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INTRODUCTION

The design and optimization of realistic engineering combustion devices
involves the construction and execution of complex mathematical models. These
models will typically involve combustion kinetics as well as transport
processes with the physics and chemistry described by many parameters which
are imprecisely known. In addition, existing freedom for choosing combustion
chamber design will introduce other potentially controllable parameters into
the model. Therefore, a central problem in all design problems concerns an
understanding of system performance with respect to its parameter values,
Except for the = .mplest models, such an understanding will necessitate
extensive computer calculations, and repeated execution for each new set of
parameters will lead to prohibitive expense. The goal of this program is to
provide new 1nsights as to how to simplify detailed submodels which cause the
overall system calculations to be prohibitively difficult, and to exercise the
techniques to develop simplified chemical kinetic models which provide
sufficient detail for generating accurate modeling results. This goal is
being pursued by developing and applying new techniques in the general areas
of sensitivity analysis and Lie algebraic theories. Due to widespread
applications of these two analysis methods, the outcome from this research
program has important implications to many other problems arising in
combustion phenomena as well as to other subjects of interest to the Air Force
(e.g., system control, parameter identification and distinguishability,
statistical parameter uncertainty, model scaling, etc.).

WORK STATEMENT
The work statement for this program is as follows:

1. Develop global sensitivity analysis techniques using Lie algebra for
parameter space mapping and control of temporal systems. Special attention
will be given to using the techniques for performing finite excursions through
parameter space. As the tools develop, they will be applied to the lumping
consideration above, as well as to design and control problems relevant to
combustion systems.

2. Appropriate advanced development of item 1 are planned to extend the
analysis procedures to more complex combustion chemistry and to include both
spatial and temporal calculation comparisons of lumped and detailed models.

3. Determine criteria for exact lumping in chemical kinetics and investigate
the implications of these lumpability conditions to model systems.

4. Model systems will be studied to establish the use of elementary
sensitivity coefficients, Green’s function elements and derived sensitivity
coefficients for lumping purposes. Appropriate numerical procedures will be
employed including eigenvector-eigenvalue analysis and rank reduction of the
appropriate sensitivity matrices.
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5. The sensitivity techniques of item 4 will be developed with
hydrogen/oxygen and carbon monoxide/hydrogen/oxygen combustion systems as test
cases fo: svstematic model reduction and lumping. The ensuing lumped models
will be compared with those in the literature for their predictive
capabilities.

STATUS OF RESEARCH

During the past year research on several interrelated activities was
pursued in the general area of combustion kinetics and sensitivity analysis
particularly as related to model lumping and reduction. The thrust of these
developments has largely been fundamental with the emphasis on creating and
ultimately applying new methodology for treating several critical problems
arising in combustion phenomena. Particular emphasis was given to modelling
and theoretical concerns, although a portion of the research is directly
rzlated to the interface between laboratory measurements and modelling. A
summary of these activities is given below.

I. GLOBAL SENSITIVITY ANALYSIS: A NEW PERSPECTIVE

This research is motivated by a number of important, but heretofore
difficult problems, in combustion modelling including system lumping,
statistical parameter uncertainty and system control. All of these issues as
well as others necessitate obtaining an understanding of how the system
behaves over broad region of its parameter space of rate constants, transport
coefficients, etc. Traditional methods for achieving this information rely on
repeated calculations at sample points in the system parameter space. Such an
approach is prohibitively expensive and the results will typically provide
little insight into the detailed workings of the system. With this
information as background, we have been pursuing an entirely new approach
based on Lie group techniques for mapping broad regions of system parameter
space. The initial developments appear very promising as summarized below.

A. Uniform Temporal Reacting Systems!

One-parameter groups of transformations were used to investigate the
effects of wide-ranging changes in rate constants and input/output fluxes upon
homogeneous chemical reactions involving an arbitrary number of species in
reactions of zero, first and second order.

Every transformation group is so chosen that it either exactly or
approximately converts each solution of a set of rate equations into
corresponding solutions of a one-parameter family of altered rate equations.
All of these solutions have topologically equivalent equilibrium points and
topologically equivalent phase trajectories in the space of concentration
variables. Compounding the transformations yields transformations with the
same properties.

The chemical significance of the transformations was illustrated by
applying them to kinetic systems involving two reacting species. There are
then twelve separate one-parameter groups of transformations available. The
generators of all allowed one-parameter groups are obtained for systems of N
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species using an algorithm which exactly determines their action on the rate
constants, and either exactly determines or systematically approximates their
action on the concentrations. The generators determine invariant functions
that establish relations between the initial rate constants and the altered
rate constants and between the initial concentration variables and the altered
concentration variables.

Some mapping of the concentrations simply shift their values and may be
used to study the effects of changes in input/output fluxes and rate constants
upon concentrations. Other mappings create "lumped” concentration variables
and may be used to systematically reduce the number of manifest concentration
variables in nonlinear as well as linear kinetic equations.

A number of mappings of nonlinear kinetics may be used to obtain
approximate linearizations valid in regions larger than those obtained by the
usual power series expansions. In some cases the linearization is global and
exact.

B. Reaction-Diffusion Systems?

The methodology developed in paragraph A above has an immediate
transferral to the more complex and interesting class of reaction-diffusion
problems. Although partial differential equations will in general admit a
much broader set of Lie group mappings, their full determination will also be
more difficult to establish. However, in the case that the system diffusion
coefficients are not concentration dependent, exactly the same transformations
developed for the purely temporal reacting systems may be applied beneficially
to the case of reaction-diffusion. For example, transformations which
rigorously, or at least regionally, linearize a reaction network have exactly
the same effect on an analogous reaction-diffusion system. Application of
these transformations has allowed us to analytically explore the
interrelationship between diffusive transport and reaction kinetics. In
addition, traditional local methods of stability analysis may now be
significantly extended to cover regions of the system state and parameter
spaces. We plan to use these tools for the treatment and analysis of
realistic combustion models.

ITI. Analytic Insight Into the Solution of Kinetic Systems3- 4

This research has a close connection with that of item I above in that it
is also based on the use of Lie group theoretical techniques. The goal here
is more limited with the purpose largely being the provision of analytical
insight into the solution of nonlinear combustion kinetic systems.
Traditional numerical methods for this purpose can typically provide varying
degrees of accuracy but are quite inadequate with regard to their resultant
insight. To deal with this problem we have developed a new analytic
approximation scheme for the finite Lie transformation yielding the solution
to a set of nonlinear kinetic equations. This work also has immediate
applications to the global parameter space Lie generators involved with the
study in item I above.

In this work a new method to factorize certain evolution operators into
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an infinite product of simple evolution operators is presented. The method
uses Lie operator algebra and the evolution operators are restricted to
exponential form. The argument of these forms is a first order linear partial
differential operator. The method has broad applications including to the
areas of sensitivity analysis, the solution of ordinary differential equations
and the solution of Liouville’s equation. A sequence of {-approximants is
generated to represent the Lie operators. Under certain conditions the
convergence rate of the ¢-approximant sequences is remarkably rapid. This
work presented the general formulation of the scheme and some simple
illustrative examples.

Additional research was carried out to establish convergence theorems
associated with its sequence of {-approxmimants. The theorems presented give
the conditions which are sufficient for convergence of the sequences.
nithough the main emphasis was on convergence properties of the
one-dimensicnal case, the generalization to multidimensional cases is quite
straightforward. Further development and numerical illustrations are
underway.

III. Kinetic System Identifiability and Distinguishability® &

By following the kinetics of a reaction through the use of certain
classes of measurable quantities instead of the concentrations of all species
neither the parameter values nor the reaction scheme are necessarily unique.
Identifiability deals with the problem of determining whether an experiment is
able to supply the desired information on the parameters of an assumed kinetic
model, whereas indistinguishability means that two different reaction schemes
generate the same values for the observed quantities in any possible
experiment. This work examined these issues for the case of first-order
reaction systems and both problems are solved by the same analytical tools.
The method involving Laplace transforms is conceptually simple, easy to apply,
and is also used to derive simple rules to test distinguishability of reaction
schemes. Another approach based on similarity transformations is used to
generate all the first-order reaction schemes that are indistinguishable from
¢ given one. These same concepts have been extended to nonlinear systems for
the case of global identifiability.

IV. A General Analysis on Exact Lumping in Chemical Kinetics?

A general analysis of exact lumping has been developed. This analysis
can be employed to any reaction system with n species described by a set of
first-order ordinary differential equations dy/dt = f(y), where y is an
n—-dimensional vector; f(y) is an arbitrary n-dimensional function vector.
Here we only consider lumping by means of a rectangular constant matrix M
(i.e., y lower dimension than y with y = My). It is found that a reaction
system is exactly lumpable if and only if the intersection of the invariant or
the null subspaces of the Jacobian matrix J(y) of f(y) for all values of y is
nonempty. If the intersection is less than n, nontrivial lumping schemes can
be obtained. It is proved that the Jacobian matrix can be represented as a
linear combination of certain matrices and the intersection of the invariant
or null subspace of the constant matrices is just that of the Jacobian matrix.
After the determination of the intersections, all possible lumping matrices
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: can ke obtained. The kinetic equations of the lumped system can be described
T as dy/dt = Mf(My), where M is any ‘generalized inverse of M satisfying MM = f:,
. Several implications of these lumpability conditions were investigated as well
v as illustrated by some simple examples.
L)
¥
)
4 V. Hydrogen-Air Combustion Revisited Under a Variety of Conditions®
L
‘)l
“.. Surely the hydrogen-air combustion system has received the closest

, scrutiny both theoretically and experimentally. Yet, there is still a lack of

o complete understanding about which aspects of the system are important

o particularly under a variety of laboratory conditions. In order to further

o understand this issue, we have carried out modelling and sensitivity analysis

X studies under: a) purely temporal and isothermal conditions, b) purely

i & temporal and adiabatic conditions, c) steady premixed adiabatic conditions.
This triad of studies provides an interesting hierarchy allowing us to
understand the role of diffusive transport as well as thermal coupling. One
motivation for this work arose from previous studies showing extensive scaling
and self similarity behavior amongst the hydrogen—air sensitivity
coefficients. This behavior has significant implications for model

& simplification both in this system as well as complex combustion problems. It
had been previously speculated that the temperature was providing the dominant
coupling to produce self organization amongst all the system species and rate
parameters. This study has confirmed this conjecture as well as revealed a
number of other underlying subtleties including the role of diffusion. 1In
addition, it was shown that the presence of strong scaling and self similarity

o in the premixed flames allowed for kinetic model simplification.

S PR e e L,

VI. Model Reduction and Lumping of Carbon Monoxide Oxidation Kinetics

?

)

t In our previous studies, normalized sensitivity coefficients,

: Sy = an C./o%nx;, have been studied to determine the relative importance of
N @ elementary reactions or certain groups of reactions in comprehensive

mechanisms. We have presently extended this methodology by using the
principal component analysis method of Vajda and Turanyi (J. Phys. Chem.,

» March 1986] in order to systematically reduce the size of the original
" comprehensive mechanism. Briefly, this methodology is based on a least
i squares fit approach by first defining the response function, Q, as

'ta

d q m [ Ci(ty,x) = Ci(ty,x”) _2

! Q (g_) = 2 Z - - X 0]

» J:l 1:1 CI(tJ ._ﬁ_ )

where a° is the nominal values of the parameters, then by introducing the
classlcal Gauss-approximation to yield Q(x) = Q(a) (Aa)T §7S(Ax) where

W &; = Ana,, and finally by performing an eigenvalue-eigenvector decomposition
X on the resulting cross-product matrix STS. Eigenvectors corresponding to
small eigenvalues : ‘dicate unimportant reactions, thereby enabling one to

o optimally reduce the mechanism.

2

o

Along these lines we have continued our previous work by applying this
" methodology to the CO/H:/02 reaction mechanism. A large number of isothermal
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temporal problems were numerically run to generate a data base which would be
representative of combustion environments. The data base covered a
temperature range from 800 to 1800 K, several equivalence ratios from lean to
rich conditions, and several pressures. The principal component analysis was
applied to this data base to determine the minimum reaction set that would
reproduce all the original species concentrations within 2%.

The results showed that the original 52 reaction mechanism could be
successfully reduced to one consisting of 27 reactions while retaining all 12
species in the model.

Obviously, this reduction is still not practical for use in large
multidimensional codes. The necessary further reductions are proposed to
proceed along several directions. First, the constraint of retaining all
species will be lifted. Our earlier research has shown that in addition to
the major reactants and products, two intermediate species are necessary in
the model. Secondly, we have also found that in more complex environments,
such as adiabatic premixed flames, the underlying chemical processes are much
more coupled (namely through the heat release of the reaction) and hence, such
problems are anticipated to be more directly lumpable.
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® This list of publications covers the period from September 1986 to
October 1987. Other prior publications under this grant may be found in the
previous Annual Technical Reports.
1. C. Wulfman and H. Rabitz, "Global Sensitivity Analysis of Temporal

» Reactive Systems'", J. Chem. Phys., submitted.
2. C. Wulfman and H. Rabitz, "Global Sensitivity Analysis of
Reaction-Diffusion Systems Using Lie Group Techniques", manuscript in
progress.
3. M. Demiralp and H. Rabitz, "Factorization of Certain Evolution Operators

® Using Lie Algebra: Formulation of the Method", J. Math. Phys., submitted.
4. M. Demiralp and H. Rabitz, "Factorization of Certain Evolution Operators
Using Lie Algebra: Convergence Theorems", J. Math. Phys., submitted.
5. S. Vajda and H. Rabitz, "Identifiability and Distinguishability of

& First-Order Reaction Systems'", J. Phys. Chem., 1987, in press.
6. S. Vajda and H. Rabitz, "State Isomorphism Approach to Global
Identifiability of Nonlinear Systems", IEEE Control, submitted.

© 7. G. Li and H. Rabitz, "A General Analysis of Exact Lumping in Chemical
Kinetics" Chem. Eng Sci., submitted.
8. S. Vajda, H. Rabitz, R. Yetter, and F.L. Dryer, "Influence of Thermal
Coupling and Diffusion on the Mechanism of H2 Oxidation in Steady Premixed
Laminar Flames', manuscript in progress.
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& Presentations
: This list of presentations covers the period from September 1986 to
October 1987. Other prior presentations under this grant may be found in the
@ previous Annual Technical Reports.
H. Rabitz, University of Paris, France, December 1986,
H. Rabitz, Marmara Institute of Turkey, December 1986.
0 H. Rabitz, Middle East Technical University, August 1987.
H. Rabitz, Yale University, April 1987.
H. Rabitz, International Conference on Numerical Modelling in
Ankara, August 1987.
@ H.Rabitz, The Sixth International Conference on Applied Mathematics and
Modeling in St. Louis, MO, July 1987. |
|
R. Yetter, University of Kentucky, KY, November 1987. |
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Personal

During the past year, the professional personnel associated with this

10

research effort included Professors F.L. Dryer, H. Rabitz, and C. Wulfmwan and
R.A. Yetter, S. Vajda, M. Demiralp, and S. Shi. For each, a professional
biography is included. Also during this past year, Mr. Li, a third year
graduate student in the Department of Chemistry at Princeton University under
the supervision of H. Rabitz, contributed to this program.
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DR. FREDERICK L. DRYER

PROFESSOR
UNDERGRADUATE DEPARTMENTAL REPRESENTATIVE
PRINCETON UNIVERSITY

Dr. Frederick 1. Dryer received his Bachelor of Engineering

Degree 1in Aeronautical Engineering from Rensselaer Polytechnic

& Institute, Troy, New York in 1966 and a Phd. degree in Aerospace
and Mechanical Sciences from Princeton University, Princeton, New

Jersey in 1972. After serving on the Professional Research Staff
in the Mechanical and Aerospace Engineering Department of Prince-
ton University for eight years, he joined the academic faculty of
the department as a tenured Associate Professor in 198l1. Dr.
Dryer was on sabbatical leave during the 1982-B3 academic year as
a private consultant to industry, and he returned to the Univer-
sity in July 1983 as a Full Professor in the Mechanical and
Aerospace Engineering Department. Dr. Dryver has served as
Undergraduate Departmental Representative since November of 1984.

Dr. DUryer’s principal research interests are in the funda-
mental combustion sciences with particular emphasis in high temp-
erature combustion chemistry, formation/ignition/secondary atomi-
zation/liquid phase chemistry of fuel droplets, and fire-safety-
related properties of conventional and synthetic fuels. In col-
laboration with Professor Irvin Glassman (Princeton University),
he developed and maintains a Fucls Research Group typically
consisting of sevel professionals and ten graduate students, and
occupying about 3500 square feet of laboratory space. Research
efforts are supported by grants and/or contracts from government,
private foundations and industry.

Dr. Dryer has published over seventy-five technical artic-
les, lectured, and consulted extensively on the above as well sas
. other combustion and energy-related subjects. He has contributed
invited presentations on two separate occasions to the Interna-
tional Symposiums of the Combustion Institute (1976, 1981) and on
numerous other occasions to the regional, national, or interna-
tional meetings of other organizations including the American
Chemical Society, AGARD/NATO, American Institute of Aeronautics
and Astronautics, American Physical Society, Eastern, Central,
- and Western Sectional Meetings of the Combustion Institute, Na-
tional Bureau of Standards, U.S. Army Research Office, and Na-
tional Aeronautics and Space Administration. In 1979-80, he
served on technical panels and committees for the National Acad-
emy of Sciences in assessing automotive emission characteristics
and hazards from both catalytically-controlled spark ignition and
- diesel light vehicles.

Dr. Dryer served as Associate Editor of the international
journal, Combustion Science and Technology, from 1977-1986 and is
presently a member of the editorial board. He is a member of Tau
Beta Pi, Sigma Gamma Tau, and Sigma Xi Engineering Honoraries,
The Combustion Institute, The American Chemical Society, and The
American Society of Mechanical Engineers.
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Herachel Rabitz

Personal and Professional Vita

B.S. itn Chemistry, University of California
Berkeley, 1966

Ph.D in Chemical Physics, Harvard
University, 1970

Postdoctoral Associate, University of Wisconsin,
1970-1971

Assgistant Professor of Chemistry, Princeton University
1971-1976

Associate Professor of Chemistry, Princeton University
1976-1980

Professor of Chemistry, Princeton University, 1980-

Applied Mathematics Program, Princeton University,
Affiliated Member and Acting Director, 1984

American Physical Society

American Association for the Advancement of Science
American Chemical Society :

Sigma Xi

Phi Beta Kappa

Camille and Henry Dreyfus Teacher-Scholar, 1974-1979
Afred P. Sloan Fellow, 1975-1979

Chairman, Princeton Section of the American Chemical
Society, 1977-1978

Associate Chairman, Gordon Conference on Few Body
Problems in Chemistry and Physics, 1981

Chairman, Gordon Conference, Dynamics of Simple
Systemns in Chemistry and Physics, 1984
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N Professor Carl Wulfman
K
PN Professor Wulfman received his B.S. in chemistry and math from the
_ University of Michigan in 1953 and attained his Ph.D. from the University of
’ London in 1957. His thesis research involved theoretical organic chemistry.
P In 1961, he came to the University of the Pacific, Stockton as Chairman of
#

; the Pysics Department where he is currently a Professor of Physics. During

the fall of 1983, he came to Princeton as a Visiting Fellow to work with

9 Professor Rabitz. Research interests include group analysis of differential
equations, physics and chemistry; molecular physics and atomic physics.
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DR. R.A. YETTER

PROFESSTONAL RESEARCH STAFF
FUELS RESEARCH LABORATORY

Dr. Yetter holds four degrees in Mechanical Engineering,; a
Bachelor of Science degree from Syracuse University (1974, a
Master of Science degree from Cornell University (1980), a Master
of Arts degree from Princeton University, and a Doctor of Philo-
sophy degree from Princeton University (1985).

Dr. Yetter has both industrial and laboratory experience as
a Research Engineer with the Chemical Sciences Laboratory, Fuels
and Lubricants Department, of the Ford Motor Company (3 years)
and as a Research Assistant with the Combustion Sciences
Laboratory, Department of Energy and Environmental Science, of
the Brookhaven National Laboratory (1/2 year). He is currently a
Research Collaborator for the Department of Applied Science at
the Brookhaven National Laboratory. In July 1985, he joined the
Professional Research Staff in the Fuels Research laboratory.

Dr. Yetter’s principal research interest is 1in the
combustion science field with <current emphasis in high
temperature combustion chemistry, flame structure, and
sensitivity analvsis theory. He has devoted his work equally
among experimental and theoretical studies particularly
emphasizing the integration of these two efforts.

Dr. Yetter has been a reviewer for major journals in the
field of combustion, and has presented a number of papers at both
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® ABSTRACT

This work concerns convergence theorems associated with a

sequence of T - approximants for exponential evolution operators

o with Lie operator arguments. A companion paper presents the
formulation of the ¢ - approximants. The theorems presented in
this paper give the conditions which are sufficient for conver-

® gence of the sequences. Although the main emphasié will be on
convergence properties of the one-dimensional case, the generali-

zation to multidimensional cases is quite straightforward.
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I. INTRODUCTION

In a companion paper we developed a new factorization
scheme! for exponential evolution operators with Lie operator
arguments. The factorization was based on ordering of
contributions to the evolution operator with respect to devi-
ations from a steady-state solution. Hence, in the Lie operator
of the form 5(5)-2 the function 5(5) must vanish around the
origin §=0. The factorization scheme results in an infinite
product of elementary evolution operators and the
approximation to the desired overall evolution operators is
achieved by a truncation of the infinite product to order n.
This procedure produces a sequence of ¥ - approximants
to the desired evolution operator. The effect of the Lie trans-
formation, or its approximate representation, on the position
vector X is fundamental in the theory since many of the basic
operations may be related to certain properties of Lie trans-
formations. A s;mple first order recursion relation may be
found for the ¥ - approximants, however they are rich in
singularities. As the limit of the sequence of the ¥ - approxi-
mants is taken, infinitely many branch point trajectories
may exist in the complex f-plane. The flexibility inherent
in the ¥ - approximants.suggests that this approach may rapidly
converge to accurately approximate the effect of the evolution
operator on x. This conjecture was confirmed in a number
of applications! although certain cases exhibited slow or

non-convergent characteristics.
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Such empirical evidence is helpful, but a mathematical

proof of the convergence behavior is needed in order to
intelligently use the method in realistic applications. It

is necessary to establish not only the existence of convergence
but also determine the criteria under which convergence is
expected. The purpose of this paper is to address these latter
issues.

