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ABSTRACT

This thesis provides a comparative analysis of various interconnection
networks and multiprocessor systems. The principle interest is in the anal-
ysis of the reliability and composite measures of performance and reliability
of interconnection networks that connect processors to memories in large
multiprocessor systems. SpecificallY, the Shuffle-Exchange multistage inter-
connection Network (SEN) and its variants are evaluated and compared.
Comparison is based on reliability, composite measures of performance and
reliability, and cost.

Closed-form expressions for the computation of the available bandwidth
for multiprocessor systems with a capability for graceful degradation are
developed. Than, the time-dependent reliability of the SEN and three
fault-tolerant schemes aimed at improving system reliability are examined.
These schemes are the redundant network, the extra-stage network, and the

*network augmented with intrastage links. Exact closed-form expressions
for the time-dependent reliability of the N x N Shuffle-Exchange Network
(SEN), the 8x8 and 16x16 SEN with an additional stage (SEN+), and the
4 x 4 and 8 x 8 Augmented SEN (ASEN) are derived.

Upper and lower bounds useful for the analysis of larger SEN+ and
ASEN networks are derived. L Numerical results for networks as large as
1024 x 1024 are provided. A/comparison of these networks shows that,
on the basis of reliability, tte ASEN is superior to the SEN, SEN+, and
the redundant SEN (2-SEN). The results for the SEN+ are extended to
the case of an (uniform) 'Omega network. Further, through the novel use of
hierarchical decomposition, results on the reliability of ASENs are extended
to include imperfect coverage and on-line repair.

In the last chapter performability analysis of a complete multiprocessor
system is conducted. r.The crossbar and the Omega networks are used to

Nrepresent the interconnection network and two levels of detail are presented

for analyzing the crossbar. Bottleneck and sensitivity analysis of the mul-
tiprocessor system are also performed. Markov chains and Markov reward

models are used in the analysis. In addition, the criteria for the lumping
of states in a Markov chain is extended to Markov reward models.
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Abstract

This thesis provides a comparative analysis of various interconnection net-
works and multiprocessor systems. The principal interest is in the analysis of

~.J. the reliability and composite measures of performance and reliability of inter-
connection networks that connect processors to memories in large multipro-
cessor systems. Specifically, the Shuffle-Exchange multistage interconnection
Network (SEN) and its variants are evaluated and compared. Comparison is
based on reliability, composite measures of performance and reliability, and
cost.

Closed-form expressions for the computation of the available bandwidth
for multiprocessor systems with a capability for graceful degradation are de-
veloped. Then, the time-dependent reliability of the SEN and three fault-
tolerant schemes aimed at improving system reliability are examined. These
schemes are the redundant network, the extra-stage network, and the net-
work augmented with intrastage links. Exact closed-form expressions for the
time-dependent reliability of the N x N Shuffle-Exchange Network (SEN),
the 8x8 and 16x 16 SEN with an additional stage (SEN+), and the 4x4 and
8 x 8 Augmented SEN (ASEN) are derived.

Upper and lower bounds useful for the analysis of larger SEN+ and ASEN
networks are derived. Numerical results for networks as large as 1024 x 1024
are provided. A comparison of these networks shows that, on the basis of
reliability, the ASEN is superior to the SEN, SEN+, and the redundant
SEN (2-SEN). The results for the SEN+ are extended to the case of an
(uniform) Omega network. Further, through the novel use of hierarchical
decomposition, results on the reliability of ASENs are extended to include
imperfect coverage and on-line repair.

In the last chapter, performability analysis of a complete multiprocessor
system is conducted. The crossbar and the Omega networks are used to rep-
resent the interconnection network and two levels of detail are presented for
analyzing the crossbar. Bottleneck and sensitivity analysis of the multipro-
cessor system are also performed. Markov chains and Markov reward models
are used in the analysis. In addition, the criteria for the lumping of states in
a Markov chain is extended to Markov reward models.
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Chapter 1

Introduction

In this thesis, combined performance and reliability measures are used to

evaluate the interconnection networks in large multiprocessor systems. Then,

this work is extended to the analysis of an entire multiprocessor system con-

sisting of processors, memories, and an interconnection network. The specific

networks examined are the crossbar and the Shuffle-Exchange multistage in-

terconnection Network (SEN) and its variants.

Separately modeling the reliability and performance of such networks is

not new; many researchers have examined either reliability or performance

as separate measures of a network's "goodness." In general, however, the

reliability analysis of these networks has been limited to finding the proba-

bility that a given source can communicate with a given destination, which

is called two-terminal reliability; simulation to examine multi-terminal reli-

ability; or analytic arguments for stating the fault-tolerance properties of a

network. This type of analysis is too crude to permit a useful assessment

of a large multiprocessor system (MPS) designed to permit graceful degra-

dation. Previous work on performance has concentrated on the permutation

capabilities of these networks under a no-fault assumption; or, when faults
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are allowed, analytical work has been limited to special classes of permuta-

tions, since the optimal realization of arbitrary permutations is known to be

intractable. Also, bandwidth analysis has been limited in a similar manner.

In this thesis, reliability analysis of different topologies will be conducted

by "normalizing" the complexities of the different networks based on gate

count. Thus, a standardized basis can be used to compare different fault-

tolerant schemes. Combinatorial methods and Markov models are used in

the analysis; and, whenever possible, exact reliability expressions are derived.

Several researchers have looked at combining performance and reliability.

The term for this combined measure has been coined as performability by

Meyer [60]. Previous work on the theoretical development of performability

can be found in [31], [61], and [62]; some examples have been presented in

[481, [601, and [901.

While it is recognized that many measures may be used for combining

performance and reliability, the focus will be on three such measures. They

are: the average instantaneous performance level at time t, the average accu-

mulated work until time t, and the distribution of the cumulative work until

system failure. These measures include, as special cases, several "pure" per-

formance measures (the maximum and minimum performance levels and their

product with the time-to-failure random variable); the distributions of these

performance measures; and "pure" reliability measures (the distribution of a

system's lifetime and the mean time to failure).

In the remainder of this chapter, the salient features of multiprocessor sys-

tems and interconnection networks will be presented. Then, in the next chap-

ter, a more thorough examination of Multistage Interconnection Networks

(MINs) will be conducted. (The emphasis in this chapter is on unique-path

MINs and the methods used to add fault tolerance to these networks.) The
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following chapter contains a description of the networks to be analyzed. The

remaining chapters are devoted to performance, reliability, and performabil-

ity analysis of the networks. A detailed analysis of a complete multiprocessor

system using three different interconnection network models is also included

as a final example of the application of performability analysis.

1.1 Multiprocessor Systems

In recent years, significant advances have been made in parallel processing.

Real-time applications which require enormous computing power appear to

be the driving force behind these endeavors. Execution rates exceeding one

billion instructions per second are required for many applications such as im-

age processing and weather forecasting. These execution rates appear to be

unachievable on uniprocessors performing serial instruction execution. Multi-

processor systems using many processors executing in parallel, however, have

the ability to perform at these rates. As mentioned in [1031, there are several

experimental multiprocessor systems employing a large number of processing

elements (PEs) in various stages of development, and today multiprocessor

systems with hundreds and even thousands of processors exist. These sys-

tems are composed of three major components: processors, common memory

modules, and an interconnection network.

Figure 1. 1 provides a simplified view of these large multiprocessor systems.

These systems consist of sources (Ss), an interconnection network (IN), and

destinations (Ds). The sources are processors or PEs, and the destinations

may be either memory modules (MMs) or other PEs. The IN is used to

provide a communication path between particular source-destination (S-D)

pairs.
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Interconnection .0

o Network .-=

C/ 0 0n

Figure 1.1: Simplified Multiprocessor System.

As the number of processors used in these multiprocessor systems in-

creases, so does the need to insure that the communication network between

the system components does not become a bottleneck to achieving the desired

concurrent processing speeds.

In order to take advantage of the high computation speeds of today's

powerful microprocessors in a multiprocessor architecture, the communica-

tion between these processors must be extremely efficient. Furthermore, the

network that performs processor-to-processor or processor-to-memory con-

nections must be robust. That is, the IN must be reliable and relatively

insensitive to a small number of failures in the components which comprise

the network. A brief survey of interconnection methods is found in [301.

-S
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1.1.1 Multiprocessor Organization

A large multiprocessor computer utilizing an IN can usually be classified

as a Single-Instruction Multiple-Data (SIMD) organization or a Multiple-

Instruction Multiple-Data (MIMD) organization. In fact, some architectures

provide a combination of these two organizations.

In SIMD organizations, all PEs receive the same instruction broadcast

from a central control unit, but they operate on different data sets from

distinct data streams. One can think of these multiprocessor systems as a

synchronous array of parallel processors. These types of machines are usually

designed to perform vector computations over arrays of data. In MIMD

, t. organizations, subsets of the PEs operate in concert using a particular set of

instructions. All PEs derive their data sets from the same shared-memory

structure.

SIMD computer organizations usually use a given interconnection network

y (IN) based on four decision criteria [42]:

1. operation modes,

2. control strategies,

3. switching methodologies, and

4. network topologies.

Since SIMD machines operate in a lock-step fashion, a synchronous opera-

tion mode, rather than an asynchronous mode, is used. A centralized control

strategy is usually preferred over distributed control. With this strategy, all

switching elements are controlled by a single controller. While th, - switch-

ing methodologies (circuit, packet, and combined) can be identified, circuit

.
-.
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switching is generally used in SIMD machines. In a circuit-switched envi-

ronment, a physical path is established between each S-D pair, whereas in

a packet-switched environment, data is broken into small packets and each

packet is routed through the IN without establishing a physical path. Circuit

switching is preferred if long, bulky transmissions are required between S-D

pairs. Finally, both static and dynamic topologies exist in INs. Static INs

are usually chosen for SIMD machines. In a static IN, once a physical path

is established between a given S-D pair, no reconfiguration of the switching

elements (SEs) and links along this this path is made. In a dynamic IN, links

can be reconfigured to satisfy other S-D requests.

In a MIMD computer organization, each processing element contains some

local memory, so the frequency with which each PE requests access to the

IN is expected to be less than in a SIMD. The MIMD computer organization

may use both synchronous and asynchronous operation modes. Distributed

control of the components of the IN is often used, so self-routing networks

are common. The switching methodology may be any of the three mentioned

for SIMD machines, and the network topology is heavily dependent on the

size of the multiprocessor system and the perceived application.

1.1.2 Network-Oriented Architecture

In [25], a network-oriented view of multiprocessor organizations is presented.

The two common network-oriented systems are: the processor-to-memory

and the processing element-to-processing element (PE-to-PE) architectures.

Each PE is composed of a processor and a local memory. In the processor-to-

memory architecture, sources are the processors and the destinations are the

memory modules (MMs). The interconnection network is bidirectional, and

it is used to fetch instructions and data stored in the MMs. This is a shared-

Im
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memory interprocessor communication system, and the associated multipro-

cessor system is often referred to as a tightly-coupled system. In this system,

the interconnection network can be expected to be heavily loaded. In the PE-

to-PE architecture, each PE is connected to the network via both an input

A' and output link of a unidirectional interconnection network. The instructions

and data for each PE are considered to be contained in the local memory asso-

ciated with that PE, so the network is used only for inter-PE communication.

The loading on this network will be far less than on a comparable processor-

to-memory network. The multiprocessor systems using this type of network

are often called loosely coupled, and their inter-communication strategy is

called message passing.

1.2 Interconnection Networks

Interconnection strategies for multiprocessor systems range from the time-

shared bus (Figure 1.2) to the crossbar switch. The time-shared bus is in-

expensive, but it does not permit simultaneous communication between dis-

tinct components attached to the bus. Even the fastest of these buses causes

the multiprocessor system using it to become inefficient when a moderate

number of components attempt to communicate in a time-shared manner.

Bus-oriented multiprocessor systems may provide acceptable performance for

systems with up to 30 processors, but, given the current state of technology,

it is unlikely that a shared-bus architecture would be viable for systems with

1000 or more processors [94]. The key distinction between the bus and the

MINs that are examined in this thesis is that the bus allows transmission

between just two units at any time; whereas a MIN allows a number of par-

allel transmissions to take place. Usually a bus is a slower, although less

* expensive, network than the MIN.

0
IN
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Processors

Time-Shared Bus

Memories

Figure 1.2: Multiprocessor System Using a Bus Architecture.

Point-to-point communications are also used in today's multiprocessor

systems. In a graphical representation of point-to-point interconnections,

the PEs are the vertices and the dedicated links are the arcs. In Figure 1.3,

the mesh and ring are illustrated. In these networks, there is often a bound

placed on the number of processors /memories that a given processor can

be connected to. As the size of the network grows, the bandwidth of these

networks becomes too small for real-time applications.

The fastest of the interconnection strategies is the crossbar switch (Figure

1.4). It allows simultaneous connections between all source-destination pairs

as long as no two sources request the same destination. However, for N

sources and N destinations, the crossbar switch requires 0(N2 ) connections.

Thus, for large N, the use of a crossbar is prohibitively expensive. In fact, its

cost may dominate the cost of the entire multiprocessor system. Furthermore,



(a) Nearest- N eighbor Mesh Network (b) Ring Network

Figure 1.3: Point-to-Point Communications.

..

0

(n

Destinations (Memories)

& Figure 1.4: Crossbar Switch.
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effective use of the available bandwidth may not be achieved; thus providing

very little benefit in terms of the crossbar's actual throughput [94}.

The Multistage Interconnection Network (MIN) is a compromise between

the IN extremes. It offers simultaneous communications at a lower cost than

the crossbar, has a smaller number of connections leading out of a source

or into a destination, and for large systems, it has a higher bandwidth than

the time-shared bus. A MIN has several stages of switching elements (small

crossbar switches) arranged so that many source-destination connections can

be made as long as no two connections require a common link. Figure 1.5

is an illustration of a 16 x 16 Shuffle-Exchange Network which is an unique-

path MIN. The hardware complexity of this network, expressed in terms of

the number of required switching elements, is 0O(N log N).

In multiprocessor systems, the amount of parallelism that can be achieved

is often a function of the parallel accessibility of data by the PEs. Depend-

ing on the degree of fault-tolerance that the system enjoys, the presence of

switching element and/or link failures may seriously degrade the permutation

capability and bandwidth of these systems [77).

A number of unique-path MINs have been proposed, and a multitude

of evaluation metrics have been used to analyze these MINs; however, no

one network appears as the clear choice for a given application. This the-

sis will examine a unique-path MIN called the S huffle- Exchange multistage

interconnection Network (SEN), which is representative of several proposed

MINs. Some variants of this MIN are also examined. Because the most

critical properties of a MIN in a large multiprocessor system are reliability

and performance, the emphasis will be on a combined evaluation measure

for these INs. In gracefully degrading multiprocessor systems, faults can be

tolerated in the processors, memories, and/or the IN. These systems require

% % l
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new performance-related measures which are more informative than tradi-

tional measures. So new measures such as computational availability and

performability will be used to deal with these systems.

.4.i
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Chapter 2

Multistage Interconnection Networks

2.1 Introduction

Multistage interconnection networks represent a large subset of the inter-

connection networks proposed for large-scale multiprocessor systems [86]. In

this chapter, the basic building block of the MIN, the switching element, is

described. Then, the three major classes of MlNs are discussed, followed by

a description of the characteristics of unique-path and multiple-path MINs.

The last section reviews the basic fault models used to analyze multistage

interconnection networks.

2.2 Switching Element Description

The basic building block of a MIN is the switching element (SE). The switch-

ing element is essentially a c x d crosspoint switch. There are c input links

and d output links attached to the SE. These SEs are then interconnected

in a particular pattern to form a specific multistage interconnection network.

For clarity of explanation, let c = d = 2. Switching elements of this size are

frequently encountered in MINs because of the simplicity of their design.

13
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I
0 0

1 1

(a) Labeling of the Links

o 0

11 1 1

(b) Transmit (T) Operation (c) Exchange (X) Operation

Figure 2.1: 2 x 2 Switching Element.

Figure 2.1 shows a 2 x 2 switching element and the two operations it can

perform. Figure 2.1(a) shows the labeling of the input and the output links.

The SE can either transmit (T) the inputs directly through itself as in Figure

2.1(b) or exchange (X) the inputs as in Figure 2.1(c). In general, the MINs

examined in this thesis will be constructed from 2 x 2 SEs.

2.3 MIN Classification

MINs are often classified based on their connection capability and their ability

to realize permutations. The three major classes are strictly non-blocking,

rearrangeably non-blocking, and blocking networks [50].

A strictly non-blocking network can realize any permutation of its inputs.

It can connect any source to any non-busy destination without regard for

the current state of the network. Such networks have received considerable

V.%
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Figure 2.2: Clos Network.

attention in connection with telephone switching systems. The Clos network

[21] (Figure 2.2) is an example of such a network. The hardware complexity

of the strictly non-blocking networks, however, is O(N(log N) 2 ), so they are

not suitable for multiprocessing systems.

A rearrangeably non-blocking network can also realize any permutation on

its inputs. It can connect any source to any non-busy destination, but it may

require the rearrangement of existing connections by changing switching ele-

ment settings. The Benes network [11] (Figure 2.3) is a member of this class,

and it has been studied extensively for use in synchronous data permutations

and asynchronous interprocessor communications [30]. These networks have

a hardware complexity of O(N log N). From a cost perspective, these net-

works may be acceptable for multiprocessor systems; however, for networks

of moderate size, the routing algorithms used for rearranging the existing

d connections make them too slow.

. . . ..1
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Figure 2.3: Benes Network.

In blocking networks, simultaneous connections of more than one source-

destination pair may require the use of common links. Thus, one or more

connections may be blocked. Many networks in this class have been studied

extensively. Examples are the Baseline [104], SW Banyan [33], Omega [541,

Indirect binary n-cube [70], and Delta [691. These networks have a hardware

* complexity of O(N log N), but in most implementations of these networks,

they are only half as complex as the rearrangeably non-blocking networks.

Several of the networks in this class were shown to be topologically equiv-

alent to the Baseline network in [1041. The basic networks in this class are

often called unique-path MINs meaning that there exists only one path be-

4.
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tween any source-destination pair. This structure prevents such MINs from

realizing every arbitrary permutation. However, unique-path MINs can real-

ize many permutations useful for synchronous parallel computations [54,70].

qFurthermore, the simplicity of their distributed routing algorithms have made

them very useful for multiprocessor applications.

MINs are attractive networks for tightly-coupled multiprocessor systems,

and offer a good balance between cost and performance [1]. Popular among

the MINs considered for large multiprocessor systems are networks with dis-.:,
tributed routing algorithms which obviate the need for a central controller to

operate the MIN. Further, those networks which also possess the self-routing

property are often used because of the ease of setting the switching elements

with a destination tag generated by the source. Examples are the Omega [541

and the Delta [681 networks.

2.4 Unique-Path MINs
5'.

Figure 2.4 shows a Venn diagram for the classes of unique-path MINs. The

Banyan networks introduced by Goke and Lipovski in [33] form the most

general class of unique-path MINs. Within this class are two large subclasses,

they are: (1) the Generalized Shuffle Networks (GSN) introduced by Bhuyan

and Agrawal in [14], and (2) the Delta networks introduced by Patel in [69,68].

A GSN connects M sources to N destinations for arbitrary values of M and

N. The Delta network connects a' sources to b destinations through a x b

crossbar switches at each stage. Included within the intersection of these two

classes of networks are the MINs constructed from 2 x 2 SEs. In [104], Wu

and Feng showed the topological equivalence of several of these networks to

the Baseline network. The Baseline [1041, Data manipulator (modified) [104],
I,9
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A: Banyan

A B: GSN (M x N for arbitrary M and N)

C: Delta (anx b n)

D: Baseline

D Data Manipulator (modiied)

Flip

Indirect Binary n-cube

Omega

Regular SW Banyan (S = F = 2)

Reverse Baseline

SEN

Figure 2.4: Relationship of Selected MINs to the Class of Banyan Networks.

Flip [8], Indirect binary n-cube [70], Omega [551, Regular SW banyan (S =

F = 2) [33], Reverse baseline [104], and SEN are topologically equivalent.

2.4.1 Characteristics

Information is passed through the MIN in one of two ways: (1) circuit

switched, or (2) packet switched. In a circuit-switched mode, a source is

granted a path through the network to a given destination, and it holds that

path until it completes its data transfer. In this mode, a source commu-

nicates with a destination along a physical connection that is established

through several switching elements. The links and SEs along this path are

used exclusively by the S-D pair.

In a packet-switching mode, the information each source sends to a desti-

B nation is broken into small packets. These packets then individually compete

opi



for a path through the network. No dedicated, physical path from the source

to the destination exists. Instead, each switching element must have the ca-

pability to store and forward the individual packets, and packets compete

for links within the IN. Packet switching can improve the throughput of the

MIN over that obtained by the use of circuit switching, but it will increase

both the S-D transmission delay and the cost of the MIN since each SE must

have a buffering capability.

Unique-path MINs have many properties that make them attractive for

A multiprocessor systems, including an 0O(N log N) hardware cost as opposed

to the 0(N 2 ) hardware cost of crossbar switches, the ability to provide up

to N simultaneous connections, O(log N) path lengths, and the existence of

simple, distributed routing algorithms.

MINs with log N stages also have two other important properties:

1. there exists an unique path from each S to each D, and

2. distinct S-D paths may have common links.

These properties lead to two significant disadvantages. First, a S-D con-

nection may be blocked by a previously established connection (even if the

destinations involved are distinct) causing poor performance in a random-

access environment. Second, the failure of even a single link or SE discon-

nects several source- des tinat ion paths, lowering reliability. The reduction in

performance due to blocking and the decrease in reliability due to the lack

of fault tolerance become increasingly serious with the increase in size of the

network because the number of paths passing through a given link increases

linearly with N [53]1.

IV While MINs can be built from any combination of switching elements [14],

for the sake of brevity and clarity, the SEN presented in this thesis is defined

i*e,
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for N =2'~ sources, N destinations, and n stages, each stage consisting of

N12 switching elements. The stages are numbered from 1 to n, and the

switches in each stage are numbered from 0 to N/2 - 1.

2.4.2 Permutation Issues

The ability of a MIN to realize any arbitrary permutation is often used as a

performance measure. The failure of a single SE in an unique-path MIN can

have a significant impact on this measure. For example in [72], the number

of distinct permutations that are admitted by a 2~ x 2~ MIN which consists

of n stages, using 2 x 2 SEs is 2 n-2'-' . Now, if one of the SEs in the network

becomes stuck-at-T or X, the number of admissible permutations by the

faulty network is reduced by one-half. Furthermore, several sources cannot

be connected to certain destinations. For example, if the faulty switching

element is in stage k, 1 < k < n, there are some 2ksources where each source

cannot be connected to 2 '-k particular destinations.

It was proposed in [29] that these unique-path networks be augmented by

adding one additional stage, so that in the event of a single faulty switch, one

is still able to achieve all the permutations possible in the fault-free network

using at most two passes through the network. This introduces the concept

of multiple-path MINs. Their purpose is to improve the fault tolerance of the

IN with a modest increase in network complexity.

2.5 Multiple-Path MINs

In setting up a connection (or routing a packet in a packet-switching environ-

ment), multiple-paths MINs allow an alternate path to be chosen whenever

conflicts arise with other connections or when faults develop in the network.

Thus, multiple-path MINs have higher reliability than unique-path MINs.

%
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The multiple-path MIN may also enjoy increased performance in a random-

access environment.

Some research has been done on the fault-tolerance properties of various

multiple-path MINs. For example, in [671 Parker and Raghavendra introduce

the Gamma network and examine its permutation capabilities. The Gamma

network is a multiple-path MIN with N = 2n sources, N destinations, and

log 2 N stages. Each stage has N 3 x 3 SEs. The various paths are repre-

7[ sented in the redundant number system. In [76], the terminal reliability of

the Gamma network and two of its variants (Bigamma and Monogamma) is

examined. The analysis is restricted to terminal reliability since the multi-

terminal reliability problem is intractable [6].

Ciminiera and Serra introduce another fault-tolerant MIN in [19]. This

multiple-path MIN is called the F network. The N x N F network has N

SEs in each of log2 N stages and uses 4 x 4 SEs. No reliability analysis is

attempted, instead it is shown that multiple paths exist between each S-D

pair.

More recently, Raghavendra and Varma introduced the INDRA (Inter-

connection Networks Designed for Reliable Architectures) class of multiple-

path networks in [781. The Indra network with N = 2' inputs and N out-

dputs achieves R redundancy (R > 2) when the network is constructed using

log R N + 1 stages of R x R SEs; each stage has N SEs, and N must be a power

of R. The Indra network also uses multiple connecting links to the sources

and destinations that make it (R-1)-switch fault-tolerant in the first and last

stages. R2 paths exist between each S-D pair. The reliability analysis in [78]

is limited to terminal reliability.

-
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* 2.5.1 Fault-Tolerance Issues

Often, as the number of components in a conventional multiprocessor system

increases, so does the rate of failure of the system. In [7], this type of behavior

is referred to as "coherence." The criteria for judging the design of a fault-

tolerant network can be found in [20].

