 129.4E6 29.4E6 -9RE6 -9 8E6 - (88)
L50.4E6 -50.4E6 16.8E6 -16.8E6

Normal modes

Data were entered into Computer Program RGGG! using the
special format it required. The program returned three modes with
natural frequencies 298 424, and S36 Heriz [t provided a
modeshape matrix,
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roL 0. |
QS - (0185 0 -0.066, 189)
L0 L 0. |
that had been scaled to make the largest element 1n each column have
a value of unity.
Program RGGG! did not display the scale factors that it used.
They were recalculated by hand in a tabulation scheme that was
equivalent to
442 0 0"
SZ - (QSITMQS = 0 219 0 . 190}
L 0 0 1.58

The original analysis continued with rounded calculations to remove
the squares of the scale factors from individual results as thev
appeared. The following calculations depart from that method to
remove the scale factors from the modeshape matrix directly bv
dividing each column by the square root of its element of S, to obtain

"0.476 0.000 0796

Q -:0083 0.000 -0053" (91
(0000 0068 0000

Alternate calculation

A recalculation of the normal modes was made using a 10-digit
pocket calculator to obtain a mass-normalized modeshape mairix

directly as

0483 0.000 +0.788"

Q - -0087 0000 0054 192 ]
S 0.000 0068 0.000: oy

A

o

Dutferences 1n the third significant figure between this modeshape
matrix and the rescaled matrix from RGGGI appear to result from
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rounding of the scaled modeshapes in Equation 89.. Frequencies of the
modes are given as 298. 432, and 548 Hertz from the revised analysis.

The signs are reversed for rotation about the vertical axis in
Equation 92 because the data were entered into RGGG! using a left-
handed coordinate system. (Direction x pointed aft, y upward, and z to
starboard.)

The modeshape matriz from Equation 92 has been used in the
following calculations.

Participation factor

The participation factor is

7-0.156 -0.156 0.438 04387
RT-P2QIF - 0.462 -0.462 0.154 -0.154. 193]
0412 0412 0.049 0049

Modal weights

Sum each row of the participation-factor matrix bv absolute
value and square the sums to find modal masses in the units of 386
pounds used in the mass matrix. Multiplv bv 386 1o {ind modal
weights of 550 pounds for Mode 1. 587 pounds for Mode 2. and 328
pounds for Mode 3.

IDDAM inputs

One of the [DDAM tables. used lor the sake of an example.
shows that, at the point of impact. a weight of S50 pounds mounted at
298 Hertz would respond with a peak acceleration of 1264 g A
weight of 587 pounds at 452 Hertz would respond to i431 g. and 328
pounds at 548 Hertz would respond to 2297 g.

One frame away from the impact point the responses would be
0.45 umes as large, and at a distance of 24 inches around a frame
from the impact point the responses would be .60 times as large.

. . - - - LAY O - - - Tu® ™
- ,_'..- "o, LGS A RE g iy 4 -".



e e TRERETTTE TR W e W W W

-------

Accelerations

If a torpedo were o strike in way of the upper support at the
after frame (support uyl, the IDDAM inputs for the four supports,
multiplied by the participation factors. predict peak accelerations for
the three modes of

84 0 0 -
B-i0 304 VU (94)
L0 0 1596
The scaled modeshape matrix is
i5’40 0 1259’5
A-=QB-i-7 0 86 199
L0 21 0

with accelerations in g for the transiational coordinate ifirst row of the
matrix} and angular accelerations in multiples of 386 radians per
second per second for the rotational coordinates tsecond and thurd
rows).

Forces and moments

Muluplv
T8 0 568 °
G -0386MA - .-209 0 31567 (9G4
-0 1739 0
to obtain peak forces (thousands of pounds) applied to Coordinate |
and peak moments (thousands of pound-inches! applied 1to
Coordinates 2 and 3 in each of the three modes. (The factor of O 386 s
needed 10 return the mass matrix to convenient units |
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Static analvsis )
N

The force and moment from Mode | piace a load of -5 thousand ’
pounds on each of the two after supports, and a load of 14 thousand 'j;
pounds on each of the forward supports. Y
The moment from Mode 2 applies a load of 36 thousand pounds N
to each of the upper supports and -36 thousand pounds to each of the

lower supports. V-
Mode 3 puts loads of 254 thousand pounds on each after :-_;1
support and 30 thousand pounds on each forward one. ~]
Warping D
Suppose that the warping formula gives a displacement 0.200 'y

inch at the impact pont (uy), 0.120 inch at up, 0.090 inch at uz, and o
0.054 inch at ug. The static formula for the motion of the airflask can o
be solved most easily by writing it in the form ’
x - K!Fu-iQP2QTiFu - QRTu (97) ;
~ .9

that avoids inverting the suiffness matrix. The equilibrium positions .
of the coordinates are l
o
"0.116000° %
x - 0.006286: (9R1 -3
0002875 ;7

N?

