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INTRODUCTION

The design and optimization of realistic engineering combustion devices
involves the construction and execution of complex mathematical models. These
models will typically involve combustion kinetics as well as transport
processes with the physics and chemistry described by many parameters which
are imprecisely known. In addition, existing freedom for choosing combustion
chamber design will introduce other potentially controllable parameters into
the model. Therefore , a central problem in all design problems concerns an
understanding of system performance with respect to its parameter values.
Except for the --mplest models, such an understanding will necessitate
extensive computer calculations, and repeated execution for each new set of
parameters will lead to prohibitive expense. The goal of this program is to
provide new insights as to how to simplify detailed submodels which cause the
overall system calculations to be prohibitively difficult, and to exercise the
techniques to develop simplified chemical kinetic models which provide
sufficient detail for generating accurate modeling results. This goal is
being pursued by developing and applying new techniques in the general areas
of sensitivity analysis and Lie algebraic theories. Due to widespread
applications of these two analysis methods, the outcome from this research
program has important. implications to many other problems arising in
combustion phenomena as well as to other subjects of interest to the Air Force
(e.g., system control, parameter identification and distinguishability,

*statistical parameter uncertainty, model scaling, etc.).

WORK STATEMENT

The work statement for this program is as follows:

* 1. Develop global sensitivity analysis techniques using Lie algebra for
parameter space mapping and control of temporal systems. Special attention
will be given to using the techniques for performing finite excursions through
parameter space. As the tools develop, they will be applied to the lumping
consideration above, as well as to design and control problems relevant to
combustion systems.

2. Appropriate advanced development of item 1 are planned to extend the
analysis procedures to more complex combustion chemistry and to include both
spatial and temporal calculation comparisons of lumped and detailed models.

3. Determine criteria for exact lumping in chemical kinetics and investigate
the implications of these lumpability conditions to model systems.

4. Model systems will be studied to establish the use of elementary
sensitivity coefficients, Green's function elements and derived sensitivity
coefficients for lumping purposes. Appropriate numerical procedures will be
employed including eigenvector-eigenvalue analysis and rank reduction of the
appropriate sensitivity matrices.

..... ..
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5. The sensitivity techniques of item 4 will be developed with
* hydrogen/oxygen and carbon monoxide/hydrogen/oxygen combustion systems as test

cases foL systematic model reduction and lumping. The ensuing lumped models
will be compared with those in the literature for their predictive
capabilities.

STATUS OF RESEARCH

During the past year research on several interrelated activities was
pursued in the general area of combustion kinetics and sensitivity analysis
particularly as related to model lumping and reduction. The thrust of these
developments has largely been fundamental with the emphasis on creating and
ultimately applying new methodology for treating several critical problems
arising in combustion phenomena. Particular emphasis was given to modelling
and theoretical concerns, although a portion of the research is directly
related to the interface between laboratory measurements and modelling. A
summary of these activities is given below.

I. GLOBAL SENSITIVITY ANALYSIS: A NEW PERSPECTIVE

This research is motivated by a number of important, but heretofore
difficult problems, in combustion modelling including system lumping,
statistical parameter uncertainty and system control. All of these issues as
well as others necessitate obtaining an understanding of how the system
behaves over broad region of its parameter space of rate constants, transport
coefficients, etc. Traditional methods for achieving this information rely on
repeated calculations at sample points in the system parameter space. Such an
approach is prohibitively expensive and the results will typically provide
little insight into the detailed workings of the system. With this
information as background, we have been pursuing an entirely new approach
based on Lie group techniques for mapping broad regions of system parameter

* space. The initial developments appear very promising as summarized below.

A. Uniform Temporal Reacting Systems'

One-parameter groups of transformations were used to investigate the
effects of wide-ranging changes in rate constants and input/output fluxes upon
homogeneous chemical reactions involving an arbitrary number of species in
reactions of zero, first and second order.

Every transformation group is so chosen that it either exactly or
approximately converts each solution of a set of rate equations into
corresponding solutions of a one-parameter family of altered rate equations.

All of these solutions have topologically equivalent equilibrium points and
" topologically equivalent phase trajectories in the space of concentration

variables. Compounding the transformations yields transformations with the
same properties.IThe chemical significance of the transformations was illustrated by
applying them to kinetic systems involving two reacting species. There are
eethen twelve separate one-parameter groups of transformations available. The
generators of all allowed one-parameter groups are obtained for systems of N
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species using an algorithm which exactly determines their action on the rate
* constants, and either exactly determines or systematically approximates their

action on the concentrations. The generators determine invariant functions
that establish relations between the initial rate constants and the altered
rate constants and between the initial concentration variables and the altered
concentration variables.

Some mapping of the concentrations simply shift their values and may be
used to study the effects of changes in input/output fluxes and rate constants
upon concentrations. Other mappings create "lumped" concentration variables
and may be used to systematically reduce the number of manifest concentration
variables in nonlinear as well as linear kinetic equations.

A number of mappings of nonlinear kinetics may be used to obtain
approximate linearizations valid in regions larger than those obtained by the
usual power series expansions. In some cases the linearization is global and
exact.

B. Reaction-Diffusion Systems
2

ku The methodology developed in paragraph A above has an immediate
transferral to the more complex and interesting class of reaction-diffusion
problems. Although partial differential equations will in general admit a
much broader set of Lie group mappings, their full determination will also be
more difficult to establish. However, in the case that the system diffusion
coefficients are not concentration dependent, exactly the same transformations
developed for the purely temporal reacting systems may be applied beneficially
to the case of reaction-diffusion. For example, transformations which
rigorously, or at least regionally, linearize a reaction network have exactly
the same effect on an analogous reaction-diffusion system. Application of
these transformations has allowed us to analytically explore the
interrelationship between diffusive transport and reaction kinetics. In
addition, traditional local methods of stability analysis may now be
significantly extended to cover regions of the system state and parameter
spaces. We plan to use these tools for the treatment and analysis of
realistic combustion models.

II. Analytic Insight Into the Solution of Kinetic Systems
3 ,4

This research has a close connection with that of item I above in that it
is also based on the use of Lie group theoretical techniques. The goal here
is more limited with the purpose largely being the provision of analytical
insight into the solution of nonlinear combustion kinetic systems.
Traditional numerical methods for this purpose can typically provide varying
degrees of accuracy but are quite inadequate with regard to their resultant

insight. To deal with this problem we have developed a new analytic
approximation scheme for the finite Lie transformation yielding the solution
to a set of nonlinear kinetic equations. This work also has immediate
applications to the global parameter space Lie generators involved with the
study in item I above.

In this work a new method to factorize certain evolution operators into
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an infinite product of simple evolution operators is presented. The method
* uses Lie operator algebra and the evolution operators are restricted to

exponential form. The argument of these forms is a first order linear partial
differential operator. The method has broad applications including to the
areas of sensitivity analysis, the solution of ordinary differential equations
and the solution of Liouville's equation. A sequence of C-approximants is
generated to represent the Lie operators. Under certain conditions the

* convergence rate of the C-approximant sequences is remarkably rapid. This
work presented the general formulation of the scheme and some simple
illustrative examples.

Additional research was carried out to establish convergence theorems
associated with its sequence of C-approxmimants. The theorems presented give
s'he conditions which are sufficient for convergence of the sequences.
nthough the main emphasis was on convergence properties of the
one-dimensional case, the generalization to multidimensional cases is quite
straightforward. Further development and numerical illustrations are
underway.

III. Kinetic System Identifiability and Distinguishability5 ,6

By following the kinetics of a reaction through the use of certain
classes of measurable quantities instead of the concentrations of all species
neither the parameter values nor the reaction scheme are necessarily unique.
Identifiability deals with the problem of determining whether an experiment is

* able to supply the desired information on the parameters of an assumed kinetic
model, whereas indistinguishability means that two different reaction schemes
generate the same values for the observed quantities in any possible
experiment. This work examined these issues for the case of first-order
reaction systems and both problems are solved by the same analytical tools.
The method involving Laplace transforms is conceptually simple, easy to apply,

16 and is also used to derive simple rules to test distinguishability of reaction
schemes. Another approach based on similarity transformations is used to
generate all the first-order reaction schemes that are indistinguishable from
r given one. These same concepts have been extended to nonlinear systems for
the case of global identifiability.

cIV. A General Analysis on Exact Lumping in Chemical Kinetics
7

A general analysis of exact lumping has been developed. This analysis
can be employed to any reaction system with n species described by a set of
first-order ordinary differential equations dy/dt = f(y), where y is an
n-dimensional vector; f(y) is an arbitrary n-dimensional function vector.
Here we only consider lumping by means of a rectangular constant matrix M
(i.e., 9 lower dimension than y with * = My). It is found that a reaction
system is exactly lumpable if and only if the intersection of the invariant or
the null subspaces of the Jacobian matrix J(y) of f(y) for all values of y is
nonempty. If the intersection is less than n, nontrivial lumping schemes can
be obtained. It is proved that the Jacobian matrix can be represented as a

(linear combination of certain matrices and the intersection of the invariant
or null subspace of the constant matrices is just that of the Jacobian matrix.
After the determination of the intersections, all possible lumping matrices

ImxIu " h 'l



can be obtained. The kinetic equations of the lumped system can be described
*as d /dt = Mf(My), where M is any generalized inverse of M satisfying MM = r-1.

Several implications of these lumpability conditions were investigated as well
as illustrated by some simple examples.

V. Hydrogen-Air Combustion Revisited Under a Variety of Conditions8

*@ Surely the hydrogen-air combustion system has received the closest
scrutiny both theoretically and experimentally. Yet, there is still a lack of
complete understanding about which aspects of the system are important
particularly under a variety of laboratory conditions. In order to further
understand this issue, we have carried out modelling and sensitivity analysis
studies under: a) purely temporal and isothermal conditions, b) purely

* temporal and adiabatic conditions, c) steady premixed adiabatic conditions.
This triad of studies provides an interesting hierarchy allowing us to
understand the role of diffusive transport as well as thermal coupling. One
motivation for this work arose from previous studies showing extensive scaling
and self similarity behavior amongst the hydrogen-air sensitivity
coefficients. This behavior has significant implications for model
simplification both in this systen as well as complex combustion problems. It
had been previously speculated that the temperature was providing the dominant
coupling to produce self organization amongst all the system species and rate
parameters. This study has confirmed this conjecture as well as revealed a
number of other underlying subtleties including the role of diffusion. In
addition, it was shown that the presence of strong scaling and self similarity

* in the premixed flames allowed for kinetic model simplification.

VI. Model Reduction and Lumping of Carbon Monoxide Oxidation Kinetics

In our previous studies, normalized sensitivity coefficients,
Si = ain C,/c)rnaj, have been studied to determine the relative importance of

*# elementary reactions or certain groups of reactions in comprehensive
mechanisms. We have presently extended this methodology by using the
principal component analysis method of Vajda and Turanyi [J. Phys. Chem.,
March 1986] in order to systematically reduce the size of the original
comprehensive mechanism. Briefly, this methodology is based on a least
squares fit approach by first defining the response function, Q, as

q m C,(tj,c) - C,(tj,c') 2

j=l i=l

where a' is the nominal values of the parameters, then by introducing the
classical Gauss-approximation to yield 0(a) = Q(i) = (A_)T §TI(Aa) where
aj = Inai, and finally by performing an eigenvalue-eigenvector decomposition
on the resulting cross-product matrix STS. Eigenvectors corresponding to
small eigenvalues 4,dicate unimportant reactions, thereby enabling one to
optimally reduce the mechanism.

Along these lines we have continued our previous work by applying this
methodology to the CO/H2/02 reaction mechanism. A large number of isothermal

NOW
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temporal problems were numerically run to generate a data base which would be
representative of combustion environments. The data base covered a
temperature range from 800 to 1800 K, several equivalence ratios from lean to
rich conditions, and several pressures. The principal component analysis was
applied to this data base to determine the minimum reaction set that would
reproduce all the original species concentrations within 2%.

The results showed that the original 52 reaction mechanism could be
successfully reduced to one consisting of 27 reactions while retaining all 12
species in the model.

Obviously, this reduction is still not practical for use in large
multidimensional codes. The necessary further reductions are proposed to
proceed along several directions. First, the constraint of retaining all
species will be lifted. Our earlier research has shown that in addition to
the major reactants and products, two intermediate species are necessary in
the model. Secondly, we have also found that in more complex environments,
such as adiabatic premixed flames, the underlying chemical processes are much
more coupled (namely through the heat release of the reaction) and hence, such
problems are anticipated to be more directly lumpable.

4 ' l
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ABSTRACT

This work concerns convergence theorems associated with a

sequence of I - approximants for exponential evolution operators

* with Lie operator arguments. A companion paper presents the

formulation of the I - approximants. The theorems presented in

this paper give the conditions which are sufficient for conver-

* gence of the sequences. Although the main emphasis will be on

convergence properties of the one-dimensional case, the generali-

zation to multidimensional cases is quite straightforward.
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I. INTRODUCTION

In a companion paper we developed a new factorization

scheme' for exponential evolution operators with Lie operator

arguments. The factorization was based on ordering of

contributions to the evolution operator with respect to devi-

ations from a steady-state solution. Hence, in the Lie operator

of the form f(x).v the function f(x) must vanish around the

origin x=O. The factorization scheme results in an infinite

product of elementary evolution operators and the

approximation to the desired overall evolution operators is

achieved by a truncation of the infinite product to order n.

This procedure produces a sequence of T - approximants

to the desired evolution operator. The effect of the Lie trans-

formation, or its approximate representation, on the position

vector x is fundamental in the theory since many of the basic

operations may be related to certain properties of Lie trans-

formations. A simple first order recursion relation may be

found for the I - approximants, however they are rich in

singularities. As the limit of the sequence of the I - approxi-

mants is taken, infinitely many branch point trajectories

may exist in the complex x-plane. The flexibility inherent

in the - approximants.suggests that this approach may rapidly

converge to accurately approximate the effect of the evolution

operator on x. This conjecture was confirmed in a number

of applications' although certain cases exhibited slow or

non-convergent characteristics.



Such empirical evidence is helpful, but a mathematical

proof of the convergence behavior is needed in order to

intelligently use the method in realistic applications. It

is necessary to establish not only the existence of convergence

but also determine the criteria under which convergence is

expected. The purpose of this paper is to address these latter

issues.

In order to mathematically explore the convergence

characteristics, Section II will investigate the singularities

of the T - approximants. This section will also define some

useful fundamental concepts. Section III will present the

convergence theorems for the I - approximant sequences. These

latter developments will be carried out for the one-dimensional

case and Section IV will generalize the theorems to the multi-

dimensional case. Finally, Section V presents concluding

remarks.

C.
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I. Singularities of I - Approximants and Some Fundamental

Definitions in the One Dimensional Case

The evolution operator of concern has the form Q=exp f(x)-jJ

where f(x) is a specified function defining the Lie Operator.

The action of Q on x is approximated by a sequence of I - approx-

imants, Qx - In such that

rn+l In i/ 1(x t) =x exp(f,t)

1 - nn+i(t)

it where

Q =exp tf Cx) ax =T exp[a M t) xax
J=1

*and
(11.2)

f(x) = k X k

k=1 (11.3)

*The coefficients o,(t) in each of the elementary exponential

operators in Eq. (11.2) are global functions of time. The

evaluation of these coefficients establishes the terms of the

recursion relation in Eq. (II.1) and the details of this

operation were presented in an earlier paper'. The iteration

in Eq. (I1.1) may be written in explicit form as

2 (xt) = ex (fit) (11.4)

r3(X0 xexe (f~t)
2 (Xt) =[(1-O W - 0 3 X]" (11.5)



5

Ofl[i [-,]'o,
2

On- I xn-2 On x-II-f

x exp (fIt)
(11.6)

where

an+i(t) = nan+1(t) exp(nfit) (11.7)

The structure of In may be identified as a type of continued

* fraction.

The origin in the complex x-plane is not a singular point

for all the In's as long as t remains finite. Since

* o,(o) = Vj(o) = o, all singularities of the approximants are

gathered at infinity at the initiation of the evolution. Each

singularity moves along a trajectory in the complex x-plane

as time evolves and may or may not reach the origin when t tends

to infinity. As a specific example we will now examine the

second approximant, T 2 (x,t). This approximant has a rather

simple singularity, a pole, whose location is given as follows:

f,

XP f[exp (fit) - (11.8)

where we have made use of the formula

f3
0 2 (t) = f2 (i-exp(-fit)) (11.9)

Since the expansion coefficients fn are assumed to be real,

the pole in Eq. (11.8) Is evidently located on the real axis

of the complex x-plane. The pole starts to move from either
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* + - (f2>o) or - (f2 (0) to a limiting point as time, t, tends to

Infinity. If f2 =0, the pole remains at infinity. In general,

two different cases occur as time evolves assuming that f2 00,

I f1 ) 
xlt)m . f (a(11.10)

It is apparent from Eq. (II.10) that if the system under con-

sideration is unstable, il & o, then the trajectory of the

singular point ends at the origin. However, if the system is

stable, f, < o, then the singular point stops at a finite

location away from the origin on the real axis. Therefore,

at least for this approximant, there is a 'clean' region where

a singularity can never appear if f, < o and the origin of the

complex x-plane is an interior point of this clean region.

If the system under consideration is unstable, the origin may

again be included in this clean region, however, in this case it

becomes a point located on the border of the clean region.

In order to gain further insight into the Z. - approximants,

we shall now examine the next approximant, 13. This approximant

has four branch points, two of which are located at infinity and

the remaining ones are given below (where U3 ; 0, otherwise

branch points are complex).

X2 = [0 2 () + (0()]s)-l
(11.11)

X2= t02() - [03()]13 -

These singularities are algebraic branch points with two

Riemann sheets. Depending on the nature of the system,
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22 - a3 may be positive, zero or negative. If it differs from

zero, then the origin becomes an interior point of the clean

region for this approximant.

There is a remarkable property about the T - approximants

which can be stated as follows. If Jj has a singularity which is

a branch point (except for the case j.= 2), then every

Ik - approximant (k)J) will have the same singularity. This

means that when j tends to infinity there will be an abundance of

branch point trajectories in the complex x-plane. Any given

trajectory may or may not be in the clean regions in the complex

x-plane. As we shall see, the proof of the convergence of the

r - approximant sequences completely depends on the existence of

these regions and their locations.

It is now useful to make some definitions before proceeding.

A given system is ultimately prescribed by the behavior of the

function f(x) describing the corresponding Lie operator. If the

complex x-plane of such a system has a region where any portion

of the branch point trajectories of the I - approximants never

exist there, then we shall call this region a "clean region' in

accord with the use of these words above. If additionally,

this region includes the origin of the complex x-plane as an

interior point, then this region will be called the "main clean"

region of the system. We further define a "global normal" system

as follows: iff a system described by f(x) has a main clean

region with a non zero measure it is a global normal system

where we have used a measure in the sense that the measure of any

countable infinite set vanishes. This latter measure is employed

''I 111C I W W
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to exclude the possibility of having a clean region which only

includes the origin. The interpretation of this definition of a

global normal region can be made as follows: if we deal with a

finite period of time then the system will apparently have a main

clean region. If we denote this region by R(t) then we can write

lim R(t) = Rs D (o] m(Rs) ) o (11.12)

In other words, the main clean region will continue to have

an infinite number of uncountable points around the origin

when time tends to infinity if the system is global normal.

This definition may be relaxed by limiting ourselves not just

to a semi-infinite time period, but to a finite one starting

from t=o. Therefore, we can define the *temporary normal"

system as follows: a system described by f(x) is temporary

normal iii it has a main clean region with a non zero measure

(m) for a given time period [0,T]. Here, m is defined again

in such a way that the measure of every finite or countable

infinite set is zero. Finally all remaining systems will be

'abnormal". As can be observed all global normal systems are

at the same time temporary normal, and all abnormal systems can

be considered as a limiting case (T+0) of temporary normal

systems.

