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I INTRODUCTION AND OVERVIEW

. -This is the final report of the 1985-86 Claremont Graduate School and

Claremont McKenna College Mathematics Clinic concerning a problem proposed

by the Intelligence Analysis Group at the Jet Propulsion Laboratory. The

problem is to determine confidence regions for the location of objects or

emitters on which bearings are taken from two or more sensors whose

positions are known.---

This problem for the two-sensor case was studied by a different clinic

du-ing the 1984-85 acadEmic year. 7This clinic studied the classical

approach to determining such regions which involved the assumption that an

error of observation of the line of bearing displaces the line parallel to .

"itself. By dropping this assumption, they found that the classical

probability regions, which are ellipses, contained.only 50% to 80'0 of the

probability claimed. One goal of this year's clinic was to determine the

reason for this very large discrepancy. As it turned out, the reason was

neither the dropping of the parallel displacement assumption, nor

computational errors in the clinic's work, but two equations in the original

publication describing the classical approach were printed incorrectly.

%These errors are probably transcription errors, but no corrections or

references to them were found in a search of the relevant literature. .•I

In Section II, the two-sensor problem is described. The parallel

displacement assumption is dropped. Based on the assumption that errors of

the reported angles are normally distributed, the probability density

function of the points of intersection of the computed lines of bearing is

given.

In Secticn III and the Aprndix. a re-derivation of the equations of

the classical model is carried out and the correct equations for the
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probability regions (called Stansfield ellipses) are determined.

In Section IV, it is shown that the Stansfield ellipses as corrected by

the clinic, actually contain the claimed probabilities with only very minor

differences. However, the densities above and below the location of the

emitter are different due to the dropping of the parallel displacement

assumption. The contour maps shown in figure 5 show this clearly.

In Sections V and VI, two new probability regions are developed, the

"Clinic region" and the "Image region". These are attempts at determining

probability regions which contain the same probability as a Stansfield

ellipse, but whose areas are smaller than the area of the ellipse.

In Section VII, the Clinic, Image and Stansfield regions are analyzed.

It is shown that the Image region is not as "efficient" (larger area for

given probability) as the Clinic and Stansfield regions. The Clinic region,

on the other hand, is smaller than the Stansfield ellipse for a niven level

of probability, but the difference is so small that it is hardly worth the

effort to determine this much more complicated region. However, the

geometric center of the Clinic region moves from below to above the true

location of the emitter as the desired probability of the region is

increased (see figure 13), wnile the geometric center of the Stansfield

ellipse remains fixed. This result may be of practical value.
FIn

In Section VIII, the clinic approaches the three-sensor problem in a

manner similar to the two-sensor analysis. The purpose is to find the true

density function when the parallel displacement assumption is dropped.

Several approaches are taken to obtain a discrete probability density

function to approximate the true density function, which is continuous. The

different approaches produce very differ'ent results. More .,-,-k should be

done in this area.

,-I
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Section IX is very different from the other sections. Here, a model

for a single, active sensor problem is developed. An active sensor measures

both direction and distance, taking readings from two different locations.

Under the assumption that the systematic errors (direction and distance) are

the only significant errors, a scheme to determine the true location of the

emitter is presented.

*

I'I

K'



II THE TWO-SENSOR PROBLEM

Given an object or emitter of unknown position, we want to determine

its location using a number of sensors. W, begin with the two-sensor case.

The emitter is located at the intersection of the two lines of bearing

determined by the two angles of bearing %o and ao as shown in figure I at

the end of the report.

We assume the sensors may report false readings and the goal is to

detErmine a confidence region for the location of the emitter. Towards this

end, the clinic considered the related problem of finding a region which

contains the point of intersection of the lines of bearing with a specified

amount of probability, given that the true location of the emitter is known.

Our assumption is that given the true location of an emitter, the

readings the sensors return are random variaoles, A and B, distributed
norm~al ly withi means equal to the true angles of bearing, and variances OA2

and oB2 " We assume the two sensors are independent, so we have the result

that the pair of readings has the bivariate normal distrib, tion. Hence, toe

probability density function for (A,B) is

1F (:a'o)' (3-BO)(f(a,3) = _ exp,-i( + )](I

2 1yOAO 3  L OA 0B J

where the values of the random variables A and B are denoted by a and a, and

o and 8 are the true angles of bearing.

However, the location of the emitter is to be given as a point in tne

x,y plane, and the random variables are in the a,s plane (see figure 2).
The mapping of a point from the a,B plane to the x,y plane is given by (next

page)

I. -
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D*tan(S)
X =

tan(a) - tan(a)

D'tan(a)tan(a)

y t
tan($) - tan(a)

Since the reported angles of bearing are random variables, and each

pair of reported angles uniquely describes a point in the x,y plane, we can

transform the density from the a,B plane to a density in the x,y plane. We

assume the joint density of A and 3 is given by equation (1), f(a,B). We

define two ne- random variables X and Y as functions of A and B:

D-tan(B) )

tan(B) - tan(A)

(3)
D'tan(A)tan(B)

Y:
tan(B) - tan(A) I

Equivalently, A and B can be written as functions of X and Y

A = Arctan[Y/X] S~(4)

S= Arctan[Y/(X-D )]

The joint density of X and Y is then simply

g(x,y) = f{Arctan[y/x],Arctan[y!(x-D)]}IjIJ(5

where IJI is the absolute value of the Jacobian

,,LC 6x ay

68 68

"U. The density is then

%d

S17
F [Arctan(y/x)-Arctan(y o/Xo)]' [Arctan(y/(x-D))-Arctan(Yo/(xo-D))]')l

exp[-i( +
' • A• OB•
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where (Xo,yo) is the intersection of the lines of bearing. It corresponds

to the point (aO,Bo).

