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:‘.:' MODELS FOR ELECTROMAGNETIC SCATTERING FROM THE SEA
:‘ AT EXTREMELY LOW GRAZING ANGLES
K.
- I. INTRODUCTION
.

X Navy radars operating from ships. shore installations. and low-flying aircraft inevitably view the
_';.": sea at extremely low grazing angles (< 1°). Under these conditions one might expect the surface to
it be deeply shadowed, yet the experimental evidence is unclear, sometimes even contradictory. It is

. obvious that this is a very special scattering regime, in which our normal ideas of sea scatter are quite

W possibly of little use. Our approach to understanding this regime will be guided by two basic ques-
" tions:

Wit

::‘ 1. How much, and what part, of the sea surface is actually illuminated and observed simul-
‘1% taneously in a scattering interaction?

oy 2. What are the special structural characteristics of the scattering elements in such regions,
Y E and what theoretical models are to be used.

~

o Attempts to answer these questions run into severe problems in conceptualization (visualizing the
bd physical processes involved), and modeling (finding useful predictive analytical descriptions of these
ol processes.) While shadowing of some sort must certainly take place at extreme grazing angles, radars
N operate at finite wavelengths. so the effects of diffraction cannot be ignored. Unfortunately, a
N diffraction-corrected shadowing theory does not exist. and the task of constructing one appears for-
::: midable. The modulation of the surface illumination by shadowing will preferentially highlight spe-
(o0 cial regions of the surface - the raised wave peaks - whose morphology cannot be described with any
' confidence, and whose scattering properties are largely unexplored and imperfectly understood. In
& this area, modeling «  ists mainly of analogical guesswork and uncritical application of models that
.ﬁ:: appear to work in other angular regimes.

N

:\' The purpose of this report will be to define these problems with greater precision. see how far
o existing knowledge can carry uvs, develop some new models and new approaches, and idenau.fy those
~; topics requiring further work.

V.
N Il. SHADOWING

.'J

:13 There are two ways to approach the problem of surface illumination at low angles: as a diffrac-
o tion problem for which the usual geometrical optics shadowing theory is considered a limiting case. or
i as a statistical exercise in geometrical optics in which there might be need for some diffraction correc-
s tions. It is the second approach that has attracted all the attention [Bass and Fuks. 1963: Beckmann,
'.'_-', 1965, Wagner. 1967, Smith. 1967 Sancer. 1969; Lynch and Wagner,1970: etc.). The reason. of
Lo course, ts because it is doable. albeit under certain severe assumptions: two-dimensional geometry.
: uncorrelated Gaussian surface, geometrical optics transition across the shadow line. Many useful sta-

tistical expressions are derived during the course of these treatments, but the end result is usually a
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**Shadowing Function,”” which is essentially the percentage of surface area. on the average. that will
be illuminated at a given grazing angle, and for small angles is just a linear function of the angle. It
is this crude shadowing function that is invoked whenever a shadowing theory is called for, yet there
is little evidence that these results are of any value when applied to a real sea at low grazing angles.

At extreme grazing angles the standard geometrical shadowing theory referred to above develops
some interesting implications, which were explored heuristically by Wetzel [1977]. It was found that
at grazing angles below about | degree. the sea should begin to resemble a “‘dark’" plane. populated
by illuminated “‘islands,”” whose size and spacing are determined by the mean grazing angle and the
wind speed. This conceptual model has a strong intuitive appeal. and bears a closer relation to visual
observation and radar events such as “‘sea spikes’” than does the diffuse *‘vanishing scatter™ picture
suggested by the “‘shadowing function.”” Nevertheless, this is still a geometrical theory, and we must
take a close look at the diffraction problem in order to find when. if ever. such models may be used.

A. Diffraction Effects at Wave Peaks

The simplest surface model for encorporating diffraction effects into sea scatter is one containing
two sharp peaks separated by a broad smooth trough. The cycloid provides such a curve, and is often
related to the shape of ocean waves both formally [Kinsman.1965], and informally [ask anyone to

sketch an “ocean wave' '], It is given by the parametric equations:

x =x'" — a sin(Kx") (h

i 4
t

2 =2+ acos (Kx') <

.

‘>

where a controls the shape of the curve (a = 1 gives peaks with sharp points. while ¢ < 1 gives -;
rounded peaks.) In Fig. 1 we show the case for ¢ = 1 (trochoid). with the shadow line indicated for ’

illumination at a grazing angle . The axes are normalized so that the abscissa is given in fractions
of a wavelength (distance between peaks). s = x/A. while the ordinate is the fraction of the peak-to-

>

. . . . . R )

trough wave height H. We should note that Fig. | represents a two-dimensional model in which the A
wave crests are infinitely long in the direction perpendicular to the paper. Such models can theretore N

be applied only in situations where the sea actually is long-crested. and the illumination is normal to
the crests. Unfortunately. these conditions are seldom encountered. Rcal wind-driven seas tend to be
relatively short-crested. with the water piled in heaps. Whether a real surface can be modeled in any
practical way is open to question, although we will make a few comments about this problem a litte
later. For now. we continue to seek insight into the shadowing problem from the simple two-
dimensional model. in which we will find :nough to occupy our attention.
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Under the assumptions of geometrical optics. the wave surface would be tully illuminated to the -
right of the intersection of the shadow line with the surface. and totally dark to the left. The effect of .,-1
diffraction in smoothing this transition may be approached as tollows. D
i~
1. Pavsical Optics e
o
Imagine a vertical plane erected perpendicular to the wave peak at the pomt of tangency with the
shadow line. The field to the right of the plane is found from the Helmholtz integral over the plane :r:':<
using the field values appropriate to the unperturbed incident wave.  The result s the tanuhar Fresnel -:-1
diffraction pattern for a straightedge. and it is independent of the actual shape of the diffracting wane ‘:3]
peak. That is. the physical optics expression for the ficld in the region between the peaks i b 1s ‘.,'_:
, : . . "
given in normalized form by o
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Epy(R.6) = |F(w) — F(—)|/V2 Q)

where F(w) is the Fresnel integral

x >
W t—u’ —_——
Fiw) =§0 e’ du. w = kR/x0 (3)
and 6 is the angle relative to the shadow line (negative below. positive above).

This is the simplest approximation to diffraction effects, yet it quite dramatically illustrates the
importance of including such effects in scattering calculations. In Fig. 2 we have plotted the illumi-
nation field intensity ( | £ | ) over the trochoidal surface of Fig. 1 as derived from Eqns. (2) and (3)
for a 3 cm. wavelength (X-band), a 3° grazing angle, and a 15 knot wind speed. (In this, and the
following examples, peak wave height is taken as H=.0!5W2(m) and L=.64W2(m) is the surface
“‘wavelength,”” where W is in m/sec.) Since the shadow line for a 3° grazing angle encounters the
trochoidal surface at 0.47, the corresponding geometrical optics illumination profile is shown as a
vertical line at that point, separating light (intensity=1. to the right) from dark (intensity =0, to the
left). For the Fresnel diffraction pattern, the diffracted field is always equal to 0.5 at the shadow
line. so the relative intensity at that point is always 0.25. The gradual transition from light to shadow
produced by diffraction can be characterized by a *‘transition fraction,”” F, defined by the interval
along the trough over which the field changes from 0 to 1 by the steepest tangent to the diffraction
curve. This is illustrated in Fig. 2. It is of interest to note that in this example. F is measured
between the intersection of the shadow line with the trough, at s=0.47, and the point at which the
diffraction profile crosses 1. This seems generally to be the case.

2. Polarization Effects

Scattering from the sea often shows strong polarization effects, and we should be concerned
whether the shadowing and diffraction processes we have been discussing display any polarization
dependence. In the trochoidal model we are using to investigate shadowing and diffraction, the wave
peak itself is essentially a knifc-cdge (examine the implications of Eqn.(1) at x* = 0), so since we
have already used the physical optics solution to find the diffracted field. it is an casy matter to
append to this solution the so-called “"edge waves” of Ufimtsev's Physical Theory of Diffraction
[1957]. In this theory, the Physical Optics field given by Eqns. (2) and (3) is ““corrected”’ by adding
an “‘edge wave™ field:

el(kR‘N/4'

Epw = IR Dy (8, 8y) (4

Dy = —0S5[T — sin((8 = 6,)/2)]/ cos (6 — 6,)/2)
+ P*[1 — sin ((6 + 6,)/2]/ cos (8 + 6,)/2)}

where 6, and 8 are respectively the incident and scattering angles relative to the front face of the wave
peak. and P = + 1 for vertical. P = — 1 for horizontal polarization. It turns out that in the low
grazing angle, forward scatter case, the coefficient D is of order unity for both polarizations (although
of opposite sign.) Thus the importance of polarization effects is determined entirely by the magnitude
of the cylindrical spreading factor in the first equation above. In virtually all cases of any practical
interest, this factor is sufficiently small over the entire wave trough that we may 1gnore polarization
effects in diffraction by wave peaks. These effects can be scen only at long illuminating wavelengths,
at low wind speeds. and close behind the diffracting peak.
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For the skeptic, we show in Fig. 3 the full diffracted field, obtained from Eqns (2). (3) and (4) for
L-band illumination (30cm). honizontal polarization (vertical looks the same, only the peaks and val-
leys are exchanged), a grazing angle of 3° and wind speeds of 5, 15 and 25 knots. Clearly, the
polarization-dependent wiggles seen in the S kt curve (which are due to the exponential phase term in
Eqn. (4)) vanish at the higher wind speeds. However. we will find below that the Skt curve lies out-
side the limits of validity of Physical Optics. so we conclude that to the extent that edge-based diffrac-
tion theory is valid, polarization effects are unimportant.

If we had chosen a different surface model. say the cycloid of equations (1) with ¢ < | so the peak
would be rounded instead of sharp. then the polarization correction would take the form given by
Wait and Conda [1959] for the field behind an obstacle with a rounded edge having a radius of curva-
ure r:

(kr/2)'3

Ewe = "0k 2

Gy y ((kr/2)"0) (5)

where the function G- 4 is an integral over Airy functions and is given in graphical form. Its ampli-
tude ranges between O and I. For broad smooth peaks, this correction could be considerably larger
than the sharp-peak correction given in Eqn.(4). but for curvatures of the order ot a few wavelengths
we may ignore these corrections as well.

In summary, then, polarization will give at most small corrections to the diffracted field. and thus
may safely be ignored when estimating the effects of diffraction on shadowing.

3. When Can Geometrical Optics Be Used?

Figures 2 and 3 show how diffraction spreads the illumination field over the trough region behind the
wave peaks. If the *“transition fraction’ F. defined in section 11.A.1, were to be zero, then geometri-
cal optics would apply exactly. It can never be zero. of course, but if it were sufficiently small. we
might expect geometrical optics to provide a reasonable model for estimating shadowing effects at low
grazing angles. The criterion for “sufficiently small” must be arbitrary. but most would agree that
values of F<0.1 would provide a transition approaching optics-like sharpness. while for values of
F>0.3 the illumination profile is clearly controlled by diffraction. The basic data to which these cri-
teria are to be applied may be found in Figs. 4a-4t, where we have plotted the diffracted field inten-
sity profiles from (2) for five grazing angles for each of five wavelengths and four wind speeds.

It is clear in Figs.4 that for a given wavelength and wind speed. the shapes of the diffraction profiles,
hence the fractions F, are relatively insensitive to the grazing angle. Thus we may plot lines of equal
F against wavelength/windspeed axes and thereby roughly separate the regions defined by the criteria
discussed above. The results are shown in Fig. S. where the labels "YES,”” “MAYBE.” and "NO"
arc used to indicate the confidence to be placed in the use of the geometrical optics assumption in
various domains of the wavelength/windspeed plane. As might be expected. the most popular radar
wavelength (3cm). at the mean global windspeed (15kts). falls squarely in the middle of the ambigu-
ous "MAYBE™ domain. Nevertheless, this figure gives some useful perspective when trving to
decide how seriously to take the predictions of shadowing theories.

The " YES'™ domain in Fig. S is disappointingly small. indicating that for the most popular radar fre-
quencies. geometrical optics provides a good approximation to the illumination profile only in the
presence of gale force winds. We might expect geometrical optics to provide at least some useful
trends for points in the "MAYBE™ domain, but a good part of microwave radar operations in the
Navy takes place in the “*NO™ domain, where diffraction dominates and no satistactory theory exists.
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: 4. Limitations and Extensions of Diffraction Theory
N
~" . . .
! We must not be misled into believing that the diffraction curves for the longer wavelengths and lower
?\: windspeeds and grazing angles are to be taken seriously. Consider the dimensions of the surface
h features associated with a windspeed of 5§ kts. The peak-to-trough height for our trochoidal model
_ would be about 10cm, so the distance of the diffracting peak above the trough is one wavelength at
‘::n 10cm (S-band), 1/3 wavelength at 30cm (L-band), and 1/10 wavelength at 100cm (UHF). The Physi-
s cal Optics approximation underlying the diffraction theory expressed in Eqns.(2) and (3) can not be
! expected to be valid under these conditions - in fact, for the extreme UHF case, the Rayleigh pertur-
‘;'.n bation theory would seem more appropriate. This validity limit is expressed in Fig.5 by the dashed

curve labeled ‘‘Physical Optics Limit,”” which corresponds to wind speeds for which the radar
wavelength is just equal to the peak-to-trough wave height. Looking back at the calculated diffrction
. profiles in Fig. 4, we see that Figs. 4i,m,n,q.r,s lie at or below this limit - which is comforting, since
these illumination profiles certainly defy credibility.