In traditional fault-tolerant architectures, where failure-free operation is

desired for long time intervals, emphasis is placed on the use of hardware

replication and redundancy to obtain the desired reliability goals. In the

case of large-scale parallel computing with homogeneous processors, the re-

dundancy needed for fault tolerance is inherent in the design itself. The

objective in these systems is to allow the system to gracefully degrade down

to some specified level of performance [77]. However, when planning such a

large multiprocessor system, the fault tolerance of the IN which connects re-

dundant sources to redundant destinations is often overlooked. While unique-

path MINs are no more susceptible to component failures than a redundant

network, the effects of such failures are far more dramatic. This is especially

true in large multiprocessor systems.

In large multiprocessor systems, hardware fault tolerance can be achieved

in two ways: (1) at the system level, and (2) at the processor/component

level. Hardware fault-tolerance at the system level is achieved by successfully

identifying the fault, isolating it, and performing system reconfiguration and

recovery. This fault-tolerant technique is preferred over redundancy and data
~replication at the processor level since it requires much less hardware overhead

[77].

In [651, three techniques are mentioned for providing fault tolerance in a

MIN. They are:

*1. softare,
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S 2. hardware/ software, and

3. redundant-path hardware.

The purely software approach includes methods such as error-detecting and

error-correcting codes. These methods, however, are oriented toward insur-

ing that correct data is received at a destination given that the data is ever

received. In the hardware/software approach, one uses redundancy at the

component level to achieve fault tolerance. If, for example, triple-modular

redundancy is used, the hardware costs are roughly tripled. The third tech-

nique, the use of redundant paths, can be achieved either inherently in the

network design as in [111 or [67], or by the addition of extra hardware to

achieve redundant paths between each S-D pair. Three ways to add extra

paths are: through additional links, additional stages, and duplication of an

existing network.

-, 2.5.2 Switch versus Link Complexity

There are two ways for a given MIN to possess the multiple-path property.

Multiple paths may be inherently present in the definition of the MIN, or

they may be created by augmenting the topology of an existing unique-path

MIN. In any case, they have a higher hardware cost than unique-path MINs

in terms of

1. the number of stages of switching elements,

2. the number of switching elements per stage, and/or

3. the size of the switching elements.

These three factors contribute to what is usually called the switch complexity

I. of a MIN. Another measure of the cost of a MIN is its link complexity, which

14
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depends on the number of interstage links, the number of intrastage links (if

any), and the number of stages. Link complexity is an important measure

because the implementation of MINs is often input/output or pin limited, at

every level of integration. For instance, at the integrated circuit level, if each

integrated circuit contains one SE, the size of the switching element is usually

determined by the number of pins available and not by the complexity of the

logic in the switch. Also, at the wafer scale integration level, if a MIN with

a large number of sources and destinations were to be laid out on a single

wafer, the links would be the limiting factor on the chip [102]. That is, the

links would consume most of the area of the chip, rather than the SEs. Of

the two types of links in MINs, interstage links tend to be more expensive

than the intrastage links [53].

2.5.3 Routing Considerations

The routing strategy is a key issue in multiple-path MINs. The topology

of a multiple-path MIN may allow rerouting to be done only at the source

or some fixed points in the network. In that case, a busy link, a faulty

link or a faulty switching element encountered while setting up a path may

necessitate backtracking to a stage where a fork exists in an attempt to find

an alternate path. Backtracking may be eliminated if the paths between every

source-destination pair in a multiple-path MIN have a fork at every stage. As

might be expected, multiple-path MINs which use backtracking tend to have

lesser hardware complexity than nonbacktracking MINs. But backtracking

MINs may be difficult to implement since they require bidirectional paths

and reverse queues [51].

The proper sequencing of packets in a packet-switched environment is

another problem that must be addressed by the routing strategy. Failure

.1.J
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to properly sequence packets can cause computational inconsistencies. If

buffering is used to overcome this problem, this will lead to further increases

in hardware and buffering delays. This problem can be resolved by using

virtual circuit techniques or otherwise restricting the paths used when the

proper sequence of packets has to be maintained.

S As mentioned before, the performance of multiple-path MINs is usually

better than that of unique-path MfINs since alternate paths can be used to

reduce the effect of blocking in a random-access environment.

2.6 Fault Models

A fault model captures the effects of physical failures on the operation of a

system. For MINs, there are three fault models in use:

1. stuck-at fault model,

2. link fault model, and

3. switch fault model.

In the stuck-at fault model, failures are assumed to cause a switching element

to remain in a particular state regardless of the control inputs given to it, thus

restricting the ability of the SE to set up proper connections. The affected

switching element can be used to set up paths if the stuck-at state is also the

required state. The link fault model assumes that a failure affects an individ-

ual link of a switching element, leaving the remaining part of the switching

element operational. The switch fault model is the most conservative of the

three and assumes that a failure makes a switching element totally unusable

[501. Analysis of networks in this thesis will use the switch fault model. Note,

however, that a link fault model can simulate the swth fault mdl u o

vice versa.
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In the next section, a detailed description of the SEN and its variants will

be presented. Also included is a description of the crossbar switch.

...
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Chapter 3

Description of MINs to be Analyzed

In this chapter, descriptions of the networks selected for analysis will be pre-

sented. The networks are: (1) the crossbar network, (2) the Shuffle-Exchange

MIN (SEN), (3) the Shuffle-Exchange MIN with an additional stage (SEN+),

(4) the Redundant SEN, and (5) the Augmented SEN (ASEN).

While the SEN and its variants were selected for analysis, this work can

be extended to many other MINs since the SEN is just one network in a

large class of topologically equivalent MINs that include the Omega, Indirect

binary n-cube, and Baseline [104].

3.1 Crossbar Network

An N x M crossbar network allows all possible connections between the N

inputs, termed sources (Ss), and the M outputs, termed destinations(Ds).

In general, N does not have to equal M, but to permit comparisons with the

other networks in this thesis, only N x N crossbar networks will be considered.

Figure 1.4 illustrates this network.

As long as no two sources request the same destination, any arbitrary

permutation (one-to-one mapping) is possible. Hence, the crossbar network

27
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is non-blocking. However, when two or more sources request the same des-

tination, contention at the destination input port will decrease the available

bandwidth of this network. As mentioned earlier, the network complexity is

O(N) which is not practical for large multiprocessor systems.

3.2 Shuffle-Exchange MIN (SEN)

The class of MINs to which the SEN belongs is termed Delta networks. The

specific SENs to be examined will have N = 2" inputs and N outputs. There

is an unique path between each source-destination pair. The SEN has n

stages, and each stage has N/2 switching elements (SEs). The stages are

labeled from 1 to n, and the switching elements at each stage are labeled

from 0 to N/2 - 1. The interconnection pattern between the stages is the

2 x 2 1 shuffle permutation. The position of switching element i in stage j

can be denoted as SE 1,,.

Figure 3.1 illustrates a SEN for N = 8. An 8 x 8 SEN has 8 sources, 8

destinations, and 3 stages each with 4 SEs. The network complexity, defined

as the total number of switching elements in the MIN, is (N/2) (log 2 N), which

for this example is 12.

The SEN is a self-routing network. That is, a message from any source

to a given destination is routed through the network according to the binary

representation of the destination's address. For example in an 8 x 8 SEN, if

S = 000 wants to send a message to D = 101, the routing can be described

as follows: S = 000 presents the address of D = 101 plus the message for D

to the SE in stage 1 to which S = 000 is connected (SE 0 ,1). The first bit of

the destination address (101) is used by SE 0 ,1 for routing. So output link 1 of

SE0 ,1 is selected. At SE 1,2 the second bit of D (101) is used and output link 0

of SE 1,2 is used. Finally, at SE 2,3 the third bit (101) of D is used and output

I%
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Stage 1 Stage 2 Stage 3

000 000
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010 010011 011
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4111 - 1

Figure 3.1: 8 x 8 Shuffle-Exchange Multistage Interconnection Network.

link 1 of SE2,3 is selected. So S = 000 delivers the message to D = 101 using

only the destination's address for routing control. Figure 3.2 shows this S-D

" connection.

3.3 Shuffle-Exchange MIN Plus (SEN+)

An N x N SEN+ network is an N x N SEN with an additional stage. Figure

3.3 shows an 8 x 8 SEN+. The first stage (labeled stage 0) is the additional

stage. The addition of the extra stage requires implementation of a different

control strategy. Several control strategies for the SEN+ network can be

selected. However, the strategy chosen may affect both the bandwidth and

the reliability of the network.

Adding a stage to the SEN allows two paths for communication between

each source and every destination. (Recall that the SEN is an uniqiie-path

II
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Figure 3.2: Routing for Communications Between S =000 and D 101 in
the 8 x 8 SEN.
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* Figure 3.3: 8 x 8 Shuffle- Exchange Multistage Interconnection Network with
an Extra Stage.
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Fig,-ure 3.4: Two Paths for Routing Communications Between S 000U( an(
D = 101 in the 8 x 8 SEN+.

MIN.) While the paths in the first and last stages of the SEN+ are not

disjoint, the paths in the intermediate stages do traverse disjoint links. As

can be seen in Figure 3.4, S = 000 can reach D = 101 by two paths. So path

redundancy is achieved in the SEN+ at the expense of one extra stage added

- to the SEN. The network complexity is (N12) (log 2 N + 1). Thus, the cost of

the SEN+ over that of the SEN is N/2 switches or a fractional increase of

1/log2 N, small indeed for large N. One question to be addressed in Chapter

5 is how much increase in reliability is obtained by this amount of redundancy.

Since the purpose of the extra stage in the SEN+ is for reliability en-

q hancement, several control strategies may be considered. First, a switching

'p element in stage 0 remains in a straight- through (T) setting until it detects

a failure of the switching element in stage 1. Then, the SE in the first stage

C. selects the exchange (X) configuration for subsequent memory accesses. This
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strategy allows two paths for each S-D pair given that failures only occur in

the second stage; however, it ignores the status of the SEs in log 2 N of the

stages.

In the second strategy, a switching element in stage 0 uses the T setting

until a failure in a SE along the path from a given S to a given D is detected.

At that time, the SE in stage 0 is placed in the X setting for all future

accesses between that S-D pair. In this way, two paths between each S-D

pair are realized given that the failures occur only in the intermediate stages

of the SEN+.

Finally, one can modify the second strategy so that if a failure occurs in the

last stage of the SEN+, then the network reconfigures itself so that no further

accesses are made to the two Ds attached to the SE in the last stage. Since

several paths are no longer considered, this will reduce congestion within the

reconfigured network. In the remainder of this thesis, the unmodified second

strategy will be considered.

Figure 3.3 shows that the network complexity for the 8 x 8 SEN+ is 16.

There are 8 sources, 8 destinations, and 4 (i.e., log 2 N + 1) stages each with

4 SEs.

3.4 Redundant SENs

Another scheme for providing fault-tolerance in unique-path MINs is the

complete replication of the network. Let K be the number of copies of the

network, then since these networks are arranged in parallel the K-redundant

network is (K - 1) fault-tolerant. The cost of a K-redundant SEN is at least

K times the cost of the SEN since K copies are necessary and additional

links are required from the sources to the network and from the network to

* the destinations. The case of K = 2 will be considered in Chapter 5.

% '
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Figure 3.5: 8 x 8 Augmented Shuffle-Exchange Multistage Interconnection
Network.

3.5 Augmented SEN (ASEN)

An Augmented Shuffle-Exchange Network (ASEN) is a SEN with one less

stage, additional intrastage links called auxiliary links, multiplexers, demulti-

plexers, and a slightly more complex switching element. The ASEN obtained

from modification of the corresponding SEN constructed from 2 x 2 SEs is

considered in this thesis. (In [53], this MIN is called an ASEN-2.) The ASEN

has N 2 x 1 multiplexers, N 1 x 2 demultiplexers, and log 2 N - 1 stages of

N/2 switches. Figure 3.5 shows an 8 x 8 ASEN. The SEs in the last stage

are of size 2 x 2 or SE 2. (This is the basic SE used to construct the SEN and

SEN+ networks.) The remaining switching elements are of size 3 x 3 denoted

as SE 3. In each stage, the SEs can be grouped into conjugate pairs. That

is, the SEs in such a pair are connected to the same pair of SEs in the next

stage. These conjugate pairs can then be grouped into conjugate subsets,

. . "*p...v-,,,*,. ',.N S- A S - S %, %
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where a conjugate subset is composed of all SEs in a particular stage that

lead to the same subset of destinations. The ASEN achieves the multiple-

path property by permitting two SEs in the same conjugate subset that are

not a conjugate pair to communicate through auxiliary links. The SEs which

communicate through the use of auxiliary links are called a conjugate loop.

The conjugate loops are formed in such a way that the two switches forming

a loop have their conjugate switches in a different loop. These pairs of loops

are called conjugate loops. Observe that this construction of the network has

two benefits. First, the network can tolerate the failure of both switches in

a conjugate loop. Second, it also provides a topology which lends itself to

on-line repair and maintainability. That is, a loop can be removed from the

ASEN without disrupting the operation of the network. In stage 1 of the

8 x 8 ASEN shown in Figure 3.5, SEs 0, 1, 2, and 3 form a conjugate subset;

within that subset, SEs 0 and 2 are a conjugate pair; and SEs 0 and 1 form

a conjugate loop. Figure 3.6 shows the multiple paths between S = 000 and

D = 101. The network complexity for the NxN ASEN is (N/2)(log2 N - 1),

but the SEs are not all of size SE 2.

A self-routing algorithm is also used for the ASEN. Each source has a

primary multiplexer and SE and a secondary multiplexer and SE. Each source

attempts entry into the ASEN via its primary multiplexer and SE. If either

primary component is faulty, the request is sent to the secondary multiplexer.

If the secondary multiplexer is faulty, the ASEN is failed. For stages 1 through

n - 2, requests are first routed through the usual output link; if it is busy or

if the successor SE (in the next stage) is faulty, routing is attempted via the

auxiliary link. A faulty demultiplexer at the output of the ASEN is regarded

as a failure of its associated SE in stage n - 1. So the algorithm essentially

enables a SE to detect a failure of its successor SE and re-route the request

'Tr'
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8x8 ASEN Showing Multiple Paths Between S = 000
and D = 101.

Figure 3.6: 8 < 8 ASEN Showing Multiple Paths Between .S = 000 and
D = 101.

whenever possible. The ASEN is failed if a request that is not blocked, does

not find a path to its destination.

.

.



Chapter 4

Performance

4.1 Introduction

Depending on the application, a number of performance criteria are avail-

able for evaluating competing MIN designs. For example, the number and/or

classes of permutations realizable, the fault-tolerance properties, control com-

plexity, expected throughput, expected bandwidth, and expected delay may

be considered when selecting a MIN for a specific application.

First, a review of previous work on performance measures for networks is

presented. The principal efforts in this area are concerned with the permu-

tation capability, probability of acceptance, and expected bandwidth. Next,

the usefulness of the bandwidth as a reward rate for performability models of

MINs viewed as a separate system and as a component of a complete multi-

processor system is discussed. This is followed by the development of analytic

expressions for the bandwidth of the crossbar network and the unique-path

MIN.

f36

S;"% %

;2.!



37

4.2 Previous Work

One performance measure that has been studied extensively is the permuta-

tion capability of a network. This measures the connectivity of the number of

S-D pairs realizable in the network. Several researchers have examined this

measure for various multistage interconnection networks. For example, in [2]

the Extra Stage Cube (ESC) is introduced. It is tolerant of a single switch

failure. The ESC is a Generalized Cube with an additional stage and I x 2

demultiplexers and 2 x 1 multiplexers on both sides of the first and last stages.

Adams et al. address permutation issues and mention that fault-tolerant in-

terconnection networks can help achieve reliability goals in a multiprocessor

system. However, no reliability analysis is performed. In the case of a MIN,

the permutation capability refers to the fraction of all possible permutation

requests that can be realized with no blocking [95].

One shortcoming of shuffle-exchange interconnection networks is that only

one path exists from every source, Si, to every destination, Dj. Thus, two

different settings of switching elements will result in two different permu-

tations. Consequently, if a switch does become faulty, many permutations

will not be admissible by the network. To overcome this deficiency, it was

proposed in [29] that these networks be augmented by adding one additional

stage, so that in the event of a single faulty switch, one is still able to realize

all the permutations using at most two passes through the network. This in-

troduced a class of interconnection networks, called two-path interconnection

networks. In these networks, any source can be connected to any destination

through two disjoint paths. Therefore, if a switch in the network becomes

stuck-at-T or X, any source can still be connected to any destination, and all

permutations can still be realized by the faulty network in two passes [72].

a%
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This work was extended by Padmanabhan and Lawrie to R-path intercon-

nection networks. In [66], Multipath Omega networks are introduced. This

paper explains how to construct an R-redundant path MIN where R is the

number of disjoint paths between a S-D pair. In [65], the construction of

the Modified Omega network (which is similar to the network in [66]) is dis-

cussed. The Modified Omega network is an Omega network with a sufficient

number of additional switching elements and links to provide a desired level

of (R - 1) fault-tolerance. The permutation capability of these networks is

also discussed in. [65].

The concept of multiple passes through a network is embodied in a fault-

tolerance measure of MINs called dynamic full access. Dynamic full access

refers to the ability of the network with PEs as both sources and destinations

to transfer data from one PE to another PE in a finite number of passes either

directly or by routing the data through other PEs. Because this technique

requires the intermediate storage of data, it is more suited to packet-switched

networks [77].

As mentioned earlier, in a fully-operational Delta network with an addi-

tional stage, the problem of performing arbitrary permutations in a multiple

number of passes was shown to be equivalent to the vertex-coloring problem

in graph theory [771. The general problem of realizing a permutation in the

minimum number of passes through the network is intractable, so a restricted

class of permutations are analyzed. Graph-theoretic techniques are used and

both the fault-free and faulty-SE cases are examined. This modified Delta

network is equivalent to the SEN+.

Another measure used to quantify the circuit-switching performance of

a MIN is the probability of acceptance [68]. This measure is the probabil-

ity that, in a random access environment, a request submitted by a source

@
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is accepted by a destination without getting blocked by other requests or

connections in the network. This probability is usually evaluated by assum-

ing that all the sources simultaneously generate their requests for connection

with a probability p, aimed at uniformly chosen destinations, at the begin-

ning of a cycle. If these requests arrive at a switch requiring the same output

link, the requests that are serviced are chosen at random and the others are

blocked and dropped. The probability of acceptance is defined as the ratio

of the expected number of successful requests to the expected number of the

requests submitted by the sources.

Ezpected bandwidth is another commonly used metric for analyzing MINs.

The expected bandwidth is defined as the average number of destination re-

quests accepted per cycle, conditioned on the rate of destination requests.

This is the measure used in this thesis as the reward rate for a given config-

uration of a degradable network. Rewards will be discussed in a subsequent

chapter.

The crossbar network has the highest possible bandwidth. In a crossbar,

as long as no two sources request the same destination, all requests will be

accepted. However, in an environment where requests are issued in a random

fashion, the memory bandwidth of a crossbar is much less than its capacity

[12]. As might be expected, in a MIN the bandwidth will be even less because

of additional conflicts in the network. Interference analysis of MINs has been

studied in [68], [26], and [96].

Kruskal and Snir [46] examine the performance of MINs assuming fault-

free operation. Both the buffered and unbuffered Banyan networks are exam-

ined in a packet-switching environment. In the unbuffered case, they derive

an asymptotic equation for the probability that a request issued at a source

arrives at its intended destination. This probability is inversely proportional
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to the number of stages in the network. It was shown in [54] that the band-

width of a SEN is very high for operations that do not conflict; however, in

[46] under the assumption of a random access pattern from the sources to the

IR destinations, they found the effective bandwidth in a MIN to be O(N/log N).

This means that contention within the network reduces bandwidth by a fac-

tor of O(log N). In [71], the problem of hot-spot contention in SENs was

investigated. In this model, the destinations are shared memory modules,

and it allows a small number of accesses to be made to a specific memory

while all other accesses are uniformly distributed. The results show a rapid

decrease in effective bandwidth as the correlation of accesses increases.

In [241, Das and Bhuyan use simulation to determine the reliability and

performance of a multiprocessor system with three interconnection networks

in a random access environment: a multiple-bus, a crossbar, and a MIN with

a centralized controller. Since deriving analytical solutions for the bandwidth

of a randomly truncated multiprocessor system using a MIN or a multiple-

bus structure is extremely difficult, simulation is used to obtain results. The

model assumes that the multiprocessor system is executing a task requiring

I processors and J memories. To determine the reliability of the system

they require that at least I processors and J memories are operational and

that they can communicate. Then, the bandwidth is determined using ex-

actly I processors and J memories. Previous performance analyses for these

networks were done in [14], [13], and [121. However, the analytical models

A used for the MIN and multiple-bus interconnection network do not hold when

random faults are considered.

A chained network was introduced in [991 which is similar to the ASEN

presented in [53]. The chained network provides redundant paths between

* every source-destination pair so that all single faults and many mnultiple faults

%0%



41

can be tolerated. The proposed network meets the criteria for the design of a

fault-tolerant network listed in [20], and it also has a bandwidth comparable

to that of a crossbar. In [100], the performance of such a network was studied.

An analytical model was employed to evaluate the bandwidth of the network

operating under both fault-free and fault-present conditions. Simulations

were utilized to explore the average delay when buffers are incorporated into

the network, and it was demonstrated that network delay can be reduced by

V controlling the threshold value. In addition, performance degradation caused

by a single fault in a network was investigated. They use the Baseline network

as an example to illustrate their scheme, and perform a probabilistic failure

analysis of a circuit-sw itched MIN and a simulation for the analysis of a

P.2 MIN with output buffers in the SEs (under a packet-switching assumption).

Bandwidth analysis was performed on an unbuffered MIN operating both

with and without faults.

a: 4.3 Bandwidth as a Performance Measure

The average number of busy memories (memory bandwidth) will be used

as the performance level (reward rate) for a particular system configuration.

This is an appropriate choice of performance metric for the multiprocessor

system since the efficiency of the system will be limited by the ability of the

processors to randomly access the available memories.

a.. In the case of a crossbar switch, contention for the memories occurs only at

the memory ports since the crossbar switch is non-blocking. But, in the case

of the SEN network, contention occurs inside the interconnection network,

as well, since this network is a blocking network. That is, if two or more

processors compete for the same output link of a SE, only one request will

6 be successful and the remaining requests will be dropped.

- e6r N "' 4 ip
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Over time, components of the multiprocessor system can be expected to

fail, and as a result, the performance of the system can be expected to de-

crease. To determine the performance of the crossbar, the model developed

a by Bhandarkar [12] to obtain the average number of busy memories or mem-

ory bandwidth will be used, and an extension of the performance model in

[68] will be used for the SEN network.

In determining the bandwidth of a given configuration of the multipro-
cessor system, the assumptions stated in [68] for analysis of circuit-switched

networks will be used. The assumptions are:

1. At the beginning of each memory access cycle, every operational pro-

cessor issues a request with the same probability.

2. The requests are randomly and uniformly distributed among all mem-

ories.

3. Blocked requests in any cycle are ignored. A new set of requests is

issued in each cycle.

Assumption 3 may appear to oversimplify the model since, in practice,

blocked requests are normally resubmitted during the next network cycle.

However, work performed by [12] and others on more complex problems,

and studies done by Patel [68], indicate that assumption 3 has only a minor

impact on the results obtained. Furthermore, this assumption makes the

analysis more tractable.

In the following two sections, the bandwidths of the crossbar and the

unique-path MIN are developed. Let pi,, denote the probability that a pro-

cessor issues a request during a particular memory request cycle, and p,,,t

denote the probability that a particular memory receives a request at its

.4
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'input link. Since it is assumed that requests are not buffered in the inter-

connection network, nor are multiple requests accepted at a memory on any

cycle, computation of the memory bandwidth for the multiprocessor system

is accomplished in a straightforward manner.

4.4 Crossbar Bandwidth

In the case of an n x n crossbar switch, the probability that a particular

processor requests a particular memory is pin/n for a given network cycle.