The displacement (transiatton and two rotations! at support uj N

is 0.194502 inch. deflecting the beam there by 0005498 inch and :'.:-
producing a force of 23 thousand pounds. Similar calculations show :}

balancing forces of -23 thousand pounds at up, -23 thousand pounds !
at uz, and +23 thousand pounds at ug. X
Stress analysis -
The outermost fibers of the beams at Frame 90 were 4 inches )

from the neutral axis and would have stress ;.‘_-
)

N
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4
‘ 43‘2 = 1702 (99)

’ psi in bending per pound of force applied at the end of the beam.
' Shear stress would be

1
» 25 ° 0.400 (100)

pst per pound.

The beams at Frame 89 had their outermost fibers 6 inches
from the neutral axis, with stress 1733 pss per pound there in
bending, and with shear stress 0.286 psi per pound.

NRL Sum

The upper aft beam fuy) has loads, in thousands of pounds, of -5
tMode 1), 36 (Mode 2). 254 (Mode 3). and 23 'warping'. Bending
stresses are -9, 62, 433. and 39 thousand pounds per square inch. The
NRL Sum of the bending stresses is

433 +\(-972 - (6212 + (3912 = SO7 thousand psi. (101

, Shear stresses are -2. 14, 102. and 9 thousand pounds per
) square inch, with an NRL Sum of i 19 thousand psi.

Check

The calcufation might as well stop here tas i1t did in the originali
because there is no chance that the support at the impacted frame
could withstand the bending stress of 507 thousand pounds per
square inch or the shear stress of |19 thousand pounds per square
inch. The bending stress 1s more than ten umes the vield stress for a
medium steel and the shear stress is more than four umes yvield in
shear. A redesign of the supports for the arrflask 1s obviousiy needed
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APPENDIX A
A SHORT INTRODUCTION TO MATRIX ALGEBRA

MATRICES

A compuler statement similar 1o

DIMENSION M(4.5) (A-1)
will reserve 20 memory spaces for numbers that can therealter be
referenced as M(J.L), with J an integer in the range from | to 4 and L
an integer in the range from 1 to 5. The numbers are usually thought

of as arranged in a rectangular array with four rows and f1ve columns.
designated simplv by the letter M:

M(1.17 M(1.2) M(1.3) M(1.4) M(1.577
M . | Mi210 M22) M23) M2.4) M(25) L
T M3.1) M(3.2) M(3.3) M(3.4) M350 aned
LM4.1) M(4.2) M(4.3) M(4.4] M(45)

SOME DEFINITIONS

The matrix with dimension M(4.51 is called a recranguiar mairy
because 11 has a different number of rows than columns. A matrix
with dimension M(4.4) would be called a square wmatrryx . The
elements M(] 1) are cailed ;he d/;zgon.zl e/ements . they would be the
elements M!'1.11 M(2.2), M(3.3). and M(4.4) for the matr:x here

The sum of the dlagonal elements 1s called the trace of the
matrix; the trace of the matriy here would be M(1.1)+~ M12.21 - A1 330
- M(4.41. A svmmetrrc matrsy is one in which everv Mi[L11s equal 1o
the corresponding M(L.J1 - that is. M(1.2) = M(2. 10 M(1.3) = M350
and so on for all the pairs.

SOME OPERATIONS

[ matrix Q has elements QtJ,L!. the matrix with elements QL ]
1s called the transpose of Q. designated by QT Transposition
corresponds to interchanging rows and columns 1n the arrav. [f the
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transposed matrix is equal to the original matrix (QT - Q), then the
matrix must have been both square and symmetric.

Matrices of the same dimension are added or subtracted by
adding or subtracting the corresponding elements. Matrices of
different dimensions cannot be added to or subtracted from one
another.

MATRIX MULTIPLICATION

The product of two matrices is written as if it were ordinarv
multiplication. That is,

Z-MQ {A-3)

1s the product of M and Q. The operation is not an element-by-

element multiplication, however, but involves mulliplving each

element in a row of the {irst matrix by the corresponding element 1n a
| column of the second matrix and summing the products. Each element
, of Z is generated as

ZOON) = MOJDQUIN) - M(].2) Q2N) - M(}13) Q3N
- M(]4)Q(4.N) - . FA-4)

The equation can be abbreviated as

PIEIE P PP
«

Z(JN) = M{JL)QIL.NI. rA-5) -

>

where it 1s understood (the summalion convenion | that the product }_I‘
1s lo be summed over all possible values of the repeated index L. I

The product matrix Z will have as many rows as there were
rows in M. and as many columns as there were columns in Q
Moreover. M mus:. have exactly as manv columns as Q has rows, so
that the index L can be assigned to both and run through a single
range of values

Because of the rule for multiplication, it 1§ not surprising that
the matrix product QM is a different matrix from the product MQ.
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MORE DEFINITIONS

A dragonal/ matrry 1s one in which all of the elements other than
the diagonal elements have values of zero. A wasr matriy (usually
designated by I) is a diagonal matrix in which each diagonal element
has a value of unity.