. Although we are most interested in the range of extremely small grazing angles, between O and |

degree, it is in this range that diffraction theory seems least informative. About all that can be said
y from examining this angular regime for the legitimate examples in Figs. 4, is that at very low grazing
N angles the illumination in most of the trough will always be low, and will rise fairly sharply close to
the opposite peak. In a real sea, the second peak would be higher or lower than the first, and the

W trough length between peaks would be different for different pairs, leading to fluctuations in the
&= illumination intensity at the peak which would be described by some statistical distribution of sea sur-
= face parameters. But there is no statistical theory of diffraction for a rough sea. so if we wish to treat
:'; the real sea in any sense at all, we wil' have to trade the deterministic clarity of classical diffraction
'_\-.: theory for the ambiguity and limited applicability of conventional, geometrical optical, shadowing

A theory. However, before leaving diffraction theory, let us take a quick look at a particular statistical

L) extension of the standard diffraction problem that can add a bit of three-dimensional realism.

L When we introduced the trochoidal wave model at the beginning of this section. we noted that it was
< a two-dimensional model, appropriate only to infinitely long-crested waves. However. in connection
:: with the problem of radio propagation over hills and ridges, Furutsu [1965] considered the case in
-, which the ridges contained statistical height variations along their crests. A sketch of such a ridge is
o shown in Fig. 6, where R is the distance behind the ridge, H is its mean height, and v is the grazing

S angle of the incident wave. The irregular crest height has a Gaussian distribution with variance

; < |h*| >. and an arbitrary correlation function. We won’t go into the details of the analysis other

O than to remark that the basic theoretical assumption is that the physical optics integration plane can be
- divided into narrow strips of width dy above the crest height A (y). and the integral done as usual
.L over the v —z plane above the crest. Certainly the irregular structure in Fig. 6 is a better model of a

g~ shadowing wave crest than the infinite two-dimensional model we used earlier.

-:: Here, as in most propagation problems involving irregularities, the **Fresnel length,” Ir = (A R)'/",
A can be expected to play a role. In Fig. 6, we have added the first Fresnel Zone at the diffracting ob-

stacle as seen looking back from the observation point. The effects of fluctuations in crest height at
the tangent point, and statistical variations in crest height along the crest, can both be discussed in
terms of their relation to the Fresnel length (or radius of the first Fresnel zone). If we let A be the
; rms height fluctuation about the mean height H, and /. the correlation length of the height variations

v . . .

N along the crest, then we would expect the diffraction patterns to look much like those for a fixed,
:" infinite crest provided
e
- ho << g and [ >> . (6)
D "
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Otherwise, surface statistics can have a significant effect on the diffraction pattern. Consider, for
example. the illumination of the forward face of the right-hand crest in Fig.1. In this case R will be
the wavelength of the longest waves on a wind-driven sea, namely R=0.64W?. The Fresnel lengths
I {in meters) as seen looking back to the left hand. diffracting, crest for our five radar wavelengths
(in cm.) are given in the table below:

Fresnel Lengths versus wavelength and wind speed

Wavelength= Iem 3em _ 10em _ 30cem  _ 100em  H/2 (nn)
Skis | 2 4 6 1.1 2 05
ISkis | 6 10 19 33 6 45
ks 1117 3.2 5.5 10 128

The last column is 1/2 the peak-to-trough wave height for the indicated wind speed. and gives a mea-
sure of the maximum rms crest height fluctuation A, that could occur. We see that the first condition
given in Eqn. (6) is pretty well satisfied for all frequencies above K-band (1 ¢m). On the other hand.
if seas are usually short crested and “piled in heaps.”” we would expect the second condition to be
satisfied primarily at the shorter radar wavelengths, and for intermediate seas. From these considera-
tions. then. it is possible to conclude that there is at least a small range of frequencies and wind
speeds. centered about the X and S bands for about 15 knots of wind. in which deterministic diffrac-
tion theory based on the average wave heights should provide a reasonable estimate of surface illumi-
nation.

For readers curious about the effect of crest fluctuations on diffraction patterns. we include in Fig. 7
a plot from the paper by Furutsu [loc.cit.]. Clearly. our simple Fresnel-length arguments describe the
situation quite well.

B. Some Basic Shadowing Probabilities

Associated with the illumination and observation of points on a surface. there are several proba-
bilities that can be discussed without reference to the details of any particular shadowing theory. In
Fig. 8 we consider the most general case of bistatic scattering from an element of the surface. The
plane of incidence contains the illumination path at grazing angle v, . while observation takes place at
grazing angle ¥, in e plane of observation, which 1s rotated from the plane of incidence through the
azimuthal angle ¢,,. These planes intersect at a point P on the surtace. whose scattering properties are
left unspecitied.

Monostatic backscatter is detined by setting v, = ;. and o, = m. bistatic scattering takes
place for any other values of ¥, and ¢(,. The several probabilities associated with the shadowing pro-
cess may be related symbolically as follows:

Pd.Oy = PhyPd Oy 1T

where P(E.O) is the joint probability that the surface clement s both HHuminated (D and Observed Oy,
P(D) is the probability that the element s illuminated. and P(1 1 Oy is the conditional probablits that it
illuminated. the clement 15 also observed. In the monostatic case. illumination and obsenvation take
place over the same path. so if I, then O, and P11 O) = 1 Thus we may write

Monostatic Case: Py, Oy = P (&
6
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The bistatic case contains several possibilities. For example. if ¥, > ¢, with ¢, = = (obser- .~
vation over the same surface as illumination, but at a greater angle). then once again P(I | O) = 1, .":'
since if the incident ray has escaped encounter with the surface peaks. then cerrainly a ray at a higher AN
angle has escaped. In this case the bistatic P(1.O) is the same as the monostatic. If the observation LN
g P A
angle Y, < ;. then we simply exchange I and O and obtain P(I.0) = P(O) by the same reasoning: AN
that is, the joint probability is always the single-path probability for the path with the smallest grazing ®
o,
angle. Y
e
However, when ¢, # . the illumination and observation paths lie over different regions of the o~
sea surface, and to the extent that the surface features in these regions are uncorrelated. the condi- :;:-‘
tional probability P(I | O) is independent of the path I and simply equal to P(O). the probability of =%
observing the element of interest. Under most sea conditions correlation distances for the larger-scale oAge
- . . . LA
surface features responsible for shadowing are of the order of the primary sea wavelength, so de- S
correlation will be the rule. and we can be confident in writing for the :;
o
Bistatic Case: :,_.:‘
@
Pg(1.0) = PU()P(O). ¢y = 7 (9a) e
g
N,
, ) "-:x
PB([.0)=P(1) ¢0=7T.V()>\LI (gb) \F'\
LN
LY
®
Pg(1.0) = P(O) . Qo =Ty < Yy (9¢) .
It should be noted that the first expression applies to the special case of forward scatter in the specular A
direction: ¢, = 0. ¥ = ¥;. :::-'.
The purpose of a shadowing theory is to give analytical expression to the basic path probability ~.
P( ) in terms of grazing angle and surface parameters. These probabilities are then used in the rela- PORS
tions g:.cn above. )
l\ -.‘
C. Shadowing Theory Based on Geometrical Optics ,_.\
Although Fig. S shows the domain of confidence in geometrical optics to be rather small. all :(.::
existing theories of shadowing are based on this assumption, so we must seek what guidance we can vy
from the body of existing work. The assumption appears in slightly different forms in the various S
treatments. If the theory is developed from a Physical Optics scattering integral. as in Bass and Fuks ::-: ;
or Sancer [loci cit]. then the integrand will contain an *‘illumination factor.™ I(r), which is unity if r A
is illuminared. zero if it is not. The purely statistical treatments by Smith or Wagner [loct cit| ,,.1
directly calculate P(z.s), “‘the probability that an element of surface at height z with slope s is not )
shadowed by the intervening surface along the incident ray.”" and then integrate it in various ways to N
find the *shadowing function’ mentioned at the beginning of this Section. Multivariate statistics and '_';._:4
correlation functions are sometimes brought in to provide an aura of generality, but they are never o
really taken seriously, and in the end the problem is simplified to one in which the surface heights .
and slopes are uncorrelated. and have independent Gaussian distributions.  Under these conditions., the N
Probability of Illumination P(I) (refer to Eqn. (7)) of a surface element at height 7z and slope . on a A
Gaussian surface of rms displacement ¢ and mcan slope s, when viewed at a mean grazing angle v o
(relative to the horizontal), is given by [see Smith, loc cit]: :j
S~
Py = Pin: &.q) = (1~ Serfe (™" Uty + 3 (10) L
2N
AR
O
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where

~ erfc () | (1)
LU ;

Alg) =

—
3 |
-/
o
~n
|
=
tJ

with the definitions n = {/s,. £ = z/V20. gq=arctan(s). and U(x)=unit step function. which is sim-
ply a lecal shadowing function (i.e.. it ensures that an element on the back side of a wave peak will
not be illuminated.) These expressions can be further simplified by taking into account the special
conditions encountered over the sea: namely. the mean slope. s,. of the sea surface is about 0.1, and
the grazing angles of major interest here will generally be less than 1°. Under these conditions, n <
0.17. so the complicated function (11) can be approximated in the simple form:

.

(1

0.8
Alg) = —
U

=1

L 3

to | —

The illumination probability given in (10) is based on a one-dimensional Gaussian process. but
bistatic scattering generally takes place in a two-dimensional geometry. so that two-dimensional
aspects of the surface must be taken into account. Illumination and observation take place in two
vertical planes intersecting the surface at the common point P. thereby defining two local slopes, ¢,
and ¢.,. The joint probability in (9a) is thus written as the product of two expressions of the form ot
(10). each contrining the angle. appropriate to its plane of definition. That is,

Potl. Oy = (1 = Serfe ™ "™ Uw, + ¢ Ulgo + Yo (12)

1. The Threshold Model

In order to get a clearer idea of the implications of these expressions. let us consider first the
behavior of the factor in (10) that depends only on surface height and mean grazing angle:

Atg

PU) = (1 — Serfc (&) (13)

This expression is eastly calculated. and is shown in Fig. 9 for values of n between 0.3 and 0.003,
corresponding to mean grazing angles between about 27 and 0.02° for a sea having a mean slope s,
= 0.1, We see that the probability of illumination changes rapidly over a rather narrow range ot sur-
tace heights. leading to the idea of ““illumination thresholding™ mentioned carlier. The “threshold™
is taken as the value of &, that makes P’ = 0.5. Points on the surface for which & > &, are
assumed to be totally illuminated. while those for which £ < &, totally shadowed. For bistatic
scattering. the threshold is determined by the product of two such factors: P" (&, 0,y P
t&.. ny) = .50 If the grazing angles over the | and O paths are the same. as the evaporative laver
often forces them to be at extended ranges (Wetzel, loc cin). then tor v < 17 the approximation ¢117)
for Ain) indicates that

P& mPYE = PUE /2y (14

or that the bistatic height factor is closely approximated by the monostatic height tiuctor at half the
grazing angle.
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. islands on a two-dimensional sea surface (and to do this we must ignore the mutterings of purists),
N then the average number of peaks per unit area becomes
5
[ n = Lg; peaks/m’ (18)
(X
_ For a monostatic radar, the area Ap of the illumination footprint is given by 3Rc¢ 7/2. where 3 is the
> beamwidth, R is the range. c is the speed of light, and 7 is the pulse length. For bistatic radar, Ag is
determined by the intersection of the transmitter and receiver beams, and the pulse length (under
N pulse limited conditions). In either case, the average number of surface peaks appearing in the radar
» footprint is
: N = nAy = Ag/Lgy; peaks in 4, (19)
Because of its effect on the statistics of the scattered signal, this number may be called an ““internut- -
, tency index.”" It was originally introduced to describe the behavior of the clutter return as seen by a .
) monostatic radar on an A-scope. or a PPI. For N > > 1. the instantaneous clutter stgnal is made up =
of returns from many peaks. so would display fluctuations about some mean value. For N << 1. !
) the radar receiver will be looking at receiver noise most of the time. interrupted occasionally by a
P sharp spike from an isolated island. Similarly. a sequence of sumples collected from a fixed range
) cell (or beam-intersection cell) will display different temporal statistics according as N s areater or
X less than unity.
. D. Summary Comments on Shadowing
3
. Little more can be said at present about shadowing of the sea surface at low grazing angles. We
; have examined the effects of diffraction in a deterministic one-dimensional model. and shown some of
) the implications of statistical fluctuations in a truer, two-dimensional geometry.  The domain of fre-
5 quency vs windspeed in which geometrical optics provides a reasonable representation ot surface
. illumination was found to be small, yet radar operations do occur in this domain, so the conventional
" geometrical optics shadowing theories are not totally without value.  Besides. they are the only
: shadowing theories that presently exist.

While the isolation of scattering “islands™ by tllumination thresholding at low grazing angles s
intuitively obvious, it s important to have quantified this process through the lengths 1, and L, o
that we may determine how the size and distribution of these scattening regions depend on operational
and environmental parameters.

