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. ) ABSTRACT

‘ -é This thesis provides a comparative analysis of various interconnection
»Q; networks and multiprocessor systems. The principle interest is in the anal-

e, ysis of the reliability and composite measures of performance and reliability

e ) of interconnection networks that connect processors to memories in large

"" multiprocessor systems. Specifically’ the Shuffle-Exchange multistage inter-

: -f:: connection Network (SEN) and its variants are evaluated and compared.
< :' Comparison is based on reliability, composite measures of performance and
- reliability, and cost.

. Closed-form expressions for the computation of the available bandwidth

«.:_ for multiprocessor systems with a capability for graceful degradation are

-:-‘_: developed. Then, the time-dependent reliability of the SEN and three

Lo fault-tolerant schemes aimed at improving system reliability are examined.

-l These schemes are the redundant network, the extra-stage network, and the
network augmented with intrastage links. Exact closed-form expressions

P for the time-dependent reliability of the N x N Shuffle-Exchange Network

R (SEN), the 8x8 and 16x16 SEN with an additional stage (SEN+), and the

';:- 4x4 and 8 x8 Augmented SEN (ASEN) are derived.

3 Upper and lower bounds useful for the analysis of larger SEN+ and

: ASEN networks are derived. . Numerical results for networks as large as

:: 1024 x 1024 are provided. A/comparison of these networks shows that,
:":3: on the basis of reliability, ti'e ASEN is superior to the SEN, SEN+, and
:,,ﬂ the redundant SEN (2-SEN). The results for the SEN+ are extended to
)- the case of an (uniform)Omega network. Further, through the novel use of

P hierarchical decomposition, results on the reliability of ASENs are extended

! o to include imperfect coverage and on-line repair.
; :ﬁ In the last chapter} performability analysis of a complete multiprocessor
! ~ system is conducted. The crossbar and the Omega networks are used to
4 represent the interconnection network and two levels of detail are presented
. for analyzing the crossbar. Bottleneck and sensitivity analysis of the mul-
:: tiprocessor system are also performed. Markov chains and Markov reward
7::0.. models are used in the analysis. In addition, the criteria for the lumping
‘,:";. of states in a Markov chain is extended to Markov reward models.
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Abstract

This thesis provides a comparative analysis of various interconnection net-
works and multiprocessor systems. The principal interest is in the analysis of
the reliability and composite measures of performance and reliability of inter-
connection networks that connect processors to memories in large multipro-
cessor systems. Specifically, the Shuffle-Exchange multistage interconnection
Network (SEN) and its variants are evaluated and compared. Comparison is
based on reliability, composite measures of performance and reliability, and
cost.

Closed-form expressions for the computation of the available bandwidth
for multiprocessor systems with a capability for graceful degradation are de-
veloped. Then, the time-dependent reliability of the SEN and three fault-
tolerant schemes aimed at improving system reliability are examined. These
schemes are the redundant network, the extra-stage network, and the net-
work augmented with intrastage links. Exact closed-form expressions for the
time-dependent reliability of the N x N Shuffle-Exchange Network (SEN),
the 8x8 and 16x16 SEN with an additional stage (SEN+), and the 4x4 and
8 x8 Augmented SEN (ASEN) are derived.

Upper and lower bounds useful for the analysis of larger SEN+ and ASEN
networks are derived. Numerical results for networks as large as 1024 x 1024
are provided. A comparison of these networks shows that, on the basis of
reliability, the ASEN is superior to the SEN, SEN+, and the redundant
SEN (2-SEN). The results for the SEN+ are extended to the case of an
(uniform) Omega network. Further, through the novel use of hierarchical
decomposition, results on the reliability of ASENs are extended to include
imperfect coverage and on-line repair.

In the last chapter, performability analysis of a complete multiprocessor
system is conducted. The crossbar and the Omega networks are used to rep-
resent the interconnection network and two levels of detail are presented for
analyzing the crossbar. Bottleneck and sensitivity analysis of the multipro-
cessor system are also performed. Markov chains and Markov reward models
are used in the analysis. In addition, the criteria for the lumping of states in
a Markov chain is extended to Markov reward models.
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Chapter 1

Introduction

In this thesis, combined performance and reliability measures are used to
evaluate the interconnection networks in large multiprocessor systems. Then,
this work is extended to the analysis of an entire multiprocessor system con-
sisting of processors, memories, and an interconnection network. The specific
networks examined are the crossbar and the Shufle-Exchange multistage in-

terconnection Network (SEN) and its variants.

Separately modeling the reliability and performance of such networks is
not new; many researchers have examined either reliability or performance
as separate measures of a network’s “goodness.” In general, however, the
reliability analysis of these networks has been limited to finding the proba-
bility that a given source can communicate with a given destination, which
is called two-terminal reliability; simulation to examine multi-terminal reli-
ability; or analytic arguments for stating the fault-tolerance properties of a
network. This type of analysis is too crude to permit a useful assessment
of a large multiprocessor system (MPS) designed to permit graceful degra-
dation. Previous work on performance has concentrated on the permutation

capabilities of these networks under a no-fault assumption; or, when faults

----- -_----_\“--*-“I.-‘

POt I SO IO VA Tt AL
$'\. '.'\.ﬁ-'). *.\\._.*.*. \\. *.'- RSN




h

‘O
D

- o
s

«

«
Y

[ 4

sY.

are allowed, analytical work has been limited to special classes of permuta-

tions, since the optimal realization of arbitrary permutations is known to be
intractable. Also, bandwidth analysis has been limited in a similar manner.

In this thesis, reliability analysis of different topologies will be conducted
by “normalizing” the complexities of the different networks based on gate
count. Thus, a standardized basis can be used to compare different fault-
tolerant schemes. Combinatorial methods and Markov models are used in
the analysis; and, whenever possible, exact reliability expressions are derived.

Several researchers have looked at combining performance and reliability.
The term for this combined measure has been coined as performability by
Meyer {60]. Previous work on the theoretical development of performability
can be found in 31}, [61], and [62]; some examples have been presented in
(48], [60], and [90].

While it is recognized that many measures may be used for combining
performance and reliability, the focus will be on three such measures. They
are: the average instantaneous performance level at time ¢, the average accu-
mulated work until time ¢, and the distribution of the cumulative work until
system failure. These measures include, as special cases, several “pure” per-
formance measures (the maximum and minimum performance levels and their
product with the time-to-failure random variable); the distributions of these
performance measures; and “pure” reliability measures (the distribution of a

system’s lifetime and the mean time to failure).

In the remainder of this chapter, the salient features of multiprocessor sys-
tems and interconnection networks will be presented. Then, in the next chap-
ter, a more thorough examination of Multistage Interconnection Networks
(MINs) will be conducted. (The emphasis in this chapter is on unique-path

MINs and the methods used to add fault tolerance to these networks.) The
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following chapter contains a description of the networks to be analyzed. The
remaining chapters are devoted to performance, reliability, and performabil-
ity analysis of the networks. A detailed analysis of a complete multiprocessor
system using three different interconnection network models is also included

as a final example of the application of performability analysis.

1.1 Multiprocessor Systems

In recent years, significant advances have been made in parallel processing.
Real-time applications which require enormous computing power appear to
be the driving force behind these endeavors. Execution rates exceeding one
billion instructions per second are required for many applications such as im-
age processing and weather forecasting. These execution rates appear to be
unachievable on uniprocessors performing serial instruction execution. Multi-
processor systems using many processors executing in parallel, however, have
the ability to perform at these rates. As mentioned in {103|, there are several
experimental multiprocessor systems employing a large number of processing
elements (PEs) in various stages of development, and today multiprocessor
systems with hundreds and even thousands of processors exist. These sys-
temns are composed of three major components: processors, common memory
modules, and an interconnection network.

Figure 1.1 provides a simplified view of these large multiprocessor systems.
These systems consist of sources (Ss), an interconnection network (IN), and
destinations (Ds). The sources are processors or PEs, and the destinations
may be either memory modules (MMs) or other PEs. The IN is used to

provide a communication path between particular source-destination (S-D)

pairs.
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Figure 1.1: Simplified Multiprocessor System.

As the number of processors used in these multiprocessor systems in-
creases, so does the need to insure that the communication network between
the system components does not become a bottleneck to achieving the desired
concurrent processing speeds.

In order to take advantage of the high computation speeds of today’s
powerful microprocessors in a multiprocessor architecture, the communica-
tion between these processors must be extremely efficient. Furthermore, the
network that performs processor-to-processor or processor-to-memory con-
nections must be robust. That is, the IN must be reliable and relatively

insensitive to a small number of failures in the components which comprise

the network. A brief survey of interconnection methods is found in [30].
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1.1.1 Multiprocessor Organization

A large multiprocessor computer utilizing an IN can usually be classified
as a Single-Instruction Multiple-Data (SIMD) organization or a Multiple-
Instruction Multiple-Data (MIMD) organization. In fact, some architectures
provide a combination of these two organizations.

In SIMD organizations, all PEs receive the same instruction broadcast
from a central control unit, but they operate on different data sets from
distinct data streams. One can think of these multiprocessor systems as a
synchronous array of parallel processors. These types of machines are usually
designed to perform vector computations over arrays of data. In MIMD
organizations, subsets of the PEs operate in concert using a particular set of
instructions. All PEs derive their data sets from the same shared-memory
structure.

SIMD computer organizations usually use a given interconnection network

(IN) based on four decision criteria [42]:

1. operation modes,
2. control strategies,
3. switching methodologies, and

4. network topologies.

Since SIMD machines operate in a lock-step fashion, a synchronous opera-
tion mode, rather than an asynchronous mode, is used. A centralized control
strategy is usually prcferred over distributed control. With this strategy, all

switching elements are controlled by a single controller. While th: . 2 switch-

ing methodologies (circuit, packet, and combined) can be identified, circuit




h switching is generally used in SIMD machines. In a circuit-switched envi-
ronment, a physical path is established between each S-D pair, whereas in

a packet-switched environment, data is broken into small packets and each

packet is routed through the IN without establishing a physical path. Circuit

switching is preferred if long, bulky transmissions are required between S-D
pairs. Finally, both static and dynamic topologies exist in INs. Static INs
are usually chosen for SIMD machines. In a static IN, once a physical path
is established between a given S-D pair, no reconfiguration of the switching
elements (SEs) and links along this this path is made. In a dynamic IN, links ,

can be reconfigured to satisfy other S-D requests.

In a MIMD computer organization, each processing element contains some
local memory, so the frequency with which each PE requests access to the
IN is expected to be less than in a SIMD. The MIMD computer organization
may use both synchronous and asynchronous operation modes. Distributed
control of the components of the IN is often used, so self-routing networks
are common. The switching methodology may be any of the three mentioned
for SIMD machines, and the network topology is heavily dependent on the

size of the multiprocessor system and the perceived application.

1.1.2 Network-Oriented Architecture

In [25], a network-oriented view of multiprocessor organizations is presented. \
The two common network-oriented systems are: the processor-to-memory
and the processing element-to-processing element (PE-to-PE) architectures.
Each PE is composed of a processor and a local memory. In the processor-to-
memory architecture, sources are the processors and the destinations are the
memory modules (MMs). The interconnection network is bidirectional, and

it is used to fetch instructions and data stored in the MMs. This is a shared-
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memory interprocessor communication system, and the associated multipro-
cessor system is often referred to as a tightly-coupled system. In this system,
the interconnection network can be expected to be heavily loaded. In the PE-
to-PE architecture, each PE is connected to the network via both an input
and output link of a unidirectional interconnection network. The instructions
and data for each PE are considered to be contained in the local memory asso-
ciated with that PE, so the network is used only for inter-PE communication.
The loading on this network will be far less than on a comparable processor-
to-memory network. The multiprocessor systems using this type of network
are often called loosely coupled, and their inter-communication strategy is

called message passing.

1.2 Interconnection Networks

Interconnection strategies for multiprocessor systems range from the time-
shared bus (Figure 1.2) to the crossbar switch. The time-shared bus is in-
expensive, but it does not permit simultaneous communication between dis-
tinct components attached to the bus. Even the fastest of these buses causes
the multiprocessor system using it to become inefficient when a moderate
number of components attempt to communicate in a time-shared manner.
Bus-oriented multiprocessor systems may provide acceptable performance for
systems with up to 30 processors, but, given the current state of technology,
it is unlikely that a shared-bus architecture would be viable for systems with
1000 or more processors [94]. The key distinction between the bus and the
MINs that are examined in this thesis is that the bus allows transmission
between just two units at any time; whereas a MIN allows a number of par-
allel transmissions to take place. Usually a bus is a slower, although less

expensive, network than the MIN.
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Figure 1.2: Multiprocessor System Using a Bus Architecture.

Point-to-point communications are also used in today’s multiprocessor
systems. In a graphical representation of point-to-point interconnections,
the PEs are the vertices and the dedicated links are the arcs. In Figure 1.3,
the mesh and ring are illustrated. In these networks, there is often a bound
placed on the number of processors/memories that a given processor can
be connected to. As the size of the network grows, the bandwidth of these
networks becomes too small for real-time applications.

The fastest of the interconnection strategies is the crossbar switch (Figure

1.4). It allows simultaneous connections between all source-destination pairs

as long as no two sources request the same destination. However, for N
sources and NN destinations, the crossbar switch requires O(N?) connections.
Thus, for large N, the use of a crossbar is prohibitively expensive. In fact, its

F. cost may dominate the cost of the entire multiprocessor system. Furthermore,
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{a) Nearest-Neighbor Mesh Network (b) Ring Network

Figure 1.3: Point-to-Point Communications.
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effective use of the available bandwidth may not be achieved; thus providing

very little benefit in terms of the crossbar’s actual throughput [94].

The Multistage Interconnection Network (MIN) is a compromise between
the IN extremes. It offers simultaneous communications at a lower cost than
the crossbar, has a smaller number of connections leading out of a source
or into a destination, and for large systems, it has a higher bandwidth than
the time-shared bus. A MIN has several stages of switching elements (small
crossbar switches) arranged so that many source-destination connections can
be made as long as no two connections require a common link. Figure 1.5
is an illustration of a 16 x 16 Shuffle-Exchange Network which is an unique-
path MIN. The hardware complexity of this network, expressed in terms of

the number of required switching elements, is O(N log N).

In multiprocessor systems, the amount of parallelism that can be achieved
is often a function of the parallel accessibility of data by the PEs. Depend-
ing on the degree of fault-tolerance that the system enjoys, the presence of
switching element and/or link failures may seriously degrade the permutation

capability and bandwidth of these systems [77].

A number of unique-path MINs have been proposed, and a multitude
of evaluation metrics have been used to analyze these MINs; however, no
one network appears as the clear choice for a given application. This the-
sis will examine a unique-path MIN called the Shuffle-Exchange multistage
interconnection Network (SEN), which is representative of several proposed
MINs. Some variants of this MIN are also examined. Because the most
critical properties of a MIN in a large multiprocessor system are reliability
and performance, the emphasis will be on a combined evaluation measure
for these INs. In gracefully degrading multiprocessor systems, faults can be

tolerated in the processors, memories, and/or the IN. These systems require
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new performance-related measures which are more informative than tradi-
tional measures. So new measures such as computational availability and

performability will be used to deal with these systems.
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Chapter 2

Multistage Interconnection Networks

2.1 Introduction

Multistage interconnection networks represent a large subset of the inter-
connection networks proposed for large-scale multiprocessor systems [86]. In
this chapter, the basic building block of the MIN, the switching element, is
described. Then, the three major classes of MINs are discussed, followed by
a description of the characteristics of unique-path and multiple-path MINs.
The last section reviews the basic fault models used to analyze multistage

interconnection networks.

2.2 Switching Element Description

The basic building block of a MIN is the switching element (SE). The switch-
ing element is essentially a ¢ x d crosspoint switch. There are ¢ input links
and d output links attached to the SE. These SEs are then interconnected
in a particular pattern to form a specific multistage interconnection network.
For clarity of explanation, let ¢ = d = 2. Switching elements of this size are

frequently encountered in MINs because of the simplicity of their design.

13

e

AN oy W U

s _a .
A A AR A A




.I"-..‘:A

.
<

L &

4
“1‘\"1‘\’.’[1’.. X eIl S A X 4

(a) Labeling of the Links
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(b) Transmit (T) Operation (c) Exchange (X) Operation

Figure 2.1: 2 x 2 Switching Element.

Figure 2.1 shows a 2x 2 switching element and the two operations it can
perform. Figure 2.1(a) shows the labeling of the input and the output links.
The SE can either transmit (T) the inputs directly through itself as in Figure
2.1(b) or exchange (X) the inputs as in Figure 2.1(c). In general, the MINs

examined in this thesis will be constructed from 2 x 2 SEs.

2.3 MIN Classification

MINs are often classified based on their connection capability and their ability
to realize permutations. The three major classes are strictly non-blocking,
rearrangeably non-blocking, and blocking networks [50].

A strictly non-blocking network can realize any permutation of its inputs.
It can connect any source to any non-busy destination without regard for

the current state of the network. Such networks have received considerable
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Figure 2.2: Clos Network.

attention in connection with telephone switching systems. The Clos network

(21] (Figure 2.2) is an example of such a network. The hardware complexity

R
(el By

of the strictly non-blocking networks, however, is O(N(log N )?), so they are
not suitable for multiprocessing systems.

A rearrangeably non-blocking network can also realize any permutation on
its inputs. It can connect any source to any non-busy destination, but it may
require the rearrangement of existing connections by changing switching ele-
ment settings. The Benes network [11] (Figure 2.3) is a member of this class,
and it has been studied extensively for use in synchronous data permutations
R and asynchronous interprocessor communications [30]. These networks have
a hardware complexity of O(N log N). From a cost perspective, these net-
works may be acceptable for multiprocessor systems; however, for networks
of moderate size, the routing algorithms used for rearranging the existing

L o connections make them too slow.
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In blocking networks, simultaneous connections of more than one source-
destination pair may require the use of common links. Thus, one or more
connections may be blocked. Many networks in this class have been studied
extensively. Examples are the Baseline [104], SW Banyan [33], Omega {54],

Indirect binary n-cube 70|, and Delta [69]. These networks have a hardware

Yy s 8 1 s

complexity of O(N log N), but in most implementations of these networks,
they are only half as complex as the rearrangeably non-blocking networks.
Several of the networks in this class were shown to be topologically equiv-
alent to the Baseline network in [104]. The basic networks in this class are

often called unique-path MINs meaning that there exists only one path be-
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tween any source-destination pair. This structure prevents such MINs from
realizing every arbitrary permutation. However, unique-path MINs can real-
ize many permutations useful for synchronous parallel computations [54,70.
Furthermore, the simplicity of their distributed routing algorithms have made
them very useful for multiprocessor applications.

MINs are attractive networks for tightly-coupled multiprocessor systems,
and offer a good balance between cost and performance [1]. Popular among
the MINs considered for large multiprocessor systems are networks with dis-
tributed routing algorithms which obviate the need for a central controller to
operate the MIN. Further, those networks which also possess the self-routing
property are often used because of the ease of setting the switching elements
with a destination tag generated by the source. Examples are the Omega {54]

and the Delta {68] networks.

2.4 Unique-Path MINs

Figure 2.4 shows a Venn diagram for the classes of unique-path MINs. The
Banyan networks introduced by Goke and Lipovski in [33] form the most
general class of unique-path MINs. Within this class are two large subclasses,
they are: (1) the Generalized Shuffle Networks (GSN) introduced by Bhuyan
and Agrawal in [14], and (2) the Delta networks introduced by Patel in [69,68].
A GSN connects M sources to N destinations for arbitrary values of M and
N. The Delta network connects a” sources to b" destinations through a x b
crossbar switches at each stage. Included within the intersection of these two
classes of networks are the MINs constructed from 2 x 2 SEs. In [104], Wu

and Feng showed the topological equivalence of several of these networks to

the Baseline network. The Baseline [104], Data manipulator (modified) [104],
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A: Banyan
B: GSN (M x N for arbitrary M and N)

C: Defta @"xp™

D: Baseline
Data Manipulator (moditied)
Flip
Indirect Binary n-cube
Omega
Regular SW Banyan (S =F = 2)
Reverse Baseline
SEN

Figure 2.4: Relationship of Selected MINs to the Class of Banyan Networks.

Flip (8], Indirect binary n-cube [70], Omega [55], Regular SW banyan (S =
F = 2) [33], Reverse baseline [104], and SEN are topologically equivalent.

2.4.1 Characteristics

Information is passed through the MIN in one of two ways: (1) circuit
switched, or (2) packet switched. In a circuit-switched mode, a source is
granted a path through the network to a given destination, and it holds that
path until it completes its data transfer. In this mode, a source commu-
nicates with a destination along a physical connection that is established
through several switching elements. The links and SEs along this path are
used exclusively by the S-D pair.

In a packet-switching mode, the information each source sends to a desti-

nation is broken into small packets. These packets then individually compete
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for a path through the network. No dedicated, physical path from the source
to the destination exists. Instead, each switching element must have the ca-
pability to store and forward the individual packets, and packets compete
for links within the IN. Packet switching can improve the throughput of the

MIN over that obtained by the use of circuit switching, but it will increase

—y—

both the S-D transmission delay and the cost of the MIN since each SE must

have a buffering capability.

Unique-path MINs have many properties that make them attractive for

-..' -ﬂ

multiprocessor systems, including an O(N log N) hardware cost as opposed
to the O(N?) hardware cost of crossbar switches, the ability to provide up

to N simultaneous connections, O(log N) path lengths, and the existence of

simple, distributed routing algorithms.

MINs with log N stages also have two other important properties:
1. there exists an unique path from each S to each D, and
2. distinct S-D paths may have common links.

These properties lead to two significant disadvantages. First, a S-D con-
nection may be blocked by a previously established connection (even if the
destinations involved are distinct) causing poor performance in a random-

access environment. Second, the failure of even a single link or SE discon-

nects several source-destination paths, lowering reliability. The reduction in

performance due to blocking and the decrease in reliability due to the lack

“2

)

of fault tolerance become increasingly serious with the increase in size of the
network because the number of paths passing through a given link increases
linearly with N [53].

While MINs can be built from any combination of switching elements [14],

for the sake of brevity and clarity, the SEN presented in this thesis is defined
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for N = 2" sources, N destinations, and n stages, each stage consisting of
N/2 switching elements. The stages are numbered from 1 to n, and the

switches in each stage are numbered from 0 to N/2 — 1.

F 2.4.2 Permutation Issues

The ability of a MIN to realize any arbitrary permutation is often used as a
performance measure. The failure of a single SE in an unique-path MIN can
E have a significant impact on this measure. For example in [72], the number

of distinct permutations that are admitted by a 2™ x 2 MIN which consists
of n stages, using 2 x 2 SEs is 2*?""". Now, if one of the SEs in the network

becomes stuck-at-T or X, the number of admissible permutations by the

faulty network is reduced by one-half. Furthermore, several sources cannct
be connected to certain destinations. For example, if the faulty switching
element is in stage k, 1 < k < n, there are some 2* sources where each source
cannot be connected to 2"~* particular destinations.

It was proposed in [29] that these unique-path networks be augmented by
adding one additional stage, so that in the event of a single faulty switch, one
is still able to achieve all the permutations possible in the fault-free network
using at most two passes through the network. This introduces the concept
of multiple-path MINs. Their purpose is to improve the fault tolerance of the

IN with a modest increase in network complexity.

2.5 Multiple-Path MINs

In setting up a connection (or routing a packet in a packet-switching environ-
ment), multiple-paths MINs allow an alternate path to be chosen whenever
conflicts arise with other connections or when faults develop in the network.