In order to mathematically explore the convergence
characteristics, Section II will investigate the singularities
of the ¥ - approximants. This section will also define some
useful fundamental concepts. Section III will present the
convergence theorems for the ¥ - approximant sequences. These
latter developments will be carried out for the one-dimensional
case and Section IV will generalize the theorems to the multi-
dimensional case. PFPinally, Section V presents concluding

remarks.




: % II. Singularities of ¥ - Approximants and Some Fundamental
¢ Definitions in the One Dimensional Case

The evolution operator of concern has the form Q=exp[f(x)%§]

® where f(x) is a specified function defining the Lie Operator.
N The action of Q on x is approximated by a sequence of ¥ - approx-
)

! imants, Qx = ¥, such that

§

M { tn TL(x,t) (ft)

n+1 = v/n ¢ 1(x, = x exp(f,

4 |1 - noner(t) ER]Y

b (I1.1)
N

[}
é»e» where
¥ @

3 -]

) Q = exp(tf(x) &) = 1 exp[o,(t) x1§,]

/ 3=1

it
o and

¢ o (11.2)
b, f(x) = § £, x

" k=1 (11.3)
"

() The coefficients Oj(t) in each of the elementary exponential
f operators in Eq. (II1.2) are global functions of time. The
Un
4§ evaluation of these coefficients establishes the terms of the
¥
:'~ recursion relation in Eq. (II.1) and the details of this
: operation were presented in an earlier paperl. The iteration
ﬁ in Eq. (II.1) may be written in explicit form as
q- . X exp (f,t)

Fa(x,t) -8, x (II.4)
Ry, _ x exp (f;t)
:‘ Ti(x,t) = T(I-8; x)? _‘é;*xzjk (11.5)
%..
. .
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M
¥
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2 3 4
En(x,t) = [ [... [1-6, x] - O, x’]’ - O, x3]3
n-1 1
Bn-l xh‘:]m - Dn xn-l]—ﬁ
- x exp (f,t)
(I1.6)
where
On+1(t) = Nops;(t) exp(nf,t) (I1.7)

The structure of f, may be identified as a type of continued
fraction.

The origin in the complex x-plane is not a singular point
for all the ¥n's as long as t remains finite. Since

oy(0) = 8,(0) = o, all singularities of the approximants are

gathered at infinity at the initiation of the evolution. Each
singularity moves along a trajectory in the complex x-plane

as time evolves and may or may not reach the origin when t tends
to infinity. As a specific example we will now examine the
second approximant, ¥,(x,t). This approximant has a rather

simple singularity, a pole, whose location is given as follows:
f,

Xp = T Texp (I,E) =11 (11.8)
where we have made use of the formula
o3(t) = T, (1-exp(-f,t)) (11.9)

Since the expansion coefficients f, are assumed to be real,
the pole in Eq. (II.8) is evidently located on the real axis

of the complex x-plane. The pole starts to move from either
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+ = (f,50) or - = (fa<0) to a limiting point as time, t, tends to
infinity. If f,=0, the pole remains at infinity. In general,
two different cases occur as time evolves assuming that f,wo,

0 fl 20
lim -
t=o x’(t) = ';il £, C o (I1.10)
2

It is apparent from Eq. (II1.10) that if the system under con-
sideration is unstable, ¢, 2 o0, then the trajectory of the
singular point ends at the origin. However, if the system is
stable, ¢; < o, then the singular point stops at a finite
location away from the origin on the real axis. Therefore,

at least for this approximant, there is a "clean" region where
a singularity can never appear if ¢, <( o and the origin of the
complex x-plane is an interior point of this clean region.

If the system under consideration is unstable, the origin may
again be included in this clean region, however, in this case it
becomes a point located on the border of the clean region.

In order to gain further insight into the ¥, - approximants,
we shall now examine the next approximant. ¥,. This approximant
has four branch points, two of which are located at infinity and
the remaining ones are given below (where 3, 2 o, otherwise
branch points are complex).

X, = [8,(t) + [8,(t)1%37?

(II.11)

X, = [8,(1) - [B,(1)1%17!

These singularities are algebraic branch points with two

Riemann sheets. Depending on the nature of the system,

e PRI 4-".\-..‘.-\.(-.'.'
T A R i e T Ty L s B




-

£

”

022 - 8; may be positive, zero or negative. If it differs from
zero, then the origin becomes an interior point of the clean
region for this approximant.

There is a remarkable property about the ¥ - approximants
which can be stated as follows. If ¥, has a singularity which is
a branch point (except for the case 3 = 2), then every
fx - approximant (k>j) will have the same singularity. This
means that when j tends to infinity there will be an abundance of
branch point trajectories in the complex x-plane. Any given
trajectory may or may not be in the clean regions in the complex
x-plane. As we shall see, the proof of the convergence of the
f - approximant sequences completely depends on the existence of
these regions and their locations.

It is now useful to make some definitions before proceeding.
A given system is ultimately prescribed by the behavior of the
function f(x) describing the corresponding Lie operator. If the
complex x-plane of such a system has a region where any portion
of the branch point trajectories of the ¥ - approximants never
exist there, then we shall call this region a "clean region®™ in
accord with the use of these words above. If additionally,
this region includes the origin of the complex x-plane as an
interior point, then this region will be called the "main clean"
region of the system. We further define a "global normal" system

as follows: 1f¢ a system described by f(x) has a main clean

region with a non zero measure it is a global normal system

where we have used a measure in the sense that the measure of any

countable infinite set vanishes. This latter measure is employed




3
¥
',o to exclude the possibility of having a clean region which only
\ includes the origin. The interpretation of this definition of a
LS
;: global normal region can be made as follows: 1if we deal with a
{ finite period of time then the system will apparently have a main
)
. * clean region. If we denote this region by R(t) then we can write
X
3 lim
¢ 1y R(t) = Rg 2 lo) m(Rg) > o (I1.12)
j @
2y In other words, the main clean region will continue to have
W an infinite number of uncountable points around the origin
i
X when time tends to infinity if the system is global normal.
o
: This definition may be relaxed by limiting ourselves not just
S to a semi-infinite time period, but to a finite one starting
i, from t=0. Therefore, we can define the "temporary normal®”
&
. system as follows: a system described by f(x) is temporary
[}
i normal 1f¢f it has a main clean region with a non zero measure
A
y. {m) for a given time period [(0,T]. Here, m is defined again
in such a way that the measure of every finite or countable

]
? infinite set is zero. Finally all remaining systems will be
5"
\ "abnormal®”. As can be observed all global normal systems are
A ‘l
f at the same time temporary normal, and all abnormal systems can
o be considered as a limiting case (T»0) of temporary normal
: systems.
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& - ITIL. Convergence Theorems in the One-Dimensional Case

From an examination of Eqs. (II.1), (II.5-7) we may rewrite

the approximants §; (x,t} as follows:

& - Xx exp(f,t)
; Ty (x,1) "Z?%ET%T' (111.1)

The function 4;(x,t) in the denominator satisfies the recursion
relation
An(X,t) = [Ag::(x,t) - on x“"]ﬁ%T i 8, =1
(111.2)
One may conclude from this relation that the serial representa-
tion of Ap(x,t) in positive integer powers of x with

time-dependent coefficients will converge within a finite circle

of non zero radius around the origin of the complex x-plane for

&

- some time period (0,T]. One can then construct a Majorant
series for this function such that

@ 1An(x,t)1 < Dp(x,t) ; D > 1 ; Ixl < pp(t)

(II1.3)
where pn(t) denotes the time dependent convergence radius of the
e Majorant series. The expression for the bound D may be
established as follows

laR(x,t) | < DR(x,t) =>

lan(x,t) = Bney x| < | BR(x,t) | + [Bpeyl [x|P

(Y

¢ DR(x,v) (1+]one| X" )
=> |8n+r| < Dn(x,t) [14]|3n+,] |x|™) =)

Dn+i(x,t) = Dp(x,t) (1+|5n+1| l*'n]
(I1I.4)
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This latter result implies that

Da(x,t) = Du(x");§1 [1+]owss "] (1I1.5)

If the infinite product in Eq. (III.5) is convergent, this is the

[ *) region of the complex x-plane defined by Ixl ¢ p(t) and

p(t) 2 pmin > © (III.6)
for all t-values, then Dw(x,t) will converge to a finite value.
This result also implies that the function Aw(x,t) wWill con-
verge for all t-values in a region defined by Ix! < pmin-
The existence of such a convergence implies that the zeros of the
function Apn(x,t) in the complex x-plane are bounded from below
in absolute value for all times. This in turn means that the

system is global normal.

The condition for convergence of the infinite product in
Eq. (III.5) is equivalent to establishing the convergence of the

following expression
o0

dy(x,t) = E | On+y | fx|¥T)

J=1

(ILI.7)

If this sum converges and remains smaller than unity for

i sufficiently large n values, then the infinite product in
Eq. (I1II.5) also converges. If ppin in Eq. (III.6) vanishes,
then two circumstances may occur:

1)  p(t)  pmin (T) > © t € [0,T) (II1.8)

i1) p(t) 2 ppin (T) Pmin(T) = 0 (except T=0) (III.9)

The first of these cases corresponds to a temporary normal

IS

system, while the second implies the abnormal case. We have

therefore proved the following theorem.
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{ Theorem I: If the following infinite sum
ax,t) = ) | oy |« (111.10)
i=1
‘ converges in a circle around the origin of the complex
x-plane Ixi<p(t), then the following statements hold
(i) if p(t) > Pppin > O for t € (0,=],
™ the system is global normal
(ii) if p(t) 2 pPmin(T) > O for t € (0,7]
X with 7>0, the system is, at least, temporary normal
f‘ Corollary I
If the first condition (i) of Theorem I holds, then the
sequence of ¥ - approximants converges for all x
@ and t values in the regions (-ppins Pmin) and
(0,>] respectively, and they have a permanent
main clean region with non-zero measure.
o
Corollary 11
If the second condition (ii) of Theorem I holds, the
C sequence of ¥ - approximants converges at least for
]

p all x and t values in the regions (-ppin(7),» Pmin(T))
and (0,7], 7 > 0 respectively and they have at least
a temporary clean region around the origin of the complex

x-plane.
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N & We now seek to more explicity express the relation between
: the convergence condition of d(x,t) and the nature of the
N system. As derived in the companion paper!, the o - coefficients
R @ are described as
p on+r (1) =Fn(0) (111.11)
*,
» with L
¥,

) “h

gn[x[1+n On+1: xn] ] -gn(O)

4 n+1(x) = %
:: (III.12)
U
" and
) & g; o
I x) = E £ e -(3+1)o, x) 111.13
:: 1( ) j+2 xp (-(5 ) 1 ) ( )
.;' j=o0
! —
‘. where the time dependence of the # ‘s is not shown explicitly.
N & Now, if we assume that f(x) converges for IxI€ (ps20), we
.: can write the following inequality
"
ot Af
at 'f)+2l ‘ — (III.l‘)
| @ p)

' This relation, however, permits us to construct the following
5 Majorant function for ¥,
(Q
.~ Asexp(-0,)
' M, (x) = ! ,» 1x! ¢ pg exp(o;) = pg exp(f,t)
N _x exp(-0,)
. Py (I11.15)
:' Let us now assume that we have found a Majorant function for
; ¥, as follows
f: - An
+ —
: F.(x) = 5 FO) O | L] « 2 (I11.16)
) pl
e y=0 n
»
'I

‘-

1
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b
R where 5,‘,” stands for time-dependent coefficients and Ap, pp
:: denote certain time-dependent constants. The last assumption,
i\
-:c however, makes it possible to write the following expression for
4t
:
;' ¥ Mn4+;,» the Majorant function of .7,,;,, as can be revealed after a
33
) careful examination of the recursion given by Eq. (III.12)
0
.a : ]-l
.- xli-nlop-,lixIN] N

hd Mps) (X) 3 o n-1 ] (I11.18)
A "
3
j If we use the expression of Mp given by Eq. (II1.17), we can W
‘_ write

Gp(x)
: Mn+i(x) 2 éﬁn n — (T11.19)
’ 1-[n|an+1| + -p—n ]E X
B> n
)
Y where
0y Gn(x) = 81,n(X) / 83,n(X) (I11.20)
)
U
:: n-1 .
¥ o g1,nx) = 37 [aonfone, [xn] 27O oy (111.21) H
. j=o0
':' n+1
" Y 1 —_ A
¥) 82,n(x) = {n|on+1| + ——]n x) (111.22)
pn

s 1m0 n
8ince Gnh(o) = 1 and Gp(x) is a monotonic decreasing function of
)
§
‘:, X, we can construct the following Majorant function for the right
N
- hand side of Eq. (II1I.18)

a-
M
§ Mpe, (X) = _A":_;_ (I111.23)
. (2 - Pres)
1"

. where
':;o An+1 = % H Al = A' e‘p("flt) (III.Z‘O)
!
>
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and
1 _ 1 )=
s = [nleneal ¢ 5IR L exp(e, ) (I11.25)
Pn } 1
2
If we assume that [niopns,!)n exp(f,t) is bounded by v, then we
can write
an € exp(-f,t) pp (I11.26)
an
Aney = 1 a, = Pg (111.27)
[1 + v aR]ﬁ
Therefore, we have made the convergence radii of the Majorant
functions smaller. As can be easily shown after some inter-
mediate steps, ap monotonically converges to a nonzero limit,
say a, as n tends to infinity. This makes it possible to write
exp(-f,t)
Bn+, = Bn — i By = A (111.28)
Bn
Mn = X (I11.29)
[1 - exp(-f;t) E;]
Since o6p ( Mp4, we can obtain
Ay (1 - exp(-nf,t)
lonsacty| ¢ =L | T ] n>a (I11.30)
which obviously satisfies the boundedness condition of
1
[nions,!)n exp(f,t) globally for f, ¢ o and temporarily for
f, 2 o. This result immediately produces the following
theorem.
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Theorem II: If the descriptive function of a given system is
denoted by f(x), (f(o)=0), then the following statements are
true.

(1) 1if f(x) has a finite convergence radius centered at the
origin of the complex x-plane and f; <o, then the system
is global normal.

(ii) 1f the same conditions of case (i) hold except that
f,>0, then the system is at least temporary normal.

Our third theorem concerns the ¥, - approximants. Let us consider

the inverse relation between ¥ and ¥ny, .

[ 4
T = - n+1 1
[1+n0n+1 ER+1]n (I11.31)
If we write
1
- 3 1 n
v = min{[|52—I]7 |, (I1I.32)

and if the following holds for a specific n

15

(III.33)
then,
Yot
1En! <« 1
[; - |n°n+x'”R+1]n
(II1.34)
Now one can choose vnh4; in a way such that
v v
Yn = 3 nes 1 =) vpey = 4 = 1 < vy
[1 - 'n°n+1'Vn+1"]n [1 + Inon+1|vR]n
(III.35)
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where v is defined as below

ITn(x,t)! € vp < v (1I11.36)

Therefore we conclude

Theorem III: If we denote the mimimum of the

1
expression [I |]ﬁ n=1,2,.. by v, and for a

NoOn+)
finite fixed ~n, the approximant ¥y remains smaller
than v in absolute value, then all higher order

approximants behave in the same way.

The interpretation of this theorem is as follows. 1If the system
is globally normal then the limit of the sequence of approximants
F(x,t) = %;2 Ey Will remain permanently in the main clean
region.

In the proofs of these theorems we assumed that f(x) is
a real function and x is a real variable. We did this for the
sake of simplicity. However, if f(x) and x are assumed to be
complex quantities, nothing will change except the replacement

of £, with R exp(f,) and changing the intervals into the

circles.

............




IV. GENERALIZATION TO THE MULTIDIMENSIONAL CASE

In the companion paper! establishing the approximants it was
noted that there is a degree of flexibility in the order of the
elementary factors or propagators associated with a multi-
dimensional Lie transformation. A convenient ordering for the

proof of convergence can be written as follows

Q = exp(tf(x)-v)=exp(t xT-£7(1).v)

s )y 9 .. .. 1% (8N) 3 8
[]Eo exP[u§l)x‘ 371]] [320 exP[u’ ** Xy ]

(IV.1)

where ugn) depends on xpn's except x, and t.

We have chosen an ordering of a product of elementary exponential
operators such that the differentiation with respect to xy is
effected first. This ordering has a practical implication if we
consider the effect of Q on x,, in which case the last (n-1)
curly bracketed operators reduce to unity due to the fact that
they have no effect on x,

n

Qx; = explt xT.£7(1).9] [ exp[#}l)xz g?:]] X1

=0

Similarly, if we deal with Qx;, then we can choose the ordering

or the curly bracketed operators in a way such that

Qx, = explt 5'.57(1)-v1 [jgo exp u{j)xg %;;]] X,

(IvV.2)
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can be written. Such changes of ordering will alter the u,'s
and without any loss of generality we may consider the particular
ordering in Eq. (IV.1).

To find, for example, usl)(xz,...x“,t) we can obtain a
partial differential equation which must satisfy

auo(l)

= ¥ (1)
3T 1

-~ Hg "> xzo----xu]

. :
- a,(1)
+ § f,[- ugl).x,....,xu] ko
j=2 ax]
(IV.3)
where fj denotes the new descriptive vector element of the
system after extraction of its linear response. This may be

equivalently stated as

|£(x)|x=° =0 , {vfj]|x|=°=o J=1,2,...N
) (IV.4)
The same equations are assumed to hold for ugl)
] LR ER CV% e
(IV.5)

since first degree terms are excluded by extraction of the
linear response. Hence, Eq. (IV.3) may be solved by a

multi-dimensional Taylor series with the initial condition

ugl) [x,,....x",o]=o (IV.6)

The convergence of such series have been thoroughly investigated

in the theory of partial differential equations2. Therefore,

“31)' and the other u's which satisfy the same kind of

AN BETRAFTRT T RS




mmmmmv-w--."-"-".- S T T T

19

<

@ partial differential equations can be assumed convergent and
bounded in a closed domain around the (n-1i)-tuple manifold formed
by the cartesian product of the x,;,...,xy-complex planes.

® In analogy with the previous section one may prove theorems about
the convergence properties of the sequence of approximants gener-
ated by truncating the product of operators in Eq. (IV.2). These

® same type of statements follow as before except through a change
of the x-plane into an n-tuple manifold constructed by the
cartesian product of the n-complex planes (x,-plane,...,

9 Xy-plane).

®
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V. CONCLUDING REMARKS

In the first of these two papers we presented a factorization
scheme for Lie transformation evolution operators and in the
present paper we have given sufficient conditions for the con-
vergence of the scheme. Under appropriate circumstances, these
approximants form a practical tool to produce a rapidly con-
vergent and high precision approximation to the original
evolution operator. These new approximants are also richer
than, for example, Padeé approximants for numerical analysis.
This comment follows due to the abundance of branch points
which make it possible to characterize many types of functions
having various types of singularities. These two papers are
actually only the first step in the theoretical development
of these new types of approximants and much additional research

needs to be done for their deeper understanding and to bring them

to a truly practical level.
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Abstract

In this work a new method to factorize certain evolution
operators into an infinite product of simple evolution operators
is presented. The method uses Lie operator algebra and the
evolution operators are restricted to exponential form. The
argument of these forms is a first order linear partial
differential operator. The method has broad applications
including to the areas of sensitivity analysis, the solution of
ordinary differential equations and the solution of Liouville's
equation. A sequence of ¢-approximants are generated to repre-
sent the Lie operators. Under certain conditions the convergence
rate of the ¢-approximant sequences is remarkably high. This
work only presents the general formulation of the scheme and some
simple illustrative examples. Investigation of convergence prop-

erties is given in a companion paper.
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I. Introduction

In this paper a system with n-degrees of freedom will be
characterized by n variables, x;,...,X,, which form real Euclidean
space. If any two points in the space are related by a unique
transformation Q whose functional structure does not depend on the
location of the points, then one can define an evolution operator
for the system. Since any two points of an n-dimensional space
may be connected by a continuous curve, it is possible to use
a tracing parameter which defines the position of the system
on this curve during its evolution from its initial state x, to
its final state x4. This circumstance often arises where time is
the evolutionary parameter and we will accordingly denote the
parameter as t. Therefore, the initial and final states of the
system can be characterized by the scalar instants of time t, and
ts;. Hence the evolution operator Q can be represented as
Q(ts,ty) and

X, = Q(t,t) - ¥ (f-1)
where the dot is used to symbolically represent the effect of
Q on x;. In many applications one can find practical expressions
for the operator Q if t, and t; are sufficiently close to each
other. Hence, the global evolution operator Q(t,t;) may be

factorized into a simple sequence of evolutionary steps
Q(tfvt1) = Q(tf't|) ¢ Q(t.ﬁt.—l)"'Q(tl'ti) (1.2)

and by choosing m sufficiently large this factorization can

characterize the global evolution of the system. 1If the

simple short time interval solutions were exactly calculable,
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then the presence of a large number of such evolutions, m, is
not important. However, in reality, even the simple evolutions

over the short time intervals can often be only approximately

o

determined. In such a case, the number of increments m is

significant since errors can accumulate to possibly create
numerical instabilities and inaccuracies. 1In addition, the
factorization requires operators at times other than the initial
and final specified values. Therefore, a more global factorization
of the evolution operator such as suggested in this paper would be
more attractive.

The present work considers the factorization of the
evolution operator into a sequence of simple global evolution
operators. The scheme presented will maintain its validity only
on a special subclass of evolution operators. First, we restrict
the system under consideration to being autonomous such that the

evolution operator has the following simple structure

Q(ty,t;) = Q(te-ty) (1.3)

We also restrict ourselves to autonomous evolution operators

r

having an exponential form

Q(te-t,) = elti7t1)S (1.4)

o

where S denotes a time-independent operator. An important class

of evolution operators is included in the following definition

' 2]
¢ S =L = )El fJ(x],...,xN) BXJ (I.5)

; \
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where the dimension or number of degrees of freedom of the system
may be finite or infinite. The finite dimensional case may be
directly related to the corresponding initial value problem
produced by the set of ordinary differential equations!,

X

X = fj(xl,x ). Since almost every partial differential

3
equation with initial conditions can be cast into an infinite set

2’ e N

of ordinary differential equations through an appropriately
chosen basis set expansion, we may consider the Lie operator in
Eq. (I.5) as capable of treating a wide class of problems. Some
caution is still required since the coefficients in Eq. (I1.5)
are scalars while some formal reductions of partial differential
equations to ordinary differential equations can produce matrix
coefficients. In summary, we restrict ourselves to operators
having the structure of Eq. (I.5) and of finite order N.