I

I

Vf V V *V

[iI "
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III. Convergence Theorems in the one-Dimensional Case

From an examination of Eqs. (11.1), (11.5-7) we may rewrite

the approximants fj (x,t) as follows:

The function Aj(x,t) in the denominator satisfies the recursion

relation

An(x,t) An [41(xpt) - On Xn-]iT;6

(111.2)

One may conclude from this relation that the serial representa-

tion of 16n(x,t) in positive integer powers of x with

time-dependent coefficients will converge within a finite circle

of non zero radius around the origin of the complex x-plane for

some time period 10,T]. One can then construct a !4ajorant

series for this function such that

* I1An(xW) ( Dn(x,t) ; Dn ) I ; x1 ( PnMt

(111.3)

where Pn(t) denotes the time dependent convergence radius of the

kajorant series. The expression for the bound Dn may be

established as follows

n N

I 4n(x,t) n ( Inx t ,n,>)I

V ~~~~i4(xt) - ni. 1Bn < 4(xt di+

M) I,&n* 1I ( Dn(x,t) (14I0n~iI Ixin)

Dn+,i(x,t) =Dn(x,t) (1+I0n+iI IxIn)
(111.4)
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This latter result implies that

DJ(x,t) = DN(xIt)If i [ N+i 1 (111.5)

If the infinite product in Eq. (111.5) is convergent, this is the

region of the complex x-plane defined by IxI ( p(t) and

PtM) > Pmin > 0 (111.6)

for all t-values, then D(x,t) will converge to a finite value.

This result also implies that the function Am(x,t) will con-

verge for all t-values in a region defined by lx1 < Pmin-

The existence of such a convergence implies that the zeros of the

function An(x,t) in the complex x-plane are bounded from below

in absolute value for all times. This in turn means that the

system is global normal.

The condition for convergence of the infinite product in

Eq. (111.5) is equivalent to establishing the convergence of the

following expression

dN(xt) = I 0 +j g gxlNt j  (111.7)

J=l

If this sum converges and remains smaller than unity for

sufficiently large N values, then the infinite product in

Eq. (111.5) also converges. If Pmin in Eq. (111.6) vanishes,

then two circumstances may occur:

I) PtM) ) Pmin (T) > 0 t c [0,T] (111.8)

ii) Pt) > Pmin (T) Pmin(T) = 0 (except T=O) (111.9)

The first of these cases corresponds to a temporary normal

system, while the second implies the abnormal case. We have

therefore proved the following theorem.

V



Theorem I: If the following infinite sum

d(x,t) = " I a I x, (III.10)
J=1

* converges in a circle around the origin of the complex

x-plane Ixl(p(t), then the following statements hold

(i) if p(t) ; Pmin ) 0 for t c [0,-],

the system is global normal

(ii) if p(M) ) Pmin(7) > 0 for t e [0, 7 ]

with 7>0, the system is, at least, temporary normal

Corollary I

If the first condition (i) of Theorem I holds, then the

sequence of I - approximants converges for all x

* and t values in the regions (-Pmin, Pmin) and

0,-] respectively, and they have a permanent

main clean region with non-zero measure.

Corollary II

If the second condition (ii) of Theorem I holds, the

sequence of t - approximants converges at least for

all x and t values in the regions (-Pmin(7), Pmin(7))

and [0,7, T > 0 respectively and they have at least

a temporary clean region around the origin of the complex

x-plane.

I."
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We now seek to more explicity express the relation between

the convergence condition of d(x,t) and the nature of the

system. As derived in the companion paper', the a - coefficients

* are described as

with

* t~gn[x[i+n On+, xnj 9 n(O)
n=~x x

and

-f.X) = +2 exp (-(.iti)0 1 x!) (111.13)

where the time dependence of the 9-s is not shown explicitly.

* Now, if we assume that f(x) converges for IxI4 (pj>0), we

can write the following inequality

Ifj+'e Af (11114

This relation, however, permits us to construct the following

Majorant function for

Alex(x)ol lxI( p., exp(ci,) =pf exp(fit)
x exp(-a,)

Let us now assume that we have found a Majorant function for

fnan follows

4-0

(x E 'F(-).
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wtier stands for time-dependent coefficients and An, Pn

denote certain time-dependent constants. The last assumption,

however, makes it possible to write the following expression for

Mn+2 , the Majorant function of 9n..,, as can be revealed after a

4 careful examination of the recursion given by Eq. (111.12)

Kn* 1(x) )' K x in1n-i j n 1 ( 1 . 8

x

If we use the expression of Kn given by Eq. (111.17), we can

write

Kn~g.(x) > An Gn(x) (1.9

where

Gn(x) = gi,n(x) / 2,n(x) (111.20)

n-1i

gi,n(x) = i [noni jji-(~) -X3  (1.2

J=O

Since Gn(O) = I and Gn(x) is a monotonic decreasing function of

x, we can construct the following Majorant function for the right

hand side of Eq. (111.18)

K=jLX ______ (111.23)

where

-n~ =1A A, Af exp(-flt) (111.24)
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and

14,Pnn4 O n p IO exp(f~t) (111.25)

.l 1

40 If we assume that (nlOn +it] exp(f~t) Is bounded by v, then we

can write

an 4 exp(-fit) Pn (111.26)

an+i a a, = Pf (111.27)

( 1 + v' aRjIn

Therefore, we have made the convergence radii of the Majorant

functions smaller. As can be easily shown after some inter-

mediate steps, an monotonically converges to a nonzero limit,

say a, as n tends to infinity. This makes it possible to write

Bn exp(-flt)
Bn+ = ; B1 = A f  (111.28)

* Bn
[n =xE (111.29)

I - exp(-fxt) (

Since bn < Mn~i we can obtain

I'n+i(t) A ( exp(-nft n (111.30)

which obviously satisfies the boundedness condition of
1

q(niOn +,ai exp(fit) globally for f, < o and temporarily for

f, 1 o. This result immediately produces the following

theorem.
I%

!. 
I
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Theorem II: If the descriptive function of a given system is

denoted by f(x), (f(a)=o), then the following statements are

true.

* (i) if f(x) has a finite convergence radius centered at the

origin of the complex x-plane and f 1(, then the system

is global normal.

* (ii) if the same conditions of case (i) hold except that

fl>o, then the system is at least temporary normal.

Our third theorem concerns the In - approximants. Let us consider

the inverse relation between In and ln+i.

= -

n +nan +i ER+ 1 1 (111.31)

If we write

v = min{[I i I]' 1, (111.32)nOn 1

and if the following holds for a specific n

lln i(xit)l 4 vn+i f* V

(111.33)

then, +

i - InCn+iliR+i'fi

(II1.34)

Now one can choose vn+i in a way such that

= T- + i 2 vn~ i n 1 4 vn

I _ IfOn~ilIn+ ~n 1 + Inon+iJvR)

(111.35)
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where vn is defined as below

Iln(x ')( <v n ( v (111.36)

Therefore we conclude

Theorem III: If we denote the mimimum of the

expression [ n n=i,2,.. by v, and for a

* finite fixed N, the approximant IN remains smaller

than v in absolute value, then all higher order

approximants behave in the same way.

The interpretation of this theorem is as follows. If the system

Is globally normal then the limit of the sequence of approximants

(x,t) = lim IN will remain permanently in the main clean

region.

In the proofs of these theorems we assumed that f(x) is

a real function and x is a real variable. We did this for the

sake of simplicity. However, if f(x) and x are assumed to be

complex quantities, nothing will change except the replacement

of f, with R exp(f1 ) and changing the intervals into the

circles.

#

I-

-. '-'i'-\..tP! ,m
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IV. GENERALIZATION TO THE MULTIDIMENSIONAL CASE

In the companion paper1 establishing the approximants it was

noted that there is a degree of flexibility in the order of the

elementary factors or propagators associated with a multi-

dimensional Lie transformation. A convenient ordering for the

proof of convergence can be written as follows

Q = exp(tf(x)-V)=exp(t XT.fT()-V)

Lexp u~l)xj exp' (Nx
I= -x =0 j NT-

where " depends on Xn's except xN and t.

We have chosen an ordering of a product of elementary exponential

operators such that the differentiation with respect to xN is

effected first. This ordering has a practical implication if we

consider the effect of Q on x 1 , in which case the last (N-i)

curly bracketed operators reduce to unity due to the fact that

they have no effect on x,

QX. =explt XT.fT(1).V] a exp X1 TXj x,

Similarly, if we deal with Qxj, then we can choose the ordering

or the curly bracketed operators in a way such that

Qxj exp[t XT.fT(1)-VJ { expu )x a x
i + (IV.2)

,>,
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* can be written. Such changes of ordering will alter the A,'s

and without any loss of generality we may consider the particular

ordering in Eq. (IV.l).

* To find, for example, 41)(X2 ,...XNV) we can obtain a

partial differential equation which must satisfy

-t i--- ?,I - X 2 " ... "XN

+ AD~ OX[2. --P),x .. 90 ~~

j=2

* (IV.3)

where ij denotes the new descriptive vector element of the

system after extraction of its linear response. This may be

* equivalently stated as

If(x) Ix=o (vf)=o J= ...

(IV.4)

The same equations are assumed to hold for A()D

A0 1 0 , ,...,pt) =0 P IVA 0  ixl=o= 0

(IV.5)

since first degree terms are excluded by extraction of the

linear response. Hence, Eq. (IV.3) may be solved by a

multi-dimensional Taylor series with the initial condition

The convergence of such series have been thoroughly investigated

"in the theory of partial differential equations2 . Therefore,

go), and the other A's which satisfy the same kind of
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partial differential equations can be assumed convergent and

bounded in a closed domain around the (n-i)-tuple manifold formed

by the cartesian product of the x2,...,x-complex planes.

*i In analogy with the previous section one may prove theorems about

the convergence properties of the sequence of approximants gener-

ated by truncating the product of operators in Eq. (IV.2). These

*g same type of statements follow as before except through a change

of the x-plane into an n-tuple manifold constructed by the

cartesian product of the n-complex planes (xj-plane,...,

xN-plane).

*
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V. CONCLUDING REMARKS

In the first of these two papers we presented a factorization

scheme for Lie transformation evolution operators and in the

present paper we have given sufficient conditions for the con-

vergence of the scheme. Under appropriate circumstances, these

approximants form a practical tool to produce a rapidly con-

vergent and high precision approximation to the original

evolution operator. These new approximants are also richer

than, for example, Pade approximants for numerical analysis.

This comment follows due to the abundance of branch points

which make it possible to characterize many types of functions

having various types of singularities. These two papers are

actually only the first step in the theoretical development

of these new types of approximants and much additional research

needs to be done for their deeper understanding and to bring them

to a truly practical level.

.. *.
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40 Abstract

In this work a new method to factorize certain evolution

operators into an infinite product of simple evolution operators

is presented. The method uses Lie operator algebra and the

evolution operators are restricted to exponential form. The

argument of these forms is a first order linear partial

differential operator. The method has broad applications

including to the areas of sensitivity analysis, the solution of

ordinary differential equations and the solution of Liouville's

equation. A sequence of t-approximants are generated to repre-

sent the Lie operators. Under certain conditions the convergence

rate of the 4-approximant sequences is remarkably high. This

work only presents the general formulation of the scheme and some

simple illustrative examples. Investigation of convergence prop-

erties is given in a companion paper.

IfIs
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I. Introduction
0

In this paper a system with n-degrees of freedom will be

characterized by n variables, x,. .. ,xn , which form real Euclidean

space. If any two points in the space are related by a unique

transformation Q whose functional structure does not depend on the

location of the points, then one can define an evolution operator

for the system. Since any two points of an n-dimensional space

may be connected by a continuous curve, it is possible to use

a tracing parameter which defines the position of the system

on this curve during its evolution from its initial state x, to

its final state xf. This circumstance often arises where time is

the evolutionary parameter and we will accordingly denote the

parameter as t. Therefore, the initial and final states of the

system can be characterized by the scalar instants of time t, and

tf. Hence the evolution operator Q can be represented as

Q(tf,tl) and

A = Q(t ,t ) x (I.)

where the dot is used to symbolically represent the effect of

Q on ji. In many applications one can find practical expressions

for the operator Q if t1 and tf are sufficiently close to each

other. Hence, the global evolution operator Q(tf,t1 ) may be

factorized into a simple sequence of evolutionary steps

Q(tf,ti) 2, Q(tf'tm) -Q(tm-tm-i) ... Q(t1't1) (1.2)

and by choosing m sufficiently large this factorization can

characterize the global evolution of the system. If the

simple short time interval solutions were exactly calculable,

Is
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then the presence of a large number of such evolutions, m, is

not important. However, in reality, even the simple evolutions

over the short time intervals can often be only approximately

determined. In such a case, the number of increments m is

significant since errors can accumulate to possibly create

numerical instabilities and inaccuracies. In addition, the

factorization requires operators at times other than the initial

and final specified values. Therefore, a more global factorization

of the evolution operator such as suggested in this paper would be

more attractive.

The present work considers the factorization of the

evolution operator into a sequence of simple global evolution

operators. The scheme presented will maintain its validity only
b

on a special subclass of evolution operators. First, we restrict

the system under consideration to being autonomous such that the

evolution operator has the following simple structure

Q(tf,ti) = Q(tf-ti) (1.3)

We also restrict ourselves to autonomous evolution operators

having an exponential form

Q(tf-t1 ) = e(t - tl)S (1.4)

where S denotes a time-independent operator. An important class

of evolution operators is included in the following definition

N a
S = L E f (x ,...,x (1.5)I=i N a

.X4'Zr



where the dimension or number of degrees of freedom of the system

may be finite or infinite. The finite dimensional case may be

directly related to the corresponding initial value problem

produced by the set of ordinary differential equations',

*J = f J(x 1,x 2 ,... ,x N). Since almost every partial differential

equation with initial conditions can be cast into an infinite set

of ordinary differential equations through an appropriately

chosen basis set expansion, we may consider the Lie operator in

Eq. (1.5) as capable of treating a wide class of problems. Some

caution is still required since the coefficients in Eq. (1.5)

are scalars while some formal reductions of partial differential

equations to ordinary differential equations can produce matrix

coefficients. In summary, we restrict ourselves to operators

having the structure of Eq. (1.5) and of finite order N.

Lie operators also arise in other areas besides that

mentioned above. For example, the investigation of analytic

simplectic maps2 and the description of the behavior of tra-

jectories near a reference trajectory for a general Hamiltonian

system3 are also other applications. This latter work is distinct

from the present paper where we seek a global approximation to

the evolution operator that is valid within a region of

space without regard to a reference trajectory. In iddition, our

approximation of factorizing the exponential evaluation operator

into a product sequence of global operators is different from

that developed before. Recent additional works 4- 6 have con-

sJdered the use of Lie transformations to perform parameter

space mapping of the solution of ordinary differential equations.

I.
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space mapping of the solution of ordinary differential equations.

* Other applications may also be found.

The remainder of this paper is organized in the following

fashion. Section II gives the general formulation of the global

factorization for one-dimensional systems followed by a generali-

zation to multi-dimensional systems in Section III. Some

illustrative examples are treated in Section IV and concluding

* remarks are given in Section V.

II. Factorization Procedure in the One-Dimensional Case

Lie exponential evolution operators defined by Eqs.

(1.4) and (1.5) frequently arise in many applications. One

application that was mentioned above arises in the treatment of

ordinary differential equations. In particular, if we can

evaluate the effect of the Lie transformation

Q = e ; L = f(L) y (II.1)

on the position vector x around a point a in the phase space of a

system defined by

x = ~),(11.2)

then the solution to these equations may be written as
4

x(a,t) = [e tL x]=a(11.3)

where x,a and v are defined in the following manner

4T
x [x 1 ,x 2 ... .xN] (11.4)

4A

- V %' ; Y1",1% " . ," -" ,. - - ' ' ," , . . - ' " - '



TL [al ,a 2 ,...,aN] (11. 5)

a a (11.6)
ax ax 2  T-I 2

This relation between the solution of ordinary differential

equations and Lie transformations may conversely be used to

determine the action of the operator Q on the position vector by

solving the following ordinary differential equation

i(x,t) = (C) C (x,Q) = x (11.7)

This approach to determining Q is generally not preferable since

Eq. (11.7) is often only soluble by elaborate numerical tech-

niques which will hide the important structure of the desired

transformation. Although the approach pursued here is also

*" approximate, it will still leave the structure of the evolution

operator rather apparent.

In order to appreciate the approach taken below, we recall

some important properties of Lie transformations

= [etLf(x)] [etLg(x)] (11.8)

etLf(X) = f(eLx) (11.9)

The first of these equations states that a Lie transformation on

a product of two functions f(x), g(x) can be factorized to the

product of the Lie transformation on the individual functions.

This property is due to the exponential structure of the Lie

transformation along with application of the Leibnitz rule of

differentiation, and the relation is valid provided that f and g

are infinitely differentiable functions. The penetration
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property in Eq. (11.9) also follows due to the particular

structure of the Lie transformation and the assumed infinitely

differentiable nature of the function f. Finally, one additional

well known property of Lie transformations concerns the special

case of the translation operator

el"2 f(x) = f(x + t a) (II.10)

which followed from a simple Taylor expansion of the right hand

side.

We now desire to investigate the factorization of Lie

4transformations for one-dimensional systems. Although the one-

dimensional nature of the problem makes it formally rather

simple, this case also provides the best means to develop the

factorization scheme presented here. In this case the Lie

transformation can be written as

Q = exp tf(x) 2-1 (11.11)

* where f(x) may have a number of zeros with one assumed to exist

at the origin of the complex x-plane. This assumption about the

location of a zero of f(x) at the origin does not create any loss

of generality since a simple translation can bring one of the

zeros of f(x) to the origin. The assumption about the existence

of at least one zero of f(x) is more restrictive. However, in

problems where f(x) forms the right hand side of an ordinary

differential equation, there will usually be at least one

stationary point for the solution. Therefore, the assumption

about the existence of a zero of the function f(x) may be

regarded as a minor loss of generality.
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We may now make the additional assumption that the function

* f(x) may be expanded in a Taylor series

f(x) = j E f x IxI<p (11.12)

where the expansion coefficients f are taken as known from the

definition of the system. The expansion above implies that the

system is well characterized, at least in a restrictive domain

around the origin of the complex x-plane. We seek the factori-

zation of the evolution operator Q such that every factor has an

independent contribution in a fashion analogous to each term in

the Taylor series of Eq. (11.12). To this end we define the

flexible factorized structure

Q = exp tf(x)-] = i l exp o,(t)x.aj (11.13)

* where a j(t) are arbitrary at this point and yet to be determined.

Equation (11.13) is the factorization formula for the one-

dimensional case.

* For the one-dimensional case the factorization in Eq. (11.13)

may seem to be unnecessary due to the fact that the equation i =

f(x) can be solved by the usual techniques of numerical analysis.

However, in order to gain insight into the more interesting

multi-dimensional case, the present reduced case presents the

best way to understand the theory. Despite the existence of

some attempts to factorize Q by time ordering techniques with

respect to t, to our knowledge there has been no factorization of

Q along the lines presented in Eq. (11.13) except Dragt's work

for a different purpose and in a different framework.



