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PREFACE o

The work described in this publication was performed by the -
Mathematics Clinic, Claremont McKenna College, under contract to the
Jet Propulsion Laboratory, an operating division of the California s
Institute of Technology. This activity is sponsored by the Jet
Propulsion Laboratory under contract NAS7-918, RE182, Al87 with the

National Aeronautics and Space Administration, for the United States :0""

Army Intelligence Center and School. A
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I INTRODUCTION AND OVERVIEW

T DThis is the final report of the 1985-86 Claremont Graduate School and

Claremont McKenna College Mathematics Clinic concerning a problem proposed
by the Intelligence Analysis Group at the Jet Propulsion Laboratory. The
problem is to determine confidence regions for the location of objacts or
emitters oa which bearings are taxen from two or more sensors whose

positions are xnown. T~

~

This problem for the two-s\ensqr case was studied by a different clinic
during the 1984-85 academic year.{’This ¢linic studied the classical
approach to determining such regions which involved the assumption that an
error of observation of tnhe line of bearing displaces the line parallel to
itself. By dropping this assumption, they found that the classical
probavility regions, which are ellipses, contained.only 50% to 8G% of the
probability claimed. One goal of this vear's clinic was to determine the
reason for this very large discrepancy. As it turned out, the reason was
neither the dropping of the parallel displacement assumption, nor
computational errors in the clinic's work, but two equations in the original
publication describing the classical approach were printecd incorrectly,
These errors are probably transcription errors, but no corrections or
references to them were found in a search of the relevant literatura, <

In Section II, the two-sensor problem is described. The parallel
displacement assumption is dropped. Based on the assumption that errors of
the reported angles are normally distributed, tne probability density
function of the points of intersection of the computed lines of bearing is
given,

In Secticn III and the A&onendix, a re-derivation of the equations of

the classical model is carried out and the c¢orrect equations for the

a
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probability regions (called Stansfield ellipses) are determined.

In Section IV, it is shown that tne Stansfield ellipses as corrected by
the clinic, actually contain the claimed probabilities with only very minor
differences. However, the densities above and below the location of the
emitter ara different due to the dropping of the parallel displacement
assumption. The contour maps shown in figure 5 show this clearly.

In Sections V and VI, two new probability regions are developed, the
“Clinic region" and the "Image region". These are attempté at determining
probability regions which contain the same probability as a Stansfield
ellipse, but whose areas are smaller than the area of the ellipse,

In Section VII[, the Clinic, Image and Stansfield regions are analyzed.
It is shown that the Image region is not as "efficient" (larger area for
given probability) as the Clinic and Stansfield regions. The Clinic region,
on the other hand, is smaller than the Stansfield ellipse for a aiven level
of probability, but the difference is so small that it is hardly worth the
effort to determine this much more complicated region. However, the
geometric center of the Clini¢c region moves from below to above the true
location of the emitter as the desired probability of the region is
increased (see figure 13), wnile the geometric center of the Stansfield
ellipse remains fixed. This result may be of practical value,

In Section VIII, the clinic approaches the three-sensor problem in a
manner similar to the two-sensor analysis. The purpose is to find the true
density function when the parallel displacement assumption is dropped.
Several approaches are taken to obtain a discrete probability density
function to approximate the true density function, which is continuous. The

different approaches produce very different results. More ...k should be

done in this area.
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Section IX is very different from the other sections. Here, a mode)
for a single, active sensor problem is developed. An active sensor measures
both direction and distance, taking readings from two different locations.
Under the assumption that the systematic errors (direction and distance) are
the only significant errors, a scheme to determine the true location of the

emitter is presented.
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IT  THE TWO-SENSOR PROBLEM

Given an object or emitter of unxnown position, we want to determine
its location using a number of sensors. W begin with the two-sensor case.
The emitter is located at the intersection of tne two lines of bearing
determined by the two angles of bearing a, and B, as shown in figure 1 at
the end of the report.

We assume the sensors may report false readings anda the goal is to
determine a confidence region for the location of the emitter, Towards this
end, the ¢linic considered the related problem of finding a region which

¢ontains the point of intersection of the lines of bearing with a specified

T R L KR B A S

amount of probability, given that the true location of the emitter is known.

Qur assumption is that given the true location of an emitter, the

(2%

readings the sensors return are random variavnles, A and B, distributed

E %

normally wita means equal to the true angles of Jearing, and variancas 04?

and OB’. We assume the two sensors are independeat, so w2 have the result

=5

that tne pair of readings has the bivariate normal distribition. Hence, the

probability density function for (A,8) is

=R

LSNT g ] T

1 (a=a_y2 B2
hy , f . o)t (3-8) ,
) f{a,8) = exp|-i{ * )] (1)
21\'0A°3 L 0y og’ J
s& where the values of the random variables A and B are denotad by a and 8, and
. o~
. a, and B, are the true angles of bearing. ?ﬂ
) 2,
e However, the location of the emitter is to be given as a point in tne g*
\"1
~ X,y plane, and the random variables are in the a,8 plane (see figure 2). }i
Yy -
- The mapping of a point from the a,B plane to the x,y plane is given by (next ?:
' )
A, ey
»™ a .
i f page) "
! R
] A
] 4 A
) o~
0 A
s
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D-tan(3)

tan(3) - tan(a)

