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ABSTRACT: This paper reviews a number of aspects of visual motion analysis in bio-

logical systems, from a computational perspective. We illustrate the kinds of insights that
have been gained through computational studies and how these observations can be inte-

grated with experimental studies from psychology and the neurosciences, to understand the

particular computations used by biological systems to analyze motion. The particular areas

of motion analysis that we discuss include early motion detection and measurement, the

optical flow computation, motion correspondence, the detection of motion discontinuities,

and the recovery of three-dimensional structure from motion. /. . . /
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This paper reviews a number of aspects of visual motion anhalysis in biological
systems, from a computational perspective. We illustrate the kinds of insights
that have been gained through computational studies and how these observations
can be integrated with experimental studies from psychology and the
neurosciences, to understand the particular computations used by biological
systems to analyze motion. The particular areas of motion analysis that
we discuss include early motion detection and measurement, the optical flow
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Computations Underlying Motion Hildrt-th k Koch

INTRODUCTION

The measurement and use of visual motion is one of the most fundamental abilities of bio-
logical vision systems, serving many essential functions. For example, a sudden movement
in the scene might indicate an approaching predator or a desirable prey. The rapid expan-
sion of features in the visual field can signal an object about to collide with the observer.
Discontinuities in motion often occur at the locations of object boundaries and can be used
to carve up the scene into distinct objects. Motion signals provide input to centers control-
ling eye movements, allowing objects of interest to be tracked through the scene. Relative
movement can be used to infer the three-dimensional (3-D) structure and motion of object
surfaces, and the movement of the observer relative to the scene, allowing biological systems
to navigate quickly and efficiently through the environment. More generally, the analysis of
visual motion helps us to maintain continuity of our perception of the constantly changing
environment around us.

This article reviews our current understanding of a number of aspects of visual motion
analysis in biological systems, from a computational perspective. We illustrate the kinds
of insights that have been gained through computational studies and how they can be
integrated with experimental studies from psychology and the neurosciences, to understand
the particular computations used by biological systems to analyze motion. In the remainder
of this introduction, we briefly describe the computational approach to the study of vision
and discuss the areas of motion analysis that are addressed in this review.

The Computational Study of Vision

One of the most important tenets underlying a computational approach to the study of
biological vision is the belief that the brain, like a computer, can be thought of as a machine
that processes information extracted from the environment, resulting in some sort of action.
Like Aristotle, Galen, and Descartes before us, we often think of the brain in terms of our
most successful machines, which today happen to be digital computers. We must be careful
in making such an analogy, however. The electrochemical environment of neurons, their

means of transmitting information, and their overall architecture is very different from that
of the wires and etched crystals of semiconducting material that comprise computers. The
Turing machine, a core concept of computer science, works in a discrete mode in a world
determined by classical physics. Such a machine can only approximate the truly analog
operations of biological hardware in a world governed by the laws of quantum physics. (3

Although their hardware differs greatly, both biological systems and machines can
perform similar functions that rely on the same mathematical and physical principles. Thus,
there exists a level of description of the tasks performed by these two systems that is
independent of the underlying hardware. In order to understand how natural or artificial
systems can solve problems like sensing motion or depth or manipulating the environment,
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Computations Underlying Motion Hildreth & Koch

we must understand the nature of the problem - for example, whether it can be solved at
all and what constraints the physical world imposes on the solution - before we can full%-
understand the detailed procedures used to find a solution.

A computational approach to the study of biological systems, based on the founding
principles of the field of Artificial Intelligence, was elucidated by Marr and Poggio (1977;
Mar, 1982). Marr was attracted to the field of Artificial Intelligence after experiencing
certain limitations of other theoretical approaches to brain research in his early work on
the cerebellum (Marr, 1969). Although his model for learning in the cerebellum has led to
important experimental work (for example, Ito, 1984), Marr abandoned this line of research
after realizing that it did not shed light on how complex motor behavior can actually be
achieved.

In his later work in computational vision, Marr elucidated three distinct levels of anal-
ysis that are necessary for understanding an information processing task:

* A computational theory analyzes what problem is being solved and why, and investigates
the natural constraints that the physical world imposes on the solution to the problem.

An algorithm is a detailed step-by-step procedure that represents one method for
yielding the solution indicated by the theory.

* An implementation is a physical realization of the algorithm by some mechanism or
hardware.

These levels could suggest a prescription for conducting research on complex problems; that
is, one first formulates a theory, then derives an algorithm, and lastly designs a mechanism
that implements the algorithm:

theory = algorithm = mechanism.

Despite the initial success of this approach, research over the past few years has shown
that computational theories, even if complemented by psychophysical experiments revealing
how humans perform visual tasks, have inherent limitations in understanding the brain. In
particular, the nature of the hardware can profoundly influence the type of algorithm needed
to solve a particular problem. Thus, while the computational theory and properties of the
hardware can often be studied independently, the algorithmic level is influenced by both.
A given computation, such as the computation of stereo depth or motion, usually can he
performed by several different algorithms. These algorithms depend not only on the nature
of the computation itself, but also on the properties and limitations of the hardware in
which the algorithm is implemented. Thus, in order to explain the functions of a visual
system at its different levels, not only must the abstract, computational nature of a task be
understood, but also the properties of the underlying hardware. The flow of information is
therefore in both directions:

2
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theory = . algorithm -= mechanism.

These observations stress the importance of integrating the results of computational studies
with those of experimental studies of biological vision systems.

Other introductions to the computational approach described here can be found, for
example, in Poggio (1984), Morgan (1985), Ullman (1986), and Hildreth and Hollerbach %
(1985). The latter review also addresses the limitations and successes of the computational
approach in the area of motor control.

Other "Computational" Approaches to the Study of Biological Systems

The term computational is often used within the neurosciences to denote very different
concepts. For example, certain neural modeling approaches that study how neuronal net-
works can operate and how these operations can be extrapolated to explain higher brain
functions frequently are termed "computational." Examples of this include the seminal
work by McCulloch and Pitts (1943) on neuronal networks, the work on perceptrons (Min-
sky and Papert, 1969) and parallel "connectionist" networks (Ballard, 1986), as well as
Marr's original work on the cerebellum. The word "computational" in this case refers to
the detailed working of specialized hardware, such as linear threshold automata, rather than

.& to an analysis of information processing at a level independent of the underlying hardware.
V-0 Similarly, connectionist theories refer directly to neuronal hardware and therefore lack the

characteristics of Marr's notion of a computational theory (Koch, 1986). Although they
have made important contributions to automata theory and theoretical cybernetics, we

want to emphasize a distinction between these approaches and that described by Marr and
Poggio (1977; Marr, 1982). It is of course essential to understand the properties of the bio-
logical hardware - neurons, dendrites, synapses, channels, etc. - in order to understand
what algorithms the brain uses to analyze its environment, and a substantial fraction of
this article is devoted to aspects of neuronal hardware. We believe, however, that to fully
understand a complex information processing system, it is necessary first to understand the
nature of the tasks the system is required to perform.

Finally, computational is used in yet another sense, as in computational chemistry or
computational biophysics. This term generally refers to the extensive use of computers to
simulate a given chemical or biophysical system, such as the reconstruction of the tertiary
structure of simple proteins by using the principles of quantum physics and chemistry
(Clementi, 1985) or the simulation of the electrical properties of an array of pyramidal cells
in the hippocampus (Traub et al., 1984). In the following pages we refer frequently to such
simulations of biophysical circuits.

3
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Overview of Visual Motion Analysis

The pattern of movement in a changing image is not given to the visual system directly,
but must be inferred from the changing intensities that reach the eye. The 3-D shape
of object surfaces, the locations of object boundaries, and the movement of the observer
relative to the scene can in turn be inferred from the pattern of image motion. Typically. the
overall analysis of motion is divided into two stages: first, the measurement of movement in
the changing two-dimensional (2-D) image, and second, the use of motion measurements.
for example to recover the 3-D layout of the environment. It is not clear whether motion
analysis in biological systems is necessarily performed in twodistinct stages, but this division
has served to facilitate theoretical studies of motion analysis and to focus empirical questions
for perceptual and physiological studies.

The measurement of movement can itself be divided into multiple stages and may be
performed in different ways in biological systems. In the human visual system alone, motion
may be measured by at least two processes, termed short-range and long-range processes
(for example, Braddick, 1974, 1980). The short-range process analyzes continuous motion,
or motion presented discretely but with small spatial and temporal displacements from one
moment to the next. The long-range process may then analyze motion over larger spatial
and temporal displacement3, as in apparent motion. Evidence indicates that these two
processes interact at some stage (Clatworthy and Frisby, 1973; Green and von Griinau,
1983), but initially they may be somewhat independent.

The subsequent uses of motion measurements impose different requirements on the
precision and completeness with which image motion must be represented. The localization
of object boundaries requires the detection of sharp changes in direction or speed of move-
ment, but may not need a precise representation of absolute velocities everywhere. Object
tracking requires knowledge of the gross translation of an object, but not information about
the detailed relative movements that take place within the object. The recovery of the ac-
curate 3-D shape of a moving object, on the other hand, appeatn to require a more precise
and complete estimate of the local variations of motion across object surfaces. Motion anal-
ysis in the human visual system may ultimately involve the interaction of many processes,
some fast but rough, others slow but more accurate, and still others that are specialized
for specific tasks such as detecting object boundaries or looming motion. These processes
must work together in a way that prcvides a versatile and robust motion analysis system.

In this review, we first address the earliest stage of motion measurement. We discuss
two important theoretical models of motion detection, correlation and gradient models, and
present relevant psychophysical and physiological data regarding biological motion detec-
tors. We then discuss at length possible biophysical mechanisms that implement the com-

putations underlying motion discrimination in retinal and cortical neurons. Later stages of
motion measurement are then discussed in a subsequent section, which addresses the coin-
putation of an instantaneous 2-D velocity field, long-range motion correspondence. and~...
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the detection of motion discontinuities. Finally, we discuss the recovery of 3-D structure
from relative motion. This article is not intended as an exhaustive overview of work on
motion analysis. Rather, we highlight some of the areas that exhibit fruitful interactions
between computational and experimental studies. Two recent reviews of motion analysis

include the surveys by Barron (1984), focusing on computational methods for deriving and
interpreting optical flow, and by Nakayama (1985), focusing primarily on the psychophysics
and physiology of motion.

Q ev
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EARLY MOTION DETECTION AND MEASUREMENT

Detecting Motion: Theory

Before motion can be used to reconstruct the 3-D structure of objects. the visual sys-

tem must first reliably detect and measure relative motion in the 2-D image. What types

of schemes have been proposed for this initial detection, how are these schemes related

and what are their computational properties? The most general property of any motion
discrimination system is that the underlying operation must be nonlinear. As first noted by

Poggio and Reichardt (1973), no linear operation can extract the direction of motion of a
moving stimulus. The schemes proposed for motion detection fall broadly into two classes:

(1) correlation-like schemes (Hassenstein and Reichardt, 1956; Poggio and Reichardt, 1973;
van Santen and Sperling, 1984) and (2) gradient schemes (Fennema and Thompson, 1979;

Horn and Schunck, 1981; Marr and Ullman, 1981). As we shall see, most biological motion

detection schemes cannot reliably measure velocity even for one-dimensional motions, be-
cause their output typically depends on contrast and on a mixture of velocity and spatial

structure of the moving pattern (Reichardt, Poggio and Hausen, 1983).

CORRELATION MODELS The best known motion detection scheme is based on research
done over the last thirty years on movement perception in insects. On the basis of open e
and closed-loop experiments performed first on the beetle, Chlorophanus, and later on
the fruitfly, Drosophila, and the housefly, Musca Domestica, a number of researchers, most
notably W. Reichardt, were led to the following conclusions regarding motion discrimination
in insects (Hassenstein and Reichardt, 1956; Varju and Reichardt, 1967; Gbtz, 1968, 1972;
Reichardt, 1969; Poggio and Reichardt, 1976; Reichardt and Guo, 1986):

i) A sequence of two light stimuli impinging on adjacent receptors is the elementary
event that evokes an optomotor response.
ii) The relation between the stimulus input to these two receptors and the optomo-
tor output follows the rule of algebraic sign multiplication. For instance, stimulating
receptor 1 with alternating dark to light changes and receptor 2 with light to dark tran-
sitions leads to a turning response of the insect opposite to the direction of stimulus %
successions, while dark to light transitions presented to both receptors elicits a turnin"
rcponse in the direction of the stimulus succession.

-,%

iii) The strength of the optomotor response is proportional to the product of the two
stimuli.