Assuming that (11.13) holds and the coefficients a are

known, it is a simple matter to determine the effect of the

operator Q on x. For this purpose we can investigate the indi-

vidual effects of the factors in Eq. (11.13)

Q(j)x= exp a,(t)x ja] x (11.14)

By using a simple variable transformation

y= x- ( -1) (II.15)

we may write
M(x = exp 1-(-1)oj t)

(11.16)

Q- x = exp I0(~

and employ the translation operator property of Eq. (II.10) on

the y-coordinate

Q ()x = [y - (j-1)o (t)]- 1/ 0 - 1)  (11.17)

or equivalently in terms of the x-coordinate

Q(j)x x -1 (11.18)

(tI

where x and t are considered to be independent variables as

we shall do so henceforth. In this formula the positive branch

:d of the root has been taken. This is the fundamental formula of our

factorization and it Is valid provided the argument of the root

'appearing in Eq. (11.18) remains positive. We are now able to

evaluate the effects of the individual factors in Eq. (11.13). In

applications of Eq. (11.13) an approximation to Q would consist of
i.

• . truncating the infinite product involved.
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At this point we need to determine the coefficient

functions oj. To this end we can use the following relation

= [ f x 
(

j=1 J cx ; Q(0) = I (II.19)

which follows from Eqs. (11.12) and (11.13). If we now write

Q ()Q= = exp cl(t)x -] Qz (11.20)

we may arrive at

a [(tx T -at =i exx 1 epazxi

• (11 .21)

using the properties in Eqs. (11.8) and (II.9). This result may

be re-expressed as

aQ, = f exp[-Coix ZX] 1 ) (11.22)
exp[-oix j] x

The following formula

exp[-o (t) x 8x x = exp(-o 1 (t)) x (11.23)

allows for a rewriting of Eq. (11.22) utilizing the expansion in

Eq. (11.12)

a-(f -6z) + (f2exp(-om(t)) x) + ... J x Q

(11.24)



The operator acting on Q, on the right hand side of Eq. (11.24)

is a power series in x. Each of the terms of this series is

independent and in the vicinity of the origin the first term will

be dominant. We desire to make Q, as slowly varying as possible

and therefore demand that the leading term in the series vanish

for this purpose

6 (t) =f ; a (0) = 0 (11.25)

The initial condition has been taken as zero to make the simple

evolution operator Q(O) unitary. Equation (11.24) now has the

form

- f( (x) x2 a =
at a-x 1z 1

where f(1)(x) can be identified from the remaining series of

terms in the brackets of Eq. (11.24) and f(l)(0) Is finite.

Exactly this same logic may be put forth to evaluate a2 (t) by

successively eliminating higher order powers of x in the differ-

ential equation. To construct a general recursion we assume
.3

knowledge of the first n of the Oj's and write

Q = { () Q (11.26)

which suggests the equation

at ; Q (0) = I (11.27)at ax n Q

Ai
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The time-dependence of f(m)(x) is not explicitly shown and the

function f(n)(x) is regular at the origin of the x-plane and is

to be determined. We now may write

SQn Q0(f+1) Qn+1 = exp[on+1(t)xn+1-- Qn+1 (11.28)

and obtain

aQ n+1_ = [ (n)ex [-C (t)xn+ la]x 0 fli - Qx i
at- If exp[_on+1 _Xlx _ On+ +Z axQn

(11.29)

by utilizing again the properties in Eqs. (11.8) and (11.9).

Employing the action of the factorization operator in (11.18)

gives

aQ - xn) /n - -n+ x n x1 a +Q

at I ( +n y n+ t) xfl) . J f+11 ax n+1 (1 . 0fl+j (11.30)

* We now apply logic analogous to that leading to Eq. (11.25) and

eliminate the dominant contribution to the bracketed quantity
n+I a

multiplying the operator x f -x yielding

. n+1 f"(0) ; n+1(O) = 0 (11.31)

where the Initial value is again chosen as zero to make Q(n+i)

unitary. Therefore we conclude

aQn 1  = f(n+1)(x )  x
n + 2  a (11.32)

at Qax.

where

f(n+1) x ( n x] f(n)(O) (11.33)
+(t) x) 

(0

x 
Sn 

n ~ m
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This is a first order recursion relation with the initial

condition

f(x) -j f(exp(-a,(t)) x) exp(a1 (t)) - fix] (11.34)

All. of the a-functions can be evaluated analytically in

principle, however this is a tedious task and the use of a

symbolic programming language such as MACSYMA or REDUCE is

recommended. The first five of the a-functions are given below.

01(t) = fit (11.35)

02(t) = f2 g1(t) (11.36)

03(t) = f3 92(t) (11.37)

f~f 31f 2f3
0 4t)= f4+ -r-- 3 (t) - T~--- g2 (t) (11.38)

GSMt = f .S+ + g ] 4 (t) +

+ + g3 (t) + 7 9T 2 (t)(1.9

where

Sn(t) = -exp(-nf~t)

nf1, (11.40)

We are now at a point to implement the factorization scheme.

The essential approximation is to truncate Eq. (11.13) to a

finite order thereby producing the following approximant.

In(x,t) V I J 1 Q J I.1
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If the infinite product representation of Q given by (11.13)

converges, then the following result will hold.

r(x,t) = Qx = exp tf(x) - x = Ena] n=co (11.42)

Since the action of Q on x defines the fundamental operations

of concern, we now focus our attention on the I-approximants.

A recursion relation for these approximants can be obtained by

first noting that

= e xn+i] x (11.43)

An application of Eq. (11.18) yields

* -n+1= {...x (11.44)[-nan+1 x n] n

Since a product of Lie transformations is again a Lie

* transformation, we may use the property in Eq. (II.9) along with

Eq. (11.41) to conclude that

In(X,t)
fni(xt) [I - n on+i(t) (1(t)]i/ n  (11.45)

This is a rather simple first order recursion (difference

equation) whose Initial member is evaluated as follows

11(x,t) = expaI (t) x 5xx = x exp(o,(t)) = x exp(f1t)

(11.46)
Although this is a simple recursion relation, it is not typically

suitable for numerical purposes. Numerical instabilities will



occur if f, is negative resulting in excessively small quantities

for large times t or also under the conditions that x tends to

zero. In these cases, error accumulations may occur due to the

truncated arithmetic on the computer. To prevent this error we
0

may renormalize the I-approximants and define a new recursion

relation
In

(n+1 - n+i n  =  (.47)

where

an+i non+i exp(nf1 t) (11.48)

The relation between the new approximants and the previous ones

is

Tn(x,t) = In(x,t) x exp(f1 t) (II.49)

which also implies

* I(x,t) = exp tf(x)-] x = C(x,t) x exp(ft) (11.50)

Since the term x exp(f1 t) characterizes the linear response of

the system, we can consider I(x,t) as a function measuring the

deviations of the system from its linear response. We will

accordingly refer to 4 as a Odeviation function". As can be

easily seen, the I and 4-approximants have branch points which

move on trajectories in the x-plane. The location of these

trajectories determines the convergence regions of the approxi-

mants. We shall leave the discussion of this issue and a

comparison of the C-approximants with PadA approximants to a

companion paper.



e 17

III. GENERALIZATION OF THE FACTORIZATION SCEM4E TO
THE MULTIDIMENSIONAL CASE

The logic put forth in section II for a systematic factori-

zation of one dimensional evolution operators may now be

generalized to multidimensional cases. In this situation, the

evolution operator acting in a space of dimension N has the form

Q exp(t f(x)-V) (1II.1)

* where

VTx = [x],...,1X N ]  (111.2)

IO ~_X I * * *" X_ (111.3)

fT = [f1 (x),..., fi(x)] (111.4)

The function f(x) is assumed to have a zero at the origin

lim f(x) = 0 (111.5)
Ix1+O -

and it is also assumed to be expandable in a multidimensional

Taylor series in the variable xl,...x s . This latter expansion

can be written in tensor form as

f f 3) xi + f 2 xjXk + f~~ (3)~ 1

(111.6)
where the convention of the explicit summation over repeated

indices is used for convenience.

aIn the one-dimensional case the operator exp(aix-) played aI:, fundamental role in the first step of establishing a recursion

relation for the approximants. The same situation occurs again

gS

!- . - ~ V



here and we shall denote this first degree operator QL as

taking on the following form

QL = exp(xTa(1)V) (111.7)

*Q where o(') is a square matrix or equivalently a second degree

tensor. The effect of this operator on the position vector x

is

QLX = exp(c T(j)) x (111.8)

Since QLX must be the system linear response we can conclude that

cj,(') = f j,K = 1,..., (111.9)

Henceforth, we shall denote the linear response of the system

evolution by S,

S = exp(tf(l)) (III.10)

Using the definition of the scalar product of two tensors of the

same order,

AJi---Jn B) 1 .J n A e B (111.11)

we can write the evolution operator in Eq. (III.) as the

infinite order factorized product

Q = QL n exp[(k)e L(k)] (111.12)
- . k=2

where G(k) is a k-th order tensor to be be determined and

L(k) is a tensor valued operator

L (k) a (1.3W )  = xj 2 X 3 ... xJ ax (1I.13)

- J2 ra U )-- " "
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The tensor product in the argument of each exponential term in

Eq. (111.12) is itself a sum of operators which would be

difficult to deal with in practice. Therefore, we have further

factorized each individual term in Eq. (111.12) (except QL)

to obtain

S* (k) L~k)
Q = 17 l n exp(oa1 2 ... k L...Jk) (111.14)

k=2 i
€I

where it is understood that the coefficient functions o(k) are

now distinct from the set in Eq. (111.12). The starred product in

this formula means that the product operation is performed over

the entire domain of the j-indices. There is no unique ordering

to the factorization in Eq. (111.14) for a multi-dimensional

case. However, if we define the following operators

S(n) = exp[o(n) e L(n)] (111.15)

* Q(n) = I exp[o~n) L-- ( -- n] (111.16)
j 

1

one can prove that

-j(nx _ Q(n)x1 =o[X2n1]1 (111.17)

Therefore, within this level of approximation the expressions

in Eqs. (111.12) and (111.14) may be considered equivalent. The

form given by Eq. (111.14) is practical since each of the

sequence of evolution operators acts on a particular coordinate

and degree of freedom.

L
OVA.
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The procedure for determining the o - tensor is the same

as in the previous section, however all scalars, (except time)

must be replaced with tensor quantities and the conventional

algebra must be replaced with tensor algebra. The details of

these operations will not be dealt with further here, but the

use of symbolic programming languages would be most helpful

in practice. The second degree a - tensor is given below
O

as an example.

t
0(2) = (2)n r-(_)n.r[-1-iln dO k1 = Sj(i) f n . 2  nIdS-

(III. 18)

The evaluation of the - approximants can again be accom-

plished by using the consecutive effects of the individual

factors of the evolution operator. Symbolic programming

techniques would likely be the best procedure for determining

the X1,...,xN and t dependence of the - approximants.

fI '*
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IV. ILLUSTRATIVE APPLICATIONS

In this section, five problems are considered, each of

which exhibits different types of behavior. For the sake

of comparison with the techniques introduced in the previous

*sections, we have chosen analytically soluble problems as

described below.

i) f(x) = i - eX (IV.1)

From traditional linear stability analysis arguments this

system is stable for x>o and unstable for x<o. There is also

only one steady state point located at the origin. An analytic

expression for the effect of the Lie transformation on x can be

written as

(x,t) = exp tf(x)2-] x = - in [-(l-e-x) e - t  (IV.2)

A careful examination of the structure of E(x,t) reveals that its

branch point traverses the path from - to +- along the horizon-

tal axes *in as time evolves. Figure la plots the exact

deviation function J(x,t) and its first five approximants In(x,t)

as defined in Eqs. (11.50) and (11.49) respectively for the

case x=o.i. It is apparent that the approximants uniformly

converge to the true deviation function as n increases. The

error between the true deviation function and the n=s

approximant is shown in Figure lb where it is apparent that

the error decreases monotonically to an asymptotic value

for large times. A similar pair of plots is shown in Figure 2
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for x=s.O. At this larger value of x qualitatively similar

behavior occurs but the rate of convergence of the approximants

is slower and the peak in the error function may be a signal of

the loss of global convergence. The situation for negative values

of x is different as shown in Figure 3. Figure 3 presents the

case for x=-1.o. The approximants in this case seem to show

oscillatory nonmonotonic behavior with regard to true deviation

function. The error of each of the approximants is qualitatively

similar to that of Figures 1 and 2. At a sufficiently large

negative value of x singular behavior shows up resulting in

apparent non-convergence.

ii) f(x) = -e-x  (IV.3)

This system is unstable for positive x values due to the

first Taylor coefficient being positive. It has only one steady

state point located at the origin of the x-plane. The analytic

expression of the Lie transformation effect on x is

I (x,t) = ln{i+(eX-i)et) (IV.4)

The branch point trajectory of this system matches with the

negative portion of the real axis of the x-plane. The branch

point moves on this line towards the origin as time evolves

and reaches there in the limit that t+- . Figure 4 shows

the deviation approximants and the error of the fifth member

for x=o.i. Apparent convergence failure is observed, however

during a finite time Interval starting from t=o there isr temporary convergence.

.
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Si i) f(x) = sin x (IV.5)

This system is unstable around x=o for x>o, however it has

infinitely many steady state points and they alternatively make

the system either stable or unstable. Figures 5 depicts the

approximant behavior for the case x=i.o. There is apparent con-

vergence behavior in the figure, however a peak in the error

* function may again be a signal of the loss of global convergence.

It is difficult to prove this point from only a finite number of

approximants. An additional calculation is shown in Figure 6 for

Ax = 5.0 which is beyond the second stationary point of sinx.

This well behaved nature of the approximants is probably due to

the fact that all the branch points of this system are purely

4imaginary.

iv) Stakgold problem 7

This problem is associated with the consideration of two

coupled nonlinear differential equations with system coefficients

given by

f1 (x1 ,x2 ) = kx1 - x2 - x1 (x +x2)

f2 (x,,x 2 ) = X2 - x1 - x2(x+x (IV.6)

The analytic expression for the effect of the Lie transformation

on the position vector is
.- Ixlt

11 (t)=(XlCOS t - X2sln t) e 71(x,t)

,2 (t)=(xisin t + x2cos t) eit 71(x,t) (IV.7)

where X is assumed to be negative and n is defined as follows

4-
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77(X,t) + f+ 1-e 21XI (IV. 8)

This system is stable as long as X remains negative. In the

case of positive X the same condition again holds but the

system does not have a steady state solution and a limit cycle

appears.

In applying the method of Section III to Eq. (IV.6) we will

find that the system has only the following non zero tensor

coefficients

1) 12

(IV.9)

f(3) f(3) f(3) f(3)
1111 Q 122 f 2211 = f2222 -1 (IV.1O)

Accordingly, the linear response term would be expressed by

the tensor

S =exp(tf(l)) (IV. ii)

and elements of this matrix and its inverse are given by the

following expressions

S11 = e).t cos t S12 = -et~ sin t

S1= e)1 sin t S22 = ex Cos t (IV.12)

S1 = et Cos t S22) e-Xt sin t

S1 = e-Xt sin t S22 = Xt cos t (IV.13)

4.M MG as2i&~ tj l':i16kk P
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Since the second degree Taylor expansion coefficients are zero

it follows that

0(2) = C (IV.14)

The third order terms are non zero and G( 3 ) may be shown as

(3) =t (3)~ m  (-1)I (-1) (.-i ) d-
0112131 J Sm Immm3m4 M22 M3 13 + 4

* (IV. 15)

where the explicit summation rule over repeated indices is

employed. After some tedious algebra, one can show that all

C--elements of the o(3)-tensor vanish except for the following

* four members

a(3) 1() (3) 2M a(3)

0111 (t 2 12 (t 2211 Mt

(3) e -2XLt-
0222 3(t) (IV.16)

This result immediately yields the tensor product

S 3 (t) X + x2 [ + X2

(IV.17)

As can be easily observed the operators a( 3 ) e L(3) and

f(3) e L(3) cormute and therefore there will be no contribution

from higher degree terms of the remainder during the elimination

of the operator 0(3) e L(3) from the structure of L. In

addition, there are no higher order terms than these already

coming from the structure of L itself. Hence, we may conclude

that the factorization exactly truncates at its second order

terms if we retain 0(3) e L( 3 ) as a global second degree

-", , L .,, "'. - W ."
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Lie operator. Indeed, if we write

Qx = exp[xT fT(1). V] ex[()0 ()

=exprxT fT(1). r r [Cos O9j
-I I~1. 203 (t)r 2] si 51n eI (IV. 18)

then it follows that

Qx e + ek [cos t -sin :it i

fl+e2)t~i X1 XiJ ~ Co2' (IV.19)

and the exact result is obtained. In this result we have

first used polar coordinates

r = [X 1 2i. X2] Cos e = Xx 2+x 2]_

* aG(3) eL(3) = 03 (t)r
3 a(I20

and then returned to the Cartesian representation in Eq. (IV.19).

The result in Eq. (IV.19) is just a confirmation of the

operator algebra introduced earlier in the paper. We may still

go a step further and factorize the evolution operator involving

0(3) e L(3) to obtain

Q(2) = exp 1o3 (t) 1~ j-]- ex~~)X 2  i-;

ll exp~a3(t x2 X2

(IV.21)

This different factorization creates an error which is of the

order of magnitude of fifth degree terms. In this case,

an infinite product appears which converges about the origin.
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v) space extension

Consider the system defined by the function

f(x) = V (IV.22)

This function has two zeros located at the points x=+1 and

x=-i, however it does not fulfill the requirements for our

method. In particular, it cannot be expanded in a Taylor series

around these points. Nevertheless, the problem may still be

approached by extending the space to two dimensions through the

introduction of a new variable in addition to x as follows

yW= Vj (IV.23)

We can now define a new system with the descriptive functions

10 f1 (x,y) = y

f2 (x,y) = -x (IV.24)

This new system satisfies all of the necessary conditions for

factorization. Therefore, in cases such as these, the technique

of space extension may make it possible to factorize Lie trans-

formations which otherwise might not admit to direct treatment.

[1o
I°

4.

u -
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V. COWCUADING MOMARKS

The basic thrust of this paper is the development of a new

sequence of approximants appropriate for time evolution

operators with Lie generator arguments. Although we have not

given convergence theorems for the I-approximants sequences,

the results in Section IV are encouraging. Rapid and highly

accurate convergence seems to be obtained at least in a

sufficiently closed vicinity to the origin. The next step in

this work, examined in a companion paper, is the investigation

of the I-approximant singularities and some convergence theorems.

Actual implementation of the factorization scheme, especially

for multidimensional cases can involve a considerable amount of

algebra. The use of symbolic programing on the computer would

likely be a necessity in these cases, and this issue also

needs further investigation for its practical implementation. A

number of applications of the factorization may be envisioned as

suggested in the introduction. Evolution operators of the type

studied in this paper occur in a wide variety of problems, but

perhaps the most obvious and simple application would be to the

solution of ordinary differential equations. The possible

attraction here follows from the fact that the approximants

provide a global solution in time rather than the usual

sequential time stepping procedures. A number of numerical

issues need to be addressed for this case as well as other

applications before the optimal realm of utility of the

scheme may be established.
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Figure Captions

Figure 1 Plot of the exact deviation function j(x,t) and

its first five approximants n (x,t), n=l,...s

for the characteristic function in Eq.(IV.1) where

x=o.i In figure a, the last three approximants are

indistinguishable from the exact result. Figure b

shows the deviation function for the approximant

n=s. The same line masks in figure a will be used

in the remaining f-approximant plots.

Figure 2. The same as figure 1, except x=s.o. These results

are qualitatively similar to those of figure 1

except now the convergence rate is slower and there

is a peak In the error function.

Figure 3. The same as figure 1, except now x = -i.a.

Apparent oscillatory nonmonotonic behavior is

exhibited with respect to the true deviation

function in figure a.

Figure 4. Figure a exhibits the exact deviation function

I(x,t) and the first five approximants

In(X,t), n=l,...s corresponding to the fundamental

function in Eq. (IV.3) at x = o.i. Figure b shows

the error function for n=s approximant. Apparent

divergence behavior is observed at long time;

however, during a finite interval around the origin

there is temporary convergence. Here, only the

fifth approximant goes to infinity. However, the

first four approximants also have branch points

[r
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close to zero but they do not make the denominator

in the corresponding transformation from the pre-

vious approximant zero when t<io. Some of the

branch points are not even on the positive real

axis.