Undoubtedly, this density function makes meaningful analysis difficult.

Therefore some other attack is called for. In the foliowing sections, we

will describe and compare different approaches to the two-sensor problem.

This will include the classical metnod devised by R.G. Stansfield, and

numerical techniques devised by the clinic.

~J~ IL
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III CLASSICAL APPROACH

Last year's clinic reported tnat the classical approach to finding

probability regions yielded ellipses which contained only approximately 50%

to 80' of the probability claimed. Because of the magnitude of this

discrepancy, we checked this method to see if the previous clinic had made

an error. We also needed to understand the classical approach so that we

could compare it to other methods of analysis.

The classical approach was developed primarily by R.G. Stansfield

during World War II and published in 1947 (reference 1). Because of the

complexity of the density function (7), and because he obviously did not

have access to computers, Stansfield made a simplifying assumption of

parallel displacement of lines of bearing. This assumption translates

angular error to distance error and allows the problem to be modelled using

a bivariate normal distribution.

His measure of error is the distance from the true location of the

emitter (or target) to the reported line of bearing. It is defined as the

length of a line segment perpendicular to the crue line of bearing that

meets tha reported line of bearing (see figure 3). This distance is labeled

P1. The distance from the true location of the emitter to the sensor is 01,

and the angular error is P.

The standard deviation in Stansfield's work is estimated using the fact

that for smdll angles sin(y) is approximately equal to w. Also, the

distance DI can be estimated with reasonable accuracy by the distance D0'

(see figure 3). By the simple trigonometry of the model, we kow that

P1 D= x sin(ý) (8)

which can be estimated as

P1 DI' x • (9)

v%. uVL .L ... ...
16004w"MN ~ ~ ~ ~ ~ ~ .. NN_" ........ ,)
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Stansfield's standard deviation is then the distance D0' times the standard

deviation of the angular reading (in radians).

To carry this model to the two-sensor case, errors P1 and P2 will be

associated with each of the two sensors. Stansfield assumes that these

distance errors are independent and that each error can be modeled as a

normal probability distribution about a mean of 0 and a standard deviation

described above. Therefore, we have a joint normal probability distribution

with the random variables P1 and P2. The density function is

1 p11 p2l

f(pl,p2) 2 _I2 expi (- + 2 (
2-no 102 L 01? 02 J

We now need this distribution written in terms of points rather than

the distances PI and P2. Here, Stansfield makes use of his assumption of

parallel displacement of the lines of bearing. With the distance

measurements P1 and P2, there is associated a unique parallelogram with one

vertex at the true location of the emitter (see figure 4). For each pair of

distances, there is also a unique point which is the vertex opposite the

true location. Hence, the distances can be converted into points with (x,y)

coordinates (see figure 4). Again, making use of the trigonometry of the

model, we can rewrite P1 and P2 in terms of the opposite vertex points

(X,y).

P1 z -xsina + ycosa

P2 z -xsins + ycos%

With this conversion formula, Stansfield transforms the bivariate

normal density, replacing PI and P2 and multiplying by the appropriate

Jacobian determinant. The exponential term

p11 p2'

- - .÷

1 2I 02 21
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thus becomes

[(-sina)x + (cosa)y]* + .. [(-sinB)x + (coso)y]l

This can be more easily handled by setting

sinla sinl'

0 1 02 2

sina cosL sinB cos8
01 02z

costa COS2B

0I2 02

so that the exponential term can now be written as

Ax2 - 2.•xy + *y,

The Jacobian determinant may also be simplified and written as

vr -Xp. -VI

Having completed the transformation from distance measures to points, the

joint normal density now looks like

g(x,y) = exp[-J(xx 2 - 2vxy + wyl)] (13)

2n

This probability density carn be put into a more convenient form by a

rotation of axes to eliminate the 'xy' term. Setting

-2v
tan(20) = __ (14)

the rotation is given by

x = x'cosO - y'sin(
(15)

y z x'sinO + y'cosO

Note: where Stansfield uses cdpital X and Y, we are using x' and y' to avoid

confusion between random variables (X and Y) and variables denoting a

Il-

4.



rotation of axes.

If these values for x and y are substituted back into the original

equation, the result is

Xx1 - 2vxy - .y = __x'z + -y, (16)
az b2

where

1- = xcos'O - 2vcosO sinO + usin'O
1z (17)

-- : ksin'Z + 2vcosO sinS + pcosZO
bt

At this point in St3nsfield's derivation, an error appears in the original

publication. Please see the appendix for a discussion of the error.