HI. SCATTERING

r
¥

LS
~

The second Basic Question raised in the Introduction concerns the kinds of scattening processes
that can be expected to oceur at the exposed wave peaks. A real wave peak could have almost any
torm. In a long greasy swell with no wind. it might even resemble the top of the sinusoid so beloved
by the deterministic scattering theorists.  But usually the surtace s complex. covered by snll scale
structure in the form of cusps, wedges. microbreakers, hydraulic shocks. patches ot turbulence and
gravity ‘capillary waves, both wind-driven and parasitic. It nught contain a sharp crest on the verge
of breaking, or. having broken. a cascade of plumes falling down its face. and there could be a cloud
of spray droplets above it. Clearly. in the face of all of this real-world complexity . the selection ot 4
convincing, and manageable. scattering model poses some difficulties.
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In discussing scattering. however. it is necessary to be somewhat specttic about the nature of the
scattering obstacle. While the topography of the “scattering island™ could take a variets ot torms,
we should not go too far wrong — at least for any reasonably energetic wind-driven sea by taking
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In Fig. 10 we illustrate illumination thresholding for one realization of a random sea surface. The
surface was obtained from a random phase expansion in which the coefficients were defined by a
Phillips spectrum for a wind speed of 15 knots: the length of the record is three dominant
wavelengths (110 m). The threshold heights were obtained from Fig. 9 by setting P (& m = .5.
and using the relation z = V2 §y(n)o, where o is the rms wave height of the surface (¢ = 0.28m for
this wind speed). Although one should not draw general conclusions from a single example. even this
simple exercise displays some of the basic features of illumination thresholding. For the given graz-
ing angles, only the largest peaks on the surface have a chance of being seen: for angles in the range
1° — 2°, there will be one peak per dominant wavelength (36m); for angles 0.6° — 0.3°, two peaks
are visible over 3 wavelengths; for 0.3° — 0.1°. only one peak is visible, and for smaller angles no
peaks are visible. which means. simply. that the probability per wavelength is less than 1/3.

This behavior was put on a semi-quantitative basis by Wetzel [loc cir], who showed that in this
regime of grazing angles, the definition of thresholding given above leads to a surface on which iso-
lated scattering *‘islands’” of mean length L, are separated in a dark plane by a mean distance Lgy.
where

Ly = Le¥ (1 — erf (£)]. (15)

Ly = Le® [1 + erf (&), (16)
with the characteristic length L defined by

L = m(a/sy). amn

It is interesting to compare the predictions of these expressions with the pictorial results in Fig. 10.
The behavior of L, and Lg; with normalized grazing angle is plotted with solid lines in Fig. 11 for
W=1I5 kts. 0 = 0.28m. s, = 0.1. As the grazing angle decreases. the spacing L ¢y between islands
increases rapidly (from 14m to 190m), while the size of the exposed islands L; decreases very slowly
(from 6m to 3m). The reader will note that the lengths scaled from Fig. 10 for a single realization of
the sea surface are. give or take a few inches in wave height, quite consistent with the corresponding
numerica) values Fig. 11 e.g., fory= 04°, L, ~ 3mand Lg; ~ 30m.

These statistical results can turther be used to explore the effects of mean sea slope s,. The curves in
Fig. 9. thus the threshold parameter &, which they select, depend only on n = /s, the ratio of graz-
ing angle to mean slope. Thus if the grazing angle and slope are changed by the same factor. then &,
and all of the results depending on it. will remain the same. The only other siope-dependent parame-
ter is the scale length L defined in (17). It we were to make the sea more “‘choppy™ by doubling s,
from 0.1 to 0.2, the effect on the lengths plotted in Fig. 11 would be to halve all of them. and dis-
place them by twice the gruzing angle (via redefinition of ). thereby producing the dashed curves. It
15 seen that the shadow length Ly remains much the same, while the lengths of the exposed peaks
are reduced by about a halt: e.g.. for s, = 0.2, L¢y goes from S8m to S3m, while L, is reduced
from 3.7m to 1.6m. Thus for a given grazing angle. as the sca becomes choppier. the separation
between scattering islands remains much the same. but the areas of the exposed peaks get smaller.
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size and spacing ot the scattering islands relative to the size of the radar footprint.  This topic was R0y

discussed at lfength by Wetzel in the cited reference, where details may be found. It we now assume .
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the basic underlying structure to be wedge-like, with a surface slope of about 30°, corresponding to
the surface stability criterion for the onset of wave breaking. In order to avoid having to deal with a
full three-dimensional sea. we will initially simplify the problem by assuming this wave-wedge to be
sufficiently long crested to extend across the width of the island. Without such restrictive assump-
tions, it would be discouragingly difficult to obtain any useful information about the deterministic
scattering processes that ultimately lie behind the statistical scattering behavior.

We will first examine the neighborhood of the peak. concentrating on possible sources of dis-
tributed scatter produced by small features amenable to modeling by perturbation theories. Next we
evaluate the wedge as a scattering element on the exposed crest, and finally consider some of the
more powerful plume and corner-reflector scatterers that could produce scattering returns consistent
with the observed *‘sea spikes.”” Throughout this discussion, the importance of shadowing in struc-
turing the scattered field at very low grazing angles will be continually emphasized.

A. Distributed Scatter: The Bragg Hypothesis

Any small-amplitude approximation for scattering from a statistically rough surface leads to a
scattering cross section proportional to the Fourier transform of the surface correlation function
evaluated at twice the incident wavenumber: i.e., the surface spectrum evaluated at the ‘‘Bragg™”
wavenumber. The same result is obtained in the theory of scattering from weak turbulence. Having
done this essentially trivial mathematical exercise, one is left with two non-trivial questions: (1) Does
the surface actually satisty the conditions of the approximation? (2) What **spectrum’’ should be used
in the formalism? Considering real seas at microwave frequencies, the answer to the first question
must be No. since the conditions of the approximation are that the maximum surface displacement be
very much smaller than the illuminating wavelength (less than one-tenth). Nevertheless, there are
those who attempt to ‘“save the hypothesis’* by arguing, for example, that the sea is really ‘‘locally
flat”" when taken in small enough sections. In regard to the second question, if the surface is viewed
as a generalized “‘sea’” it is commonly answered by selecting the Phillips spectrum [Phillips, 1966}
which is a K-to-the-minus-four spectrum roughly satisfied by real seas, although recent work shows a
more complicated spectral structure |e.g., Phillips, 1985, or Pierson and Donelan, 1987]. The latter
reference emphasizes the need to use spectra that are accurate in the Bragg resonance region of
interest.  On the other hand. if a particular scattering structure is being studied, then the spectrum
chosen will be representative of that structure, as, for example. in the case of the ‘*solitons’” proposed
by Middleton and Mellen [1985].

For all the criticism that can be leveled at the Bragg model. it has the virtue of delivering pre-
dictions that are often consistent with experience and are difficult to obtain from any other model.
For this reason the Bragg model, though conceptually flawed, continues to be used. In this section
we view it as a paradigm for distributed scatter generally. It is intrinsically ‘‘distributed.”” in that it
derives from either an integral or a wide-sense spatial transform over a flat surface. and it incor-
porates the surface boundary conditions, thus disclosing a polarization dependence. And finally, we
must respect, if not accept uncritically, its apparent ability to agree with measurement in the range of
local angles of incidence of interest to us here.

1. Bistatic Scattering from Peaks in the Bragg Approximation

In the simplest possible model, the exposed faces of the wave-wedge are uniformly covered with a
carpet of Bragg-scattering wavelets, often calied *'ripples.”” The scattering problem for an element of
such a surface is treated in detail in the Appendix. Section |, where the bistatic cross section for
scattering through angle ¢, at very small (close to zero) grazing angles is found for an element with
arbitrary slope and azimuthal orientation. The effects of local shadowing are straightforward in this
model, since a scattering path will exist only when the planes of illumination and observation intersect
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on the front face of the wedge, as expressed by the U-functions in Eqn. (12). Note that the implica-
tions of the threshold shadowing theory of Sections II.B. and C. have aiready been taken into account
through the model of scattering "“islands’ we are using. Referring again to the Appendix, it is clear
that if the azimuth angle ¢, of the surface element is less than =/2. the illumination (k') enters the
back side of the element and will not be scattered into direction :’;,. while if ¢ > ¢, + 7/2, the
observer will be looking at the back side of the element and will not see the scattered field. This
means that only those surface azimuths ¢ that lie in the range 7/2 < ¢ < 7/2 + ¢, can contribute to
bistatic scattering through an angle ¢,. (Note that this is a condition on both ¢ and ¢, . since it also
restricts the range of ¢, for given ¢.) The mean cross section per unit area is found by averaging ¢
over this range of angles for a particular probability density function p(e). That is.

T/2+ ¢

6y =f 6.0 p@)do (20)

LA

where 0" (6. ¢,) is given in (A17). The distribution of wave orientations ¢ could be anything from a
delta-function. as when the crests line up in a breaking zone, to a uniform angular distribution. as in a
short-crested confused sea. Since these represent two opposite extremes, we consider both cases.

Consider first Case /. in which all the wedge faces are oriented with fixed angle o

D (D) = 8(¢p — o) (21

In this case. the average in (20) is obtained by replacing ¢ by ¢ in (A17). The cross sections for the
two polarizations are plotted in Fig. 12 for a slope of 30° and for grazing angles close to zero, as
explained in the Appendix following Eqn. (A17). '"Monostatic’” means that the scattering angle
¢, = 180°, while the wedge face is rotated from broadside (180°) to glancing incidence (90°); **bi-
static”” means that the wedge is fixed in broadside position. while the receiver is moved from a mono-
static (180°) to a glancing (90°) observation position.

Referring to Section 1 of the Appendix. it may be seen that for vertical polarization (V-POL). the
scattering is controlled almost entirely by the first term in (A14) along with the outboard sin” terms in
(A17). which force the fall-oft as the angles approach 90°. For horizontal polarization (H-POL), the
most interesting result is the relative independence of the monostatic return on wedge orientation.
This is due to the H-V-H conversion that takes place as the surface normal of the tilted wedge rotates
out of the plane of incidence, bringing the first term of (A14) into play for p=H. Thus the H-POL
return behaves with wedge orientation angle much like the V-POL return, only lying about 10dB
lower. It should be noted that this is the same mechanism that produces the cross-polarized return in
the two-scale Bragg model.

Consider next Case 2. in which the wedge orientations are uniformly distributed between 72
and 37/2. the allowed range of angles again containing only those for which there is an unshadowed
path between source and observer. Here the probability density is given by

pao)y = l/rm {22y

and the trigonometric functions in (Al7) have to be integrated over the restricted range of angles
given in (20). The integrals were performed numerically in a simple computer program and the
results are shown graphically in Fig. 13.

The vertically polarized returns show a smooth 40dB fallott over the range of bistatic angles,
while the horizontal returns have a smaller variation, but seem to display a4 hind ot resonant™
behavior. But these are not true resonances, being artifacts of the changing dominance of the two
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We will find shortly that they are in good agreement with measurement.

2. The NRCS and a New Shadowing Function

the average number of peaks per unit area, given in Eqn. (18). That is,

(NRCS), (8,) = 3°(8,) (1/2)(L;/Lsy)*

Sr(¥), as 1/2 the length ratio in (23) with the lengths given in (15)-(17):

1 —erf (]) |°
1 + e# (Eo)

1 ) 1
Sy = -y /Lgy)y = =
r = 5 Li/Lsy) > {
tional shadowing function,

S. — V(r/2) @750

display a much steeper characteristic than does the conventional function.

3. Comparison with Measurement

WIS W W W W TR W W W I SR e e A e~

where the two lengths are given in Eqns (15)-(17), and illustrated graphically in Fig. 11.

terms in (A14) as the scattering angle moves through its range. Reference to (A8) and (A9) reveals
that ayy tends to peak at the extremes and have a hole in the middle, while a}, tends to be large in
the middle. Thus the H-POL curve starts off much like its bistatic counterpart in Fig. 12, but gets
picked up by apy in (Al4) over the intermediate angles, looking like a replica of the V-POL curve
until experiencing the effect of ayy again as ¢, approaches zero. Of greater interest is the other end
of these curves, which denote the values of radar backscatter cross section predicted by this model.

The results obtained thus far still do not provide us with a prediction of the cross section per unit area
(sometimes called the Normalized Radar Cross Section, or NRCS) that would be measured operation-
ally. To do this we recall the basic picture of the scattering ‘‘island’’ as a prism with an interior
angle of 120° and base width and crest length of L;. we will assume the grazing angle to be smaller
than 30°, so that only one face of the prism contributes in a scattering interaction (the other is in-
shadow). The average cross section of a single “‘island”’ thus becomes the product of one of the
cross sections per-unit-area found above and one-half the area of the island, L;(L;/2). I the ‘‘inter-
mittency index’’ defined by Eqn. (19) is considerably greater than 1, then the cross section per unit
area measured by a radar is just the product of the average cross section per peak, or ‘‘island,”” with

(23)

As noted at the beginning of Part II, conventional shadowing theory produces a ‘‘shadowing func-
tion'" that smoothly extinguishes the backscatter intensity linearly as the grazing angle approaches
zero. [In the threshold theory being used here, ‘‘shadowing’® means something quite different. Here,
the cross sections of the individual peaks vary little (L; is weakly dependent on grazing angle), and
the reduction in the NRCS results primarily from collecting fewer of these peaks under the pulse foot-
print as their separation increases. This behavior is expressed by defining a new shadowing function,

(24)

We have plotted this function in Fig. 14, including for comparison the asymptotic form of the conven-

(25)

Keep in mind that these averages all make sense only if the intermittency index N in (19) is large.
Otherwise the backscatter appears as a random occurrence of isolated spikes. However, when the
conditions are right, it is clear that below about 2° the threshold-derived shadowing function will

Experimental support for the theory discussed in this section is hard to find, because surprisingly few
reliable measurements have been made at very low grazing angles. Moreover. while we have
expressed the NRCS in terms of statistical averages, some workers give the NRCS as the mediun
cross section. In fact, the problem of finding a suitable statistical characterization for low angle clutter
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a)

b)

<)

is not a simple one [see. for example, Trunk, 1976]. Of the few measurements that exist, we review
the more pertinent ones below.