Figure 5. The exact deviation function j(x,t) and its first

five approximants n (x,t), n=i,...s for the

characteristic function in Eq. (IV.5) at x=i.o.

The first and second approximants coincide as well

as the third and fourth approximants. There is

apparent convergence behavior in Figure a,

however a peak in the error function in Figure b

may signal a loss of global convergence.

Figure 6. The same as Figure 5, except that now x=s.o.

i..
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I. INTRODUCTION

Consider the parameterized nonlinear system

'N- 0(P) : (t,p) = f(X (t,p),p) + u g(x(t,p),p)

-P y(t,p) = h(z(t,p),p), x(O,p) = xo(p)

Let Al and fl be bounded, connected, and open sets in R and R q , respectivel.

such that x E M and p E Q, where p represents the constant parameter vector. We

assume that the vector fields f(.,p) and g(,p), and the function h(.,p) : Al - 1?'

are real analytic on Al for all p E fQ. The problem considered here is identifiability

of (1) in the experiments specified by (xo(p),j[O,tJ]) , where Xo(p) denotes the

(possibly parameterized) initial state, and U[0,tj] is the set of bounded and mea-

surable controls defined on [0,tj]. Let 1"'(P) denote the input-output map of (1).

Parameter values p , Q? are said to be indistinguishable ( denoted by p -- /) in
the experiments (xo(p),U[O,t,]) if N.;(o)(u) = E"-(o)(u) for all u E [[0, t,]. System

(1) is globally identifiable at p if5 -- p, E I , implies / = p. System (1) is locally

identifiable at p if there exists an open neighborhood W of p in Q1 such that =

P E 1" , implies P = p.

A summary of results on local identifiability of (1) is given in [1]. These results

are based on three factors: (i) the relationship between local identifiability and lo-

cal observability of the system augmented with the parameters as additional state

variables; (ii) the functional expansion of the input-output map of (1), and (iii)

the local state isomorphism theorem of nonlinear realization theory. While the first

approach is inherently local, functional expansions (e.g., Taylor and generating se-

ries) enable one to study also global identifiability by formulating a set of algebraic

equations for the parameters[2,3j. Except hnear(2], bilinear[4], and homogeneous

polynornial[5] systems there exists, however. n,, a priri upper bound on the number

of series coefficients to be considered, and hen,',' ,. resulting conditions are suffi-

cient but not neccessary from a practical point of view. The structure of nonlineai
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equations is far from simple (see, e.g.,[6]), their number is large even for bilinear

and polynomial systems, and hence global identifiability properties are difficult to

establish in most applications.

The goal of this note is to extend the state isomorphism approach to the anal-

6 ysis of global identifiability in nonlinear systems. In addition to its analiticity we

assume that system (1) is locally reduced at z 0 (p) for all p E l , i.e., it satisfies

both the controllability rank condition (C.R.C) and the observability rank condition

(oR. C)'7].

The problem of global identifiability is stated as follows.

Problem statement: Given (1) and p E Q, find all ] E Q1 and systems of the form

f i (t,) f(:(t,#),) + u g(i(t,)) (2)0~, P) h(i (t, ,, i(0,f) = io(P) =-xo(P)

such that
- , (A)(U) = o(p) ) (3)

for all u G U[0,111.

It follows that we deal with a highly restricted problem of system equivalence.

* First, both (1) and (2) are locally reduced , and have the same subset A! in R' as

their state spaces. Second, in addition to the input-output map, the known system

structure is also invariant under the feasible class of local state isomorphisms. The

analysis is based on the construction of all such transformations. This ;dea has

been applied to linear systems[2,8], where equivalence transformations are linear.

Though local state isomorphisms between (1) and (2) generally are solutions of a

set of partial differential equations, their construction is relatively simple for locally

identifiable systems. We will also show that any local state isomorphism, preserving

the structure of a homogeneous system. is In,'a. Th, the method is very simple

for this class of systems, and the known conditions for global identifiability of linear
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and bilinear systems are special cases of the present results. The single-input case

* is considered for notational simplicity and the conditions can be readily extended.

11. IDENTIFIABILITY AND CONSTRAINED EQUIVALENCE

The following condition for identifiability is the immediate consequence of the

local state isomorphism theorem ([134[7]j9',[IO]) and the constraint (2) on the form

of the representations of (1).

Proposition 1: Consider p, Q,~ an open neighborhood V of ro( ) in R~, and

any analytic map A :V - R'~ defined on V such that

gi) (A(X),p) = g(f ;iI ) (6a)

h(A(;i),p) = h(i,p) (6c)

for all i E V'. Then there exists tj > 0 such that (1) is globally identifiable at p in

the experiments (xo(p),tT[0,t1 ]) iff conditions (4)-(6) imply P = p.

Proof: (Necessity.) Assume that $p, V, and A satisfy (4)-(6). Introducing

x=A-'(x) into (1) gives

tio~p = (aAa)' f((OO, p) + U 1A19i g(X) )(7
P'o = h(A(i),p), io(p) = A'(xo(p)).()

Select tj > 0 such that i(t,p) E V for all u c: f[0,111,3 where :i(f,p) is the so-

lution of the differential equation in (7) with the initial state ;io(p). By (ii) A is

local state isomorphism defined on V and hence L"'(P)(,u) = tio(P)(u) for all

u E U'[0,111. By (i) :io(p) - '(r 0 (if i-If.n'ildI (111) (7) is represented

by (2).Theref0Te,E"'(P)(U) (u for all u E U[0,t1 ] , and ~ ~p follows.
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(Sufficiency.) If P 5 p, P - p, then (2) is a local representation of (1) on some

neighborhood 11 of :io(p), and it is locally reduced. By the local state isomorphism

theorem for any such representation S of (1) there exists an open neighborhood V2

of II~p and a unique analytic diffeomorphism A defined on V2 such that S is of the

form (7). Therefore, 3 and A satisfy the conditions (4)-(6) on 17 = III InV. 03

Remark 1: Let (1) be globally identifiable at p. It follows from the uniqueness

of the local diffeomorphism A (see,e.g,,lO)) that the only pair (P,A) that satisfies

the conditions of Proposition 1 is (p,id,), where id, : 17 FR" denotes the identity

mapping. Conversely, A :' t'd, im plies P: p.

Remark 2: Hf certain initial states are completely known, write xO(P0

fx( 2)(p)]T)T, where x{1) represents the parameter-i ndependent components of X0.

Then (4) defines the constraints

() ()
(' ( )

on A. In the limiting (i.e.,parameter- independent) case axo x.~ and (8) is reduced

to

A(xo) =xo. (9)

Erample 1: Consider the system

2
ii P1X1 + P2X 1 X2  U X1 (0,P) =X 2 (0,P) = (10

i 2 P3 Xi + P 4 1 X2  =X1

Wit h Q1 ={p E R4, p, $ 0,j1pj < K R',K > 0} (10) is locally reduced at ro for

all p E Ql. We construct all local transformations A (A, A2 ) that satisfy conditions

(4)-(6). Since h(i,1i) [1 01:i, by (6 c)

-~t" LA(1W



whereas (6b) implies OA2 /ii = 0. Then (6a) is reduced to

(2 A2 (1 0 ) (A I + 12 (12)
p3 x.i2 A 2  ~ 8 2 8 2  pY3 + t2 2  (2

to be satisfied on an open neighborhood of the origin in R 2 . By the first equation

of (12), P, = pl, and

A2(k1,XF2) L 2. (13)
P2

Thus aA2 /a:i2 = P /P2. From the second equation f = P2P3/P2 and 0P/p2

P2P4/P2. Since p2 is arbitrary and h $ 0 by condition (ii), we have 4 = p4 . The

initial states are known, but (9) does not further restrict the one-parameter family

of feasible transformations given by (11) and (13), where f : 0 is arbitrary. Thus

* (10) is nowhere locally identifiable on Q. This result can be obtained also by the

methods presented in [1]. In addition we show, however, that parameters P and

04 are unique, independently of the value of h, and at fixed h = p2 the system

* becomes globally identifiable at all p C f?. As shown in [11], it is much more tedious

to establish these properties by the generating series expansion approach.

Remark 3: This example illustrates two important, though not completely

• general properties of the present method. First, note that the general solution

A of the set (6a)-(6b) of first-order linear partial differential equation depends on

arbitrary functions (see,e.g.,J12]). If (1) is locally or globally identifiable,then at

most a finite number of these solutions satisfies the additional constraints (6c)

and (8). Therefore,restricting consideration to diffeomorphisms satisfying (6c) and

(8) one can expect that there will be no need for actually solving the differential

equations. As Example 1 shows, this may be the case even for locally unidentifiable

systems. Second, the use of the local state isomorphism theorem restricts the scope

of Proposition 1 to some interval [O,t ]. Hlwv. if \ salisfies (5) and (6) for all

i E Al, then the transformation is global and 1 I. 0 is arbitrary.

6

I I



Remark 4: For a time-invariant, structurally controllable and structurally ob-

* servable parameterized linear system represented by (A(p), B(p), C(p)) we have

A(:) = Ti, where T : R' - R' is a nonsingular linear transformation[12]. Then the

further conditions of Proposition 1 are reduced to T(f)lo(p) = xo(p), A(p)T(O) =

T(G)A(P), B(p) = T(O)B(P), and C(p)T(O) = C(P), where 0 denotes the entries of

T and emphasizes that 0 is to be determined in addition to /i in order to satisfy

the equations.The linear system is globally identifiable at p iff the only solution is

*P = p, and then T(9) = I follows as mentioned in Remark 1. This agrees with the

results of Walter[2,3,8]. Since state diffeomorphisms are linear, a similar identifi-

ability condition can be formulated for bilinear systems with a linear observation

function[14].

IIl. HOMOGENEOUS SYSTEMS

We now show that there exists a more general class of systems such that consid-

erations can be restricted to linear state transformations when solving the problem

stated in Section I. The result is based on the following lemma.

Lemma 1: Assume that f(.,p) and g(',p) are defined by homogeneous coordi-

nate functions, i.e.,there exist integers k and £ such that

kf(x,p) = (af(x,p)/8x)x , fg(x,p) = (9g(x,p)/x)x (14)

at all z E M; and the observation function is linear, h(x,p) = C(p)x. If P - p in

the experiments (0, [[0, tI]) for some tj > 0, then there exists a nonsingular linear

transformation T : R ' -, R' such that x(f,p) = TzF(I.1 ) for all 0 < t < ti, where

x(t,p) and , denote the solutions of the differential equations in (1) and (2),

respectively.

7



Proof: Introduce the notation p(xu) f(x,p) + ug(x,p) and ,(x,u) =

* f(x,) + ug(z, 3). By Proposition 1 there exists an open neighborhood V1 of io = 0

such that x = A(ai) on V1. Thus we can write (1) and (2) as

SO(AU), AO = A(zO) = 0 (15)

and

X= (i,U) , Fo = ZO = 0 (16)

* respectively.By the local weak controllability of (16) at io = 0, there exists an open

neighborhood 2 of :o such that any i E V2 is reachable from io. Therefore,the

equality

y = C(p)() = C(P)i (17)

holds for all £ e V = V' NV,. Let cj and E, denote the jth rows of C(p) and C(P),

respectively.By (17) for any X E V, for any i > 0, any constant controls u I ,... ,u

* and sufficiently small sl,... ,si > 0 we have

0.. .0 -7 0 = c(i, 0 ... 0 0 o X(i)) (18)

forj ,.m. Here3 and5 denote the flows of T1 (A) = p(A,u' ) and p(=i)=

3(i,u'), respectively. Differentiating with respect to si,... ,s,, at 0 yields

LW,(..(L., (cj A)) ... ),\() = LO,(..(L .,(6j£)..) (19)

where L~, denotes Lie differentiation along the vector field W' [7]. Differentiating

(19) with respect to i and multiplying by F gives

" d( , .. (L ,(c ) ) . .) ,-z:) = (d(L,, ( ... (LO.( jf ) ... ), , (20)

where the differential d(L¢,(... ):.. iS rPe,r-sented by a row m-vector

valued function,and the vector field witi th,', '.. , , functions ( .... ,:F,) is

also denoted by i. Assume first that k = . By (14) we have

8i



1 (21)

* Then

*where -*,] is the Lie bracket of two vector fields (see,e.g.,[91). By (14) [ '~1,:i (I1-

k) '-' ,and hence the second term on the rhs of (22) is (I -k)lk(L' .- (L4 .(j ))).-

Therefore,rearranging (22) yields

Since p is a k-order homogeneous function of A, analogously rearranging the lbs of

(19) and continuing for Ci-2,* '..0 yields

From (20) and (24)

* Since the O.R.C. is satisfied at 0, by analiticity of (1) there exists an open neigh-

borhood of 0, also denoted by V, such that the vectors d(L~ ( ... (L'P'(c; A) ..4k

span an n-dimensional space at all C- V [7J. Thus equations of the form (25) imply

j~i)i = (.i)(26)I for all i E 1V. By (26), c9A/8.i is a zero-order homogeneouos function, i.e.,

aA a A(27)Ifor all i E V and all a C- R' satisfying ail I .and by 0 t V it is defined at

C = 0. Setting a = 0 in (27) shows that 8A/O9i() a A/i9:(:i) at all :i C V, andI9



A(X) = Ti. By (14) A(:) = Ti satisfies (5) and (6) for all i E Al, and hence

x(t,p) = Ti(tj) for all 0 < t < tj.

For i < m introduce the additional state variable x,+,, an (n - f)-order

homogeneouos function r : I -- R', where Ip is an open subset in R' such that

r(s) $ 0 for all s E Iq, and input i = u/r(x,+1 ).Let x" = (x T,x,+i)T , j- =

(iT,i,+ 1 )T, and consider the augmented vector field " : M x I R-- ' and

matrix C" defined by

* ( ) - (- + ± ( ) , ( 28

Augmenting (1) and (2) we have

= (x,), y= Cx, = (XT,o)T,  (29)

and
" = (,), y = i, i = (, 3 )T,  (30)

where ?" and C* are defined by (28) at the parameter value . Let Ep and

Ei;( ) denote the input-output maps of (29) and (30), respectively.Since

P * ))= ( (31)

p implies E2"°'p) (u) = -)(u) for all u E U[0,t1 ] and for all 3 E I0.

Since in+1 = Xn , in spite of uncontrollability of (29) and (30), the only

isomorphism between F and x" is given by A* : ---+ (AT(j),j,+i), and then

y = C'A'(i-) = C'i" for all F" C V x I1. The augmented systems are homoge-

neouos,and the previous part of the proof applies and ields

( A(:E)/a8i 0 (i~( (32'
0 XX \) )I-

This is valid for all 5' V, and thus (26 and (2, fl. ,. Fr rn f the pr f i,

analogous with 1 = ur(x, +).1

10



Replacing A(:i) by Ti in (4)-(6) gives a simple condition for identifiability of

homogenous systems in the experiments (OU[O,t 1]), t1 > 0 arbitrary. This result

can be slightly extended by considering a set I, g R"', nj < n of feasible initial

states r I). Define I4 = (p); x ) E I,}. System (1) is globally identifiable at

p E fl in the experiments (I,,1r[O,t1 ]) if and only if there exists zo(p) E I such that

(1) is globally identifiable in the experiments (zo(p),U[0,tl]). FRom Proposition 1

and Lemma 1 we have the following result.

Proposition 2: Assume that system (1) satisfies the assumptions of Lemma 1,

it is locally reduced at x0(p) for all p E f ,and for all x0  E 1, and 0 E 4. Consider

p, 3 EfQ, and any linear transformation T(O) : Rn - RK such that (i) T(O)Xo(p) =

Xo(p) for all To E , (ii) T(O) is nonsingular, and (iii) f(T(O)i,p) = T(O)f(:,

g(T(O)i,p) = T(O)g(i,f), and C(p)T(O) = C(P) for all i E Al. Then (1) is globally

identifiable at p in the experiments (I,U[0,i1 ]) for arbitrary tj > 0 iff conditions

(i),(ii),and (iii) imply P = p

Proof. As shown in the proof of Lemma I for x0 = 0, z = Ti is a global

transformation defined at all i E A if (1) is homogeneous. Assume that T satisfies

the constraint (i). By analiticity of local diffeomorphisms, A(i) = Ti for any z0(p)

Sand for any local transformation A defined on some open neighborhood of r0(p),

and the proposition follows. 0

The identifiability conditions for linear and bilinear systems, discussed in Re-

mark 4 are particular cases of Corollary 1 with m = 1, 1 = 0, and m = 1, t = 1,

respectively.A further application,particularly important in ecology and chemical

reaction kinetics, is to the system

i,(t,p) = zT(t,p)A(t)(p)z(t,p) + b,(p) , = 1,... ,7,
(33)

y(t,p) = C(p)X(t,p) , r(O.P =TP).

where A(' i 1,... ,n, are n x n svmmetric n ,iilircs. Denote a"' [A (k) and

= [T(6)],j , i,j,k = 1,... ,n, then we have the following result.

11



Corollary 1: Consider P,f E 11 and any nonsingular linear transformation

*T(O) :1?" -- R" such that T(G)zo(p) zo(p) for all 4~l El1, and

b(p) = T(O)b(P3) , C(p)T(O) = C(13) (34)

4 ~ ~Z~a~)(p)0,a a~~0r i,j, k = 1,... n. (35)

System (33) is globally identifiable at p in the experiments (IpU[O,t1D), where

0 G 4p, and t1 > 0 arbitrary, iff the above conditions imply Pi = p.

Remark 5: As mentioned in Remark 1,global identifiability also implies T(O)

L.

Exam ple 2: Consider the system

(36)

i 2 = P 2 X1 X2+P 3 Z 2 +U Y =Z 2 ,

which is of the form (33) with

(0 p, / 2  ( 2) (0 P/ )(7A() p (~p]/2 0 A~ A(p) = KP2/2 p}'3

and C [0 1]. It is easy to show that (36) is locally reduced at zo =0 for

aliPE Q =(p E R3 ; pi 0 , pi- p2- P3 54Ojpif < K ER,K >O0}. By

Proposition 2 we consider the nonsingular linear transformations T(O) :R 2 - R.

Since b(p) = b(3) and C(p) = C( ), conditions (34) restrict T(0) to the form

T(O)= ( -12 01 2 ) (38)

and T(O) is nonsingular for any 612 #1. Then the norntrivial equations in (34) are

P1- 012 (PI - 02) = P1- 012P1, 012 3 0 12P]~ , 2 P2 - 012P2, and 3 = 812P2 + P3

At 012 = 0, =p and T(O) = L. Except pi Thth,,r- exists. however,a second

solution 012 =(p, - p3)/p2, which yields P, =P 3  P2 -- P2 -P3 -- P1 , and 3 =pi

Therefore,the system is locally identifiable at all p E Ql, but it is globally identifiable

12



only on the subset {p E 1;pi = p } of zero measure in Q?. We note that by the

lack of applicable necessary conditions for global identifiability, (36) is the first such

nonlinear system presented in the literature (see,e.g.,[1],[2J,3],[6],[ll][15].

By Corollary 1 we can study also identifiability of (36) with nonzero initial

conditions.In the most general case xl(O,p) = p4 and x2 (0,p) = ps are additional

parameters. By condition (i) of Proposition 2 the additional constraints on (38) are

(1 -012)P4 +0125 = p4 and P5 = Ps. It follows that 73s is unique and there exist two

solutions for P4. The system becomes, however, globally identifiable at all p E 0

if p4 = x0,1 is known and there exists a point xo,i #- 0 in I, (i.e., the constraint

P4 = P4 implies 012 = 0 ).

