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MODELS FOR ELECTROMAGNETIC SCATTERING FROM THE SEA
AT EXTREMELY LOW GRAZING ANGLES

I. INTRODUC f'ION

Navy radars operating from ships, shore installations, and low-flying aircraft inevitably view the
sea at extremely low grazing angles (< 1 0). Under these conditions one might expect the surface to
be deeply shadowed, yet the experimental evidence is unclear, sometimes even contradictory. It is
obvious that this is a very special scattering regime, in which our normal ideas of sea scatter are quite
possibly of little use. Our approach to understanding this regime will be guided by two basic ques-
tions:

I . How much, and what part, of the sea surface is actually illuminated and observed simul-
taneously in a scattering interaction?

2. What are the special structural characteristics of the scattering elements in such regions,
and what theoretical models are to be used.

Attempts to answer these questions run into severe problems in conceptualization (visualizing the
physical processes involved), and modeling (finding useful predictive analytical descriptions of these
processes.) While shadowing of some sort must certainly take place at extreme grazing angles, radars
operate at finite wavelengths, so the effects of diffraction cannot be ignored. Unfortunately, a
diffraction-corrected shadowing theory does not exist, and the task of constructing one appears for-
midable. The modulation of the surface illumination by shadowing will preferentially highlight spe-
cial regions of the surface - the raised wave peaks - whose morphology cannot be described with any
confidence, and whose scattering properties are largely unexplored and imperfectly understood. In
this area, modeling L ists mainly of analogical guesswork and uncritical application of models that
appear to work in other angular regimes.

The purpose of this report will be to define these problems with greater precision. sec how far
existing knowledge can carry us, develop some new models and new approaches, and ident~fy those
topics requiring further work.

11. SHADOWING

There are two ways to approach the problem of surface illumination at low angles: as a diffrac-
tion problem for which the usual geometrical optics shadowing theory is considered a limiting case, or

as a statistical exercise in geometrical optics in which there might be need for some diffraction correc-
tions. It is the second approach that has attracted all the attention [Bass and Fuks, 1963; Beckmann.
1965; Wagner. 1967; Smith, 1967; Sancer, 1969; Lynch and Wagner.1970: etc.). The reason, of
course, is because it is doable, albeit under certain severe assumptions: two-dimensional geometry.
uncorrelated Gaussian surface, geometrical optics transition across the shadow line. Many useful sta-
tistical expressions are derived during the course of these treatments, but the end result is usually a
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.'Shadowing Function." which is essentially the percentage of surface area. on the average, that will
be illuminated at a given grazing angle, and for small angles is just a linear function of the angle. It
is this crude shadowing function that is invoked whenever a shadowing theory is called for. yet there ,.

is little evidence that these results are of any value when applied to a real sea at low grazing angles.

At extreme grazing angles the standard geometrical shadowing theory referred to above develops
soeinteresting implications, which were explored heuristically by Wetzel [19771. It was found that ,

at grazing angles below about I degree, the sea should begin to resemble a "dark" plane, populated
by illuminated "islands," whose size and spacing are determined by the mean grazing angle and the
wind speed. This conceptual model has a strong intuitive appeal and bears a closer relation to visual 't.

observation and radar events such as "sea spikes" than does the diffuse "vanishing scatter" picture
suggested by the "shadowing function." Nevertheless, this is still a geometrical theory, and we must
take a close look at the diffraction problem in order to find when, if ever. such models may be used.

A. Diffraction Effects at Wave Peaks

The simplest surface model for encorporating diffraction effects into sea scatter is one containing
two sharp peaks separated by a broad smooth trough. The cycloid provides such a curve, and is often
related to the shape of ocean waves both formally [Kinsman.1965J, and informally Iask anyone to
sketch an "ocean wave"]. It is given by the parametric equations:

x = x' - a sin (K') I)

z = z + a cos (Kr')

where a controls the shape of the curve (a = I gives peaks with sharp points, while a < I gives
rounded peaks.) In Fig. I we show the case for a = I (trochoid), with the shadow line indicated for
illumination at a grazing angle . The axes are normalized so that the abscissa is given in fractions
of a wavelength (distance between peaks), s = x/A, while the ordinate is the fraction of the peak-to-

trough wave height H. We should note that Fig. I represents a two-dimensional model in which the
wave crests are infinitely long in the direction perpendicular to the paper. Such models can therefore
be applied only in situations where the sea actually is long-crested, and the illumination is normal to
the crests. Unfortunately. these conditions are seldom encountered. Real wind-driven seas tend to be
relatively short-crested, with the water piled in heaps. Whether a real surface can be modeled in anN
practical way is open to question, although we will make a few comments about this problem a little
later. For now. we continue to seek insight into the shadowing problem from the ,,imple tAo-
dimensional model, in which we will find nough to occupy our attention.

Under the assumptions of geometrical optics, the wave surface would he fully illuminated to the
right of the intersection of the shadow line with the surface, and totally dark to the left. The ef.-ct of
diffraction in smoothing this transition may be approached as follows.

I. Ph .Vical Optic.

Imagine a vertical plane erected perpendicular to the wave peak at the point of tangentc A ith the

shadow line. The field to the right of the plane is found from the Helmhoh integral oxer the plane
Y using the field values appropriate to the unperturbed incident wave. The result Is the lanliar Fre,,nel

diffraction pattern for a straightedge. and it is independent of the actual shape of the diflracting \ e \i
peak. That i, the physical optics expression for the field in the region hetkeen the peak, in Fig I i,,

given in nornialited form bv

%I
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Epo(R,O) = F(w) - F(- oo)1/'12 (2)

where F(w,) is the Fresnel integral

F(w) = e0 e du w = \kR/r0 (3)

and 6 is the angle relative to the shadow line (negative below, positive above).

This is the simplest approximation to diffraction effects, yet it quite dramatically illustrates the
importance of including such effects in scattering calculations. In Fig. 2 we have plotted the illumi-
nation field intensity (I E 1 over the trochoidal surface of Fig. 1 as derived from Eqns. (2) and (3)
for a 3 cm. wavelength (X-band), a 30 grazing angle, and a 15 knot wind speed. (In this, and the
following examples, peak wave height is taken as H=.015W 2(m) and L=.64W 2 (m) is the surface
"wavelength," where W is in m/sec.) Since the shadow line for a 30 grazing angle encounters the
trochoidal surface at 0.47, the corresponding geometrical optics illumination profile is shown as a
vertical line at that point, separating light (intensity= 1. to the right) from dark (intensity =0, to the
left). For the Fresnel diffraction pattern, the diffracted field is always equal to 0.5 at the shadow
line, so the relative intensity at that point is always 0.25. The gradual transition from light to shadow , 

produced by diffraction can be characterized by a "transition fraction," F, defined by the interval N
along the trough over which the field changes from 0 to 1 by the steepest tangent to the diffraction
curve. This is illustrated in Fig. 2. It is of interest to note that in this example, F is measured
between the intersection of the shadow line with the trough, at s=0.47, and the point at which the
diffraction profile crosses 1. This seems generally to be the case.

2. Polarization Effects

Scattering from the sea often shows strong polarization effects, and we should be concerned
whether the shadowing and diffraction processes we have been discussing display any polarization
dependence. In the trochoidal model we are using to investigate shadowing and diffraction, the wave
peak itself is essentially a knife-edge (examine the implications of Eqn.(1) at x' = 0), so since we
have already used the physical optics solution to find the diffracted field, it is an easy matter to
append to this solution the so-called "edge waves" of Ufimtsev's Physical Theory of Diffraction
119571. In this theory, the Physical Optics field given by Eqns. (2) and (3) is "corrected" by adding
an "edge wave" field:

(,I(kR - r/41

Et - rkR D. H(01, 00) (4)

D = -0.5111 - sin((0 - 0)/2)1/ cos ((0 - 0))/2)

+ P* I - sin (0 + 0()/21/ cos (0 + 0(j)/2)1

where 0, and 0 are respectivelN the incident and scattering angles relative to the front face of the wave
peak. and P = + I for vertical, P = -I for horizontal polarization. It turns out that in the low
grazing angle, forward scatter case, the coefficient D is of order unity for both polarizations (although
of opposite sign.) Thus the importance of polarization effects is determined entirely by the magnitude

of the cylindrical spreading factor in the first equation above. In virtually all cases of any practical
interest, this factor is sufficiently small over the entire wave trough that we may ignore polarization
effects in diffraction by wave peaks. These effects can be seen only at long illuminating wavelengths,
at low wind speeds, and close behind the diffracting peak.
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For the skeptic, we show in Fig. 3 the full diffracted field, obtained from Eqns (2), (3) and (4) for
L-band illumination (30cm) horizontal polarization (vertical looks the same, only the peaks and val-
leys are exchanged), a grazing angle of 3' and wind speeds of 5, 15 and 25 knots. Clearly. the
polarization-dependent wiggles seen in the 5 kt curve (which are due to the exponential phase term in %

Eqn. (4)) vanish at the higher wind speeds. However, we will find below that the 5kt curve lies out-
side the limits of validity of Physical Optics, so we conclude that to the extent that edge-based diffrac-
tion theory is valid, polarization effects are unimportant.

If we had chosen a different surface model, say the cycloid of equations (1) with a < I so the peak ,.
would be rounded instead of sharp, then the polarization correction would take the form given by
Wait and Conda 119591 for the field behind an obstacle with a rounded edge having a radius of curva-
ture r:

Ew( (kr /2) 1/3
E ,( kR G .1j ((kr /2) 0) (5_

where the function Gl. is an integral over Airy functions and is given in graphical lorni. Its ampli-
tude ranges between 0 and I. For broad smooth peaks. this correction could be considerably larger .
than the sharp-peak correction given in Eqn.(4). but for curvatures of the order of a few wavelengths
we may ignore these corrections as well.

In summary, then. polarization will give at most small corrections to the diffracted field, and thus
may safely be ignored when estimating the effects of diffraction on shadowing.

3. When Can Geometrical Optics Be Used?

Figures 2 and 3 show how diffraction spreads the illumination field over the trough region behind the
wave peaks. If the "transition fraction" F, defined in section II.A. 1, were to be zero, then geometri- -
cal optics would apply exactly. It can never be zero. of course, but if it were sufficiently small, we
might expect geometrical optics to provide a reasonable model for estimating shadowing effects at low
grazing angles. The criterion for "sufficiently small" must be arbitrary, but most would agree that ,,,
values of F<0.l would provide a transition approaching optics-like sharpness, while for values of ,
F>0.3 the illumination profile is clearly controlled by diffraction. The basic data to which these cri-
teria are to be applied may be found in Figs. 4a-4t. where we have plotted the diffracted fie!d inten-
sity profiles from (2) for five grazing angles for each of five wavelengths and four wind speeds.

It is clear in Figs.4 that for a given wavelength and wind speed, the shapes of the diffraction profiles,
hence the fractions F, are relatively insensitive to the grazing angle. Thus we may plot lines of equal
F against wavelength/windspeed axes and thereby roughly separate the regions defined b\ the criteria •
discussed above. The results are shown in Fig. 5, where the labels "YES." "MAYBE." and "NO"
are used to indicate the confidence to be placed in the use of the geometrical optics assumption in
various domains of the wavelength/windspeed plane. As might he expected. the most popular radar
\kavelength (3cm). at the mean global windspeed (15kts). falls squarely in the middle of the ambigu-
ous "MAYBE" domain. Nevertheless, this figure gives some useful perspective when tr\ing to
decide how seriously to take the predictions of shadowing theories.

The "'YES" domain in Fig. 5 is disappointingly small, indicating that for the most popular radar fre-
quencies. geometrical optics provides a good approximation to the illumination profile only in the
presence of gale force winds. We might expect geometrical optics to provide at least some usetlil
trends f)r points in the 'MAYBE' domain, but a good part of niicrow'ave radar operations in the 0
Navy takes place in the ''NO'' domain, wkhere diffraction dominates and no ,atislactor, theor\ exists.

I'-ii

4 'A

.



4. Limitations and Extensions of Diffraction Theory

We must not be misled into believing that the diffraction curves for the longer wavelengths and lower
windspeeds and grazing angles are to be taken seriously. Consider the dimensions of the surface
features associated with a windspeed of 5 kts. The peak-to-trough height for our trochoidal model
would be about 10cm, so the distance of the diffracting peak above the trough is one wavelength at
10cm (S-band), 1/3 wavelength at 30cm (L-band), and 1/10 wavelength at 100cm (UHF). The Physi-
cal Optics approximation underlying the diffraction theory expressed in Eqns.(2) and (3) can not be
expected to be valid under these conditions - in fact, for the extreme UHF case, the Rayleigh pertur-
bation theory would seem more appropriate. This validity limit is expressed in Fig.5 by the dashed
curve labeled "Physical Optics Limit," which corresponds to wind speeds for which the radar
wavelength is just equal to the peak-to-trough wave height. Looking back at the calculated diffr'ction
profiles in Fig. 4, we see that Figs. 4i,m,n,q,r,s lie at or below this limit - which is comforting, since
these illumination profiles certainly defy credibility.