NRL 4FR Data: The Four-Frequency-Radar (4FR) data taken by NRL around 1968 [Daley.
et al, 1968]) were collected with reasonable care and are often used to “‘confirm’" the
Bragg scattering hypothesis [see. e.g.. Valenzuela, 1978]. The smallest grazing angle
measured was 4°, which is somewhat below the mean sea slope angle and therefore should
correspond to the NRCS of (23), with S; = 1/2. Figure 15 reproduces the figures shown
in Valenzuela for a frequency of 4.455 GHz (about 7cm wavelength). upwind aspect in
strong winds (>22kts). The results at 4° will therefore lie in the upper part of the
**Maybe’" region in Fig. 5. so our geometrical optics assumptions should be valid. Under
these conditions, the appropriate values for the NRCS are taken as 3dB less than those at
the left edge of Fig. 13 (to account for the 1/2 in (24)): that is, -30dB for V-pol. rization
and -41dB for H-polarization. These values are indicated by the big circles in Fig. !5, and
the agreement with the measured values is seen to be quite good for both polarizations. It
should be emphasized that these results are based on a much more sophisticated argument
than the simple Bragg scatter curves shown on the Figures, which assume a uniform carpet
of scattering wavelets for V-pol, and a normally distributed slope distribution for the
composite-surface values in the H-pol plot. However. since the Bragg theory rests on such
shaky assumptions, it is quite possible that the agreement with such measurements as these
is purely accidental in both cases. Much more needs to be done before the Bragg theory
can achieve intellectual respectability. and about all that can be said here is that our results
share, with other applications of the Bragg hypothesis. this remarkable tendency to agree
with these 4FR data.

The Critical Angle: Some 30 years ago. it was observed that when radar sea backscatter
was plotted against range, there appeared to be a change in the rate of decrease of signal
level at ranges corresponding to a grazing angle of 2° or so [Katzin, 1957]. This angle
was called the “"Critical Angle,”” and was ascribed to an interference phenomenon in which
direct and (phase-reversed) reflected waves combined above the surface te produce a field
at the scattering elements that decreased as the fourth power of the grazing angle. Both
the concept and its implications are absurd. and were viewed with suspicion even at the
time [Katz and Spetner. 1960]. However, very often something seems to occur in the data
at these angles to give the idea of a ‘'critical angle’ some objective validity. Most
recently, a 2° anomauly has been found in low angle sea backscatter data collected in the
North Atlantic [Trizna.1987].

The ‘interference’” argument has persisted because the observed decay law does seem
roughly to follow the fourth power of the grazing angle. although once a line has been
drawn through a mass of spread data points. the eye is often muslead into accepting an
“‘agreement’’ that is ambiguous at best (see Fig. 16a). The Threshold Shadowing argu-
ment proposed in this report gives an alternative explanation for the observed behavior.
We have plotted a tourth power decay law as a dashed hine in Fig. 14, and quite clearly 1t
looks very much like the shadowing functions §; based on Eqn. (24, In Fig. [6b we bor-
row a figure from the Katz and Spetner paper cited above. showing some X-band data
from the RRE in England at very low grazing angles. Superimposed s the S k™" shadow -
ing function from Fig. 14, which is in very good agreement with the measured behavior.

Other Measurements of Low Angle Sea Backscatter: The lack of good low angle radar data
is really rather surprising, considering how easily 1t could be collected from comtortable
sites on the shore overlooking the sea. Two sources of such data are the measurements by
Hunter and Senior overlooking the Atlantic from a site in the south of England [1964], and
by Sittrop from the west coast of Norway [1975]. These investigators took the trouble to
record wind speed and direction while measuring X-band radar backscatter at grazing
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angles between about 0.5 to 5 degrees. In Figs. 17a and 17b, we have separated these
data into crosswind and upwind/downwind categories and compared them. respectively,
with the conventional (S¢) and threshold (S7) shadowing functions. One expects that
upwind/downwind aspects would be controlled by the deep shadowing responsiblc for
island formation in the threshold model, while crosswind aspects would show the radar the
troughs most of the time, and thus would display the more gradual clutter decay described
by the conventional shadowing function. There is certainly a strong qualitative difference
between the backscatter behaviors for the two aspects. and they corroborate this hypothesis
extremely well.

In a brief review of low-angle backscatter, Chan and Helmken [1983] adapt some measure-
ments by others to show the effect of ducting. Their Fig. 7 is reproduced here as our Fig.
18, where we have added the 15kt shadowing function from Fig. 14 as a dashed line.
Again. the agreement is very good for the non-ducting conditions. It is of interest to note
that the points plotted for the ducted case are not necessarily following a different shadow-
ing function, but instead belong to larger angles than those obtained from simple free-space
scaling.  The situation expected in the similar case of the evaporation duct is discussed in
Wetzel [1977].

dy  Measurement of Sea Spikes: A dominant feature of low angle radar backscatter is the pres-
ence of Sea Spikes. which are most obvious with horizontal polarization under conditions
ot low intermittency index N (low grazing angles and small radar footprint), but must also
make an important contribution to the NCRS under conditions of large N. The reason, of
course. 1s that Sea Spikes are high-amplitude events, showing cross sections generally
above Im”. and at times reaching 20m* or so [Lewis and Olin.1980; Hansen and Cavaleri.
1982: Trizna. 1987]. In our threshoid model. Sea Spikes would have to be associated with
the exposed islands of scattering area (L;)*/2. which is of the order of 100m°. Considering
the values of o' for distributed clutter shown in Fig. 12. it is obvious that this form of
scatter falls far short of being able to account for Sea Spikes. We must seek elsewhere for
the source of this important scattering phenomenon.

The sgreement between theory and experiment demonstrated thus far is encouraging., particularly
the tendency of the new shadowing function to predict the observed backscatter behavior in the limit
of extremely small grazing angles - at least in those cases for which Fig. § gives geometrical shadow-
ing theory a fighting chance. In regard to the backscatter cross sections themselves, it is of interest to
note that the several independent measurements referenced here (NRL/4FR. Katzin, RRE, NWC, Sit-
trop. Trizna) permit the following “‘ballpark’ estimate of low angle sea backscatter behavior at X-
band frequencies: “"For grazing angles of a degree or so. moderate wind speeds (about 15kts). and for
both H and V polarizations. the NRCS is -40dB(m°/m") give or take a few db.”" Considering the
wide variety in experimental procedures and cross section derivations, it is quite surprising to find
this much consistency 1n data spanning 30 years.

4. The “Soliton'" Hyvpothesis of Middleton and Mellen

In the previous applications in this section, the spectrum used was the general ocean wave spectrum
of Phillips.  As noted carlier, Middleton and Mellen [1985] have recently proposed a sea surface
maodel in which the dominant scattering element at low grazing angles is taken to be a *Soliton.”" that
develops out of a hydraulic shock that is produced. initially. by a putf of wind. Actuallv. close
observation of a dynamic, wind-driven surface lends some credence to the wind-putt hydrauhic shock
connection, although the production of solitons by this mechanism has met with skepticism [Pierson.
private communication]. The hypothesis is highly speculative, and Middleton and Mellen have no
strongly convincing arguments in support of i, Nevertheless, it has a certain appeal - particularly n
a field where there have been no new ideas for over 20 years.
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The profile of the soliton 1s taken to be a simple Gaussian shape with a certain height H. width L,
and speed ¢:

sroty = Hexp(=#r — 1)y /L%, (26)

From some rea .onable statistical assumptions. a correlation function was calculated. whose Fourier
transform provided a spectrum having the following form:

wiky ~ (hows (b + o 20 {27y

where h and w are the rms values of H and L in (26). It is of interest to note that when kw > 2. the
spectrum assumes the k-minus-4 dependence famihar tfrom the Phillips sea wave spectrum.

Middleton’s interests lie primarily in acoustic scattering, so he assumed that the dimensions of these
objects were small enough that the spectrum in (27) could be used in the Brugg formalism, and calcu-
lated the normalized backscatter cross section o an ensemble of such objects on an acoustically
“soft’” (pressure-release) surface. (In the duality between acoustic and clectromagnetic scattering. this
would correspond to horizontal polarization.) For low grazing angles (less than about 107, the
resulting NCS can be written in the form:

N

ho ‘ (kwy?
a ~ — i .\‘,f | (2R}
W oL+ GAwy]

\

where s Is the rms sea wave slope (which plays the role here of the grazing angie in the previous
Bragg theory). and k is the sonar/radar wavenumber. Since the ““soliton™ object has the form ot a
Gaussian perturbation. we might consider it as representative of isolated scattering features generally.
That is. (26) is a scattering somerhing that has a height and a length which are statistically character-
ized by rms parameters. Thus we might be tempted to regard the cross section in (28) as generic for
such scattering objects. At least the asymptotic behavior is reasonable: when kw > 1. the cross sec-
tion is independent of frequency. as one would expect in Bragg scattering using the k-minus-four
spectrum derived above for these objects: when kw <. the cross section assumes the wavelength-
minus-4 dependence of Rayleigh scattering, and very closely resembles Booker-Gordon scattering by
weak atmospheric irregularities [1960]. Thus. alas. the results are only what one would expect a
priori under the conditions describing this type of scattering. so we have really learned nothing new
from this approach.

B. Implications of Wedge Models

Close observation of almost any open water surface discloses that the basic surface features are
wedge-like structures. not the sine waves or patches of gravity/capillary waves that make life easy for
the scattering theorist. Scattering  from those wedges that are large compared to the incident
wavelength may be treated by one of the short-wavelength approximations.  Since the interior angles
are limited by surface stability conditions to about 1207, the wedge faces will, at low prazing angles.
generally be viewed at oblique incidence. where Physical Optics tends to underestimate the scattering,
and asymptotic scattering theories emphasizing edge effects begin to provide significant corrections.
All such theories date from Sommerteld’s rigorous treatment of diftraction at edges in 1896, and
while Sommerfeld himself reduced his solutions to more manageable Fresnel integrals and their
asymptotic torms, the present theories of wedge scattering derive from the reinterpretation of these
results independently by Keller (GTD) and by Ufimtsev (PTD) in 1957, But betore trying to make
sense out of some of these wedge scattering theories. we will take a briet look at the few existing
applications to sea scatter.
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1. Previous Applications of Wedge Models '.'..
p y
Although wedges are an obvious feature of the sea surface. scattering models based on wedges have ):: ’
made their appearance only recently. S
a)  Kalmykov and Pustovoytenko [1976]: These authors describe X-band backscatter measure- )
ments at low grazing angles (< 3°) in which “‘bursts’’ occur for both horizontal and verti- :
cal polarizations. They found that the horizontal returns were often greater than the vorti- hy
cal. contrary to the usual backscatter experience at higher grazing angles. In an attempt to t‘?
provide some explanation for this behavior, they assumed that the ‘“bursts™™ were due to |
breaking crests pointing toward the radar. as sketched in Fig. 19a. The cross section N
ratios were caiculated from th: classical asymptotic forms (which are the same as the GTD By
diffraction coefficients). The coefficients plotted in Fig. 19a as a function of interior e
wedge angle apply to the model contained in the paper. which may. or may not, have any :\":_:
validity. The authors wisely did not press the issue. ;\:
S
b) Kwoh and Lake [1983]: Small 2-D wedge-like wavetforms were generated mechanically in &5
a wave tank. and profiled with a scanning laser slope gauge. A method-of-moments calcu- Ligs
lation of scattering by the resulting shapes showed angie and polarization dependence quite -':':.-"
similar to the GTD results for a wedge. and were in reasonable agreement with measure- :\::.
ments of the scattered field. at least for angles above the minimum grazing angle of 22°. ::,» !
This work has important impiications in the modeling of sea scatter, and should be read by !
anyone with an interest in the field. °
N
¢)  Lyzenga, Matfett and Shuchman [1983]: Using what is essentially the PTD formalism for f-':::
a 120° wedge, these authors found the edge contribution to wedge scattering, and showed ';:-_‘
that by adding a suitable portion of this component to the conventional Bragg component, .':.\' |
an improved fit can be obtained with the NRL 4FR X-band data for horizontal polarization S
and grazing angles from 5 to 30 degrees. r?_
d)  Wetzel [1986a]: Noting that the sea surface is a "*wedgy’’ rather than a “*wavy™" surface,. :}:"
this author found such a surface to have the expected k-minus-four spectrum. but with a -J-:’_-:_
spectral scale factor that is proporticnal to wind speed. This wind speed dependence seems N,
to track the NRL 4FR data quite well (if massively averaged). and a GTD calculation of '.'
wedge scattering provides both grazing angle and polarization agreement superior to that o,
provided by the Bragg theory in the angular range in which Bragg theory is usually :’:. ;
thought to apply. But as in all applications of discrete-target scattering models to the sea, :\,j ]
there is no independent a priori basis for establishing target size and distributions. hence -','_'4‘
either mean or specific scattering levels. N
L
2. Problems in Applving Wedge Theorv to Sea Scatter e

All of the above calculations used a simple two-dimensional wedge model. while for application to a
real sea surface it will be important to consider scattering in three dimensions. In GTD. an extension
to three dimensions occurs in allowing oblique incidence. in which case the scattered field appears in ®

the form of a cone of rays - the so-called “'Keller Cone™ - whose half-angle is equal to the angle of :.‘;:::t
incidence at the edge [Keller, 1957). There are no other scattered waves: this is still a strict optical R
theory. The next extension is a generalization in which it is assumed that the incident field excites at \ﬁ
each point on the edge a fictitious physical current of just such a form as to produce the scattered :‘_-.‘_}}

field on the optically defined Keller Cone emerging at that point. The edge may now be made arbi-
trary. and the current thus defined is integrated along the edge. as if it were a real current, to yield a
value for a scattered ficld at points in space lying outside the Keller Cone.  Several formalisms based
on this idea have emerged in recent years: the Method of Equivalent Currents (MEC) as described by
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»
Knott and Senior [1974]. the method of Incremental Length Diffraction Coetficients (ILDC) by Py
Mitzner [1974]. Michaeli's MEC (MMEC) by Michaeli [1984], to name the most important. o

Ufimtsev’s PTD. which has already been used in section I1.A.2_ is also concerned with edge currents, 2
but indirectly. as a conceptual device for the correction of the Physical Optics approximation rather i"&
than in concrete form for the calculation of scattered fields. It should be noted that none of these .

methods is more “‘fundamental™ or "‘rigorous’ than the others. They are all of them - GTD. PTD. ‘

MEC. ILDC. MMEC - heuristic procedures for finding approximate solutions to scattering problems :::'_:
involving objects with edges (or “'ribs.”" as Ufimtsev calls them). And there are still other methods ey
tknown by their acronyms as UAT. UTD. STD. HTD. etc.) which are designed mainly to eliminate :"_'
the caustic singularities in the GTD. and will not concern us here.  Since most of these asymptotic ;E.’

theories are quite complex. and often seem to differ in obscure ways. they are constantly being inter-
compared (e.g.. Knott and Senior. 1974: Plonus.ct al. 1978 Knott. 1985). or measured agatnst
Sommerfeld’s original rigorous solution (Deschamps. et al. 1984).