Lie operators also arise in other areas besides that
mentioned above. For example, the investigation of analytic
simplectic maps? and the description of the behavior of ;ra—
jectories near a reference trajectory for a general Hamiltonian
system? are also other applications. This latter work is distinct
from the present paper where we seek a global approximation to
the evolution operator that is valid within a region of
space without regard to a reference trajectory. 1In addition, our
approximation of factorizing the exponential evaluation operator
into a product sequence of global operators is different from
that developed before. Recent additional works4~ ¢ have con-

sidered the use of Lie transformations to perform parameter

space mapping of the solution of ordinary differential equations.
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space mapping of the solution of ordinary differential equations.

& Other applications may also be found.
The remainder of this paper is organized in the following
fashion. Section II gives the general formulation of the global
® factorization for one-dimensional systems followed by a generali-
zation to multi-dimensional systems in Section III. Some
illustrative examples are treated in Section IV and concluding

j @ remarks are given in Section V.

& IT. Pactorization Procedure in the One-Dimensional Case

Lie exponential evolution operators defined by Eqgs.
(I.4) and (I.5) frequently arise in many applications. One
» application that was mentioned above arises in the treatment of
ordinary differential equations. 1In particular, if we can

evaluate the effect of the Lie transformation

e=e" ;L=fx) ¥ (I1.1)

system defined by
x = £(X) » (I1.2)

then the solution to these equations may be written as

a (I1.3)

-~

x(at) = [e'" o],

where x,a and ¥V are defined in the following manner

on the position vector x around a point a in the phase space of a

T VR

O

rex




(1I1.5)
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et
o
~
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=
—

q
"

ax ' 38x v--~9'éx—~ (I1I1.6)

This relation between the solution of ordinary differential
equations and Lie transformations may conversely be used to
determine the action of the operator Q on the position vector by

solving the following ordinary differential equation
£(x,t) = £(&) 5 €(x,0) = x (11.7)

This approach to determining Q is generally not preferable since
Eq. (II.7) is often only soluble by elaborate numerical tech-
niques which will hide the important structure of the desired
transformation. Although the approach pursued here is also
approximate, it will still leave the structure of the evolution
operator rather apparent.

In order to appreciate the approach taken below, we recall
some important properties of Lie transformations

etlit(x)gx)) = tetle(x)1 tetlg(x)l (I1.8)

e‘Lf(g) - f(e'Lg) (I1.9)

The first of these equations states that a Lie tranasformation on
a product of two functions f(x), g(x) can be factorized to the
product of the Lie transformation on the individual functions.
This property is due to the exponential structure of the Lie
transformation along with application of the Leibnitz rule of
differentiation, and the relation is valid provided that f and g

are infinitely differentiable functions. The penetration

eyt it




T N O G R W Y g ey 111

property in Eq. (II.9) also follows due to the particular
structure of the Lie transformation and the assumed infinitely
differentiable nature of the function f. Finally, one additional
well known property of Lie transformations concerns the special
case of the translation operator

e'2¥ £(x) = f(x + t a) (11.10)

which followed from a simple Taylor expansion of the right hand
side.

We now desire to investigate the factorization of Lie
transformations for one-dimensional systems. Although the one-
dimensional nature of the problem makes it formally rather
simple, this case also provides the best means to develop the
factorization scheme presented here. 1In this case the Lie
transformation can be written as

Q = exp|tf(x) o] (11.11)

9 where f(x) may have a number of zeros with one assumed to exist
at the origin of the complex x-plane. This assumption about the
location of a zero of f(x) at the origin does not create any loss

* of generality since a simple translation can bring one of the
zeros of f(x) to the origin. The assumption about the existence
of at least one zero of f(x) is more restrictive. However, in

< problems where f(x) forms the right hand side of an ordinary
differential equation, there will usually be at least one
stationary point for the solution. Therefore, the assumption

about the existence of a zero of the function f(x) may be

regarded as a minor loss of generality.
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We may now make the additional assumption that the function
f(x) may be expanded in a Taylor series

f(x) = L fjx’ Ix1<p (I1.12)

where the expansion coefficients fj are taken as known from the
definition of the system. The expansion above implies that the
system is well characterized, at least in a restrictive domain
around the origin of the complex x-plane. We seek the factori-
zation of the evolution operator Q such that every factor.has an
independent contribution in a fashion analogous to each term in
the Taylor series of Eq. (II.12). To this end we define the

flexible factorized structure

qQ = exp[tf(x)%;] - 0, exp[o,-(t)x’-g-I (11.13)

where oj(t) are arbitrary at this point and yet to be determined.

Equation (I1.13) is the factorization formula for the one-
dimensional case.

For the one-dimensional case the factorization in Eq. (II.13)
may seem to be unnecessary due to the fact that the equation % =
f(x) can be solved by the usual techniques of numerical analysis.
However, in order to gain insight into the more interesting
multi-dimensional case, the present reduced case presents the
best way to understand the theory. Despite the existence of
some attempts to factorize Q by time ordering techniques with
respect to t, to our knowledge there has been no factorization of
Q along the lines presented in Eq. (II.13) except Dragt's work

for a different purpose and in a different framework.
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Assuming that (II.13) holds and the coefficients o, are
known, it is a simple matter to determine the effect of the
operator Q on x. For this purpose we can investigate the indi-

vidual effects of the factors in Eg. (II.13)

Q(j)x = exp[o,(t)x’%;] X (I1.14)

By using a simple variable transformation

y = x (07D (II.15)

we may write
(1)

X

Q exp[-(3-1)0,(1)5:] y-1/(5-1), 3=2

(I1.16)

M« exp[ax(t)x]

and employ the translation operator property of Eq. (I1.10) on

the y-coordinate
Q())x = [y _ (j—l)oj(t)]-l/(j_l) (I1.17)

or equivalently in terms of the x-coordinate

(1), _ .
T [1 - (J'l)oj(t)xj_l]l/(J-l) (I1.18)

where x and t are considered to be independent variables as

we shall do so henceforth. In this formula the positive branch

of the root has been taken. This is the fundamental formula of our
factorization and it is valid provided the argument of the root
appearing in Egqg. (II.18) remains positive. We are now able to
evaluate the effects of the individual factors in Eq. (I1I1.13). 1In
applications of Eq. (1I.13) an approximation to Q would consist of

truncating the infinite product involved.
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At this point we need to determine the coefficient
L
functions o5. To this end we can use the following relation
9 =
[j e x 3o o) =1 (11.19)
®
which follows from Eqs. (II.12) and (I1.13). If we now write
<)
Q= Q'q, = exp[o,(t)x &) a (II1.20)
&
we may arrive at
°Q, 3 3
- 3T - exp[—ol(t)xsij [f(x)a - olx S ]exp[ol(t)x x] Q,
(I1.21)
using the properties in Eqs. (II1.8) and (II.9). This result may
e be re-expressed as
a
F) exp[-o,x==] x
5%1 - f 3x 1 - &, ] x| q (11.22)
exp[-o,x 5;] x
L
The following formula
d
) exp[-o (t) x 3,] x = exp(-0,(t)) x (I1.23)
N
allows for a rewriting of Eq. (I1I.22) utilizing the expansion in
Eq. (II.12)
aQ, 3
3t * (fl - 61) + (fzexp(-ol(t)) x) + ... b 4 x Q1
\ (I1.24)
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The operator acting on Q; on the right hand side of Eq. (II.24)
is a power series in x. Each of the terms of this series is
independent and in the vicinity of the origin the first term will
be dominant. We desire to make Q, as slowly varying as possible
and therefore demand that the leading term in the series vanish

for this purpose

® bl(t) = f1 ; 01(0) =0 (11.25)

The initial condition has been taken as zero to make the simple
evolution operator Q(1) unitary. Equation (II.24) now has the

form

BQ1

=t = Voo X e

where f(l)(x) can be identified from the remaining series of
terms in the brackets of Eq. (II.24) and f(1)(0) is finite.
Exactly this same logic may be put forth to evaluate o,(t) by
successively eliminating higher order powers of x in the differ-

ential equation. To construct a general recursion we assume

knowledge of the first n of the o;'s and write

Q = {Jﬁl Q(’)} Q, (11.26)

which suggests the equation

n+1 8

(x) x ax Qn ’ Qn(O) =1 (I1.27)

.....



S ettt ettt

The time-dependence of f{(n)(x) is not explicitly shown and the

L
function f(")(x) is regular at the origin of the x-plane and is
to be determined. We now may write

* Q =Q"*) q . = exp[on+i(t)xn*23 ] q (II.28)

n n+l P{On+1 ox n+1 )
and obtain

® 8Q

n+1 a - a

| 3t - [f(n)[exp[—an+1(')x"+1§;]x]- On+1 ]x"*l 3% A+l

\

1 (IT1.29)

!

& by utilizing again the properties in Eqs. (II1.8) and (I1I.9).
Employing the action of the factorization operator in (II.18)
gives

L
Q4 - [f(n)[ x ] -5 ]xn+1 a_ Q

at (1+no_, (t) x")l/" n+1 dx Tn+1
; (I1.30)
™ We now apply logic analogous to that leading to Eq. (II.25) and

eliminate the dominant contribution to the bracketed quantity

multiplying the operator xn+1 %; yielding
- 6 . =1 ; o .(0) =0 (11.31)
n+1l ’ n+1 :
where the initial value is again chosen as zero to make Q("+1)
. unitary. Therefore we conclude
aQ
ntl1 _ _(n+1) n+2 9
3t = f (x) x ax Qn+l (I1.32)
where
(n+1) _;[(n) x R RS ]
£ () =3 [ e ] - £ 0 (I1.33)

(14nope; (t) x")
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This is a first order recursion relation with the initial

condition

f(l)(x) = ;% [f(exp(-al(t)) x) exp(o,(t)) - f,x] (I1.34)

All of the o-functions can be evaluated analytically in

principle, however this is a tedious task and the use of a

symbolic programming language such as MACSYMA or REDUCE is

recomnended. The first five of the o-functions are given below.

o, (t) = f,t
o,(t) = £, 8,(t)

o,(t) = £4 ga(t)

£,6, £
O4(t) = [f4+ —?T_] Ba(t) - BIe 82(t)

_ f.f, fz 3
Oo5(t) = [fg+ -+t I Be(t) #
f f; £3 3
[ ga(t) + 3TT 8a2(t)
where

l-exp(-nf,t)

gn(t) = AT,

We are now at a point to implement the factorization scheme.
The essential approximation is to truncate Eqg.

finite order thereby producing the following approximant.

tnoe,t) = {8 0} x

1=1

(I1.35)
(I1.36)

(1I1.37)

(I1.38)

(I1.39)

(I1.40)

(I1.13) to a

(11.41)




= mmﬁm"w‘v-rv"

) 15

. <
.
)
1)
N If the infinite product representation of Q given by (II.13)
L)
4 o

- converges, then the following result will hold.
~.‘

= = = lim

. F(x,t) = Qx exp[tf(x) ] X = e &n (I1.42)
¢
B
' Since the action of Q on x defines the fundamental operations
)
I of concern, we now focus our attention on the Z-approximants.
t

p A recursion relation for these approximants can be obtained by

@
first noting that

‘
) n 3
‘ En+y = {jng’} exp[on+1(t) x“*lsil x (II.43)
A
An application of Eq. (II.18) yields
)
) n
) o En+r = {J-QIQ’} X 1 (I1.44)

[1 = hoOnpn+; X }n
§
5 Since a product of Lie transformations is again a Lie
§,
! ® transformation, we may use the property in Eq. (II.9) along with
! Eq. (I1.41) to conclude that
1 En(x,t)
' Tntr(x,t) = 1/n
II.45

' [1 - N on+y(t) ER(t)] ( )
' This is a rather simple first order recursion (difference
R/
5 equation) whose initial member is evaluated as follows
lc_;
y a3
, Ta(x,t) = exploy(t) x & x = x exp(o,(t)) = x exp(f,t)
N (II1.46)

Although this is a simple recursion relation, it is not typically

i)

suitable for numerical purposes. Numerical instabilities will

[}
L
1
)
L
)
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occur if f; 1is negative resulting in excessively small quantities

v for large times t or also under the conditions that x tends to
zero. In these cases, error accumulations may occur due to the
: truncated arithmetic on the computer. To prevent this error we
1¢ may renormalize the f-approximants and define a new recursion
relation
€n .
° ney = (o eﬂ]% ;& =1 (11.47)
where
e On+1 = NOnp+; exp(nf,t) (I1.48)
The relation between the new approximants and the previous ones
y is
Tn(x,t) = En(x,t) x exp(f,t) (11.49)
which also implies
‘. T(x,t) = exp[tf(x)%] X = £(X,t) X exp(f,t) (I1.50)
Since the term x exp(f;t) characterizes the linear response of
the system, we can consider ¢(x,t) as a function measuring the
- deviations of the system from its linear response. We will
accordingly refer to ¢ as a "deviation function". As can be
easily seen, the ¥ and ¢-approximants have branch points which
< move on trajectories in the x-plane. The location of these

trajectories determines the convergence regions of the approxi-
mants. We shall leave the discussion of this issue and a

comparison of the ¢(-approximants with Pade approximants to a

companion paper.
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III. GENERALIZATION OF THE FACTORIZATION SCHEME TO
THE MULTIDIMENSIONAL CASE ‘

The logic put forth in section II for a systematic factori-
zation of one dimensional evolution operators may now be
generalized to multidimensional cases. 1In this situation, the

evolution operator acting in a space of dimension N has the form

Q = exp(t f(x)-V) (I11.1)
where

x' = [Xy,...,%x8) (I11.2)

ot = |2 3

~ 9%, T dxy (I11.3)

7T = [f,(X)y..., Ex(X)] (II1.4)

The function f(x) is assumed to have a zero at the origin

lim =
Mo 10 = 0 (111.5)

and it is also assumed to be expandable in a multidimensional

Taylor series in the variable x,;,...xy. This latter expansion

can be written in tensor form as

2
£, = f$5) x5 + f$,2 XyXy + f$3a1 XyXypXy +

(I11.6)
where the convention of the explicit summation over repeated

indices is used for convenience.
In the one-dimensional case the operator exp(clxgi) played a
fundamental role in the first step of establishing a recursion

relation for the approximants. The same situation occurs again

R R Rl



o here and we shall denote this first degree operator Q as

A taking on the following form
&
l

: Q. = exp(xTa(l)v) (I11.7)
' L -~ -~
3
'8

) where o{(1) is a square matrix or equivalently a second degree
j tensor. The effect of this operator on the position vector x
N is
2

® Q. x = exp(o' (1)) x (I11.8)
", ~ ~ ~

':. Since Q x must be the system linear response we can conclude that
N

0 “
Ly °jk“) =tf§;) Jok = 1,...4N (I11.9)
:,. Henceforth, we shall denote the linear response of the system
° evolution by s,

3

: S = exp(tf(1)) (I11.10)
$

N ® Using the definition of the scalar product of two tensors of the
o same order,

D)

)

; Ay,...5p Bj,...;, =AoB (111.11)
)

§

" we can write the evolution operator in Eq. (III.1) as the

;’ infinite order factorized product

I

v @

i Q= Q n exp[o(k)e L(k)] (I11.12)
¢ < k=2

a

s where o(k) is a k-th order tensor to be be determined and

|'

. L(k) is a tensor valued operator

(x) = d

K

I

-
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The tensor product in the argument of each exponential term in
Eq. (III.12) is itself a sum of operators which would be
difficult to deal with in practice. Therefore, we have further
factorized each individual term in Eq. (III.12) (except Q)

to obtain

* (k) (x) .
2 1;1 exp(ojljz._'jk le"'Jk) (III.l‘)

(R~ ]

Q= Q «

where it is understood that the coefficient functions o(k) are
now distinct from the set in Eq. (III.12). The starred product in
this formula means that the product operation is performed over
the entire domain of the j-indices. There is no unique ordering
to the factorization in Eq. (III.14) for a multi-dimensional

case. However, if we define the following operators

5(") - exp[a(n) ® L(n)] (ITI1.15)
Q(n) = ?* exp[ogqu.,,,n L§T?..jnJ (II1.16)

one can prove that
[@x} - {e!"x} = o[x*"7}] (I1I1.17)

Therefore, within this level of approximation the expressions

in Eqs. (I111.12) and (III.14) may be considered equivalent. The
form given by Eq. (I11.14) is practical since each of the
sequence of evolution operators acts on a particular coordinate

and degree of freedom.

B
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The procedure for determining the o - tensor is the same
¢ as 1n the previous section, however all scalars, (except time)
must be replaced with tensor quantities and the conventional
algebra must be replaced with tensor algebra. The details of
v these operations will not be dealt with further here, but the
use of symbolic programming languages would be most helpful
in practice. The second degree o - tensor is given below
° as an example.
t
o2 = [ a2, [0, 5], e
<
(II1.18)
The evaluation of the ¢ - approximants can again be accom-
plished by using the consecutive effects of the individual
¢ factors of the evolution operator. Symbolic programming
techniques would likely be the best procedure for determining
the x;,...,xy and t dependence of the §¢ - approximants.
L
e
~
:
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IV. ILLUSTRATIVE APPLICATIONS

In this section, five problems are considered, each of
which exhibits different types of behavior. For the sake
of comparison with the techniques introduced in the previous
sections, we have chosen analytically soluble problems as

described below.

1) f(x) =1 - eX (Iv.1)

From traditional linear stability analysis arguments this
system is stable for x>0 and unstable for x<{o. There is also
only one steady state point located at the origin. An analytic
expression for the effect of the Lie transformation on x can be

written as
E(x,t) = exp[tf(x)%;] X = - 1n [1-(1-e'x) e‘t] (Iv.2)

A careful examination of the structure of Z(x,t) reveals that its
branch point traverses the path from -= to +e= along the horizon-
tal axes ¥ill as time evolves. Figure la plots the exact
deviation function §¢(x,t) and its first five approkimants En(x,t)
as defined in Eqs. (II.50) and (II.49) respectively for the

case x=0.1. It is apparent that the approximanis uniformly
converge to the true deviation function as n increases. The
error between the true deviation function and the n=s

approximant is shown in Figure 1b where it is apparent that

the error decreases monotonically to an asymptotic value

for large times. A similar pair of plots is shown in Figure 2

)
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for x=s.o0. At this larger value of x qualitatively similar
behavior occurs but the rate of convergence of the approximants
is slower and the peak in the error function may be a signal of
the loss of global convergence. The situation for negative values
of x is different as shown in FPigure 3. Figure 3 presents the
case for x=-1.0. The approximants in this case seem to show
oscillatory nonmonotonic behavior with regard to true deviation
function. The error of each of the approximants is qualitatively
similar to that of FPigures 1 and 2. At a sufficiently large
negative value of x singular behavior shows up resulting in

apparent non-convergence.

11) f(x) =1 - X% (IV.3)
This system is unstable for positive x values due to the
first Taylor coefficient being positive. It has only one steady
state point located at the origin of the x-plane. The analytic

expression of the Lie transformation effect on x is
T (x,t) = ln{a1+(eX-1)el) (IV.4)

The branch point trajectory of this system matches with the
negative portion of the real axis of the x-plane. The branch
point moves on this line towards the origin as time evolves
and reaches there in the limit that t»= . Figure 4 shows

the deviation approximants and the error of the fifth member

for x=6.1. Apparent convergence failure is observed, however
- during a finite time interval starting from t=o there is

temporary convergence.

4
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111) f(x) = sin x (IV.5)

This system is unstable around x=o0 for x>0, however it has
infinitely many steady state points and they alternatively make
the system either stable or unstable. Figures 5 depicts the
approximant behavior for the case x=1.0. There is apparent con-
vergence behavior in the figure, however a peak in the error
function may again be a signal of the loss of global convergence.
It is difficult to prove this point from only a finite number of
approximants. An additional calculation is shown in Figure 6 for
x = 5.0 which is beyond the second stationary point of sinx.