(2)
D-tan(a)tan(B)

tan(3) - tan(a)
Since the reported angles of bearing are random variables, and each

pair of reported angles unigquely describes a point in the x,y plane, we can

2 TR Sk A 588

7

transform the density from the a,8 plane to a density in the x,y plane. We

g

assume the joint density of A and 8 is given by equation (1), f(a,B8). We !

o

define two neas random variables X and Y as functions of A and B:

. D-tan(3)
- tan(8) - tan(A) !
q D-tan(A)tan(3) ) »
. ~tan(A)tan :
LY y = X3
: tan(B) - tan(A) o
ii Equivalently, A and B can be written as functions of X and Y L,
o~ e
' A = Arctan[Y/X) o
y (4) i
™, = A /(X- ]
3 rctan(Y/(X-0)] g@
% The joint density of X and Y is then simply .:F
| A
F g(x,y) = f{Arctan[y/x],Arctan{y/(x-D)1}+|J] (3) &
- A
e where |J| is the absolute value of the Jacobian Ei
Sa Sa 1y
" '1“- §x by :.\]
- J = (8} e
88 38 "
15 '
. The density is then :E
o
b 2
< 1 y:0 v
. g(x')') = * ‘ ;:
X 2mop0g | (xT+y!)[(x=D)P+y?] | (7) .‘-
‘ [Arctan(y/x)-Arctan(y /x )]t  [Arctan(y/(x-D))-Arctan(y./(x.-0))]? 5
N expt-i( o’ *o ] R [ y ) - ( 0 0 )] )'] ‘.:‘
3{ 0,1 og* J L
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where (x .y ) is the intersection of the lines of bearing. It corresponds

to the point (ao-Bo)-

Undoubtedly, this density function makes meaningful analysis difficult.
Therefore some other attack is called for. In the foliiowing sections, we
will describe and compare different approaches to the two-sensor problem.

This will include the classical metnod devised by R.G. Stansfield, and

numerical techniques devised by the clinic.
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Il CLASSICAL APPROACH

Last year's c]iﬁic reported tnat the classical approach to finding
probability regions yielded ellipses which contained only approximataly 50%
to 80% of the probadility claimed. Because of the magnitude of this
discrepancy, we checked this method to see if the previous clinic had made
an error. MWe also needed to understand the classical approach so that we
could compare it to other methods of analysis.

The classical approach was developed primarily by‘R.G. Stansfield
during World War II and published in 1947 (reference 1). Because of the
complexity of the density function (7), and because he obviously did not
have access to computers, Stansfield made a simplifying assumption of
parallel displacement of lines of bearing. This assumption translates
angular error to distance error and allows the problem to be modelled using
a bivariata normal distribution.

His measure of error is the distance from the true location of the
emitter (or target) to the reported line of bearing. It is defined as the
length of a line segment perpendicular to the crue line2 of bearing that
meets the reported line of bearing (see figure 3). This distance is labeled
Pl. The distance from the true location of the emitter to the saasor is DI,
and the angular error is ¥,

The standard deviation in Stansfield's work is estimated using the fact
that for small angles sin(v) is approximately equal to ¥%. Also, the
distance D1 can be estimated with reasonable accuracy by the distance D1
(see figure 3). By the simple trigonometry of the model, we k.ow that

Pl = Dl x sin(y) (8)
which can be estimated as

Pl =D1' xvy . o)

-

R A g M PPV
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Stansfield's standard deviation is then the distance Dl' times the standard
deviation of the andular reading (in radians).

To carry this model to the two-sensor case, errors Pl and P2 will be
associated with each of the two sensors. Stansfield assumes that these
distance errors are independent and that each error can be modeled as a
normal probability distribution about a mean of 0 and a standard deviation
described above. Therefore, we have a joint normal probability distribution
with the random variables Pl and P2. The density function is

1 pl? p2?

f(pl,p2) = expf-&( + )] (19)
Zﬂo102 L oop?  op?d

We now need this distribution written in terms of points rather than
the distances Pl and P2. Here, Stansfield makes use of his assumption of
parallel displacement of the lines of bearing. With the distance
measurements Pl and P2, there is associatad a unique parallelogram with one
vertex at the true location of the emitter (see figure 4). For each pair of
distances, there is also a unique point which is the vertex opposite the
true location. Hence, the distances can be converted into points with (x,y)
coordinates (see figure 4). Again, making use of the trigonometry of the
model, we can rewrite Pl and P2 in terms of the opposite vertex points

(x,y).

1]

Pl = -xsina + ycosa

(11)
P2

-Xsing + ycoss

With this conversion formula, Stansfield transforms the bivariate
normal density, replacing Pl and P2 and multiplying by the appropriate
Jacobian determinant. The exponential term

pl? p2?

+

H 1

%
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10
g thus becomes
g 1 1
—[(=sina)x + (cosa)y]}? + —[(-sinB)x + (cosB)y]?
012 022
§§ This can be more easily handled by setting
sin'a sin!g
2 S
oll 022
@ sina cosa sinB coss
v = + (12)
012 022
g cos'a cos?g
u = +
Pﬁ olz 021

s0 that the exponential term can now be written as

Ax? o= 2uxy + uy!