The /nverse of a matrix K is the matrix K-! that makes

K1K =1 (A-6)

be a unit matrix. Not all matrices have inverses. The definition of an
inverse is reciprocal: K is also the inverse of K-! so that

KK! = L (A-71

I the transpose of a matrix is also its inverse, the matrix is said
to be ynstary. That is.

UTu = 1 fA-R)
defines U as a unitary matrix. A simple example is

fcos(H)  -sin(H)?
u- _sin(H) costH) » (A-9)

which 15 unitary for anv angle H.
VECTORS

A matrix with only one column is called a cofwama vector I a
matrix X has dimension X(5,1), for example, it 1s a column vector with
five elements. It 1s usual to suppress the unit designation and show
its dimension as X(5). Column vectors are designated bv lower-case
boldface letters. such as x. i1n the present report

A matrix with onlv one row s called a row vector [t 1s
dimensioned Xt1 51 for example, and is designated here using the

svmbol for transpose. 1.  Again the unit designation 1S ysuailv
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o
suppressed to show a row vector as dimension X(5), although this has ;7. .
the defect of not distinguishing it from a column vector. ‘53'
All of the rules for adding. subtracting. and wmultipiying N
matrices apply to vectors provided the unit dimension (s understood. :j,
ot
SOME HELPFUL RELATIONS ¥
The tollowing rules can be verified by working out some simple N
examples. First, the transpose of a matrix product is obtained from :__i
the transposes of the factors taken in the reverse order. or ‘-Z-_:
-
(MQ)T - QT MT PA-107 3
~A
Similarly, the inverse of a product involves inverting and E:;"'
interchanging the factors, as N
oY
(MQ)! = QI M-I (A-111 .
Y
If a matrix is symmetric. its inverse IS also symmetric. ::E'F
However, the product of two symmetric matrices. such as M-! and K. =
is not a symmetric matrix. since ,.
(M-1KT - KTM-T - K M-! (A-121 o
o0
is different from the original product M1 K o
Both the mass and suffness matrices M and K for a structure N
are necessarily symmetric. [f a stffness matrix were not symmetric. f-!‘}
for example, the structure couid be run as a perpetual-motion ::?.f
machine by moving it around a cvcle in which the smaller off-diagonal $:$
element was worked during the compression phase and the larger I:'_‘;,
offdiagonal element was used to provide power during the return , i
stroke. A
Matrix elements for a structure can often bv generated or :'(:'
checked bv using the useful relations that x7 K x/2 is the potential tor o
strain) energy and vI M v/2 is the kinetic energy. where 1 is a :'.;:
column vector of displacements and v a column vector ol velociiies !
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USEFULNESS OF MATRIX ANALYSIS

The rules for addition. subtraction. and multiplication of
matrices were chosen specificallv so that matrix equations verv
similar to scalar equations, such as

Ma-+Kx-=Fu, fA-13)

wouid expand into precisely the set of coupled differenual equations
needed 1o represent a structure with multiple coordinates. The great
compaction of the notation and the resultant improvement in
comprehension are exactlv what 1s needed in analvzing comphcated
structures.
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APPENDIX B
A COMPUTER PROGRAM FOR RIDDAM

PROGRAM

1000

1100
1110
1120
1130
1140
1150
1160
117g
1160

1200

1520
1230
1240

1300
1310
1320
1330
1340
1350
1360
1370
1380

REM THIS PROGRAN IS WRITTEN IN CORE BASIC

REM IOENTIFY THE PROGRAM
PRINT "“877F7 RIDDAMR"

PRINT *  ACCEPTS A DIAGONAL MASS MATRIX IN"
PRINT " POUNDS OR POUND INCHES SQURRED."
PRINT *  STIFFNESSES IN POUNDOS PER INCH OR“
PRINT “  POUND-IHCHES PER PADIAN."