So the probability that a particular processor does not issue a request for a

particular memory is (1 - pi,/n). By the independent event assumption, the

probability that a particular memory is not requested by any processor is

(1 - pi,,/n) '. Therefore, the probability that a particular memory is selected

by at least one processor is just the complement of this value, or

Pout = 1 - (1 - I)n. (4.1)
,win

The bandwidth (BW) for the system, which is the average number of memo-

ries requests accepted in a particular memory access cycle, is just pout times

n, hence

S). -(1(4.2)

In the presence of memory and/or processor failures, this equation must

be modified since the number of operational memories will not, in general,

equal the number of operational processors. In [12], a detailed combinatorial

and Markovian analysis was performed to determine the bandwidth in the

asymmetric case. Let i denote the number of operational processors and j'

denote the number of operational memories. Further, let t = min(i,2}

and m = max{i,j}. Then for pin = 1.0, Bhandarkar found the average

'j|
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bandwidth of the system to be accurately predicted by the formula,

BW, ,,b, = m(1 - (i - 1/m)e). (4.3)

4.5 MIN Bandwidth

Now consider the N x N MIN with switching elements of size n x n. Number

the stage to which the processors are attached as stage 1, and the last stage

*, to which the memories are attached as stage v. The switching elements are

n x n crossbars, and the output of a particular link of a switching element

can be denoted as pi. This value is also the probability that there will be

an input request for a SE in the next stage. A recurrence relation exists for

computing these request probabilities. That is,

Pi+ = 1 - 0 - Pi)n. (4.4)

n

Consider the SEN as a specific example. The probability of a request at

the input of a SE in stage i, i = 1,2,... , t, can be denoted as pi-i, then the

probability of a request for an output of a SE at stage i will be pi and can

be computed as
A =-- (1 - P l 2, i --- 1, 2,. , vx. (4.5)

(4.52

Note that PO = Pi (the probability that there is a request for the first stage)

and p =, pout (the probability that there is a request for a particular memory

at its associated network output link). In the case of the 16 x 16 SEN, the

probability of a request at the output link of a SE in stage 1 will be

P1 = (1 - Po) 2  (4.6)
2

and the probability of a request for a given destination (the output link of

stage 4) will be
P4 (1 - P)2 . (4.7)2"

I
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The bandwidth is then computed as the product of the request probabilities

for a particular memory and the number of memories, hence from [681

BWMIN = N(1 - (1 - .2.)-). (4.8)
n

Of course, assuming that each destination is equally likely to be requested

by a given source, the bandwidth is simply the probability of a request for

any destination times the number of destinations. The computation of band-

width, however, is not so easy when the probability of requests for the des-

tinations are not uniformly distributed or one or more SEs have failed. It is

assumed that after a SE has failed, its output links will not be active. Thus,

pi from a failed SE in stage i is zero. Further, the request probabilities that

feed a particular SE may not be equal. In the presence of failures, equa-

tion (4.8) must be modified to account for graceful degradation. Consider a

particular input link to an n x n SE, say link 0 in Figure 4.1, and denote

it by pmn,0. It may request a particular output link with equal probability,

so it will not request a specific link with probability (1 - pj,o/n). Similarly,

input link 1 will not request the same link with probability (1 - pi,,I/n). The

request probability for a specific output link, say i, as a result of the (perhaps

unequal) request probabilities by the input links is then computed as

{ - l-Cd(1 - pi.,j/n) if the SE has not failed, andPout'i ---- 0 otherwise.(4)

The bandwidth of the SE is then

BWSE ' n(poutj) if the SE has not failed, and (4.10)
BWsE 0 otherwise.

The outputs of this SE will serve as inputs to n of the SEs in the next

stage. At the final stage of the MIN, some memories may be inoperable so

the network bandwidth is computed as the sum of the request rates for the

h
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Figure 4.1: n x n Switching Element.

operational memories. Let N0 denote the set of operational memories. Then,

BWMIN = (Pout)j. (4.11)
jENo

Equations (4.3) and (4.11) will be used to compute the bandwidth for the

crossbar and the SEN networks, respectively.

It was mentioned that the SEN is a blocking network, whereas the crossbar

was not. Assuming fault-free operation and Pi,, = 1.0, Figure 4.2 shows the

degradation factor (BW/N) for these two networks as a function of the size

of the network. For networks of size 256 x 256 and larger, the bandwidth of

the crossbar is at least twice that of the SEN. However, recall that the cost

of the crossbar is O(N 2 ). If the crossbar is modeled as a system composed

of demultiplexers/multiplexers as in [12], then the implication of equations

(4.3) and (4.11) and Figure 4.2 is that the MIN is more susceptible to tfhe

failure-induced loss of bandwidth than the crossbar network.



47

4,

z

1 -Crossbar

.) Z

-I

4 0
,,2 1024* 2 Network Size (N)

Figure 4.2: Bandwidth Degradation as a Function of Network Size.

4.6 Summary

Bandwidth will be used as the performance metric for analyzing the networks

in this thesis. Analytic expressions for the bandwidth of a crossbar network

and a MIN in a degradable environment have been presented and will be

used to establish the reward structure associated with the Markov reward

*models discussed in Chapter 7 and in the analysis of a multiprocessor system

in Chapter 8.
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Chapter 5

Reliability

5.1 Introduction

A number of schemes have been proposed to increase the reliability and fault

tolerance of Multistage Interconnection Networks (MINs). The modest cost

of unique-path MINs make them attractive for large multiprocessor systems,

but their lack of fault-tolerance is a major drawback. To mitigate this problem

three hardware options are available: (1) replicate the entire network; (2) add

extra stages; (3) and/or add additional links. Adding an additional network

doubles the cost while adding an extra stage requires only N/2 additional SEs

in an N x N network. Adding links not only increases the number of links, but

it also requires a more complex switching element. Also, adding interstage

links is not practical for large-scale VLSI applications [102]; however, adding

intrastage links is still viable.

In this chapter, the reliability issues relating to MINs are examined. First,

previous work in this area will be covered. Next, definitions of an operational

network and a description of the measures used to compare the networks are

introduced. Then transient reliability analysis of the crossbar, SEN, SEN+,

and ASEN will be presented. Since the reliability of crossbar switches has

48
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been studied under several connectivity assumptions, the emphasis in this
chapter is on reliability analysis of MINs.

The analysis of the SEN and SEN+ networks is divided into four parts.

Exact transient reliability analysis of small SEN and SEN+ networks is pre-

sented first. Then, lower and upper bounds for approximating the reliability,

of larger networks are derived. The lower bound obtained is compared to

the exact solutions derived for the 8 x 8 and 16 x 16 SEN+ to verify that

it is a close approximation of SEN+ reliability, and then this lower bound

is used for analyzing SEN+ networks up to size 1024 x 1024. Next, a com-

parison of the mean time to failure (MTTF) of these networks is presented.

Finally, a discussion on how network reliability is affected by the underlying

. . component-lifetime-distributions is presented.

In Section 5.7, the reliability of the ASEN is analyzed. The exact relia-

bility expressions for the 4 x 4 and 8 x 8 ASEN are derived. This is followed

by the development of bounds. Then, these bounds are used to compare the

" .'- MTTF, normalized mean-time-to-failure, cost, and mission time improve-

ment factor of the networks.

It is shown that the lower-bound reliability of the ASEN dominates the

upper-bound reliability of the SEN+. Furthermore, ASEN reliability analy-

sis is extended to include imperfect coverage and on-line repair using a novel

hierarchical approach. Block diagrams have been used to model the steady-

state ancf-instantaneous availability of systems with independent repair [83].

, In this chapter, a two-level hierarchical approach is used to model the reliabil-

ity of a repairable system. The top level is a reliability block diagram while

the bottom level is a Markov chain. In this analysis, the increased complexity

of the SEs in the network is considered instead of assuming that the various

S-components have identical failure rates.
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*5.2 Previous Work

There are several papers which address reliability issues pertaining to MINs.

A reliability analysis of the C.mmp and Cm* was performed in [44], but only

processor and memory failures were considered. In [431, reliability of the

crossbar, shared bus, and multiport memory structures was analyzed using

graph models. And in [31, the fault tolerance of MINs, considering control

line and link failures in the SEs, was examined. The emphasis was on finding

the critical faults that destroy the dynamic full access (DFA) property, but

DFA between specified source and destination subsets was not considered.

(Note that DFA may require several passes through the network.)

The reliability issues pertaining to tightly-coupled multiprocessor systems

using circuit-switched communications were discussed in [24]. This model

considered processing elements (PEs), memory modules (MMs), and switch

failures. A reachability matrix, constructed from a graph model, was modified

depending on various faults. Given that a task requires a specified number

of MMs and PEs, the system is considered operational as long as these re-

sources and the DFA property between these resources exists. The system

state was obtained by searching for a fully-connected system in the reacha-

bility matrix that satisfied the minimum resource requirements. Simulation

results indicated that MINs are worse than crossbars if failures are taken into

account, and the multi-bus performed the best because of the large number

of alternate paths between PEs and MMs.

In addition, several researchers [2,19,59,66,65,67,76,75] have reported on

the use of multiple-path MINs as a means of improving the fault-tolerance

and reliability of interconnection networks. For example, in [671 the Gamma

network is examined for the terminal reliability of the network, but neither

PE and MM failures nor performance degradation are considered.

-r "
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Redundancy graphs offer a convenient way to study multiple-path MINs

to determine such properties as the number of faults tolerated or the type

of rerouting possible. A redundancy graph depicts all the available paths

between a given source-destination pair in a MIN. It consists of two distin-

guished nodes -the source S and the destination D - and the rest of the

nodes correspond to the switching elements that lie along the paths between

S and D. Its principal use is for terminal reliability calculations.

A general criterion for the evaluation of the robustness of the MIN is that

every member of a subset of sources must have paths to every member of a

subset of destinations given that each switch has a certain reliability. (The

reliability of a switch is the probability that it is fault-free.) The probability

that the above criterion is satisfied is called multi-terminal reliability. Two

special cases of this criterion are of interest. The first case is when the subsets

of sources and destinations contain exactly one element each. This leads to a

measure called two-terminal reliability, or simply terminal reliability, which is

the probability that a given source-destination pair has at least one fault-free

path between them. The other special case of the multi-terminal reliability

criterion is full connectivity between all the sources and all the destinations.

This special case leads to the assumption that the MIN has failed whenever

all the paths are disconnected between some source-destination pair, and it

establishes the reliability of the MIN.

The criterion of full connectivity for a multiprocessor system is too narrow

a view of reliability. It does not consider the ability of a system to operate

in a degraded mode. It may be acceptable for a system to be considered

operational as long as some subset of sources and destinations can communi-

cate. This view of graceful degradation recognizes that the failure of a basic

component should not cause system failure. Rather the system should be

per~~ ': PO 1 P



52

S able to detect any faulty module and also have the ability to reconfigure and

continue to perform in a degraded mode. Analysis of the degradation behav-

ior of such a system is done using a transient reliability analysis. Of course,

even with transient analysis, one can still obtain the mean time to failure of

the MIN, which is the expected time elapsed before network failure.

The focus of the reliability analysis that has been performed on MINs,

however, has been either: (1) in terms of the average number of switch failures

tolerated and mean time to failure; or (2) on terminal reliability, a measure

often used for packet-switching applications. Analysis using the former mea-

sure can be found for the F-Network [201; the Augmented C-Network (ACN)

and Merged Delta Network (MDN) [79]; the Augmented Bidelta Network

(ABN) [52,51]; and the Modified Omega network [64]. In addition, termi-

nal reliability analysis has been performed on the Gamma network in [76],

INDRA network in [75], and the ACN, ABN and MDN networks in [51].

In [181, the SW-banyan network with added stage(s) composed of f x f

switches is analyzed. Cherkassky et at. derive a reliability expression for

this network. The expression considers both link and switch failures, but

it assumes that the network can only tolerate f - 1 failures. Therefore it

provides a rough lower bound since there are many operational configurations

of the network which permit more than f - 1 failures. This underestimates

network reliability.

In [51], Kumar compares the mean time to failure of the Augmented

-2 Shuffle-Exchange Network (ASEN) with that of several other MINs. MTTF

data on the INDRA [78], F [201, modified Omega [65], and SEN networks for

N = 8 through N = 1024 are provided for comparison. In all cases the ASEN

is superior. In this analysis, however, the lower bound is based on only one
switching element type and the multiplexers and demultiplexers associated
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with the network are ignored. A more detailed model for the reliability and

MTTF of the ASEN which incorporates added network complexity due to

different types of switching elements and multiplexers and demultiplexers is

considered in this chapter.

Network reliability analysis is known to be NP-hard [74]. It is for this

reason that other authors (e.g., Das and Bhuyan in [24]) have resorted to

Monte-Carlo simulation to examine "small" networks. In this thesis, exact

reliability expressions for up to 16x16 networks are derived, and a closed-form

tight lower bound for larger networks is presented. Using this lower bound,

numerical answers for up to 1024 x 1024 networks are computed.

5.3 Definitions of an Operational Network

Before any reliability analysis can be performed, a clear understanding of

what constitutes an operational network must be established. That is, what is

meant by system failure? There are at least three definitions of an operational

network:

1. The network is operational as long as every source can communicate

with every destination.

2. The network is functioning properly as long as some source can com-

municate with some destination.

3. The network is operational as long as U sources can communicate with

V destinations.

It should be clear that a network operating under definition 1 will have the

shortest time to failure, while the same network operating under defi' "ion

* 2 has the longest time to failure. Since definition 1 is the view most often

e
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used for modeling MINs, this definition will be adopted for the following

analysis. However, for some network applications, the other two definitions

are appropriate.

Also, it is assumed that the components of the network have independent

lifetime distributions, and that they are either fully-operational or failed.

That is, stuck-at-T or stuck-at-X faults are not considered.

5.4 Comparative Measures

In this section, the measures used to compare the networks are introduced.

The measures are: the reliability as a function of mission time (R(t)), mean

time to failure (MTTF), normalized MTTF (NMTTF), mission time im-

provement factor (MTIF), and cost.

Let T be a random variable representing the lifetime of a particular sys-

tem, then its reliability can be defined as

R(t) = Prob[T > t]. (5.1)

The mean time to failure is simply the integral of the reliability over the

interval from zero to infinity,

MTTF = R(t)dt. (5.2)

The normalized mean-time-to-failure, NMTTF, is a comparative measure

of reliability. It is defined as the ratio of the MTTF of a network with

redundancy and the MTTF of the unique-path MIN.

Let T denote the time for the system to decrease from a fully-operational

system (at time t = 0) to some specified reliability. T is an useful abso-

lute measure of reliability in its own right because it provides information

d regarding the suitability of a given system for a particular mission. However,

I4
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S a comparative measure is desirable for the analysis of the networks. The

mission time improvement factor MTIF [57] reflects the improvement in the

maximum mission time for some desired minimum mission reliability as a

result of adding redundancy to the SEN. For example, let TSEN+ be the time

for the SEN+ to reach some desired mission reliability, Rdesired, and TSEN be

the time for the basic SEN to reach the same mission reliability, then

MTIF(Rdeeired) - TSEN+ (5.3)
TSEN

represents the factor by which mission time is increased by using the SEN+

instead of the SEN.

Finally, cost is a significant measure. Many times modifying a given sys-

tern to provide fault-tolerance requires more than merely adding components.

To properly compare different modification schemes, the cost of the schemes

must be normalized or some basis. In the case of the SEN, the number of

"equivalent" 2 x 2 SEs (SE 2) in the SEN+ and ASEN is used to normalize

the cost. The ASEN is constructed from demultiplexers, multiplexers, 3 x 3

SEs (SE 3), and 2 x 2 SEs; whereas the SEN+ is composed entirely of 2 x 2

SEs. The SEs are considered crossbar switches so an n x n SE has 4n(n - 1)

gates [47], and the multiplexers/demultiplexers have 2(n - 1) gates where n

is the number of input/output links. The SEN+ is simply a SEN with N/2

additional 2 x 2 SEs. But in the ASEN, some of the 2 x 2 SEs have been

replaced by 3 x 3 SEs and multiplexers and demultiplexers have been added.

In order to make a fair comparison, gate counts in the network components

are used to compensate for the differences in the network's construction. For

example, a SE 2 has 8 gates whereas a SE 3 has 24, so a SE 3 is three times

as complex as a SE 2 . The "normalized" network complexity of an N x N

ASEN is then (3N/4)(1 + 2(1og 2 N - 2)).I.,

I .
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p 5.5 Crossbar Networks

Reliability analysis of the crossbar network has been studied in several papers.

In [871, the C.mmp system from Carnegie Mellon University was studied. In

that paper, the crossbar was considered as a single large switch. In [91 and

[881, a more detailed model of the crossbar was considered by introducing the

aspect of coverage. However, in any model that considers the crossbar as a

single switch, the reliability analysis of such a model using a Markov chain

has only two states. Also note that all three definitions of what constitutes

an operational network will be identical from the perspective of the network.

In a later chapter, the crossbar network will be analyzed by decompos-

ing the crossbar into demultiplexer/multiplexer components. The crossbar

will then be considered as a component of an entire multiprocessor system.

Definition 3 will be used to analyze this system. It will be shown that mod-

eling the crossbar in more detail shows that the network has a much higher

reliability than indicated by the simple model.

5.6 SEN and SEN+ Networks

In this section, the reliability of the unique-path Shuffle-Exchange multistage

interconnection Network (SEN) and a variant of the SEN called the SEN+

are analyzed. The SEN+ network has an additional stage which is used in

an attempt to increase the reliability of the basic SEN. However, this effort

is not successful in all cases. A comparison of the SEN and SEN+ networks

as a result of transient reliability analysis is presented, as well as a discussion

of the distributional sensitivity of the reliability of these networks when their

components have increasing-failure-rate (IFR) lifetime-distributions.

II
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65.6.1 Exact Reliability Analysis

Let rsE(t) be the time-dependent reliability of the basic switching element.

Reliability analysis for this SEN, and for all N x N SENs under definition

1, is straightforward. Since the SEN is an unique-path MIN, the failure of

any switch will cause system failure, so from the reliability point of view, the

network is composed of (N/2)(log 2 N) switching elements in series. Hence,

the reliability of an N x N SEN is given by

RSEN(t) = [rsE(t)12NL (5.4)

For the 4 x 4 SEN, it is clear that the reliability is

RSEN(t) = [rSE(t)] 4  (5.5)

since there are four identical SEs. The 4 x 4 SEN+ has six SEs; two in each

of three stages. The four SEs which comprise the first and last stages are

all necessary for full connectivity. The intermediate stage can tolerate one

fault, so this stage has two SEs arranged in parallel. Therefore, computing

the reliability of the 4 x 4 SEN+, arranged in this series-parallel fashion, the

closed-form reliability expression is

RsEN+(t) = [rsE(t)] 4 [1 - (1 - rSE(t)) 2 (5.6)

The purpose of the extra stage in the SEN+ is to increase the system's

reliability, but by examining equations (5.5) and (5.6), it is evident that the

4x4 SEN+ is strictly les8 reliable than the corresponding SEN. This is because

the number of components in the intermediate stages where the two paths

between a S-D pair are disjoint is small when compared to the number of SEs

in the first and last stages combined. (That is, there are only 2 SEs in the

intermediate stage, but there are 4 SEs in the first and last stages combined.)

&*
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SEN+ networks are not strictly more reliable than SEN networks. The SEN+

networks are not more reliable until the aggregated number of components in

the intermediate stages is sufficiently larger than the number of components

in the first and last stages combined. For N > 8 the SEN+ is strictly more

reliable than the SEN.

Modeling the reliability of 8 x 8 and 16 x 16 SEN+ networks is not as

straightforward. Determining their reliability is more easily illustrated by

IN using discrete-state, continuous-time Markov chains (CTMC) [981.

For the SEN+ networks, as the number of stages increases, the number of

possible configurations for which the full connectivity specified in definition 1

is satisfied increases dramatically. To represent the configurations of a SEN+

as a CTMC, the states of the chain can be specified as [(N/2)(log 2 N + 1)]-

tuples where each position of the tuple is either a 1 or 0 corresponding to

the "up" or "down" state of the respective SE. One would like to take ad-

i ''vantage of the symmetry of the SEN+, and use a (log 2 N + 1)-tuple where

the switches are grouped by stages into the corresponding tuple positions.

But the failure configurations of the network quickly destroy the network's

fault-free symmetry.

The major problem with the CTMC approach to modeling the system's

time-to-failure behavior is the exponential growth of the state space as the

network's size increases. Essentially, the operational status of each SE in

each state must be considered. For example, the 8 x 8 SEN+ has 16 SEs,

so 216 possible states must be considered. The state space can be reduced

significantly by noting that all the switches in the first and last stages must

function for the network to function. Now for the 8x8, at most, only 28 pos-

sible configurations must be considered. The initial state of a CTMC which

models the lifetime behavior of an 8x8 SEN+ is (iil.iiiil) indicating that

'-
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all eight SEs in the intermediate stages are operational. The system's con-

figurations can be represented by a non-homogeneous CTMC, thus allowing

a time-dependent failure rate A(t) for each switching element. The reliability

of a SE is thus given by

rSE (t) = e- f,, (5.7)

Figure 5.1 is the CTMC representation for the 8 x 8 SEN+. Arcs that are

, q not labeled are assigned the transition rate A(t); this was done to avoid

cluttering the figure. Note that this chain has 36 states. Once the CTMC

has been constructed, it is possible to reduce the size of the chain by using

state lumping [32]. In this example, it was possible to reduce the chain

- to an equivalent one with only seven states. In Figure 5.2, a seven-state

CTMC representation for this SEN-r is shown. For such an acyclic CTMC,

the convolution integration method [981 can be used to solve for the state

probabilities Pi(t), and hence the system reliability RsEN+(t) is the sum of

'. the P,(t) over all the "up" states. Appendix A shows how the method can

be applied to the solution of this Markov chain. The reliability of the 8 x 8

SEN+ is thus determined to be

• RsE +2(t) = -fo A (,)dr+ 4 e- f, A(r)dr. -81-'5f N()dr 3 e- 16f A(r)dr (5.8)

which can be written as

RsEN+(t) = 2[rsE(t)1'+ 4 [ sE(t)1 - 8[r1E(t)]'5 + 3[rSE(t)]1 . (5.9)

0Assuming a constant failure rate A(t) = A , Figure 5.3 compares the

reliabilities of the 8x8 SEN and SEN+ networks as functions of dimensionless..

-. parameter At. These curves show that the reliability of the 8 x 8 SEN+ is

greater than that of the corresponding SEN. In fact, it can be shown (see

0k L-A _ &
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Figure 5.3: Comparison of the Reliabilities of the SEN and SENA- Networks

for the 8 x 8 Case.
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Appendix B) that this result holds for any underlying component-lifetime-

distribution. One needs only to solve

RSEN+ - RSEN > 0 . (5.10)

For the 8 x 8 case, let r = rsE(t), then using equations (5.4) and (5.9), the

inequality

r"(1 - 4r 2 - 8r' + 3r 4 ) > 0 (5.11)

needs to be shown to hold for all 0 < r < 1. For the equality condition there

are three real roots (0, 1, and 1.929) and two complex roots. Further, over

the open interval (0, 1) for r, the strict inequality holds, hence the reliability

of the SEN+ is strictly greater than that of the corresponding SEN.

All these reliability expressions can be interpreted either as time functions

or as static functions of the reliability of the switching elements since the

networks are assumed to possess only static redundancy. Thus for example,

V RSEN+ = 2r 12 + 4r14 - 8r'6 + 3r'6  (5.12)
.14

where r is the reliability (as a simple probability) of a switching element. In

fact, RSEN+ and RSEN can be plotted as functions of r as in Figure 5.4 to

obtain a graphical proof that RSEN+ > RSEN for all 0 < r < 1.

While a Markov chain representation of the evolution of the system life-

time for the 8 x 8 SEN+ network has been presented, analysis of the next

larger SEN+ using this approach is too expensive in terms of time and space.

Considering only the intermediate stages, the 16 x 16 SEN+ has 224 possible

states. One might consider constructing the Markov chain by depth-first or

breadth-first search looking for transitions to operational states starting from

the "fully" operational state (no SEs failed). These search procedures will be

very expensive because many paths may reach a given state and an exorbi-

A tant amount of checking for duplicates is involved. Note that if all "tuples"

0~
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Figure 5.4: Comparison of the Reliabilities of the SEN and SEN+ Networks
as a Function of the Reliability of a Switching Element for the 8 x 8 Case.

or switch configurations in which the network is operational are known, then

9 one can easily find the reliability of the network as the disjoint sum of the

tuple probabilities. In other words, there is no need to generate the tran-

sitions of the Markov chain. The earlier use of the CTMC was principally

for pedagogical purposes as it will be used later in the performability anal-

ysis. It provides a clearer illustration of the evolution of the network under

discussion. These networks, however, have no dynamic redundancy. That

is, they do not have spares to replace failed components, so the analysis of

these networks can also be performed using a graph-theoretic approach for

multi-terminal graphs.

While the exponential complexity of algorithms used to find the "up"

states of a system appears to be unavoidable, one can take advantage of

the structure of the SEN+ to reduce the memory requirements and check-
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ing for duplicates during the computation. To find the set of "up" tuples,

number each of the SEs in the intermediate stages from 1 to W where

M = (N/2)(log 2 N - 1). In the intermediate stages of the network, there

are two disjoint paths so the SEs that comprise this portion of the network

can be partitioned into two disjoint sets. Hence, there exists pairs (u,v) of

SEs (one from each set) that disconnect the network. Each possible pairing

is checked to see if it causes network failure, and those pairs that do are

placed on a list. Next, start with the binary representation of 2M - 1 (all

SEs operational) and check the binary representation of each number from

2M - 1 to 2 M/2 - 1 against the list to see if it is an operational tuple. This

is accomplished by checking positions u and v in the binary representation.

If they are not both Os, then record an occurrence of i, the number of ls in

the binary representation, and keep track of the number of occurrences of i.

If both positions are 0, discard the tuple. The expression for the reliability

of the intermediate stages (IS) is then expressed as

* M

Ris(t) = arsp(t)'(1 - rsE(t)) M ', (5.13)
i=M/2

where the coefficient a, is the number of "up" tuples with i operational SEs.