2%

The Jacobian determinant may also be simplified and written as

YAy - vl

Sy

Having completed the transformation from distance measures to points, the

sz

joint normal density now looks like

Y Ay - v!
g(x,y) = o exp[-t(ax? - 2vxy + uy!)] (13)
b g

This probability density can be put into a more convenient form by a

rotation of axes to eliminate the "xy' term. Setting

EFR X B

-2v
3 tan(20) = (14)
B -
. the rotation is given by
Eg x = x'cos® - y'sind N
(15) :'-
N1 y = x'sin@ + y'cos?d :x
) Note: where Stansfield uses capital X and Y, we are using x' and y' to avoid
a¥ confusion between random variables (X and Y) and variables denoting a
[ L_
§
o &
NI

“»
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rotation of axes,

If these values for x and y are substituted back into the original

equation, the result is

1 1
Ax? - 2uxy + uyt = __x't ¢ y'? (1%)
al b?
where
1
— = 1€05%® - 2yc0s?d sin® + usin?d
aZ
(17)
1
~— = Asin?d + 2vcos?d sind + ucosid
bt

At this point in Stansfieid's derivation, an error appears in the original

publication. Please see the appendix for a discussion of the error.

K

For this transformation, which was unaffected by the error, the
Jacobian determinant conveniently reduces to 1. Thus, after two
transformations, one to switch from distances to points, and another to
rotate axes, we wind up with a joint normal probability distribution with

respect to x',y' coordinates, whose density is given by

YAy - V2 1 1
h(x',y') =-—exp[°i(-——><" *_y")] (13)
2n at b?

a5

%§
é%

Stansfield's assumption of parallel displacement allows him to maks
these transformations. Without it, there would be no meaningful way to move
from the distance errors Pl and P2 to x,y coordinates. The resulting

expression is the relativeiy tractable bivariate normal distribution, In

fact, one of the properties of the bivariate normal is that the most

LT

efficient probability regions will be perfect ellipses determined by the

equation (next page)
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1 1
_xll + ‘_y.l = ’ZLn(l'D) (19)
al o?
where p is the level of probability desired.
As noted in the appendix, the formulas for the coefficients a and b

above are printed incorrectly in Stansfield's paper. The incorrect version

R BE e B IS

makes the values of a and b larger than they should be. Thus, ellipses

generated from the incorrect version would be too small and capture far less

2,

probability than claimed. This would explain the discrepancy in last year's

results,
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IV CLINIC ANALYSIS OF STANSFIELD ELLIPSES

With Stansfield's density (18), the problem of finding a probability
region is greatly simplified. For any two angle readings a and 8, and a
desired level of probability, p, an ellipse can be formed which supposedly
contains the point of intersection of the reported lines of bearing with
probability p. However, because of the simplifying assumption of narallel
displacement, the ellipse will not contain exactly that amount of
probapility. Tne clinic therefore ta2sted the accuracy oé the Stansfield
ellipse as a probability region.

Given a region, R, in the x,y plane, and given a two dimensional
density, g(x,y), one can determine how much probability is contained in R by

evaluating the integral

[ f
J J 9(x,y) dA

The clinic performed the infegration letting R be a Stansfield ellipse, and
g(x,y) the density given by (7). However, since we could not analytically
integrate g(x,y), we used numerical methods on the computer.

To verify the accuracy of the numerical results, the clinic evaluated
the double integrai using both an existing International Mathematics and
Statistics Library (IMSL) subroutine (DBLIN), and a modified Simpson's
integration algorithm written by the clinic. The two methods yielded
virtually the same results,

By varying the levels of probability over three sets of angle readings
with o = 2.0°, we consistently found tnat the amount of probability claimed
by Stansfield was very close to the amount actually contained in an ellipse
(see table 1 at the end of this section). Any discrepencies were

insignificant and may be partially due to numerical approximation error.
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However, tnis conclusion holds only if Stansfield ellipses as corrected
by the clinic ar2 used. Ellipses derived directly from Stansfield's paper
(reference 1, p. 763, equations (13}, (16}, and (17)), contain only about
30% to 80% of the probability claimed, whicn is what last year's clinic
concluded.

We then examined the difference between the probability in the top and
bottom halves of an ellipse. Under Stansfield's assumption of parallel
displacement, the probabilities in the top and bottom halves are equal.
However, upon dropping the paraliel displacement assumption, we found that
the probabilities contained in the top and bottom halves are actually not
equal. Instead, the top half consistently captures less probability than
the bottom half, although surprisingly, the sum of the two halves come very
close to the total probability desired (s2e tabie 2).

At higher probability levels, the percentage difference between tne top
and bottom halves is smaller relative to that of lower levels. To explain
tais, we examined a contour map of the clinic density, as well as
probability bands for the Stansfield ellipse. The contour map (see figure
5) graphically demonstrates that the probability in the lower half is
concentrated riearer the center of the ellipse, while the probability in the
upper half is more dispersed. As we increase the desired probability ievel,
the rate at which the upper half of the ellipse captures probability
increases relative to the rate of the lower half,

We also explored this issue of denser bottom half probabilities by
looking at ellipses in terms of eight probability bands of equal widtn (see
figure 6). We consistently found bands close to the center below the
Tocation of the emitter to contain more probability than corresponding bands

above, while the opposite was true for corresponding bands further away from
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the center (see table 3). This indicates that when the Stansfield ellipse
is made large en0ugh; most of the additional probability must come from the
upper half.