PRINT "R L BORT, NAUAL RESERRCH LAB, WASHINGTON, OC

PRINT "JULY 15, 1987."
PRINT

REM  DIMENSION THE UHRlHBLEa

HlMN/ﬂ' ----- - e
17,10), o

0in Q¢10,10), P(10,’0), 9(10,10)
pin Fr(10), W10y, DC10), F2(10),B8(10)
0in ﬂ(w,m),o(]o,m)

REM CASE NUMBER OR TEST CRSE

PRINT “ENTER A NUMBER FUR YOUR CASE, OP

PRINT "ENTER O (ZERO) T3 RUN # TEST CAHS

INPUT T

[F T7>0 THEN 1410

PRINT "CASE 0 1S A 1000-POUND BAR SUPPORTEC"

PRINT "INDEPENDENTLY AT EACH ENO. T IS RMOQELED RS"
PRINT “N1 EQUAL MASSES WITH N1+1 EQUAL SPRINGS.”
PRINT
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1400
1410
1420
1430
1440

1500
1510
1520
1530
1540
1350
1360
1570
1580

1600
1610
1620
VY]
1640
1650
1660
1670
1680
1690

1700
1710
1720
1730
1740
1750
1760
1770

REM ASSIGN DEGREES OF FREEDQH
FRINT "ENTER DEGREES OF FREEDOR (1 TQ 1Q)*
INPUT NI

IF N1<1 THEN 1410
IF N1>10 THEN 1410

REM CLEAR SOME MATRICES
FOR J=1 TQ NI

FOR L=1 T0 NI

LET n(J,L)=0

LET K(J,L)=0

LET 0(J,L)=C

NEXT L

NEKT J

IF T>0 THEN 1810

REN TEST CRSE, MASS AND STIFFNESS
LET N2=2

FOR J=1 T0 NI

LT Dve,us/=i 380/ Ni+y

LET K(J,J)=2%20000%{N1+1)

NEXT J

FOR J=1 TO Hi-1

LET K(J,J+1)=-20000%(N1+1)

LET K{J+1,J)=K(J, J+1)

NEXT J

REM TEST CASE, SUPPORT STIFFNESS
FOR J=1 T0 N1

LET F(J,1)=0

LET F(J,2)=0

NEXT J

LET F(1,1)=20000%(N1+1)

LET F(N1,2)=20000*(N1+1)

GOTO 2410
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1800
1810
1820
1830
1840

2000

2100
2110
2120
2130
2140
2130
2160
2170

2200
2210
2220
2230
2240
2230
2260
2270

2300
2310
2320
2330
2340
2330
2360
2370

LS LS l‘v“J‘J'J‘ C o e
M.}J- ".A.J_'.“‘.n!.; .-"A N e 4"’_&\&'.4?.9,‘?4‘.‘.:0‘

REN ASSIGN NURBER OF SUPFORTS

PRINT "ENTER NUMBER OF SUPPORTS (1 70 Q)"
INPUT N2

I[F N2<1 THEN 1810

[F N2>10 THEN 1810

RERM ENTER THE RATRIX ELEMENTS

REM DIRGONAL MASS MATRIX T

FOR J=1 TQ NI

PRINT "ENTER MARSS";J

INPUT 11(J,J)

IF 1n(J,J)>0 THEN 2170

PRINT "MASSES MUST BE POSITIVE. TRY AGRIN."
GOTO 2120

NEKT J

REN SYMMETRIC STIFFNESS NMATRIX K

FOR J=1 TO NI

FOR L=J TG NI

PRINT "STIFFNESS NMATRIX RCU";J; "COLUNN" ;L

INPUT K(J,L}

LET K(L,J)=K(J,L)
NEXT L

NEXT J

REM SUPPORT-STIFFNESS MATRIX F
FOR J=1 TO NI

FOR L=1 TO N2

PRINT “STIFFNESS COORD!NRTZ™"; J;"
INPUT F(J,L)

NEXT L

NEXT J

PRINT

TQ SUPPORT™;L
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ACLEN

- B TeTw e -

2400 REM LABEL THE CASE
2410 PRINT “THIS 1S CASE";T
2420 PRINT

2500 RER ECHO THE NMASS MATRIX
2510 PRINT "NASS MATRIX N ="
2520 FOR J=1 TQ N!

2530 FOR L=1 TO M1

2540 PRINT n{J,L),

2550 NEXT L

2560 PRINT

2570 NEXT J

2580 PRINT

w ¥ ¥ F. e WIS V W ¥

-

2600 REM ECHO THE STIFFNESS MATRIY
2610 PRINT "STIFFNESS MATRIX K =
2620 FOR J=1 T0 Ni

2630 FOR L=1 TO N1

2640 PRINT K(J,L),

2650 HEXT L

2660 PRINT

2670 NEXT J

2680 PRINT

B

B i e

2700 REN ECHO THE SUPPORT-STIFFNESS NATRIX
2710 PRINT “SUPPORT-STIFFNESS MATRIX F =
2720 FOR J=1 TO NI

2730 FOR L=1 T0 N2

2740 PRINT F(J,L),

2750 NEWT L 3
2760 PRINT )
2770 NEXT J s
2760 PAINT ':_.‘:':
.
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3000 REN CHANGE OR CORRECT MATRIX ELENENTS

e .
we .’Il{<‘

3100 REM CHECK THE NMATRICES

3110 PRINT "PLEASE CHECK THE RMATRICES. IF THEY ARE GOOD“
3120 PRINT "ENTER 0. IF YOU WANT TO CHANGE RANY, ENTER 1.°
3130 INPUT J