On the basis of these experimental conclusions, a minimunm mathematical model of

motion perception in insects was formulated. Figure la shows a modified version of this ,
corrlation model. The image is sampled by a receptor with a point-like receptive field. %
The input to the receptor can thus be described by I(t). The output of the receptor is
subsequently passed through a linear high -pass filter, removing steady- state components of •

6 ,
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the output of the receptor, before being multiplied with a low- or band-pass filtered signal
from a neighboring receptor. Thus, at this stage the signal strength is given by:

R(t) = fW -0I( ti, t2 )I(t - tl )I(t - t2 )dti dt2

where IV(tlt 2 ) represents the lumped transfer-function for the different filters. Subse-
quently, the output of the multiplication operation is integrated over time. A little analysis
will show that the output of this stage is equivalent to the autocorrelation of the input
function 1(t). Let us assume that the low-pass filter actually corresponds to a fixed delay
bt > 0. We are then essentially multiplying a linearly transformed version of I(t) with itself,
but shifted by the total amount At = bt + Ax/v (where Ax > 0 is the spacing between the
receptors and v the velocity of the stimulus), and integrating the resulting function over
time. For a range of negative velocities, i.e. movement from the right to the left, At will
be very small and the final output of this subunit will be large. For positive velocities,
that is for movements in the opposite direction, the two functions I(t) and I(t + At) are

out of synchrony and their product, integrated over time, will be small. The output of this
subunit is then subtracted from the output of the complementary subunit to yield the total
detector response. It follows that if the output of the right subunit exceeds the output of
the left subunit, the detector response is positive, indicating rightward motion; likewise, if
the output of the left subunit exceeds the output of the right subunit, detector response
is negative, indicating leftward motion. This theoretical model has a number of properties
that can be tested experimentally. Two of the most interesting are phase invariance and
spatial aliasing (for an overview see Reichardt, 1969).

Imagine a light pattern consisting of a number of superimposed sinusoidal gratings of
different spatial frequencies. Because the process of autocorrelation, i.e. multiplication and
subsequent integration, destroys all of the information that is inherent to the specification of
the phases of the gratings, the output of the motion detectors is invariant to any changes in
the phase relations of the sinusoidal gratings. Because any pattern I(t) can be decomposed
into its Fourier components, it follows that this class of motion detectors does not sense
the relative position of the Fourier components. This important result has been tested and
confirmed in experiments with the beetle, Chlorophanus, the fruitfly, Drosophila, and with
Musco by evaluation of the time-averaged optomotor reactions to the angular motion of a
fixed pattern painted on the inside of a drum. Moreover, the total time-averaged response is
simply given by the sum of the time-averaged response to the individual Fourier components
(Poggio and Reichardt, 1973). Figure 2a shows the angular distribution of the brightness of
two distinct patterns, obtained by superposition of the different Fourier components. These
patterns only differ with respect to their phase relations. Yet the fruitfly reacts equally to
motions of the two patterns (Gotz, 1972). Il

For any particular sinewave grating, the temporal phase difference between the two
inputs to the multiplication will depend on the distance between its input channels, Ax,

7
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Figure 1. (a) A direction selective subunit of the correlation model of Hassenstein and Reichardt
(1956) as modified by Kirchfeld (1972). The two inputs are multiplied after low pass filtering with
different time constants. If an average operation is made on the output, the overall operation is - ,
equivalent to cross-correlation of the two inputs. Subsequently, the time-averaged response of this
subunit is subtracted from the response of a similar but mirror-symmetric subunit to yield the final
movement sensitive response. (b) The functional scheme proposed by Barlow and Levick (1965)
to account for direction selectivity in the rabbit retina. A pure delay At is not necessary: a low
pass filtering operation is sufficient. (c) The equivalent electrical circuit of the synaptic interaction
assumed to underlie direction selectivity as proposed by Torre and Poggio (1978). The interaction
implemented by the circuit is of the type gi - aglg2, where gi and 92 represent the excitatory and
inhibitory synaptic inputs. From Torre and Poggio (1978)."-'

and on the spatial wavelength A of the sinewave grating used. The original correlation

model displays spatial aliasing: if one changes the spatial period of the grating, but not
its direction of motion, the sign of the detector response reverses, indicating an incorrect ..

motion. Within the wavelength region A > 2Ax, the moving sinusoidal pattern is resolved by
the receptor system as the number of samples received per period A at any time is greater ,-
than or equal to two. If, however, A < 2Ax, optimal resolution of the periodic pattern

breaks down, because less than two samples per wave length of the pattern are observed
(see also Shannon's sampling theorem) and the detector signals the incorrect direction for
Ax < A < 2Ax (Figure 2b). This inversion of apparent motion does occur in various insects

and has been used to determine the grating constant of the recoptor spacing (Reichardt,

1969).

8p
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Figure 2. Two experimental predictions of the correlation model. (a) Phase invariance: The left
part of the figure shows two different light patterns received by a photoreceptor at different angular
positions of the environment. Both distributions contain the same set of Fourier components shown
in the right part of the figure, but with different phases. However, insects like the housefly, the
fruitfly or the beetle respond with the same optomotor reaction to both patterns. At the moment.

it is not known whether direction selective cells in the mammalian visual system show phase
invariance. (b) Inverse motion perception: interference phenomena in the insect eye elicited by a
moving pattern with a comparatively small spatial wavelength. When the distance AO between
input channels in the insect's eye is between one-half and one spatial period A of the pattern of
excitation. the correlation model signals the incorrect direction of motion. The insect is compelled N,

ro follow this apparent motion in the direction opposite to the "true" direction of motion. Redrawn
from (,otz (1972). 9
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This property of the original correlation model can be avoided by replacing the point

shaped receptive field of the receptor in the original Reichardt model with a patia;f

dependent receptive field of finite extent (Fermi and Reichardt, 1963; Gbtz, 1965; Reichardt.

Poggio and Hausen, 1983; van Santen and Sperling, 1984, 1985). Van Santen and Sperling

show how to choose the receptive field in their elaborated Reichardt detector so that the sign
of the detector output is correct for any drifting sinewave grating. van Santen and Sper

ling (1985) showed that the elaborated Reichardt model is fully equivalent to two recently

proposed models of human motion detection: an elaborated version of the motion detector %,

of Watson and Ahumada (1985) and the "spatiotemporal energy" motion detector of Adel-
son and Bergen (1985). These and similar models characterized by a multiplication- like
nonlinearity are all equivalent to the correlation model (Poggio and Reichardt, 1973). %.

GRADIENT MODELS Gradient schemes rely on the relationship between the spatial and
temporal gradients of image intensity. In the case of the one-dimensional movement of an

intensity profile I(x, t) over a small displacement dx in time dr, the temporal derivative of
image intensity It _ (I(x,t + dt) - I(x,t))/dt and the spatial derivative of the intensity

1, ;4 (I(x + dx, t) - I(x, t))/dx are related by ,
.

dx It .

dt I I

where v is the velocity of the pattern. This method was originally proposed by Limb
and Murphy (1975) and later extended by Fennema and Thompson (1979). The approach .

carries over to the 2-D case (Horn and Schunck, 1981). Here, however, due to a fundamental
limitation in the measurement process, termed the aperture problem (discussed later), only
the component of the velocity in the direction of the brightness gradient can be measured.

If we assume that the motion measurement process occurs along an edge, only the velocity
component at right angles to the edge can be recovered. It is given by

where I,, [y are the spatial derivatives in the x and y directions. This equation is strictly

only correct for rigid, translating patterns, with no rotation, seen under orthographic pro-

jection (Schunck, 1984). For sufficiently small temporal and spatial displacements dx, dy.
and dt, however, the equation approximates the correct one. Gradient schemes suffer from Lw

the disadvantage that they require computation of the dcrivatives of the intensity values. %..
an operation that is extremely sensitive to noise.

A quantized version of the gradient scheme was proposed by Marr and Ullmnan (1981).
This model operates on locations in the images where the light intensity changes signifi-
cantly. Marr and Hildreth's analysis (1980) showed that zero -crossings, that is locations

where the Laplacian of the image is zero, correspond closely to intensity edges in the original , _

10
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image. Marr and Ullman track the motion of zero-crossings in the following way. An edge
detector S of the Marr and Hildreth type signals the absence or presence of a zero-crossing
at location x. This detector has two variants, one for transitions from dark to light (termed
a light-on edge) and one for light to dark transitions (light-off edge). A second type of de-
tector, termed a T unit, samples the temporal derivative of the intensity in approximately
the same patch of the visual field as the edge-detecting unit. One version of this unit,
T+, only signals when the temporal derivative is positive, that is when a light-on edge has
moved to the left or a light-off edge moves to the right, whereas T- only responds to a re-
duction in light intensity. Combining the output of an S and a T unit conjunctively yields a
set of detectors signaling the left (or rightward) motion of light-on or light-off edges. Marr
and Ullman tentatively identify the edge detecting S units with sustained X-like On- or
Off-center cells and the T+ and T- units with transient Y-like On- or Off-center cells.
Computer experiments on some images have shown that this gradient scheme can recover
motion information from image sequences. Note that their model, different from other gra-
dient schemes, does not provide an estimate of the local velocity, but only its sign, that is
the direction of motion, although some measure of velocity could be extracted.'

MOTION PRIMITIVES What are the primitives used to detect and measure motion, and
at what stage in the analysis of the image does the detection of motion take place? For
instance, are the initial measurements of the light intensity in the photoreceptors taken as
primitives, or are the measurements extracted after the filtering and smoothing of the visual
input at the stage of the retinal ganglion cells or even cortical cells? Finally, more symbolic
primitives such as zero-crossings, edges, and line segments or even endpoints, corners,
breaks, local deformities of objects, or discontinuities in line orientation could also be used.
The advantage of matching more symbolic tokens, such as zero-crossings, across the image
is that these tokens mark interesting points in an image, for instance locations where the
image intensity changes most. Tokens are generally far more stable to changes and noise
in the illumination than the original intensities or some filtered version of them. Moreover,
because tokens presumably are sparsely distributed in the image, far fewer points must be
matched and ambiguities can be avoided. If, however, large areas of the image contain
no tokens, for instance if the light intensity changes little, these areas will not have any
motion measurements assigned initially (these areas could be filled in later on). A further
disadvantage of symbolic primitives is that they must be unambigously identified before
they can be matched, thus preventing an early computation of motion.

For the visual system of the fly, the experimental evidence suggests that the primitive
is simply some measure of local intensity flux (Reichardt et al., 1983). For the short-range
motion system, Hildreth (1984) discusses the evidence that motion measurement may rely
on the detection of the movement of features such as zero-crossings, or some similar measure

It can be shown formally that for small contrast amplitudes, the correlation-model and the

gradient scheme are equivalent (T. Poggio, personal communication).
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operating on the smoothed intensity values, and that the limits on spatial and temporal
displacements observed empirically in the short-range motion system are the consequence
of the limited spatial and temporal extent of the initial filtering (see also Marr and U lhnan,
1981). Much more work needs be done, however, before the question of the primitives used
by the motion system can be answered.

Detecting Motion: Psychophysics

Both gradient and correlation schemes are local, involving only limited parts of the
visual scene, and are therefore likely to provide a dominant input to the short-range pro-
cess, which appears to operate on motion restricted to a spatial range of up to 10' - 15'
minutes of visual arc and an interstimulus interval less than 80- 100 rnsec. (Braddick, 1974,
1980). Because these separations in space and time are small, establishing correspondence
between items in consecutive images is considerably easier than in the long -range process
(see next section). Finally, the short-range process is assumed to operate directly on the
light intensities, filtered intensities or on edges or zero-crossings. Interestingly, color seems
to provide little if any input to the short-range process (Ramachandran and Gregory, 1978).a
In the following, we discuss the (limited) human perception evidence that has been used to
discriminate between the various models of motion computation discussed above.

One of the main properties of the Reichardt correlation model is that its output re- S

sponds not only to pattern velocity but also to structural properties of the pattern contrast.
This property allows the motion detector to be used as pattern discriminator, at least in
flies (Reichardt et al., 1983; Reichardt and Guo, 1986). Specifically, it can he shown (for
instance, in Poggio and Reichardt, 1973, 1976) that the time-averaged response of the
correlation subunit depends on the ratio, for each spatial Fourier component, of the pat-
tern velocity v and the spatial wavelength A of the stimulus used. Thus wavelength and
velocity trade off against each other and, as a consequence, the correlation model cannot
reliably measure the speed of movement. This property, first confirmed with behavioral ex-
periments for the fly, Musca Domestica (Eckert, 1973), also seems to extend to the human
visual system. If subjects fixate a point while square or sinusoidal gratings of variable spatial S

wavelength are moved past the fixation point at various speeds, their perception of velocity
depends linearly on both the speed and spatial frequency of the gratings (Diener et al..
1976; Burr and Ross, 1982). These experiments seem consistent with a multiplicative like
second-order correlation model.

A striking prediction of the original Reichardt model is motion inversion: if the wave
length of the stimulus pattern is less than twice the separation between input channels, the _

insect will perceive motion in the direction opposite to the true direction of motion (Re-
ichardt, 1969; Gbtz, 1972). Because humans, in contrast to insects, generally do not seem
to show spatial aliasing, the point-like receptive field assumption of the original correlationi %
model must be abandoned in favor of extended receptive fields (Fermi and Reichardt, 1963).
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It can then be shown that motion reversal can be prevented (see. for instance, van Santen
and Sperling, 1984). Van Santen and Sperling (1984, 1985) test this "elaborated Reichardt"
model with a number of psychophysical experiments. In particular, by varying the contrast
of neighboring vertically oriented bars moving in a horizontal direction, they show that the
total response of the subject depends on the product of the amplitudes of the two bars, a
finding that offers support for the multiplication principle.