Although Stansfield's parallel displacement approximation is not a
strict depiction of reality, his method is a simple way to find a region
which contains a desired level of probability. This does not necessarily
mean, however, “hat his regions are the "most efficient”, in the sense that
they capture the desired level of probability in the smallest possible area.
The clinic wanted to find out if it was possible to capture the same amount
of prcbasiiity in smaller regions. Sections V and VI describe regions we

examined,
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& TABLE 1
! Angie readings are giver as a/8
80/110 50/60 40/150
ﬁ Claimed Actual Actual Actual
Prob. Prob. % Diff Prob., % Diff Prob. % Diff
& 0.25 0.2512 0.46 0.2622 4.39 0.2500 -
& 0.50 0.5029  0.58 3.5287  5.73 0.5000 -
W,
2.75 0.75C4 0.06 0.7452 -0.65 0.7495 -0.07
& 0.95 0.9396 -1.09 0.8791 -7.46 0.9490 -0.10
ﬁ 0.99 0.9802 -0.99 0.9225 -6.81 0.9897  -0.07
Note: o = 2.0° and the distance between sensors is 1000.
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& TABLE 2
!! 80/110
Claimed
§§ Prob. Top Bottom Total % Diff
0.25 0.1152 0.1350 0.2512 16.24
0.50 0.2279 0.2750 0.5029 20.70
gé 0.75 0.3419 0.4085 0.7504 19.47
0.95 0.4475 0.4921 0.93S6 9.96
. Eﬁ 0.99 0.4738 0.5014 0.9302 4.73
50/60
& Claimed
Prob Top Bottom Total 2 0iff
SK 2.25 0.1006 0.1616 0.2622 60.57
. 0.50 0.1903 0.3384 0.5287 77.80
0.75 0.2828 0.4624 0.7452 63.54
e ) 0.95 0.3811 0.4980 0.3791 30.69
§§ 0.99 0.4220 0.5005 0.9225 18.60

Mk
=N
o
~
—
on
o

......

\ Claimed
8; Prob Top Bottom Total % Diff
0.25 0.1244 0.1256 0.2500 0.94
G.50 0.2480 0.2520 0.5000 1.62
!b 0.75 0.3701 0.3794 0.7495 2.54
0.95 0.4654 0.4836 0.9490 3.91
5& 0.99 0.4838 0.5055 0.9893 4.49

Note: o = 2.0° and the distance between the two sensors is 1000,
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TABLE 3 o
9 aesm s :
a Top Band  0.01276 0.01855 0.00982 i
; 2nd Band  0.05649 0.05355 0.05157 %
5 3rd Band 0.15208 0.11777 0.15229 &
dth Band 0.26707 0.23219 0.27010 -
8 Sth Band 0.28376 0.33246 0.27993 . A
6th Band 0.16456 0.16390 0.16453 o‘.
g 7th Band 0.04578 0.00416 0.05293 ',;:‘l.‘
g souwsms omen oo 000 A
| Total Prob. 0.98742 0.92253 0.98929 ;‘:
3 s

Note: o = 1,0° for the 80/110 case and 2.0° for the other two cases
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v CLINIC REGION

The clinic atfempted to find a probability region that was more
efficient than the Stansfield ellipse. That is, we wanted to pack as much
probability into the smallest area. We hoped to be able to do this when we

dropped the parallel displacement assumption. But as we have seen, when we

drop this assumption, the resulting probability density function is very

complicated. Hence, we attacked the problem using a different method.

We first examined the probability of a sensor returning a reading
resulting in a line of bearing inside a specified sector or "fan". In
figure 7, the true bearing is a, but we assume the reading sensor 1 returns
is a random variable, A, distributed normally with mean a and variance 9,
Hence, we can easily determine P(algA<a2). It is simply P(Aga2)-P(A<al).
And since we assume the underlying probability distribution is the normal,
we can compute close approximations to these probabilities on the computar,

Next, we did the same for the second sensor, so that we have the

probability that sensor 2 returns a reading inside the fan between bl and

Y @ TSP e S o IR 0 RIS e m-m-%

H

08’

The two fans intersect and form a quadrilateral. The probability that

the two sensors return readings which intersect inside the quadrilateral is g;
simply the probability that sensor 1 returns a reading inside fan 1 and Wf
sensor 2 returns a reading inside fan 2. We assume the two sensors are ﬁ;
independent, so to find the probability of the quadrilateral, we multiply 65
the probabilities of the fans. Eé

The next step was to form the 3-o0 fans (see figure 9). That is, we ;S
found the fan formed by moving ¢30 degrees from a, and the fan formed by ?‘;
moving t3o degrees from 8. The reascn we use these 3-o fans is simple, The Eg

1
]
g -:.g
Y =4
P

“e ey 8

!! b2 (see figure 8), where 8 is distributed normally with mean B8 and variance
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quadrilateral formed by the intersection of these fans contains 99.5% of the
total probability. To capture 100%, we would have to examine the entire
plane, which is simply not possible. So we only look at a subset of the
plane, but we choose a subset such that we lose only 0.5% of the
probability.

We broke this quadrilateral up into smaller subquadrilaterals,
recording the area and probability of each, As can be seen in figure 19,
each subguadrilateral has a different area. That means that while two
subquadrilaterals may have the same probability, their densities are
different., In other words, the amount of probability they pack into a unit
area is different.

We then made a very fine grid of 3600 subquadrilaterals and took those
of highest density to form a probability region. Since they were of highest
density, they contained tnhe most probability in the smallest area. We made
a list of tne subquadrilaterals, ordering them from highest density to
Towest. We formed a probability region by connecting subquadrilaterals
together, starting at the top of the list and moving down until we reached
the desired level of probability. The areas of these subquadrilaterals were
added together to determine tne total area cf our probability region. Since
every one of the subquadrilaterals in the region was of higher density than
the subquadrilaterals outside, we concluded that this was tne most efficient
probability region.