3140 IF J=0 THEN 4110

3200 REft CHANGE THE NMASS NMATRIX T

3210 PRINT “MASS TO BE CHANGED OR 0 IF NO CHRNGE"
3220 INPUT J

3230 IF J<1 THEN 3310

3240 PRINT M(J,J);"1S OLD MRSS";J;". ENTER NEU URLUE." ’
| 3250 INPUT N(J,J) 3
3260 IF M(J,J)>0 THEN 3210 "
3270 PRINT “MASSES NMUST BE POS!TIVE NUMBERS!® e
3280 GOTO 3240 .
l\,
RS
3300 PEN CHANGE THE STIFFNESS MATRIX K N
3310 PRINT "ENTER ROW, COLUMN OF ELEMENT TG BE" N
3320 PRINT "CHANGED IN K. ENTER 0,0 IF NO CHANGE." N
3330 INPUT J,L ]
3340 IF J=0 THEN 3410 X
3350 PRINT K(J,L);"“1S OLD";J;L;". ENTER NEW UALUE:" iy
3360 INPUT K{J,L) s
3370 LET K(L,J)=K{J,L) bt
3380 5070 3310 R
EE
P
L
-
N
RS
N
P_
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3400
3410
3420
3430
3440
3430
3460
3470

4000
4100

REN CHANGE THE SUPPORT-STIFFNESS MATRIX F

PRINT "ENTER ROW, COLUMN OF ELEMENT TO BE"
PRINT "CHANGED IN F. ENTER 0.0 IF NO CHANGE."
INPUT J,L

IF J=0 THEN 2410

PRINT F(J,L);"1S OLD";J;L;". ENTER NEW URLUE:"
INPUT F{J,L)

GOTO 3410

REM START NORMAL-MODE ANALYSIS
RENM NORMALIZE ON THE MRSS NATRIX, QT*M*Q = |

4110 FOR J=1 TQ NI

4120 LET Q(J,J)=1/S0R(M(J, )

4130 NEXT J

4200 REM SYRMETRIC DYNAMIC MATRIN, QT*K*Q

4210 FOR J=1 TO NI

4220 FOR L=1 TO NI

4230 LET P(J,L)=00d,)*K(,Li*Q(L,L)

4240 NEXT L

4250 NEXT J

4300 REM SHOW THE DYNAMIC MATRIX R

4310 PRINT "SYMMETRIC DYNAMIC MATRIX QT=K*Q =" o

4320 FOR J=1 TO NI 0

4330 FOR L=1 TO NI ;

4340 PRINT P(J,L), R

4350 NEXT L NG

4360 PRINT N

4370 NEXT J A

4380 PRINT V.
N
‘l
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5000

5100
3110
5120
5130
5140
5200
5210
5220
3230
5240
5250
3260
5270
5280
5290

3300
3310
5320

5330

5340
5350

5400
5410

5500
S3t1o
3520
5530
5540

REM DIAGONALIZE THE DYNANIC MATRIX

REM SET COUNTER AND RUN THROUGH CGFFDIAGONAL ELEMENTS

PRINT "CALCULATING...."

LET E=0

FOR J=1 TO N1-1

FOR L=J+1 TO M1

REN SORT COLUNNS BY INCRERSING FREQUENCY
IF P(J,J)<=P(L,L) THEN 5410
FOR J1=1 TO N1

LET 2=Q(J1,J)

LET QCJ1,d)=QCJ1,L)

LET Q¢J1,L)=2

LET 2=P(J1,J)

LET P(J1,J)=P(J1,L)

LET P(Ji1,L)=2

NEXT J1

REM AND INTERCHANGE ROWS OF P RS UELL
FOR J1=1 TO N1

LET 2=P(J,J1)

LET P(J,d1)=P(L,d1)

LET P(L,J1)=2

NEXT Ji

REM SKIP SMALL UALUES
IF ABS(P(J,L)+P(L,J))<.C1 THEN 5920

REN DON'T DIVIDE BY ZERC
IF P(J,J)<P(L,L) THEN S610
LET C=50R(.9)

LET S=C

60TO 5710
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5600 REM JACOBI ROTATION

5610 LET H=.S*RTN((P(J,L)+P(L, )}/ (P(J,)-P(L,L}})
5620 LET C=COS{H)

S630 LET S=SIN(H)

5700 REM UPDATE THE COLUMNS OF THE MATRICES
5710 FOR Jt=1 TO M1

5720 LET Z=C*Q(J1,J)+5*Q(J1,L)

S7T30 LET QCJ1,L)=C*Q(J1,L)-5*Q(J1,J)