Psychophysical evidence in favor of the gradient scheme is presented by Moulden and
Begg (1984). In one particularly ingenious experiment, they show polarity and direction-
specific effects on motion discrimination in response to adaptation to a non-moving, spa-
tially homogenous stimulus, and provide evidence for channels tuned to detect an increase
or decrease in the light intensity (Marr's and Ullman's (1981) T+ and T- units).

Thus, the current psychophysical evidence does not decisively favor one particular
theory.

Detecting Motion: Circuitry and Biophysics

Having described some of the algorithms proposed to underlie motion detection, we now
discuss in more detail the biophysical mechanisms that may be used for motion detection.
Numerous nerve cells in the visual system of both invertebrates and vertebrates respond
differentially to motion. Moving a visual stimulus, say a dark bar on a light background,

.in the preferred direction elicits a vigorous response from the cell, whereas movement in
the opposite direction, termed the null direction, yields no significant response. Direction
sclective cells, first described in the frog's retina in a classical paper by Maturana et al.
(1960), have subsequently been identified in the third optic ganglion of the house fly (for a
review of the extensive literature see Hausen, 1982a,b), in the retina of pigeons (Maturana
and Frenk, 1963; Holden, 1977), rabbits (Barlow, Hill and Levick, 1964; Barlow and Levick,
1965), ground squirrels (Michael, 1966), and cats (Stone and Fabian, 1966; Cleland and
Levick, 1974), and in the visual cortex of both cats and monkeys (Hubel and Wiesel, 1959,
1962; Schiller, Finlay and Volman, 1976; Orban, Kennedy and Maes, 1981). Analyzing
these cells afford us the opportunity to study the elementary biophysical events underlying
a well characterized but nonlinear (that is, nontrivial) operation in single nerve cells.

In most mammals, except cats and primates, the first cells that seem to discriminate the
direction of motion are the retinal ganglion cells. Thus, in the rabbit's retina approximately
one quarter of the ganglion cells can be described as direction selective. In the cat retina,
however, less than 1% of the physiological identified ganglion cells are direction selective
(Rodieck. 1979) while no such cells have been reported in the monkey's retina.2 Because
neither cells in the A and Al layers of the lateral geniculate nucleus (LGN) of the cat nor
cells in the magno- and parvo-cellular layers in the monkey are strongly direction selective,

"fDue to the inevitable electrode bias, this does not necessarily imply such cells do not exist in
the primate retina.
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the appearance of substantial numbers of direction selective neurons in the primary cortex
of both animals strongly suggests that this property arises first in the cortex.

COMPUTING THE DIRECTION OF MOTION IN THE RETINA: Early Fxperiments
Barlow and Levick (1965) systematically explored directional selectivity in the retina of
the rabbit by using extracellular recordings. About 20% of the ganglion cells in the visual
streak give both On and Off responses to stationary, flashed stimuli and are direction selec-
tive for moving stimuli. These cells therefore compute the direction of motion independent
of the contrast of the stimulus (i.e. dark stimulus on a light background or vice versa).
A smaller proportion of ganglion cells (, 7%) are direction selective and of the On-type,
that is, they respond only to light-on edges. These cells project to the accessory optic
system in the midbrain and are believed to be crucial for the control of the optokinetic nys-
tagmus (Oyster, Takahashi and Collewijn, 1972) and image stabilization (Simpson, 1984).
Off-type direction selective cells have neither been reported in the rabbit or cat, although
they are found in the turtle. Two important conclusions can be drawn from Barlow and
Levick's (1965) report. First, inhibition is crucial for direction selectivity. On the basis
of this evidence Barlow and Levick proposed that sequence discrimination is based upon
a scheme whereby the response to the null direction is vetoed by appropriate neighboring
inputs (the AND NOT gate in Figure Ib). Directionality is achieved by an asymmetric
delay - or by a low pass filter - between excitatory and inhibitory channels from the
photoreceptors to the ganglion cell. This model can be considered as an instance of the
Reichardt correlation model. Second, this veto operation must occur within small indepen-
dent subunits distributed throughout the receptive field of the cell, because movement of a
bar over 0.250 to 0.5 ° elicits a direction selective response (whereas the whole receptive field
subtends 4.5*; Barlow and Levick, 1965). Thus, the site of the veto operation is extensively
replicated throughout the receptive field of the direction selective cell. Confirming evidence
for the critical role of inhibition comes from experiments in which inhibition is blocked with
pharmacological agents (Caldwell, Daw and Wyatt, 1978; Ariel and Daw, 1982; Ariel and
Adolph, 1985), a situation that results in an equal response for both preferred and null
directions (see below).

A Biophysical Model We can now ask how this operation is implemented at the level of
the hardware, i.e. at the level of retinal cells. Torre and Poggio (1978) proposed a specific
biophysical mechanism implementing the neural equivalent of a veto operation.

When two neighboring regions of a dendritic tree experience simultaneous conductance
changes, induced by synaptic inputs, the resulting postsynaptic potential is generally not
the sum of the potentials generated by each synapse alone; that is, synaptic inputs may
interact in a highly nonlinear fashion. This is particularly true for an inhibitory synap-
tic input that increases the membrane conductance with an associated ionic battery that
reverses at, or very near, the resting potential Eresi of the cell. Activating this type of
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inhibition, called silent or shunting inhibition, is similar to opening a hole il the mem-
brane: its effect is only noticed if the intracellular potential is substantially different from
Erest. Torre and Poggio (1978) showed in a lumped electrical model of the membrane of
the cell that silent inhibition can cancel effectively the excitatory postsynaptic potential
(EPSP) induced by an excitatory synapse without hyperpolarizing the membrane. More-
over, for small synaptic conductance inputs the interaction between excitation and silent
inhibition is multiplication-like, thereby approximating the nonlinear operation underly-
ing the correlation-scheme (see legend to Figure 1c). Pairs of excitatory and inhibitory
synapses distributed throughout the dendritic tree may compute the direction of motion
at many independent sites throughout the receptive field of the cell, in agreement with the
physiological data. Because nonlinearity of the interaction is an essential requirement of this
scheme, Torre and Poggio suggest that the optimal location for excitation and inhibition
are fine distal dendrites or spines of the direction selective ganglion cell.

Because this analysis left out the precise conditions required to produce effective and
specific nonlinear interactions in a dendritic tree, Koch, Poggio and Torre (1982, 1983) used
one-dimensional cable theory to analyze the interaction between time-varying excitatory
and inhibitory synaptic inputs in a morphologically characterized cat retinal ganglion cell
(of the b type; see Boycott and Whssle, 1974). They were able to prove rigorously in the
case of steady state synaptic conductance inputs, that in a passive and branched dendritic
tree the most effective location for silent inhibition (most effective in terms of reducing an
EPSP) must always be on the direct path between the location of the excitatory synapse
and the soma.

Detailed biophysical simulations of highly branched and passive neurons show that this
on-the-path condition can be quite specific. If the amplitude of the inhibitory conductance
change is above a critical value, inhibition can reduce excitation by as much as a factor of
10, as long as inhibiticen is located between the excitatory synapse and the soma. Inhibition
more than about 10m behind excitation or on a neighboring branch 10 or 20/im off the
direct path is ineffective in reducing excitation significantly. This specificity in terms of
spatial positioning of excitatory and inhibitory synapses carries over into the temporal
domain. For maximal effect, inhibition must last at least as long as excitation and the
inhibitory and excitatory conductance changes must occur nearly synchronously (Koch el
al., 1983; Segev and Parnas, 1983). Finally, the on-the-path condition is also valid in the
presence of action potentials: in order for silent inhibition to block the propagation of a spike
past a branching point, it must be located at most 5ym from the branch point (O'Donnell,
Koch and Poggio, 1985). Because such a precise mapping imposes stringent conditions on
the specificity of the positioning of synapses during development of the retinal circuitry,
one simple developmental rule to follow is that a pair of excitatory and inhibitory inputs
originating from interacting photoreceptors should contact the ganglion cell dendrite close
to one another.

'he specificity of silent inhibition contrasts with the action of a hyperpolarizing synap-
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tic input (i.e. a conductance change with an associated battery below Er.t). In this case.
the interaction between excitation and inhibition will be much more linear, that is. th,,
inhibitory synapse will reduce the EPSP generated by the excitatory synapse by an amount
roughly proportional to the inhibitory conductance change with less regard to the relative
spatial positioning of excitatory and inhibitory synapses (Koch et al., 1982: O'Donnell.
Koch and Poggio, 1985; Koch and Poggio, 1986).

Critical Predictions of the Model How does the model fare against experimental evidence'!
The following lists some of the most important predictions:

0 On-Off direction selective cells receive distinct excitatory and inhibitory synaptic in-
puts. The reversal potential of the inhibitory input is close to the resting potential of
the cell (probably acting via a GABAA receptor).

* Bicucculin should abolish direction selectivity.

a Inhibitory synapses are not more distal to the soma than excitatory synapses.

0 Direction selectivity is computed at many independent sites in the dendritic tree before
spike initiation at the axonal hillock.

* The direction selective cell should show a 6-like morphology, with a highly branched.
bistratified dendritic tree with small diameter dendrites or possibly spines. %

* On-Off direction selective cells are expected to show little interaction between a dark
bar/spot and light bar/spot moving in opposite directions within the receptive field.

Currently, the main support for this hypothesis derives from intracellular recordings in
retinal ganglion cells from the turtle (Marchiafava, 1979) and the bullfrog (Watanabe and
Murakami, 1984). Moving a spot or bar in the preferred direction gives rise to a somatic
EPSP with superimposed action potentials whereas null direction stimulation results in a
smaller EPSP without a hyperpolarization. The reduced somatic EPSP in the null direction
appears to be caused by an inhibitory process that increases the membrane conductance with
an associated reversal potential at or very near the resting potential of the cell. This silent
inhibition is revealed by injecting a steady-state depolarizing current into the soma. giving l
rise to a hyperpolarization (see Figure 3). Preliminary evidence from rabbit ganglion cell." %

indicates the presence of a similar inhibitory input (F. Amthor, personal communicat ion).

Within the last few years, two groups have determined the morphological structure
of On-Off direction selective ganglion cells. Using a fluorescent stain, Jensen and DeVoe
(1983) visualized these cells in the turtle retina, and Ainthor, Oyster and Takahashi (198.4),
used horseradish peroxidase (HRP) in the rabbit. The overall morphology of these cells %
is similar in the two species. Rabbit direction selective ganglion cells have severa (listinct
features that allow visual identification on purely morphological grounds (Figure 4a). (I)

..-.:
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Fiue3. (a) The effect of intracellular current injection upon the photoresponse in an intracellular "".

recorded direction selective turtle ganglion cell. The response in the preferred and null directions,"
are shown in in the left and right part of (a). The lower record shows the photoresponse while,,.
O.23nA current was being injected into the soma. Adapted from Marchifava (1979). (b) Simulated 'I

intracellular potential at the soma of the reconstructed rabbit On-Off direction selective ganglion p
cell shown in Figure 4, assuming a purely passive membrane. The two distinct peaks correspond =
to the leading edge, receiving On input, and the trailing edge, receiving Off input. In the bottom -,
half, a step current of 0.091hA was being injected into the soma. Preferred direction is left and
null direction right. From Koch et al. (1986b). 1
These cells have two levels of dendritic ramification. This observation is consistent with

studies that have divided the inner plexiform layer into On and Off larinae (Famiglietti
and Kolb, 1976). (2) The dendritic branches of the direction selective cells are of very small
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diameter relative to other rabbit ganglion cells. Moreover, the dendrites carry spines or
spine-like structures. (3) The dendritic branching pattern is quite complex, with dendrite-
forming apparent loops. Note that although the cell drawn in Figure 4a has an asynmnetric
placement of the soma with respect to the dendritic tree, preferred and null direction do
not appear to be predictable from the gross dendritic morphology of these cells. Thus, the
morphology of direction selective cells agrees well with previous predictions (Koch et al..
1982).

In order to model massive synaptic input to a direction selective ganglion cell, the _
passive electrical properties of the anatomically reconstructed cell shown in Figure 4a was
simulated on the basis of one-dimensional cable theory (O'Donneil, Koch and Poggio, 1986;
Koch, Torre and Poggio, 1986). The computation of the voltages is carried out by a circuit
simulation program, SPICE, first applied to biophysical circuit modeling by Segev t (1.

(1985). Figure 3 shows the resulting somatic depolarization in the absence and in the pres-
ence of a depolarizing current step injected at the soma, in comparison with experimental
records obtained from turtle ganglion cells (Marchiafava, 1979). The intracellular potential
can also be displayed in color throughout the entire cell (O'Donnell, Koch and Poggio., 1986;

Koch et aL, 1986).