The reliability expression for the 16 x 16 SEN+ was determined to be

RsEN+(t) = rSE(t)"[2 + 2rsE(t)4 + 8rSE(t)6 - 16rSE(t)' + 8rSE(t) 8 -

16rsE(t) 9 + 20rsE(t)' 0 - 8rsE(t)" + rsE(t)'J. (5.14)

A comparison of the reliabilities of the two networks, assuming a constant

switch failure rate, is presented in Figure 5.5. Once again, the SEN+ is more

reliable than the corresponding SEN.

At this point, the exact reliability expressions for the 8x8 and 16x16 SEN+

d networks have been derived, and a comparison of the curves that represent
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Figure 5.5: Comparison of the Reliabilities of the SEN and SEN+ Networks

for the 16 x 16 Case.

their absolute measures of reliability with the corresponding SENs has been

presented (Figures 5.3 and 5.5).

Now a comparative reliability measure (MTIF) for these networks will

be used. Let rsE(t) = e"t, and set A = 1, then TSEN can be obtained from

the closed-form expression

In Rdesired
TEN- (.15)M

where Mf = (N/2) (log 2 N). To obtain TSENI+, a nonlinear equation must be

numerically solved. Let Rdesired = RSEN+ and TSEN+ = t in equations (5.6),

(5.9), and (5.14). Then, TSEN+ is computed for specified values of Rdsiied in

these equations. The plot of MUTIF = TSEN+/TsEN, as a function of required

mission reliability for the 4x4, 8x8, and 16x16 networks is prescwcuJ in Figure

* 5.6.
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The figure shows that from a reliability perspective, as network size in-creases, it becomes more advantageous to choose the SEN+ network over
the SEN. For example, consider a reliability requirement of 0.93 for a par-
ticular mission. In the 8 x 8 case, the improvement achieved by the SEN+
over the basic SEN is only a factor of 1.25; while for the 16 x 16 case, the

gain is nearly two-fold. Also note that after some relatively high reliabilityrequirement, MTIF decreases rapidly with further increases in the reliability
requirement. In the extreme case-(component reliability equal to one), then
redundancy provides no improvement in system reliability.

5.6.2 Reliability Bounds for Large Networks

As network size increas-s, explicitly modeling the reliability of the SEN+
networks using Markov chains or tuples becomes rather complex. Since for

I
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each S-D pair there are two disjoint paths within the intermediate stages of

the SEN+ network, one has to determine if the failure of the (k + I)t SE

in this group of stages causes system failure conditioned on the fact that the

first k SE-failures did not cause system failure. Now since each S-D pair has

two disjoint paths, each such pair must be examined. So, for a 1024 x 1024

SEN+, there are 22" paths and each path has log 2 1024 + 1 - 2 = 9 SEs

through the intermediate stages. Therefore, approximation techniques for

determining the reliability of the larger SEN+ networks are a practical and

necessary alternative.

Lower Bounds

To obtain a lower bound, observe that as many as one-half of the switching

elements in the intermediate stages of an SEN+ can be failed, and yet the

network is still operational. Figure 5.7 illustrates this condition for the 8 x 8

SEN+. If one models the intermediate stages as a system consisting of a

parallel arrangement of two series subsystems each with (N/4)(log 2 N - 1)

switches, then the lower bound of reliability can be obtained using reliability

block diagrams. This provides a series system of three subsystems - the first

and last are series subsystems and the middle subsystem is a parallel-series

subsystem. The reliability expression resulting from the "lower-bound" block

diagram as shown in Figure 5.8 is

R1b(t) =[rSE(t)IN . - -rSE (t) [g' "V]2

= [ ) - [rsE(t)( 2 (5.16)

A similar technique is used by Padmanabhan in [64] to obtain a lower bound

for the reliability of redundant path networks using an independent link-fault

model. (The switch-fault model is used for the analysis in this paper.)
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Figure 5.7: Illustration of the 8 x 8 SEN+ with One-half of the Switchiag
Elements in the Intermediate Stages Failed.

Upper Bounds

To obtain an upper bound on the reliability of the SEN+, observe that each

SE in a particular stage of the SEN+ shown in Figure 3.4 has a conjugate

[51]. That is, for stages 1, ... , n there exists a pair of SEs in stage i - 1 that

are connected to a pair of SEs in stage i. For example, SE 0,0 and SE 2, 0 are

connected to SE 0,1 and SE 1,1. If a conjugate pair of SEs fail, then the network

has failed. Assuming the network is operational as long as no conjugate pair in

the intermediate stages fail and no SE in the first or last stages fail, an upper

bound on the reliability of the SEN+ is obtained. This will overestimate

system reliability since there are many combinations of failed SEs other than

conjugates pairs that will cause the network to be failed. Figure 5.9 shows

a representation of this configuration. (The upper bound can be improved

.further by taking advantage of the linkage interdependencies between stages,

%0%
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Lower-Bound Model for the SEN+ Networks.
and in larger networks, the improvement obtained may be significant.) The

igureliability expression using this upper bound is given by

RP(t) = [rSE(t)]N [1 - (1 - ro,(t))CIogN-'). (5.17)

Figure 5.10 compares the upper (optimistic) and lower (conservative) bounds

for an 8 x 8 SEN+ network with the exact reliability expression (5.9).

Finding an upper bound for system reliability is usually not the center of

attention in real world applications. One usually wants a conservative indi-

cation of how long the system will be operational, and upper bounds present

an optimistic view of the world. The lower bound provides the probability

that the system will be operational at some specified time. The expectation

is that the real system is at least this good. If the gross lower bound provides

sufficient assurance that the system will be operational over the time interval

"
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SE ~ SE S
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N (log 2 N - 1) pairs

Figure 5.9: Reliability Block Diagram Representation of the Upper-Bound
Model for the SEN+ Networks.
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Figure 5.10: Comparison of the Upper and Lower Bounds with the Exact
Reliability of the 8 x 8 SEN+.
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Figure 5.11: Comparison of the Upper and Lower Bounds with the Exact
Reliability of the 16 x 16 SEN+.

of interest, then no further effort at obtaining a better approximation or the

exact reliability expression is necessary.

The above analysis is repeated for the 16 x 16 networks. In Figure 5.11,

the upper and lower bounds are compared with the exact solution, equa-

tion (5.14), for the RSEN+(t) for N = 16. The "lower bound" model closely

approximates the exact solution for the SEN+ network. From the above

comparisons, it is clear that the bound of equation (5.16) is a reasonable

approximation to the actual reliability of SEN+ networks.

V N
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Figure 5.12: Comparison of the Mission Time Improvement Factor of tl ,
Networks from Size 8 x 8 to 1024 x 1024 Using the Lower-Bound Model.

5.6.3 Network Comparisons

~Mission Time Improvement Factor

Using the lower bound model, the MTIF for 8x8 through 1024x1024 networks

were computed. As shown in Figure 5.12, a dramatic reliability improvement

,i ' is obtained by simply adding an extra stage to the SEN networks.

Mean Time to Failure

In this section, the mean time to failure of the networks is discussed, where

I-I

MTTF f R(t)dt .(5.18)
1

Noting that R(t) has the h f ,mi[asrisi() one can perform thi integration
ssin Timet mroeent Factr

j Intss etoio n thet man tie-or falreut of the ne trk is d )isssmwee
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*to be the Weibull reliability function, then

rSE(t) =e . (5.19)

In this case, using [98]

j- e-Awt =(! ~ ( + 1(5.20)

one obtains
MTTFw=Z a[( 4 ) )r(l + , (5.21)

iAwa

where () denotes the gamma function. Thus in the case of the 8x8 SEN+,

from equation 5.9 one obtains

2 4 8 3 1 1
MTTFw = (T7 +-' - - + -- )(-)r(1 + -). (5.22)

12. 14& s 16Awa

In the special case of the exponential distribution, a further simplification

provides

MTTF .a- (5.23)

So in the above case,
.1

2 4 8 3 1 179MTTFE -, ' +  T + 1-) -T = (524)
12 14 515 68A-1680AE (.4

Figure 5.13 plots the MTTF of the SEN and SEN+ networks as a function of

the network size N (log 2 scale is used on the x-axis). Both the lower-bound

model and the exact solution for the (size 2, 4, 8 and 16) SEN+ networks are

shown. The "" marks overlying the MTTF for the SEN+ lower-bound curve

show the exact solutions. Observe that the MTTF of the SEN+ networks

for sizes 2 and 4 are less than their corresponding SEN, and as previously

stated, for networks of size 8 and larger, the MTTF for the SEN+ networks is

dominant. In fact, for the lower-bound model, direct integration of equation

(5.16) yields the closed-form answer for the MTTF:
N + 31og N 1 -

(MTTF1b)E(N) = 31 og2 Nl2g 2N + 1 (5.25)

6A 09 1 19 )
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Figure 5.13: Comparison of the Mean Time to Failure of SEN and SEN-
Networks from Size 2 x 2 to 1024 x 1024.

These curves are helpful, but a single curve that compares the MTTF for

a given network size is more revealing. For this purpose, the normalized

mean-time-to-failure is used for specified network sizes.

The normalized mean-time-to-failure is an appropriate comparative mea-

Il sure of reliability for networks because it is the ratio of the MTTF of a

network with redundancy divided by the MTTF of the basic network. In

Table 5.1, data is provided for both the lower and upper bounds for the SEN+

network. Noting that the MTTF for the SEN is 2/(NA log 2 N), and using

equation (5.25), the asymptotic value of the NMTTF for the lower-bound

model for the SEN+ is determined to be 3. By examining the NMTTF for

the SEN+, one observes that the exact values are close to the lower-bound

model. It is expected that the exact values will remain close to the lower-

bound model as the network size increases since the series arrangement of SEs
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Size MTTF * A NMTTF
SEN SEN+ SEN+

N EXACT LB EXACT UB LB EXACT UB

0.50000 0.50000 0,5000 0.5000 0.5000 1

4 0.23333 _L 0.23333 0.9333 0.9333 0.93334 30

8 1 0.10417 179 0.11525 1.2500 1.2785 1.3830

16 - 0.04643 37630211 0.05830 1.4857 1.5378 1.8656

32 0.02083 0.02969 1.6667 2.3752

64 _92 0.00942 0.01509 1.8095 2.8973

128 0.00430 0.00764 1.9250 3.4227448

256 1 0.00197 0.00386 2.0202 3.9480

512 1 0.00091 0.00194 2.1000 4.4698

1024 . 0.00042 0.00097 2.1678 4.96645120

Table 5.1: MTTF and NMTTF Ratios for the N x N SEN and SEN+
Networks.

in the first and last stages of the network will tend to be a limiting factor

of reliability. Note also that as the network size increases, the upper bound

diverges from the lower bound. It is evident that for larger networks, it is

desirable to find a tighter upper-bound model. However, emphasis should be

placed on the lower bound since assurance of some minimum level of reliabil-

ity is desired.

In terms of cost, the ratio of the number of switching elements used in a

network with redundancy divided by the number of SEs in the basic network

is also an useful measure. In Table 5.2, a comparison of the complexities of

these networks is presented.

Another method for improving the reliability of a MIN is through the use

of multiple copies. This method of adding fault tolerance uses K replications

of the basic network (K-SEN) to achieve (K - 1)-fault-tolerance. The same

assumption stated by Ciminiera and Serra [201 and Padmanabhan [64] is

'.4

%~!
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* Size Network Complexity Ratio
SEN SEN+

N '(log 2 N) -(og 2 N + 1) SEN+

2 1 2 2.0000
4 4 6 1.5000
8 12 16 1.3333

16 32 40 1.2500

32 80 96 1.2000

64 192 224 1.1667
128 448 512 1.1429

256 1024 1152 1.1250

512 2304 2560 1.1111

1024 5120 5632 1.1000

- Table 5.2: Network Complexity for the N x N SEN and SEN+ Networks.

used in this analysis. That is, each basic network is considered as a single

component of the replicated network, so a component is failed whenever one

of its SEs has failed. Then the reliability of a K-SEN is

RK-SEN(t) = 1 - [1 - RSEN(t)IK. (5.26)

Note, however, that this method of adding fault tolerance is not very effective

since the improvement factor is proportional to log K [20]. For the purpose

of comparison with the SEN+, the case where K = 2 is considered. The

MTTF of the 2-SEN is

MTTF2-sEN = 2MTTFsEN MTTFSEN

Figure 5.14 plots the NMTTF of these two redundant networks (the

SEN+ and the 2-SEN) as a function of N (using log 2 scale on the x-axis). For

the SEN+, the NMTTF is an increasing function of network size, whereas

for the 2-SEN, the NMTTF is independent of network size. Ht provides a

U-%
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Figure 5.14: Comparison of the Normalized Mean-Time-To-Failure and the
Ratio of the Number of Switching Elements for the SEN+ and 2-SEN Net-
works from Size 2 x 2 to 1024 x 1024.
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NMTTF = 1.5. For networks of size 16 and larger, the reliability improve-

ment achieved by using an extra stage is superior to that obtained by using

a pair of SENs.

It is interesting to compare the cost of these networks, too. The ratios of

the network complexities for the SEN+ and the 2-SEN divided by the basic

SEN are also plotted in Figure 5.14. By using the 2-SEN, the number of

SEs is twice that of the basic SEN. Observe that, in the figure, the SEN+ is

S superior to this network for size 32 and larger.

S For the SEN+, as network size increases, the ratio of the network com-

plexities levels off very quickly while the corresponding NMTTF continues

to increase at a significantly higher rate. This points out that the cost of

adding an extra stage to larger networks is small compared to the gain in

reliability which is possible. Hence, for large networks, the SEN+ is less ex-

pensive than using a pair of SENs in terms of additional hardware, and it is

more reliable as well.

5.6.4 Distributional Sensitivity

A common assumption in the transient analysis of multistage interconnec-

tion networks is that individual components have exponentially distributed

S. .. ' lifetimes. This means that each component has a constant failure rate. In

other words, the conditional probability that the component will fail in the

interval At given that it has survived until time t is the same as the condi-

All tional probability that it will fail in the same interval At given that it has

survived until time t + r. Often this assumption is challenged. It seems

more appealing to believe that the component is more likely to fail as time

increases. A Weibull distribution with shape parameter a > 1 models such

S._an increasing-failure-rate (IFR) behavior.

0

v,: : '5 , ; : ', - ", " _,: : ' , " 5 ;:°
:',I.J , .' -\ '.:' ,
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What is the impact on the system's reliability of using an IFR distribution

for component lifetime? Consider the 8 x 8 SEN. Recall that the failure of

any component will cause system failure, so the 8 x 8 SEN can be modeled

as a series system with 12 components. Now consider two distributions for

an individual component's lifetime. kn exponential distribution with CDF

FE(t) = 1 - -  and a Weibull IFR distribution with CDF Fw(t) = 1 -

e- wt" . In order to assess the sensitivity of the reliability comparison of SEN

and SEN+ networks, one needs to "equalize" the two distributions in some

manner. First do this "equalization" by letting the MTTF of individual

components be the same for the two distributional assumptions. Specifically,

1= (-)-r(1 + ) (5.27)

Solving for the scale parameter of the Weibull distribution,

1
Aw = [AEr(1 + -)] (5.28)

a

Figure 5.15 shows the system reliability curves for the 8 x 8 SEN and SEN+

networks assuming AE = 0.1, a = 1.5, and solving for the scale parameter

Aw = 0.02712 so that the MTTF of the individual components is equal.

As expected, the SEN+ is more reliable than the SEN. In the figure, one

can see that the constant-failure-rate assumption for individual component

lifetimes underestimates the system's reliability if the underlying component

distributions have an IFR behavior. This means that the standard assump-

tion of exponentially distributed component lifetime-distributions provides a

conservative estimate of the system's reliability. The same behavior has 1w,:-,1

observed for larger networks as well.

Another way to "equalize" the two distributions is to equaio, , ,. "

MTTFs under the two distributional assumptions for the individ'a, ..

S nents. For a series system with n components, the system M7T -

S%
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cc SEN+ [Wei(0.02712, a =1.5)]

0.5 SEN [Wei(0.02712, a =1.5)]

o', ySEN+

ZSEN [Exp(.1)]

[Exp(O.1)]
0 2.5 Time 5.0

Figure 5.15: Comparison of the Reliabilities of the 8 x 8 SEN and SEN-r-
Networks When the Components Have Either an Exponential or Weibull
Lifetime Distribution and the Component Means are Equalized.
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equated as 1 1!
= + (5.29)

n A

Solving for the scale parameter Aw, one gets

AW = n~'-')[Axr(1 + (5.30)

For the 8 x 8 SEN with AE = 0.1, a = 1.5, and n - 12; Aw = 0.093959.

Using equations (5.22) and (5.24) one can determine Aw for the corresponding

%SEN+. The expression is

r 1 1(+_I[2 4 8 31]
AW 1 MTF r(i +-1)[-2 1_+ 1--- + 3if 1 (5.31)

MTTFE a 120 140 15a 16a5

With A_ = 0.1, and a = 1.5, the scale parameter for the Weibull distribution

is Aw = 0.0845373. Figure 5.16 shows the system reliability curves under

both distributional assumptions. Examining the system's reliability curves

after equating the system MTTFs shows crossover points. The IFR as-

sumption provides a higher system reliability for short missions as expected,

-" and the constant-failure-rate assumption yields superior reliability for longer

missions.

One might think when the system MTTFs are equal under the two dis-

tributional assumptions that one should expect to see a crossover point as in

Figure 5.15 when the component means were equal. This is not the case be-

cause the exponential and Weibull distributions do not allow the MTTFs to

scale in the same fashion. For example, for a series system of n components

each having exponentially distributed lifetimes, the system MTTF is simply

I/n times the component MTTF. But, for the Weibull case, the system

MTTF is (1/n)'/' times the component MTTF.

V

*- - '*I% ** % .
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Figure 5.16: Comparison of the Reliabilities of the 8 x 8 SEN and SEN+
Networks When the Components Have Either an Exponential or Weibull
Lifetime Distribution and the System Means are Equalized.
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5.7 ASEN Network

5.7.1 Exact Reliability Analysis

An exact reliability analysis of the 4 x 4 and 8 x 8 ASEN is performed by

determining the cut sets of each network and then computing the number

of operational configurations. Since the ASEN is a multiple-path MIN, the

routing algorithm as well as the topology must be considered in deriving the

reliability expressions for the network. The adaptive routing algorithm as

described in [53] considers a 2 x 2 SE in the last stage and its associated

demultiplexers as a series system, so these three elements can be considered

as a single component, and based on gate count, a failure rate of \2,, = 1.5A2

can be assigned to this grouping of elements. Also, let A3 be the failure rate

of the 3 x 3 SE and Am. be the multiplexer/demultiplexer failure rate. Then

based on gate count, A3 = 3A2 and Am. = A2/4. The time-dependent reliability

expression for the 4 x 4 ASEN is

R(t) = C- 4 mt [2eC(\2+2\)t + (2e 2A_1 - 4eA-t + 1)e 22-t] • (5.32)

For the 8 x 8 ASEN, the reliability expression is

R(t) = [(4 (42+A.t_1e(12+\) + 16e(2-\2+4,\-)t)e 2A3t

+ (( 8 e4' - t - 16e -t + 4 e2Amt)e4A2mt

+(-32e 41- + 64e-' t - 16e2AMt)e A2-t

+ (3 2e 4C 0t - 6 4e 31-t + 16 e2Amt)e2 "
\2mt) eA3t

+( 4 e 4Amt - 16e3Umt + 2 0 2A-t - 8e"-t + 1)e4 '2 t

+(-1 6 e4At + 6 4 e3Amt - 80e 2 -,Mt + 32e "' - 4)e-3-t

+ (16e 4Amt- 64eSlt + 8  -e2  
3 2emt + 4e2\2_t

e- (4)3+$m)t.  (5.33)

%
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5.7.2 Reliability Bounds for Large Networks

Deriving the exact reliability expressions for SEN+ and ASEN networks of

size 16 and larger is computationally difficult. For example, the CTMC used

to represent the various degraded configurations of the 16 x 16 ASEN could, -.

have 24° - 238 = 15.2 38 possible states, and the exponential growth of the state

space for larger networks makes the construction and solution of the CTMC

intractable. For each S-D pair there are two or more disjoint paths within the

intermediate stages of the ASEN network. One has to determine if the failure

of the (k + 1)St SE in this group of stages causes system failure conditioned

on the fact that the first k SE-failures did not cause system failure. Each

S-D pair has disjoint paths, and each path must be examined. Therefore,

approximation techniques are considered for determining the reliability of the

larger networks.

' Lower Bounds

At the input side of the ASEN, the multiplexers are not considered an integral

part of a given 3 x 3 SE. That is, a multiplexer can be failed, and as long

as at least one of its two associated SEs (e.g., SEs 0 and 1 in Figure 3.5)

is operational, the network may be operational. But, if two multiplexers

Igrouped with each SE on the input side are considered as a series system,

then a conservative estimate of the reliability of these three components is

obtained. Their failure rate will be A3,,, = 3.5. 2. Finally, these aggregated

icomponents and the SEs in the intermediate stages can be arranged in pairs

of conjugate loops. To obtain the pessimistic (lower) bound on the reliability

of the ASEN, it is assumed that the network is failed whenever more than

one loop has a faulty element or more than one SE in a conjugate pair in

the last stage fails. After this simplification of the ASEN, the lower-bound

VI ' N " " , " " '' , " ' % '" " , ° % ° - . - -. . - -- ' ...% . % '
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Figure 5.17: Lower-Bound Reliability Block Diagram for the ASEN.

construction from [53] can be modified to reflect the reliability block diagram

which is shown in Figure 5.17. For N > 8, the reliability expression for the

* 'lower bound of the ASEN is

.RASEN(t) = (1 (1 1 - 2A-)2y)!( - (1 - e2 s)2)(og N-3)

(1 - (1 - e-")2) .~(5.34)

The ASEN can tolerate any single loop failure or the failure of any single

switch in the last stage.

Upper Bounds
I

To obtain an upper bound for the ASEN, observe that each source is con-

nected to two multiplexers and each SE has a conjugate. If it is assumed that

the ASEN is operational as long as one of the two multiplexers attac.d 1)o a

* ' source is operational and as long as a conjugate pair is not faulty, as rii,y as

''i
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Figure 5.18: Upper-Bound Reliability Block Diagram for the ASEN.

one-half of the components can fail and the ASEN may still be operational.

This permits the use of a simple reliability block diagram for the optimistic

* (upper) bound as shown in Figure 5.18. The expression for the upper bound

of the ASEN reliability is

RASEN.,(t) = (1 - (1- e-ui)2)e( - e-)2)(O° 2 N2)

(1 - - 1e- ) 2. (5.35)

In Figure 5.19, the exact reliability, upper, and lower bounds derived for

the 8 x 8 ASEN are plotted. Also shown in Figure 5.19 is the upper bound

for the SEN+. The ASEN lower bound is strictly greater than the upper

bound of the SEN+ for t > 0. So the worst case reliability of the ASEN is

still better than the best case reliability of the SEN+. The ASEN is clearly

superior to the SEN+ even for small networks in spite of the fact that it has
increased complexity.

.... i
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Figure 5.19: Comparison of the Network Reliabilities for the 8 x 8 Network.

5.7.3 Network Comparisons

In this section, the reliability of the ASEN is compared to both the SEN and

SEN+ networks.

Reliability and Cost

In Table 5.3, absolute and relative measures are used to compare the net-

works. For N = 8 and larger, the MTTF of the SEN+ is greater thail that

of the SEN; for N = 4 and larger, the ASEN's MTTF is superior to both.

The NMTTF data for the SEN+ and ASEN show that as the size of the net-

work increases, the reliability advantage of the ASEN is significantly greater

than that of the SEN+. In particular, note that the NMTTF upper bound

of the SEN+ is much smaller than the NMTTF lower bound of the ASEN.

a

vr'-W% itK



88

Size _ __ MTTF * A _ __NMTTF

SEN r SEN+ ASEN SEN+ ASEN
N EXACT LB UB LB LB UB LB

4 0.25000 0.23333 0.23333 0.75000 0.9333 0.9333 3.0000

8 0.08333 0.10417 0.12450 0.18912 1.2500 1.4940 2.2690

16 0.03125 0.04643 0.06250 0.08527 1.4857 2.0000 2.7280

32 0.01250 0.02083 0.03125 0.04607 1.6667 2.5000 3.6860

64 0.00521 0.00942 0.01563 0.02712 1.8095 3.0010 5.2080

128 0.00223 0.00430 0.00781 0.01676 1.9250 3.4989 7.5078

256 0.00098 0.00197 0.00391 0.01067 2.0202 4.0038 10.9240
'I

512 0.00043 0.00091 0.00195 0.00693 2.1000 4.4928 15.9591

1024 0.00020 0.00042 0.00098 0.00456 2.1678 5.0176 23.3473

Table 5.3: MTTF and NMTTF Ratios for the N x N Networks.

Based on the number of equivalent SE 2s, Table 5.4, shows the complex-

ities of the networks. For larger networks, the ASEN is more than twice as

complex as the SEN+. If differences in the component complexities are ig-

nored, then the ASEN will appear to be even less costly than the basic SEN
since it will have N/2 fewer SEs. In comparison with the SEN+, the ASEN

would have N fewer SEs.