5740 LET Q(J1,J)=2

STS0 LET 2=C*P{J1,J)+S*P(J1,L)

5760 LET P{J1,L)=C*P(J1,L)-S*P(J1,J)

5770 LET P{Jt1,d)=2

5780 NEXT Ji

5800 REM AND ALSO THE ROWS OF P

3810 FOR Ji=t TO NI

5820 LET Z=C*P(J,J1)+S*P(L,J1)

5830 LET P(L,J1)=C*P(L,J1)-S*P(J,J1)
5640 LET P{J,Jd1)=Z

3850 NEXT U1

5900 REM STEP THE COUMTER AND END THE LOOP
5910 LET E=E+!

5920 NEXT L

5930 NEXT J

6000 REM SHOW AND TELL THE NORMAL MODES
6100 REM 1S P DIAGONAL YET?

6110 PRINT "2APPED"E;"0OF THE OFFDIAGONAL ELEMENTS.®
6120 IF £>0 THEN S120
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6200
6210
6220
6230
6240
6250
6260
6210
6280

6300
R31A
6320
6330
6340
6350
6360
6370
6330

6400
6410
6420
6430
6440

6500
6310
6520
6530
6540
65350
6560
6570
6580
6530

REN SHOW NCDESHAPES

PRINT "NMODESHRPE MATRIX Q ="

FOR J=1 TO N

FOR L=1 TO NI

PRINT Q(J,L),

NEKT L

PRINT

NEXT J

PRINT

REM SHOW FREQUENCY-SQUARRED MATRIX

PRINT “FREQUENRY-SGQUARER MATRIX QT*K*Q ="
FOR J=1 T0 N!

FOR L=1 TO NI

PRINT P(J,L),

NEXT L

PRINT

NEXT J

PRINT

REM CHECK FOR LOOSE PARRTS
FOR J=1 TO NI

IF P(J,J)<.0 THEN 6440
LET P(J,J)=-.01

NEXT J

REM PARTICIPATION-FACTOR MATRIX R
FOR J=1 TO NI

FOR L=1 TO N2

LET R(J,L)=0

FOR J1=1 TO M1

LET R(J,L)=RCJ,L)+QCJT, J)*F(J1,L)
NEXT J1

LET R{J,L)=R{J,L}/P(J,J;

NEXT L

NEXT J
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6600
6610
6520
5630
6640
6650
6660
6670
6680

6700
6710
6720
6730
£740
5750
6760
6770

6800
6810
6820
6830

£900
6910
6920
§930
6940
6930
6960
6970

REM SHOW THE PARTICIPATION FARCTOR
PRINT "PRARTICIPATION FACTOR R =
FOR J=1 TO NI

FOR L=t TQ N2

PRINT R(J,L),

NEXT L

PRINT

NEKT J

PRINT

REM CHECK FOR NEGATIVUE EIGENVALUES

FOR J=1 TO NI

IF P(J,J)>0 THEN 6770

IF P(J,d)>-.011 THEN €760

PRINT “STRUCTURE COLLAPSES (N NMODE";J

PRINT "THERE IS A MISTAKE IN YOUR STIFFNESS

LET P(J,J)=0
NEXT J

REN CALCULATE FREQUENCIES

FOR J=1 TO NI

LET F1(J)=SQR(386*P(J,J))/6.283185
NEXT J

REN CALCULATE MODAL WEIGHTS
FOR J=1 TO NI

LET W(J)=0

FOR L=1 TO N2

LET W(J)=R{J)+ABS(R{J,L))
NEXT L

LET W(JI)=U(JI)I*U(Y)

NEXT J
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7000

7100
7110
7120
7130
7140
7150

7200
7210
7220
7230
7240

7300
7310
7320
7330
7340
7330

7400
7410
7420
7430

7500
7510
7520
7530
7540

REM FREQUENCIES, WEIGHTS, AND INPUTS

REM REAL OR FRKE INPUTS
I[F T=0 THEN 7410

PRINT "ENTER Q TO GET FRKE INPUTS (EXAMPLE GNLY),"

PRINT “OR ENTER 1 TO SUPPLY INPUTS FROM TARBLES.®
INPUT J
IF J=0 THEN 7410

REM ENTER INPUTS
FOR J=1 TQ0 Nt

PRINT "INPUT FGR";UW(J); "POUNDS AND";F1(J);"HERTZ:"

INPUT B{J)
NEXT J

REN ENTER FRAME FACTORS

FOR J=1 TO N2

PRINT “FRAME FACTOR FOR SUPPORT";J
(NPUT F2(J)