This well behaved nature of the approximants is probably due to
the fact that all the branch points of this system are purely

imaginary.

iv) Stakgold problem?
This problem is associated with the consideration of two

coupled nonlinear differential equations with system coefficients

given by
fl(xl,X2) = Xxl - Xp - xl(x§+x§)
fz(xl,X2) = xx: - X, - xz(x§+x§) (IV.G)

The analytic expression for the effect of the Lie transformation
on the position vector is

Ta(t)=(x,co8 t - xz81n t) e Mt g(x,t)

T2(t)=(x;81n t + x5cos t) e M opex,t) (IV.7)

where A\ is assumed to be negative and 7 is defined as follows

vy, SN U U By VRS i Sy ; ( Igray) f OO N0
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A x? + x32 - ~%
g = _ 21x1t
. 2x,t) = 1+ 22 1 -e ] (1v.8)
0
)
j This system is stable as long as .\ remains negative. 1In the
& N case of positive A the same condition again holds but the
W system does not have a steady state solution and a limit cycle
g appears.
)
".) In applying the method of Section III to Eq. (IV.6) we will
K find that the system has only the following non zero tensor
2 coefficients
3
: 1 1

- f§1)= A f£2)= -1
:
'y
; (- £3)=
l
! (1Iv.9)
‘.l;

3 3 3 3
o fglll = fgx%z = fgzll = fgz%z = -1 (Iv.10)
L)
L)
W,
ﬁ Accordingly, the linear response term would be expressed by
al
the tensor

'
'Y
‘.'
P S = exp(tf(1)) (IV.11)
¥ -~ ~
hy
¢ and elements of this matrix and its inverse are given by the
b
5 following expressions
L)
g S;, = elt cos t S, = -ert sin t
y S, = elt gin t S;; = ert cos t (IV.12)
X
P
" s{1}) = e At cos t s{7') = et sint

| s{7) = e gint s{7') = e M cos t (IV.13)

s
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Since the second degree Taylor expansion coefficients are zero

it follows that
o(2) _ , (IV.14)

The third order terms are non zero and o(3) may be shown as

t
(3) 3 -1 -1 -1
Oryta130, © l Sy m, féx%zmamc Séz’l Séa‘; 5&4‘1 ar
G

(IV.15)
where the explicit summation rule over repeated indices is

employed. After some tedious algebra, one can show that all
elements of the o(3)-tensor vanish except for the following

four members

of3), () = of3), (1) = 083, (1) =
(3) —2)1:_1 _
= 032222 (t) = ——95— = 03(1) | (IV.16)

This result immediately yields the tensor product

0(3) o L(3) = og,(t) [ﬁ + xg] ["1 E‘g‘; * X2 53—: ]

(IV.17)
As can be easily observed the operators g(3) o L(3) and
£(3) o L(3) commute and therefore there will be no contribution
from higher degree terms of the remainder during the elimination
of the operator o(2) g L(?) from the structure of L. 1In
addition, there are no higher order terms than these already
coming from the structure of L itself. Hence, we may conclude

that the factorization exactly truncates at its second order

terms if we retain o(3) o L(3) as a global second degree
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o) Lie operator. Indeed, if we write
1
2 o
3 Qx = exp[x’ £1(2)- 9] exp[g(?) 0 L(M] x
A
K _ r cos 6
0 = exp[x7 £7(1). v] 1 T
L -~ ~ ~ - 2
‘. 1 203(t)r sin 6J , (IV.18)
o
¥ then it follows that
W
s Qx = et cos t -8in t] [x,
at = _

. - T1+(e2lt_1) x{ + x%]s
™ -\ sin t cos t X9 (IV.19)
h -
N
. and the exact result is obtained. 1In this result we have
Y

w first used polar coordinates
, _ [ 2 2]5 _ [ 2 2]‘5
N r = |x,"+ x3 cos 6 = X; |x)+X3 ;
N
I (3 3) = a 9
A 0(3) o L(3) = o5(t)r® 5 (IV.20)
n
é and then returned to the cartesian representation in Eq. (IV.19).
>
5 The result in Eq. (IV.19) is just a confirmation of the
1}

L
5 operator algebra introduced earlier in the paper. We may still
\
. go a step further and factorize the evolution operator involving
. 0(3) o L(3) to obtain
L ~ ~

a 2]
2) = 3 2
Q(2) exp(o;(t) x3 EYI] exp[os(t) x X2 5;;]

.
b exp(o,(t) x2 x 9 ] expo;(t) x3 9 ]
i - PLos 2 *1 3x; 3 2 3%,
K- (IV.21)
o This different factorization creates an error which is of the
h.
W
K . order of magnitude of fifth degree terms. 1In this case,
1
N an infinite product appears which converges about the origin.
:
§
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v) space extension

Consider the system defined by the function
f(x) = vVi-x7 (IV.22)

This function has two zeros located at the points x=+1 and

=-1, however it does not fulfill the requirements for our
method. 1In particular, it cannot be expanded in a Taylor series
around these points. Nevertheless, the problem may still be

approached by extending the space to two dimensions through the

introduction of a new variable in addition to x as follows
Yy = ViexZ (Iv.23)
We can now define a new system with the descriptive functions

“ 9 f,(x,y) =Yy
X f,(x,y) -X (IV.24)

This new system satisfies all of the necessary conditions for
8 o factorization. Therefore, in cases such as these, the technique
of space extension may make it possible to factorize Lie trans-

formations which otherwise might not admit to direct treatment.
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V. CONCLUDING REMARKS

The basic thrust of this paper is the development of a new
sequence of approximants appropriate for time evolution
operators with Lie generator arguments. Although we have not
given convergence theorems for the §{-approximants sequences,
the results in Section IV are encouraging. Rapid and highly
accurate convergence seems to be obtained at least in a
sufficiently closed vicinity to the origin. The next step in
this work, examined in a companion paper, is the investigation
of the ¢-approximant singularities and some convergence theorems.

Actual implementation of the factorization scheme, especially
for multidimensional cases can involve a considerable amount of
algebra. The use of symbolic programing on the computer would
likely be a necessity in these cases, and this issue also
needs further investigation for its practical implementation. A
number of applications of the factorization may be envisioned as
suggested in the introduction. Evolution operators of the type
studied in this paper occur in a wide variety of problems, but
perhaps the most obvious and simple application would be to the
solution of ordinary differential equations. The possible
attraction here follows from the fact that the approximants
provide a global solution in time rather than the usual
sequential time stepping procedures. A number of numerical
issues need to be addressed for this case as well as other
applications before the optimal realm of utility of the

scheme may be established.
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Figure Captions

Figure 1

Figure 2.

Figure 3.

Figure 4.

Plot of the exact deviation function ¢((x,t) and

its first five approximants en(x,t), n=1,...%

for the characteristic function in Eq.(IV.1) where
x=0.1 In figure a, the last three approximants are
indistinguishable from the exact result. Figure b
shows the deviation function for the approximant
n=s. The same line masks in figure a will be used
in the remaining ¢é-approximant plots.

The same as figure 1, except x=s.0. These results
are qualitatively similar to those of figure 1
except now the convergence rate is slower and there
is a peak in the error function.

The same as figure 1, except now x = -1.90.

Apparent oscillatory nonmonotonic behavior is
exhibited with respect to the true deviation
function in figure a.

Figure a exhibits the exact deviation function
¢(x,t) and the first five approximants

en(x,t), n=1,...5 corresponding to the fundamental
function in Eq. (IV.3) at x = 0.1. Figure b shows
the error function for n=s approximant. Apparent
divergence behavior is observed at long time;
however, during a finite interval around the origin
there is temporary convergence. Here, only the
fifth approximant goes to infinity. However, the

first four approximants also have branch points
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close to zero but they do not make the denominator
in the corresponding transformation from the pre-
vious approximant zero when t<{ioc. Some of the

branch points are not even on the posgitive real

axis.
FPigure 5. The exact deviation function ¢(x,t) and its first
d five approximants en(x,t), n=1,...s for the
¥ o
characteristic function in Eq. (IV.5) at x=1.0.
The first and second approximants coincide as well
: as the third and fourth approximants. There is
b <&
apparent convergence behavior in Pigure a,
however a peak in the error function in Figure b
may signal a loss of global convergence.
i &
Figure 6. The same as Figure 5, except that now x=s.o0.
&
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Figure 3a
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Figure 4b
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Abstract - Global deterministic identifiability of nonlinear systems is studied by
constructing the family of local state isomorphisms that preserve the structure of the
parametric system. The method is simplified for homogeneous systems, where such
isomorphisms are shown to be linear, thereby reducing the identifiability problem to
solving a set of algebraic equations. The known conditions for global identifiability

in linear and bilinear systems are special cases of these results.
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L. INTRODUCTION

Consider the parameterized nonlinear system

sro(p) | { D ey g (1)
y=h

k4 y(t,p (z(t,p),p), =(0,p) = zo(p)

Let M and § be bounded, connected, and open sets in R™ and RY, respectively.
such that z € M and p € Q, where p represents the constant parameter vector. We
assume that the vector fields f(-,p) and g(-,p), and the function h{:,p) : M — R™
are real analytic on M for all p € Q. The problem considered here is identifiability
of (1) in the experiments specified by (zo(p),U’[0,t1]) , where zo(p) denotes the
(possibly parameterized) initial state, and U7[0,t;] is the set of bounded and mea-
surable controls defined on {0,¢;]. Let E;"(P) denote the input-output map of (1).
Parameter values p , p € ( are said to be indistinguishable ( denoted bv p ~ p ) in
the experiments (zo(p), U'[0,¢,]) if Vc°(P)(u) = E;°(ﬁ)(u) for all u € U[0,¢,]. System
(1) is globally identifiable at pif p ~ p, p €  , implies p = p. System (1) is locally
identifiable at p if there exists an open neighborhood W of pin 2 such that p = p,
p € W | implies p = p.

A summary of results on local identifiability of (1) is given in [1]. These results
are based on three factors: (i) the relationship between local identifiability and lo-
cal observability of the system augmented with the parameters as additional state
variables; (i1) the functional expansion of the input-output map of (1), and (iii)
the local state isomorphism theorem of nonlinear realization theory. While the first
approach is inherently local, functional expansions (e.g., Taylor and generating se-
ries) enable one to study also global identifiability by formulating a set of algebraic
equations for the parameters{2,3]. Except linear(2], bilinear(4], and homogeneous
polynomial[5] systems there exists. however. no a priori upper bound on the number

of series coefficients to be considered. and hence the resulting conditions are suffi-

cent but not neccessary from a practical point of view. The structure of nonlinea:




equations is far from simple (see, e.g.,[6!), their number is large even for bilinear

and polynomial systems, and hence global identifiability properties are difficult to
establish in most applications.

The goal of this note is to extend the state isomorphism approach to the anal-
ysis of global identifiability in nonlinear systems. In addition to its analiticity we
assume that system (1) is locally reduced at zo(p) for all p € Q , ie., it satisfies
both the controllability rank condition (C.R.C) and the observability rank condition
(O.R.C)HITI.

The problem of global identifiability is stated as follows.

Problem statement: Given (1) and p € (1. find all p € 2 and systems of the form

i) {é(t,ﬁ) = f(Z(t.5).p) + u g(Z(t, ), p) 2)
P y(t’ﬁ):h(é(t’ﬁ)vﬁ)ﬁ 5(075):50(5):30(5)
such that
£5°® (u) = 5P (w) (3)

for all v € U7[0,1,].

It follows that we deal with a highly restricted problem of system equivalence.
First, both (1) and (2) are locally reduced , and have the same subset M in R" as
their state spaces. Second, in addition to the input-output map, the known system
structure is also invariant under the feasible class of local state isomorphisms. The
analysis is based on the construction of all such transformations. This idea has
been applied to linear systems|2,8], where equivalence transformations are linear.
Though local state isomorphisms between (1) and (2) generally are solutions of a
set of partial differential equations, their construction is relatively simple for locally
identifiable systems. We will also show that any local state isomorphism, preserving

the structure of a homogeneous system. is lincar. Thus the method is very simple

for this class of systems, and the known conditions for global identifiability of linear
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and bilinear systems are special cases of the present results. The single-input case

is considered for notational simplicity and the conditions can be readily extended.

II. IDENTIFIABILITY AND CONSTRAINED EQUIVALENCE
The following condition for identifiability is the immediate consequence of the
local state isomorphism theorem ({1},{7],(9],[10]) and the constraint (2) on the form
of the representations of (1).
Proposition 1: Consider p, p € 0, an open neighborhood V' of z¢(p) in R™, and

any analytic map A : V" — R"™ defined on V" such that

(i) A(zo(P)) = o(p) ()

(i1) rankg—i_— =n atalzelV (5)

@) fOE)P) = 2 (E,5) (6a)
] A .

g(A(:t),p) = a—i_g(m’p) (Gb)

h(A(z),p) = h(2,Pp) (6¢)

for all £ € V", Then there exists {; > 0 such that (1) is globally identifiable at p in
the experiments (z¢(p), [’(0,t,]) iff conditions (4)-(6) imply p = p.

Proof: (Necessity.) Assume that p # p, V, and ) satisfy (4)-(6). Introducing
£ = A7) (z) into (1) gives

2 = (01/02) " f(M£),p) +u (91/0%) ™ g(M(2),p) (
y=h(A(@),p), (p) = A} (ze(p)):

~1
~—

i‘io(P) . {
i :

Select t; > 0 such that #(t,p) € V for all v ¢ 1'[0.¢,]. where &(t,p) is the so-
lution of the differential equation in (7) with the initial state Zo(p). By (ii) A is
vtn(P)

a local state isomorphism defined on 1" and hence T, (u) = ‘:,i,"(p)(u) for all

u € U[0,t;]. By (i) Zo(p) = A1 (Maxo(ph = suipiand by (iii) (7) is represented

by (2).Therefore,§::°(p)(u) = S:o(ﬁ)(u) for all v € 1'[0,t;] , and p ~ p follows.
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(Sufficiency.) If p # p, p ~ p, then (2) is a local representation of (1) on some
neighborhood 1j of #¢(p), and it is locally reduced. By the local state isomorphism
theorem for any such representation S of (1) there exists an open neighborhood 1;
of Zo(p) and a unique analytic diffeomorphism A defined on V3 such that § is of the
form (7). Therefore, p and A satisfy the conditions (4)-(6) on V =17 N 173. o

Remark 1: Let (1) be globally identifiable at p. It follows from the uniqueness
of the local diffeomorphism A (see,e.g.,(10]) that the only pair (p,A) that satisfies
the conditions of Proposition 1is (p,td, ), where id,, : VV — R" denotes the identity
mapping. Conversely, A # i1d, implies p # p.

. e ey . 1
Remark 2: If certain initial states are completely known, write zy(p) = ([z‘g )}T.

{:cgz)(p)]T)T, where zgl) represents the parameter-independent components of z,.

Then (4) defines the constraints

/\( :EE]]) )_ ( :CE)]) > (8)
2" () 2 (p)

on A. In the limiting (i.e.,parameter-independent) case zy = :cg]), and (8) is reduced

to

A(zo) = zo. (9)

Ezample 1. Consider the system

Ty = PiTs + P22 T2 +u z,(0,p) = z2(0,p) = 0
(10)

& = P3T; + PaT1 22 y=2z;.
With 2 = {p € R',p; # 0,|p:| < K - R'",K > 0} (10) is locally reduced at z, for
all p € 2. We construct all local transformations A = (A;.);) that satisfy conditions

(4)-(6). Since h(%,5) = (1 0]z, by (6c)

u_"):';‘; (11)




©

‘@

whereas (6b) implies Az /0%; = 0. Then (6a) is reduced to

(p153+pziu\z):(1 0 )(;3,5§+;325,52> a2)
PaE} + pati X 0 09X /0%, B3l + PaF1dy )

to be satisfied on an open neighborhood of the origin in R?. By the first equation

of (12), p» = p1, and

M(E1,87) = 224, (13)

NARA

Thus 8X; /0%, = Py /p;. From the second equation p3 = p2p3 /P, and PPy /p2 =
P2Ps /p2. Since py is arbitrary and p; # 0 by condition (ii), we have p; = ps. The
initial states are known, but (9) does not further restrict the one-parameter family
of feasible transformations given by (11) and (13), where p; # 0 is arbitrary. Thus
(10) is nowhere locally identifiable on 2. This result can be obtained also by the
methods presented in [1]. In addition we show, however, that parameters p, and
Py are unique, independently of the value of p;, and at fixed p, = p; the system
becomes globally identifiable at all p € Q. As shown in {11}, it is much more tedious
to establish these properties by the generating series expansion approach.

Remark 3: This example illustrates two important, though not completely
general properties of the present method. First, note that the general solution
A of the set (6a)-(6b) of first-order linear partial differential equation depends on
arbitrary functions (see,e.g.,(12]). I (1) is locally or globally identifiable,then at
most a finite number of these solutions satisfies the additional constraints (6c)
and (8). Therefore, restricting consideration to diffeomorphisms satisfying (6c) and
(8) one can expect that there will be no need for actually solving the differential
equations. As Example 1 shows, this may be the case even for locally unidentifiable
systems. Second, the use of the local state isomorphism theorem restricts the scope
of Proposition 1 to some interval [0,¢;]. However if \ satisfies (5) and (6) for all

z € M, then the transformation is global and {; .- 0 is arbitrary.
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Remark 4: For a time-invariant, structurally controllable and structurally ob-
& servable parameterized linear system represented by (A(p), B(p),C(p)) we have
Mz) = Tz, where T : R* — R™is a nonsingular linear transformation{12}. Then the
further conditions of Proposition 1 are reduced to T(8)zo(p) = zo(p), A(p)T(8) =
& T(6)A(p), B(p) = T(8)B(p), and C(p)T(8) = C(p), where 8 denotes the entries of
T and emphasizes that 8 is to be determined in addition to p in order to satisfy
the equations.The linear system is globally identifiable at p iff the only solution is
@ p = p, and then T(f) = I follows as mentioned in Remark 1. This agrees with the
results of Walter(2,3,8]. Since state diffeomorphisms are linear, a similar identifi-
ability condition can be formulated for bilinear systems with a linear observation
<& function[14].
I11. HOMOGENEOUS SYSTEMS
We now show that there exists a more general class of systems such that consid-
o erations can be restricted to linear state transformations when solving the problem
stated in Section I. The result is based on the following lemma.
Lemma I: Assume that f(-,p) and g(-,p) are defined by homogeneous coordi-
g nate functions, i.e.,there exist integers k and £ such that
kf(z,p) = (8f(z,p)/0z)x,  Lg(z,p) = (99(z,p)/0z)z (14)
&
at all z € M; and the observation function is linear, h(z,p) = C(p)z. H p ~ pin
the experiments (0,07[0,t;]) for some t; > 0, then there exists a nonsingular linear
transformation T : R* — R" such that «(t,p) = T#(t.p) for all 0 < t < t;, where
< z(t,p) and Z({,p) denote the solutions of the differential equations in (1) and (2),
: respectively.
|
n
:&

-1

]
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Proof: Introduce the notation ¢(z,u) = f(z,p) + ug(z,p) and ¢(z,u) =
® f(z,p)+ug(z,p). By Proposition 1 there exists an open neighborhood 17 of 2, = 0
such that z = A(Z) on V. Thus we can write (1) and (2) as
A=p(hu), o= Xzo)=0 (15)
®
and
z=¢(z,u), To =zp = 0 (16)
® respectively.By the local weak controllability of (16) at £, = 0, there exists an open
neighborhood V; of #, such that any £ € V) is reachable from £,. Therefore,the
equality
- v = CPNE) = C(p)i (17)
holds for all £ € V' = V3 N1;. Let ¢; and ¢; denote the jth rows of C(p) and C(p),
respectively.By (17) for any # € V', for any ¢ > 0, any constant controls u’,...,u’,
L’ and sufficiently small s;,...,38; > 0 we have
¢;(3;, 0 02, 075, (M) = (35, 0. 042, 0, () (18)
& for j = 1,...,m. Here 4} and ¥} denote the flows of ¢*()) = p(A,u*) and ¢ (F) =
$(z,u’), respectively. Differentiating with respect to s;,...,s;, at 0 yields
Loi(co (L (ciA)) - daiz) = Lo (o (Lge (G52)) .0 )z (19)
<
where L1 denotes Lie differentiation along the vector field ¢* [7]. Differentiating
(19) with respect to £ and multiplying by & gives
- oX . . .
< (Lot (- (Lo (e50) - Inery 328) = (@l (o (Lan(658)) . Jend) (20)
where the differential d(Lgi(... (L (E;7)...); is represented by a row m-vector
c valued function,and the vector field with the (oovdinate functions (z4,...,8,) is
also denoted by z. Assume first that k = £. By (14) we have
8
.




Then

(Lo (Lo (ED) = @Lgor (L (G20),8) + | (WL (G267 (22)

where [, -] is the Lie bracket of two vector fields (see,e.g.,[9]). By (14) ¢ 1,2] = (1~
k)Z*~! , and hence the second term on the rhs of (22) is (1 —k)/k(Lg-1 (L (¢;z))).

Therefore,rearranging (22) yields
(2 ~ (Lo (L (8} = (AL (Lo ()2 ) (23)

Since ¢ is a k-order homogeneous function of A, analogously rearranging the lhs of

(19) and continuing for ¢~ 2%,... ¢! yields

(ALt (o (Lo (€0) - Iaep ME)) = ([@d(Lgr (- (L (§5F)) - )erE). (24)

From (20) and (24)

ALy o (L (5 0) - s a8 = (AL (o (L (e 0) s (25)

Since the O.R.C. is satisfied at 0, by analiticity of (1) there exists an open neigh-
borhood of 0, also denoted by V, such that the vectors d(L,:(... (L, (cjA) .. Jacz)

span an n-dimensional space at all # € V [7]. Thus equations of the form (25) imply
A
LEE=xa) (26)

for all £ € V. By (26), 8A/8% is a zero-order homogeneouos function, i.e.,

aA
or

_ 0
- oF

(a) (7) (27)

for all # € V and all a € R satisfying ez = | . and by 0 = 17 it is defined at

# = 0. Setting a = 0 in (27) shows that 8A/8z(0) = 0A/0#(z) at all # ¢ V', and

9




Mz) = Tz. By (14) XNz) = Tz satisfies (5) and (6) for all # € M, and hence

z(t,p) = Tz(t,p) forall 0 < t < ¢;.

For £ < m introduce the additional state variable z,,;, an (m — f)-order
homogeneouos function 7 : Iz — R', where Iz is an open subset in R' such that
r(s) # 0 for all s € Ig, and input @ = u/r(zn41).Let 2* = (zT,zp01)T , 2* =
(#T,2041)T, and consider the augmented vector field ¢* : M x Iz — R**! and

matrix C* defined by

?.(I.,ﬂ) _ (f(t,P) +ﬁrgcn+1 )9(%?)) .= (C(P) 0) : (28)

Augmenting (1) and (2) we have
&= (e%,4), y=C"z", =} =(z7,8)7, (29)

and
z = 95‘(5‘7'&)3 y= é'i', 5"(-) = (ig’ﬂ)T’ (30)

where ¢* and C* are defined by (28) at the parameter value p. Let E;‘.’(p) and

E:;’(P) denote the input-output maps of (29) and (30), respectively.Since

2@ oy _ (S0 (w)
£ ()—(Pﬂ ) (31)

p ~ p implies T5° P(u) = TP (u) for all w € U[0,1;] and for all 3 € Ip.
Since Zn,41; = Tp4+1 = [, in spite of uncontrollability of (29) and (30), the only
isomorphism between #* and z* is given by A* : z* — (AT(Z),£,41), and then
y = C°2*(z*) = C*z* for all £* € V x I5. The augmented systems are homoge-

neouos,and the previous part of the proof applies and yields

(PR ()0

This is valid for all # € V', and thus (26) and (¢ follow. For m - £ the proaf ¢

analogous with @ = ur(zn41). =

10
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Replacing A(Z) by T7 in (4)-(6) gives a simple condition for identifiability of
homogenous systems in the experiments (0,07{0,t,]), t; > O arbitrary. This result
can be slightly extended by considering a set I; C R"*, n; < n of feasible initial
states zg”. Define I, = {zn(p);zf,l) € I,}. System (1) is globally identifiable at
p € Qin the experiments (I,,U'(0,¢,]) if and only if there exists zo(p) € I, such that
(1) is globally identifiable in the experiments (zo(p),l’[0,t;]). From Proposition 1
and Lemma 1 we have the following result.