Although we are most interested in the range of extremely small grazing angles, between 0 and 1
degree, it is in this range that diffraction theory seems least informative. About all that can be said
from examining this angular regime for the legitimate examples in Figs. 4, is that at very low grazing
angles the illumination in most of the trough will always be low, and will rise fairly sharply close to
the opposite peak. In a real sea, the second peak would be higher or lower than the first, and the
trough length between peaks would be different for different pairs, leading to fluctuations in the
illumination intensity at the peak which would be described by some statistical distribution of sea sur-
face parameters. But there is no statistical theory of diffraction for a rough sea, so if we wish to treat
the real sea in any sense at all, we will have to trade the deterministic clarity of classical diffraction
theory for the ambiguity and limited applicability of conventional, geometrical optical, shadowing
theory. However, before leaving diffraction theory, let us take a quick look at a particular statistical
extension of the standard diffraction problem that can add a bit of three-dimensional realism.

When we introduced the trochoidal wave model at the beginning of this section, we noted that it was
a two-dimensional model, appropriate only to infinitely long-crested waves. However, in connection
with the problem of radio propagation over hills and ridges, Furutsu [19651 considered the case in
which the ridges contained statistical height variations along their crests. A sketch of such a ridge is
shown in Fig. 6, where R is the distance behind the ridge, H is its mean height, and is the grazing
angle of the incident wave. The irregular crest height has a Gaussian distribution with variance
< I h2 >, and an arbitrary correlation function. We won't go into the details of the analysis other
than to remark that the basic theoretical assumption is that the physical optics integration plane can be
divided into narrow strips of width dv above the crest height h(v), and the integral done as usual
over the v -z plane above the crest. Certainly the irregular structure in Fig. 6 is a better model of a
shadowing wave crest than the infinite two-dimensional model we used earlier.

Here, as in most propagation problems involving irregularities, the "Fresnel length," IF = (X R)11 2

can be expected to play a role. In Fig. 6, we have added the first Fresnel Zone at the diffracting ob-
stacle as seen looking back from the observation point. The effects of fluctuations in crest height at
the tangent point, and statistical variations in crest height along the crest, can both be discussed in
terms of their relation to the Fresnel length (or radius of the first Fresnel zone). If we let ho be the
rms height fluctuation about the mean height H, and I, the correlation length of the height variations
along the crest, then we would expect the diffraction patterns to look much like those for a fixed,
infinite crest provided

h, << If. and I, > > IF . (6)

1%
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Otherwise, surface statistics can have a significant effect on the diffraction pattern. Consider, for
example, the illumination of the forward face of the right-hand crest in Fig. I. In this case R will be
the wavelength of the longest waves on a wind-driven sea, namely R=0.64W 2. The Fresnel lengths
If(i n Meters) as seen looking back to the left hand, diffracting, crest for our five radar wavelengths I ,?
(in cm.) are given in the table below:

Fresnel Lengths versus wavelength and wind speed

Wavelength= 1 cm 3 cm 10 cm 30 cm 100 cm 11H12 (m 1
5 kis .2 " .4 - .6 - 1.1 2 _ _ .05

15 kts _ .6 1.0 _ 1.9 3.3 6 _ .45

25 kts - I 1.7 3.2 5.5 10 1.25

The last column is 1/2 the peak-to-trough wa-e height for the indicated wind speed, and gives a mea-
sure of the maximum rms crest height fluctuation h1 that could occur. We see that the first condition
given in Eqn. (6) is pretty well satisfied for all frequencies above K-band (I cn). On the other hand.
if seas are usually short crested and "piled in heaps.- we would expect the second condition to be
satisfied primarily at the shorter radar wavelengths, and for intermediate seas. From these considera-
tions, then. it is possible to conclude that there is at least a small range of frequencies and \kind
speeds, centered about the X and S bands for about 15 knots of wind. in which deterministic diffrac-
tion theory based on the average wave heights should provide a reasonable estimate of surface illumi-
nation. •

For readers curious about the effect of crest fluctuations on diffraction patterns, we include in Fi. 7
a plot from the paper by Furutsu Iloc.cit.]. Clearlb, our simple Fresnel-length arguments describe the I
situation quite well.

B. Some Basic Shadowing Probabilities %I

Associated with the illumination and observation of points on a surface, there are several proba-
bilities that can be discussed without reference to the details of any particular shadowing theorx. In
Fig. 8 we consider the most general case of bistatic scattering from an element of the surface. The Jk
plane of incidence contains the illumination path at grazing angle 4,. while obser\ation takes place at i
grazing angle 40, in 'ie plane of observation. which is rotated from ihe plane of incidence through the
azimuthal angle 0,. These planes intersect at a point P on the surface. v hose scattering properties are
left unspecified.

M onostatic backscatter is defined b setting 1 = 4;. and 0(, ir: b7, at scattering takes
place for any other values of 4, and o,, The several probabilities as,,sociated \kith the shado m ing pro-
cess may be related symbolically as follows:

PSI. M) = Pi[PI (M

where P I.0) is the joint probabil it that the surface clement is both Illum inated (1) ind ( ,hser\ed ().
P( is the probability that the element is illum inated, and P(I I 0) is the conditional prohabil it , that it
illuminated, the element is also observed. In the monostatic case, illumination and obser\ation tkc
place over the same path. so ifI. then 0. and P(I ! 0) = 1 Thus we may write

Monostatic Case: P(I. 0) P(1) 0

N
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The bistatic case contains several possibilities. For example. if > > , with 0, = r (obser-
vation over the same surface as illumination, but at a greater angle). then once again P(I 0 0) = 1.
since if the incident ray has escaped encounter with the surface peaks. then certainlh a ray at a higher
angle has escaped. In this case the bistatic P(I.O) is the same as the monostatic. If the observation
angle 0 < 1. then we simply exchange I and 0 and obtain P(I.O) = P(O) by the same reasoning,
that is, the joint probability is always the single-path probability for the path with the smallest grazing

angle.

However, when 0 * ir, the illumination and observation paths lie over different regions of the
sea surface, and to the extent that the surface features in these regions are uncorrelated, the condi-
tional probability P(I 1 0) is independent of the path I and simply equal to P(O), the probability of
observing the element of interest. Under most sea conditions correlation distances for the larger-scale
surface features responsible for shadowing are of the order of the primary sea wavelength, so de-
correlation will be the rule. and we can be confident in writing for the '

Bistatic Case:

PB( = P(I)P(O). 00 7 r (9a)

PB (i. 0) = PM 00 =7r. o> l (9b) , ,

P (1.0)= P(O) = r. o < i4l (9c)

It should be noted that the first expression applies to the special case of forward scatter in the specular
direction: = 0. 0 =

The purpose of a shadowing theory is to give analytical expression to the basic path probability 0
P( ) in terms of grazing angle and surface parameters. These probabilities are then used in the rela-
tions gk. cn above.

C. Shadowing Theory Based on Geometrical Optics

Although Fig. 5 shows the domain of confidence in geometrical optics to be rather small, all ;' Ile
existing theories of shadowing are based on this assumption, so we must seek what guidance we can
from the body of existing work. The assumption appears in slightly different forms in the various
treatments. If the theory is developed from a Physical Optics scattering integral, as in Bass and Fuks
or Sancer [loci (itl, then the integrand will contain an "illumination factor," l(r), which is unity if r
is illuminated, zero if it is not. The purely statistical treatments by Smith or Wagner lloci ('itl
directly calculate P(z.s), "the probability that an element of surface at height z with slope s is not
shadowed by the intervening surface along the incident ray." and then integrate it in various ways to
find the "'shadowing function" mentioned at the beginning of this Section. Multivariate statistics and
correlation functions are sometimes brought in to provide an aura of generality, but the\ are nexer
really taken seriously, and in the end the problem is simplified to one in which the surface heights
and slopes are uncorrelated, and have independent Gaussian distributions. Under these conditions, the
Probability of Illumination P(M (refer to Eqn. (7)) of a surface element at height i and slope s, on a
Gaussian surface of rms displacement a and mean slope %,. when viewred at a mean gra/ing angle '-.
(relative to the horizontal), is given by jsee Smith. hw 'ill:

P(I) P(y,: q = (I .S r/(r l)'t' ('(q * 1()I 0
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where

eerfc (/)1
) 2 L k  J 1

with the definitions / = = z/ 2a, q=arctan(s), and U(x)=unit step function, which is sim-
ply a ocal shadowing function (i.e., it ensures that an element on the back side of a wave peak will
not be illuminated.) These expressions can be further simplified by taking into account the special
conditions encountered over the sea: namely, the mean slope, so. of the sea surface is about 0. I, and
the grazing angles of major interest here will generally be less than I °. Under these conditions, r1 <
0.17. so the complicated function 11) can be approximated in the simple form:

1 0.8 1
2 ,L

The illumination probability given in (10) is based on a one-dimensional Gaussian process. but
bistatic scattering generally takes place in a two-dimensional geometry. so that two-dimcnsional
aspects of the surface must be taken into account. Illumination and observation take place in tmo
vertical planes intersecting the surface at the common point P. thereby defining two local slopes. q,
and q,,. The joint probability in (9a) is thus written as the product of two expressions of the form of
(10). each cont:,ining the angle. appropriate to its plane of definition. That is.

=P 0) 1 - .5 er "l'1' ''U(q, + 4)L(qo + )) 12)

1. 1he Threshold Model

In order to get a clearer idea of the implications of these expressions. let us consider first the
behavior of the factor in (10) that depends only on surface height and mean grazing angle:

PO(I) = 0 - .5 erfi ( ))AU. 13)

This expression is easily calculated, and is shown in Fig. 9 for values of vI between 0.3 and 0.(X)3.
corresponding to mean grazing angles between about 2' and 0.02' for a sea having a mean 'lope
= 0. I. We see that the probability of illumination changes rapidly over a rather narrom ranee of ,,ur-
lace heights. leading to the idea of "'illumination thresholding'" mentioned earlier. The "'threshold"
is taken as the value of ,, that makes Po = 0.5. Points on the surface for which I > t, are
assumed to be totall) illuminated, while those for which , < {, totally shadowed. For bi,,tatic

* scattering. the threshold is determined by the product of two such factors: P" o,,,. 1 P"
s,,. ,) 0.5. If the grazing angles over the I anti paths are the same. as the e'aporati' la~er %

often forces them to be at extended ranges (Wetzel. Ioc cit). then for < I the approximation II) -,

fOr A iq) indicates that
I

P''. 7)P(7 ') PL. 7/2) (4

(r that the histatic height factor is closely approximated h\ the monotatic height factor at half the
gra/ing angle.
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islands on a two-dimensional sea surface (and to do this we must ignore the mutterings of purists),
then the average number of peaks per unit area becomes

n Ls2 peaks/m- (18)

For a monostat~c radar, the area AF of the illumination footprint is given by gRc 7/ 2 . where 3 is the
beamwidth, R is the range, c is the speed of light, and r is the pulse length. For bistatic radar, AF is
determined by the intersection of the transmitter and receiver beams, and the pulse length (under
pulse limited conditions). In either case, the average number of surface peaks appearing in the radar
footprint is

N =nAF = AF/L- peaks in Af (19)

Because of its effect on the statistics of the scattered signal, this number may be called an "internmit-
tency index.'" It was originally introduced to describe the behavior of the clutter return as seen b\ a
monostatic radar on an A-scope, or a PPI. For N > > I. the instantaneous clutter signal is made up
of returns from many peaks. so would display fluctuations about some mean value. For N < < I.
the radar receiver will be looking at receiver noise most of the time, interrupted occasional h\ a

sharp spike from an isolated island. Similarly, a sequence of samples collected from a fixed ranec
cell (or beam-intersection cell) will display different temporal statistics according a, N i,, !reatcr or
less than unity.

1). Summary Comments on Shadowing

Little more can be said at present about shadowing of the sea surface at low. grazing angles .Aec

have examined the effects of diffraction in a deterministic one-dimensional model, and shoA n sorne of
the implications of statistical fluctuations in a truer, two-dimensional geometrN,. The domain of Ire-
quency vs windspeed in which geometrical optics provides a reasonable representation of surface
illumination was found to be small, yet radar operations do occur in this domain, so the conentional

geometrical optics shadowing theories are not totall, without \aluc. Besides. the\ arc the onl\

shadoiking theories that presently exist.

While the isolation of scattering "'islands" by illumination thresholding at loi oratig anules is
intuitively obvious, it is important to have quantified this proces,, through the lengths / and I.d ,o

that we may determine how, the size and distribution of these scattering region, depend rn operational
and environmental parameters.