In plotting our region, rather thar finding and drawing possibly
hundreds of quadrilaterals linked together, we assigned tne probability of a
subquadrilateral to its center point. In this way we obtained a list of
points to represent the subquadrilaterais. The probability region was then

the convex hull of these points.
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We defined the center point of a subquadrilateral as the point of
intersection of the two lines of bearing that bisect the fans forming the
subquadrilateral. The resulting grid of center points could also be
considered a discretization of the continuous probability density. This
discretization is possible because two lines of bearing will always
intersect at a point. When we move to the three-sensor case, however, three
lines of bearing virtually never intersect at a point, and a discretization

of the density is therefore far more difficult (see section VIII).
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VI  IMAGE REGION

Another approéch the clinic examined was a mapping of the most
efficient probability region in the a,8 plane te the x,y plane. Our resclts
showed that this approach is not as afficient as the Stansfield and Clinic
methods.

Recall that we have assumed that tne readings the two sensors return
are random variables, A and B8, each distributed normally. The joint den:ity
of A and 8 is therefore
1 roo@megr (8-5y) N

- exp|=}{
‘-‘"OAOB L OAZ OBI J

f(a,8) = (1)

A result of this assumption is that in the a,8 plane. the most efficient

probability region is an ellipse of the form

(a-a _y: - 2
__O)_. + (8 Bo) = —ZLn(l-p) (20)

2 ?

oA o8
where p is the desired level of probability. We assume 0p? = og?, which
implies the probability region is a circle.

We then found the image of this circle (disc) in the x,y plane (nence

the name "Image region"). That is, we had a circle in the «,8 plane, and

transformed it entirely into tne x,y plane using the mapping

D-tan(8)
X =
tan(g) - tan(a)
(21)
D-tan(a)tan(B)
y =

tan(8) - tan(a)
This region is very difficult to determine analytically. Therefore, we usad
an approximation to the Image region.
We found 360 points on the boundary of the circle in the a,B plane and

performed a pnint by point transformation into the x,y plane using formulas
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(21). This created a region in the x,y plane that resembles an ellipse.
The area of this regfon was calculated by the vector formula for the area of
a polygon:
Area = }(Xjysexoy3t...¥Xqy) = ¥1X2-Y2X37- . =YnX]) (22)
Since we are approximating the area inside a smooth curve by
calculating the area of an inscribed polygon, there will be some error in
the calculations, but the following analysis shows that this error is small,
We examined the accuracy of the vector formula (22) %n approximating
the area of an elliptical region by generating 36 unevenly-spaced points on
an ellipse. We then compared the area of the polygon formed by the convex
hull of these points using (22) to the area of a true ellipse, which is
given by the formula mab where a and b are the lengths of the axes of the
ellipse. These points were obtained by mapping equally-spaced points on a
circle to an ellipse using Stansfield's transformation (see reference 1,
equations 9 and 10).
When we used 36 points, the relative error of the approximation was
0.005. For 360 points, the relative error was 0.00005. Thus, the vector
formula for the area of a polygon gives a sufficiently accurate

approximation to the true area of the Image region.
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VII RESULTS

The following tables give comparisons of the Clinic and Image regions
with Stansfield ellipses. In the instances where the Clinic region did not
contain exactly the same amount of probability as the Stansfield ellipse,
figures for regions capturing slightly more are included. The Image region
always contains the same amount of probability as the Stansfield ellipse.

We determined probability regions ranging from 10% to 95% for each of
three sets of «/8 readings, 80/110, 50/60, and 85/95, for sensors located

1000 units apart. In all cases, the standard deviation is 1°=n/130 Rad.

For the tables, the columns are labelad as foliows

2>

: Probability captured in the Stansfield ellipse
B: Probability captured in the Clinic region

: Area of the Image region

: Area of tne Stansfield ellipse

: Area of tne Clinic region

- MmO O

: Percentage differance in areas of Clinic region and Stansfield

ellipse (1-D/€)

g
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80/1.0 A
1 ) o.100
20% 0..00
30% 0.300
40% 0.400
50% d.501
60% 0.601
70% 0.700
80% 0.300
90% 0.898
95% 0.947
*approximation

50/60 | A
104 | 0.101
20% 0.202
30% 0.304
40% 0.406
50% 0.508
60°% 0.507
70% 0.704
80°% 3.797
90% 0.882
957% 0.926

errors

TABLE 4

arwccccace

139,407
179,325
240,013
318,362
426,177
595,796

744,817

123,874
168,086
222,198
291,961
390,285
558,372
726,459

42,132

LR R RY R T ¥ ¥

119,904
164,734
220,215
291,022
389,858
343,290

677,785

.01
.001*
.001*
.002*
.001
.208
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TABLE 6

85/95 | A B c D £ F

103 jo.101 | 0.102 | 38,688 | 38,219 | 35,987 | -0.062
20% 0.202 | 0.202 | 82,967 | 80,945 | 76,421 | -0.059

30% 0.304 | 0.304 | 134,344 | 129,385 | 123,621 | -0.047 T
40% 0.406 | 0.407 | 195,019 | 185,304 | 179,448 | -0.033 —$E3¥3
50% 0.508 | 0.508 | 268,154 | 251,442 | 246,176 | -0.021

60% 0.607 | 0.608 | 358,880 | 332,388 | 329,836 | -0.008 S,
70% 0.704 | 0.704 | 476,015 | 436,746 | 436,252 | -0.001 R
80% 0.797 | 0.797 | 637,237 | 583,830 | 583,064 | -0.001

90%  ].0.883 | 0.883 | 891,007 | 835,272 | 812,860 | -0.023

95% 0.926 | 0.926 [1,114,062 |1,086,714 |1,014,349 | -0.071
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The Image region was always larger than the Stansfield ellipse, even
though it contained the same level of probability. In other words, the
Image region was never as efficient as the Stansfield ellipse. Thus we
discontinued our analysis of this region.