Proposition 2: Assume that system (1) satisfies the assumptions of Lemma 1,
it is locally reduced at z4(p) for all p € 2 ,and for all zf)’) € I,,and 0 € I,. Consider
p,P € N, and any linear transformation T(6) : R* — R™ such that (i) T(0)z¢(p) =
zo(p) for all 2" € I, , (i) T(8) is nonsingular, and (iii) f(T(8)Z,p) = T(8)f(%,p),
g(T(8)z,p) = T(8)g(z,p), and C(p)T(8) = C(p) for all £ € M. Then (1) is globally
identifiable at p in the experiments (I,,17(0,¢,]) for arbitrary t; > 0 iff conditions
(1),(i1),and (iii) imply p=p .

Proof: As shown in the proof of Lemma 1 for zp = 0, ¢ = TZ is a global
transformation defined at all Z € M if (1) is homogeneous. Assume that T satisfies
the constraint (i). By analiticity of local diffeomorphisms, A(2) = T< for any z,(p)
and for any local transformation A defined on some open neighborhood of z¢(p),
and the proposition follows. : Q

The identifiability conditions for linear and bilinear systems, discussed in Re-
mark 4 are particular cases of Corollary 1 withm =1, £=0,andm =1, £ = 1,
respectively.A further application,particularly important in ecology and chemical

reaction kinetics, is to the system

2:(t,p) = 27 (t,p)AV (p)z(t,p) + bi(p)u . i=1,...,m,
(33)

y(t,p) = C(p)z(t,p) . z(0.p) = zu(p).
where A, 1 = 1,... n, are n » n symmetric matiices. Denote a:;) = [A™™];; and

6.,; = [T(0)ij , %4,k =1,...,n, then we have the following result.

11
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Corollary 1: Consider p,p € ! and any nonsingular linear transformation

T(8) : R* — R™ such that T(6)zo(p) = zo(p) for all z{") € I, and

b(p) = T(6)b(p) ,  C(p)T(6) = C(p) (34)
YN B )06, = > 0D (), Gdik=1,...,n. (35)

System (33) is globally identifiable at p in the experiments (I,,U{0,t,}]), where
0 € I,, and t; > O arbitrary, iff the above conditions imply p = p.

Remark 5: As mentioned in Remark 1,global identifiability also implies T(6) =

Ezample 2: Consider the system

T =poT2 +u, z,(0,p) = z2(0,p) =0,
(36)
Zy = p221Z; +P3T3 +u Yy =23,

which is of the form (33) with

A = (p10/2 p]0/2)’ AR = (P20/2 p;»:fz)’ "p) = (}) 4

and C = [0 1]. It is easy to show that (36) is locally reduced at z, = 0 for
alpe Q={peRp#0p—-p2—-p #0, lps| <K € R",K > 0}. By
Proposition 2 we consider the nonsingular linear transformations 7(6) : R* — R®.

Since b(p) = bp) and C(p) = C(p), conditions (34) restrict T(8) to the form

T(0) = (1 ’00” 0;’) : (38)

and T(0) is nonsingular for any 6;; 3 1. Then the nontrivial equations in (34) are
p1 — 612(P1 — P2) = 1 — 01271, 61293 = 612py, P2 = p2 — 612p2, and p3 = O12p2 + 3.
At 6,, = 0,p = pand T(6) = I. Except p; = p: there exists. however,a second
solution 6,2 = (p; — p3)/p2, which yields py = p; ., = p, ~p3 — Py , and p3 = py.
Therefore,the system is locally identifiable at all p € €, but it is globally identifiable

12




only on the subset {p € Q;p; = p3} of zero measure in 2. We note that by the
lack of applicable necessary conditions for global identifiability, (36) is the first such
nonlinear system presented in the literature (see,e.g.,(1],(2],(3],(6],(11],(15]).

By Corollary 1 we can study also identifiability of (36) with nonzero initial

conditions.In the most general case z,(0,p) = p, and z,(0,p) = ps are additional
parameters. By condition (i) of Proposition 2 the additional constraints on (38) are
(1—0,3)ps +612Ps = py and ps = ps. It follows that ps is unique and there exist two
solutions for p,. The system becomes, however, globally identifiable at all p € §2
if ps = 7o, is known and there exists a point zo,1 # 0 in I; (i.e., the constraint

Ps = py implies 61, =0 ).

13

U

OO
o 'J'Q."*ebi'!‘l.‘:o":t" \ ‘! (A



4

1]

2]

Bl

l6]

8]

19]

OO OO ONSAGAIG SN LADAT OO 3 ' ‘ ( - , '
PR A AT R OLAOOOO0 U X LGOI 0 ¢ P\ Q
S b A B SRR 'c'e?c“';’i'c‘“s'l‘g‘"o'i‘o't':‘*‘:‘s"'n‘ ettty

REFERENCES

E. T. Tunali and T. J. Tarn, “New results for identifiability of nonlinear sys-

tems,” IEEE. Trans. Automat. Contr., vol. AC-32, pp. 146-154, 1987.

E. Walter, Identifiability of State Space Models. New York: Springer-Verlag,
1982.

E. Walter and Y. Lecourtier, “Global approaches to identifiability testing for
linear and nonlinear state space models,” Math. Comput. Simulation, vol. 24,

pp. 472-482, 1982.

S. Vajda, “Structural identifiability of dynamical systems,” Int. J. Systems.

Sci., vol. 14, pp. 1229-1247, 1983.

S. Vajda, “Deterministic identifiability and algebraic invariants for polyno-

mial systems,” IEEE Trans. Automat. Contr., vol. AC-32, pp. 182-184, 1987.

K. R. Godfrey and W. R. Fitch, “The deterministic identifiability of nonlin-
ear pharmacokinetic models,” J. Pharmacokin. Biopharm., vol. 12, pp. 177-

190, 1984.

R. Hermann and A. J. Krener, “Nonlinear controllability and observability,”

IEEE Trans. Automat. Contr., vol. AC-22, pp. 728-740, 1977.

E. Walter and Y. Lecourtier, “Unidentifiable compartmental models: what to

do?,” Math. Biosci., vol.56, pp. 1-25, 1981.

A. Isidori, Nonlinear Control Systems: An Introduction. New York: Spinger-

-Verlag, 1985.

14




10] H. J. Sussmann, “Existence and uniqueness of minimal realizations of nonlin-
q

ear systems,” Math. Syst. Theory, vol. 10, pp. 263-284. 1977.

o
[11]) S. Vajda, “Identifiability of polynomial systems: structural and numerical
‘ aspects,” in Identifiability of Parametric Models, E. Walter, Ed., pp.42-49,
| @ New York: Pergamon, 1987.
[12] L. R. Ford, Differential Equations. New York: McGraw-Hill, 1955.
L (13] L. M. Silverman, “Realization of linear dynamical systems,” IEEE Trans.
Automat. Contr., vol. AC-16, pp. 554-567, 1971.
(14] P. D’Alessandro,A. Isidori, and A. Ruberti, “Realization and structure theory
: @&
of bilinear dynamical system,” SIAM J. Control, vol. 12, pp. 517-535, 1974.
(15] H. Pohjanpalo, “System identifiability based on the power series expansion of
l® the solution,” Math. Biosci., vol. 41, pp. 21-33, 1978.
j®
~
{
. 15




0

IDENTIFIABILITY AND DISTINGUISHABILITY

OF FIRST-ORDER REACTION SYSTEMS

S. Vajda' and H. Rabitz

Department of Chemistry, Princeton University
U.S.A.

Princeton, N. J. 08544,

(PR

Ny

(]

s a8y

Y,

(000

ORI )

JOx
be' %




Abstract

h By following the kinetics of a reaction through the use of certain classes of
measurable quantities instead of the concentrations of all species neither
the parameter values nor the reaction scheme are necessarily unique.

b Identifiability deals with the problem of determining whether an experiment
is able to supply the desired information on the parameters of an assumed
kinetic model, whereas indistinguishability means that two different reactior

schemes generate the same values for the observed quantities in any possible

[
experiment. This paper examines these issues for the case of first-order
reaction systems and both problems are solved by the same analytical tools.
b The method involving Laplace transforms is conceptually simple, easy to
apply, and is also used to derive simple rules to test distinguishabilicy of
reaction schemes. Another approach based on similarity transformations is
i. used to generate all the first-order reaction schemes that are

indistinguishable from a given one.
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I.Introduction
Kinetic experiments are often conducted under conditions such that the
reactions are first-order or pseudo first-order, with rate coefficients
proportional to the concentration of a reaction partner in large excess.
Interpretation of experimental data by postulating a mechanism and adjusting
the values of some unknown parameters has received due attention in the
literature?-¢. The problems usually considered are techniques of parameter
estimation and statistical interpretation of the estimates in terms of
confidence intervals or joint confidence regions. Kinetists are aware that
there remain further fundamental questions to ask.® First, are the derived
parameters unique, or are there further parameter sets generating the same
values for the observed quantities? Second, is the selected model the only
plausible one which will give an acceptable fit to the data? These questions
of parameter and model uniqueness are not trivial even for very simple
mechanisms if not all concentrations are directly observed.
For example, consider the consecutive reaction scheme
A-B-~+C (1.1)
studied in several works3 -5 assuming that initially only A is present in the
system and the reaction is followed by observing the single property
Yy = ealA] + €g[B] + ¢ [C) (1.2)
which may represent absorbance, conductivity, pH, or ligand release. We
regard y as absorbance and ¢,, ¢ and ¢ as molar extinction coefficients.
Frequently the intermediate species B cannot be isolated and separately
investigated, hence ¢z is an additional parameter to be estimated
simultaneously with the rate coefficients k, and k, from the time-absorbance

data. As is well known,3‘5 under these conditions the solution of the

estimation problem is not unique because of the slow-fast ambiguity, thus for
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» any solution k=(ky, k;, ‘8)7 there exist a second solution k=(ky, ky, €5)
§ given in terms of k by
K

b . k1 - kz, kz - k1, €g = €, + k1(€s°€A)/k2. (13)
o

I\

¢

E In addition to nonuniqueness in parameter values there may be ambiguities in
o

;"' the model structure. As emphasized by Milligan et al.,’> a qood fit does not
‘ necessarily mean that the model is correct, since there exist further
0
" reaction schemes generating the same absorbance curve. They mention the
)
0 schemes

r bl
4
K kq k1

. Sy AT B — C ; S,: A — B, (1.4)
3 N N/

:: kz C k3

v

. whereas Jackson et al.® claim that the absorbance data can equally be

5 described by adopting the reaction schemes

: k4 K1 k

‘ Ss : T~ ., s , Ss. A — B T C. (1.5
!: B/ k3 \ ko k.o
K k c
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i The purpose of this paper is to present a systematic and rather general
I r‘.

analysis of the problems of parameter uniqueness, called identifiability, and

] s

o _w

distinguishability of different first-order reaction schemes. While

~,

identifiability has received a fair amount of attention in application areas
such as automatic control,’ compartmental modeling,® and chemical
engineering,? in chemical kinetics results have been restricted to

discovering nonuniqueness of the parameters in particular reaction systems

through the use of methods of limited applicability. Similarly, the general
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-

results available on distinguishability are rarely applied to kinetic

-
-

N models, (9¢) though without systematic analysis mistakes can be made. We will

‘ -

‘

'

' A X A 0NN ADEDIENA N WINT <o Wy B UTE T A8 8 T TS B T Vg AT N (0 Wphhhl
O O0A0AN .04".' X Q'.A,r)!,.li:l“l,"0"“) # ey ‘t'.%’.t.t.o Wy 8 OO XX R f.. ] l..zc‘.‘o.,ft.,',l.,!n "‘_’gf‘.t ‘.."...!mi‘..' ,‘.?. "...!!.‘ B0 "? '!.‘.




e

- -

» oo

. - -

- e - -

- RN - - o
I

-
-
.

‘:..

rn»v-w

e n‘n'n 4N

5
show that the schemes S;, Sy, and Sg in (1.4) and (1.5) are, in fact,

distingishable from the one in (1.1), whereas there exist indistingushable
schemes overlooked in previous studies of this simple system (for the
illustrative purposes of this paper we shall assume a measurement of the form
in (1.2) in most examples).

Identifiability and distinguishability are so closely related that all
the required machinery is introduced by discussing the first and somewhat
simpler problem. Identifiability concepts are also needed to properly
understand some distinguishability results. For example, we show that (1.1)
and the scheme S, in (1.4) are indistinguishable, but their identifiability
properties are substantially different, since using the latter model the
desired absorbance curve can be generated at infinitely many different
parameter values.

We will regard two reaction schemes as indistinguishable if and only if
they generate exactly the same values for the observed quantities (e.g., for
absorbance in the case discussed here) and hence employ a deterministic
framework by restricting considerations to idealized experiments with the
ability of observing the measurable variasbles at any instant of time
error-free. Deterministic identifiability is a fundamental property of a
kinetic model, since unidentifiability in this idealized experiment implies
unidentifiability in any realistic experiment with constraints on sampling
and measurement accuracy. Similarly, models indistinguishable in the
deterministic sense remain indistinguishable in any experiment involving the
same measurable quantities. It should be emphasized that the deterministic
analysis is only the first step in establishing uniqueness of parameter
estimates or uniqueness of a kinetic model. 1In fact, inadequate design of

the identification experiment and/or large measurement errors may result in

- e e e e e e e s ~ RN
O A AT A \-‘ BN N N AN Ay .r N Ny N
MERLE Al AL Sl

T

PR AT o
e . ~. '- ey 4.'“'""0. KTV Vel '“f"':‘"o ot

el
i3 WA




A
6
v
@ highly uncertain estimates even for the parameters of an identifiable model.

Similarly, a set of noisy observations may be compatible with the responses

S e

of several models in spite of their deterministic distinguishability. Since

P
-

the analysis of these problems requires assumptions on the experiment design,

on the structure of measurement errors, and on the values of the parameters,

- -

it can usually be performed only a posteriori after carrying out the

, -

experiment and estimating the parameters. The deterministic analysis is,

however, an a priori procedure for detecting a fundamental class of

ambiguities, thereby assisting the selection of possible models and the

-
e - -

®

variables to be observed in the intended experiments.

-

The paper is organized as follows. 1In Section I] we introduce the

o -

concepts of deterministic identifiability and offer two general methods of

B WK

analysis based on Laplace and similarity transformations, respectively. The

; Laplace transformation approach is also used to study distinguishability in

Section II1 and enables us to formulate a number of propositions, thereby

- - - e

considerably facilitating the required algebraic manipulations. The

similarity transformation approach is fully exploited in Section IV offering

- - o

a procedure to generate all first-order reaction schemes that are

- o

. indistingishable from a given one. In particular, results are peresented for
¢

the scheme in (1.1). The methods can be most easily understood by solving
simple problems and we present a number of examples for this purpose.

: II. Identifiability

A first-order reaction scheme under isothermal condition gives rise to

0 the kinetic equations of the general form

o, .(_1)

. XO
) x(t,k) = A(k)x(t, k) x(0,k) = Xy (k) = : (2.1)
. x$2) (k)

) where x(t,k) is the n-vector of concentrations, depending on the p-vector keQl

i
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T’ of unknown parameters, OgRP representing the set of possible parameter wvalues.

We assume that O is a bounded open set in RP, thus the parameters are a
priori independent and restricted only by inequality constraints (e.g., by

[ nonnegativity of the rate constants). In the initial concentration vector x.
we distinguish between the components in x§1), selected to specify an
experiment, and those in xéz), depending on unknown parameters (e.g., initial
conditions in xéz) can be parameters themselves). In addition to the kinetic
equations (2.1) our model consists of the linear observation function

y(t,k) = C(k)x(t, k) (2.2)

” where y(t,k) is the m-vector of observable quantities, also called the
response function of the model. As is seen, the observation matrix C(k) mav
also depend on unknown parameters.

Consider a kinetic experiment specified by the initial concentrations
x§1) and let ;(t) represent the response function observed over some time
interval T. The basic assumption of deterministic analysis is the existence
of a nominal parameter value keQ? such that y(t,k)-§(t) and this function can
be observed at all teT error-free. Two parameter values k and ksk are
indistinguishable in the considered experiment if

; y(t,k) = y(t,k) (2.3)
for any teT. The analysis of identifiability is based on eq. (2.3) and the
following situations can be encountered:

(i) 4if the solution k=k of (2.3) is unique, the model (2.1)-(2.2) is said
to be uniquely identifiable at keR;
(ii) 1if there exist at most a finite number of distinct solutions kek, the

model is said to be identifiable at k;

(N

(iii) finally, with an infinite number of solutions in (2.3) the model is

said to be unidentifiable.
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Since the norinal parameter value k is not known a priori, the above
concepts should be generalized. It would be easy to require identifiability
at every keQ. In most models, however, there exist exceptional points or
lower dimensional surfaces in O where the model is unidentifiable in spite of
its identifiability at the majority of points. Properties that hold at
almost every point of the parameter set are usually called structural

ones.w

Therefore, the model is said to be structurally identifiable
(uniquely structurally identifiable) if it is identifiable (uniquely
identifiable) at almost every keQ, thus except at the points of a set of
measure zero in £I. As shown in our examples, the existence of such
exceptional subsets does not decrease practical utility of the concepts.

In view of the extensive list of publications’ ® on the identifiability
problem we restrict considerations to two basic methods of analysis enabling
one to test first-order reaction systems of moderate complexity without
programming efforts. Both methods will also be needed when studying
distinguishability of different schemes.

1. Laplace transformation approach
Taking the Laplace transform of the differential equations (2.1) we

obtain

sX(s,k) = A(K)X(s,k) + x,(k) (2.4)
where X(s,k) is the transform of the concentration vector x(t,k) and s
denotes the complex argument.11 Taking also the transform of (2.2) and using
(2.4) gives the Laplace transform

Y(s,k) = C(k)[sI-A(k)]™' x5(k) (2.5)
of the response function y(t,k). Note that in spite of the general formula

(2.5) the linear equations (2.4) can be solved for X(s,k) by the elimination

technique and no matrix inversion is necessary to obtain Y(s,k).
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° Since (2.3) is satisfied for all te T if and only if
Y(s,k) = Y(s,k) (2.6)

@ for all se¢ ¢, where § is the field of complex numbers, we can restrict
considerations to (2.5) without solving the kinetic equations. Each
component Y; (s,k) of the m-vector Y(s,k) is a rational function of the form

b gl s"t + ¢;n

Yi(syk)-sn+¢1]sﬁ+.-.+ ¢,‘1 s (27)
where the coefficients ¢} generally depend on k and x§1). After simplifying
: the possible common factors between the numerator and the denominator poly-
nomials in (2.7), the vector ¢ of "moment" invariants is formed by all dif-
ferent coefficients in Yy(s,k),...,¥,(s,k). Since (2.6) holds if and only if
o
i s(k) = ¢, (2.8)
the analysis of identifiability is reduced to the problem of determining the

number of solutions in the set (2.8) of polynomial equations.’°v12 The
following examples demonstrate the simplicity of the method and the presence
of exceptional subsets of zero measure, taken into account in our definitions.
Example 1.1. Consider the reaction scheme Sy in (l1.4) with the response
function (1.2) and initial concentrations [B],={C],=0. The Laplace transform

of (1.2) is given by

2
€S +[eA(k_1+k2) + eak1]s + eck1k2

s° + (ky+k.g+k;)s® + Kk;s (alo

Y(s,k) = (2.9)

Since ¢, = ¢, and ¢¢ = ¢, are known, the independent equations of the form

(2.8) are

en (R +kp) + €gky = €u (ko g+ky) + egk, (2.10a)

" OO ORI OORCQCION O N .
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ky + kg +k; =k + kg + Kk (2.10b)

kiky = kik, (2.10¢)

. (a) Assume first that ?3 = ¢gre, is also known. Then (2.10a) and (2.10b)
R give ky;=k,; and k.q1+k;=k_y+k,. Using now (2.10c) we obtain the unique solution
£ k=k. There are, however, an infinite number of solutions if ky=0 or k,=0.

' These exceptional points form two planes in R3, and thus are sets of zero

measure and hence the model in uniquely structurally identifiable if ¢ is

; @ known.

: (b) Consider the more general case with parameters k-(k,,k,1,k2,cs)7.
i

:; Since (2.10) consists only of three equations to determine four parameters,
g o the model is unidentifiable.

Example 2.2. It is easy to show that the scheme in (1.1) is structurally

-

identifiable, but not uniquely. The Laplace transform of (1.2) is given by

- » * .~

o
y € 52 + (GAkZ + (Bk")s + €ck1k2 . ) 11
¥ Y(s.K) = R, )s + Kkgs (1o (2.11)
3
K and with known ¢, = ¢, and ¢¢ = ¢, the independent equations of the form
* ’\.
N (2.8) are
;
5 _ o
:: CAkz + Csk1 - (Akz + €8k1
Y
c_
. ky + k; =k + k; (2.12)
10
»
) - =~
' K1k, = Kikp
L)
{'
q which clearly admit the second solution (1.3). The exceptional subsets are
t
I' -
g again ky=0 and k,=0, where the model is unidentifiable. Notice that ¢z given
)
I
‘ -
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J" by (1.3) may be negative and since this is clearly unphysical the ambiguity

is resolved in certain cases, depending on the value of the parameters k.

In Example 2.1 with g unknown we have more parameters than equations and

\ hence unidentifiability follows immediately. Though (2.8) generally contains
at least as many equations as parameters, the analysis of structural
identifiability is very simple.As shown by Vajda using the implicit function

L theorem, '3 the model is structurally identifiable if and only if rank J(k)=p

t for some ke, where J=3¢/0k denotes the Jacobian matrix of ¢, and p is the
number of parameters. The condition is met if and only if det J(k) (or its

@ principal minors in case of a nonsquare matrix) do not identically vanish. If
rank J(k)=q<p for all kefl, then one can select p-q parameters such that by
fixing their values the model becomes structurally identifiable with respect

@ to the remaining free parameters. Therefore, the integer g=rank J(k) is
called the number of determinable parameters and will play an important role
in further sections. As shown in Example 2.1, the number of determinable

- parameters is 3, since the model is identifiable with ¢y fixed.