!!1. SCATTERING

The second Basic Question raised in the Introduction concerns the kinds of scatterlng procesc,
that can be expected to occur at the exposed wave peaks. A real \,ase peak could ha\e alinost ans
form. In a long greasy swell with no wind, it might even resemble the top of the sinusoid so helos ed
b\ the deterministic scattering theorists. But usually the surface is comples. cosercd b\ ,,tmaall ,,alc

structure in the form of cusps. wedges. microbreakcrs, hydraulic shocks, patche, of tutrbulenc anid
gravit 'capillary waves, both k ind-driven and parasitic. It might contain a sharp crest on the ec
of breaking, or. having broken, a cascade of plumes falling dow~n its lace, and there could he a loud
of spra, droplets above it. Clearly, in the face of all of this real-\korld complesit. . the ,elecltion of a
convincing, and manageable. scattering model poses some difficulties,

In discussing scattering, however, it is necessary to be somcwhat specific about the nature of the
scattering obstacle. While the topography of the "scattering island" could take a \ariet\ of h rnis.
wke should not go too far wrong - at least for any reasonabl\ eneretic A ind-dH Cil ea \ tkiT
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In Fig. 10 we illustrate illumination thresholding for one realization of a random sea surface. The
surface was obtained from a random phase expansion in which the coefficients were defined by a
Phillips spectrum for a wind speed of 15 knots: the length of the record is three dominant
wavelengths (110 m). The threshold heights were obtained from Fig. 9 by setting p') Q,). 77) = .5.
and using the relation z = " 2 O(1)a. where a is the rms wave height of the surface (a = 0.28m for
this wind speed). Although one should not draw general conclusions from a single example, even this
simple exercise displays some of the basic features of illumination thresholding. For the given graz-
ing angles, only the largest peaks on the surface have a chance of being seen: for angles in the range
I' - 20. there will be one peak per dominant wavelength (36m): for angles 0.6' - 0.3'. two peaks
are visible over 3 wavelengths: for 0.30 - 0.10. only one peak is visible, and for smaller angles no
peaks are visible, which means, simply. that the probability per wavelength is less than 1/3.

This behavior was put on a semi-quantitative basis by Wetzel 1loc cit], who showed that in this
regime of grazing angles, the definition of thresholding given above leads to a surface on which iso-
lated scattering "islands" of mean length Ll are separated in a dark plane by a mean distance LSH.,
where '0

L, = Le" II - erf ( )I , (15)

Li6 = Le" I + erf(.), 16

with the characteristic length L defined by

L = ir(o/so). (17)

It is interesting to compare the predictions of these expressions with the pictorial results in Fig. 10.
The behavior of L, and Ls,, with normalized grazing angle is plotted with solid lines in Fig. II for
W= 15 kts. a = 0.28m. so = 0. 1. As the grazing angle decreases, the spacing L.1, between islands
increases rapidly (from 14m to 190m). while the size of the exposed islands L, decreases very slowly
(from 6m to 3m). The reader will note that the lengths scaled from Fig. 10 for a single realization of
the sea surface are. give or take a few inches in wave height. quite consistent with the corresponding
numerical values Fig. I I e.g., for . = 0.4', L, - 3m and LSH - 30m.

These statistical results can further be used to explore the effects of mean sea slope s,. The curves in
Fig. 9. thus the threshold parameter o which they select, depend only on nl = ls o. the ratio of graz-
ing angle to mean slope. Thus if the grazing angle and slope are changed by the same factor, then so
and all of the results depending on it. will remain the same. The only other slope-dependent parame-_-
ter is the scale length L defined in (17). If we were to make the sea more "'choppy" by doubling so) Vp
from 0. I to 0.2. the effect on the lengths plotted in Fig. I I would be to halve all of them, and dis-
place them by tw ice the grazing angle (via redefinition of qi). thereby producing the dashed curves. It
is seen that the shadow length L5, remains much the same. while the lengths of the exposed peaks
arc reduced b about a half': e.g.. for ., = 0.2. Lisj goes from 58m to 53m, while L, is reduced
from 3.7m to 1.6m. Thus for a given grazing angle. as the sea becomes choppier. the separation
between scattering islands remains much the same. but the areas of the exposed peaks get smaller.

2. ('lutter Intermitte'v

l-he clutter scene presented to a radar in the deep shadowing regime will be strongl\ structured b. the
size and spacing ot the scattering islands relative to the size of the radar footprint. This topic was
discusscd al length b Wetzel in the cited reference, where details nm be found. If we no\ assume
that the one-dimensional length parameter l.%,, represents an average spacing between scattering

9

'

:'""%'.,".' % % ', ."-"' -. ",.",",,' """."."-"-" ".% ,%,".", ' ' .",". %,' % ' ' , - ', •,' , ' ,," ' ,'



* ~ a a a * - . . ..-- -*

the basic underlying structure to be wedge-like, with a surface slope of about 300 , corresponding to ,,-i ,
the surface stability criterion for the onset of wave breaking. In order to avoid having to deal with a
full three-dimensional sea, we will initially simplify the problem by assuming this wave-wedge to be
sufficiently long crested to extend across the width of the island. Without such restrictive assump-
tions, it would be discouragingly difficult to obtain any useful information about the deterministic
scattering processes that ultimately lie behind the statistical scattering behavior.

We will first examine the neighborhood of the peak, concentrating on possible sources of dis-
tributed scatter produced by small features amenable to modeling by perturbation theories. Next we
evaluate the wedge as a scattering element on the exposed crest, and finally consider some of the
more powerful plume and corner-reflector scatterers that could produce scattering returns consistent
with the observed "sea spikes." Throughout this discussion, the importance of shadowing in struc-
turing the scattered field at very low grazing angles will be continually emphasized.

A. Distributed Scatter: The Bragg Hypothesis

Any small-amplitude approximation for scattering from a statistically rough surface leads to a
scattering cross section proportional to the Fourier transform of the surface correlation function
evaluated at twice the incident wavenumber; i.e., the surface spectrum evaluated at the "Bragg"
wavenumber. The same result is obtained in the theory of scattering from weak turbulence. Having
done this essentially trivial mathematical exercise, one is left with two non-trivial questions: (1) Does
the surface actually satisfy the conditions of the approximation? (2) What "'spectrum" should be used
in the formalism? Considering real seas at microwave frequencies, the answer to the first question p
must be No. since the conditions of the approximation are that the maximum surface displacement be
verN much smaller than the illuminating wavelength (less than one-tenth). Nevertheless, there are
those who attempt to "sa\,e the hypothesis" by arguing, for example, that the sea is really "locally
flat" when taken in small enough sections. In regard to the second question, if the surface is viewed
as a generalized "sea" it is commonly answered by selecting the Phillips spectrum [Phillips, 19661
which is a K-to-the-minus-four spectrum roughly satisfied by real seas, although recent work shows a
more complicated spectral structure le.g., Phillips, 1985, or Pierson and Donelan, 1987]. The latter
reference emphasises the need to use spectra that are accurate in the Bragg resonance region of
interest. On the other hand, if a particular scattering structure is being studied, then the spectrum
chosen will be representative of that structure, as, for example, in the case of the "solitons'" proposed
by Middleton and Mellen 119851.

For all the criticism that can be leveled at the Bragg model, it has the virtue of delivering pre-
dictions that are often consistent with experience and are difficult to obtain from any other model.
For this reason the Bragg model, though conceptually flawed, continues to be used. In this section ,
we view it as a paradigm for distributed scatter generally. It is intrinsically "distributed.' in that it
derives from either an integral or a wide-sense spatial transform over a flat surface, and it incor-
porates the surface boundary conditions, thus disclosing a polarization dependence. And finally, we
must respect, if not accept uncritically, its apparent ability to agree with measurement in the range of
local angles of incidence of interest to us here.

I. Bistatic Scattering from Peaks in the Bragg Approximation 0

In the simplest possible model, the exposed faces of the wave-wedge are uniformly covered with a
carpet of Bragg-scattering wavelets, often called "ripples." The scattering problem for an element of I
such a surface is treated in detail in the Appendix, Section I, where the bistatic cross section for
scattering through angle 0, at very small (close to zero) grazing angles is found for an element with
arbitrary slope and azimuthal orientation. The effects of local shadowing are straightforward in this
model, since a scattering path will exist only when the planes of illumination and observation intersect
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on the front face of the wedge, as expressed by the U-functions ir, Eqn. (12). Note that the implica-
tions of the threshold shadowing theory of Sections lI.B. and C. hake already been taken into account
through the model of scattering "islands" we are using. Referring again to the Appendix, it is clear
that if the azimuth angle O0 of the surface element is less than 7r/2. the illumination (k') enters the

back side of the element and will not be scattered into direction k,. while if o > 0, + r/2, the

observer will be looking at the back side of the element and will not see the scattered field. This
means that only those surface azimuths 0 that lie in the range 7r/2 < o < ?r/2 + o, can contribute to
bistatic scattering through an angle ,. (Note that this is a condition on both 0 and 0,. since it also
restricts the range of o, for given 0.) The mean cross section per unit area is found by averaging o
over this range of angles for a particular probability density function p0O). That is.

7rt2+o

)= /(. 0,)p(0)do (20)

where a (0, ,) is given in (A 17). The distribution of wave orientations 0 could be anything from a
delta-function, as when the crests line up in a breaking zone, to a uniform angular distribution, as in a
short-crested confused sea. Since these represent two opposite extremes, we consider both cases.

Consider first Case 1, in which all the wedge faces are oriented with fixed angle o,,:

PL([) = 6(0 - 6o) (21)

In this case, the average in (20) is obtained by replacing 0 by 0() in (A17). The cross sections for the
two polarizations are plotted in Fig. 12 for a slope of 300 and for grazing angles close to zero, as
explained in the Appendix following Eqn. (A7). "Monostatic" means that the scattering angle
0, = 180'. while the wedge face is rotated from broadside (180') to glancing incidence (900): "bi-
static" means that the wedge is fixed in broadside position. while the receiver is moved from a mono-
static (180 ) to a glancing (90') observation position.

Referring to Section I of the Appendix. it may be seen that for vertical polarization (V-POL). the
scattering is controlled almost entirely by the first term in (A14) along with the outboard sin 2 terms in
(A17), which force the fall-off as the angles approach 90'. For horizontal polarization (H-POL). the
most interesting result is the relative independence of the monostatic return on wedge orientation.
This is due to the H-V-H conversion that takes place as the surface normal of the tilted wedge rotates
out of the plane of incidence, bringing the first term of (A14) into play for p=H. Thus the H-POL
return behaves with wedge orientation angle much like the V-POL return, only lying about 10dB
lower. It should be noted that this is the same mechanism that produces the cross-polarized return in
the two-scale Bragg model.

S

Consider next Case 2. in which the wedge orientations are uniformlN distributed betwAeen 7r2 \

and 37r/2. the allowed range of angles again containing only those for which there is an unshadowxed
path between source and observer. Here the probability density is given b-

P2(O) = l/r (22)

and the trigonometric functions in (Al7) have to be integrated oxer the restriced rang.!e of andles
given in (20). The integrals were performed numericall. in a simple computer prograin and the
results are shown graphically in Fig. 13. %

S
The vertically polarized returns showk a smooth 4(dB falloff o~cr the range o histatit anles.

while the horizontal returns have a smaller variation, but seem to dipla. a kind i re"'onant
behavior. But these are not true reonanccs, being artifacts of the changn doninanLc (It the %ko
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terms in (A 14) as the scattering angle moves through its range. Reference to (A8) and (A9) reveals
that ctHi tends to peak at the extremes and have a hole in the middle, while avv tends to be large in Nq'

the middle. Thus the H-POL curve starts off much like its bistatic counterpart in Fig. 12, but gets 'U

picked up by avv in (A14) over the intermediate angles, looking like a replica of the V-POL curve
until experiencing the effect of altH again as 0, approaches zero. Of greater interest is the other end
of these curves, which denote the values of radar backscatter cross section predicted by this model.
We will find shortly that they are in good agreement with measurement.

2. The NRCS and a New Shadowing Function

The results obtained thus far still do not provide us with a prediction of the cross section per unit area
(sometimes called the Normalized Radar Cross Section, or NRCS) that would be measured operation-
ally. To do this we recall the basic picture of the scattering "island" as a prism with an interior
angle of 1200 and base width and crest length of L,. we will assume the grazing angle to be smaller
than 300, so that only one face of the prism contributes in a scattering interaction (the other is in-
shadow). The average cross section of a single "island" thus becomes the product of one of the
cross sections per-unit-area found above and one-half the area of the island, LI(L 1 2). If the "inter-
mittency index" defined by Eqn. (19) is considerably greater than 1, then the cross section per unit
area measured by a radar is just the product of the average cross section per peak, or "island," with
the average number of peaks per unit area, given in Eqn. (18). That is,

(NRCS)p (ks) = u0(0,s) (1/2)(LI/LsH) 2  (23)

where the two lengths are given in Eqns (15)-(17), and illustrated graphically in Fig. 11.

As noted at the beginning of Part II, conventional shadowing theory produces a "shadowing func-
tion" that smoothly extinguishes the backscatter intensity linearly as the grazing angle approaches ".
zero. In the threshold theory being used here, "shadowing" means something quite different. Here,
the cross sections of the individual peaks vary little (L, is weakly dependent on grazing angle), and
the reduction in the NRCS results primarily from collecting fewer of these peaks under the pulse foot-
print as their separation increases. This behavior is expressed by defining a new shadowing function,
ST(/), as 1/2 the length ratio in (23) with the lengths given in (15)-(17):

2 I 2 1 + erf (o) (24)

We have plotted this function in Fig. 14, including for comparison the asymptotic form of the conven-
tional shadowing function.

S

S, - -(7r/2) (O/s0 ) (25)

Keep in mind that these averages all make sense only if the intermittency index N in (19) is large.
Otherwise the backscatter appears as a random occurrence of isolated spikes. However, when the
conditions are right, it is clear that below about 20 the threshold-derived shadowing function will -

display a much steeper characteristic than does the conventional function.