Presynaptic Circuitry How much do we know about the origin and properties of the exci-
tatory and inhibitory inputs to direction selective cells? Considerable evidence implicates t

acetylcholine (ACh) as the excitatory neurotransmitter underlying direction selectivity in
the rabbit retina (Ariel and Adolph, 1985). If all synaptic transmission in the perfused
retina is blocked by pharmacological manipulation of the bathing medium, On-Off direc-
tion selective cells can be driven by direct application of ACh, thus implying that these
cells are the postsynaptic target for cholinergic synapses. Ariel and Daw (1982) found thai
upon application of physostigmine, a drug that inhibits the hydrolysis of ACh after it ha.,
bound to the postsynaptic membrane, ganglion cells lose their ability to discriminate mo-
tion. Other properties like speed and size specificity and radial grating inlhibition do not
seem to be affected. This result may at first seem paradoxical, because physostigmine in-
creases the effectiveness of ACh. One simple explanation is that this increased effectiveness
during null direction serves to overcome the inhibition and to initiate action potentials at
the soma. In turtle retina, simliar experiments yield similar results (Ariel and Adolph.
198 5).

Recently, Masland and colleagues (Masland, Mills and Cassidy, 198.1; Tauchi and
Masland, 1984) identified two unique populations of cholinergic amiacrine cells. In the
rabbit retina, the only cells synthesizing and releasing ACh are two groups of amacrine cells
distributed in the On and Off layers. Using radioactive labeled At'h. Maland. Mills an(I
('assidy demonstrated that these two subtypes of amacrine cells release ACh transientIly
either at the onset (cells in the On layer) or at the offset of light (cells in the Off layer). lie
cause the cells have a unique morphology reminiscent of fireworks, they are called .,tarbur.,t
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amacrine cells. These cells appear to be presynaptic to bistratified ga. gion cells, with the

morphological attributes of the direction selective cells of Amthor et al., (1984).

The inhibitory input for motion discrimination is believed to be mediated by the neu-

rotransmitter, I -aminobutyric acid (GABA). Caldwell ct al. (1978) and Ariel and 1)aw

(1982) infused picrotoxin, a potent antagonist of GABA, into the rabbit retina. Within
ininutes after the start of drug infusion, the response of direction selective cells in the null

direction increased dramatically, so that the cell became equally responsive to movement in
dire h rectionis. A few minutes after drug infusion was discontinued, the cell again became

direct ion selective. In the turtle retina, direct application of ACh leads to spontaneous
::'r 1 im ,cr (ction selective cells. during blockage of synaptic transmission via a low calcium

(wcoW1' :l ill anid 12(;'TA (Ariel and Adolph, 1985). This ACh-induced spike activity can

be .upl)ressed t)y 'GAliA. thus indicating that both ACh and GABA receptors must coexist

,n the mnembrane of turtle direction selective ganglion cells. In the rat retina, the only cells

staininsg for glutamic acid decarboxylase (GAD; the rate-limiting enzyme for the synthe-

sis of G(ABA) are amacrine cells (Vaughn et al., 1981). These cells make synapses onto

pro( esses of hipolar, amacrine and ganglion cells in descending order of frequency.

Thus, at least in the turtle and rabbit retina, the excitatory and the inhibitory inputs to

direction selective ganglion cells appear to derive from cholinergic and GABAergic ainacrine
cells. 'Ihis finding does not exclude, however, direct input from bipolar cells that may be
responsible, for instance, for the center-surround organization (of direction selective cells.

Alternative Models What are the alternative models for the neuronal operations underly-
ing motion discrimination? If one assumes that direction selectivity is first expressed at the
level of the ganglion cells then the experimental evidence of Barlow and Levick (1965) and
the intracellular recordings of Marchiafava (1979) and Watanabe and Murakami (1984) in
conjunction with the pharmacology (Ariel and Adolph, 1985) argue in favor of our post-
synaptic, silent inhibition scheme. Although both Werblin (1970) and Marchiafava (1979)

have failed to record direction selective responses in bipolar or amacrine cells, the possibility
that the critical computations occur presynaptic to the ganglion cell cannot be excluded.
Indeed, DeVoe and his collaborators (DeVoe, Guy and Criswell, 1985) have recorded from
direction selective amacrine and bipolar cells in the retina of the turtle. Their evidence

points towar( an alternative or coexistent presynaptic site for the critical computation un-
derlying direction selectivity in the turtle. A second piece of evidence favoring a presynaptic
arrangement is the influence of GABA on ACh. GABA inhibits the light evoked release of

ACh in the rabbit retina (Massey and Neal, 1979; see Figure 4).

Other classes of presynaptic models for motion discrimination have been proposed
(l)owling, 1979: Koch and Poggio, 1986; Koch et al., 1986): Because GABAergic processes

synapst, onto bipolar, amacrine, and ganglion cells, the site of the critical computation un-

d.rlyving direction selectivity could either be a bipolar cell exciting the starburst amacrine

(Eli or the starburst amacrine cell itself. Starburst amacrine cells have dendrites that are
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a) b)
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Figure 4. (a) Camera lucida drawing of an HRP-injected On-Off direction selective cell in the
visual streak of the rabbit retina. The dendritic fields have been drawn in two parts: "outer"

refers to the part of the inner plexiform layer (IPL) closest to the inner nuclear layer, where
the cells of the Off pathway make synaptic connections, while "inner" is the layer closest Lo the

ganglion cell layer where the the On pathway is connected. There are no obvious asymmetries
in the cell that are correlated with the preferred direction. Adapted from Amthor et al. (1984).
(b) A simplified schematic of the excitatory pathway from the outer plexiform layer (OPL) to
the On-Off direction selective ganglion cell in the rabbit. Depolar;zing (On) and Hyperpolarizing

(Off) bipolar cells convey the visual information from the OPL to the On or Off part of the IPL.

tfere they most likely synapse either directly, possibly using glutamate or aspartate as excitatory
neurotransmitter, or indirectly, via other amacrine cells, onto the cholinergic starburst amacrine
cells. These amacrine cells feed in turn directly onto the bistratified On-Off ganglion cells. (c)
Possible sites for the computations underlying motion discrimination. GABAergic amacrine cells
can veto the excitatory pathway either at the level of the ganglion cell (1), at the starburst amacrine
cells (2) or bipolar cells (3). Current evidence seems to favor site (1). The On and Off pathways
are segregated up to the cell body of the On-Off direction selective cell. From Koch et al. (1986b),
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probably decoupled from each other and the soma (Miller and Bloomfield, 1983). Only
the distal-most portion of the dendrites give rise to conventional chemical synaptic output,
whereas the bipolar and amacrine cell input is distributed throughout the cell (Famiglietti,
1983). Thus, each dendrite may behave from an electrical point of view as an independent
subunit, acting as the morphological basis of Barlow and Levick's subunits (1965). At least
two biophysical mechanisms could underlie direction selectivity: 1) the AND NOT veto
scheme, now implemented at the level of bipolar or amacrine cells, or 2) a linear inter-
action between an excitatory synapse and a hyperpolarizing synapse followed by synaptic 0
rectification (Koch and Poggio, 1986). In this case, the nonlinearity essential for direction
selectivity (Poggio and Reichardt, 1973) would be implemented by a synaptic transduc-
tion mechanism that only allows transmission of depolarizing events. For these presynaptic
models, the release of neurotransmitter, whether from the bipolar onto the amacrine cell or
from the amacrine onto the ganglion cell, would in itself be direction selective.

We would like to point out that both pre- and postsynaptic models may turn out to be
correct. For instance, the direction selective bipolar and amacrine cells recorded by DeVoe
et al. (1985) have a smaller velocity range than direction selective ganglion cells. Thus,
a rough estimate of the direction of a moving stimuli could be computed at the level of
bipolar/amacrine cells while ganglion cells would perform similar but finer measurements.

COMPUTING MOTION IN THE VISUAL CORTEX Much more work has been done on
the biophysical mechanisms underlying direction selectivity in the retina than in the cortex.
Therefore, our discussion of cortical mechanisms will necessarily be brief. As mentioned
above, cells in the primary visual cortex of cats and primates are likely to compute the
direction of motion, because the geniculate input shows no evidence of direction selectivity.
Moreover, if the inhibition mediated by local interneurons is removed by application of
bicuculline, an antagonist of GABA (Sillito, 1977; Sillito et al., 1980), direction selectivity
of cortical cells is severly reduced or abolished.'. This experiment, similar to Ariel and
Daw's experiment in the retina (1982), underscores the importance of inhibition for direction
discrimination.

An extension of the veto mechanism outlined above has been proposed to underlie
direction selectivity in the visual cortex (Poggio, 1982; Koch and Poggio, 1985). The basic
idea is as follows: A single LGN On-center neuron (or a row of such cells) excites a cell in
area V1 whenever a light-on stimulus falls within its receptive field center. A neighboring
On-center LGN cell reduces the activity of the cortical neuron by a delayed silent inhibition.
Because it is unlikely that LGN cells have an inhibitory effect on their postsynaptic targets,
the second geniculate cell excites an interneuron, possibly in layer 4c, which in turn inhibits
the direction selective cell. This seems plausible in light of the fact that direction selective

3 The crucial nature of inhibition for motion discrimination seems to be well preserved across
species. Injecting picrotoxin, a GABA antagonist, into the third optic ganglion of the blowfly,
Calliphora Erythrocephala, abolishes motion discrimination at both the cellular and the behav-
ioral level (Biilthoff and Biilthoff, 1986).
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cells in the primate cortex first occur one synapse beyond layer .4c, i.e. ill layer 41) (l)ow.
1974). If the silent inhibition is located either on the direct path between excitation and
the soma or very near the excitatory synapse, it will effectively veto excitation in the null

direction. Adding a similar but inverted circuit constructed of geniculate Off-center neurons
endows our cortical neuron with direction selectivity for both light-on and light-off edges
moving in the same direction - the most common type of direction selective cell (the S2
cell of Schiller et al., 1976). These Off-center neurons, whose receptive field overlap with
the fields of their On-center counterparts, map onto a different part of the dendritic tree
of the direction selective cortical cell. This prediction, i.e. that direction selectivity for
light-on and light-off edges results from the independent convergence from the geniculate.
is supported by experiments done by Schiller (1982) in the monkey and by Sherk and
Horton (1984) in the cat, using the pharmacological agent APB. APB infusion into the
retina reversibly blocks the On pathway at the level of the retinal outer plexiform layer and
eliminates the response of the cortical direction selective cell to light edges while leaving
the response to dark edges intact. 9

One intriguing possibility is that dendritic spines might be the specialized sites for
the synaptic veto operation to take place. 5 - 20% of spines on cortical cells have been
reported to carry symmetrical and asymmetrical synaptic profiles on the same spine (see, .
for instance, Jones and Powell, 1969; Sloper and Powell, 1979). Such an arrangement can . "
be used to perform a highly tuned temporal discrimination operation, essentially without 9..
influencing the rest of the neuron (Koch and Poggio, 1983). With a fast excitatory and.
a much slower inhibitory conductance change simultaneously occuring on the same spine.
inhibition will effectively veto excitation if it sets in before the start of excitation (null d irec-
tion). Activating the inhibition some fraction of a millisecond after the start of excitation
will not influence excitation to any significant degree (preferred direction). S

Very recently, Saito et al. (1986) have proposed that a more complex type of motion
discrimination, namely cells in the superior temporal sulcus of the macaque monkey that
respond only to either expanding or contracting size change of patterns or to rotation of
patterns in one direction, is based on local synaptic veto operations occurring at numerous
independent sites in the dendritic tree of these cells. Finally, it has recently been proposed
that the synaptic veto mechanism underlies the direction selective response to cells in the
somatosensory cortex of awake monkeys when wheels with surface gratings are rolled over
their skin (Warren et al., 1986).

Open Questions

Evidence still seems inadequate to present a clear-cut case for either the cornclatioll
or the gradient scheme for human motion discrimination. In fact, both -,chenies may bc
used by the human visual system. Because the physiological and behavioral data sevilms to

indicate the validity of the correlation model for invertebrates and a large class of vrtbrates
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it may be hypothesized that the Reichardt correlation model, possibly implemented via

the synaptic veto mechanisms of Torre and Poggio (1978), is used in the primate retina
to endow some cells with direction selectivity. These cells, which cannot exist in very
large numbers, project to the superior colliculus and from there possibly to the cortex.
Motion discrimination in the cortex could be computed de nouveau within simple cells in
the striate cortex by use of a different scheme, for instance the gradient scheme of Marr
and Ullman (1981) or the implementation of the correlation model based on AND-NOT
type of synaptic logic (Poggio, 1982; Koch and Poggio, 1985). Psychophysical experiments

may thus be unable to separate these two models. Clearly, what is needed are physiological ""

experiments, e.g. single cell recordings using some of the psychophysical paradigms. to "

identify unambiguously the algorithm used to detect motion.