I;
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Abstract

By following the kinetics of a reaction through the use of certain classes of

measurable quantities instead of the concentrations of all species neither

the parameter values nor the reaction scheme are necessarily unique.

Identifiability deals with the problem of determining whether an experiment

is able to supply the desired information on the parameters of an assumed

kinetic model, whereas indistinguishability means that two different reaction

schemes generate the same values for the observed quantities in any possible

experiment. This paper examines these issues for the case of first-order

reaction systems and both problems are solved by the same analytical tools.

The method involving Laplace transforms is conceptually simple, easy to

apply, and is also used to derive simple rules to test distinguishability of

reaction schemes. Another approach based on similarity transformations is

used to generate all the first-order reaction schemes that are

indistinguishable from a given one.
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* I.Introduction

Kinetic experiments are often conducted under conditions such that the

reactions are first-order or pseudo first-order, with rate coefficients

* proportional to the concentration of a reaction partner in large excess.

Interpretation of experimental data by postulating a mechanism and adjusting

the values of some unknown parameters has received due attention in the

*literature 2 6. The problems usually considered are techniques of parameter

estimation and statistical interpretation of the estimates in terms of

confidence intervals or joint confidence regions. Kinetists are aware that

there remain further fundamental questions to ask.6 First, are the derived

parameters unique, or are there further parameter sets generating the same

values for the observed quantities? Second, is the selected model the only

* plausible one which will give an acceptable fit to the data? These questions

of parameter and model uniqueness are not trivial even for very simple

mechanisms if not all concentrations are directly observed.

*For example, consider the consecutive reaction scheme

A - B - C(.)

studied in several works3 "5 assuming that initially only A is present in the

system and the reaction is followed by observing the single property

y - CA[A] + e,[B] + ec[C) (1.2)

which may represent absorbance, conductivity, pH, or ligand release. We

regard y as absorbance and CA, to and cc as molar extinction coefficients.

Frequently the intermediate species B cannot be isolated and separately

investigated, hence to is an additional parameter to be estimated

simultaneously with the rate coefficients k, and k2 from the time-absorbance

data. As is well known,3 "5 under these conditions the solution of the

estimation problem is not unique because of the slow-fast ambiguity, thus for
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any solution k-(kl, k2 , CB )T there exist a second solution k-(kl, k2 , (e)

given in terms of k by

k, - k2 ; k2 - kl; fB - CA + k1(eB-'A)/k2. (1.3)

In addition to nonuniqueness in parameter values there may be ambiguities in

the model structure. As emphasized by Milligan et al., 5 a qood fit does not

necessarily mean that the model is correct, since there exist further

reaction schemes generating the same absorbance curve. They mention the

schemes

kl k1

S: A B -- C S S2 : A - B (1.4)

k2  C k3

whereas Jackson et al.4 claim that the absorbance data can equally be

described by adopting the reaction schemes

* A A - B k, k2
S3 : C , S4: , 5: A - B . C. (1.5)

Bk 3 \ / 1 k2  k -2
k2  C

The purpose of this paper is to present a systematic and rather general

analysis of the problems of parameter uniqueness, called identifiability, and

distinguishability of different first-order reaction schemes. While

identifiability has received a fair amount of attention in application areas

such as automatic control,7 compartmental modeling,8 and chemical

engineering,9 in chemical kinetics results have been restricted to

discovering nonuniqueness of the parameters in particular reaction systems

through the use of methods of limited applicability. Similarly, the general

results available on distinguishability are rarely applied to kinetic

models,(9c) though without systematic analysis mistakes can be made. We will

0 1
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show that the schemes S2, S3, and S5 in (1.4) and (1.5) are, in fact,

distingishable from the one in (1.1), whereas there exist indistingushable

schemes overlooked in previous studies of this simple system (for the

illustrative purposes of this paper we shall assume a measurement of the form

in (1.2) in most examples).

Identifiability and distinguishability are so closely related that all

* the required machinery is introduced by discussing the first and somewhat

simpler problem. Identifiability concepts are also needed to properly

understand some distinguishability results. For example, we show that (1.1)

and the scheme S, in (1.4) are indistinguishable, but their identifiability

properties are substantially different, since using the latter model the

desired absorbance curve can be generated at infinitely many different

parameter values.

We will regard two reaction schemes as indistinguishable if and only if

they generate exactly the same values for the observed quantities (e.g., for

* absorbance in the case discussed here) and hence employ a deterministic

framework by restricting considerations to idealized experiments with the

ability of observing the measurable variables at any instant of time

error-free. Deterministic identifiability is a fundamental property of a

kinetic model, since unidentifiability in this idealized experiment implies

unidentifiability in any realistic experiment with constraints on sampling

and measurement accuracy. Similarly, models indistinguishable in the

deterministic sense remain indistinguishable in any experiment involving thE

same measurable quantities. It should be emphasized that the deterministic

analysis is only the first step in establishing uniqueness of parameter

estimates or uniqueness of a kinetic model. In fact, inadequate design of

the identification experiment and/or large measurement errors may result in

I-
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highly uncertain estimates even for the parameters of an identifiable model.

Similarly, a set of noisy observations may be compatible with the responses

of several models in spite of their deterministic distinguishability. Since

the analysis of these problems requires assumptions on the experiment design,

on the structure of measurement errors, and on the values of the parameters,

it can usually be performed only a posteriori after carrying out the

experiment and estimating the parameters. The deterministic analysis is,

however, an a priori procedure for detecting a fundamental class of

ambiguities, thereby assisting the selection of possible models and the

variables to be observed in the intended experiments.

The paper is organized as follows. In Section II we introduce the

concepts of deterministic identifiability and offer two general methods of

analysis based on Laplace and similarity transformations, respectively. The

Laplace transformation approach is also used to study distinguishability in

Section III and enables us to formulate a number of propositions, thereby

considerably facilitating the required algebraic manipulations. The

similarity transformation approach is fully exploited in Section IV offering

a procedure to generate all first-order reaction schemes that are

indistingishable from a given one. In particular, results are peresented for

the scheme in (1.1). The methods can be most easily understood by solving

simple problems and we present a number of examples for this purpose.

II. Identifiability

A first-order reaction scheme under isothermal condition gives rise to

the kinetic equations of the general form

x(t,k) - A(k)x(t,k) x(O,k) - xo(k) - [ ]) (21)

where x(t,k) is the n-vector of concentrations, depending on the p-vector kcQ
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of unknown parameters, OcRP representing the set of possible parameter values.

We assume that 0 is a bounded open set in RP , thus the parameters are a

priori independent and restricted only by inequality constraints (e.g., by

nonnegativity of the rate constants). In the initial concentration vector x,

we distinguish between the components in x l) , selected to specify an

experiment, and those in x(2), depending on unknown parameters (e.g., initial

conditions in x(2) can be parameters themselves). In addition to the kinetic

equations (2.1) our model consists of the linear observation function

y(t,k) - C(k)x(t,k) (2.2)

where y(t,k) is the m-vector of observable quantities, also called the

response function of the model. As is seen, the observation matrix C(k) ma"S

also depend on unknown parameters.

Consider a kinetic experiment specified by the initial concentrations

x41) and let y(t) represent the response function observed over some time

interval T. The basic assumption of deterministic analysis is the existence

of a nominal parameter value keQ such that y(t,k)-y(t) and this function can

be observed at all teT error-free. Two parameter values k and kok are

indistinguishable in the considered experiment if

y(t,k) - y(t,k) (2.3)

for any teT. The analysis of identifiability is based on eq. (2.3) and the

following situations can be encountered:

i) if the solution k-k of (2.3) is unique, the model (2.1)-(2.2) is said

to be uniquely identifiable at kefl;

(ii) if there exist at most a finite number of distinct solutions kk, the

model is said to be identifiable at k;

(iii) finally, with an infinite number of solutions in (2.3) the model is

said to be unidentifiable.

IP
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4 Since the norinal parameter value k is not known a priori, the above

concepts should be generalized. It would be easy to require identifiability

at every kcO. In most models, however, there exist exceptional points or

lower dimensional surfaces in 0 where the model is unidentifiable in spite of

its identifiability at the majority of points. Properties that hold at

almost every point of the parameter set are usually called structural

* ones.10 Therefore, the model is said to be structurally identifiable

(uniquely structurally identifiable) if it is identifiable (uniquely

identifiable) at almost every keo, thus except at the points of a set of

measure zero in 0. As shown in our examples, the existence of such

exceptional subsets does not decrease practical utility of the concepts.

In view of the extensive list of publications 7 -9 on the identifiability

40 problem we restrict considerations to two basic methods of analysis enabling

one to test first-order reaction systems of moderate complexity without

programming efforts. Both methods will also be needed when studying

*distinguishability of different schemes.

1. Laplace transformation approach

Taking the Laplace transform of the differential equations (2.1) we

obtainI

sX(s,k) - A(k)X(s,k) + x,(k) (2.4)

where X(s,k) is the transform of the concentration vector x(t,k) and s

denotes the complex argument. 1 1 Taking also the transform of (2.2) and using

(2.4) gives the Laplace transform

Y(s,k) - C(k)[sI-A(k)] "1  x,(k) (2.5)

of the response function y(t,k). Note that in spite of the general formula

(2.5) the linear equations (2.4) can be solved for X(s,k) by the elimination

technique and no matrix inversion is necessary to obtain Y(s,k).

I-
d
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Since (2.3) is satisfied for all te T if and only if

Y(s,k) - Y(sk) (2.6)

for all se q, where T is the field of complex numbers, we can restrict

considerations to (2.5) without solving the kinetic equations. Each

component Y, (s,k) of the m-vector Y(s,k) is a rational function of the form

Oi sn-I + +i

Yi (sk) - +1 (2.7)' sn+ I sn 'l+ . . .+  I' 2 7

where the coefficients Oi generally depend on k and x(l) . After simplifying

0$ the possible common factors between the numerator and the denominator poly-

nomials in (2.7), the vector 0 of "moment" invariants is formed by all dif-

ferent coefficients in Yi(sk),...,Ym(s,k). Since (2.6) holds if and only if

O(k) - O(k), (2.8)

the analysis of identifiability is reduced to the problem of determining the

"* number of solutions in the set (2.8) of polynomial equations.10,12 The

following examples demonstrate the simplicity of the method and the presence

of exceptional subsets of zero measure, taken into account in our definitions.

Example 1.1. Consider the reaction scheme S, in (1.4) with the response

function (1.2) and initial concentrations [B]o-[C]o-O. The Laplace transform

of (1.2) is given by

C S2+[ cA(k 1+k 2) + e k I]s + C k k2
Y(s,k) - s3 + (ki+k.+k 2 )sZ + k1k2 s [A], (2.9)

Since CA C LA and -C " cc are known, the independent equations of the form

(2.8) are

HA(k_+k 2 ) + -Bkl .A(k.1+kz) + (Bkl (2.10a)

4. l im Ilimi l i i '
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k + k., + k2 - k, + k-1 + k2 (2.10b)

kk 2 - kk 2  (2. 10c)

(a) Assume first that *1 - CBOCA is also known. Then (2.10a) and (2.10b)

give kl-kl and k.1+k2-k.,+k 2 . Using now (2.10c) we obtain the unique solution

-* IK-k. There are, however, an infinite number of solutions if k1-O or k2-0.

These exceptional points form two planes in R3 , and thus are sets of zero

measure and hence the model in uniquely structurally identifiable if CB is

known.

(b) Consider the more general case with parameters k-(ki ,k- ,k2 ,cB )
T .

Since (2.10) consists only of three equations to determine four parameters,

*the model is unidentifiable.

Example 2.2. It is easy to show that the scheme in (1.1) is structurally

identifiable, but not uniquely. The Laplace transform of (1.2) is given by

sL - 2 + ((Ak2 + LBkl)s + ccklkZ

s3 + (kl+k2)s + k1k2 s [A 0  (2.11)

and with known 7A C LA and Ec - cC the independent equations of the form

(2.8) are

LAk2 + cBkl - LAk2 + L8 k,

k+ k2 - k, +, k2  (2.12)

kj2- kjk2

which clearly admit the second solution (1.3). The exceptional subsets are

again k1-0 and k2-0, where the model is unidentifiable. Notice that eg given
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by (1.3) may be negative and since this is clearly unphysical the ambiguity

is resolved in certain cases, depending on the value of the parameters k.

In Example 2.1 with CB unknown we have more parameters than equations and

hence unidentifiability follows immediately. Though (2.8) generally contains

at least as many equations as parameters, the analysis of structural

identifiability is very simple.As shown by Vajda using the implicit function

*theorem, 13 the model is structurally identifiable if and only if rank J(k)-p

for some keQ, where J-a4/ak denotes the Jacobian matrix of 4, and p is the

number of parameters. The condition is met if and only if det J(k) (or its

principal minors in case of a nonsquare matrix) do not identically vanish. If

rank J(k)-q<p for all keil, then one can select p-q parameters such that by

fixing their values the model becomes structurally identifiable with respect

to the remaining free parameters. Therefore, the integer q-rank J(k) is

called the number of determinable parameters and will play an important role

in further sections. As shown in Example 2.1, the number of determinable

* parameters is 3, since the model is identifiable with es fixed.

Remark 2.1. Since the elements of J(k) are analytic functions of the

parameters, rank J(k) achieves its maximum value at almost every ken.

Throughout the paper rank J(k) denotes this maximum or "generic" rank of

J(k).

Remark 2.2. Though identifiability properties have been defined for a single

experiment specified by the initial concentrations xo
( ) the analysis can

easily be extended to a set of experiments with initial conditions xO(1)eIcRn.

Indeed, the elements of J are also analytic functions of the components in

it XOM and similarly to Remark 2.1, structural identifiability at a single

xOeI implies identifiability at almost every xo(1)cI. There can exist,

however, exceptional points where identifiability is lost, e.g., selecting a
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stationary state as initial concentrations in the experiment.

Remark 2.3. The number of components in the "moment" invariant vector 40 is

at most 2mn, which is an upper bound on the number of determinable parameters.
0

Following the reaction by the use of a single quantity and considering only

rate coefficients as unknown parameters the upper bound is 2n-l.

Though generating the Laplace transform (2.5) of the response function

is usually not very tedious, it can considerably be simplified by taking

advantage of the specific method proposed by Bossi et al.14 As discussed,

for testing structural identifiability we also need the Jacobian matrix a8/ak

and its determinant (or principal minors), which can easily be evaluated.

The analysis of unique structural identifiability requires, however, the

solution of the polynomial equations (2.8). It should be emphasized that

this step may be considerably more difficult than in Example 2.2, where

nonuniqueness follows from interchangeability of the rate coefficients. As

shown by Norton1 5 in his exhaustive analysis of first-order reaction schemes

(linear compartmental models) with 3 species, sources of nonuniqueness are

generally more subtle and the functions relating the different solutions more

complicated. While symbolic languages such as REDUCE and algebraic

manipulation subroutines are valuable tools in solving the polynomial

equations,1 6 with some persistency the solution can also usually be obtained

by hand.

2. Similarity transformation approach

This method is based on introducing the new variables x defined by x-Tx

into (2.1) and (2.2), where T is an n x n nonsingular matrix. The transformed

system is then described by

x(t,k) - T-1 A(k)Tx(t,k), xO(k) - T'Ix(k)

y(t,k) - C(k)Tx(t,k). (2.13)

IywrWtPPI Vk)l
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By the algebraic equivalence theorem of linear system theory 17 a

similarity transformation does not change the response function, thus

y(t,k)-y(t,k). Let f denote the vector formed by the entries in T and

introduce the notation T-T(f). Since T is arbitrary, the elements of f are a

priori free with the only constraint det T(f)oO. While the response is

invariant, the system matrices and initial conditions are changed according to

A(k,f) - T-1(f)A(k)T(f), (2.14a)

Z(k,f) - C(k)T(f), (2.14b)

and

x,(k,f) - T'1 (f)x(k), (2.14c)

* where A, C, and x, depend on f in addition to the original parameters k. Now

we check how the knowledge of the system structure restricts the possible

values of f. For simplicity assume that C and xo are completely known (i.e.,

*do not depend on unknown parameters). Then C-C and xo -xo, thus (2.14b) and

(2.14c) imply the constraints

C -CT(f), x0 - T(f)xo . (2.15)

Further constraints follow from the structure of the matrix A. If aij(k)-O,

then we also require aij(k,f)-O, where aij and aij denote the corresponding

entries in A and A, respectively. All constraints form a set of equations

for the parameters f. This set always admits a nominal solution fo such that

T(fO)-I and the transformations (2.14) yield the original system matrices.

The existence of a second solution fofo means, however, that the knowledge

of the response function y(t,k) and all the available structural constraints

does not specify the transformation matrix T(f) and hence A, C, and xo

uniquely; thus the model is not uniquely structurally identifiable.

L1o o pu iytm rns
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Similarly, an infinite number of solutions for f shows unidentifiability of

the model.

If C and/or x. also depend on unknown parameters, constraints of the

form (2.15) do not apply but we still have some constraints on f from the

partial knowledge of C and x,. A formal description of the method is rather

lenghty18 but it can easily be understood with the aid of the following

example.

Example 2.3. We use the similarity transformation approach to solve the

simple identifiability problem studied in Example 2.2. The reaction scheme

in (1.1) is described by

[kc o o] [x0i1

A(k) - k1 -k2 0 , x(t) 0 (2.16)

* 0 k2o 

C - ( 'A (B CC]

where x0, 1  -[A]0. The transformation matrix is a priori arbitrary, thus

fl f2  f3
T(f) f f5  f6 (2.17)

f7 fS f9

with the only constraint det T(f)oO. Since xo(k)-x0 is completely known, the

constraint in (2.15) applies and yields f1-1, f4-O, and f7-0. According to

(2.14b) the transformed observation matrix C(k,f)-(7A 76 C) is given by the

elements

CA- (A, IB - f2CA + f5 c + fsCC, CC - f3(A + f6 C + f9 (2.18)

Since cc - cc is known, (2.18) gives f3-0, f6-0, and fg-l, thus using the

knowledge of x0 and partial knowledge of C we end up with the transforma:im:.

matrix

A%~A



T(f) - 15 0(2.19)

* Apply now (2.14a) to form the transformed matrix A(kjf). Using the well

known formula1 9 T-'-(adj T)T/(det T) we obtain

I-f 2/f5  o
T-1(f) - 0 1/f 5 o0 (2.20)

0-fS/f 5  I

and hence

-[ , (k1(+f 2 /f 5) -klf 2 (1+f2 /f 5 ) + k2 f 2  01
A(kjf) ki k/fs k, f 2 /f 5 -k 2  0 (2.21)[-kj f 8 /f 5  -klf 8 f 2 /f 5 + k2 fa + k2f 5  o0

*Since for the scheme (1.1) this matrix should be of the form (2.16), the

constrai.nts imposed on (2.21) are as follows:

a3 l(k,f) - -kjf 8/f5 - 0 (2.22a)

a 1 2 (k,f) - -f 2 (kl-k 2 + kjf 2 /f 5 ) - 0 (2.22b)

a21 (k,f) - -al1 (k,f) - k,(2.22c)

a 3 2 (k,f) - -a 2 2 (k,f) - k2  (2.22c)

Eq. (2.22a) implies fe-0, whereas (2.22b) admnits two solutions given by

f- 0 (2.23a)

and
f 2 /f 5  - (k2-kl)/k1  (2. 23b)K Substituting (2.23a) into (2.22c) and (2.22d) gives f5-1., thus T-I and we

find the nominal solution f0 that yields the original system. (2.23b) gives

f5 -kl/k 2 and using (2.22c), (2.22d), and (2.18) one obtains the second

solution (1.3) for the parameters.
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In this example the similarity transformation approach requires more

calculations than the one based on Laplace transforms. Notice, however, that

in Example 2.2 we had to solve a quadratic equation to obtain the two

solutions, whereas a12 in (2.22) is the product of two factors. In more

complex cases, j solutions for the parameters frequently imply that (2.8) is

reduced to a single polynomial equation of degree j and numerical methods may

be required, whereas in the similarity transformation approach we may have

fewer variables (i.e., the elements of f remaining free after requiring

invariance of C and x o ) and equations of somewhat simpler structure.