3. Comparison with Measurement %,'

Experimental support for the theory discussed in this section is hard to find, because surprisingly few ,k,

reliable measurements have been made at very low grazing angles. Moreover. while we haveexpressed the NRCS in terms of statistical averages, some workers give the NRCS as the median

cross section. In fact, the problem of finding a suitable statistical characterization for low angle clutter
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is not a simple one [see. for example, Trunk, 1976]. Of the few measurements that exist, we reviek
the more pertinent ones below.

a) NRL 4FR Data: The Four-Frequency-Radar (4FR) data taken by NRL around 1968 [Dalev. I
et al, 19681 were collected with reasonable care and are often used to "'confirm" the
Bragg scattering hypothesis [see, e.g., Valenzuela, 19781. The smallest grazing angle
measured was 40, which is somewhat below the mean sea slope angle and therefore should
correspond to the NRCS of (23), with ST = 1/2. Figure 15 reproduces the figures shown
in Valenzuela for a frequency of 4.455 GHz (about 7cm wavelength), upwind aspect in
strong winds (>22kts). The results at 40 will therefore lie in the upper part of the
'Maybe" region in Fig. 5. so our geometrical optics assumptions should be valid. Under

these conditions, the appropriate values for the NRCS are taken as 3dB less than those at
the left edge of Fig. 13 (to account for the 1/2 in (24)): that is, -30dB for V-pol, -ization %J.
and -41dB for H-polarization. These values are indicated by the big circles in Fig. !5. and
the agreement with the measured values is seen to be quite good for both polarizations. It I
should be emphasized that these results are based on a much more sophisticated argument
than the simple Bragg scatter curves shown on the Figures, which assume a uniform carpet

of scattering wavelets for V-pol, and a normally distributed slope distribution for the
composite-surface values in the H-pol plot. However. since the Bragg theory rests on such
shaky assumptions, it is quite possible that the agreement with such measurements as these .
is purely accidental in both cases. Much more needs to be done before the Bragg theor, .
can achieve intellectual respectability, and about all that can be said here is that our results
share, with other applications of the Bragg hypothesis, this remarkable tendcnc% to agree 0
with these 4FR data.

b) The Critical Angle: Some 30 years ago. it was observed that when radar sea backscatter
was plotted against range, there appeared to be a change in the rate of decrease of signal
level at ranges corresponding to a grazing angle of 20 or so [Katzin, 19571. This angle
was called the "Critical Angle," and was ascribed to an interference phenomenon in which .
direct and (phase-reversed) reflected waves combined above the surface to produce a field
at the scattering elements that decreased as the fourth power of the grazing angle. Both
the concept and its implications are absurd. and were viewed with suspicion even at the
time [Katz and Spetner. 19601. However, very often something seems to occur in the data
at these angles to give the idea of a "critical angle" some objective validit,. Most
recently, a 2' anomaly has been found in low angle sea backscatter data collected in the
North Atlantic ITrizna.19871.
The "interference" argument has persisted because the observed deca,, law does seem.
roughly to follow the fourth power of the grazing angle. although once a line has been
drawn through a mass of spread data points, the eve is often mislead into accepting an
"agreement" that is ambiguous at best (see Fig. 16a). The Threshold Shadowing argu- •
ment proposed in this report gives an alternative explanation for the obser.ed beha\,ior.
We have plotted a fourth power decay law as a dashed line in Fig. 14. and quite clearl\ it

looks very much like the shadowing functions S, based on Eqn. (24). In Fig. 16b wc bor- %.- -.
row a figure from the Katz and Spetner paper cited abo.e, showing sonle X-band data
from the RRE in England at very low grazing angles. Superimposed is the -5 k" shado\%-
ing function from Fig. 14. which is in very good agreement with the measured beha\,ior.

c) Other Measurements of Low Angle Sea Backscatter: The lack of good loA anic radar data
is really rather surprising, considering how easily it could be collected from comlfortable
sites on the shore overlooking the sea. Two sources of such data are the measurements hx
Hunter and Senior overlooking the Atlantic from a site in the south of ngland 110641. and S
by Sittrop from ie west coast of Norway 119751. These inestigators took the trouble to '
record wind speed and direction while measuring X-band radar backscatter at graz in
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angles between about 0.5 to 5 degrees. In Figs. 17a and 17b. we have separated these
data into crosswind and upwind/downwind categories and compared them, respectively.
with the conventional (Sc) and threshold (ST) shadowing functions. One expects that
upwind/downwind aspects would be controlled by the deep shadowing responsiblL for ._"le
island formation in the threshold model, while crosswind aspects would show the radar the
troughs most of the time, and thus would display the more gradual clutter decay described A
by the conventional shadowing function. There is certainly a strong qualitative difference
between the backscatter behaviors for the two aspects, and they corroborate this hypothesis
extremely well.
In a brief review of low-angle backscatter, Chan and Helmken 119831 adapt some measure-
ments by others to show the effect of ducting. Their Fig. 7 is reproduced here as our Fig.
18, where we have added the 15kt shadowing function from Fig. 14 as a dashed line.
Again. the agreement is very good for the non-ducting conditions. It is of interest to note
that the points plotted for the ducted case are not necessarily following a different shadow-
ing function, but instead belong to larger angles than those obtained from simple free-space
scaling. The situation expected in the similar case of the evaporation duct is discussed in
Wetzel 119771.

d) Measurement of Sea Spikes: A dominant feature of low angle radar backscatter is the pres-
ence of Sea Spikes. which are most obvious with horizontal polarization under conditions
of' low intermittency index N (low grazing angles and small radar footprint), but must also
make an important contribution to the NCRS under conditions of large N. The reason, of
course, is that Sea Spikes are high-amplitude events, showing cross sections generally I
above Ir-. and at times reaching 20m2 or so [Lewis and Olin, 1980: Hansen and Cavaleri.
1982: Tritna. 19871. In our threshold model. Sea Spikes would have to be associated with
the exposed islands of scattering area (LI )2/2, which is of the order of lOOm 2. Considering
the values of j') for distributed clutter shown in Fig. 12. it is obvious that this form of
scatter falls far short of being able to account for Sea Spikes. We must seek elsewhere for

the source of this important scattering phenomenon. .,

The agreement between theory and experiment demonstrated thus far is encouraging, particularly
the tendenc of the new shadowing function to predict the observed backscatter behavior in the limit
of extremely small grazing angles - at least in those cases for which Fig. 5 gives geometrical shadow-
ing theory a fighting chance. In regard to the backscatter cross sections themselves, it is of interest to 0
note that the seeral independent measurements referenced here (NRLi4FR, Katzin, RRE, NWC, Sit- W1%
trop, Trizna) permit the following "ballpark" estimate of low angle sea backscatter behavior at X-
band frequencies: "For grazing angles of a degree or so, moderate wind speeds (about l5kts), and for
both H and V polarizations, the NRCS is -40dB(m 2/m2 ) give or take a few db." Considering the
wide variety in experimental procedures and cross section derivations, it is quite surprising to find 481

this much consistency in data spanning 30 years..

4. Mie "Soliton" Hpothe,sis of Middleton and Mellen

In the previous applications in this section, the spectrum used was the general ocean wave spectrum
of Phillips. As noted earlier, Middleton and Mellen 119851 have recentlh proposed a sea surface
model in which the dominant scattering element at low grazing angles is taken to be a "'Soliton,'" that
develops out of a hydraulic shock that is produced. initially, by a puff of wind. ActuallN. close
observation of a dynamic, wind-driven surface lends some credence to the wind-puff, hydraulic shock
connection, although the production of solitons by this mechanism has met with skepticism [Pierson.

private communicationi. The hypothesis is highly speculative, and Middleton and Mellen have no
strongly convincing arguments in support of it. Nevertheless, it has a ceitain appeal - particular)\ in -e
a field where there have been no new ideas for over 20 years.

15

% 
%

% % to, Of I



..-| . - i -.: _S , NMr.

The profile of the soliton is taken to be a simple Gaussian shape with a certain height H. width L,
and speed c:

:(r.t) = H exp (-4(r - ct)/2). (26)

From some rea onable statistical assumptions. a correlation function was calculated, whose Fourier
transform provided a spectrum having the following form:

wvk thiw2)i I + (kv% 2<'J' (27)

where h and w are the rms values of H and L in (26). It is of interest to note that when kw >2. the
spectrum assumes the k-minus-4 dependence familiar from the Phillips sea wave spectrum.

Middleton's interests lie primarily in acoustic scattering, so he assumed that the dimensions of these
objects were small enough that the spectrum in (27) could be used in the Bragg formalism, and calcu-
lated the normalized backscatter cross section r ai ensemble of such objects on an acousticall,
"soft" (pressure-release) surface. (In the dualitr between acoustic and electromagnetic scattering. this ]

would correspond to horizontal polarization.) For low grazing angles (less than about 10:). the
resulting NCS can be written in the form:

U 1 (kiv)- (29- s .. ' R

I + (kw1']- (2

where s, is the rms sea wave slope (which plays the role here of the grazing angle in the pre% ious

Bragg theory,. and k is the sonar/radar wavenumber. Since the "'soliton'" object has the form of a
Gaussian perturbation. we might consider it as representative of isolated scattering features generally.
That is. (26) is a scattering something that has a height and a length which are statistically character-
ized by rms parameters. Thus we might be tempted to regard the cross section in 2K as generic for

such scattering objects. At least the asymptotic behavior is reasonable: when kw> 1. the cross sec-
tion is independent of frequency, as one would expect in Bragg scattering using the k-minus-four
spectrum derived above for these objects: when kw< 1. the cross section assumes the wavelength-
minus-4 dependence of Rayleigh scattering, and very closely resembles Booker-Gordon scattering by
weak atmospheric irregularities 119601. Thus, alas, the results are only what one would expect a
priori under the conditions describing this type of scattering, so we have really learned nothing new
from this approach.

B. Implications of Wedge Models

Close observation of almost an open water surface discloses that the basic surface features are
wAedge-like structures, not the sine waves or patches of gravity capillary waves that make life easy for
the scattering theorist. Scattering from those wedges that are large compared to the incident
wavelength ma\ be treated b, one of the short-wavelength approximations. Since the interior angles
are limited b,, surface stability conditions to about 120", the wedge faces will. at low grazing angles.
generally be viewed at oblique incidence. where Physical Optics tends to underestimate the scattering,
and as\,mptotic scattering theories emphasizing edge effects begin to provide significant corrections.
All such theories date from Sommerfeld's rigorous treatment of diffraction at edges in 1896. and
while Sommerfeld himself reduced his solutions to more manageable Fresnel integrals and their
as,mptotic torms. the present theories of wedge scattering derive from the reinterpretation of these
results independentl. by Keller (GTD) and by Ufimtsev (PTD) in 1957. But before trying to make
sense out of some of these wNedoe scattering theories, we will take a brief look at the fow existig

applications to sea scatter.
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1. Previous Applications of Wedge Models -,

Although wedges are an obvious feature of the sea surface, scattering models based on wedges have
made their appearance only recently.

a) Kalmykov and Pustovoytenko 119761: These authors describe X-band backscatter measure-
ments at low grazing angles (<3') in which "bursts- occur for both horizontal and verti-
cal polarizations. They found that the horizontal returns were often greater than the _rti-
cal, contrary to the usual backscatter experience at higher grazing angles. In an attempt to
provide some explanation for this behavior, they assumed that the "'bursts" were due to
breaking crests pointing toward the radar, as sketched in Fig. 19a. The cross section
ratios were calculated from th_ classical asymptotic torms (which are the same as the GTD
diffraction coefficients). The coefficients plotted in Fig. 19a as a function of interior
wedge angle apply to the model contained in the paper, which may. or may not, have any ..

validity. The authors wisely did not press the issue.

b) Kwoh and Lake [19831: Small 2-D wedge-like waveforms were generated mechanically in
a wave tank. and profiled with a scanning laser slope gauge. A method-of-moments calcu-
lation of scattering by the resulting shapes showed angle and polarization dependence quite
similar to the GTD results for a wedge, and were in reasonable agreement with measure-
ments of the scattered field, at least for angles above the minimum grazing angle of 220. ,
This work has important implications in the modeling of sea scatter, and should be read by
anyone with an interest in the field. •

c) Lyzenga, Maffett and Shuchman 119831: Using what is essentially the PTD formalism for
a 1200 wedge, these authors found the edge contribution to wedge scattering, and showed
that by adding a suitable portion of this component to the conventional Bragg component,
an improved fit can be obtained with the NRL 4FR X-band data for horizontal polarization
and grazing angles from 5 to 30 degrees.

d) Wetzel 11986a1: Noting that the sea surface is a "wedgy" rather than a "wavy" surface.
this author found such a surface to have the expected k-minus-four spectrum. but with a
spectral scale factor that is proportional to wind speed. This wind speed dependence seems
to track the NRL 4FR data quite well (if massively averaged), and a GTD calculation of
wedge scattering provides both grazing angle and polarization agreement superior to that
provided by the Bragg theory in the angular range in which Bragg theory is usually d-

thought to apply. But as in all applications of discrete-target scattering models to the sea, ,

there is no independent a priori basis for establishing target size and distributions, hence
either mean or specific scattering levels.