Thus, multiple-path MINs have higher reliability than unique-path MINs.
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. The multiple-path MIN may also enjoy increased performance in a random-
access environment.
Some research has been done on the fault-tolerance properties of various
n multiple-path MINs. For example, in [67] Parker and Raghavendra introduce
7 the Gamma network and examine its permutation capabilities. The Gamma
network is a multiple-path MIN with N = 2" sources, N destinations, and
log, N stages. Each stage has IV 3 x 3 SEs. The various paths are repre-
= sented in the redundant number system. In [76], the terminal reliability of
d the Gamma network and two of its variants (Bigamma and Monogamma) is
examined. The analysis is restricted to terminal reliability since the multi-
terminal reliability problem is intractable [6].
: Ciminiera and Serra introduce another fault-tolerant MIN in [19]. This
N multiple-path MIN is called the F network. The N x N F network has N
SEs in each of log, N stages and uses 4 X 4 SEs. No reliability analysis is
. attempted, instead it is shown that multiple paths exist between each S-D
;: pair.
More recently, Raghavendra and Varma introduced the INDRA (Inter-
connection Networks Designed for Reliable Architectures) class of multiple-
: path networks in [78]. The Indra network with N = 2" inputs and N out-
¥ puts achieves R redundancy (R > 2) when the network is constructed using
logg N +1 stages of R x R SEs; each stage has N SEs, and N must be a power
of R. The Indra network also uses multiple connecting links to the sources
ﬁ- and destinations that make it (R-1)-switch fault-tolerant in the first and last
stages. R? paths exist between each S-D pair. The reliability analysis in [78]
is limited to terminal reliability.
Y
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2.5.1 Fault-Tolerance Issues

Often, as the number of components in a conventional multiprocessor system
increases, so does the rate of failure of the system. In (7], this type of behavior
is referred to as “coherence.” The criteria for judging the design of a fault-
tolerant network can be found in [20].

In traditional fault-tolerant architectures, where failure-free operation is
desired for long time intervals, emphasis is placed on the use of hardware
replication and redundancy to obtain the desired reliability goals. In the
case of large-scale parallel computing with homogeneous processors, the re-
dundancy needed for fault tolerance is inherent in the design itself. The
objective in these systems is to allow the system to gracefully degrade down
to some specified level of performance [77]. However, when planning such a
large multiprocessor system, the fault tolerance of the IN which connects re-
dundant sources to redundant destinations is often overlooked. While unique-
path MINs are no more susceptible to component failures than a redundant
network, the effects of such failures are far more dramatic. This is especially
true in large multiprocessor systems.

In large multiprocessor systems, hardware fault tolerance can be achieved
in two ways: (1) at the system level, and (2) at the processor/component
level. Hardware fault-tolerance at the system level is achieved by successfully
identifying the fault, isolating it, and performing system reconfiguration and
recovery. This fault-tolerant technique is preferred over redundancy and data
replication at the processor level since it requires much less hardware overhead
[77].

In [65], three techniques are mentioned for providing fault tolerance in a

MIN. They are:

1. software,
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2. hardware/software, and

3. redundant-path hardware.

The purely software approach includes methods such as error-detecting and
error-correcting codes. These methods, however, are oriented toward insur-
ing that correct data is received at a destination given that the data is ever
received. In the hardware/software approach, one uses redundancy at the
component level to achieve fault tolerance. If, for example, triple-modular
redundancy is used, the hardware costs are roughly tripled. The third tech-
nique, the use of redundant paths, can be achieved either inherently in the
network design as in [11] or [67], or by the addition of extra hardware to
achieve redundant paths between each S-D pair. Three ways to add extra
paths are: through additional links, additional stages, and duplication of an

existing network.

2.5.2 Switch versus Link Complexity

There are two ways for a given MIN to possess the multiple-path property.
Multiple paths may be inherently present in the definition of the MIN, or
they may be created by augmenting the topology of an existing unique-path
MIN. In any case, they have a higher hardware cost than unique-path MINs

in terms of
1. the number of stages of switching elements,
2. the number of switching elements per stage, and/or
3. the size of the switching elements.

These three factors contribute to what is usually called the switch complezity

of a MIN. Another measure of the cost of a MIN is its link complezity, which
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! depends on the number of interstage links, the number of intrastage links (if
any), and the number of stages. Link complexity is an important measure
because the implementation of MINs is often input/output or pin limited, at

every level of integration. For instance, at the integrated circuit level, if each

>

R

LA integrated circuit contains one SE, the size of the switching element is usually
determined by the number of pins available and not by the complexity of the
logic in the switch. Also, at the wafer scale integration level, if a MIN with

- a large number of sources and destinations were to be laid out on a single

wafer, the links would be the limiting factor on the chip [102]. That is, the
links would consume most of the area of the chip, rather than the SEs. Of
the two types of links in MINs, interstage links tend to be more expensive

than the intrastage links [53].

Y
v

2.5.3 Routing Considerations

The routing strategy is a key issue in multiple-path MINs. The topology
= of a multiple-path MIN may allow rerouting to be done only at the source
or some fixed points in the network. In that case, a busy link, a faulty
link or a faulty switching element encountered while setting up a path may

- necessitate backtracking to a stage where a fork exists in an attempt to find

.I“.Iﬂ. ll

an alternate path. Backtracking may be eliminated if the paths between every
source-destination pair in a multiple-path MIN have a fork at every stage. As
might be expected, multiple-path MINs which use backtracking tend to have

lesser hardware complexity than nonbacktracking MINs. But backtracking

Lo

MINs may be difficult to implement since they require bidirectional paths

and reverse queues [51].

The proper sequencing of packets in a packet-switched environment is

d another problem that must be addressed by the routing strategy. Failure
).
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o ! to properly sequence packets can cause computational inconsistencies. If
'.q buffering is used to overcome this problem, this will lead to further increases
": in hardware and buffering delays. This problem can be resolved by using
"- ~ virtual circuit techniques or otherwise restricting the paths used when the
; .": proper sequence of packets has to be maintained.

i:: As mentioned before, the performance of multiple-path MINs is usually
. better than that of unique-path MINs since alternate paths can be used to
N reduce the effect of blocking in a random-access environment.
o
s

o 2.6 Fault Models

:, .. A fault model captures the effects of physical failures on the operation of a
P system. For MINs, there are three fault models in use:
-

A
; 1. stuck-at fault model,

- 2. link fault model, and

N

< " .
e 3. switch fault model.

) . .
. In the stuck-at fault model, failures are assumed to cause a switching element
::., to remain in a particular state regardless of the control inputs given to it, thus
-,
_x% o restricting the ability of the SE to set up proper connections. The affected

switching element can be used to set up paths if the stuck-at state is also the

a
-
-

required state. The link fault model assumes that a failure affects an individ-

X
- o
-

R
LR

ual link of a switching element, leaving the remaining part of the switching

element operational. The switch fault model is the most conservative of the

: three and assumes that a failure makes a switching element totally unusable
: [50]. Analysis of networks in this thesis will use the switch fault model. Note,
1 o however, that a link fault model can simulate the switch fault model, but not
:;::: - vice versa.
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! In the next section, a detailed description of the SEN and its variants will
be presented. Also included is a description of the crossbar switch.
.
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Chapter 3

Description of MINs to be Analyzed

In this chapter, descriptions of the networks selected for analysis will be pre-
sented. The networks are: (1) the crossbar network, (2) the Shuffle-Exchange
MIN (SEN), (3) the Shuffle-Exchange MIN with an additional stage (SEN+),
(4) the Redundant SEN, and (5) the Augmented SEN (ASEN).

While the SEN and its variants were selected for analysis, this work can
be extended to many other MINs since the SEN is just one network in a
large class of topologically equivalent MINs that include the Omega, Indirect
binary n-cube, and Baseline [104].

3.1 Crossbar Network

An N x M crossbar network allows all possible connections between the N
inputs, termed sources (Ss), and the M outputs, termed destinations(Ds).
In general, N does not have to equal M, but to permit comparisons with the
other networks in this thesis, only N x N crossbar networks will be considered.

Figure 1.4 illustrates this network.

As long as no two sources request the same destination, any arbitrary

permutation (one-to-one mapping) is possible. Hence, the crossbar network

27
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is non-blocking. However, when two or more sources request the same des-
tination, contention at the destination input port will decrease the available
bandwidth of this network. As mentioned earlier, the network complexity is

r O(N?) which is not practical for large multiprocessor systems.

3.2 Shuffle-Exchange MIN (SEN)

The class of MINs to which the SEN belongs is termed Delta networks. The

[y By W

specific SENs to be examined will have N = 2" inputs and N outputs. There
is an unique path between each source-destination pair. The SEN has n
stages, and each stage has N/2 switching elements (SEs). The stages are
labeled from 1 to n, and the switching elements at each stage are labeled
from 0 to N/2 — 1. The interconnection pattern between the stages is the

2 x 2™ ! shuffle permutation. The position of switching element ¢ in stage j

can be denoted as SE; ;.

9 Figure 3.1 illustrates a SEN for N = 8. An 8 x 8 SEN has 8 sources, 8
destinations, and 3 stages each with 4 SEs. The network complezity, defined
as the total number of switching elements in the MIN, is (N/2)(log, N), which
for this example is 12.

: The SEN is a self-routing network. That is, a message from any source
to a given destination is routed through the network according to the binary
representation of the destination’s address. For example in an 8 x 8 SEN, if
S = 000 wants to send a message to D = 101, the routing can be described

o, as follows: S = 000 presents the address of D = 101 plus the message for D
to the SE in stage 1 to which S = 000 is connected (SEq ;). The first bit of
the destination address (101) is used by SEg, for routing. So output link 1 of

‘ SEy; is selected. At SE; ; the second bit of D (101) is used and output link 0

‘ of SE, ; is used. Finally, at SE, 3 the third bit {101) of D is used and output
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Stage 1 Stage 2 Stage 3
000 — 000
001 — — 001
010 - 010
011 — — 011
100 — 100
101 — — 101
110 — 110
111 — — 111

Figure 3.1: 8 x 8 Shuffle-Exchange Multistage Interconnection Network.

link 1 of SE, 3 is selected. So S = 000 delivers the message to D = 101 using
only the destination’s address for routing control. Figure 3.2 shows this S-D

connection.

3.3 Shuffle-Exchange MIN Plus (SEN+)

An N x N SEN+ network is an N x N SEN with an additional stage. Figure
3.3 shows an 8 x 8 SEN+. The first stage (labeled stage 0) is the additional
stage. The addition of the extra stage requires implementation of a different
control strategy. Several control strategies for the SEN+ network can be
selected. However, the strategy chosen may affect both the bandwidth and

the reliability of the network.

Adding a stage to the SEN allows two paths for communication between

each source and every destination. (Recall that the SEN is an unique-path
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Stage 1 Stage 2 Stage 3
000 SE 000
0.1

001 : — 001
W 0

010 — SE — 010

011 — 1.2 L 011
2 100 — se, .1 100
R 101 — '3 Jon 101

110 — — 110
. 11— 111

Figure 3.2: Routing for Communications Between S = 000 and D = 101 in
the 8 x 8 SEN.

wi
?\:ﬁ Stage 0 Stage 1 Stage 2 Stage 3
000 — — 000
001 — — 001
‘i:: 010 — - 010
v 0t [ 011
100 — ‘ — 100
5 o1 = — 101
N
1104 - 110
111 — — 111
>
; Figure 3.3: 8 x 8 Shuffle-Exchange Multistage Interconnection Network with
an Extra Stage.
1
L
®
n ;
R R S B e N N o RS

onc'ﬂo.!.l..!.i.o e, X



Lal

Cad

e

a

"

= 21
-

" Stage 0 Stage 1 Stage 2 Stage 3
P . 0
- 000 L 000

: 001 Eo.0 SEo,1|f PEo,2 001

" 0

L 010 010

-,

-

’

. 100 100

- . 101 _SE2,0 SE2,1 SE2,2 1 101
K 0
110 —o SE £ — 110

: ‘11 — 3.1 3.9 P

x Figure 3.4: Two Paths for Routing Communications Between S = 000 an¢
\ D =101 in the 8 x 8 SEN+.

‘_ff MIN.) While the paths in the first and last stages of the SEN+ are not
I

o disjoint, the paths in the intermediate stages do traverse disjoint links. As
-

- can be seen in Figure 3.4, S = 000 can reach D = 101 by two paths. So path
vl redundancy is achieved in the SEN+ at the expense of one extra stage added
y

.- to the SEN. The network complexity is (N/2)(log, N + 1). Thus, the cost of
” -

» - the SEN+ over that of the SEN is N/2 switches or a fractional increase of

1/log, N, small indeed for large N. One question to be addressed in Chapter

5 is how much increase in reliability is obtained by this amount of redundancy.

N~ A G

Since the purpose of the extra stage in the SEN+ is for reliability en-

R
el‘

hancement, several control strategies may be considered. First, a switching
’ element in stage O remains in a straight-through (T) setting until it detects
§ a failure of the switching element in stage 1. Then, the SE in the first stage
3 e selects the exchange (X) configuration for subsequent memory accesses. This
3
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. strategy allows two paths for each S-D pair given that failures only occur in

the second stage; however, it ignores the status of the SEs in log, N of the

stages.
p In the second strategy, a switching element in stage O uses the T setting
W until a failure in a SE along the path from a given S to a given D is detected.

At that time, the SE in stage 0 is placed in the X setting for all future
accesses between that S-D pair. In this way, two paths between each S-D

pair are realized given that the failures occur only in the intermediate stages

of the SEN+.

Finally, one can modify the second strategy so that if a failure occurs in the

last stage of the SEN+, then the network reconfigures itself so that no further

3’: accesses are made to the two Ds attached to the SE in the last stage. Since
‘ several paths are no longer considered, this will reduce congestion within the
reconfigured network. In the remainder of this thesis, the unmodified second
.. strategy will be considered. '
t} Figure 3.3 shows that the network complexity for the 8 x 8 SEN+ is 16. :
There are 8 sources, 8 destinations, and 4 (i.e., log, N + 1) stages each with \
4 SEs.
N, i
~ 3.4 Redundant SENs
Another scheme for providing fault-tolerance in unique-path MINs is the
» complete replication of the network. Let K be the number of copies of the
;ﬁ network, then since these networks are arranged in parallel the K-redundant
network is (K — 1) fault-tolerant. The cost of a K-redundant SEN is at least :
K times the cost of the SEN since K copies are necessary and additional !
o links are required from the sources to the network and from the network to )
s the destinations. The case of K = 2 will be considered in Chapter 5.
:_é
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Figure 3.5: 8 x 8 Augmented Shuffie-Exchange Multistage Interconnection
Network.

3.5 Augmented SEN (ASEN)

An Augmented Shuffle-Exchange Network (ASEN) is a SEN with one less
stage, additional intrastage links called auziliary links, multiplexers, demulti-
plexers, and a slightly more complex switching element. The ASEN obtained
from modification of the corresponding SEN constructed from 2 x 2 SEs is
considered in this thesis. (In [53], this MIN is called an ASEN-2.) The ASEN
has N 2 x 1 multiplexers, N 1 x 2 demultiplexers, and log, N — 1 stages of
N/2 switches. Figure 3.5 shows an 8 x 8 ASEN. The SEs in the last stage
are of size 2 x 2 or SE;. (This is the basic SE used to construct the SEN and
SEN+ networks.) The remaining switching elements are of size 3 X 3 denoted
as SE;. In each stage, the SEs can be grouped into conjugate pairs. That
is, the SEs ir such a pair are connected to the same pair of SEs in the next

stage. These conjugate pairs can then be grouped into conjugate subsets,
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where a conjugate subset is composed of all SEs in a particular stage that
lead to the same subset of destinations. The ASEN achieves the multiple-
path property by permitting two SEs in the same conjugate subset that are
not a conjugate pair to communicate through auxiliary links. The SEs which
communicate through the use of auxiliary links are called a conjugate loop.
The conjugate loops are formed in such a way that the two switches forming
a loop have their conjugate switches in a different loop. These pairs of loops
are called conjugate loops. Observe that this construction of the network has
two benefits. First, the network can tolerate the failure of both switches in
a conjugate loop. Second, it also provides a topology which lends itself to
on-line repair and maintainability. That is, a loop can be removed from the
ASEN without disrupting the operation of the network. In stage 1 of the
8 x 8 ASEN shown in Figure 3.5, SEs 0, 1, 2, and 3 form a conjugate subset;
within that subset, SEs 0 and 2 are a conjugate pair; and SEs 0 and 1 form
a conjugate loop. Figure 3.6 shows the multiple paths between S = 000 and
D = 101. The network complexity for the Nx N ASEN is (N/2)(log, N —1),
but the SEs are not all of size SE;.

A self-routing algorithm is also used for the ASEN. Each source has a
primary multiplexer and SE and a secondary multiplexer and SE. Each source
attempts entry into the ASEN via its primary multiplexer and SE. If either
primary component is faulty, the request is sent to the secondary multiplexer.
If the secondary multiplexer is faulty, the ASEN is failed. For stages 1 through
n — 2, requests are first routed through the usual output link; if it is busy or
if the successor SE (in the next stage) is faulty, routing is attempted via the
auxiliary link. A faulty demultiplexer at the output of the ASEN is regarded
as a failure of its associated SE in stage n — 1. So the algorithm essentially

enables a SE to detect a failure of its successor SE and re-route the request
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Stage 1 Stage 2
! 000 ¥ ] ‘ 000
001 . 001
010 ‘ ) 010
011 011
3 =
100
100
101
101
~ 110 110
11 m
8x8 ASEN Showing Multiple Paths Between S = 000
-, and D = 101.
Figure 3.6: 8 < 8 ASEN Showing Multiple Paths Between 5 = 000 and
D =101.
whenever possible. The ASEN is failed if a request that is not blocked, does
*- not find a path to its destination.
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Chapter 4

Performance

4.1 Introduction

Depending on the application, a number of performance criteria are avail-
able for evaluating competing MIN designs. For example, the number and/or
classes of permutations realizable, the fault-tolerance properties, control com-
plexity, expected throughput, expected bandwidth, and expected delay may
be considered when selecting a MIN for a specific application.

First, a review of previous work on performance measures for networks is
presented. The principal efforts in this area are concerned with the permu-
tation capability, probability of acceptance, and expected bandwidth. Next,
the usefulness of the bandwidth as a reward rate for performability models of
MINs viewed as a separate system and as a component of a complete multi-
processor system is discussed. This is followed by the development of analytic

expressions for the bandwidth of the crossbar network and the unique-path

MIN.
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4.2 Previous Work

One performance measure that has been studied extensively is the permuta-
tion capability of a network. This measures the connectivity of the number of
S-D pairs realizable in the network. Several researchers have examined this
measure for various multistage interconnection networks. For example, in (2]
the Extra Stage Cube (ESC) is introduced. It is tolerant of a single switch
failure. The ESC is a Generalized Cube with an additional stage and 1 x 2

]
= demultiplexers and 2 x 1 multiplexers on both sides of the first and last stages.
Adams et al. address permutation issues and mention that fault-tolerant in-
terconnection networks can help achieve reliability goals in a multiprocessor
o system. However, no reliability analysis is performed. In the case of a MIN,
E the permutation capability refers to the fraction of all possible permutation
requests that can be realized with no blocking [95].
One shortcoming of shuffle-exchange interconnection networks is that only
:_ one path exists from every source, S;, to every destination, D;. Thus, two
N different settings of switching elements will result in two different permu-
tations. Consequently, if a switch does become faulty, many permutations
will not be admissible by the network. To overcome this deficiency, it was
'«.','_ proposed in {29] that these networks be augmented by adding one additional
stage, so that in the event of a single faulty switch, one is still able to realize
all the permutations using at most two passes through the network. This in-
o troduced a class of interconnection networks, called two-path interconnection
F’s networks. In these networks, any source can be connected to any destination
through two disjoint paths. Therefore, if a switch in the network becomes
stuck-at-T or X, any source can still be connected to any destination, and all
~ permutations can still be realized by the faulty network in two passes [72].
[
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This work was extended by Padmanabhan and Lawrie to R-path intercon-
nection networks. In [66], Multipath Omega networks are introduced. This
paper explains how to construct an R-redundant path MIN where R is the
number of disjoint paths between a S-D pair. In [65], the construction of
the Modified Omega network (which is similar to the network in [66]) is dis-
cussed. The Modified Omega network is an Omega network with a sufficient
number of additional switching elements and links to provide a desired level
of (R — 1) fault-tolerance. The permutation capability of these networks is

also discussed ir [65].

The concept of multiple passes through a network is embodied in a fault-
tolerance measure of MINs called dynamic full access. Dynamic full access
refers to the ability of the network with PEs as both sources and destinations
to transfer data from one PE to another PE in a finite number of passes either
directly or by routing the data through other PEs. Because this technique
requires the intermediate storage of data, it is more suited to packet-switched
networks [77].

As mentioned earlier, in a fully-operational Delta network with an addi-
tional stage, the problem of performing arbitrary permutations in a multiple
number of passes was shown to be equivalent to the vertex-coloring problem
in graph theory [77]. The general problem of realizing a permutation in the
minimum number of passes through the network is intractable, so a restricted
class of permutations are analyzed. Graph-theoretic techniques are used and
both the fault-free and faulty-SE cases are examined. This modified Delta
network is equivalent to the SEN+.

Another measure used to quantify the circuit-switching performance of
a MIN is the probability of acceptance [68]. This measure is the probabil-

ity that, in a random access environment, a request submitted by a source
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is accepted by a destination without getting blocked by other requests or
connections in the network. This probability is usually evaluated by assum-
ing that all the sources simultaneously generate their requests for connection
with a probability p, aimed at uniformly chosen destinations, at the begin-
ning of a cycle. If these requests arrive at a switch requiring the same output
link, the requests that are serviced are chosen at random and the others are
blocked and dropped. The probability of acceptance is defined as the ratio
of the expected number of successful requests to the expected number of the

requests submitted by the sources.

Ezpected bandwidth is another commonly used metric for analyzing MINs.
The expected bandwidth is defined as the average number of destination re-
quests accepted per cycle, conditioned on the rate of destination requests.
This is the measure used in this thesis as the reward rate for a given config-

uration of a degradable network. Rewards will be discussed in a subsequent

chapter.

The crossbar network has the highest possible bandwidth. In a crossbar,
as long as no two sources request the same destination, all requests will be
accepted. However, in an environment where requests are issued in a random
fashion, the memory bandwidth of a crossbar is much less than its capacity
(12]. As might be expected, in a MIN the bandwidth will be even less because
of additional conflicts in the network. Interference analysis of MINs has been
studied in [68], [26], and [96].

Kruskal and Snir [46] examine the performance of MINs assuming fault-
free operation. Both the buffered and unbuffered Banyan networks are exam-
ined in a packet-switching environment. In the unbuffered case, they derive
an asymptotic equation for the probability that a request issued at a source

arrives at its intended destination. This probability is inversely proportional
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to the number of stages in the network. It was shown in [54] that the band-
width of a SEN is very high for operations that do not conflict; however, in
[46] under the assumption of a random access pattern from the sources to the
destinations, they found the effective bandwidth in a MIN to be O(N/log N).
This means that contention within the network reduces bandwidth by a fac-
tor of O(log N). In [71], the problem of hot-spot contention in SENs was
investigated. In this model, the destinations are shared memory modules,
and it allows a small number of accesses to be made to a specific memory
while all other accesses are uniformly distributed. The results show a rapid
decrease in effective bandwidth as the correlation of accesses increases.

In [24], Das and Bhuyan use simulation to determine the reliability and
performance of a multiprocessor system with three interconnection networks
in a random access environment: a multiple-bus, a crossbar, and a MIN with
a centralized controller. Since deriving analytical solutions for the bandwidth
of a randomly truncated multiprocessor system using a MIN or a multiple-
bus structure is extremely difficult, simulation is used to obtain results. The
model assumes that the multiprocessor system is executing a task requiring
I processors and J memories. To determine the reliability of the system
they require that at least I processors and J memories are operational and
that they can communicate. Then, the bandwidth is determined using ex-
actly I processors and J memories. Previous performance analyses for these
networks were done in [14], (13|, and [12]. However, the analytical models
used for the MIN and multiple-bus interconnection network do not hold when

random faults are considered.
A chained network was introduced in [99] which is similar to the ASEN
presented in [53]. The chained network provides redundant paths between

every source-destination pair so that all single faults and many multiple faults
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R Q can be tolerated. The proposed network meets the criteria for the design of a
P fault-tolerant network listed in [20], and it also has a bandwidth comparable

to that of a crossbar. In [100], the performance of such a network was studied.

T

An analytical model was employed to evaluate the bandwidth of the network

JR

: ¥ operating under both fault-free and fault-present conditions. Simulations
S were utilized to explore the average delay when buffers are incorporated into
v the network, and it was demonstrated that network delay can be reduced by
N controlling the threshold value. In addition, performance degradation caused
'_': > by a single fault in a network was investigated. They use the Baseline network
:l as an example to illustrate their scheme, and perform a probabilistic failure
{ analysis of a circuit-switched MIN and a simulation for the analysis of a
:1: ’ MIN with output buffers in the SEs (under a packet-switching assumption).
g Bandwidth analysis was performed on an unbuffered MIN operating both
¢ with and without faults.