For this transformation, which was unaffected by the error, the

Jacobian determinant conveniently reduces to 1. Thus, after two

transformations, one to switch from distances to points, and another to

rotate axes, we wind up with a joint normal probability distribution with

respect to x',y' coordinates, whose density is given by

h(x',y') = exp[-•( x' **_ y' )] (1+)
2w a b2

Stansfield's assumption of parallel displacement allows him to make

these transformations. Without it, there would be no meaningful way to move

from the distance errors P1 and P2 to x,y coordinates. The resulting

expression is the relatively tractable bivariate normal distribution. In

fact, one of the properties of the bivariate normal is that the most

efficient probability regions will be perfect ellipses determined by the

equation (next page)
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( 1-1x"÷ + -2Ln(l-p) (19)
a 2  b2

where p is the level of probability desired.

As noted in the appendix, the formulas for the coefficients a and b

above are printed incorrectly in Stansfield's paper. The incorrect version

makes the values of a and b larger than they should be. Thus, ellipses

generated from the incorrect version would be too small and capture far less

probability than claimed. This would explain the discrepancy in last year's

results.

I

jPS



IV CLINIC ANALYSIS OF STANSFIELD ELLIPSES

3 With Stansfield's density (18), the problem of finding a probability

region is greatly simplified. For any two angle readings a and 0, and a

desired level of probability, p, an ellipse can be formed which supposedly

contains the point of intersection of the reported lines of bearing with

probability p. However, because of the simplifying assumption of parallel

displacement, the ellipse will not contain exactly that amount of

probaDility. The clinic therefore tested the accuracy of the Stansfield

ellipse as d probability region.

Given a region, R, in the x,y plane, and given a two dimensional

density, g(x,y), one can determine how much probability is contained in R by

evaluating the integral

jJ g(x,y) dA

R

The clinic performed the integration letting R be a Stansfield ellipse, and

g(x,y) the density given by (7). However, since we could not analytically

integrate g(x,y), we used numerical methods on the computer.

To verify the accuracy of the numerical results, the clinic evaluated

the double integral using both an existing International Mathematics and

Statistics Library (IMSL) subroutine (DBLIN), and a modified Simpson's

integration algorithm written by the clinic. The two methods yielded

virtually the same results.

By varying the levels of probability over three sets of angle readings

with o = 2.0%, we consistertly found tnat the amount of probability claimed

i'. by Stansfield was very close to the amount actually contained in an ellipse

(see table I at the end of this section). Any discrepencies were

insignificant and may be partially due to numerical approximation error.



1.4

However, this conclusion holds only if Stansfield ellipses as corrected

by the clinic are used. Ellipses derived directly from Stansfield's paper

(reference 1, p. 768, equations (15), (16), and (17)), contain only about

50% to 80% of the probability claimed, which is what last year's clinic

concluded.

We then examined the difference between the probability in the top and

bottom halves of an ellipse. Under Stansfield's assumption of parallel

displacement, the probabilities in the top and bottom halves are equal.

However, upon dropping the parallel displacement assumption, we found that

the probabilities contained in the top and bottom halves are actually not

equal. Instead, the top half consistently captures less probability than

the bottom half, although surprisingly, the sum of the two halves come very

close to the total probability desired (see table 2).

At higher probability levels, the percentage difference between tne top

and bottom halves is smaller relative to that of lower levels. To explain

t;,is, we examined a contour map of the clinic density, as well as

probability bands for the Stansfield ellipse. The contour map (see figure

5) graphically demonstrates that the probability in the lower half is

concentrated nearer the center of the ellipse, while the probability in the

upper half is more dispersed. As we increase the desired probability level,

the rate at which the upper half of the ellipse captures probability

increases relative to the rate of the lower half.
p.

We also explored this issue of denser bottom half probabilities by I

64, looking at ellipses in terms of eight probability bands of equal widtn (see

figure 6). We consistently found bands close to the center below the

location of the emitter to contain more probability than corresponding bands

above, while the opposite was true for corresponding bands further away from
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the center (see table 3). This indicates that when the Stansfield ellipse

is made large enough, most of the additional probability must come from the

upper half.

Although Stansfield's parallel displacement approximation is not a

strict depiction of reality, his method is a simple way to find a region

which contains a desired level of probability. This does not necessarily

mean, however, tiat his regions are the "most efficient", in the sense that

they capture the desired level of probability in the smallest possible area.

The clinic wanted to find out if it was possible to capture the same amount

of probabi2ity in smaller regions. Sections V and VI describe regions we

examined.

Irr

aN

4*,

1/.
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TABLE 1

3 Angle readings are given as a/

80/110 50/60 40/150

Claimed Actual Actual Actual

Prob. Prob. % Diff Prob. % Diff Prob. % Diff

0.25 0.2512 0.46 0.2622 4.89 0.2500

0.50 0.5029 0.58 0.5287 5.73 0.5000 -

0.5 0.17IC4 0.06 0.7452 -0.65 0.7495 -07

0.95 0.9396 -1.09 0.3791 -7.46 0.9490 -0.10

0.99 0.9802 -0.99 0.9225 -6.81 0.9897 -0.07

Note: a=2.0' and the distance between sensors is 1000.