On the other hand, we see that tne Clinic region as descrided in
section V is virtually always smaller than the Stansfield ellipse, even
though it contains the same level of orobadility or more. Hence, we say tne
¢linic region is more efficient.

However, it is only slightly more efficient. The Stansfield ellipse is
a simple analytic region easy to compute and draw. The Clinic region is
much more difficult and time-consuming to obtain and draw. Since tne
difference is so small, it is not clear whether the gain in efficiency is
wortn the trouble.

To examine this issue, we looked at why the Clinic region was more
efficient. We feel that because the clinic drops the parallel displacement
approximation the Clinic region builds up and tnhe Stansfield ellipse builds
out. By that we mean the Clinic region chooses the densest
subquadrilaterals to fulfill a desired level of probability. Since we know
that the probability is generally denser below the .rue location of the
emitter than above, a Clinic region contains more subquadrilaterals from
below for lower levels of probability. For higher levels, it continues to
append subquadrilaterals upward after most of the lower ones have been used
{see figure 11}. Therfore we say tne clinic region builds "up".

The Stansfield ellipse, on the other hand, builds "out". For
increasing levels of probability, it simply encloses the lower probadility
levels with larger ellipses and performs no shifting (see figure 12).

As a result, the geometric center points of the Clinic region move
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upward for increasing levels of desired probability (see figure 13). In an
effort to make the Stansfield eilipse more efficient, we artificially forced
it to build up rather than out. We did that by relocating its center to the
geometric center of the Clinic region at the particular probability level.
We then compared the density of the relocated ellipse to the density of the
ellipse when it was centared at the intersection of readings.

The results were insignificant. The Stansfield ellipse did become more
efficient but the gain was miniscule. At lower levels of probability we
found an increase in efficiency, but at higher levels the densities were
nearly equal. However, as we have noted earlier in Section IV, the
probability in the upper and lower halves of tie Stansfield ellipse is
al~ays unequally distributed.

Thus, while the Stansfield ellirse is not the most efficient region, it

is probably very close. Also since it is so simple and quick to find and

draw the Stansfield ellipse, it is a very usefu! and good approximation.
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VIII THE THREE-SENSOR PROBLEM

The clinic has approached the three-sensor problem in a manner similar
to the two-csensor analysis. Our purpose is the same, we want to find out
what the true density is when we drop Stansfield's parallel displacement
assumption, Qur method of analysis was to discretize the continuous
probability density by generating point estimates for each set of three
angle readings. Then, sinc2 there is more than one way to generats point
estimates, we examined a number of methods and used them to obtain discrete
probability densities in the x,y plane.

In the two-sensor case, two intersecting fans form a quadrilateral. In
the three-sensor case, though, three intersecting fans will virtually never
form a usable subregion (see figure 14). Therefore, we cannot approximate
the continuous density as readily as we did in the two-sensor case. We
decided to discretize the density as described in the next paragraph.

We assign all tne probability of each of three fans to the lines of
bearing bisecting them. We assume the sensors are independent, so the
probability of returning a particular set of three readings is the product
of the probabilities of the individual readings. The three lines of bearing
form a triangle (see figure 15), and we assign all tne probability of the
set of readings to a point to represent the triangle. There are severa!
ways to determine a reasonable point to use, and we examined a number of
possible methods.

Stansfield develops a maximum likelihood estimate, hereafter raferred
to as tne MLE, as a point estimate within a triangle. The derivation of the
MLE proceeds from the joint normal density, which Stansfield uses because of
his parallel displacement assumption. The principle of maximum likelihood

estimation states that for a given set of observations, in this case the
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angle readings, we maximize the probadbility density witn respect to the
unknown parameters we wish to estimate. Here, our unknown parameters are
are the x and y coordinates of the point estimate.

These MLE points have some interesting characteristics. Within the
triangle, they are generally located nearest the line of bearing that is
closest to the true location of the emitter, and they are farthest from the
more acute angles of the triangle. Stansfield mentions this in his paper,
and our computer analysis appears to confirm his statement.

We also looked at the “center" of a triangle as a point to represent
the triangle. There are, however, a number of ways to define the center of
a triangle. The ¢linic considered five different approacnes to determine a
point to represent a triangle in the sense that the probability of the set
of readings (determining the triangle) is assigned to that pcint. The
approaches or methods were the following.

1) Minimizing the sum of the distances from each vertex to the center

2) Minimizing the sum of the squares of the distances from each vertex
to the center

3) Angle bisection

4) Intersection of the medians

5) Perpendicular bisection.