Remark 2.1. Since the elements of J(k) are analytic functions of the
parameters, rank J(k) achieves its maximum value at almost every kefl.

™ Throughout the paper rank J(k) denotes this maximum or "generic" rank of

J(k).

Remark 2.2. Though identifiability properties have been defined for a single
S experiment specified by the initial concentrations xo(7) the analysis can

easily be extended to a set of experiments with initial conditions x°(1)eIgR”.

Indeed, the elements of J are also analytic functions of the components in

b & x0 (1) and similarly to Remark 2.1, structural identifiability at a single
X, €l implies identifiability at almost every x°(1)eI. There can exist,

however, exceptional points where identifiability is lost, e.g., selecting a

]

R
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stationary state as initial concentrations in the experiment.
Remark 2.3. The number of components in the "moment" invariant vector ¢ is
at most 2mn, which is an upper bound on the number of determinable parameters.
Following the reaction by the use of a single quantity and considering only
rate coefficients as unknown parameters the upper bound is 2n-1.

Though generating the Laplace transform (2.5) of the response function
is usually not very tedious, it can considerably be simplified by taking
o advantage of the specific method proposed by Bossi et al.!'* As discussed,
for testing structural identifiability we also need the Jacobian matrix d8¢/8k
and its determinant (or principal minors), which can easily be evaluated.

The analysis of unique structural identifiability requires, however, the

e a5y

¢

solution of the polynomial equations (2.8). It should be emphasized that
this step may be considerably more difficult than in Example 2.2, where
nonuniqueness follows from interchangeability of the rate coefficients. As

shown by Norton'5 in his exhaustive analysis of first-order reaction schemes

e e e T

(linear compartmental models) with 3 species, sources of nonuniqueness are

e

generally more subtle and the functions relating the different solutions more

complicated. While symbolic languages such as REDUCE and algebraic

(i

manipulation subroutines are valuable tools in solving the polynomial

.~y Pl

equations,’® with some persistency the solution can also usually be obtained

by hand.

N . < s
e -

l')

2. Similarity transformation approach
This method is based on introducing the new variables x defined by x=Tx

into (2.1) and (2.2), where T is an n X n nonsingular matrix. The transformed

-l s SRR

system is then described by

x(t,k) = T-TA(k)Tx(t,k), X (k) = T Vx, (k)

y(t,k) = C(k)Tx(t, k). (2.13)

s xal e XJ
A
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By the algebraic equivalence theorem of linear system theory'? a

similarity transformation does not change the response function, thus

;(t,k)-y(t,k). Let f denote the vector formed by the entries in T and

introduce the notation T=T(f). Since T is arbitrary, the elements of f are a
priori free with the only constraint det T(f)»0. While the response is

invariant, the system matrices and initial conditions are changed according to
Ak, f) = T (H)A(K)T(E), (2.14a)

C(k,f) = C(K)T(), (2.14Db)
and

Xo(k,f) =~ T-1(£)x(k), (2.14c)

@ where A, C, and X, depend on f in addition to the original parameters k. Now
we check how the knowledge of the system structure restricts the possible
values of f. For simplicity assume that C and x, are completely known (i.e.,

& do not depend on unknown parameters). Then C=C and §° =Xo, thus (2.14b) and
(2.14c) imply the constraints

C =CT(f), Xo = T(f)x,. (2.15)

&

Further constraints follow from the structure of the matrix A. If aij(k)-o,
then we also require Eij(k.f)-O, where a;; and Eij denote the corresponding
entries in A and A, respectively. All constraints form a set of equations
for the parameters f. This set always admits a nominal solution f° such that
T(f°)~1 and the transformations (2.14) yield the original system matrices.

The existence of a second solution fwf° means, however, that the knowledge

vt

of the response function y(t,k) and all the available structural constraints
does not specify the transformation matrix T(f) and hence A, C, and §°

uniquely; thus the model is not uniquely structurally identifiable.

--1-\‘-
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Similarly, an infinite number of solutions for f shows unidentifiability of

the model.

If C and/or x, also depend on unknown parameters, constraints of the
form (2.15) do not apply but we still have some constraints on f from the
partial knowledge of C and x,. A formal description of the method is rather
lenghty'® but it can easily be understood with the aid of the following
example.

Example 2.3. We use the similarity transformation approach to solve the
simple identifiability problem studied in Example 2.2. The reaction scheme

in (1.1) is described by

‘ky o o Xg 1
A(k) = ky -k; o . Xo (t) = o (2.16)
o k, o o

C =1 e €5 ec]

where xg 4 =[{A)ps. The transformation matrix is a priori arbitrary, thus

£, £, f3
f; fa fo

with the only constraint det T(f)=0. Since x5(k)=xy3 is completely known, the
constraint in (2.15) applies and yields fy~1l, f,=0, and £;=0. According to
(2.14b) the transformed observation matrix C(k,f)=(¢, ¢ €¢c) is given by the

elements

€a = €p, € = foe, + fgeg + fgec, € = f3e, + foeg + foe (2.18)

Since :c = ¢ is known, (2.18) gives fy=0, f4=0, and fg=1, thus using the
knowledge of x; and partial knowledge of C we end up with the transformaticn

matrix

i

..........

OO o 20 O, R AR CHRN L "—""\ '.'“"‘\'-‘\'\"
TS LT g g, DA ty ALY, 1‘..&.{..‘ MM DTN,
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(2.19)

@ Apply now (2.l4a) to form the transformed matrix A(k,f). Using the well

known formula'® T-'=(adj T)"/(det T) we obtain

) 3 -fz/fs [o]
o T(f) = ° 1/fs o (2.20)
(o] -fs/fs 1
and hence
" -k (14£,/f5) -k £, (1+f,/85) + ko f, o
A(kyf) = kq /fs k£, /f5 -k, o (2.21)
'k<| fa/fs ’k1 fafz/fs + szs + szs o
O Since for the scheme (1.1) this matrix should be of the form (2.16), the
constraints imposed on (2.21) are as follows:
. azq(k,f) = -kyfg/fs = 0 (2.22a)
®
a5 (k,f) = -fo(ky-ky + kyfy/f5) = O (2.22b)
a5, (k,£) = -3y, (k,f) = K (2.22c)
-~ agy (k,f) = -a35,(k,f) = k, (2.22¢)

Eq. (2.22a) implies fg=0, whereas (2.22b) admits two solutions given by

fz -0 (2238)

Substituting (2.23a) into (2.22¢) and (2.22d) gives fg=1, thus T=I and we
find the nominal solution f° that yields the original system. (2.23b) gives

fo=k, /k; and using (2.22c), (2.22d), and (2.18) one obtains the second

and
fz/fs - (kz-k1)/k1 (223b)

solution (1.3) for the parameters.

0 OO XA IO
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In this example the similarity transformation approach requires more

calculations than the one based on Laplace transforms. Notice, however, that
in Example 2.2 we had to solve a quadratic equation to obtain the two
solutions, whereas 312 in (2.22) is the product of two factors. In more
complex cases, j solutions for the parameters frequently imply that (2.8) is
reduced to a single polynomial equation of degree j and numerical methods may
be required, whereas in the similarity transformation approach we may have
fewer variables (i.e., the elements of f remaining free after requiring
invariance of C and x, ) and equations of somewhat simpler structure.
Furthermore, only the latter method enables one to generate all reaction
schemes indistinguishable from a given one. In particular, we will use the
matrix (2.21) to solve this problem in Section 1IV.
Remark 2.4. Assume that taking into account all the available constraints
there remain r free variables f;,...,f, in A(k,f). Then the model is
unidentifiable and r further constraints (e.g., fixed values for r
parameters) are.required to render the model structurally identifiable.
Therefore, p-r=q is the number of determinable parameters, defined previously
by gq=rank 3¢/dk. This simple rule will be frequently used in the following
sections.
IIT. Distinguishability

In this section we consider two different reaction schemes denoted by S
and S, respectively. Both are described by models of the form (2.1) -
(2.2). Let y(t,k) and ;(t,E) represent their response functions with the
initial conditions x§{')=x{') and parameters kel and ke, respectively, where
0 and Q are the parameter sets. Extending the concept of parameter

indistinguishability introduced in Section Il to two different models, values

kel and ked are said to be indistinguishable if
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y(t,k) = y(t, k) (3.1)
for all teT. Since the values of k and k are not a priori known, as a
further generalization of the concept the models S and S are said to be
¢ indistinguishable if for almost every parameter value kefl of the model S
there exists an indistinguishable value kefl of § and vice versa, thus for
almost every kef} of § there is an indistinguishable parameter keQ of S. Ther
g with appropriate selection of parameters both models generate the same family
of response functions which corresponds to the usual meaning of indistinguish-
ability. Since the property is an equivalénce relation between the parameter
¢ sets O and {}, indistinguishable models have also been called structurally
equivalent.?0
Let Y(s,k) and ?(S.E) denote the Laplace transforms of y(t,k) and
® ;(t,l?), respectively. Eq. (3.1) is satisfied if and only if
¥(s,k) = Y(s,k) (3.2
for all seC. The components of Y(s,k) and ¥(s,k) are rational functions of
® the form (2.7) and for each nonzero coefficient ¢}(k) of sl in the numerator
(denominator) polynomial of ¥;(s,k) there should be a corresponding nonzero
coefficient 3}(?) of s} in the numerator (denominator) polynomial of
< ¥;(s,k). 1In this case Y(s,k) and Y(s,k) are said to be of the same symbolic
form.2!' The same symbolic form is a necessary, but not sufficient condition
for indistinguishability.2?2 It implies, however, that listing the
S . corresponding coefficients in ¢ and @ in the same order we can proceed to the
analysis of the polynomial equations
$(k) = ¢(k) (3.3)
S where ¢ and 3 denote the vectors of "moment" invariants for S and §,

respectively. To establish indistinguishability one has to solve (3.3) both

for k in terms of k and for k in terms of k. The models are
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indistinguishable if and only if both solutions exist at almost every ke( and
ke, respectively. Frequently these solutions exist only over some open sets
£,¢Q and 5155, then S and § should be restricted to these subsets to ensure
* their indistinguishability.
Example 3.1.(a) In (1.4) and (1.5) we listed reaction schemes claimed to be
indistinguishable from (1.1). With initial concentrations [B],=[C],=0 the
o Laplace transform of the response function for the latter model is given by
(2.11). Evaluating Y(s,k) for model Sy in (1.5) we can immediately conclude
that it has a different symbolic form and hence the two models are
¢ distinguishable.
(b) Now we test distinguishability of the model S; in (1.4) from (1.1),
denoted here by S. For S; we have the Laplace transform
L
ok - eASZ;-(cAk3+eak1+e§k2)s+esk3(k1+k2) " 5 o
s +(ky+ky+ky )s < +ksg (ky+k; )s
® which has the same symbolic form as (2.11) for S. Therefore, we consider
equations of the form (3.3), given here by
€aky + €gky = €,ks + €gky + ecky (3.5a)
¢ eckiky = egks (ky+ky) (3.5b)
ky+kp = ky+ky+ks (3.5¢)
- kiky = k3 (ky+kp) (3.5d)
<
Substituting (3.5d) into (3.5b) reduces the latter to the equation ec=¢j.
Since €5 is a free parameter of the model S;, whereas ¢ is a known constant,
% (3.5) can be solved for k=(ky,k;,e5)7 in terms of k=(k, ,ky kg ,€5)7 only at
E this particular value of ¢z, otherwise the equations are contradictory.
E Therefore, the models are distinguishable. In practical terms, the two
;\ models generate the same response function if and only if eg=¢.. This
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particular choice is, however, meaningless since species B and C are then
lumped and both models loose identifiability. For example, the common factor
s+k, appears in the numerator and denominator polynomials of (2.11). Notice,
v however, that the models become indistinguishable if ¢ is an additional free
parameter of (1.1).
Example 3.2. Consider the schemes (1.1) and Sy in (1.4). By (2.9) and
i (2.11) the Laplace transforms are of the same symbolic form, whereas
equations (3.3) are given by
exky + egky = €, (kog+ky) + egk, (3.6a)
a -~ ~
ke + k; =k + kg +k (3.6b)
kik, = Kk, . (3.6c)
v We have a special situation here, since S is obtained by setting k_.4=0 in S
and hence S is called a submodel of S. Thus for any E-(E1,E2,?B)Teﬁ the
parameter value k=(§1,0,§2,25)760 satisfies (3.6) and we have to solve the
equations only for k in terms of k. The solution exists for all ke R* and
¢ the models are indistinguishable.
Requiring solution of polynomial equations makes the analysis rather
. tedious. In a number of cases, however, we can take advantage of simple
- conditions and avoid calculations. We list here the basic results with the
underlying mathematical ideas
i Proposition 1. Let q and J denote the numbers of determinable parameters in
- S and §, respectively. If q#q then S and § are distinguishable.?3
Proof: Since rank 3¢/8k=q, the set ¢(}) is a q-dimensional manifold in some
Euclidean space of dimension r2zq. Indistinguishability implies ¢ (Q)=3 ()
e

and hence gq=gq.

Proposition 2. If S is a submodel of S and the number of determinable

parameters is q in both models, then there exist open sets {l; ¢ and 5195 such
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that restricted to these sets S and S are indistinguishable .2 Proof: For
simplicity let k=(kqy,...,kq Kq41)T and k=(ky,...,Kq), thus § is obtained by
setting kq4¢=0 and it is structurally identifiable. Since S is a submodel of
S, we solve (3.3) only for k in terms of k. The solution is ii-ki,i-l,...,q
if kq41=0. Since rank 3¢/k=q, by virtue of the general implicit function
theorem this solution can be extended onto an open neighborhood £y of the
point (kq,...,kq,0) in QcRI*!,

Proposition 3. If S and g are submodels of S and all three models have the

same number of determinable parameters, then there exist open sets §1c5
and {;cl such that restricted to these sets S and S are indistinguishable.25

Proof: It follows from Proposition 2 and transitivity of equivalence.

Proposition 4. Consider structurally identifiable models S and S with the

same number p of parameters. If Y(s,k) and ?(s,i) are of the same symbolic
form and 3¢/8k is a square matrix, then there exist open sets ¢l and ﬁ,gﬁ
such that restricted to these sets S and § are indistinguishable.?6 Proof:
Since 4¢/9k and 8¢/56k are pxp matrices of full rank, ¢(1) and #() are open
sets in R.® Their intersection contains some open neighborhood of 0eRP, and
hence is not empty.

Using these propositions our examples can be solved without
calculations. Since the number of determinable parameters is 3 for (1.1), 4
for S; in (1.4), and 2 for S; in (l1.5), by Proposition 1 all these models are
distinguishable as shown in Example 3.1. Both models considered in Example
3.2 have 3 determinable parameters and hence are indistinguishable by
Proposition 2. By Proposition &4 considering ¢, as an additional free

parameter implies that models (1.1) and S, become indistinguishable as

noticed in Example 3.1, part (b).
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IV. Exhaustive modeling

Given a reaction scheme S and experimental conditions specified by the
initial condition xé‘) and observation matrix C we use the similarity
transformation approach to generate all the first-order reaction schemes
$,,5,,...,5, that are indistinguishable from S. As shown in Section II, we
first construct the transformation matrix T(f) that preserves all known
properties of x, and C. With this T(f) the transformations (2.14) yield the
most general linear system that generates the original response function at
any keQ and £f. In identifiability analysis we imposed further constraints in
order to preserve the structure of the reaction scheme and checked uniqueness
of the corresponding transformation. Looking for different models we don't
consider structural constraints here, but find the first-order reaction
scheme that corresponds to the transformed system matrix A(k,f) by

introducing the parameters

n
kji-aj‘-,i!‘j; koi--Za,—;, (4.1
j=i

where Eji is the rate coefficient of a first-order reaction consuming species
i and producing species j, with index j=0 denoting a species not taken into
account among the n species of the original model. If no such species can

exist, then the mass conservation condition is assured by the constraints

n
T ai(k.f) =0 (4.2)

j=i

thereby further reducing the free components of f. The transformation (2.14)
and the reparametrization (4.1) then give rise to the most general (in terms
of the number of nonzero rate coefficients) first-order reaction scheme

S such that with the parameters
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kjj(k,f) = aj;(k,f) (4.3)
we have ;(t,ﬁ)-y(t,k). As will be shown, any model indistinqishable from the
original S is a submodel of S and hence this latter is said to be the "frame"
model. In particular, at the nominal value f=f° the model S reduces to S,
thus S itself is a submodel of S. Let q and q denote the numbers of deter-
minable parameters in S and §, respectively. If q=q, then S and S are
indistinguishable by Proposition 2.5 is unidentifiable and by Proposition 3
its submodels with q determinable parameters form the set of reaction schemes
indistinguishable from S. The next example illustrates this case.
Example 4.1. As shown in Example 2.3., the transformed matrix for the scheme
(1.1) is given by (2.21). Apply the constraints (4.2) to the columns of
(2.21). It can be readily verified that these are satisfied by
fg = 1-f,-f5

thus we eliminated fg from (2.21). Introduce the parameters

ky = ky/fs (4.5a)
k. = -kyf, (1+£5/£5) + ko f, (4.5b)
ky = kyfp(£5-1)/Fs + £5(ky_ky) + k; (4.5¢)
ky = kg (1-£f,-f5) /%5 (4.5d)

then the "frame” model obtained is given by

ky
A — B (4.6)
\ k-y
ks c” k

Since we have 5 parameters (i.e., 4 rate coefficients and the extinction

coefficient €3), whereas f, and fg are free, by Remark 2.4 the number of

determinable parameters a in (4.6) is 3. Therefore, (1.1) and (4.6) are

indistinguishable and the set of all reaction schemes indistinguishable from
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A (1.1) consists of the submodels
K, _ ky )

' ’s':A:'_B—k-zoc §:A_—.B-§:A~1:<—B(a.7)

‘b 1 k. L l~<3\'c'/1~‘2' ’ Es\‘ 61
of (4.6) with 3 determinable parameters and (4.6) itself. This can also be
verified by solving (4.5) for k and f in terms of k. Notice that (4.6) has

® no identifiable submodels with 3 determinable parameters, thus all models in
(4.7), though indistinguishable from (1.1), are unidentifiable. The example
gives the correct solution of the problem stated in Section I.

[ ) Consider now the case q>q. Then the original S and the "frame" model s
are distinguishable by Proposition 1. As discussed,for any ke (4.3) gives a
parameter value for the "frame" model S such that §(t,i)-y(t,k), but when

L selecting a point kefl generally there exist no k and f that satisfy (4.3).
In other words, the "frame" model is too large in the sense that it can
generate all response functions of the original model, but the converse is

@ not true. Therefore, the parameter set (3 should be restricted by

. considering the submodels of S with q < q determinable parameters and trying
to solve (4.3) for k and £. Though these submodels are the only candidates
< for being indistinguishable from S, actual indistinguishability should be
checked by direct calculation in each case as shown in the next example.
Example 4.2. We generate the indistinguishable schemes for the mechanism
< Ky

A ——>B (4.8)

/x
~
(@]

¢ where [B],=[C],=0 and the observed quantity is [B]). Since the rate

expressions do not depend on [C], it is sufficient to consider the kinetic

. - e -

equations for x;={A] and x,=[B]:
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X -(ky+kp) 0] [ x Xy 0
) - ; X, = (4.9)
XZ k1 0 XZ 0
- [ x4
y [ 0 | x2]

The parameter vector is k-(k1,k2)7, and the model is structurally
identifiable, thus q=2. The most general transformation matrix satisfying

the constraints of the form (2.15) is

1 f
T(f) = [ 0 1 J (4.10)

depending on a single parameter f£. By (2.l4a)

_ (ky+kp) - kqf - (ky+ky)f - kyf2
A(k,f) = K K, £ (64.11)

Because of the presence of species C in the system, constraints (4.2) are not
imposed. Introducing the new parameters

-

k; = &,y = Kk

T(_1 - ;12 - 'f(k1+k2+k1f)
(4.12)
kz - °;22-;12 - f(k2+k1f)

ky = -ayq-3;9 = ky+kyf .

we obtain the "frame"” model with the structure (4.6), but only the &4 rate
coefficients as parameters. Since these depend on a single f, by Remark 2.4
the number of determinable parameters is q=3. Therefore, (4.8) and the
"frame" model are distinguishable. This can easily be proved also by trying
to solve (4.12) for k and f in terms of k. Since E1¢O and (4.8) has 2

determinable parameters, the candidate models fo:r being indistingushable from

(4.8) are only the submodels
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Sq: A :;: B Sy A— B — C (4.13)
L

of (4.6) with 2 determinable parameters. To obtain S, we assume k,=k5=0,
which is satisfied if f =-k;/ky, and hence §1 and (4.8) are
indistinguishable. There exists, however, no f value that satisfies the
equations k_y=k;=0 at all k, thus S, is distingushable from the other models.
Notice that §1 in (4.13), the only model indistinguishable from (4.8), is
structurally identifiable in contrast to the models found in Example 4.1.

As will be shown in our last example, for a slightly more complex
reaction scheme there may exist several identifiable models that are
indistinguishable from the original one.

Example 4.3. Interpretation of growth and decay data through the use of the

reaction scheme

K ke
! B — D
A (4.14)
\C
k3

has been discussed by Carrington.® 1In addition to a statistical analysis, he
showed that with the initial conditions [B],=[C],=[D],=0 and observing only
[B), (4.14) is not uniquely identifiable with 2 solutions for the

parameters. We solve here the distinguishability problem also stated by
Carrington in the introduction of his paper. As in Example 4.2, it is
sufficient to consider the kinetic equations for the species A and B only.
The transformation matrix T(f) is (4.10) and we obtain the "frame" model
(4.6) as in the previous examples.Its parameters are, however,defined now by

the relations

lv
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kK, = Kk
k.y =  ~f(kqf+ky+ks-ky)
_ (4.15)
kz - k1 fZ + (k3 -kz)f + kz
‘1'-(3 - k1f + k3

Both (4.14) and the "frame" model have 3 determinable parameters and hence

are indistinguishable. The further indistingiushable models are the two

submodels
) EB ky ) Kk EZ
k_1 k-’

of (4.6) with 3 determinable parameters.Notice that both latter models are
structurally identifiable.