P.4

IO
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TABLE 2

3 80/110

Claimed
Prob. Top Bottom Total % Oiff

0.25 0.1152 0.1350 0.2512 16.24
0.50 0.2279 0.2750 0.5029 20.70
0.75 0.3419 0.4085 0.7504 19.47
0.95 0.4475 0.4921 0.9336 9.96
0.99 0.4788 0.5014 0.9802 4.73

50/60

Claimed
Prob. Top Bottom Total % Diff

0.25 0.1006 0.1616 0.2622 60.57
0.50 0.1903 0.3384 0.5287 77.80
0.75 0.2828 0.4624 0.7452 63.54
0.95 0.3811 0.4980 0.8791 30.69
0.99 0.4220 0.5005 0.9225 18.60

40/150

Claimed
Prob. Top Bottom Total % Diff

0.25 0.1244 0.1256 0.2500 0.94
0.50 0.2480 0.2520 0.5000 1.62
0.75 0.3701 0.3794 0.7495 2.54
0.95 0.4654 0.4836 0.9490 3.91
0.99 0.4838 0.5055 0.9893 4.49

Note: o = 2.0' and the distance between the two sensors is 1000.

..

|mU
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TABLE 3

80/110 50/60 40/150

Top Band 0.01276 0.01855 0.00982

2nd Band 0.05649 0.05355 0.05157

3rd Band 0.15208 0.11777 0.15229

4th Band 0.26707 0.23219 0.27010

5th Band 0.28376 0.33246 0.27993 4

I
6th Band 0.16456 0.16390 0.16453

7th Band 0.04578 0.00416 0.05293

Bottom Band 0.00491 0.00000 0.00807

Total Prob. 0.98742 0.92258 0.98929

Note: a 1.0" for the 80/110 case and 2.0' for the other two cases

I

44~r~ffVWW AMP
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V CLINIC REGION

The clinic attempted to find a probability region that was more

efficient than the Stansfield ellipse. That is, we wanted to pack as much

probability into the smallest area. We hoped to be able to do this when we

dropped the parallel displacement assumption. But as we have seen, when we

drop this assumption, the resulting probability density function is very

complicated. Hence, we attacked the problem using a different method.

We first examined the probability of a sensor returning a reading

resulting in a line of bearing inside a specified sector or "fan". In

figure 7, the true bearing is a, but we assume the reading sensor 1 returns

is a random variable, A, distributed normally with mean a and variance A2

Hence, we can easily determine P(alA~a2). It is simply P(A:a2)-P(A~al).

And since we assume the underlying probability distribution is the normal,

we can compute close approximations to these probabilities on the computer.

Next, we did the same for the second sensor, so that we have the

probability that sensor 2 returns a reading inside the fan between bl and

b2 (see figure 8), where B is distributed normally with mean a and variance

OB°

The two fans intersect and form a quadrilateral. The probability that

the two sensors return readings which intersect inside the quadrilateral is

simply the probability that sensor I returns a reading inside fan 1 and

sensor 2 returns a reading inside fan 2. We assume the two sensors are

independent, so to find the probability of tne quadrilateral, we multiply

the probabilities of the fans.

The next step was to form the 3-o fans (see figure 9). That is, we

found the fan formed by moving ±3o degrees from a, and the fan formed by

moving ±3o degrees from B. The reason we use these 3-o fans is simple. The

I F .1 0% , j ',F -41,d. -, (
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quadrilateral formed by the intersection of these fans contains 99.5'/ of the

total probability. To capture 100', we would have to examine the entire

plane, which is simply not possible. So we only look at a subset of the

plane, but we choose a subset such that we lose only 0.5% of the

probab il1it y.

We broke this quadrilateral up into smaller subquadrilaterals,

recording the area and probability of each. As can be seen in figure 10,

each subquadrilateral has a different area. That means that while tdo

subquadrilaterals may have the same probability, their densities are

different. In other words, the amount of probability they pack into a unit

area is different.

We then made a very fine grid of 3600 subquadrilaterals and took those

of highest density to form a probability region. Since they wiere of highest

density, they contained tne most probability in the smallest area. We made
A:

a list of tne subquadrilaterals, ordering them from highest density to

lowest. WP formed a probability region by connecting subquadrilaterals

together, starting at the top of the list and moving down until we reached

the desired level of probability. The areas of these subquadrilaterals were

added together to determine tne total area of our probability region. Since

every one of the subquadrilaterals in tne region was of higher density than

the subquadrilaterals outside, we concluded that this was tne most efficient

probability region.

In plotting our region, rather than finding and drawing possibly

hundreds of quadrilaterals linked together, we assigned the probability of a

subquadrilateral to its center point. In this way we obtained a list of

points to represent the subquadrilaterais. The probability region was then

the convex hull of these points.
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We defined the center point of a subquadrilateral as the point of

intersection of the two lines of bearing that bisect the fans forming the

subquadrilateral. The resulting grid of center points could also be

considered a discretization of the continuous probability density. This

discretization is possible because two lines of bearing will always

intersect at a point. When we tove to the three-sensor case, however, three

lines of bearing virtually never intersect at a point, and a discretization

of the density is therefore far more difficult (see section VIII).