2. Problems in Applying Wedge Theory to Sea Scatter "

All of the above calculations used a simple two-dimensional wedge model, while for application to a
real sea surface it will be important to consider scattering in three dimensions. In GTD. an extension
to three dimensions occurs in allowing oblique incidence, in which case the scattered field appears in
the form of a cone of rays - the so-called "Keller Cone" - whose half-angle is equal to the angle of -:
incidence at the edge IKeller. 19571. There are no other scattered waves: this is still a strict optical
theory. The next extension is a generalization in which it is assumed that the incident field excites at
each point on the edge a fictitious physical current of Just such a form as to produce the scattered
field on the optically defined Keller Cone emerging at that point. The edge may now be made arbi-
trary, and the current thus defined is integrated along the edge, as if it were a real current, to yield a •
value for a scattered field at points in space lying outside the Keller Cone. Several formalisms ba'cd
on this idea have emerged in recent ycars: the Method of Equivalent Currents (MEC) as described b
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Knott and Senior 119741, the method of Incremental Length Diffraction Coefficients (ILDC) bv 
Mitzner [19741. Michaeli's NIEC (MMEC) by' Michaeli 119841. to name the most important. ,-

Ufimtsev's PTD. which has already been used in section II.A.2, is also concerned with edge currents. I
but indirectly. as a conceptual device for the correction of the Physical Optics approximation rather
than in concrete form for the calculation of scattered fields. It should be noted that none of these
methods Is more "'fundamental" or "rigorous" than the others. TheN are all of them - GTD. PTD.
MEC. ILDC, MMEC - heuristic procedures for finding approximate solutions to scattering problems
involving objects with edges (or "'ribs." as Ufirtsev calls them). And there are still other methods
(known by their acronyms as UAT. UTD. STD. HTD. etc.) which are designed mainly to eliminate
the caustic singularities in the GTD. and will not concern us here. Since most of these asymptotic
theories are quite complex, and often seem to differ in obscure \Aays. the\ are constantl\ being inter-
compared (e.g.. Knott and Senior, 1974: Plonus.et al, 1978. Knott, 1985). or measured against All
Sommerfeld's original rigorous solution (Deschamps. et al. 1984).

In order to disentangle ourselves from this mass of scattering theories and methodologies. \% I
consider first the very basic problem of two-dimensional scattering from a wedge as described b\ the
GTD. In Fig. 20a, the incident ray, denoted by k,. encounters an infinite 2-D \.edge having an inte- S

rior angle ct and lying normal to the plane of incidence. el and ell indicate respectivel. the orthogo-

nal Vertical and Horizontal polarizations. In the GTD. the scattered field consists of tvo parts: a
field EGO reflected from the illuminated face of the wedge according to the laws of geometrical
optics, and a "diffracted" field. ED) , originating at the edge. consisting of a fan of ra\s w hich. for
incidence normal to the edge. uniformly' cover the plane of incidence. The field on these ra~s Is "

defined by

Ei.(, , - DH. ( 2,) (29)
\ 2irkR

where

sin(7r/n) I I 3(1)DH. V(2' , /, )-+("10) ,0.,
n cos( r/n ) - cos(', U )n cos(r/n ) - cos( ',

with n = 2 - c/7r (the exterior wedge angle is n r). and the incident and scattering angles measured

from the front face of the wedge. The - and + sign, are used for the H and V polarizations respec-
tivel%. The four rays labeled in Fig. 20a have special significance: Ell) returns to the socrce and con-
tributes the backscatter cross section of the wedge: E12 defines the "'reflection boundaN - for the front
face, and since its angle is 'p = ir -7 ',. it causes the second term in (30) to blo" up: fI; is a ra\ .
which would correspond to "'specular reflection" it the wedge were sitting on a plane surface: j-'

defines the "shadowk boundary'" and since its angle is "1, = 7r + ',. it causes the first term in (30) to

blow up. These singularities are in no way related to actual field behavior, of course. The, are
artifacts of what is essentially an asymptotic expansion of the Fresnel Integral in Eqn. (3). khere the
leadi.. term is proportional to I /w, hence to I/(\ kR/IrO). This means that the GTD can be used
only for angles well outside an angular zone of width I/(\ kR /r) surrounding the singular ra\s. But
except for these singular domains, the GTD has often been found to gie reasonable appro\ximalions
e~en under conditions fairly well remo'ed from the "'optical litnit.'"

If end-effects are ignored, twko-dinensional fields can he converted into three-dimensional fields ''per
unit length' by the factor (k /27rR) from which a cross section defined in the u,,ual \ %A\ takes the
forn

(JUL (',. 011) lD~i1 (,. ,)/7r r,,
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where L is the length of the wedge. This is the form used by Lyzenga, et al [loc. cit. for their PTD
corrections to Bragg scatter, and by Plonus, et al 119781 in an interesting experimental comparison of

various approximation methods. Backscatter cross sections obtained by substituting (30) into (31)
with -y = -y, are shown as functions of wedge interior angle in Figs. 19: for incidence along the
wedge-angle bisector (Fig. 19a, corresponding to the breaking wave model used by Kalmykov and
Pustovoytenko, loc. cit.) and at zero grazing angle across the top of the wedge (Fig. 19b. correspond-
ing to the normal wedgy sea of our low-angle model.) We see that the polarization dependence is
reversed for these two cases (H>V in 19a, V>H in 19b). In Figs. 21 we show two examples for a
stability-limited wedge angle of 120': in Fig. 21a, the backscatter cross section versus grazing angle
from 0 to 90 degrees, and in Fig. 21b, the bistatic cross section for scattering angles between 0 and
180' in the plane of incidence, for a zero degree incident grazing angle. The plots show similar
behavior, having an infinity in the direction of specular reflection from the front face. In the back-

scatter case, this direction corresponds to broadside scattering, which is generally an intractable case
for GTD-like approximations (see, e.g., Siktaet al,1983). Fig. 21a was used by Wetzel 11986a1 to
compare the implications of wedge scattering with some NRL 4FR backscatter data. The circles on
Fig. 2 1a show the relative behavior of the 4FR data with polarization and grazing angle.

But such curves, based on such theories, cannot tell us what we really want to know. They apply to

a perfect wedge, aligned with perfect precision normal to the plane of incidence. As soon as the
wedge deviates from the perpendicular, by however small an angle, the backscattered field vanishes.
The reason for this is seen in Fig. 20b, where the incident ray makes an angle 73 r/2 with the
wedge edge, and the diffracted rays now all lie on the Keller Cone, whose interior half-angle is j3.
As mentioned earlier, there are no other diffracted rays - certainly none back into the direction of
incidence to produce "backscatter." The bistatic case is no better, because the observer must lie on
one of the elements of the Keller Cone, and again a scattering path is possible only for a single. pre-
cise orientation of the wedge edge. These unforgiving geometrical constraints can be relieved only by
a return, in one form or another, to the basic idea of scattering from current distributions: that is, by
using the fictitious "equivalent currents" in geometrical theories, or the approximate "'optical

currents" in Physical Optics.

a) Method of Equivalent Currents: The bistatic cross section for a 1200 wedge of length L in
the lok grazing-angle limit is calculated using the MEC in Section 2 of the Appendix:

al. (L. 0,, ) = C, 1 L2 sinc kL (cos6,, - cos(O, - 0,, )) (A212I
where C11.1 = -29dB (H-pol), -8dB (V-pol), and ,, , are the azimuthal wedge and scattering
angles respecti, ely (see Fig. A3). (To avoid confusion, it should be noted that in Eqn. (31) and Fig.
21b. the bistatic angle lies in the plane of incidence and sweeps up and over the top of the wedge.
while in (A21) and Fig. A3, the bistatic angle is azimuthal and sweeps around the wedge in the hor-
izontal plane.)

At this point we should recall to mind one of the central problems with all models, of this sort, that

introduce specific scattering structures having no natural origin in the physics of the underlying sur-
face. That is, while we see wedge-shaped structures on the surface of the sea, they have never been
measured and counted as such, so there is no knowledge of the distributions of their sizes and orienta-
tions. Nor is there a body of hydrodynamic theory from which such distributions might be inferred.
For this reason we are left with the need to come up with "reasonable" assumptions for these distri-
hutions, which usually translates as "'not completely idiotic," and leaves one with a corresponding
skepticism about any conclusions drawn from them Nevertheless, we cannot proceed without taking
this necessary step. 11
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It would be absurd to assume the scattering island to consist of a single large, coherently scattering
wedge of length L1, so we will replace this overly simplified model with one in which the illuminated
islands are populated by ensembles of wedges of various sizes and orientations, having individual
cross secticns given by (A21). For backscatter, the scattering angle o, = 7r. and since the sinc-
function gives a very narrow beam around the wedge angle 0,, = r/2, we can write (A21) as

aH.v(L, 6) z CH L2 sinc2(kL6) (32)

where 6 is the departure of 0,, from r/2. The '3-dB" points of the sinc 2 function occur at
+kL6 ?r/2. so the range of wedge angles that could contribute to the backscattered signal is Just

A = 26 =r/kL. (331

Assuming the wedge angles to be uniformly distributed, the probabilitN that a %kedge of length L "ilI
provide a backscattered return becomes

PBs(L) = -1/r = I/kL 134)

If each such wedge is further assumed to scatter independently, then the aerage cross section nia he
written as the average of (32) times (34) over the distribution p(L) of lengths L:

cc 2 1C H V O
<C, U p (L)dL Ck 0, Lp (Lt.. (35)

The wedge lengths L will be distributed between some minimum length (which seems by observation
to be about 10cm), and some much larger length of the order of the Island dimension LI. Not I
knowing what form this distribution might take, we choose a Rayleigh distribution

p(L) =(L /L )e (36)

in which the mean length L0 lies somewhere between the extremes stated above. With this choice. 
the average cross section per wedge in (35) becomes

<OH,1 > = \r/2 (L0jk)CH.1 (37)

The "wedge" in our model is really a kind of flat prism, as sketched in Fig. A3. and since neither .
long, thin nor narrow, tall wedge faces are physically reasonable, or visuall\ verified. we take a
canonical aspect ratio of 2/1 for the length/height ratio of all wedge faces, so that the mean "area" of
a wedge against the plane of the sea is about L,2. Assuming. no,. that the \kedges are distributed I
densely over the scattering islands, and that the grazing angle is sufficientl low that onl\ half arc
visible ( ¢ < 30'). yet sufficiently high to be above the threshold shadoing knee in Fig. 14 (a S
degree or two), the NRCS from (23) takes the form

NRCS H, I = < a,,. > /2LO = CHI \ 7r/8/(kI.) . 38)

Finally, in order to make some kind of reasonable estimate of L,. we let I., be the geonietric mean ot I
Ltfs, (about 10cm) and I.1:
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L) = (0. ILI)"11 (39)

For moderate wind speeds L, is about 10m, so the mean wedge size is about Im. Using this value
and the values of CHy from (A21) in (38) for X-band frequencies (k=200/m). the NRCS's become

NCRS v = -33 dB (me/mt .)

(40)

NCRST H = -54 dB (m2/m 2)

b) Physical Optics: It was noted earlier that Physical Optics (P.O.) underestimates the
scattering at the flatter surface aspects seen in the low grazing-angle regime, which means
at relatively large off-broadside angles, well down into the sidelobes of the scattering pat-
tern. This occurs because of the inaccuracy of the assumed current distributions at the
edges, but the field predicted by P.O. seems to be badly in error only in those configura-
tions where the diffracted rays of GTD and PTD would normally come into play, which is
to say, only under certain highly specialized conditions. Moreover. it should be
emphasized that while the PTD is considered to provide edge-wave corrections to Physical
Optics, these corrections share the geometrical constraints of the GTD. It is therefore of
interest to look at the scattering implications of a straightforward P.O. approach.

The P.O. cross section of a rectangular plate with sides a and b. viewed at angles a' and o'. where a'
is the angle between the plate normal and the incident direction and 6' is the angle of the plane of
incidence relative to the a side. is given by Kerr 119521 in the form

a(k .a .b.' - k2 (ab ) sin (kasinO'cos&') sin 2(kbsinO'sin6') Cs a 41
7r (kasinO'coso') (kb.sin'sin' cos (41

Notice that there is no polarization dependence in the P.O. approximation. The scattering geometry
may be viewed in terms of Fig. A], where 0'. d' in (41) are replaced by (0 - 7r/2). (7r/2 - ¢,. P
with given by Eqn. (A4). It will again be assumed that the exposed scattering islands are covered -"

by wedges whose orientations. 0. are uniformly distributed, whose lengths, L1 , are Rayleigh dis-
tributed, and whose aspect ratios b/a are all equal to 1/2 (i.e.. a=L, b=L/2. for all values of L.)