7

L 4.3 Bandwidth as a Performance Measure

- -

‘ The average number of busy memories (memory bandwidth) will be used
‘ as the performance level (reward rate) for a particular system configuration.
§‘ 'Ei This is an appropriate choice of performance metric for the multiprocessor

system since the efficiency of the system will be limited by the ability of the

processors to randomly access the available memories.

In the case of a crossbar switch, contention for the memories occurs only at

NG PR AN PO
&
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" the memory ports since the crossbar switch is non-blocking. But, in the case

of the SEN network, contention occurs inside the interconnection network,

s as well, since this network is a blocking network. That is, if two or more
, - .
S processors compete for the same output link of a SE, only one request will
.' be successful and the remaining requests will be dropped.
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Over time, components of the multiprocessor system can be expected to
fail, and as a result, the performance of the system can be expected to de-
crease. To determine the performance of the crossbar, the model developed
by Bhandarkar [12] to obtain the average number of busy memories or mem-
ory bandwidth will be used, and an extension of the performance model in
[68] will be used for the SEN network.

In determining the bandwidth of a given configuration of the multipro-
cessor system, the assumptions stated in [68] for analysis of circuit-switched

networks will be used. The assumptions are:

1. At the beginning of each memory access cycle, every operational pro-

cessor issues a request with the same probability.

2. The requests are randomly and uniformly distributed among all mem-

ories.

3. Blocked requests in any cycle are ignored. A new set of requests is

issued in each cycle.

Assumption 3 may appear to oversimplify the model since, in practice,
blocked requests are normally resubmitted during the next network cycle.
However, work performed by [12] and others on more complex problems,
and studies done by Patel [68], indicate that assumption 3 has only a minor
impact on the results obtained. Furthermore, this assumption makes the

analysis more tractable.

In the following two sections, the bandwidths of the crossbar and the
unique-path MIN are developed. Let p;, denote the probability that a pro-
cessor issues a request during a particular memory request cycle, and pyy:

denote the probability that a particular memory receives a request at its

w
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input link. Since it is assumed that requests are not buffered in the inter-
connection network, nor are multiple requests accepted at a memory on any
cycle, computation of the memory bandwidth for the multiprocessor system

is accomplished in a straightforward manner.

4.4 Crossbar Bandwidth

In the case of an n X n crossbar switch, the probability that a particular
processor requests a particular memory is p;,/n for a given network cycle.
So the probability that a particular processor does not issue a request for a
particular memory is (1 — pin/n). By the independent event assumption, the
probability that a particular memory is not requested by any processor is
(1 — pin/n)". Therefore, the probability that a particular memory is selected

by at least one processor is just the complement of this value, or

Pout = 1- (1 - E_‘:)n

- (4.1)

The bandwidth (BW) for the system, which is the average number of memo-
ries requests accepted in a particular memory access cycle, is just p,y: times
n, hence

BWae = n(l—( —ﬁ;ﬂ)"). (4.2)

In the presence of memory and/or processor failures, this equation must
be modified since the number of operational memories will not, in general,
equal the number of operational processors. In (12|, a detailed combinatorial
and Markovian analysis was performed to determine the bandwidth in the
asymmetric case. Let ¢ denote the number of operational processors and j
denote the number of operational memories. Further, let £ = min{i,}

and m = maz{i,5}. Then for p; = 1.0, Bhandarkar found the average
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h bandwidth of the system to be accurately predicted by the formula,

BW,per = m(1 = (1 —1/m)"). (4.3)

4.5 MIN Bandwidth

Now consider the N x N MIN with switching elements of size n x n. Number
the stage to which the processors are attached as stage 1, and the last stage
.. to which the memories are attached as stage v. The switching elements are
n X n crossbars, and the output of a particular link of a switching element
can be denoted as p;. This value is also the probability that there will be
an input request for a SE in the next stage. A recurrence relation exists for

computing these request probabilities. That is,

o
B

Pis1 = 1—(1- %) (4.4)

Consider the SEN as a specific example. The probability of a request at

E;: the input of a SE in stage 1,71 =1,2,...,r, can be denoted as p;_;, then the

- probability of a request for an output of a SE at stage ¢ will be p; and can
be computed as

P¢=(1—&2_—1)2,i=1,2,...,u. (4.5)

~ Note that po = pin (the probability that there is a request for the first stage) \

A

and p, = pow (the probability that there is a request for a particular memory
at its associated network output link). In the case of the 16 x 16 SEN, the

§: probability of a request at the output link of a SE in stage 1 will be
) ]

Py (1—%) : (4.6)

and the probability of a request for a given destination (the output link of
stage 4) will be b
(4.7)
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The bandwidth is then computed as the product of the request probabilities

for a particular memory and the number of memories, hence from [68]

BWyin = N(1-(1- p:‘)"). (4.8)

Of course, assuming that each destination is equally likely to be requested
by a given source, the bandwidth is simply the probability of a request for
any destination times the number of destinations. The computation of band-
width, however, is not so easy when the probability of requests for the des-
tinations are not uniformly distributed or one or more SEs have failed. It is
assumed that after a SE has failed, its output links will not be active. Thus,
p; from a failed SE in stage ¢ is zero. Further, the request probabilities that
feed a particular SE may not be equal. In the presence of failures, equa-
tion (4.8) must be modified to account for graceful degradation. Consider a
particular input link to an n x n SE, say link 0 in Figure 4.1, and denote
it by pino. It may request a particular output link with equal probability,
so it will not request a specific link with probability (1 — pino/n). Similarly,
input iink 1 will not request the same link with probability (1 — pin1/n). The
request probability for a specific output link, say 7, as a result of the (perhaps

unequal) request probabilities by the input links is then computed as

- _ | 1=T32(1 = pin,j/n) if the SE has not failed, and (4.9)
Pouti = ) ¢ otherwise. '
The bandwidth of the SE is then -
_ n(pout;) if the SE has not failed, and
BWse = { 0 otherwise. (4.10)

The outputs of this SE will serve as inputs to n of the SEs in the next
stage. At the final stage of the MIN, some memories may be inoperable so

the network bandwidth is computed as the sum of the request rates for the
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Figure 4.1: n x n Switching Element.

operational memories. Let N, denote the set of operational memories. Then,

- BWuin = 3. (Pout); - (4.11)
JENo
; Equations (4.3) and (4.11) will be used to compute the bandwidth for the

. crossbar and the SEN networks, respectively.

:\5 It was mentioned that the SEN is a blocking network, whereas the crossbar
was not. Assuming fault-free operation and p;, = 1.0, Figure 4.2 shows the
degradation factor (BW/N) for these two networks as a function of the size

- of the network. For networks of size 256 x 256 and larger, the bandwidth of

ﬁ the crossbar is at least twice that of the SEN. However, recall that the cost
of the crossbar is O(N?). If the crossbar is modeled as a system composed
of demultiplexers/multiplexers as in [12], then the implication of equations

“:f: (4.3) and (4.11) and Figure 4.2 is that the MIN is more susceptible to the
failure-induced loss of bandwidth than the crossbar network.
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Figure 4.2: Bandwidth Degradation as a Function of Network Size.

4.6 Summary

Bandwidth will be used as the performance metric for analyzing the networks
in this thesis. Analytic expressions for the bandwidth of a crossbar network
and a MIN in a degradable environment have been presented and will be
used to establish the reward structure associated with the Markov reward
models discussed in Chapter 7 and in the analysis of a multiprocessor system

in Chapter 8.
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J& Chapter 5

Reliability

5.1 Introduction

A number of schemes have been proposed to increase the reliability and fault
tolerance of Multistage Interconnection Networks (MINs). The modest cost
of unique-path MINs make them attractive for large multiprocessor systems,
but their lack of fault-tolerance is a major drawback. To mitigate this problem
three hardware options are avai'able: (1) replicate the entire network; (2) add
extra stages; (3) and/or add additional links. Adding an additional network
doubles the cost while adding an extra stage requires only N/2 additional SEs
in an N x N network. Adding links not only increases the number of links, but
it also requires a more complex switching element. Also, adding interstage
links is not practical for large-scale VLSI applications [102]; however, adding
intrastage links is still viable.

In this chapter, the reliability issues relating to MINs are examined. First,
previous work in this area will be covered. Next, definitions of an operational
network and a description of the measures used to compare the networks are
introduced. Then transient reliability analysis of the crossbar, SEN, SEN+,
and ASEN will be presented. Since the reliability of crossbar switches has

48
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been studied under several connectivity assumptions, the emphasis in this
chapter is on reliability analysis of MINs.

The analysis of the SEN and SEN+ networks is divided into four parts.
Exact transient reliability analysis of small SEN and SEN+ networks is pre-
sented first. Then, lower and upper bounds for approximating the reliability
of larger networks are derived. The lower bound obtained is compared to
the exact solutions derived for the 8 x8 and 16 x 16 SEN+ to verify that
it is a close approximation of SEN+ reliability, and then this lower bound
is used for analyzing SEN+ networks up to size 1024 x 1024. Next, a com-
parison of the mean time to failure (MTTF) of these networks is presented.
Finally, a discussion on how network reliability is affected by the underlying
component-lifetime-distributions is presented.

In Section 5.7, the reliability of the ASEN is analyzed. The exact relia-
bility expressions for the 4 x 4 and 8 x 8 ASEN are derived. This is followed
by the development of bounds. Then, these bounds are used to compare the
MTTF, normalized mean-time-to-failure, cost, and mission time improve-
ment factor of the networks.

It is shown that the lower-bound reliability of the ASEN dominates the
upper-bound reliability of the SEN+. Furthermore, ASEN reliability analy-
sis is extended to include imperfect coverage and on-line repair using a novel
hierarchical approach. Block diagrams have been used to model the steady-
state and instantaneous availability of systems with independent repair [83].
In this chapter, a two-level hierarchical approach is used to model the reliabil-
ity of a repairable system. The top level is a reliability block diagram while
the bottom level is a Markov chain. In this analysis, the increased complexity
of the SEs in the network is considered instead of assuming that the various

components have identical failure rates.
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5.2 Previous Work

There are several papers which address reliability issues pertaining to MINs.
A reliability analysis of the C.mmp and Cm* was performed in [44], but only
processor and memory failures were considered. In [43], reliability of the
crossbar, shared bus, and multiport memory structures was analyzed using
graph models. And in [3], the fault tolerance of MINs, considering control
line and link failures in the SEs, was examined. The emphasis was on finding
the critical faults that destroy the dynamic full access (DFA) property, but

DFA between specified source and destination subsets was not considered.

(Note that DFA may require several passes through the network.)

The reliability issues pertaining to tightly-coupled multiprocessor systems
using circuit-switched communications were discussed in [24]. This model
considered processing elements (PEs), memory modules (MMs), and switch
failures. A reachability matrix, constructed from a graph model, was modified
depending on various faults. Given that a task requires a specified number
of MMs and PEs, the system is considered operational as long as these re-
sources and the DFA property between these resources exists. The system
state was obtained by searching for a fully-connected system in the reacha-
bility matrix that satisfied the minimum resource requirements. Simulation
results indicated that MINs are worse than crossbars if failures are taken into
account, and the multi-bus performed the best because of the large number
of alternate paths between PEs and MMs.

In addition, several researchers |2,19,59,66,65,67,76,75] have reported on
the use of multiple-path MINs as a means of improving the fault-tolerance
and reliability of interconnection networks. For example, in [67] the Gamma
network is examined for the terminal reliability of the network, but neither

PE and MM failures nor performance degradation are considered.
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Redundancy graphs offer a convenient way to study multiple-path MINs
to determine such properties as the number of faults tolerated or the type
of rerouting possible. A redundancy graph depicts all the available paths
between a given source-destination pair in a MIN. It consists of two distin-
guished nodes — the source S and the destination D — and the rest of the
nodes correspond to the switching elements that lie along the paths between
S and D. Its principal use is for terminal reliability calculations.

A general criterion for the evaluation of the robustness of the MIN is that
every member of a subset of sources must have paths to every member of a
subset of destinations given that each switch has a certain reliability. (The
reliability of a switch is the probability that it is fault-free.) The probability
that the above criterion is satisfied is called multi-terminal reliability. Two
special cases of this criterion are of interest. The first case is when the subsets
of sources and destinations contain exactly one element each. This leads to a
measure called two-terminal reliability, or simply terminal relicbility, which is
the probability that a given source-destination pair has at least one fault-free
path between them. The other special case of the multi-terminal reliability
criterion is full connectivity between all the sources and all the destinations.
This special case leads to the assumption that the MIN has failed whenever
all the paths are disconnected between some source-destination pair, and it
establishes the reliability of the MIN.,

The criterion of full connectivity for a multiprocessor system is too narrow
a view of reliability. It does not consider the ability of a system to operate
in a degraded mode. It may be acceptable for a system to be considered
operational as long as some subset of sources and destinations can communi-
cate. This view of graceful degradation recognizes that the failure of a basic

component should not cause system failure. Rather the system should be
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. able to detect any faulty module and also have the ability to reconfigure and

continue to perform in a degraded mode. Analysis of the degradation behav-

ior of such a system is done using a transient reliability analysis. Of course,

9 even with transient analysis, one can still obtain the mean time to failure of

Ak the MIN, which is the expected time elapsed before network failure.
The focus of the reliability analysis that has been performed on MINs,

however, has been either: (1) in terms of the average number of switch failures
tolerated and mean time to failure; or (2) on terminal reliability, a measure
often used for packet-switching applications. Analysis using the former mea-
sure can be found for the F-Network [20]; the Augmented C-Network (ACN)
and Merged Delta Network (MDN) [79]; the Augmented Bidelta Network
(ABN) [52,51]; and the Modified Omega network [64]. In addition, termi-
nal reliability analysis has been performed on the Gamma network in [76],
INDRA network in (75], and the ACN, ABN and MDN networks in [51].

In [18], the SW-banyan network with added stage(s) composed of f x f
switches is analyzed. Cherkassky et al. derive a reliability expression for
this network. The expression considers both link and switch failures, but
it assumes that the network can only tolerate f — 1 failures. Therefore it
provides a rough lower bound since there are many operational configurations
of the network which permit more than f — 1 failures. This underestimates
network reliability.

In [51], Kumar compares the mean time to failure of the Augmented
Shuffle-Exchange Network (ASEN) with that of several other MINs. MTTF
data on the INDRA [78], F [20], modified Omega [65], and SEN networks for
N = 8 through V = 1024 are provided for comparison. In all cases the ASEN
is superior. In this analysis, however, the lower bound is based on only one

switching element type and the multiplexers and demultiplexers associated
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_. with the network are ignored. A more detailed model for the reliability and
MTTF of the ASEN which incorporates added network complexity due to
different types of switching elements and multiplexers and demultiplexers is

considered in this chapter.

A, |

Network reliability analysis is known to be NP-hard [74]. It is for this
reason that other authors (e.g., Das and Bhuyan in [24]) have resorted to

Monte-Carlo simulation to examine “small” networks. In this thesis, exact

o

reliability expressions for up to 16x16 networks are derived, and a closed-form

"’l‘,

tight lower bound for larger networks is presented. Using this lower bound,

numerical answers for up to 1024 x 1024 networks are computed.

bt

5.3 Definitions of an Operational Network

Before any reliability analysis can be performed, a clear understanding of
what constitutes an operational network must be established. That is, what is
» meant by system failure? There are at least three definitions of an operational

network:

1. The network is operational as long as every source can communicate

e with every destination.

2. The network is functioning properly as long as some source can com-

municate with some destination.

<) 3. The network is operational as long as U sources can communicate with

V destinations.

It should be clear that a network operating under definition 1 will have the

A shortest time to failure, while the same network operating under defi- ‘tion
o
a 2 has the longest time to failure. Since definition 1 is the view most often
‘.
~
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used for modeling MINs, this definition will be adopted for the following
analysis. However, for some network applications, the other two definitions

are appropriate.

Also, it is assumed that the components of the network have independent
lifetime distributions, and that they are either fully-operational or failed.

That is, stuck-at-T or stuck-at-X faults are not considered.

5.4 Comparative Measures

In this section, the measures used to compare the networks are introduced.
The measures are: the reliability as a function of mission time (R(t)), mean
time to faslure (MTTF), normalized MTTF (NMTTF), mission time im-
provement factor (MTIF), and cost.

Let T be a random variable representing the lifetime of a particular sys-

tem, then its reliability can be defined as
R(t) = Prob[T > t]. (5.1)

The mean time to faslure is simply the integral of the reliability over the

interval from zero to infinity,
00
MTTF = / R(t)dt . (5.2)
0

The normalized mean-time-to-failure, NMTTF, is a comparative measure
of reliability. It is defined as the ratio of the MTTF of a network with
redundancy and the MTTF of the unique-path MIN.

Let T denote the time for the system to decrease from a fully-operational
system (at time ¢ = 0) to some specified reliability. T is an useful abso-
lute measure of reliability in its own right because it provides information

regarding the suitability of a given system for a particular mission. However,
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a comparative measure is desirable for the analysis of the networks. The
mission time smprovement factor MTIF (57| reflects the improvement in the
maximum mission time for some desired minimum mission reliability as a
result of adding redundancy to the SEN. For example, let Tsen+ be the time
for the SEN+ to reach some desired mission reliability, Rgesired, and Ysgn be

the time for the basic SEN to reach the same mission reliability, then

T
MTIF(Rdesired) = ;:;i (5.3)

represents the factor by which mission time is increased by using the SEN+
instead of the SEN.

Finally, cost is a significant measure. Many times modifying a given sys-
tem to provide fault-tolerance requires more than merely adding components.
To properly compare different modification schemes, the cost of the schemes
must be normalized or some basis. In the case of the SEN, the number of
“equivalent” 2 x 2 SEs (SE;) in the SEN+ and ASEN is used to normalize
the cost. The ASEN is constructed from demultiplexers, multiplexers, 3 x 3
SEs (SEs), and 2 x 2 SEs; whereas the SEN+ is composed entirely of 2 x 2
SEs. The SEs are considered crossbar switches so an n x n SE has 4n(n - 1)
gates [47], and the multiplexers/demultiplexers have 2(n — 1) gates where n
is the number of input/output links. The SEN+ is simply a SEN with N/2
additional 2 x 2 SEs. But in the ASEN, some of the 2 x 2 SEs have been
replaced by 3 x 3 SEs and multiplexers and demultiplexers have been added.
In order to make a fair comparison, gate counts in the network components
are used to compensate for the differences in the network’s construction. For

example, a SE; has 8 gates whereas a SE; has 24, so a SE; is three times

as complex as a SE;. The “normalized” network complexity of an N x N

ASEN is then (3N/4)(1 + 2(log, N - 2)).
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5.5 Crossbar Networks

Reliability analysis of the crossbar network has been studied in several papers.
In [87], the C.mmp system from Carnegie Mellon University was studied. In
that paper, the crossbar was considered as a single large switch. In [9] and
[88], a more detailed model of the crossbar was considered by introducing the
aspect of coverage. However, in any model that considers the crossbar as a
single switch. the reliability analysis of such a model using a Markov chain
has only two states. Also note that all three definitions of what constitutes
an operational network will be identical from the perspective of the network.

In a later chapter, the crossbar network will be analyzed by decompos-
ing the crossbar into demultiplexer/multiplexer components. The crossbar
will then be considered as a component of an entire multiprocessor system.
Definition 3 will be used to analyze this system. It will be shown that mod-
eling the crossbar in more detail shows that the network has a much higher

reliability than indicated by the simple model.

5.6 SEN and SEN+4 Networks

In this section, the reliability of the unique-path Shuffle-Exchange multistage
interconnection Network (SEN) and a variant of the SEN called the SEN+
are analyzed. The SEN+ network has an additional stage which is used in
an attempt to increase the reliability of the basic SEN. However, this effort
is not successful in all cases. A comparison of the SEN and SEN+ networks
as a result of transient reliability analysis is presented, as well as a discussion
of the distributional sensitivity of the reliability of these networks when their

components have increasing-failure-rate (IFR) lifetime-distributions.
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5.6.1 Exact Reliability Analysis

Let rsg(t) be the time-dependent reliability of the basic switching element.
Reliability analysis for this SEN, and for all N x N SENs under definition
1, is straightforward. Since the SEN is an unique-path MIN, the failure of
any switch will cause system failure, so from the reliability point of view, the
network is composed of (N/2)(log, N) switching elements in series. Hence,

the reliability of an N x N SEN is given by
Rsen(t) = [reg(t)] 7% (5.4)

For the 4 x4 SEN, it is clear that the reliability is

RSEN(t) = [rsg(t)]‘ (5.5)

since there are four identical SEs. The 4 x4 SEN+ has six SEs; two in each
of three stages. The four SEs which comprise the first and last stages are
all necessary for full connectivity. The intermediate stage can tolerate one
fault, so this stage has two SEs arranged in parallel. Therefore, computing
the reliability of the 4 x4 SEN+, arranged in this series-parallel fashion, the

closed-form reliability expression is
Rsen+ (t) = [rse(t)]*[1 - (1 - rse(t))?] - (5.6)

The purpose of the extra stage in the SEN+ is to increase the system’s
reliability, but by examining equations (5.5) and (5.6), it is evident that the
4x4 SEN+ is strictly less reliable than the corresponding SEN. This is because
the number of components in the intermediate stages where the two paths
between a S-D pair are disjoint is small when compared to the number of SEs

in the first and last stages combined. (That is, there are only 2 5Es in the

intermediate stage, but there are 4 SEs in the first and last stages combined.)
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SEN+ networks are not strictly more reliable than SEN networks. The SEN+
networks are not more reliable until the aggregated number of components in
the intermediate stages is sufficiently larger than the number of components
in the first and last stages combined. For N > 8 the SEN+ is strictly more
reliable than the SEN.

Modeling the reliability of 8 x 8 and 16 x 16 SEN+ networks is not as
straightforward. Determining their reliability is more easily illustrated by
using discrete-state, continuous-time Markov chains (CTMC) [98|.

For the SEN+ networks, as the number of stages increases, the number of
possible configurations for which the full connectivity specified in definition 1
is satisfied increases dramatically. To represent the configurations of a SEN+
as a CTMC, the states of the chain can be specified as [(N/2)(log, N + 1)]-
tuples where each position of the tuple is either a 1 or O corresponding to
the “up” or “down” state of the respective SE. One would like to take ad-
vantage of the symmetry of the SEN+, and use a (log, N + 1)-tuple where
the switches are grouped by stages into the corresponding tuple positions.
But the failure configurations of the network quickly destroy the network’s
fault-free symmetry.

The major problem with the CTMC approach to modeling the system’s
time-to-failure behavior is the exponential growth of the state space as the
network’s size increases. Essentially, the operational status of each SE in
each state must be considered. For example, the 8 x 8 SEN+ has 16 SEs,
so 2'® possible states must be considered. The state space can be reduced
significantly by noting that all the switches in the first and last stages must
function for the network to function. Now for the 8x8, at most, only 28 pos-

sible configurations must be considered. The initial state of a CTMC which

models the lifetime behavior of an 8 x8 SEN+ is (11i11111) indicating that
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all eight SEs in the intermediate stages are operational. The system’s con-
figurations can be represented by a non-homogeneous CTMC, thus allowing

a time-dependent failure rate A(t) for each switching element. The reliability

of a SE is thus given by
rse(t) = e Jo AT (5.7)

Figure 5.1 is the CTMC representation for the 8 x8 SEN+. Arcs that are
not labeled are assigned the transition rate A(t); this was done to avoid
cluttering the figure. Note that this chain has 36 states. Once the CTMC
has been constructed, it is possible to reduce the size of the chain by using
state lumping [32]. In this example, it was possible to reduce the chain
to an equivalent one with only seven states. In Figure 5.2, a seven-state
CTMC representation for this SEN+ is shown. For such an acyclic CTMC,
the convolution integration method (98] can be used to solve for the state
probabilities P;(t), and hence the system reliability Rsgn+(t) is the sum of
the P;(t) over all the “up” states. Appendix A shows how the method can
be applied to the solution of this Markov chain. The reliability of the 8 x8
SEN+ is thus determined to be

Rsens (t) = 28-121'0‘ A(r)dr+4e—14f(: A(r)dr_se-xsfo‘ A(r)dr+3e—16f0‘ A(r)dr (5.8)
which can be written as
RSEN+(t) = 2[ng(t)]lz -+ 4[ng(t)]“ - S[ng(t)]ls + 3[1‘53(t)]16. (59)

Assuming a constant failure rate A(t) = A , Figure 5.3 compares the
reliabilities of the 8x8 SEN and SEN+ networks as functions of dimensionless
parameter At. These curves show that the reliability of the 8 x8 SEN+ is

greater than that of the corresponding SEN. In fact, it can be shown (see
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Figure 5.1: Continuous-Time Markov Chain Representing the Time to Failure
of the 8 x 8 SEN+.
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Appendix B) that this result holds for any underlying component-lifetime-

distribution. One needs only to solve

Rsent — Rsen 20 (5.10)

e

- For the 8 x 8 case, let r = rgg(t), then using equations (5.4) and (5.9), the
inequality

Z(1+4r2 -8 +3r') >0 (5.11)

':;: needs to be shown to hold for all 0 < r < 1. For the equality condition there

t are three real roots (0, 1, and 1.929) and two complex roots. Further, over
the open interval (0,1) for r, the strict inequality holds, hence the reliability
of the SEN+ is strictly greater than that of the corresponding SEN.