In the section on the biophysical mechanisms possibly underlying direction selectivity,
we discussed the strengths and limitations of simulating biophysical hardware, that is neu-
rons. Modeling the events underlying a particular computation at the cellular level can give
us valuable insights into the elementary operations underlying information processing at
the single cell level, operations that cannot be resolved by present experimental techniques p
because of the small distances and the brief times involved. Thus, the major justification
of this approach is its predictive power. Computer simulations should provide a number of ,0

detailed predictions that can be evaluated experimentally. Ideally, these predictions should
be nontrivial and should rule out alternative explanations.

The major drawback of this approach is that any model is only as good as its funda-

mental assumptions. For instance, most of the studies addressing properties of the synaptic
veto operation assume the absence of any significant electrical nonlinearity, suc . as den-
dritic spikes. This proviso must be taken irhto account when comparing experiments with
the theoretical predictions, and the effect of this simplifying assumption on the mechanism
in question must be carefully assessed (see O'Donnell, Koch and Poggio, 1985). Biophys-
ical models of the electrical properties of neurons depend on a host of parameters and
assumptions, most of which are poorly characterized. Thus, the foremost requirement of

any detailed model of cellular properties must be robustness: varying some parameter. such
as the membrane resistance, by a given amount should not lead to drastically changed prop-
erties in the circuit except if some critical, and specified, value has been crossed. Ideally.
one would like to show that some particular behavior occurs for a broad range of parameters
and is not overly sensitive to any one of them. If the model's behavior varies dramatically
by changing a parameter, for instance the location of inhibition with respect to excitation.
this dependency should be studied carefully, because it may lead to interesting predictions.

Any model that overly constrains a parameter seems biologically unreasonable.
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THE INTEGRATION OF EARLY MOTION MEASUREMENTS

Soltnng the Aperture Problem

The motion detection mechanisms described in the preceding section provide only par-

tial information about the 2-D pattern of movement in the changing image, due to a problem
often referred to as the aperture problem (Wallach, 1976; Fennema and Thompson, 1979;
Burt and Sperling, 1981; Horn and Schunck, 1981; Marr and Ullman, 1981; Adelson and
Movshon, 1982). Consider the computation of the projected 2-D velocity field for the ro-
tating wireframe object illustrated in Figure 5a. Suppose that the movement of features P

on the object were first detected by using operations that examine only a limited area of
the image, such as those performed by neural mechanisms with spatially limited receptive
fields. The information provided by such mechanisms is illustrated in Figure 5b. The ex-

tended edge E moves across the image, and its movement is observed through a window
defined by the circular aperture A. Through this window, it is only possible to observe the
movement of the edge in the direction perpendicular to its orientation. The component of
motion along the orientation of the edge is invisible through this limited aperture. Thus it
is not possible to distinguish between motions in the directions b, c and d. This failure to
distinguish between motions when the object is viewed through a small window has been
referred to as the aperture problem, and is inherent in any motion detection operation that
examines only a limited area of the image.

As a consequence of the aperture problem, the measurement of motion in the changing
image requires two stages of analysis: the first stage measures components of motion in
the direction perpendicular to image features; the second combines these components of
motion to compute the full 2-D pattern of movement in the image. In Figure 5c, a circle
undergoes pure translation to the right. The arrows along the contour represent the per-
pendicular components of velocity that can be measured directly from the changing image."%
These component measurements each provide some constraint on the possible motion of
the circle, as illustrated in Figure 5d. The bold vector v represents the local perpendicular
component of motion at a particular location in the image. The possible trie motions at
that location are given by the set of velocity vectors whose endpoint lies along the line I
oriented perpendicular to the vector v. Examples of possible true velocities are indicated
by the dotted vectors. The movement of image features such as corners or small spots can N

be measured directly. In general, however, the first measurements of movement provide
only partial information about the true movement of features in tile image, and must be
coInbined to compute the full pattern of 2-D motion.

Tile measurement of movement is difficult because in theory, there are infijit'lv many
patterns of motion that are consistent with a given changing image. For example, in Figure
5e, the contour C rotates, translates and deforms to yield the contour C' at some later hlie.

The true motion of the point p is ambiguous. Additional constraint is required to identify a
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Figure 5. The aperture problem in motion measurement. (a) On the top are three views of a
wireframe object undergoing rotation around a central vertical axis. On the bottom, the arrows
along the contours of the object represent the instantaneous velocity field at one position in the
object's trajectory. For simplicity, an orthographic projection is used. (b) An operation that views
the moving edge E through the local aperture A can compute only the component of motion c in the
direction perpendicular to the orientation of the edge. The true motion of the edge is ambiguous.
(c) The circle undergoes pure translation to the right; the arrows represent the perpendicular
components of velocity that can be measured from the changing image. (d) The curve C rotates,
translates, and deforms over time to yield the curve C'. The velocity of the point p is ambiguous.
(e) The vector v represents the perpendicular component of velocity at some location in the image.

ihe true velocity at that location must project to the line I perpendicular to v; examples are shown
with dotted arrows.
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unique solution. 4 It shoald also be noted that in general, it may not be possible to reov'r,.t-
the 2-D projection of the true 3-D field of motions of points in space. from tle changing
image intensities. Factors such as changing illumination, specularities, and shadows cart
generate patterns of optical flow in the image that do not correspond to the real movement
of surface features. The additional constraint used to measure image motion can yield at
best a solution that is most plausible from a physical standpoint.

Many physical assumptions could provide the additional constraint needed to compute a
unique pattern of image motion. One possibility is the assumption of pure translation. That
is, it is assumed that velocity is constant over small areas of the image. This assumption has
been used both in computer vision studies and in biological models of motion measurement
(for example, Lappin and Bell, 1976; Pantle and Picciano, 1976, Fennema and Thompson,
1979; Anstis, 1980; Marr and Ullman, 1981; Thompson and Barnard, 1981; Adelson and
Movshon, 1982). Methods that assume pure translation may be used to detect sudden
movements or to track objects across the visual field. These tasks may require only a rough
estimate of the overall translation of objects across the image. Tasks such as the recovery of
3-D structure from motion require a more detailed measurement of relative motion in the
image. The analysis of variations in motion such as those illustrated in Figure 5a requires
the use of a more general physical assumption. 10

Davis, Wu and Sun (1983) proposed a computational method for solving the aperture
problem that assumes that the pattern of image motion can be approximated locally by
rigid motion in the image plane. In more recent studies, the local image motions have been
modeled by second-order polynomials in the image coordinates (Wohn, 1984: Waxman and
Wohn, 1985; Wohn and Waxman, 1985; Waxman, 1986). This approach implicitly assumes
that the image locally represents the projection of a quadric surface patch in motion. Il

Other computational studies have assumed that velocity varies smoothly across the
image (Horn and Schunck, 1981; Hildreth, 1984; Nagel, 1984; Nagel and Enkelmann, 198-1.
1986; Anandan and Weiss, 1985; Scott, 1986). The assumption rests on the principle that
physical surfaces are generally smooth; that is, variations in the structure of a surface are
usually small, compared with the distance of the surface from the viewer. W\'hen surfaces
move, nearby points tend to move with similar velocities. There exist discontinuities in
movement at object boundaries, but most of the image is the projection of relatively smooth 

surfaces. Thus, it is natural to assume that image velocities vary smoothly over most of the Id 1%
visual field. A unique pattern of movement can be obtained by computing a velocity field
that is consistent with the changing image and has the least amount of variation possible.'P%

In other words, a pattern of movement is derived for which nearby points in the image move
with velocities that are as similar as possible.

The use of the smoothness assumption for motion measurement hma. several important
attributes from a computational perspective. First, it allows general motion to be analYzed.

4Like many early vision problems, the measurement of motion is an dl posed proble in, as for-
malized by Hadamard (Poggio, Torre and Koch, 1985). A body of mathematics known1 as
regularization theory may serve to unify the solution to many ill posed problems in vision.
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Surfaces can be rigid or nonrigid, undergoing any movement in space. It is always possible
to compute a projected velocity field that preserves the variation in the local pattern of
movement. Second, the smoothness assumption can be embodied in the motion measure-
mont computation in a way that guarantees a unique solution (Hildreth, 1984). Third, the
velocity field of least variation can be computed straightforwardly, using standard computer
algorithms (Horn and Schunck, 1981; lildreth, 1984; Nagel and Enkelmann, 1984, 1986;
Anandan and Weiss, 1985), as well as simple analog resistive networks (Poggio, Torre and
Koch, 1985; Poggio and Koch, 1985).

From the perspective of perceptual psychology, one can ask whether the human visual
system derives patterns of movement that are consistent with those predicted by a computa-
tion that uses the smoothness assumption. In particular, one can ask whether an incorrect
pattern of motion is perceived in situations in which a computer algorithm also fails. The
method for computing the velocity field suggested by Hildreth (1984) is guaranteed to yield
the correct solution for at least two classes of motion: (1) pure translation, and (2) general
motion (translation and rotation) of rigid 3-D objects whose edges are essentially straight.
For example, the computation yields the correct velocity field for the moving object of
Figure 5a. For smooth curves undergoing rotation, this computation sometimes yields a
solution that differs from the correct projected velocity field. The human visual system also
appears to derive an incorrect perception of motion in these situations (Hildreth, 1984).
Comparisons between the results of computational modelis and perceptual behavior have

___so far been only qualitative, however. Open questions remain regarding whether the hu-
man visual system maintains a local representation of the pattern of image motions, and
whether perceived motion is quantitatively consistent with that expected from a compu-
tation that uses the smoothness constraint. Perceptual studies indicate that when visual
patterns undergo uniform translation, human observers can match velocity directions to a
resolution of about 1 (Levinson and Sekuler, 1976; Nakayama and Silverman, 1983). It is
not yet known, however, whether such precision of velocity direction is also obtained when
the velocity field varies continuously across the visual field.

A second issue that arises regarding the solution to the aperture problem is the question
of whether the early motion measurements are integrated over 2-D areas of the image
or along connected contours such as edges. Models such as that suggested by Horn and
Schunck (1981) integrate these measurements over areas, while the model proposed by
llildreth (198.4) integrates motion measurements along connected contours. This issue was
addressed in a recent perceptual study by Nakayama and Silverman (1984a). Their study
used a simple distorted line, oscillating up and down. When viewed alone, a central diagonal
section of the line appeared to move in an oblique direction, so that the entire figure
appeared nonrigid. The figure could be made to appear to move rigidly up and down
by the introduction of additional features that were unambiguously moving up and down.
Nakayama and Silverman introduced both breaks on the contour and short segments off the
contour. They found that both the breaks on the line and the segments off the line could
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cause the central part of the line to appear to move up and down, but the features on the
contour had a much stronger effect, in that their distance from the center could be very largo.
The segments had to be very close to the line in order to exert any influence on the perception
of its motion. These phenomena suggest that the integration of motion constraints along
contours may play a stronger role in the human visual system, an observation that is also
supported by perceptual demonstrations presented by Hildreth (1984).

The local perpendicular components of motion are not always combined by the human
visual system. The conditions governing whether or not these measurements are combined
were studied by Adelson and Movshon (1982) and by Nakayama and Silverman (1983).
In the Adelson and Movshon study, the stimulus patterns consisted of two superimposed
sinewave gratings at different orientations, moving in the direction perpendicular to their
orientations. Together, the two gratings formed a single rigid pattern, moving in a direction
consistent with the constraints imposed by the two components. Under some conditions,
the gratings did not form a single coherent pattern perceptually; rather, the two compo-
nents appeared to split and move independently of one another. The coherence of the
combined pattern was found to decrease with an increase in any of the following factors:
(1) the difference in contrast between the two gratings, (2) the angle between the primary
directions of the gratings, (3) the difference between the two spatial frequencies and (4)
the speed of movement of the overall pattern. In a later study by Adelson (1984), it was
shown that the two components of motion would also appear to split if they were presented
on different depth planes. This observation suggests that stereo disparity enters into the
solution to the aperture problem in motion. Nakayama and Silverman (1983), by using
stimuli consisting of sinewave lines, demonstrated that two components of motion tend not
to be combined if their orientations are very similar (i.e. they differ by at most about 300).
These perceptual studies suggest that early measurements of the perpendicular components
of motion are not always combined by the human visual system. Under some conditions,
they will remain separate, resulting in a perception of motion that corresponds directly to
the pattern of components. More generally, these studies provide implicit support for the
notion that motion measurement takes place in two stages, with the first stage providing the
perpendicular components of motion and the second stage combining these components into
a single coherent pattern of motion. More explicit psychophysical support for a two-stage
motion measurement computation is presented in Movshon et al. (1985).