NEXT J

GOTO Vvél0

REM INPUTS (FAKE) FOR TEST CRSE

FOR J=1 T0 M1

LET DCJ)=.3*P(J,J)/S0R(1+.000001*U{Jj*F(J,J))
NEXT J

REM FRAME FACTCAS (FAKE)} FOR TEST CASE
LET F2(1)=1

FOR J=2 TO N2

LET F2(J)=.57F2(J-1)

NEXT J

75



7600 REN SHOW THE MODES

7610 PRINT "NMOOE", "FREQUENCY", "HEIGHT", " INPUT"
7620 PRINT ,“(HERTZ)","“(POUNDS)","(G)"

7630 FOR J=1 TO N1

7640 PRINT J, F1(J),H(J),0(J)

7650 NEXT J

7660 PRINT

7700 RER SHON THE FRAME FACTORS

7710 PRINT "FRAME FACTORS (RATiQ TO iNMPACT POINTY®
7720 FOR J=1 TQ N2

7730 PRINT F2(J),

7740 NEXT J

7750 PRINT

760 PRINT

8000 REN PERK RESPONSES

8100 RENM CALCULATE ACCELERATIONS QF NMOODES
8110 FOR J=1 TO M

8120 LET B(J)=0

8130 FOR L=1 TD N2

8140 LET B(J)=B(J)+R(J,L)*F2(L)*D{J)

8150 NEXT L

8160 NEXT J

8200 REM CONUERT TO ACCELERATIONS GF MASSES
8210 FOR J=1 T0 Mi

8220 FOR L=1 TO NI

8230 LET R(J,L)=0(J,L)*B(L)

8240 NEXT L

8250 NEXT J

VNI SN
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REM FIND PEAK FORCES (N EACH MODE
8310 FOR J=1 TO NI
8320 FOR L=1 TO Ni

5 8330 LET 6(J,L)=N(J,)*A(J,L)

, 8340 NEXT L

8350 NEXT J

8400 REM SHOW THE ACCELERATIONS

0410 PRINT “PEAK ACCELERATIONS (G) IN EACH MODE“
8420 FOR J=1 TO Nt

8430 FOR L=1 TO NI

6440 PRINT A(J,L),

8450 NEXT L

8460 PRINT

8470 NEXT J

8480 PRINT

2RI

-]

8500 REM SHOW THE FORCES

8510 PRINT "PERK FORCES (POUNDS) iN EACH MODE"
8520 FOR J=1 T0 M

8530 FOR L=1 TO NI

8540 PRINT G6(J,L)},

8550 NEXT L

8560 PRINT

8570 NEXT J

8580 PRINT

9000 REN WINDUP

9100 REN WHMAT SHALL WE 00 NENT?
9110 PRINT “ThiS IS ALL THIS PROGRAN DOES. CHOOSE:"

Q120 PRINT "1 - NEW IMPACT POINT"
9130 PRINT "2 - NEW INPUT TRBLES"

9140 PRINT "3 - CHANGE THE SUPPURTS"

9150 PRINT "4 - CHANGE THE STIFFNESS MATRiX"
9160 PRINT "S - CHANGE THE MRSS MATRIX"

8170 PRINT "6 - NEW STRUCTURE"

9180 PRINT "9 - ENDO THIS RUN"
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9200 RER CHOICE

9210 INPUT J

9220 |F J=1 THEN 7310
9230 IF J=2 THEN 7210
9240 IF J=3 THEN 3410
9250 !F J=4 THEN 3310
9260 IF J=5 THEN 3210
9270 IF J=6 THEN 1310
9280 IF J=9 THEN 9910
9290 GOTO 9110

9900 REM END

9910 PRINT “THANK YOU FOR RUNNING THIS PROGRAM. "
9920 PRINT “FINISHED"

9930 END

COMMENTS

Documentation

The program is self-documented by remarks. [t uses the
same procedures and most of the same svmbols as are
described in the text of this report.

Core BASIC

The program 1s writlen n primitive BAS{C language
without anv of the enhancements that are availabie 1 various
dialects of BASIC. As such, it is long and sjow. but should run as
1s on any computer that has a BASIC compiler or interpreter
The program is also wasteful of memory since. lor claritv it
does not use anv shortcuts and defines new varjables for each
step 1n the calculation.
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SAMPLE OUTPUT

Test case, Case 0

The program is loaded with an example consisting of 2
uniform bar with weight 1000 pounds and axial stiffness
20,000 pounds per inch. The bar can be represented by {rom
one to ten lumped masses evenly spaced along a massless
spring. A simple analytical solution is available for the fixed-
base frequencies and modeshapes of the string of equal
masses.?

Follow:ng is part of the output frecm Case . The bar was
modeled using four stations. each representing the motion of a
200-pound mass lump. The remaining mass was jumped with
the supports at each end of the bar.