All these reliability expressions can be interpreted either as time functions
or as static functions of the reliability of the switching elements since the
networks are assumed to possess only static redundancy. Thus for example,

¥ Rgeny = 2r'% + 4r'* — 871% 4+ 3716 (5.12)

- where r is the reliability (as a simple probability) of a switching element. In
fact, Rsen+ and Rsgn can be plotted as functions of r as in Figure 5.4 to

i} obtain a graphical proof that Rsgeny > Rsen forall 0 <r < 1.

'E:_ While a Markov chain representation of the evolution of the system life-
time for the 8 x 8 SEN+ network has been presented, analysis of the next
larger SEN+ using this approach is too expensive in terms of time and space. _

- Considering only the intermediate stages, the 16 x 16 SEN+ has 2% possible

2 states. One might consider constructing the Markov chain by depth-first or
breadth-first search looking for transitions to operational states starting from
the “fully” operational state (no SEs failed). These search procedures will be

¥ very expensive because many paths may reach a given state and an exorbi-

o

tant amount of checking for duplicates is involved. Note that if all “tuples”
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or switch configurations in which the network is operational are known, then

one can easily find the reliability of the network as the disjoint sum of the

-.J._A/';—L«L—&
.
P

tuple probabilities. In other words, there is no need to generate the tran-

- sitions of the Markov chain. The earlier use of the CTMC was principally
K _: for pedagogical purposes as it will be used later in the performability anal-
L«

B~

ysis. It provides a clearer illustration of the evolution of the network under
discussion. These networks, however, have no dynamic redundancy. That

is, they do not have spares to replace failed components, so the analysis of

Y -
O e
2
-

j{& these networks can also be performed using a graph-theoretic approach for
multi-terminal graphs.
X While the exponential complexity of algorithms used to find the “up
N states of a system appears to be unavoidable, one can take advantage of
N AT
o the structure of the SEN+ to reduce the memory requirements and check-
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ing for duplicates during the computation. To find the set of “up” tuples,
number each of the SEs in the intermediate stages from 1 to M where
M = (N/2)(log; N — 1). In the intermediate stages of the network, there
are two disjoint paths so the SEs that comprise this portion of the network
can be partitioned into two disjoint sets. Hence, there exists pairs (u,v) of
SEs (one from each set) that disconnect the network. Each possible pairing
is checked to see if it causes network failure, and those pairs that do are
placed on a list. Next, start with the binary representation of 2% — 1 (all
SEs operational) and check the binary representation of each number from
2M _ 1 to 2M/? _ 1 against the list to see if it is an operational tuple. This
is accomplished by checking positions u and v in the binary representation.
If they are not both Os, then record an occurrence of i, the number of 1s in
the binary representation, and keep track of the number of occurrences of .
If both positions are 0, discard the tuple. The expression for the reliability

of the intermediate stages (IS) is then expressed as
Ris(t Z airsg(t)'(1 - rse(t))M, (5.13)
i=M/2
where the coefficient a; is the number of “up” tuples with ¢ operational SEs.

The reliability expression for the 16 x 16 SEN+ was determined to be

RSEN+(£) = rsE(t)28[2 + 27’53()5)4 + 8rsg(t)6 - 1673E(t)7 + 8T55(t)8 -

16rsg(t)° + 20rse(t)'° — 8rsg(t)! + rse(t) ] . (5.14)

A comparison of the reliabilities of the two networks, assuming a constant
switch failure rate, is presented in Figure 5.5. Once again, the SEN+ is more
reliable than the corresponding SEN.

At this point, the exact reliability expressions for the 8x8 and 16x16 SEN+

networks have been derived, and a comparison of the curves that represent
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Figure 5.5: Comparison of the Reliabilities of the SEN and SEN+ Networks
for the 16 x 16 Case.
their absolute measures of reliability with the corresponding SENs has been
presented (Figures 5.3 and 5.5).

Now a comparative reliability measure (MTIF) for these networks will
be used. Let rsg(t) = e, and set A = 1, then Tsgn can be obtained from

the closed-form expression

In Rdesired

5.15
= (5.15)

Tsen = —

where M = (N/2)(log; N). To obtain Tsen+, a nonlinear equation must be
numerically solved. Let Ryesirea = Rsen+ and Tspn+ = t in equations (5.6),
(5.9), and (5.14). Then, Tsgn+ is computed for specified values of Ryesired in
these equations. The plot of MTIF = Ysgn+/Tsen, as a function of required
mission reliability for the 4x4, 8x8, and 16x16 networks is prescnted in Figure

5.6.
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Figure 5.6: Comparison of the Mission Time Improvement Factor of the
Networks for the 4 x 4,8 x 8, and 16 x 16 Cases.

The figure shows that from a reliability perspective, as network size in-
creases, it becomes more advantageous to choose the SEN+ network over
the SEN. For example, consider a reliability requirement of 0.93 for a par-
ticular mission. In the 8 x 8 case, the improvement achieved by the SEN+
over the basic SEN is only a factor of 1.25; while for the 16 x 16 case, the
gain is nearly two-fold. Also note that after some relatively high reliability
requirement, MTIF decreases rapidly with further increases in the reliability
requirement. In the extreme case {component reliability equal to one), then

redundancy provides no improvement in system reliability.

5.6.2 Reliability Bounds for Large Networks

As network size increasrs, explicitly modeling the reliability of the SEN+

networks using Markov chains or tuples becomes rather complex. Since for
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each S-D pair there are two disjoint paths within the intermediate stages of
the SEN+ network, one has to determine if the failure of the (k + 1)* SE
in this group of stages causes system failure conditioned on the fact that the
first k SE-failures did not cause system failure. Now since each S-D pair has
two disjoint paths, each such pair must be examined. So, for a 1024 x 1024
SEN+, there are 2*! paths and each path has log,1024 + 1 — 2 = 9 SEs
through the intermediate stages. Therefore, approximation techniques for
determining the reliability of the larger SEN+ networks are a practical and

necessary alternative.

Lower Bounds

To obtain a lower bound, observe that as many as one-half of the switching
elements in the intermediate stages of an SEN+ can be failed, and yet the
network is still operational. Figure 5.7 illustrates this condition for the 8 x 8
SEN+. If one models the intermediate stages as a system consisting of a
parallel arrangement of two series subsystems each with (N/4)(log, N — 1)
switches, then the lower bound of reliability can be obtained using reliability
block diagrams. This provides a series system of three subsystems — the first
and last are series subsystems and the middle subsystem is a parallel-series
subsystem. The reliability expression resulting from the “lower-bound” block

diagram as shown in Figure 5.8 is

Rw(t) = ["SE(t)]N ) [1 _ [1 _ Tsf-;(t)%[l"g? N_l]]z]

2[rSE(t)]~‘}(log,N+3) _ [rSE(t)]%(log,NH) ) (5.16)

A similar technique is used by Padmanabhan in [64] to obtain a lower bound
for the reliability of redundant path networks using an independent link-fault

model. (The switch-fault model is used for the analysis in this paper.)
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Figure 5.7: Illustration of the 8 x 8 SEN+ with One-half of the Switching
Elements in the Intermediate Stages Failed.

Upper Bounds

To obtain an upper bound on the reliability of the SEN+, observe that each
SE in a particular stage of the SEN+ shown in Figure 3.4 has a conjugate
[51]. That is, for stages 1, ..., n there exists a pair of SEs in stage 1 — 1 that
are connected to a pair of SEs in stage i. For example, SEqo and SE,, are
connected to SEq; and SE,; ;. If a conjugate pair of SEs fail, then the network
has failed. Assuming the network is operational as long as no conjugate pair in
the intermediate stages fail and no SE in the first or last stages fail, an upper
bound on the reliability of the SEN+ is obtained. This will overestimate
system reliability since there are many combinations of failed SEs other than
conjugates pairs that will cause the network to be failed. Figure 5.9 shows
a representation of this configuration. (The upper bound can be improved

further by taking advantage of the linkage interdependencies between stages,
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:é . and in larger networks, the improvement obtained may be significant.) The
4
& . . . . . .
1' oy reliability expression using this upper bound is given by
!
A
N -
v Ru(t) = [rse(t)]V - [L = (1 — rsg(t))?] < s V1) (5.17)
¥
o
% ~ Figure 5.10 compares the upper (optimistic) and lower (conservative) bounds
. ‘Q'-
i for an 8 x8 SEN+ network with the exact reliability expression (5.9).
1. Finding an upper bound for system reliability is usually not the center of
:' attention in real world applications. One usually wants a conservative indi-
o g
:: &( cation of how long the system will be operational, and upper bounds present
an optimistic view of the world. The lower bound provides the probability
i
that the system will be operational at some specified time. The expectation
R - is that the real system is at least this good. If the gross lower bound provides
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Figure 5.10: Comparison of the Upper and Lower Bounds with the Exact
Reliability of the 8 x 8 SEN+.
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Figure 5.11: Comparison of the Upper and Lower Bounds with the Exact
Reliability of the 16 x 16 SEN+.

of interest, then no further effort at obtaining a better approximation or the
exact reliability expression is necessary.

The above analysis is repeated for the 16 x 16 networks. In Figure 5.11,
the upper and lower bounds are compared with the exact solution, equa-
tion (5.14), for the Rggn+(t) for N = 16. The “lower bound” model closely
approximates the exact solution for the SEN+ network. From the above
comparisons, it is clear that the bound of equation (5.16) is a reasonable

approximation to the actual reliability of SEN+ networks.
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Figure 5.12: Comparison of the Mission Time Improvement Factor of t} »
Networks from Size 8 x 8 to 1024 x 1024 Using the Lower-Bound Model.
5.6.3 Network Comparisons
>
» Mission Time Improvement Factor

Using the lower bound model, the MTIF for 8x8 through 1024x1024 networks
were computed. As shown in Figure 5.12, a dramatic reliability improvement

# is obtained by simply adding an extra stage to the SEN networks.

Mean Time to Failure

E In this section, the mean time to failure of the networks is discussed, where
o0
MTTF = / R(t)dt . (5.18) ]
0 o
Noting that R(t) has the form ¥ ;[(a;r§g(t)], one can perform this integration X
E symbolically and get a closed-form result. In the case that r;; (/) is assumed ‘
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g to be the Weibull reliability function, then
ree(t) = e W, (5.19)
In this case, using [98]
5 / e MW dt = (—l-)ﬁr(l + i) , (5.20)
0 Aw a
one obtains
MTTFy = Za.-[(.—l-)%r(l + l)] , (5.21)
- ; Aw a
;'.:; where I'() denotes the gamma function. Thus in the case of the 8x8 SEN+,
from equation 5.9 one obtains
MTTRy = (Zp+Zp-—r+ —)(o)iT0+3) . 62)
:’," In the special case of the exponential distribution, a further simplification
.‘ provides
MTTFg = .~ 1-:’{‘; . (5.23)
) So in the above case,
.‘d‘
- MTTFg = (—123 + 1% - % + 1—1) : Xl-; = 16182\‘? : (5.24)
Figure 5.13 plots the MTTF of the SEN and SEN+ networks as a function of
. the network size N (log, scale is used on the x-axis). Both the lower-bound
:‘::', model and the exact solution for the (size 2, 4, 8 and 16) SEN+ networks are
shown. The “e” marks overlying the MTT F for the SEN+ lower-bound curve
show the exact solutions. Observe that the MTTF of the SEN+ networks
§ for sizes 2 and 4 are less than their corresponding SEN, and as previously

stated, for networks of size 8 and larger, the MTTF for the SEN+ networks is
dominant. In fact, for the lower-bound model, direct integration of equation

(5.16) yields the closed-form answer for the MTTF:

' 2 3log, N +1
o

N) = . 5.25
(MTTEb)E( ) NAg (log, N + 1)(log2N +3) ( )

-
e
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Figure 5.13: Comparison of the Mean Time to Failure of SEN and SEN-+
Networks from Size 2 x 2 to 1024 x 1024.

These curves are helpful, but a single curve that compares the MTTF for
a given network size is more revealing. For this purpose, the normalized
mean-time—to—failure is used for specified network sizes.

The normalized mean-time-to-failure is an appropriate comparative mea-
sure of reliability for networks because it is the ratio of the MTTF of a
network with redundancy divided by the MTTF of the basic network. In
Table 5.1, data is provided for both the lower and upper bounds for the SEN+
network. Noting that the MTTF for the SEN is 2/(NXAlog, N), and using
equation (5.25), the asymptotic value of the NMTTF for the lower-bound
model for the SEN+ is determined to be 3. By examining the NMTTF for
the SEN+, one observes that the exact values are close to the lower-bound

model. It is expected that the exact values will remain close to the lower-

bound model as the network size increases since the series arrangement of SEs




N
o
75
g Size MTTF « A NMTTF
SEN SEN+ SEN+
N ||EXACT || LB [EXACT] UB LB [EXACT[ UB
1 0.50000 . 0.50000 || 0.5000 | 0.5000 | 0.5000
/] : 0.23333 5 0.23333 || 0.9333 | 0.9333 | 0.9333
«!
. iz 0.10417 | & | 0.11525 || 1.2500 | 1.2785 | 1.3830
16 3 0.04643 | ATS30ZLL | 0.05830 || 1.4857 | 1.5378 | 1.8656
32 a5 0.02083 0.02969 || 1.6667 2.3752
64 53 0.00942 0.01509 || 1.8095 2.8973
o 128 o 0.00430 0.00764 || 1.9250 3.4227
" 256 Tom || 0.00197 0.00386 || 2.0202 3.9480
512 7363 | 0-00091 0.00194 || 2.1000 4.4698
1024 | g5 || 0.00042 0.00097 || 2.1678 4.9664
‘. Table 5.1: MTTF and NMTTF Ratios for the N x N SEN and SEN+
Networks.

in the first and last stages of the network will tend to be a limiting factor
of reliability. Note also that as the network size increases, the upper bound
diverges from the lower bound. It is evident that for larger networks, it is
desirable to find a tighter upper-bound model. However, emphasis should be
placed on the lower bound since assurance of some minimum level of reliabil-
ity is desired.

In terms of cost, the ratio of the number of switching elements used in a
network with redundancy divided by the number of SEs in the basic network
is also an useful measure. In Table 5.2, a comparison of the complexities of

these networks is presented.

! AR

Another method for improving the reliability of a MIN is through the use
of multiple copies. This method of adding fault tolerance uses K replications
of the basic network (K-SEN) to achieve (K — 1)-fault-tolerance. The same

Ry assumption stated by Ciminiera and Serra [20] and Padmanabhan [64] is

qri
F .
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! Size Network Complexity Ratio
SEN SEN+
N %(log2 N) %’-(logz N +1) S;‘Z‘;f
2 1 2 2.0000
:’, 4 4 6 1.5000
: 8 12 16 1.3333
16 32 40 1.2500
32 80 96 1.2000
- 64 192 224 1.1667
- 128 448 512 1.1429
- 256 1024 1152 1.1250
512 2304 2560 1.1111
1024 5120 5632 1.1000

. Table 5.2: Network Complexity for the N x N SEN and SEN+ Networks.

used in this analysis. That is, each basic network is considered as a single
component of the replicated network, so a component is failed whenever one

of its SEs has failed. Then the reliability of a K-SEN is
Rik-sen(t) = 1 — [1 — Rsen(t)]¥. (5.26)

Note, however, that this method of adding fault tolerance is not very effective

since the improvement factor is proportional to log K [20]. For the purpose

S

of comparison with the SEN+, the case where A’ = 2 is considered. The
MTTF of the 2-SEN is

MTTFsgn

MTTPF,_sgn = 2MTT Fsgn — 5

Figure 5.14 plots the NMTTF of these two redundant networks (the
SEN+ and the 2-SEN) as a function of N (using log, scale on the x-axis). For
the SEN+, the NMTTF is an increasing function of network size, whereas

LA

for the 2-SEN, the NMTTF is independent of network size. It provides a

LA
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Figure 5.14: Comparison of the Normalized Mean-Time-To-Failure and the
Ratio of the Number of Switching Elements for the SEN+ and 2-SEN Net-
works from Size 2 x 2 to 1024 x 1024.
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K ,g NMTTF = 1.5. For networks of size 16 and larger, the reliability improve-
~
G ment achieved by using an extra stage is superior to that obtained by using
"u

a pair of SENs.

! () It is interesting to compare the cost of these networks, too. The ratios of

Y .

.- the network complexities for the SEN+ and the 2-SEN divided by the basic
3 SEN are also plotted in Figure 5.14. By using the 2-SEN, the number of
o]

. SEs is twice that of the basic SEN. Observe that, in the figure, the SEN+ is

- superior to this network for size 32 and larger.

N
~ T

N For the SEN+, as network size increases, the ratio of the network com-

-~ plexities levels off very quickly while the corresponding NMTTF continues

s to increase at a significantly higher rate. This points out that the cost of
N adding an extra stage to larger networks is small compared to the gain in

e reliability which is possible. Hence, for large networks, the SEN+ is less ex-

i pensive than using a pair of SENs in terms of additional hardware, and it is

a more reliable as well.

v 5.6.4 Distributional Sensitivity

k-, A common assumption in the transient analysis of multistage interconnec-

L
N tion networks is that individual components have exponentially distributed
N
> lifetimes. This means that each component has a constant failure rate. In

’ other words, the conditional probability that the component will fail in the

js,': interval At given that it has survived until time ¢ is the same as the condi-

.’ .v‘. . .

K 3" tional probability that it will fail in the same interval At given that it has

oy survived until time ¢t + 7. Often this assumption is challenged. It seems

g.

h . . . .

::;n more appealing to believe that the component is more likely to fail as time
4

L)

Y increases. A Weibull distribution with shape parameter a > 1 models such

oy

® an increasing-failure-rate (IFR) behavior.
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What is the impact on the system’s reliability of using an IFR distribution
for component lifetime? Consider the 8 x8 SEN. Recall that the failure of
any component will cause system failure, so the 8 x8 SEN can be modeled
as a series system with 12 components. Now consider two distributions for
an individual component’s lifetime. An exponential distribution with CD¥
Fg(t) = 1 — e7*2! and a Weibull IFR distribution with CDF Fw(t) = 1 —

—-Aw t*

e . In order to assess the sensitivity of the reliability comparison of SEN

and SEN+ networks, one needs to “equalize” the two distributions in some
manner. First do this “equalization” by letting the MTTF of individual
components be the same for the two distributional assumptions. Specifically,

1 1

ng(/\w

)aT(1 + é) . (5.27)

Solving for the scale parameter of the Weibull distribution,

dw = [(AsP(1+ )" (5.28)

Figure 5.15 shows the system reliability curves for the 8 x8 SEN and SEN+
networks assuming Ag = 0.1, a = 1.5, and solving for the scale parameter
Aw = 0.02712 so that the MTTF of the individual components is equal.
As expected, the SEN+ is more reliable than the SEN. In the figure, one
can see that the constant-failure-rate assumption for individual component
lifetimes underestimates the system’s reliability if the underlying component
distributions have an IFR behavior. This means that the standard assump-
tion of exponentially distributed component lifetime-distributions provides a
conservative estimate of the system’s reliability. The same behavior has been
observed for larger networks as well.
Another way to “equalize” the two distributions is to equate the ~ <+

MTTFs under the two distributional assumptions for the individuas conon

nents. For a series system with n components, the system MTTF- .

R T W
S -

N
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/ SEN+ [Wei(0.02712, a =1.5)]
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0.0, . ‘ s
) Time 5.0

Figure 5.15: Comparison of the Reliabilities of the 8 x 8 SEN and SEN+
Networks When the Components Have Either an Exponential or Weibull
Lifetime Distribution and the Component Means are Equalized.
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equated as
1 1 1
= (—)a -). 5.
—y (n,\w) ri+-) (5.29)
Solving for the scale parameter Aw, one gets
= pla-1) 1ya
Aw =n'""VAgT(1 + Z)] . (5.30)

For the 8 x8 SEN with Ag = 0.1, a = 1.5, and n = 12; Ay = 0.093959.
Using equations (5.22) and (5.24) one can determine Aw for the corresponding

SEN+. The expression is

<+

1 1 2 4 8 3 a
Aw = [ 1+ + — = — . . 5.31
w = | aTTR Y T vl iipe (5.31)

With Ag = 0.1, and a = 1.5, the scale parameter for the Weibull distribution
is Aw = 0.0845373. Figure 5.16 shows the system reliability curves under
both distributional assumptions. Examining the system’s reliability curves
after equating the system MTTPFs shows crossover points. The IFR as-
sumption provides a higher system reliability for short missions as expected,
and the constant-failure-rate assumption yields superior reliability for longer

missions.

One might think when the system MTTFs are equal under the two dis-
tributional assumptions that one should expect to see a crossover point as in
Figure 5.15 when the component means were equal. This is not the case be-
cause the exponential and Weibull distributions do not allow the MTT F's to
scale in the same fashion. For example, for a series system of n components
each having exponentially distributed lifetimes, the system MTTF is simply
1/n times the component MTTF. But, for the Weibull case, the system
MTTF is (1/n)"* times the component MTTF.

r.(-r-r-rft f.-" LS \‘. .,J_\’\"\.q
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1.0 T T T T T ¥ 1 1 !
~ J
3 [Wei(0.08454, o = 1.5)] -
Q
“ r SEN 1
i [Wei(0.09396, 0. = 1.5)] 1
:tj 05} SEN+ .
- [Exp(0.1)]
“ B Crossover .
! }:: i SEN points
' [Exp(0.1)]
0.0 A A
0 2.5 5.0
Time
2:.: Figure 5.16: Comparison of the Reliabilities of the 8 x 8 SEN and SEN+

Networks When the Components Have Either an Exponential or Weibull
Lifetime Distribution and the System Means are Equalized.
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5.7 ASEN Network
5.7.1 Exact Reliability Analysis

An exact reliability analysis of the 4 x 4 and 8 x 8 ASEN is performed by

"

determining the cut sets of each network and then computing the number
of operational configurations. Since the ASEN is a multiple-path MIN, the
routing algorithm as well as the topology must be considered in deriving the

reliability expressions for the network. The adaptive routing algorithm as

ot |

described in [53] considers a 2 x 2 SE in the last stage and its associated
demultiplexers as a series system, so these three elements can be considered

as a single component, and based on gate count, a failure rate of Az, = 1.5A,

f-\ can be assigned to this grouping of elements. Also, let A3z be the failure rate
¢, (
of the 3 x 3 SE and A,, be the multiplexer/demultiplexer failure rate. Then $
based on gate count, A3 = 3A; and A, = A;/4. The time-dependent reliability
. expression for the 4 x 4 ASEN is y
‘lf
54
R(t) = e—‘;\mt [2C(A2m+2/\m)‘ + (zezAm‘ _ 4eXm¢ _+_ l)ezxzm‘] . (5_32)
For the 8 x 8 ASEN, the reliability expression is
ﬁ R(t) _— [(46(4A2m+4km)t _ 168(31\215‘?4)";)‘ + 168(2'\RM+4AM)‘)82A3‘
A
" ((Se“"" — 163t 4 462,\,,.t)e4,\,,,.t
+(_3284Amt + 6463Am‘ —- 1662Am‘)33A2m‘
ﬁ + (32e"\"“ — 643t + 16€2Am:)ezxgmt) ehat
+(4C4Am‘ - 16e3Amt + 202/\";‘ _ 86Amt + l)e‘b\qmt
+(—16e*t + 643 ™t — 80eP ™! 4 32e " — 4) e 2!
v + (16e"\"" — 64e3 ! 4 80e2Amt — 32ermt 4)62A,,,.:]
o
) e~ (1A3+8Am )t (5_33)
@
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5.7.2 Reliability Bounds for Large Networks

Deriving the exact reliability expressions for SEN+ and ASEN networks of
size 16 and larger is computationally difficult. For example, the CTMC used
to represent the various degraded configurations of the 16 x 16 ASEN could
have 240—238 = 15.2% possible states, and the exponential growth of the state
space for larger networks makes the construction and solution of the CTMC
intractable. For each S-D pair there are two or more disjoint paths within the
intermediate stages of the ASEN network. One has to determine if the failure
of the (k + 1)* SE in this group of stages causes system failure conditioned
on the fact that the first k¥ SE-failures did not cause system failure. Each
S-D pair has disjoint paths, and each path must be examined. Therefore,
approximation techniques are considered for determining the reliability of the

larger networks.