The motion measurement problem can also be examined from a physiological persper-
tive. Early movement detectors in biological systems have spatially limited receptive fields
and therefore face the aperture problem. Stimulated by a theoretical analysis of the aper-
ture problem, Movshon et al. (1985) sought and found direct physiological evidence for
a two-stage motion measurement computation in the primate visual system. Two visual
areas that include an abundance of motion-sensitive neurons are cortical areas VI and the
middle temporal area of extrastriate cortex (MT), located in the posterior bank of the su-
perior temporal sulcus (for example, see Maunsell and Van Essen, 1983: Van Essen and
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Maunsell, 1983; Allman, Miezin and McGuinness, 1985; Saito et al., 1986). The explicit
role of area MT in the cortical analysis of visual motion was confirmed recently by Newsome
et al. (1985), who showed that small restricted chemical lesions in area MT of the macaque
monkey led to a behavioral deficit in the monkey's ability to match the velocity of smooth
pursuit eye movements with the velocity of visual targets. Moreover, lesions in the cat's
Claire-Bishop area, which is assumed to correspond to area MT in the macaque anatom-
ically, led to a much reduced ability of behaving cats to distinguish small moving figures
from both moving and stationary surrounds (Strauss and von Seelen, 1986). Movshon et
al. (1985) explored the type of motion analysis taking place in the primate's MT, by us-
ing the same stimulus with superimposed sinewave gratings used by Adelson and Movshon

(1982). The results of these experiments indicate that the selectivity of neurons in area V1
for direction of movement is such that they could provide only the component of motion
in the direction perpendicular to the orientation of image features. These neurons essen-
tially only respond to a single component of the combined grating pattern, independent of

p. the presence of the second grating. Area MT, however, contains a subpopulation of cells.
referred to as pattern cells, that appear to respond to the 2-D direction of motion of the
combined grating pattern. For example, imagine a sinewave grating moving diagonally up
this page (bottom left to top right) and a second pattern superimposed on the first, moving
diagonally down the page (top left to bottom right). A neuron in VI whose best direction
id diagonally upward would respond to the superimposed pattern, as though the downward
moving diagonal were not even present. A pattern cell in MT, however, would respond to
the superimposed patterns as though they were moving directly across the page from left
to right. Thus, these pattern cells may serve to combine motion components to compute
the real 2-D direction of velocity of a moving pattern. These experiments do not yet dis-
tinguish between the use of the simple assumption of pure translation, as suggested in the
study by Movshon et al., 1985, and a more general assumption such as smoothness. Stimu-
Ils patterns undergoing more complicated motions are required to make such a distinction.

% If the pattern cells in area MT employ the assumption of smoothness in their computation
% of motion, one would expect to find direct interaction between pattern cells that analyze

nearby areas of the visual field.

Poggio and Koch (1985; Poggio et al., 1985) presented hypothetical neural implemen-
tations of regularization algorithms in terms of very simple linear, electrical or chemical,
analog networks. In particular, they proposed an implementation for the computation of
the smoothest velocity field as suggested by Hildreth (1984). From these networks, a neural
circuit is then designed that behaves in a similar way. Examples of the electrical and neural
networks are shown in Figure 6. In the network of Figure 6a, the currents Ii and conduc-
tances g anI gi represent measurements of the perpendicular components of velocity and
other properties of a moving contour obtained directly from the image. The voltages Vi rep-

resent the tangential component of velocity (i.e. the component of %clocity in the direction

parallel to the orientation of features in the image) that is recovered by the computation
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of the full 2-D velocity field. These analog resistive networks allow a fast computation of E.

the smoothest velocity field and are guaranteed to converge to the correct solution (Poggio
and Koch, 1985). In the corresponding neural implementation of Figure 6b, the tangential I
component of the velocity field is represented by the voltages Vi along a dendrite, which
are sampled by dendro-dendritic synapses. Measurements from the image are represented
by synaptically mediated current injections I, and other synaptic inputs Ri (for instance,
a silent GABAA type inhibitory synapse) that control the membrane resistance. The full
2-D velocity field is represented implicitly by the combination of the currents Ii and the
voltages V,. This hypothetical neural implementation was not intended as a specific model
for the measurement of motion in area MT. Rather, its intent was to show that it is possi-
ble for neural hardware to exploit a model of this computation that incorporates a general
assumption such as smoothness of the velocity field. Models such as this can help to focus
experimental questions regarding the actual neural circuitry in areas such as NIT.

Long Range Motion Correspondence

The preceding section addressed computational models that might underlie the short--
range process. The computation of a velocity field requires that motion in the image be
roughly continuous. The perception of motion by the human visual system does not. how-
ever, require that objects move continuously across the visual field. Motion can be inferred g
when features are presented discretely at positions separated by up to several degrees of
visual angle and with long temporal intervals between presentations. Ther- are many visual
patterns that yield qualitatively different perceptions of motion, depending on the size of
the spatial and temporal displacements between frames (for example, Ternus. 1926: Anstis.
1970, 1980; Braddick, 1974, 1980; Anstis and Rogers, 1975: Pantie and licciano. 1976:
Petersik and Pantle, 1979; Shepard and Judd, 1976; Burt. and Sperling, 1981; Green and
von Griinau, 1983; Hildreth, 1984; Anstis and Mather, 1985). Although the short rang,
and long-range motion processes may interact at some stage (Clatworthy and l'risby, 1973:
Green and von Griinau, 1983), there is evidence that they are initially distinct processes
(Mather, Cavanagh and Anstis, 1985; Gregory. 1985; Anstis and Mather. 195).

The long-range motion phenomena illustrate the ability of the human visual systnt to
derive a correspondence between elements in the changing image, over considvhrablc dist a nces

and temporal intervals. Under these conditions, there is no continuous motion of eleimnts
across the image to be measured directly. A correspondence computation is Iherefore lik,,ly
to underlie the long-range motion process. Two issues arise regarding this compulfatio : L
first, what features in the image are matched from one moment to the next, an(l second, how
is a unique correspondence of features established? Similar to the velocity field conipatiti.
many possible matchings between features in two images exist, and additional constraints
must be imposed to compute a single correspondence that is iost plausible from a l)hysical
standpoint.

30 '-..' .

-:

I



P

Computations Underlying Motion IHildro'h A/ Knrh

.J

a)

vii

Vi. 1  Vi Vio I

b ) 1-1.6h-

Figure 6. Analog models of the velocity field computation. (a) A simple resistive network that

computes the smoothest velocity field. The conductances g and gi, and the currents I, represent
properties of a moving contour that are measured directly from the image. In particular, g, is ,
proportional to the square of the contrast of the contour at location i. The 2-D velocity field along S"

the contour is represented implicitly by the combination of these inputs and the resulting voltages
Vi. (b) A hypothetical neural implementation of the circuit shown in (a). Synaptic mediated
currents I,, and additional inputs l (possibly a GABAA type of synapse) represent properties
of a moving contour. The resulting voltages V,, sampled by dendro-dendritic synapses, together
with the input currents, represent local velocities along the contour. Redrawn from Poggio and
Koch (1985).

The possible image features that could form the matching elements span a wide range,
from simple edge and line segments, points, and blobs, to texture boundaries, subjective
contours and groups of primitive features, and even to structured forms or entire objects.
Motion measurement schemes used in computer vision, reviewed for example in Thompson
and Barnard (1981), Ullman (1981a) and Barron (1984), have considered most of these
possible matching elements. In general, the earlier tokens such as edge and line segments
are easier to compute, but there is greater ambiguity in the matching of these tokens from
one moment to the next. The use of primitive tokens also allows the correspondence proces,
to operate on arbitrary objects undergoing complex bhape changes. More complex tokens
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such as structured forms can simplify the correspondence process, but more computation is
required to extract these features from the image, and there is less flexibility in the type,

of motion that can be analyzed.

Perceptual studies suggest that many long range motion phenomena can be explained
in terms of a correspondence of elements such as edges, bars, line terminations, points.
etc. (Ullman, 1979). The human visual system can also establish a correspondence be-
tween groups of primitive elements even when the constituents of the groups are not the

same (Riley, 1981), subjective contours and texture boundaries (Ramachandran. Rao and
Vidyasagar, 1973; Riley, 1981) and subjective surfaces (Rarnachandran, 1995). Propertie s
of primitive elements such as orientation, contrast and size c,,n influence the correspondence
computation (for example, Frisby, 1972; Kolers, 1972; Ullman, 1979. 1981h), although it
is possible to establish a correspondence between objects that differ significantly in their
components (Navon, 1976; Anstis and Mather, 1985). Chen (1985) has suggested that
topological features such as connectivity, closure and the presence of holes can play a rolh
in motion correspondence, but it is not clear whether these properties are made explicit in
the description of the matching elements, or whether they are reflected in the constraints
that are used to establish a unique correspondence of elements between frames.

The rules or constraints that are used by the human visual system to establish a cor-
respondence of elements between frames have also been explored in many studies. Early %.
perceptual studies focused on the role of the time and distance between elements in suc-
cessive frames (for example, Ternus, 1926; Kolers, 1972; Burt and Sperling. 1981). When
the elements in motion are isolated dots, each dot in general 'prefers' to match its near-
est neighbor in the subsequent frame, although this constraint sometimes can be violated
locally when a field of dots in motion interacts (Ullman, 1979; Burt and Sperling, 191,"
The distance metric that is used in the correspondence process appears to be based on 2 1)
di.stances between elements rather than 3-D distances (Ullmnan, 1979: Mulch, Smith ailnd
Yoiiab. 1983; Tarr and Pinker, 1985). Ramachandran and Anstis (1983, 1985) showed that
'inertia' can influence correspondence; that is, in ambiguous situations, moving element.,,
will tend to maintain the same direction of motion over time.

A computational model of correspondence presented by I-llman (1979) assumes in(le-
pendect(e of the matching elements. Subsequent studies have revealed situations in which.

t1, independence assumption appears not to hold. For examplf,, the perceived motion of;,
, , e rc can be influenced by the motion of other features connected to it along a (',iJr,,w"m
(llildrth. 1984; Chen, 1985). Ramachandran and Ansfis ( 1985) crvated a display in which.
a local pattern of dots whose motion was two way ainhiguoii was repeated in a large a iray.
Fach local subpattern could in principle be perceived as mov i g in either of txW) dirction .
ht observers always perceived the array of patterns as all mioving in the saine diret1il0ol.
I li' correspondence established within one subpat!ern of t1le display could itilkenc the
corrfspondence of dots in neighboring subpatterns.

I summarize, much is known about the iiiatchiI g Vleiii.nl- tli4 c i a a ige , .er 4
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spondence, and the rules or constraints used to match elements. Many recent perceptual
studies were motivated by computational models of the correspondence process. At present,
however, there are no computational models that adequately account for all of the long-
range motion phenomena observed in perceptual studies. Recent physiological studies that

explored the response of MT neurons to apparent movement stimuli (Newsome, Mikanii
and Wurtz. 1982, 1986; Mikama, Newsome and Wurtz, 1986) suggest that area MT might
provide some of the neural substrate for the interpretation of long-range motion.

The Detection of Motion Discontinuities

If two adjacent surfaces undergo different motions, a discontinuity generally occurs
in the optical flow or velocity field along their boundary. The explicit detection of motion
discontinuities allows the detection and localization of object boundaries in the scene. Other
cues to the presence of boundaries often occur as well, such as sharp changes in stereo
disparity or texture, but perceptual studies suggest that it is possible to detect object
boundaries on the basis of motion information alone (Anstis, 1970; Regan and Spekreijse,

1970; Julesz, 1971) and to use the relative motions in the vicinity of these boundaries to
infer the relative locations of surfaces in depth (Kaplan, 1969; Nakayama and Loomis, 1974:
Mutch and Thompson, 1985).

It is advantageous to detect motion discontinuities as early as possible, for two reasons.
First, the fast detection of a sudden relative movement in the environment can serve as
an early warning system, alerting the observer to a possible prey or predator, or to the 
sudden movement of an object toward the viewer. It is essential not only to detect the
presence of movement, but also to identify the outline of the object. A second reason for
detecting motion discontinuities early is that they facilitate the subsequent measurement
of 2-I) motion in the image. It was noted ealier that the computation of a velocity field
requires the integration of local measurements of the perpendicular components of motion.
Motion measurements should only be combined within single surfaces, as the combination
of measurements across object boundaries will generally yield errors in the velocity field. If

detected early, the motion discontinuities can define regions of the image within which the
local motion measurements should be combined.

With regard to computational schemes, one issue that arises is the question of what
stage in the analysis of the image should discontinuities first be detected. Three alternatives

present themselves. First, motion discontinuities could be localized prior to the computation
of the full velocity field, just after the initial measurements of the perpendicular components

of motion in the image (for example, Schunck and Horn, 1981; Hildreth, 1984). Schunck
and Horn used simple heuristics to avoid combining motion measurements that are likely

to occur on surfaces undergoing different motions. Hildreth presented a scheme to detect
sudden changes in the perpendicular components of motion, which uses techniques that
were previously used for edge detection (Marr and ilildreth, 1980). It. Bilthoff and T. Ile
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Poggio (1986, personal communication) use the binary output of simple correlation-like
detectors, signaling motion to the left or right, to localize discontinuities in dense random -
dot patterns. Surprisingly, such a simple measure gives a fairly accurate assessment of'
discontinuities, at least for random-dot stimuli.