MFurthermore, only the latter method enables one to generate all reaction

schemes indistinguishable from a given one. In particular, we will use the

matrix (2.21) to solve this problem in Section IV.

Remark 2.4. Assume that taking into account all the available constraints

there remain r free variables fl ,.. ,f, in A(k,f). Then the model is

unidentifiable and r further constraints (e.g., fixed values for r

parameters) are required to render the model structurally identifiable.

Therefore, p-r-q is the number of determinable parameters, defined previously

by q-rank a4/ak. This simple rule will be frequently used in the following

sections.

III. Distinguishability

In this section we consider two different reaction schemes denoted by S

and S, respectively. Both are described by models of the form (2.1) -

(2.2). Let y(t,k) and y(t,k) represent their response functions with the

initial conditions x(1)-xI) and parameters kcO and ke, respectively, where

0 and 5 are the parameter sets. Extpnding the concept of parameter

indistinguishability introduced in Section II to two different models, values

kef) and kE0 are said to be indistinguishable if
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y(t,k) - y(t,k) (3.1)

for all teT. Since the values of k and k are not a priori known, as a

further generalization of the concept the models S and S are said to be

indistinguishable if for almost every parameter value ken of the model S

there exists an indistinguishable value keb of S and vice versa, thus for

almost every Kie of S there is an indistinguishable parameter ken of S. The,

with appropriate selection of parameters both models generate the same family

of response functions which corresponds to the usual meaning of indistinguish-

ability. Since the property is an equivalence relation between the parameter

sets 0 and 5, indistinguishable models have also been called structurally

equivalent.20

Let Y(s,k) and (s,k) denote the Laplace transforms of y(t,k) and

0 y(t,k), respectively. Eq. (3.1) is satisfied if and only if

Y(s,k) - Y(s,k) (3.2)

for all seC. The components of Y(s,k) and Y(s,k) are rational functions of

the form (2.7) and for each nonzero coefficient Oi(k) of si in the numerator

(denominator) polynomial of Yi (s,k) there should be a corresponding nonzero

coefficient i( ) of si in the numerator (denominator) polynomial of

CYi(s,k). In this case Y(s,k) and Y(s,k) are said to be of the same symbolic

form.2 1 The same symbolic form is a necessary, but not sufficient condition

for indistinguishability.2 2 It implies, however, that listing the

,corresponding coefficients in 0 and 0 in the same order we can proceed to the

analysis of the polynomial equations

j(K) - O(k) (3.3)

where 0 and i denote the vectors of "moment" invariants for S and 9,

respectively. To establish indistinguishability one has to solve (3.3) both

for R in terms of k and for k in terms of k. The models are

VA .



indistinguishable if and only if both solutions exist at almost every k(O and

ke5, respectively. Frequently these solutions exist only over some open sets

DISc_ and 51c5, then S and S should be restricted to these subsets to ensure

their indistinguishability.

Example 3.1.(a) In (1.4) and (1.5) we listed reaction schemes claimed to be

indistinguishable from (1.1). With initial concentrations [B]o-[C]o-O the

Laplace transform of the response function for the latter model is given by

(2.11). Evaluating Y(s,k) for model S3 in (1.5) we can immediately conclude

that it has a different symbolic form and hence the two models are

distinguishable.

(b) Now we test distinguishability of the model S2 in (1.4) from (1.1),

denoted here by S. For S2 we have the Laplace transform

ScAs2+(cA k 3+a k + k 2)s+e Bk3 (k 1 +k 2 )
Y(s,k) - s3+(ki+k 2 +k3 ), 2 +k 3 (k 1 +k 2 )s

* which has the same symbolic form as (2.11) for S. Therefore, we consider

equations of the form (3.3), given here by

cAk 2 + Bkj- CAk3 + cBkl + cck 2  (3.5a)

Ccklk 2 - ek 3 (k 1 +k 2 ) (3.5b)

k1 +k 2 - k1+k2+k3  (3.5c)

k l k2 - k3 (k1+k2 ) (3.5d)

Substituting (3.5d) into (3.5b) reduces the latter to the equation (cm-B .

Since eB is a free parameter of the model S2, whereas £c is a known constant,

(3.5) can be solved for k-(klk2,78) T in terms of k-(kl,k 2 ,k3 ,£9 )T only at

0 this particular value of es, otherwise the equations are contradictory.

Therefore, the models are distinguishable. In practical terms, the two

models generate the same response function if and only if cB-cc. This
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particular choice is, however, meaningless since species B and C are then

lumped and both models loose identifiability. For example, the common factor

s+k2 appears in the numerator and denominator polynomials of (2.11). Notice,

however, that the models become indistinguishable if cc is an additional free

parameter of (1.1).

Example 3.2. Consider the schemes (1.1) and S1 in (1.4). By (2.9) and

(2.11) the Laplace transforms are of the same symbolic form, whereas

equations (3.3) are given by

CAk2 + e k, - (A(k.+k 2 ) + E8 k, (3.6a)

k, + k2 - k, + k-1 + k2  (3.6b)

kjk 2 - klk 2. (3.6c)

*We have a special situation here, since S is obtained by setting k.1-O in S

and hence S is called a submodel of S. Thus for any k-(kl,,k2,EB)T(T the

parameter value k-(k,O,k2 , EB)Ten satisfies (3.6) and we have to solve the

equations only for i in terms of k. The solution exists for all kc R4 and

the models are indistinguishable.

Requiring solution of polynomial equations makes the analysis rather

tedious. In a number of cases, however, we can take advantage of simple

conditions and avoid calculations. We list here the basic results with the

underlying mathematical ideas

Proposition 1. Let q and q denote the numbers of determinable parameters in

S and S, respectively. If qoq then S and S are distinguishable.2 3

Proof: Since rank ao/ak-q, the set 0(0) is a q-dimensional manifold in some

Euclidean space of dimension r*q. Indistinguishability implies 4 (f)-4(U)

and hence q-q.

Proposition 2. If S is a submodel of S and the number of determinable

parameters is q in both models, then there exist open sets Q1eQ and 61C such

O%
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that restricted to these sets S and S are indistinguishable.2 4 Proof: For

simplicity let k-(k ,.... ,kq+kq) T and k-( .  kq), thus S is obtained by

setting kq+i-O and it is structurally identifiable. Since S is a submodel of

S, we solve (3.3) only for k in terms of k. The solution is kj-ki,i-l,. q

if kq+i-O. Since rank 8 /k-q, by virtue of the general implicit function

theorem this solution can be extended onto an open neighborhood i of the

point (kl,....kq,0) in OcR q + l.

Proposition 3. If S and S are submodels of S and all three models have the

same number of determinable parameters, then there exist open sets ic

and Olc l such that restricted to these sets S and S are indistinguishable.
2 5

Proof: It follows from Proposition 2 and transitivity of equivalence.

Proposition 4. Consider structurally identifiable models S and S with the

same number p of parameters. If Y(s,k) and Y(s,k) are of the same symbolic

form and 84/ak is a square matrix, then there exist open sets 0 1c and £.Ic

such that restricted to these sets S and S are indistinguishable.2 6  Proof:

Since 8/ak and a8/8k are pxp matrices of full rank, O(Q) and (Tl) are open

sets in R.1 Their intersection contains some open neighborhood of 0OR P , and

hence is not empty.

Using these propositions our examples can be solved without

calculations. Since the number of determinable parameters is 3 for (1.1), 4

for S2 in (1.4), and 2 for S3 in (1.5), by Proposition 1 all these models are

distinguishable as shown in Example 3.1. Both models considered in Example

3.2 have 3 determinable parameters and hence are indistinguishable by

Proposition 2. By Proposition 4 considering cc as an additional free

parameter implies that models (1.1) and S2 become indistinguishable as

noticed in Example 3.1, part (b).
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* IV. Exhaustive modeling

Given a reaction scheme S and experimental conditions specified by the

initial condition x l) and observation matrix C we use the similarity

transformation approach to generate all the first-order reaction schemes

SI,$2 ... Sr that are indistinguishable from S. As shown in Section II, we

first construct the transformation matrix T(f) that preserves all known

properties of xO and C. With this T(f) the transformations (2.14) yield the

most general linear system that generates the original response function at

any kcO and f. In identifiability analysis we imposed further constraints in

order to preserve the structure of the reaction scheme and checked uniqueness

of the corresponding transformation. Looking for different models we don't

consider structural constraints here, but find the first-order reaction

* scheme that corresponds to the transformed system matrix A(k,f) by

introducing the parameters

n
Kj i - aji , i j ; koi1 a , (4.1)

j-i

where kji is the rate coefficient of a first-order reaction consuming species

i and producing species j, with index j-0 denoting a species not taken into

account among the n species of the original model. If no such species can

exist, then the mass conservation condition is assured by the constraints

40 n
aji(k,f) - 0 (4.2)

i-i

thereby further reducing the free components of f. The transformation (2.14)

and the reparametrization (4.1) then give rise to the most general (in terms

of the number of nonzero rate coefficients) first-order reaction scheme

such that with the parameters

d . " 'Z''" '' " '" ' ' " " ''"'~, J ' 'i . " ' %' * 'kk"
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kji (k,f) - aj j(k,f) (4.3)

we have y(t,k)-y(t,k). As will be shown, any model indistinqishable from the

* original S is a submodel of S and hence this latter is said to be the "frame"

model. In particular, at the nominal value f-fO the model S reduces to S,

thus S itself is a submodel of S. Let q and q denote the numbers of deter-

* minable parameters in S and S, respectively. If q-q, then S and S are

indistinguishable by Proposition 2.S is unidentifiable and by Proposition 3

its submodels with q determinable parameters form the set of reaction schemes

indistinguishable from S. The next example illustrates this case.

Example 4.1. As shown in Example 2.3., the transformed matrix for the scheme

(1.1) is given by (2.21). Apply the constraints (4.2) to the columns of

(2.21). It can be readily verified that these are satisfied by

f8 - l-f2-f5

thus we eliminated f8 from (2.21). Introduce the parameters

k -- k,/f 5  (4.5a)

k-1 - -klf 2 (l+f2/f5 ) + k2f2  (4.5b)

k2 - klf 2 (f2-l)/f 5 + f2 (kl-k 2) + k2 (4.5c)

k3 - kl(l-f 2-f5 )/f5  (4.5d)

then the "frame" model obtained is given by

A B (4.6)

k3  C K2

Since we have 5 parameters (i.e., 4 rate coefficients and the extinction

coefficient CB), whereas f2 and f5 are free, by Remark 2.4 the number of

determinable parameters q in (4.6) is 3. Therefore, (1.1) and (4.6) are

indistinguishable and the set of all reaction schemes indistinguishable from

',IN 1 11111

Ih
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(1i.) consists of the submodels

k2  A- B A - B
Si: A B - C , 2: S3 i3, "Nk 1  (4.7)

, k..1  k3  k 2  k3  C

of (4.6) with 3 determinable parameters and (4.6) itself. This can also be

verified by solving (4.5) for k and f in terms of k. Notice that (4.6) has

* no identifiable submodels with 3 determinable parameters, thus all models in

(4.7), though indistinguishable from (1.1), are unidentifiable. The example

gives the correct solution of the problem stated in Section 1.

(1 Consider now the case q>q. Then the original S and the "frame" model S

are distinguishable by Proposition 1. As discussed,for any keW (4.3) gives a

parameter value for the "frame" model S such that y(t,k)-y(t,k), but when

selecting a point Kc5 generally there exist no k and f that satisfy (4.3).

In other words, the "frame" model is too large in the sense that it can

generate all response functions of the original model, but the converse is

*not true. Therefore, the parameter set 0 should be restricted by

considering the submodels of S with q < q determinable parameters and trying

to solve (4.3) for k and f. Though these submodels are the only candidates

for being indistinguishable from S, actual indistinguishability should be

checked by direct calculation in each case as shown in the next example.

Example 4.2. We generate the indistinguishable schemes for the mechanism

k,

A _ ... B (4.8)

C

where [B]o-[C]o-O and the observed quantity is [B). Since the rate

expressions do not depend on [C], it is sufficient to consider the kinetic

equations for xj-[Aj and x2 -[B]:

'li / e MIM 1 ' 1,;11 ""
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-' k , X 2 0 (4 .9 )

xY 0 l 0 x1

*y - [ 0 1) [x']

The parameter vector is k-(kl ,k2 )T, and the model is structurally

identifiable, thus q-2. The most general transformation matrix satisfying

the constraints of the form (2.15) is

T(f) - [o 1 (4.10)

depending on a single parameter f. By (2.14a)

k(kf) (k1 +k2 ) - klf - (k + k 2 ) f klf2 (4.11)A~kf) -k, kl f (.I

Because of the presence of species C in the system, constraints (4.2) are not

imposed. Introducing the new parameters

K,- 8a2 - k

k.-1 - a12 - -f(k1+k2 +klf)
(4.12)

K2 - "a2 2 -a1 2 - f(k2 +klf)

k:3 - -all "21 - k2 +kl
f  .

we obtain the "frame" model with the structure (4.6), but only the 4 rate

coefficients as parameters. Since these depend on a single f, by Remark 2.4

the number of determinable parameters is q-3. Therefore, (4.8) and the

"frame" model are distinguishable. This can easily be proved also by trying
(.

to solve (4.12) for k and f in terms of k. Since k1 oO and (4.8) has 2

determinable parameters, the candidate models for being indistingushable from

(4.8) are only the submodels
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k,~ k2
si: A - B S2: A-. B - C (4.13)

k.1

of (4.6) with 2 determinable parameters. To obtain S1 we assume k2 -k3-0 ,

which is satisfied if f --k2 /kl, and hence 91 and (4.8) are

indistinguishable. There exists, however, no f value that satisfies the

equations k.1-k 3-0 at all k, thus S2 is distingushable from the other models.

Notice that 5 1 in (4.13), the only model indistinguishable from (4.8), is

structurally identifiable in contrast to the models found in Example 4.1.

As will be shown in our last example, for a slightly more complex

reaction scheme there may exist several identifiable models that are

indistinguishable from the original one.

Example 4.3. Interpretation of growth and decay data through the use of the

reaction scheme

k, k2-
• AB -

A (4.14)

k 3

has been discussed by Carrington.6  In addition to a statistical analysis, he

showed that with the initial conditions [B])-[C],-[D]0 -O and observing only

[B], (4.14) is not uniquely identifiable with 2 solutions for the

parameters. We solve here the distinguishability problem also stated by

Carrington in the introduction of his paper. As in Example 4.2, it is

sufficient to consider the kinetic equations for the species A and B only.

The transformation matrix T(f) is (4.10) and we obtain the "frame" model

(4.6) as in the previous examples.Its parameters are, however,defined now by

the relations

L.
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k1  - k

k-1  - -f(klf+k1+k3-k2 )

(4.15)
* k2  - klf 2 + (k3 -k2 )f + k2

k3  "k f + k3

* Both (4.14) and the "frame" model have 3 determinable parameters and hence

are indistinguishable. The further indistingiushable models are the two

submodels

K3 k, k, k2
SI: C i- A - B $2: A B -. C (4.16)

k.1  k. 1

of (4.6) with 3 determinable parameters.Notice that both latter models are

structurally identifiable.

Though the above results follow immediately from the propositions in

Section III, it is worthwhile to check solvability of (4.15). For example,

indistinguishability of $1 and (4.14) requires k2 -0. The solution for f is

real if and only if the parameters of (4.14) satisfy the inequality

constraint D-(k3 -k2 )
2 -4klk 2 >0. Thus the domain of indistinguishability is

restricted to an open subset of the original parameter space Q-R 3 . The

calculation also shows that $1 is not uniquely identifiable with two

solutions. Since the solution of k3 -O always exists and is unique, in the

case of 92 indistinguishability is unconstrained and the model is uniquely

structurally identifiable.

V. Conclusions

Assuming a reaction scheme and following the reaction by observing the

quantities accessible to measurements, the experiment does not necessarily

provide sufficient information to derive unique values for the rate



27

coefficients or other unknown parameters included in the kinetic model.

Similarly, there may exist further reaction schemes that are able to generate

the same values for the observed varibles.

*Both uniqueness problems are relatively easy to solve in the case of

first-order reaction systems with observed quantities depending linearly on

the concentrations. The problems of identifiability (i.e., uniqueness of the

* parameters) and distinguishability (i.e., uniqueness of the reaction scheme)

are so closely related that the same analytical tools can be used to solve

them. A very simple method is based on the application of a Laplace

transform to the kinetic equations and results in a set of polynomial

equations for the parameters. By solving these equations one can check

identifiability and find the equivalent solutions for the parameters if the

* model is not uniquely identifiable. The approach can be extended to test

distinguishability of two different first-order reaction schemes. The second

method we used is based on state-space similarity transformations. It may be

*less convenient to study identifiability than with the Laplace transformation

approch, but it can be used to solve the more general problem of exhaustive

modeling, thus to generate all the first-order reaction schemes that are

indistinguishable from a given one. Calculations can be considerably

simplified by taking advantage of general conditions for indistinguish-

ability, also formulated in the paper.
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Abstract

A general analysis of exact lumping is presented. This analysis can be employed

to any reaction system with n species described by a set of first order ordinary

differential equations dy/dt = f(y), where y is an n-dimensional vector; f(y) is an

arbitrary n-dimensional function vector. Here we only consider lumping by means

of a rectangula:- constant matrix M(i.e., , = ly, where Al is a row-full rank matrix

and : has lower dimension than y). It is found that a reaction system is exactly

lumpable if and only if the intersection of the invariant or the null subspaces of the

Jacobian matrix J(y) of f(y) for all values of y is nonempty. The intersection is

the null space of the lumping matrix M. If the dimension of the intersection is less

than n, nontrivial lumping schemes can be obtained. It is proved that the Jacobian

matrix can be represented as a linear combination of certain constant matrices and

the intersection of the invariant or the null subspaces of the constant matrices is

just that of the Jacobian matrix. After the determination of the intersections, all

possible lumping matrices can be obtained. The kinetic equations of the lumped

system can be described as dS,/dt = Alf(M-ST), A is any generalized inverse of

Al satisfying A !R = I,. Several implications of these lumpability conditions are

investigated as well as illustrated by some simple examples.

j2
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I. INTRODUCTION

* A problem which frequently arises in the study of chemical kinetics is the high

dimensionality and high degree of coupling of the reaction system. For example, in

many realistic chemical processes, particularly those related to petrochemistry, in-

* dustrial processes, combustion phenomena and atmospheric chemistry, the number

of reacting species can often exceed 102 - 10. It is impractical to incorporate the

kinetic equations for each species. Consequently, lumping, by which several species

* are treated as a single component, is a necessity. Thus one desires to reduce the

reaction mixture into a small number of lumps in the kinetic study for practical

purposes.

* For different reaction systems the suitable ways of lumping wAill likely be dif-

ferent. Even for a given system, there could be many lumped models, depending

on the objectives. However, one is not able to lump a system arbitrarily, because

* it is not always possible to find a model or a set of differential equations describing

the behavior of the lumped species. For lack of theoretical guidance, researchers

have often spent many years trying to find adequate lumping schemes by trial and

* error. The modelling of catalytic cracking for petroleum is a typical example.' Con-

founding this approach is the fact that the true lumped "species" may actually be

a combination or function of the original physical species.