7

|~IAI .
v e
-‘ I’ n.

In order to disentangle ourselves from this mass of scattering theories and methodologies. we ::-_
consider first the very basic problem of two-dimensional scattering from a wedge as described by the o
GTD. In Fig. 20a, the incident ray. denoted by &, . encounters an infinite 2-D wedge having an inte- o
| rior angle « and lying normal to the plane of incidence. ¢, and ¢ indicate respectively the orthogo- -~
| nal Vertical and Horizontal polarizations. In the GTD. the scattered field consists of two parts: a :’:x_
| field E;p reflected from the illuminated face of the wedge according to the laws of geometrical -}_"
| optics, and a *‘diffracted’” field. Ep. originating at the edge. consisting of a tan of rays which. for N

incidence normal to the edge. uniformly cover the plane of incidence. The field on these ravs s
defined by
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sin(w/n) 1 1
Dy y(y,.v) = + . (30
n cos(m/n) — Costy, .y, )/n cos(m/n) — costy, +5, /N

withn = 2 — a/7 (the exterior wedge angle is n 7). and the incident and scattering angles measured
from the front tace of the wedge. The - and + signs are used for the H and V polarizations respec-
tivelv. The four rays labeled in Fig. 20a have special significance: E;} returns to the sovrce and con-
tributes the backscatter cross section of the wedge: £5 defines the “reflection boundany ™" for the front
face. and since its angle is y, = 7 — 5,. it causes the second term in (30} to blow up: Ep is a ray
which would correspond to “*specular reflection™ if the wedge were sitting on a plane surface: £
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defines the **shadow boundary™ and since its angle 18 5, = 7 + 5. it causes the first term in (20) to .'_'.-'.J.
blow up. These singularities are in no way related to actual field behavior. of course. They are R
artifacts of what is essentially an asymptotic expansion of the Fresnel Integral in Egn. (3). where the ::-:::<
leading term is proportional to 1/w. hence to 1/(MkR /xf)). This means that the GTD can be used N
only for angles well outside an angular zone of width 1/(MAR /) surrounding the singular ravs. But :{:‘-“
except for these singular domains, the GTD has often been found to give reasonable approvimations [
even under conditions fairly well removed from the “optical Timit. ™ :'_-.'_f:
-“.I"

If end-eftects are ignored. two-dimensional fields can be converted into three-dimensional ficlds ““per T~
unit length™* by the factor (k /27R)" -. from which a cross section detined in the usual wan takes the _:-':
form A
Oy y,o ) = [fl)/}.l v,y /T RIN ::l‘:
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where L is the length of the wedge. This is the form used by Lyzenga, et al [loc. cit.] for their PTD
corrections to Bragg scatter, and by Plonus, et al [1978] in an interesting experimental comparison of
various approximation methods. Backscatter cross sections obtained by substituting (30) into (31)
with y, = v, are shown as functions of wedge interior angle in Figs. 19: for incidence along the
wedge-angle bisector (Fig. 19a. corresponding to the breaking wave model used by Kalmykov and
Pustovoytenko, loc. cit.) and at zero grazing angle across the top of the wedge (Fig. 19b. correspond-
ing to the normal wedgy sea of our low-angle model.) We see that the polarization dependence is
reversed for these two cases (H>V in 19a, V>H in 19b). In Figs. 21 we show two examples for a
stability-limited wedge angle of 120°: in Fig. 21a, the backscatter cross section versus grazing angle
from O to 90 degrees, and in Fig. 21b, the bistatic cross section for scattering angles between 0 and
180° in the plane of incidence, for a zero degree incident grazing angle. The plots show similar
behavior, having an infinity in the direction of specular reflection from the front face. In the back-
scatter case, this direction corresponds to broadside scattering. which is generally an intractable case
for GTD-like approximations (see, e.g., Sikta.et al.1983). Fig. 21a was used by Wetzel [1986a] to
compare the implications of wedge scattering with some NRL 4FR backscatter data. The circles on
Fig. 21a show the relative behavior of the 4FR data with polarization and grazing angle.

But such curves, based on such theories, cannot tell us what we really want to know. They apply to
a perfect wedge, aligned with perfect precision normal to the plane of incidence. As soon as the
wedge deviates from the perpendicular, by however small an angle. the backscattered field vanishes.
The reason for this is seen in Fig. 20b, where the incident ray makes an angle 3 # w/2 with the
wedge edge. and the diffracted rays now all lie on the Keller Cone. whose interior half-angle is 3.
As mentioned earlier. there are no other diffracted rays - certainly none back into the direction of
incidence to produce “‘backscatter.”’ The bistatic case is no better, because the observer must lie on
one of the elements of the Keller Cone, and again a scattering path is possible only for a single. pre-
cise orientation of the wedge edge. These unforgiving geometrical constraints can be relieved only by
a return, in one form or another, to the basic idea of scattering from current distributions: that is. by
using the fictitious ‘‘equivalent currents’’ in geometrical theories, or the approximate optical
currents”” in Physical Optics.

a)  Method of Equivalent Currents: The bistatic cross section for a 120° wedge of length L in
the low grazing-angle limit is calculated using the MEC in Section 2 of the Appendix:

|
!
!

> a1
oyyv (Lio,.0,) = Cyy L sinc” 7kL (cosd, — cos(op, — &, ) (A21])

where Cy v = -29dB (H-pol), -8dB (V-pol). and ¢, ., ¢, are the azimuthal wedge and scattering
angles respectively (see Fig. A3). (To avoid confusion. it should be noted that in Eqn. (31) and Fig.
21b. the bistatic angle lies in the plane of incidence and sweeps up and over the top of the wedge.
while in (A21) and Fig. A3, the bistatic angle is azimuthal and sweeps around the wedge in the hor-
1izontal plane.)

At this point we should recall to mind one of the central problems with all models. of this sort. that
introduce specific scattering structures having no natural origin in the physics of the underlying sur-
tace. That is. while we see wedge-shaped structures on the surface of the sea. they have never been
measured and counted as such, so there is no knowledge of the distributions of their sizes and orienta-
tions.  Nor is there a body of hydrodynamic theory from which such distributions might be inferred.
For this reason we are left with the need to come up with *‘reasonable’ assumptions for these distri-
butions, which usually translates as “‘not completely idiotic.”™ and leaves one with a corresponding
skepticism about any conclusions drawn from them Nevertheless. we cannot proceed without taking
this necessary step.
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It would be absurd to assume the scattering island to consist of a single large. coherently scattering .,
wedge of length L;, so we will replace this overly simplified model with one in which the illuminated et
) islands are populated by ensembles of wedges of various sizes and orientations. having individual Ky
cross secticas given by (A21). For backscatter, the scattering angle ¢, = w. and since the sinc- ::-
function gives a very narrow beam around the wedge angle ¢, = w/2. we can write (A21) as :::
b
OH‘;'(L.(S) = CHJ'L- ,S'fll('-(kL(S) (32) ‘
¢
%
where 6 is the departure of ¢, from w/2. The "*3-dB"" points of the sinc® function occur at ;\
+kLé = w/2, so the range of wedge angles that could contribute to the backscattered signal 18 just \!
A =26=w/kL. (33)
Assuming the wedge angles to be uniformly distributed. the probability that a wedge of fength L will ﬁ:f::
provide a backscattered return becomes "
Pgs(L)y = A/m = 1/kL (34) Y.
| 3
N
If each such wedge is further assumed to scatter independently. then the average cross section may be
written as the average of (32) times (34) over the distribution p(L) of lengths L: k
\ r.
Con 1713 | L | pitdr = <5 7 35 ko
: >
The wedge lengths L will be distributed between some minimum length (which seems by observation N
to be about 10cm). and some much larger length of the order of the Island dimension L;. Not _l\
: knowing what form this distribution might take. we choose a Rayleigh distribution RS
A L2y e
p(L)y =(L/Lj)e (36) e
in which the mean length L, lies somewhere between the extremes stated above. With this choice. ;.
t the average cross section per wedge in (35) becomes "-
p N
: <oy > = N1/2 (Ly/k)Cy (37) ,.':
4 s
The “*wedge™ in our model is really a kind of flat prism. as sketched in Fig. A3, and since neither -.
long. thin nor narrow. tall wedge faces are physically reasonable. or visually verified. we take a e
canonical aspect ratio of 2/1 for the length/height ratio of all wedge faces. <o that the mean “area™ of el
" a wedge against the plane of the sea is about Lj. Assuming. now. that the wedges are distributed -
. densely over the scattering islands, and that the grazing angle is sufficiently low that only half are R
visible ( ¢ < 30°). yet sufficiently high to be above the threshold shadowing knee in Fig. 14 (a [ )

-0

degree or two), the NRCS from (23) takes the form

"f . " "l " 1
NN

NRCS\[’.;' = <OH';'>/2L(:; = (‘H.l Nw/8 /(kl.“). (3R)
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Finally. 1n order to make some kind of reasonable estimate of L,. we let L, be the geometric mean of
Lyy (about 10cm) and 1;:
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L, = (0.1LpH'"* (39)

For moderate wind speeds L, is about 10m, so the mean wedge size is about Im. Using this value
and the values of Cy - from (A21) in (38) for X-band frequencies (k=200/m). the NRCS’s become

NCRS|v = —33 dB (m*/m?)
(40)

NCRS|H = —54 dB (m°/m?)

b)  Physical Optics: It was noted earlier that Physical Optics (P.O.) underestimates the
scattering at the flatter surface aspects seen in the low grazing-angle regime. which means
at relatively large off-broadside angles. well down into the sidelobes of the scattering pat-
tern. This occurs because of the inaccuracy of the assumed current distributions at the
edges. but the field predicted by P.O. seems to be badly in error only in those configura-
tions where the diffracted rays of GTD and PTD would normaily come into play:; which is
to say. only under certain highly specialized conditions. Moreover, it should be
emphasized that while the PTD is considered to provide edge-wave corrections to Physical
Optics, these corrections share the geometrical constraints of the GTD. It is therefore of
interest to look at the scattering implications of a straightforward P.O. approach.

The P.O. cross section of a rectangular plate with sides a and b. viewed at angles ¢’ and o', where ¢’
is the angle between the plate normal and the incident direction and ¢’ is the angle of the plane of
incidence relative to the a side. is given by Kerr [1952] in the form

k*(ab ) sin“(ka sinf’cose’) ' sin“(kb sinf’sing’) ]

ak.a.b.6'.¢") = - 5 — | cos'h 41
L (kasin@'cose’)" (kb sinf'sino ') !

Notice that there is no polarization dependence in the P.O. approximation. The scattering geometry
may be viewed in terms of Fig. Al, where 6’. ¢’ in (41) are replaced by (¢ — n/2). (m/2 — Y).
with ¢ given by Eqn. (A4). It will again be assumed that the exposed scattering islands are covered
by wedges whose orientations. ¢. are uniformly distributed. whose lengths, L;. are Rayleigh dis-
tributed. and whose aspect ratios b/a are all equal to 1/2 (i.e., a=L. b=L/2, for all values of L.)