Performing the averages as in the last section. we write:

CB

<a> 0- LF (kLIP ( L)dL. (42)
47r

where p(L) is given in (36). and F(kL) is the angle integral. I
I 2 .F(kL sinc" (kL cos sin).%in( kL cos coso)sin- do (43)

with the definition (from (A4), with 0 = 3(. ' = 0) "1

= arcsin (-cosO). (44)
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The solution of this set of relations is less formidable than it might appear. Numerical evaluation of A
the integral in (43) discloses that it can be quite accurately represented by

F(kL = 2/(kL) (43"1

Substitution into (42) lields the serx simple expression

< a> = 7r r/2 (l-/k )( I /2r) (45)

which should be compared w'ith the MEC result in 37). Since I 2rr can be expressed as -8 dB. we
come to the remarkable conclusion that for this low grazing angle regime, the P.O. cross section', for
H and V polarization are exactly the same as the MEC cross section for V polarization. Perhaps this
is not so remarkable as it is reassuring, since GTD and P.O. quite often give similar results in scatcr-
ing calculations. But the paths leading to (37) and (45) were enough different that one cannot help - -

being struck by the coincidence of the two results. Aside from numerical constants, these expressions-
have the form (L(2) times (I kL). the first being a "size" factor proportional to the area occupied b,
the wedge. and the second being a "'beam" factor, expressing the decreasing number of wedves seen
as their average scattering pattern narrows. The uniform angular distribution used in thesc caicula- I,,-"

tions are appropriate to an isotropic, or "'confused" sea. But if a strongly directional sea were
viewed up/down wind or crosswind, the form and frequency dependence of these cross section,, ni2ht
change significantly. '

3. RecapituIation"

Thus far we have examined three scattering models for low grazing angle sea backscatter. and men-
tioned some of the results of experimental measurements in this scattering regime. It would be useful .
at this point to pause for a moment and intercompare the values of the NRCS obtained from these
various sources for X-band backscatter in moderate winds.

SOURCE V-Pol H-Pol

NRL 4FR (About 50) -33 dB -37 dB

Bragg Model (Sec. lIl.A. 1 -30 dB -42 dB
MEC Wedge Model (Sec. lIl.B.2a) -33 dB -54 dB .

P.O. Wedge Model (Sec. lIl.B.2b) -33 dB -33 dB

"'Consensus Meas. (about I 1 -40 dB -40 dB

'he cross sections from the scattering models developed in this report assumed graiine angles abme
the 'knee' in Fig. 14, so should be compared against the NRL 4FR measurements at 4 or 5 degres.
The "'Consensus' measurements, mentioned at the end of Sec.llI.A.3, were all made at gra/ing
angles of about I °, so should be compared against the model values lowered b the additional 7 or S
dB required by the S, curves in Fig. 14. One is tempted to conclude !rom this that the models are all
quite good for Vertical polarization, while for Hori/ontal polarization the Bragg model is not bad ,it

the higher angles and the P.O. model much better at the lower angles. The MFC model, based on-.
the geometrical theories of diffraction, appears to underestimate the level of Horizontall, polari/ed
backscatter by 15 to 2) dB in this regime of grazing angles. Hoxever. none of these models can.
account for the powerful 'Sea Spike'' return,, that characterize this reginie. and which could themi.-
seles make a contribution to the txcraging prcess detining the NRCS. These returns ,will be the-5
subject of the next section.

. ,
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C. Scattering by Other Surface Features

Thus far we have looked at scattering from small amplitude surface perturbations amenable to a
Bragg scatter formulation, and at wedge-like structures of indeterminate size, but large enough to be
treated by optical approximations, both geometrical and physical. Other surface features might
include:

(i) Pyramidal cusp-like structures, that probably scatter much like a short-crested wedge, or
two wedges meeting at an angle.

(ii) Parasitic capillaries, that are visible on the front face of most forced waveforms, are of
low amplitude, and appear to occupy a rather narrow spectrum with wavenumbers ir, the
neighborhood of the transition between gravity and capillary waves.

(iii) The pools of surface turbulence associated with breaking waves. If the surface displace-
ment spectrum of the turbulence were known, its scattering behavior could most likely be
obtained from the Bragg formulation described earlier.

(iv) The spray associated with vigorous breaking in strong winds. Looking at waves breaking
over a submerged breakwater that produced a lot of spray, Kalmykov, et al 119761. used a
rain model to explain their measurements. This model required an equivalent rain rate of I
meter per hour (!) to match the observed levels of backscatter. Since it is difficult even to
conceive of what a rain rate of such intensity might actually be like, it is quite possible that
they were barking up the wrong tree.

There are two other kinds of structures that will occupy our attention for the remainder of this
section: "shocky '-looking structures seemingly associated with localized wind-puffs or the passage of
a steep wave, and the "plumes" sliding down the front faces of breaking waves, as suggested by
Longuet-Higgins and Turner 119741. The feature that characterizes both of these structures is the
sharp entry into the underlying surface at their "toe" as they move along.

I. Hydraulic Shocks or "'Sloshes"

Consider first the subject of "hydraulic shocks." When associated with shallow water effects such as
a bore on a beach, breaking in the surf zone, or constricted flows in a channel (see Lighthill. 1978),
they are usually referred to as "'hydraulic jumps." But as noted earlier, Middleton and Mellen [Ioc
cit] have proposed that wind puffs on an open sea surface may induce small hydraulic shocks that
decay into Gaussian solitons which, in turn, become a source of scattering. A bit of "naked eve
oceanography" convinces one that small shocky-looking structures occur commonly on open water
surfaces, sometimes in response to small-scale turbulent components in the surface wind field, and
sometimes for reasons that are not clear. In fact, they are seen quite frequently at wind speeds above
a few knots, taking the form of what might be called "'micro-breakers.'" and seemingly induced by

the passage of small, but steep, waveforms. Such an event may be seen at the arrow in the tank wave
shown in Fig. 22. (Parasitic capillaries of the type also seen in the figure are found every where on
almost any disturbed water surface.) Small shocky structures can be created on the surface of a basin
of water by blowing at it obliquely with a household fan. In a laboratory setup of just this kind. a
high-resolution radar looking into the wind has recorded sharp spikes of backscatter which seem to be
associated with the formation of these structures lHansen and Wetzel. unpublished observation. 19861.

Figure 23a shows what a puff-induced event might look like, based on both observation anti ph,,sical
plausibility. The vertical force of the localized puff causes a dimple in the water surface, while the
horizontal component urges the edge of the dimple on the downwind side to move out from the center
at a speed greater than the normal wave velocity for an impulsively excited surface, causing the for-
ward face of the disturbance to steepen up and show a sharp entry ini, the quiet water ahead. -he
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nsterious "'micro-breakers" mentioned above look very much the same. It is tempting to call this a
'shock kave.' but ,e must be careful not to confuse a "'shock wave" with an asymmetrical

"slosh." A shock wa,,e tends to retain its form over some reasonable distance, while the event we ,.',.
are talking about here is short-lived, and its subsequent development is uncertain. If it relaxes into a
smoother form of disturbance propagating from the puff site with unchanging shape, it becomes the 0
presumed source of Middleton and Mellen's Solitons. But perhaps the initial ''slosh" flies apart into
a dispersal of wave components running at different speeds.

The nature of these events appears to be completely unknown, although one can imagine that the scale
of the phenomenon will play a role. It has been observed that the "ring wave" produced by the
splash of a raindrop on a water surface propagates away from the splash site as a single. well-defined
waveform [Wetzel,19871. The speed of this waveform is quite close to the minimum in the velocity
vs. wavelength characteristic for water waves. The neighborhood of this minimum contains a rela-
tively broad range of wavelengths with similar velocities, so it is reasonable to imagine that a group
of waves having close to the same velocity might assemble itself from the chaos of the initial splash
because the scale is right for such a result. Raindrop splashes are measured in centimeters. as are the
critical wavelengths at the velocity/wavelength minimum. The scale lengths in the atmospheric tur-
bulence responsible for surface "'puffs," or in the perturbing waveforms responsible for "'micro-
breakers.' should be considerably larger, however, so the wavelengths involved will lie along the
gravity-wave dispersion curve, and the transient 'slosh" will quickly disintegrate. We "will trv to
make some sense of this topic by considering several scattering models that might apply to surface
events which start out looking like the disturbance sketched in Fig. 23a.

In Fig. 23b the disturbance is shown separated by a dotted line into a symmetric "dimple" and the
asymmetrical "slosh" component, The model is further developed in Fig. 23c. where the "slosh" is
idealized as a ridge of transverse length L, having the cross-section of a circular segment of radius a
and entry angle 3, and lying at the edge of a "dimple" of radius R. The scattering behavior of this
disturbance will, of course, depend on the dimensions a. L and R. the angles (local grazing angle),
and the wavelength of the incident signal. Since this is so speculative a scattering mechanism, and we
have no clear idea of how it originates, it is difficult to decide what range of dimensions might actu-
ally be of interest. To be quite arbitrary, yet guided by observation of these events, we will take
"'dimple" radii to lie between 10cm and Im, with "'slosh" radii a some small fraction of R. For
microwave wavelengths between I and 100cm, then. we will have to consider both long wavelength
(perturbation) and short-wavelength (physical optics) approximations. The depth of the "dimple"
will, by the conditions of its formation, always be a very small fraction of the radius, and, based on a
''ring wave" scattering calculation by Wetzel 119871, we will assert without proof that a \kidc, shal-
low depression of the type sketched in Fig. 23a will have an extremely small scattering cross section
whatever theory is used. This leaves us with the more sharply curved, elevated "'slosh" feature as
the major contributor.

a) Long-Wavelength (Perturbation) Approximation: If the height of the circular segment in Fig. 23c is
much smaller than a wavelength of the incident signal, a simple surface-perturbation theor, of the
type used by Wright [19661 can be used. His expression for the backscatter cross section due to a
surface perturbation (x,y) is given in the Appendix, Section 3. Eqns. (A23). (A24), (A25), It should
be noted that this is a deterministic cross section for a specific perturbation, not a statistical result
based on a surface correlation function, as in Rayleigh/Rice perturbation theory and the Kirchhoff'
theory of' Beckmann and Spizzichino 119631.

With reference to Fig. 23c, the integral in (A23) can be written

/(0) dv k (\ w d (46 1~A ~t
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where b = z0 controls the shape of the segment, as well as the -toe" angle 0, and K=2kcos('. It
is obvious that under the conditions for which the perturbation approximation is valid (ka < < 1) the
exponential may be put equal to 1, and the integral becomes simply the volume, V(a,L). of the seg-
ment, so the cross section of the "slosh" feature takes the simple form:

opERT = 4 kgV.H 12V2(a,L) (47)
7r'

with the angle factors I gi./ I given by (A24) and (A25). (Note the interesting similarity to volume
scattering in the Born Approximation for a volume of unity dielectric constant.) Taking the circular
segment to be a semicircle, the volume is V= a2 L/2. so the cross section in (47) becomes %

0 .PiRT = 7r(ka) 4L2 1g 1 ('/)! 2. ka < < 1. (48)

where L is the transverse length of the structure. (It is of further interest to note that this is exactly
the form initially obtained by Wright [19661 for the cross section of a patch of area L containing
Bragg-resonant capillaries of rms height a.) The angular g-factors are plotted in Fig. 24 for a dielec-
tric constant = 50. corresponding to sea water at X-band frequencies. It should be noted that these
angular factors are the same ones that appear in all EM Bragg scattering theories, as, for example. in
the "'sightl. rough" Bragg curves in Fig. 15.

h) Short-Waxelength iPhysical Optics) Approximation: When the circumference of the segment in
Fig. 23c is long compared to a wa\ elength (ka> > I). it is appropriate to use the physical optics
approimiation. Here the scattering takes place at the point of specular reflection. shown as the point
P in Fig. 23c. For a conducting clinder of radius a and length L, the cross section in this approxi-
niation is gix en b, .5(kal-" JKerr. 1951 we have added a factor of .5 to account for the reflection
coetficient of water at microwave frequencies]. However, the water surface ahead of the scatterer
produces a reflected \,a~e which must be added to the incident wave in the neighborhood of P.
Strictl\ speaking. for ,erN large ka. the surface-reflected wave will itself be specularly reflected at P,
awaN from the incident direction. However. for relatively small values of grazing angle , and modest
%alies ot ka. the ,cattering pattern,, of the direct and surface-reflected waves at P should overlap back
at the source. The effect maN be simulated by multiplying the specular-point cross section b\ an
angle- and polariation- dependent tactor based on the geometry of Fig. 23c:

f!- = *I 1 + ERCH. 2  (49)

[I /.H(a,f.0 ' ' ' " ' '  + R,. j/([ ' e '

. here R, .1 .) is the (complex) reflection coefficient for an incident wave of frequenc f and
grazing angle. We call F: the "Surface Proximity Function" and have plotted it for both
p lariations, in Fig. 25a for ka=2.4.6. and in Fig. 25b for the larger values ka= 10.20. The ph~si-
cal optics approsimation for scattering from a large "'slosh" may thus be written

(7I() 1 (ka)l-F1 - 1 1(a .g. i,). (50)

c) Effects of Surface Slopes and Wind Speed: The angle in the factors g 2 and F- is the local gra,-
ig angle. These scattering structures are excited on the sea surface, so this local angle will be

1. + ,r. where , is the grazing angle relative to the mean surface (horizontal). and (t is the
local slope angle of the underlying surface. When the scattering structure is tilted toward the incident
ra\. the local grazing angle increases, while when tilted away. the angle decreases. reaching its
minimun of zero when (x = - (. Let us assume that the sea slope distribution is Gaussian [Kins-
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man. 19651, characterized by an rms slope s0 which, for the relatively small angles involved (< 300)
can be replaced by the slope angle. The averages of the angle factors in (48) and (49) therefore
become, respectively,

< gv.H(vO) 12> - f gH(012e-do (51)

2 2

_ 2_ s __ , I g 'IJ"ed,,(5 ) .