Figure 5.20 plots both the ratio of the NMTTF and of the cost of the

!'io ASEN to the SEN+ as a function of network size (using a log 2 scale on the x-

axis). For the case of the ASEN, the growth in NMTTF is much faster than

the corresponding increase in cost as network size increases. For example,

for N = 1024 the ASEN is more than twice as expensive as the SEN+, but

it is also more than ten times more reliable. (The asymptotic cost ratio

ASEN/SEN is 3.)

p..
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Size Network Complexity Ratio

N SEN SEN+ ASEN SEN+ ASENSEN SN

4 4 6 4 1.5000 1.0000
8 12 16 20 1.3333 1.6670

16 32 40 64 1.2500 2.0000

32 80 96 176 1.2000 2.2000

64 192 224 448 1.1667 2.3333

128 448 512 1088 1.1429 2.4286

256 1024 1152 2560 1.1250 2.5000

512 2304 2560 5888 1.1111 2.5556

1024 5120 5632 13312 1.1000 2.6000

Table 5.4: Network Complexity for the N x N Networks.

11 ..

75 ASEN NMTTF

ASEN Cost
SEN+ Cost

8 1024
Network Size (N)

Figure 5.20: Ratios of the NMTTF and the Cost of the ASEN to the SEN--.
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Figure 5.21: Ratio of the Mission Time Improvement Factor of the ASEN to
the SEN+ for Networks from Size 8 x 8 to 1024 x 1024 Using the Lower-Bound
Model.

Mission Time Improvement Factor

The MTIF for 8 x 8 through 1024 x 1024 networks, was computed using the

lower-bound model. In Figure 5.21, the ratio of the MTIF of the ASEN

to that of the SEN+ is plotted. Observe the dramatic increase in reliability

achieved by the ASEN in Figure 5.21. This shows that the ASEN is superior

to the SEN+.

5.7.4 Extensions to Reliability Analysis of ASEN

Previous reliability analysis of the ASEN has examined terminal reliability

and the MTTF (a single-valued measure) using bounds. In Sections 5.7.1

and 5.7.2, this work was extended to transient reliability analysis oi Ihese

* networks and derivation of the closed-form reliability expressions for ,niall

S'



P networks. In this section, a further extension is made by considering imperfect

coverage and on-line repair in the reliability analysis.

If the usual approach of an overall Markov model to incorporate imperfect

coverage and/or on-line repair were taken, then analysis would be restricted

to an 8 x 8 ASEN network. Instead, a hierarchical approach is used to model

rather large ASEN networks. In the lower-bound block diagram model shown

in Figure 5.17, each parallel combination can be considered to be a single

"pseudo" component which is modeled as a Markov chain. This lower-level

Markov model can be designed to incorporate imperfect coverage and/or on-

line repair from which pseudo-component reliability can be determined. The

overall system reliability is then obtained by taking a top-level block diagram

model and multiplying individual pseudo-component reliabilities. For other

uses of the hierarchical approach to reliability modeling, the reader is referred

to f841.

Imperfect Coverage

It is often the case that, when a component in a system fails, the detection,

isolation, and reconfiguration procedures of the system are less than perfect.

This notion of imperfection is called imperfect coverage, and it is defined as

the probability that the system successfully accomplishes system reconfigu-

ration given that a component failure occurs [17,41. Denote this probability

as c. Imperfect coverage is an important factor in considering the reliability

of interconnection networks since as their size increases, the number of com-

ponents increases, and the potential for an uncovered fault to occur increases

as well.

Consider the lower-bound model of the ASEN shown in Figure 5.17. Each

parallel arrangement of two SE 2 m. can be considered as a pseudo component
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denoted as PC 2,m whose reliability, given imperfect coverage, can be computed

from a simple 3-state Markov model:

RpC,. (t) = e- 2 +.t + 2ce- 2(_(1 - e mt). (5.36)

The first term in equation (5.36) represents the probability that both SE 2 ,

are operating concurrently, and the second term represents the probability

of operation with one of the two SEs after successful reconfiguration of the

system given that one of the two SEs fail.

Each series-parallel arrangement of SE3m and each such arrangement of

SE 3 can be considered as a pseudo component in a similar fashion. The

reliability expressions are:

Rpc,.(t) = e- 4'3' + 2ce- 2 A3t(1- e-2 -3-1' ), and (5.37)

Rpc3(t) = e- 4 -3 + 2ce- 2 3t(1 - C 2 ), (5.38)

respectively. Hence, the reliability expression for the lower-bound model of

the ASEN which allows for imperfect coverage is given by
|N

RASEN (t) = [Rpc3 .WI(t)] j [Rpc(t)]- (i g N-1)[RPc 2 (t)]' . (5.39)

As will be shown later, even a coverage factor of 0.95 has a significant effect

on the ASEN's reliability.

On-Line Repair

One characteristic of the ASEN is that it lends itself to on-line repair and

maintainability. But modeling this behavior has not been previously ad-

dressed. Previous reliability analysis of ASENs is extended by employing

hierarchical decomposition in modeling such behavior. Each pair of conju-

gate loops is a series-parallel arrangement of four switching elemenms. This

*1
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2, 2X2X 1,

(a) Pair of Conjugate Loops (b) CTMC Representation

Figure 5.22: Markov Chain Representation of a "Pseudo" Component.

grouping can be considered as a pseudo component and the failure and repair

behavior of this PC can be modeled using a discrete-state, continuous-time

Markov chain. The reliability expression of the pseudo component is ob-

tained, and then this reliability function is used as input to the lower-bound

model of the ASEN.
-'.

Figure 5.22 shows: (a) a pair of conjugate loops from Figure 3.5, and (b)

the CTMC representation of the failure and repair behavior of the pseudo

component. Tuple (i,j) represents the number of operational components in

each loop. For example, i = 2 means both SE 0 and SE 1 are operational.

Furthermore, switches are replaced in pairs even though only one SE in the

loop may be failed. Repair then takes the same time to replace one or both

SEs in a loop. Let the failure rate of each component be A and the repair

rate be A.

aV
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For reliability, the concern is with continuous operation given that on-line

repair is conducted. Note that state (1, 1) is an absorbing state. Let P1,1 (t)

be the transient probability of that state, then 1 - P1 ,1(t) is the reliability of

the pseudo component. The 6-state CTMC in Figure 5.22 can be reduced

to a 4-state CTMC; then the transient solution of the state probabilities is

accomplished using Laplace transforms, solution of a system of linear equa-

tions, partial fraction expansion, and inversion back to the time domain. The

highest-order denominator of the Laplace transform solution of the 4-state

CTMC is a quartic equation with four real roots. One root is zero, the other

three roots are determined by using the usual explicit closed-form expressions

found, for example, in [731. Let P(s) denote the Laplace transform of the

transient probability of being in the absorbing state(Piji(t)), then
t4

A (s (5.40)ti (3 +Xi

where the -xi are the real roots of the denominator, and the A, are the

constant coefficients. Then

4
P,I(t) = >Aie-", and (5.41)

i~ 1

Rpc(t) = 1 - P1,1(t). (5.42)

Once Rpc(t) has been determined, the reliability of the ASEN with on-line

repair is found by replacing each pair of conjugate loops with its PC in

the lower-bound model of the ASEN. For small networks, SHARPE (see

Appendix C) can be used directly to compute system reliability, but for larger

networks, numerical instabilities were avoided by using a program written

specifically for the present problem.

In Figure 5.23, the reliability of the 256 x 256 ASEN is plotted using the

a upper and lower-bound models under three assumptions:

.I
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-2: (lower bound)

(c = 1.00)

. Upper Bound (c = 1.00)

Lower Bound (c = 1.00)

Upper Bound (c = 0.95)

Lower Bound (c = 0.95)
0

0 0.01 0.02
X.t

Figure 5.23: Reliability of the 256 x 256 ASEN.

1. An imperfect coverage factor (c = 0.95).

2. Perfect coverage (c = 1.00).

3. On-line repair (lower-bound model only, c - 1.00).

Assume A3,, = 3.5, A3 = 3, A2.. = 1.5, and = 500,000. This is equiva-

lent to assuming a failure rate of 1 x 10-6 SEs per hour using a "normalized"

SE and a repair rate of one loop per one-half hour. The figure presents three

views of the ASEN. Even the slightest probability (0.05) of unsuccessful re-

configuration has a significant impact on ASEN reliability. On the other

hand, on-line repair enhances the reliability of the ASEN in a profound way.

For example, Table 5.5 shows the impact of imperfect coverage and on-line

repair on the reliability of the 256 x 256 ASEN. At time t = 0.01, the relia-

bility ranges from 0.15 to 0.99. Table 5.6 compares the MTTF of the ASEN

under three assumptions using the lower-bound model. As network size in-

%
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Reliability of the 256 x 256 ASEN at t =0.01
Lower Bound Upper Bound On-Line Repair

C= 1.00 c=0.95 c=1.00 c=0.95 c= 1.00
0.43 0.15 0.70 0.21 0.99

Table 5.5: Impact of Imperfect Coverage and On-Line Repair on the 256 x 256
ASEN.

Lower Network Size (N)
Bound
with 8 16 32 64 128 256 512 1024

Repair 0.6111 0.3880 0.2538 0.1696 0.1152 0.0791 0.0547 0.0381
e = 1.00 0.1891 0.0853 0.0461 0.0271 0.0168 0.0107 0.0070 0.0046

c = 0.95 0.1781 0.0763 0.0381 0.0200 0.0106 0.0055 0.0028 0.0013

Table 5.6: MTTF of ASEN Under Three Model Assumptions.

creases, the improvement in MTTF with on-line repair over the models with

no repair increases. For example, as network size increases from 8 x 8 to

1024 x 1024, the ratio of the MTTF with on-line repair increases from 3.23

to 8.28 for c = 1.00.

5.8 Summary

In this chapter, the transient reliability of the Shuffle-Exchange Network

(SEN) and three fault-tolerant schemes for improving the reliability of this

network were examined. These schemes are the SEN+, 2-SEN, and ASEN.

Exact closed-form expressions for the -time-dependent reliability of the SEN

and the 8 x 8 and 16 x 16 SEN with an additional stage (SEN+) were derived

independent of the assumptions regarding the underlying component-lifetime-

distributions. Also, for the networks examined, the exponential distribution

provides a conservative estimate of the reliability of these MINs if the com-

ponents have an increasing-failure-rate lifetime-distribution.
%
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Further, a tight reliability lower bound for larger SEN+ networks was

derived and used to provide numerical results for networks as large as 1024 x

1024. A comparison of these networks shows that, on the basis of reliability,

the SEN+ is superior to the SEN and the redundant SEN.

Next, exact closed-form expressions for the reliability of 4 x 4 and 8 x 8

ASEN networks were derived. Also derived were the upper and lower bounds

for approximating the reliability of larger ASEN networks by "normalizing"

the networks based on the gate complexities of their components. The bounds

obtained were compared to the exact solutions derived for the 8 x 8 ASEN to

show that they are a reasonable approximation of ASEN reliability, and then

these bounds were used for analyzing ASEN networks up to size 1024x1024. A

comparison of the mean time to failure, cost, and mission time improvement

factor of the SEN+ and ASEN networks was presented, and it was shown

that, on the basis of reliability, the ASEN is superior to the SEN, 2-SEN, and

SEN+. Finally, through the novel use of hierarchical decomposition, results

on the reliability of ASENs were extended to include imperfect coverage and

on-line repair.

%%
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Chapter 6

Selecting the Optimal Switching
Element Size for SEN and SEN+

A significant amount of the reliability analysis presented in Chapter 5 was

concerned with the SEN and the SEN+. In this chapter, the analysis is

extended to the (uniform) Omega network [54] for the purpose of finding the

optimum switch size for maximizing interconnection network reliability.

Consider an N x N Omega network, where N = m', constructed using

m x m crossbar switches and m * m'-I shuffles connecting the stages, where

rn = 2', for 1 a positive integer. There are log, N stages of N/m switches

per stage. The Omega network shall be referred to as SEN, and the Omega

network with an additional stage as SEN+,m. The additional stage will make

the network (m - 1)-fault-tolerant in the intermediate stages since, in this

portion. of the network, there are m disjoint paths between each S-D pair.

Let rSE,. () be the reliability of the m x m switching element. The exact

reliability expression for the Omega network is given by

RSEN. (t) = [rSE, (t)] [°a- . (6.1)

98
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Stage 0 Stage 1 Stage 2

Figure 6.1: 16 x 16 Omega Network with 4 x 4 Switches (SEN+ 4).

The reliability expressions for the lower and upper bounds for the Omega

network with the additional stage are:

Rb,(t) = [,-[1 -[ - rSE.(t)-IO°'N-)]"], and (6.2)

Rbm(t) = [rsE,(t)]m .[1- (1- rsE.(t))i]omN-). (6.3)

Figure 6.1 shows the arrangement of a 16 x 16 SEN+ 4 network. The

expression for the reliability of the last two stages is equivalent to that of the

basic Omega network which is

RSEN,(t) - [rsE,(t)]8  (6.4)

The exact reliability expression for the corresponding SEN+ 4 network as

shown in Figure 6.1 is

A RSEN+,(t) = [rsE,(t)]8 " [1 - (1 - rSE,(t)) 4] • (6.5)

I L,%
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. The hardware for the SEs in this network, however, will have a higher gate

complexity than the 2x2 SEs used earlier. Since m denotes the size of the mxm

SE, let fn(m) be the cost or complexity of the SE, where f is a function of m.

It is generally accepted that, in terms of gate complexity, fn(m) = 4m(m - 1)

[47]. Now one can express the complexity of the SEm in terms of the basic

SE2 used earlier. The equation is

rSE.~(t) = [rSE(t)Vf(T2

Then

rSE,.(t) = [rSE(t)] 4.2 [rSE(t)]2

This provides an expression for the reliabilities of these two networks in terms

of SE2. Now equation 6.1 can be rewritten as

N

RSENM.(t) = [rSE "o (6.6)

Since 0 < rsE(t) < 1, the network reliability will be maximized for m = 2.

The reliability expression for the lower bound expressed in equation (6.2)

becomes

Rib. (t) = [rSE(t)] N J' I } [1 - [1 - rSE(t) 2m( -N-1)]--]. (6.7)

Using an exhaustive search, it can be shown that for N < 1024, expression

(6.7) is maximized for m = 2. The cost (C) functions for each of these

networks can be expressed as well. For the basic network the cost is given by
log N.(68

C(N,m) = 4N(m - 1)( logN (6.8)
log m

It is clear that cost is minimized for m = 2. For the network with the

additional stage the cost is expressed as

k. C(N, m,+) =4N(m - 1)(l + 1). (6.9)

,lo " -
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So, for the redundant path network, the optimum switch size for minimizing

the cost is also m = 2.

In summary, based on reliability and hardware cost, a designer should

choose a 2 x 2 SE for constructing an SEN network. Similarly, for N < 1024,

the optimum switch size for the SEN+ network is m 2.

I%
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RChapter 7

Performability

7.1 Introduction

In this chapter, combined performance and reliability measures for unique-

path Multistage Interconnection Networks (MINs) are examined. While the

Shuffle-Exchange MIN (SEN) will be the specific network considered, a num-

ber of other MINs are topologically equivalent. Many measures may be used

for combining performance and reliability, but the focus here will be on three

such measures. Of interest is the "average instantaneous reward rate at time

t", the "average accumulated reward until time t", and the "distribution of

the cumulative reward until system failure". These measures include, as spe-

cial cases, several "pure" performance measures (the maximum and minimum

reward rates and their product with the time-to-failure random variable); the

distributions of these performance measures; and "pure" reliability measures

(the distribution of a system's lifetime and the mean time to failure).

Separately modeling the reliability and performance of networks is not

new. Recently, however, some research has been done on combining perfor-

mance and reliability/availability analysis for a few interconnection networks.

In [231, performance and reliability for the crossbar and the multiple-bus ar-

102
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chitectures are combined as a single measure - computation availability.

Markov chains are used for the analysis of the computation availability for

these systems. A closed-form expression is derived for the reliability of the

multiple-bus architecture considering graceful degradation. The results show

that the reliability of the multiple-bus is better than that of the crossbar.

Also, after some time t and depending on the number of buses, the compu-

tation availability of the multiple-bus exceeds that of the crossbar.

More recently, in [63] performability measures associated with the pro-

cessing elements of Hypercube-based networks are examined. The disconnec-

tion probability of a network is used to compute the coverage factor for the

system.

The purpose of this chapter is to show the applicability of Markov reward

models for the analysis of interconnection networks. Determining the perfor-

mance of an interconnection network under all possible failure configurations

is a very difficult problem, but a methodology is shown in this chapter through

analysis of the SEN. Then, a detailed analysis of a complete multiprocessor

system is performed in Chapter 8.

7.2 Previous Work

The evolution of a degradable system through various configurations with dif-

ferent sets of operational components can be represented by a discrete-state,

continuous-time Markov chain (CTMC). In performability terminology, this

CTMC is referred to as a structure-state process. Associated with each state

of the CTMC is a reward rate that represents the performance level of the

system in that state. Each state represents a different system configura-

tion. Transitions to states with smaller reward rates (lower performance

levels) are generally characterized as failure transitions, and, in the case of

%'r PW..
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repairable systems, transitions to states with higher performance levels are

characterized as repair transitions. The set of reward rates associated with

the states of a structure-state process is referred to as the reward structure.

The structure-state process combined with the reward structure constitutes

a Markov reward model (MRM).

The choice of performance measure to be used for determining reward

rates is a function of the system to be evaluated. Often a raw measure of sys-

tem capacity such as the instruction execution rate may be the appropriate

reward rate. For interconnection networks, the appropriate measure is band-

width (BW). At other times, a queueing-theoretic performance model may

be used to compute the reward rates. Since the time-scale of the performance-

related events (bandwidth) is at least two orders of magnitude less than the

the time-scale of the reliability-related events (component failures), steady-

state values of performance models are used to specify the performance levels

or reward rates for each structure state.

For degradable systems, a significant measure is the amount of accumu-

lated work that can be produced by a given system over some specified time

interval. Beaudry [101 proposed an algorithm to compute the distribution of

accumulated reward until system failure for nonrepairable systems. In [61],

the distribution function of the cumulative work during a specified period of

time is considered as the performability measure. Goyal and Tantawi [36]

and Donatiello and Iyer [27], provide efficient numerical algorithms to com-

pute the distribution of accumulated reward in general acyclic structure-state

processes.

In [481, another numerical algorithm was proposed that used numerical

inversion of the double Laplace transform equations to obtain the performa-

bility measure. The algorithm presented has time complexity 0(k 4 ) where k

IL
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is the number of states of the Markov reward model. This algorithm applies

to the computation of the distribution of accumulated reward for a general

CTMC and arbitrary reward structure. The algorithm has been recently im-

proved to an 0(k) execution time by Smith et al. in [881. This algorithm

makes the solution of larger Markov reward models practical.

In the next section, the notation usually associated with performability

analysis will be introdaced.

7.3 Notation

To facilitate the development of the notation for Markov reward models, let

T be the time until system failure. Then, the system reliability is given by

R(t) = Prob[T > t]. (7.1)

The evolution of the system in time is represented by the discrete-state

stochastic process {Z(t), t > 0}. At time t, Z(t) is the structure state of the

system, and Z(t) E P = {1, 2,... ,k}, where T represents the state space of

the CTMC and k denotes the number of states in the structure-state process.

If the holding times in the structure states are exponentially distributed, then

Z(t) is a homogeneous CTMC. Let qiy, i,j E {1,..., k}, be the transition rate

from state i to state j. Then Q = [qij] is the k by k transition rate matrix

where
k

qi= - qiy.

Also, let Pi(t) denote the probability that the system is in state i at time t.

That is, P,(t) = Prob[Z(t) = i]. The transient-state probability vector P(t)

,.
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W. may be computed by solving a matrix differential equation [98],

SP(t) = QT p(t) , (7.2)

where the transpose of a vector or matrix is indicated by a superscript T.

To represent the reward structure, let ri denote the reward rate associated

with structure-state i. Then the vector r defines the reward structure. To

represent the reward rate of the system at time t, let X(t) = rz(t).

From the state probabilities we can obtain the instantaneous availability

A(t)= P,(t)~iEUP

where UP is the set of operational states. The expected reward rate at time

J % t is

E[X(t)] = r, P(t),

also known as the computation availability [10].

* .The steady-state probability vector 7r of the Markov chain is the solution

for the linear system (assuming that the CTMC is irreducible):

QT 7 = 0, and

'.1 .'.
p7* = 1

Methods of solving this system are discussed by Stewart and Goyal in [93].

From the steady-state probabilities, we can obtain the steady-state availabil-

ity
* A = Z rm

~iEuP

and the steady-state computation availability

lim E[X(t)] = riri.* t--.OO
'6i

0e



107

For nonrepairable systems, these measures are not of interest since the steady-

state availability and expected reward rate as time approaches infinity are

zero.

Further, let Y(t) be the accumulated reward until time t. It is the amount

of reward accumulated (the amount of work done) by a system during the

interval (0, t), and it is equal to the area under the X(t) curve. That is,

Y(t) = X(r)dr 7.3)

If we use bandwidth to construct the reward structure, then from equation

(7.3), Y(t) represents the number of requests that the IN is capable of satis-

fying by time t.

The expected value of the accumulated reward can be determined by

E[Y(t)] = E[oX(r)dr]

- j E[X(r)]dr

= P(r)dr. (7.4)

E[X(t)] and E[Y(t)] provide the first moments of their underlying distri-

butions. However, if one is interested in the behavior of Y(t) far from the

mean (e.g., when a system is required to have a high probability of com-

pleting a specified amount of work in a particular time interval), the central

moments may not provide accurate information. Instead, the distributions

themselves are required.

The distribution of reward accumulated in the interval (0, t) evaluated at

X is:

Y (X,t) = P ro b(Y(t ) _< x,

and its complement is :

Yc(xt) - Prob[Y(t) > xl,

k?
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.W where x is a specified amount of performance (work) to be achieved. Methods

of computing YC(x,t) are discussed in [48] and [88]. In case the CTMC has

one or more absorbing states, it is useful to analyze the accumulated reward

until absorption (failure), Y(oo). Let Hi be a random variable denoting the

time spent in state i until system failure, and let ri be the bandwidth in state

i; then the total number of requests that the can be handled prior to system

failure, Y(oo), can be computed as

.. Y (oo = rHi. (7.5)

The distribution function of Y(oo) can be computed by constructing another

CTMC with the transition rate matrix Q' so that qi'j = qij/ri for ri > 0 and

solving for the time to absorption for the new CTMC [10].

Table 7.1 summarizes the information currently available on performa-

bility measures. The table shows that measuring combined performance and

reliability/availability for various systems has experienced increasing levels of

sophistication over the past few years. Early models considered only transient

measures and models without repair. As interest in finding ways to analyze

more complex systems increased, distributional measures and repair behav-

ior were considered. In the table, the Laplace-Stieltjes Transform (LST) is

denoted by - (e.g., G~(u) = feo e-zdG(x)) and the Laplace Transform (LT)

by (e.g., f*(s) = f~o e-,zf(x)dx). Each measure's properties are indicated.

The properties are whether the quantity measured is instantaneous (I) or

cumulative (C); steady state (S) or transient (T); and whether the measure

is a distribution function (DF) such as the probability mass function (pmf)

or the cumulative distribution function (CDF) or a central moment (M). The

references cited are related to the work on the corresponding measures. While

the list is not necessarily exhaustive, it does provide sufficient reference for
h obtaining additional information on the corresponding measure. As shown in

-.-.. .
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the table, the algorithms used in [881 provide the most advanced analytical

methods for evaluating all Markov reward model measures of interest.

Measures used to characterize the behavior of Markov reward models of

MINs without repair are the reliability, R(t); the expected reward rate at time

t, E[X(t)]; the expected accumulated reward at time t, E[Y(t)]; and the dis-

tribution of accumulated reward until absorption Y (x, co) = limtj. I (x, t).

After offering an intuitive explanation of the influence of reward rates on

system performance, the 4 x 4 SEN will receive an exact analysis, and an 8 x 8

SEN will be analyzed using an approximation technique. Current difficulties

encountered in modeling larger SENs will be discussed, as well.

7.4 Markov Reward Model for the SEN

An unique-path Multistage Interconnection Network (MIN) can be viewed

as a gracefully degradable system. The MIN is a nonrepairable system; and

as such, its evolution can be represented by an acyclic Markov chain. The

states that the continuous-time Markov chain progresses through enroute to

system failure are the configurations of a structure-state process [61]. Each

state in the CTMC has a reward rate associated with it that represents the

rate at which the MIN can perform useful work while in that state.

Before beginning the analysis, an intuitive argument about the merits of a

single measure which combines performance and reliability will be presented.

Unique-path MINs provide a single path between a given source-destination

(S-D) pair; so with the failure of any one switching element (SE), some

source is disconnected from some destination. In fact, several S-D pairs may

be disconnected.