The test case uses a simple formula to generate [DDAM-
like tnputs. The inputs are for sake of the example oniy and are
not :ntended to apply to anv parucular sttuation.

THIS IS CRSE O

MRSS NMRTRIXK i1 =

200 0 0 0

0 200 0

0 0 200 0

0 0 ] 200
STIFFNESS NMATRIX K =

200000 -100000 0 C
-100000 200000 -100000 0

) -100000 200000 -10000¢
0 0 -100000 2000490

2Fan Y Chen. "On Modeling and Direct Solution of Certain Free Vibraton
Systems.” fournal of Sound and Fibraton Volume 14 Number | 119711

pages 57 to 79
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SUPPORT-STIFFNESS MRTRIX F =

100000
0
g
0

0
a
0
100000

SYNMETRIC DYNAMIC MATRIX QT*K*Q =

1000 -500 0 0
-500 1000 -500 0

0 -500 1000 -500
0 0 -500 1000

F CALCULATING. ...

; ZAPPED 6 OF THE OFFDIAGONAL
. 2APPED 6 OF THE OFFD!AGONAL
[ ZAPPED S OF THE OFFDIRGONAL
' 2RPPED G OF THE QFFDIARGONAL

ELENENTS.
ELEMENTS.
ELENENTS.
ELERENTS.

A NMOBESHARE NATRIX § =

N 2.628614E-02 -4.25328E-02 4.233267E-02 -2.628634E-02
X 4.253229E-02 -2.6286938E-02 -2.628676E-02 .25324E-02

4.25328E-02 2.6286148-02 -2.628635E-02 -4.253267E-02
- 2.628698€-02  ¢4.253229E-02  4.253241E-02 .628677E-02

-

~N

¢ FREQUENCY-SQUARED NATRIK QT*KxQ =

“ 190.983 4.936953E-03  2.26589E-09 . 189629E-00

) 4.912365e-03  690.983 -5.086626E-06 -2.625385E-05
3.227984E-0S  4.204654E-06  1309.G17 -2.479627€-03
-7.09665E-06 2.624064E-05 -2.429924E-03 1809.017

(4]

g

|

PARTICIPATION FACTOR R =
, 13.7636 1376404
- -6 155405 5.155331
: 3.249208 3.249187
-1.453074 1.453067
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WE I GHT
(POUNDS )
757.7711
151.5542
42.22914
8.445827

79.24529
-48.97652
-48.97574

79.2448

EACH MODE
1584506
~9795.304
-9795. 147

MOOE FREQUENCY
(HERT2Z)
I 43.21268
2 82.19538
3 113.1323
4 132.9949
FRAME FACTORS (RATIO TO INPACT POINT)
1 .5
PEARK ACCELERATIQONS (G) IN EACH NODE
29.0617 25.81773
47.02328 15.95639
47.02384 -15.95588
29.06262 -25.81742
PERK FORCES (POUNDS) iN
5812.34 5163.546
9404.655 3191.279
9404.768 -3191.177
5812.524 -5163.484

Textbook example

15848.56

...................

IHPUT

(6)
93.55082
167.2251
382.2812
$38.6061

i0.28613
-16.64339

16.64349
-10.2863

2057.226
-3326.678
3326.698
-2057.299

Following 1s outpul from the problem described as

Textbook Example in the text.

THIS IS CRSE 1

MASS NATRIX N =
3295 e
0 200

STIFFNESS NATARIX K =

26666.67 -16666.67
-16666.67 46666.67

------
........
......
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SUPPQORT-STIFFNESS NATRIX F =

10000 0
a 30000
SYMMETRIC DYNAMIC MATRIX OT*K*Q =
82.0513 -65.37206
-65.37206 233.3334

CALCULATING. . ..
ZAPPED 1 OF THE OFFDIRGONAL ELEMENTS.
ZRPPED O OF THE OFFDIAGONAL ELEMENTS.

MODESHAPE MATRIX Q =
S.198516E-02 -1.935114E-02
2.466796E-02 6.626833E-02

" T

FREQUENCY-SQURRED- MRTRIX QT*K*Q =

57.71698 0 X
1.807349E-06 257.6677 5
4
PARTICIPRTION FACTOR R = hY
9.006909 12.82185 g
-. 7510112 7.715557 ol
MODE FREQUENCY  WEIGHT INPUT o
(HERTZ) (POUNDS) (0) S
| 23.75558 476.4948 26 Ky
2 50.19307 71.68277 e N
FRANME FACTORS (RATIO TO IMPACT POINT)
1 .45

-'--_‘ . A

PEAK ACCELERARTIONS (G) IN EACH nAQOE
14.9724S -6.265833
9.477313 21.45753
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PEAK FQORCES (POUNDE) IN EACH MOOE
o 6491.047 -2036.402
. 1895.463 4291.506
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