I4
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VI IMAGE REGION

Another approach the clinic examined was a mapping of the most

efficient probability region in the a,B plane to the x,y plane. Our results

showed that this approach is not as efficient as the Stansfield and Clinic

methods.

Recall that we have assumed that the readings the two sensors return

are random variables, A and B, each distributed normally. The joint den.ity

of A and B is therefore

f(a,S) - expl-½( + :: ))
SoA03 L OA, OBz

A result of this assumption is that in the a,$ plane. the most efficient

probability region is an ellipse of the form

+ __"__÷ , -2Ln(1-p) (20)
OA2 08z

where p is the desired level of probability. We assume oA 2 0B', which

implies the probability region is a circle.

We then found the image of this circle (disc) in the x,y plane (hence

the name "Image region"). That is, we had a circle in the a,$ plane, and

transformed it entirely into tne x,y plane using the mapping

0 -tan(8)

tan($) - tan(a) (21)
4 O-tan(m) tan(B)

tan(s) - tan(a) 4

This region is very difficult to determine analytically. Therefore, we used .

an approximation to the Image region.

We found 360 points on the boundary of the circle in the a,$ plane and

performed a point by point transformation into the x,y plane using formulas

I- S J
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(21). This created a region in the x,y plane that resembles an ellipse.

3 The area of this region was calculated by the vector formula for the area of

"a polygon:

Area = I(x lY2 x2y3 ÷...+XnYl - Ylx 2-Y2x3-.... Ynxl) (22)

Since we are approximating the area inside a smooth curve by

calculating the area of an inscribed polygon, there will be some error in

the calculations, but the following analysis shows that this error is small.

We examined the accuracy of the vector formula (22) in approximating

the area of an elliptical region by generating 36 unevenly-spaced points on

an ellipse. We then compared the area of the polygon formed by the convex

hull of these points using (22) to the area of a true ellipse, which is
S~given by the formula wab where a and b are the lengths of the axes of the

ellipse. These points were obtained by mapping equally-spaced points on a

circle to an ellipse using Stansfield's transformation (see reference 1,

equations 9 and 10).

When we used 36 points, the relative error of the approximation was

0.005. For 360 points, the relative error was 0.00005. Thus, the vector

formula for the area of a polygon gives a sufficiently accurate

approximation to the true area of the Image region.

O,
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VII RESULTS

The following tables give comparisons of the Clinic and Image regions

with Stansfield ellipses. In the instances where the Clinic region did not

contain exactly the same amount of probability as the Stansfield ellipse,

figures for regions capturing slightly more are included. The Image region

always contains the same amount of probability as the Stansfield ellipse.

We determined probability regions ranging from 10% to 95% for each of

three sets of c.i/ readings, 80/110, 50/60, and 85/95, for sensors located

1000 units apart. In all cases, the standard deviation is 1I=v/180 Rad.

For the tables, the columns are labeled as follows

A: Probability captured in the Stansfield ellipse

B: Probability captured in the Clinic region

C: Area of the Image region

0: Area of the Stansfield ellipse

E: Area of the Clinic region

F: Percentage difference in areas of Clinic region and Stansfield

ellipse (1-D/E)

0)
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TABLE 4

80/1LO A B C 0 E F

10% 0.10C 0.100 1,494 1,492 1,485 -0.005

20% O.J00 0.201 3,169 3,161 3,150 -0.003

30% 0.300 0.301 5,072 5,053 5,042 -0.002

40% 0.400 0.401 7,272 7,238 7,238 -

50% 0.501 0.501 9,884 9,321 8,810 -0.001

60% 0.601 0.601 13,083 12,983 12,992 0.00O*

70% 0.700 0.701 17,208 17,059 17,077 0.001*

80% 0.800 0.800 23,011 22,805 22,845 0.002*

90% 0.898 0.898 32,843 32,627 32,597 -0.001

95% 0.947 0.947 42,478 42,448 42,132 -0.008

*approximation errors

TABLE 5

50/60 A B C 0 E F

1•% 0.101 0.101 25,861 25,549 23,878 -0.070

20% 0.202 0.202 55,470 54,111 51,36 -0.059

30% 0.304 0.3P4 89,827 86,493 82,509 -0.048

40% 0.406 0.407 130,407 123,874 119,904 -0.033

50% 0.508 0.508 179,325 168,086 164,734 -0.020

60% 0.507 0.608 240,013 222,198 220,215 -0.009

70' 0.704 0.705 318,362 291,961 291,622 -0.001

80% 0.797 0.797 426,177 390,285 389,858 -0.001

90% 0.813 0.883 595,796 558,372 543,290 -0.029

S 95% 0.926 0.926 744,817 726,459 677,785 -0.072

10
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TABLE 6

85/95 A B C D E F

10% 0.101 0.102 38,684 38,219 35,987 -0.062

20% 0.202 0.202 82,967 80,946 76,421 -0.059

30% 3.304 0.304 134,344 129,385 123,621 -0.047

40% 0.406 0.407 195,019 185,304 179,448 -0.033

50% 0.508 0.508 268,154 251,442 246,176 -0.021

60w 0.607 0.608 358,880 332,388 329,836 -0.008 0

70% 0.704 0.704 476,015 436,746 436,252 -0.001

80% 0.797 0.797 637,237 583,830 583,064 -0.001

90% .0.883 0.883 891,007 835,272 812,860 -0.028

95% 0.926 0.926 1,114,062 1,086,714 1,014,349 -0.071

0

I-0
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The Image region was always larger than the Stansfield ellipse, even

though it contained the same level of probability. In other words, the

Image region was never as efficient as the Stansfield ellipse. Thus we

discontinued our analysis of this region.