If one defines a MIN as being operational as long as no SE has failed,

reliability analysis is straightforward. For example, by analyzing the MIN
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Measure C or I:
Computation Method S or T: References
(Technique or Equation) M or DF

P,(tW P(t) -QTp(t) I: T :pmf Reibman '87 [80]
47ri 0 =QT~i. I: S : pmf Trivedi '82 [98]

Stewart '85 [ 93]

A(t) P2(t) -QT p(t) I: T :M Reibman '87 [80]
A(oo) :0 -QT~r I : S M Trivedi '82 [98]

R(t) :P(t) -QTp(t) 1: T: CDF Stewat '8 [3]
E[X(t)] i ri Pi(t) I: T : M Shooman '68 [85]

E[Y(t)] E, ri f~t Pi (r-)dr C: T: M Goyal '87 [35]

Y (X t) sI +uR -Q].Reibman '87 [82]

Y-~*(U, S) = f C: T: CDF Smith '87 [881

RL +_Y=Q Smith '87 [89]
Y (X, 0) :p(t) - QTp(t) C: S:CDF Beaudry '78 [10]

Table 7.1: Performability Measures Summary
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as a system consisting of SEs connected in series. Analytically, let rsE(t) be

the reliability of an individual SE at time t and R(t) be the reliability of

the MIN at time t, then R(t) is simply the product of the individual relia-

bilities assuming that the SEs behave independently. Further, assume that

the SEs are identical and each has an exponentially distributed lifetime, with

parameter A, then the time-to-failure of the MIN will also be exponentially

distributed with parameter MA, where M is the number of switching ele-

ments in the MIN. This condition, however, is not very comforting since it

implies that the MTTF is 1/MA, and thus the MTTF decreases as the

network complexity increases. Observing that the network complexity of a

SEN is a function of the number of sources (N) and equals (N/2)(log 2 N),

it is clear that obtaining large (say 1024 x 1024) SENs with a long lifetime

will require SEs with a very long lifetime. For example, a 1024 x 1024 SEN

composed of SEs with an exponentially distributed lifetime with parameter

A = 106 failures/hour will have 5120 SEs and a MTTF of only 8 days. It is

doubtful such a system would find many applications.

From definition 2 in Chapter 5, a MIN is operational so long as some

source can communicate with some destination. This view permits a number

of ways to analyze the MIN. The traditional way is to model the MIN as a

continuous-time Markov chain. But even in this simple model one is implicitly

associating a performance level with each state. Consider the performance

level associated with each state to be either a 1 or a 0. A reward rate of 1

associated with a state means that work is performed at the rate of 1 unit

per unit time while in that state. Then denote the reward rate (r) associated

with each structure-state i as ri.

The reliability analysis can be done in terms of a performability model

by letting T be the time until system failure. Let ri = 1 for all operational

:6
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U states and r, = 0 for all failure states, the system reliability is

R(t) = Prob[T > t] = lim Prob[Y(r) > t]. (7.6)

The structure-state process, Z(t), for the SEN will be represented by an

homogeneous continuous-time Markov chain assuming that the time spent in

any particular operational state (holding time) is an exponentially distributed

random variable. It is possible, however, to release this restriction of expo-

nentially distributed holding times using at least three different approaches.

The approaches that can be used are:

* a non-homogeneous CTMC [97];

* semi-Markov, structur--state process [49]; or

* the method of stages [22,41].

Analysis of the evolution of Z(t) begins by selecting the appropriate re-

ward structure. For each structure-state i E %P, let the bandwidth in that

particular configuration be the fixed reward rate r,. So, from equation 7.3,

Y(t) represents the number of requests that the MIN is capable of satisfying

by time t.

7.5 Reward Rate's Influence on Performance

How does the reward rate affect the performance that the model predicts

the physical system will attain? The three curves in Figure 7.1 represent

different levels of performance as reflected by the assumption made about

failures and the reward rates chosen for each operational structure state. If

V one ignores the possibility that components within a particular system may
b, fail, and if a constant reward rate is associated with each structure state,

* S
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Figure 7.1: Impact of the Underlying Reward Structure on Performance Level
as a Function of Time.

then as the system evolves in time, its performance level (the rate at which

it does work) will be constant. Associating the maximum reward rate rmaz

(= maxj{r,}) of any structure state with every structure state, an upper

bound is obtained on the rate at which work is accomplished. This can be

called a "pure" performance model. (Similarly, the minimum reward rate rmn

(= min,{ri}) could be used for a performance model, but for nonrepairable

systems, rmin = 0.)

Figure 7.1 shows r,a for a hypothetical system. If failure of the compo-

nents is permitted, two additional possibilities exist. A performability model

that associates a reward rate of 1 with each operational configuration and a

reward rate of 0 with the failed structure states is simply a traditional model

of the system's time-to-failure. The complementary distribution of the time-

to-failure distribution is the system's reliability as function of time - R(t).

%I.-
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This approach to reward rates may underestimate the system's ability to

perform useful work. On the other hand, if the reward rate that is assigned

to an operational structure state actually represents the productive capac-

ity of that particular configuration, one gets a more accurate picture of the

performance degradation that occurs as the system evolves. The third curve

* shows E[X(t)],the average instantaneous reward rate at time t. The value of

E[X(t)] can be bounded by the following two inequalities:

0 < EfX(t)] < and

r,, E[X(t)] <r,.., t < T

where rmi, is the smallest non-zero reward rate for the system. For discussion

of nonrepairable systems, rmm is defined to be the smallest reward rate in an

operational state.

Figure 7.2 shows three interpretations of a system's performability. These

curves are specially weighted versions of the complementary distribution of

the system's time-to-failure CDF. These curves, as functions of time, answer

the question, "What is the probability that the system will deliver at least

x amount of work before the system fails?" The curves in Figure 7.2 depict

the effects of three different (perhaps) time-varying weighting assumptions.

The upper curve plots Prob[rmaT > xj. This provides an upper bound. The

interpretation here is that whatever state the system is in (as long as it is

still operational) one gains as much benefit there as in the fully-operational

state. In the case of a MIN, suppose that one arbitrarily decides that the

system is considered operational as long as K sources can communicate with

K destinations. Then, even though one or more components within the

network may have failed, leading to a reduced bandwidth, this configuration

is considered to be performing as if it were operating at full bandwidth. A

rather optimistic view.

A
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Figure 7.2: Establishing Bounds for the Complementary Distribution of Ac-
cumulated Work.

On the other hand, the lower curve plots Prob[r,,i,T > x], and it provides

a lower bound on the system's performability. This implies that whatever

operational structure state the system is in, only minimal benefit is obtained

from the system. That is, since the system's excess capacity cannot be used,

this value will be discounted in determining the probability that the system

will ever produce a specified amount of work. Again for the MIN, consider

the K processors and K memories requirement. Then assign the smallest

bandwidth of any of the operational configurations to all the operational

states even though the network will be capable of performing well above that

level for most of its lifetime. This will portray a rather pessimistic view.

The third interpretation is to view the MIN as a gracefully degradable

system. Now, define the reward rate associated with each state as the band-

width of that particular configuration. The center curve of Figure 7.2 shows

*WN6
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Prob[Y(oo) > x]. Now, as the OTMO model of the system evolves, varying

levels of performance will be produced in each state (with ri 0 for failure

states). Here it is explicitly recognized that as components fail, the system's

ability to produce useful work may be degraded and also that the system

will accumulate work at decreasing rates as time progresses. This view corre-

sponds to a more realistic view of a system's performance. Hence, the basis

for the reward rates associated for various configurations can have a signifi-

cant impact on decisions made about a particular system's ability to perform

useful work.

7.6 Bandwidth Computation with SHARPE

Aside from the familiar pen and paper drills for computing measures of in-

terest, SHARPE [84] was used as a modeling tool since it allows system anal-

ysis using several different model types and permits computation of E[YNt)]

* E[X(t)], R(t), and the distribution function of Y(oo). Appendix C contains

a brief description of SHARPE which was developed at Duke University.

SHARPE can be used to compute the bandwidth of the SEN as it degrades

over time in the presence of failures. The SEN can be modeled as a system

with geometrically distributed input requests; where, on each memory request

cycle, each source makes a request for some destination with a probability

p. When a SE has failed, the assumption is that its output links will not be

active. Thus pi for a failed SE in stage i is zero. Further, the computation of

pi given that the two inputs (Pi-lI) that feed a particular SE are not equal,

is computed as

Pi 1-P-O) 1 -- ) (7.7)
2 2

where jdenotes the input link to a SE.

- - --- .-..-. ~ -.. . . . . . .. . .
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Fiur a73 SHARPEGrpa Model of a Switching Element.

To use SHARPE to compute the bandwidth (3W) of a SEN when various

SEs are permitted to fail, start with a single switching element. The basic

idea is to model a SE as a graph with two input nodes and to compute the

CDF of the time to transit the graph as the first-order statistic (or minimum).

In Figure 7.3, observe that the distribution for each of the two input nodes is

p/ 2 , and the distribution for the output node is zero. Recall that p represents

the probability of a request for either of the two destinations, so p/2 represents

the probability of a request for a specific destination. Half of the time the

request at an input will be for the upper output link, and half of the time it

will be for the lower output link. Since queueing of requests is not allowed,

if both input links simultaneously request the same output link, then only

one request will be successful. The other request is dropped. The decision

as to which request succeeds is random and each is equally likely. Of course,

%~w X)1
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Figure 7.3(a) models a specific output and each SE has two such outputs, so

the BW for the SE is twice the BW '-f the specific output link.

One can justify the use of p/2 and the first-order statistic for obtaining

pi by examining Figure 7.3(b). First, the first-order statistic is the proba-

bility that at least one request is made for a particular output link. This

is equivalent to one minus the probability that there is no request for that

output link. Now, consider input link 0 in the figure. With probability pa, it

has a request for either output link 0 or 1. Since a request for either output

link is equally likely, with probability p0/ 2 the request is for output link 1;

so with probability (1 - po/ 2 ) output link 0 is not requested. Similarly, if

one considers input link 1, one obtains the same probability of no request for

output link 0. Therefore, the combined probability of no request for output

link 0 is (1 - po/ 2 )(1 - po/ 2 ) or (1 - po/2)2 . One minus this quantity is

the first-order statistic as claimed. Furthermore, in the SHARPE model by

using p0/ 2 as the probability of a request made by an input link for a given

output link (Figure 7.3(a)), the same value for bandwidth is obtained as in

the method for computing bandwidth discussed in Chapter 4 where pa is the

probability that a given source requests a particular destination. Since there

are two outputs, the BW of the SE is twice pi.I

To model SENs of arbitrary size, simply use the inputs for the 2 x 2 SE

in Figure 7.3(a) to represent a pair of inputs for the SEN. The output of the

SE serves as the one input to the next stage and so on. So the sources of

the SEN are the leaves of a full binary tree, and a single destination is the

root. Figure 7.4 shows the SHARPE representation of a single destination

for 4 x 4 SEN.

li
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Figure 7.4: SHARPE Model of a Single Destination in a 4 x 4 SEN.

7.7 Analysis of 4 x 4 SEN

In this section and the one that follows, the SEN will be analyzed under

the assumption that the interconnection network is operational as long as

some source can communicate with some destination. This was definition

2 introduced in Chapter 5. This is a very loose interpretation of network

reliability, but the purpose in using this definition is to show the importance

that performability analysis has in establishing comparative criteria for INs.

In the subsequent section, it will be shown how a variation of definition 3 can

be used to solve larger problems.

A 4 x 4 SEN has 4 sources, 4 destinations, and 2 stages. Each stage has

2 SEs. Since this NuN has a total of 4 SEs, each of which can be in one of

2 states (operational or failed), one can easily model all possible states (24).

Each configuration (combination of failed and operational SEs) in th, MIN



120

* has an associated bandwidth. Let pi = 1.0, this means for each cycle there

will be a request for some destination on each input link of the SEN.

Figure 7.5 shows the Markov chain representation of this system. It is

assumed that the time-to-failure of each SE is exponentially distributed with

parameter lambda (A). Each state is represented by a 4-tuple where position

1 corresponds to the first SE in stage 1 and positions 2 through 4 represent

the states of the SEs as shown in Figure 7.6. A 1 in position i, 1 K_ i < 4,

.means SEj is operational. A zero means the SE has failed.

Solving the Markov chain of Figure 7.5, produces the CDF of the time-

to-failure of the 4 x 4 SEN, and its MTTF. The complementary distribution

4of the time-to-failure is also of interest since this is the reliability of the 4 x 4
) /SEN. However, this complementary distribution may represent more than

reliability. If rn > 1, then it also provides a gross lower bound on the

performability of this SEN. This implies that the MIN works equally well

(providing a performance level of one per unit time) in all states prior to

failing. This value can be significantly different than the performance that

should be expected from a MIN. The failure of one or more SEs does not

necessarily imply that no source can talk to any destination. Rather, it says

N. that the MIN is operating at a degraded level of performance. While the MIN

* .is in some particular configuration, it can perform connections between some

'source-destination pairs at a certain rate; as SEs become inoperable, that rate

will be diminished. So what is wanted is a measure of the cumulative work

# -S. that the MIN produces prior to its failure. (In a failed state, the performance

• level is zero.)

Now consider the CTMC as the underlying structure-state process for

. the Markov reward model, and associate a reward rate (the bandwidth) with

* each operational state in the CTMC. Using the method described in [10], this

% %IdS91 _
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Figure 7.6: Correspondence of the SEs in the 4 x 4 SEN to the Markov Chain
State Description.

Markov reward model can then be solved for the CDF of the accumulated

reward until absorption for the 4 x 4 SEN.

Figure 7.7 plots the reward rate as a function of time. For this and the

next two figures, A = 0.1 and pi, = 1.0. If it is assumed that the SEs do

not fail (A = 0.0), the r,,, = 2.4375 curve shows the constant upper bound

for the reward rate for the 4 x 4 SEN. If failures (A = 0.1) are considered,

the E[X(t)] curve shows the average instantaneous reward rate at time t over

the interval from t = 0 until system failure. The reliability curve, R(t), is

plotted over the same interval and assumes ri = 1 for the operational states

and ri = 0 for the failed states. Of these curves, E[X(t)] properly reflects the

performance level of the gracefully degradable 4 x 4 SEN.

Using the reward rates r,,, and E[X(t)] from Figure 7.7, one can show

how the expected performability is affected. In Figure 7.8, rmazt and k' V(t)
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Figure 7.7: Reward Rate of the 4 x 4 SEN as a Function of Time.

are plotted over the time-interval for which the system is operational. The

lower curve is the average performability as a function of time. As one can see,

expectations about how much a given system can produce over a particular

time-interval of interest is dependent on what assumptions were made about

reliability and performance. The value of E[Y(t)] can be bounded by the

following two inequalities:

0 < E[Y(t)] < , and

E[Y(t)] < E[Y(oo)] < rmomin{t,MTTF}.

Finally, in Figure 7.9, three views of the performability of the 4X4 SEN are

presented. The figure shows the complementary distribution of the system's

time-to-failure using three different weighting functions. Assigning each op-

erational state a reward rate equal to rmaz produces an optimistic view of the

SEN's performability. When each operational state is assigned the rinimum

*
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Figure 7.9: Complementary Distribution of the Accumulated Work Until
* System Failure for the 4 x 4 SEN.

rSW r o ). rf -o
Ii-10



125

reward rate, a pessimistic view of performability is obtained. The center

curve represents the performability (performance and reliability) of the 4 x 4

MIN. This shows Y(oo) = Z riHi for the MIN, where the reward rate as-

sociated with each operational state is the bandwidth that the 4 x 4 SEN

is capable of producing when in that configuration. This presents a realistic

view of the SEN's performability.

To summarize, scaling the complementary distribution of the CDF, pro-

duces two views of the SEN's performability. Plotting rm,,T, where a min-

imum reward is assumed to be accrued for each operational state, produces

a lower bound on MIN performability, and plotting r,,,T provides an upper

bound on MIN performability. The complementary distribution of the CDF

*. of accumulated reward Prob[Y(oo) > x], which considers the BW as the

appropriate reward rate for this degradable system, represents the probabil-

ity that a specified amount of work will be completed before system failure.

One can easily see the large difference that each interpretation has on perfor-

mance. The particular application for which the MIN is intended will have
-S

an influence on which curve is most appropriate. For instance, in Figure 7.9,

if one is only interested in whether some source can talk to some destina-

tion, then the lower curve is appropriate. If one feels that performance in a

degraded condition is important, then the middle curve is appropriate. And

finally, if one feels that performance in a degraded state is just as good as

performance in a fully-operational state, then the upper curve is appropriate.

L m7.8 Analysis of 8 x 8 SEN

For the 4 x 4 SEN an explicit solution for its performability was obtained. This

can be attributed to the fact that there were only 4 SEs, and hence 16 possible

states. Specification of the structure-state process and the computation of the

I
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rewards for each structure state could be accomplished with only moderate

effort. The 8 x 8 SEN (see Figure 3.1) has 12 switching elements, so it has

4,096 distinct states. Some collapsing of states is possible, but the resulting

state space is still large. For example, 333 states can be collapsed into one

final state, but this still leaves more than 3700 states to deal with. This

Markov reward model can still be generated and solved, but computation of

the reward rate (bandwidth) associated with each state becomes tedious, and

the computation of the reward rates for larger SENs would be impractical.

Consider a 1024 x 1024 SEN for example. There are 25 120 possible states which

is 25041 times larger than Avogadro's number (6.02 x 1023 ). Most people will

agree that computing the bandwidth associated with each structure state is

not worth the effort.

Since computation of the reward for each state is not possible, a suitable

approximation for modeling the system must be found. One solution is reduc-

tion of the state space by means of truncation. Two feasible approximations

are available. First, one may decide where to truncate as a function of the

bandwidth. That is, truncate the state space by allowing all states with re-

ward rates less than say 75% of the maximum bandwidth to be coalesced into

an absorbing state. Or second, the truncation criterion may be a function

of the number of failed switching elements. The second method has been

suggested in [31 [31 and 1561 as a way of reducing the state space in the

analysis of other computer system models. This method has an intuitive ap-

peal. The rationale is that when some number of switches (say k) have failed

the difference between the MVTTF of the system with k and k + 1 failures

will be insignificant. In this thesis, the usefulness of the first approximation

technique in the analysis of MINs will be demonstrated.
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P. Table 7.2 provides a partial listing of the bandwidth computations for the

8 x 8 SEN in the presence of failed switching elements. One can see that

at least 3 structure states (configurations) where 3 SEs have failed have a

phigher bandwidth than at least 2 states with only 2 failed SEs. The k versus

k 1 total-failures approach for approximating the behavior of such SENs

will truncate after all states with two failed SEs are considered, whereas

the bandwidth approach will truncate in an asymmetric fashion in order to

include those configurations that have more than two SEs failed yet still

deliver the desired level of performance.

Consider the performability of the 8 x 8 SEN when its performance level in

a given operational structure state is required to be equal to or greater than

a specified percentage of the fully-operational SEN's bandwidth. Table 7.3

shows the number of operational structure states in the CTMC which models

the 8 x 8 SEN where acceptable performance is predicated on maintaining

a minimum bandwidth capability. Observe that even for 60% of maximum

bandwidth, the truncated state space has only 57 operational states, whereas

a CTMC based on a zero-bandwidth criterion could have up to 4,095 op-

erational states. Hence truncation in this manner does decrease the state

space. It is a practical approach, as well, because multiprocessor systems

with N processors connected to N memories (or other processors) should be

designed to permit some level of fault-tolerance; otherwise the complexity of

the interconnection networks for such systems would make their usefulness

to a broad market cost prohibitive. One way to achieve desired levels of

performance is to design the system to operate in a way that permits some

of the processors, memories, and components of the interconnection network

to be inoperable and yet still allow an acceptable (but degraded) level of

performance to be maintained. For many real-time systems, graceful degra-

0;
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Configuration Bandwidth

All Switching Elements Operational 4.132
1 SE failed

in stage 1 3.480

in stage 2 3.285

in stage 3 3.099

2 SE failed p

1 in stage 1 and 1 in stage 2 (case 1) 2.959
both in stage 2 (case 2) 2.719

1 in stage 2 and 1 in stage 3 (case 1) 2.676

1 in stage 1 and 1 in stage 3 2.610
1 in stage 1 and 1 in stage 2 (case 2) 2.490

both in stage 1 (case 1) 2.438

both in stage 2 (case 2) 2.438

1 in stage 2 and 1 in stage 3 (case 2) 2.252
both in stage 2 (case 1) 2.066*

both in stage 3 2.066*
3 SE failed

one in each of the 3 stages (case 1) 2.350*

(case 2) 2.115*

(case 3) 2.089*

(case 4) 1.620
Note: Bandwidth computation assumes that the probability of a request from

each source is 1.0 (p = 1.0).
*Indicates non-monotonicity of bandwidth as a function of the number of

failed switching elements.

Table 7.2: Partial Listing of Bandwidth Capacity in the Presence of Failed
Switching Elements (8 x 8 SEN).

Nb
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Performance BW Number of MTTF
(% of BW) Operational States (A = 0.1)

100 4.132 1 0.8333
75 3.099 13 1.7424
70 2.892 20 1.8636
65 2.686 25 1.9242
60 2.479 57 2.3864

Note: BW computation based on average request rate p - 1.0 for each source.

Table 7.3: Number of States in a CTMC Where Performance is a Function
of Specified Percentages of the Maximum Bandwidth (8 x 8 SEN).

dation is essential. By combining performance and reliability such gracefully

degradable systems can be modeled to obtain a more meaningful measure of

a system's effectiveness.

Assume that one wants to model the 8 x 8 SEN whose full CTMC has

4,096 states. Here the bandwidth computations become cost prohibitive and

tedious, so the first truncation method will be used. What will such an ap-

proach reveal about the full-scale model? First, one can compute the MTTF

based on the specified bandwidth percentages. The mean of the system's

lifetime provides the MTTF for the system and is a lower bound on the its

reliability. The mean of the accumulated reward provides a lower bound on

performability. One way to make use of this truncation method is to iter-

atively compute the accumulated reward CDF for specified thresholds with

progressively lower bandwidth percentages as the minimum reward rate cri-

terion for operability. This is a variation of the tree pruning idea presen'ed

in [561. The idea is to construct a small CTMC, using a high bandwidth

cutoff, and solve for its performability. Then, if the results do not meet or

exceed a specified decision criterion for the amount of work expected from

a given MIN, expand the size of the CTMC by allowing transitions from

. the current operational structure states to new states. The bandwidths for

1.1%
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Figure 7.10: Complementary Distribution of the Accumulated Work for Spec-
ified Percentages of Full Bandwidth.

the new states are computed, and if they fall below the new reduced band-

width requirements, they are not added to the CTMC. For those states whose

bandwidth is still above the threshold, add them to the CTMC and consider

transitions from these new states until all transitions from an added state

fall below the threshold. The performability model is then solved, and its

results are checked. This procedure is continued until it is determined if the

system under consideration will meet the work standard. In the extreme,

one must build a complete CTMC for the system. The same idea can be

used for MINs with a specified minimum bandwidth. Starting from the full

bandwidth and moving toward the specified minimum in an iterative fashion.

Figure 7.10 shows the computation of the complementary distribution for the

accumulated reward for 75, 70, 65, and 60 percent of full bandwidth for the

4 8 x 8 SEN.
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7.9 Summary

In this chapter, it was shown that performability, a combined measure of

performance and reliability, is a more useful measure than either of its com-

ponents for determining the "goodness" of a multistage interconnection net-

work. It was also demonstrated that for MINs of size 8 x 8 and larger, trun-

cation of the state space as a function of bandwidth is a useful approximation

technique. Of current interest is finding an algorithmic way of computing all

possible bandwidths and/or finding a method of getting tight bounds on the

performability of the MINs when approximation techniques are used for the

analysis.
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Chapter 8

Analysis of a Multiprocessor System

8.1 Introduction

Traditional evaluation techniques for multiprocessor systems use Markov

chains and Markov reward models to compute measures such as mean time

to failure, reliability, performance, and performability. In this chapter, para-

metric sensitivity analysis is performed on Markov models to determine their

sensitivity to changes in the component failure rates. Using such analysis,

one can guide system optimization, identify parts of a system model sensitive

to error, and find system reliability and performability bottlenecks.

First performance, reliability, and performability measures for models of

three architectural alternatives of a multiprocessor system are considered.

Then, for these models, the sensitivity of the mean time to failure, unreliabil-

ity, and performability to changes in component failure rates are examined.

The sensitivities are used to identify bottlenecks in the three system models.

The MultiProcessor System (MPS) considered consists of 16 processors

(Ps), 16 shared-memory modules (Ms), and an interconnection network (IN)

for communication between the processors and the memories. The cross-

bar or the Omega network are the assumed interconnection network, and

Lb
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two implementations of the crossbar are considered. The Omega network is

equivalent to a SEN with 4 x 4 switching elements.

Closed-form combinatorial expressions, Markov chains, and Markov re-

qI ward models are used in the analysis. The use of state lumping permits the

computation of reliability and performability measures for a system with 16

processors, 16 memories, and an Omega network.

It is shown that both the requirement for processor-memory connectivity

and the metric for comparison influence the preference for one architectural

alternative over the others.