Performing the averages as in the last section. we write:

5

<o> = —"'—j L* FkL) p(L)ydL . (42)
47 J0

where p(L) is given in (36). and F(kL) is the angle integral.

| P D . o s
FkLy = — 5 L Sine” (kL cosysino)sine (S kL cosy coso)siny - do (43)
T -x

fe -

with the definition (from (A4), with 8 = 30°, {,' = 0°)

. |
v = arecsIn (= Cos o). (44)
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The solution of this set of relations is less formidable than it might appear. Numerical evaluation of
the integral in (43) discloses that it can be quite accurately represented by

e
a

S

Can

F(kL)y =2/(kL) (43

&

D

Substitution into (42) vields the very simple expression

]
T

<o> = Nu/2 L y/kHl/2m) 45

Ay %y m y Y
”

'i"'t b

¥y

which should be compared with the MEC result in (37). Since 1 27 can be expressed as -8 dB. we

come to the remarkable conclusion that for this low grazing angle regime, the P.O. cross sections tor -L
H and V polarization are exactly the same as the MEC cross section for V polarization.  Perhaps this N
is not so remarkable as it 1s reassuring, since GTD and P.O. quite often give similar results in scatter- S

ing calculations. But the paths leading to (37) and (45) were cnough difterent that one cannot help

being struck by the coincidence of the two results.  Aside from numerical constants, these expressions
- Al 5 - . . e . .

have the form (Lgs) times (1°'kL). the first being a “‘size™” factor proportional io the area occupied by

A
PR

[ )
]

®
the wedge. and the second being a ““beam™ factor. expressing the decreasing number of wedges scen RS
as their average scattering pattern narrows. The uniform angular distribution used in these caleula- -':_.r-'
tions are appropriate to an isotropic, or “‘confused’ sea. But if a strongly directional sca were :\_‘C
viewed up/down wind or crosswind. the form and frequency dependence of these cross sections might :::
change significantly. 2y
oy
3. Recapitulation P::._ :
o
Thus far we have exumined three scattering models for low grazing angle sea backscatter. and men- \'
N

tioned some of the results of experimental measurements in this scattering regime. [t would be usetul
at this point to pause for a moment and intercompare the values of the NRCS obtained trom these
various sources for X-band backscatter in moderate winds.

s "

«
.

o,
)

SOURCE V-Pol H-Pol
NRL 4FR (About 5°) -33dB -37dB
Bragg Model (Sec. II1LA.1) -310dB 42 dB

MEC Wedge Model (Sec. 111.B.2a)  -33dB  -54 dB
P.O. Wedge Madel (Sec. 111.B.2b) -33dB  -33dB

“Consensus Meas. (about 1°) -40dB  -40 dB

The cross sections from the scattering models developed in this report assumed grazing angles above
the “*knee’ in Fig. 14, so should be compared against the NRL 4FR mcasurements at 4 or § degrees.
The “*Consensus’™™ measurements, mentioned at the end of Sec lILLA.3. were all made at grazing
angles of about 17, so should be compared against the model values fowered by the addivonal 7 or 8
dB required by the §; curves in Fig. 14, One is tempted to conclude from this that the models are all

guite good for Vertical polarization. while tor Horizontal polarization the Bragg model 15 not bad at e
the higher angles and the P.O. model much better at the lower angies. The MEC model. based on :-f-:-"
the geometnical theories of diffraction. appears to underestimate the level of Horizontally polatized -\'_';
huackscatter by 15 10 200 dB an this regime of grazing angles. However, none of these models can ;"-:f:

»
v

account for the powerful "Sea Spike™” returns that characterize this regime, and which could them-
selves mahe a contribution to the averaging process detining the NRCS. These returns will be the
subject of the next section.
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C. Scattering by Other Surface Features

Thus far we have looked at scattering from small amplitude surface perturbations amenable to a
Bragg scatter formulation, and at wedge-like structures of indeterminate size. but large enough to be
treated by optical approximations. both geometrical and physical. Other surface features might
include:

(i)  Pyramidal cusp-like structures. that probably scatter much like a short-crested wedge. or
two wedges meeting at an angle.

(i1) Parasitic capillaries, that are visible on the front face of most forced waveforms. are of
low amplitude. and appear to occupy a rather narrow spectrum with wavenumbers in the
neighborhood of the transition between gravity and capillary waves.

(ii1) The pools of surface turbulence associated with breaking waves. If the surface displace-
ment spectrum of the turbulence were known, its scattering behavior could most likely be
obtained from the Bragg formulation described earlier.

(tv) The spray associated with vigorous breaking in strong winds. Looking at waves breaking
over a submerged breakwater that produced a lot of spray, Kalmykov. et al [1976]. used a
rain model to explain their measurements. This model required an equivalent rain rate of |
meter per hour (!) to match the observed levels of backscatter. Since it is difficult even to
conceive of what a rain rate of such intensity might actually be like. it is quite possible that
they were barking up the wrong tree.

There are two other kinds of structures that will occupy our attention for the remainder of this
section: ‘“shocky-looking structures seemingly associated with localized wind-puffs or the passage of
a steep wave, and the “*plumes’ sliding down the front faces of breaking waves. as suggested by
Longuet-Higgins and Turner [1974). The feature that characterizes both of these structures is the
sharp entry into the underlying surface at their *‘toe’" as they move along.

1. Hvdraulic Shocks or *‘Sloshes™

Consider first the subject of *“hydraulic shocks.”” When associated with shallow water effects such as
a bore on a beach. breaking in the surf zone. or constricted flows in a channel (see Lighthill. 1978).
they are usually referred to as ““hydraulic jumps.’” But as noted earlier, Middleton and Mellen [loc
cit] have proposed that wind puffs on an open sea surface may induce small hydraulic shocks that
decay into Gaussian solitons which, in turn, become a source of scattering. A bit of ‘‘naked eye
oceanography " convinces one that small shocky-looking structures occur commonly on open water
surfaces. sometimes in response to small-scale turbulent components in the surface wind field. and
sometimes for reasons that are not clear. In fact. they are seen quite frequently at wind speeds above
a few knots. taking the form of what might be calied '*micro-breakers.”” and seemingly induced by
the passage of small, but steep. waveforms. Such an event may be scen at the arrow in the tank wave
shown in Fig. 22, (Parasitic capillaries of the type also seen in the figure are found evervwhere on
almost any disturbed water surface.) Small shocky structures can be created on the surface of a basin
of water by blowing at it obliquely with a houschold fan. In a laboratory setup of just this kind. a
high-resolution radar looking into the wind has recorded sharp spikes of backscatter which seem to be
associated with the formation of these structures [Hansen and Wetzel, unpublished observation, 1986].

Figure 23a shows what a puff-induced event might look like. based on both observation and physical
plausibility. The vertical force of the localized puff causes a dimple in the water surface. while the
horizontal component urges the edge of the dimple on the downwind side to move out from the center
at a speed greater than the normal wave velocity for an impulsively excited surface, causing the for-
ward face of the disturbance to steepen up and show a sharp entry inio the quiet water ahcad. The
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mysterious ““micro-breakers” mentioned above look very much the same. It is tempting to call this a
“shock wave.”” but we must be careful not to confuse a “‘shock wave' with an asymmetrical
“slosh.” A shock wave tends to retain its form over some reasonable distance. while the event we
are talking about here 1s short-lived. and its subsequent development is uncertain. If it relaxes into a
smoother form of disturbance propagating from the puff site with unchanging shape. it becomes the
presumed source of Middleton and Mellen’s Solitons.  But perhaps the initial “*slosh™ flies apart into
a dispersal of wave components running at different speeds.

The nature of these events appears to be completely unknown, although one can imagine that the scale
of the phenomenon wiil play a role. It has been observed that the “‘ring wave™" produced by the
splash of a raindrop on a water surface propagates away from the splash site as a single. well-defined
waveform [Wetzel.1987}. The speed of this waveform is quite close to the minimum in the velocity
vs. wavelength characteristic for water waves. The neighborhood of this minimum contains a rela-
tively broad range of wavelengths with similar velocities, so it is reasonable to imagine that a group
of waves having close to the same velocity might assemble itself from the chaos of the initial splash
because the scale is right for such a result. Raindrop splashes are measured in centimeters. as are the
critical wavelengths at the velocity/wavelength minimum. The scale lengths in the atmospheric tur-
bulence responsible for surface '"puffs.’”” or in the perturbing waveforms responsible for ‘micro-
breakers.”” should be considerably larger. however, so the wavelengths involved will lie along the
gravity-wave dispersion curve. and the transient “‘slosh’™ will quickly disintegrate. We will trv to
make some sense of this topic by considering several scattering models that might apply to surtface
events which start out looking like the disturbance sketched in Fig. 23a.

)
« a

In Fig. 23b the disturbance is shown separated by a dotted line into a symmetric “*dimple’" and the
asymmetrical ““slosh™ component. The model is further developed in Fig. 23¢. where the ““slosh™ iy
idealized as a ridge of transverse length L, having the cross-section of a circular segment of radius a
and entry angle 3, and lying at the edge of a “*dimple’" of radius R. The scattering behavior of this
disturbance will. of course, depend on the dimensions a. L and R. the angles (local grazing angle).
and the wavelength of the incident signal. Since this is so speculative a scattering mechanism. and we
have no clear idea of how it originates, it is difficult to decide what range of dimensions might actu-
ally be of interest. To be quite arbitrary, yet guided by observation of these events. we will take
“‘dimple”" radii to lie between 10cm and Im. with “‘slosh’" radii a some small traction of R. For
microwave wavelengths between | and 100cm, then, we will have to consider both long-wavelength
(perturbation) and short-wavelength (physical optics) approximations. The depth of the “*dimple™
will, by the conditions of its formation, always be a very small fraction of the radius. and. based on a
“‘ring wave'' scattering calculation by Wetzel [1987], we will assert without proof that a wide. shal-
low depression of the type sketched in Fig. 23a will have an extremely small scattering cross section
whatever theory is used. This leaves us with the more sharply curved. elevated ““slosh™ feature as
the major contributor.
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a) Long-Wavelength (Perturbation) Approximation: If the height of the circular segment 1in Fig. 23¢ s
much smaller than a wavelength of the incident signal, a simple surface-perturbation theory of the
type used by Wright [1966] can be used. His expression for the backscatter cross section duce to a
surface perturbation (x.y) is given in the Appendix. Section 3. Eqns. (A23), (A24). (A25). It should
be noted that this is a deterministic cross section for a specitic perturbation, not a statistical result
based on a surface correlation function, as in Rayleigh/Rice perturbation theory and the Kirchhott
theory of Beckmann and Spizzichino [1963].

With reference to Fig. 23¢. the integral in (A23) can be written

asing R s _
1) = S dv S (Va = 17 = he™™ A, (46
- o Sn#
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where b = 2, controls the shape of the segment, as well as the “"toe’” angle 8, and K=2kcos(y). It
is obvious that under the conditions for which the perturbation approximation is valid (ka< < 1) the
exponential may be put equal to 1. and the integral becomes simply the volume, V(a,L}. of the seg-
ment, so the cross section of the *'slosh’ feature takes the simple form:

4 3,
OpeRT = ‘;k"’gv,y [-V-(a.L) 47

with the angle factors | gy | given by (A24) and (A25). (Note the interesting similarity to volume

scattering in the Born Approximation for a volume of unity dielectric constant.) Taking the circular
T . h . N

segment to be a semicircle. the volume is V= a-L/2, so the cross section in (47) becomes

opprr = Thka) 'L gy y() 17, ka < <1, (48)

where L is the transverse length of the structure. (It is of further interest to note that this is exactly
the form initially obtained by Wright [1966] for the cross section of a patch of area L° containing
Bragg-resonant capillaries ot rms height a.) The angular g-factors are plotted in Fig. 24 for a dielec-
tric constant = 50, corresponding to sea water at X-band frequencies. It should be noted that these
angular factors are the same ones that appear in all EM Bragg scattering theories. as. for example. in
the “shightly rough™ Bragg curves in Fig. 15.

by Short-Wavelength (Physical Optics) Approximation: When the circumference of the segment in
Fig. 23¢ s long compared to a wavelength (ka> > 1), it is appropriate to use the physical optics
approximation.  Here the scattering takes place at the point of specular reflection. shown as the point
P in Fig. 23¢. For a conducting cylinder of radius a and length L. the cross section in this approxi-
mation is given by Stka)l” [Kerr, 1951 we have added a factor of .5 to account for the reflection
coetticient of water at microwave frequencies]. However. the water surface ahead of the scatterer
produces a reflected wave which must be added to the incident wave in the neighborhood of P.
Strictly speaking. for very large ka. the surface-reflected wave will itself be specularly reflected at P,
away trom the incident direction. However, for relatively small values of grazing angle . and modest
values of Ka. the scattering patterns of the direct and surface-reflected waves at P should overlap back
at the source. The effect may be simulated by multiplying the specular-point cross section by an
angle- and polarizaton- dependent tactor based on the geometry of Fig. 23c¢:

N

F- = Epwecr + Ereprecren |- (49)

[‘-f_H((l .f.\;) = ‘("’“l““" + R‘-.”(‘/‘.‘,’/)('“u E'

where Ry 4 (f 0¥ 18 the (complex) reflection coefficient for an incident wave of frequency tand
grazing angle.  We call F the “Surface Proximity Function” and have plotted it for both
polarizations, in Fig. 25a for ka=2.4.6. and in Fig. 25b for the larger values ka=10.20. The physi-
cal optics approximation for scattering from a large ““slosh™ may thus be written

1 Vo
Opoy = :)‘(k(l )[,"I’f{,](ll.‘k’.u/)- (50

o1 Effects of Surface Slopes and Wind Speed: The angle in the factors | ¢ | and F- is the local graz-
ing angle. These scattering structures are excited on the sca surface. so this local angie will be
v - wn t . where ¥ is the grazing angle relative to the mean surface (horizontal), and « 18 the
local slope angle of the underlying surface. When the scattering structure is tilted toward the incident
rayv. the local grazing angle increases. while when tilted away. the angle decreases. reaching its
numimum of zero when « = - . Let us assume that the sea slope distribution is Gausstan [Kins-
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man. 1965], characterized by an rms slope s, which, for the relatively small angles involved (< 30°)
can be replaced by the slope angle. The averages of the angle factors in (48) and (49) therefore
become, respectively,

-]

;S,

b1y —a 28]
= &) e da. (51)
AY 21[-5() Yo

<lgvul¥o)|-> =

5 1 ® 5 —a'/2s
<Figlafdp>=——1{ Fiya.fdre " da. (52)
\27r S() g

The dependence of mean square slope on wind speed may be found in the celebrated sun-glitter mea-
surements by Cox and Munk [1954]. They measured the glitter from both clean surfaces. which
included the flashes from all the smali-scaie structure. and "‘oiled™" surfaces. on which the capillaries
were suppressed. Since we are primarily interested in the larger slopes of the underlying surface. we
will use the latter, for which the mean-square slope s is given by

sqa =0.008 + 0.00156W, (W in m/sec). (53)

The use of (53) in (51) and (52) gives an estimate of the wind-speed dependence of the “*stosh™ cross
sections (viewed normal to L) for given dimensions a and L. which will themselves be functions of
wind speed. For a moderate wind speed of 15 kts. the rms slope is 0.14 (about 8°). We have shown
the effect of such a wind on the angle factors | g |, as calculated from (51). by the dashed curves in
Fig. 24. The result is akin to the Two-Scale Bragg model illustrated on the H-Pol curves in Fig. 15.
The effect on the Proximity Factors for Physical Optics is more complex. since the averages depend
on the scatterer size and the illuminating frequency. as well as on the rms slope. In Fig. 26, the
effect of a 15 kt. wind is shown for the same values of ka used in Fig.25. There is little effect on the
V-Pol returns. other than to bring up the very low angle segment of the curve and to smooth the
angular resonances at the higher ka’s. The effect on the H-Pol curves is much more pronounced. and
the H-Pol returns actually match or exceed the V-Pol returns over the entire angular region at the
higher values of ka. The reason for this lies, of course. in the Brewster angle ““bite-out”™ that
removes the retlected V-Pol field at angles commensurate with the rms slope angles (about 8°). Con-
tributions to the total scattered field from this scattering mechanism would therefore tend to show,
even at the higher grazing angles, a considerably smaller spread between the V-Pol and H-Pol returns
than that predicted by the Bragg theory. This is just what is observed (see. ¢.g.. Fig. 15).