On the other hand, we see that the Clinic region as described in

section V is virtually always smaller than the Stansfield ellipse, even

though it contains the same level of probability or more. Hence, we say the

clinic region is more efficient.

However, it is only slightly more efficient. The Stansfield ellipse is

a simple analytic region easy to compute and draw. The Clinic region is

much more difficult and time-consuming to obtain and draw. Since the

difference is so small, it is not clear whether the gain in efficiency is

worth the trouble.

To examine this issue, we looked at why the Clinic region was more

efficient. We feel that because the clinic drops the parallel displacement

approximation the Clinic region builds up and the Stansfield ellipse builds

out. By that we mean the Clinic region chooses the densest

subquadrilaterals to fulfill a desired level of probability. Since we know

that the probability is generally denser below the rue location of the

emitter than above, a Clinic region contains more subquadrilaterals from

below for lower levels of probability. For higher levels, it continues to

append subquadrilaterals upward after most of the lower ones have been used

(see figure 11). Therfore we say the clinic region builds "up".

The Stansfield ellipse, on the other hand, builds "out". For

increasing levels of probability, it simply encloses the lower probability

levels with larger ellipses and performs no shifting (see figure 12).

As a result, the geometric center points of the Clinic region move

po

i-l
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upward for increasing levels of desired probability (see figure 13). In an

=- effort to make the Stansfield ellipse more efficient, we artificially forced

it to build up rather than out. We did that by relocating its center to the

geometric center of the Clinic region at the particular probability level.

We then compared the density of the relocated ellipse to the density of the

ellipse when it was centered at the intersection of readings.

The results were insignificant. The Stansfield ellipse did become more

efficient but the gain was .7iniscule. At lower levels of probabil ity we

found an increase in efficiency, out at higher levels the densities were

nearly equal. However, as we have noted earlier in Section IV, the

probability in the upper and lower halves of tiie Stansfield ellipse is

always unequally distributed.

Thus, while the Stansfield ellipse is not the most efficient region, it

is probably very close. Also since it is so simple and quick to find and

draw the Stansfield ellipse, it i3 a very useful and good approximation.

0

.I d.
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VIII THE THREE-SENSOR PROBLEM

The clinic has approached the three-sensor problem in a manner similar

to the two-sensor analysis. Our purpose is the same, we want to find out

what the true density is when we drop Stansfield's parallel displacement

assumption. Our method of analysis was to discretize the continuous

probability density by generating point estimates for each set of three

angle readings. Then, since there is more than one way to generate point

estimates, we examined a number of methods and used them to obtain discrete

probability densities in the x,y plane.

In the two-sensor case, two intersecting fans form a quadrilateral. In

the three-sensor case, though, three intersecting fans will virtually never

form a usable subregion (see figure 14). Therefore, we cannot approximate

the continuous density as readily as we did in the two-sensor case. We

decided to discretize the density as described in the next paragraph.

We assign all tne probability of each of three fans to the lines of

bearing bisecting them. We assume the sensors are independent, so the

probability of returning a particular set of three readings is the product

of the probabilities of the individual readings. The three lines of bearing

form a triangle (see figure 15), and we assign all the probability of the

set of readings to a point to represent the triangle. There are several

ways to determine a reasonable point to use, and we examined a number of

possible methods.
Stansfield develops a maximum likelihood estimate, hereafter referred

to as the MLE, as a point estimate within a triangle. The derivation of the e!

MLE proceeds from the joint normal density, which Stansfield uses because of

his parallel displacement assumption. The principle of maximum likelihood

estimation states that for a given set of observations, in this case the

I
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angle readings, we maximize the probability density witn respect to the

unknown parameters we wish to estimate. Here, our unknown parameters are

are the x and y coordinates of the point estimate.

These MLE points have some interesting characteristics. Within the

triangle, they are generally located nearest the line of bearing that is

closest to the true location of the emitter, and they are farthest from the

more acute angles of the triangle. Stansfield mentions this in his paper,

and our computer analysis appears to confirm his statement.

We also looked at the "center" of a triangle as a point to represent

the triangle. There are, however, a number of ways to define the center of

a triangle. The clinic considered five different approaches to determine a

point to represent a triangle in the sense that the probability of the set

of readings (determining the triangle) is assigned to that point. The

approaches or methods were the following.

1) Minimizing the sum of the distances from each vertex to the center

2) Minimizing the sum of the squares of the distances from each vertex

to the center

3) Angle bisection

4) Intersection of the medians

5) Perpendicular bisection.