Though the above results follow immediately from the propositions in
Section III, it is worthwhile to check solvability of (4.15). For example,
indistinguishability of §; and (4.14) requires EZ-O. The solution for f is
real if and only if the parameters of (4.14) satisfy the inequality
constraint D-(k3-k2)2-ak1k2>0. Thus the domain of indistinguishability is
restricted to an open subset of the original parameter space (=R3. The
calculation also shows that S, is not uniquely identifiable with two
solutions. Since the solution of §3-O always exists and is unique, in the
case of §2 indistinguishability is unconstrained and the model is uniquely
structurally identifiable.

V. Conclusions

Assuming a reaction scheme and following the reaction by observing the

quantities accessible to measurements, the experiment does not necessarily

provide sufficient information to derive unique values for the rate
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coefficients or other unknown parameters included in the kinetic model.

Similarly, there may exist further reaction schemes that are able to generate
the same values for the observed varibles.

Both uniqueness problems are relatively easy to solve in the case of
first-order reaction systems with observed quantities depending linearly on
the concentrations. The problems of identifiability (i.e., uniqueness of the
parameters) and distinguishability (i.e., uniqueness of the reaction scheme)
are so closely related that the same analytical tools can be used to solve
them. A very simple method is based on the application of a lLaplace
transform to the kinetic equations and results in a set of polynomial
equations for the parameters. By solving these equations one can check
identifiability and find the equivalent solutions for the parameters if the
model is not uniquely identifiable. The approach can be extended to test
distinguishability of two different first-order reaction schemes. The second
method we used is based on state-space similarity transformations. It may be
less convenient to study identifiability than with the Laplace transformation
approch, but it can be used to solve the more general problem of exhaustive
modeling, thus to generate all the first-order reaction schemes that are
indistinguishable from a given one. Calculations can be considerably
simplified by taking advantage of general conditions for indistinguish-
ability, also formulated in the paper.
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Abstract

A general analysis of exact lumping is presented. This analysis can be employed
to any reaction systemn with n species described by a set of first order ordinary
differential equations dy/dt = f(y), where y is an n-dimensional vector; f(y) is an
arbitrary n-dimensional function vector. Here we only consider lumping by means
of a rectangula- constant matrix M(i.e., ¥ = My, where Al is a row-full rank matrix
and § has lower dimension than y). It is found that a reaction system is exactly
lumpable if and only if the intersection of the invariant or the null subspaces of the
Jacobian matrix J(y) of f(y) for all values of y is nonempty. The intersection is
the null space of the lumping matrix M. If the dimension of the intersection is less
than n, nontrivial lumping schemes can be obtained. It is proved that the Jacobian
matrix can be represented as a linear combination of certain constant matrices and
the intersection of the invariant or the null subspaces of the constant matrices is
just that of the Jacobian matrix. After the determination of the intersections, all
possible lumping matrices can be obtained. The kinetic equations of the lumped
system can be described as dy/dt = Mf(MyF), M is any generalized inverse of
Af satisfving M Al = I. Several implications of these lumpability conditions are

investigated as well as illustrated by some simple examples.
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I. INTRODUCTION

A problem which frequently arises in the study of chemical kinetics is the high
dimensionality and high degree of coupling of the reaction system. For example, in
many realistic chemical processes, particularly those related to petrochemistry, in-
dustrial processes, combustion phenomena and atmospheric chemistry, the number
of reacting species can often exceed 102 - 103. It is impractical to incorporate the
kinetic equations for each species. Consequently, lumping, by which several species
are treated as a single component, is a necessity. Thus one desires to reduce the
reaction mixture into a small number of lumps in the kinetic study for practical
purposes.

For different reaction systems the suitable ways of lumping will likely be dif-
ferent. Even for a given system, there could be many lumped models, depending
on the objectives. However, one is not able to lump a system arbitrarily, because
it is not always possible to find a model or a set of differential equations describing
the behavior of the lumped species. For lack of theoretical guidance, researchers
have often spent many years trying to find adequate lumping schemes by trial and
error. The modelling of catalytic cracking for petroleum is a typical example.! Con-
founding this approach is the fact that the true lumped “species” may actually be
a combination or function of the original physical species.

Prior research clearly suggests the need for a ngorous study of lumping which
can give useful guidelines for choosing lumps. Wei and Kuo? gave a lumping anal-
ysis of unimolecular reaction system and their work was extended by Ozawa® and
Bailey*®. One of the authers® presented a lumping analysis for uni- and/or bi-
molecular reaction systems. Such research has been largely confined to the uni-
and ‘or bimolecular reaction systems with the focus on establishing the necessary

and sufficient conditions for “exact lumping”. These analyses have shown that exact
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lumping by a network of uni- and,or bimolecular reactions is feasible only under a
very restrictive set of conditions. Studies of the pitfalls and magnitude of errors in
the use of empirical rate expressions for lumping many independent single or con-
secutive reactions were presented by Luss and his co-workers.”~!® Unfortunately
until now lumping theory was not sufficiently developed to give useful guidelines as
to which lumps to choose for many problems. There are still at least two important
problems within exact lumping, which have not been solved yet.

1. There is no known a priori way to determine the lumping scheme.

2. The kinetic equations can have higher order nonlinearities than quadratic.
For instance, this situation can arise in the presence of termolecular reactions or
when one uses equilibrium or steady-state assumptions to omit the intermediates
in reactions. In addition, nonisothermal processes or the use of empirical rate laws
can lead to highly nonlinear kinetic equations. Therefore a general lumping analysis
capable of treating arbitrary physical non-linearities is necessary.

Considering this situation, a general analysis of exact lumping is presented in
this paper. It can be used for any reaction system and the previously studied lump-
ing analyses of uni- and/or bimolecular reaction systems are special cases of this
analysis. In addition, this analysis can also be applied in other problems described
by a set of first order ordinary differential equations, such as problems arising in
classical molecular mechanics, chemical engineering and control theory.

Section II of this paper presents the conditions under which a reaction system
is exactly lumpable and the corresponding kinetic equations of the lumped system.
In section IIl, the relationship between the Jacobian matrix and its intersection of
the invariant or the null subspaces is discussed and the methods to determine the
intersections are derived. Section I\ provides some simple examples to which the

general lumping method is applied. Section V" presents a discussion of the results.
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II. THE THEORY OF EXACT LUMPING

A . CONDITIONS UNDER WHICH A REACTION SYSTEM IS EXACTLY
LUNMPABLE

Suppose the kinetics of an n-component reaction system can be described by
dy/dt = f(y), (1)

where y is an n-composition vector; f(y) is an arbitrary n-function vector, which
does not contain f explicitly.
Here we only consider a special class of lumping by means of an 7 x n constant

matrix Al with rank f(n < n). I a system can be exactly lumped by the matrix

M, it means that for

we can find an #A-function vector f(3) such that
dy /dt = f(3). (3)

If y; is not lumped, row i of A is a unit vector e = (00...010...0), and 9, = y,. In
this case, since the lumping is exact, the solutions for y, and y, by Equations 1 and
3 are the same. However, Equation 3 is simpler.

From Equations 1 and 2 we have
dy /dt = Mdy 'dt = Mf(y), (4)
and upon comparing Equations 3 and 4 we have

Mfiy) = f(3). (5)
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Differentiating both sides of Equation 5 with respect to y, we obtain
MJ(y) = J(3)M. (6)

where J(y) and J(§) are the Jacobian matrices of f(y) and f(y), respectively. As

the rank of M is 1, there must exist generalized inverses A of matrix A/ satisfving
MM = I, (7)

where [, is n-identity matrix. Multiplying both sides of Equation 6 from the right
by M, we have

MJ(y)M = J(3)MM = J(¥). (8)

Substituting Equation & into Equation 6, we obtain
MJ(y) = MJ(y)MM,

MJ(y)I, - MAM) =0, (9)

where I, is n-identity matrix.

Equation 9 is the fundamental equation in exact lumping. Although it was
derived by differentiation of Equation 5, it is not a local perturbation theory result.
This cornment follows from the fact that we demand that Equation 6 and subsequent
ones be valid for all physical values of y. It is easy to prove that the image X of anv

vector x upon mapping by (I, — M M) is in the invariant subspace of (I, ~ M Af).

Since
X = (In - AFIAI)X-
and
(I. — MAM)? = (I, - A7),
then

(I, — MM)% = .

|
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However, the invariant subspace of (I, — M M) is the null space of M, since
o _ _
Mx =M, - MM)x = (M - MMAM)x
=(M - M)x =0. (10)
L For any vector x in n-dimensional space, Equation 9 shows that
MJ(y)(I, — MM)x =
¢ MJ(y)x =0.
Let
% = J(v)X
. % = J(y)X
Then
Mx = 0. (11)
¢ Comparing Equations 10 and 11, we find that if X is in the null space of M, then so
is X. This is valid only if one of the following two conditions is satisfied: 1) The null
space of M is the invariant subspace of J(y). Therefore, after mapping by J(y),
i the image of vector X in the null space of M is still in the same space; 2) The null
space of M is also the null subspace of J(y). In this case, X is a null vector and
Equations 10 and 11 trivially hold. Notice that these arguments are valid for any
< value of y. Thus the conclusion is that there exists a nontrivial matrix M only if
the intersection of the invariant or the null subspaces of the Jacobian matrix J(y)
for all values of y is nonempty. This condition is also sufficient. Let the intersection
- be spanned by the column vectors of matrix X. Then we can use X to represent
the intersection. Since the intersection is a subspace of the n-dimensional space,
the column number of X is less than its row number. If the intersection exists, one
-
T
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can choose this intersection as the null space of the lumping matrix M. Then we
have

MX =0 (12)

Transposing Equation 12, we obtain
XTMT = 0. (13)

There are an infinite number of solutions of M for a given X. This equation can

be considered as a set of linear algebric equations
XTm = 0. (]4)

All the linearly independent solutions of m compose the matrix M. In some situa-
tions we may desire to keep a number of species, say p, unlumped. Without loss of
generality we can consider the first p species unlumped and all lumped species are

composed of others. In this case the lumping matrix can be expressed as

— IP 0
M—(O M,)’ (15)

where I, is the pidentity matrix; M, is an (7 —p) x (n — p) matrix. There is an extra
restriction on determination of A; described below. Let the Jacobian matrices J(y)

and J(¥) be blocked as follows:

(0
Iy) = (le Jz'z)'

P Jiy ju)
J =1 % A ,
) (Jn J22
where J1y,J12,J21 and J;; are p x p,p x (n — p),(n —p) » pand (n — p) » (n — p)

matrices; jllsj]2sj2l and j’n are px p,px (n~p).(n-p)- pand (n-p}-(n-p)

matrices, respectively. Using Equation 6, we have

J]] :j”‘ (16)
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M Jay = Jay, (17)
My Jyq = Jog My, (18)
Jiz = Jiz My, (19)

Let X, be the null space of AM;. Multiplying both sides of Equation 19 from right

by X, one obtains the extra restriction
J]gX] - j]2A‘I]X1 = 0. (20)

If the intersection of the invariant or the null subspaces of J;,(y) exists and satisfies
Equation 20, then A/, can be determined.

We can treat the general lumping problem in another way by considering the
corresponding Green’s functions of J(y) and J(¥). For a given initial value of y,
J(y) and J(§) can be represented as J(t) and J(t). The corresponding Green's

functions G(t,7) and G(t,) satisfy the following relations:

dG(t,7)/dt - J()G(t,7) =0, t> (21a)
G(r,7) = I,.. ~ (21b)

G(t,r)/dt - J()G(t,7) =0, t>r. (22a)
G(r,7) = I. (22b)

From Equations 21 and 22 we have

dMG(t,7) - G(t,7)M),/dt =
= MdG(t,7)/dt — (dG(t,7)/dt)M
= MJ()G(t.7) - J()G(t.7)M

= JU)MG(t,7) - G(t.T)M)
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’ Let
) N K(t,7) = MG(t,7) - G(t,7)M. (23) ‘
:’A Considering Equations 21 and 22, we have
g
¢ dK(t,7)/dt = JO)K(t,7), t>T (24a)
A &
K(r,7) =0. (24b)
v (dK(t,7)/dt)i=r = J(T)K(7,7) = 0.
| @
‘ Since K(7,7) and (dK'(t,7)/dt)=, are all equal to zero, for t > 7 we have
X
§
P K(t,7) =0, t>T
b
x5
a
R or,
R MG(t,7) = G(t, )M, >~ (25)
4
)
g & Equation 25 shows us that the corresponding Green’s function has the same
: property as the Jacobian matrix. Therefore, all the results for the Jacobian matrix
¢
" also hold for the corresponding Green’s function. Since the treatment is the same,
k)
& o we will only consider the Jacobian matrix in the following sections. The Green’s
'.: function has some advantage in numerical calculations, since we can use it to find
A
y the lumping scheme along a reaction path or a given region of initial conditions.
)
b o This prospect also opens up the possibility of finding approximate lumping schemes
: valid only in a desired region of the composition space.
;
K B. DETERMINATION OF THE KINETIC EQUATIONS OF THE LUMPED
I e,,
1 SPECIES
0
)
:: For the exactly lumped reaction system. after determing A/ we have
3
: f(y) = Mf(y), (6)
o
b 10
3
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f(My) = Mf(y), (26)

and this is an identity for any y. Therefore let
y =My,
and substitute it into equation 26,

f(MMy) = ME(M§),

f(3) = Mf(M1y). (27)

Equation 27 does not place any restriction on Af except that MAM = I,. This
latter point is important in that the non-unique nature of A does not effect the
form of the lumped equations (physical model) in the exact case. Thus the behavior

of the lumped species can be described by
dy /dt = Mf(AIy), (28)

where A is anyone of the generalized inverses satisfying AfAf = I,. The kinetic

equations of the lumped species for a given M are unique.

1I1. THE PROPERTIES OF THE JACOBIAN MATRIX AND ITS INTERSEC-
TION OF THE INVARIANT OR THE NULL SUBSPACES

A. THE RELATIONSHIP BETWEEN THE JACOBIAN MATRIX AND ITS IN-
TERSECTION OF THE INVARIANT OR THE NULL SUBSPACES

In above section it was shown that a system is exactly lumpable if and only if
the intersection of the invariant or the null subspaces of J(y) for all values of y is
nonempty. The problem is how to determine the intersection. This task appears

difficult, because y can take infinitely many values. Before presenting the method
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o to determine the intersections, we will first discuss the relationship between the
doll

B Jacobian matrix of the kinetic equations and its intersection of the invariant or the
N O

. null subspaces for all values of y.

5

2

“ This intersection is first determined by the singular property of the Jacobian
\/

3 matrix, due to the conservation of the total mass. Let m,,y, be the mass and con-
*

h &

. centration of species 1, and let m be the vector of m,. According to the conservation
»
R of the total mass, we have

WY

o m’y = constant. (29)
L}

o

l'
. dm7y)/dt = m” dy . dt
o
A =m’f(y)=0. (30)
Ll 5 g
{

L

L

b d(m’f(y))/dy = m”df(y)/dy
. =mTJ(y) = 0. (31)
%

;:‘ This shows that at least one row of the Jacobian matrix is a certain linear com-
4

0 bination of the others. Therefore the Jacobian matrix is singular for all values of
L

<

y.

e

' . . . . .
:. Since J(y) is singular, the image space X; of the n-dimensional space upon
!

:l:i mapping by J(y:) is a subspace of it(y, is any given value of y and 1 can take
1)

=i T

Q infinitely many values).

%
: - ‘](yl )Iﬂ. = -X’\'v (32)
[} -
_.'.! where X, is composed of the linearly independent columns of J(y,) and has di-
" mension less than n. It is easy to demonstrate that the union of all .\, also has
¢
" dimension less than n.
¢.l
*, Without loss of generality. let row n of J{¥) be a linear combination of the
be By
X! other rows. The linear combination is the same for any value of y. Therefore. any
L
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column vector of J(y) for any value of y is located in the same (n — 1)-dimensional
subspace. Since X, is composed of the linearly independent columns of J(y,), | is
in the (n — 1)-dimensional subspace. Since all X, are located in the same subspace,

then the union of all .\,

x=xv,yJx  yx (33)

is also in the same (n — 1)-dimensional subspace.

Similarly, if k rows of J(y) are linear combinations of the others for any value
of y, the union X would be located in an (n — k)-dimensional subspace. This is
true for any reaction system if we consider the mass conservation for each atom.

Now we can prove that the union X is an intersection of the invariant subspace
of J(y). We have

J(y )X € J(y:) I, € X, € X. (34)

which is valid for any given y, and X has dimension less than n. Therefore X' is
the intersection of the invariant subspaces of J(y).

Although mass conservation is a “trivial” conservation property leading to
lumping. the subspace X forms the starting point to determine other intersections
of the invariant subspaces of J(y). First we can demonstrate that any subspace in
the n-dimensional space containing X is an intersection of the invariant subspaces
of J(y). Then we can prove that if any other intersection of the invariant subspaces
of J(y)., say Z, with equal or lower dimension than X exists, the intersection of Z
and X is nonempty and is a new intersection of the invariant subspaces of J(y).
These statements are proved below.

Let Y be a subspace containing X. For any y,. we have
Jy)Y € Jy ) n s X e XN ). (35)

Then Y is an intersection of the invariant subspaces of J(y).

13




Let Z be a subspace with dimension equal to or less than that of X and the

intersection between Z and X is empty. It is easy to prove that Z can not be an

intersection of the invariant subspaces of J(y). Since

J(yi)Z € J(yi)ln € X; € X, (36)

and the intersection of Z and X is empty, the image of Z upon mapping by J(y,) is
out of Z. Therefore, Z is not an invariant subspace of J(y;). Consequently it is not
the intersection of the invariant subspaces of J(y). If the intersection of Z and X,
say I, exists and Z is an intersection of the invariant subspaces of J(y), according
to Equation 36 the image of Z must be in W', After mapping by J(y,), the image
of any vector in W is still in it. Therefore W is an intersection of the invariant
subspaces of J(y). This implies that X" and its subspaces, which are invariant to
J(y). have a central role in constructing all intersections of the invariant subspaces
of J(y).

Suppose Z is a subspace of X, then Z is an intersection of the invariant sub-
spaces of J(y) if and only if the image of Z upon mapping by J(y;) is the intersection
of Z and X,. To prove this point suppose that Z is an intersection of the invariant
subspaces of J(y). then

J(y:)Z € Z.

However, we also have

J(y:)Z € X;.

This means that the image of Z upon mapping by J(y,) is the intersection of Z
and X,. This condition is also sufficient. Suppose the image of Z upon mapping by
J(y.) is the intersection of Z and X;. Therefore, the image of Z upon mapping by
J(y) for any value of y isin Z. Then Z is the intersection of the invariant subspaces

of J(y).

14




Let the intersection of Z and X, be Z,. Then we can represent Z as follows:

" z=zJzJ...Uz. (37)

N Equation 37 would be useful for determining the intersections of the invariant sub-
L4
! spaces of J(y) with dimension less than that of X.
]
o
We can consider this problem in other way. Suppose the intersection X has
been determined, and a subspace Z of it is invariant to J(y). Z can be described
as
¢ Z=XS8, (38)
where S is an (n — 7)) x m{(m < (n — n)) constant matrix. Notice that
o J(y)X = XP(y), (39)
) where P(y) is an (n — ) x (n — n) matrix, and
4
1 6 J(y)Z = J(y)XS = X5Q(y), (40)
where Q(y) is an m x m matrix. Multiplying both sides of Equation 39 from the
' right by S, we have
v
J(y)XS = XP(y)S. (41)
Comparing Equation 40 and 41, we obtain
‘ XSQ(y) = XP(y)S. (42)
Considering that X is column-full rank matrix, one can always find a generalized
. inverse X satisfying
XX =1, 4. (43)
' Multiplying both sides of Equation 42 from left by Y gives
XXS5Q(y) = XXP(y)S,
15
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Multiplying both sides of Equation 44 from left by S, we have
55Q(y) = SP(y)S,

Q(y) = SP(y)S. (46)
Substituting Q(y) into Equation 44, one can obtain
SSP(y)S = P(y)S,
(In—a — S8)P(y)S = 0.
Transposing this equation gives
STPT(y)In-n - §578T) =0, (47)

Equation 47 is exactly the same as Equation 9. This implies that X has
subspaces invariant to J(y) if and only if the intersection of the invariant or the

null subspaces of P7(y) is nonempty. Therefore we can employ the same method

for determining X to determine Z. In this way we can find out all intersections of

the invariant subspaces of J(y) with different dimensions.

The intersection of the null subspaces of J(y) is the solution of the following

linear algebric equation

J(y)x = 0. (48)

Moreover, the solution is independent of the value of y. If we consider y symbol-

ically, this shows that there is a nontrivial solution of Equation 48 if and only if

é ’
®
4
” -
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X some columns of J(y) are linear combinations of the other columns. All the linearly
L]
‘ independent solutions of Equation 48 compose the largest intersection of the null
‘. subspaces of J(y). Any subspace of this intersection is also an intersection of the
null subspaces of J(y).
L
® B. DETERMINATION OF THE INTERSECTION OF THE INVARIANT OR
: THE NULL SUBSPACES OF J(y) FOR ALL VALUES OF y
. 9 The Jacobian matrix can be considered as an n? vector. Therefore, for any
. value of y, J(y) can be represented as a linear combination of m(m < n?) constant
K matrices:
e J(¥) = ar(y)dn, (49)
: k=1
' where a,(y) are parameters, which are the functions of y; 4, are constant matrices,
]
4 which are considered as a basis of J(y). The problem is how to determine the basis
& Aj. There are several ways to do it, and one is as follows. The Jacobian matrix
J(y) can be represented as
:
o Jy) = 5(¥)Ey, (50)
=1
*
, where 7;;(y) is the (i,7)-entry of J(y); E;; is the elementary matrix, which is defined
: as the (n x n)-matrix having unity in the (i,7)th position and all other elements
A
{ are zero.
If jpq is equal to ¢ji;(y), where c is a constant, we can combine these two terms
as
} '., )
! ae(y) = Ji; (¥)
X
. Ak = E,]' + Cqu.
R .
"
)
0
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In this way one can combine the terms in Equation 50 as much as possible to obtain
the following simplified formula
J) =3 a(y)de. (51)
k=1

where m is less than n?.