Lower Bounds

At the input side of the ASEN, the multiplexers are not considered an integral
part of a given 3 x 3 SE. That is, a multiplexer can be failed, and as long
as at least one of its two associated SEs (e.g., SEs 0 and 1 in Figure 3.5)
is operational, the network may be operational. But, if two multiplexers
grouped with each SE on the input side are considered as a series system,
then a conservative estimate of the reliability of these three components is
obtained. Their failure rate will be Ag,, = 3.5);. Finally, these aggregated
components and the SEs in the intermediate stages can be arranged in pairs
of conjugate loops. To obtain the pessimistic (lower) bound on the reliability
of the ASEN, it is assumed that the network is failed whenever more than
one loop has a faulty element or more than one SE in a conjugate pair in

the last stage fails. After this simplification of the ASEN, the lower-bound

\-}"-.\.‘ .’*

DU TSIV NG,




WM LT Bt - '-""VV\T'U‘L"’\.‘T

e

T

' 85
;

L

)

}

[}

.

)

4

g - SE&m [ SEam P

; — SE3 — SE3 -

. SE2m

l

- ; I N/8)(log N -3 | N/4
- N/8 copies ( <):(op?es ) copies
3w |
S W
. S

9 -1 S§ M S§ F2m

s - SEsm [ SEam [~

L4

H

;

3 Figure 5.17: Lower-Bound Reliability Block Diagram for the ASEN.
D construction from [53| can be modified to reflect the reliability block diagram

: which is shown in Figure 5.17. For N > 8, the reliability expression for the
U lower bound of the ASEN is

| Raseny(t) = (1= (1= e Pom) (1 (1 - ¢s)?) S0 N =3)

‘

R .- (1—(1—ePm))k, (5.34)
TN

1 \‘:

The ASEN can tolerate any single loop failure or the failure of any single

:: switch in the last stage.

)

I\

Y Upper Bound

#

X pper Bounds

{

* To obtain an upper bound for the ASEN, observe that each source is con-

¥ nected to two multiplexers and each SE has a conjugate. If it is assumed that

the ASEN is operational as long as one of the two multiplexers attached to a

Q' .d‘l
]

FRl

source is operational and as long as a conjugate pair is not faulty, as tany as
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Figure 5.18: Upper-Bound Reliability Block Diagram for the ASEN.
one-half of the components can fail and the ASEN may still be operational.
- This permits the use of a simple reliability block diagram for the optimistic
"l
(upper) bound as shown in Figure 5.18. The expression for the upper bound
of the ASEN reliability is
y Rasena(t) = (1= (1= em)) (1 — (1 - e729)?) Floma N2
3
e (1-(1-e )0k, (5.35)

In Figure 5.19, the exact reliability, upper, and lower bounds derived for
the 8 x 8 ASEN are plotted. Also shown in Figure 5.19 is the upper bound
EY) for the SEN+. The ASEN lower bound is strictly greater than the upper

bound of the SEN+ for t > 0. So the worst case reliability of the ASEN is
still better than the best case reliability of the SEN+. The ASEN is clearly
% superior to the SEN+ even for small networks in spite of the fact that it has

increased complexity.
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Figure 5.19: Comparison of the Network Reliabilities for the 8 x 8 Network.
5.7.3 Network Comparisons

In this section, the reliability of the ASEN is compared to both the SEN and
SEN+ networks.

Reliability and Cost

In Table 5.3, absolute and relative measures are used to compare the net-
works. For N = 8 and larger, the MTTF of the SEN+ is greater thau that
of the SEN; for N = 4 and larger, the ASEN’s MTTF is superior to both.
The NMTTF data for the SEN+ and ASEN show that as the size of the net-
work increases, the reliability advantage of the ASEN is significantly greater
than that of the SEN+. In particular, note that the NMTTF upper bound
of the SEN+ is much smaller than the NMTTF lower bound of the ASEN.
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Size MTTF * ) NMTTF
SEN |l SEN+ ASEN SEN+ ASEN
N EXACT LB UB LB LB UB LB
0.25000 || 0.23333 | 0.23333 || 0.75000 || 0.9333 | 0.9333 {| 3.0000
8 0.08333 || 0.10417 | 0.12450 || 0.18912 || 1.2500 | 1.4940 || 2.2690
16 0.03125 || 0.04643 | 0.06250 || 0.08527 || 1.4857 | 2.0000 }| 2.7280
32 0.01250 || 0.02083 | 0.03125 || 0.04607 || 1.6667 | 2.5000 || 3.6860
64 0.00521 |} 0.00942 | 0.01563 || 0.02712 || 1.8095 | 3.0010 || 5.2080
128 {| 0.00223 || 0.00430 | 0.00781 |[ 0.01676 || 1.9250 | 3.4989 || 7.5078
256 0.00098 || 0.00197 | 0.00391 || 0.01067 || 2.0202 | 4.0038 || 10.9240
512 0.00043 || 0.00091 | 0.00195 || 0.00693 || 2.1000 | 4.4928 || 15.9591
1024 || 0.00020 || 0.00042 | 0.00098 || 0.00456 || 2.1678 | 5.0176 || 23.3473

Table 5.3: MTTF and NMTTF Ratios for the N x N Networks.

Based on the number of equivalent S E;s, Table 5.4, shows the complex- ;
ities of the networks. For larger networks, the ASEN is more than twice as
complex as the SEN+. If differences in the component complexities are ig-
nored, then the ASEN will appear to be even less costly than the basic SEN
since it will have N/2 fewer SEs. In comparison with the SEN+, the ASEN

would have N fewer SEs.

Figure 5.20 plots both the ratio of the NMTTF and of the cost of the
ASEN to the SEN+ as a function of network size (using a log, scale on the x-
axis). For the case of the ASEN, the growth in NMTTF is much faster than
the corresponding increase in cost as network size increases. For example,
for N = 1024 the ASEN is more than twice as expensive as the SEN+, but

it is also more than ten times more reliable. (The asymptotic cost ratio

ASEN/SEN is 3.)
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Size || Network Complexity Ratio

N | SEN | SEN+ | ASEN || SEN= | ASEN
4 4 6 4 1.5000 | 1.0000
8 12 16 20 1.3333 | 1.6670
16 32 40 64 1.2500 | 2.0000
32 80 96 176 || 1.2000 | 2.2000
64 | 192 | 224 448 | 1.1667 | 2.3333
128 || 448 | 512 1088 | 1.1429 | 2.4286
256 || 1024 | 1152 | 2560 | 1.1250 | 2.5000
512 | 2304 | 2560 | 5888 | 1.1111 | 2.5556
1024 |} 5120 | 5632 | 13312 | 1.1000 | 2.6000

Table 5.4: Network Complexity for the N x N Networks.

Ratio
1

ASEN NMTTF

SEN+ NMTTF

ASEN Cost
SEN+ Cost

Network Size (N)

89

1024

Figure 5.20: Ratios of the NMTTF and the Cost of the ASEN to the SEN .
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Figure 5.21: Ratio of the Mission Time Improvement Factor of the ASEN to
the SEN+ for Networks from Size 8 X 8 to 1024 x 1024 Using the Lower-Bound

Model.
.,
- Mission Time Improvement Factor
The MTIF for 8 x8 through 1024 x 1024 networks, was computed using the
lower-bound model. In Figure 5.21, the ratio of the MTIF of the ASEN
o to that of the SEN+ is plotted. Observe the dramatic increase in reliability
e
achieved by the ASEN in Figure 5.21. This shows that the ASEN is superior
to the SEN+.
& 5.7.4 Extensions to Reliability Analysis of ASEN
Previous reliability analysis of the ASEN has examined terminal reliability
and the MTTF (a single-valued measure) using bounds. In Sections 5.7.1
A and 5.7.2, this work was extended to transient reliability analysis oi these
‘x‘
a networks and derivation of the closed-form reliability expressions for small
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! networks. In this section, a further extension is made by considering imperfect
coverage and on-line repair in the reliability analysis.
If the usual approach of an overall Markov model to incorporate imperfect
! '_\ coverage and/or on-line repair were taken, then analysis would be restricted
B to an 8 x 8 ASEN network. Instead, a hierarchical approach is used to model
rather large ASEN networks. In the lower-bound block diagram model shown
in Figure 5.17, each parallel combination can be considered to be a single
| " “pseudo” component which is modeled as a Markov chain. This lower-level
} b Markov model can be designed to incorporate imperfect coverage and/or on-
line repair from which pseudo-component reliability can be determined. The
overall system reliability is then obtained by taking a top-level block diagram
-E model and multiplying individual pseudo-component reliabilities. For other
uses of the hierarchical approach to reliability modeling, the reader is referred
to [84].
Imperfect Coverage
It is often the case that, when a component in a system fails, the detection,
isolation, and reconfiguration procedures of the system are less than perfect.
": This notion of imperfection is called imperfect coverage, and it is defined as
; the probability that the system successfully accomplishes system reconfigu-
ration given that a component failure occurs [17,4]. Denote this probability
as ¢. Imperfect coverage is an important factor in considering the reliability
g’} of interconnection networks since as their size increases, the number of com-
ponents increases, and the potential for an uncovered fault to occur increases
as well.
N Consider the lower-bound model of the ASEN shown in Figure 5.17. Each
. parallel arrangement of two S E,,, can be considered as a pseudo component
o
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denoted as PCj,,, whose reliability, given imperfect coverage, can be computed

from a simple 3-state Markov model:
Rpc,. (t) = e 4 2ce™dmi(1 — e722mt), (5.36)

The first term in equation (5.36) represents the probability that both SEzm
are operating concurrently, and the second term represents the probability
of operation with one of the two SEs after successful reconfiguration of the
system given that one of the two SEs fail.

Each series-parallel arrangement of S Es,, and each such arrangement of
SEs can be considered as a pseudo component in a similar fashion. The

reliability expressions are:

RPC;,-(t) — e—(*am‘ + zce—ngnt(l _ e—zASm.‘)’ and (5.37)
RPC: (t)

et 4 27 (1 - 7P, (5.38)

respectively. Hence, the reliability expression for the lower-bound model of

the ASEN which allows for imperfect coverage is given by

N
ry

Rasen(t) = [Rpc,. (£)] ¥ [Rpc, (t)| ¥ 29 ¥ =3 Rp,, (t)] (5.39)

As will be shown later, even a coverage factor of 0.95 has a significant effect

on the ASEN’s reliability.

On-Line Repair

One characteristic of the ASEN is that it lends itself to on-line repair and
maintainability. But modeling this behavior has not been previously ad-
dressed. Previous reliability analysis of ASENs is extended by employing
hierarchical decomposition in modeling such behavior. Each pair of conju-

gate loops is a series-parallel arrangement of four switching elements. This

R B T v NN R N VNN LA TN N
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— SEO SE 1 |+
— SE2 SE3 |
(a) Pair of Conjugate Loops (b) CTMC Representation

Figure 5.22: Markov Chain Representation of a “Pseudo” Component.

grouping can be considered as a pseudo component and the failure and repair
behavior of this PC can be modeled using a discrete-state, continuous-time
Markov chain. The reliability expression of the pseudo component is ob-
tained, and then this reliability function is used as input to the lower-bound

model of the ASEN.

Figure 5.22 shows: (a) a pair of conjugate loops from Figure 3.5, and (b)
the CTMC representation of the failure and repair behavior of the pseudo
component. Tuple (7, ) represents the number of operational components in
each loop. For example, 1 = 2 means both SE 0 and SE 1 are operational.
Furthermore, switches are replaced in pairs even though only one SE in the
loop may be failed. Repair then takes the same time to replace one or both

SEs in a loop. Let the failure rate of each component be A and the repair

rate be u.
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For reliability, the concern is with continuous operation given that on-line
repair is conducted. Note that state (1,1) is an absorbing state. Let Py (t)
be the transient probability of that state, then 1 — P, (¢) is the reliability of
the pseudo component. The 6-state CTMC in Figure 5.22 can be reduced
to a 4-state CTMC; then the transient solution of the state probabilities is
accomplished using Laplace transforms, solution of a system of linear equa-
tions, partial fraction expansion, and inversion back to the time domain. The
highest-order denominator of the Laplace transform solution of the 4-state
CTMC is a quartic equation with four real roots. One root is zero, the other
three roots are determined by using the usual explicit closed-form expressions
found, for example, in [73]. Let P(s) denote the Laplace transform of the
transient probability of being in the absorbing state(P; 1(t)), then

Pl =3 A (5.40)

where the —z; are the real roots of the denominator, and the A; are the
constant coefficients. Then

4
Pl'l(t) = ZA.'C-:“, and (541)

=1

Rpc(t) = 1- Pl'l(t). (542)

Once Rpc(t) has been determined, the reliability of the ASEN with on-line
repair is found by replacing each pair of conjugate loops wit}l its PC in
the lower-bound model of the ASEN. For small networks, SHARPE (see
Appendix C) can be used directly to compute system reliability, but for larger
networks, numerical instabilities were avoided by using a program written
specifically for the present problem.

In Figure 5.23, the reliability of the 256 x 256 ASEN is plotted using the

upper and lower-bound models under three assumptions:
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4 Figure 5.23: Reliability of the 256 x 256 ASEN.
% 1. An imperfect coverage factor (¢ = 0.95).
; ;:;; 2. Perfect coverage (¢ = 1.00).
§ o
3. On-line repair (lower-bound model only, ¢ = 1.00).
1y
L/
X . Assume A3 = 3.5, A3 =3, A;m = 1.5, and g = 500,000. This is equiva-
. g lent to assuming a failure rate of 1 x 10~® SEs per hour using a “normalized”
' SE and a repair rate of one loop per one-half hour. The figure presents three
) views of the ASEN. Even the slightest probability (0.05) of unsuccessful re-
()
3 R configuration has a significant impact on ASEN reliability. On the other

rr

hand, on-line repair enhances the reliability of the ASEN in a profound way.

For example, Table 5.5 shows the impact of imperfect coverage and on-line

repair on the reliability of the 256 x 256 ASEN. At time ¢t = 0.01, the relia-
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‘ bility ranges from 0.15 to 0.99. Table 5.6 compares the MTTF of the ASEN

a.

under three assumptions using the lower-bound model. As network size in-
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Reliability of the 256 x 256 ASEN at t = 0.01

Lower Bound

Upper Bound

On-Line Repair

c=100c=095(¢=100(c=0.95 ¢ = 1.00
0.43 0.15 0.70 0.21 0.99
5 Table 5.5: Impact of Imperfect Coverage and On-Line Repair on the 256 x 256
v ASEN.
Lower Network Size (N)
Bound
with 8 16 32 64 128 256 512 1024
f:,‘ Repair || 0.6111 | 0.3880 | 0.2538 | 0.1696 | 0.1152 | 0.0791 | 0.0547 | 0.0381
» ¢=1.00 || 0.1891 | 0.0853 | 0.0461 | 0.0271 | 0.0168 | 0.0107 | 0.0070 | 0.0046
¢=0.95 || 0.1781 | 0.0763 | 0.0381 | 0.0200 | 0.0106 | 0.0055 | 0.0028 | 0.0013
Table 5.6: MTTF of ASEN Under Three Model Assumptions.
&>
K creases, the improvement in MTT F with on-line repair over the models with
no repair increases. For example, as network size increases from 8 X 8 to
1024 x 1024, the ratio of the MTTF with on-line repair increases from 3.23
A to 8.28 for ¢ = 1.00.
Al
L™
5.8 Summary
" In this chapter, the transient reliability of the Shuffle-Exchange Network
3 (SEN) and three fault-tolerant schemes for improving the reliability of this
network were examined. These schemes are the SEN+, 2-SEN, and ASEN.
Exact closed-form expressions for the time-dependent reliability of the SEN
ﬁ and the 8x8 and 16x16 SEN with an additional stage (SEN+) were derived

independent of the assumptions regarding the underlying component-lifetime-
distributions. Also, for the networks examined, the exponential distribution

provides a conservative estimate of the reliability of these MINs if the com-

ponents have an increasing-failure-rate lifetime-distribution.
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‘ Further, a tight reliability lower bound for larger SEN+ networks was
derived and used to provide numerical results for networks as large as 1024 x
1024. A comparison of these networks shows that, on the basis of reliability,

the SEN+ is superior to the SEN and the redundant SEN.

Next, exact closed-form expressions for the reliability of 4 x4 and 8 x 8
ASEN networks were derived. Also derived were the upper and lower bounds
for approximating the reliability of larger ASEN networks by “normalizing”
E the networks based on the gate complexities of their components. The bounds
obtained were compared to the exact solutions derived for the 8 x8 ASEN to
show that they are a reasonable approximation of ASEN reliability, and then

. these bounds were used for analyzing ASEN networks up to size 1024x1024. A
E comparison of the mean time to failure, cost, and mission time improvement
factor of the SEN+ and ASEN networks was presented, and it was shown
that, on the basis of reliability, the ASEN is superior to the SEN, 2-SEN, and

SEN+. Finally, through the novel use of hierarchical decomposition, results
F on the reliability of ASENs were extended to include imperfect coverage and

on-line repair.
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Chapter 6

Selecting the Optimal Switching
Element Size for SEN and SEN+

A significant amount of the reliability analysis presented in Chapter 5 was
concerned with the SEN and the SEN+. In this chapter, the analysis is
extended to the (uniform) Omega network [54| for the purpose of finding the
optimum switch size for maximizing interconnection network reliability.
Consider an N x N Omega network, where N = m", constructed using
m x m crossbar switches and m * m™~! shuffles connecting the stages, where
m = 2!, for | a positive integer. There are log, N stages of N/m switches
per stage. The Omega network shall be referred to as SEN,, and the Omega
network with an additional stage as SEN+,,. The additional stage will make
the network (m — 1)-fault-tolerant in the intermediate stages since, in this

portion of the network, there are m disjoint paths between each S-D pair.

Let rsg, {t) be the reliability of the m x m switching element. The exact

reliability expression for the Omega network is given by

Rsen,.(t) = [rse,. ()] = los= N1 | (6.1)
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Figure 6.1: 16 x 16 Omega Network with 4 x 4 Switches (SEN+,).

The reliability expressions for the lower and upper bounds for the Omega

T network with the additional stage are:

‘ _ N —’!;(logm N-1)1ym
Ry, (t) = [rse.(t)]™ - [1—[1 - rse, (t)= J™], and  (6.2) ‘
Run(t) = [rsen(t)]™ -[1 = (1= rse. (1) =]0os= N0, (6.3)

-~

w Figure 6.1 shows the arrangement of a 16 x 16 SEN+, network. The

o ar . a

expression for the reliability of the last two stages is equivalent to that of the

basic Omega network which is

= Rsen, (t) = [rse.(1)]® - (6.4)
The exact reliability expression for the corresponding SEN+4 network as
shown in Figure 6.1 is
-
“ Rsens(t) = [rsea ()] - [1 — (1 = rse,(1)"] (6.5) *
R :
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The hardware for the SEs in this network, however, will have a higher gate
complexity than the 2x2 SEs used earlier. Since m denotes the size of the mxm
SE, let f(m) be the cost or complexity of the SE, where f is a function of m.
It is generally accepted that, in terms of gate complexity, f(m) = 4m(m —1)
(47]. Now one can express the complexity of the SE,, in terms of the basic

SE; used earlier. The equation is

rsea(t) = [rse(t)] 7® .

Then
em(m—1 m(m—1)
rsEm (t) = [rse(t)] ™ ¢7 =[rse(t)]” 2
This provides an expression for the reliabilities of these two networks in terms

of SE;. Now equation 6.1 can be rewritten as

Rsen,, (t) = [rse(t)] (6.6)

Since 0 < rgg(t) < 1, the network reliability will be maximized for m = 2.

The reliability expression for the lower bound expressed in equation (6.2)

becomes
Rip. (t) = [rs(t)|N ™0 - [1 = [1 = rgg(t) o Cotm N-D]m], (6.7)

Using an exhaustive search, it can be shown that for N < 1024, expression
(6.7) is maximized for m = 2. The cost (C) functions for each of these

networks can be expressed as well. For the basic network the cost is given by

log N
logm

C(N,m) = 4N (m — 1)(

). (6.8)

It is clear that cost is minimized for m = 2. For the network with the
additional stage the cost is expressed as

log N

C(N,m,+) = 4N(m — 1)( +1). (6.9)

logm
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n So, for the redundant path network, the optimum switch size for minimizing
the cost is also m = 2.
In summary, based on reliability and hardware cost, a designer should

choose a 2 x 2 SE for constructing an SEN network. Similarly, for N < 1024,

the optimum switch size for the SEN+ network is m = 2.
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, Chapter 7

Performability

s, |

7.1 Introduction

. In this chapter, combined performance and reliability measures for unique-
o path Multistage Interconnection Networks (MINs) are examined. While the
Shuffle-Exchange MIN (SEN) will be the specific network considered, a num-

ber of other MINs are topologically equivalent. Many measures may be used

for combining performance and reliability, but the focus here will be on three

Ee o

such measures. Of interest is the “average instantaneous reward rate at time
t”, the “average accumulated reward until time t”, and the “distribution of
the cumulative reward until system failure”. These measures include, as spe-
- cial cases, several “pure” performance measures (the maximum and minimum
reward rates and their product with the time-to-failure random variable); the
distributions of these performance measures; and “pure” reliability measures

(the distribution of a system’s lifetime and the mean time to failure).

3 Separately modeling the reliability and performance of networks is not
new. Recently, however, some research has been done on combining perfor-

mance and reliability /availability analysis for a few interconnection networks.

. In (23], performance and reliability for the crossbar and the multiple-bus ar-
b
L J
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chitectures are combined as a single measure — computation availability.
Markov chains are used for the analysis of the computation availability for
these systems. A closed-form expression is derived for the reliability of the
multiple-bus architecture considering graceful degradation. The results show
that the reliability of the multiple-bus is better than that of the crossbar.
Also, after some time ¢ and depending on the number of buses, the compu-

tation availability of the multiple-bus exceeds that of the crossbar.

More recently, in [63] performability measures associated with the pro-
cessing elements of Hypercube-based networks are examined. The disconnec-
tion probability of a network is used to compute the coverage factor for the
system.

The purpose of this chapter is to show the applicability of Markov reward
models for the analysis of interconnection networks. Determining the perfor-
mance of an interconnection network under all possible failure configurations
is a very difficult problem, but a methodology is shown in this chapter through
analysis of the SEN. Then, a detailed analysis of a complete multiprocessor

system is performed in Chapter 8.

7.2 Previous Work

The evolution of a degradable system through various configurations with dif-
ferent sets of operational components can be represented by a discrete-state,
continuous-time Markov chain (CTMC). In performability terminology, this
CTMC is referred to as a structure-state process. Associated with each state
of the CTMC is a reward rate that represents the performance level of the
system in that state. Each state represents a different system configura-
tion. Transitions to states with smaller reward rates (lower performance

levels) are generally characterized as failure transitions, and, in the case of
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! repairable systems, transitions to states with higher performance levels are
characterized as repair transitions. The set of reward rates associated with
the states of a structure-state process is referred to as the reward structure.

m The structure-state process combined with the reward structure constitutes

é a Markov reward model (MRM).