Untortunately. there 1s no a priori basis for estimating the ““slosh™ dimensions required to obtain
numerical values for the cross sections defined in (48) and (50) - thev have never been measured (and
those who have not observed natural water surfaces might question whether they even exist.) How-
ever. a small-scale ““slosh™ would probably. like most small-scale perturbations forced into being on
a water surtace, have the dimensions of waves at the minimum of the velocity/'wavelength curve: that
is. a couple of centimeters. Thus we will take a minimum value of the radius a to be 1 ¢m. Taking
a minimum ““dimple’” diameter to be about 1 foot. we assign a least value for R to be 10 em., plac-
ing the division between the perturbatton and physical optics approximations (ka= 1) at the middle of
the microwave region - C-Band (5 GHz, 6 ¢cm). Thus for ““sloshes™ of this size. we will use (48) for
S-Band and below, and (50) for X-Band and above. The result for low grazing angles (<S87) is
sketched in Fig. 27, where a wind speed of 1S kts is assumed. and the transition between the two
approximations is drawn in as a smooth dashed line. For larger values of a the curves would move
up. the transition point would occur at lower frequencies, and the polarization difterence at a given
tfrequency would decrease.

Although not yet established as a legiimate scattering obstacle. the existence of these “shocks™ or
“sloshes™ would help explain certain puzeling aspects of low angle sea clutter, particularly small
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amplitude “‘sea spikes.”” As noted earlier. the turbulent wind field of a 20” fan blowing oblhiquely ;"
over a water filled basin in the laboratory and viewed with a high resolution horizontally poiarized :: -j
radar, produced a random sequence of sharp transient returns of significant amplitude [Hansen and .r:.r
Wetzel]. These returns could be visually correlated with the appearance of the type of micro-sloshes ~
we have been discussing. In their behavior they were quite reminiscent of the **Sca Spikes™™ mcas- -":v"
ured by Lewis and Olin [1980] in open water. N )
3
Figure 28 reproduces some low grazing angle (1.4°) X-band results obtained by Lewis and Ohn {oc. \j\
cit.] under two quite different sea surface conditions. The records on the top were obtatned from a :-;::
“wind-blown sea with many whitecaps.”” while those below were characteristic of ““calm™ wuter. :.»:2'_
The general structure and temporal behavior of the returns for the two conditions are virtuaily identi- Y
. cal. the only difference being a scale difference of 40 dB. Moreover. for each surface condition the
V-Pol and H-Pol returns have the same amplitudes. The only two models that can account for com- '_:'::
parable H-Pol and V-Pol returns are (1), the nose-on geometrical optics wedge model of Kalmykov _.w_'\‘.‘
and Pustovoytenko [loc.cit.] (see Fig. 19a). and (2). a Physical Optics model of some kind: cither the -::
glancing-incidence wedge model of section III.B.2.b.), or the *’slosh™ model being discussed here. o
Since model (1) 15 highly contrived and unrealistic, we are left with the latter choices as the most ot
likely sources of low-angle transient returns.  As Sherlock Holmes has said: R,
LS.
My dear Watson! When all possible explanations save one have been eliminated. that one, :::"‘ )
however unlikely it might seem, must contain the true solution.™ ::
e
3 course. we might not have exhausted *“all possible explanations,”” but we have considered quite a 'f.

tew, and while the ““slosh™ hypothesis cannot fully account for the “*calm water’” returns observed by
Lewis and Olin_ it 1s the only model whose trends are all in the right directions.

&,

2. Sea Spikes and the "*‘Plume’ Model for Breaking Waves
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\ Certainly the most obvious place to look for scattering features in an active sea at low angles is at the .’
; peaks of breaking waves. But what are these scattering features? The peaks display ditterent shapes ,::
according to which of the several types of breaker is involved (plunging. surging. spilling). and then :.-:
there is turbulence. and spray. The orderly. serene models we have been discussing thus far apply to v';».
structures and surfaces that are hard to find in the chaos of a heavily breaking sea. Moreover, t::
scattering from breakers is characterized by the appearance of “*Sea Spikes™ having cross sections ®
several orders of magnitude greater than those predicted by any of the mechanisms discussed thus far. X
We have already seen **Sea Spikes™ in the records collected by Lewis and Olin at the top of Fig. 2¥. :::_'.
Other investigators have observed them as well [Kalmykov and Pustovoytenko. loc.cir. . Long, 1975]. ::-\.j'.
and radar operators encounter them on a regular basis (hence their colloquial nomenclature.)y  Peak -::-/:
cross sections can range from 10-1000 m® for both polarizations. but these peaks occur sporadically. v
| so the average cross section will be much smaller. Actually. when considering low angle cross sec- _’
| tions generally. it is important to know how the quoted values of NRCS were obtained.  Were they :-:.‘
based on raw averages (including sea spikes). amplitude-limited data (chopping off the sca spikes). or :_'-:
selected data (removing data sections containing sca spikes)?  Or were they averages at all. being -\.‘; :
instead defined as median cross sections? [t is easy to infer from the breaking-wave records in Fig. :'__-::
27 that. for this set of measurements at least. the mean “flux™ of sea-spike events i roughly )t
0.001/m"-sec. Since the duration of the H-Pol sea spikes was roughly one second. and their mean Sgiey
amplitude about Sm?. this flux translates into a mean NRCS of about -23 dB. which is considerably :}'_t
greater than the low-angle results quoted carlier in section HI1LLB. 3. However, the NRL-4FR data are ,"T-:‘
the median values of the NRCS. as were the values measured by Trizna [1987]. so. unlike @ mean -::',-:
value. the quoted NRCS levels would fail to reflect the contributions from the powertul sea spikes. N
®
Cumulative distributions are much more informative, and Trizna has found them to reveal some \:
interesting aspects of low angle backscatter. Figure 29 gives an exampie of how such distributions ::.r- X
change with wind speed (X-band, H-Pol, upwind. about §7 grazing, wind speed increasing from lett -': '
s
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to right). Clearly the statistical behavior is complex, and no single distribution tells the whole story.
Trizna views the data in terms of multiple Weibull distributions. each characterizing the contributions
from a particular class of scattering features. This approach in a way resembles that of the "*Contam-
inated Normal'" distribution used by Trunk {1976]. in which the data are described by a series of nor-
mal distributions with different variances. The Weibull distribution is a generalization of the Rayleigh
distribution, and. having two adjustable parameters, atfords greater flexibility in fitting the data. The
straight lines on Fig. 29 represent such “*fits,”’ the left hand (low wind) curve following a standard
Rayleigh distribution over its entire length.

Trunk asserts that low angle. high resolution sea backscatter is not log-normal, as is sometimes stated.
and indeed. the departures from Rayleigh seen with increasing wind in Fig. 29 are certainly not log-
normal distributions. which would show long tails with the opposite curvature. In fact. those seg-
ments designated as “‘sea spike regions’ appear to have relatively tighter distributions. as if sea
spikes were produced by a special scattering mechanism quite different from that responsible tor the
main body of backscatter returns. Such a mechanism. based on a particular hydrodynamic model of a
breaking wave. has been explored in some detail by Wetzel [1986]. We summarize some of its
features below.

Although the word ““breaker’ usually summons up a mental image of a curled mass of crashing water
(the “'plunging’” type). the breaking waves occuring in the open sea are generally of the ““spilling™
type. in which the interior crest angle at a wave peak sharpens to the point of instabtlity ( 1207), and
a series of water masses emitted at the crest slide down the front face of the wave under the torce of
gravity. Longuet-Higgins and Turner [1974] describe this process in their “*plume’ model of a
spilling breaker. idealized in Fig. 30. The “*plume’" has a characteristic shape (sketched in Fig. 30a)
and entrains air to form the "whitecap.”” The scattering model for these features resembles very
closely the Physical Optics model for “‘sloshes'" described above. the only differences being in the
scale of the event and the range of expected local grazing angles.

The plumes emerge from the crest of the breaking wave. so initially the underlying wave face angle «
will be steep - close to the value of 30° we have been using in other models for the crest peaks. The
radius of the plume will be considerably larger than that of the "“sloshes™ discussed above. Iving
between 3 and 15 cm., just to take a wild guess. although one would expect the larger plumes to have
rougher surfaces, thus reducing their resemblance to smooth cylinders - particularly at the higher fre-
quencies. The toe length L over which the plume can be expected to resemble a cylindrical scatterer
is another unknown, but we will assume it is of the order of a tew plume diameters. Using ¢50) for
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the plume cross section, and the implications of Fig. 25 for the factor F°, we find that these assump- \-__
tions lead to individual plume cross sections lying between 0.25 - 25 m" for the popular X-band fre- “.,;
quencies (k=2/cm). A breaking wave will generally emit several plumes. so it we assume that the SN
cross sections combine incoherently. which is the worst case. we conclude that the ““sea spihes™ asso- N
cizjted with a breaking wave could quite casily have cross sections lving in the range between |- 100 ;.
m-. Interestingly, the range of cross sections measured by Lewis and Ohin at the top of Fig. 28 was s
I - 10 m*. while the ““sea spike’” regions in Trizna's cumulative distributions (Fig. 29 contained f_-::f
individual returns from the open ocean in excess of 1) m-. Clearly. using dimensional parameters ff:"-‘
well within the realm of credibility, the “plume’™ model is capable of delivering “'sea sprhe’ cross ::'.
sections in the amplitude range actually observed,
Ry
The polarization dependence of the plume cross sections can be anferred tfrom the surtace-proxamty ,-',
factors shown in Fig. 25, For the smalter plumes te.g.. kKa=6) the H-Pol returns could exceed the :'."-f '
V-Pol by almost 10dB close to the peak. but would decay rapidly as the plume shid down the wave r:‘:-
face (toward decreasing local grazing angles). while the V-Pol return would increase. Since the s
acceleration of the plume down the wave tace makes the local grazing angle o tunction ot time. the ®
temporal behavior of small sea spikes due to plumes should resemble that sketched i kg Ha. We vl
see that the H-Pol returns are much ““spikier.”” and associated with the wave peaks, while the V-Pol .:::.,
nZs
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A returns are smoothly distributed over the length of the wave. This is just the kind of behavior often
' ': remarked upon by observers of low angle sea backscatter, particularly at grazing angles of several
‘,.'. degrees (above the knee of the shadowing curve.) Corresponding behavior for the larger plumes
X (ka=20) is shown in Fig. 31b. Here the H-Pol and V-Pol returns oscillate out of phase. but with
':{: similar mean amplitudes, as the plume moves down the wave face.
W Unfortunately, there is little reliable experimental evidence available which could either confirm or
'.:Jvl‘: deny this scattering hypothesis. What evidence does exist is largely circumstantial: reasonable
> assumptions about plume dimensions yield observed scattering levels: the polarization dependence of
Q plume scattering is consistent with observations: the range of oscillations in large-plume returns (Fig.
' 31ib) is consistent with the width of the sea spike region at the higher windspeeds in Trizna's distribu-
. tion functions (Fig. 29). Other evidence in support of the plume model may be found in the reterence
-" cited above. We conclude our discussion of the piume model with the following paragraph from that
::::- reference:
“*We have found that one implication of the plume model - the existence of a curved scattering sur-
face rising sharply out of the underlying wave surface - leads to radar scattering cross sections which,
e with a reasonable assumption of plume thickness. can be as large as those observed experimentally.
A% We note, however. that the scattering results are based on two idealizing assumptions: (1) that the
o radar wavelength is of the order of [or less than] the plume thickness: (2) that the tront surface of the
it plume is “smooth™ . As the radar wavelength increases. the scattering moves into the Rayleigh
i regime and falls off sharply with the fourth power of frequency. At lower frequencies. therefore, the
. plumes become tnvisible and our attention must shift to larger features, such as the wedgelike crest of
::1 the underlying wave. On the other hand. as the radar wavelength decreases. the roughness (see Fig.
_‘ [30a]) over the scattering face of the plume can no lqnger be ignored. and the scattering amplitude
-\.‘, must be multiplied by a roughness factor exp —2(ka,)". where o, is the rms roughness of the plume
o surface. Moreover, at short wavelengths. the likelihood of finding strong-scattering coherent segments
' along the plume front diminishes. It can be seen. therefore, that plume scattering of the tvpe we have
o been discussing can occur only within a rather narrow window in the microwave spectrum, the loca-
":.: tion and width of this window being determined by unknown properties of the plumes. such as their
N thickness. shape. and roughness.  Nevertheless. it is interesting and instructive to sketch the scattering
o behavior ot a (reasonable?) plume having a thickness of 3 ¢m (about an inch) and an rms roughness
- of 10% of 1its thickness. Figure [32] places this behavior in the context of other scattering mechanisms
| that might be expected to play a role in microwave scattering from breaking waves.  Although this
,:' breakdown into scattering domains is speculative, and dependent on as yet poorly understood breaker
"y morphology. it has the virtue of difterentiating between the kind of scattering one might expect at dit-
::.{ ferent trequencies, and guiding attention to the most appropriate model. ™
T IV, SUMMARY AND CONCLUSIONS
'_'_-'. The first question to be asked in any discussion of low angle sea backscatter is how the radar
_.::: sees the surface: that is. what is the nature of the shadowing process?  Although all existing rough
.'.-:' surtace shadowing theories are based on geometrical optics, we approached the illumination problem
-:.:: through dittraction theory, with the result:
L ®  The limits in windspeed/wavelength space of both Geometrical and Physical Opuies (Fig. §)
- established the operational conditions under which these approximations may be used with
J any confidence. while the estimated sensitivity of the ditfraction madel o radar polariza-
::} tion and wave crest arregulanties and (Figs.3 and 7. respectively) was tound to be sutfi-
' crently weak that simple two-dimensional physical optics should apply over a usctul range
- of operating parameters,
N
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For those operating parameters which allow use of the geometrical optics approximation, a
*‘threshold™’ model for sea surface illumination applies at extreme grazing angles, providing a scatter-
ing field of isolated *‘islands’" emerging from a dark background.