It is easy to demonstrate that the intersection of the invariant or the null
subspaces of all constant matrices A, is that of J(y). Let the n x (n — 1) constant
matrix X represent the intersection of the invariant subspaces for all 4,. Multiply

both sides of Equation 51 from the right by X to obtain

= XZG&()’)R:- (52)

where P, are (n —n)> (n —n) constant matrices. Equation 52 shows that X is the

intersection of the invariant subspaces of J(y).

Similarly, we can prove that the intersection A of the null subspaces of all A,

is also that of J(y).

ar(y)0 = 0. (53)

If Equation 49 satisfies the restriction that in each case we can choose an

appropriate value of y such that all ax(y;) vanish except a,(y.). i.e..

J(y.) = ai(yi)4,. (r=1.2....m) (54)
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Then the intersection X of the invariant or the null subspaces of J(y) is also that
W of all A,. Multiplying both sides of Equation 54 by X from the right. when X is

1 the intersection of the invariant subspaces of J(y), we obtain
) Jy)X = ai(yi)4, X,
¢l . .
~ XP(y:) = ai(y.)A: X.
) Since a;(y.) is not equal to zero, then
AiX = XP(y.) aily.). (55)

If X is the intersection of the null subspaces of J(y), similarly we have

Jy)X = aiyi)d. X,
' 0 =ai(y:)4: X,

- 0= 4,1\, (56)

. . .
0 Equations 55 and 56 show that X is the invariant or the null subspace of 4,. Since

d this is valid for all A;, then X is the intersection of the invariant or the null subspaces
" for all A,. Thus we can determine the intersections of J(y) by only determining

the intersections of all A..

When the reaction system is a uni- and/or bimolecular reaction system de-

scribed by linear or quadratic first order ordinary differential equations, the ele-
ments of J(y) are only linear functions of yis. In this case, Equation 51 will have

a simple form, i.e., ax(y) is constant or yx,

Jy)= A0+ N s, (57)
k=1

o
' 19

DRSO 5 i - A R A O T A I AL W A e A Iy N
Pt ‘l’q“’\‘,"& f!‘i“,"!‘:ﬁ' 9:“" o) . “ .“ o8 .‘.'5‘ vt "' OO

Ahr LS



T I VL P P T R W P R O B W U T U R L T T T T T T L e W I e oy yery r"l"!'_'"

&
where m i1s equal to or less than n, and 4y can be a null matrix. As Equation
‘ 57 satisfies the above restriction, we can determine all intersections of J(y | by
o
[ determining those of .4y, and all A,.
Notice that the invariant subspace of a constant matrix contains at least one
eigenvector of it. This property presents a method to establish the intersection of
- .
the invariant subspaces of 4, and all 4,. First, the eigenvectors of 4, and all
A, are determined. Then consider all possible combinations of these eigenvectors.
Each combination contains at least one eigenvector of every constant matrix. The
* linearly dependent eigenvectors are cancelled in each combination. The resultant
combinations are examined for 4, and 4, whether they are invariant to all the
matrices. I a combination is invariant to 4p; and all A.. it is an intersection of
< the invariant subspaces of these matrices. We can also determine all intersections
of the invariant subspaces of J(y) by first determining .\ and then its subspaces Z
invariant to J(y).
i The determination of the intersection of the null subspaces is easier. We need
to find the common solutions for the following equations:
' AUX =0, (58)
Aex=0. (k=12 ..m) | (59
s In order to obtain the common solutions, we put 4, and all s together and omit
the linearly dependent rows. Then we obtain a constant matrix 4 and solve the set
of linear algebric equations
. Ax = 0. (60)
All the linearly independent solutions of x compose the largest intersection of the
null subspaces of 4, and all A,. Most importantly any subspace of the largest
|
..
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e
intersection is still an intersection of the null subspaces of tliese matrices. The pro-
o cedure of determining the intersections will be illustrated by some simple examples
below.
IV. APPLICATION TO UNI- AND/OR BIMOLECULAR REACTION SYSTEMS
¢
As examples of the application of this analysis, we choose uni- and/or bimolec-
ular reaction systems. As pointed out above, in this case the Jacobian matrix can
'S be described as "
J(y) :‘40+Zyk‘4k' (61)
k=1
For a unimolecular reaction system, the kinetic equations are
e
dy/dt = Ky, (62)
where K is the rate constant matrix. The Jacobian matrix for the unimolecular
b reaction system is just K,
J(y) = K. (63)
In this case, there does not exist the problem of intersections, because J(y) is a
&
constant matrix. The subspace spanned by a subset of eigenvectors is the invariant
subspace of a constant matrix. If the matrix has full eigenvectors, the subspace
spanned by the eigenvectors with zero eigenvalue is the null space of the matrix.
“
Therefore any unimolecular reaction system is exactly lumpable and the lumping
schemes are easy to obtain after determining the eigenvectors of the rate constant
matrix. This behavior can be shown by a simple example.
Example 1
‘\
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A unimolecular reaction system with 3 species is described as follows:?

3
A] = Ag.
2

As

where A;,A; and A; represent the three species; all numbers are unitless rate

constants. Let y; represent the concentration of species A;. Then the corresponding

kinetic equations can be described as

dy 'dt = Ky,

where y is the concentration vector; A is the rate constant matrix.
-13 2 4
K = 3 -12 6
10 10 -10
Hy)=d(Ay)/dy = K.

The eigenvector matrix X' and the eigenvalue matrix A of J(y) are

02 02 1
A=]103 03 -1
05 -05 0
0 o 0
A={0 -20 O
0 0 -15

(64)

(65)

(66)

(67)

(68)

Since any subspace spanned by a subset of eigenvectors is an invariant subspace

of J(y), we choose the 1-dimensional subspace spanned by the last eigenvector.

Using Equation 14 we have

my,
(1 =1 0)|m; | =0. (1 = 1.2)
AL
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5' Solving this equation we obtain the solution for the lumping matrix M
B
& m; =(c ¢ O)T
;
: T
g m=(0 0 d)
€
S Y 0 -
y M (0 0 d)’ (70)
': where ¢, d are arbitrary constants. We want Af to have a full row rank, thus requiring
¥)
" ¢,d # 0. A special caseis c=d =1, i.e.,
®
0 ({1 1 0 -
L JU_(O 0 l)' (71)
" _ _
5, o For this M we can find an infinite number of M satisfying AfAM = I;. We arbitrarily
iy choose two:
! ) 05 0 ) 04 0
e My =105 0], M,=106 0
0 1 0 1
i ¢ It is easy to show that the kinetic equations for the lumped system are the same in
RN spite of using different Af. According to Equation 27
By
f(§) = ME(M§),
. f(9) = METS),
:!
K and since
l:.
24 f(y) = Ry,
N -
W then
L - _
b’ f(¥y) = MK My (72)
K
o _
2 - For M; we have
i ‘ L1 oo\ [ 2 4 05 0
" f(y) = (0 0 1) 3 -12 6 05 0]y
" 10 10 -10 0 1

|
N
= L
OO
[ -
Pk
OO
N———’
)
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Similarly for Af, we have

) L1 oy /713 2 4 04 0
f(y)=(0 o 1) 3 -12 6 06 0|9
10 10 =10 0 1

(=10 10 .
=\10 -10/Y

The reaction scheme of the lumped system can be described as

- 10 -
A] _ A2 .

10

dy /dt = K,
where § = (§1,79,)7 and
- ~10 10
k= ( 10 —10)'
EXAMPLE I

A uni- and bimolecular reaction system with 8 species is illustrated as follows:?

2
A; + A, = A3 + Aq
4
1 12 lz2
1
1 As = As 2
/3
IV
A B Ag
1

where the A;s are species; the numbers are unitless rate constants.

e A0 g By A
1 ".'I'q?l'Q:C‘c.Q,[:ifﬁtlgn’isf".(e"

) N
:.! :.53“('.0

0 1 I
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Leting y, represent the concentration of A;, it is easy to write out the kinetic

equations and the corresponding Jacobian matrix J(y).

J(y) =

(

—2(1 + y3)
—2y2
2y2
2y2

O s O e

dy, /dt
dy /dt
dy, /dt
dys /dt
dys /dt
dys /dt
dy- /dt

dya /df

—2y
—=2(1 + y1)
2y
29y

2
0
0
0

= —\/iyg +

= —\6y7 +

4y4
4y4
—2(1 + 2y4)
—4y4
0

2
0
0

This matrix can be represented as

where

Ao

RANDNRAS
f_a*q“i'.‘nfi'\‘pt‘\'

—2y1 — 2y1y2 + dysyq
~2y; — 2y1y2 + 4yaya
—2y3 — 4ysys + 212
~2ys — 4ysya + 2y1y2

—Ys + %1 + 2y, + \/iys

2ys + ys

Y1+ Ys

—Ys + 2y4 + \/in

4y3
4y3
—4y3
—2(1 + 2y3)
0

]
0
2

4
J(y) = Ao+ ) weAx,

-2 0
0 -2
0 0
0 0
1 2
0 0
1 0
0 0

OO0
i.‘.,‘ii‘.'ﬂ‘,'l."’*» RN ".‘.‘u.,‘

k=1

0 0
0 0
-2 0 0
0 -2
0 0 -1 2
2 0 1 =\2
0 0 0 0
0 2 0 0
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e
0 -2 0 0 2 0 0 0
& 0 -2 0 0 \ (*2000 )
0 2 0 0 0 2 0 0 0 0
a0 2 00 4|2 0 00

® 6 0 0 4 \ 0 0 4 0
0O 0 0 4 0 0 4 0
0 0 ¢ -4 0 0 0 -4 0 0
A, = 6 0 0 -4 Ay = 0 0 -4 0
&
\ 0 0 \ 0 0
& The corresponding eigenvector matrices X4, and X4, with their eigenvalues
are as follows:
[ -~
M= -2, ~2, -2, —2, —(1+4/2), —(1+y2. 0o 0
( 0 2 — 2 1 1— /2 | \
W2-1n/2 (V2-32 -1 V2o
e
a - v -2 -1/2 (1 =2 0
. 0 1//2 172 (V2—-1/2
AAo =
1 1 1 1 1 0 V2 oo
t&
-1 0 0 —1 -1 0 10
0 -1 0 -1 0 ) 0 )
\ 0 0 —1 i 0 - 0 \5)
(A
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e e e e L o A i a A an Ae ]
®
A= -4 0 0 0 0 0 OO
i 1 1 1 0 0 0 0 0)
1 -1 06 0 0 0 00O
-1 0 -1 0 0 0 1 0
@ . -1 0 0 0 0 0 00
A, T
o 0 o0 1 1 1 0 1
o 0 o0 -1 0 0 00O
o 0o 0 0 0 -1 0 00
\ 0o ¢ 0o o0 0 -1 00
A= -
* . 4 0 0 0 © 0 00O
( 1 1 1 0 0 0 0 0
1 -1 0 0 0 0 0 O
® -1 0 0 0 0 0 00O
Xa, = -1 0 -1 0 0 0 10
0 0 0 1 1 1 0 1
- o 0 0o -1 0 0 0
o 0 0 0 -1 0 00O
k o 0 o0 O 0 -1 00
¢ Using the methods presented in section l1I B, one can obtain all possible inter-
sections with different dimensions of the invariant and the null subspaces of J(y).
First we use the singular property of the Jacobian matrix to determine the inter-
¢ section of the invariant subspaces of J(y). In this example, we have
17J(y) = 0.
¢
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where 17 = (11 ... 1). Therefore, any column of J(y) for any value of y is located

" in the same (n — 1)-dimensional subspace. This subspace can be constructed by
Equation 33.

Xx=xUxy. Ui,

& where Xy and X are images of n-dimensional space upon mapping by Ay and A,
which are composed of the linearly independent columns of 49 and Ax. Then we
have

®

-2 -2 4 4 -2 0 0 0 0 O

-2 -2 4 4 0 -2 0 0 0 0

2 2 -4 -4 0 0 -2 0 O 0

12 2 -4 -4 0 0 0 -2 0 O

© Y=10 0o o o 1 2 0 0 -1 0
0 o o o0 o o0 2 0 1 0

0 o0 0 0 1 6 o0 0 o0 1

\ 0 0 0 0 6 0 o 2 0 -1

9

After omitting the linearly dependent columns the intersection X is obtained.
-2 =2 0 0 0 0 0 \
L -2 0 -2 0 0 O 0
2 0 0 -2 0 0 o0
Y = 2 0 0 0 -2 0 0
- 0 1 2 0 ¢ -1 0
o 0 0 2 0 1 0
S 0 1 0 0 0 0 1 )
K o o 0 o0 2 0 -1
I we change the bases of this subspace, it can be described by a simpler form:
.
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0
0 0 -1
6 o0 O -1)

It is easy to prove that any column of X is a linear combination of the columns of

X;. Then the two matrices are equivalent to represent the subspace.

s
T
: Now we use the eigenvectors of 49 and A, to construct the intersection of the
invariant subspaces of J(y). After examining the eigenvector matrices we find that
E o the first 6 columns of X4, and X4, to X4, are linear combinations of the same
columns of X4, . Therefore the subspace X, spanned by the first 6 columns of Xa,
is an intersection of the invariant subspaces of J(y).
| @
< 1 1 1
( 1 0 0 0 \
-1 -1 0
‘ - -1 0 -1
T Az = 1 1 1
-1 0
\ 0 0o -1 0
o 0o -1/

After examination we can find that the subspaces X3 of X,

N )

! 0 0 0

N . 0 0 0

0 0 O

- o o o

711 1 1

-1 0 0

i 0 -1 0
[}
‘VQ
o

’ )

" \o o0 -1




is invariant to 4, and Ax. Therefore it is also the intersection of the invariant
subspaces of J(y). Similarly the two subspaces X4, X5 of X and the union Xg of

A.'4 and .X.-s

0 0 0 0
0\ /0 (0 0

0 0 0 0

N 0 . | o . Lo o
Xe=| ) Xs=| 4 Xe=|_,
1 0 1 0

0 kl 0 1

\ o / ~1/ 0 -1

are intersections of the invariant subspaces of J(y).
The intersection of the null subspaces of J(y) can be determined by Equation

48 and the solution is X7.

bt [ e I e T )
o e ©

—

>
]
oov—‘%oooo

For these intersections the corresponding lumping matrices M, are determined
by Equation 13. All M; are arranged below by dimension in increasing order except

M, which is different from the others and will be discussed later.

My=(1 11111 11)
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We can determine the kinetic equations of the exactly lumped systems using

Equation 28
dy /dt = ME(MP). (28)
For M; we arbitrarily choose
My=(1 0 0)”
Since y = My, we have
Vi =Y
yi = 0. (1 =2.3.....8)

Substituting these relations into Equation 28 and 74. the lumped kinetic equation
1s

8
dj'dt =0  (i=3_ w) (75)

For M, we arbitrarily choose
(1 000000 0\
*"\00001000)"
Similarly we have

Y1 =Y. Ys = Y2,

v = 0. (‘l =273,4v677v8)

Substituting them into Equation 28 and 74, the lumped kinetic equations are
dg] /dt = ~2y‘1,
(76)
d fdt = 2y, .

This kinetic equations can be described by a unimolecular reaction scheme:

2
A — 4
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) &
) 1 8
A=) AL A=) Al
. =1 1=5
A The first six lumped systems for Ay to Afs follow uni- and or bimolecular

reaction schemes. The corresponding reaction schemes of the lumped syvstems for
Al to Afg are illustrated as follows:

| &

lumping scheme Af;

2
“i] -+ AQ = Ag -+ ,44
. \\4 //
2 2 2 2
As

8
Ad=4, (1=1,234), 45=> A

- =5

» lumping scheme Mg
. _ 2 .
! A] + A2 - A3 + ‘44
| & 4
: 1 2 2
_ ; 4
l o

As
A=A, (=1234), As = As + Ag, Ag = A7 + Aa.
N
lumping scheme M,
2 -

. 4, + A, = A5 + 4,
! 4

S 1 2 2

1 .45 2

b \ 5

. AG = _47

]
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A = A (1 = 1,2,3,4), fi." = 441 (z = 6,7)’ As = A5 + 4.

lumping scheme AMj

2
A) + Ag — Ag + A4
4
1 12 12 2
1
As == AG

A=A, (1=1,23,4,56), A7 = 4 + A,

The last lumping scheme Al; can only be described by a ssmplified set of differ-
ential equations, since it does not follow a uni- and/or bimolecular reaction scheme.
The condition under which a lumped system follows a physical uni- and/or bimolec-
ular reaction scheme has been discussed in References [2] and [6]. The diflerential
equations for the lumped system of Af; is given as

dyy /dt = =291 — 20192 + 49394
dyz [dt = =2y, ~ 21§z + 493 Ys

dys/dt = =293 — 4Y394 + 20192

—_—
~1
~1

~—

dys/dt = —294 — 49395 + 20192
dijs /dt = =9y + 22 + 2V 295 — (1 + V2)is
dys /dt = —V/2§, + 2y — (1 + V2)§s

where

Vi, (1=1.2.3,4)

Vi
Ys = —ys + V/I—Zy(,.
Yo = —\/iy: + ys.
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This lack of a corresponding chemical mechanism for the lumped system may i

i

ofien arise in lumping. and there is no practical difficulty in this situation. Since

the lumping scheme above is exact, the ssmplified model will give exactly the same

values of the lumped species as those given by the original one. Notice that y, = y,

for: = 1,2,3,4. If one only considers y, to ys. Equation 77 will give the same results

as those given by Equation 74. However, Equation 77 is simpler, even though it
does not follow uni- and,/or bimolecular reaction schemes.

These examples are very simple, however, they illustrate the method which can

be applied to other more complicated systems.
V. CONCLUSION AND DISCUSSION

In this paper a genaral analysis of exact lumping has been given, which can be
; used for any system described by a set of first order ordinary differential equations
" with any degree of nonlinearity. Uni- and/or bimolecular reaction systems are only
J special cases of this general analysis.

The kinetic properties and the coupling pattern of the reactions in the exactly

lumpable system must satisfy some restrictions, which are reflected by the properties

!. of their Jacobian matrix and the corresponding Green'’s function. The intersections
. of the invariant and the null subspaces of the Jacobian matrix represent possible
E lumpabilities of a given complex reaction system. A systematic method to determine
y the intersections of the invariant and the null subspaces of the Jacobian matrix and

the corresponding lumping schemes was developed. Using the generalized inverse of

i the lumping matrix, the differntial equations of the lumped system can be readily
b
obtained, and the non-unique nature of the generalized inverses does not effect the

form of the lumped equations in the exact case.
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Although some useful results about exact lumping have been obtained, there
is still further work to do. Systematic application of this analysis to complex reac-
L : . , :
tion systems needs to be considered. However, in the treatment of actual reaction
systems, the first problem encountered will likely be their non-exact lumpability.
Very few systems satisfy the restrictions for the existance of exact lumping. Some-
A times, even if a system is exactly lumpable, the results may not meet practically
desired goals. For example, in the CO/H,0/0, combustion system we would like
the easily measurable concentrations of CO, CO;, O3, H, 0 to be unlumped’®. With
® this constraint, the system likely can not be exactly lumped, and we have to lump
the other species of the system approximately. Developing a general approach for
approximate lumping is very important for realistic problems. The exact lumping
< analysis presented above should form a nigorous starting point for the development
of approximate lumping.
® NOTATION
Scalars
& ar(y) = kth coeflicient of a linear combination of matrices
4, = 1th species of a reaction system
c = constant
X d = constant
Ji;(y) = (i,7)-entry of matrix J(y)
m = dimension of matrix Q(y)
< m, = mass of species A4,
m,; = (1,7)-entry of matrix A
n = dimension of vector y
»
}‘: n = dimension of vector y
37
-

(] () LM TN T8 1
At ah] l':’i":l":i’:f!‘ RO ?l‘g‘,l‘p’l';!l_’&\’" )

¥




W

7

Yk

I

dimension of identity matrix

time

= kth element of vector y

Vectors and Matrices

Capital letters represent matrices; bold-face lower case letters represent vectors.

= constant matrix

= constant matrix

= unit vector with 1 as its ith element, and 0 for the rest of the elements

= elementary matrix with 1 as its (¢, 7)-entry, and 0 for the rest of the elements
= n-dimensional function vector

= n-dimensional function vector

= Green’s function of J(y)

= Green’s function of J(§)

= identity matrix

= Jacobian matrix of f(y)

= submatrix of J(y)

= Jacobian matrix of f(§)

= submatrix of J(¥)

= rate constant matrix

= defined as MG(t,7) — G(t,7)M

= lumping matrix

= submatrix of M

= mn-dimensional vector which ith element m, is the mass of species A; or the
row vector of lumping matrix M

= generalized inverse of M satisfying MAl = I,
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P = (n-n)x(n —n) constant matrix

P(y) = (n-n)x(n—-n)function matrix
Q(y) = m x m function matrix
S = (n —n)x m constant matrix

S = generalized inverse of § satisfying §S = I,,,

W = intersection of Z and X

X = n-dimensional vector

X = image of X upon mapping by (I, — M M)

X = image of X upon mapping by J(y)

X = nx(n— ) constant matrix or intersection of the invariant subspaces of the

Jacobian matrix J(y)

X = generalized inverse of X satisfying XX =1I,_4
X; = intersection of the invariant subspaces of the Jacobian matrix J(y)
X; = invariant subspace of J(y;)
Xa, = eigenvector matrix of 4,
Yy = n-dimensional variable vector
¥ = n-dimensional variable vector

= subspace of n-dimensional space, which contains X
Z = n x m constant matrix or subspace of X, which is invariant to J(y)

Z; = intersection between Z and X\,

Greek Letters

A; = ith eigenvalue of matrix A, or &t
A = diagonal eigenvalue matrix of matrix A" with A; as its diagonal elements
Symbols

= any property related to the lumped system

39
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(12]

13]

= null vector

= null matrix
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