In the performance domain, this chapter builds upon and extends the

work by Bhandarkar [12]; in the reliability domain, it builds upon the work

of Siewiorek [86] and Siewiorek et al. [87]; and in the performability domain,

it builds upon the earlier work by Beaudry [10], Meyer [60], and Smith et al.

[90].

8.2 MPS Model Descriptions

Consider a MPS which consists of 16 processors (Ps), 16 shared memories

(Ms), and an interconnection network (IN) that connects the processors to

the memories. Three approaches to modeling the interconnection network

will be considered.

First, the interconnection network may be modeled as one large switch. In

this case, the IN is simply a crossbar switch, and the multiprocessor system

is the well-known C.mmp system (see Figure 8.1).

Second, a more detailed model of the crossbar switch can be developed as

shown in Figure 8.2 where the crossbar is considered to be composed of sixteen

1 x 16 demultiplexers and sixteen 16 x 1 multiplexers. In this arrangement,

a%
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€ Figure 8.3: Multiprocessor System Using an Omega Network xx th 4 x 4
- ' Switching Elements as the Interconnection Network.

each processor is connected to a demultiplexer and each memory is connected
" to a multiplexer.

The third model to be considered implements the IN with an Omega net-

work constructed from eight 4 x 4 switching elements (SEs). This network

%." has two stages and is a reasonable alternative to a crossbar implementation

of the interconnection network since the complexity of the crossbar is 0(N 2)
IE

, whereas that of the Omega network is 0(N log N) where N is both the num-

:, ber of inputs and the number of outputs to the network. The MPS using the

• , Omega network as its interconnection network is shown in Figure 8.3.

Each of the three MPS architectures will be referred to in a way that

/ characterizes its IN. The three architectures are:

a :, SYSS which assumes that the interconnection network is a single component.

I,
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W SYSd considers a detailed model of the crossbar switch; it assumes the in-

terconnection network is composed of individual demultiplexers and

multiplexers.

SYSn MPS using an Omega network with 4 x 4 switching elements.

The switch-fault model will be used for the subsequent analysis. As men-

tioned before, the primary assumption in this model is that a component

being represented in a particular model is an atomic structure, and there-

fore, the failure of any device which is a part of this structure will cause a

total failure of the component. Partial or degraded operation of the compo-

nent is not considered. For example, if a gate in a multiplexer malfunctions,

then the multiplexer is considered inoperative and its output is ignored.

Markov models will be used as the principal modeling tool for analyzing

the three MPS architectures. Events that decrease the number of operational

* components are associated with failure. When a component of the system

fails, a recovery action must be taken (e.g., shutting down a failed processor

so that it does not fill memories with spurious data),I or the whole system will

fail and enter a failure state F. The probability that the recovery action is

successfully completed is known as the coverage [17]. In general, the analysis

in this chapter will assume perfect coverage so system failure occurs as a result

of the accumulation of component failures. It has been shown, however, that

coverage is very important in non-repairable systems [16,4]. This is because

for degradable systems operating in an environment with imperfect coverage,

the notion of failure may be the result of the cumulative effects of component

failures or as the disastrous result of a coverage failure. The extension of the

analysis to incorporate imperfect coverage is straight-forward, and its effect

on reliability and the complementary distribution of accumulated] reward until
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system failure will be considered in the latter part of the section on numerical

results.

8.3 Measures of Interest

In this section, a brief review of the performance, reliability, and performabil-

ity measures used for analyzing the three MPS architectures will be discussed.

Then, methods to compute parametric sensitivities will be presented.

8.3.1 Performance

The average number of busy memories (memory bandwidth) will be used as

the performance level (also called the reward rate) for a particular system

configuration. This is an appropriate choice of performance metric for the

MPS since the efficiency of the system will be limited by the ability of the

processors to randomly access the available memories.

In the case of a crossbar switch, contention for the memories occurs at

the memory ports since the crossbar switch is non-blocking. But, in the case

of the Omega network, contention occurs inside the interconnection network

as well since this is a blocking network. That is, if two or more processors

compete for the same output link of a SE, only one request will be successful

and the remaining requests will be dropped.

Over time, components of the MPS can be expected to fail, and as a result,

the performance of the system can be expected to decrease. To determine

the performance of the crossbar, the model developed by Bhandarkar [12] to

obtain the average number of busy memories will be used, and an extension

of the performance model in [68] will be used for the Omega network. Also,

the assumptions stated in [68] for the analysis of circuit-switched networks

will be used.



generally, however, Markov chains and Markov Reward

used.

The evolution of a degradable system through various

different sets of operational components can be represent(

continuous-time Markov chain (CTMC), {Z(t), t > 0}

41 = {1,2,... ,k}. For each i,j E 41, let qi, be the transiti

i to state j, and define

qtj = -jqi,.

Then, Q = [qij] is the k by k transition rate matrix. Let P

i] be the probability that the system is in state i at time t. T

probability row-vector P(t) can be computed by solving a r

equation [98],

P(t) = f(t)Q.

Methods for computing E(t) are compared in [80].

: "The state space can be partitioned into two sets: UP, the

states, and DOWN, the set of failure or down states. If a

are absorbing failure states, then system reliability can be ol

state probabilities, R(t)= 
P,(t).

iEUP

Associated with each state of the CTMC is a reward rate

1the performance level of the system in that state. The CTMC

rates are combined to form a Markov reward model [40]. Each

a different system configuration. Transitions to states with

rates (lower performance levels) are component failure traj

repairable systems, transitions to states with higher perforn

.1
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repair transitions. The choice of a performance measure for determining re-

ward rates is a function of the system to be evaluated. For an interconnection

network (IN), the appropriate measure is bandwidth.

Let ri denote the reward rate associated with state i, and call r the reward

vector. The reward rate of the system at time t is given by the process

X(t) = rz(t). The expected reward rate at time t is

E[X(t)] = ZriP(t).
ii

This quantity is also called the computation availability [10].

If Y(t) denotes the amount of accumulated reward (the amount of work

done) by a system during the interval (0, t), then

" f0t' WI = o u)du. (8.4)

Furthermore, using bandwidth to construct the reward vector, Y(t) repre-

sents the number of requests that the IN is capable of satisfying by time t.
The expected accumulated reward is

E[Y(t)] = E[j X(u)du] = rj P1 (u)du. (8.5)

" ": In order to compute E[Y(t)], let L,(t) = ft P,(u)du. Then, the row vector

L(t) can be computed by solving the system of differential equations:

"(t) = L(t)Q + P(0). (8.6)

Methods of solving this system of equations are discussed in [82].

A special case of the expected accumulated reward is the mean time to

failure (MTTF). The MTTF of a MPS is defined as

MTTF = R(t)dt. (Q.7)

' '.$
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The MTTF is a special case of E[Y(oc)], with reward rate zero assigned to

all DOWN states (which are assumed to be absorbing) and reward rate one

assigned to all UP states. To compute MTTF, solve for r in

.Q = -P(o), (8.8)

.:, where P(0) is the partition of P(o) corresponding to the UP states only. The

matrix Q is obtained by deleting the rows and columns in Q corresponding

to DOWN states. Any linear algebraic system solver can be used to solve
' -',

this system of equations. Although one might like to use direct methods like

Gaussian elimination; for large, sparse models, iterative methods are more

practical [93]. The matrix -Q is a non-singular, diagonaily-dominant M-

matrix. Thus, the use of an iterative method such as Gauss-Seidel, SOR, or

optimal SOR to solve equation (8.8) is guaranteed to converge to the solution

-, [101]. Then,

MTTF = ri. (8.9)
S:iEUP

In case the CTMC has one or more absorbing states, it is useful to compute

the accumulated reward until absorption, Y(oo). The distribution function of

Y(oo) can be computed by constructing another CTMC with the transition

p. rate matrix Q' so that = qi/r for r, > 0 and solving for the distribution

" -of the time to absorption for the new CTMC [10]. E[X(t)], E[Y(t)[, and the

distribution of Y(oo) are the performability measures that will be used to

compare the three alternative MPS architectures.

8.3.3 Parametric Sensitivity Analysis

The results obtained from a model are sensitive to many factors. For ex-

ample, the effect of a change in distribution on a stochastic model i, often

V considered. Here, attention is concentrated on parametric sensit ni "iv analy-

sis, a technique to compute the effect of changes in the rate coiistants of a

0
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U Markov model on the measures of interest [821. Parametric sensitivity anal-

ysis helps: (1) guide system optimization, (2) find reliability, performance,

and performability bottlenecks in the system, and (3) identify the model

parameters that could produce significant modeling errors.

One approach to parametric sensitivity analysis is to use upper and lower

bounds on each parameter in the model to compute optimistic and conser-

vative bounds on system reliability [92]. The approach in this chapter is to

compute the derivative of the measures of interest with respect to the model

parameters [35,91]. A bound on the perturbed solution can then be computed

with a simple Taylor series approximation.

It is assumed that the transition rates q,, are functions of some parameter

A. Then given the value of A, one wants to compute the derivative of various

measures with respect to A (e.g., aPi(t)/aA). If S(t) is the row vector of the

sensitivities aP,(t)/A, then from (8.3) one obtains

W(t) = s(t)Q + P(t)V (8.10)

where V is the derivative of Q with respect to A. Assuming the initial con-

ditions do not depend on A,

O - P = lim A0.sA (0 -o 5A -O

Then (8.3) and (8.10) can be solved simultaneously using,

= [PO~s_()] [Q v]
[0(t) ) [] , [P(0),S(0)] - [Po,_]. (8.11)

Let q be the number of non-zero entries in Q, and let 17, be the number of

non-zero entries in V.

For acyclic models, an efficient algorithm that requires 0(274-77/) floating-

point operations (FLOPS) is discussed in [58]. For more general models

S
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with cycles, one can use an explicit integration technique like Runge-Kutta.

The execution time of explicit methods like Runge-Kutta is 0((277 + 77,) (q +

v)t) FLOPS, where q = max, jq, and v = maxi Ivi1t. To solve (8.11) with

Uniformization [37], choose q > maxi [q,[ and let Q* = Q/q + I. Then

-- t E -(0)(Q*)e qt)' = (i)e (8.12)
" =O i=O

where

N a1  a.
"1(i)'= -1() -(i - 1)Q*) = ll(i- 1)'Q- + IL(i - 1) Q* (8.13)

a A-~ aA (9A

and

l(i) = l(i - 1)Q* , M1(0) = P(O). (8.14)

If the CTMC's initial conditions do not depend on A, then Il'(0) = 0. Also

note that 9Q*/oA = V/q. With a sparse matrix implementation, Uniformiza-

tion requires 0((217 + i7,)qt) FLOPS. Both Runge-Kutta's and Uniformiza-

-1.tion's performance degrades linearly as q (or v) grows. Problems with values

of q that are large relative to the length of the solution interval are called

stiff. Large values of q (and v) are common in systems with repair or re-

configuration. An attractive alternative for such stiff problems is an implicit

integration technique with execution time 0( 2 77 + 7.) [80[./1,

The sensitivity of E[X(t)] can be derived from the sensitivities of the state

probabilities

E[X(t)] P r(t) a (t) + y rS,(t). (8.15)

aA ~ ~ r~,(t = Z~9~1J L
iE* iE*

Similarly, the sensitivity of E[Y(t)] can be derived by differentiating equation

(8.5),

dE[Y(t) - a Lar S

dA(A E E* ( iE* f

.- ~~~~~~ N~,*.,*- *~~-

'e-
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As in the instantaneous measures case, methods for computing the cumulative

state probability sensitivity vector, f." S_(u)du, include numerical integration,

the ACE algorithm for acyclic models [58], and Uniformization.

For the special case of mean time to failure, differentiate equation (8.8)

and then solve for s,
aQ (8.17)

where r is the solution obtained from equation (8.8). Then,

aMTTF _ 97-
- = . (8.18)

iEUP iEUP

This linear system can be solved using the same algorithms used to solve

equation (8.8).

8.3.4 Interpretation of Parametric Sensitivities

Having computed the derivative of some measure, say MTTF, with respect to

various system parameters A,, there are at least three distinct ways to use the

results. The first application is to provide error bounds on the solution when

given bounds on the input parameters. Assume that each of the parameters

A, is contained in an uncertainty interval of width AAj. Then an uncertainty

interval AMTTF can be approximately determined by

AMTTF ZAAj aMTTF (8.19)

A second use of parametric sensitivities is in the identification of portions

of a model that need refinement. There is some cost involved in reducing the

size of the intervals AA, since it requires taking additional measurements or

performing more detailed analysis. Assume the cost (or time) of reduction in

AA, is proportional to AAj/A, and let

Sargma a M T T F  (8.20)

"""'
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where argmaxilxil denotes the value of i that maximizes xi. Then, refining

parameter I is the most cost-effective way to improve the accuracy of the

model.

A third application of parametric sensitivities is system optimization and

bottleneck analysis. Assume that there are Ni copies of component i in the

system and that the failure rate of component i is Ai. Furthermore, assume

the cost of the ith subsystem is given by some function ciNi~A-. Define the

optimization problem:

Maximize: MTTF

Subject To: ZciNiA. I < COST. (8.21)

Using the method of Lagrange multipliers [5], the optimal values of A, satisfy:

, , 1 0OMTTFA - = constant. (8.22)ciNjai 9Ai

Let

= argmaxi A7'+1 OMTTF. (8.23)

Then, the most cost-effective point to make an incremental investment is in

subsystem type P*. In other words, the system bottleneck from the MTTF

point of view is subsystem P*. In the numerical examples, this definition of

bottleneck will be used. For convenience, also assume that ci = ai = 1 for all

i although other cost functions could be used. Later, in the numerical results

section, these results are compared with those obtained using the second

scaling approach.

8.4 Model Development

Before developing the Markov models for the three MPS architectures, closed-

form combinatorial expressions are derived for obtaining measures of interest I
4A %
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for SYS, and SYSd-. Such expressions are desirable from an analytic point of

view, and in this section, closed-form combinatorial expressions for the relia-

bility, MTTF, E[X(t)], and E[Y(t)] are derived for two of the three models.

Then, Markov reward models are developed for all three architectures.

8.4.1 Combinatorial Approach

Combinatorial expressions are appealing for system analysis since compu-

•' .tation of the measures of interest is often straightforward. In this section,

closed-form expressions for the reliability and performability measures of in-
.%

terest are derived for SYS, and SYSd.

Let ri . be the reward rate associated with the MPS having i processors

and j memories operational (r i is obtained from equation(8.1)), let Rp be

the reliability of a processor, and let R, be the reliability of a memory. Also,

let R, be the reliability of the switch in SYS, and let Rp be the reliability

of a demultiplexer/multiplexer in SYSd. Then the reliability of SYS, can be

expressed as

* R. (t) R'( (NR(1 - Rp) F j (NR~j(1 - R,)N-) (R.z),

(8.24)

and the reliability of SYSd is

N'
Rd(t) = 1.1 (RPR 0)'(1- (R R#)) - i

factrs ike(1 -(,~ ('(Rm.R,)f(1 - (Rm,,R,))). (8.25)

Equations (8.24) and (8.25) can be rewritten by a power series expansion of

factors like (I - Rp)N-. Then, by multiplying through and collecting terms,

6%
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one obtains:

N N

R.(t) = _ aij;,R (t)Rj (t)R (t), and (8.26)
i=K j=K

N N
1PRa(t) = M R + ( )  (8.27)

Rd Et aij;dRp (t)R, (t)R'(t).

Assuming the component lifetimes are independent exponentially dis-

tributed random variables; R(t), mean time to failure (MTTF), E[X(t)],

and E[Y(t)] are derived for these systems. Let A be the processor failure

rate, -y be the memory failure rate, 6, be the failure rate of the IN in SYS,,

and 6 d be the failure rate of a demultiplexer/multiplexer. Then for SYS,,

the measures of interest are derived as:

N N

R,(t) = a j ;,e(,:+J+6.), (8.28)
i=K j=K

N N

MTTF, = E aj;+, (8.29)
i=K j=K jA + jy +

N N

E[X(t)]. = rijaij;,oe- (iA+)+), and (8.30)
i=K j=K

N N r (1aj -- e-(iA + j1+ 6")t

E[Y(t)], = Z Z r a (8.31)
i=K i=K +j-j +

And the expressions for SYSd are:

N N

Rd(t) = Z Z aij~de(i +7+(+i) 8 d)t, (8.32)
i=K $=K

I% N N jd

Iad L+ d (8.33)MTT~ = iA+ jq+ (i + i),6d'
i=K j=K J

N N -( ,+ -+i j b~
E[X(t)ld = E E riiai.;de(i +J +(i+)8)t, and (8.34)

i=K j=K

EY(t)-d =.- - . E.. 3- + +* ~ ~ ~ ~ ~ = jA+fr ( i



148

Often, when closed-form expressions for the reliability of a system are given,

only static values for system reliability are presented. Closed-form expres-

sions for other measures such as MTTF, E[X(t)], and E[Y(t)] can also be

* derived from a combinatorial model. In practice, however, expanding expres-

sions like (8.24) and (8.25) to obtain coefficients like aij;, and aj;d can cause

numerical difficulties.

8.4.2 Markov Models of the Architectures

In the case where the IN is viewed as a single component, construction and

solution of the Markov chain to analyze the reliability and performability

measures of the MPS is tractable, and it has been done in [88]. Each structure

state of the Markov reward model is specified by a tuple pair (i,j) indicating

the number of operational processors and memories, respectively.

If the interconnection network is modeled in more detail, the crossbar

switch can be thought of as a combination of multiplexers and demultiplexers.

In this case, a further refinement of the structure-state process can be made

with respect to the IN. The failure rate of each processor and memory can be

adjusted to account for the failure of the particular demultiplexer/multiplexer

to which it is connected. Also, if a multiplexer is associated with each memory

and a demultiplexer is associated with each processor, then the same Markov

chain that was developed for SYS, can be used by simply adjusting the

failure rates of the processors and memories to account for their associated

demultiplexers/multiplexers.

However, the size of Markov chain for the case of 4 x 4 SE components in

the IN becomes a problem. The Markov chain must account for the failure

behavior of the processors, memories, and SEs to which they are connected.

B If a state description explicitly accounts for the operational status of each

..... .. . .... .. ....- ... 4 4 - ". .'- .. -. . . :-. % N



149

processor, memory, and SE, then a 40-tuple would be required, and there

may be as many as 240 states depending on the failure criteria used for the

entire system.

U If one examines Figure 8.3 more carefully, one will see that an Omega

network without intermediate stages, as is the case for this MPS, has a great

deal of symmetry. So the state description can be accomplished with an 8-

tuple. The initial state is (44444444) where position i (1 < i < 4) represents

the number of functioning processors connected to an operational SE in po-

sition i. Similarly for the memories where 5 < i < 8. One can see that this

Markov chain embodies the concept of bulk failures. That is for a given i,

either a processor (memory) may fail and the value at position i will decrease

by one, or a SE may fail and the value at position i will become zero.

The number of states in a Markov chain using this representation may

be as large as 5'. If the MPS is determined to be operational as long as 12

processors can access 12 memories (K = 12), then this method of defining

the states will produce a Markov chain with 4901 states, 26739 transitions,

and a file requiring 1.5 megabytes of storage. While solving Markov chains

of this size is tractable; for K = 4, the solution of a Markov chain with more

than 64000 states is required. This is not practical.

What is needed is an efficient way to produce a reduced-state represen-

tation of the same system. There are three common approaches to the state

reduction: lumping, aggregation, and truncation. Lumping will be discussed

in the next section. For a discussion of state aggregation, see [15]. Truncation

is discussed in [351.

r%
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State-Space Reduction

One approach to state-space reduction is to observe that there is an equiv-

alence between a Markov chain representation of a system and a Mealy ma-

chine, which is a deterministic finite automata. That is, each state and arc

has a label, and a transition function is easily derived using this information.

Now, as an implication of the Myhill-Nerode Theorem, there exists an unique

-minimum state machine which can be constructed from the original machine

(Markov chain). In [39], an algorithm for doing this construction is presented.

The algorithm has O(ick2 ) time complexity where k denotes the number of

states and r. denotes the size of the input alphabet. While the time complex-

ity of this algorithm appears to make this a viable technique for the current

problem, there are several drawbacks with the actual implementation. For

example, for K = 12 the Markov chain has 4901 states when the Omega

network is used to represent the IN. Since there are 8 SEs, 16 Ps, and 16 Ms,

the size of the input alphabet is 4 x 6 x 6 = 144 for the current problem.

This means that 0(144 x 49012) = 0(3.5 x 109) steps are required to obtain

the minimum-state Markov chain. Also note that the Markov chain must be

completely constructed before one can do the reduction. Reducing the state

space in this manner is referred to as "state lumping" and is explained in

[45].

A more efficient approach is to "lump" the states as the Markov chain is

constructed, thus avoiding the execution of a reduction algorithm after the

Markov chain has been generated. In the case of the Omega network with

two stages, this is possible by exploiting the symmetry and connectivity of

the MPS. Consider Figure 8.3 again. Observe that a particular memory's

view of the system is confined to the specific SE to which it is connected.

Further observe that this SE's view of the system encompasses the status

% %%
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of all four of the SEs in the first stage where the processors are connected.

Each SE in the first stage can be up or down; and if it is up, it can have

from zero to four functioning processors connected to it. The particular

positions of the functioning processors is not important to the outputs of

• " the SE to which they are connected (under the uniform access assumption

[68]). Hence, tuples (34444444), (43444444), (44344444), and (44434444) are

equivalent. Furthermore, the states to which these states transition can also
:'.::be grouped into equivalence classes.

Generating the Markov chain in this fashion, one only has to consider one

such tuple for each equivalence class in a breadth-first construction (BFC) of

the Markov chain. Only one member of each class is added to the BFC queue

and the transition rates from this representative state are adjusted to account

for the lumping. (Note that the number of equivalence classes for a reliability

model may be smaller than the number for a corresponding Markov reward

model because the performance level of each state is ignored in the reliability

model.) If the performance level for each state is considered before lumping,

then the 4901 state Markov chain can be reduced to 145 states. This makes

the development and solution of Markov chains with a lower connectivity

requirement significantly easier.

Extension of Lumpability Requirements

In this section, the conditions for lumpability are extended to Markov reward

models. The essential observation is that the underlying structure-state pro-

cess of a Markov reward model can be suitably modified (transformed) to

produce the same results as the Markov reward model. The reward rates

associated with the structure states in the original process serve as the mod-

ifying variable.

W, l/
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Let A = {AI,A 2 ,. ,A,} be a partition of the k states of a Markov

*, chain. Then a new process where each Ai C A is a state, is termed a lumped

process. Let qiA, = ,A, qi,,,. Then qiA, represents the transition rate

m from state i into set Ay.
The theorem in [45] is extended to the lumping of Markov reward models

in the following corollary.

- Corollary 1 For a Markov reward model, a necessary and sufficient condi-

tion for lumpability with respect to a partition A = {A 1,A 2 ,'.,As} of the

underlying structure-state process is that for every pair of sets Ai and Aj,

qmAi/r,, r, > 0, have the same value for every structure state m in Ai.

Proof: From [10], every Markov reward model can be transformed into an

equivalent Markov chain by an appropriate adjustment of the transition rates

(qi,) in the underlying structure-state process of the Markov reward model.

The resulting Markov chain is lurrnpable if it satisfies the theorem in [45].

, iIn effect, the transition rates from a state in the original chain have been

scaled by the reciprocal of the reward rate associated with that state (i.e.,

. qiy = qiylri).

- -8.5 Numerical Results

The reliability of a system without repair can be determined from the solution

of a general Markov reward model by simply assigning a reward rate of one

to each operational state and a reward rate of zero to each failure state. This

measure assumes that any operational configuration is as good as any other.

However, the bandwidth that a multiprocessor system is able to achieve in

a particular configuration is a more appropriate reward rate than the simple

zero-one choice of the reliability model.

% %
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In this section, the three architectural alternatives are compared using

'pure' performance, assuming no failures; using a 'pure' reliability model

that ignores performance differences; and then using combined measures -

E[X(t)], E[Y(t)], and the complementary distribution of Y(oo). Also, for

each model, the sensitivities of MTTF, R(t), and E[X(t)] to changes in the

component failure rates are computed.

First, some single-valued measures of network performance and reliability

are considered. Then, time-dependent system reliability and its sensitivity are

presented. Next, the performability measures are examined, and the sensitiv-

ity of E[X(t)] to changes in the component failure rates is analyzed. Finally,

the effect of imperfect coverage on the reliability and the complementary

5 distribution, yC (x), of accumulated reward, Y(oo), on the three MPS archi-

tectures will be analyzed. For notational convenience, yC (x) = yC (x, oo).

In order to obtain the numerical results in this section, the Markov models

were generated using the approach described in Section 8.4.2. To compute

K yC(x), the MRM was transformed into a CTMC using Beaudry's algorithm

[10]. Then, the HARP package [28] was used to solve for the system reliability

and YC(x). The Markov chain solvers developed by Reibman in [81] were

used to solve for E[X(t)], E[Y(t)], and the sensitivities of the reliability and

expected reward rate to changes in the component failure rates.