A second possible stage at which boundaries can be detected is after the velocity
field has been computed explicitly everywhere. For example, Nakayama and Loomis (1974)
proposed a local center-surround operator to detect boundaries in optical flow fields. Similar
ideas are incorporated in models suggested by Clocksin (1980), and Thompson, Mutch and
Berzins (1982, 1985; Mutch and Thompson, 1985), which use a Laplacian operator applied
to components of the optical flow field. In other schemes explored, for example, by Potter
(1977) and Fennema and Thompson (1979; Thompson, 1980), region-growing techniques
are used to group together elements of similar velocities.

Finally, the velocity field and its discontinuities could be computed simultaneously. In
a scheme suggested by Wohn (1984) and Waxman (1986), the motion segmentation problem
is approached by detecting "boundaries of analyticity" at which an approximation of the
local image flow by second order polynomials breaks down. The boundaries are located
within the process that models the local motion field. Koch, Marroquin and Yuille (1986a)
have proposed that binary line processes, first introduced in the solution of vision problems
by Geman and Geman (1984), can successfully demarcate motion boundaries. At locations
where this line process is set, an unobservable line or edge is postulated to interrupt the
otherwise smooth velocity field, segmenting the image into its natural components. The
appropriate algorithm can be formulated as an energy minimization problem that maps
naturally into simple analog networks (Koch, Marroquin and Yuille, 1986).

A detailed neural circuitry for the detection of motion discontinuities by the housefly
was proposed by Reichardt, Poggio and Hausen (1983 Reichardt and Poggio, 1979). Large

field binocular "pool" cells summate the output of a retinotopic array of small field elemen-
tary movement detectors (EMD) over a large part of the visual field of the two compound

eyes. The EMD signal movement in one of two directions: progressive, i.e. movement from
front to back, and regressive, i.e. movement from back to front. The pool cells inhibit in
turn, via a silent or shunting inhibition (see the section on circuitry and biophysics). the
signals provided by the FMD, irrespective of their preferred direction. After inhibition of
each channel, all signals from the EMD feed into a large field output cell. This circuit shows
two important properties: it detects relative motion of a moving figure superimposed on

a stationary background of the same texture as the figure, and its output, the optomotor
response, is independent of the size of moving figure. Motion discontiuities are signaled by
significant activity in the output cells. The model agrees well with behavioral data from
the fly. Moreover, elements of the proposed circuitry can be identified with anatomically
and physiologically characterized cells in the visual system of the fly (Egelhaaf, 1985).

Physiological studies have revealed center-surround mechanisms that are organized
antagonistically for direction of motion in many vertebrate species (for example, Sterlinlg
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and Wickelgren, 1969; Collett, 1972; Bridgeman, 1972; Frost, 1978; Frost, Scilley and
Wong, 1981; Frost and Nakayama, 1983). Motion-sensitive cells with this organization

have been found recently in area MT of the Owl monkey (Miezin, McGuinness and Allman,

1982; Allman, Miezin and McGuinness, 1985) and in striate cortex of the cat (Orban et
al., 1986). The existence of center-surround relative motion detection mechanisms across

such a range of species suggests that a similar strategy may be utilized in the underlying

computations. Richards and Lieberman (1982) show in psychophysical studies that some

viewers are "blind" to shearing motions, and suggest that the neural substrate for detecting

such discontinuous motions may be independent from mechanisms detecting other motion
boundaries.

Psychophysical studies of motion discontinuities have mainly used dynamic random dot

patterns, in which only motion cues signal the presence of boundaries. Braddick's (1974,
1980) studies revealed a limit on the spatial and temporal displacements required to per-

ceive coherent motion in dense random dot patterns, and showed that it was possible to

detect a boundary between coherent and incoherent fields of motion. Experiments by Baker

and Braddick (1982a) and van Doom and Koenderink (1982, 1983) suggest that the detec-
tion of discontinuities is not based on a computation that explicitly measures only relative

movement; rather, an absolute measurement of motion takes place first, followed by a pro-

cess that compares nearby motions to locate discontinuities. Baker and Braddick (1982b)
showed that the ability to discriminate the orientation of a patch that moves against an

uncorrelated background varies little with dot density and increases with the patch size (see
also Chang and Julesz, 1983). In general, the size of a patch of moving dots that can be dis-

criminated against a differentially moving background increases with larger displacements
of the dots between frames (Hildreth, 1984). This phenomenon may reflect the limitations
of multiple spatial frequency channels involved in the early detection of motion. Other per-

ceptual studies have shown that spatial frequency plays a role in determining the maximum
displacements that allow the perception of coherent motion in random dot patterns (Chang
and Julesz, 1983; Nakayama and Silverman, 1984b).

It is important to draw a distinction between the ability to detect differences in motion,

and the ability to localize a boundary between surfaces undergoing different motions. For
example, if two adjacent fields are undergoing motion in the same direction, a 5% difference S

in speed is sufficient to detect relative movement (McKee, 1981; Nakayama, 1981). To .

localize a boundary, however, requires much larger differences in speed, between 50 - 60%
(van )oorn and Koenderink, 1982, 1983; tlildreth, 1984). If two adjacent surfaces undergo

motions with similar speeds but different directions, then an angular change in direction of

at least 200 is required to localize the position of the boundary (Hildreth, 1984).

Experimental studies have provided much insight into the nature of the mechanisms
that underlie the detection of motion discontinuities in biological systems. Many funda-

mental questions still remain, however. Perhaps the most basic open question concerns at

wlat stage in the analysis of motion the discontinuities are first detected. It is not known. 17
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for example, what representation of motion forms the input to the center-surround mecha-
nisms observed in area MT by Allman, Miezin and McGuinness (1985). These mcchanism-ij

may operate directly on the perpendicular components of motion, or they may operate oil
the real 2-D directions of image motion. Psychophysical studies have not yet addressed
this issue directly. Furthermore, while physiological studies reveal that some sort of center-
surround mechanisms are involved in the detection of relative movement, little is known

about what these mechanisms really compute and 'ow they compute this information. Fur- 'I

ther computational studies are needed to examine possible algorithms for detecting motion

boundaries that may utilize these center-surround mechanisms.
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THE RECOVERY OF THREE-DIMENSIONAL STRUCTURE FRO N I
MOTION

The Computational Problem and Related Perceptual Studies

When an object moves in space, the motions of individual points on the object differ

in a way that conveys information about its 3-D structure, as illustrated in Figure 5a. The
directions of motion in this case are all horizontal, but the speed of movement varies in
a way that depends on the structure of the object. Using wireframe objects such as that

shown in Figure 5a, Wallach and O'Connell (1953) showed that the human visual system

can derive the correct 3-D structure of moving objects from their changing 2-D projection
alone. Other perceptual studies also demonstrated this remarkable ability (for example,

Green, 1961; Braunstein, 1962, 1976; Johansson, 1973, 1975; Rogers and Graham, 1979:
Ullman, 1979; Cutting, 1982: Cutting and Proffitt, 1982). Relative motion in the image

is also created by movement of the observer relative to the environment, and can be used
to infer observer motion from the changing image (Gibson, 1950; Lee and Aronson, 1974;

Johansson, 1971; Lee, 1980).

Theoretically, the two problems of (1) recovering the 3-D structure and movement of

objects in the environment and (2) recovering the 3-D motion of the observer from the
changing image, are closely related. The main difficulty faced by both is that infinitely
many combinations of 3-D structure and motion could give rise to any particular 2-D
image. To resolve this inherent ambiguity, it is necessary to impose additional constraint
that allows rriost 3-D interpretations to be ruled out, leaving one that is most plausible

from a physical standpoint. Computational studies have used the rigidity assumption to
derive a unique 3-D structure and motion; they assume that if it is possible to interpret

the changing 2-D image as the projection of a rigid 3-D object in motion, then such an

interpretation should be chosen (for example, Ullman, 1979, 1983; Clocksin, 1980; Prazdny,
1980, 1983; Longuet-Iliggins, 1981; Longuet-Higgins and Prazdny, 1981; Tsai and Iluang,

1991: Iloffman and Flinchbaugh, 1982; Bobick, 1983; Mitiche, 1984, 1986; Mitiche, Seida
and Aggarwal. 1985; Waxman and Ullman. 19R5). When the rigidity assumption is used in

this way, the recovery of structure from motion requires the computation of the rigid 3-)
objct that would project onto a given 2-D image. The rigidity assumption was suggested

by po'rceptual studies that described a tendency for the human visual system to choose a

rigid interpretation of moving elements (Wallach and O'Connell, 1953: Gibson and Gibson.
1957: Green, 1961; Jansson and Johansson. 1973; Johansson, 1975. 1977).

Computational studies ha%- shown that the rigidity assumption can be used to derive
a unique 3-D structure from the changing 2-D image. Furthermore, this unique 3-I) in-

terpriation can be derived by integrating image information onl. over a limited extent in

sp ace and in time. For example, suppose that a rigid object in motion is projected onto
4 the image plane by using orthographic projection. Three distinct views of four points on
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the moving object are sufficient to compute a unique rigid 3-D structure for the points

(Ullman, 1979). In general, if only two views of the moving points are considered or fewr
points are observed, there are multiple rigid 3-D structures consistent with the changing
2-D projection. If a perspective projection of objects onto the image is used instead, then
two distinct views of seven or eight points in motion are usually sufficient to compute a
unique 3-D structure for the points (Longuet-Higgins, 1981; Tsai and Huang, 1981). If
the instantaneous velocity of movement in the image is known at discrete points, then
under perspective projection, the position and velocity at five points may be sufficient to
derive a unique structure (Prazdny, 1980; Roach and Aggarwal, 1980). Longuet-ttiggins
and Prazdny (1981) originally showed that if the continuous velocity field is known every-
where within a region of the image, then the velocity field together with its first and second
spatial derivatives at a point is consistent with at most three possible surface orientations
at that point. Waxman, Kamgar-Parsi and Subbarao (see Waxman, 1986) have recently

shown that a unique solution can usually be determined in this case. Finally, for the case
of orthographic projection, 3-D structure can be recovered uniquely if both the velocity

and acceleration fields are known within a region (Hoffman, 1982). Additional theoretical
results have been obtained for classes of restricted motion, such as planar surfaces in motion
(Hay, 1966; Koenderink and van Doorn, 1976; Buxton et al., 1984; Longuet-Higgins, 1984;
Murray and Buxton, 1984; Kanatani, 1985; Waxman and Ullman, 1985; Ullman, 1985;
Negahdaripour and Horn, 1985; Subbarao and Waxman, 1985), pure translatory motion of m
the observer (Clocksin, 1980; Lawton, 1983; Jerian and Jain, 1984), planar or fixed axis ro-
tation (Hoffman and Flinchbaugh, 1982; Webb and Aggarwal, 1981; Bobick, 1983; Bennett
and Hoffman, 1985; Sugie and Inagaki, 1984), translation perpendicular to the rotation axis
(Longuet-Higgins, 1983), and motion of quadratic surfaces (Waxman and Ullman, 1985;
Waxman and Wohn, 1985). A review of early theoretical results regarding the recovry of
structure from motion can be found in Ullman (1983).

The theoretical results summarized above are important for the study of the recovery
of structure from motion in biological vision systems, for at least two reasons. First. they

show that by using the rigidity assumption, a unique structure can be recovered froili
motion information alone. It is not necessary to make further physical assumptions, in
order to obtain a unique solution. Second, these results show that it is possible to recove.

3-D structure by integrating image information over a small extent in space and in time.
This second observation could bear on the neural mechanisms that compute structure fromi
motion; in principle, they need only integrate motion information over a limited area of the
visual field and a limited extent in time. 0

The above computational studies of the recovery of structure from motion also provide

algorithms for deriving the structure of moving objects. Typically, mea.s urements of the %
positions or velocities of image features give rise to a set of mathematical equations whose . -

solution represents the desired 3- D structure. The algorithms generally derive this st nic't ure
from motion information extracted over a limited area of the image and a limited extexli ini
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time. Testing of these algorithms reveals that although this strategy is possible in theory,
it is not reliable in practice. A small amount of error in the image measurements can lead
to very different (and often incorrect) 3-D structures. This behavior is due in part to the
observation that over a small extent in space and time, very different objects can induce
almost identical patterns of motion in the image (Ullman, 1983, 1984).