Prior research dearly suggests the need for a rigorous study of lumping which

can give useful guidelines for choosing lumps. Wei and Kuo 2 gave a lumping anal-

ysis of unimolecular reaction system and their work was extended by Ozawa 3 and

Bailey4'. One of the authers6 presented a lumping analysis for uni- and/or bi-

molecular reaction systems. Such research has been largely confined to the uni-

and,/or bimolecular reaction systems with the focus on establishing the necessary

and sufficient conditions for "exact lumping". These analyses have shown that exact

3



lumping by a network of uni- and;'or bimolecular reactions is feasible only under a

very restrictive set of conditions. Studies of the pitfalls and magnitude of errors in

the use of empirical rate expressions for lumping many independent single or con-

secutive reactions were presented by Luss and his co-workers. 7 - ' Unfortunately

until now lumping theory was not sufficiently developed to give useful guidelines as

to which lumps to choose for many problems. There are still at least two important

problems within exact lumping, which have not been solved yet.

1. There is no known a priori way to determine the lumping scheme.

2. The kinetic equations can have higher order nonlinearities than quadratic.

For instance, this situation can arise in the presence of termolecular reactions or

when one uses equilibrium or steady-state assumptions to omit the intermediates

in reactions. In addition, nonisothermal processes or the use of empirical rate laws

can lead to highly nonlinear kinetic equations. Therefore a general lumping analysis

capable of treating arbitrary physical non-linearities is necessary.

Considering this situation, a general analysis of exact lumping is presented in

this paper. It can be used for any reaction system and the previously studied lump-

ing analyses of uni- and/or bimolecular reaction systems are special cases of this

analysis. In addition, this analysis can also be applied in other problems described

by a set of first order ordinary differential equations, such as problems arising in

classical molecular mechanics, chemical engineering and control theory.

Section 11 of this paper presents the conditions under which a reaction system

is exactly lumpable and the corresponding kinetic equations of the lumped system.

In section I, the relationship between the Jacobian matrix and its intersection of

the invariant or the null subspaces is discussed and the methods to determine the

intersections are derived. Section FI' provides some simple examples to which the

general lumping method is applied. Section V presents a discussion of the results.

1~ 4'I .
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II. THE THEORY OF EXACT LUMPING

A CONDITIONS UNDER WHICH A REACTION SYSTEM IS EXACTLY

LUMPABLE

0 Suppose the kinetics of an n-component reaction system can be described by

dy/dt = f(y), (1)

* where y is an n-composition vector; f(y) is an arbitrary n-function vector, which

does not contain i explicitly.

Here we only consider a special class of lumping by means of an i x n constant

matrix M with rank il(ii < n). If a system can be exactly lumped by the matrix

M, it means that for

= My (2)

we can find an i-function vector t(5') such that

dr,/df = t(S). (3)

@T
If y, is not lumped, row i of M is a unit vector e. = (00...010...0), and , = y,. In

this case, since the lumping is exact, the solutions for y, and y, by Equations I and

3 are the same. However, Equation 3 is simpler.

From Equations 1 and 2 we have

d !df = Mdy'dt = Mf(y), (4)

and upon comparing Equations 3 and 4 we have

Mf(y) f'y). (5)

o,5
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Differentiating both sides of Equation 5 with respect to y, we Obtain

MJ(y) = J(1)M, (6)

where J(y) and J( ) are the Jacobian matrices of f(y) and t(SJ, respectively. As

the rank of M is i, there must exist generalized inverses Al' of matrix A! satisfying

AIM = I, , (7)

where Ih is u-identity matrix. Multiplying both sides of Equation 6 from the right

by ,1, we have

' MJ(y)M = J(,)MlMI = J(5). (8)

Substituting Equation 8 into Equation 6, we obtain

AIJ(y) = MJ(y)MlM,

MJ(y)(I, - M) = 0, (9)

where I, is n-identity matrix.

Equation 9 is the fundamental equation in exact lumping. Although it was

41" Wderived by differentiation of Equation 5, it is not a local perturbation theory result.

This comment follows from the fact that we demand that Equation 6 and subsequent

ones be valid for all physical values of y. It is easy to prove that the image X of any

vector x upon mapping by (I, - AIM) is in the invariant subspace of (I, - IM).

Sincemlm inceY =(I, - .KlM)x,

• and

(I - AII)2  (1, - MA!).

then

S (I~- AIAIR

6

0',

--------------- :
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However, the invariant subspace of (I, - AIM) is the null space of Al, since

0
= M(I - MM)x (Al - MMAI)x

- (M - M)x = 0. (10)

40For any vector x in n-dimensional space, Equation 9 shows that

MJ(y)(I,, - MlM)x = 0,

MJ(y)R = 0.

Let

R = J(y)R.

Then

Mi = 0. (11)

Comparing Equations 10 and 11, we find that if X is in the null space of M, then so

is R. This is valid only if one of the following two conditions is satisfied: 1) The null

space of Al is the invariant subspace of J(y). Therefore, after mapping by J(y),

the image of vector "R in the null space of Al is still in the same space; 2) The null

space of Al is also the null subspace of J(y). In this case, R is a null vector and

Equations 10 and 11 trivially hold. Notice that these arguments are valid for any

value of y. Thus the conclusion is that there exists a nontrivial matrix Al only if

the intersection of the invariant or the null subspaces of the Jacobian matrix J(y)

for all values of y is nonempty. This condition is also sufficient. Let the intersection

be spanned by the column vectors of matrix X. Then we can use X to represent

the intersection. Since the intersection is a subspace of the n-dimensional space,

the column number of X is less than its row number. If the intersection exists, one

' ".";



can choose this intersection as the null space of the lumping matrix M. Then we

have

MX = 0. (12)

Transposing Equation 12, we obtain

* XTMT = 0. (13)

There are an infinite number of solutions of Al for a given X. This equation can

be considered as a set of linear algebric equations

XTm = 0. (14)

AI All the linearly independent solutions of m compose the matrix Al. In some situa-

tions we may desire to keep a number of species, say p, unlumped. Without loss of

generality we can consider the first p species unlumped and all lumped species are

composed of others. In this case the lumping matrix can be expressed as

A (P 0) (15):0 Ml )'

where I4 is the p-identity matrix; M1 is an (ni-p) x (n-p) matrix. There is an extra

restriction on determination of Al1 described below. Let the Jacobian matrices J(y)

and i() be blocked as follows:

-- r) ill J12)

-- J( J21 J22

where J 1 ,J 12 ,J 2 1 and J22 are p x p,p x (n - p),(n - p) . p and (n - p) (n - p)

matrices; J 1 ,J 2 , J 2l and J22 are p X p,p x (i -p). (n'-p) p and (n -p) (n-p)

matrices, respectively. Using Equation 6, we have

= (16)

8



Ai. J21 = J21 , (17)

*lP M J22 = J22 Al 1, (18)

J12 M. (19)

Let X 1 be the null space of M1 . Multiplying both sides of Equation 19 from right

by XI, one obtains the extra restriction

J 2 X3 = il-2Al X1 = 0. (20)

If the intersection of the invariant or the null subspaces of J 22 (y) exists and satisfies

Equation 20, then A1 l can be determined.

4We can treat the general lumping problem in another way by considering the

corresponding Green's functions of J(y) and J(s). For a given initial value of y,

J(y) and j( ) can be represented as J(t) and J(t). The corresponding Green's

6, functions G(I,T) and G(t,-r) satisfy the following relations:

dG(t,r)/dt - J(t)G(t,r) = 0, 1 > r. (21a)

SG(r,,r) = I,,. "4 (21b)

d6(t,r)/dt - J(t)6(t,'r) 0, 1 > r. (22a)

G(r,.r) =I. (22b)

From Equations 21 and 22 we have

d(MAf(t, - d(i,r)AI) i'di

= AIdG(t,-r)!dt - (de(t,7r),/dt)AI

A J(t)G(I.r) - J(t)G(t.r)0I

,. = i(t)(AIG(t,T) - G(t,r)AI)

9



Let

K(t,r) = MG(t, r) - G(t,r)M. (23)

Considering Equations 21 and 22, we have

= J(t)K(t,,-), t > -r. (24a)

K(r, 7-) = 0. (24b)

(dK(tr)/dt), = j(r)K(-rr) = 0.

Since K(T,-r) and (dK(t,'r)idt)j=, are all equal to zero, for t > ,r we have

K(t,r) -O, t > r

or,

MG(t,r) = G(t,-r)M, t > r. (25)

* Equation 25 shows us that the corresponding Green's function has the same

property as the Jacobian matrix. Therefore, all the results for the Jacobian matrix

also hold for the corresponding Green's function. Since the treatment is the same,

we will only consider the Jacobian matrix in the following sections. The Green's

function has some advantage in numerical calculations, since we can use it to find

the lumping scheme along a reaction path or a given region of initial conditions.

This prospect also opens up the possibility of finding approximate lumping schemes

valid only in a desired region of the composition space.

B. DETERMINATION OF THE KINETIC EQUATIONS OF THE LUMPED

SPECIES

For the exactly lumped reaction system, after deterining 11 we have

t(,) = Am(y), (6)

10
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or

f(My) = Mf(y), (26)

and this is an identity for any y. Therefore let

AY y = A-ly

and substitute it into equation 26,

= ((27)

Equation 27 does not place any restriction on Al except that AIMA = Ij. This

latter point is important in that the non-unique nature of Al does not effect the

form of the lumped equations (physical model) in the exact case. Thus the behavior

of the lumped species can be described by

ddt= M( ), (28)

where Al is anyone of the generalized inverses satisfying Ajfl = I. The kinetic

equations of the lumped species for a given AI are unique.

1I. THE PROPERTIES OF THE JACOBIAN MATRIX AND ITS INTERSEC-

TION OF THE INVARIANT OR THE NULL SUBSPACES

A. THE RELATIONSHIP BETWEEN THE JACOBIAN MATRIX AND ITS IN-

TERSECTION OF THE INVARIANT OR THE NULL SUBSPACES

In above section it was shown that a system is exactly lumpable if and only if

the intersection of the invariant or the null subspaces of J(y) for all values of y is

nonempty. The problem is how to determine the intersection. This task appears
d~difficult, because y can take infinitely many values. Before presenting the method

B 1



to determine the intersections, we will first discuss the relationship between the

Jacobian matrix of the kinetic equations and its intersection of the invariant or the

null subspaces for all values of y.

This intersection is first determined by the singular property of the Jacobian

matrix, due to the conservation of the total mass. Let m1 ,y, be the mass and con-

centration of species t, and let m be the vector of rn.. According to the conservation

of the total mass, we have

Sm Ty = constant. (29)

d(mTy);dt = mTdy/dt

= mTf(y) = 0. (30)

d(mTf(y)),Idy = mTdf(y)/dy

= mTj(y) = 0. (31)

This shows that at least one row of the Jacobian matrix is a certain linear com-

bination of the others. Therefore the Jacobian matrix is singular for all values of

y.

*Since J(y) is singular. the image space XA of the n-dimensional space upon

mapping by J(y,) is a subspace of it(y, is any given value of y and i can take

"* infinitely many values).

-."J(yi )I,, = AX i, (32)

*." where X, is composed of the linearly independent columns of J(y,) and has di-

mension less than n. It is easy to demonstrate that the union of all X, also has
re

dimension less than n.

Without loss of generality, let row n of J(y) be a linear combination of the

other rows. The linear combination is the same for any value of y. Therefore. any

12
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column vector of J(y) for any value of y is located in the same (n - 1)-dimensional

* subspace. Since X, is composed of the linearly independent columns of J(y,), X, is

in the (n - 1)-dimensional subspace. Since all X, are located in the same subspace,

then the union of all X,

V X=X -U, 2 U ... U-X, (33)

is also in the same (n - 1)-dimensional subspace.

Similarly, if k rows of J(y) are linear combinations of the others for any value

of y, the union X would be located in an (n - k)-dimensional subspace. This is

true for any reaction system if we consider the mass conservation for each atom.

Now we can prove that the union X is an intersection of the invariant subspace

of J(y). We have

J(y,)X E S(y,)I, E X, E X. (34)

* which is valid for any given y, and X has dimension less than n. Therefore X is

the intersection of the invariant subspaces of J(y).

Although mass conservation is a "trivial" conservation property leading to

0 lumping. the subspace X forms the starting point to determine other intersections

of the invariant subspaces of J(y). First we can demonstrate that any subspace in

the n-dimensional space containing X is an intersection of the invariant subspaces

of J(y). Then we can prove that if any other intersection of the invariant subspaces

of J(y), say Z, with equal or lower dimension than X exists, the intersection of Z

and X is nonempty and is a new intersection of the invariant subspaces of J(y).

These statements are proved below.

Let Y be a subspace containing X. For any y,. we have

J(y,))" E J(y,)I, E -E '-:: 1. (35)

Then Y is an intersection of the invariant subspaces of J(y).

13
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Let Z be a subspace with dimension equal to or less than that of X and the

intersection between Z and X is empty. It is easy to prove that Z can not be an

intersection of the invariant subspaces of J(y). Since

: J(y,)Z G J(y,)I, E X, E X, (36)

and the intersection of Z and X is empty, the image of Z upon mapping by J(y,) is

out of Z. Therefore, Z is not an invariant subspace of J(y 1 ). Consequently it is not

the intersection of the invariant subspaces of J(y). If the intersection of Z and X,

say IT, exists and Z is an intersection of the invariant subspaces of J(y), according

to Equation 36 the image of Z must be in WV. After mapping by J(y,), the image

of any vector in IV is still in it. Therefore I is an intersection of the invariant

subspaces of J(y). This implies that X and its subspaces, which are invariant to

J(y), have a central role in constructing all intersections of the invariant subspaces

of J(y).

Suppose Z is a subspace of X, then Z is an intersection of the invariant sub-

spaces of J(y) if and only if the image of Z upon mapping by J(yi) is the intersection

of Z and X,. To prove this point suppose that Z is an intersection of the invariant

subspaces of J(y), then

J(y,)Z E Z.

However, we also have

J(y 1 )Z E X,.

This means that the image of Z upon mapping by J(y,) is the intersection of Z

and X,. This condition is also sufficient. Suppose the image of Z upon mapping by

J(y,) is the intersection of Z and Xi. Therefore, the image of Z upon mapping by

J(y) for any value of y is in Z. Then Z is the intersection of the invariant subspaces

of J(y).

14



Let the intersection of Z and Xi be Z,. Then we can represent Z as follows:

Z = Z, UZ 2 U...UZ,. (37)

Equation 37 would be useful for determining the intersections of the invariant sub-

spaces of J(y) with dimension less than that of X.

We can consider this problem in other way. Suppose the intersection X has

been determined, and a subspace Z of it is invariant to J(y). Z can be described

as

Z = XS, (38)

where S is an (n - i) x m(rn < (n - i)) constant matrix. Notice that

J(y)X = XP(y), (39)

where P(y) is an (n - ii) x (n - fi) matrix, and

* J(y)Z = J(y)XS = XSQ(y), (40)

where Q(y) is an m x m matrix. Multiplying both sides of Equation 39 from the

right by S, we have

J(y)XS = XP(y)S. (41)

Comparing Equation 40 and 41, we obtain

XSQ(y) = XP(y)S. (42)

Considering that X is column-full rank matrix, one can always find a generalized

inverse X satisfying

XX = I,. (43)

Multiplying both sides of Equation 42 from left by X gives

XXSQ(y) = XXP(y)S,

15



SQ(y) = P(y)S. (44)

* Similarly, we can determine a generalized inverse S satisfying

S = 1,, (45)

Multiplying both sides of Equation 44 from left by S, we have

SSQ(y) = SP(y)S,

Q(y) = SP(y)S. (46)

Substituting Q(y) into Equation 44, one can obtain

SSP(y)S = P(y)S,

"(I,_ - SS)P(y)S = 0.

Transposing this equation gives

sT0pT(y)(I,_ _ sTsT) = O. (47)

Equation 47 is exactly the same as Equation 9. This implies that X has

subspaces invariant to J(y) if and only if the intersection of the invariant or the

null subspaces of pT(y) is nonempty. Therefore we can employ the same method

for determining X to determine Z. In this way we can find out all intersections of

the invariant subspaces of J(y) with different dimensions.

The intersection of the null subspaces of J(y) is the solution of the following

linear algebric equation

J(y)x =0. (48)

Moreover, the solution is independent of the value of y. If we consider y symbol-

ically, this shows that there is a nontrivial solution of Equation 48 if and only if
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some columns of J(y) are linear combinations of the other columns. All the linearly

independent solutions of Equation 48 compose the largest intersection of the null

subspaces of J(y). Any subspace of this intersection is also an intersection of the

null subspaces of J(y).

o B. DETERMINATION OF THE INTERSECTION OF THE INVARIANT OfR

THE NULL SUBSPACES OF J(y) FOR ALL VALUES OF y

The Jacobian matrix can be considered as an n2 vector. Therefore, for any

value of y, J(y) can be represented as a linear combination of m(rn < n 2 ) constant

mat rices:

J(y) V a(y).4&, (49)
k= i

where ak(y) are parameters, which are the functions of y; A.4 are constant matrices,

which are considered as a basis of J(y). The problem is how to determine the basis

6 Ak. There are several ways to do it, and one is as follows. The Jacobian matrix

J(y) can be represented as
]M

J(Y) = N j~j(y)Ei,, (50)

where jij(y) is the (i,j)-entry of J(y); Eij is the elementary matrix, which is defined

as the (n x n)-matrix having unity in the (i,J)th position and all other elements

are zero.

If jpq is equal to cjij(y), where c is a constant, we can combine these two terms

as

ak(y) = ,i (Y),

Ak = E, -4- cEpq

f
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In this way one can combine the terms in Equation 50 as much as possible to obtain

the following simplified formula

J(y) V Y ak(y).4k, (51)
k=1

* where m is less than n2.

It is easy to demonstrate that the intersection of the invariant or the null

subspaces of all constant matrices Ak is that of J(y). Let the n x (n - h) constant

_ matrix X represent the intersection of the invariant subspaces for all Ak. Multiply

both sides of Equation 51 from the right by X to obtain

M

J(y)X V ak(y)AkX,
k=i

- ak(Y)XPk,
k=i

X ak (y)P . (52)
k=1

where Pk are (n - fi) ' (n -it) constant matrices. Equation 52 shows that X is the

intersection of the invariant subspaces of J(y).

Similarly, we can prove that the intersection X of the null subspaces of all Ak

is also that of J(y).
lTn

J(y)X = E ak(y)AkX,

k=1
m

= a,(y)0 = 0. (53)
k=1

If Equation 49 satisfies the restriction that in each case we can choose an

appropriate value of y such that all ak(y,) vanish except a,(y,). i.e..

J(y,) a(yi)A,. (I = 1.2....) (54)
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Then the intersection X of the invariant or the null subspaces of J(y) is also that

6of all Ak-. Multiplying both sides of Equation 54 by X from the right, when X is

the intersection of the invariant subspaces of J(y), we obtain

2J(yi)X = a(y)A,X,

XP(y,) = ai(y,)AX.

Since aj(y,) is not equal to zero, then
S

AX = XP(y,)a,(y,). (55)

If X is the intersection of the null subspaces of J(y), similarly we have

J(y,)X = a, y,)AX,

0 = a1(y,)AX,

0 = A,X. (56)

Equations 55 and 56 show that X is the invariant or the null subspace of A,. Since

this is valid for all Ak, then X is the intersection of the invariant or the null subspaces

for all Ak. Thus we can determine the intersections of J(y) by only determining

the intersections of all Ak.