For acute triangles, all the methods gave center points that lay inside
the region, while for obtuse triangles, the perpendicular bisection method
left us with a center point located outside the triangle. Although there is
only a one in four chance tnat the emitter 1s inside a triangle formed by
any three lines of bearing (see reference 1), the triangle is nonetheless
the only bounded region in which to look for the amitter. Therefore, since

we wanted ths representative point to lie inside the triangie, we did not
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further consider the method of perpendicular bisection. Also, it minimizing
sums of squares (mefhod 2) and intersecting the medians (method 4) gave
identical results. Thus, we will only discuss methods 1, 2, and 3.

The first method, minimizing the sum of the distances, requires

minimizing the function

DLOxGy) = =)+ (1oy)? + /0T s ()" »

(23)
V7 (x

3=+ (y3-y)?

where (x| y1), (x2,y2), and (x3,y3) are the vertices of the triangle, Since
minimizing 01 by standard calculus methods is extremely complicated, a
computer program was written which searched tne triangle for the x and y
coordinates for which the function DI was minimized.

The second method, minimizing the sum of squares of the distances,
proved to oe quite simple. It required minimizing the function

D2(x,y) = (xp=x)*+(yp=y)* *+ (xg=x)'*(yp=y)? * (24)
(x3%) t+(y39)*
Taking the partial derivatives of D2 with respect to x and y and setting
equal to zero yields the point estimate
(x,y) = [ixgexpex3)/3 , (y1+yp+y3)/3] (25)

The last method is angle bisection. It required finding the
intersection of the three lines that bisect the angles of the triangle.

Figure 16 shows where the various methods put the representative point
for a particular triangle.

The clinic tested to see how much difference the selection of various
representative points would have on the discretization of the probability
density,

We created point clouds, associating probabilities with each point.

These point clouds were created by varying the lines of bearing from each of
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the three sensors by jo between +30 and -3e. Thus, for each sensor, 13 K

lines of bearing were produced, which in turn created 133 or 2197 different ’

s o
.
=

triangles. Then, within each triangle, we calculated the representative W
points. X
For purposes of comparison, we cnalyzed two candidates for the 0"

representative point, Stansfield's MLE and the geometric center defined by W

ey B o'
2ok

the sum of squares of the distances. We used the sum of squares method

because of its relative ease in programming.

U~ -
S

In order to determine a discrete approximation of the continuous
density, we first split the area of tne plane containing the point cloud W
into a 40 by 40 grid of rectangles. Within each of the resulting 1600 "
rectangles, we tabulated tne number of points (if any) contained and summed e
the probabilities associated with each point. This sum of probabilities was O

then assigned to the rectangle.

IR R AR L P

To calculate the size of a region at a particular probability level, we :5
summed the rectangles of highest probability until we reached the desired Fk
level. The arza of tne probability region is simply the sum of the areas of .ﬁ
the rectangles, which are all of uniform size. 'é

Qur results show that the choice of point estimate makes a great deal _ﬁ:
of difference in the nature of resulting point clouds and in the arzas of ;.

corresponding probability regions (see figures 17 and 18 for examples of

noint clouds). The area comparisons (tables 7 and 8) show this clearly.
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Note that even though the areas obtained using the MLE points are

A

, &
smaller, it does not necessarily mean that the method provides "best" points f‘
. T3¢
- to choose for our purposes. It is not certain which discretized density o
W v
most accurately reflects the true density in the x,y plane. :
lﬁ We would suggest that further work on this problem be directed toward I
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finding the true density function, as was done in the two-sensor case, by
means of a transformation that would map the three angle readings tc
coordinates in the x,y plane. The formulation of this mapping is still
uncertain, since these different point clouds represent competing
definitions of the transformation needed, and it is not clear which of these

transformations is most appropriate.
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_ TABLE 7
AREA COMPARISONS

Grid region created from MLE points

PR A BT A S5

_ 3 Level of probability
Angle readings. 0.9 0.75 0.5
30,110,69 | 10689 sog1 2013
50,60, 41 157759 88239 42732
40,150,-58 1110 600 257
85,95,84 396399 224619 95954

Stansfield ellipses

R B R

Level of probability
Angle readings 0.9 0.75 0.5
0,110,690 | 10817 6594 3278
50,50,41 220152 123544 66272
ﬁ 40,150,-58 1211 729 365
EE 85,95,84 499087 300430 150240

Percentage difference

=

AT A B A ] OIS BA AT " FRR IS SN T J LA KIS A W ICCITT PRI

- Angle readings| 0.9 0.75 0.5
R ccwscvececcmc-|eecemecsccccacccsacrsncscencesasoscesasee
EQ 80,110,69 1.7 9.4 15.4
“
' 50,60,41 39.5 50.2 54.9
~
ﬁ; 40,150,-58 9.1 21.5 42,0
' 85,95,84 25.7 33.8 56.6
i~
&
In these cases the Stansfield ellipse is LARGER than the corresponding Grid 3
3@ region by the given percentage. -
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TABLE 8
AREA COMPARISONS

Grid region created from “minimizea sum of squares" points (method 2)

Level of probability
Angle readings‘ 0.9 0.75 0.5
80,110,69  | 20630 n2ss 434
50,60,41 455157 273093 136546
85,95,84 3668714 1590094 364417