The choice of performance measure to be used for determining reward
rates is a function of the system to be evaluated. Often a raw measure of sys-

-’g tem capacity such as the instruction execution rate may be the appropriate

" reward rate. For interconnection networks, the appropriate measure is band-
width (BW). At other times, a queueing-theoretic performance model may
be used to compute the reward rates. Since the time-scale of the performance-

.? related events (bandwidth) is at least two orders of magnitude less than the

| the time-scale of the reliability-related events (component failures), steady-
state values of performance models are used to specify the performance levels

. or reward rates for each structure state.

: For degradable systems, a significant measure is the amount of accumu-
lated work that can be produced by a given system over some specified time
interval. Beaudry [10] proposed an algorithm to compute the distribution of

X accumulated reward until system failure for nonrepairable systems. In [61],

- the distribution function of the cumulative work during a specified period of
time is considered as the performability measure. Goyal and Tantawi [36]
and Donatiello and Iyer (27|, provide efficient numerical algorithms to com-

3". pute the distribution of accumulated reward in general acyclic structure-state

= processes.

In [48], another numerical algorithm was proposed that used numerical
. inversion of the double Laplace transform equations to obtain the performa-
;"- bility measure. The algorithm presented has time complexity O(k*) where &
2
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is the number of states of the Markov reward model. This algorithm applies
to the computation of the distribution of accumulated reward for a general
CTMC and arbitrary reward structure. The algorithm has been recently im-
proved to an O(k®) execution time by Smith et al. in [88]. This algorithm
makes the solution of larger Markov reward models practical.

In the next section, the notation usually associated with performability

analysis will be introduced.

7.3 Notation

To facilitate the development of the notation for Markov reward models, let

T be the time until system failure. Then, the system reliability is given by
R(t) = Prob[T > ¢] . (7.1)

The evolution of the system in time is represented by the discrete-state
stochastic process {Z(t), t > 0}. At time ¢, Z(t) is the structure state of the
system, and Z(t) € ¥ = {1,2,...,k}, where V¥ represents the state space of
the CTMC and k denotes the number of states in the structure-state process.
If the holding times in the structure states are exponentially distributed, then
Z(t) is a homogeneous CTMC. Let g;;, 1,7 € {1,...,k}, be the transition rate
from state ¢ to state j. Then Q = [g,;] is the k by k transition rate matrix
where

x
Z 95 -
J=1j#i
Also, let P;(t) denote the probability that the system is in state 7 at time t.
That is, P;(t) = Prob[Z(t) = i]. The transient-state probability vector P(t)
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oy
o ' may be computed by solving a matrix differential equation {98],
o
X B(t) = QT B(y) , (7.2)
oY
)
N - where the transpose of a vector or matrix is indicated by a superscript T.
LN
::;; o To represent the reward structure, let ; denote the reward rate associated
3_" with structure-state ;. Then the vector r defines the reward structure. To
represent the reward rate of the system at time ¢, let X(t) = rz(.

. :-::' From the state probabilities we can obtain the instantaneous availability
-

J.
het i€UP
S where UP is the set of operational states. The expected reward rate at time
L) ..\'
;' " tis
’ -

E[X(t)] = 2_rPi(),

( [}

) also known as the computation availability [10].

. o . :

" Ny The steady-state probability vector 7 of the Markov chain is the solution

P

Yy for the linear system (assuming that the CTMC is irreducible):

" QT» = 0, and

o

5 :-:' Zﬂ"' = 1.
LY :

" Methods of solving this system are discussed by Stewart and Goyal in [93].
2 I : I
v From the steady-state probabilities, we can obtain the steady-state availabil-
4 g ity
‘LI

] A= z e,
M i€UP

v
:-: and the steady-state computation availability
D)
) j -~ .
‘ N Jim ElX(t)] = Z T,
14 t
"
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e
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For nonrepairable systems, these measures are not of interest since the steady-

state availability and expected reward rate as time approaches infinity are
zero.
Further, let Y'(t) be the accumulated reward until time ¢. It is the amount

of reward accurnulated (the amount of work done) by a system during the

s B

interval (0,t), and it is equal to the area under the X(¢) curve. That is,

Y(t) = /o' X(r)dr . (7.3)

If we use bandwidth to construct the reward structure, then from equation

R
L

(7.3), Y (¢) represents the number of requests that the IN is capable of satis-
fying by time ¢.

E{ The expected value of the accumulated reward can be determined by
E[Y() = E[/ (r)dr]
= /0 E[X(r)]dr

E[X(t)] and E[Y (t)] provide the first moments of their underlying distri-
butions. However, if one is interested in the behavior of Y (t) far from the
t, mean (e.g., when a system is required to have a high probability of com-
pleting a specified amount of work in a particular time interval), the central
moments may not provide accurate information. Instead, the distributions
themselves are required.

g The distribution of reward accumulated in the interval (0,t) evaluated at
z is:
Y(z,t) = Prob[Y (¢) < z|,

and its complement is :

Y¢(z,t) = Prob[Y (t) > z|,
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where z is a specified amount of performance (work) to be achieved. Methods
of computing Y(z,t) are discussed in [48] and [88]. In case the CTMC has
one or more absorbing states, it is useful to analyze the accumulated reward
until absorption (failure), Y (co). Let H; be a random variable denoting the
time spent in state : until system failure, and let r; be the bandwidth in state
1; then the total number of requests that the can be handled prior to system

failure, ¥ (c0), can be computed as
Y(OO) = Zr;H,-. (7.5)

The distribution function of Y (o0) can be computed by constructing another
CTMC with the transition rate matrix Q' so that q,fj = ¢;;/ri for r; > 0 and
solving for the time to absorption for the new CTMC [10].

Table 7.1 summarizes the information currently available on performa-
bility measures. The table shows that measuring combined performance and
reliability /availability for various systems has experienced increasing levels of
sophistication over the past few years., Early models considered only transient
measures and models without repair. As interest in finding ways to analyze
more complex systems increased, distributional measures and repair behav-
ior were considered. In the table, the Laplace-Stieltjes Transform (LST) is
denoted by ~ (e.g., G~(u) = [5° e"“*dG(z)) and the Laplace Transform (LT)
by * (e.g., f*(s) = [5° e~ **f(z)dz). Each measure’s properties are indicated.
The properties are whether the quantity measured is instantaneous (I} or
cumulative (C); steady state (S) or transient (T); and whether the measure
is a distribution function (DF) such as the probability mass function (pmf)
or the cumulative distribution function (CDF) or a central moment (M). The
references cited are related to the work on the corresponding measures. While

the list is not necessarily exhaustive, it does provide sufficient reference for

obtaining additional information on the corresponding measure. As shown in
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! the table, the algorithms used in [88] provide the most advanced analytical

methods for evaluating all Markov reward model measures of interest.

Measures used to characterize the behavior of Markov reward models of

ﬁ MINs without repair are the reliability, R(t); the expected reward rate at time
t, E[X(t)]; the expected accumulated reward at time ¢, E[Y (t)]; and the dis-

tribution of accumulated reward until absorption Y (z,00) = limy—a Y (z,t).

After offering an intuitive explanation of the influence of reward rates on

N system performance, the 4 x4 SEN will receive an exact analysis, and an 8 x 8
; SEN will be analyzed using an approximation technique. Current difficulties

encountered in modeling larger SENs will be discussed, as well.

7.4 Markov Reward Model for the SEN

An unique-path Multistage Interconnection Network (MIN) can be viewed
as a gracefully degradable system. The MIN is a nonrepairable system; and
::{ as such, its evolution can be represented by an acyclic Markov chain. The
states that the continuous-time Markov chain progresses through enroute to
system failure are the configurations of a structure-state process [61]. Each

state in the CTMC has a reward rate associated with it that represents the

E rate at which the MIN can perform useful work while in that state.
Before beginning the analysis, an intuitive argument about the merits of a
single measure which combines performance and reliability will be presented.
” Unique-path MINs provide a single path between a given source-destination
;i: (S-D) pair; so with the failure of any one switching element (SE), some
source is disconnected from some destination. In fact, several S-D pairs may
be disconnected.
. If one defines a MIN as being operational as long as no SE has failed,
). reliability analysis is straightforward. For example, by analyzing the MIN
X
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. Alt) P(t) = QTP(t) |1: T:M | Reibman '87 [80]
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! as a system consisting of SEs connected in series. Analytically, let rsg(t) be g
the reliability of an individual SE at time t and R(t) be the reliability of
the MIN at time ¢, then R(t) is simply the product of the individual relia-
bilities assuming that the SEs behave independently. Further, assume that
E the SEs are identical and each has an exponentially distributed lifetime, with
parameter A, then the time-to-failure of the MIN will also be exponentially
distributed with parameter M\, where M is the number of switching ele-
f ments in the MIN. This condition, however, is not very comforting since it
implies that the MTTF is 1/MA, and thus the MTTF decreases as the
network complexity increases. Observing that the network complexity of a

SEN is a function of the number of sources (N) and equals (N/2)(log, N),

t it is clear that obtaining large (say 1024 x 1024) SENs with a long lifetime
) will require SEs with a very long lifetime. For example, a 1024 x 1024 SEN
composed of SEs with an exponentially distributed lifetime with parameter
. A = 107® failures/hour will have 5120 SEs and a MTTF of only 8 days. It is \
% doubtful such a system would find many applications. X
From definition 2 in Chapter 5, a MIN is operational so long as some
source can communicate with some destination. This view permits a number
“ of ways to analyze the MIN. The traditional way is to model the MIN as a
ke continuous-time Markov chain. But even in this simple model one is implicitly :
associating a performance level with each state. Consider the performance
level associated with each state to be either a 1 or a 0. A reward rate of 1
w3 associated with a state means that work is performed at the rate of 1 unit
per unit time while in that state. Then denote the reward rate (r) associated
with each structure-state 7 as r,. ]
) The reliability analysis can be done in terms of a performability model
}. by letting T be the time until system failure. Let r; = 1 for all operational
)
e N N o e Y o i o e L A e L A T N
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states and r; = O for all failure states, the system reliability is
R(t) = Prob[T > t]| = lim Prob(Y'(r) > t. (7.6)

The structure-state process, Z(t), for the SEN will be represented by an
homogeneous continuous-time Markov chain assuming that the time spent in
any particular operational state (holding time) is an exponentially distributed
random variable. It is possible, however, to release this restriction of expo-

nentially distributed holding times using at least three different approaches.

The approaches that can be used are:

® a non-homogeneous CTMC [97];
e semi-Markov, structurc-state process [49]; or

e the method of stages [22,41].

Analysis of the evolution of Z(t) begins by selecting the appropriate re-
ward structure. For each structure-state 1 € ¥, let the bandwidth in that
particular configuration be the fixed reward rate r,. So, from equation 7.3,
Y (t) represents the number of requests that the MIN is capable of satisfying
by time ¢.

7.5 Reward Rate’s Influence on Performance

How does the reward rate affect the performance that the model predicts
the physical system will attain? The three curves in Figure 7.1 represent
different levels of performance as reflected by the assumption made about
failures and the reward rates chosen for each operational structure state. If

one ignores the possibility that components within a particular system may

fail, and if a constant reward rate is associated with each structure state,
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Figure 7.1: Impact of the Underlying Reward Structure on Performance Level
as a Function of Time.
] then as the system evolves in time, its performance level (the rate at which
:;ji it does work) will be constant. Associating the maximum reward rate rmq;
(= maz{r;}) of any structure state with every structure state, an upper
bound is obtained on the rate at which work is accomplished. This can be
K called a “pure” performance model. (Similarly, the minimum reward rate rpm,n
~
A (= mini{r;}) could be used for a performance model, but for nonrepairable
systems, Fmin = 0.)
Figure 7.1 shows rn,; for a hypothetical system. If failure of the compo-
::i nents is permitted, two additional possibilities exist. A performability model
<
that associates a reward rate of 1 with each operational configuration and a
reward rate of O with the failed structure states is simply a traditional model
of the system’s time-to-failure. The complementary distribution of the time-
‘ to-failure distribution is the system’s reliability as function of time — R(t).
°
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g This approach to reward rates may underestimate the system’s ability to
perform useful work. On the other hand, if the reward rate that is assigned
to an operational structure state actually represents the productive capac-
o ity of that particular configuration, one gets a more accurate picture of the
performance degradation that occurs as the system evolves. The third curve
shows E[X(t)],the average instantaneous reward rate at time t. The value of

E[X(t)] can be bounded by the following two inequalities:
0 < E[X(t)] € Tmaz, and
Tmin < E[X(t)] S Tmazs L S T

where r ;. is the smallest non-zero reward rate for the system. For discussion

VWY T Y Y Y YN R DN N L oY 5 o R v o oS R NP
.. .
ey )t

- of nonrepairable systems, rm;, is defined to be the smallest reward rate in an

-y,

operational state.
Figure 7.2 shows three interpretations of a system’s performability. These
curves are specially weighted versions of the complementary distribution of

the system’s time-to-failure CDF. These curves, as functions of time, answer

the question, “What is the probability that the system will deliver at least
z amount of work before the system fails?” The curves in Figure 7.2 depict

the effects of three different (perhaps) time-varying weighting assumptions.

E The upper curve plots Prob[r,,.T > z]. This provides an upper bound. The
interpretation here is that whatever state the system is in (as long as it is
still operational) one gains as much benefit there as in the fully-operational

- state. In the case of a MIN, suppose that one arbitrarily decides that the

:; system is considered operational as long as K sources can communicate with

E K destinations. Then, even though one or more components within the
E network may have failed, leading to a reduced bandwidth, this configuration
E; ~ is considered to be performing as if it were operating at full bandwidth. A
7 : rather optimistic view.
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Figure 7.2: Establishing Bounds for the Complementary Distribution of Ac-
cumulated Work.

- On the other hand, the lower curve plots Prob[rm;,T > z|, and it provides

:’ a lower bound on the system’s performability. This implies that whatever
operational structure state the system is in, only minimal benefit is obtained
from the system. That is, since the system’s excess capacity cannot be used,

~ this value will be discounted in determining the probability that the system

N

f‘ . . 3 -

- will ever produce a specified amount of work. Again for the MIN, consider
the K processors and K memories requirement. Then assign the smallest
bandwidth of any of the operational configurations to all the operational

W states even though the network will be capable of performing well above that

Y e
level for most of its lifetime. This will portray a rather pessimistic view.

The third interpretation is to view the MIN as a gracefully degradable
system. Now, define the reward rate associated with each state as the band-

- width of that particular configuration. The center curve of Figure 7.2 shows

-
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h Prob[Y(o0) > z|. Now, as the CTMC model of the system evolves, varying
levels of performance will be produced in each state (with r; = 0 for failure
states). Here it is explicitly recognized that as components fail, the system’s
k ability to produce useful work may be degraded and also that the system

y will accumulate work at decreasing rates as time progresses. This view corre-
sponds to a more realistic view of a system’s performance. Hence, the basis
for the reward rates associated for various configurations can have a signifi-

y cant impact on decisions made about a particular system’s ability to perform

useful work.

7.6 Bandwidth Computation with SHARPE

Aside from the familiar pen and paper drills for computing measures of in-
terest, SHARPE [84] was used as a modeling tool since it allows system anal-

ysis using several different model types and permits computation of E[Y (t)],

“ E[X(t)], R(t), and the distribution function of ¥ (c0). Appendix C contains
) a brief description of SHARPE which was developed at Duke University.

SHARPE can be used to compute the bandwidth of the SEN as it degrades

over time in the presence of failures. The SEN can be modeled as a system

E_ with geometrically distributed input requests; where, on each memory request

cycle, each source makes a request for some destination with a probability
p. When a SE has failed, the assumption is that its output links will not be

active. Thus p; for a failed SE in stage 7 is zero. Further, the computation of

e

p; given that the two inputs (p;-, ;) that feed a particular SE are not equal,

is computed as

pi = (1= Bty - Bty (1.7)

where 7 denotes the input link to a SE.

i
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(a) SHARPE Model of 2x2 Switching Element.
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(b) 2x2 Switching Element.

Figure 7.3: SHARPE Graphical Model of a Switching Element.

To use SHARPE to compute the bandwidth (BW) of a SEN when various
SEs are permitted to fail, start with a single switching element. The basic
idea is to model a SE as a graph with two input nodes and to compute the
CDF of the time to transit the graph as the first-order statistic (or minimum).
In Figure 7.3, observe that the distribution for each of the two input nodes is
p/2, and the distribution for the output node is zero. Recall that p represents
the probability of a request for either of the two destinations, so p/2 represents
the probability of a request for a specific destination. Half of the time the
request at an input will be for the upper output link, and half of the time it
will be for the lower output link. Since queueing of requests is not allowed,
if both input links simultaneously request the same output link, then only
one request will be successful. The other request is dropped. The decision

as to which request succeeds is random and each is equally likely. Of course,
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h Figure 7.3(a) models a specific output and each SE has two such outputs, so

the BW for the SE is twice the BW ~f the specific output link.

One can justify the use of p/2 and the first-order statistic for obtaining
F p1 by examining Figure 7.3(b). First, the first-order statistic is the proba-
) bility that at least one request is made for a particular output link. This
is equivalent to one minus the probability that there is no request for that
output link. Now, consider input link O in the figure. With probability po, it
F has a request for either output link 0 or 1. Since a request for either output
; link is equally likely, with probability po/2 the request is for output link 1;
so with probability (1 — po/2) output link O is not requested. Similarly, if
one considers input link 1, one obtains the same probability of no request for
k output link 0. Therefore, the combined probability of no request for output
link 0 is (1 — po/2)(1 — po/2) or (1 — po/2)?. One minus this quantity is
the first-order statistic as claimed. Furthermore, in the SHARPE model by
using po/2 as the probability of a request made by an input link for a given
E:- output link (Figure 7.3(a)), the same value for bandwidth is obtained as in
the method for computing bandwidth discussed in Chapter 4 where p, is the
probability that a given source requests a particular destination. Since there

‘ are two outputs, the BW of the SE is twice p,.
To model SENs of arbitrary size, simply use the inputs for the 2 x 2 SE
in Figure 7.3(a) to represent a pair of inputs for the SEN. The output of the
SE serves as the one input to the next stage and so on. So the sources of

ﬂﬁ the SEN are the leaves of a full binary tree, and a single destination is the

root. Figure 7.4 shows the SHARPE representation of a single destination
for - 4 x 4 SEN.

b

S R A L L e N T e M T e N N S Tt L N S RS e e S e N T e T T T PO e S N R
m@m T o A e R e G R R O A



| el At dai S aan <ot e ie b e AScade 0t it Aas Al Alah ket ilie it AR (el it Al AN SAR Aa SI ) o llaCiie ~aBeAle "Alla e Ate Aty S5 SR Sia SAe S SRS Al Ral A Aulofad A

h 119
D1
IF.
"
;

%

Figure 7.4: SHARPE Model of a Single Destination in a 4 x 4 SEN.
7.7 Analysis of 4 x 4 SEN

%

L In this section and the one that follows, the SEN will be analyzed under
the assumption that the interconnection network is operational as long as
some source can communicate with some destination. This was definition

N 2 introduced in Chapter 5. This is a very loose interpretation of network

¥
reliability, but the purpose in using this definition is to show the importance
that performability analysis has in establishing comparative criteria for INs.
In the subsequent section, it will be shown how a variation of definition 3 can
;’Eﬁ be used to solve larger problems.

A 4 x 4 SEN has 4 sources, 4 destinations, and 2 stages. Each stage has
2 SEs. Since this MIN has a total of 4 SEs, each of which can be in one of
2 states (operational or failed), one can easily model all possible states (2¢).

.8 Each configuration (combination of failed and operational SEs) in the MIN
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has an associated bandwidth. Let p,, = 1.0, this means for each cycle there

will be a request for some destination on each input link of the SEN.

Figure 7.5 shows the Markov chain representation of this system. It is
assumed that the time-to-failure of each SE is exponentially distributed with
parameter lambda (A). Each state is represented by a 4-tuple where position
1 corresponds to the first SE in stage 1 and positions 2 through 4 represent
the states of the SEs as shown in Figure 7.6. A 1 in position 1, 1 <1 < 4,
means SE; is operational. A zero means the SE has failed.

Solving the Markov chain of Figure 7.5, produces the CDF of the time-
to-failure of the 4 x 4 SEN, and its MTTF. The complementary distribution
of the time-to-failure is also of interest since this is the reliability of the 4 x 4
SEN. However, this complementary distribution may represent more than
reliability. If r,;, > 1, then it also provides a gross lower bound on the
performability of this SEN. This implies that the MIN works equally well
(providing a performance level of one per unit time) in all states prior to
failing. This value can be significantly different than the performance that
should be expected from a MIN. The failure of one or more SEs does not
necessarily imply that no source can talk to any destination. Rather, it says
that the MIN is operating at a degraded level of performance. While the MIN
is in some particular configuration, it can perform connections between some
source-destination pairs at a certain rate; as SEs become inoperable, that rate
will be diminished. So what is wanted is a measure of the cumulative work
that the MIN produces prior to its failure. (In a failed state, the performance
level is zero.)

Now consider the CTMC as the underlying structure-state process for
the Markov reward model, and associate a reward rate (the bandwidth) with

each operational state in the CTMC. Using the method described in [10], this
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Figure 7.5: Markov Chain Representation of 4 x 4 SEN with Failure Rate A
for each SE.
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Sources Destinations

SE, SEg

SE, SE,

Figure 7.6: Correspondence of the SEs in the 4 x 4 SEN to the Markov Chain
State Description.

Markov reward model can then be solved for the CDF of the accumulated
reward until absorption for the 4 x 4 SEN.

Figure 7.7 plots the reward rate as a function of time. For this and the
next two figures, A = 0.1 and p;, = 1.0. If it is assumed that the SEs do
not fail (A = 0.0), the 7., = 2.4375 curve shows the constant upper bound
for the reward rate for the 4 x 4 SEN. If failures (A = 0.1) are considered,
the E[X(t)] curve shows the average instantaneous reward rate at time ¢ over
the interval from ¢t = O until system failure. The reliability curve, R(t), is
plotted over the same interval and assumes r; = 1 for the operational states
and r; = O for the failed states. Of these curves, E{X (t)] properly reflects the

performance level of the gracefully degradable 4 x 4 SEN.

Using the reward rates rpm,; and E[X(t)] from Figure 7.7, one can show

how the expected performability is affected. In Figure 7.8, rmazt and £ Y (t)]
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Figure 7.7: Reward Rate of the 4 x 4 SEN as a Function of Time.

are plotted over the time-interval for which the system is operational. The
lower curve is the average performability as a function of time. As one can see,
expectations about how much a given system can produce over a particular
time-interval of interest is dependent on what assumptions were made about
reliability and performance. The value of E[Y(t)] can be bounded by the

following two inequalities:

0 < E[Y(t)] £ Tmazt, and
E[Y(t)]

IA

E[Y (00)] < rmazmin{t, MTTF}.

Finally, in Figure 7.9, three views of the performability of the 4 x4 SEN are
presented. The figure shows the complementary distribution of the system’s
time-to-failure using three different weighting functions. Assigning each op-

erational state a reward rate equal to r,, produces an optimistic view of the

SEN'’s performability. When each operational state is assigned the minimum
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reward rate, a pessimistic view of performability is obtained. The center
curve represents the performability (performance and reliability) of the 4 x 4
MIN. This shows Y (o00) = X r;H; for the MIN, where the reward rate as-
sociated with each operational state is the bandwidth that the 4 x 4 SEN
is capable of producing when in that configuration. This presents a realistic
view of the SEN’s performability.

To summarize, scaling the complementary distribution of the CDF, pro-
duces two views of the SEN’s performability. Plotting rminT, where a min-
imum reward is assumed to be accrued for each operational state, produces
a lower bound on MIN performability, and plotting rm.-.T provides an upper
bound on MIN performability. The complementary distribution of the CDF
of accumulated reward Prob[Y (co) > z|, which considers the BW as the
appropriate reward rate for this degradable system, represents the probabil-
ity that a specified amount of work will be completed before system failure.
One can easily see the large difference that each interpretation has on perfor-
mance. The particular application for which the MIN is intended will have
an influence on which curve is most appropriate. For instance, in Figure 7.9,
if one is only interested in whether some source can talk to some destina-
tion, then the lower curve is appropriate. If one feels that performance in a
degraded condition is important, then the middle curve is appropriate. And
finally, if one feels that performance in a degraded state is just as good as

performance in a fully-operational state, then the upper curve is appropriate.