This sensitivity to error inherent in algorithms that integrate motion information only
over a small extent in space and time suggests that a robust scheme for deriving struc-
ture should use image information that is more extended in space or time or both. This
conclusion is supported in recent computational studies (Bruss and Horn, 1983; Lawton.
1983; Ullman, 1984; Adiv, 1985; Negahdaripour and Horn, 1985, Waxman and Wohn, 1985;
Wohn and Waxman, 1985). Lawton (1983) showed that recovery of the translatory motion
of an observer could be coupled with the solution to the motion correspondence problem
over an extended region of the image, to yield a robust solution. Adiv (1985) presented
an algorithm for recovering the motion parameters for several moving objects, which as-
sumes that object surfaces are piecewise planar. The extraction of the motion parameters
uses a least-squares approach that minimizes the deviation between the measured flow field
(at a large number of points) and that predicted from the estimated motion and structure
(Bruss and Horn, 1983). Negahdaripour and Horn (1985) also addressed the recovery of
the motion of an observer relative to a stationary planar surface, and showed that a robust
recovery of the observer motion and the orientation of the plane is possible when dense
measurements of the spatial and temporal derivatives of image brightness are integrated
over a large region of the changing image. Thus, consideration of motion information that
is more extended in space can lead to a stable recovery of structure. The study by Uniman
(1984), elaborated below, demonstrated that a robust recovery of structure is also possible
when motion information is integrated over an extended period of time. The extension in
Iime can be achieved, for example, by considering a large number of discrete frames or by
observing continuous motion over a significant temporal extent.

With regard to the human visual system, the dependence of perceived structure on the
spatial and temporal extent of the viewed motion has not yet been studied systematically,
but the following informal observations have been made. Regarding spatial extent, two or
three points undergoing relative motion are sufficient to elicit a perception of 3-D structure
(Borjesson and von llofsten, 1973; Johansson, 1975), although theoretically the recovery
of structure is less constrained for two points in motion, and perceptually the sensation of
structure is weaker. An increase in the number of moving elements in view appears to have
little effect on the quality of perceived structure (for example, Petersik, 1980). Regarding
the temporal extent of viewed motion, Johansson (1975) showed that a brief observation of
patterns of moving lights generated by human figures moving in the dark (commonly referred
to as biological motion displays) can lead to a perception of the 3-D motion and structure
of the figures. Other perceptual studies indicate that the human visual system requires

an extended time period to reach an accurate perception of 3-D structure (Wallach and
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O'Connell, 1953; White and Mueser, 1960; Green, 1961; Doner, Lappin and Perfetto, 198-1:
Inada et al., 1986). A brief observation of a moving pattern sometimes yielhs an impression
of structure that is "flatter" than the true structure of the moving object. Thus, the human
visual system is capable of deriving some sense of structure from motion information that
is integrated over a small extent in space and time. An accurate perception of structur,
may, however, require a more extended viewing period.

Most methods compute a 3-D structure from motion only when the changing image
can be interpreted as the projection of a rigid object in motion. They otherwise yield In(i
interpretation of structure or yield a solution that is incorrect or unstable. Algorithms that
are exceptions to this can interpret only restricted classes of nonrigid motions (Bennett
and Hoffman, 1985; Hoffman and Flinchbaugh, 1982; Koenderink and van I)oorn. 1986).
The human visual system, however, can derive some sense of structure for a wide rangle
of nonrigid motions, including stretching, bending and more complex types of deformation
(Johansson, 1964; Jansson and Johansson, 1973; Todd, 1982, 1984). Furthermore, displays
of rigid objects in motion sometimes give rise to the perception of somewhat distortin,
objects (Wallach, Weisz and Adams, 1956; White and Mueser, 1960; Green. 1961: Braun-
stein, 1962; Sperling el at, 1983; Braunstein and Andersen, 1984; llidreth, 19-4, Adelson. P
1985). These observations suggest that while the human visual system tends to choose rigid
interpretations of a changing image, it probably does not use the rigidity assumption in the
strict way that previous computational studies have suggested.

Ullman (1984) proposed a more flexible method for deriving structure from motion that
interprets both rigid and nonrigid motion. Referred to as the incremental rigidity scherni.

this algorithm uses the rigidity assumption in a different way from previous studies. It
maintains an internal model of the structure of a moving object that consists of the estimated
:--D coordinates of points on the object. The model is continually updated as new positions
of image features are considered. Initially, the object is assumed to be flat. if no other cues
to 3-D structure are present. Otherwise, its initial structure may be determined b other

cues available, from stereopsis, shading, texture, or perspective. As each new view of the
moving object appears, the algorithm computes a new set of 3 I) coordinates for points
on the object that maximizes the rigidity in the transformation from Ihe current model
to the new positions. This is achieved by minimizimg the change in the 3 1) distances
between points in the model. Thus the algorithm interprets the changing 2 1) imat,, as
the projection of a moving 3-D object that changes as little as possible from one moment :cl
to the next. Through a process of repeatedly considering ne% views of objects in notion
and updating the current model of their structure, the algorit hut builds up) and taintlain, p
,1 3 D model of the objects. If objects deform over time, the 3 1) io(l(,I coilpitted 1b ' le.e
algorithm also changes over time. Other models have been proposed that iuup,.(e rigidit%
by requiring that the 3-D distances between points in space chang( very little front one

Hionient to the next (for example, Mitiche, 1984, 19S6: Mitiche, Seida ain( Agg;trwal. !87)).
,alt ough these models do not build tip a 3-D model increitnent allh as in I'llniait's proposed 0
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scheme.

The method proposed by Ullman (1984) was motivated in part by the limitations of
previous computer algorithms and in part by knowledge of the human visual system. The
method has overcome limitations of previous computational studies in two ways. First, it
provides a reliable recovery of structure in the presence of error in the image measurements,
by integrating image information over an extended time period. Second, it allows the
interpretation of nonrigid motions. These are essential qualities for any method that is
proposed as a viable model for the recovery of structure from motion by the human visual
system. This method also has other attributes that are consistent with human perceptual
behavior: (1) it sometimes yields a nonrigid interpretation of rigid structures in motion,
(2) a brief viewing time results in a structure that is "flatter" than the true structure of
the object, (3) it allows a 3-D interpretation of scenes containing as few as two points in
motion (Borjesson and von Hofsten, 1973; Johansson, 1975), and (4) it provides a natural
means for integrating multiple sources of 3-D information.

A recent computational study by Grzywacz and Hildreth (1985) has extended Ullman's
incremental rigidity scheme, presenting a formulation of the algorithm that makes direct
use of instantaneous velocity information over an extended time, and showing how the
algorithm can be modified to use perspective projection of the scene onto the image. With
regard to the use of velocities, previous studies had suggested that the recovery of 3-D
structure from velocity information at a single moment is inherently unstable (Prazdny.
1980; Ullman, 1983). Through computer simulations and a theoretical analysis, Grzywacz
and Hildreth showed that the integration of velocity information over an extended time does
not overcome this problem of instability. The velocity based formulation of the incremental
rigidity scheme does not yield a robust computation of structure over an extended time;
rather, the solution oscillates between good and poor estimates of the 3-D structure of a
moving object. More generally, if discrete views of moving elements are used instead, the
i ncremental rigidity scheme performs best when the spatial changes between views are large.
For example, if an object is rotating, the algorithm computes a better 3-D structure for the
object if larger angular rotations between discrete frames are considered.

With regard to the human visual system, it is unlikely that discrete movie-like "snap-
shots" form a direct input to the recovery of 3-D structure from motion. Second, if a
short-range motion measurement system exists and provides essentially instantaneous mea-
surements of movement in the changing image, these measurements should be used in some
way to interpret the 3-D structure of the scene. These short-range measurements may,
however, form the input to a longer-range tracking operation that integrates image motion
information over a more extended time for the accurate recovery of 3-D structure. In any
case, the short-range measurements can also be used to identify motion discontinuities,
which are likely to indicate the locations of object boundaries in the scene. Knowledge of
object boundaries can improve the overall recovery of structure from motion.

This discussion of the structure-from-motion problem illustrates a number of impor-
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tant points that often arise in the computational study of other problems in the varly 

stages of vision. First, a single solution to the problem cannot be obtained from informa-
tion in the image alone; additional constraint is required. Second, theoretical studies call
be used to show that a general physical assumption such as rigidity is sufficient to solve
the structure-from-motion problem uniquely. Third, an assumption such as rigidity can be
incorporated in many ways into an algorithm to recover structure. The development of a
reliable algorithm requires a cycling between computer implementation, testing, and refine-
ment. Finally, perceptual studies can suggest and test particular assumptions and reveal
aspects of the algorithm used by the human visual system for solving a given problem. It
is typical of computational studies that the initial methods proposed for solving a problem
only loosely consider the detailed observations of biological systems. These first studies un-
cover useful aspects of the problems, however. Later studies then combine this knowledge
of the problem with observations of biological systems to derive models that more closely
reflect the computations carried out in biological systems.

Physiological Studies of the Recovery of Structure from Motion

Physiological studies have uncovered neurons in higher cortical areas that are sensitive
to properties of the motion field that may be relevant to the recovery of the 3-D structure -.,

and motion of surfaces in the environment, or to the recovery of the motion of the observer _ p
relative to the scene. Many studies have revealed neurons sensitive to uniform expansion. e

or contraction of the visual field, a property that is correlated either with translation of *3*

the observer forward or backward, or equivalently, motion of an object toward or away
from the observer. Such neurons have been found, for example, in the posterior parietal
cortex of the monkey (Motter and Mountcastle, 1981; Andersen, 1986). Other neurons have
been found that are sensitive to global rotations in the visual field (Andersen, 1986: Sakata
et al., 1985). All of these neurons have large receptive fields, so they probably lack tlh,
spatial sensitivity required to derive the detailed shape of an object surface from relativ,,
motion. In the human visual system, the accurate recovery of object shape from motion
may be an ability that is restricted to the central region of the eye; the ability to inlterpret
2-D structure-from-motion displays appears to degrade rapidly as one moves away from
the fovea (S. Ullman, personal communication). Siegel and Andersen (198() showed Ih m
motion processing in area MT is critical to the recovery of structure from motion.

The neurons sensitive to relative movement that were discussed in the context of inl-
tion discontinuities may also contribute to the recovery of 3-D structure. (e-taimly ihc

detection and localization of object boundaries is essential to the construction of a :3 1)
representation of surfaces in the scene. Mechanisms such as the "convexity" detector sug-
gested by Nakayama and Loomis (1974) may also derive information about the r-lative

depths of surfaces on either side of a motion boundary. The computational .-t edy by Mutcl
and Thompson (1985) also addressed this issue.
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Regan and Beverley (1979, 1983) have hypothesized the existence of 'changing-size'
detectors (analogous to detectors of uniform expansion or contraction in the visual field)
based on psychophysical evidence from adaptation studies. They also suggested that the
changing-size detectors may be distinct from neural mechanisms signaling motion in depth
(Beverley and Regan, 1979). Neurons exist in area 18 of the cat visual cortex (for example,
Cynader and Regan, 1978, 1982) and area VI of the primate visual cortex (Poggio and
Talbot, 1981) that appear to be selective for direction of movement in depth. These studies
of cells responsive to movement in depth used binocularly viewed moving bars, however. F %

so they may address the interaction between binocular stereopsis and motion measurement
for the recovery of movement in space, rather than the recovery of structure from motion e

alone. I
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CONCLUDING REMARKS

In this review we have tried to integrate studies from computation, psychophysic.-
physiology and biophysics into a computational framework. The interaction between these
different approaches promises to be fruitful in furthering our understanding of motion anal-
ysis in biological vision systems, because the various perspectives each provide valuable and(l
different insight into how vision systems analyze motion information.

Perceptual studies, for example, help to define the problems in motion analysis that are
solved, and reveal the quantitative ability with which the human visual system can solve
these problems. We have seen that many problems in motion analysis do not have a unique
solution, and additional constraint must be imposed to solve them. There are often different
choices for the assumptions that could be embodied in the underlying computations, which
critical perceptual experiments can attempt to distinguish. There are also many algorithms
that could solve a given problem, and different algorithms might fail in different ways.
Again, critical perceptual experiments can be designed to determine whether the human
visual system fails in the same way. It is often the case that perceptual studies provide
initial hints about the strategies used in the underlying computations.

Studies from physiology and biophysics can reveal what parts of the visual system are

involved in a particular computation, and what the elementary operations are that neurons
use in processing motion information. Properties of the underlying hardware also constrain
the nature of the algorithms and representations that are used in motion computations. De-
tailed computer models of neuronal networks subserving motion measurement have helped
to focus further experimental questions regarding physiological and biophysical behavior.
Finally, physiological methods can help eliminate ambiguities in perceptual studies. Be-
cause the primate visual system may have evolved a variety of different algorithms to cope
with a particular problem, a psychophysical paradigm may be unable to distinguish between
these different algorithms, while single-cell recordings may do so.

Computational studies help to focus questions for perceptual studies about the a-
sumptions, representations, and algorithms used by the human visual system to analyze
motion. Implementations of proposed algorithms have provided powerful predictive tools
for making hypotheses about what the behavior of the system ought to be if it is per-
forming motion computations in particular ways. In the case of physiological studies, by
elucidating the problems that need to be solved in motion analysis, computational studies
can aid the initial exploration of the function of neurons in motion-sensitive areas in the
visual pathway. By elucidating possible methods by which computations can be performed.
computational studies can help to refine our understanding of how neurons function and by
what mechanisms.

Acknowledgments: We thank Tomaso Poggio and Shimon 'llman for useful coniment."
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