When the reaction system is a uni- and/or bimolecular reaction system de-

scribed by linear or quadratic first order ordinary differential equations, the ele-

iments of J(y) are only linear functions of yks. In this case, Equation 51 will have

a simple form, i.e., ak(y) is constant or Yk,

J(y) Ao - yk.4k, (57)
k=1

19
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Y.

where m is equal to or less than n, and A 0 can be a null matrix. As Equation

5- satisfies the above restriction, we can determine all intersections of Jyl by

determining those of Ao and all Ak.

Notice that the invariant subspace of a constant matrix contains at least one

eigenvector of it. This property presents a method to establish the intersection of

the invariant subspaces of A0 and all Ak. First, the eigenvectors of A0 and all

Ak are determined. Then consider all possible combinations of these eigenvectors.

Each combination contains at least one eigenvector of every constant matrix. The

linearly dependent eigenvectors are cancelled in each combination. The resultant

combinations are examined for A4 and Ak whether they are invariant to all the

matrices. If a combination is invariant to .40 and all Ak. it is an intersection of

the invariant subspaces of these matrices. We can also determine all intersections

of the invariant subspaces of J(y) by first determining X and then its subspaces Z

invariant to J(y).

The determination of the intersection of the null subspaces is easier. We need

to find the common solutions for the following equations:

A0x = 0, (58)

.4Akx = O. (k = 1,2.....m) (59)

hi order to obtain the common solutions, we put AO and all Ak together and omit

the linearly dependent rows. Then we obtain a constant matrix .4 and solve the set

of linear algebric equations

Ax = 0. (60)

All the linearly independent solutions of x compose the largest intersection of the

null subspaces of A0 and all Ak. Most importantly any siibspace of the" largest

20
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intersection is still an intersection of the null subspaces of these matrices. The pro-

cedure of determining the intersections will be illustrated by some simple examples

below.

IN7. APPLICATION TO UNI- AND/OR BIMOLECULAR REACTION SYSTEMS

As examples of the application of this analysis, we choose uni- and/or bimolec-

ular reaction systems. As pointed out above, in this case the Jacobian matrix can

be described as

J(y) = A + YkAAk. (61)

k=1

For a unimolecular reaction system, the kinetic equations are

dy/dy = Ky, (62)

where K is the rate constant matrix. The Jacobian matrix for the unimolecular

reaction system is just K,

J(y) = K. (63)

In this case, there does not exist the problem of intersections, because J(y) is a

constant matrix. The subspace spanned by a subset of eigenvectors is the invariant

subspace of a constant matrix. If the matrix has full eigenvectors, the subspace

spanned by the eigenvectors w-itb zero eigenvalue is the null space of the matrix.

Therefore any unimolecular reaction system is exactly lumpable and the lumping

schemes are easy to obtain after deterrrining the eigenvectors of the rate constant

matrix. This behavior can be shown by a simple example.

Example I
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A unimolecular reaction system with 3 species is described as follows: 2

3

A, -A 2.
2

4 \\ 10 6 10

A3

where A,, A2 and A 3 represent the three species; all numbers are unitless rate

constants. Let y, represent the concentration of species A,. Then the corresponding

kinetic equations can be described as

dy 'dt = Ky, (64)

*where y is the concentration vector; K is the rate constant matrix.

(-13 2 40
SK (3 -12 6) (65)

10 0 -10

J(y) = d(Ky)'dy = K. (66)

The eigenvector matrix X and the eigenvalue matrix A of J(y) are

. /0.2 0.2 1

X = 0. 3  0.3 -1 (67)
0.5 -0.5 00 )0

A=( (0 -20 15) (68)
0 0 -15

Since any subspace spanned by a subset of eigenvectors is an invariant subspace

of J(y), we choose the 1-dimensional subspace spanned by the last eigenvector.

Using Equation 14 we have

(1 -1 0) r0, 0. (? 1.,2) (69)
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Solving this equation we obtain the solution for the lumping matrix M:

M = =(C c 0 )T

m 2 =(0 0 d)T

S(c ) (70)M =0 0 d)'

where c, d are arbitrary constants. We want Al to have a full row rank, thus requiring

c,d :4 0. A special case is c = d = 1, i.e.,

M 10 1 0) (71)
(= 0 1 "

For this Al we can find an infinite number of A-1 satisfying AIM 12. We arbitrarily

choose two:
0.5 0) 0. 4 0

A11  0.5 0~ 0.6 0)0 1

It is easy to show that the kinetic equations for the lumped system are the same in

spite of using different AI. According to Equation 27

( M (-1),

and since

f(y) = Ky,

then

ft(y) = MI My. (72)

For AI3 we have

S2 1 3  4 .5 0
3 -12 6 0.5

10 -

(-10 10)
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Similarly for A-12 we have

3 -2) 0.6 13 2 .

( 0 1 1 10 -1 0 0 0 1]\0 :1] 0) 12 4) 040

10 -10)

The reaction scheme of the lumped system can be described as

10

A, - A2.
* 10

where 42 =(, 2 )T wid

EXAMPLE 11

A uni- and bimolecular reaction system with 8 species is illustrated as follows:'13

2

A, + A2  -- A3  4- A4
4

1 ,22

I A5  - A6  2

A7  A8
I

where the Ais are species; the numbers are unitless rate constants.
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Leting y, represent the concentration of Ai, it is easy to write out the kinetic

equations and the corresponding Jacobian matrix J(y).

dyI/dt - 2 ,y1 - 2yi Y2 + 413Y4

dy2 /dt - 2Y2 - 2 yy2 + 4Y3Y4

* dy3/dt = - 2Y3 - 4 Y3Y4 + 2yy2

dy 4 /dt = -2y4 - 4y3Y4 + 2yy2
(74)

dys /dt = -ys + yj + 2 y2 + v'Y6

dy6 /d= -V 2 Y6 4- 2Y3 + Ys

dy7 /dl -,2y- + y + ys

dy8 edt -ye + 2Y/4 + v/2y7

-2(- + Y2) -2yi 4Y4 4V3

-2Vy2 -2(l + y i) 4V,4 4V13

212 2yj -2(1 + 2Y4 -4Y3 0

J(y) = 22 21, -4V4 -2(1 + 2Y3

3 2 0 0 -1 o o

0 0 2 0 1 -0 0

1 0 0 0 0 0 -X/2 1

0 0 0 2 0 0 -1

This matrix can be represented as

4

J(y) = Ao + EyA Ak,

k= 1

where
(-2 0 0 0

0 -2 0 0
0 0 -2 0 0

Ao 0 0 0 -2
1 2 0 0 -1 '2 0 0
0 0 2 0 1 -% 2  0 0

1 0 0 0 0 0 -\/2 1
0 0 0 2 0 0 ,/2 -1
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(0 -2 0 0 (-2 0 Ii 0

0 -2 0 0 -2 0 0 0
0 2 00 0 2 0 00 0

A, 0 200 A2 2 00 0

*0 0 0 0

(0 0004 (00 4 0
0 0 04 0 0 4 0
0 0 0-4 0 0 0-4 0 0

A 3 = 0 0 0 -4 A4 0 0 -4 0

0 0 0 0

The corresponding eigenvector matrices XA,0 an dXA, with their eigenvalues

are as follows:

X,-2, -2, -2. -2, -(1 + V/2), -2-4- 1 ) 0. 0

0 2 -V \/ 1 1 /

(\/'- ])/2 (VF2 - 3)/2 -1 \/2 -1I

o ~ 0 1/,,/2 1/2 (\T2 -])/2

1 1 1 0 '2 0

-1 0 0 -2-1 0 1 0

0 -1 0 -

0 (I-1 I- 1 ~ 2
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A,= -2 0 0 0 0 0 0 0

1 1 1 0 0 0 1 0

1 0 0 0 0 0 0 0

-1 -1 0 0 0 0 0 0

XA= -1 0 -1 0 0 0 0 0

0 0 0 1 1 1 0 1

0 0 0 -1 0 0 0 0

* 0 0 0 0 -1 0 0 0

0 0 0 0 0 -1 0 0

Az -2 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 1 1 0 0 0 1 0

-1 -1 0 0 0 0 0 0
S

AA -1 0 -1 0 0 0 0 0

0 0 0 1 1 1 0 1

0 0 0 -1 0 0 0 0

0 0 0 0 -1 0 0 0

0 0 0 0 0 -1 0 0
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A,= -4 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0

1 -1 0 0 0 0 0 0

-1 0 -1 0 0 0 1 0

XAA -1 0 0 0 0 0 0 0

0 0 0 1 1 1 0 1

0 0 0 -1 0 0 0 0

0 0 0 0 0 -1 0 0 0

0 0 0 0 0 -1 0 0

4 - -4 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0

1 -1 0 0 0 0 0 0

-1 0 0 0 0 0 0 0

XA. -1 0 -1 0 0 0 1 0

0 0 0 1 1 1 0 1

0 0 0 -1 0 0 0 0

0 0 0 0 -1 0 0 0

0 0 0 0 0 -1 0 0

eL Using the methods presented in section III B, one can obtain all possible inter-

sections with different dimensions of the invariant and the null subspaces of J(y).

First we use the singular property of the Jacobian matrix to determine the inter-

section of the invariant subspaces of J(y). In this example, we have

1TJ(y) = OT ,

C-
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where 1 T = (1 1 ... 1). Therefore, any column of J(y) for any value of y is located

in the same (n - 1)-dimensional subspace. This subspace can be constructed by

Equation 33.

X- XoUX, U...UX4,

* where X 0 and Xt are images of n-dimensional space upon mapping by A0 and Ak,

which are composed of the linearly independent columns of A0 and Ak. Then we

have

-

-2 -2 4 4 -2 0 0 0 0 0
-2 -2 4 4 0 -2 0 0 0 0
2 2 -4 -4 0 0 -2 0 0 0
2 2 -4 -4 0 0 0 -2 0 0

0 0 0 0 1 2 0 0 -1 0
0 0 0 0 0 0 2 0 1 0
0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 2 0 -1

After omitting the linearly dependent columns the intersection X is obtained.

-2 -2 0 0 0 0 0
-2 0 -2 0 0 0 0
2 0 0 -2 0 0 0
2 0 0 0 -2 0 0
0 1 2 0 0 -1 0
0 0 0 2 0 1 0
0 1 0 0 0 0 1
0 0 0 0 2 0 -1

If we change the bases of this subspace, it can be described by a simpler form:
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/ 1 1 1 1 1 1 1

-1 0 0 0 0 0 0
0 -1 0 0 0 0 0

. 0 0 -1 0 0 0 0
0 0 0 -1 0 0 0
0 0 0 0 -1 0 0
0 0 0 0 0 -1 0
0 0 0 0 0 0 -1

It is easy to prove that any column of X is a linear combination of the columns of

X1 . Then the two matrices are equivalent to represent the subspace.

Now we use the eigenvectors of A0 and Ak to construct the intersection of the

invariant subspaces of J(y). After examining the eigenvector matrices we find that

4% the first 6 columns of XAo and XA, to XA, are linear combinations of the same

columns of XA,. Therefore the subspace Xt2 spanned by the first 6 columns of XA,

is an intersection of the invariant subspaces of J(y).

(1 1 1

1 0 0 0
-1 -1 0

= -1 0 -1
- 2 = 1 1 1

-1 0 0
0 0 -1 0

0 0 -1
P

After examination we can find that the subspaces -9 3 (f A2

o o 0
0 0 0
o o 0

'k 0 0 0

1 1 1
La -1 0 0
lea 0 -1 0

= 0 0 -1

- 30
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is invariant to A0 and Ak. Therefore it is also the intersection of the invariant

subspaces of J(y). Similarly the two subspaces X 4 , Xs of X and the union Ar6 of

AX4 and X 5

0 0 0 0
0 0 0 0
0 0 0 0

X4 0 0 0 0
-1 0 -1 0

1 0 1 0

0 1 0 1

0 - 0 -1

are intersections of the invariant subspaces of J(y).

The intersection of the null subspaces of J(y) can be determined by Equation

48 and the solution is A17 .

0 0

0 0
0 0
0 0

1 0
0 10 2

For these intersections the corresponding lumping matrices A, are determined

by Equation 13. All M, are arranged below by dimension in increasing order except

Al7 , which is different from the others and will be discussed later.

M] =(1 1 1 1 1 1 1 1)
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0 1 0 0 0

0 0 )

001 0 0

*M= 0 0 0 1
0 0 001 1 0 0
00 0 00 0 101

0000 0 0 1

001 0 0

A1= 0 0 0 1
00 00 11 0 0

0 00100 1 00
0000 0 1 1

01=( 0 0 0~ A
0 0 0 0 0 32
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We can determine the kinetic equations of the exactly lumped systems using

Equation 28

dS'/dl Mf(M 5). (28)

For Al1 we arbitrarily choose

A 1 =(1 0 ... 0 )T

Since y = _I5,, we have

y =0. (i = 2,3 .... 8)

Substituting these relations into Equation 28 and 74. the lumped kinetic equation

is

dy dt = 0. (p = y,) (75)

For A12 we arbitrarily choose

10 0 0 0 0 0  T
Al 0 0 0 0 1 0 00

00 0

Similarly we have

Y, =Yl Y5Y2,

y,= 0. (i = 2,3,4,6,7,8)

Substituting them into Equation 28 and 74, the lumped kinetic equations are

dpl /dt = -2yl,
(76)

dp2 idt = 2y.

This kinetic equations can be described by a unimolecular reaction schen:

t' 2

A1  - A2
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The first six lumped systems for All to Al6 followv uni- and, or bimole-cular

reaction schemes. The corresponding reaction schemes of the lumped systems for

A1 3 to AM6 are illustrated as follows:

lumping scheme Al 3

2

A, A2  - A3  A4
~42

2 2 2 2

A45

A, 4 , (i 1, 2.3, 4), A
1=5

lumping scheme 11 6

2

A, + A2  - A3  4 A4

4

1 2 2

A5

A 6
-A, (t - 1, 2, 3,4), -5 A5 -I- A6 A46 -A 7 -, A*.

lumping scheme Ml4

2

.4, A 2  A .3 + .44

4

12 2

A5 2

A6 .47

34
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A i = Ai (i = 1, 2, 3,4), ij Ai 1 ( 6, 7), A 5  A ~5 + A6.

lumping scheme M15

A7

2

A, + A2  A3  + A4

1 j2 4 122

*A 5  A6

Ai = A, (Z = 1, 2, 3,4, 5,6), A7 = A7 + AB.

The last lumping scheme M-, can only be described by a simplified set of differ-

ential equations, since it does not follow a uni- and/or bimolecular reaction scheme.

The condition under which a lumped system follows a physical uni- and/or bimolec-

* ular reaction scheme has been discussed in References 12] and [6]. The differential

equations for the lumped system of Al-, is given as

d It= -2 1 - 2 j 2 +±4P3

4y 2 /dt =- 2 Y-2 - 2Y 1Y2 + 4Y3Y 4

dp3 /Idl = -2 3 - 4 3 4 + 2P1P2
(77)

dp4 /df = - 2 4 - 4 ,3 4 + 2 1 2

d45 /dt = - j + 2 + 2V%~3 - (1 + %2

4p 6 /dt = -/21+ 2 4 0 +I ±/

tv where

= Yi, (=1. 2,3, 4)

.5= -y5 + .'2y(,.

6 - /-2-,+ ys.
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This lack of a corresponding chemical mechanism for the lumped system may

often arise in lumping. and there is no practical difficulty in this situation. Since

the lumping scheme above is exact, the simplified model will give exactly the same

values of the lumped species as those given by the original one. Notice that y, y,

for i = 1, 2, 3, 4. If one only considers yi to Y4, Equation 77 will give the same results

as those given by Equation 74. However, Equation 77 is simpler, even though it

does not follow uni- and,/or bimolecular reaction schemes.

These examples are very simple, however, they illustrate the method which can

be applied to other more complicated systems.

V. CONCLUSION AND DISCUSSION

In this paper a genaral analysis of exact lumping has been given, which can be

used for any system described by a set of first order ordinary differential equations

with any degree of nonlinearity. Uni- and,'or bimolecular reaction systems are only

special cases of this general analysis.

The kinetic properties and the coupling pattern of the reactions in the exactly

lumpable system must satisfy some restrictions, which are reflected by the properties

of their Jacobian matrix and the corresponding Green's function. The intersections

of the invariant and the null subspaces of the Jacobian matrix represent possible

lumpabilities of a given complex reaction system. A systematic method to determine

the intersections of the invariant and the null subspaces of the Jacobian matrix and

the corresponding lumping schemes was developed. Using the generalized inverse of

the lumping matrix, the differntial equations of the lumped system can be readily

obtained, and the non-unique nature of the generalized inverses does not effect the

form of the lumped equations in the exact case.
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Although some useful results about exact lumping have been obtained, there

is still further work to do. Systematic application of this analysis to complex reac-

tion systems needs to be considered. However, in the treatment of actual reaction

systems, the first problem encountered will likely be their non-exact lumpability.

Very few systems satisfy the restrictions for the existance of exact lumping. Some-

*times, even if a system is exactly lumpable, the results may not meet practically

desired goals. For example, in the CO/H 2 0/02 combustion system we would like

the easily measurable concentrations of CO, CO2 , 02, H2 0 to be unlumped"3 . With

this constraint, the system likely can not be exactly lumped, and we have to lump

the other species of the system approximately. Developing a general approach for

approximate lumping is very important for realistic problems. The exact lumping

analysis presented above should form a rigorous starting point for the development

of approximate lumping.

NOTATION

Scalars

ak (y) = kth coefficient of a linear combination of matrices

A2 = ith species of a reaction system

c = constant

d = constant

J j(y) = (i,j)-entry of matrix J(y)

M = dimension of matrix Q(y)

rn, = mass of species A,

rn, = (i,j)-entry of matrix M

n = dimension of vector y

7i = dimension of vector y
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p = dimension of identity matrix

1 = time

Yk = kth element of vector y

Vectors and Matrices

Capital letters represent matrices; bold-face lower case letters represent vectors.

A0  = constant matrix
0

Ak = constant matrix

ej = unit vector with 1 as its ith element, and 0 for the rest of the elements

Ejj = elementary matrix with 1 as its (i,j)-entry, and 0 for the rest of the elements
f(y) n-dimensional function vector

f(y) = n-dimensional function vector

G(t,,r) = Green's function of J(y)

d(t, Tr) = Green's function of i(s)

I = identity matrix

J(y) = Jacobian matrix of f(y)

Jjj = submatrix of J(y)

J( ) = Jacobian matrix of f( )

iij = submatrix of J( )

K = rate constant matrix

K(t,,r) = defined as MG(, r) - G(t,r)_M

Al = lumping matrix

M1  submatrix of Al

m = n-dimensional vector which ith element rn, is the mass of species A, or the

row vector of lumping matrix AI

Al1 = generalized inverse of Al satisfying AlA! = 1,

38



P = (n -h) x (n - fi) constant matrix

P(y) = (n- i) x (n - -h) function matrix

Q(y) = m x m function matrix

S = (n - fi) x rn constant matrix

S = generalized inverse of S satisfying SS = Im

W = intersection of Z and X

x = n-dimensional vector

R = image of x upon mapping by (I, - IM)

xk = image of R upon mapping by J(y)

X = n x (n - h) constant matrix or intersection of the invariant subspaces of tile

Jacobian matrix J(y)

" = generalized inverse of X satisfying XX = I,-,

Xi = intersection of the invariant subspaces of the Jacobian matrix 1(y)

Xi = invariant subspace of J(yt)

XA - = eigenvector matrix of Ak

y = n-dimensional variable vector

= t-dimensional variable vector

Y = subspace of n-dimensional space, which contains X

Z = n x m constant matrix or subspace of X, which is invariant to J(y)

Zi = intersection between Z and X

Greek Letters

Aj = ith eigenvalue of matrix Ak or K

A = diagonal eigenvalue matrix of matrix K with Ai as its diagonal elements

Symbols

= any property related to the lumped system
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0o null vector

0 = null matrix
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