For acute triangles, all the methods gave center points that lay inside

the region, while for obtuse triangles, the perpendicular bisection method

left us with a center point located outside the triangle. Although there is

only a one in four chance that the emitter is inside a triangle formed by

any three lines of bearing (see reference 1), the triangle is nonetheless

the only bounded region in which to look for the emitter. Therefore, since

we wanted ths representative point to lie inside the triang e, we did not

V1.
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Sfurther consider the method of perpendicular bisection. Also, it minimizing

I sums of squares (method 2) and intersecting the medians (method 4) gave

identical results. Thus, we will only discuss methods 1, 2, and 3.

The first method, minimizing the sum of the distances, requires

minimizing the function

D1(x,y) a ,/-(x1 -x)' + (Yl"Y)' + / (X2 -x)Z + (Y2-Y)' (23)

/-(X 3 -x)' + (Y3"Y)'

where (x l ,Yl ), (x2,Y2)' and (x3,Y3) are the vertices of the triangle. Since

I minimizing DI by standard calculus methods is extremely complicated, a

computer program was written which searched tne triangle for the x and y

coordinates for which the function DI was minimized.

The second method, minimizing the sum of squares of the distances,

proved to oe quite simple. It required minimizing the function

D2(x,y) :(x -x) +÷(yl-y)' + (x 2 -x),÷(y 2 -y)' + (24)

m%:* ~( x3-x )+'÷(y3"Y) z

Taking the partial derivatives of 02 with respect to x and y and setting

equal to zero yields the point estimate

(xy) Z [(xk1 x2+x3)/3 , (yl÷Y2÷Y3)13] (25)

The last method is angle bisection. It required finding the

intersection of the three lines that bisect the angles of the triangle.

Figure 16 shows where the various methods put the representative point

for a particular triangle.

The clinic tested to see how much difference the selection of various

representative points would have on the discretization of the probability

density.
We created point clouds, associating probabilities with each point.

These point clouds were created by varying the lines of bearing from each of

1~ . . . .L--v . . . . w-
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the three sensors by jo between -3o and -3c. Thus, for each sensor, 13

lines of bearing were produced, which in turn created 133 or 2197 different

triangles. Then, within each triangle, we calculated the representative

points.

For purposes of comparison, we analyzed two candidates for the

representative point, Stansfield's MLE and the geometric center defined by

the sum of squares of the distances. We used the sum of squares method

because of its relative ease in programming.

In order to determine a discrete approximation of the continuous

density, we first split the area of the plane containing the point cloud

into a 40 by 40 grid of rectangles. Within each of the resulting 1500

rectangles, we tabulated tne number of points (if any) contained and simmed

the probabilities associated with each point. This sum of probabilities was

then assigned to the rectangle.

To calculate the size of a region at a particular probability level, we

summed the rectangles of highest probability until we reached tihe desired

level. The area of the probability region is simply the sum of the areas of

the rectangles, which are all of uniform size.

Our results show that the choice of point estimate makes a great deal

of difference in the nature of resulting point clouds and in the areas of

corresponding probability regions (see figures 17 and 18 for examples of

point clouds). The area comparisons (tables 7 and 8) show this clearly. -,

Note that even though the areas obtained using the MLE points are

smaller, it does not necessarily mean that the method provides "best" points

to choose for our purposes. It is not certain which discretized densityVt
most accurately reflects the true density in the x,y plane.

We would suggest that further work on this problem be directed toward

My•
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finding the true density function, as was done in the two-sensor case, by

means of a transformation that would map the three angle readings tc

coordinates in the x,y plane. The formulation of this mapping is still

uncertain, since these different point clouds represent competing

definitions of the transformation needed, and it is not clear which of these

transformations is most appropriate.
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TABLE 7S~AREA COMPARISONS

Grid region created from MLE points

Level of probability
Angle readings 0.9 0.75 0.5

80,110,69 10689 5984 2813

50,60,41 157759 88239 42732

40,150,-58 1110 600 257

85,95,84 396399 224619 95954

Stansfield ellipses

r iLevel of probability

Angle readings 0.9 0.75 0.5

80,110,69 10877 6594 3274

50,60,41 220152 123544 66272

40,150,-58 1211 729 365

85,95,84 499087 300430 150240

Percentage difference

Angle readings 0.9 0.75 0.5

80,110,69 1.7 9.4 15.4

50,60,41 39.5 50.2 54.9

40,150,-58 9.1 21.5 42.0

35,95,84 25.7 33.8 56.6

In these cases the Stinsfield ellipse is LARGER than the corresponding Grid
region by the given percentage.

I



35

TABLE 8
AREA COMPARISONS

Grid region created from "minimized sum of squares" points (method 2)

Level of probability
Angle readings 0.9 0.75 0.5
80,110,69 20630 11269 4334

50,60,41 455157 273093 136546

85,95,84 3668714 1590094 564417

Stansfield ellipses

Level of probability
Angle readings 0.9 0.75 0.5

80,110,69 10877 6594 3274 0

50,60,41 220152 132544 66272

85,95,84 499087 300480 150240

Percentage difference

Level of probability

Angle readings 0.9 0.75 0.5

80,110,59 -47.3 -41.5 -24.5

50,60,41 -51.6 -51.5 -51.5

85,95,84 -86.4 -82.2 -73.4

In these cases, the Stansfield ellipse is SMALLER than the corresponding
Grid region by the given negative percentages.