7.8 Analysis of 8 x 8 SEN

For the 4 x4 SEN an explicit solution for its performability was obtained. This
can be attributed to the fact that there were only 4 SEs, and hence 16 possible

states. Specification of the structure-state process and the computation of the
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rewards for each structure state could be accomplished with only moderate
effort. The 8 x 8 SEN (see Figure 3.1) has 12 switching elements, so it has
4,096 distinct states. Some collapsing of states is possible, but the resulting
state space is still large. For example, 333 states can be collapsed into one
final state, but this still leaves more than 3700 states to deal with. This
Markov reward model can still be generated and solved, but computation of
the reward rate (bandwidth) associated with each state becomes tedious, and
the computation of the reward rates for larger SENs would be impractical.
Consider a 1024 x 1024 SEN for example. There are 2°!?° possible states which
is 2504 times larger than Avogadro’s number (6.02 x 10%3). Most people will
agree that computing the bandwidth associated with each structure state is
not worth the effort.

Since computation of the reward for each state is not possible, a suitable
approximation for modeling the system must be found. One solution is reduc-
tion of the state space by means of truncation. Two feasible approximations
are available. First, one may decide where to truncate as a function of the
bandwidth. That is, truncate the state space by allowing all states with re-
ward rates less than say 75% of the maximum bandwidth to be coalesced into
an absorbing state. Or second, the truncation criterion may be a function
of the number of failed switching elements. The second method has been
suggested in [34], [35], and [56] as a way of reducing the state space in the
analysis of other computer system models. This method has an intuitive ap-
peal. The rationale is that when some number of switches (say k) have failed
the difference between the MTTF of the system with k and k + 1 failures

will be insignificant. In this thesis, the usefulness of the first approximation

technique in the analysis of MINs will be demonstrated.
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Table 7.2 provides a partial listing of the bandwidth computations for the
8 x 8 SEN in the presence of failed switching elements. One can see that
at least 3 structure states (configurations) where 3 SEs have failed have a
higher bandwidth than at least 2 states with only 2 failed SEs. The k versus
k + 1 total-failures approach for approximating the behavior of such SENs
will truncate after all states with two failed SEs are considered, whereas
the bandwidth approach will truncate in an asymmetric fashion in order to
include those configurations that have more than two SEs failed yet still

deliver the desired level of performance.

Consider the performability of the 8 x8 SEN when its performance level in
a given operational structure state is required to be equal to or greater than
a specified percentage of the fully-operational SEN’s bandwidth. Table 7.3
shows the number of operational structure states in the CTMC which models
the 8 x 8 SEN where acceptable performance is predicated on maintaining
a minimum bandwidth capability. Observe that even for 60% of maximum
bandwidth, the truncated state space has only 57 operational states, whereas
a CTMC based on a zero-bandwidth criterion could have up to 4,095 op-
erational states. Hence truncation in this manner does decrease the state
space. It is a practical approach, as well, because multiprocessor systems
with N processors connected to N memories (or other processors) should be
designed to permit some level of fault-tolerance; otherwise the complexity of
the interconnection networks for such systems would make their usefulness
to a broad market cost prohibitive. One way to achieve desired levels of
performance is to design the system to operate in a way that permits some
of the processors, memories, and components of the interconnection network

to be inoperable and yet still allow an acceptable (but dcgraded) level of

performance to be maintained. For many real-time systeins, graceful degra-
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i B

Configuration Bandwidth
All Switching Elements Operational 4.132 ::
1 SE failed 3
in stage 1 3.480 2
. in stage 2 3.285
E in stage 3 3.099
2 SE failed
1 in stage 1 and 1 in stage 2 (case 1) 2.959 4
both in stage 2 (case 2) 2.719
1 in stage 2 and 1 in stage 3 (case 1) 2.676
E 1 in stage 1 and 1 in stage 3 2.610 _
y 1 in stage 1 and 1 in stage 2 (case 2) 2.490 :
both in stage 1 (case 1) 2.438 :
both in stage 2 (case 2) 2.438
1 in stage 2 and 1 in stage 3 (case 2) 2.252
. both in stage 2 (case 1) 2.066*
E: both in stage 3 2.066*
: 3 SE failed
one in each of the 3 stages (case 1) 2.350*
(case 2) 2.115%
(case 3) 2.089*
. (case 4) 1.620
Ff Note: Bandwidth computation assumes that the probability of a request from
each source is 1.0 (p = 1.0).
*Indicates non-monotonicity of bandwidth as a function of the number of
failed switching elements.

; Table 7.2: Partial Listing of Bandwidth Capacity in the Presence of Failed
Switching Elements (8 x 8 SEN).
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] Performance | BW Number of MTTF
(% of BW) Operational States (A =0.1)
100 4.132 1 0.8333 ‘
75 3.099 13 1.7424 |
70 2.892 20 1.8636 ‘
65 2.686 25 1.9242 ’
60 2.479 57 2.3864
Note: BW computation based on average request rate p = 1.0 for each source. :

Table 7.3: Number of States in a CTMC Where Performance is a Function
of Specified Percentages of the Maximum Bandwidth (8 x 8 SEN).

dation is essential. By combining performance and reliability such gracefully
degradable systems can be modeled to obtain a more meaningful measure of

a system’s effectiveness.

Assume that one wants to model the 8 x 8 SEN whose full CTMC has
4,096 states. Here the bandwidth computations become cost prohibitive and
tedious, so the first truncation method will be used. What will such an ap-
proach reveal about the full-scale model? First, one can compute the MTTF
based on the specified bandwidth percentages. The mean of the system’s
lifetime provides the MTTF for the system and is a lower bound on the its
reliability. The mean of the accumulated reward provides a lower bound on
performability. One way to make use of this truncation method is to iter-
atively compute the accumulated reward CDF for specified thresholds with
progressively lower bandwidth percentages as the minimum reward rate cri-
terion for operability. This is a variation of the tree pruning idea presen‘ed
in [56]. The idea is to construct a small CTMC, using a high bandwidth
cutoff, and solve for its performability. Then, if the results do not meet or
exceed a specified decision criterion for the amount of work expected from
a given MIN, expand the size of the CTMC by allowing transitions from

the current operational structure states to new states. The bandwidths for
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Figure 7.10: Complementary Distribution of the Accumulated Work for Spec-
ified Percentages of Full Bandwidth.

the new states are computed, and if they fall below the new reduced band-
width requirements, they are not added to the CTMC. For those states whose
bandwidth is still above the threshold, add them to the CTMC and consider
transitions from these new states until all transitions from an added state
fall below the threshold. The performability model is then solved, and its
results are checked. This procedure is continued until it is determined if the
system under consideration will meet the work standard. In the extreme,
one must build a complete CTMC for the system. The same idea can be
used for MINs with a specified minimum bandwidth. Starting from the full
bandwidth and moving toward the specified minimum in an iterative fashion.
Figure 7.10 shows the computation of the complementary distribution for the
accumnulated reward for 75, 70, 65, and 60 percent of full bandwidth for the
8 x 8 SEN.

N

! g - YRS Vo Bl o '...‘,'l BRSNS R
P«’ 4 ", . - y 9% ', o, "l".""ﬁl"','\"t":‘v' ..'. Lo o ; .

i B e A B B, Bl

Lo a e o o

il ol ol Bkl ol | biladioidnocdnteal . Ml b e B e e e BNl s i B Bl B bl S




k4

id

{-‘{' .“l.

sl

[

7.9 Summary

In this chapter, it was shown that performability, a combined measure of
performance and reliability, is a more useful measure than either of its com-
ponents for determining the “goodness™ of a multistage interconnection net-
work. It was also demonstrated that for MINs of size 8 x 8 and larger, trun-
cation of the state space as a function of bandwidth is a useful approximation
technique. Of current interest is finding an algorithmic way of computing all
possible bandwidths and/or finding a method of getting tight bounds on the

performability of the MINs when approximation techniques are used for the

analysis.
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Chapter 8

Analysis of a Multiprocessor System

8.1 Introduction

Traditional evaluation techniques for multiprocessor systems use Markov
chains and Markov reward models to compute measures such as mean time
to failure, reliability, performance, and performability. In this chapter, para-
metric sensitivity analysis is performed on Markov models to determine their
sensitivity to changes in the component failure rates. Using such analysis,
one can guide system optimization, identify parts of a system model sensitive
to error, and find system reliability and performability bottlenecks.

First performance, reliability, and performability measures for models of
three architectural alternatives of a multiprocessor system are considered.
Then, for these models, the sensitivity of the mean time to failure, unreliabil-
ity, and performability to changes in component failure rates are examined.
The sensitivities are used to identify bottlenecks in the three system models.

The MultiProcessor System (MPS) considered consists of 16 processors
(Ps), 16 shared-memory modules (Ms), and an interconnection network (IN)
for communication between the processors and the memories. The cross-

bar or the Omega network are the assumed interconnection network, and
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' two implementations of the crossbar are considered. The Omega network is
equivalent to a SEN with 4 x 4 switching elements.

Closed-form combinatorial expressions, Markov chains, and Markov re-

~n ward models are used in the analysis. The use of state lumping permits the

computation of reliability and performability measures for a system with 16

processors, 16 memories, and an Omega network. )

It is shown that both the requirement for processor-memory connectivity

4
L Y W

and the metric for comparison influence the preference for one architectural

alternative over the others.

In the performance domain, this chapter builds upon and extends the

work by Bhandarkar [12]; in the reliability domain, it builds upon the work

A A A Al N B

of Siewiorek [86] and Siewiorek et al. [87]; and in the performability domain,
it builds upon the earlier work by Beaudry [10], Meyer [60], and Smith et al. ;
[90]. |

= 8.2 MPS Model Descriptions

(Ms), and an interconnection network (IN) that connects the processors to
. the memories. Three approaches to modeling the interconnection network
will be considered.
First, the interconnection network may be modeled as one large switch. In
‘. this case, the IN is simply a crossbar switch, and the multiprocessor system
is the well-known C.mmp system (see Figure 8.1).
Second, a more detailed model of the crossbar switch can be developed as

shown in Figure 8.2 where the crossbar is considered to be composed of sixteen

P
a4

1 x 16 demultiplexers and sixteen 16 x 1 multiplexers. In this arrangement,

L

1

4

4

Consider a MPS which consists of 16 processors (Ps), 16 shared memories {
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Figure 8.1: Multiprocessor System Using a Crossbar Switch as a Single Com-
ponent Interconnection Network.
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Figure 8.3: Multiprocessor System Using an Omega Network with 4 x 4
Switching Elements as the Interconnection Network.

each processor is connected to a demultiplexer and each memory is connected
to a multiplexer.

The third model to be considered implements the IN with an Omega net-
work constructed from eight 4 x 4 switching elements (SEs). This network
has two stages and is a reasonable alternative to a crossbar implementation
of the interconnection network since the complexity of the crossbar is O(N?)
whereas that of the Omega network is O(N log N) where N is both the num-
ber of inputs and the number of outputs to the network. The MPS using the
Omega network as its interconnection network is shown in Figure 8.3.

Each of the three MPS architectures will be referred to in a way that

characterizes its IN. The three architectures are:

SY S, which assumes that the interconnection network is a single component.

A L Y S O I S U S T e I e I N N N S
{$f.$ o fQ}; A By N A N A
* ", » » - r) f Y L e N [} ., F ad M ) » L) . N N " A N

R S
\f,\n:s-".-f\f\- ~




Sa N

= e e

o N Y}
4% 5%

v

548

R

A

D 2 ™ a7 0% 0% 27 0 e e W T ﬁ'\ N T I "l'r
R o L T o RACACITANS S o
» » - " » N s » » - » AYE »' 1) F 1) [ 3

I"- M . \“. ) ) \'.s 1’.'.( *’\. . \:\: n -('_ -..{
e g e D N o S Lot L

136

SY S; considers a detailed model of the crossbar switch; it assumes the in-

terconnection network is composed of individual demultiplexers and

multiplexers.

SY Sqa MPS using an Omega network with 4 x 4 switching elements.

The switch-fault model will be used for the subsequent analysis. As men-
tioned before, the primary assumption in this model is that a component
being represented in a particular model is an atomic structure, and there-
fore, the failure of any device which is a part of this structure will cause a
total failure of the component. Partial or degraded operation of the compo-
nent is not considered. For example, if a gate in a multiplexer malfunctions,

then the multiplexer is considered inoperative and its output is ignored.

Markov models will be used as the principal modeling tool for analyzing
the three MPS architectures. Events that decrease the number of operational
components are associated with failure. When a component of the system
fails, a recovery action must be taken (e.g., shutting down a failed processor
so that it does not fill memories with spurious data), or the whole system will
fail and enter a failure state F. The probability that the recovery action is
successfully completed is known as the coverage [17]. In general, the analysis
in this chapter will assume perfect coverage so system failure occurs as a result
of the accumulation of component failures. It has been shown, however, that
coverage is very important in non-repairable systems [16,4]. This is because
for degradable systems operating in an environment with imperfect coverage,
the notion of failure may be the result of the cumulative effects of component
failures or as the disastrous result of a coverage failure. The extension of the
analysis to incorporate imperfect coverage is straight-forward, and its effect

on reliability and the complementary distribution of accumulated reward until

“~
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. system failure will be considered in the latter part of the section on numerical
results.
8.3 Measures of Interest
¢
In this section, a brief review of the performance, reliability, and performabil-
ity measures used for analyzing the three MPS architectures will be discussed.
~ Then, methods to compute parametric sensitivities will be presented.
¥
8.3.1 Performance
The average number of busy memories (memory bandwidth) will be used as
:'.;: the performance level (also called the reward rate) for a particular system
- configuration. This is an appropriate choice of performance metric for the
MPS since the efficiency of the system will be limited by the ability of the
processors to randomly access the available memories.

.? In the case of a crossbar switch, contention for the memories occurs at
the memory ports since the crossbar switch is non-blocking. But, in the case
of the Omega network, contention occurs inside the interconnection network

- as well since this is a blocking network. That is, if two or more processors

\ compete for the same output link of a SE, only one request will be successful
and the remaining requests will be dropped.

Over time, components of the MPS can be expected to fail, and as a result,
oy the performance of the system can be expected to decrease. To determine
% the performance of the crossbar, the model developed by Bhandarkar [12] to

obtain the average number of busy memories will be used, and an extension
of the performance model in [68] will be used for the Omega network. Also,
- the assumptions stated in [68] for the analysis of circuit-switched networks
t will be used.
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¢ g generally, however, Markov chains and Markov Reward }
g used.

The evolution of a degradable system through various

&4

different sets of operational components can be represente

K continuous-time Markov chain (CTMC), {Z(t), t > 0}

25
4

) ¥ = {1,2,...,k}. For each 7,5 € ¥, let ¢;; be the transiti

t to state 7, and define

N k
” .:" i = — Z U
e et
'- Then, Q = [¢;] is the k by k transition rate matriz. Let P;
... ¢] be the probability that the system is in state ¢ at time ¢. T
\. Ei probability row-vector P(t) can be computed by solving a 1
i » equation [98],
{ P(t) = P(t)Q.

L,

3: - Methods for computing P(t) are compared in [80].

;I The state space can be partitioned into two sets: UP, the«
~ states, and DOWN, the set of failure or down states. If a
ﬁ are absorbing failure states, then system reliability can be ol
? .“,' state probabilities,

o R() = T RO

" i€UP

;:‘ Associated with each state of the CTMC is a reward rate
': &.‘ the performance level of the system in that state. The CTMC
4 rates are combined to form a Markov reward model [40]. Each
, a different system configuration. Transitions to states with
rates (lower performance levels) are component failure tra

‘ ; repairable systems, transitions to states with higher perforn
X
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E repair transitions. The choice of a performance measure for determining re-
ward rates is a function of the system to be evaluated. For an interconnection
network (IN), the appropriate measure is bandwidth.
- Let r; denote the reward rate associated with state ¢, and call r the reward

vector. The reward rate of the system at time t is given by the process

X(t) = rz(). The expected reward rate at time ¢ is

: E[X(t ]—Zr.,
B

This quantity is also called the computation availability [10].
If Y (t) denotes the amount of accumulated reward (the amount of work

. done) by a system during the interval (0,t), then

v(e) = [ " X(u)du. (8.4)

Furthermore, using bandwidth to construct the reward vector, Y (t) repre-
P sents the number of requests that the IN is capable of satisfying by time t.

The ezpected accumulated reward is

]_Ev u)du] = zn/ (8.5)

~ In order to compute E[Y (t)], let L;(t) = f; Pi(u)du. Then, the row vector

L(t) can be computed by solving the system of differential equations:

L(t) = L(t)Q + P(0). (8.6)

LA B

Methods of solving this system of equations are discussed in [82].

A special case of the expected accumulated reward is the mean time to

failure (MTTF). The MTTF of a MPS is defined as

-1
—

' MTTF = /°° R(t)dt. (2,
0
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The MTTF is a special case of E[Y (o0)], with reward rate zero assigned to
all DOWN states (which are assumed to be absorbing) and reward rate one

assigned to all UP states. To compute MTTF, solve for r in

-

Q = -P(0), (8.8)

where P(0) is the partition of P(0) corresponding to the UP states only. The
matrix Q is obtained by deleting the rows and columns in @ corresponding
to DOWN states. Any linear algebraic system solver can be used to solve
this system of equations. Although one might like to use direct methods like
Gaussian elimination; for large, sparse models, iterative methods are more
practical [93]. The matrix —Q is a non-singular, diagonalily-dominant M-
matrix. Thus, the use of an iterative method such as Gauss-Seidel, SOR, or
optimal SOR to solve equation (8.8) is guaranteed to converge to the solution
[101]. Then,

MTTF = )_ . (8.9)
i€UP
In case the CTMC has one or more absorbing states, it is useful to compute

the accumulated reward until absorption, Y (co). The distribution function of
Y (o0) can be computed by constructing another CTMC with the transition
rate matrix Q' so that gj; = ¢;;/r; for r; > 0 and solving for the distribution
of the time to absorption for the new CTMC [10]. E[X(t)], E[Y (t)], and the
distribution of Y (00} are the performability measures that will be used to

compare the three alternative MPS architectures.

8.3.3 Parametric Sensitivity Analysis

The results obtained from a model are sensitive to many factors. For ex-
ample, the effect of a change in distribution on a stochastic model is often
considered. Here, attention is concentrated on parametric sensitin i1y analy-

sis, a technique to compute the effect of changes in the rate constants of a

o

-, .
B A N e
LN » Vo




| enliadudinddudeRal bat ol dtd i b dlehiasbia Al Ala hie Al Ata d i doid Aol fed Aok Aol Aot ek el Ras Jir ol oli-aid ol ath A A APALA Rk Sal ol Sl Sol Sl Sl ubie his At afts F‘T"“‘I“."ﬁ(*(‘l'('w
|
|
|

BKS

142

' Markov model on the measures of interest (82]. Parametric sensitivity anal-
ysis helps: (1) guide system optimization, (2) find reliability, performance,
and performability bottlenecks in the system, and (3) identify the model
parameters that could produce significant modeling errors.

One approach to parametric sensitivity analysis is to use upper and lower
bounds on each parameter in the model to compute optimistic and conser-
vative bounds on system reliability {92]. The approach in this chapter is to
o compute the derivative of the measures of interest with respect to the model

parameters [35,91]. A bound on the perturbed solution can then be computed

with a simple Taylor series approximation.

It is assumed that the transition rates ¢,; are functions of some parameter

b A. Then given the value of A, one wants to compute the derivative of various
measures with respect to A (e.g., dP;(t)/dA). If S(t) is the row vector of the
sensitivities dP;(t)/dA, then from (8.3) one obtains

- 5(t) = 8()Q + BV (8.10)
where V is the derivative of Q with respect to A. Assuming the initial con-
ditions do not depend on A,

=

o o _ OP(0) _ . 8P(t) _

50) = 5y =lm5y =¢
Then (8.3) and (8.10) can be solved simultaneously using,

L Q VvV

< @50 = BO,sOI| T 51 . (R0).SO)] = (B0 (8.11)
Let n be the number of non-zero entries in Q, and let n, be the number of
non-zero entries in V.

= For acyclic models, an efficient algorithm that requires O(2n +n,) floating-
point operations (FLOPS) is discussed in [58]. For more general models

.
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with cycles, one can use an explicit integration technique like Runge-Kutta.
The execution time of explicit methods like Runge-Kutta is O((2n + n,)(¢ +
v)t) FLOPS, where ¢ = max; |¢ii|] and v = max, |v;|. To solve (8.11) with
Uniformization {37], choose ¢ > max; [¢i;| and let Q" = Q/q + 1. Then

s) = 2 S pO@ e @ = Fupe @ ey
where
Iy = 2100 = 2010 - Q) = I~ 1/Q + Il — 1) @", (8.13)
and
() = 0 - 1)@" , I(0) = P(0). (8.14)

If the CTMC’s initial conditions do not depend on A, then II'(0) = 0. Also
note that 3Q*/3A = V/q. With a sparse matrix implementation, Uniformiza-
tion requires O((2n7 + n,)qt) FLOPS. Both Runge-Kutta’s and Uniformiza-
tion’s performance degrades linearly as q (or v) grows. Problems with values
of ¢ that are large relative to the length of the solution interval are called
stiff. Large values of ¢ (and v) are common in systems with repair or re-
configuration. An attractive alternative for such stiff problems is an implicit

integration technique with execution time O(2n + n,) [80].

The sensitivity of E[X(t)] can be derived from the sensitivities of the state

probabilities
AE(X(t)] 8r.
bufinnl ol R r. P =Y )+ D rSi( (8.15)
A aA t%‘:? €W a/\ 3

Similarly, the sensitivity of E|Y (t)] can be derived by differentiating equation
(8.5),

dE[Y (¢)]
d\ B

Zr. () = 2 5x Oy +Zr./ du.  (8.16)
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h As in the instantaneous measures case, methods for computing the cumulative
state probability sensitivity vector, f; S(u)du, include numerical integration,
the ACE algorithm for acyclic models [58], and Uniformization.

For the special case of mean time to failure, differentiate equation (8.8)

and then solve for s,

R aQ
= —71— 8.17
sQ Ty (8.17)
where 1 is the solution obtained from equation (8.8). Then,
Ei OMTTF or;
» B ——— — Z S{. (8.18)
9 ieop 9% (ETp

This linear system can be solved using the same algorithms used to solve

equation (8.8).

8.3.4 Interpretation of Parametric Sensitivities

Having computed the derivative of some measure, say MTTF, with respect to

: various system parameters A, there are at least three distinct ways to use the
F results. The first application is to provide error bounds on the solution when
given bounds on the input parameters. Assume that each of the parameters
A; is contained in an uncertainty interval of width AJ);. Then an uncertainty
. interval AMTTF can be approximately determined by

w
OMTTF

3y (8.19)

AMTTF =~ 3 AX

A second use of parametric sensitivities is in the identification of portions
i& of a model that need refinement. There is some cost involved in reducing the
size of the intervals A, since it requires taking additional measurements or
performing more detailed analysis. Assume the cost (or time) of reduction in

A ), is proportional to AX;/A; and let

OMTTF

A
)Y

‘e I = argmaz; (8.20)

FL‘
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where argmaz;|z;| denotes the value of ¢ that maximizes z;. Then, refining
parameter [ is the most cost-effective way to improve the accuracy of the
model.

A third application of parametric sensitivities is system optimization and
bottleneck analysis. Assume that there are N; copies of component ¢ in the
system and that the failure rate of component ¢ is A;. Furthermore, assume
the cost of the :*" subsystem is given by some function ¢; N;A;*". Define the

optimization problem:

Mazimize : MTTF
Subject To: D ¢;N;A\[™ < COST. (8.21)

Using the method of Lagrange multipliers [5], the optimal values of A; satisfy:

ANt QMTTF
c.~N,- [»' A aA,'

= constant. (8.22)

Let

I' = argmaz; (8.23)

c.—N;a,- 6)\,

Then, the most cost-effective point to make an incremental investment is in

ANt OMTTF l

subsystem type I*. In other words, the system bottleneck from the MTTF
point of view is subsystem I*. In the numerical examples, this definition of
bottleneck will be used. For convenience, also assume that ¢; = o; = 1 for all
t although other cost functions could be used. Later, in the numerical results
section, these results are compared with those obtained using the second

scaling approach.