<F a = S , F 11 (af,',)e da. (52)V ",~~, 0 27r so , . H (

The dependence of mean square slope on wind speed may be found in the celebrated sun-glitter mea-
surements by Cox and Munk [1954). They measured the glitter from both clean surfaces, which
included the flashes from all the small-scale structure, and "oiled" surfaces, on which the capillaries
were suppressed. Since we are primarily interested in the larger slopes of the underlying surface. we
will use the latter, for which the mean-square slope so is given by

s0 =0.008 + 0.00156W, (Win m/sec). (53)

The use of (53) in (511 and (52) gives an estimate of the wind-speed dependence of the "'slosh" cross
sections (viewed normal to L) for given dimensions a and L, which will themselves be functions of
wind speed. For a moderate wind speed of 15 kts, the rms Tope is 0.14 (about 8°). We havc shown
the effect of such a wind on the angle factors I g 2 as calculated from (51). by the dashed curves in -
Fig. 24. The result is akin to the Two-Scale Bragg model illustrated on the H-Pol curves in Fig. 15.
The effect on the Proximity Factors for Physical Optics is more complex. since the averages depend
on the scatterer size and the illuminating frequency, as well as on the rms slope. In Fig. 26. the
effect of a 15 kt. wind is shown for the same values of ka used in Fig.25. There is little effect on the
V-Pol returns, other than to bring up the very low angle segment of the curse and to smooth the
angular resonances at the higher ka's. The effect on the H-Pol curves is much more pronounced. and
the H-Pol return,, actually match or exceed the V-Pol returns over the entire angular region at the
higher values of ka. The reason for this lies, of course, in the Brewster angle "'bite-out'" that
removes the reflected V-Pol field at angles commensurate with the rms slope angles (about 8V). Con-
tributions to the total scattered field from this scattering mechanism would therefore tend to show,
een at the higher grating angles, a considerably smaller spread between the V-Pol and H-Pol returns.•
than that predicted by the Bragg theory. This is just what is observed (see, e.g.. Fig. 15).

I'ntortunatel. there is no a priori basis for estimating the "slosh" dimensions required to obtain I
numerical values for the cross sections defined in (48) and (50) - they have never been measured (and -e
those who ha~e not observed natural water surfaces might question whether they even exist.) How-
ever. a small-scale 'slosh' would probably. like most small-scale perturbations forced into being on
a water surface, have the dimensions of waves at the minimum of the velocity,'wavelength curve: that
is. a couple of centimeters. Thus we will take a minimum value of the radius a to be I cm. Taking
a minimum "'dimple' diameter to be about 1 foot. we assign a least value for R to be 10 cm., plac- N
ing the division between the perturbation and physical optics approximations (ka = I) at the middle of
the micro\,ae region - C-Band (5 GHz, 6 cm). Thus for "sloshes" of this size, we will use (48) for S
S-Band and below, and (50) for X-Band and above. The result for low grazing angles ( <5 ') is,
sketched in Fig. 27, where a wind speed of 15 kts is assumed, and the transition bet\keen the txmo
approximations is drawn in as a smooth dashed line. For larger values of a the curves would moxe
up. the transition point would occur at lower frequencies, and the polarization difference at a 1i en""
frequenc \kould decrease.

Although not yet established as a legitimate scattering obstacle, the existence of these ',hocks or
'sloshes" would help explain certain pui/ling aspects of lov, angle sea clutter, particularl ,mall
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amplitude "sea spikes." As noted earlier, the turbulent wind field of a 20" fan blowing ohliquekl-
over a water filled basin in the laboratory and viewed with a high resolution horizontall, ptoiarized
radar, produced a random sequence of sharp transient returns of significant amplitude IHansen and
Wetzell. These returns could be visually correlated with the appearance of the type of nucro-sl,she, IF
we have been discussing. In their behavior they were quite reminiscent of the "Sea Spikes'' nicas-
ured by Lewis and Olin [19801 in open water. -R

%.-

Figure 28 reproduces some low grazing angle (I .4) X-band results obtained by Lewis and Olin I/,.
cit.I under two quite different sea surface conditions. The records on the top were obtained fromii a N .
.'wind-blown sea with many whitecaps," while those below were characteristic of "calm'" water.
The general structure and temporal behavior of the returns for the two conditions are virtuail, identi-
cal. the only difference being a scale difference of 40 dB. Moreover, for each surface condition the
V-Pol and H-Pol returns have the same amplitudes. The only two models that can account for com-
parable H-Pol and V-Pol returns are (I). the nose-on geometrical optics wedge model of Kalmvkov
and Pustovoytenko I/oc. cit. I (see Fig. 19a). and (2). a Physical Optics model of some kind: either the
glancing-incidence wedge model of section ll.B.2.b.), or the "'slosh" model being discussed here.
Since model (I ) is highlv contrived and unrealistic, we are left with the latter choices as the most
likely sources of low-angle transient returns. As Sherlock Holmes has said:

''Mx dear Watson. When all possible explanations save one have been eliminated, that one.
however unlikely it might seem, must contain the true solution.''

¢1)1 course, we might not have exhausted "all possible explanations," but we have considered quite a
Lw. and while the "'slosh" hypothesis cannot fully account for the "'calm water" returns observed by
Lewis and Olin. it is the only model whose trends are all in the right directions.

2. Sea Spikes and the 'Plune '' Model ftr Breaking Waves

Certainly the most obvious place to look for scattering features in an active sea at low angles is at the
peaks ot breaking waves. But what are these scattering features? The peaks display different shapes
according to which of the several types of breaker is involved (plunging. surging. spilling), and then
there is turbulence, and spray. The orderly, serene models we have been discussing thus far appl\ to
structures and surfaces that are hard to find in the chaos of a heavily breaking sea. N1oMeox em . %e
scattering from breakers is characterized by the appearance of "Sea Spikes" having cross sections
several orders of magnitude greater than those predicted by any of the mechanisms discussed thus far.
We have already seen "'Sea Spikes" in the records collected by Lewis and Olin at the top of Fig. 28.
Other investigators have observed them as well jKalmykov and Pustovoytenko. lo(.cit. : Long. 19751.
and radar operators encounter them on a regular basis (hence their colloquial nomenclature.) Peak
cross sections can range from 10-IR(") m" for both polarizations, but these peaks occur sporadically.
so the average cross section will be much smaller. Actually, when considering lowk angle crtoss "co
tions generally, it is important to know how the quoted values of NRCS were obtained. Were the\
based on raw averages (including sea spikes). amplitude-limited data (chopping off the sea spikes). o r
selected data (removing data sections containing sea spikes)'? Or were they, axerages at all, heing
instead defined as median cross sections? It is easy to infer from the breaking-.axe records in Fig.
27 that, for this set of measurements at least, the mean "'flux'" of sea-spike events is roughl\
0.0 l/m2-sec. Since the duration of the H-Pol sea spikes was roughly one second, anti their mean
amplitude about 5m 2 . this flux translates into a mean NRCS of about -23 dB. which is considcrabl,.
greater than the low-angle results quoted earlier in section III.B.3. However, the NRL-4FR data are
the median values of the NRCS. as were the values measured by Trizna 19871. so. unlike a mean
value, the quoted NRC'S levels would fail to reflect the contributions from the powerful sea spikes.

('umulative distributions are much more informative, and Triina has found them to rexcal somc
interesting aspects of low angle backscatter. Figure 29 gives an example of how such distrihutiMs"%

change with \kind speed (X-band, H-Pol, upwind, about 5' grazing, wind speed increasine tom left
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to right). Clearly the statistical behavior is complex, and no single distribution tells the whole story.
Trizna views the data in terms of multiple Weibull distributions, each characterizing the contributions
from a particular class of scattering features. This approach in a way resembles that of the "Contai-
inated Normal" distribution used by Trunk 119761, in which the data are described by a series of nor-
mal distributions with different variances. The Weibull distribution is a generalization of the Rayleigh
distribution, and, having two adjustable parameters, affords greater flexibility in fitting the data. The
straight lines on Fig. 29 represent such "fits," the left hand (low wind) curve following a standard
Rayleigh distribution over its entire length.

Trunk asserts that low angle. high resolution sea backscatter is not log-normal, as is sometimes stated.
and indeed, the departures from Rayleigh seen with increasing wind in Fig. 29 are certainly not log-
normal distributions, which would show long tails with the opposite curvature. In fact. those see-
ments designated as "'sea spike regions" appear to have relatively tighter distributions, as if sea
spikes were produced by a special scattering mechanism quite different from that responsible for the
main body of backscatter returns. Such a mechanism, based on a particular hydrody'namic model of a,

breaking wave. has been explored in some detail by Wetzel [19861. We summarize some of itsfeatures below.

Although the word "breaker" usually summons up a mental image of a curled mass of crashing water
(the "plunging" type), the breaking waves occuring in the open sea are generally of the "spilling"
type, in which the interior crest angle at a wave peak sharpens to the point of instability ( 120 ). and
a series of water masses emitted at the crest slide down the front face of the wave under the force of
gravity. Longuet-Higgins and Turner 119741 describe this process in their "'plume" model of a S
spilling breaker, idealized in Fig. 30. The "plume" has a characteristic shape (sketched in Fig. 30a)
and entrains air to form the "whitecap.' The scattering model for these features resembles very
closely the Physical Optics model for "sloshes" described above, the only differences being in the
scale of the event and the range of expected local grazing angles.

The plumes emerge from the crest of the breaking wave, so initially the underlying wave face angle (x
will be steep - close to the value of 30' we have been using in other models for the crest peaks. The
radius of the plume will be considerably larger than that of the 'sloshes' discussed above. lying
between 3 and 15 cm. just to take a wild guess, although one would expect the larger plume, to have
rougher surfaces, thus reducing their resemblance to smooth cylinders - particularly at the higher fre-
quencies. The toe length L over which the plume can be expected to resemble a c~lindrical scatterer p
is another unknown, but we will assume it is of the order of a few plume diameters. Using (5o) for
the plume cross section, and the implications of Fig. 25 for the factor F. we find that these assump-
tions lead to individual plume cross sections lying between 0.25 - 25 m for the popular X-band fre-
quencies (k=2,'Lm). A breaking wave will generally emit several plumes, so if \e assume that the ."
cross sections combine incoherently, which is the worst case, we conclude that the "'sea spikes' asso-
ciated with a breaking wave could quite easily have cross sections vying in the range between I - I(X)
in1. Interestingly, the range of cross sections measured b Lewis and Olin at the top of Fige 29 .as
I - 10 m. while the "'sea spike" regions in Trizna's cumulative distributions (Fi. 29) contained
individual returns from the open ocean in excess of I() m'. Clearly. usine dimensional parameters -

ell within the realm of credibility, the "'plume" model is capable of deliering ''sea spike'' cross .40

sections in the amplitude range actually observed.

The polarization dependence of the plume cross sections can be interred from the surtacc-proimmt\.%.
factors shown in Fig. 25. For the smaller plumes (e.g.. ka--6 the H-Pol returns could c\ceed the
V-Pol b, almost I(dB close to the peak. but would deca\ rapidl\ as the plume ,It] dimn the Aa\
face (toward decreasing local grazing angles). while the V-Pol return \ould increasc. Since the
acceleration of the plume down the ,ae face mak cs the local grazing angle a function of tunic, the
temporal behavior of small sea spikes due to plumes should resemble that sketched in F' c- .3Ia We
see that the H-Pol returns are much 'spikier.' and associated \;ith !he \a'e peak,,. hile the V\-Pol ..
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returns are smoothly distributed over the length of the wave. This is just the kind of behavior oftcn
remarked upon by observers of low angle sea backscatter, particularly at grazing angles of several
degrees (above the knee of the shadowing curve.) Corresponding behavior for the larger plumes
(ka=20) is shown in Fig. 31b. Here the H-Pol and V-Pol returns oscillate out of phase, but with
similar mean amplitudes, as the plume moves down the wave face.