,4', %.
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IX SYSTEMATIC ERROR

The previous sections of the report discussed random errors in passive

sensors. This section examines systematic errors in active sensors. An

active sensor reports distance as well as direction.

For this model there is only one sensor, which returns direction and

distance readings at point P1 (see figure 19). It is then moved a distance

0 to point P2, and returns new readings. The two measured direction readings

form the angles a and a and the two distance readings originate at P1 and P2

and are labeled 01 and D2.

We assume the readings the sensor returns may be wrong. As an example,

in figure 19, it is clear the direction and/or distance readings are off

since the reý.-Jngs at point P1 do not agree with the readings at point P2.

We assume there .3re no random errors, but only systimatic errors associated

with the sensor which are the same at both locations. That is, if the

sensor reports a direction reading which actually deviates by E degrees at

point P1, it will report a direction reading deviating by E degrees at point

P2. Likewise, how far the distance reading is off at point P1 i. how far

the distance reading will be off at point P2.

We first examine the directional error, disregarding distance for the

moment. In figure 20, we see that if a and t •re the true bearings, the

emitter will be located at point E. But if the directional error is E, the

emitter will be located at point E'. We continue in this fashion, producing

a number of points which would indicate the true location of the emitter for

several directional errors. We then find tie Lagrange polynomial using

these generated points. We now have the equation of a curve, somewhere on

which the emitter is truly located.

Now we examine distance error. In figure 21, we see that if 01 and D2

,# • ek,' m~ w" .e € W" .e- r € i- r , ,•'w" •' . ."•" f.•.
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are indeed the true distances, then the emitter must be located at either

point E or F. But if the distance error is 6, the emitter would be located

at either E' or F'. We continue producing points which would indicate the

true location of the emitter if the distance error were various given

amounts. We assume that in practice some points can be disregarded, such as

F and F', because it may be clear the emitter is not located in that

direction. We then find the Lagrange polynomial using the generated points.

As in the directional error case, we now have the equation of a curve,

sonewhere on whicn the emitter is truly located.

So now we say the true location of the emitter is somewhere on curve 1

(figure 22), but also somewhere on curve 2. Therefore, the true location

must be at the intersection of these two curves.

II
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APPENDIX

The CGS/CMC Mathematics Clinic discovered an error in the paper by R.G.

Stansfield, published in the Journal of the Institution of Electrical

I Engineering, volume 94, Part ILIA, 1947, under the title "Statistical Theory

of D.F. Fixing".

The error is in equations (15) and (15), p. 768, which give the

coefficients for the elliptical confidence region in the x,y plane. As they

stand now, the equations are

(15) - 2 tanO
az

1
(16) - = 21 + vtanO

They should be

(15) - = X - vtanO
az

(16) + = vtanO

The mathematical derivation of (15) and (16) proceeds as follows.

Starting with (11), p. 768,

P(x,y) dxdy V' - vl expE-J(.\xl 2,xy + ipy')J dxdy

27r

Stansfield transforms the density to a system of X,Y coordinites rotated

through an angle 0, where 0 is given by

S-2v
tan 20 =-

The transformation is given by (next page)
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x =Xcos0 - YsinO

5 = XsinO +YcosO

11
This changes ,,xl - Z1-xy + viy' into _......X' ...... Yl where

I-=xcos'O - Zv)cos0si'i0 + pil
az

1 .sin' + 2,)cos~sinO + pcosl-0

By the definition of tan 20, we know that

2v 2

tan 20

so that - coslO + x )sin'2S - 2vcos0sinO
az tan 210

= x(cos'0 sin 20b) + -vsinO( 2 sinO -2cosO

tan 20

1 - tan'O
= x+ .40n4( sinO -2cosO

tan 0

2tan 0

since tan 20 =____ ContinuingI

1 coso0
- a x vsin0[(l-tan'Z)(-..-.-)sin0 2cosO]

az sinO

+vsinO~cosl(1 - tan20 - 2)]
x + 'jsinOF-cosO(tan'Z + 1)]

=X-vsin0(casO sec20)

4 = N - ~vsin0(cosL......)

k - vtanO



40

1
The computations for - proceed almost identically, except we replace

Sinstead 
of u

tan 20

1 2v
So - (P - -s _ sinZ 3 + cosiO( 2 cossinO

Vtan 20

if 2
u(cos2  + sin I) - vsin( sinO - 2cos)

tan 20

1 - tan20
) sinZ( - sinO - 2cosO

tan 0

1 -tanzS
since tan 20 = . Continuing

2tan 0

1

b P - vsinO[(1 - tan'Z)cosO - 2cosO]
bz

= - vsin0 cos0(-tanlo - 1)

= + vsinl cosO secz0

P+ '-tanO

Therefore, we assert that equations (15) and (16) should be

1
(15) - X - vtanO

az

1
(16) = + vtanO

bz

7FF
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