Stansfield ellipses

Level of probability
Angle readings 0.9 0.75 0.3
80,110,69 10877 6394 3274
50,60,41 220152 132544 66272
85,95,84 499087 300430 150240
Percentage difference ﬁﬁkﬁl
o
i Level of probability N va{
Angle readings 0.9 0.75 0.5 \ﬁ@ﬁ
..................................................... I~
80,1192,59 -47.3 -41.5 -24.5 e
,:S{%
50,60,41 -51.6 -51.5% -51.5 §ﬁ{k‘
(. ."-"3
85,95,84 ! -86.4 -82.2 -73.4 o
'{\.\R\\.
In these cases, the Stansfield ellipse is SMALLER than the corresponding isnf
Grid region by the given negative percentages. ?ch '
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IX  SYSTEMATIC ERROR

The previous sections of the report discussed random errors in passive
sensors. This section examines systematic errors in active sansors. An
active sensor reports distance as well as direction,

For tnis model there is only one sensor, which returas direction and
distance readings at point Pl (see figure 19). It is then moved a distance
D to point P2, and raturns new readings. The two measured direction readings
form the angles o and B and the two distance readings originate at Pl end P2
and are labeled 01 and Dz2.

de assume the readings the sensor returns may be wrong. As an example,
in figure 19, it is clear the direction and/or distance readings are off
since the reclings at point Pl do not agree with the readings at point P2.
We assume there are no random errors, but only systmatic errors associatad
with the sensor which are the same at both locations. That is, if tne
sensor reports a direction reading which actually deviates by € degrees at
point Pl, it will report a direction reading deviating by € degrees at point
PZ. Likewise, how far the distance reading is off at point Pl i, how far
tne distance reading will be off at point P2.

We first examine the directional error, disregarding distance for the
moment. In figure 20, we see that if a and » .re the true bearings, the
emitter will be located at point E. But if the directional error is €, the
emitter will be located at point E'. We continue in this fashion, producing
a number of points which would indicate the true location of tne emitter for
several directional errors. We then find tne Lagrange polynomial using
these generated points. We now have the equation of a curve, somewhere o0n
which the emitter is truly locat-d.

Now we examine distance error. In figure 21, we sece that if Dl and DZ
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are indeed the true distances, then the emitter must be 1-cated at either
point E or F. But if the distance error is &, the emitter would be located
at either E' or F'. We continue producing points which would indicate the
true location of the emitter if tne distance error were various given
amounts. We assume that in practice some points can be disregarded, such as
F and F', because it may be clear the emitter is not located in that
direction. We then find the Lagrange polynomial using tne generated points.
As in the directional error case, we now have the equation of a curve,
somewhere on which the emitter is truly located.

S0 now we say the true location of the emitter is somewhere on curve 1
(figure 22), but also somewhere on curve 2. Therefore, the true location

must be at tne intersection of these two curves.
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APPENDIX
The CGS/CMC Mathematics Clinic discovered an error in the paper by R.G.

Stansfield, published in the Journal of the Institution of Electrical

Engineering, volume 94, Part IIIA, 1947, under the title “"Statistical Theory
of D.F. Fixing".

The error is in equations (13) and (15), p. 768, which give the
coefficients for the elliptical confidence region in the X,y plane. As they

stand now, the equations are

1

(15) — =2\ - “tand
al
1

(16) —— = 2u + vtano
bZ

They should be

1

(15) — =1 - vtan?
al .
1

(16) — =y + wtand
bZ

The mathematical derivation of (15} and (16) proceeds as follows.
Starting with (11), p. 7638,
1
P(x,y) dxdy = P /am - vioexp[-}(Ax? - 2uxy + uy?)] dxdy
Stansfield transforms the density to a system of X,Y coordinates rotated
through an angle @, where @ is given by

=2y
tan 20 =

AR

The transformation is given by (next page)

]
%
-
Y
R
X
\\
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x = Xcos@® - Ysind

y = XsinQ + Ycosd

1 1
This changes yx?! - 2vxy + uy? into —_X? + __Y? where
al b?
1
— = 1¢0s%d - 29¢c0sPsind + usin?d
al
1
— = 3sin?d + 2.c0s2sind + ucos?d
bl

By the definition of tan 20, we know that

2v
o= oAt
tan 22
1 2v
so that — = Acos?d + (a + )sin?d - 2vcosdsind
al tan 29
2
= A{cos?D + sin?d) + vsind( sin® - 2cos@ )
tan 29
1 - tan??d
= %+ 95in0( —————sind - 2c0sd )
tan ¢
tan 0
since tan 20 = ————_ . Continuing
1 - tan?0
1 cos?
— = + vsin@[(1-tan?d)( )sin® - 2cos@]
al sind
= )+ vsin@cos(l ~ tan?d - 2)]

= )\ + ysin®[-cosd(tan?d + 1)]
=\ - v5inQ(cosd sec??d)

i
= \ - vsin@(cos?

)

cos?®

= % - vtan?
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B :
The computations for —— proceed almost identically, except we replace
bZ
B A instead of u
v
ﬁ A=y - .
tan 29
g 1 2v
So _—=(u - )sin?d + ucos?® + 2 cosdsind
b? tan 29
§ 2
= u(cos?d » sin?d) - vsind( sind - 2cos? )
& tan 29
' 1 - tan??d
=y =9vsind( ——_sind - 2cos® )
Ea tan 0

1 - tan?d

since tan 20 . Continuing

2tan 9

|H

= vsin@[(1 - tan?d)cosd - 2cosd]

- vsin® cos@(-tan??d - 1)

e

=y + vsind cosd sec?d

=

u + vtand

Therefore, we assert that equations (15) and (16) should be

&
4 !
(15) — =X - vtanC
& ”
1
o (16) — =u + vtand
0 b

O

=2
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