Unfortunately, there is little reliable experimental evidence available which could either confirm or
deny this scattering hypothesis. What evidence does exist is largely circumstantial: reasonable
assumptions about plume dimensions yield observed scattering levels: the polarization dependence of
plume scattering is consistent with observations: the range of oscillations in large-plume returns (Fig.
31b) is consistent with the width of the sea spike region at the higher windspeeds in Trizna's distribu-
tion functions (Fig. 29). Other evidence in support of the plume model may be found in the reference
cited above. We conclude our discussion of the plume model with the fo!lowing paragraph from that
reference:

"We have found that one implication of the plume model - the existence of a curved scattering sur-
face rising sharply out of the underlying wave surface - leads to radar scattering cross sections which,
with a reasonable assumption of plume thickness, can be as large as those observed experimentally
We note, however, that the scattering results are based on two idealizing assumptions: (I) that the
radar wavelength is of the order of [or less than] the plume thickness (2) that the front surface of the
plume is "smooth". As the radar wavelength increases, the scattering moves into the Ra\leigh
regime and falls off sharply with the fourth power of frequency. At lower frequencies, therefore, the
plumes become invisible and our attention must shift to larger features, such as the wxedgelike crest of
the underlying wave. On the other hand. as the radar wavelength decreases, the roughness (see Fig.
130a]) over the scattering face of the plume can no longer be ignored, and the scattering amplitude
must be multiplied by a roughness factor exp -2(kao)-. where o is the rms roughness of the plume
surface. Moreover, at short wavelengths, the likelihood of finding strong-scattering coherent segments
along the plume front diminishes. It can be seen, therefore, that plume scattering of the t~pe we have
been discussing can occur only within a rather narrow window in the microwave spectrum, the loca-
tion and width of this window being determined by unknown properties of the plumes, such as their
thickness. shape. and roughness. Nevertheless, it is interesting and instructive to sketch the scattering
behavior of a (reasonable.') plume having a thickness of 3 cm (about an inch) and an rms roughness
of 1()'c of its thickness. Figure 1321 places this behavior in the context of other scattering mcchamnisms
that might be expected to play a role in microwave scattering from breaking waves. Although this
breakdown into scattering domains is speculative, and dependent on as ,et poorly understood breaker
morpholog., it has the virtue of differentiating between the kind of scattering one might expect at dif-
ferent frequencies, and guiding attention to the most appropriate model.'

IV. SUMMARY AND CONCL.USIONS

The first question to be asked in any discussion of low angle sea backscatter is ho\A the radar
secs the surface: that is, what is the nature of the shadowing process' Although all existing rough
surface shadowing theories are based on geometrical optics, we approached the illumination problem
through diffraction theory, with the result:

The limits in windspeed'wavelength space of both Geometrical and Phvsical Optics Fig. 5)

established the operational conditions under which these approximations ma\ bc used \kith
an confidence, while the estimated sensitivity of the diffraction model to radar polari/a-
tion and wavc crest irregularities and (Figs.3 and 7, respecti%elv wa,, found to be sutfi-
cientlN weak that simple two-dimensional physical optics should appl\ o',er a usetul range
of operating parameters.
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For those operating parameters which allow use of the geometrical optics approximation, a

-threshold" model for sea surface illumination applies at extreme grazing angles, providing a scatter-

ing field of isolated "'islands" emerging from a dark background.

0 Since the area and spacing of these scattering islands are functions of grazing angle and
wind speed, we were able to define a new shadowing function for very low grazing angles
(Fig. 14). The implications of this shadowing function were verified in a variety of exper-
imental situations (Figs. 15-18).

Having identified, and given some quantitative measure of. the preferentiall illuminated parts of
the sea surface, it was possible to apply various scattering models to these regions.

* Bistatic scattering models were developed for both composite-surface Bragg scattering, and
wedge scattering by the Method of Equivalent Currents and Physical Optics (Appendix).

0 Using these models to define a low-angle NRCS produced values in reasonable agreement
with experiment (section III.B.3), but also raised the curious suspicion that lom, angle
scattering might be model-independent - especially curious in view of the almost diametri-
cally opposite assumptions underlying the Bragg (small perturbation) and optical approxi-
mations.

* A new scattering feature - the "slosh" - was introduced, and described bN a simple heuris-
tic scattering model. Scattering by small "sloshes" would be expected to behave ,Aith
time and polarization much like observed low angle, high resolution returns from calm-
w ater. ,.

0 The "plume" model of scattering from breaking waves seems able to account for man\ of
the observed characteristics of the Sea Spikes that populate the low grazing angle clutter
scene.

This report is intended to provide both a review and an extension of the state of our knowledge
in the field of low angle sea scatter. But it would appear that we have come about as far as possible
without more detailed knowledge of the surface features ultimately responsibly for the scattered field.
Although a "spectrum" has never been known to scatter an electromagnetic wave. models (like the
Bragg model) that require only the specification of a spectrum have an easy time of it. since the\
need never know what the surface actually looks like. A spectrum is a highly averaged, fictitious
entity in which all of the phases required to construct a real scattering surface are lost. In order to
quantify "'feature" scattering - from wedges, spray. sloshes, plumes, etc. - we must knok their
dimensions, lifetimes., distributions. etc. And since spectral theories cannot explain low angle sea
scatter, the accumulation of this information must be the next order of business. The existing assort-
ment of scattering theories and approximations should certainly suffice to produc." acceptable le.els of
accuracy once the actual scattering obstacles are defined.
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Appendix

SCATTERING FORMULARY

1. A Composite-Surface Bragg Model for Bistatic Scattering

Consider a surface element A with orientation defined by its normal h. illuminated from direc-
p tion k, and scattering into direction k,.as in the Fig. Al. %

The incident vector k, is assumed to lie in the y-z plane with grazing angle <," while the
scattering vector k, is defined by grazing angle ', and azimuth (or scattering) angle ,. The normal
h is defined by its inclination 0 and azimuth angle o. In terms of the fixed x-y-z coordinate system.

h = sin~sino.i + sin0coso, + cos0 . (Al)

, = 0. + cosi,' - sin,' . (A2)

= cos 'sin6i + cos ,"coso ,. + sin (A3)

Scattering from A depends on the local grazing angles , and ,, relative to the surface A.
These angles are given by

sin -u•, = -sin0cosk1'cos - sin i,'cos0 (A4)

sin, = + = sin Ocos cos0 - 0,) + sin 'cos0 (A5)

For a coordinate system on the scattering patch A, the bistatic cross section per unit area is -"

given by Barrick and Peake 119671 in the form

0;,(.) 47rk,,"i n , sin - a -1 W (K 1.K ,) (A O) "

where k,, is the radar wavenumber. and pp denotes the polarization (i.e.. pp HH or VV). The Sur-

face wave vector components are given by

:'K I  k,, (cos , cos 0, -cosb) (A7)

V

K, k,, cos., sin o, (A7),

and ihe coefficients a1,, are complicated functions of the angles above and the electrical properties of
the scattering surface. They are given approximately by

F.COS -- COS (A8)
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a[,= (cos ,Cos , - cosO, )/(sini, + l\e) (sin', + 1\ (A9)

w&here t is the dielectric constant of the surface (about 50 for sea water at microwave frequencies.)

However, the local components of the incident and scattered field vectors on A are generally
different from those defined in the radar reference system. That is, a rotation of hi out of the plane of
incidence will convert an initial horizontal or vertical polarization into a mixture of horizontally and
vertically polarized components on A. In Fig. A2 we represent the incident and scattered field vec-
tors in the radar reference system (x.y.z) as E. and EH , and the tilted, rotated surface element A as
described by its normal h .

The transformation of the incident fields to the surface A where the scattering actually takes place is
provided by the following vector relationships (p denotes the polarization. H or V):

"'Vertical" component on A due to the incident fields: ,

1, IAI C)

*'Horizontal" component on A due to the incident fields:

Eli', = (h X E',)NXi (All I I

The local scattered fields for these two polarizations are proportional to the angular coefficients mn
(A8) and (A9). so we write:

EHp - Ettp • cell,, El, - Etf, "oyt. (AI21

Finally. the scattered field in the radar reference frame is found from the component of (A12) in the , -
scattered field directions (denoted by a carat) defined in Fig. A2.

I E" E ),I a,., + (h x E') X h (-,//I (A13)

Note that cross-polarized terms, which we ignore here. could also be obtained from this formalisni.

The angular factors Iu,. in (6) were originally obtained from the square of the ratio of ,cattered to
incident field strengths. so we will replace them in our composite-surface bistatic model ,a ith the
corresponding expressions formed from (A 13): A"54i

1 , 1 (t +j (fl X f.,. X Ih(A 14u E

A similar expression was obtained by Valenzuela 119681 for the monostatic (hack,,catter case.
wkhich is often used as the current "Tvo-scale" or "Composite-Surface" Bragg model for r,idar
backscatter from the sea (for a recent application see Pierson and Donelan. 1987 .)

Finally. \ke assume that the wae spectrum W in (AX) is isotropic at the Brag resonant
"a~enumber. so is a function only of

K (K + Kg 2k,, cos ¢, (mnO,12.) (IA
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Using the Phillips [19661 spectrum for W( ):

W(K) = 0.005K 4 , (A16)

equation (A6) reduces to

in2d, , in2  1

.1..6 x 10- r i sin. r' , , 12 (A17)
sin4 ( ,/2)

The grazing angles are defined in (A4) and (A5), and the angular factor I cep, 12 defined in (A 14) is
assembled with the help of (Al), (A8). and (A9).

Keeping all of the angles straight in a completely general formulation of bistatic scattering in the
small-amplitude Bragg approximation is a real nightmare, so when using these expressions for exam-
ples in section II.A. I. we will introduce some rational simplifications. For example, the surface
slope angle will be taken as 30', which is the limiting angle for surface stability and thus quite likely
to be encountered close to the wave peaks. The radar-referenced grazing angles 4<' and 4,' will be
very much smaller than 30', so we will take them both to be vanishingly small. The local grazing
angles given in (A4) and (A5) will be approximated by the first terms in those expressions, noting,
however, that these terms contain the cosine of the azimuthal angles, so they will vanish for values of
these angles at the extremes of the allowed range of 0,. Even with these simplifications, the expres-
sions are sufficiently complex that little would be gained by displaying them here. The reader is
invited to reproduce them, if he wishes, from the recipe given above.

2. Bistatic Wedge Scattering by the MEC

Consider a wedge of length L and interior angle a with its edge lying in direction t in the x-y
plane. The incident and scattering directions are indicated by ki and k, respectively:

As in the previous case, we assume that the grazing angles 4<' and 4,' are so much smaller than the
wedge face angle (r - u)/2 that they can be ignored. All of the angles then lie in the x-y plane.

In the Method of Equivalent Currents (MEC) as described by Knott and Senior 119741. the scat-
tered field is expressed as an integral over a fictitious filamentary current laid along the edge C of the
wedge. where this "equivalent current" is of just such a form as to reproduce the results of the

Geometical Theory of Diffraction (GTD) in those special directions allowed by the GTD, and to pro-

duce a fictitious scattered field in all other directions. It is taken as an article of faith that the fields
so defined represent a generalization of the GTD fields, and have some relation to reality. The ficti-
tious currents are themselves non-physical and non-causal, since they depend upon the direction from
which the edge is observed - i.e.. on the location of the observer. (This is a marvelous example of
teleology, where the unknowable end configures the means to that end.) The scattered field defined
by this method is given by the expression:

E kR(X - Y) + h, h11 (X + Y)

E, (L" 2 ,- rR sin, sin ,d. (A18)

where X and Y arc the GTD diffraction coefficients.

sinr/nII(X. Y) -+ A1'9)
ti Cos (Tr/ n - Cos ( 1 , -"Y1) n Cos (r / 1t) - os( , + " / It
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In (AI8), the coefficients ei,.,t and h,., are the components of the incident (i) and scattered (s) elec- ,
tric and magnetic fields along the direction of the edge (t): the rest of the angles are defined in Fig.
A3. In (AI9), n = 2 - oa/r, and the angles -y,, are the incident and scattered angles measured

from the common wedge face in a plane perpendicular to the edge, so at very low grazing angles they

are both approximately equal to the wedge face slope angle (w - a)/2. For Vertical polarization, the
e's vanish, and the remaining h's cancel the sines in the denominator of (A18) for Horizontal polari-
zation, the h's vanish and the e's cancel the sines. This leaves an elementary sinx/x integral in
(Ai8), and the scattered field reduces to the simple form:

EnI(L. , ) = E, e R : Y) L sinc kL (cos , - cos o, - , A20)

where the - and + signs are used for H- and V-polarization. respectively. Using the lowk gra/ing
angle simplification indicated above for (X + Y), and defining cross section in the usual was,
[a = (47rR 2) E,/1 E,, 21, the bistatic cross section for a wedge of length L and edge orentation angle
0,, becomes

1H.V (L" e,, .a, 1 = C, 2 sinc 2 I kL (cos0,, - cos(0, -o ,, . (A2 I

For our standard stability-limited wedge angle of 120' , the polarization coefficients have the numeri- .

cal values

CH = -29 dB, C1, = -8 dB. (A22) )

e

3. Perturbation Theory fir Discrete Scattering Features p

There is an interesting, and often overlooked, difference between the Rayleigh'Rice perturbation

approximation [Rice, 19511, on which the cross section in (A6) is based, and the scattering integral 0,

approach used by Wright [19661. In the latter, the cross section is expressed in terms of an integral
over the surface perturbation, much as in a small amplitude physical optics approximation. but with

the boundary conditions treated somewhat differently in order to provide the polarization dependence
often missing in P.O. calculations (however, see Leader, 1971). Wright's result takes the form of the
cross section of a deterministic perturbation (x,y) over a flat surface:

4k 4

( - g .H( I IS J5 (xV ) - '- e d v -
2  (A23)

71"

where the angle coefficients may be written in the form iValenzuela. 19781,

= (f - I)[(l + cos2, ) - cos2 ,]sin2 A24)

Ifsin k + ( - costoI1 212

- I) s-.

Isin k + (f - cos2i'] A25
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Fig. 25 -The Surface Proximity Factor Fpj
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Fig. 30a -Sketch of "Plume" Geometry (Wetzel. 1986)
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Fig. 30b I- dealized Plumes on a Breaking Wave Face (Wetzel. 1986)
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