Failure data for the C.mmp system [86] will be used. By a parts count

method, Siewiorek determined the failure rates per hour for the components

to be:

Processor Memory Switch
Failure Rates : A = 0.0000689 y 0.0002241 b, = 0.0002024

Like Siewiorek, throughout this section, component lifetime distributions are

assumed to be exponentially distributed.

4
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Gate count will be used as the basis for determining the failure rates of the

components of the IN. From [471, an n x n crossbar switch requires 4n(n - 1)

gates where n is the number of inputs and outputs. An n x 1 multiplexer

requires 2(n - 1) gates where n is the number of inputs to the multiplexer. A

demultiplexer also requires 2(n-1) gates by similar reasoning. These numbers

for gate count are based on a switching element construction which utilizes a

tree-like arrangement of gates. For the 16 x 16 MPS, there are 960 gates in

the simple 16 x 16 crossbar switch, 30 gates in a demultiplexer/multiplexer,

and 48 gates in the 4 x 4 SE (assuming the SE uses a crossbar construction).

Using the switch-fault model assumption, let 6, denote the failure rate of

the 16 x 16 crossbar switch, then 6,1960 is the gate failure rate, 6d 6,132

is the demultiplexer/multiplexer failure rate, and bn = 6,/20 is the 4 x 4 SE

failure rate.

8.5.1 Single-Valued Measures

In Table 8.1, three frequently used single-valued measures to compare the

three candidate architectures are presented. Using equations (8.1) and (8.2),

the bandwidth for each architecture can be computed. Assuming no failures,

SYS, and SYSd have BW = 10.3, and SYSn has BW = 8.4. On the basis

of performance alone, SYS, and SYSd are indistinguishable, and SYSO is

the least preferred choice. Based on the mean time to failure (MTTF),

SYSO is no longer the last choice; SYSd is the most reliable, and SYS,

is the least reliable. The cost of processors and memories is the same for

all three architectures, so the cost of the IN is used to contrast the three

MPS architectures where the cost is computed using a gate count. SYSn

is less than one-half as expensive as the other options, and this additional

a
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Architecture Bandwidth MTTF 7 Cost
K=12 K=4

SYS, 10.3 1.322.3 3613.4 960
SYSd 10.3 1537.9 6708.6 960
SYSn 8.4 1497.2 6575.5 384

Table 8.1: Comparison of Architectures.

MPS Failure Rate Parameter

Processors Memories Network

K=12 K=4 K=12 K=4 K=12 K=4
SYS, -21.3 -2.1 -1462.8 -2297.4 - 4625.2 - 39839.4

SYSd -35.0 -20.1 - 1974.0 - 9069.5 -0.9 -3.6
SYSn -35.5 -34.8 - 1868.7 - 8655.7 -10.6 -39.7

Table 8.2: Sensitivity of MTTF with Respect to Parameters (Scaling factor
= x((A'/N,) x 10')).

consideration combined with the MTTF data may make it the preferred

choice.

Next, consider the sensitivity of the MTTF estimates given in Table 8.1

to changes in component failure rates. For each model, using equation (8.18),

the sensitivity of MTTF with respect to processor failure rate, memory fail-

ure rate, and switching element failure rate is computed. Note that the

different systems have different numbers of switching elements, with differ-
pm.

ent failure rates. To find the system bottlenecks, the cost model described

in Section 8.3.4 with a, = Ci = 1 is used. The parametric sensitivities are

multiplied by a factor of A/N. The results are shown in Table 8.2. The

bottlenecks for each system configuration are italicized. Because SYS, is

most sensitive to switch failures, for this model, the switch is the reliability

bottleneck. The memories are the bottleneck for the other two models.

Ji
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Figure 8.4: Comparison of the Reliabilities of the Three MPS Architectures
for K =12.

8.5.2 Reliability
%.

In Figures 8.4 and 8.5, reliability as a function of mission time is plotted for

the three MPS architectures. The reliability curves for K = 12 are plotted in

Figure 8.4. Because SYS, is vulnerable to a single-point switch failure, R,(t)

is significantly less than Rd(t) or Rn(t). Modeling the IN at the demulti-

plexer/multiplexer level increases the predicted reliability since the failure of

individual components is not catastrophic. Also, observe that Rn (t) _ Rd(t).

A similar result is shown in Figure 8.5 (K = 4) except that now the degree

of separation between the reliability of SYS, and the other two architectures

is even more pronounced and the difference between SYSd and SYSn is less

discernible. This indicates that the reliability of the MPS design is insensi-

tive to SYSd or SYSn as IN candidates when the connectivity requirement

*%
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Figure 8.5: Comparison of the Reliabilities of the Three MPS Architectures
for K = 4.

decreases. As with the MTTF data, if cost is considered as well as reliability,

SYSn may be the preferred architecture.

Scaled parametric sensitivities for the SYS, and SYSn are plotted in

Figures 8.6 and 8.7. The plot for SYSd is omitted because it is almost

identical to the plot for SYSO. These parametric sensitivities are scaled by

multiplying by the factor .X;/N,. Regardless of mission time, all three systems

are insensitive to small changes in the processor failure rate. For SYS,, the

switch failure is the reliability bottleneck. For SYSd and SYSn, increased

fault-tolerance in the switch makes the memories the reliability bottleneck,

regardless of mission time.

% % %%
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Figure 8.8: Comparison of the Expected Reward Rates at time t for the Three

IPS Architectures for K = 12.

8.5.3 Performability

For K = 12, Figure 8.8 shows the expected system bandwidth at time t.

SYSd has the largest E[X(t)], and SYSS is significantly better than SYS

for small values of time. For larger values of t, SYS, and SYSO are approxi-

mately equal. A different result is shown in Figure 8.9. SYSd is still superior,

but now for small values of t, SYS, is superior to SYSO and the converse is

true for moderate values of t. This occurs because for small K, up to three

SEs can fail in SYSn and the system will still be operational, whereas for

SYS, when the IN fails, the system is down.

Parametric sensitivities for E[X(t)] of the MPS models are plotted in Fig-

ures 8.10 and 8.11. Again, the plot for SYSd is omitted because it is almost

identical to the plot for SYSO. These parametric sensitivities are scaled by

multiplying by a factor of A2/N,. Note that the sensitivities have an opposite

S

. '. - . . , . , . . ,. - . .,, - . .. . - - - . .,., . . . . . . ..- " ' , 4 ," ," q.
'
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Figure 8.9: Comparison of the Expected Reward Rates at time t for the Three
MPS Architectures for K = 4.

sign than the sensitivities of system unreliability; an increase in the failure

rate increases unreliability but decreases the expected reward rate. Also, un-

like the sensitivity of unreliability, the processor failure rate sensitivity curve

is visible. Although it is unlikely that enough processors would ever fail to

cause total system failure, a few processor failures might occur, reducing

system performance. In SYS,, the switch is the performability bottleneck.

Because SYSd and SYSn have fault-tolerant switches, regardless of mission

time, memories are their performability bottleneck.

The expected accumulated rewards for the three architectures are plotted

in Figures 8.12 and 8.13 for K = 12 and K = 4, respectively. In Figure 8.12,

the order of the architectures is SYSd, SYS,, and SYSn. This is in contrast

to the reliability curves of Figure 8.4 where the order of SYS, and SYSn

iw
were reversed. So even though SYS, is less reliable than SYS 0 , the larger

IvI

.I J
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Figure 8.12: Comparison of the Expected Accumulated Reward by time t for
the Three MPS Architectures for K = 12.

average bandwidth available in SYS, while it is operational enables SYS, to

accomplish more work than SYSn. For K = 4, SYS, is preferred over SYSn

for small t, but the opposite is true for larger t. Also as expected, in Figure

8.13, SYSd is clearly superior due to its larger possible bandwidth and the

absence of bulk failures. For SYSn, the failure of a single switching element

may eliminate four processors or four memories; and in SYS,, the failure of

the IN immediately produces zero bandwidth.

The complementary distribution of accumulated reward until system fail-

ure is also analyzed. Prob[Y(oo) > x] will be larger for SYSd since for a

given K, it has a larger bandwidth than the corresponding SYSn model, and

unlike SYS, and SYSn, it does not permit bulk failures.

In Figure 8.14, the complementary distribution of accumulated reward

B is plotted for the three architectures. SYS, is the dominating model as

o.
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Figure 8.15: Comparison of the Complementary Distribution of Accumulated

Reward Until System Failure for the Three MPS Architectures for K = 4.

expected. But, unlike the reliability curves of Figure 8.5, there is a crossover

point for SYS, and SYSO. This shows that for small work requirements

SYSO would be preferred over SYS,.

Prob[Y(oo) > x] is plotted for K - 4 in Figure 8.15. Since more "up"

configurations are permitted for small K, the disparity between SYSd and

SYS, is even more pronounced. Also note that now SYSO reflects higher per-

formability for nearly half of the possible work requirements. Also note that

the spread between SYS, and SYSO is more pronounced from a performa-

bility perspective, as in Figure 8.13, than in terms of reliability, as shown in

Figure 8.5.
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8.5.4 Analysis with an Alternate Sensitivity Measure

As mentioned in Section 8.3.3, a second use of parametric sensitivities is in the

identification of portions of a model that need refinement. Instead of using a

cost function, as in the three previous subsections, relative changes, AAj/A,

are considered in this subsection. This quantity is obtained by scaling the

parametric sensitivities (multiplying each S(t) by A,). Using this approach

changes the results obtained for SYS,. With the "cost-based" measure used

in Section 8.3.4, SYS, MTTF was most sensitive to switch failures for both

K = 4 and K = 12. With the alternate scaling used here, the MTTF of

SYS, is most sensitive to switch failures for K = 4, but for K = 12, it

is most sensitive to memory failures. This indicates that if one wants to

.% improve the MTTF model for SYS,, then K is also a factor in determining

what component of the model should be refined.

Repeating the reliability sensitivity analysis with the alternate scaling,

SYS, is initially most sensitive to switch failures, but as mission time in-

creases exhaustion of memory redundancy becomes a greater problem. For

t > 4000, SYS, reliability is most sensitive to changes in the memory failure

rate. For E[X(t)] of SYS., a similar crossover is observable at t = 4000.

To improve the reliability or performability models for SYS, for small t, the

failure rate of the switch should be more accurately determined. For large

values of t, the failure rate of the memory system should be more accurately

determined.

8.5.5 Imperfect Coverage

To illustrate the effect of imperfect coverage on the three NIPS architectures.

the relative changes in R(t) and 4:(z) as a result of imperfect coverage, c,

will he considered for K 12. Specifically, the impact of a decrease in c

111111 V Z
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from c = 1 (perfect coverage) to c = 0.95 will be examined. Assume that

each transition from an operational state i to another operational state j is

successful with probability c. Then with probability 1 - c, the system will

fail as a result of unsuccessful reconfiguration.

In general, a coverage factor could be associated with each component

type, but for the purpose of the current discussion, it is assumed that the

factor is the same for each type. Now the effect on the curves in Figures

8.4 and 8.14 is to shift them down and to the left. Also the spread between

the curves is reduced, but their relative position with respect to one another

is unchanged. However, if the impact of imperfect coverage on the relative

change in the independent variable is examined, some interesting observations

can be made.

In the next two figures, the relative sensitivities of the three architectures

to c = 0.95 as a function of the time (t) and work requirement (x) are shown.

That is,

R =I(t) - Rc=o.95 (t)
RsENst) = ' RC= 1(t) , and (8.36)

= Y= 1  Yc=095() (8.37)
= Co_(X)

From Figure 8.16, it can be seen that the reliability of SYSd is more sensitive

Oto imperfect coverage than the other two. Observe that at t = 1000 there is

a 17% decrease in the reliability of SYSd as a result of a 0.95 coverage factor.

At t = 2000, the decrease is 23%. In Figure 8.17, SYSn is most sensitive to

a 0.95 coverage factor. At a work requirement of 10000, the relative decrease

in ProbrY(oc) > x for SYSn is 19%, and at x 20000 the relative decrease

*' is 25%.
*o*a '

b~
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Figure 8.16: Relative Decrease in Reliability as a Result of a Decrease in the
Coverage Factor from 1.00 to 0.95.

8.6 Summary

System modelers often rely on single-valued measures like MTTF. This

oversimplification may hide important differences between candidate archi-

tectures. Time-dependent reliability analysis provides additional data, but

unless whole series of models are run, it does not suggest where to spend ad-

ditional design effort. In this chapter, the use of Markov reward models and

parametric sensitivity analysis were discussed. Markov reward models allow

modeling of the performance of degradable systems. Parametric sensitivity

analysis helps identify critical system components or portions of the model

that are particularly sensitive to error.

Three candidate architectures for implementing a multiprocessor system

constructed from processors, shared memories, and an interconnection net-

... .y..'
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Figure 8.17: Relative Decrease in the Complementary Distribution of Accu-
mulated Reward as a Result of a Decrease in the Coverage Factor from 1.00
to 0.95.

work were examined. The crossbar or the Omega network is used to rep-

resent the interconnection network and two implementations of the crossbar

are presented. The use of state lumping allows computation of reliability and

performability measures for realistic architectures.

Pure performance, reliability, and performability were used to evaluate

0, the three multiprocessor system architectures. Based on performance alone,

a MPS using a crossbar switch implemented as a single integrated component,

SYS,, or as a switch composed of independent demultiplexers/multiplexers,

SYSd, is the preferred architecture. On the basis of cost, SYSn, utilizing

an Omega network, is the least expensive. By all other measures considered,

SYSd is the best choice.

0
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Using reliability to distinguish between architectures, SYSd and SYSn

have similar lifetimes, and the differences between their lifetimes become less

distinguishable as the minimum number of processor-memory pairs required

for system operation decreases.

The use of pure performance or reliability measures in comparing archi-

tectures can be misleading. Using a combined measure provides a better

metric for comparing competing systems with degradable characteristics. If

"I one is concerned with the probability that the IMPS will complete a specified

amount of work before system failure, SYSO is preferred over SYS, for small

work requirements and the converse is true for larger requirements.

To demonstrate the use of parametric sensitivity analysis in the evalua-

tion of competing system designs, for each model, the parametric sensitivity

of mean time to failure, system unreliability, and time-dependent expected

reward were computed. By scaling with respect to a cost function, the iden-

tity of the reliability, performability, and MTTF bottlenecks in each system

were determined. The three models produced different results. The differ-

ences between the models highlight the need for detailed models and shows

the role of analytic modeling in choosing design alternatives and guiding the

design refinements.

0 W W..4 2 ~A~. ,.61



Chapter 9

Conclusions

9.1 Summary

Performance, reliability, and performability issues for multiprocessor systems

were examined in this thesis. The analysis centered on the interconnection

network (IN) used in such systems since they are generally regarded as the

bottleneck for achieving high speeds in large multiprocessor systems.

In the area of reliability analysis, a transient reliability analysis of the

SEN, SEN+, and ASEN networks was performed. Exact closed-form expres-

sions for the reliability of small networks were derived. These expressions

are valid for any arbitrary component-lIifet ime distribution. Also derived

5- were reasonably close lower bounds for approximating the reliability of larger

5-

SEN+ and ASEN networks. The lower bounds obtained were compared to

the exact solutions derived for the smaller SEN+ and ASEN networks to

verify that they are reasonable approximations of their respective network

.5-

-4

riaiabilities. Then these lower bounds were used for analyzing SEN± and

ASEN networks up to size 1024 x

170
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A comparison of the mean time to failure of these networks was presented,

and it was shown that, on the basis of reliability, the ASEN is superior to

the SEN, SEN+, and a parallel arrangement of two SENs.

The results for the SEN and SEN+ networks were extended to the case of

q.n (uniform) Omega network, and it was shown that, based on both reliability

and cost (in terms of gate complexity), the 2 x 2 switching element is the

optimal switching element for the SEN, and for N < 1024, this switching

element is optimal for the SEN+, as well.

Also, distributional sensitivity's influence on system reliability when mod-

eling networks whose components have increasing failure rate (IFR) lifetime-

distributions was discussed. It was shown that for the networks examined,

the assumption that individual components have an exponential lifetime dis-

tribution is conservative if the actual distribution is increasing-failure-rate

Weibull.

In the area of combined evaluation metrics, it was shown that performa-

bility, a combined measure of performance and reliability, is a more useful

measure than either of its components - performance and reliability - for

determining the "goodness" of a multistage interconnection network. Also

it was shown that for MINs of size 8 x 8 and larger, truncation of the state

space as a function of bandwidth is an useful approximation technique.

Finally, a detailed performability analysis of a multiprocessor system com-

posed of 16 processors, 16 memories, and an interconnection network was

perforrrd. Three models of the interconnection were compared in the anal-

ysis. This analysis showed that detailed modeling of the IN is necessary in

order to avoid erroneous conclusions about the efficiency of a multiprocessor

organization.

L-a
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9.2 Suggestions for Further Research

The bounds for the SEN+ and ASEN networks could be improved with the

focus on obtaining converging upper and lower bounds as the size of the

networks increase. Also, other recently suggested fault-tolerant networks

should be analyzed and compared to those already in this thesis.

More work must also be done on determining how to properly model large

14 multiprocessor systems. Simulations and crude approximations for evaluating

measures of interest are currently all that is available. As a further extension

to this effort, a technique for optimizing the combination of multiprocessor

components to achieve a desired goal should be pursued.

Another goal of further research is to find an efficient algorithmic tech-

nique for computing all possible bandwidths and/or finding a method of

getting tight bounds on the performability of the MINs when approxima-

tion techniques are used for analysis. In particular, the bandwidth compu-

tation of redundant path MINs in the presence of faults seems to present

acute difficulty, and it ought to be pursued further. Also, a "normalized" or

"standardized" basis for comparing competing interconnection network and

multiprocessor designs should be established to provide a sound basis for

/1 evaluating th-~ capabilities of these systems.



Appendix A

Convolution Integral Solution of
CTMC

The in'egral (convolution) form of the Kolmogorov forward equation for the

non-homogeneous Markov chain is given by [98]:

Jt
=f (x)qjj (x)e- () +r zfdx. (A.1)

k

where Pi(t) is the probability of being in state i at time t, and the q's are the
U"

"" elements of the instantaneous transition rate matrix Q.

The equations corresponding to the seven states of the CTMC for the 8x8

SEN+ network shown in Figure 5.2 are:
'' ',~~L 1ft X,(r)dr

P(t) 0 f

P 2(t) = t P,(x)(8A(x))e-15 f c()1'ddx

P3 (t) = j P2 ( )(A(W))e- f1 (r)dtdz

P(t) = P3 (x)(3A(x))e-4f (r)drdx

P(t) = f P4(x)(2A(x))e-13f: (r)drdx

P6 f) / Ps(x) (A(X))e- 12 f.' I(r)dr dx
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6

P7 (t) = 1-ZP,(t).
i=I

The system reliability being

6
RSEN+ (t) E . (A.2)

i:=i

The P(t), (i = 2, 3, 4, 5, 6) are determined in order of increasing subscriptq.

Leibnitz' rule for differentiating a definite integral 38] is restated here since

it will be used several times in the solution of this system of equations.

Let

I~x =b(z)
F(x) = f(x,y)dy

a( Z)

If f(x, y) has a continuous derivative with respect to x in the region a < x <

3, if a(x) y b(x), and if a(-) and b(.) are differentiable, then
dFx) = fb(z)1f(X, y) dy+f[xb(x)db(x) -f x, a(x)ida(x)

dx Jf(Z) (9x dx dx

whenever a < x < /3. In particular,

d 2  ff(x, y)dy = baf y

This equation is valid when b = oc or a = -cc provided the right-side is

finite.

Pi(t) is used to solve for P2 (t).

P2 (t) = P,)(x)(8A(x))e - f. t'(r)drdx (A.3)

substituting for Pi(x),

0
t

P2 (t) = 8 f'[e isfO(dT.-S:()dAx

The second term inside the integral can be rewritten as

e-i5 f: (r)dr e(-isfI (r)dv+isfZ ()dr)

L%0
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17.

Substituting and rearranging terms,

P2 (t) 8. A(x) di
fa

p Let t, fo A(r)dr, then = A(x) by application ofILitn i r.It,' ,.
-.p

ft ,/ dul

. . j-s•t. 1110 d" A (xr) dx f /e, ddr

Again by substitution. the expression for the transicrit 4r bawit I ~g

in state 2 is determined to be

P2(t) =8 [w,~ I f:- (A .4

P2 (t) is used to find P3(t) and so on.

Finally, the system's reiiability is determined by summiring over the -up"

states.

6

S .REN-(t) = P,(t)

"A substtu , A(e)dr e14 fr (hd- 8 raswf, r,3:if ISi f d

U-

IQ
,,

.'............used to fi d 3() ndsoon
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Appendix B

Reliability Dominance

To show that the system reliability of 2' x 2" SEN+ networks (where n> 3)

is strictly greater than the reliability of the corresponding SENs regardless

* of the underlying component lifetime-distribution, it must be shown that

RsEN+(t) - RsEN(t) > 0. (B.1)

Let r = rsE(t) and observe that 0 < r < 1. Then equation (13.1) can be

- expressed as a polynomial in r, and it must be shown that for any iTe t ,

the open interval (0, 1) that equation (B.1) is greater than zero.

For the 8 x 8 SEN+ network,

RSEN+ = 3r 6 - 8r'5 + 4r 4 - 2r.

And for the corresponding 8 x 8 SEN the reliability is

RSEN =r 1 .

As a first step, solve for the equality part of e';'.

17f
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By substitution,

(r'2 )(3r 4 - 8r3 + 4r 2 + 1) = 0. (B.4)

Now it is given that at time t = 0 each system is operational, so the

reliability of each network is 1. Thus, equation (B.4) can be further factored

as

(r')(r - 1)(3r 3 - 5r' - r- 1) = 0. (B.5)

From equation (B.5), it is clear that there are roots at zero and 1, now

- only the remaining cubic expression

(3r 3 - 5r - r- 1) =0. (B.6)

in equation (B.5) needs further examination.

Descartes' rule of signs can be used to determine the number of real roots

of this polynomial. The rule states that the number n+ of positive zeros of a

polynomial p(x) is less than or equal to the number of variations (v) in the

Nsign of the coefficients of p(x), where p(x) is of the form

p(x) = anxn + an,X"-' + ... + aix + ao, and an $ 0. (B.7)

Further, it states that the difference v - n+ is an even integer. For equation

(B.6), there is one sign change, so there is only one positive real root. There

is a similar relationship between the number of sign changes in the coefficients

of the polynomial p(-x) and the number of negative real roots of p(x). Again,

for equation (B.6) we have two sign changes, so there must be either zero or

two negative real roots.

Of course, application of Descartes' rule of signs is not essential for the

cubic equation under consideration, but for higher-order equations, it can be

very useful in determining how many real roots must be found. There are
I

also a number of theorems for finding bounds on the locations of the roots

6%
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of polynomials, but discussion of these theorems is not necessary for this

exposition.

For equation (B.6), there exists a closed-form expression for explicitly

finding the real zeros. Using the method prescribed in [73] for example,

equation (B.6) has exactly one real root equal to 1.929, and the two remaining

roots are complex. From the roots of equation (B.4), it is clear that there

are no zero crossings on the interval of interest. Simple substitution of r =

0.5 into equation (B.4) shows that this equation is positive over the entire

interval. Thus for 0 < r < 1 , the inequality of equation (B.1) holds, and for

r = 0 and r = 1, the equality holds.

Hence, the SEN+ network is strictly more reliable than the corresponding

SEN regardless of the underlying component lifetime-distribution.
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Appendix C

SHARPE Highlights

SHARPE (Symbolic Hierarchical Automated Reliability and Performance

Evaluator) is a modeler's tool developed at Duke University. It allows the user

to construct and analyze performance, reliability, availability, and Markov

reward models. SHARPE provides seven model types: reliability block dia-

gram, fault tree, acyclic Markov chain, cyclic irreducible Markov chain, cyclic

Markov .chain with absorbing states, acyclic semi-Markov chain, and general

series-parallel graph. It allows a mixture of model types to be used in es-

tablishing a given application model. SHARPE also allows models to be

combined hierarchically in the sense that the output of a submodel may used

as a input to a (sub)model at a higher level. Therefore, SHARPE has a re-

markable modeling capability in that it retains the efficiency of combinatorial

solution methods where they are applicable, while providing the power and

flexibility of Markov models.

SHARPE provides a symbolic solution in terms of time t for each of the

model types. Within each model type, every individual component is char-

acterized by a cumulative distribution function (CDF). SHARPE, however,

places no interpretation on the CDF. This provides the modeler with the ca-
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pability of adapting many system problems to the SHARPE framework. In

a performance model for example, a CDF represents the time-to-completion

of a task (component). In a reliability model, a CDF represents the time-

to-failure of a component. In an availability model, a CDF represents the

instantaneous probability that a component is not operational.

For each model type, components may have any distribution function that

can be written as an exponential polynomial, including functions with a mass

at zero and functions with a mass at infinity. The only exception is Markov

chains; its components must have exponential distributions by definition.

The CDFs of individual components are specified as functions of the time

parameter t, and SHARPE solves each model for a CDF in the same form.

Because the solution CDF is symbolic in t and is in the same form as com-

ponent CDFs, it is easy to combine the results obtained from different types

of models.

SHARPE was written with portability in mind, and it is coded in C.

ILo
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