®  Since the area and spacing of these scattering islands are functions of grazing angle and
wind speed, we were able to define a new shadowing function for very low grazing angles
(Fig. 14). The implications of this shadowing function were verified in a variety of exper-
imental situations (Figs. 15-18).

Having identified, and given some quantitative measure of, the preferentially illuminated parts of
the sea surface, it was possible to apply various scattering models to these regions.

@  Bistatic scattering models were developed for both composite-surface Bragg scattering. and
wedge scattering by the Method of Equivalent Currents and Physical Optics (Appendix).

®  Using these models to define a low-angle NRCS produced values in reasonable agreement
with experiment (section III.B.3), but also raised the curious suspicion that low angle
scattering might be model-independent - especially curious in view of the almost diametri-
cally opposite assumptions underlying the Bragg (small perturbation) and optical approxi-
mations.

® A new scattering feature - the “'slosh’’ - was introduced, and described by a simple heuris-
tic scattering model. Scattering by small “‘sloshes’™ would be expected to behave with
time and polarization much like observed low angle. high resolution returns from calm
water.

®  The “‘plume’’ model of scattering from breaking waves seems able to account for many of
the observed characteristics of the Sea Spikes that populate the low grazing angle clutter
scene.

This report is intended to provide both a review and an extension of the state of our knowledge
in the field of low angle sea scatter. But it would appear that we have come about as far as possible
without more detailed knowledge of the surface features ultimately responsible for the scattered field.
Although a “*spectrum’ has never been known to scatter an electromagnetic wave. models (like the
Bragg model) that require only the specification of a spectrum have an easy time of it. since they
need never know what the surface actually looks like. A spectrum is a highly averaged. fictitious
entity in which all of the phases required to construct a real scattering surface are lost. In order to
quantify “feature™ scattering - from wedges, spray. sloshes, plumes. ete. - we must know their
dimensions, lifetimes. distributions. etc. And since spectral theories cannot explain low angle «ea
scatter. the accumulation of this information must be the next order of business.  The existing assort-

ment of scattering theories and approximations should certainly suffice to produc acceptable levels of

accuracy once the actual scattering obstacles are detined.
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Appendix
SCATTERING FORMULARY

1. A Composite-Surface Bragg Model for Bistatic Scattering

Consnder a surface element A w1th orientation defined by its normal A. illuminated from direc-
tion A and scattering into direction I\;, as in the Fig. Al.

The incident vector k, is assumed to lie in the y-z plane with grazing angle ;. while the
scattering vector k, is defined by grazing angle ¥ and azimuth (or scattering) angle ¢,. The normal
fi is defined by its inclination 6 and azimuth angle ¢. In terms of the fixed x-y-z coordinate system.

A = sinfsingdf + sinfcosev + cosh3 (A1)
k., =08 + cosy/ ¥ — siny/’3 (A2)
k. = cosylsiné, & + cosycoso, ¥ + sinyl? (A3)

Scattering from A depends on the local grazing angles ¢, and y, relative to the surface A.
These angles are given by

siny, = —fr-lf, = —sinfcosy, coso — siny, coso (A4
siny, = +na -IE\ = sinfcosycoslp — o) + siny cosh {AS)

For a coordinate system on the scattering patch A, the bistatic cross section per unit arca is
given by Barrick and Peake [1967] in the form

o (Y. d) = 4wk} sin®y, sin® Y, [a,, |7 WK K2 (A6)

where &, 1s the radar wavenumber. and pp denotes the polarization (i.e.. pp = HH or VV). The sur-
face wave vector components are given by

K, =k, (cosy, cosd, — cosy,) lA7)l
s =k, cosy, sing, (AT),

and ihe coefficients «p,
the scattering surface. They are given approximately by

Qupy =  — COS d)‘ (AK)
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are complicated functions of the angles above and the electrical properties of
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. = (COSY, cosy, — coso, )/(siny, + l\'e)(sinw‘ + l\}) (A9)

AR

where € is the dielectric constant of the surface (about 50 for sea water at microwave frequencies.)

CLSLS S,

\Y

However. the local components of the incident and scattered field vectors on A are generally
different from those defined in the radar reference system. That is, a rotation of 2 out of the plane of
incidence will convert an initial horizontal or vertical polarization into a mixture of horizontally and

LAt

>N

. ) o N o
vertically polarized components on A. In Fig. A2 we represent the incident and scattered field vec- s
tors in the radar reference system (x.y.z) as £, and Ey. and the tilted, rotated surface element A as :::
described by its normal 7. )

AT T Y YY)

The transformation of the incident fields to the surface A where the scattering actually takes place is A

£. provided by the following vector relationships (p denotes the polarization. H or Vy: o

5 o

. o
o

“Vertical” component on A due to the incident fields:

Elp = (r"z-E,',)ﬁ PA T

RN
P FIA®
AR, N

£

“*Horizontal™™ component on A due to the incident fields:

.
r

Ejp = (A X Ej)Xn (AlD

T
" P

The local scattered fields for these two polarizations are proportional to the angular coefficients in

L

Tl
o

(A8) and (A9). so we write: R

. e
) = AN AL R 4 -~ .
{ Egp ~ Eyp - apy @ Eyy ~ Ef oy (A1) ®
L o
X Finally. the scattered field in the radar reference frame is found from the component of (A12) in the S

N scattered field directions (denoted by a carat) defined in Fig. A2. NN

h
o — — ~ ,.
I Ey ~ 1E,N R -ENiay + (B X E)) X Aoyl E,. (ALY ®

4 ,":-"
] Note that cross-polarized terms, which we ignore here. could also be obtained from this formalism. -
| ~
" - 3. P . . - . . - L
! The angular factors [q,, |~ in (6) were originally obtained from the square of the ratio of scattered to '~
. . - . . . - . . . ‘e
4 incident field strengths. so we will replace them in our composite-surface bistatic model with the °

corresponding expressions formed from (A13): .

L, 1= T Epi gy + (8 X EL) XA CETC A o0

I Wpp ! neEon apy (r “p n ooyl T ( el

G

b ]

b - . _ . ‘ av]
A similar expression was obtained by Valenzuela [1968] tor the monostatic (hackscattery case. °

which s often used as the current “Two-scale™ or “"Composite-Surface”™ Bragg model for radar BG

backscatter from the sea (for a recent application see Pierson and Donelan., 1987 ) AR

I

.. - X . '.-.'_l

Finally. we assume that the wave spectrum W oin (A8) is isotropic at the Bragg resonamt O

wavenumber. <o s a function only of N

K = (K{ + K5 = 2k, con v, sin(o, /2) (A1)
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Using the Phillips [1966] spectrum for W( ):

W(K) = 0.005K *. (A16)

equation (A6) reduces to

- -]
sin-yo sin- Y
T T

oy (6.6,) = 1.6 x 107° (A17)

Pp

sin* (¢, /2)

The grazing angles are defined in (A4) and (A5). and the angular factor |a, | defined in (A14) is
assembled with the help of (Al), (A8). and (A9).

.
s

Keeping all of the angles straight in a completely general formulation of bistatic scattering in the
small-amplitude Bragg approximation is a real nightmare. so when using these expressions for exam-
ples in section 1I.A.1. we will introduce some rational simplifications. For example. the surface
slope angle will be taken as 30°, which is the limiting angle for surface stability and thus quite likely
to be encountered close to the wave peaks. The radar-referenced grazing angles ;" and ¢! will be
very much smaller than 30°, so we will take them both to be vanishingly small. The local grazing X
angles given in (A4) and (A5) will be approximated by the first terms in those expressions, noting,
however, that these terms contain the cosine of the azimuthal angles. so they will vanish for values of
these angles at the extremes of the allowed range of ¢,. Even with these simplifications. the expres-
sions are sufficiently complex that little would be gained by displaying them here. The reader is
invited to reproduce them, if he wishes, from the recipe given above.

A RRAN
P

3

2. Bistatic Wedge Scattering by the MEC

Consider a wedge of length L and interior angle o with its edge lying in direction f in the X-y
plane. The incident and scattering directions are indicated by k; and k, respectively: ~

As in the previous case, we assume that the grazing angles ¢ and " are so much smaller than the
wedge face angle (m — «)/2 that they can be ignored. All of the angles then lie in the x-y plane.

l.'.'l..A" G

In the Method of Equivalent Currents (MEC) as described by Knott and Senior [1974]. the scat-
tered field is expressed as an integral over a fictitious filamentary current laid along the edge C of the
wedge. where this "“equivalent current’” is of just such a form as to reproduce the results of the
Geometrical Theory of Diffraction (GTD) in those special directions allowed by the GTD, and to pro-
duce a fictitious scattered field in all other directions. It is taken as an article of faith that the fields
so defined represent a generalization of the GTD fields, and have some relation to reality. The ficti-
tious currents are themselves non-physical and non-causal, since they depend upon the direction from
which the edge is observed - i.e.. on the focation of the observer. (This is a marvelous example of
teleology, where the unknowable end configures the means to that end.) The scattered field detined
by this method is given by the expression:

P
D

»
-
3.

e

VW YRS NI YD

_'\)~¢‘~I\n’ Py

[
E, "R eqeaX = Y)Y+ hoh, (X + Y)Y g i ~=
- . o o N W . .‘l
E(L:¢.6) = —— §(_ 5 B, ¢ dw (A18) .
“ where X and Y are the GTD diffraction coefficients. o
b Y
b ) i »
E‘ (X.Y) = sin(m/n) | + 1 (A19) :("
) n COS(T/N) —Cos (4, —3,)/n — cos(m/n) —costy, +4,)/n " ' NG
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In (A18), the coefficients ¢, , and h;, ,, are the components of the incident (i) and scattered (s) elec-
tric and magnetic fields along the direction of the edge (1) the rest of the angles are defined in Fig.
A3. In (A19), n =2 — a/x. and the angles 4, , are the incident and scattered angles measured
from the common wedge face in a plane perpendicular to the edge, so at very low grazing angles they
are both approximately equal to the wedge face slope angle (v — a)/2. For Vertical polarization, the
¢’'s vanish, and the remaining h's cancel the sines in the denominator of (A18). for Horizontal polari-
zation, the h’s vanish and the e’s cancel the sines. This leaves an elementary sinx/x integral in
(A18), and the scattered field reduces to the simple form:

kR .
Eyv(L:o,.0,)=E, :—E (X ¥ Y) L-sinc % kL (cos ¢, — cos (o, — o, ) (A20)
27 2

where the - and + signs are used for H- and V-polarization. respectively. Using the low grazing
angle simplification indicated above for (X + Y). and defining cross section in the usual way.
[0 = @xR>) | E, /E, | *]. the bistatic cross section for a wedge of length L and edge onentation angle
¢, becomes

h i l '
oyy (Lio,.0,) = Cy 4 L” sinc” EkL (coso, — cos{e, — o, ) . (A21)

For our standard stability-limited wedge angle of 120°, the polarization coefficients have the numernt-
cal values

Cy =-29dB, C, = —8dB. (A22)

3. Perturbation Theorv for Discrete Scattering Features

There is an interesting, and often overlooked, difference between the Rayleigh/Rice perturbation
approximation [Rice, 1951], on which the cross section in (A6) is based. and the scattering integral
approach used by Wright [1966]. In the latter, the cross section is expressed in terms of an integral
over the surface perturbation. much as in a small amplitude physical optics approximation. but with
the boundary conditions treated somewhat differently in order to provide the polarization dependence
often missing in P.O. calculations (however. see Leader, 1971). Wright's result takes the form of the
cross section of a deterministic perturbation (x,y) over a flat surface:

4k s . ,
oy y(¥) = — Ilgr g - lss 5 Ex . v) eI U dydy | ¢ {A23)
W A

where the angle coetficients may be written in the form [Valenzuela. 1978].

£ = (¢ — l)lf(l + COS:!//) —‘cof}“‘sin:\i . (A24)
[esiny + (e — cos ¥y -]

(¢ — 1) sin“y

EH = (A25)

[siny + (e — cos" ) 7)°
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