8.4 Model Development

Before developing the Markov models for the three MPS architectures, closed-

form combinatorial expressions are derived for obtaining measures of interest
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8 = for SY S, and SY S;. Such expressions are desirable from an analytic point of
. E view, and in this section, closed-form combinatorial expressions for the relia-
"
: bility, MTTF, E[X(t)], and E[Y (t)] are derived for two of the three models.
- Then, Markov reward models are developed for all three architectures.
| “w
S
Ko 8.4.1 Combinatorial Approach
: Combinatorial expressions are appealing for system analysis since compu-
3 ::;: tation of the measures of interest is often straightforward. In this section,
: closed-form expressions for the reliability and performability measures of in-
%
terest are derived for SY S, and SY §;.
.- . Let r;; be the reward rate associated with the MPS having i processors
R
o and j memories operational (r;; is obtained from equation(8.1)), let R, be
‘: the reliability of a processor, and let R,, be the reliability of a memory. Also,
L4
P C let R, be the reliability of the switch in SY' S, and let RBs be the reliability
::E of a demultiplexer /multiplexer in SY S4. Then the reliability of SY S, can be
E:: expressed as
N N N .

. r)= (3 (V) ma- =) (£ (7)ra0 - 21 ) 22,
P x \1 j=K
N (8.24)
- - and the reliability of SY Sy is

) N N

: r) = (3 (V)R- wRay)

' i=K
‘W N (N . .

R4 > (1) Rasera - (RmRﬂ))N-J) )

i=k \J

W)
K Equations (8.24) and (8.25) can be rewritten by a power series expansion of
A 3 ¢ factors like (1 — R,)¥~*. Then, by multiplying through and collecting terms,
L T
I".
|' '
N
A

e

N e

3
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g one obtains:
N N _ .
R,(t) = > > aij.R)(t)R] (t)Ra(t), and (8.26)
i=K j=K
" N N ' . o
o Ry(t) = Z > ai;.a R, (t) R] (t) Ry (t). (8.27)
- i=K j=K
Assuming the component lifetimes are independent exponentially dis-
tributed random variables; R(t), mean time to failure (MTTF), E[X(t)],
N and E[Y (t)] are derived for these systems. Let A be the processor failure
rate, 4 be the memory failure rate, §, be the failure rate of the IN in SY' S,,
and §; be the failure rate of a demultiplexer/multiplexer. Then for SY'S,,
the measures of interest are derived as:
N N
R,(t) = 3 agy,e” T (8.28)
i=K j=K
N a1
MTTF, = i, 8.29)
- i§]§{11\+1’7+6, (
i N N o
o~ E[X(t)], = z z r.-,~a.~,~;,e'("\+”+‘5')', and (830)
i=K j=K
N N riiQijis (1 _ e—(u\+]‘7+6 )t)
EY(t = - 8.31
YO = 22— 57 (8:31)
.- And the expressions for SY Sy are:
Rd(t) — z Z aij.q€ (cA+J’7+(t+J)64)t (8.32)
# MTTF; = f: f: Gejid (8.33)
al $ =K 4= A+ v+ (0 +7)6a '
\ N N e
EXt)a = > 2. 7iyigsqe” CATITTEHEE 504 (8.34)
| 1=K j=K
. NN raga (1- e~ X477+
4 EV@l = 35 (8.35)

A+ gy + (14 7)64
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l Often, when closed-form expressions for the reliability of a system are given,
only static values for system reliability are presented. Closed-form expres-
sions for other measures such as MTTF, E[X(t}], and E[Y(t)] can also be
- derived from a combinatorial model. In practice, however, expanding expres-
< sions like (8.24) and (8.25) to obtain coefficients like a,;,, and a;,4 can cause
numerical difficulties.
= 8.4.2 Markov Models of the Architectures
-
In the case where the IN is viewed as a single component, construction and
solution of the Markov chain to analyze the reliability and performability
. measures of the MPS is tractable, and it has been done in [88]. Each structure
- state of the Markov reward model is specified by a tuple pair (7, 7) indicating
the number of operational processors and memories, respectively.
If the interconnection network is modeled in more detail, the crossbar
switch can be thought of as a combination of multiplexers and demultiplexers.
- In this case, a further refinement of the structure-state process can be made
with respect to the IN. The failure rate of each processor and memory can be
adjusted to account for the failure of the particular demultiplexer/multiplexer
| :_: to which it is connected. Also, if a multiplexer is associated with each memory
and a demultiplexer is associated with each processor, then the same Markov
chain that was developed for SY S, can be used by simply adjusting the
failure rates of the processors and memories to account for their associated
.; demultiplexers/multiplexers.
However, the size of Markov chain for the case of 4 x 4 SE components in
the IN becomes a problem. The Markov chain must account for the failure
- behavior of the processors, memories, and SEs to which they are connected.
D) If a state description explicitly accounts for the operational status of each
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processor, memory, and SE, then a 40-tuple would be required, and there

may be as many as 2%° states depending on the failure criteria used for the

entire system.

If one examines Figure 8.3 more carefully, one will see that an Omega
network without intermediate stages, as is the case for this MPS, has a great
deal of symmetry. So the state description can be accomplished with an 8-
tuple. The initial state is (44444444) where position ¢ (1 <7 < 4) represents
the number of functioning processors connected to an operational SE in po-
sition 1. Similarly for the memories where 5 < 7 < 8. One can see that this
Markov chain embodies the concept of bulk failures. That is for a given 1,
either a processor (memory) may fail and the value at position ¢ will decrease

by one, or a SE may fail and the value at position + will become zero.

The number of states in a Markov chain using this representation may
be as large as 58. If the MPS is determined to be operational as long as 12
processors can access 12 memories (K = 12), then this method of defining
the states will produce a Markov chain with 4901 states, 26739 transitions,
and a file requiring 1.5 megabytes of storage. While solving Markov chains
of this size is tractable; for K = 4, the solution of a Markov chain with more
than 64000 states is required. This is not practical.

What is needed is an efficient way to produce a reduced-state represen-
tation of the same system. There are three common approaches to the state
reduction: lumping, aggregation, and truncation. Lumping will be discussed

in the next section. For a discussion of state aggregation, see [15]. Truncation

is discussed in [{35].
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! State-Space Reduction

One approach to state-space reduction is to observe that there is an equiv-
alence between a Markov chain representation of a system and a Mealy ma-
\ s chine, which is a deterministic finite automata. That is, each state and arc
has a label, and a transition function is easily derived using this information.
Now, as an implication of the Myhill-Nerode Theorem, there exists an unique
z minimum state machine which can be constructed from the original machine
N (Markov chain). In [39], an algorithm for doing this construction is presented.
The algorithm has O(xk?) time complexity where k denotes the number of
states and k denotes the size of the input alphabet. While the time complex-
';.',: ity of this algorithm appears to make this a viable technique for the current
problem, there are several drawbacks with the actual implerientation. For
example, for K = 12 the Markov chain has 4901 states when the Omega
network is used to represent the IN. Since there are 8 SEs, 16 Ps, and 16 Ms,
" the size of the input alphabet is 4 x 6 x 6 = 144 for the current problem.
' This means that O(144 x 49012) = O(3.5 x 10°) steps are required to obtain
the minimum-state Markov chain. Also note that the Markov chain must be
. completely constructed before one can do the reduction. Reducing the state

2

space in this manner is referred to as “state lumping” and is explained in

&

(45].

A more efficient approach is to “lump” the states as the Markov chain is
: constructed, thus avoiding the execution of a reduction algorithm after the
§‘ Markov chain has been generated. In the case of the Omega network with
two stages, this is possible by exploiting the symmetry and connectivity of
the MPS. Consider Figure 8.3 again. Observe that a particular memory’s
view of the system is confined to the specific SE to which it is connected.

Further observe that this SE’s view of the system encompasses the status
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of all four of the SEs in the first stage where the processors are connected.
Each SE in the first stage can be up or down; and if it is up, it can have
from zero to four functioning processors connected to it. The particular
positions of the functioning processors is not important to the outputs of
the SE to which they are connected (under the uniform access assumption
[68]). Hence, tuples (34444444), (43444444), (44344444), and (44434444) are
equivalent. Furthermore, the states to which these states transition can also
be grouped into equivalence classes.

Generating the Markov chain in this fashion, one only has to consider one
such tuple for each equivalence class in a breadth-first construction (BFC) of
the Markov chain. Only one member of each class is added to the BFC queue
and the transition rates from this representative state are adjusted to account
for the lumping. (Note that the number of equivalence classes for a reliability
model may be smaller than the number for a corresponding Markov reward
model because the performance level of each state is ignored in the reliability
model.) If the performance level for each state is considered before lumping,
then the 4901 state Markov chain can be reduced to 145 states. This makes
the development and solution of Markov chains with a lower connectivity

requirement significantly easier.

Extension of Lumpability Requirements

In this section, the conditions for lumpability are extended to Markov reward
models. The essential observation is that the underlying structure-state pro-
cess of a Markov reward model can be suitably modified (transformed) to
produce the same results as the Markov reward model. The reward rates

associated with the structure states in the original process serve as the mod-

ifying variable.
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Let A = {A,,A;,---,A,} be a partition of the k states of a Markov
chain. Then a new process where each A; C A is a state, is termed a lumped
process. Let g5, = ZWA’. gim. Then g5, represents the transition rate
from state ¢ into set A;.

The theorem in [45] is extended to the lumping of Markov reward models

in the following corollary.

Corollary 1 For a Markov reward model, a necessary and sufficient condi-
tion for lumpability with respect to a partition A = {A,A,,---,A,} of the
underlying structure-state process is that for every pair of sets A; and A;,

dmA;/Tm, Tm > 0, have the same value for every structure state m in A,.

Proof: From [10], every Markov reward model can be transformed into an
equivalent Markov chain by an appropriate adjustment of the transition rates
(¢ij) in the underlying structure-state process of the Markov reward model.

The resulting Markov chain is luupable if it satisfies the theorem in [45].
In effect, the transition rates from a state in the original chain have been

scaled by the reciprocal of the reward rate associated with that state (i.e.,

@i = ¢ij/7i)-
8.5 Numerical Results

The reliability of a system without repair can be determined from the solution
of a general Markov reward model by simply assigning a reward rate of one
to each operational state and a reward rate of zero to each failure state. This
measure assumes that any operational configuration is as good as any other.
However, the bandwidth that a multiprocessor system is able to achieve in
a particular configuration is a more appropriate reward rate than the simple

zero-one choice of the reliability model.
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In this section, the three architectural alternatives are compared using
‘pure’ performance, assuming no failures; using a ‘pure’ reliability model
that ignores performance differences; and then using combined measures —
E[X(t)], E[Y(t)], and the complementary distribution of ¥ (00). Also, for
each model, the sensitivities of MTTF, R(t), and E[X(t)] to changes in the
component failure rates are computed.

First, some single-valued measures of network performance and reliability
are considered. Then, time-dependent system reliability and its sensitivity are
presented. Next, the performability measures are examined, and the sensitiv-
ity of E[X(t)] to changes in the component failure rates is analyzed. Finally,
the effect of imperfect coverage on the reliability and the complementary
distribution, Y¢(z), of accumulated reward, Y (oo), on the three MPS archi-
tectures will be analyzed. For notational convenience, Y¢(z) = Y¢(z, o0).

In order to obtain the numerical results in this section, the Markov models
were generated using the approach described in Section 8.4.2. To compute
yc(z), the MRM was transformed into a CTMC using Beaudry’s algorithm
[10]. Then, the HARP package [28] was used to solve for the system reliability
and Y¢(z). The Markov chain solvers developed by Reibman in [81] were
used to solve for E[X(t)], E[Y (t)], and the sensitivities of the reliability and
expected reward rate to changes in the component failure rates.

Failure data for the C.mmp system (86| will be used. By a parts count
method, Siewiorek determined the failure rates per hour for the components

to be:

Processor Memory Switch
Failure Rates : A = 0.0000689 ~ = 0.0002241 &, = 0.0002024 .

Like Siewiorek, throughout this section, component lifetime distributions are

assumed to be exponentially distributed.
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Gate count will be used as the basis for determining the failure rates of the
components of the IN. From [47], an n X n crossbar switch requires 4n(n — 1)
gates where n is the number of inputs and outputs. An n x 1 multiplexer
requires 2(n — 1) gates where n is the number of inputs to the multiplexer. A
demultiplexer also requires 2(n—1) gates by similar reasoning. These numbers
for gate count are based on a switching element construction which utilizes a
tree-like arrangement of gates. For the 16 x 16 MPS, there are 960 gates in
the simple 16 x 16 crossbar switch, 30 gates in a demultiplexer/multiplexer,
and 48 gates in the 4 x 4 SE (assuming the SE uses a crossbar construction).

Using the switch-fault model assumption, let §, denote the failure rate of
the 16 x 16 crossbar switch, then 6,/960 is the gate failure rate, 63 = 6,/32
is the demultiplexer/multiplexer failure rate, and g = 8,/20 is the 4 x 4 SE

failure rate.

8.5.1 Single-Valued Measures

In Table 8.1, three frequently used single-valued measures to compare the
three candidate architectures are presented. Using equations (8.1) and (8.2),
the bandwidth for each architecture can be computed. Assuming no failures,
SY S, and SYS; have BW = 10.3, and SY Sy has BW = 8.4. On the basis
of performance alone, SY S, and SY S; are indistinguishable, and SY Sq is
the least preferred choice. Based on the mean time to failure (MTTF),
SY Sa is no longer the last choice; SY S; is the most reliable, and SY S,
is the least reliable. The cost of processors and memories is the same for
all three architectures, so the cost of the IN is used to contrast the three
MPS architectures where the cost is computed using a gate count. SY Sq

is less than one-half as expensive as the other options, and this additional
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Architecture || Bandwidth MTTF i Cost !
K=12] K =4 | |
SY S, 10.3 1322.3 | 3613.4 || 960
SY S, 10.3 1537.9 | 6708.6 || 960
SY Sqa 8.4 1497.2 | 6575.5 384
Table 8.1: Comparison of Architectures.
MPS Failure Rate Parameter ‘
Processors Memories Network |
K=12 K=4 K=12 K=4 K =12 K=4
SYS, -21.3 -2.1 —1462.8 —2297.4 — 4625.2 — 89839.4
SYS, -35.0] -20.1 - 1974.0 | — 9069.5 -0.9 -3.6
SYSq —-35.5 | —34.8 — 1868.7 | — 8655.7 —-10.6 -39.7

Table 8.2: Sensitivity of MTTF with Respect to Parameters (Scaling factor
= x((AZ/N;) x 10%)).
consideration combined with the MTTF data may make it the preferred

choice.

Next, consider the sensitivity of the MTTF estimates given in Table 8.1
to changes in component failure rates. For each model, using equation (8.18),
the sensitivity of MTTF with respect to processor failure rate, memory fail-
ure rate, and switching element failure rate is computed. Note that the
different systems have different numbers of switching elements, with differ-
ent failure rates. To find the system bottlenecks, the cost model described
in Section 8.3.4 with a; = ¢; = 1 is used. The parametric sensitivities are
multiplied by a factor of A?/N;. The results are shown in Table 8.2. The
bottlenecks for each system configuration are italicized. Because SY'S, is
most sensitive to switch failures, for this model, the switch is the reliability

bottleneck. The memories are the bottleneck for the other two models.
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Figure 8.4: Comparison of the Reliabilities of the Three MPS Architectures
for K = 12.
.. 8.5.2 Reliability
<
In Figures 8.4 and 8.5, reliability as a function of mission time is plotted for
the three MPS architectures. The reliability curves for K = 12 are plotted in
Figure 8.4. Because SY' S, is vulnerable to a single-point switch failure, R,(¢)
"‘ . . . . -
e is significantly less than R4(t) or Rq(t). Modeling the IN at the demulti-

plexer/multiplexer level increases the predicted reliability since the failure of
individual components is not catastrophic. Also, observe that Rq(t) < Rq4(t).

A similar result is shown in Figure 8.5 (K = 4) except that now the degree

[ 2N

of separation between the reliability of SY S, and the other two architectures
is even more pronounced and the difference between SY S; and SY Sq is less
discernible. This indicates that the reliability of the MPS design is insensi-

tive to SY S; or SY S as IN candidates when the connectivity requirement
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Figure 8.5: Comparison of the Reliabilities of the Three MPS Architectures
for K = 4.
" decreases. As with the MTTF data, if cost is considered as well as reliability,
&’ S5Y Sn may be the preferred architecture.
Scaled parametric sensitivities for the SY S, and SY Sy are plotted in
Figures 8.6 and 8.7. The plot for SYS; is omitted because it is almost

identical to the plot for SY Sp. These parametric sensitivities are scaled by

L

multiplying by the factor A?/N;. Regardless of mission time, all three systems
are insensitive to small changes in the processor failure rate. For SY S,, the

switch failure is the reliability bottleneck. For SY S; and SY S, increased

P>

fault-tolerance in the switch makes the memories the reliability bottleneck,

regardless of mission time.
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Figure 8.8: Comparison of the Expected Reward Rates at time ¢ for the Three
MPS Architectures for K = 12.

. 8.5.3 Performability

-~

o
For K = 12, Figure 8.8 shows the expected system bandwidth at time ¢.
SY S4 has the largest E[X(t)], and SY' S, is significantly better than SY Sq
for small values of time. For larger values of t, SY S, and SY Sq are approxi-

] . . - . .

N mately equal. A different result is shown in Figure 8.9. SY S, is still superior,
but now for small values of t, SY S, is superior to SY Sq and the converse is
true for moderate values of t. This occurs because for small K, up to three
SEs can fail in SY Sy and the system will still be operational, whereas for

g SY S, when the IN fails, the system is down.

Parametric sensitivities for E[X (t)] of the MPS models are plotted in Fig-
ures 8.10 and 8.11. Again, the plot for SY S; is omitted because it is almost

4 identical to the plot for SY Sq. These parametric sensitivities are scaled by

a
multiplying by a factor of A2/N;. Note that the sensitivities have an opposite
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Figure 8.9: Comparison of the Expected Reward Rates at time ¢ for the Three

MPS Architectures for K = 4.
IE sign than the sensitivities of system unreliability; an increase in the failure
v rate increases unreliability but decreases the expected reward rate. Also, un-
like the sensitivity of unreliability, the processor failure rate sensitivity curve

is visible. Although it is unlikely that enough processors would ever fail to

g: cause total system failure, a few processor failures might occur, reducing
system performance. In SYS,, the switch is the performability bottleneck.
Because SY S3 and SY Su have fault-tolerant switches, regardless of mission

. time, memories are their performability bottleneck.

53. The expected accumulated rewards for the three architectures are plotted
in Figures 8.12 and 8.13 for K = 12 and K = 4, respectively. In Figure 8.12,
the order of the architectures is SY Sy, SY S,, and SY Su. This is in contrast

. to the reliability curves of Figure 8.4 where the order of SY S, and SY Sq

.8

were reversed. So even though SY'S, is less reliable than SY Sq, the larger
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Figure 8.12: Comparison of the Expected Accumulated Reward by time ¢t for
the Three MPS Architectures for K = 12.
.. average bandwidth available in SY S, while it is operational enables SY S, to
(%
o accomplish more work than SY Sy. For K =4, SY S, is preferred over SY Sy
for small ¢, but the opposite is true for larger t. Also as expected, in Figure
8.13, SY S, is clearly superior due to its larger possible bandwidth and the
e absence of bulk failures. For SY Sq, the failure of a single switching element
v . . . .
may eliminate four processors or four memories; and in SY S,, the failure of
the IN immediately produces zero bandwidth.
The complementary distribution of accumulated reward until system fail-
3
3; ure is also analyzed. Prob[Y(oo) > z] will be larger for SY S, since for a
given K, it has a larger bandwidth than the corresponding SY Sq model, and
unlike SY S, and SY &y, it does not permit bulk failures.
. In Figure 8.14, the complementary distribution of accumulated reward
\l
e is plotted for the three architectures. SY S; is the dominating model as
o
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Figure 8.13: Comparison of the Expected Accumulated Reward Ly time ¢ for
the Three MPS Architectures for K = 4.
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Figure 8.15: Comparison of the Complementary Distribution of Accumulated
Reward Until System Failure for the Three MPS Architectures for K = 4.

expected. But, unlike the reliability curves of Figure 8.5, there is a crossover
point for SY S, and SY Sqa. This shows that for small work requirements
SY Sq would be preferred over SY S,.

Prob[{Y (co0) > z] is plotted for K = 4 in Figure 8.15. Since more “up”
configurations are permitted for small K, the disparity between SY S; and
SY S, is even more pronounced. Also note that now SY Sq reflects higher per-
formability for nearly half of the possible work requirements. Also note that
the spread between SY S, and SY S is more pronounced from a performa-
bility perspective, as in Figure 8.15, than in terms of reliability, as shown in

Figure 8.5.
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8.5.4 Analysis with an Alternate Sensitivity Measure

As mentioned in Section 8.3.3, a second use of parametric sensitivities is in the
identification of portions of a model that need refinement. Instead of using a
cost function, as in the three previous subsections, relative changes, AX;/);
are considered in this subsection. This quantity is obtained by scaling the
parametric sensitivities (multiplying each S(t) by A;). Using this approach
changes the results obtained for SY S,. With the “cost-based” measure used
in Section 8.3.4, SY S, MTTF was most sensitive to switch failures for both
K = 4 and K = 12. With the alternate scaling used here, the MTTF of
SY S, is most sensitive to switch failures for K = 4, but for K = 12, it
is most sensitive to memory failures. This indicates that if one wants to
improve the MTTF model for SY S,, then K is also a factor in determining
what component of the model should be refined.

Repeating the reliability sensitivity analysis with the alternate scaling,
SY S, is initially most sensitive to switch failures, but as mission time in-
creases exhaustion of memory redundancy becomes a greater problem. For
t > 4000, SY S, reliability is most sensitive to changes in the memory failure
rate. For E(X(t)] of SYS,, a similar crossover is observable at ¢t = 4000.
To improve the reliability or performability models for SY S, for small t, the
failure rate of the switch should be more accirately determined. For large
values of ¢, the failure rate of the memory system should be more accurately

determined.

8.5.5 Imperfect Coverage

To illustrate the effect of imperfect coverage on the three MPS architectures,

the relative changes in R(t) and ¥ (r) as a result of imperfect coverage. c.

will be considered for K 12. Specifically, the impact of a decrease in ¢
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from ¢ = 1 (perfect coverage) to ¢ = 0.95 will be examined. Assume that
each transition from an operational state 7 to another operational state j is
successful with probability ¢. Then with probability 1 — ¢, the system will

] = fail as a result of unsuccessful reconfiguration.

r'y

In general, a coverage factor could be associated with each component
type, but for the purpose of the current discussion, it is assumed that the
factor is the same for each type. Now the effect on the curves in Figures
':;“ 8.4 and 8.14 is to shift them down and to the left. Also the spread between
the curves is reduced, but their relative position with respect to one another
is unchanged. However, if the impact of imperfect coverage on the relative
change in the independent variable is examined, some interesting observations

can be made.

In the next two figures, the relative sensitivities of the three architectures

to ¢ = 0.95 as a function of the time (¢) and work requirement (z) are shown.

- That is,
” Rsens(t) = Rc=1(t;2;11(3;)=095(t)’ and (8.36)
c _yc
yCSENS(x) - y c=l(I y c=0.95(z) (837)

b

From Figure 8.16, it can be seen that the reliability of SY S, is more sensitive
to imperfect coverage than the other two. Observe that at t = 1000 there is
a 17% decrease in the reliability of SY S as a result of a 0.95 coverage factor.
‘:; At t = 2000, the decrease is 23%. In Figure 8.17, SY Sy is most sensitive to
a 0.95 coverage factor. At a work requirement of 10000, the relative decrease
in Prob{Y (0o0) > z] for SY Sy is 19%, and at £ = 20000 the relative decrease

is 259%.
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Figure 8.16: Relative Decrease in Reliability as a Result of a Decrease in the
Coverage Factor from 1.00 to 0.95.

8.6 Summary

System modelers often rely on single-valued measures like MTTF. This
oversimplification may hide important differences between candidate archi-
tectures. Time-dependent reliability analysis provides additional data,